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ABSTRACT 

Joseph J.P. Roberts: The Electrochemisty of Surface Modified <10 nm Metal Oxide 

Nanoparticles 

(Under the direction of Royce W. Murray) 

 

 Chapter One provides a general introduction of the research on metal oxide 

nanoparticles (MOx), highlighting their synthesis, surface modification, and functionalization. 

Emphasis is given to the different synthetic route for producing small (<10 nm) MOx 

nanoparticles with narrow size distributions. Different methods for modifying their surface with 

small organic molecules are discussed with focus given to silanes and phosphates. Furthermore, 

functionalizing surface modified nanoparticles for specific functions is addressed, with markers 

for analytically relevant nanoscale quantification being the primary focus. 

 Chapter Two describes in detail the thermal degradation synthesis used for the 

generation of small MOx nanoparticles. It demonstrates the versatile of the synthesis by 

successfully synthesizing ZrO2 and IrO2 nanoparticles. Preliminary work involving the formation 

of Bi2S3, Bi2O3, and RuO2 nanomaterials is also addressed. The solvothermal synthesis of indium 

tin oxide (ITO) is also shown for comparison to ITO produced by thermal degradation. 

 Chapter Three details the surface modification of ITO nanoparticles and subsequent 

electrochemical tagging with a ferrocene moiety. ITO nanoparticles were synthesized via thermal 

degradation. These nanoparticles underwent a ligand exchange with a covalently binding 

mondentate silane terminated with a primary amine. Acyl chloride coupling between the amine 

and chlorocarbonylferrocene provided an electrochemical tag to quantify the level of surface 
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modification. Electrochemisty of the quasi-diffusing nanoparticles was evaluated via cyclic 

voltammetry (CV), chronoamperometry (CA), and mircodisk electrode (µE) experiments. 

 Chapter Four investigates spectroscopic tagging of ITO and ZrO2 nanoparticles as well 

as electrochemical tagging of ZrO2 and IrO2 nanoparticles. An unbound azo-dye was synthesized 

and attempts were made to attach the dye to the surface of ITO nanoparticles. Imine couple 

between a spectroscopic tag and ZrO2 nanoparticles was also explored, but resulted in very low 

surface coverages. ZrO2 nanoparticles were also ferrocene tagged using previously discussed 

siloxane chemistry as well as a new route using click chemistry with an azo-phosphate ligand. A 

similar approach was taken with hydrolytically synthesized IrO2 and is included for comparison. 

 Chapter Five studies the multivalent electrochemistry of 4 nm magnetite nanoparticles. 

These nanoparticles are synthesized via thermal degradation and capped with citric acid to make 

them water soluble. pH dependent electrochemistry was discovered and characterized using 

cyclic voltammetry, chronoamperometry, and rotating disk electrode experiments. Two separate 

electrochemical species are present and undergo two irreversible, but separate electrochemical 

reactions; Fe(II)  Fe (III) and Fe(III)  Fe(II). 
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CHAPTER 1 - AN INTRODUCTION TO METAL OXIDE NANOPARTICLES AND 

METHODS TO MODIFY THEIR SURFACE 

 

 The field of nanotechnology has experienced an explosion of growth in recent years. This 

is largely due to the number of interesting properties that nanomaterials have over their bulk 

counterparts. As you shrink a material down to the nanoscale, you typically see changes based on 

quantum confinement. CdSe nanoparticles, often referred to as quantum dots, can emit different 

wavelengths of light based on the diameter of the nanoparticle1. Changing the diameter between 

2 to 10 nm covers the entire visible range. Nanomaterials also exhibit increased reactivity as they 

provide large surface-to-volume ratios. The number of potential applications is large, especially 

since careful synthetic control opens an avenue to “tune” a nanomaterial for a wide range of 

applications. Polymeric nanomaterials, for instance, might be able to prevent biofouling of 

implantable sensors by gradually releasing NO during the lifetime of the device2. Gold 

nanoparticles, a favored topic in the nanocommunity, can be synthesized in specific “magic” 

structures, such as Au25. Not only do these small nanoparticles (~1.2 nm) show quantized energy 

levels during electrochemical analysis, but they also allow a gold’s surface plasmon to be 

“tuned” based on nanoparticle size3. Many metal nanoparticles show increased catalytic 

efficiency due to their high surface-to-volume ratio.  Small (~1 nm) Ru/Pd nanoparticles have 

been shown to perform hydrogenations with high yields and excellent enantioselectivity4. The 

list goes on, with the largest number of applications in medical5-7, energy8-9, and consumer uses. 

With so many materials available it would be impractical for one research facility to create and  
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Scheme 1.1 – Outline of MOx suface modifications and functionalizations presented in this work  
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characterize them all. Instead, this work focuses on nanomaterials made from metal oxides and 

aims to control their formation during synthesis and change their properties by modifying their 

surfaces. 

Metal oxide (MOx) nanoparticles are large portion of nanomaterial research. With an 

already staggering number of interesting MOx bulk materials, investigating their nanoscale 

counterparts is a large undertaking. So many materials necessitates a need to evaluate and 

categorize them. This work chooses to organize them based on their most valued properties, and 

will focus on catalytic, magnetic, and transparent conducting MOx nanoparticles. As discussed 

above, catalysis is a very important field in nanomaterial research. Several MOx NPs have shown 

catalytic properties for a variety of organic reactions10. Other materials, like iridium oxide, show 

promise in energy applications by reducing the overpotential of water oxidation to allow its 

splitting by solar energy11. Magnetic nanoparticles, like iron oxide and its derivatives, are 

primarily examined for their biological applications6. These nanoparticles show relatively low 

cell toxicity12-13 and can be manipulated in vivo by a powerful magnetic field providing routes 

for targeted drug delivery systems in cancer treatment14, more robust MRI contrast reagents15-16, 

and immunotherapy treatments by localizing hyperthermia15. Another category includes 

transparent conductive oxides (TCOs), like indium tin oxide and TiO2. These materials have 

good conductivity and high optical transparency in the visible region. Traditionally TCOs have 

seen use in spectroelectrochemistry17, but are now frequently used in commercial display devices 

like flat screen TVs and monitors. They also show great promise as modifiable conductive 

windows in solar cell designs18.  Much of the work presented in this thesis deals with the 

characterization and modification of TCO and magnetic materials. A small section on catalytic 

nanoparticles is also included. 
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1.1 Methods of Metal Oxide Nanoparticle Synthesis 

There are many synthetic routes for metal oxide nanomaterials, generally stemming from 

the desire to specifically tune their properties. A frequently used synthesis is a co-precipitation 

method which involves metal salts (often chloride salts) in the presence of strong acid or base19. 

The size, type, and properties of the nanomaterial generated are based on the acid/base used, pH, 

and the concentration of the metal salts20-21.  Generally, the reaction yields water soluble 

materials but can suffer from poor monodispersity and crystallinity. Co-precipitation methods 

have been used since ancient times, though it was unknown then that the process created 

nanomaterials. Many routes have come into existence in recent years, more than one work could 

possibly discuss in detail. This work will focus on co-precipitation, thermal degradation, 

solvothermal, and electrochemical methods, but microwave-assisted22, laser-induced 

fragmentation, and ionic liquid23 methods are known in the literature. 

 Several routes for nonaqueous nanomaterial synthesis exist. Of them, thermal degradation 

and solvothermal methods have been specifically been utilized by this lab. The thermal 

degradation synthesis, often our primary route to generate new nanomaterials, has shown itself to 

be a very powerful and versatile tool24-26. A metal salt, often an acetate or acetylacetate, is placed 

into a high boiling point solvent in the presence of a surfactant. The reaction is heated to the 

boiling point of the solvent (> 200 °C) where the metal salt begins to decompose and starts to 

form nanoparticle nucleates that are limited in their growth by the surfactant. This route is known 

for producing small nanoparticles (less than 10 nm in diameter) capped in surfactant with very 

good monodispersity and crystallinity. A more detailed discussion of the thermal degradation 

synthesis will be presented in Chapter 2. A solvothermal synthesis was also briefly employed by 

this lab for the generation of nanomaterials. This method again involves metal salts, but this time 
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they are placed in a stabilizing organic solvent such as benzyl ether27-29. The whole reaction is 

then placed into a Teflon lined digestion bomb and heated to high temperatures (~ 200 °C) over 

the course of 1 or more days.  The resulting nanomaterial is pseudo-capped with the stabilizing 

solvent which can easily be removed by additional washing. This method will also be discussed 

in more detail in Chapter 2. 

 Recently an electrochemical route was developed for synthesizing iron oxide 

nanoparticles30-32. The method involves a sacrificial iron anode, an iron cathode, and a reference 

electrode hooked to a standard potentiostat. The electrodes are placed into an electrolyte solution 

and separated by a specific distance. A voltage is applied, generating nanoparticles at the anode. 

Adjusting both the current density and the voltage yields control over the size and shape iron 

oxide nanoparticles formed. A surfactant is sometimes used to prevent flocculation, but methods 

exist where no surfactant is used. 

1.2 Surface Modification of Metal Oxide Nanoparticles 

 As mentioned above, there is vast potential for MOx nanoparticles in a wide range of 

applications. However, many of these applications require that the nanoparticles be durable and 

compatible with the environment of the application. This is especially important for biological 

applications as the nanoparticle need maintain their desired properties while limiting their 

toxicity to the body. Much of the solubility and durability of nanoparticles come from how their 

surface is passified. Having no surface protection often leads to flocculation or aggregation as 

time progresses. The need to control surface chemistry has led to many different methods for 

modifying the surface of nanoparticles to make them more suitable to their new environment.  

Nanoparticles synthesized via co-precipitation, solvothermal, or electrochemical methods are 

considered to have “bare” surfaces capable of easy modification. Those nanoparticles 
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synthesized by high temperature degradation are covered in surfactant, which leads to a 

competitive interaction during surface modification, making the process more challenging. 

However, many different molecules readily interact with a MOx surface providing a wide range 

of molecules and surface chemistries to work with. The most common molecules involved are 

carboxylic acids, amines, phosphates and phosphonates, and silanes33. Each of these provides a 

unique type of binding to the MOx surface, with carboxylic acids and amines chemisorbing while 

phosphates, phosphonates, and silanes are capable of multiple covalent bonds to the metal ion 

present at the surface. 

 Carboxylic acids and amines are commonly used to modify the solubility properties of a 

MOx nanoparticle by changing its surface charge30, 34-35. For instance, citric acid is often used to 

replace the surfactant on nonaqueous iron oxide nanoparticles to make them soluble in water36. 

Many of the surfactants used in thermal degradation synthesis are also carboxylic acids or 

amines attached to very long carbon chains37-38. As such, it is the functional group that interacts 

with the MOx surface via adsorption or chemisorption between the electronegative 

oxygens/nitrogen and the positively charged metal ions. Since the primary form of bonding is not 

covalent, the ligands are capable of detaching from the MOx surface and forming an equilibrium 

with the solution around them, this is especially true in the case of adsorbed molecules. This 

means that carboxylate and amine capped nanoparticles can eventually lose their coating and 

begin to aggregate or flocculate in their environment. Coating a MOx nanoparticle with a 

carboxylate or amine is usually very simple. The desired ligand is added to a solution of 

nanoparticles and stirred until the appropriate polarity change occurs which causes the 

nanoparticles to crash out of their original solution or transfer to another solvent. For instance, 

this lab has transferred IrO2 nanoparticles from their as-synthesized water solution to DCM  
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containing valeric acid just by continued stirring overnight39. The purple color of the IrO2 

nanoparticles can be visually observed as it transfers over to the DCM layer. 

 In order to achieve long term surface control, a more powerful bonding option must be 

used, preferably something capable of covalent interaction. Silanes, which are well known for 

their bonding with bulk MOx surfaces, make an attractive option for long term surface 

modification. Silanes are known to readily react with surface -OH groups to form covalent M-O-

Si bonds40-43. They are capable of being mono, di, and tridentate ligands based on their design 

and can be synthesized with a wide variety of R groups. They are also inexpensive and 

commercially available.  However, silanes do possess some limitations, namely homo-

condensation and poor stability outside the pH range of 4-10.  Homo-condensation, which occurs 

when Si-O-Si bonds are formed between different silane molecules, often causes the silane to 

“chain”, creating large polymer networks which encapsulate nanoparticles. This polymerization 

makes it very difficult to try and quantify any surface modification that occurs and can be 

limited, but not completely prevented, by carefully controlling the reaction environment or by 

limiting the reagents to less reactive or monodentate silanes. Silanes are also susceptible to 

hydrolytic cleavage in strongly acidic or basic environments. Essentially, bonds are broken as H+ 

(in the case of acid environments) or OH- (in basic environments) react with Si to recreate Si-H 

or Si-OH bonds. Bulky side groups can help limit the effects of hydrolytic cleavage, but 

extended operation outside of pH 4-10 will eventually lead to removal of the silane layer. A 

series of silanes were used to modify ITO and ZrO2 nanoparticles and will be discussed in more 

detail in Chapters 3 and 4. 

 Phosphates and phosphonates provide an additional option for long term surface 

modification due to their enhanced bond strength and multidentate nature44. They are known to 
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bind with most non-silicon MOx surfaces and, like silanes, can be mono, di, or tridentate in their 

binding and can be customized during synthesis to satisfy any R group needs. Unlike silanes, the 

M-O-P bonds formed at the MOx surface are much less susceptible to hydrolysis and are 

incapable of homo-condensation to polymerize. This makes them ideal for quantifying 

nanoparticle surface modification. Phosphate ligands have been used to anchor azide groups to 

nanoparticle surfaces to allow for further modification via click chemistry45. Chapter 4 will 

further explore nanoparticles with phosphate surfaces. 

1.3 Functionalization of Metal Oxide Nanoparticles 

 The major focus behind modifying the surface of a nanoparticle is to provide groundwork 

for its functionalization to give it the properties needed to work with the application in mind. For 

instance, nanoparticles for biological applications must be soluble in water and stable at 

physiological pH40, 46. This is not the case for many as-synthesized nanoparticles, so they must be 

modified with a ligand that provides those qualities with a strong surface attachment. There are 

numerous ways routes to functionalize nanoparticles, however it is easiest to divide them into 

two separate orders of operation, single step and multistep functionalization. In a single step 

functionalization, the molecule that is attached to the surface already has the desired 

functionality. All synthetic steps for the ligand are completed before it is used. All that remains is 

to attach the ligand to the surface and remove any excess. This is the preferred method of 

functionalization. However, there are often problems with only using a single step, namely 

unexpected reaction sites and incompatibilities during the functionalization (i.e., trying to react a 

non-polar nanoparticle with an aqueous ligand). To mitigate this, functionalization can also be 

done through a multistep process. A multistep functionalization usually involves steps where an 

active site is anchored to the nanoparticle surface and then the desired functionality is reacted 



9 

 

with the active site. They are certainly not limited to two-steps, but each additional step adds 

more work-up and decreases yield. This work discusses both single step and multistep 

functionalization in Chapters 3, 4, and 5. 

 Several common organic reactions can be used to modify an attached ligand in a 

multistep functionalization of a nanoparticle. Often, the limiting factor is the terminal groups 

available to be reacted. Primary amines make a very attractive choice, assuming your original 

ligand is capable of supporting one42. Amines are polar enough to widen solvent choices and are 

the target of many powerful coupling techniques, specifically acyl chloride and carbodiimide47 

couplings. Previous work from the Murray Lab showed how carbodiimide coupling could be 

used to modify the terminal amine groups of a 3-aminopropyltrimethoxysilane ligand shell on 

SiO2 nanoparticles with an electroactive ferrocene tag48. They were then able to electrochemicaly 

determine the number of ferrocenes and predict the surface coverage of the SiO2 nanoparticles, 

estimating ~600 individual electron transfers per nanoparticle. Carbodiimide coupling is very 

effective but it is a relatively slow reaction with several biproducts that can be formed resulting 

in additional purification steps. Much this work uses acyl chloride coupling with the primary 

amine to provide adequate functionalization. Acyl chloride reagents are very reactive and have to 

be handled very carefully under inert atmosphere but also provide enhanced reactivity and ease 

of use. Acyl chlorides can easily be made from simple carboxylic acids and readily undergo 

nucleophilic attack from the primary amine to create a bond between the two reagents. If the 

carboxylic acid is attached to an electrochemical moiety, such as a ferrocene group, the coupling 

can easily be detected through electrochemical analysis. Chapters 2 and 3 discuss using terminal 

amine silanes and their modification with acyl chloride reagents. 
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 Recently, another way of modifying surfaces has afforded a degree of fame, the so called 

“click” reactions15, 45, 49. Click reactions are simple ways of combining two types of small 

molecules and are typically required to be modular, high yielding, and stereoselective while 

producing very inoffensive by-products. Perhaps the most notable of the Click reactions is the 

azide-alkyne Huisgen cycloaddition where an azide group cyclizes after coming into contact with 

a terminal alkyne group. This reaction is typically very slow, but can be catalyzed by the 

presence of Cu(I) in solution, often made in solution by reducing CuSO4 with sodium ascorbate. 

