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ABSTRACT 

 
Michael Thomas Corbett: Complexity-Building Deracemization and Desymmetrization 

Methodologies 
(Under the direction of Jeffrey S. Johnson) 

 
I. Deracemization and Desymmetrization: A Primer 

 An overview of the principles of deracemization and desymmetrization techniques 

applied in modern asymmetric catalysis. 

II. Base-Catalyzed Direct Aldolization of α-Hydroxy Trialkyl Phosphonoacetates 

 A catalytic direct aldolization of racemic α-hydroxy trialkyl phosphonoacetates to access 

α-hydroxy-β-phosphonyloxy esters is described. The fully-substituted glycolate enolate was 

generated in situ via [1,2]-phosphonate-phosphate rearrangement under mild proton-transfer 

conditions. An asymmetric variant was realized upon application of a P-spirocyclic chiral 

iminophosphorane providing excellent levels of diastereo- and enantiocontrol in the aldolization. 

 

III. Asymmetric Synthesis of Chlorohydrins via Dynamic Kinetic Reduction 

 A dynamic kinetic resolution via asymmetric transfer hydrogenation (DKR-ATH) of 

racemic β-chloro-α-keto esters to provide access to optically active halohydrins is presented. The 

requisite β-chloro-α-keto esters were prepared via Ni-catalyzed direct chlorination of α-keto 
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esters. A Ru(II)-amido complex bearing a bulky m-terphenylsulfonamide ligand provided a 

remarkable ligand-controlled switch in diastereoselectivity in the reduction affording anti-

chlorohydrins with high levels of diastereo- and enantiocontrol. 

 

IV. Dynamic Kinetic Reduction of Racemic Acyl Phosphonates 

  A strategy for the preparation of β-stereogenic-α-hydroxy phosphonic acid derivatives via 

DKR-ATH of racemic α-aryl acyl phosphonates is discussed. A (arene)RuCl(monosulfonamide) 

complex featuring a bulky m-terphenylsulfonamide ligand provided excellent levels of diastereo- 

and enantiocontrol in the reduction. Interestingly, this reduction was determined to be proceeding 

from the opposite face of the ketone providing pseudo-diastereomeric products from those 

obtained in the reduction of α-keto esters. 

 

V. Dynamic Kinetic Aldolization of Configurationally Labile Electrophiles 

 Dynamic kinetic asymmetric transformations (DyKAT) of racemic β-bromo-α-keto esters 

through direct aldolization of nitromethane and acetone are described. Cinchona alkaloid-derived 

catalysts effectively catalyzed the aldolizations providing access to fully substituted α-glycolic 
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acid derivatives bearing a β-stereocenter. Mechanistic studies revealed that the reactions proceed 

via facile catalyst-mediated racemization of the β-bromo-α-keto esters under a DyKAT Type I 

manifold. 

 

VI. Enantioselective Synthesis of Hindered Cyclic Dialkyl Ethers via Organocatalytic 
Oxa-Michael/Michael Desymmetrization 

 
 An oxa-Michael/Michael desymmetrization strategy for the rapid construction of cyclic 

dialkyl ethers where both α-stereocenters of the ether linkage are set in a single step is presented. 

Employing a Jørgensen-Hayashi catalyst, the annulation of alkyl substituted p-quinols and α,β-

unsaturated aldehydes provided access to densely functionalized bicyclic frameworks bearing 

four contiguous stereocenters. 
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CHAPTER ONE: DERACEMIZATION AND DESYMMETRIZATION: A PRIMER 

1.1 Introduction 

 Methods for the conversion of simple starting materials into functionally rich products 

are of great importance in organic chemistry. In particular, transformations that directly convert 

simple achiral, meso, and racemic compounds into complex chiral building blocks possessing 

multiple stereocenters are highly valuable. Two important approaches to realize these types of 

transformations are deracemization and desymmetrization. Deracemization allows for the direct 

conversion of a racemate into an enantiopure product with a 100% theoretical yield. Similarly, 

desymmetrization uses enantiofacial discrimination for the conversion of achiral or meso 

compounds into enantiopure products. This chapter will outline the principles of these two 

methods, serving as foundational knowledge for subsequent chapters. An introduction to each 

process will be presented along with relevant examples from the literature that demonstrate their 

utility. 

1.2 Deracemization of Racemates 

1.2.1 Fundamentals of Deracemization 

As defined by Faber, “de-racemization constitutes any process during which a racemate 

is converted into a non-racemic product in 100% theoretical yield without intermediate 

separation of materials.”1 Based on this definition, dynamic kinetic resolution (DKR), dynamic 

kinetic asymmetric transformation (DyKAT), dynamic thermodynamic resolution, cyclic 

deracemization, and enantioconvergent transformation of a racemate can all be classified as 

methods for deracemization.2 
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To date, enzymatic processes are the most commonly employed methods for 

deracemization of small molecules in an industrial setting.3 Enzymes exhibit phenomenal levels 

of selectivity in deracemization reactions due to their ability to undergo specific substrate 

recognition. As an unfortunate byproduct of this heightened substrate specificity, enzymes are 

often only selective for a single substrate and cannot be broadly applied across a scope of 

structurally similar substrates. Many modern synthetic methods are aimed at developing small 

molecule chiral catalysts that can achieve comparable levels of selectivity across broader 

substrate scopes. In the context of subsequent chapters, only the topics of nonenzymatic dynamic 

kinetic resolution (DKR) and dynamic kinetic asymmetric transformation (DyKAT) will be 

discussed henceforth. 

Since the advent of asymmetric catalysis, a wide breadth of chemical transformations has 

been developed for the conversion of a racemate into a single enantiomer product. Faber 

proposed that these processes all share a common mechanistic pathway (Figure 1-1).1 This 

general model highlights the key challenges to the development of an efficient deracemization; 

namely, the existence of an inherent “plane of symmetry.” Therefore, conditions and catalysts 

must be realized that can effectively convert both enantiomers of a racemic starting material (SR 

and SS) into the same enantiomeric product (PR or PS). This can be achieved by either: A) 

identification of a method that will interconvert SS and SR through an achiral intermediate (I), 

which can operate orthogonal to the enantioselective transformation (SR to PR or SS to PS); or B) 

identification of a transformation that provides an enantiospecific route to a single enantiopure 

product from each enantiomer of starting material (i.e., SR to PR (via kR) and SS to PR (via kSR)). 
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Figure 1-1. General Pathways for Deracemization 

 

1.2.2 Dynamic Kinetic Resolution (DKR): An Overview 

 Classical kinetic resolutions remain one of the most commonly employed methods in 

industry for the preparation of chiral material from a racemate.4 In a kinetic resolution, product 

enrichment relies solely on different reaction rates of two enantiomers in a chemical reaction 

promoted by a chiral catalyst or reagent via diastereomeric transition states (Figure 1-2). In 

order for an efficient kinetic resolution to be realized, the reaction rate of one enantiomer must 

be significantly faster than the rate of its enantiomer (kR >> kS). During the reaction, the relative 

concentrations of SR/SS and PR/PS are constantly changing since both enantiomers of starting 

material are simultaneously reacting at different rates. Therefore, the enantiomeric composition 

of S and P can be modeled as a function of conversion.5 The efficiency of a kinetic resolution is 

measured by its selectivity factor (s), which compares the relative rates of reaction for each 

enantiomer. A key mechanistic feature of kinetic resolutions is that there is no pathway for 

interconversion of starting material enantiomers (SR and SS). Therefore, these processes are 

limited to a 50% theoretical yield of the enriched product (PR), although recovery of the enriched 

unreacted starting material (SS) is possible. Given this distinction, kinetic resolution is only a 

method for the separation of enantiomers based on different rates of reaction and is not a 

deracemization technique. 
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Figure 1-2. Kinetic Resolution of a Racemate 

  

 An iconic example of an efficient kinetic resolution is the hydrolytic kinetic resolution of 

racemic terminal epoxides developed by Jacobsen (Scheme 1-1).6 Employing a Co(salen) 

catalyst, a near ideal kinetic resolution of racemic propylene oxide (1) was achieved providing 

1,2-diol (R)-2 in 50% yield and 99:1 er. The unreacted propylene oxide (S)-1 was recovered in 

44% yield and 99.5:0.5 er. Furthermore, the recovered Co(salen) catalyst could be recycled for 

use in subsequent kinetic resolutions providing no loss in catalytic activity or efficiency after 

three cycles. 

Scheme 1-1. Hydrolytic Kinetic Resolution of Terminal Epoxides 
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 Despite a wealth of exquisitely developed highly efficient and selective kinetic 

resolutions in the literature, more practical processes would allow for a 100% theoretical yield 

where complete deracemization of a racemate is observed. In order for a process of this type to 

be successful, a pathway for interconversion of starting material enantiomers (SR and SS) must be 

available. The incorporation of a racemization pathway between SR and SS through an achiral 

intermediate (I) would allow for a potential dynamic kinetic resolution to be achieved (Figure 1-

3). In an ideal DKR, interconversion of SR and SS should occur at least as fast as the asymmetric 

catalytic reaction being performed. Generally, product racemization is mediated by an external 

achiral reagent/catalyst and not the chiral catalyst that mediates the productive reaction. Dynamic 

kinetic resolutions are fundamentally related to kinetic resolutions because enantioselection is 

governed by the relative rates of reaction of the two enantiomers through diastereomeric 

transition states with a chiral catalyst. In a DKR, however, the relative concentrations of SR/SS 

remain constant if a highly facile racemization mechanism is identified allowing for the fast 

reacting enantiomer (SR) to be continually replenished. The selectivity of the product (PR) is a 

function of the relative rates of reaction of each enantiomer (kR/kS), which has been carefully 

studied and quantified by Noyori.7 If racemization is slow (kR >> kRI and kSI), then the process 

becomes less selective and static at higher conversions and can be classified as a kinetic 

resolution. 
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Figure 1-3. Dynamic Kinetic Resolution of a Racemate 

 

 Racemization is an entropically favorable process that can be achieved through various 
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carbonyls through acid/base mediated enol(ate) formation. Due to the heightened acidity of 
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Scheme 1-2. Dynamic Kinetic Resolution Approach to β-Branched Chiral Amines 

 

 Another frequently employed approach to starting material racemization utilizes 

reversible oxidation/reduction, which has allowed for the conversion of static kinetic resolutions 

into dynamic processes. This strategy has been employed mainly within the context of sec-
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(Scheme 1-3a).9 The resolution of racemic 1-phenylethanol (8) was found to be highly efficient 
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Scheme 1-3. Kinetic Resolution and Dynamic Kinetic Resolution of Secondary Alcohols via 
Asymmetric Acylation 
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introducing exogenous halide, via addition of tetrabutylammonium bromide (TBABr), was found 

to provide a significant increase in enantioselectivity providing strong evidence for a 

nucleophilic substitution racemization pathway. 

Scheme 1-4. Asymmetric “Interrupted” Feist−Bénary Reaction via Dynamic Kinetic Resolution 
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 Dynamic kinetic asymmetric transformations share a common kinetic profile with the 
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formation of diastereomeric complexes with a chiral catalyst (not shown). Within the context of 

this thesis, only DyKATs of the Types I and II will be discussed further since they comprise 

deracemization of racemates. 

Figure 1-4. Deracemization of Enantiomers via Dynamic Kinetic Asymmetric Transformation 

 

 In a DyKAT Type I, each enantiomer of starting material (SR and SS) interacts with the 

chiral catalyst (C*) to generate their respective diastereomeric complexes (SRC* and SSC*) 
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 As in DKR, the enantioselectivity of DyKAT Type I depends on both the ratio of 
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Since the relative populations of SRC* and SSC* are important in the overall 

efficiency/selectivity of the DyKAT, careful consideration of both the rates of formation of each 
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complex (kRC* and kSC*) and the rates of interconversion (kRC*C* and kSC*C*) is required. The rates 

of both formation and interconversion must be sufficiently fast relative to the time scale of 

productive reactivity. Interconversion in a DyKAT occurs through a chiral intermediate SC* and 

is mediated by the chiral catalyst (C*), which differs from DKR where racemization proceeds 

through an achiral intermediate (I), where racemization is generally mediated by a second achiral 

catalyst/reagent (Figure 1-3). A stark difference from DKR is that in DyKAT the intermediates 

SRC* and SSC* are diastereomers and not enantiomers. Since SRC* and SSC* are diastereomers, 

the rates of interconversion (kRC*C* and kSC*C*) are not equal suggesting that substrate 

“racemization” is best classified as an epimerization process. This also means that the 

concentrations of SRC* and SSC* are not necessarily equal during the course of the reaction, 

which can lead to one of two observations during a DyKAT (Figure 1-5). In the “matched” case, 

the rate of conversion of SC* to SRC* is faster then the rate of conversion of SC* to SSC* (kRC*C* 

> kSC*C*), which is matched with the faster product forming pathway (kC*R). This “matched” 

reactivity results in higher selectivity than what would be observed in a simple DKR. Conversely, 

if the the rate of conversion of SC* to SRC* is slower then the rate of conversion of SC* to SSC* 

(kRC*C* < kSC*C*), then the selectivity observed in the DyKAT will be lower than a simple DKR 

since it is “mismatched” with the faster product forming pathway (kC*R). 

Figure 1-5. Matched/Mismatched Cases in DyKAT Type I 
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 An early embodiment of DyKAT Type I was disclosed by Trost in the development of a 

Pd-catalyzed asymmetric allylic alkylation of phenols with racemic γ-acyloxybutenolide 16 

(Scheme 1-5).13 Upon ionization of (±)-16, two diastereomeric π-allylpalladium complexes 18 

and 19 are generated. These diastereomeric η3-complexes were driven to interconvert through σ-

palladium complex 20 by aromatization of furan intermediate 20. The equilibration of 18 and 19 

was found to be faster than nucleophilic attack by the phenolate to afford 17, rendering the 

reaction dynamic. Addition of exogenous chloride, nBu4NCl (30 mol%), was found to accelerate 

the interconversion in cases where nucleophilic addition outcompeted the epimerization pathway 

between 18 and 19. 

Scheme 1-5. Palladium-Catalyzed Dynamic Kinetic Asymmetric Transformations of γ-
Acyloxybutenolides 
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 In a DyKAT Type II, each enantiomer of starting material (SR and SS) interacts with the 

chiral catalyst (C*) to generate a common enantiomeric intermediate SC* (Figure 1-4). 

Interaction of the chiral catalyst results in the loss of stereochemical information held in the 

starting material through the convergent generation of an achiral fragment associated with a 

chiral catalyst, thus enabling a racemization pathway if the interaction with the chiral catalyst is 

reversible. This generated intermediate SC* then directly undergoes subsequent addition to 

generate the final products (PR and PS). Since DyKAT Type II operates through a locally achiral 

intermediate (SC*), the enantioselectivity observed in the transformation is only dependent on 

the ratio of the rates of product formation (kC*R/kC*S). The rates at which SC* is formed (kRC* and 

kSC*) only serve to determine the overall rate of the reaction and have no direct bearing on the 

enantioselectivity of the transformation. However, if one of the rates of formation for SC* is 

significantly slower than the other (kRC* >> kSC* or kRC* << kSC*), then the reaction will appear to 

behave as a simple kinetic resolution since once enantiomer is formally unreactive with the chiral 

catalyst. 

 Significantly fewer examples of DyKAT Type II exist in the literature relative to Type I. 

Trost has provided an example utilizing the C2-symmetry of cyclohexane tetraol conduritol B 

derivatives in the Pd-catalyzed allylic alkylation of phthalimide (Scheme 1-6).14 Upon ionization 

of the racemic tetracarbonate 21 with Pd(0), a meso π-allylpalladium complex 23 is generated. 

The chiral Pd-ligand complex employed was found to efficiently ionize both enantiomers of 

starting material, rendering the reaction dynamic. The symmetric η3-complex 23 underwent 

nucleophilic attack by phthalimide with excellent levels of enantioselectivity since addition 

occurs on the face opposite of the Pd-center and adjacent acetoxy groups. 

 



14 

Scheme 1-6. Palladium-Catalyzed Dynamic Kinetic Asymmetric Transformations of Conduritol 
B Tetracarboxylates 
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efficient method for the generation of chiral small molecules, subsequent discussion in this 

section will focus only on catalytic, enantioselective desymmetrization mediated by small 

molecule chiral catalysts. 

 In order for an efficient desymmetrization to be realized, highly selective discrimination 

of enantiotopic functional groups must be achieved (Scheme 1-7). Due to their ease of synthesis 

and centrosymmetry, meso-epoxides are commonly employed in desymmetrization reactions. In 

this example, catalyst-controlled addition of the nucleophile to one of the two enantiotopic 

carbon atoms of the epoxide results in the selective formation of 24. This symmetry-breaking 

operation not only establishes both stereocenters of the former-epoxide, but also demonstrates 

that remote stereochemistry can be established (R groups) during desymmetrization processes. 

This reaction, however, is a simplified version of desymmetrization since there is only one 

reactive functional group; once the epoxide has reacted, the product is inert to further reaction 

(vide infra). Similar to a dynamic kinetic resolution, the selectivity of a desymmetrization 

process is directly related to the relative rates of addition (kR/kS) since the enantiomeric 

composition of the product remains unchanged during the course of the reaction. 

Scheme 1-7. Desymmetrization of meso-Epoxides 
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determined that cooperative interaction of two zirconium-centers was required. Cooridination of 

the epoxide to one zirconium allows for an intramolecular delivery of the metal-bound azide with 

high enantiofacial preference. This activation mode has been extensively applied to a variety of 

epoxide- and aziridine-opening reactions of cyclic and acyclic centrosymmetric compounds with 

high selectivity.19 

Scheme 1-8. Zirconium-Catalyzed Enantioselective Addition of Azide to meso-Epoxides 
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of reaction of the two alcohols. Since the monoacylation product is also reactive under the 

reaction conditions, the enantiomeric mixture of monoester 28 initially obtained can undergo 

subsequent kinetic resolution in the presence of (–)-9. This kinetic resolution converts the minor 

enantiomer of the desired product ent-28 into the achiral meso-diester 29. Given the enantiofacial 

selectivity of the chiral catalyst observed in the initial acylation step, the rate of reaction of ent-

28 to the meso-diester 29 is faster than the conversion of 28 to the meso-diester. By siphoning the 

minor enantiomer ent-28 from the reaction mixture, the enantioselectivity of the desired product 

28 is significantly enhanced. This strategy, governed by the Horeau Principle, is often invoked in 

the desymmetrization of centrosymmetric compounds bearing two reactive functional groups to 

amplify stereoselectivity.20 

Scheme 1-9. Desymmetrization/Kinetic Resolution of meso-Diols via Enantioselective Acylation 
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However, the desymmetrization of achiral compounds bearing two enantiotopic 

functional groups cannot always be parlayed to a subsequent kinetic resolution. In the majority 

of examples, the nucleophile is tethered to the electrophile allowing for intramolecular reaction. 

Due to the inherent rate enhancement of intramolecular reactivity, the second reactive functional 

group will not undergo subsequent reaction. This reactivity profile was utilized by Shibasaki in 

the development of a Pd-catalyzed intramolecular Heck-reaction of cyclohexadiene 30 (Scheme 

1-10).21 Asymmetric Heck-addition of the vinyl triflate to the allylic alcohol generates enol 31, 

which undergoes subsequent tautomerization to the isolated enone 32. Although enone 32 

contains unsaturation that can participate in Heck chemistry itself, productive addition of 30 to 

32 would require an intermolecular reaction, which is slower than the observed intramolecular 

pathway. 