There are many examples in the literature showing how metal oxide surfaces can be modified by 

using phospho-azide materials to bind with the surface then reacting them with an alkyne 

terminated function group. In 2010 the Xian group of East China Normal University showed a 

way to modify iron oxide nanoparticles with ferrocene to create a magnetic electrochemical 

switch50. Using a previously reported synthesis for a phosphor-azide ligand45 they were able to 

remove the original surfactant layer and replace it with this new phosphate ligand. They were 

then able to perform a click reaction using ethynylferrocene to graft an electroactive tag to the 

phosphate support and detect its presence with electrochemistry. Since phosphates do not 

polymerize this provides an attractive route to generate a monolayer of ferrocene on the surface 

of MOx nanoparticles. Chapter 4 will discuss using this route to modify the surface of IrO2 and 

ZrO2 nanoparticles. 
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CHAPTER 2 – SYNTHESIS OF METAL OXIDE NANOPARTICLES BY THERMAL 

DEGRADATION AND SOLVOTHERMAL ROUTES 

 

2.1 Introduction 

 Synthesis of MOx nanoparticles can be done in a multitude of different ways, but no 

method provides a universal way to create nanoparticles for all desired specifications1. Instead, 

each synthesis provides control over a small set of parameters, allowing for synthetic selection 

based on which properties are most important for the work at hand. For instance, our lab is 

interested in nanoparticles less than 10 nm in diameter. Once nanoparticles enter this size regime 

they begin to act less like clusters and more like individual molecules. Au25L18 is a remarkable 

example of this. Due to its small size (1.1 nm in diameter) electrochemical detection can reveal 

the energy levels of the HOMO and LUMO gap2, something that would be nearly impossible to 

see in a large nanomaterial or a nanomaterial with a large size distribution. Therefore, in order 

study molecule like nanoparticles, a synthesis capable of generating small nanoparticles with 

great monodispersity is required. 

 There are several synthetic routes to producing small (<10 nm) nanoparticles, though 

most often co-precipitation, thermal degradation (TD), or solvothermal methods are chosen. 

Unfortunately, none of these methods are capable of producing the perfect nanoparticle for every 

possible application. Instead, each of them offers distinct advantages and disadvantages which 

must be weighed before a synthetic pathway can be selected. Typically, co-precipitation methods 
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are easy to perform and can produce very small “naked” nanoparticles but lack monodispersity 

and crystallinity. Thermal degradation makes reproducibly small nanoparticles with high 

monodispersity and crystallinity, but require difficult post-synthesis work to remove their 

protective surfactant shell. Solvothermal methods are also very easy to perform and produce 

small nanoparticles with an easy to remove protective layer, but have long reactions times (24-72 

hrs). The majority of the work presented here uses a high temperature degradation synthesis; one 

experiment via a solvothermal synthesis will be briefly mentioned as well. 

2.1.1 Metal Oxide Nanoparticles via Thermal Degradation Synthesis 

 Thermal degradation syntheses use very high temperatures (~ 250° C – 350° C) to cause 

the breakdown of an organometallic salt, often in the presence of a fatty surfactant to limit 

crystalline growth. Metal acetates and acetylacetonates are most frequently used as the metal 

precursor since the acetates and acetylacetonates are capable of condensation at high 

temperatures. Other metallic salts have been shown work as well, but acetates and 

acetylacetonates are favored. The literature also shows a wide range of surfactants in use; they 

often have a carboxylic acid or amine functional groups to interact with the metal oxide surface3-

6. These moieties passify the growth of specific crystalline planes, controlling nanoparticle 

growth. Several works use oleylamine and/or oleic acid, both of which are C18 carbon chains 

with centrally situated double bond, though both are environmentally dangerous and air 

sensitive. Other groups have used ligands that are solids at room temperature, such as myristic 

acid and octadecylamine, knowing that the high temperatures will melt them prior to the reaction 

starting. Due to the high temperatures involved, high boiling point solvents (HBPS) such as 1-

octadecene, dipenyl ether, benzyl ether, or dodecane are used to prevent solvent evaporation.  

The reaction temperature is often set to the boiling point of the solvent, so the solvent chosen has 



18 

 

the ability to limit the energy put into the reaction. Reactions are often vacuum or argon purged 

at a lower temperature to remove excess oxygen and allow the reagents to sufficiently dissolve in 

the HBPS. At the end of the reaction the surfactant-capped nanoparticles form a colloidal 

suspension with the HBPS and can be precipitated by adding a polar solvent like ethanol. 

 Thermal degradation has proven to be very versatile in regards to the number of materials 

it can be used for. The literature has shown successful synthesis of Fe2O3, Fe3O4, ITO, ZrO2, 

CdSe, ZnO2, and Bi2S3. As long as a stable acetate or acetylacetonate exists for a chosen metal, 

thermal degradation should be able to produce nanoparticles. Nearly all of these syntheses 

produce nanoparticles with diameters less than 10 nm, with some nanoparticles measuring only 2 

nm in diameter. The size of the nanoparticles can also be tuned by manipulating the parameters 

of the reaction. For instance, changing the solvent from diphenyl ether (Tbp = 258° C) to benzyl 

ether (Tbp = 298° C) changes Fe3O4 nanoparticle products from 3 nm in diameter to 6 nm4. 

Changing the surfactants or surfactant concentration, essentially the ability to limit crystalline 

growth, can also cause a significant change in size and shape7. Replacing oleylamine and oleic 

acid with myristic acid and octadecylamine shows ITO nanoparticle diameter changing from 5.6 

nm5 to 6.5 nm8. With so many parameters to manipulate, a wide range of nanomaterials of 

varying sizes can be created with relative ease. The only major drawback of the thermal 

degradation synthesis is also its defining feature - the surfactant shell. The shell protects the MOx 

cores from interacting with each other, preventing flocculation and agglomeration. It also makes 

the nanoparticles insulated and non-polar which prevents them from being used in many 

biological and electrical applications. In order to use them for such applications they must have 

their surfaces modified with a more manageable ligand. This additional step sometimes causes 

this synthesis to be viewed unfavorably, but high batch reproducibility coupled with good 
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monodispersity and crystallinity make it a very attractive synthesis for analytically examining 

small nanoparticles. 

2.1.2 Metal Oxide Nanoparticles via Solvothermal Synthesis 

 Solvothermal methods heavily rely on the slower reaction kinetics that occur in organic 

solvents9. The slower reactions allow for a higher degree of synthetic control during the 

nanoparticle growth stage. Solvothermal nanoparticles are also “gently” capped, meaning their 

protective layer can easily be removed by repeated washing yielding a naked” nanoparticle10. 

Solvothermal reactions utilize the same organometallic salts as high temperature thermal 

degradations, but require a special reaction vessel commonly referred to as an autoclave. Though 

they share the same name, this is not the same device commonly used by biological scientists to 

sterilize equipment and waste. The autoclave used in these experiments is actually an acid 

digestion bomb, commonly associated with Parr Instruments. The metal precursors are 

suspended in benzyl alcohol, which acts as a weak capping ligand, (other HBPS may be used) 

and placed into the acid digestion bomb. The bomb is then placed into a furnace and heated just 

below the boiling point of the solvent for 1-3 days. The solution is then centrifuged and excess 

chloroform added to remove excess benzyl alcohol. The result is a “naked” nanoparticle film 

with moderate yield (~50%). 

Solvothermal syntheses are less versatile, compared to TD syntheses, due to fewer 

tunable parameters. The synthesis is primarily controlled by timing the experiment, changing the 

solvent, or manipulating starting concentrations. Even though there are fewer parameters, 

synthetic control can still be achieved. ITO nanoparticles were found to vary from 6.2 nm to 12.7 

nm based on a 12 hr to 48 hr reaction time11.  The lack of numerous parameters does offer some 

advantages. Solvothermal syntheses are comparatively much simpler than TD, making them 



20 

 

ideal labs with minimal synthetic capability. Simply place the reagents in the bomb, heat, and 

wait. These reactions are also highly reproducible since the reaction is dependent on 1) an oven 

with accurate temperature control and 2) a good timer. Accurate temperature control is important 

since if the solvent boils too vigorously, the pressure can warp the acid digestion bomb’s Teflon 

container, ruining the seal and requiring a costly replacement. Solvothermal syntheses are 

excellent for creating and characterizing nanoparticle films. The nanoparticle powder can easily 

be suspended and applied to glass or conductive slides. The “naked” nanoparticle surfaces also 

lends itself towards surface modification experiments, however they are nearly impossible to 

disperse in solution without prior modification. Their unpacified surface can also lead to 

flocculation which can make analytical surface measurements difficult. Ultimately, the time 

required to make solvothermal nanoparticles was judged too time consuming, and the TD 

method was chosen as the primary synthetic method. 

2.2 Experimental 

2.2.1 Chemicals and Materials 

Indium(III) acetate (In(ac)3; 99.99%), tin(II) (acetate) (Sn(ac)2; 99.99%) were obtained 

from Alfa Aeser, indium(III) acetylacetonate (In(acac)3; 99.99%), tin(IV) bis(acetylacetonate) 

dichloride (Sn(acac)2Cl2; 98%), ruthenium(III) acetylacetonate (Ru(acac)3; 97%), iridium(III) 

acetylacetonate (Ir(acac)3; 97%), zirconium(IV) acetate hydroxide (Zr(ac)xOHy), zirconium(IV) 

acetylacetonate (Zr(acac)4; 98%), bismouth(III) acetate (Bi(acac)3; 99.99%),  oleylamine 

(C9H18=C9H17NH2; 80-90%), oleic acid (C9H18=C8H15COOH; 97%), myristic acid 

(CH3(CH2)12COOH; 99%), octadecylamine (CH3(CH2)17NH2; 90%), sulfur (S; 99.5), octadecene 

(C16H33=CH2; 90%), benzyl alcohol (C6H5CH2OH; >99%) from Sigma-Aldrich. Acetonitrile 
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(CH3CN), absolute ethanol, hexanes, dichloromethane (DCM), petroleum ether, toluene, and 

chloroform obtained from Fisher Scientific were dried over 4 Angstrom molecular sieves.   

2.2.2 Instrumentation 

Programmable Temperature Control Unit. A lab constructed device controlled by a CAL 

9500P programmable process controller with attached to a thermal couple was used to accurately 

control synthesis temperatures. 

High Resolution Transmission Electron Microscopy (TEM).  TEM images were obtained 

on a JEOL 2010F FasTEM on nanoparticle samples prepared on copper grids (200 carbon mesh, 

carbon-coated Formvar; Ted Pella, Redding, CA) 

Energy-Dispersive X-Ray Spectroscopy (EDS). EDS analysis was performed using 

Oxford INCA EnergyTEM 250 TEM microanalysis system attached to the JEOL 2010F 

FasTEM. 

Centrifuge. Centrifugation was done with an Eppendorf 5810 centrifuge with a fixed-

angle rotator at 3000-4000 rpm for 10 minutes.   

X-Ray Photoelectric Spectroscopy (XPS). XPS data were taken on a Kratos Axis Ultra 

DLD system with monochromatic Al Kα x-ray source.  High resolution scans were taken at pass 

energy = 20 eV, and the spectral energy axis was aligned at the C 1s peak at 284.6 eV.   

Ultraviolet-Visible Spectroscopy (UV-Vis). UV-Vis spectra were taken on a Thermo 

Evolution Array UV-Vis spectrophotometer (Thermo, Waltham, MA) 

2.2.3 Standard Thermal Degradation Synthesis of Metal Oxide Nanoparticles 

 Metal Oxide nanoparticles were synthesized following the procedure reported by Sun et 

al5.  A metal acetate (ac) or acetylacetonate (acac) (0.20 mmol), a dopant metal ac or acac ( % 
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wt/wt desired), oleic acid/myristic acid (1.9 mmol), oleylamine/octadecylamine (2.4 mmol), and 

optionally sulfur (3 mmol) were added to octadecene (5 mL) in a 50 mL 3-neck round bottom 

flask equipped with a magnetic stir bar, thermocouple and condenser, closing the third port with 

a septum.  Using a 100 mL heating mantle packed with sand to promote even heating, the vessel 

was evacuated and heated 1 hr at 120˚ C with vigorous stirring.   The temperature was then 

rapidly increased to 320˚ C and the mixture refluxed for an hour, then allowed to cool to room 

temperature.  The cloudy suspension was transferred to a 50 mL centrifugation tube and 40 mL 

of absolute ethanol was added, precipitating the nanoparticles, followed by centrifugation at 

3000 RPM for 10 minutes. This process was repeated three times.  The nanoparticles were then 

taken up into 3 mL of either hexanes or chloroform and stored at room temperature.  Solution 

colors varied dramatically based on the metal used. 

2.2.4 Hot Injection Thermal Degradation Synthesis of Metal Oxide Nanoparticles 

 The procedure was modified from Sun et al.5  A metal acetate (ac) or acetylacetonates 

(acac) (0.20 mmol), a dopant metal ac or acac ( % wt/wt desired), and oleic acid/myristic acid 

(1.9 mmol) were added to octadecene (5 mL) in a 50 mL 3-neck round bottom flask equipped 

with a magnetic stir bar, thermocouple and condenser, closing the third port with a septum.   

Using a 100 mL heating mantle packed with sand to promote even heating, the vessel was 

evacuated and heated 1 hr at 120 ˚C with vigorous stirring.   The temperature was then rapidly 

increased to 295˚ C at which point oleylamine/octadecylamine (2.4 mmol) (and sulfur (3 mmol) 

for Bi2S3 nanomaterials) in 0.2 mL octadecene was injected via syringe. The solution color 

typically changed from a bright color (yellow, red) to black after this injection. The reaction was 

refluxed at 320˚ C for an hour, and the vessel allowed to cool to room temperature.  The cloudy 

suspension was transferred to a 50 mL centrifugation tube and 40 mL of absolute ethanol added, 
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precipitating the nanoparticles, followed by centrifugation at 3000 RPM for 10 minutes. This 

process was repeated three times.  The nanoparticles were then taken up into 3 mL of either 

hexanes or chloroform and stored at room temperature.  Solution colors varied based on the MOx 

material formed (ZrO2 = orange; IrOx = Dark Blue; Bi2S3/Bi2O3 = Black). 

2.2.5 Solvothermal Synthesis of ITO Nanoparticles 

 The solvothermal synthesis used follows the procedure reported by Niederberger et. al.12 

Indium(III) acetylacetonate (1.55 mmol) and a wt% (2-30%) tin(IV) acetylacetonate dichloride 

were placed in an argon purged scintillation vial and stirred for 1 hr. The turbid solution was 

transferred to a Teflon lined Parr acid digestion bomb and heated at 200° C for 24-48 hr. The 

cloudy suspension was transferred to a 50 mL centrifugation tube and centrifuged at 3000 RPM 

for 10 minutes.  Excess chloroform was added and the nanoparticles were centrifuged to remove 

any remaining benzyl alcohol. This process was repeated twice more. The resulting blue powder 

was dried at 60° C overnight then transferred to a scintillation vial for storage. 

2.2.6 Citrate Capped Nanoparticles.   

This procedure was modified from Drofenik et. al.13  A 1 mL sample of the hexane 

dispersed nanoparticles was rotovapped to dryness, the nanoparticles weighed (~5-50 mg) and 

redissolved in 7.5 mL toluene in a scintillation vial.  The toluene solution was added to a solution 

of citric acid (3 mmol, ~0.6 g) in 7.5 mL DMF which caused the solution to became turbid.  The 

mixture was stirred vigorously at 100 ˚C for 24 hrs, then was transferred to 50 mL centrifuge 

tubes and the nanoparticles precipitated by adding diethyl ether. They were collected via 

centrifugation at 6000 RPM for 10 minutes.   The red-brown nanoparticle precipitate was washed 

twice more with fresh diethyl ether and then suspended in 15 mL of pH 2.2 citrate buffer; after 

24 hr this yields a homogeneous, yellow solution. 
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2.2.7 Estimations of Nanoparticle Mass and Composition 

 Nanoparticle mass and composition was estimated by using the average nanoparticle 

diameter. The average diameter was found by using TEM images to generate a histogram (n = 

50). The nanoparticles were assumed to be completely spherical with a radius equal to ½ the 

average diameter. Volume was determined by 

𝑉 =
4

3
𝜋𝑟3 

where V is volume (nm3) and r is the radius (nm). The crystalline structure of the nanoparticles 

was assumed to be similar to that of the bulk material (ZrO2 = monoclinic14; IrOx = rutile15; Bi2S3 

= orthorhombic16; Bi2O3 = monoclinic16). The volume of the unit cell was calculated from a, b, 

and c values collected from the literature for the above structures. The volume of the 

nanoparticle was then divided by the unit cell volume to estimate the number of unit cells present 

in a single nanoparticle. The number of unit cells could then be related to the number of metal 

ions and oxygen ions present in the nanoparticle. The number of metal ions was multiplied by its 

atomic mass and added to the mass of oxygens present yielding a molecular weight for a mole of 

nanoparticles. Sample masses could be divided by this molecular weight to determine moles of 

nanoparticles and subsequently the number of nanoparticles present in the sample. 

2.3 Results and Discussion 

2.3.1 Characterization of ZrO2 Nanoparticles Prepared by Thermal Degradation Synthesis 

 ZrO2 nanoparticles were synthesized predominately by the hot injection method detailed 

above, using oleic acid and oleylamine. Initially, Zr(ac)OH was used as the metal precursor. NP 

samples from Zr(ac)OH ranged from orange to brown in color; the nanoparticles, ca. 2 nm in 

diameter, were dispersible in non-polar solvents. A white precipitate forms at the bottom the  



25 

 

sample vials after about 24 hr., which is believed to be unreacted Zr(ac)OH. Zr(ac)OH has very 

poor solubility except in strongly acidic solutions, and unreacted material is visible in the final 

reaction mixture. Zr(acac)4 was tested as a replacement and proved to be an ideal metal 

precursor. The acetylacetonate solubilizes nicely at high temperatures and produces the same 

orange-brown solution seen with the acetate with no visible precipitate. 

The size of the nanoparticles is difficult to determine based on the TEM images. The 

ZrO2 nanoparticles have little contrast against the TEM grid at high magnification. The organic 

surfactant that covers the nanoparticles also tends to evaporate under high beam intensity, 

decreasing resolution. As such, the size distribution of the as synthesized nanoparticles can only 

be estimated from low resolution images. To circumvent this problem, the nanoparticles were 

capped with citrate following a previously reported procedure13. This removes the surfactant 

layer, allowing higher quality images to be taken.  The citrate-ZrO2 nanoparticles are 1.54 ± 0.26 

nm in diameter and are assumed to maintain the same size as the as-synthesized nanoparticles. 

XPS and EDX were both used to evaluate the elemental composition of the citrate-ZrO2 

nanoparticles. Before citrate capping, XPS peaks are all masked due to photoelectron scattering 

by the surface surfactant (Fig 2.2a). After citrate capping, the spectrum shows clearly defined Zr 

3d peaks at 182.1 and 184.6 eV (Fig. 2.2b). The citrate-ZrO2 sample shows significantly 

improved signal compared to that of the as synthesized material. Table 2.1 shows percent in the 

ZrO nanoparticle samples. The ideal Zr:O ratio would be 0.5 since two oxygens should be 

present for each zirconium. However, the surfactant shell prevents accurate measurements of the 

as-synthesized nanoparticles, and citrate-ZrO2 also includes the contributions from citric acid.  
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Figure 2.1 –TEM Images of citrate-ZrO2 nanoparticles (1.5 ± 0.3 nm); panels A and B scale bars 

are 50 nm and 10 nm, respectively.  C shows a histogram of the nanoparticle size dispersion. 
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Figure 2.2 – XPS of A) ZrO2 nanoparticles and B) citrate-ZrO2 nanoparticles. Insets show the Zr 

3d peaks. 
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Table 2.1 – XPS and EDX Atomic Values for ZrO2 

Sample Name Method Zr Atomic Percent (%) Zr:O Ratio 

ZrO XPS 0.13 0.15 

Cit-ZrO XPS 2.51 0.068 
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 UV/Vis spectra (Fig. 2.3) of as synthesized ZrO nanoparticles in hexanes agree with 

previously reported spectra for ZrO2 nanoparticles of a similar size17.  The nanoparticles have an  

absorbance maximum at ~236 nm  and a shoulder at ~298 nm. These optical band gaps are much 

lower than the 5.0 eV expected of bulk ZrO.  

2.3.2 Characterization of IrO2 Nanoparticles Prepared by Thermal Degradation Synthesis 

 IrOx nanoparticles were synthesized by thermal degradation in an effort to compare the 

resulting nanoparticles to those achieved by the literature prevalent hydrolytic method18. The 

hydrolytic IrO2 nanoparticles have many properties of interest, chiefly their ability to lower the 

overpotential of water oxidation, but tend to have wider size distributions than those achievable 

by thermal degradation. Ir(III) acetylacetonate was used as the metal precursor in the presence of 

oleylamine and oleic acid. The resulting dark black solution becomes midnight blue upon 

sufficient dilution. TEM images (Fig 2.4) showed that the nanoparticles were similar in size to 

hydrolytic IrO2, with average diameters of 1.78 ± 0.28. Both XPS (Fig 2.5) and EDX (Fig 2.6) 

confirm the presence of Ir in the as-synthesized IrO2 nanoparticles. As expected, the surfactant 

shell causes the C 1s peaks to dominate the spectra, but high resolution scans show Ir 4f peaks at 

61.2 and 64 eV. The EDX, which penetrates through the surfactant shell, shows a Ir:O ratio of 

0.43; close to the expected 0.50. 

2.3.3 Characterization of Bi2S3 and Bi2O3 Nanomaterials Prepared by Thermal 

Degradation Synthesis 

 

Bi2S3 nanomaterials were synthesized by both the hot injection method and the standard 

method. Initial experiments used the hot injection method (HI-Bi2S3), where elemental sulfur 

was dissolved in oleylamine and injected into the reaction vessel at 295 °C. This resulted in a 

color change from clear to an opalescent black. The HI-Bi2S3 nanomaterial was easily  
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Figure 2.3 - UV/Vis spectrum of a 1.25 mg/mL solution of ZrO2 nanoparticles in hexanes. 
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Figure 2.4 – TEM Images of IrO2 nanoparticles (1.8 ± 0.3 nm); panels A and B scale bars are 10 

nm and 5 nm, respectively.  C shows a histogram of the nanoparticle size dispersion. 
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Figure 2.5 – XPS of A) as-synthesized IrO2 nanoparticles. B shows a high resolution scan of the 

Ir 4f region. 
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Figure 2.6 – EDX of the as-synthesized IrO2 nanoparticles. 
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Table 2.2 – XPS and EDX Atomic Values for IrO2 

Sample Name Method Ir Atomic Percent (%) Ir:O Ratio 

IrO2 

XPS 0.85 0.24 

EDS 0.16 0.43 
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precipitated using ethanol, but did not disperse in non-polar solvents as expected. Instead, this 

nanomaterial formed a hazy suspension for ca. 2 hrs. before precipitating out of solution. This 

behavior suggests an incomplete protective surfactant shell, which might mean that the 

carboxylic acid and primary amine chosen (oleylamine and oleic acid) do not interact strongly 

with the crystalline planes of Bi2S3. TEM analysis of the suspension, as well as the unperturbed 

solution, showed two separate nanomaterials existed in the suspended (Fig 2.7a), small nanorods 

and large ca. 200 nm nanoparticles. For comparison, two additional procedures were attempted, 

1) where sulfur was hot injected without oleylamine (SI-Bi2S3) and 2) a standard TD synthesis 

with sulfur added to the starting materials (Bi2S3).  Hot injection of sulfur produced only the 

Bi2S3 nanorods seen previously in HI-Bi2S3 (Fig. 2.7b) while the standard TD synthesis produced 

a nanostructure hybrid somewhere between a cube and a sphere (Fig. 2.7c). UV-Vis spectra of 

the Bi2S3 nanoparticles (Fig 2.9) show very similar absorbance with a predominate shoulder at 

235 nm and minor absorbance at 290, 415, and 660 nm. The similarity in spectra suggests that 

the structure of the material has little effect on the absorbance. 

 The Bi2O3 nanoparticles synthesized by the hot injection method proved to be anomalous 

compared to other MOx nanoparticles made through this route. Instead of the small (<10 nm) 

nanoparticles typically observed, the Bi2O3 nanoparticles are 270 ± 190 nm in diameter (Fig 

2.10a). These nanoparticles are similar to the large nanoparticles present in the HI-Bi2S3 TEM 

image suggesting that the large nanoparticles in that sample are likely Bi2O3 formed before the 

hot injection of elemental sulfur, resulting in both materials presence in the sample. The Bi2O3 

nanoparticles also exhibited the same precipitation from non-polar solvents as the Bi2S3 samples. 

The lack of solubility coupled with the large nanoparticle size suggests minimal interaction with 

the capping ligands during synthesis. The ligands typically mediate nanoparticle  
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Figure 2.7 – TEM Images of Bi2S3 nanomaterials. A) shows HI- Bi2S3 (scale bar is 0.5 µm), B) 

shows SI- Bi2S3 Bi2S3 (scale bar is 100 nm) and C) shows Bi2S3 (scale bar is 200 nm). 
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Figure 2.8 – EDX of Bi2S3 nanoparticles 
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Figure 2.9 – UV-Vis spectrum a of 1 mg/mL Bi2S3 nanoparticle solution in hexanes. 
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Figure 2.10 – TEM Images of Bi2O3 nanoparticles (290 ± 190 nm); panel A scale bar is 1 µm. B 

shows a histogram of the nanoparticle size dispersion. 
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growth by passivating one or more crystalline planes. Without passivation, the nanoparticle 

growth is limited only by the reaction time. XPS and EDX of the Bi2O3 nanoparticles disagree in 

this case. XPS shows very little Bi, even in the citrate capped sampled. The EDX shows 

substantial amounts of Bi, but very little oxygen yielding a Bi:O ratio of 16.5. Further 

investigation is needed to determine the composition of the “Bi2O3” nanoparticles. 

2.3.4 Characterization of RuO2 Nanoparticles Prepared by Thermal Degradation Synthesis 

 Attempts were made to synthesize Ru2O3 nanoparticles using Ru(III) acetylacetonate in 

the presence of oleylamine and oleic acid. During the reaction the solution turned from dark red 

to black, indicating a reaction had occurred. The reaction produced a material that was insoluble 

in ethanol, as would be expected for the surfactant capped nanoparticles. Analysis by TEM 

however, indicated no nanoparticles were present. The resultant nanoparticles were either too 

small to be resolved or unable to resolved due to the surfactant shell. No further analysis was 

attempted, but ruthenium was only metal acetylacetonate tested without evident nanoparticle 

formation. 

2.3.5 Characterization of ITO Nanoparticles Prepared by Solvothermal Synthesis 

 Solvothermal ITO nanoparticles were synthesized in an effort to use their uncapped 

surface for more efficient surface modification (Chapter 3). Indium and tin aceylacetonates (6:1 

mol ratio) were placed into benzyl alcohol and suspended before being transferred to a Teflon 

coated acid digestion bomb (this is step is frequently performed in a glove box under inert 

atmosphere). Argon was used to purge the vessel before placing it into the oven at 200 °C for 48 

hours. The resulting nanoparticles were blue with an average diameter of 7.19 ± 1.42 nm (Fig. 

2.13). While the TEM images show nanoparticles with excellent crystallinity, they lack any  
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Figure 2.11 - XPS of A) Bi2O3 and B) cit-Bi2O3. C) depicts a high resolution scan of the S 2p and 

Bi 4f regions. 
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Figure 2.12 – EDX of Bi2O3 Nanoparticles 
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Table 2.3 – XPS and EDX Atomic Values for Bi2O3 

Sample Name Method Ir Atomic Percent (%) Bi:O Ratio 

Bi2O3 

XPS 0.00 - 

EDS 22.32 16.53 

Cit- Bi2O3 XPS 0.13 0.004 
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type of controlled size distribution. Histograms for thermal degradation nanoparticles are 

Gaussian in nature, and the solvothermal distribution doesn’t appear to have any pattern. The 

images also show large amounts of flocculation, which is expected due to the unprotected nature 

of their surfaces. Solubility further limits the utility of solvothermal ITO nanoparticles. The 

powder was insoluble in all commonly used laboratory solvents. In order to solubilize them, an 

additional surface molecule, like citric acid or octanoic acid, was required. Ultimately, 

solvothermal ITO did not offer enough advantages over the TD synthesis to make it worthwhile. 

The unpassivated surface was arguably more of hindrance than replacing the surfactant shell in 

TD. The reaction times were also substantially longer for nanoparticles with a poor size 

distribution and lower yield.  

2.4 Conclusions 

 These results clearly show the power and versatility of the thermal degradation synthesis. 

All of the MOx nanomaterials generated are currently undocumented in the literature and suggest 

that MOx of almost any material can be generated assuming a metal aceylacetone is 

commercially available. The TD nanoparticles also displayed a tight size distribution, compared 

to those generated through solvothermal routes. ZrO2 nanoparticles were further characterized by 

surface modification (Chapter 4).  Altering the capping ligands in the Bi2S3 and Bi2O3 systems 

could ascertain more about ligand-surface interactions with regards to regulating nanoparticle 

size. Additional studies with Ru(acac)3 might also provide insight into synthetic limitations of 

the TD route. 
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Figure 2.13 – TEM of solvothermal ITO nanoparticles (7.19 ± 1.42 nm); panels A and B scale 

bars are 50 nm and 5 nm, respectively.  C shows a histogram of the nanoparticle size dispersion. 
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CHAPTER 3 – SYNTHESIS AND ELECTROCHEMISTRY OF 6 NM FERROCENATED 

INDIUM TIN OXIDE NANOPARTICLES 

 

(This chapter is adapted with permission from Roberts, J. J. P; Vuong K. T.; Murray, R. W. 

Langmuir 2013, 29, 474. Copyright 2013 American Chemical Society.) 

3.1 Introduction 

 Being both optically transmissive and electrically conductive, the n-type semiconductor 

indium tin oxide (ITO) has substantial industrial utility in flat panel display technology1, solar 

cell windows2,  gas sensing devices3, and transparent electrodes4.   Methods for generating bulk 

ITO materials tend to require specialized instrumentation and are subject to variability of 

produced materials.   Preparation of ITO in nanoparticle forms and spreading as films followed 

by sintering provides a less expensive route while retaining desired conductive and optical 

characteristics5.   Modern synthetic methods can produce crystalline ITO nanoparticles with 

well-defined morphologies and narrow size distributions6-8.   One synthesis involves 

decomposition of indium and tin precursors (commonly as acetates or acetylacetonate 

complexes) in a high boiling point solvent (at ca. 300˚ C) in the presence of fatty amine and 

carboxylic acid surfactants9.   Nanoparticles are formed in which tin atoms are substituted for 

indium sites in the cubic bixbyte structure of In2O3. Thusly prepared ITO nanoparticles can be 

formed as films by dip coating or spin coating, followed by sintering. The films can be tuned by 

controlling the capping surfactant and its concentration in solution10. 

 This chapter reports the synthesis of small (6 nm diameter) indium tin oxide (ITO) 

nanoparticles capped with a redox active species (ferrocene).   Rather than ITO film preparation, 

the goal is to create ITO nanoparticles having ferrocenated surfaces (abbrev. as FcITO) and to 
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examine their electrochemical behavior as diffusing nanoparticle species, including assessing the 

nanoparticles’ ferrocene surface coverage.  Very small nanoparticles are desired, in the interest 

of solution solubility.  ITO surfaces, like those of many metal oxides, are known to react with 

chloro- and alkoxysilanes11.   Here, reaction with an excess of the monoalkoxysilane 3-

aminopropyldimethylethoxysilane (APTMES) is calculated to displace the original capping 

surfactants from the surfaces of prepared ITO nanoparticles.   The amine-terminated silanized 

nanoparticle surface provides a platform for an amide-coupling reaction with ferrocenoyl 

chloride.  The study provides a further example12 of redox-labeled nanoparticle electrochemical 

behavior, of assessment of the surface coverage of redox labels, and is part of an on-going 

exploration of electroactive nanoparticle materials13 as components of electrochemical charge 

storage systems. 

3.2 Experimental 

3.2.1 Chemicals and Materials 

. Indium(III) acetate (In(ac)3; 99.99%), tin(II) (acetate) (Sn(ac)2; 99.99%) were obtained 

from Alfa Aeser, oleylamine (C9H18=C9H17NH2; 80-90%), oleic acid (C9H18=C8H15COOH; 

97%), octadecene (C16H33=CH2; 90%), ferrocene carboxylic acid (97%), oxalyl chloride (98%), 

imidazole (>99%), pyridine (> 99.0%), triethylamine (>99%) and copper(II) perchlorate 

hexahydrate (98%) from Sigma-Aldrich, and tetrabutylammonium perchlorate (Bu4NClO4) from 

Fisher Scientific.   Acetonitrile (CH3CN), absolute ethanol, hexanes, dichloromethane (DCM), 

petroleum ether, toluene, and chloroform obtained from Fisher Scientific were dried over 4 

Angstrom molecular sieves.  The functionalized silane, 3-aminopropyldimethylethoxysilane  
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Scheme 3.1 - The as-synthesized ITO nanoparticles are covalently reacted with APDMES to 

displace the initial surfactants and to aminate the nanoparticle surfaces.  Ferrocenoyl chloride 

then reacts with the primary amine. 
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(APTMES), was obtained from Gelest, Inc. (Morrisville, PA) and stored refrigerated.   Use of a 

monoalkoxy reagent was calculated to avoid polymeric siloxane layer formation. 

3.2.2 Instrumentation and Electrochemical Details 

Cyclic Voltammetry (CV). CV was performed on a CH Instruments (CHI) 660a 

potentiostat with Pt working electrode (area 0.02 cm2), Pt mesh counter electrode, and 

Ag/AgCl/3 M KCl (aq) reference electrode in acetonitrile solutions with 0.1 M 

tetrabutylammonium perchlorate electrolyte. 