Scheme 1-10. Asymmetric Heck Reaction of Cyclohexadienes 
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desymmetrization allows for the generation of multiple stereocenters through functionalization of 

achiral or centrosymmetric compounds. Selective functionalization of enantio- or diastereotopic 

functional groups rapidly generates molecular complexity with a 100% theoretical yield of chiral 

material. The principles introduced in this chapter are designed to serve as the conceptual 

cornerstone of subsequent chapters. 
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CHAPTER TWO: BASE-CATALYZED DIRECT ALDOLIZATION OF 

α-HYDROXY TRIAKLYL PHOSPHONOACETATES* 

2.1 Introduction 

 Catalytic direct aldol reactions offer a convenient method for the rapid construction of β-

hydroxy carbonyl compounds through the coupling of carbonyl donors and aldehyde acceptors.1 

The generation of the reactive enolate by a basic or nucleophilic catalyst obviates the need to 

preform an enolate equivalent. Due to their weak α-acidity, achieving efficient direct aldolization 

of carbonyl donors in the carboxylic acid oxidation state under mild reaction conditions remains 

a challenge to the synthetic community. In this chapter, we describe a catalytic direct aldolization 

of racemic α-hydroxy trialkyl phosphonoacetates to access α-hydroxy-β-phosphonyloxy esters 

(Scheme 2-1). The requisite fully-substituted glycolate enolate was generated in situ via [1,2]-

phosphonate-phosphate rearrangement under mild proton-transfer conditions. An asymmetric 

variant was realized upon application of a P-spirocyclic chiral iminophosphorane providing 

excellent levels of diastereo- and enantiocontrol in the aldolization under a DyKAT Type II 

pathway. 
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Scheme 2-1. [1,2]-Phosphonate-Phosphate Rearrangement Initiated Direct Aldolization of 
Glycolate Enolates 
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generation of an alkoxide in the product that is more basic than the starting material. Since the 

product alkoxide 2 is not basic enough to deprotonate the starting material, product inhibition of 

the catalyst is observed. 

Scheme 2-2. General Mechanism for Aldol Reaction 

 

 The catalytic direct aldol reaction is a more attractive embodiment of the aldol reaction 

since it allows for the reaction of two carbonyls in their native form.1 The key challenge in 

developing a catalytic direct aldol reaction is identifying a catalytic system that can overcome the 

product inhibition of metal catalysts (vide supra). Evans reported an interesting strategy to 

overcome this challenge during the development of a highly diastereoselective anti-aldol 

reaction of chiral N-acyloxazolidinones (Scheme 2-3).4 Employing soft enolization conditions, 

the Mg-enolate of 4 was generated and underwent nucleophilic addition into p-anisaldehyde. The 

resulting Mg-alkoxide underwent in situ silylation in the presence of TMSCl, which liberated 

MgCl2 for subsequent enolization of 4. The obtained silyl ether product could be deprotected in a 

second step to reveal the desired aldol adduct 5 in excellent yield and diastereoselectivity. 

Scheme 2-3. Catalytic Direct Aldolization of Chiral N-Acyloxazolidinones 
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 In 2001, Shibasaki and Trost concurrently reported the first two examples of the catalytic 

direct asymmetric aldol reaction of ketones and aldehydes under chiral base catalysis.5 

Employing heterobimetallic asymmetric catalyst (R)-LLB, Shibasaki found that 2-

hydroxyacetophenone (6) was a competent reactant in the direct aldol addition to 

hydrocinnamaldehyde providing α,β-dihydroxy ketone anti-7 in excellent yield and 

enantioselectivity, but low diastereocontrol favoring the anti-adduct (Scheme 2-4a). Similarly, 

Trost employed a dinuclear zinc catalyst derived from ProPhenol to affect the addition of 6 to 

hydrocinnamaldehyde providing α,β-dihydroxy ketone syn-7 in good diastereo- and 

enantioselectivity favoring the opposite syn-adduct (Scheme 2-4b). Both of these multinuclear 

catalysts overcome the aforementioned challenges associated with catalytic direct aldolizations 

by utilizing a dioxygenated aldol donor 6 that is susceptible to tight chelation with metal centers. 

Furthermore, the propensity of 6 to chelate increases its α-acidity favoring proton-transfer from 

its enolate to the product 7 eliminating product inhibition of the catalyst and allowing catalyst 

turnover. 
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Scheme 2-4. Catalytic Direct Asymmetric Aldolization of α-Hydroxy Ketones 
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in aldol and Mannich-type reactions by effectively increasing the α-acidity of the donor group to 

enable Brønsted base catalysis. Although they address the fundamental challenge associated with 

this class of substrates, they often require numerous steps to convert the masked ester 

functionality into a tractable handle for further manipulation. 

Scheme 2-5. Ester Surrogates Commonly Employed in Catalytic Direct Aldolizations 
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fully-substituted α-carbon atom (Scheme 2-6b).7g In order to achieve this challenging C–C bond 

construction, 5H-oxazol-4-one 11 was employed as the aldol donor in the catalytic direct 

asymmetric addition into decanal catalyzed by chiral guanidine 13. Following acylation of the 

product to avoid retro-aldol, the protected diol 12 was isolated in high yield albeit poor 

diastereoselectivity. However, a 3-step sequence is required to unveil the α,β-dihydroxy ester 

functionality of 12, highlighting the importance of methodologies that deliver products in their 

native form (Scheme 2-6c). 

Scheme 2-6. Catalytic Direct Asymmetric Aldolizations 
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2.2.3 Chiral Organic Superbases 

 In the context of organic chemistry, a Brønsted base is fundamentally defined as any 

reagent that is capable of abstracting a proton (H+) to generate an anionic species where the 

strength of a base is measured by its pKBH+. Given this widely accepted basic understanding of 

acid-base theory, a superbase can be inferred as being any compound that has a very high 

basicity. This undescriptive classification of superbases relies solely on an arbitrary 

quantification of a base’s properties relative to other bases. Caubère, however, has proposed a 

qualitative perspective to the classification of superbases: “The term “super bases” should only 

be applied to bases resulting from a mixing of two (or more) bases leading to new basic species 

possessing inherent new properties. The term super base does not mean a base is 

thermodynamically and/or kinetically stronger than another. Instead it means that a basic reagent 

is created by combining the characteristics of several different bases.”8 Given this generalized 

definition, super bases can be organic, organometallic, or inorganic in nature. Within the context 

of this chapter, only organic superbases will be further discussed. 

 Organic superbases are generally classified based on the number of substituted nitrogen 

functional groups bound to a central atom (carbon or phosphorous) due to their direct impact on 

the Brønsted basicity of the species.9 Given this relationship, the general organic base 

classifications (in increasing Brønsted basicity) are amine, amidine, guanidine, and phosphazene 

(Scheme 2-7). In addition to their strong basicity, organic superbases possess numerous physical 

properties that render them more attractive than their organometallic and inorganic 

contemporaries. Generally, they are non-metallic, non-ionic neutral species that can be employed 

under mild proton-transfer reaction conditions. Relative to charged bases, they exhibit 

heightened reactivity, low nucleophilicity, and are highly soluble in a range of solvents. Given 
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their air and moisture stability, they are highly robust and polymer-supported superbases have 

even found application in flow processes.10 

Scheme 2-7. Relative Basicity of Organic Superbases 
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Scheme 2-8. Organic Superbases 
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Scheme 2-9. Representative Applications of Chiral Iminophosphoranes in Asymmetric Catalysis 
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formed relative to the P–C bond being broken (favored by ~20 kcal/mol). The carbanion 18 can 

then be trapped by an appropriate electrophile to provide the expected phosphate 19. 

Scheme 2-10. Applications of Chiral Iminophosphoranes in Asymmetric Catalysis 
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to promote the [1,2]-phosphonate-phosphate rearrangement. Treatment of acyl phosphonate 20 

with cyanide generated the tetrahedral intermediate 22, which underwent [1,2]-phosphinyl 

migration to generate the carbanion 23. Quenching the carbanion 23 with 4-chlorobenzaldehyde 

(21) generated a secondary alkoxide 24 that could undergo subsequent [1,4]-phosphinyl 

migration from the hindered tertiary alcohol to the secondary alcohol. Subsequent expulsion of 

the cyanide catalyst results in the formation of α-keto phosphate 25 in 80% yield. 

Scheme 2-11. Cyanide-Catalyzed Phospha-Benzoin Reaction 
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obtained via the aforementioned cross-benzoin reaction (Scheme 2-12b).23d Lewis acid promoted 

ionization of the phosphonyloxy moiety in 26 generated a benzylic carbenium ion that was 

trapped with a potassium trifluoroborate styrenyl salt to provide adduct 27 in good yield. This 

methodology was applicable for a range of carbon-, nitrogen-, and sulfur-centered nucleophiles 

and mechanistic studies showed that the reaction proceeded through a SN1 pathway. 

Scheme 2-12. Synthetic Manipulations of Alkyl Phosphates 
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previous success in the application of nucleophilic chiral phosphite catalysts, we envisaged the 

potential development of an asymmetric variant.25 

Scheme 2-13. Proposed Phosphite-Catalyzed Stetter Reaction of Glyoxylates 
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Scheme 2-14. Mechanistic Divergence from Proposed Reactivity 
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aldol adduct 45a from 41a and 4-chlorobenzaldehyde (21) in 97% yield with 2:1 dr under 

otherwise identical conditions (Scheme 2-15b). 

Scheme 2-15. Thermodynamically-Controlled Mechanistic Divergence in Aldolization 
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(entries 4 and 5). Although MgBrOtBu did not perform as well as KOtBu in the reaction, it 

provided an unexpected switch in diastereoselection now favoring a syn-relationship between the 

alcohols in a 2:1 dr. Other bases such as LiOEt or KHMDS were compatible with the reaction 

providing 45a in comparable diastereoselectivity albeit reduced yields (entries 6 and 7). 

Table 2-1. Counterion Effect on Aldol Diastereoselectivitya 

 

entry base T (°C) t (min) yield (%)b 
45a         46 

drb 

(anti:syn) 
1 KOtBu -78 30 97 – 2.0:1.0 
2 NaOtBu -78 30 88 – 1.2:1.0 
3 LiOtBu -78 30 81 – 1.9:1.0 
4 MgBrOtBu -78 to rt 360 35 11 1.0:2.0 
5 Cs2CO3 -78 to rt 360 41 58 2.0:1.0 
6 LiOEt -78 30 67 – 2.0:1.0 
7 KHMDS -78 60 74 19 2.2:1.0 

aReactions were performed on 0.10 mmol scale employing 1.5 equiv. of aldehyde in THF (1.0 
mL). bYields and diastereoselectivities were determined by 1H NMR analysis of the crude 
reaction mixture using mesitylene as an internal standard. 
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increase in the steric demand of the nucleophilic enolate. Employing a bulkier tBu ester resulted 

in deterioration of diastereocontrol with a slight preference for the opposite syn-diastereomer as 

the major isomer (entry 5). Although the diisopropyl phosphonate provided the highest levels of 

diastereoselectivity in the aldolization, we continued our studies with the diethyl phosphonate 

due to the cost/commercial availability of the starting dialkyl phosphites. 

Table 2-2. Stereochemical Effects of Carboxy and Phosphonate Ester Identitya 

 

entry R1 R2 yield (%)b drb 

(anti:syn) 
1 Et Et 97 2.1:1.0 
2 Et Me 95 2.1:1.0 
3 Me Me 94 1.7:1.0 
4 Me iPr 94 2.6:1.0 
5 tBu Me 89 1.0:1.3 

aReactions were performed on 0.10 mmol scale employing 1.5 equiv. of aldehyde in THF (1.0 
mL). bYields and diastereoselectivities were determined by 1H NMR analysis of the crude 
reaction mixture using mesitylene as an internal standard. 

 
 Having identified an optimal α-hydroxy phosphonoacetate and base, we became 

interested in rendering the reaction catalytic in base. Gratifyingly, reducing the loading of KOtBu 
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the quenched enolate 46 observed (Scheme 2-16a). The formation of 46 was completely 

suppressed by increasing both the equivalents of aldehyde and reaction concentration resulting in 

the isolation of 45a in 95% yield with 2:1 dr (Scheme 2-16b). 
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Scheme 2-16. Exploration of Catalytic Conditions in the Aldolization 

 

2.3.3 Examination of Substrate Scope in Catalytic Direct Aldolization 

With high-yielding reaction conditions established (Scheme 2-16b), we examined the 

scope of the reaction by varying the aldehyde used in the aldolization of 41a (Table 2-3). The 

use of electron-poor and electron-neutral aromatic aldehydes afforded the products in excellent 

yield, albeit with marginal diastereoselectivity (entries 1-10). The use of electron-rich aromatic, 

alkenyl, and alkyl aldehydes afforded product with a notable enhancement in anti-

diastereoselectivity and the use of an excess amount (5.0 equivalents) was optimal in these cases 

(entries 11, 13, and 14). Heteroaromatic aldehydes, such as 2-thiophenecarboxaldehyde, 

provided product in good yield and 7:1 diastereoselection (entry 12). However, column 

chromatography purification of 45l resulted in the cleavage of the phosphate moiety and the anti-

diol was isolated in 81% yield in 19:1 dr. We propose that this unusual result is attributed to the 

strong donating ability of the 2-thienyl moiety resulting in ionization of the phosphate group on 

acidic SiO2 with diastereoselective trapping of the carbenium ion with exogenous H2O, which is 

mechanistically consistent with subsequent Friedel–Crafts experiments (vide infra). Product 

isolation typically only consisted of separation of the product from excess aldehyde. The major 
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byproduct formed during the reaction is the quenched glycolate enolate 46. Bulkier aldehydes 

such as isobutyraldehyde and pivaldehyde were not tolerated under the reaction conditions. 

Table 2-3. Scope of Aldehyde Partnersa 

 

entry R 45 yield (%)b drc 

(anti:syn) 
1 4-Cl-C6H4 45a 95 2.0:1.0 
2 2-F-C6H4 45b 91 2.3:1.0 
3 2-NO2-C6H4 45c 87 1.5:1.0 
4 3-NO2-C6H4 45d 92 2.4:1.0 
5 4-NO2-C6H4 45e 95 2.8:1.0 
6 4-CF3-C6H4

 45f 91 2.1:1.0 
7 4-CN-C6H4 45g 93 2.4:1.0 
8 C6H5 45h 97 2.1:1.0 
9 4-F-C6H4 45i 98 2.1:1.0 
10 4-Me-C6H4 45j 97 2.0:1.0 
11d 4-MeO-C6H4 45k 89 4.9:1.0 
12 2-thienyl 45l 81e 6.7:1.0 
13d (E)-CH=CHPh 45m 89 4.4:1.0 
14d CH2CH2Ph 45n 78 5.8:1.0 

aUnless otherwise noted, reactions were performed on 0.20 mmol scale employing 2.0 equiv. of 
aldehyde in THF (1.0 mL) at -78 °C for 2 h. bYield of isolated product. cDetermined by 1H NMR 
analysis of the crude reaction mixture. dWith 5.0 equiv. of aldehyde. eProduct isolated as the 
anti-diol in 19:1 dr following column chromatography. 

 
The scope of the α-hydroxy phosphonate coupling partner was investigated, with 

benzaldehyde as the other partner, by varying the α-substituent (Table 2-4). The presence of an 

α-substituent was found to be critical: reactions where R = H suffered from poor reactivity (<5% 

conversion; entry 1). In addition to the benzyl group, other alkyl substituents were well-tolerated 

under the reaction conditions, thus allowing for the incorporation of functional handles such as 

terminal alkenes and alkynes (entries 3 and 4). 
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Table 2-4. Scope of α-Hydroxy Phosphonoacetate Partnersa 

 

entry R 45 yield (%)b drc 

(anti:syn) 
1 H (41f) 45o trace – 
2 CH3 (41b) 45p 81 1.9:1.0 
3 CH2CH=CH2 (41c) 45q 89 1.2:1.0 
4 CH2≡CH (41d) 45r 93 2.9:1.0 
5 CH2Ph (41a) 45h 97 2.1:1.0 

aReactions were performed on 0.20 mmol scale employing 2.0 equiv. of aldehyde in THF (1.0 
mL) at -78 °C for 2 h. bYield of isolated product. cDetermined by 1H NMR analysis of the crude 
reaction mixture. 

 
2.3.4 Re-examination of Catalysts for the Direct Aldolization 

Having established a baseline protocol for achieving a new catalytic direct ester aldol 

addition, efforts were directed at improving the modest reaction diastereoselectivity and 

developing an enantioselective variant of the title reaction. Given the poor stereochemical 

control provided by inorganic bases, we turned our attention to an examination of organic bases 

that could achieve the desired reactivity profile. During the development of our aldolization 

reaction, Nakamura reported a [1,2]-phosphonate-phosphate rearrangement of α-hydroxy 

phosphonoacetates featuring an enantioselective protonation mediated by quinidine (Scheme 2-

17).20d Quinidine is proposed to deprotonate the alcohol 47 triggering [1,2]-phosphinyl migration 

to provide chiral ion-paired enolate 49. Enantioselective protonation of 49 by the intimate ion-

paired chiral ammonium salt results in the formation of 48 in excellent yield and enantioselection. 
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Scheme 2-17. Asymmetric [1,2]-Phosphonate-Phosphate Rearrangement via Enantioselective 
Protonation 
 

 

 Nakamura’s work indicated that chiral organic bases could promote the [1,2]-

phosphonate-phosphate rearrangement of α-hydroxy phosphonoacetates; however, we would 

need to carefully tune reaction conditions to promote aldolization instead of undesired 

protonation of the transient enolate. With this in mind, we screened a series of strong organic 

bases under our previously optimized reaction parameters (Table 2-5). Schwesinger’s base (tBu-

P4) provided similar results to KOtBu, but provided aldol adduct 45a in 3:1 dr favoring the 

opposite syn-diastereomer (entry 2). Considering the relative basicities of known chiral 

guanidine and iminophosphorane catalysts in the literature (Scheme 2-8), we next explored 

BEMP, which has a comparable pKBH+ to these chiral catalysts. BEMP unfortunately did not 

promote the [1,2]-phosphonate-phosphate rearrangement of 41a at -78 °C requiring elevated 

temperature to initiate the migration. In THF, the reaction at 0 °C proceeded cleanly to full 

conversion providing 34% NMR yield of syn-45a in 2:1 dr, but the major product was 46 

suggesting that enolate quenching was a competing process (entry 3). In order to better 

understand the origin of this observation, the reaction with BEMP was rerun in various solvents: 

toluene, CH2Cl2, MeCN, and DMF (entries 4-7). Although no improvement in the ratio of 45a:46 
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was observed, reactions in more polar solvents such as MeCN and DMF resulted in a noticeable 

increase in diastereoselection up to 6:1 and 8:1, respectively, favoring syn-45a. 

Table 2-5. Organic Bases in Direct Aldolization Reactiona 

 

entry base solvent T (°C) yield (%)b 
45a         46 

drb 

(anti:syn) 
1 KOtBu THF -78 98 – 1.9:1.0 
2 tBu-P4 THF -78 97 – 1.0:3.3 
3 BEMP THF 0 34 61 1.0:2.3 
4 BEMP toluene 0 9 88 1.0:1.3 
5 BEMP CH2Cl2 0 16 82 1.0:2.7 
6 BEMP MeCN 0 18 77 1.0:5.6 
7 BEMP DMF 0 36 60 1.0:7.6 

aReactions were performed on 0.10 mmol scale employing 2.0 equiv. of aldehyde. bYields and 
diastereoselectivities were determined by 1H NMR analysis of the crude reaction mixture using 
mesitylene as an internal standard. 

 
Although results with BEMP were discouraging with respect to product distribution, it 

provided the opposite major diastereomer relative to alkali bases, hinting at a possibility that 

both relative and absolute stereocontrol issues could conceivably be addressed through the use of 

a chiral iminophosphorane base that has appropriate structural features and sufficient basicity. 

Exploratory experiments testing this hypothesis were undertaken in collaboration with Professor 

Takashi Ooi at Nagoya University who has developed a series of spirocyclic chiral 
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iminophosphorane catalysts derived from chiral diamines (Table 2-6).17 Initial reactions were 

unsuccessful at -78 °C, however, (M,S)-L-Val-Ph-NH-PCl/KOtBu was able to slowly promote 

[1,2]-phosphonate-phosphate rearrangement of 41e at -40 °C in both THF and DMF (entries 2 

and 3). Reaction in THF predominately gave byproduct 51 and a small amount of desired 

product 50a in 1:1 dr; however, reaction in DMF provided 50a as the major product in moderate 

diastereoselectivity. Similarly, employing (P,S)-L-Val-Ph-NH-POH in DMF resulted in a very 

good ratio of 50a:51, but only moderate diastereoselection (entry 4). Running the reaction in 

THF, however, resulted in the formation of 50a in low yield, but >30:1 dr and 92.5:7.5 er (entry 

5). 

Table 2-6. Application of Chiral Iminophosphorane Catalystsa 

 

entry catalyst solvent T (°C) 50a:51b drb 

(syn:anti) erc 

1d BEMP THF 0 1:2 3:1 – 
2 (M,S)-L-Val-Ph-NH-PCle THF -40 1:6 1:1 N/D 
3 (M,S)-L-Val-Ph-NH-PCle DMF -40 3:2 4:1 N/D 
4 (P,S)-L-Val-Ph-NMe-POH DMF -40 6:1 5:1 N/D 
5 (P,S)-L-Val-Ph-NMe-POH THF -40 1:2 >30:1 92.5:7.5 

aReactions were performed on 0.10 mmol scale employing 2.0 equiv. of aldehyde at the indicated 
temperature for 20 h. bProduct distributions and diastereoselectivities were determined by 1H 
NMR analysis of the crude reaction mixture. cDetermined by chiral HPLC analysis. dReaction 
performed with 41a. eActive iminophosphorane catalyst prepared in situ via addition of KOtBu 
(10 mol%) at -40 °C. 
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2.3.5 Preparation of Chiral Iminophosphoranes and Optimization of Catalytic Direct 
Asymmetric Aldolization of α-Hydroxy Phosphonoacetates 
 
 We commenced our studies by examining the effects of structural perturbations to α-

hydroxy phosphonoacetate 41 on the efficiency of the direct aldolization to benzaldehyde (Table 

2-7). Unfortunately, modifications to the identity of the ester or phosphonate groups were largely 

unsuccessful. Decreasing the size of the ester (ethyl to methyl) resulted in a significant increase 

in the formation of byproduct 51, whereas increasing its size (ethyl to tert-butyl) completely shut 

down the reaction (entries 2 and 5). Similarly, increasing the size of the phosphonate to ethyl or 

isopropyl resulted in decreases in conversion and enantioselectivity (entries 3 and 4). 

Remarkably, all α-hydroxy phosphonoacetates 41 that underwent reaction provided the desired 

adduct 50 with essentially complete diastereocontrol (>30:1 dr), revealing this strategy as a 

powerful method for stereoselective glycolate aldolization with a fully substituted α-center. 
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Table 2-7. Stereochemical Effects of Carboxy and Phosphonate Ester Identitya 

 

entry R1 R2 conv (%)b 50:51b drb 

(syn:anti) erc 

1 Et Me 70 1.0:1.2 >30:1 93:7 
2 Me Me 23 1.0:1.9 >30:1 90.5:9.5 
3 Et Et 45 1.0:0.9 >30:1 85.5:14.5 
4 Et iPr <5 – – – 
5 tBu Me <5 – – – 

aReactions were performed on 0.10 mmol scale employing 5.0 equiv. of aldehyde in THF (1.0 
mL) at -40 °C for 20 h. bConversions, product distributions, and diastereoselectivities were 
determined by 1H NMR analysis of the crude reaction mixture using mesitylene as an internal 
standard. cDetermined by chiral HPLC analysis. 

 
 A distinct advantage of catalysts derived from (P,S)-L-Val-Ph-NMe-POH (52c) is the 

ability to tune the basicity of the iminophosphorane by varying the geminal diaryl groups. To this 

end, catalyst 52c and its structural derivatives were prepared according to literature procedures 

with help from Yusuke Ueki and Ken Yoshioka (Scheme 2-18).17b,17c Beginning from L-valine, 

amino alcohol 54•HCl bearing geminal diphenyl groups was prepared in 4 steps in 94% overall 

yield. Formylation of the amine and subsequent reduction provided N-Me amino alcohol 55•HCl 

in 91% yield. Diamine 56 was prepared utilizing a TFA-mediated SN1 displacement of the 

benzylic alcohol with NaN3 followed by reduction of the azide moiety. Spirocyclization of 

diamine 56 with PCl5 proceeded cleanly to afford 57 in a 5:1 dr. Separation of the diastereomers 

via column chromatography and ion-exchange afforded iminophosphorane 52c. 
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Scheme 2-18. Synthesis of Chiral Iminophosphorane Catalysts 

 

With a library of catalysts in hand, we screened an electronically distinct series of 

catalysts in the direct aldolization (Table 2-8). Catalysts bearing electron-rich aromatic groups 

(52a and 52b) provided higher levels of conversion after 20 h than the parent Ph-catalyst 52c, 

but provided 50a with lower levels of enantioselectivity (entries 1 and 2). Catalysts with 

electron-withdrawing aromatic groups (52d-f) are less basic than the parent catalyst 52c resulting 

in decreased reactivity; however, 52d provided 50a with higher levels of enantioselectivity 

(entries 4-6). Iminophosphorane catalyst 52g derived from L-isoleucine was found to be inferior 

to L-valine derived catalyst 52c (entry 7). Although catalyst 52d provides slightly higher levels 

of enantioselectivity than 52c, we decided to move forward with 52c due to its higher reactivity. 

 

 

NH2

CO2H

Me

Me
a) SOCl2, MeOH c) PhMgBr, Et2ONHBoc

CO2Me

Me

Me
NH2•HCl

Me

Me

OH
Ph

Ph

a) HCO2H, Ac2O
b) LiAlH4, THF NH•HCl

Me

Me

OH
Ph

Ph

Me
a) NaN3, TFA NH

Me

Me

NH2
Ph

Ph

Me

PCl5, Et3N

86% yield
5:1 (P,S):(M,S)

N
H

P

Me
N

N
H

Me
N

Ph
PhPh

Ph

Me

Me

Me

Me

Cl N
H

P

Me
N

N

Me
N

Ph
PhPh

Ph

Me

Me

Me

MeAmberlyst A27 resin
(OH form)

L-valine 53
94% yield

54

88% yield
56

91% yield
55

57 52c

b) Boc2O, K2CO3,
    H2O/Dioxane

d) 1 N HCl/MeOH

c) 1 N HCl/MeOH b) Zn, HCO2NH4, MeOH

toluene



50 

Table 2-8. Screening Chiral Iminophosphorane Catalystsa 

 

entry R Ar conv (%)b 50a:51b drb 

(syn:anti) erc 

1 Me 4-OMePh (52a) >95 1.0:1.1 >30:1 89.5:10.5 
2 Me 4-MePh (52b) 80 1.0:0.7 >30:1 88:12 
3 Me Ph (52c) 76 1.0:0.8 >30:1 92:8 
4 Me 4-FPh (52d) 52 1.0:0.6 >30:1 95:5 
5 Me 4-ClPh (52e) 20 1.0:0.6 >30:1 N/D 
6 Me 4-CF3Ph (52f) <5 – – – 
7 Et Ph (52g) 53 1.0:2.6 >30:1 90.5:9.5 

aReactions were performed on 0.10 mmol scale employing 5.0 equiv. of aldehyde in THF (0.5 
mL) at -40 °C for 20 h. bConversions, product distributions, and diastereoselectivities were 
determined by 1H NMR analysis of the crude reaction mixture using mesitylene as an internal 
standard. cDetermined by chiral HPLC analysis. 

 
Having identified optimized structures for the α-hydroxy phosphonoacetate and 

iminophosphorane catalyst, we began to optimize reaction conditions to increase the selectivity, 

conversion, and product distribution of the direct aldolization (Table 2-9). Polar solvents such as 

DMF effectively promoted desired reactivity giving excellent product distribution; however, 50a 

was obtained in only 6:1 dr and 53.5:46.5 er (entry 2). EtOAc provided similar reactivity and 

enantioselectivity to THF, but with a substantial drop in diastereoselection to 9:1 (entry 3). The 

use of CH2Cl2 resulted in rapid consumption of 41e leading to the selective generation of 

byproduct 51 (entry 4). Considering these results, we conducted a screen of ethereal solvents 

since THF provided the highest levels of selectivity in the reaction (entries 5-8). Both MTBE and 

2-MeTHF provided slight increases in enantioselection, but suffered from moderate ratios of 
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50a:51 at -40 °C. Although decreasing the temperature to -50 °C resulted in incomplete 

conversion after 20 h, an improved ratio of 50a:51 was obtained and 50a was isolated in 71% 

yield with 20:1 dr and 95:5 er (entry 9). Examination of other reaction parameters such as 

catalyst loading, concentration, equivalence of aldehyde, and reaction time unfortunately 

provided no improvement to these optimized reaction conditions. 

Table 2-9. Optimization of Solvent and Temperaturea 

 

entry solvent T (°C) conv (%)b 50a:51b drb 

(syn:anti) erc 

1 THF -40 76 1.0:0.8 >30:1 92:8 
2 DMF -40 >95 1.0:0.3 6:1 53.5:46.5 
3 EtOAc -40 85 1.0:1.0 9:1 89:11 
4 CH2Cl2 -40 >95 1.0:6.9 >30:1  N/D 
5 Et2O -40 >95 1.0:0.6 >30:1 91:9 
6 CPME -40 >95 1.0:0.9 >30:1 91:9 
7 MTBE -40 >95 1.0:0.6 >30:1 93:7 
8 2-MeTHF -40 >95 1.0:0.8 >30:1 92.5:7.5 
9 2-MeTHF -50 >90 (71) 1.0:0.4 >30:1 95:5 

aReactions were performed on 0.10 mmol scale employing 5.0 equiv. of aldehyde in solvent (0.5 
mL) for 20 h. bConversions, product distributions, and diastereoselectivities were determined by 
1H NMR analysis of the crude reaction mixture using mesitylene as an internal standard; isolated 
yield reported in parentheses. cDetermined by chiral HPLC analysis. 

 
2.3.6 Scope with Chiral Bases 

Preliminary experiments suggest that application of the optimized reaction conditions to 

other aldehyde electrophiles provides access to enantiomerically enriched aldol adducts (Table 

2-10). While the product yields were slightly reduced with ortho-substituted aldehydes, complete 
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diastereoselectivity is regularly observed and good enantiocontrol is maintained (entries 2-4). A 

variety of 3-substituted and 4-substituted aromatic aldehydes bearing electron-withdrawing 

groups were also competent reaction partners providing products in high yield and excellent 

diastereo- and enantioselectivity (entries 5-9). The structure and absolute stereochemistry of 

aldol adduct 50e was determined by X-ray crystallography,28 and other products were assigned 

by analogy. 

Table 2-10. Scope of Aldehyde Partnersa 

 

entry R 50 yield (%) drb 

(syn:anti) erc 

1 C6H5 50a 71 >30:1 95:5 
2 2-naphthyl 50b 68 >30:1 94.5:5.5 
3 2-F-C6H4 50c 56 >30:1 94:6 
4 2-Cl-C6H4 50d 64 >30:1 95:5 
5 3-CN-C6H4 50e 89 >30:1 94:6 
6 3-Br-C6H4 50f 87 >30:1 95:5 
7 4-Cl-C6H4 50g 82 >30:1 95:5 
8 4-Br-C6H4 50h 91 >30:1 95.5:4.5 
9 4-CO2Me-C6H4 50i 89 >30:1 97:3 

aUnless otherwise noted, reactions were performed on 0.10 mmol scale employing 5.0 equiv. of 
aldehyde in 2Me-THF (0.5 mL) at -50 °C for 20 h. bDetermined by 1H NMR analysis of the 
crude reaction mixture. cDetermined by chiral HPLC analysis. 

 
Although the aldolization was found to be highly effective with electron-neutral and 

electron-withdrawing aldehyde coupling partners, at the current level of optimization a variety of 

substrates were plagued by the formation of byproduct 51 resulting in reduced yields and 
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selectivities (Scheme 2-19). Electron-releasing p-tolualdehyde provided 50j in only 48% yield 

and 89:11 er despite retaining excellent relative stereocontrol. Aldehydes possessing CF3-groups 

afforded products such as 50k in diminished diastereoselectivity, regardless of its position on the 

aromatic ring. Although 2-thiophenecarboxaldehyde worked well in the aldolization providing 

50l in good yield, column chromatography resulted in the cleavage of the phosphate group (vide 

supra) and provided the diol in reduced enantioselectivity. Reactions with aliphatic aldehydes 

generally exhibited poor chemoselectivity providing only trace amounts of the desired aldol 

adduct; however, aliphatic surrogates, such as ynals, were found to be compatible with the title 

reaction providing 50o in moderate yield, but with poor diastereocontrol. This result may suggest 

that the high levels of diastereoselectivity observed in the aldolization could arise from favorable 

π–π interactions between the aldehyde and the iminophosphorane catalyst. Other α-hydroxy 

phosphonoacetate donors were examined in the reaction providing 50m and 50n in either 

reduced yield or enantioselection under the optimized reaction conditions. 

Scheme 2-19. Ineffective Aldolization Substrates 
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2.3.7 Proposed Mechanism 

In order to account for the observed reactivity of α-hydroxy phosphonate 41e in the aldol 

addition, a catalytic cycle was proposed (Scheme 2-20). Following deprotonation of the alcohol 

41e by 52c, [1,2]-phosphonate-phosphate rearrangement proceeds to generate the reactive 

glycolate enolate 59 from 58. FMO considerations29 lead us to favor the illustrated (Z)-enolate as 

the kinetically preferred product of C→O phosphinyl migration. The precise structures of the 

enolate 59 and the aldol transition state remain open questions. Enolate addition to benzaldehyde 

would lead to the aldolate 60; however, enolate 59 can be quenched by the ion-paired catalyst to 

afford undesired byproduct 51 in a competitive irreversible pathway. The relative rate of the 

irreversible asymmetric protonation pathway leading to 51 was faster than C–C bond formation 

to 60 for electron-rich and sterically hindered aldehydes, which is consistent with Nakamura’s 

work (Scheme 2-17). Approximately thermoneutral O→O phosphinyl migration occurs from the 

3° alcohol to the vicinal 2° alkoxide, presumably to reduce steric strain at the fully substituted 

center, affording aldolate 61. The reaction is rendered catalytic via proton transfer between the 

aldolate 61 and the α-hydroxy phosphonate starting material (41e), either directly or via the free 

base 52c. 
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Scheme 2-20. Mechanistic Proposal 

 

2.3.8 Evidence for DyKAT Type II Paradigm 

 During the optimization of the iminophosphorane-catalyzed direct aldolization of α-

hydroxy phosphonate 41e, an interesting mechanistic observation was made. Namely, that the 

reaction employing chiral iminophosphorane 52c was significantly slower than the racemic 

reaction employing KOtBu even though it was being run at higher temperature (Scheme 2-21). 

Although this was initially attributed solely to the steric demnd of the catalyst, careful 

consideration of the aforementioned mechanism led us to consider that the chiral nature of the 

base (52c) was responsible for this divergence in starting material consumption. Although a 

clean assay of 41e could not be achieved by chiral HPLC, analysis of the recovered starting 

material 41e revealed that significant enrichment (>95:5 er) occurred at 67% conversion. 
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Scheme 2-21. Relative Rates of Conversion 

 

 These data strongly suggest that there is a matched/mismatched deprotonation event 

involved in the generation of the ion-paired achiral enolate 59 and that this direct aldolization is 

proceeding as a dynamic kinetic asymmetric transformation (DyKAT) Type II (Scheme 2-22). 

Deprotonation of one enantiomer of 41e (arbitrarily denoted as R) was more accessible to the 

catalyst than its enantiomer ent-41e leading to unequal rates of reaction to form intermediate 59 

causing a gradual enrichment of the slower reacting enantiomer of starting material. Furthermore, 

50a is formed in uniform enantioselectivity at various conversions providing further evidence for 

this mechanistic pathway since the selectivity of the reaction is only dependent on the 

aldolization step. 
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Scheme 2-22. Proposed DyKAT Type II Mechanism 

 

2.3.9 Diastereoselective Friedel–Crafts Optimization and Scope 

The title reaction is especially attractive since the aldolization directly installs a leaving 

group that can be immediately deployed in nucleophilic displacement chemistry. The –OPO3R2 

groups in benzylic phosphates are viable nucleofuges in acid-promoted Friedel–Crafts 

alkylations.23 In order to exploit this potential reactivity, a variety of Lewis and Brønsted acids 

were screened in the reaction of (±)-45a (2:1 dr) and anisole. A majority of the acids screened 

were found to promote ionization, but led to undesired Meinwald rearrangement;30 however, 

TfOH provided the desired Friedel–Crafts alkylation adduct 62 in 91% yield as a single 

diastereomer. Heteroaromatic and heteroatom nucleophiles were also employed in this alkylation 

reaction to provide 63 and 64 in good to excellent yields (Scheme 2-23). The Friedel–Crafts 

alkylation provides β-diaryl stereogenicity in a single step with pronounced stereoconvergency. 
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Scheme 2-23. Stereoconvergent Friedel–Crafts Alkylations 

 

Formation of a discrete carbenium ion explains the stereoconvergence and finds 

precedent in the diastereoselective Friedel–Crafts alkylations pioneered by Bach and 

coworkers.31 The mechanistic pathway that leads to the generation of benzylic carbenium ion 65, 

however, remains a topic of discussion. We proposed acid-catalyzed conversion of α-hydroxy 

phosphate 45a to epoxide 43 as the first step (Scheme 2-24). The intermediacy of the epoxide 

and the stereospecificity of the ring closure were supported by a reaction with a weaker acid, 

ZnCl2, at 45 °C that resulted in formation of oxirane 43 with conservation of diastereomeric ratio. 

The epoxide 43 is then susceptible to Brønsted acid-mediated opening affording benzylic 

carbenium ion 65, which undergoes stereoselective nucleophilic attack to afford the desired 

substitution products 62-64. 

Scheme 2-24. Proposed Mechanism for Friedel–Crafts Alkylation 
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 Given this proposed mechanism, treatment of enantioenriched 50g (95:5 er) and anisole 

with TfOH was expected to proceed with a high level of stereospecificity providing 62 with 

enantioretention (Scheme 2-25a). However, Friedel–Crafts adduct 62 was isolated in 89% yield 

as a single diastereomer, but in only 69.5:30.5 er. This significant erosion in enantiopurity is 

inconsistent with our originally proposed mechanism that relies on stereospecific epoxide 

formation and selective opening to benzylic carbenium 65 (Scheme 2-24). If epoxide opening is 

reversible and both tertiary carbocation 66 and benzylic carbocation 65 are thermodynamically 

accessible under the reaction conditions, however, then the enantiomeric integrity of the starting 

material can be lost during the alkylation (Scheme 2-25b). Free bond rotation would allow 

interconversion of 66 under the reaction conditions, providing access to glycidic esters 43 and 67. 