Programmable Temperature Control Unit. A lab constructed device controlled by a CAL 

9500P programmable process controller with attached to a thermal couple was used to accurately 

control synthesis temperatures. 

High Resolution Transmission Electron Microscopy (TEM).  TEM images were obtained 

on a JEOL 2010F FasTEM on nanoparticle samples prepared on copper grids (200 carbon mesh, 

carbon-coated Formvar; Ted Pella, Redding, CA) 

Energy-Dispersive X-Ray Spectroscopy (EDS). EDS analysis was performed using 

Oxford INCA EnergyTEM 250 TEM microanalysis system attached to the JEOL 2010F 

FasTEM. 

Centrifuge. Centrifugation was done with an Eppendorf 5810 centrifuge with a fixed-

angle rotator at 3000-4000 rpm for 10 minutes.   

X-Ray Photoelectric Spectroscopy (XPS). XPS data were taken on a Kratos Axis Ultra 

DLD system with monochromatic Al Kα x-ray source.  High resolution scans were taken at pass 

energy = 20 eV, and the spectral energy axis was aligned at the C 1s peak at 284.6 eV.   



53 

 

Ultraviolet-Visible Spectroscopy (UV-Vis). UV-Vis spectra were taken on a Thermo 

Evolution Array UV-Vis spectrophotometer (Thermo, Waltham, MA) 

3.2.3 Synthesis of 6 nm Indium Tin Oxide Nanoparticles . 

The procedure was modified from Sun et al8.  In(acac)3 (0.20 mmol), Sn(acac)2Cl2 (0.02 

mmol), and 0.60 mL oleic acid (1.9 mmol) were added to octadecene (5 mL) in a 50 mL 3-neck 

round bottom flask equipped with a magnetic stir bar, thermocouple and condenser, closing the 

third port with a septum.  Using a 100 mL heating mantle packed with sand to promote even 

heating, the vessel was evacuated and heated 1 hr at 120˚ C with vigorous stirring.   The 

temperature was then rapidly increased to 295˚ C at which point 0.80 mL oleylamine (2.4 mmol) 

in 0.2 mL octadecene was injected via syringe. The solution color changed from bright orange to 

murky green, signaling formation of ITO nanoparticles. The reaction was refluxed at 320˚ C for 

an hour, and allowed to cool to room temperature.  The cloudy blue-green suspension was 

transferred to a 50 mL centrifugation tube and 40 mL of absolute ethanol added, precipitating the 

nanoparticles, followed by centrifugation at 3000 RPM for 10 minutes. This process was 

repeated three times.  The nanoparticles were then taken up into 3 mL of either hexanes or 

chloroform and stored at room temperature.  The solution ranged from dark blue to green and the 

nanoparticles produced had average dia. 6.1 ± 0.8 nm.  Figure 1 shows TEM images. 

3.2.4 Silane-Capped ITO Nanoparticles. 

A 1 mL hexane solution of nanoparticles was rotovapped to dryness, the nanoparticles 

were weighed and redissolved in 4 mL toluene in a scintillation vial.   APTMES was added in 

10-fold excess (relative to estimated total nanoparticle surface area), which was ~0.03 g per 0.1 g 

nanoparticles.  0.05 g (0.75 mmol) of imidazole was added as catalyst and the solution, which 

became a turbid blue, was stirred vigorously at room temperature for 1 hr. The solution was 
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transferred to a 15 mL centrifuge tube and centrifuged at 4000 RPM for 10 minutes.   The 

aminated nanoparticles were washed twice more with fresh toluene and then dispersed in 3 mL 

of toluene for storage.  

3.2.5 Synthesis of Ferrocenoyl Chloride and of Ferrocene-Functionalized ITO 

Nanoparticles.  

0.23 g of ferrocene carboxylic acid (1.00 mmol) was suspended in 4 mL of petroleum 

ether in a 25 mL round bottom flask. 2 drops of pyridine were added followed by slow addition 

of 100 L oxalyl chloride (1.20 mmol); the solution bubbled and gassed upon this addition. The 

reaction solution was stirred under Ar for 1.5 hrs, and the petroleum ether and excess oxalyl 

chloride removed by pumping under vacuum (ca. 2 hr).  The red-orange solid was collected in 

CH2Cl2 and placed into a 15 mL centrifuge tube and centrifuged at 4000 RPM for 10 minutes to 

separate the unreacted FcCOOH from the FcCOOCl. The bright red product solution was 

decanted and immediately reacted with silane capped ITO nanoparticles.  

The 3 mL solution of silane capped ITO nanoparticles in toluene plus 50 µL 

triethylamine (to aid activation of the acid chloride) was reacted for 1 hr. in a scintillation vial 

with 100 µL of the ferrocenoyl chloride solution and then transferred to a 15 mL centrifuge tube 

and centrifuged at 4000 RPM for 10 minutes.   The blue-brown precipitate was washed twice 

more with 5 mL toluene, then dissolved in 3 mL of acetonitrile and stored at room temperature. 

3.3 Results and Discussion 

3.3.1 ITO Synthesis. 

The ITO nanoparticle synthesis was modified from Sun et al.8  Rather than heating the 

reaction mixture with all reagents present, the oleylamine, which activates the nanoparticle 

formation, was hot injected at 25 ˚C below the solvent boiling point. This modification, along  
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Figure 3.1 - TEM Images of ITO nanoparticles (6.1 ± 0.8 nm); panels A and B scale bars are 50 

nm and 10 nm, respectively.  The inset shows a histogram of the nanoparticle size dispersion. 
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with maintaining accurate temperature control, substantially improved reproducibility of 

synthetic nanoparticle batches.  The color of the as-synthesized ITO nanoparticle solutions range 

from dark blue to vivid green, after ca. 24 hr  shifting towards blue, or teal, and is blue after the 

silanization step.   It is suggested that the color changes reflect the slow equilibration of SnIV 

sites with interstitial oxygen.   The ITO nanoparticles are by TEM (Fig. 3.1) reasonably 

monodisperse, with little aggregation. The nanoparticle diameter, from TEM images of multiple 

synthetic batches, averages 6.10.8 nm.  

3.3.2 Replacement of Surfactants with Silane Ligands and Ferrocenation. 

Aiming at gaining control of the ITO nanoparticle surface chemistry, the original capping 

ligands on the synthesized ITO nanoparticles were displaced by silanization of the ITO surface.   

Silanization of macroscopic ITO surfaces is a known reaction14 and can be anticipated for ITO 

nanoparticle surfaces.   The goal was to form an aminated, functionalized nanoparticle surface 

for reaction with ferrocenoyl chloride.   (Electroactive ligands have been previously attached to 

Au and SiO2 nanoparticles12, 15 by this laboratory.)   A monodentate alkoxysilane reagent was 

selected to avoid formation of silane polymer on the nanoparticles.  After some experimentation, 

the silanization reaction was carried out at room temperature for ~ 1 hr, with little flocculation 

being noticed by TEM imaging.   (Test silanizations for longer periods (12-24 hrs) and at 

elevated temperatures (~80˚ C) tended to provoke nanoparticle aggregation.)   

The silanized ITO nanoparticles would usually remain dispersed in toluene for about a 

week (in some cases some precipitation then commenced).  Variability of solubility probably 

reflects incomplete displacement of the original surfactant.  The nanoparticles could be isolated 

from toluene by centrifugation.  Nanoparticle surface composition was monitored with XPS (Fig 

3.2b).   Post-silanization, indium 3d peaks are seen at 444.5 and 451.5 eV, and tin 3d peaks at  
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Figure 3.2 – XPS spectrum of ITO nanoparticles A) as synthesized and B) after silanization. 

Insets depict In 3d and Sn 3d regions 
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486 and 494.5 eV.   Before silanization, these peaks are masked by scattering of photoelectrons 

by the nanoparticle capping ligands (Fig. 3.2a), which produces the large C 1s peak.  Post-

silanization, the C 1s peak is greatly diminished and indium and tin peaks can be seen, as are low 

intensity Si 2p, Si 2s, and N 1s peaks.  

 Following silanization, a measured mass of the aminated ITO nanoparticles is reacted 

with ferrocenoyl chloride.  In this procedure and in subsequent washing steps, considerable loss 

of product occurs in the centrifugal isolation.  At least two wash steps were necessary to remove 

unattached ferrocene reagent, whose presence would interfere in the subsequent electrochemistry 

studies.   TEM imaging shows that the average core diameters of the ferrocenated ITO 

nanoparticles (abbrev. FcITO) are substantially unchanged from the as-synthesized ITO 

nanoparticles (Fig. 3.1).   (The lower atomic weight ferrocene substituents are not expected to 

contribute significantly to the image diameter.) Assuming complete nanoparticle surface 

coverage by the amine silane reagent, its complete coupling with ferrocenoyl chloride, and a 

ferrocene surface footprint of 1 nm2, the typical 0.006 g mass of isolated FcITO nanoparticle 

product in a 3 ml acetonitrile solution ideally corresponds to an overall ca. 5 mM ferrocene 

concentration.  

The actual reactive ferrocene concentration in 1 mL of the ITO nanoparticle solution was 

assessed by a potentiometric titration (Fig 3.3) with Cu2+, which in acetonitrile is an effective 

ferrocene oxidant16-17.  During the titration, the nanoparticle solution color changes from light 

blue-brown to yellow. This coloration is due to the combination of the ITO nanoparticles and the 

ferrocene attached to the surface.  Multiple trials give indicate an overall ferrocene concentration 

of 1.3 ± 0.2 mM.   Based on the model coverage calculation above, the actual ferrocene coverage 

of the ITO surface is about 25%.   
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Figure 3.3 - Potentiometric titration of a 1 mL CH3CN solution of ferrocenated ITO 

nanoparticles with 1.18 mM Cu(ClO4)2 CH3CN solution.  The equivalence point is marked with 

a diamond; titration volume is 1.15 mL 
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Figure 3.4 - XPS spectrum of ITO nanoparticles after silanization and reaction with ferrocene 

acid chloride. 
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Figure 3.5 - EDX of ferrocenated ITO nanoparticles. 
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 The ferrocenated (FcITO) nanoparticles were stably soluble in acetonitrile, which was 

chosen for the electrochemical experiments.   (Before ferrocenation, the ITO nanoparticles are 

insoluble in acetonitrile.)  The presence of iron on the FcITO nanoparticles was confirmed by 

XPS (Fig. 3.4) and EDX (Figure 3.5).    The observed N/Fe peak ratio (with normalization for 

elemental sensitivity) was ca. 1:0.5, differing from the ideal 1:1 for the ferrocene amide 

grouping.   This result is consistent with the above indication of non-exhaustive coupling 

between the amine sites and the ferrocenoyl chloride.   

3.3.3 Voltammetry of Ferrocenated ITO Nanoparticles. 

Voltammetry of the FcITO nanoparticles was carried out in 0.1 M Bu4NClO4/acetonitrile 

solutions.  The ferrocene wave was readily seen in cyclic voltammetry (Figure 3.6) although the 

currents were modest due to the low concentration and slowed nanoparticle diffusion rates.   

Measurement of the nanoparticle diffusion coefficient (D) was set as a target in quantifying the 

electrochemical assessment, using cyclic voltammetry, chronoamperometry, and microdisk 

electrode voltammetry. 

 The diffusion coefficient expected was estimated using the no-slip version of the Stokes-

Einstein equation, which is          

𝐷 =
𝑘𝑇

6𝜋𝜂𝑟
     (1) 

where r is nanoparticle hydrodynamic radius and η is acetonitrile viscosity (0.343 cP).   Based on 

the 6.1 nm TEM nanoparticle core diameter and plus a 2 nm increment for the ferrocene sites, 

this equation predicts a FcITO nanoparticle diffusion coefficient of D = 2.1x10-6 cm2/s.   

Previous measurements of diffusion coefficients of organothiolate coated Au nanoparticles (1-5 

nm diameter), using the classical Taylor Dispersion method18,  show that a) Equation (1) can 
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predict nanoparticle diffusion coefficients to within a factor of ca. two and b) that the 

organothiolate monolayer on the nanoparticles may be partially free-draining.    

 Cyclic voltammetry of the amide-connected ferrocene on the FcITO nanoparticles shows 

a one electron chemically reversible wave with formal potential ca. 0.46 mV vs. Ag/AgCl(aq) 

(Fig. 3.6).   The Randles-Sevcik equation for linear sweep voltammetry19  is 

𝑖𝑝 = 2.69 ∗ 105 𝑛
3

2⁄ 𝐴𝐷
1

2⁄ 𝐶𝑣
1

2⁄    (2) 

where 𝑛 is the number of electrons delivered (per ferrocene), D (cm2/s) is nanoparticle diffusion 

coefficient and C (mol/cm3) is the concentration of reactive ferrocene.   Figure 3.7 shows that the 

peak currents do not follow the expected v1/2 potential scan rate dependency, but show a non-

zero intercept and curve upward in a manner suggesting adsorption of the ferrocenated 

nanoparticles on the electrode. Note the lessening of ΔEPEAK at the fastest scan rate in Figure 3.6, 

which is consistent with this conclusion.   We therefore elected not to employ linear sweep 

current results in estimates of the nanoparticle diffusion coefficient. 

 Currents from potential step chronoamperometry and from microelectrode voltammetry 

should be relatively little affected by a modest extent of nanoparticle adsorption.   These two 

experiments yield nanoparticle diffusion coefficient and concentration, without assumptions, by 

combining their D1/2C and DC results, as shown next.   Microdisk voltammetry, seen in Figure 

3.8, yields the product DC from the relation for steady state limiting current (iLIM) and C, 

𝑖𝑙𝑖𝑚 = 4 𝑛𝐹𝐷𝐶𝑟0     (3) 

where r0 is microdisk radius (cm).  Solving for DC gives a value of 2.1x10-13 mol/s cm.  Currents 

for ferrocenes on any adsorbed nanoparticles would be minimized by the slow potential scan rate. 
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Figure 3.6 - Background subtracted cyclic voltammetry of FcITO in acetonitrile (0.1M 

Bu4NClO4) at indicated potential scan rates.  Electrode area = 0.020 cm2 . 
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Figure 3.7 – Plot of ferrocene oxidation peak current (iPEAK) vs. square root of potential scan rate 

for solution of FcITO in acetonitrile.  Note the curvature and non-zero intercept, which is 

interpreted as indicating some nanoparticle adsorption.  
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Figure 3.8 - Voltammetry of a solution of FcITO nanoparticles in acetonitrile (0.1 M Bu4NClO4) 

using a 5 m radius disk microelectrode; potential scan rate 1 mV/s.  iLIM = 1.28 x 10-11 A. 
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Figure 3.9 - Cottrell plot of ferrocenated ITO in acetonitrile.   The potential step was from 0.45 

to 0.85 V.  The plot is forced through the origin as is required for linear diffusion control.   Pt 

electrode area is 0.020 cm2.  
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 In potential step chronoamperometry, currents for ferrocenes on any adsorbed 

nanoparticles should contribute only at short electrolysis times.  Currents at longer times should 

follow a normal Cottrell relationship, which is seen in the result of Figure 3.9 where current is 

measured out to 6 s.   The Cottrell equation is       

𝑖(𝑡) = 𝑛𝐹𝐴𝐶 (
𝐷

𝜋𝑡
)

1/2

     (4) 

where t is time.  From this experiment, D1/2C = 1.2x10-10 mol/s1/2 cm2.   Taking the ratio of the 

two parameters produces D and C without assumptions, and yields D = 1.0x10-6 cm2/s and 

ferrocene concentration C = 0.60 mM.   We see that the diffusion coefficient determined by this 

method is within a factor of two of the Einstein-Stokes equation prediction, and the determined 

ferrocene concentration is more than two-fold smaller than the titration-predicted 1.3 mM. 

 The preceding results—from the ferrocene titration and combined microelectrode-

chronoamperometry results indicate that ferrocene sites coupled to the ITO nanoparticles are 

accessible to a small, diffusing oxidizing reagent (e.g., Cu2+) but are not fully accessible during 

nanoparticle diffusion-collision with the working electrode (a large reagent).   This conclusion is 

tested in Figure 3.10, where increments of 1 mM ferrocene carboxylic acid solution are added to 

a 3 mL solution of ferrocenated ITO nanoparticles.   The choice of ferrocene carboxylic acid was 

based on its formal potential which is only slightly more positive than that of the nanoparticle-

coupled ferrocene amide group; the leading edge of the ferrocene carboxylic acid wave could 

mediate reaction of accessible nanoparticle-coupled ferrocene amide groups.    Figure 3.10 

shows that addition of a small volume of FcCOOH solution immediately enhances the ferrocene 

amide oxidation wave by roughly a factor of two.  Further additions produce a small additional 
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enhancement at the ferrocene amide oxidation potential.    This behavior confirms the hypothesis 

that the titration-detected ferrocene amides are reactive towards a small molecule oxidant. 