Subsequent acid-catalyzed epoxide opening to generate enantiomeric benzylic carbeniums 65 

and ent-65 is followed by stereoselective Friedel–Crafts alkylation to provide products 62 and 

ent-62. This alternative mechanistic pathway is more consistent with the observed erosion in 

enantiopurity of the starting material observed during the acid-catalyzed alkylation of anisole. 
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Scheme 2-25. Proposed Racemization Pathway in Friedel–Crafts Alkylation 

 

2.4 Conclusion 

In conclusion, a catalytic direct aldol addition of α-hydroxy phosphonacetates to 

aldehydes to afford α-hydroxy-β-phosphonyloxy esters has been developed. A [1,2]-

phosphonate-phosphate rearrangement was utilized to generate the reactive glycolate enolate in 

situ under mild basic conditions. The reaction works well for a variety of alkyl, alkenyl, aryl, and 

heteroaryl aldehydes affording the desired products in good to excellent yields in low to 

moderate diastereoselectivities. Iminophosphorane catalysts enabled positive outcomes in 

asymmetric versions of the title process providing excellent levels of stereocontrol under a 

DyKAT Type II paradigm. This methodology obviates the need to mask ester and alcohol 
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esters. Stereoconvergent second stage transformations have also been developed to enhance the 

synthetic utility of the methodology. 
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2.5 Experimental Details 

Methods: Infrared spectra were obtained using a Shimadzu IRAffinity-1 or Jasco 460 

Plus Fourier transform infrared spectrometer. Magnetic resonance spectra (1H NMR, 13C NMR, 

and 31P NMR) were recorded on a Bruker model DRX 400 (1H NMR at 400 MHz, 13C NMR at 

101 MHz, and 31P NMR at 162 MHz), Bruker model DRX 600 (1H NMR at 600 MHz, 13C NMR 

at 151 MHz, and 31P NMR at 243 MHz), or JEOL JNM-ECS400 (1H NMR at 400 MHz, 13C 

NMR at 101 MHz, and 31P NMR at 162 MHz) spectrometer. Chemical shifts for 1H NMR and 

13C NMR are reported in ppm from the solvent resonance as the internal standard (1H NMR: 

CDCl3 at 7.26 ppm; 13C NMR: CDCl3 at 77.16 ppm). Chemical shifts for 31P NMR are reported 

in ppm from H3PO4 resonance (0.00 ppm) as the external standard. 1H NMR data are reported as 

follows: chemical shift, multiplicity (s = singlet, br s = broad singlet, d = doublet, t = triplet, q = 

quartet, dd = doublet of doublets, ddd = doublet of doublet of doublets, dddd = doublet of 

doublet of doublet of doublets, dt = doublet of triplets, ddq = doublet of doublet of quartets, m = 

multiplet), coupling constants (Hz), and integration. High resolution mass spectra were obtained 

using a Thermo Fisher Scientific Exactive or Micromass Quattro II (triple quad) instrument with 

nanoelectrospray ionization (Note: All samples prepared in methanol). Melting points were 

obtained using a Stanford Research Systems OptiMelt MPA100 or Thomas Hoover UniMelt 

Capillary Melting Point Apparatus. Analytical thin layer chromatography (TLC) was performed 

on Whatman 0.25 mm silica gel 60 plates or Merck precoated TLC plates (silica gel 60 GF254, 

0.25 mm). Visualization was accomplished with UV light, aqueous ceric ammonium molybdate 

solution, or phosphomolybdic acid in EtOH followed by heating. Purification of the reaction 

products was carried out by using Siliaflash-P60 silica gel (40-63µm) purchased from Silicycle 

or PSQ60AB (spherical, av. 55 µm; Fuji Silysia Chemical Ltd.). Enantiomeric excesses were 
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determined by HPLC analysis using chiral column (φ 4.6 mm x 250 mm, DAICEL 

CHIRALPAK AD3 (AD3)) with hexane (H), 2-propanol (IPA), and ethanol (EtOH) as eluent. 

All reactions were carried out under an atmosphere of nitrogen or argon in oven-dried glassware 

with magnetic stirring unless otherwise noted. Yield refers to isolated yield of analytically pure 

material unless otherwise noted. 

Materials: Toluene, tetrahydrofuran (THF), diethyl ether (Et2O), and dichloromethane 

(CH2Cl2) were supplied from Kanto Chemical Co., Inc. as “Dehydrated solvent system”. 2-

Methyltetrahydrofuran (2-MeTHF) was freshly distilled from lithium aluminum hydride 

(LiAlH4) prior to use. All aldehydes were purified by distillation or recrystallization from EtOH 

prior to use. Tetraaminophosphonium salts 5217b,c and ethyl 2-(diethoxyphosphoryl)-2-

hydroxyacetate (41b)32 were prepared according to literature procedures.  All other reagents 

were purchased and used as such without further purification. 

General Procedure A for the Preparation of Protected Alcohols S1a and S1b 

 

The procedure was adapted from a previously reported method by Hiersemann and 

coworkers.33 A dried round-bottomed flask was charged with dialkyl phosphite (1.0 equiv) in 

toluene (0.23 mL/mmol) under an atmosphere of nitrogen. The solution was cooled to 0 °C in an 

ice water bath. Triethylamine (3.0 equiv) and ethyl glyoxalate solution (~50% in toluene, 1.0 

equiv) were sequentially added dropwise. The resulting solution was stirred for one hour at room 

temperature. The reaction was diluted with toluene (0.1 M) and cooled to 0 °C in an ice bath. 

EtO2C H
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HP(O)(OR1)2 (1 equiv)
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TMSCl (2 equiv)
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TMSCl (2.0 equiv) was added dropwise at 0 °C and the resulting suspension was allowed to stir 

at room temperature for 3 h. The reaction was filtered to remove the salts and the filtercake was 

rinsed with DCM (3x). The resulting solution was washed with sat. aq. NH4Cl (1x), H2O (2x) 

and brine (1x). The organic layer was then dried over Na2SO4, filtered, and concentrated in 

vacuo. The obtained residue was purified by column chromatography on silica gel eluting with 

20% acetone:hexanes afforded the protected alcohol S1. 

Ethyl 2-(dimethoxyphosphoryl)-2-((trimethylsilyl)oxy)acetate (S1a): The 

title compound was prepared according to General Procedure A using dimethyl 

phosphite (1.83 mL, 20.0 mmol, 1.0 equiv) and ethyl glyoxalate solution (3.96 mL, 20.0 mmol, 

1.0 equiv) affording the protected alcohol S1a (5.21 g, 18.3 mmol, 92% yield) as a pale yellow 

oil. Analytical data for S1a: IR (thin film): 2959, 1748, 1254, 1132, 1059, 1034, 883, 847 cm-1; 

1H NMR (400 MHz, CDCl3): δ 4.58 (d, J = 18.3 Hz, 1H), 4.26 (ddq, J = 7.3, 3.7, 3.6 Hz, 2H), 

3.83 (d, J = 0.9 Hz, 3H), 3.80 (d, J = 0.9 Hz, 3H), 1.29 (t, J = 7.3 Hz, 3H), 0.16 (s, 9H); 13C 

NMR (101 MHz, CDCl3): δ 168.4 (d, JP–C = 2.9 Hz), 70.1 (d, JP–C = 165.5 Hz), 62.0, 54.3 (d, JP–

C = 7.7 Hz), 54.2 (d, JP–C = 7.8 Hz), 14.2, -0.3; 31P NMR (162 MHz, CDCl3): δ 18.7; TLC (30% 

acetone:hexane): Rf 0.53; HRMS (FAB): Calcd. for C9H21O6NaPSi ([M+Na]+): 307.0737, 

Found: 307.0738. 

Ethyl 2-(diethoxyphosphoryl)-2-((trimethylsilyl)oxy)acetate (S1b): The title 

compound was prepared according to General Procedure A using diethyl 

phosphite (2.58 mL, 20.0 mmol, 1.0 equiv) and ethyl glyoxalate solution (3.96 mL, 20.0 mmol, 

1.0 equiv) affording the protected alcohol S1b (6.19 g, 19.8 mmol, 99% yield) as a pale yellow 

oil. Analytical data for S1b: IR (thin film): 2983, 1754, 1254, 1138, 1026, 975, 846, 755 cm-1; 

1H NMR (400 MHz, CDCl3): δ 4.53 (d, J = 18.0 Hz, 1H), 4.24-4.13 (m, 6H), 1.32-1.24 (m, 9H), 

EtO2C P(OEt)2
O

OTMS
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OTMS
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0.13 (s, 9H); 13C NMR (101 MHz, CDCl3): δ 168.4 (d, JP–C = 2.5 Hz), 70.1 (d, JP–C = 163.3 Hz), 

63.5 (d, JP–C = 6.9 Hz), 63.4 (d, JP–C = 7.0 Hz), 16.34 (d, JP–C = 1.6 Hz), 16.28 (d, JP–C = 1.5 Hz), 

14.0, -0.5; 31P NMR (243 MHz, CDCl3): δ 16.4; TLC (20% acetone:hexanes): Rf 0.28; HRMS 

(ESI): Calcd. for C11H25CsO6PSi ([M+Cs]+): 445.0212, Found: 445.0189. 

General Procedure B for the Preparation of α-Hydroxy Phosphonoacetates 41a-e 

 

A dried round-bottomed flask was charged with the protected alcohol S1 (1.0 equiv) in 

THF (0.2 M) under an atmosphere of nitrogen. After cooling the solution to -78 °C, NaHMDS 

(1.0 M in THF, 1.2 equiv) was added dropwise and the resulting solution stirred for 30 min at -

78 °C. The alkyl halide (1.5 equiv) was added dropwise at -78 °C. Following addition of the 

alkyl halide, the reaction was allowed to warm slowly to 0 °C where the temperature was 

maintained until the reaction was adjudged complete by TLC. The reaction was quenched by the 

slow dropwise addition of sat. aq. NH4Cl at 0 °C. The layers were separated and the aqueous 

layer was extracted with Et2O (2x). The combined organic extracts were washed with brine (1x), 

dried over MgSO4, filtered, and concentrated in vacuo. The crude product was dissolved in 

MeOH (1.0 M) and transferred to a round-bottomed flask fitted with a reflux condenser. TsOH 

(0.2 equiv) was added and the reaction was warmed to 40 °C and stirred overnight. After 

completion of the reaction as adjudged by TLC, the reaction was concentrated in vacuo. The 
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obtained residue was purified by column chromatography on silica gel eluting with 40% 

acetone:hexanes afforded the α-hydroxy phosphonoacetate 41. 

Ethyl 2-(diethoxyphosphoryl)-2-hydroxy-3-phenylpropanoate (41a): The 

title compound was prepared according to General Procedure B using S1b (1.56 

g, 5.00 mmol, 1.0 equiv) and benzyl bromide (0.89 mL, 7.50 mmol, 1.5 equiv) affording the α-

hydroxy phosphonoacetate 41a (1.47 g, 4.47 mmol, 89% yield) as a white solid (mp 42-44 °C). 

Analytical data for 41a: IR (thin film): 3446, 2983, 1733, 1647, 1235, 1098, 1019, 973, 700, 591 

cm-1; 1H NMR (600 MHz, CDCl3): δ 7.24-7.21 (m, 5H), 4.29-4.19 (m, 6H), 3.55 (ddd, J = 6.8, 

1.5, 0.9 Hz, 1H), 3.39 (dd, J = 14.0, 5.1 Hz, 1H), 3.23 (dd, J = 14.0, 7.7 Hz, 1H), 1.37 (t, J = 7.4 

Hz, 3H), 1.36 (t, J = 7.2 Hz, 3H), 1.29 (t, J = 7.1 Hz, 3H); 13C NMR (151 MHz, CDCl3): δ 171.1, 

134.3 (d, JP–C = 14.8 Hz), 130.3, 128.0, 127.1, 77.9 (d, JP–C = 161.4 Hz), 64.0 (d, JP–C = 7.1 Hz), 

63.8 (d, JP–C = 7.4 Hz), 63.0, 39.5, 16.5 (d, JP–C = 5.6 Hz), 16.4 (d, JP–C = 5.9 Hz), 14.0; 31P 

NMR (243 MHz, CDCl3): δ 17.8; TLC (30% acetone:hexanes): Rf 0.10; HRMS (ESI): Calcd. 

for C15H23O6NaP ([M+Na]+): 353.1130, Found: 353.1101. 

Ethyl 2-(diethoxyphosphoryl)-2-hydroxypropanoate (41b): The title 

compound was prepared according to General Procedure B using S1b (1.56 g, 

5.00 mmol, 1.0 equiv) and iodomethane (0.47 mL, 7.50 mmol, 1.5 equiv) affording the α-

hydroxy phosphonoacetate 41b (0.79 g, 3.11 mmol, 62% yield) as a pale yellow oil. Analytical 

data for 41b: IR (thin film): 3446, 2985, 1734, 1254, 1151, 1022, 975, 602 cm-1; 1H NMR (600 

MHz, CDCl3): δ 4.31-4.24 (m, 2H), 4.20-4.13 (m, 4H), 3.79 (br s, 1H), 1.60 (dd, J = 15.9, 1.3 Hz, 

3H), 1.31-1.27 (m, 9H); 13C NMR (151 MHz, CDCl3): δ 172.4, 74.2 (d, JP–C = 160.5 Hz), 63.8 

(d, JP–C = 6.8 Hz), 63.5 (d, JP–C = 7.4 Hz), 62.8, 21.0, 16.4 (d, JP–C = 4.7 Hz), 16.3 (d, JP–C = 4.5 
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Hz), 13.9; 31P NMR (243 MHz, CDCl3): δ 18.9; TLC (30% acetone:hexanes): Rf 0.12; HRMS 

(ESI): Calcd. for C9H19CsO6P ([M+Cs]+): 386.9973, Found: 386.9968. 

Ethyl 2-(diethoxyphosphoryl)-2-hydroxypent-4-enoate (41c): The title 

compound was prepared according to General Procedure B using S1b (1.56 g, 

5.00 mmol, 1.0 equiv) and allyl bromide (0.65 mL, 7.50 mmol, 1.5 equiv) 

affording the α-hydroxy phosphonoacetate 41c (1.10 g, 3.94 mmol, 79% yield) as a pale yellow 

oil. Analytical data for 41c: IR (thin film): 3470, 2983, 2934, 1734, 1236, 1147, 1022, 974, 794, 

669 cm-1; 1H NMR (600 MHz, CDCl3): δ 5.75-5.68 (m, 1H), 5.14 (d, J = 18.7 Hz, 1H), 5.11 (d, 

J = 12.2 Hz, 1H), 4.30-4.27 (m, 2H), 4.23-4.15 (m, 4H), 3.63 (br s, 1H), 2.81-2.78 (m, 1H), 2.71-

2.66 (m, 1H), 1.34-1.28 (m, 9H); 13C NMR (151 MHz, CDCl3): δ 171.5, 130.5 (d, JP–C = 13.3 

Hz), 119.7, 77.2 (d, JP–C = 161.4 Hz), 63.9 (d, JP–C = 7.1 Hz), 63.7 (d, JP–C = 7.4 Hz), 63.0, 38.3, 

16.42 (d, JP–C = 5.7 Hz), 16.39 (d, JP–C = 5.7 Hz), 14.1; 31P NMR (243 MHz, CDCl3): δ 17.8; 

TLC (30% acetone:hexanes): Rf 0.18; HRMS (ESI): Calcd. for C11H21O6PCs ([M+Cs]+): 

413.0130, Found: 413.0144. 

Ethyl 2-(diethoxyphosphoryl)-2-hydroxypent-4-ynoate (41d): The title 

compound was prepared according to General Procedure B using S1b (1.56 g, 

5.00 mmol, 1.0 equiv) and propargyl bromide (80% in toluene, 0.84 mL, 7.50 

mmol, 1.5 equiv) affording the α-hydroxy phosphonoacetate 41d (1.17 g, 4.21 mmol, 84% yield) 

as a white solid (mp 53-56 °C). Analytical data for 41d: IR (thin film): 3479, 3287, 2983, 2934, 

2121, 1739, 1637, 1241, 1107, 1052, 1021, 976, 779, 734 cm-1; 1H NMR (600 MHz, CDCl3): δ 

4.42-4.33 (m, 2H), 4.26-4.18 (m, 4H), 3.86 (d, J = 8.0 Hz, 1H), 3.05 (ddd, J = 16.9, 2.2, 2.0 Hz, 

1H), 2.83 (dddd, J = 13.3, 7.3, 2.4, 2.3 1H), 2.03 (dd, J = 4.0, 2.6 Hz, 1H), 1.36 (m, 9H); 13C 

NMR (151 MHz, CDCl3): δ 170.6, 76.1 (d, JP–C = 163.1 Hz), 71.5 (d, JP–C = 3.0 Hz), 64.4 (d, JP–
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C = 7.6 Hz), 63.9 (d, JP–C = 7.6 Hz), 63.5, 25.6 (d, JP–C = 6.0 Hz), 16.44 (d, JP–C = 3.0 Hz), 16.43 

(d, JP–C = 4.5 Hz), 14.1; 31P NMR (243 MHz, CDCl3): δ 16.3; TLC (30% acetone:hexanes): Rf 

0.14; HRMS (ESI): Calcd. for C11H19CsO6P ([M+Cs]+): 410.9973, Found: 410.9944. 

Ethyl 2-(dimethoxyphosphoryl)-2-hydroxy-3-phenylpropanoate (41e): The 

title compound was prepared according to General Procedure B using S1a (1.42 

g, 5.00 mmol, 1.0 equiv) and benzyl bromide (0.89 mL, 7.50 mmol, 1.5 equiv) affording the α-

hydroxy phosphonoacetate 41e (1.22 g, 4.04 mmol, 81% yield) as a white solid (mp 75-78 °C). 

Analytical data for 41e: IR (thin film): 3287, 2959, 2359, 2342, 1732, 1456, 1238, 1207, 1098, 

1028, 853, 700 cm-1; 1H NMR (400 MHz, CDCl3):  δ 7.27-7.24 (m, 5H), 4.26 (ddq, J = 6.9, 3.7, 

3.6 Hz, 2H), 3.91 (d, J = 2.3 Hz, 3H), 3.88 (d, J = 2.3 Hz, 3H), 3.58 (d, J = 7.8 Hz, 1H), 3.37 (dd, 

J = 14.2, 5.5 Hz, 1H), 3.22 (dd, J = 14.0, 7.6 Hz, 1H), 1.28 (t, J = 6.9 Hz, 1H); 13C NMR (101 

MHz, CDCl3): δ 171.4, 134.2 (d, JP–C = 14.5 Hz), 130.5, 128.3, 127.4, 78.3 (d, JP–C = 163.5 Hz), 

63.4, 54.8 (d, JP–C = 6.8 Hz), 54.6 (d, JP–C = 6.8 Hz), 39.8, 14.2; 31P NMR (162 MHz, CDCl3): δ 

20.1; TLC (40% acetone:hexane): Rf 0.40; HRMS (FAB): Calcd. for C13H19O6NaP ([M+Na]+): 

325.0811, Found: 325.0811. 

General Procedure C for the KOtBu-Catalyzed Aldolization of α-Alkyl-α-Hydroxy 
Phosphonoacetates to Afford α-Hydroxy-β-Phosphonyloxy Esters 45a-r 
 

 

A flame-dried shell vial was charged with the α-hydroxy phosphonoacetate 41 (0.20 

mmol, 1.0 equiv) and aldehyde (0.40 mmol, 2.0 equiv) and dissolved in THF (0.8 mL) under an 

atmosphere of nitrogen. The solution was cooled to -78 °C. A freshly prepared solution of 

KOtBu in THF (0.2 mL, 1.0 M, 0.20 equiv) was added dropwise to the reaction mixture. After 
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stirring for 2 h at -78 °C, the reaction was quenched with 1 N HCl (2.0 mL) and allowed to warm 

to 0 °C. The layers were separated and the aqueous layer was extracted with Et2O (2x). The 

combined organic extracts were washed with brine (1x), dried over MgSO4, filtered, and 

concentrated in vacuo. The diastereomeric ratio was determined by 1H NMR analysis of the 

crude residue. The residue was purified by column chromatography on silica gel eluting with 

30% acetone:hexanes to afford a diastereomeric mixture of 45. 

Ethyl 2-benzyl-3-(4-chlorophenyl)-3-((diethoxyphosphoryl)oxy)-2-

hydroxypropanoate (45a): The title compound was prepared according to 

General Procedure C using 41a (66.1 mg, 0.20 mmol) and 4-

chlorobenzaldehyde (56.2 mg, 0.40 mmol) affording aldol adduct 45a (89.5 mg, 0.19 mmol, 95% 

yield, 2.0:1.0 anti:syn) as a white solid (mp 72-79 °C). Analytical data for 45a: IR (thin film): 

3503, 2983, 2934, 1736, 1599, 1493, 1455, 1369, 1263, 1212, 1122, 1030, 1010, 892, 807, 701 

cm-1; 1H NMR (600 MHz, CDCl3): major diastereomer δ 7.38 (d, J = 7.6 Hz, 2H), 7.29 (d, J = 

7.9 Hz, 2H), 7.25-7.18 (m, 5H), 5.63 (d, J = 9.4 Hz, 1H), 4.22-3.69 (m, 6H), 3.39 (d, J = 13.7 Hz, 

1H), 3.18 (d, J = 13.6 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H), 1.09 (t, J = 7.1 

Hz, 3H); minor diastereomer δ 7.54 (d, J = 7.9 Hz, 2H), 7.38 (d, J = 7.6 Hz, 2H), 7.25-7.18 (m, 

3H), 7.11-7.10 (m, 2H), 5.58 (d, J = 8.2 Hz, 1H), 4.22-3.69 (m, 6H), 3.49 (br s, 1H), 2.91 (d, J = 

13.6 Hz, 1H), 2.40 (d, J = 13.5 Hz, 1H), 1.31 (t, J = 6.8 Hz, 3H), 1.23 (t, J = 7.4 Hz, 3H), 1.06 (t, 

J = 7.1 Hz, 3H); 13C NMR (151 MHz, CDCl3): mix of diastereomers δ 172.8, 171.9, 135.2, 

135.0, 134.8, 134.6, 134.2, 133.9, 130.4, 130.1, 130.0, 129.5, 128.3, 128.2, 128.1, 128.0, 127.00, 

126.96, 81.8 (d, JP–C = 5.4 Hz), 81.6 (d, JP–C = 5.4 Hz), 80.8 (d, JP–C = 7.7 Hz), 80.3 (d, JP–C = 8.5 

Hz), 64.1 (d, JP–C = 5.7 Hz), 63.9 (d, JP–C = 6.0 Hz), 63.8 (d, JP–C = 5.9 Hz), 63.7 (d, JP–C = 5.9 

Hz), 62.6, 62.4, 42.1, 41.2, 16.0 (d, JP–C = 7.1 Hz), 15.9 (d, JP–C = 7.4 Hz), 15.8 (d, JP–C = 7.1 Hz), 
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15.7 (d, JP–C = 6.0 Hz), 14.05, 14.02; 31P NMR (162 MHz, CDCl3): major diastereomer δ -0.4; 

minor diastereomer δ -1.3; TLC (30% acetone:hexanes): Rf 0.27; HRMS (ESI): Calcd. for 

C22H28ClCsO7P ([M+Cs]+): 603.0315, Found: 603.0338. 

Ethyl 2-benzyl-3-((diethoxyphosphoryl)oxy)-3-(2-fluorophenyl)-2-

hydroxypropanoate (45b): The title compound was prepared according to 

General Procedure C using 41a (66.1 mg, 0.20 mmol) and 2-

fluorobenzaldehyde (42 µL, 0.40 mmol) affording aldol adduct 45b (82.7 mg, 0.18 mmol, 91% 

yield, 2.3:1.0 anti:syn) as a pale yellow oil. Analytical data for 45b: IR (thin film): 3509, 2984, 

2938, 1734, 1491, 1457, 1264, 1209, 1122, 1019, 761, 701 cm-1; 1H NMR (600 MHz, CDCl3): 

major diastereomer δ 7.72 (dt, J = 7.8, 1.6 Hz, 1H), 7.32-7.28 (m, 1H), 7.25-7.12 (m, 6H), 7.00 

(dt, J = 9.5, 0.8 Hz, 1H), 6.02 (d, J = 9.5 Hz, 1H), 4.25-3.79 (m, 6H), 3.43 (d, J = 13.7 Hz, 1H), 

3.20 (d, J = 13.7 Hz, 1H), 1.27 (dt, J = 7.1, 1.0 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H), 1.12 (dt, J = 7.1, 

1.0 Hz, 3H); minor diastereomer δ 7.77 (dt, J = 7.7, 1.6 Hz, 1H), 7.38-7.35 (m, 1H), 7.25-7.12 

(m, 6H), 7.09 (dt, J = 9.3, 0.7 Hz, 1H), 6.05 (d, J = 8.4 Hz, 1H), 4.25-3.79 (m, 6H), 3.05 (dd, J = 

13.6, 1.0 Hz, 1H), 2.44 (d, J = 13.7 Hz, 1H), 1.31 (t, J = 7.2 Hz, 3H), 1.20 (dt, J = 7.1, 1.0 Hz, 

3H), 1.10 (dt, J = 7.1, 0.9 Hz, 3H); 13C NMR (151 MHz, CDCl3): mix of diastereomers δ 172.8, 

172.0, 160.5 (d, JF–C = 247.5 Hz), 158.9 (d, JF–C = 248.5 Hz), 135.3, 134.7, 130.9 (d, JF–C = 2.9 

Hz), 130.6 (d, JF–C = 3.5 Hz), 130.52, 130.47, 130.4, 130.3, 130.1, 128.0, 127.9, 126.9, 124.1 (d, 

JF–C = 2.9 Hz), 123.9 (d, JF–C = 3.5 Hz), 123.1 (d, JF–C = 12.5 Hz), 122.9 (d, JF–C = 12.1 Hz), 

115.0 (d, JF–C = 22.2 Hz), 114.8 (d, JF–C = 22.2 Hz), 80.64 (d, JP–C = 8.2 Hz), 80.57 (d, JP–C = 7.4 

Hz), 75.1 (d, JP–C = 4.7 Hz), 74.8 (d, JP–C = 5.0 Hz), 64.1 (d, JP–C = 5.9 Hz), 63.91 (d, JP–C = 4.7 

Hz), 63.87 (d, JP–C = 5.7 Hz), 63.8 (d, JP–C = 5.9 Hz), 62.6, 62.5, 41.5, 40.0, 16.0 (d, JP–C = 6.8 

Hz), 15.9 (d, JP–C = 7.7 Hz), 15.81 (d, JP–C = 5.3 Hz), 15.79 (d, JP–C = 7.1 Hz), 14.1, 13.8; 31P 
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NMR (243 MHz, CDCl3): major diastereomer δ -0.7; minor diastereomer δ -1.5; TLC (30% 

acetone:hexanes): Rf 0.21; HRMS (ESI): Calcd. for C22H28FNaO7P ([M+Na]+): 477.1455, 

Found: 477.1437. 

Ethyl 2-benzyl-3-((diethoxyphosphoryl)oxy)-2-hydroxy-3-(2-

nitrophenyl)propanoate (45c): The title compound was prepared according to 

General Procedure C using 41a (66.1 mg, 0.20 mmol) and 2-nitrobenzaldehyde 

(60.4 mg, 0.40 mmol) affording aldol adduct 45c (83.8 mg, 0.17 mmol, 87% yield, 1.5:1.0 

anti:syn) as a pale orange oil. Analytical data for 45c: IR (thin film): 3627, 3495, 2985, 1734, 

1531, 1456, 1352, 1254, 1211, 1121, 1028, 701 cm-1; 1H NMR (600 MHz, CDCl3): major 

diastereomer δ 8.04 (dd, J = 8.0, 1.2 Hz, 1H), 7.83 (dd, J = 8.2, 1.1 Hz, 1H), 7.63 (dt, J = 7.7, 1.1 

Hz, 1H), 7.48 (dt, J = 7.8, 1.4 Hz, 1H), 7.23-7.16 (m, 3H), 7.13-7.11 (m, 2H), 6.53 (d, J = 9.5 Hz, 

1H), 4.24-3.81 (m, 6H), 3.32 (d, J = 13.7 Hz, 1H), 3.19 (d, J = 13.7 Hz, 1H), 1.32 (t, J = 7.2 Hz, 

3H), 1.22 (t, J = 7.0 Hz, 3H), 1.17 (t, J = 7.0 Hz, 3H); minor diastereomer δ 8.14 (dd, J = 8.0, 1.3 

Hz, 1H), 7.95 (dd, J = 8.2, 1.1 Hz, 1H), 7.70 (dt, J = 7.7, 1.1 Hz, 1H), 7.54 (dt, J = 7.8, 1.4 Hz, 

1H), 7.23-7.16 (m, 5H), 6.52 (d, J = 8.3 Hz, 1H), 4.24-3.81 (m, 6H), 3.25 (d, J = 13.6 Hz, 1H), 

2.43 (d, J = 13.6 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H), 1.21 (t, J = 7.0 Hz, 3H), 1.17 (t, J = 7.0 Hz, 

3H); 13C NMR (151 MHz, CDCl3): mix of diastereomers δ 172.5, 172.1, 149.4, 148.4, 135.0, 

134.5, 132.8, 132.3, 131.7, 131.3, 130.7, 130.3, 130.2, 130.1, 129.6, 129.5, 128.0, 127.9, 127.0, 

124.2, 124.0, 80.6 (d, JP–C = 8.6 Hz), 80.2 (d, JP–C = 7.6 Hz), 75.0 (d, JP–C = 6.0 Hz), 74.7 (d, JP–C 

= 5.6 Hz), 64.3 (d, JP–C = 5.4 Hz), 64.2 (d, JP–C = 5.4 Hz), 64.1 (d, JP–C = 6.0 Hz), 64.0 (d, JP–C = 

5.6 Hz), 63.2, 62.8, 41.2, 40.2, 16.0 (d, JP–C = 7.2 Hz), 15.94 (d, JP–C = 7.1 Hz), 15.85 (d, JP–C = 

6.3 Hz), 15.8 (d, JP–C = 6.3 Hz), 14.0, 13.7; 31P NMR (243 MHz, CDCl3): major diastereomer δ 
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-1.2; minor diastereomer δ -1.6; TLC (30% acetone:hexanes): Rf 0.15; HRMS (ESI): Calcd. for 

C22H28CsNO9P ([M+Cs]+): 614.0556, Found: 614.0570. 

Ethyl 2-benzyl-3-((diethoxyphosphoryl)oxy)-2-hydroxy-3-(3-

nitrophenyl)propanoate (45d): The title compound was prepared according 

to General Procedure C using 41a (66.1 mg, 0.20 mmol) and 3-

nitrobenzaldehyde (60.4 mg, 0.40 mmol) affording aldol adduct 45d (88.6 mg, 0.18 mmol, 92% 

yield, 2.4:1.0 anti:syn) as an off-white solid (mp 67-72 °C). Analytical data for 45d: IR (thin 

film): 3503, 3345, 2984, 2935, 1737, 1532, 1352, 1264, 1214, 1121, 1025, 888, 807, 702 cm-1; 

1H NMR (600 MHz, CDCl3): major diastereomer δ 8.29 (t, J = 1.8 Hz, 1H), 8.26 (ddd, J = 8.2, 

2.2, 1.0 Hz, 1H), 7.80 (d, J = 7.7 Hz, 1H), 7.51 (t, J = 8.0 Hz, 1H), 7.26-7.19 (m, 5H), 5.76 (d, J 

= 9.2 Hz, 1H), 4.24-3.77 (m, 6H), 3.41 (d, J = 13.6 Hz, 1H), 3.23 (br s, 1H), 3.19 (d, J = 13.6 Hz, 

1H), 1.33 (dt, J = 7.1, 1.0 Hz, 3H), 1.25 (t, J = 7.2 Hz, 3H), 1.11 (dt, J = 7.1, 0.9 Hz, 3H); minor 

diastereomer  δ 8.46 (t, J = 1.8 Hz, 1H), 8.18 (ddd, J = 8.2, 2.2, 1.0 Hz, 1H), 7.91 (d, J = 7.7 Hz, 

1H), 7.59 (t, J = 8.0 Hz, 1H), 7.26-7.19 (m, 3H), 7.11-7.10 (m, 2H), 5.69 (d, J = 8.2 Hz, 1H), 

4.24-3.77 (m, 6H), 3.57 (br s, 1H), 2.99 (d, J = 13.6 Hz, 1H), 2.40 (d, J = 13.6 Hz, 1H), 1.32 (t, J 

= 7.2 Hz, 3H), 1.26 (dt, J = 7.1, 1.0 Hz, 3H), 1.06 (dt, J = 7.1, 0.8 Hz, 3H); 13C NMR (151 MHz, 

CDCl3): mix of diastereomers δ 172.4, 171.8, 147.9, 147.7, 137.9, 137.6, 135.0, 134.8, 134.3, 

134.1, 130.1, 130.0, 129.0, 128.2, 128.0, 127.2, 127.1, 123.91, 123.87, 123.8, 123.1, 81.3 (d, JP–C 

= 5.4 Hz), 81.2 (d, JP–C = 5.3 Hz), 80.6 (d, JP–C = 7.4 Hz), 80.1 (d, JP–C = 8.0 Hz), 64.3 (d, JP–C = 

5.9 Hz), 64.1 (d, JP–C = 5.6 Hz), 64.0 (d, JP–C = 5.7 Hz), 63.9 (d, JP–C = 5.7 Hz), 62.8, 42.1, 41.2, 

16.1 (d, JP–C = 6.8 Hz), 15.9 (d, JP–C = 6.8 Hz), 15.80 (d, JP–C = 7.1 Hz), 15.75 (d, JP–C = 8.2 Hz), 

14.04, 14.00; 31P NMR (243 MHz, CDCl3): major diastereomer δ -0.5; minor diastereomer δ -
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1.4; TLC (30% acetone:hexanes): Rf 0.16; HRMS (ESI): Calcd. for C22H28CsNO9P ([M+Cs]+): 

614.0556, Found: 614.0542. 

Ethyl 2-benzyl-3-((diethoxyphosphoryl)oxy)-2-hydroxy-3-(4-

nitrophenyl)propanoate (45e): The title compound was prepared 

according to General Procedure C using 41a (66.1 mg, 0.20 mmol) and 4-

nitrobenzaldehyde (60.4 mg, 0.40 mmol) affording aldol adduct 45e (91.4 mg, 0.19 mmol, 95% 

yield, 2.8:1.0 anti:syn) as an off-white solid (mp 117-124 °C). Analytical data for 45e: IR (thin 

film): 3391, 2984, 2934, 1734, 1523, 1348, 1263, 1212, 1121, 1026, 702 cm-1; 1H NMR (600 

MHz, CDCl3): major diastereomer δ 8.19 (d, J = 8.8 Hz, 2H), 7.62 (d, J = 8.8 Hz, 2H), 7.27-7.20 

(m, 5H), 5.75 (d, J = 9.2 Hz, 1H), 4.23-3.76 (m, 6H), 3.55 (br s, 1H), 3.41 (d, J = 13.6 Hz, 1H), 

3.20 (d, J = 13.6 Hz, 1H), 1.31 (dt, J = 7.2, 0.6 Hz, 3H), 1.19 (t, J = 7.2 Hz, 3H), 1.10 (dt, J = 7.2, 

0.6 Hz, 3H); minor diastereomer δ 8.28 (d, J = 8.8 Hz, 2H), 7.78 (d, J = 8.6 Hz, 2H), 7.27-7.20 

(m, 3H), 7.10-7.09 (m, 2H), 5.69 (d, J = 8.2 Hz, 1H), 4.23-3.76 (m, 6H), 3.20 (br s, 1H), 2.98 (d, 

J = 13.4 Hz, 1H), 2.38 (d, J = 13.4 Hz, 1H), 1.30 (t, J = 7.2 Hz, 3H), 1.23 (dt, J = 7.2, 0.6 Hz, 

3H), 1.05 (dt, J = 7.2, 0.6 Hz, 3H); 13C NMR (151 MHz, CDCl3): mix of diastereomers  δ 172.3, 

171.6, 148.1, 148.0, 142.7, 142.4, 134.7, 134.1, 130.0, 129.9, 129.9, 129.1, 128.1, 127.9, 127.0, 

127.0, 123.0, 122.9, 81.2 (d, JP–C = 5.3 Hz), 81.1 (d, JP–C = 5.4 Hz), 80.5 (d, JP–C = 7.1 Hz), 80.0 

(d, JP–C = 8.5 Hz), 64.3 (d, JP–C = 5.9 Hz), 64.0 (d, JP–C = 6.0 Hz), 63.9 (d, JP–C = 6.0 Hz), 63.8 (d, 

JP–C = 5.9 Hz), 62.7, 62.6, 42.0, 41.1, 15.9 (d, JP–C = 6.9 Hz), 15.8 (d, JP–C = 7.1 Hz), 15.73 (d, 

JP–C = 7.2 Hz), 15.68 (d, JP–C = 7.4 Hz), 13.93, 13.91; 31P NMR (243 MHz, CDCl3): major 

diastereomer δ -0.3; minor diastereomer δ -1.2; TLC (30% acetone:hexanes): Rf 0.19; HRMS 

(ESI): Calcd. for C22H28CsNO9P ([M+Cs]+): 614.0556, Found: 614.0525. 
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Ethyl 2-benzyl-3-((diethoxyphosphoryl)oxy)-2-hydroxy-3-(4-

(trifluoromethyl)phenyl)propanoate (45f): The title compound was 

prepared according to General Procedure C using 41a (66.1 mg, 0.20 

mmol) and 4-(trifluoromethyl)benzaldehyde (55 µL, 0.40 mmol) affording aldol adduct 45f (91.8 

mg, 0.18 mmol, 91% yield, 2.1:1.0 anti:syn) as a white solid (mp 84-91 °C). Analytical data for 

45f: IR (thin film): 3624, 2985, 1735, 1326, 1263, 1167, 1124, 1068, 1029, 701, 668 cm-1; 1H 

NMR (600 MHz, CDCl3): major diastereomer δ 7.58 (d, J = 9.0 Hz, 2H), 7.56 (d, J = 9.0 Hz, 

2H), 7.25-7.17 (m, 5H), 5.71 (d, J = 9.6 Hz, 1H), 4.23-3.72 (m, 6H), 3.41 (d, J = 13.8 Hz, 1H), 

3.23 (s, 1H), 3.20 (d, J = 13.8 Hz, 1H), 1.31 (dt, J = 7.2, 0.6 Hz, 3H), 1.19 (t, J = 7.2 Hz, 3H), 

1.07 (dt, J = 7.2, 0.6 Hz, 3H); minor diastereomer δ 7.72 (d, J = 7.8 Hz, 2H), 7.66 (d, J = 8.4 Hz, 

2H), 7.25-7.17 (m, 3H), 7.11-7.10 (m, 2H), 5.66 (d, J = 9.6 Hz, 1H), 4.23-3.72 (m, 6H), 3.55 (s, 

1H), 2.95 (d, J = 13.8 Hz, 1H), 2.39 (d, J = 13.8 Hz, 1H), 1.31 (t, J = 7.2 Hz, 3H), 1.23 (dt, J = 

7.2, 0.6 Hz, 3H), 1.03 (dt, J = 7.2, 0.6 Hz, 3H); 13C NMR (151 MHz, CDCl3): mix of 

diastereomers δ 172.6, 171.8, 139.6, 139.3, 135.0, 134.4, 131.1 (d, JF–C = 18.1 Hz), 130.0 (d, JF–

C = 16.2 Hz), 130.1, 130.0, 129.4, 128.6, 128.1, 128.0, 127.03, 126.99, 124.9 (q, JF–C = 3.3 Hz), 

124.8 (q, JF–C = 3.3 Hz), 124.7, 122.9, 81.7 (d, JP–C = 6.0 Hz), 81.6 (d, JP–C = 6.0 Hz), 80.7  (d, 

JP–C = 7.6 Hz), 80.2 (d, JP–C = 9.1 Hz), 64.2 (d, JP–C = 6.0 Hz), 63.9 (d, JP–C = 6.0 Hz), 63.8 (d, 

JP–C = 6.0 Hz), 63.7 (d, JP–C = 6.0 Hz), 62.7, 62.5, 42.1, 41.1, 16.0 (d, JP–C = 7.6 Hz), 15.8 (d, JP–

C = 7.6 Hz), 15.7 (d, JP–C = 7.6 Hz), 15.6 (d, JP–C = 7.6 Hz), 14.00, 13.95; 31P NMR (243 MHz, 

CDCl3): major diastereomer δ -0.5; minor diastereomer δ -1.3; TLC (30% acetone:hexanes): Rf 