 The incomplete electrochemical reactivity of the ferrocene amide functionalities on the 

ITO nanoparticles stands in contrast to results for ferrocenated 13 nm dia. SiO2 nanoparticles12, 

where Cu2+ titration analysis indicated 590 ferrocenes had been attached (ca. a complete 

monolayer).   Model calculations indicated that rotational diffusion was adequately fast (ROT  

0.25 sec) to (sequentially) bring all of these ferrocene sites into proximity with the electrode.   

Since the FcITO nanoparticles have a smaller diameter, rotational diffusion should in the present 

ideally not be a factor lessening the reactivity of all of the ITO-attached ferrocene sites, so some 

other factors require consideration.   One is that the tendency of FcITO nanoparticles to adsorb 

precludes an entirely free rotational diffusion at the electrode interface.  A second and equally 

likely issue is the lack of complete accessibility (mentioned above) owing to the roughness or 

porosity of the ITO nanoparticle surfaces.   This latter factor could potentially be overcome using 

a longer chain linker between the nanoparticle and ferrocene. 
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Figure 3.10 - Cyclic voltammetry of ferrocenated ITO with 90 µL additions of 1 mM FcCOOH 

with a scan rate of 100 mV/s. Additions of 0, 90, 360, 630, and 900 µL are shown. 
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CHAPTER 4 – SPECTROSCOPIC AND ELECTROCHEMICAL MODIFICATION OF 

SMALL (<10 NM) METAL OXIDE NANOPARTICLES 

 

4.1 Introduction 

 A wealth of research has been dedicated to modifying the surfaces of MOx nanoparticles. 

Surface passivation helps prevent flocculation and agglomeration, and can control nanoparticle 

solubility and functionality. Iron oxide nanoparticles are receiving biological attention due to 

their magnetism and low toxicity1-2. However, as synthesized iron oxide nanoparticles are not 

suitable for physiological environments and must undergo surface modification. Frequently these 

modifications aspire to make nanoparticles polar by coating them in inert polar shells3. Other 

times, the surface is functionalized to interact with specific biological moieties in a system for 

enhanced detection4. Biological applications are only a subset of nanoparticle surface 

modifications found in the literature. Solar energy researchers have an interest in modifying the 

surface of transparent conducting oxide (TCOs) nanoparticles deposited on transparent 

conductive electrodes. The nanoparticles can be modified with chromophore-bearing phosphates 

that generate photocurrent when exposed to light5. This current can flow through the transparent 

conducting electrode to generate hydrogen fuel at an opposite electrode. Many common organic 

function groups are known to interact with MOx surfaces6. Most common are carboxylic acids, 

amines, silanes, and phosphates/phosphonates. Carboxylic acids and amines attach by 

physisorptive and chemisorptive interactions, meaning they often form an equilibrium between 
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the nanoparticle surface and the surrounding solution. They are typically used for short term 

modification or simple changes in polarity. Silanes, phosphates, and phosphonates covalently 

attach to the metal oxide surface, typically only being removed by the addition of strong acid or 

strong base. This work focuses on siloxane and phosphate surface modification with the goal of 

quantifying surface changes through the use of a spectroscopic or electrochemical tag. 

4.1.1 Surface Modification by Siloxane Chemisty 

Silanes are known to react with hydroxyl groups on the surface of MOx nanoparticles, 

creating covalent bonds7-8. These bonds are relatively strong, but are subject to hydrolytic 

cleavage in the presence of strong base or strong acid and function best between pH ranges of 4-

12. Multidentate silane reactions must be kept extremely dry as when moistened they will 

polymerize by undergoing self-hydrolysis. This is especially true with chlorosilanes which will 

immediately react with water to form very reactive Si-OH bonds which then quickly react with 

other Si-OH bonds to form Si-O-Si chains. Alkoxysilanes are more resistant to hydrolysis, often 

requiring a small amount of catalyst to facilitate formation of Si-OH bonds. These Si-OH bonds 

can react with surface hydroxyl groups on the metal ion to generate Si-O-M bridges. The 

polymerization makes forming silane monolayers on nanoparticles difficult. Unless special care 

is taken, nanoparticles may become flocculated due to silanes polymerizing around them. A 

trade-off must be made between reactivity and polymerization potential if accurate quantification 

of surface modification is desired. Monodentate silanes exist, and though slow to react they do 

prevent multilayer formation on the nanoparticle surface. Perhaps the greatest advantage of using 

silanes for surface modification is the sheer number of commercially available chemicals. 

Silanes are very popular for a wide range of chemistries and many companies, like Gelest9, 
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produce huge catalogues filled with materials for surface modifications at extremely affordable 

rates.  

Many siloxane surface modification routes utilize 3-aminopropyltriethoxysilane (APTS) 

or a similar amine terminated molecule10-11. Primary amine attachment is often coupled with a 

significant change in solubility, providing a qualitative indicator of successful surface 

modification. Primary amines also allow for many simple organic reactions to further alter the 

surface chemistry via multistep functionalization. Primary amines are known to react with 

activated carboxylic acid groups which allow a wide range of coupling reactions, most notable 

acyl chloride12-13 and carbodiimide couplings14-15. The primary amines can also form imide 

bonds with aldehydes16. These bonds are easily hydrolyzed and allow a temporary and reversible 

surface modification. 

 In this work we demonstrate attachment of UV sensitive tags via siloxane modification 

and electrochemically active tags by siloxane and click routes to small MOx nanoparticles of 

varying composition. These experiments are undertaken to analytically quantify surface changes 

on the nanoscale level. 

4.1.2 Surface Modification by Phosphate Chemistry 

 Phosphates, similarly to silanes, also react with surface OH groups found on the MOx 

nanoparticle surface. These P-O-M bonds are more stable vs hydrolysis than the Si-O-M bonds, 

but pH extremes can still cause the bonds to hydrolyze. Multidentate phosphates are also 

incapable of forming the P-O-P bonds that would lead to polymerization. This makes them a 

much better choice for analytic treatment of nanoparticle surface modification. Unfortunately, 

there is not as diverse a selection of functionalities commercially available for phosphates. 

Obtaining the desired functionality often requires synthesis of the phosphate from starting 
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materials capable of producing that functionality. While these are frequently textbook organic 

reactions, they can prove difficult for those unfamiliar with common organic practices.  

 Recently, phosphates have received some attention as surface ligands to support click 

chemistry. Work by Turro et. al.17 showed a simple route to generate an azide terminated 

phosphate ligand. This ligand was attached to a MOx surface and then further reacted by using 

the azide alkyne Huisgen cycloaddition in the presence of a Cu(I) catalyst. Turro showed 

functionalization with 5-chloropentyne and α-acetylene-poly(tert-butyl acrylate) polymer, but 

suitable functionalities are limited by their ability to support an alkyne. Xian et. al. used this 

route to graft ferrocene to iron oxide nanoparticle surfaces for magnetically controlled 

electrochemistry18. Click chemistry products are inherently easy to work up, with limited by-

products and low hazard wastes19 and make a very attractive route to analytically tag 

nanoparticles when coupled with the covalent surface attachment of phosphate groups. 

4.1.3 Analytical Methods for Quantification of Surface Modification 

 The literature on how to modify MOx surfaces is quite large, but there is only a small 

body of work discussing analytical quantification of the proposed surface changes. Several 

spectroscopic methods exist for quantifying surface amines13, 20-21. One of these methods is to use 

an UV sensitive aldehyde to form an imine bond16. This bond can easily be hydrolyzed to restore 

the primary amine, so dry conditions are required to collect quantitative data. Another route is to 

use acyl chloride coupling to construct an azo-dye from the primary amine22. This route is not 

water sensitive, but requires many synthetic steps to ultimately yield the dye. It also relies on the 

fact that the silanes are bound to substrates as a film, making cleaning the reaction substantially 

easier. Modifying the surfaces of freely diffusing nanoparticles is more difficult.  
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 Alternately, electrochemical methods have been used to modify MOx nanoparticle 

surfaces. An electrochemically active silane ligand was synthesized in the Murray lab using 

carbodiimide coupling of ferrocene carboxylic acid and 3-aminpropyltrimethoxysilane14. The 

nanoparticles showed excellent electrochemical behavior and demonstrated that all of the 600 

ferrocenes are the nanoparticle were electrochemically active at the same formal potential. This 

work was later followed up with ITO nanoparticles (Chapter 3)12. In this case the nanoparticle 

surface was first modified with a monodentate silane and later modified with ferrocenoyl 

chloride. Electrochemistry of the FcITO also showed one formal potential but curiously showed 

that not all of the ferrocene in solution reacted at the electrode surface. Other systems now exist 

for attaching ferrocene to nanoparticle surfaces via phosphates18; this provides a more attractive 

analytic route for surface modification. 

4.2 Experimental 

4.2.1 Chemicals and Materials 

Indium(III) acetate (In(ac)3; 99.99%), tin(II) (acetate) (Sn(ac)2; 99.99%) were obtained 

from Alfa Aeser, zirconium(IV) acetate hydroxide (Zr(ac)xOHy), zirconium(IV) acetylacetonate 

(Zr(acac)4; 98%), oleylamine (C9H18=C9H17NH2; 80-90%), oleic acid (C9H18=C8H15COOH; 

97%), myristic acid (CH3(CH2)12COOH; 99%), octadecylamine (CH3(CH2)17NH2; 90%), 

octadecene (C16H33=CH2; 90%), ferrocene carboxylic acid (FcCOOH; 97%), oxalyl chloride 

(ClCOCOCl; 98%), ethynylferrocene (FcC2H; 97%), copper sulfate (CuSO4; 99%), sodium 

ascorbate (C6H7NaO6; 98%), sodium azide (NaN3; 99%), sodium carbonate (Na2CO3; 99%), 

phosporyl chloride (POCl3; 99%), 4-nitrobenzyl chloride (O2NC6H4CH2Cl; 99%), α-

bromoisobutyryl bromide ((CH3)2CBrCOBr; 98%), nitrobenzaldehyde (O2NC6H4CHO; 98%), 

sodium borohydride (NaBH4; 96%), palladium on carbon (Pd/C; 5 wt%), sodium nitrite (NaNO2; 
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97%), imidazole (>99%), pyridine (> 99.0%), ethylene glycol (HOC2H4OH; 99%), and 

propylamine (C3H7NH2; 98%) from Sigma-Aldrich and tetrabutylammonium perchlorate 

(Bu4NClO4) and glacial acetic acid (99.7%) from Fisher Scientific.  Acetonitrile (MeCN), 

absolute ethanol,  hexanes, dichloromethane (DCM), petroleum ether, toluene, and chloroform 

obtained from Fisher Scientific were dried over 4 Angstrom molecular sieves.  Silanes, 3-

aminopropyldimethylethoxysilane (APTMES), and N-(2-aminoethyl)-3-

aminopropyltrimethoxysilane (NAATMS) was obtained from Gelest, Inc. (Morrisville, PA) and 

stored refrigerated. 

 

4.2.2 Instrumentation and Electrochemical Details 

Cyclic Voltammetry (CV). CV was performed on a CH Instruments (CHI) 660a 

potentiostat with Pt working electrode (area 0.02 cm2), Pt mesh counter electrode, and 

Ag/AgCl/3 M KCl (aq) reference electrode.  Acetonitrile solutions were made with 0.1 M 

tetrabutylammonium perchlorate electrolyte while DCM solution contained 1.0 M 

tetrabutylammonium perchorate to minimize the solvents resistivity. 

Programmable Temperature Control Unit. A lab constructed device controlled by a CAL 

9500P programmable process controller with attached to a thermal couple was used to accurately 

control synthesis temperatures. 

Centrifuge. Centrifugation was done with an Eppendorf 5810 centrifuge with a fixed-

angle rotator at 3000-4000 rpm for 10 minutes.   

Ultraviolet-Visible Spectroscopy (UV-Vis). UV-Vis spectra were taken on a Thermo 

Evolution Array UV-Vis spectrophotometer (Thermo, Waltham, MA) 
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4.2.3 Silane-Capped ITO and ZrO Nanoparticles. 

A 1 mL hexane solution of nanoparticles was rotovapped to dryness, the nanoparticles 

were weighed and redissolved in 4 mL toluene in a scintillation vial.   APTMES was added in 

10-fold excess (relative to estimated total nanoparticle surface area), which was ~0.03 g per 0.1 g 

nanoparticles.  0.05 g (0.75 mmol) of imidazole was added as catalyst and the solution, which 

became a turbid blue, was stirred vigorously at room temperature for 24 hr. The solution was 

transferred to a 15 mL centrifuge tube and centrifuged at 4000 RPM for 10 minutes.   The 

aminated nanoparticles were washed twice more with fresh toluene and then dispersed in 3 mL 

of toluene for storage.  

4.2.4 Synthesis of N,N-Dimethylaniline Dye 

 The synthesis of dye modification of ITO is modified from the previously reported 

synthesis of an N,N-dimethylaniline free indicator dye22 (Scheme 4.1). Propylamine (120 mmol) 

(1) and sodium carbonate (37.5 mmol) were placed in 25 mL of distilled water and heated at 60 

°C for 90 minutes while 4-nitrobenzyl chloride (2) ( 16 mmol) was slowly added to the solution. 

The white precipitate formed was collected by filtration and washed several times with distilled 

water (3). Reduction of 3 was performed in a 100 mL ice bath with sodium borohydride (19.2 

mmol) and a catalytic amount of %5 Pd/C (ca. 1 mol% Pd) (4). The pH was adjusted with 

sodium carbonate to make the solution slightly basic and 4 was extracted with CF (3x50 mL) and 

concentrated. 4 was acidified slightly to protonate the primary amine and added to cold water in 

the presence of sodium nitrite (1.5 mmol) to form the diazonium salt (5). 5 was filtered, washed, 

and immediately reacted with 5 mL N,N-dimethylaniline (39 mmol; 6) in 2 mL acetic acid. The 

resulting solution was adjusted to pH 9 to form a precipitate which was collected and washed 
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with distilled water (7). A similar process was attempted with silane-capped ITO nanoparticles 

replacing propylamine. 

4.2.5 Amine Quantification via Imine Coupling with ZrO2 Nanoparticles 

 The procedure for imine coupling to amine terminated surface was previously reported16. 

Briefly, 5 mg of silane-capped ZrO2 in CF was placed into a 1.5 mL microcentrifuge tube. The 

nanoparticles were washed 4 times with 1 mL of a coupling solution (0.8% v/v glacial acetic acid 

in anhydrous methanol) to protonate the primary amine. A 5 mM solution of 4-

nitrobenzaldehyde (0.05 mmol) in 10 mL coupling solution was prepared. 1 mL of the 4-

nitrobenzaldehyde solution was added to the silane-capped nanoparticles and was sonicated for 3 

hr. The nitrobenzaldehyde nanoparticles were isolated via centrifugation in a microcentrifuge at 

8000 RPM for 10 minutes and washed 4 times 1 mL of coupling solution. 1 mL of hydrolysis 

solution (75 mL H2O, 75 mL methanol, and 0.2 mL glacial acetic acid) and sonicated for an 

additional hour. The supernatant was collected after centrifugation and used for UV-Vis 

experiments. 

4.2.6 Synthesis of Ferrocenoyl Chloride and of Ferrocene-Functionalized ZrO 

Nanoparticles.  

0.23 g of ferrocene carboxylic acid (1.00 mmol) was suspended in 4 mL of petroleum 

ether in a 25 mL round bottom flask. 2 drops of pyridine were added followed by slow addition 

of 100 L oxalyl chloride (1.20 mmol); the solution bubbled and gassed upon this addition. The 

reaction solution was stirred under Ar for 1.5 hrs, and the petroleum ether and excess oxalyl 

chloride removed by pumping under vacuum (ca. 2 hr).  The red-orange solid was collected in 

CH2Cl2 and placed into a 15 mL centrifuge tube and centrifuged at 4000 RPM for 10 minutes to 

separate the unreacted FcCOOH from the FcCOOCl. The bright red product solution was  
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Scheme 4.1 – Synthetic route for azo-dye modified ITO 
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Scheme 4.2 – Synthetic route for click modified ZrO2 and IrO2. 
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decanted and immediately reacted with silane capped ITO nanoparticles. 

The 3 mL solution of silane capped ITO nanoparticles in toluene plus 50 µL pyridine (to 

aid activation of the acid chloride) was reacted for 1 hr. in a scintillation vial with 100 µL of the 

ferrocenoyl chloride solution and then transferred to a 15 mL centrifuge tube and centrifuged at 

4000 RPM for 10 minutes.  The precipitate was washed twice more with 5 mL toluene, then 

dissolved in 3 mL of acetonitrile or DCM and stored at room temperature. 