0.27; HRMS (ESI): Calcd. for C23H28CsF3O7P ([M+Cs]+): 637.0579, Found: 637.0562. 
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Ethyl 2-benzyl-3-(4-cyanophenyl)-3-((diethoxyphosphoryl)oxy)-2-

hydroxypropanoate (45g):  The title compound was prepared according to 

General Procedure C using 41a (66.1 mg, 0.20 mmol) and 4-

formylbenzonitrile (52.5 mg, 0.40 mmol) affording aldol adduct 45g (85.8 mg, 0.19 mmol, 93% 

yield, 2.4:1.0 anti:syn) as a white solid (mp 94-98 °C). Analytical data for 45g: IR (thin film): 

3494, 2984, 2934, 2229, 1735, 1263, 1212, 1122, 1029, 891, 702 cm-1; 1H NMR (600 MHz, 

CDCl3): major diastereomer δ 7.60 (d, J = 7.8 Hz, 2H), 7.54 (d, J = 8.4 Hz, 2H), 7.24-7.17 (m, 

5H), 5.67 (d, J = 9.6 Hz, 1H), 4.21-3.72 (m, 6H), 3.38 (d, J = 13.8 Hz, 1H), 3.20 (br s, 1H), 3.17 

(d, J = 13.8 Hz, 1H), 1.30 (t, J = 7.2 Hz, 3H), 1.18 (t, J = 7.2 Hz, 3H), 1.09 (t, J = 7.2 Hz, 3H); 

minor diastereomer δ 7.69 (br s, 4H), 7.24-7.17 (m, 3H), 7.09-7.08 (m, 2H), 5.62 (d, J = 8.4 Hz, 

1H), 4.21-3.72 (m, 6H), 3.53 (br s, 1H), 2.94 (d, J = 13.8 Hz, 1H), 2.35 (d, J = 13.8 Hz, 1H), 

1.31 (t, J = 7.2 Hz, 3H), 1.23 (t, J = 7.2 Hz, 3H), 1.04 (t, J = 7.2 Hz, 3H); 13C NMR (151 MHz, 

CDCl3): mix of diastereomers δ 172.3, 171.6, 140.8, 140.5, 134.7, 134.1, 131.7, 131.6, 130.0, 

129.9, 129.6, 128.9, 128.1, 127.9, 127.0, 127.0, 118.3, 118.2, 112.7, 112.7, 81.5 (d, JP–C = 6.0 

Hz), 81.4 (d, JP–C = 6.0 Hz), 80.5 (d, JP–C = 7.6 Hz), 80.0 (d, JP–C = 9.1 Hz), 64.2 (d, JP–C = 6.0 

Hz), 64.0 (d, JP–C = 6.0 Hz), 63.9 (d, JP–C = 6.0 Hz), 63.7 (d, JP–C = 6.0 Hz), 62.7, 62.5, 42.0, 41.0, 

16.0 (d, JP–C = 7.6 Hz), 15.8 (d, JP–C = 7.6 Hz), 15.72 (d, JP–C = 7.6 Hz), 15.67 (d, JP–C = 7.6 Hz), 

13.94, 13.91; 31P NMR (243 MHz, CDCl3): major diastereomer δ -0.4; minor diastereomer δ -

1.2; TLC (30% acetone:hexanes): Rf 0.17; HRMS (ESI): Calcd. for C23H28CsNO7P ([M+Cs]+): 

594.0657, Found: 594.0677. 

Ethyl 2-benzyl-3-((diethoxyphosphoryl)oxy)-2-hydroxy-3-

phenylpropanoate (45h): The title compound was prepared according to 

General Procedure C using 41a (66.1 mg, 0.20 mmol) and benzaldehyde (41 
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µL, 0.40 mmol) affording aldol adduct 45h (84.7 mg, 0.19 mmol, 97% yield, 2.1:1.0 anti:syn) as 

a white solid (mp 55-62 °C). Analytical data for 45h: IR (thin film): 3503, 2983, 2934, 1734, 

1456, 1262, 1213, 1121, 1033, 702 cm-1; 1H NMR (600 MHz, CDCl3): major diastereomer δ 

7.44-7.42 (m, 2H), 7.32-7.29 (m, 3H), 7.23 (m, 4H), 7.22-7.19 (m, 1H), 5.65 (d, J = 9.3 Hz, 1H), 

4.21-3.65 (m, 6H), 3.41 (d, J = 13.6 Hz, 1H), 3.21 (d, J = 13.7 Hz, 1H), 1.30 (dt, J = 7.2, 1.2 Hz, 

3H), 1.19 (t, J = 7.2 Hz, 3H), 1.04 (dt, J = 7.2, 1.2 Hz, 3H); minor diastereomer δ 7.60-7.58 (m, 

2H), 7.41-7.36 (m, 3H), 7.22-7.16 (m, 3H), 7.13-7.11 (m, 2H), 5.60 (d, J = 8.3 Hz, 1H), 4.21-

3.65 (m, 6H), 2.94 (d, J = 13.6 Hz, 1H), 2.43 (d, J = 13.6 Hz, 1H), 1.31 (t, J = 7.2 Hz, 3H), 1.22 

(dt, J = 7.2, 0.6 Hz, 3H), 1.01 (dt, J = 7.2, 0.6 Hz, 3H); 13C NMR (151 MHz, CDCl3): mix of 

diastereomers δ 173.0, 172.0, 135.6, 135.4, 135.2, 134.8, 130.1, 130.0, 129.0, 128.9, 128.1, 

128.0, 127.9, 127.9, 127.8, 127.8, 82.6 (d, JP–C = 6.0 Hz), 82.5 (d, JP–C = 6.0 Hz), 80.9 (d, JP–C = 

7.6 Hz), 80.4 (d, JP–C = 6.0 Hz), 64.0 (d, JP–C = 4.5 Hz), 63.74 (d, JP–C = 6.0 Hz), 63.68 (d, JP–C = 

6.0 Hz), 63.6 (d, JP–C = 7.6 Hz), 62.5, 62.2, 42.0, 41.1, 16.0 (d, JP–C = 7.6 Hz), 15.8 (d, JP–C = 7.6 

Hz), 15.7 (d, JP–C = 7.6 Hz), 15.6 (d, JP–C = 6.0 Hz), 14.0, 13.9; 31P NMR (243 MHz, CDCl3): 

major diastereomer δ -0.3; minor diastereomer δ -1.2; TLC (30% acetone:hexanes): Rf 0.25; 

HRMS (ESI): Calcd. for C22H29NaO7P ([M+Na]+): 459.1549, Found: 459.1571. 

Ethyl 2-benzyl-3-((diethoxyphosphoryl)oxy)-3-(4-fluorophenyl)-2-

hydroxypropanoate (45i): The title compound was prepared according to 

General Procedure C using 41a (66.1 mg, 0.20 mmol) and 4-

fluorobenzaldehyde (43 µL, 0.40 mmol) affording aldol adduct 45i (89.1 mg, 0.20 mmol, 98% 

yield, 2.1:1.0 anti:syn) as a white solid (mp 74-78 °C). Analytical data for 45i: IR (thin film): 

3509, 2984, 1735, 1605, 1510, 1263, 1224, 1122, 1027, 702 cm-1; 1H NMR (600 MHz, CDCl3): 

major diastereomer δ 7.44 (dd, J = 8.4, 5.4 Hz, 2H), 7.25-7.17 (m, 5H), 7.00 (t, J = 8.4 Hz, 2H), 
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5.64 (d, J = 9.0 Hz, 1H), 4.22-3.69 (m, 6H), 3.20 (br s, 1H), 3.40 (d, J = 13.8 Hz, 1H), 3.19 (d, J 

= 13.8 Hz, 1H), 1.31 (dt, J = 7.2, 1.2 Hz, 3H), 1.19 (t, J = 7.2 Hz, 3H), 1.07 (dt, J = 7.2, 1.2 Hz, 

3H); minor diastereomer δ 7.59 (dd, J = 9.0, 5.4 Hz, 2H), 7.25-7.17 (m, 3H), 7.12-7.11 (m, 2H), 

7.11-7.08 (t, J = 9.0 Hz, 2H), 5.59 (d, J = 8.2 Hz, 1H), 4.22-3.69 (m, 6H), 3.51 (br s, 1H), 2.91 (d, 

J = 13.8 Hz, 1H), 2.40 (d, J = 13.8 Hz, 1H), 1.31 (t, J = 7.2 Hz, 3H), 1.23 (dt, J = 7.2, 0.6 Hz, 

3H), 1.04 (dt, J = 7.2, 0.6 Hz, 3H); 13C NMR (151 MHz, CDCl3): mix of diastereomers δ 173.0, 

172.0, 163.8 (d, JF–C = 27.2 Hz), 162.2 (d, JF–C = 27.2 Hz), 135.2, 134.7, 131.6, 131.2, 130.94, 

130.88, 130.1 (d, JF–C = 10.1 Hz), 130.0 (d, JF–C = 8.2 Hz), 128.1, 128.0, 127.0, 126.9, 115.1 (d, 

JF–C = 13.6 Hz), 114.9 (d, JF–C = 12.1 Hz), 81.8 (d, JP–C = 6.0 Hz), 81.6 (d, JP–C = 4.5 Hz), 80.8 (d, 

JP–C = 7.6 Hz), 80.4 (d, JP–C = 7.6 Hz), 64.0 (d, JP–C = 4.5 Hz), 63.8 (d, JP–C = 6.0 Hz), 63.6 (d, 

JP–C = 6.0 Hz), 62.6, 62.3, 42.1, 41.2, 16.0 (d, JP–C = 7.6 Hz), 15.9 (d, JP–C = 6.0 Hz), 15.8 (d, JP–

C = 7.6 Hz), 15.7 (d, JP–C = 6.0 Hz), 14.1, 14.0; 31P NMR (243 MHz, CDCl3): major 

diastereomer δ -0.4; minor diastereomer δ -1.3; TLC (30% acetone:hexanes): Rf 0.22; HRMS 

(ESI): Calcd. for C22H28CsFO7P ([M+Cs]+): 587.0611, Found: 587.0596. 

Ethyl 2-benzyl-3-((diethoxyphosphoryl)oxy)-2-hydroxy-3-(p-

tolyl)propanoate (45j): The title compound was prepared according to 

General Procedure C using 41a (66.1 mg, 0.20 mmol) and p-tolualdehyde 

(47 µL, 0.40 mmol) affording aldol adduct 45j (87.4 mg, 0.19 mmol, 97% yield, 2.0:1.0 anti:syn) 

as a white solid (mp 75-81 °C). Analytical data for 45j: IR (thin film): 3508, 2982, 1735, 1455, 

1264, 1209, 1122, 1029, 891, 808, 701 cm-1; 1H NMR (600 MHz, CDCl3): major diastereomer δ 

7.31 (d, J = 8.1 Hz, 2H), 7.25-7.16 (m, 5H), 7.10 (d, J = 8.0 Hz, 2H), 5.62 (d, J = 9.2 Hz, 1H), 

4.22-3.66 (m, 6H), 3.40 (d, J = 13.7 Hz, 1H), 3.20 (d, J = 13.7 Hz, 1H), 2.30 (s, 3H), 1.30 (dt, J 

= 7.1, 2.4 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H), 1.05 (t, J = 7.1 Hz, 3H); minor diastereomer δ 7.47 
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(d, J = 8.0 Hz, 2H), 7.25-7.16 (m, 5H), 7.12 (dd, J = 7.9, 1.8 Hz, 2H), 5.56 (d, J = 8.2 Hz, 1H), 

4.22-3.66 (m, 6H), 2.91 (d, J = 13.7 Hz, 1H), 2.41 (d, J = 13.6 Hz, 1H), 2.36 (s, 3H), 1.24 (t, J = 

7.1 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H), 1.02 (t, J = 7.1 Hz, 3H); 13C NMR (151 MHz, CDCl3): mix 

of diastereomers δ 173.0, 172.0, 135.6, 135.4, 135.2, 134.8, 130.1, 130.0, 129.0, 128.9, 128.1, 

128.0, 127.90, 127.86, 126.83, 126.80, 82.6 (d, JP–C = 5.6 Hz), 82.5 (d, JP–C = 5.6 Hz), 82.4, 80.9 

(d, JP–C = 7.4 Hz), 80.4 (d, JP–C = 8.5 Hz), 64.0 (d, JP–C = 5.6 Hz), 63.74 (d, JP–C = 6.0 Hz), 63.68 

(d, JP–C = 6.3 Hz), 63.6 (d, JP–C = 6.2 Hz), 62.5, 62.2, 42.0, 41.1, 16.0 (d, JP–C = 7.1 Hz), 15.8 (d, 

JP–C = 6.9 Hz), 15.7 (d, JP–C = 7.2 Hz), 15.6 (d, JP–C = 5.7 Hz), 14.0, 13.9, one pair of carbons 

was not found due to overlap; 31P NMR (243 MHz, CDCl3): major diastereomer δ -0.5; minor 

diastereomer δ -1.4; TLC (30% acetone:hexanes): Rf 0.23; HRMS (ESI): Calcd. for 

C23H31CsO7P ([M+Cs]+): 583.0962, Found: 583.0985. 

Ethyl 2-benzyl-3-((diethoxyphosphoryl)oxy)-2-hydroxy-3-(4-

methoxyphenyl)propanoate (45k): The title compound was prepared 

according to General Procedure C using 41a (66.1 mg, 0.20 mmol) and p-

anisaldehyde (122 µL, 1.00 mmol) affording aldol adduct 45k (64.4 mg, 0.14 mmol, 69% yield, 

5.0:1.0 anti:syn) as a white solid (mp 79-86 °C). Analytical data for 45k: IR (thin film): 3509, 

3649, 2360, 2337, 1734, 1613, 1515, 1457, 1251, 1121, 1030, 702 cm-1; 1H NMR (600 MHz, 

CDCl3): major diastereomer δ 7.37 (d, J = 8.8 Hz, 2H), 7.25-7.14 (m, 5H), 6.82 (d, J = 8.8 Hz, 

2H), 5.61 (d, J = 9.2 Hz, 1H), 4.21-3.69 (m, 6H), 3.77 (s, 3H), 3.40 (d, J = 13.7 Hz, 1H), 3.20 (d, 

J = 13.7 Hz, 1H), 1.30 (dt, J = 7.1, 1.0 Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H), 1.06 (dt, J = 7.1, 1.0 Hz, 

3H); minor diastereomer δ 7.54 (d, J = 8.8 Hz, 2H), 7.25-7.14 (m, 3H), 7.12 (dd, J = 7.9, 1.6 Hz, 

2H), 6.92 (d, J = 8.8 Hz, 2H), 5.57 (d, J = 8.1 Hz, 1H), 4.21-3.69 (m, 6H), 3.82 (s, 3H), 2.91 (d, J 

= 13.7 Hz, 1H), 2.44 (d, J = 13.7 Hz, 1H), 1.31 (dt, J = 7.1, 1.0 Hz, 3H), 1.22 (dt, J = 7.1, 1.0 Hz, 
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3H), 1.03 (dt, J = 7.1, 1.0 Hz, 3H); 13C NMR (151 MHz, CDCl3): mix of diastereomers δ 173.2, 

172.1, 160.1, 159.9, 135.5, 135.0, 132.1, 130.4, 130.2, 130.14, 130.07, 129.5, 128.0, 127.9, 127.8, 

126.9, 113.4, 113.3, 82.4 (d, JP–C = 5.4 Hz), 82.2 (d, JP–C = 5.4 Hz), 81.0 (d, JP–C = 7.7 Hz), 80.6 

(d, JP–C = 8.5 Hz), 64.0 (d, JP–C = 5.6 Hz), 63.74 (d, JP–C = 7.1 Hz), 63.69 (d, JP–C = 6.2 Hz), 

63.57 (d, JP–C = 5.7 Hz), 62.5, 62.2, 55.2, 55.1, 42.1, 41.2, 16.0 (d, JP–C = 7.4 Hz), 15.94 (d, JP–C 

= 6.6 Hz), 15.90 (d, JP–C = 6.8 Hz), 15.8 (d, JP–C = 7.6 Hz), 14.1, 14.0; 31P NMR (243 MHz, 

CDCl3): major diastereomer δ -0.5; minor diastereomer δ -1.4; TLC (30% acetone:hexanes): Rf 

0.20; HRMS (ESI): Calcd. for C23H31CsO8P ([M+Cs]+): 599.0811, Found: 599.0786. 

 Ethyl 2-benzyl-2,3-dihydroxy-3-(thiophen-2-yl)propanoate (45l): The title 

compound was prepared according to General Procedure C using 41a (66.1 mg, 

0.20 mmol) and 2-thiophenecarboxaldehyde (37 µL, 0.40 mmol) affording aldol adduct 45l (49.6 

mg, 0.16 mmol, 81% yield, 6.7:1.0 anti:syn) as a white solid (mp 69-72 °C). Analytical data for 

45l: IR (thin film): 3501, 3031, 2981, 2930, 1732, 1496, 1455, 1436, 1370, 1216, 1114, 1034, 

859, 701 cm-1; 1H NMR (600 MHz, CDCl3): major diastereomer δ 7.40 (d, J = 5.0 Hz, 1H), 

7.33-7.21 (m, 6H), 7.08 (dd, J = 5.0, 3.5 Hz, 1H), 5.27 (d, J = 7.7 Hz, 1H), 4.28-4.19 (m, 2H), 

3.64 (s, 1H), 3.01 (d, J = 13.7 Hz, 1H), 2.90 (d, J = 8.4 Hz, 1H), 2.76 (d, J = 13.7 Hz, 1H), 1.31 

(t, J = 7.1 Hz, 3H); minor diastereomer δ 7.33-7.21 (m, 7H), 6.99 (dd, J = 5.0, 3.5 Hz, 1H), 5.22 

(d, J = 8.2 Hz, 1H), 4.08-4.02 (m, 2H), 3.49 (d, J = 13.7 Hz, 1H), 3.47 (s, 1H), 3.24 (d, J = 13.7 

Hz, 1H), 1.19 (t, J = 7.1 Hz, 3H); 13C NMR (151 MHz, CDCl3): major diastereomer δ 173.7, 

141.5, 135.1, 130.0, 128.1, 128.1, 127.2, 126.9, 126.5, 126.3, 80.8, 74.1, 62.4, 41.6, 14.1; TLC 

(30% ethyl acetate:hexanes): Rf 0.24; HRMS (ESI): Calcd. for C16H18O4NaS ([M+Cs]+): 

329.0824, Found: 329.0811. 
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(E)-Ethyl 2-benzyl-3-((diethoxyphosphoryl)oxy)-2-hydroxy-5-

phenylpent-4-enoate (45m): The title compound was prepared according 

to General Procedure C using 41a (66.1 mg, 0.20 mmol) and trans-

cinnamaldehyde (126 µL, 1.00 mmol) affording aldol adduct 45m (65.7 mg, 0.14 mmol, 71% 

yield, 4.2:1.0 anti:syn) as a pale yellow oil. Analytical data for 45m: IR (thin film): 3395, 2982, 

2934, 1734, 1684, 1653, 1541, 1456, 1263, 1203, 1119, 1031, 751, 700 cm-1; 1H NMR (600 

MHz, CDCl3): major diastereomer δ 7.39 (d, J = 7.3 Hz, 2H), 7.34 (d, J = 7.3 Hz, 2H), 7.27-7.19 

(m, 4H), 7.22 (d, J = 7.3 Hz, 2H), 6.74 (d, J = 17.8 Hz, 1H), 6.39 (dd, J = 16.0, 8.9 Hz, 1H), 5.19 

(t, J = 8.5 Hz, 1H), 4.29-3.57 (m, 6H), 3.55 (br s, 1H), 3.19 (d, J = 13.7 Hz, 1H), 3.12 (d, J = 

13.7 Hz, 1H), 1.34 (dt, J = 7.1, 0.7 Hz, 3H), 1.24 (t, J = 7.1 Hz, 3H), 1.23 (dt, J = 7.1, 0.7 Hz, 

3H); minor diastereomer δ 7.49 (d, J = 7.3 Hz, 2H), 7.37 (d, J = 7.3 Hz, 2H), 7.27-7.19 (m, 6H), 