4.2.7 Synthesis of Ferrocene Functionalized ZrO2 and IrO2 via Click Chemisty 

 Synthesis of the azo terminated phosphate ligand was previously reported by Turro et. 

al.17 Click attachment of ethynyl ferrocene was previous reported by Xian et. al.18  55 mL of 

anhydrous ethylene glycol (1.0 mmol, 1) was added to a flame-dried, argon-purged 100 mL 

round bottom flask. The flask was equipped with a magnetic stir bar and a septum and cooled to 

0 °C in an icebath. 5 mL of α-bromoisobutyryl bromide ( 40.5 mmol, 2) was slowly added 

dropwise from a syringe to the ethylene glycol and allowed to react under vigorous stirring for 3 

hr. 100 mL of distilled water was added to quench the reaction and the product was extracted 

with chloroform (3x50 mL). The organic extract was dried over MgSO4, filtered, and 

concentrated to a viscous clear liquid (3). 

 3 ( 2.0 g; 9.5 mmol) was dissolved in 15 mL of anhydrous DMF in a flame-dried, argon-

purged 100 mL round bottom flask. The flask was equipped with a magnetic stir bar and septum. 

680 mg of NaN3 (10.4 mmol) was added to the solution and allowed to stir for 20 hrs. at room 

temperature. 20 mL of H2O was added to quench the reaction and the product was extracted with 

chloroform (3x20 mL). The organic extract was dried over MgSO4, filtered, and concentrated to 

a viscous clear liquid (4). This liquid was dried en vacuo overnight to remove excess DMF  
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 4 (1.0g; 5.8 mmol) was dissolved in 15 mL of anhydrous THF in a flame-dried, argon-

purged 100 mL round bottom flask. The flask was equipped with a magnetic stir bar and septum. 

The solution was cooled to 0 °C in an ice bath and 0.9 mL of anhydrous triethylamine (6.4 

mmol) was added. 0.6 mL of POCl3 (6.4 mmol) was slowly added dropwise to the solution from 

a syringe which became cloudy white after addition. The reaction was allowed to warm to room 

temperature as the ice melted and allowed to stir for 3 additional hours at which point the 

solution became light yellow. 10 mL of H2O was added to quench the reaction and the pH was 

adjusted to <2 before the product was extracted with chloroform (3x15 mL). The organic extract 

was dried over MgSO4, filtered, concentrated, and dried under vacuum yielding a viscous yellow 

oil (5).  

 A 1:1 weight ratio of 5:nanoparticles was added to 5 mL chloroform in a small 

scintillation vial. The solution was stirred rapidly for 24 hr before being transferred to a 15 mL 

centrifuge tube. Excess hexanes was added and caused the solution to become turbid. The turbid 

solution was centrifuged at 4000 RPM for 10 minutes. The precipitate was collected and washed 

3 additional times with hexanes (6). 

 6 was dissolved in 5 mL of 4:1 DMSO:H2O and placed in a scintillation vial with a stir 

bar. 26 mg of ethynylferrocene (0.124 mmol) was added followed by 3 mg CuSO4·5H2O (0.008 

mmol) and 4 mg sodium ascorbate (0.021 mmol). The reaction was stirred for 24 h at room 

temperature. 1 mL CHCl3, 1 mL acetone, and 1 mL ethanol were added to the solution which 

was transferred to a 15 mL centrifuge tube and centrifuged at 4000 RPM for 10 minutes. The 

precipitate was collected and washed with 3x with 4:1 DMSO:H2O. The nanoparticles are then 

dispersed in DMSO for storage. 
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4.3 Results and Discussion 

4.3.1 Spectroscopic Surface Quantification by Dye-Modified ITO Nanoparticles 

 Much of the previous work using azo-dyes to quantify amination involved silanes 

immobilized on glass or quartz substrates. This simplifies purification as the slide can be 

removed from excess starting material and washed independently. Many of these glass slides 

were used to do simple pH measurements by protonating the N,N-dimethylaniline derived dye. 

Synthesis of unbound N,N-dimethylaniline was substantially difficult, even before the addition 

of freely diffusing nanoparticles.  Several attempts to synthesize the free indicator dye following 

the procedure by Bracci et. al. resulted in similar, but differing spectroscopic data. Figure 4.1 

shows the UV-Vis spectra of the protonated and unprotonated forms of the N,N-dimethylaniline 

dye. The UV-Vis data reported by Bracci shows the protonated peak at 490 nm, an increase of 70 

nm from where our dye absorbed. The absorbance spectra for the unprotonated dye from both 

groups were identical.   

Ultimately, the bottom up approach of building the dye on the silane-capped ITO 

nanoparticles proved difficult. The addition of the nanoparticles caused unexpected changes 

during the synthesis, specifically in regards to product solubility in water. Emulsions would form 

during wash phases that prevented further reaction progress.  However, other routes for 

spectroscopically tagging amines exist. Building the dye from the unbound silane could be a 

viable option.  The 3- aminpropyldimethylethoxysilane (APTMES) only has good solubility in 

all of the solvents used in the synthesis, even water. The monodentate nature of APTMES makes 

water a minimal issue, as any self-hydrolysis would produce a dimer. The dimer would be unable 

to react with the nanoparticle surface and be discarded during subsequent wash steps. Alternately 

the N,N- dimethylaniline dye synthesis could build from 4-nitrobenzoic acid instead of  
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Figure 4.1 – UV-Vis spectra of protonated and unprotonated 10 mM N,N-dimethylaniline dye in 

water. 
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4-nitrobenzyl chloride and a primary amine. Once the dye was completed and purified, a 

subsequent reaction with oxalyl chloride would produce an acid chloride for a further reaction 

with the aminated nanoparticle surface. Reactivity could be an issue, and additional steps to 

protect functional groups might be required. This method for spectroscopically quantifying 

nanoparticle surface coverage was eventually abandoned for the less synthetically demanding 

imide coupling.  

4.3.2 Spectroscopic Surface Quantification by Imine Coupled ZrO2 Nanoparticles 

 Attachment of 4-nitrobenzaldehyde proved more manageable than building an azo-dye on 

the surface of aminated nanoparticles. A small portion of the silane-capped ZrO2 nanoparticles 

was slightly acidified to form an imine bond with the UV active 4-nitrobenzaldehyde. The excess 

4NBA was then washed away and the imine bond hydrolyzed to release the 4-nitrobenzaldehyde 

for spectroscopic quantification by Beer’s Law. This simple hydrolysis regenerates the original 

aminated nanoparticle sample, allowing the sample to be used in further experiments after the 

spectroscopic analysis was complete. Ideally, an aminated nanoparticle’s surface modification 

could be quantified spectroscopically and then electrochemically, effectively eliminating sample 

disparity.  

 The UV-Vis spectrum for 4NBA is shown in Fig. 4.2a. There is a strong absorbance at 

267 nm that was used to form the calibration curve shown in Fig 4.2b, with a calculated molar 

absorptivity of 12106 cm-1 M-1
.  Several silane-capped ZrO2 samples were tagged with 4NBA 

and quantified using the calibration curve shown. Table 4.1 shows the absorbance values and 

subsequent concentration for 5 samples from the same batch of silane-capped ZrO2. Each of the 

samples displayed concentrations in the 10-50 µM range. Comparisons were then made between 

the estimated surface coverage (based on the nanoparticle diameter and estimated mass) and the 
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concentration measured. Nearly all of the samples showed estimate surface coverages of less 

than 10%, suggesting an issue with either the surfactant replacement or the spectroscopic 

quantification. Electrochemical quantification (see below) did not agree with the spectroscopic 

quantification. The discrepancy between the two methods can be attributed to the difficulties 

keeping the samples anhydrous. While anhydrous MeOH was purchased and carefully used, 

individual samples of silane capped ZrO2 were exposed to pre-prepared coupling solutions and 

open air conditions during washes. The original procedure also called for 3 h of end over end 

rotation during the formation of the imine bond, a method which would produce more vigorous 

solution perturbations than sonication. Generating a new calibration curve, one with multiple 

points in the 5-60 µM, would also improve the concentrations calculations. The author believes 

that access to a glove box with a contained microcentrifuge would have drastically improved the 

performance of spectroscopic quantification with 4NBA. 

4.3.3 Surface Modification of ZrO2 with Silane Bound Ferrocene. 

Aiming at gaining control of the ZrO2 nanoparticle surface chemistry, the surfactant 

capping ligands on the as-synthesized ZrO2 nanoparticles were displaced by silanization of the 

surface.   Silanization of macroscopic MOx surfaces is well known reaction23 and there are many 

sources for the silanization of MOx nanoparticles as well.   The goal was to form a single 

aminated monolayer on the nanoparticle surface for reaction with ferrocenoyl chloride.   

(Electroactive ligands have been previously attached to Au, SiO2, and ITO nanoparticles12, 14, 24 

by this laboratory.)  NAAPTMS was selected for this work, primarily to enhance reactivity and 

to prevent propylamine from interacting with the MOx surface.  After some experimentation, the 

silanization reaction was carried out at room temperature for 24 h, with minimal flocculation 

being noticed by TEM imaging.  The silane coated nanoparticles precipitate out of solution after   
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Figure 4.2 – UV-Vis analysis of 4NBA. A) shows the absorbance spectrum of serial dilutions of 

0.1 mM 4NBA and B) the Beer’s Law calibration curve using the peak at 267 nm. 
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Table 4.1 – Spectroscopic Quantification of Silane-Capped ZrO2 Surface Modification1 

SAMPLE 

NUMBER 

CONCENTRATION 

MEASURED (µM) 

ESTIMATED SURFACE 

COVERAGE (%) 

1 17 2.0 

2 43 4.6 

3 10 1.2 

4 47 5.0 

AVERAGE 29 3.2 

  

                                                 
1 For 5 mg/mL samples of 1.54 nm ZrO2 nanoparticles 
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sufficient coating, allowing for easy collection and cleaning. 

The silanized ZrO2 nanoparticles remain dispersed in toluene for about a week at which 

point some precipitation usually occurs. Variability in solubility reflects incomplete 

displacement of the original surfactant.  Nanoparticle surface composition was monitored with 

XPS (Fig 4.4).   Post-silanization, zirconium 3d peaks are seen at 181.5 and 184 eV.   Before 

silanization, these peaks are masked by scattering of photoelectrons by the nanoparticle capping 

ligands (Fig. 2.2a) which produces a large C 1s peak.  Post-silanization, the C 1s peak is greatly 

diminished and the zirconium peak can be seen, as can low intensity Si 2p, Si 2s, and N 1s peaks. 

 Following silanization, a measured mass of the aminated ZrO2 nanoparticles is reacted 

with freshly prepared ferrocenoyl chloride.  In this procedure and in subsequent washing steps, 

considerable loss of product occurs in the centrifugal isolation.  At least two wash steps were 

necessary to remove unattached ferrocene reagent, whose presence would interfere in the 

subsequent electrochemistry studies.   TEM imaging, though difficult to interpret, appears to 

show that the average core diameters of the ferrocenated ZrO nanoparticles (abbrev. FcZrO) are 

substantially unchanged from the as-synthesized ZrO nanoparticles (Fig. 2.1).   (Ferrocene 

substituents are not expected to contribute significantly to the image diameter.) Assuming 

complete nanoparticle surface coverage by the amine silane reagent, its complete coupling with 

ferrocenoyl chloride, and a ferrocene surface footprint of 1 nm2, the typical 0.006 g mass of 

isolated FcZrO nanoparticle product in a 3 ml DCM solution would ideally correspond to an 

overall ca. 9 mM ferrocene concentration.  

4.3.4 Voltammetry of Ferrocenated Silane-Capped ZrO2 Nanoparticles (FcZrO) 

Voltammetry of the FcZrO nanoparticles was carried out in 1.0 M Bu4NClO4/DCM 

solutions.  The ferrocene wave was readily seen in cyclic voltammetry (Figure 4.7).   
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Figure 4.3 – TEM images of A)SiZrO2 and B) FcZrO2 nanoparticles.  Scale bars are 10 nmand 

50 nm respectively. 
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Figure 4.4 - XPS of A) SiZrO nanoparticles. B and C depict a high resolution scans of B) the Zr 

3d region and C) the N 1s region. 
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Figure 4.5 - XPS of A) FcZrO2 nanoparticles. B) depicts a high resolution scan of the Fe 2p 

region. 
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Figure 4.6 - EDX of FcZrO2 nanoparticles 
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Measurement of the nanoparticle diffusion coefficient (D) was set as a target in quantifying the 

electrochemical assessment, using cyclic voltammetry, chronoamperometry, and microdisk 

electrode voltammetry. 

 The diffusion coefficient expected was estimated using the no-slip version of the Stokes-

Einstein equation, which is          

𝐷 =
𝑘𝑇

6𝜋𝜂𝑟
     (1) 

where r is nanoparticle hydrodynamic radius and η is DCM viscosity (0.41 cP).   Based on the 

1.54 nm TEM nanoparticle core diameter plus a 2 nm increment for the ferrocene sites, this 

equation predicts a FcZrO nanoparticle diffusion coefficient of D = 3.0 x 10-6 cm2/s.   Previous 

measurements of diffusion coefficients of organothiolate coated Au nanoparticles (1-5 nm 

diameter), using the classical Taylor Dispersion method25,  show that a) Equation (1) can predict 

nanoparticle diffusion coefficients to within a factor of ca. two and b) that the organothiolate 

monolayer on the nanoparticles may be partially free-draining.    

Cyclic voltammetry of the amide-connected ferrocene on the FcZrO nanoparticles shows 

a one electron chemically reversible wave with formal potential ca. 0.62 mV vs. Ag/AgCl(aq) 

(Fig. 4.3).  The ΔEPEAK separation is 40 mV, not 60 mV as expected from Nerstian behavior, 

suggesting the FcZrO has formed a film on the electrode surface. The Randles-Sevcik equation 

for linear sweep voltammetry26  is 

𝑖𝑝 = 2.69 ∗ 105 𝑛
3

2⁄ 𝐴𝐷
1

2⁄ 𝐶𝑣
1

2⁄            (2) 

where 𝑛 is the number of electrons delivered (per ferrocene), D (cm2/s) is nanoparticle diffusion 

coefficient and C (mol/cm3) is the concentration of reactive ferrocene.   Figure 4.8 shows that the 
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peak currents do not follow the expected v1/2 potential scan rate dependency, but show a non-

zero intercept and curve upward in a manner, again suggesting adsorption of the FcZrO on the 

electrode. A plot of current vs scan rate (Fig. 4.9) shows excellent linearity, another strong 

indication of surface adsorbed FcZrO.  

 Currents from potential step chronoamperometry and from microelectrode voltammetry 

should be less affected by moderate level of nanoparticle adsorption.   These two experiments 

yield nanoparticle diffusion coefficient and concentration, without assumptions, by combining 

their D1/2C and DC results, as shown next. Similar calculations utilizing D1/2C from Randles-

Sevcik (D1/2CRS = 5.88 x 10-10 mol/s1/2 cm2) are shown for comparison, despite the effects of 

adsorption.  Microdisk voltammetry, seen in Figure 4.10, yields the product DC from the relation 

for steady state limiting current (iLIM) and C, 

      𝑖𝑙𝑖𝑚 = 4 𝑛𝐹𝐷𝐶𝑟0    (2) 

where r0 is microdisk radius (cm).   Currents for ferrocenes on any adsorbed nanoparticles would 

be minimized by the slow potential scan rate. The limiting current (iLIM) was taken to be 1.87 x 

10-11 A, resulting in a DC of 1.05 x 10-13 mol/s cm. Taking the ratio of D1/2CRS and DC produces 

D and C, and yields D = 3.2 x10-8 cm2/s and ferrocene concentration C = 3.29 mM.   

 In potential step chronoamperometry, currents for ferrocenes on any adsorbed 

nanoparticles should contribute only at short electrolysis times.  Currents at longer times should 

measured out to 6 s.   The Cottrell equation is 

     𝑖(𝑡) = 𝑛𝐹𝐴𝐶 (
𝐷

𝜋𝑡
)

1/2

      (3) 
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Figure 4.7 – Cyclic voltammetry of 0.4 mM FcZrO2 solution in DCM with added 1 M NB4ClO4 

electrolyte, at varying potential scan rates. 
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Figure 4.8 – Potential sweep rate dependence of cyclic voltammetry of a 0.4 mM FcZrO2 

nanoparticle solution in DCM with 1 M Bu4NClO4.   The waves do not strongly fit a [scan 

rate]1/2 dependency. 
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Figure 4.9 – Potential sweep rate dependence of cyclic voltammetry of a 0.4 mM FcZrO2 

nanoparticle solution in DCM with 1 M Bu4NClO4.   The waves fit well with  a scan rate 

dependency  
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where t is time. Examination of the Cottrell plot (Fig. 4.11) suggests ideal Cottrell behavior with 

a small amount of curvature at both short and long times. Deviations at short times are 

unsurprising as CV already suggests adsorption on the electrode. From this experiment, D1/2CCA 

= 3.96x10-10 mol/s1/2 cm2.  Performing the above ratio again, this time with D1/2CCA,  produces D 

and C with minimal adsorption affects, and yields D = 7.1 x10-8 cm2/s and ferrocene 

concentration C = 1.49 mM.    

We see that both diffusion coefficients determined by this method are ca. 2 orders of 

magnitude lower than the Einstein-Stokes equation prediction. This large discrepancy is largely 

due to the adsorption effects present in the CV. The FcZrO nanoparticles may be spontaneously 

forming a film on the Pt electrode that is not removed during subsequent oxidation or reduction. 