6.90 (d, J = 16.1 Hz, 1H), 6.46 (dd, J = 16.0, 9.2 Hz, 1H), 5.24 (t, J = 7.3 Hz, 1H), 4.29-3.57 (m, 

6H), 3.49 (br s, 1H), 2.91 (d, J = 13.8 Hz, 1H), 2.86 (d, J = 13.7 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H), 

1.28 (dt, J = 7.1, 0.7 Hz, 3H), 1.19 (dt, J = 7.1, 0.7 Hz, 3H); 13C NMR (151 MHz, CDCl3): mix 

of diastereomers δ 172.9, 172.2, 137.5, 136.2, 135.7, 135.1, 134.9, 130.2, 130.1, 128.64, 128.57, 

128.5, 128.1, 128.0, 127.0, 126.8, 122.9, 122.2, 83.5 (d, JP–C = 5.4 Hz), 83.3 (d, JP–C = 5.4 Hz), 

80.6 (d, JP–C = 6.8 Hz), 80.3 (d, JP–C = 7.9 Hz), 64.0 (d, JP–C = 6.1 Hz), 63.8 (d, JP–C = 6.1 Hz), 

63.74 (d, JP–C = 5.1 Hz), 63.71 (d, JP–C = 4.8 Hz), 62.4, 62.3, 41.7, 41.1, 16.1 (d, JP–C = 6.8 Hz), 

16.00 (d, JP–C = 6.8 Hz), 15.96 (d, JP–C = 7.1 Hz), 15.9 (d, JP–C = 6.6 Hz), 14.2, 14.1, one pair of 

carbons was not found due to overlap; 31P NMR (243 MHz, CDCl3): major diastereomer δ 1.0; 

minor diastereomer δ 0.3; TLC (30% acetone:hexanes): Rf 0.40; HRMS (ESI): Calcd. for 

C24H31CsO7P ([M+Cs]+): 595.0861, Found: 595.0844. 
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Ethyl 2-benzyl-3-((diethoxyphosphoryl)oxy)-2-hydroxy-5-

phenylpentanoate (45n): The title compound was prepared according to 

General Procedure C using 41a (66.1 mg, 0.20 mmol) and 

hydrocinnamaldehyde (132 µL, 1.00 mmol) affording aldol adduct 45n (52.0 mg, 0.11 mmol, 

56% yield, 5.9:1.0 anti:syn) as a pale yellow oil. Analytical data for 45n: IR (thin film): 3399, 

2982, 2934, 2360, 2342, 1733, 1684, 1653, 1558, 1507, 1456, 1262, 1207, 1024, 749, 701 cm-1; 

1H NMR (600 MHz, CDCl3): major diastereomer δ 7.32-7.18 (m, 10H), 4.73 (dt, J = 9.6, 2.3 Hz, 

1H), 4.22-4.05 (m, 6H), 3.14 (d, J = 13.6 Hz, 1H), 3.10 (d, J = 13.6 Hz, 1H), 2.93 (ddd, J = 14.5, 

10.1, 5.0 Hz, 1H), 2.70 (ddd, J = 13.9, 9.9, 6.8 Hz, 1H), 2.23 (dddd, J = 19.6, 14.7, 9.8, 5.0 Hz, 

1H), 1.79 (dddd, J = 14.5, 10.4, 7.5, 4.7 Hz, 1H), 1.37 (dt, J = 7.1, 0.7 Hz, 3H), 1.36 (dt, J = 7.1, 

0.7 Hz, 3H), 1.17 (t, J = 7.1 Hz, 3H); minor diastereomer δ 7.32-7.18 (m, 10H), 4.83 (dt, J = 9.0, 

2.9 Hz, 1H), 4.22-4.05 (m, 6H), 3.05 (ddd, J = 13.9, 11.4, 5.3 Hz, 1H), 2.94 (d, J = 13.6 Hz, 1H), 

2.92 (d, J = 13.6 Hz, 1H), 2.79 (ddd, J = 13.7, 11.2, 5.8 Hz, 1H), 2.26-2.13 (m, 2H), 1.35 (dt, J = 

7.1, 0.7 Hz, 3H), 1.32 (dt, J = 7.1, 0.7 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H); 13C NMR (151 MHz, 

CDCl3): mix of diastereomers δ 173.0, 172.7, 141.6, 141.3, 135.2, 135.0, 130.2, 128.44, 128.39, 

128.1, 128.0, 127.0, 126.9, 126.0, 82.8 (d, JP–C = 6.2 Hz), 82.4 (d, JP–C = 6.2 Hz), 80.52 (d, JP–C = 

3.5 Hz), 80.50 (d, JP–C = 3.0 Hz), 64.13 (d, JP–C = 5.7 Hz), 64.06 (d, JP–C = 6.0 Hz), 64.0 (d, JP–C 

= 6.2 Hz), 63.9 (d, JP–C = 6.2 Hz), 62.3, 62.2, 41.8, 40.9, 33.5 (d, JP–C = 3.8 Hz), 32.3 (d, JP–C = 

2.0 Hz), 31.9, 31.8, 16.4 (d, JP–C = 7.1 Hz), 16.0 (d, JP–C = 7.6 Hz), 14.0, 13.9; 31P NMR (243 

MHz, CDCl3): major diastereomer δ 0.1; minor diastereomer δ -1.1; TLC (30% 

acetone:hexanes): Rf 0.24; HRMS (ESI): Calcd. for C24H33CsO7P ([M+Cs]+): 597.1018, Found: 

597.1021. 
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Ethyl 3-((diethoxyphosphoryl)oxy)-2-hydroxy-2-methyl-3-

phenylpropanoate (45p): The title compound was prepared according to 

General Procedure C using 41b (50.8 mg, 0.20 mmol) and benzaldehyde (41 

µL, 0.40 mmol) affording aldol adduct 45p (58.4 mg, 0.16 mmol, 81% yield, 1.9:1.0 anti:syn) as 

a pale yellow oil. Analytical data for 45p: IR (thin film): 3395, 2985, 2942, 1734, 1636, 1558, 

1457, 1396, 1260, 1211, 1168, 1118, 1021, 893, 708 cm-1; 1H NMR (600 MHz, CDCl3): major 

diastereomer δ 7.46 (dd, J = 7.5, 3.2 Hz, 2H), 7.36-7.29 (m, 3H), 5.43 (d, J = 9.3 Hz, 1H), 1.35 (t, 

J = 7.1 Hz, 3H), 1.21 (dt, J = 7.1, 0.7 Hz, 3H), 1.15 (s, 3H), 0.98 (dt, J = 7.1, 0.7 Hz, 3H); minor 

diastereomer δ 7.36-7.29 (m, 5H), 5.42 (d, J = 8.2 Hz, 1H), 1.56 (s, 3H), 1.25 (dt, J = 7.1, 0.7 Hz, 

3H), 1.22 (t, J = 7.1 Hz, 3H), 1.04 (dt, J = 7.1, 0.7 Hz, 3H); 13C NMR (151 MHz, CDCl3): mix of 

diastereomers δ 174.7, 173.6; 135.6, 135.0, 128.9, 128.81, 128.77, 127.90, 127.88, 127.8, 82.7 (d, 

JP–C = 5.4 Hz), 82.6 (d, JP–C = 5.6 Hz), 77.2 (d, JP–C = 7.9 Hz), 76.7 (d, JP–C = 8.3 Hz), 63.9 (d, 

JP–C = 5.7 Hz), 63.8 (d, JP–C = 5.6 Hz), 63.7 (d, JP–C = 5.7 Hz), 63.6 (d, JP–C = 5.7 Hz), 62.5, 62.2, 

22.6, 21.8, 15.92 (d, JP–C = 9.5 Hz), 15.87 (d, JP–C = 7.1 Hz), 15.7 (d, JP–C = 8.9 Hz), 15.6 (d, JP–C 

= 7.2 Hz), 14.04, 13.95; 31P NMR (243 MHz, CDCl3): major diastereomer δ -1.3; minor 

diastereomer δ -0.6; TLC (30% acetone:hexanes): Rf 0.21; HRMS (ESI): Calcd. for 

C16H25CsO7P ([M+Cs]+): 493.0392, Found: 493.0359. 

Ethyl 2-(((diethoxyphosphoryl)oxy)(phenyl)methyl)-2-hydroxypent-4-

enoate (45q): The title compound was prepared according to General 

Procedure C using 41c (56.1 mg, 0.20 mmol) and benzaldehyde (41 µL, 0.40 

mmol) affording aldol adduct 45q (68.8 mg, 0.18 mmol, 89% yield, 1.2:1.0 anti:syn) as a pale 

yellow oil. Analytical data for 45q: IR (thin film): 3503, 3074, 2983, 2933, 1735, 1642, 1456, 

1395, 1370, 1264, 1227, 1161, 1034, 710 cm-1; 1H NMR (600 MHz, CDCl3): major 
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diastereomer δ 7.48 (dd, J = 7.5, 3.0 Hz, 2H), 7.35-7.33 (m, 3H), 5.67-5.60 (m, 1H), 5.45 (d, J = 

8.3 Hz, 1H), 5.02 (d, J = 9.2 Hz, 1H), 5.01 (d, J = 18.8 Hz, 1H), 4.39-3.62 (m, 6H), 3.42 (br s, 

1H), 2.37 (dd, J = 13.9, 8.6 Hz, 1H), 1.90 (dd, J = 13.9, 5.8 Hz, 1H), 1.35 (t, J = 7.1 Hz, 3H), 

1.21 (dt, J = 7.1, 0.7 Hz, 3H), 0.97 (dt, J = 7.1, 0.8 Hz, 3H); minor diastereomer δ 7.37 (dd, J = 

7.1, 3.0 Hz, 2H), 7.30-7.28 (m, 3H), 5.79-5.72 (m, 1H), 5.48 (d, J = 9.2 Hz, 1H), 5.11 (d, J = 

24.1 Hz, 1H), 5.09 (d, J = 17.0 Hz, 1H), 4.39-3.62 (m, 6H), 3.42 (br s, 1H), 2.83 (dd, J = 13.9, 

6.1 Hz, 1H), 2.63 (dd, J = 13.9, 8.6 Hz, 1H), 1.26 (dt, J = 7.1, 0.8 Hz, 3H), 1.21 (t, J = 7.1 Hz, 

3H), 1.01 (dt, J = 7.1, 0.8 Hz, 3H); 13C NMR (151 MHz, CDCl3): mix of diastereomers δ 173.5, 

172.5, 135.5, 135.1, 131.8, 131.2, 128.93, 128.85, 127.94, 127.91, 119.2, 119.1, 82.3 (d, JP–C = 

5.6 Hz), 82.1 (d, JP–C = 5.3 Hz), 80.2 (d, JP–C = 7.7 Hz), 79.7 (d, JP–C = 8.0 Hz), 63.9 (d, JP–C = 

5.7 Hz), 63.8 (d, JP–C = 5.7 Hz), 63.7 (d, JP–C = 6.3 Hz), 63.6 (d, JP–C = 5.9 Hz), 62.5, 62.2, 40.4, 

39.6, 15.94 (d, JP–C = 7.4 Hz), 15.86 (d, JP–C = 7.6 Hz), 15.7 (d, JP–C = 6.5 Hz), 15.6 (d, JP–C = 6.8 

Hz), 14.1, 14.0; 31P NMR (243 MHz, CDCl3): major diastereomer δ -1.3; minor diastereomer δ 

-0.5; TLC (30% acetone:hexanes): Rf 0.29; HRMS (ESI): Calcd. for C18H27CsO7P ([M+Cs]+): 

519.0548, Found: 519.0572. 

Ethyl 2-(((diethoxyphosphoryl)oxy)(phenyl)methyl)-2-hydroxypent-4-

ynoate (45r): The title compound was prepared according to General 

Procedure C using 41d (55.6 mg, 0.20 mmol) and benzaldehyde (41 µL, 0.40 

mmol) affording aldol adduct 45r (71.5 mg, 0.19 mmol, 93% yield, 2.9:1.0 anti:syn) as a pale 

yellow oil. Analytical data for 45r: IR (thin film): 3479, 3287, 2983, 2934, 2121, 1739, 1445, 

1393, 1369, 1288, 1242, 1167, 1107, 1021, 976, 779, 734 cm-1; 1H NMR (600 MHz, CDCl3): 

major diastereomer δ 7.38-7.36 (m, 2H), 7.33-7.29 (m, 3H), 5.46 (d, J = 9.2 Hz, 1H), 4.44-3.62 

(m, 6H), 2.91 (dd, J = 16.7, 2.6 Hz, 1H), 2.83 (dd, J = 16.7, 2.6 Hz, 1H), 2.01 (t, J = 2.6 Hz, 1H), 
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1.25 (t, J = 7.1 Hz, 3H), 1.23 (t, J = 7.1 Hz, 3H), 1.02 (t, J = 7.1 Hz, 3H); minor diastereomer δ 

7.48-7.46 (m, 2H), 7.33-7.29 (m, 3H), 5.45 (d, J = 10.9 Hz, 1H), 4.44-3.62 (m, 6H), 2.54 (dd, J = 

16.7, 2.6 Hz, 1H), 2.10 (dd, J = 16.7, 2.6 Hz, 1H), 1.96 (t, J = 2.6 Hz, 1H), 1.37 (t, J = 7.1 Hz, 

3H), 1.21 (t, J = 7.1 Hz, 3H), 0.97 (t, J = 7.1 Hz, 3H); 13C NMR (151 MHz, CDCl3): mix of 

diastereomers δ 172.5, 171.5, 135.1, 134.4, 129.2, 129.0, 128.7, 128.1, 128.0, 127.9, 81.3 (d, JP–

C = 5.4 Hz), 79.2 (d, JP–C = 7.6 Hz), 78.7 (d, JP–C = 8.9 Hz), 78.4, 77.7, 71.4, 71.2, 64.0 (d, JP–C = 

5.7 Hz), 63.83 (d, JP–C = 7.7 Hz), 63.78 (d, JP–C = 6.5 Hz), 63.6 (d, JP–C = 5.9 Hz), 63.0, 62.7, 

27.0, 26.4, 15.9 (d, JP–C = 7.4 Hz), 15.8 (d, JP–C = 6.9 Hz), 15.64 (d, JP–C = 6.9 Hz), 15.59 (d, JP–C 

= 7.1 Hz), 14.02, 13.95, one carbon was not found due to overlap; 31P NMR (243 MHz, CDCl3): 

major diastereomer δ -0.6; minor diastereomer δ -1.3; TLC (30% acetone:hexanes): Rf 0.29; 

HRMS (ESI): Calcd. for C18H25CsO7P ([M+Cs]+): 517.0392, Found: 517.0387. 

Conversion of Aldol Adduct 45h to Epoxide 43 

 

A dried shell vial was charged with phosphate 45h (87.3 mg, 0.20 mmol, 1.0 equiv, 2:1 

d.r.) in 1,2-dichloroethane (DCE) (2 mL). ZnCl2 (32.7 mg, 0.20 mmol, 1.0 equiv) was added to 

the vial, which was then capped with a Teflon cap. The vial was heated at 45 °C until the 

reaction was adjudged complete by TLC. The reaction was diluted with DCM and extracted with 

H2O (1x). The aqueous layer was extracted with DCM (2x). The combined organic extracts were 

washed with brine (1x), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was 

purified by column chromatography on silica gel eluting with 10% ethyl acetate:hexanes to 

afford a diastereomeric mixture of 43 (45.7 mg, 0.16 mmol, 81% yield, 2:1 d.r.) as a pale yellow 
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oil. The diastereomers were separated by preparative HPLC to afford diastereomerically pure 

samples for nOe analysis. Analytical data for 43: IR (thin film): 3063, 3031, 2980, 2932, 1750, 

1727, 1454, 1372, 1242, 1191, 1121, 1018, 745, 698 cm-1; 1H NMR (600 MHz, CDCl3): major 

diastereomer δ 7.40-7.19 (m, 10H), 4.36 (s, 1H), 4.23-4.11 (m, 2H), 3.22 (d, J = 15.1 Hz, 1H), 

2.55 (d, J = 15.1 Hz, 1H), 1.20 (t, J = 7.1 Hz, 3H); minor diastereomer δ 7.35-7.26 (m, 10H), 

4.01 (s, 1H), 3.87 (q, J = 7.1 Hz, 2H), 3.65 (d, J = 14.6 Hz, 1H), 3.07 (d, J = 14.6 Hz, 1H), 0.87 

(t, J = 7.1 Hz, 3H); 13C NMR (151 MHz, CDCl3): mix of diastereomers δ 169.8, 167.6, 136.4, 

135.1, 133.7, 133.4, 129.6, 129.3, 128.43, 128.36, 128.24, 128.17, 128.0, 127.9, 127.0, 126.63, 

126.56, 126.3, 66.4, 63.6, 62.3, 61.9, 61.7, 61.0, 39.0, 32.4, 14.0, 13.7; TLC (10% ethyl 

acetate:hexanes): Rf 0.22; HRMS (ESI): Calcd. for C18H18CsO3 ([M+Cs]+): 415.0310, Found: 

415.0309. 
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General Procedure D for the Friedel–Crafts Alkylation of Phosphate Aldol Adduct 45a 

 

A dried screw-cap vial was charged with phosphate (±)-45a (94.2 mg, 0.20 mmol, 1.0 

equiv), nucleophile (0.60 mmol, 3.0 equiv), and DCM (2 mL). TfOH (35 µL, 0.40 mmol, 2.0 

equiv) was added dropwise and the reaction stirred at room temperature for 1 h. The reaction was 

quenched with sat. aq. NaHCO3 and the layers were separated. The aqueous layer was washed 

with DCM (3x). The combined organic extracts were washed with brine (1x), dried over Na2SO4, 
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filtered, and concentrated in vacuo. The diastereomeric ratio was determined by 1H NMR 

analysis of the crude residue. The residue was purified by column chromatography on silica gel 

eluting with 10% ethyl acetate:hexanes to afford a diastereomeric mixture of the product. 

Ethyl 2-benzyl-3-(4-chlorophenyl)-2-hydroxy-3-(4-

methoxyphenyl)propanoate (7): The title compound was prepared 

according to General Procedure D using (±)-45a (94.2 mg, 0.20 mmol, 2:1 

d.r.) and anisole (65 µL, 0.60 mmol) affording Friedel–Crafts adduct 62 

(77.3 mg, 0.18 mmol, 91% yield, >20:1 d.r.) as a pale yellow oil. Analytical data for 62: IR (thin 

film): 3502, 3029, 2932, 1731, 1608, 1510, 1490, 1249, 1200, 1100, 1033, 827, 701 cm-1; 1H 

NMR (600 MHz, CDCl3): δ 7.65 (d, J = 7.3 Hz, 2H), 7.35 (d, J = 7.5 Hz, 2H), 7.31 (d, J = 7.3 

Hz, 2H), 7.23-7.17 (m, 3H), 7.11 (d, J = 7.4 Hz, 2H), 6.76 (d, J = 7.3 Hz, 2H), 4.36 (s, 1H), 3.98 

(q, J = 7.0 Hz, 2H), 3.73 (s, 3H), 3.40 (s, 1H), 2.99 (d, J = 13.5 Hz, 1H), 2.91 (d, J = 13.5 Hz, 

1H), 1.14 (t, J = 7.0 Hz, 3H); 13C NMR (151 MHz, CDCl3): δ 174.4, 158.5, 139.1, 135.8, 132.7, 

132.2, 131.4, 130.1, 130.0, 128.5, 128.1, 126.9, 113.7, 81.2, 62.0, 57.3, 55.1, 44.7, 14.1; TLC 

(30% acetone:hexanes): Rf 0.44; HRMS (ESI): Calcd. for C25H25ClCsO4 ([M+Cs]+): 557.0495, 

Found: 557.0471. 