The other possibility is that the nanoparticles have been polymerized together and are acting not 

as 1.54 nm individual nanoparticles but as large ferrocene coated aggregates. This would require 

nanoparticle aggregates of ca. 75 nm in diameter which have not been observed in TEM samples 

of FcZrO nanoparticles. Concentrations are in reasonable agreement with both being in the µM 

range, though a titration with Cu2+ is needed to accurately compare the values to the amount of 

ferrocene present in solution. These concentrations are significantly higher than those previously 

reported for ferrocene derivatized ITO nanoparticles. The improved ferrocenation of silane-

coated ZrO2 nanoparticles is a topic of ongoing research. 

4.3.5 Click Ferrocenation of ZrO2 and IrO2 Nanoparticles 

 Phosphate ligands provide some advantages over their silane counterparts in regards to 

MOx surfaces. While they both provide covalent bonds to metal ions, phosphates are incapable of 

polymerization and are more resistant to hydrolysis. Their lack of self-hydrolysis makes them 

interesting analytically but their multidentate nature could lead to multiparticle binding. As such 
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reaction times and conditions must still be optimized to prevent flocculation by the phosphate. 

The azo-phosphate (referred to as the click ligand) is placed into a solution of as synthesized 

nanoparticles and allowed to stir overnight at room temperature for ligand exchange. The coated 

nanoparticles precipitate out of solution due to the changed ligand polarity and are collected via 

centrifugation. The phosphated nanoparticles can then be redispersed into a 4:1 DMSO:H2O 

solution to be clicked with the ethynyl ferrocene. The newly ferrocenated nanoparticles again 

precipitate and are collected and washed before being placed into DMSO or MeCN for 

electrochemical analysis. 

 This work focuses on ZrO2 nanoparticles ferrocene modified by click chemistry. Details 

from unpublished work by Michaux et.al on click modified IrO2 nanoparticles have been 

included for comparison as part of a collaboration. TEM images of the phosphated nanoparticles  

differ drastically (Fig 4.12ab), with the ZrO2 nanoparticles showing a flocculated network and 

the IrO2 nanoparticles maintaining their single particle nature. Both materials show minimal 

change in average particle diameter and shape. XPS of the phospho-azo modified IrO2 shows a 

double peak for the N 1s at 399.5 and 406 eV, indicating the presence of an azide species. After 

ferrocenation (Fig 4.12cd) both materials form tightly flocculated clusters. Elemental analysis by 

XPS (Fig. 4.13 and Fig.4.15) shows the presence of the MOx core as well as iron and nitrogen 

indicating some modification has occurred. It is currently unknown why the phosphate bonding 

varies between the materials. It may be that the rate of ligand exchange beween the capping 

ligands and the phosphate is heavily influenced by the ligand length (C5 vs C18). It is also 

unknown why the ferrocenation causes the previously unflocculated IrO2 to flocculate. Different 

batches also vary in behavior. More experiments are required to fully understand these reactions 

and optimize surface coverage without causing flocculation. 
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Figure 4.10 – Voltammetry of a solution of FcZrO2 nanoparticles in DCM (1 M Bu4NClO4) 

using a 5 m radius disk microelectrode; potential scan rate 1 mV/s.   

  

-40

-35

-30

-25

-20

-15

-10

-5

0

0.40.50.60.70.80.9

C
u

rr
en

t 
(p

A
)

Potential (E vs Ag/AgCl)



104 

 

 

 

 

 

Figure 4.11 – Cottrell plot of chronoamperometric oxidation currents over a 6 second timescale 

for a potential step to from 0.500 V to 0.700 V vs. Ag/AgCl for a solution of FcZrO2 

nanoparticles in DCM with 1 M Bu4NClO4. The plot has been forced through a zero origin and 

shows very minor deviations. 
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 Electrochemical analysis of the clicked ZrO2 nanoparticles was performed in MeCN in 

the presence of 0.1 M TBAP. Electrochemisty of the clicked IrO2 nanoparticles in DMSO with 

0.1 M TBAP was performed by Michaux et. al. and is again included for comparison. Cyclic 

voltammetry of the clicked ZrO2 (Fig. 4.16) shows a one electron, chemically reversible wave 

with a formal potential of ca. 0.61 V and a ΔEPEAK of 68 mV. Comparatively, the clicked IrO2 

nanoparticles show a background dominated CV (Fig. 4.17) with a chemically reversible wave at 

formal potential ca. 0.49 V and a ΔEPEAK of ca. 100 mV. Qualitative inquiry of the clicked ZrO2 

electrochemistry is discussed below. Quantitative analysis of clicked ZrO2 and IrO2 is a subject 

of ongoing work. 

 Randles-Sevcik treatment of the click-ZrO (Figure 4.18) shows excellent linearity, 

indicating freely diffusing species of ferrocene tagged ZrO2 nanoparticles, though TEM images 

(Fig 4.12) show this freely diffusing species is likely a large flocculate of ferrocene tagged 

nanoparticles and not individually diffusing nanoparticles. A comparison of the Stokes-Einstein 

predicted diffusion coefficient and an observed diffusion coefficient could expound upon this 

query and is a subject of continued work. The diffusive electrochemistry is in stark contrast to 

the FcZrO voltammetry shown in Figure 4.7 which shows strong symptoms of nanoparticle 

adsorption on the electrode surface. The positively charged ferrocinium species generated during 

oxidation is expected to have low solubility in DCM and might explain why the MeCN dissolved 

click-ZrO shows little evidence of nanoparticle adsorption. Chronoamperometry of the click-ZrO 

oxidation peak also shows ideal Cottrell behavior (Fig. 4.19). The linear fit in Figure 4.19 has 

been forced through zero, as ideal behavior would predict, and still shows an excellent fit with 

the data. The only deviations occur at very short times, which is commonly the case during 
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Figure 4.12 – TEM images of the click modified nanoparticles. Panels A and B depict A) 

phosphate modified ZrO2 nanoparticles (20 nm scale bar) and B) phosphate modified IrO2 

nanoparticles (5 nm scale bar). C and D show the ferrocene “clicked” nanoparticles C) click-

ZrO2 (20 nm scale bar) and D) click-IrO2 (10 nm scale bar). 
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Figure 4.13 – XPS of A) Click-ZrO2 nanoparticles. B and C show high resolution scans of the B) 

Zr 3d region and the C) Fe 2p region. 
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Figure 4.14 - XPS of A) azo-IrOx nanoparticles. B and C show high resolution scans of the B) Ir 

4f region and the C) N 1p region. 

  

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

020040060080010001200

In
te

n
si

ty
 (

cp
s)

Binding Energy (eV)

0

2000

4000

6000

8000

10000

56616671

In
te

n
si

ty
 (

cp
s)

Binding Energy (eV)

22000

22200

22400

22600

22800

23000

390400410

In
te

n
si

ty
 (

cp
s)

Binding Energy (eV)

A) 

C) B) 



109 

 

 

 

 

 

 

Figure 4.15 - XPS of A) click-IrO2 nanoparticles. B and C depict high resolution scans of the B) 

Fe 2p region and C) N 1s region. 
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chronoamperometry experiments. The data presented here is only representative of the work on 

click-ZrO. There are many variations between batches, and a careful consideration of the 

parameters at work is needed to generate consistent data. Future work will include microdisk 

electrochemistry to calculate no-assumption values of D and C (as done with FcZrO) and Cu2+ 

titrations to determine total ferrocene concentration. With this information we can quantitatively 

determine surface coverage of the click-ZrO and compare that to values achieved through 

silanization. 
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Figure 4.16 – Cyclic voltammetry of a mM click-ZrO2 solution in acetonitrile with added 0.1 M 

NB4ClO4 electrolyte, at varying potential scan rates. 
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Figure 4.17 – Cyclic voltammetry of a click-IrO2 solution in DMSO with added 0.1 M NB4ClO4 

electrolyte, at varying potential scan rates. 
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Figure 4.18 – Potential sweep rate dependence of cyclic voltammetry of a click-ZrO2 

nanoparticle solution in acetonitrile with 0.1 M Bu4NClO4.  The waves fit a [scan rate]1/2 

dependency 
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Figure 4.19 – Cottrell plot of chronoamperometric oxidation currents over a 3 second timescale 

for a potential step to from 0.500 V to 0.700 V vs. Ag/AgCl for a solution of click-ZrO2 

nanoparticles in acetonitrile with 0.1 M Bu4NClO4.  The plot has been forced through zero and 

deviates significantly at short times. 
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CHAPTER 5 – ELECTROCHEMICAL EVALUATION OF <10 NM CITRATE CAPPED 

MAGNETITE NANOPARTICLES  

 

 

5.1 Introduction 

 Magnetic iron oxide nanoparticles and solutions thereof have experienced interest in the 

nanomaterials field, having potential technological applications like data storage and improved 

electronic devices1.  They are an active topic in medical areas2-4 given their limited toxicity5-6, 

finding use in MRI contrast reagents7-8, as bio-molecule tags9-11, for targeted hypothermia 

treatments7, and even targeted drug delivery. Magnetite also sees uses in areas such as in 

ferrofluids for seals and oscillation dampening12-13.  Among different forms of iron oxides, 

particles of magnetite (Fe3O4) have seen emphasis in such applications.   

 Magnetite nanoparticles can be prepared in the 4-5 nm diameter range and are soluble in 

aqueous citrate buffer solutions containing added NaClO4 electrolyte.   They display transport-

controlled linear sweep and rotated disk voltammetries in chemically irreversible waves that are 

well-separated (ca. 0.3 V) on the potential axis, corresponding to the two different Fe(III/II) 

reactions of the nanoparticles.   While electrochemistry of iron oxides as films on surfaces has 

been previously investigated, this is the first report on voltammetry of freely diffusing nanometer 

scale Fe3O4 nanoparticles. 

 Iron oxide nanoparticles that are viable for biological application need to be smaller than 

ca. 20 nm and have a small l size dispersity (typically <10%)14, which generally improves 
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reproducibility in highly sensitive measurements.  These small nanoparticles are commonly 

prepared by an aqueous co-precipitation using FeIICl2 and FeIIICl3 salt mixtures in the presence 

of a base (such as NaOH or NH3)
8, 15-17, hydrothermal reactions18-19, or by electrochemical 

generation from sacrificial iron electrodes20-21.   It can be difficult, however, to control the 

average size, and dispersity, of < 20 nm iron oxide nanoparticles obtained by these approaches.   

An alternative pathway relies on a non-aqueous high temperature thermal degradation reaction of 

an iron acetate or acetylacetonate salt with long chain compounds like oleylamine and/or oleic 

acid in a high boiling point solvent, near its boiling point (often > 260 ˚C).  This procedure, 

although ungainly, reproducibly yields nanoparticle batches with tight size distribution (diameter 

variability ca. 10%) and bearing a fatty surfactant coating that stabilizes the nanoparticles and 

prevents aggregation. Control between spherical and cubic nanoparticle morphologies has even 

be demonstrated with this method22. This general procedure was introduced by Sun et al.23 

Additional metal acetylacetonates (such as those of Co, Ni, Mn) can be doped into the 

nanoparticles to manipulate their magnetism24.   

 The high temperature thermal degradation synthesis for nanoparticles used in bio-

applications brings the issue that their fatty capping makes them quite hydrophobic and 

potentially toxic.  The fatty capping shell can be replaced however, with hydrophilic reagents 

based on silanes8, 11, 17, 25-29, carboxylic acids30, or phosphates31-32, which for silanes interact 

covalently with the nanoparticle surfaces and by chemisorption in the case of carboxylic acids 

and phosphates33.   These ligands often have specific functionalities allowing them to undergo 

further modification via coupling reactions (carbodiimide16, 34, acyl chloride35, or click7, 32, 36-37 to 

address a small number) to adjust solubility and produce a wide variety of nanoparticle surface 

modifications. 
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  Although magnetite nanoparticles have been employed in bio-sensing schemes, little is 

known about their electrochemical properties as freely diffusing nanoparticles. Most prior 

electrochemical analysis is either of bulk iron oxide materials38 or hematite nanoparticles39. 

Marken et. al.40 attempted to show electrochemistry of freely diffusing 4-5 nm hematite 

nanoparticles, but were limited by adsorption. Regardless, they still showed a pH dependent 

reduction of hematite and a stripping response of electrochemically formed FePO4. Other 

electrochemical analyses of hematite nanoparticles evaluate their potential as capacitors, with the 

nanoparticles often being pressed into electrodes19. Magnetite bulk material does show 

electrochemisty in low pH solutions38. Magnetite nanoparticles have also seen electrochemical 

evaluation in electrode mixtures for battery applications18. The surfactant layers on non-aqueous 

soluble nanoparticles tend to act as barriers for electron transfers to/from them.   In the present 

work, the original surfactant layer is therefore replaced by more manageable ligands that allow 

examination of the nanoparticle electrochemistry in aqueous media.  The nanoparticle 

voltammetry is unusual in that the Fe3O4 magnetite nanoparticles exhibit reactions that are both 

formally Fe(II)  Fe (III) and Fe(III)  Fe(II) but with different apparent formal potentials. 

5.2 Experimental 

5.2.1 Chemicals and Materials 

Iron (III) acetylacetonate (Fe(acac)3; 97%), iron(III) citrate (C6H5FeO7; technical grade), 

oleylamine (C9H18 = C9H17NH2; 80-90%), oleic acid (C9H18 = C8H15COOH; 97%), 1,2-

hexadecanediol(CH3(CH2)13CHOHCH2OH; 90%), diphenyl ether ((C6H5)2O; >99%), and 

sodium perchlorate (NaClO4; >98%)  were purchased from Sigma-Aldrich.   Absolute ethanol, 

N,N-dimethylformamide (DMF), hexanes and toluene obtained from Fisher Scientific were dried 

over 4 A molecular sieves.   
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5.2.2 Instrumentation and Electrochemical Details 

Cyclic Voltammetry (CV). CV was performed on a a CH Instruments model CHI660a and 

CHI760c with a Pine Instruments rotator (Model AFMSRCE) with Pt working electrode (0.02 

cm2 disk, or 0.196 cm2 for rotating disk), Pt mesh counter electrode, and Ag/AgCl/3 M KCl (aq) 

reference electrode in solutions of pH 2.2 citrate buffer with added 1 M NaClO4 electrolyte. 

The electrochemical cell for magnetic electrochemical experiments comprised (Scheme 

5.18) two main components 1) Teflon boyd (inner dia. 2.5 cm) that holds ~ 20 mL of solution, 2) 

acrylic bottom that screws onto the body to clamp the working electrode (Pt slide) into place. 

Where the Teflon body meets the acrylic bottom is a cavity which holds a silicone O-ring (inner 

dia 0.368 ± 0.013 cm) producing a fixed working electrode area of 0.106 ± 0.0075 cm2. 

Programmable Temperature Control Unit. A lab constructed device controlled by a CAL 

9500P programmable process controller with attached to a thermal couple was used to accurately 

control synthesis temperatures. 

High Resolution Transmission Electron Microscopy (TEM).  TEM images were obtained 

on a JEOL 2010F FasTEM on nanoparticle samples prepared on copper grids (200 carbon mesh, 

carbon-coated Formvar; Ted Pella, Redding, CA) 

Energy-Dispersive X-Ray Spectroscopy (EDS). EDS analysis was performed using 

Oxford INCA EnergyTEM 250 TEM microanalysis system attached to the JEOL 2010F 

FasTEM. 

Centrifuge. Centrifugation was done with an Eppendorf 5810 centrifuge with a fixed-

angle rotator at 3000-4000 rpm for 10 minutes.   

pH Measurement. pH measurements were performed with a Corning pH meter 445. 
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X-Ray Photoelectric Spectroscopy (XPS). XPS data were taken on a Kratos Axis Ultra 

DLD system with monochromatic Al Kα x-ray source.  High resolution scans were taken at pass 

energy = 20 eV, and the spectral energy axis was aligned at the C 1s peak at 284.6 eV.   

X-Ray Diffraction (XRD). XRD data were taken on a Rigaku Multiflex powder 

diffractometer with Cu K-alpha radiation. 

Ultraviolet-Visible Spectroscopy (UV-Vis). UV-Vis spectra were taken on a Thermo 

Evolution Array UV-Vis spectrophotometer (Thermo, Waltham, MA) 

5.2.3 Synthesis of 4 nm Magnetite Nanoparticles.  

The procedure was similar to that of a previous report24.  0.49 g Fe(acac)3 (2 mmol), 1.5 

mL oleic acid (6 mmol), 1.3 mL oleylamine (6 mmol), and 2.58 g 1,2-hexadecanediol (10 mmol) 

were added to 20 mL diphenyl ether in a round bottom flask equipped with a magnetic stir bar, 

thermocouple and condenser.   Using a 100 mL heating mantle packed with sand to promote 

even heating, the vessel was argon purged and heated for 30 min. at 200˚C with vigorous 

stirring.   The temperature was then rapidly increased to 265˚ C; the solution color changed from 

dark red to black signaling formation of magnetite nanoparticles. The reaction was refluxed at 

265˚C for an hour and allowed to cool to room temperature.  The black suspension was 

transferred to centrifugation tubes and absolute ethanol added to precipitate the nanoparticles 

which were collected by centrifugation at 6000 RPM for 10 minutes.  After repeating this 

process three times to wash the nanoparticles, they were taken up into 10 mL of hexanes solvent 

and stored at room temperature.  The nanoparticles produced had average dia. 4.4 ± 0.9 nm, as 

shown in the TEM of Figure 1. 
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5.2.4 Citrate Capped Magnetite Nanoparticles.   

Modified from Drofenik et. al.41  A 1 mL sample of the hexane solution of nanoparticles 

was rotovapped to dryness and the nanoparticles weighed (~5 mg) and redissolved in 7.5 mL 

toluene in a scintillation vial.   The toluene solution was added to a solution of citric acid (3 

mmol, ~0.6 g) in 7.5 mL DMF (e.g., 5 mg citric acid per 5 mg magnetite NPs) which became a 

turbid brown.  The mixture was stirred vigorously at 100 ˚C for 24 hrs, then was transferred to 50 

mL centrifuge tubes and the nanoparticles precipitated by adding diethyl ether. They were 

collected via centrifugation at 6000 RPM for 10 minutes.   The red-brown nanoparticle 

precipitate was washed twice more with fresh diethyl ether and then suspended in 15 mL of pH 

2.2 citrate buffer; after 24 hr this yields a homogeneous, yellow solution. 

5.3 Results and Discussion 

5.3.1 Fe3O4 Nanoparticle Synthesis and Characterization.    

The produced Fe3O4 nanoparticles are 4.4 ± 0.9 nm dia. and readily dissolve in nonpolar 

solvents (hexanes, toluene, chloroform), forming black solutions that are brownish when highly 

diluted.  At high concentrations they display ferrofluidic behavior (vide infra). The nonpolar 

character of the nanoparticles is attributable to their fatty surfactant coating, which prevents 

aggregation and flocculation.  In TEM images, the nanoparticles (Fig. 5.1) show lattice lines 

indicating their crystalline nature. The lattice is spaced by ~3Å, corresponding to (220) planes in 

spinel-structured magnetite24.   X-ray powder diffraction (XRD) of the nanoparticles (Fig. 5.2) 

also hints at their crystalline nature, but does not fully agree with previously reported diffraction 

patterns of magnetite nanoparticles24.  The UV/Vis spectra of these nanoparticle solutions show 

strong absorbance in the UV, with several small shoulders at 275 nm, 346 nm, and 480 nm (Fig. 

5.3a).  The molar absorptivity, in terms of nanoparticle concentration and iron concentration, is 
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listed in Table 5.1. Optical excitation at 350 nm results in emission peaks at 400 nm and 425 nm 

and a shoulder at ca. 450 nm (Fig. 5.4).  The XPS spectrum of the nanoparticles (Fig. 5.5) is 

nearly featureless and shows only a strong C 1s peak owing to the dominating surfactant coating, 

as seen previously for ITO nanoparticles35.   Electrochemistry of the as-synthesized nanoparticles 

is featureless, due to the insulating surfactant coating which acts as a barrier to electron transfers.  

5.3.2 Surfactant Replacement.    

In order to electrochemically access the nanoparticle core, the surfactant coating needed 

to be replaced.    Carboxylic acids and phosphates are known to interact with metal oxide 

surfaces and to bind to large magnetite particles33.   Citric acid was found to be a more 

convenient capping agent. 

The citrate capped nanoparticles (abbrev. Cit Fe3O4) form a stable, cloudy red-brown suspension 

immediately after ligand replacement.  (They show reduced magnetism as compared to as-

synthesized magnetite nanoparticles, but do respond (vide infra) to the presence of a magnetic 

field.)  For electrochemical experiments, the suspension was adjusted to pH 2.2 using citric acid; 

after 24 hr it becomes a yellow, fully dispersed solution.   (This color contrasts to the blackish 

color of as-synthesized magnetite nanoparticle solutions.)   TEM images (Fig 5.6) show no 

change in the size of the nanoparticles after citrate capping, though a small amount of 

flocculation often occurs in handling these samples.  The absorbance spectrum of the Cit Fe3O4 

shows a significant decrease in the number of shoulders and the appearance of a very broad 

shoulder at ca. 270 nm (Fig. 5.3b). Molar Absorptivity is presented in Table 1.    Cit Fe3O4   
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Figure 5.1 - TEM images of as-synthesized magnetite nanoparticles.  Scale bar panel A) 100nm; 

B) 10nm. Panel C) image shows lattice lines of an individual nanoparticle; Panel D) shows a 

histogram of magnetite nanoparticle diameters (n = 100) indicating an average dia. of 4.4 ± 0.9 

nm. 
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Figure 5.2 – XRD of magnetite nanoparticles 
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Figure 5.3 – UV/Vis spectrum of a) the concentration dependence of 6 µg/mL magnetite 

nanoparticles in hexanes solvent and b) the concentration dependence of a solution of 3.9 µg/mL 

Cit Fe3O4 in water. 
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Table 5.1 – Reported molar absorptivities for Fe3O4 and Cit Fe3O4 in terms of nanoparticles and 

iron concentration. 

Sample Name λ (nm) ε (cm-1 Fe M-1) 

Fe3O4 275 2220 

Cit Fe3O4 270 21600 
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Figure 5.4 – Emission spectra of magnetite nanoparticles; excited at 350 nm.  Concentration ca. 6 

µg/mL 
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Figure 5.5 - XPS of as synthesized (surfactant capped) magnetite nanoparticles. 
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nanoparticles do not show the photoluminescence seen for the as-synthesized nanoparticles, 

whether this is traceable to the surfactant coating was not ascertained.  The XPS spectrum (Fig. 

5.7) now shows a less prominent C 1s peak (due to the thinning or removal of the surfactant 

layer) and a doublet of peaks corresponding to the Fe 2p electrons at 709 eV and 722 eV. 

5.3.3 Electrochemistry of Solutions of Citrate-Capped Magnetite Nanoparticles.    

Voltammetry of the Cit Fe3O4 nanoparticles was carried out in degassed pH 2.2 citric 

acid buffer with added 1 M NaClO4 electrolyte.  Both an oxidation and a reduction wave are seen 

(Fig 5.8).   These waves should not be regarded as a single redox process with a large peak 

splitting, but are instead different reactions—an irreversible oxidation process with EPEAK ca. 

0.520 V and an irreversible reduction process with EPEAK ca. 0.130 V.   This is evidenced by 

noting that the open circuit solution rest potential (ca. 0.36 vs Ag/AgCl) lies between the two 

waves, consistent with the presence of both Fe(III) nanoparticle sites and Fe(II) nanoparticle sites 

in the solution, as expected for electrode reactions of Fe3O4 magnetite nanoparticles.   

 The oxidation wave is well defined on Pt electrodes while observation of the reduction 

wave at this pH is complicated by overlap with reduction of PtO2 formed in the oxidation scan 

(Fig 5.9).   (Experiments on Au electrodes (Fig 5.10) proved to be even less well defined.)   

Background subtraction was used to eliminate the PtO2 overlap and simplify the investigation of 

the redox moiety. The pH appears to play a significant role in the electrochemistry of the Cit FeO 

nanoparticles (Fig 5.11). The nanoparticle oxidation current is sensitive to pH, decreasing 

significantly to background current levels at pH > 4.  

 The magnetite nanoparticle couple is very similar to that of Fe(III) citrate under the same 

conditions (Fig 5.12), though the OCP of Fe(III) citrate was higher (0.473 V) due to the 

dominance of the Fe(III) form.   
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Figure 5.6 – TEM images of Cit Fe3O4 nanoparticles.  Scale bar panel A) 50 nm. Panel B) 5 nm 

image shows lattice lines of an individual nanoparticle. 
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Figure 5.7 – XPS of citrate-capped magnetite nanoparticles.  Inset depicts the Fe 2P region. 
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Figure 5.8 – Background-subtracted cyclic voltammetry of 12 mM citrate capped magnetite 

nanoparticle solution in pH 2.2 citrate buffer, with added 1 M NaClO4 electrolyte, at varying 

potential scan rates 
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Figure 5.9 – Comparison between cyclic voltammetry of 12 mM citrate capped magnetite 

nanoparticles/water in pH 2.2 citrate buffer with added 1 M NaClO4 electrolyte and the Pt disk 

background at 100 mV/s 
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Figure 5.10 – Comparison between cyclic voltammetry of a 12 mM citrate capped magnetite 

nanoparticles/water in pH 2.2 citrate buffer with added 1 M NaClO4 electrolyte and the Au disk 

background at 100 mV/s 
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Bulk electrolysis (BE) was also used to determine the concentration of Fe3+ in solutions 

of Cit Fe3O4 nanoparticles in pH 2.2 citrate buffer with 1 M NaClO4 for later use in calculating 

diffusion coefficients. These experiments were very slow, taking ca. 1-2 hrs. for 99% 

electrolysis. A similar timeframe was observed for BE of Fe(III) citrate under similar conditions. 

This is likely due to poor electron transfer kinetics. 

 A plot of current vs. square root of potential scan rate (Fig 5.13) was used to examine the 

diffusional character of these nanoparticle electrochemical waves.   The equation for linear 

sweep voltammetry42 is   

    𝑖𝑝 = 2.99 ∗ 105𝛼
1

2⁄  𝑛
3

2⁄ 𝐴𝐷
1

2⁄ 𝐶𝑣
1

2⁄     (1) 

where 𝑛 is the number of electrons delivered (per iron site), A the area of the working electrode 

(cm2), D (cm2/s) the nanoparticle diffusion coefficient and C (mol/cm3) is the overall 

concentration of active iron sites.   The expected linear relation between the peak currents and 

the square root of potential scan rate (v1/2) is observed (Fig. 5.13), showing that the currents 

being controlled by the rate of nanoparticle diffusion.   (While Equation (1) is for an irreversible 

redox system, a v1/2 scan rate dependency is also expected for quasi- and reversible reactions.)  

Strong adsorption is not involved in the electrode reactions—at least no residual redox peaks are 

observed after moving the electrode to a fresh electrolyte solution.   Additional experiments, 

namely chronoamperometry and rotating disk electrochemistry, were used to examine the 

nanoparticle reaction. 

 The nanoparticle electrochemistry is examined by rotating disk voltammetry (RDE) in 

Figure 5.14, which was taken in a 1:4 solution of the Cit Fe3O4 nanoparticles/water in pH 2.20 

citrate buffer with 1 M NaClO4. Without background correction, the reduction wave does not 
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Figure 5.11 – Cyclic voltammetry of 215 µM citrate capped magnetite nanoparticles/water in 

citrate buffer with added 1 M NaClO4 electrolyte, at varying pH values. 
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Figure 5.12 – Cyclic voltammetry of 1 mM Fe(III) citrate in pH 2.2 citrate buffer with added 1 M 

NaClO4 electrolyte. 

  

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

00.10.20.30.40.50.60.7 C
u

rr
en

t 
(µ

A
)

Potential (E vs Ag/AgCl

250 mV/s

150 mV/s

50 mV/s



140 

 

 

 

 

 

Figure 5.13 – Potential sweep rate dependence of (background currents subtracted) cyclic 

voltammetry of a 12 mM citrate capped magnetite nanoparticle/water solution in pH 2.2 citrate 

buffer with 1 M NaClO4.   Both waves are well fit by a [scan rate]1/2 dependency 
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show a well-defined steady-state plateau, but after background subtraction the reduction steady 

state plateau becomes visible.  Limiting currents taken from the reduction plateau at 0.36 V to 

the oxidation plateau at 0.6 V follow (Fig 5.15) the rotation rate square root relationship 

predicted by the Levich equation42  

𝑖𝑙 = 0.62 𝑛𝐹𝐴𝐶𝐷
2

3⁄ 𝜔
1

2⁄ 𝑣
−1

6⁄      (2) 

where F is Faraday’s constant, ω is angular rotation rate (radians/sec), and υ is the kinematic 

viscosity (cm2/s). Concentration and diffusion coefficients from this experiment are listed in 

Table 5.2. 

 For potential step chronoamperometry (CA) with steps to the reduction plateau, currents 

are less affected by the poor electron transfer kinetics of the system and should follow a normal 

Cottrell relationship42.   

     𝑖(𝑡) = 𝑛𝐹𝐴𝐶 (
𝐷

𝜋𝑡
)

1/2

     (3) 

Figure 5.16 shows a Cottrell plot where current is measured out to 12 s; its linearity supports a 

picture of diffusion-controlled reduction of the nanoparticles.  A comparison of the diffusion 

coefficients determined by this technique are listed in Table 5.2.  A Tafel plot42 was 

constructed to evaluate the kinetics of the two irreversible reactions of Cit Fe3O4 (Fig 5.17). 

Important values can be found in Table 5.3. The overpotential,η, was taken to be Even though 

the reactions are being treated as two individual irreversible reactions, they both have very 

similar kinetic behavior. Transfer coefficients, α, are between 0.4 - 0.5 indicating relative 

symmetry between the oxidation and reduction energy barriers. The standard rate constants, k0, 

differ by less than a factor of two even though the measured rate is slow (1 x 10-5
 cm/s).  
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Figure 5.14 – Background-subtracted rotating disk electrode voltammetry (potential scan rate 10 

mV/s), at different rotation rates, of a 5 mM solution of citrate capped magnetite nanoparticles in 

pH 2.2 citrate buffer with 1 M NaClO4. 
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Figure 5.15 – Levich plot of background -subtracted RDE oxidation limiting currents (taken at 

0.36 V and 0.6 V vs Ag/AgCl) for 5 mM solution of citrate capped magnetite 

nanoparticles/water, in pH 2.2 citrate buffer with 1 M NaClO4. A clear curvature is observed that 

shows an strong x2 correlation. 
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Figure 5.16 – Cottrell plot of chronoamperometric oxidation currents over a 12 second timescale 

for a potential step to from 0.347 V to 0.700 V vs. Ag/AgCl for the 5 mM solution of citrate 

capped magnetite nanoparticles in pH 2.20 citrate buffer with 1 M NaClO4. 
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Table 5.2 – Concentration of varying solutions of Cit Fe3O4 nanoparticles in pH 2.2 citrate buffer 

with 1 M NaClO4 samples based on bulk electrolysis and their associated diffusion coefficient 

values calculated based on technique. The letter represents sample batches while the number 

represents the dilution %. 

Sample Name Technique Concentration (µM) 

Diffusion 

Coefficient (10-6 

cm2/s) 

Stokes-Einstein - - 1.1 

Cit Fe3O4 – A50 CA 3650 1.8 

Cit Fe3O4 – A20 

CA 

1300 

1.3 

RDE 2.1 

Cit Fe3O4 – A10 CA 650 3.7 

Cit Fe3O4 – B50 CA 220 6.8 

Cit Fe3O4 – B30 CA 130 7.9 

Cit Fe3O4 – B10 CA 43 1.9 

Average - - 3.6 ± 2.5 
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5.3.4 Effects of Magnetic Field on Magnetite Electrochemisty.     

That the inherent magnetism of the magnetite nanoparticles is preserved for the described 

materials is shown by placing a Pt coated glass slide electrode at the bottom of a small cell (Fig 

5.18).  The cell was filled with a fresh pH 2.20 Cit FeO dispersion (prior to the 24 hr. aging step) 

with added 1 M NaClO4 electrolyte.   CV scans were taken of the nanoparticles without any 

magnetic field. Then, a magnetic field was placed under the working electrode to draw the 

magnetite nanoparticles to its surface.   This showed no effect for several cyclical potential scans 

but after ~1 minute a significant accumulation of nanoparticles could be seen on the electrode 

surface. The change in current is most noticeable at slow potential scan rates (Fig 5.19).  It is 

important to note that the fresh nanoparticle dispersion remains in solution for ca. 1 hr. without 

the external influence of a magnet. 
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Figure 5.17 – Tafel plots depicting the irreversible oxidation of Fe3+ and the irreversible 

reduction of Fe2+. The y-intercept is taken to be log(i0), where i0 is the exchange current. 
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Table 5.3 – Exchange current values and their comparative standard rate constants for both 

oxidative and reductive processes in Cit Fe3O4.  

Cit Fe3O4 Process i0 (A) α (mol/V) k0 (cm/s) 

Oxidation 6.92 x 10-8 0.481 1.1 x 10-5 

Reduction 9.55 x 10-8 0.402 1.9 x 10-5 
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Figure 5.18 – Diagram of magnetic electrochemistry experiment setup. The inner diameter of the 

silicon O-ring is used as the working electrode area. The acrylic cover is attached tightly to form 

a seal between the WE and the O-ring. 
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Figure 5.19 – Cyclic voltammetry of a 12 mM solution of citrate capped magnetite nanoparticles 

in pH 2.2 citrate buffer with 1 M NaClO4 at 30 mV/s, with (orange curve) and without (blue 

curve) magnetic field. 
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