Ethyl 2-benzyl-3-(4-chlorophenyl)-2-hydroxy-3-(thiophen-2-

yl)propanoate (63): The title compound was prepared according to General 

Procedure D using (±)-45a (94.2 mg, 0.20 mmol, 2:1 d.r.) and thiophene (48 

µL, 0.60 mmol) affording Friedel–Crafts adduct 63 (44.1 mg, 0.11 mmol, 55% yield, 4:1 d.r.) as 

a pale yellow oil. Analytical data for 63: IR (thin film): 3497, 2980, 2929, 2853, 1731, 1492, 

1243, 1200, 1100, 1015, 910, 825, 733, 700 cm-1; 1H NMR (600 MHz, CDCl3): major 

diastereomer δ 7.64 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 7.9 Hz, 2H), 7.22-7.17 (m, 2H), 7.14 (d, J = 
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5.0 Hz, 1H), 7.10-7.08 (m, 3H), 6.99 (d, J = 2.9 Hz, 1H), 6.87 (t, J = 4.2 Hz, 1H), 4.75 (s, 1H), 

4.08-3.95 (m, 2H), 3.58 (s, 1H), 2.95 (d, J = 13.1 Hz, 1H), 2.73 (d, J = 13.4 Hz, 1H), 1.17 (t, J = 

7.1 Hz, 3H); minor diastereomer δ 7.59 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 7.9 Hz, 2H), 7.22-7.17 

(m, 8H), 4.57 (s, 1H), 4.08-3.95 (m, 2H), 3.40 (s, 1H), 2.97 (d, J = 11.3 Hz, 1H), 2.78 (d, J = 

13.4 Hz, 1H), 1.12 (t, J = 7.1 Hz, 3H); 13C NMR (151 MHz, CDCl3): mix of diastereomers δ 

174.4, 174.0, 141.8, 140.3, 138.1, 138.0, 135.55, 135.51, 133.1, 132.9, 131.5, 131.3, 129.9, 

128.54, 128.47, 128.1, 128.0, 126.9, 126.15, 126.05, 125.1, 125.0, 122.4, 80.8, 80.7, 62.2, 62.0, 

53.9, 53.7, 44.6, 44.3, 14.0, 14.0; TLC (30% acetone:hexanes): Rf 0.48; HRMS (ESI): Calcd. for 

C22H21ClCsO3S ([M+Cs]+): 532.9954, Found: 532.9932. 

Ethyl 2-benzyl-3-(4-chlorophenyl)-2-hydroxy-3-(phenylthio)propanoate 

(64): The title compound was prepared according to General Procedure D 

using (±)-45a (94.2 mg, 0.20 mmol, 2:1 d.r.) and thiophenol (62 µL, 0.60 

mmol) affording Friedel–Crafts adduct 64 (77.7 mg, 0.18 mmol, 91% yield, 5:1 d.r.) as a pale 

yellow oil. Analytical data for 64: IR (thin film): 3500, 3061, 3031, 2981, 2930, 1732, 1584, 

1491, 1408, 1244, 1215, 1104, 1015, 910, 734, 701 cm-1; 1H NMR (600 MHz, CDCl3): major 

diastereomer δ 7.49 (d, J = 7.7 Hz, 2H), 7.34-7.19 (m, 10H), 7.08 (d, J = 6.8 Hz, 2H), 4.49 (s, 

1H), 4.14 (q, J = 7.1 Hz, 2H), 3.65 (s, 1H), 2.84 (d, J = 13.5 Hz, 1H), 2.53 (d, J = 13.5 Hz, 1H), 

1.25 (t, J = 7.1 Hz, 3H); minor diastereomer δ 7.34-7.19 (m, 14H), 4.45 (s, 1H), 3.94-3.83 (m, 

2H), 3.89 (d, J = 13.5 Hz, 1H), 3.38 (s, 1H), 3.21 (d, J = 13.5 Hz, 1H), 1.11 (t, J = 7.1 Hz, 3H); 

13C NMR (151 MHz, CDCl3): mix of diastereomers δ 173.5, 172.7, 137.8, 137.5, 135.4, 135.1, 

134.8, 134.6, 133.5, 133.4, 132.4, 131.2, 130.5, 130.2, 129.9, 128.9, 128.8, 128.3, 128.15, 128.07, 

127.54, 127.45, 127.03, 127.00, 81.1, 81.0, 62.4, 62.2, 61.5, 61.3, 44.6, 44.4, 14.1, 13.9; TLC 
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(30% acetone:hexanes): Rf 0.48; HRMS (ESI): Calcd. for C24H23ClCsO3S ([M+Cs]+): 559.0110, 

Found: 559.0126. 

Stereochemical Determination of Friedel–Crafts Adduct 62 

The relative stereochemistry of Friedel–Crafts adduct 7 was determined by comparison of 

acetonide S6 (obtained via stereospecific synthesis) to acetonide S8 (obtained via derivatization 

of 62). 

Preparation of Acetonide S6 

 

(E)-2-benzyl-3-(4-chlorophenyl)acrylaldehyde (S2): A 20-mL round-

bottomed flask was charged with hydrocinnamaldehyde (1.0 mL, 7.1 mmol, 

1.00 equiv), 4-chlorobenzaldehyde (1.0 g, 7.1 mmol, 1.00 equiv) and 

tetrabutylammonium chloride (40 mg, 0.14 mmol, 0.02 equiv) in MeOH (5 mL). The solution 

was cooled to 0 °C in an ice bath. To the vigorously stirring solution was added 10% aq. NaOH 

(5 mL) dropwise. The resulting solution was allowed to stir for 15 min at 0 °C before being 
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allowed to warm to room temperature. After 4 h, the reaction was acidified by addition of 2 M 

HCl until acidic by litmus paper. The layers were separated and the aqueous layer was extracted 

with Et2O (3x). The combined organic extracts were washed with brine, dried over MgSO4, 

filtered, and concentrated in vacuo to afford the crude aldehyde S2 as a pale orange oil. 

(E)-2-benzyl-3-(4-chlorophenyl)prop-2-en-1-ol (S3): A 250-mL round-

bottomed flask was charged with the crude aldehyde S2 in MeOH (50 mL). 

NaBH4 (0.35 g, 9.2 mmol, 1.3 equiv) was carefully added portionwise at room temperature.  The 

reaction stirred at room temperature until complete by TLC. The reaction was quenched with sat. 

aq. NH4Cl and allowed to stir for a further 4 h. The layers were separated and the aqueous layer 

was extracted with DCM (3x). The combined organic extracts were washed with brine, dried 

over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column 

chromatography on silica gel eluting with 20% ethyl acetate:hexanes to afford allyl alcohol S3 

(1.27 g, 4.9 mmol, 69% yield, >20:1 E:Z) as a white solid (mp 63-64 °C). Analytical data for S3: 

IR (thin film): 3391, 3026, 2919, 1652, 1601, 1491, 1452, 1092, 1013, 732, 699 cm-1; 1H NMR 

(600 MHz, CDCl3): δ 7.31-7.28 (m, 4H), 7.24-7.21 (m, 3H), 7.18 (d, J = 7.1 Hz, 2H), 6.75 (s, 

1H), 4.14 (d, J = 1.1 Hz, 2H), 3.67 (s, 2H); 13C NMR (151 MHz, CDCl3): δ 140.3, 138.7, 135.5, 

132.6, 129.8, 128.7, 128.5, 128.4, 126.4, 125.9, 66.3, 34.3; TLC (30% ethyl acetate:hexanes): Rf 

0.29; HRMS (ESI): Calcd. for C16H15ClNaO ([M+Na]+): 281.0709, Found: 281.0681. 

(2-Benzyl-3-(4-chlorophenyl)oxiran-2-yl)methanol  (S4): A 50-mL round-

bottomed flask was flame-dried and charged with the alkene S3 (0.52g, 2.0 

mmol, 1.0 equiv) in DCM (10 mL) under an atmosphere of N2. mCPBA (0.52g, 3.0 mmol, 1.5 

equiv) was added portionwise at room temperature. The reaction stirred at room temperature 

until complete by TLC. The reaction was quenched with sat. aq. NaHCO3.  The layers were 
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separated and the aqueous layer was extracted with DCM (3x). The combined organic extracts 

were washed with brine, dried over Na2SO4, filtered, and concentrated in vacuo. The residue was 

purified by column chromatography on silica gel eluting with 20% ethyl acetate:hexanes to 

afford epoxide S4 (0.53 g, 1.92 mmol, 96% yield, >20:1 d.r.) as a pale yellow oil. Analytical data 

for S4: IR (thin film): 3421, 3029, 2925, 1602, 1494, 1455, 1089, 1032, 1014, 799, 700 cm-1; 1H 

NMR (600 MHz, CDCl3): δ 7.40 (d, J = 8.6 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H), 7.24-7.18 (m, 3H), 

6.99 (d, J = 6.7 Hz, 2H), 4.28 (s, 1H), 3.79 (d, J = 12.6 Hz, 1H), 3.67 (d, J = 12.7 Hz, 1H), 2.81 

(d, J = 14.6 Hz, 1H), 2.65 (d, J = 14.6 Hz, 1H); 13C NMR (151 MHz, CDCl3): δ 136.1, 134.0, 

133.7, 129.2, 128.53, 128.49, 127.9, 126.8, 66.6, 62.5, 59.7, 33.7; TLC (30% ethyl 

acetate:hexanes): Rf 0.22; HRMS (ESI): Calcd. for C16H15ClNaO2 ([M+Na]+): 297.0659, Found: 

297.0679. 

2-Benzyl-3-(4-chlorophenyl)-3-(4-methoxyphenyl)propane-1,2-diol (S5): 

A dried 20-mL round-bottomed flask was charged with CuI (29 mg, 0.15 

mmol, 0.3 equiv) in THF (2.5 mL) and DMS (0.1 mL) under an atmosphere 

of N2. The solution was cooled to 0 °C in an ice bath.  4-

Methoxyphenylmagnesium bromide solution (0.5 M, 3.0 mL, 1.5 mmol, 3.0 equiv) was added 

dropwise and the resulting pink-purple cloudy solution stirred for 15 min at 0 °C. A solution of 

the epoxide S4 (137 mg, 0.5 mmol, 1.0 equiv) in THF (2.5 mL) was added dropwise and the 

reaction was allowed to stir overnight as it warmed to room temperature.  The reaction was 

quenched with sat. aq. NaHCO3. The layers were separated and the aqueous layer was extracted 

with Et2O (3x). The combined organic extracts were washed with brine, dried over MgSO4, 

filtered, and concentrated in vacuo to afford the crude diol S5 as a pale yellow oil. 
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4-Benzyl-4-((4-chlorophenyl)(4-methoxyphenyl)methyl)-2,2-dimethyl-

1,3-dioxolane (S6): A 20-mL round-bottom flask was charged with the 

crude diol S5 in acetone (3 mL) and 2,2-dimethoxypropane (3 mL). CSA (20 

mg, 0.08 mmol, 0.15 equiv) was added and the reaction was allowed to stir 

overnight at room temperature. The reaction was quenched with sat. aq. NaHCO3. The layers 

were separated and the aqueous layer was extracted with DCM (3x).  The combined organic 

extracts were washed with brine, dried over Na2SO4, filtered, and concentrated in vacuo. The 

residue was purified by column chromatography on silica gel eluting with 5% ethyl 

acetate:hexanes to afford the acetonide S6 (81.3 mg, 0.19 mmol, 38% yield, >20:1 d.r.) as a 

yellow oil. Analytical data for S6: IR (thin film): 2988, 2934, 2835, 1608, 1511, 1491, 1455, 

1370, 1250, 1179, 1091, 1060, 1034, 828, 733, 703 cm-1; 1H NMR (600 MHz, CDCl3): δ 7.33 (d, 

J = 8.7 Hz, 2H), 7.25-7.21 (m, 5H), 7.14 (d, J = 8.5 Hz, 2H), 7.02-7.00 (m, 2H), 6.86 (d, J = 8.9 

Hz, 2H), 4.14 (d, J = 8.6 Hz, 1H), 3.95 (s, 1H), 3.82 (d, J = 8.6 Hz, 1H), 3.80 (s, 3H), 3.16 (d, J = 

13.6 Hz, 1H), 2.98 (d, J = 13.6 Hz, 1H), 1.46 (s, 3H), 0.90 (s, 3H); 13C NMR (151 MHz, 

CDCl3): δ 158.1, 139.6, 137.1, 133.1, 132.2, 131.7, 131.6, 130.7, 128.1, 127.9, 126.5, 113.6, 

109.8, 85.8, 69.2, 55.2, 54.4, 43.0, 27.8, 26.3; TLC (5% ethyl acetate:hexanes): Rf 0.18; HRMS 

(ESI): Calcd. for C26H27ClNaO3 ([M+Na]+): 445.1547, Found: 445.1527. 
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Conversion of Friedel–Crafts Adduct 62 to Acetonide S8 

 

2-Benzyl-3-(4-chlorophenyl)-3-(4-methoxyphenyl)propane-1,2-diol (S7): 

A dried round-bottomed flask was charged with Friedel–Crafts adduct 7 

(63.7 mg, 0.15 mmol, 1.0 equiv) in Et2O (2.5 mL) under an atmosphere of 

N2. The solution was cooled to 0 °C in an ice bath.  LiAlH4 (28.5 mg, 0.75 

mmol, 5.0 equiv) was added portionwise 0 °C. The reaction was then allowed to warm to room 

temperature where it stirred overnight. After diluting the reaction with Et2O (5 mL), 0.1 mL H2O, 

0.1 mL 15% NaOH, and 0.3 mL H2O were sequentially added dropwise affording a white 

precipitate. The mixture was filtered through a pad of Celite and concentrated in vacuo to afford 

the crude diol S7 as a pale yellow oil. 

4-Benzyl-4-((4-chlorophenyl)(4-methoxyphenyl)methyl)-2,2-dimethyl-

1,3-dioxolane (S8): A 20-mL round-bottomed flask was charged with the 

crude diol S7 in acetone (3 mL) and 2,2-dimethoxypropane (3 mL). CSA (5 

mg, 0.02 mmol, 0.15 equiv) was added and the reaction was allowed to stir 

overnight at room temperature. The reaction was quenched with sat. aq. NaHCO3. The layers 

were separated and the aqueous layer was extracted with DCM (3x). The combined organic 

extracts were washed with brine, dried over Na2SO4, filtered, and concentrated in vacuo. The 

residue was purified by column chromatography on silica gel eluting with 5% ethyl 

acetate:hexanes to afford the acetonide S8 (52.1 mg, 0.12 mmol, 82% yield, >20:1 d.r.) as a 
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yellow oil. Analytical data for S8: IR (thin film): 2988, 2933, 2832, 1609, 1512, 1490, 1455, 

1370, 1252, 1179, 1091, 1060, 1036, 827, 734, 702 cm-1; 1H NMR (600 MHz, CDCl3): δ 7.35 (d, 

J = 8.5 Hz, 2H), 7.28-7.25 (m, 5H), 7.08 (d, J = 8.7 Hz, 2H), 7.02-7.01 (m, 2H), 6.82 (d, J = 9.4 

Hz, 2H), 4.17 (d, J = 8.5 Hz, 1H), 3.95 (s, 1H), 3.89 (d, J = 8.5 Hz, 1H), 3.80 (s, 3H), 3.14 (d, J = 

13.7 Hz, 1H), 2.99 (d, J = 13.7 Hz, 1H), 1.51 (s, 3H), 0.86 (s, 3H); 13C NMR (151 MHz, 

CDCl3): δ 158.2, 140.2, 137.2, 132.14, 132.10, 132.0, 131.3, 130.7, 128.1, 127.9, 126.5, 113.5, 

109.7, 85.8, 69.4, 55.2, 54.2, 43.3, 28.0, 26.2; TLC (5% ethyl acetate:hexanes): Rf 0.18; HRMS 

(ESI): Calcd. for C26H27ClNaO3 ([M+Na]+): 445.1547, Found: 445.1527. 

The stereochemical assignment for S8 arises from the fact that the spectroscopic data for 

acetonide S8 do not match that acquired for acetonide S6, which was prepared by unambiguous 

synthesis. 

General Procedure E for the Asymmetric Aldolization of α-Alkyl-α-Hydroxy 
Phosphonoacetates Catalyzed by Chiral Iminophosphorane 52c 
 

 

A dried test tube was charged with the α-hydroxy phosphonoacetate 41e (0.10 mmol, 1.0 

equiv) and aldehyde (0.50 mmol, 5.0 equiv) and dissolved in 2-MeTHF (500 µL, 0.2 M) under 

an atmosphere of argon. The solution was cooled to -50 °C. Iminophosphorane 52c (5.81 mg, 

0.01 mmol, 0.1 equiv) was added and the reaction stirred at -50 °C for 20 h. The reaction was 

quenched at -50 °C with 0.5 M TFA in toluene (40 µL, 0.2 equiv). The resulting solution was 

diluted with 1 N HCl at 0 °C. The aqueous layer was extracted with CHCl3 (3x). The combined 
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organic extracts were washed with brine (1x), dried over Na2SO4, filtered, and concentrated in 

vacuo. The diastereomeric ratio was determined by 1H NMR analysis of the crude residue. The 

residue was purified by column chromatography on silica gel eluting with 30% acetone:hexane 

to afford a diastereomeric mixture of 50. 

(2S,3R)-Ethyl 2-benzyl-3-((dimethoxyphosphoryl)oxy)-2-hydroxy-3-

phenylpropanoate (50a): The title compound was prepared according to 

General Procedure E using 41e (30.2 mg, 0.10 mmol) and benzaldehyde (51 

µL, 0.50 mmol) affording the aldol adduct 50a (29.0 mg, 0.07 mmol, 71% yield, >30:1 syn:anti) 

as a white solid (mp 119-127 °C). Analytical data for 50a: HPLC: Chiralpak AD3 column, 

H/IPA = 4:1, flow rate = 1.0 mL/min, λ = 210 nm, 7.9 min (minor diastereomer), 8.7 min (minor 

isomer of major diastereomer), 10.4 min (major isomer of major diastereomer), 20.4 min (minor 

diastereomer), 95:5 e.r.; IR (thin film): 3391, 2359, 2342, 1736, 1495, 1456, 1261, 1212, 1126, 

1034, 1016, 907, 854, 741, 712, 700 cm-1; 1H NMR (400 MHz, CDCl3): δ 7.62-7.60 (m, 2H), 

7.44-7.41 (m, 3H), 7.21-7.19 (m, 3H), 7.13-7.11 (m, 2H), 5.61 (d, J = 8.2 Hz, 1H), 4.21 (ddq, J = 

7.3, 3.7, 3.1 Hz, 2H), 3.61 (d, J = 11.0 Hz, 3H), 3.52 (s, 1H), 3.39 (d, J = 11.4 Hz, 3H), 2.94 (d, J 

= 13.3 Hz, 1H), 2.43 (d, J = 13.7 Hz, 1H), 1.33 (t, J = 7.3 Hz, 3H); 13C NMR (101 MHz, 

CDCl3): δ 173.3, 135.3, 134.9, 130.3, 129.3, 129.2, 128.3, 128.1, 127.1, 83.0 (d, JP–C = 5.8 Hz), 

80.6 (d, JP–C = 8.7 Hz), 62.8, 54.4 (d, JP–C = 5.8 Hz), 54.2 (d, JP–C = 5.8 Hz), 41.4, 14.2; 31P 

NMR (162 MHz, CDCl3): δ 1.0; TLC (40% acetone:hexane): Rf 0.42; HRMS (FAB): Calcd. for 

C20H25O7NaP ([M+Na]+): 431.1230, Found: 431.1231. 

(2S,3R)-Ethyl 2-benzyl-3-((dimethoxyphosphoryl)oxy)-2-hydroxy-3-

(naphthalen-2-yl)propanoate (50b): The title compound was prepared 

according to General Procedure E using 41e (30.2 mg, 0.10 mmol) and 2-

EtO2C
OP(OMe)2

HO Bn

O

EtO2C
OP(OMe)2

HO Bn

O



97 

naphthaldehyde (78.1 mg, 0.50 mmol) affording the aldol adduct 50b (31.2 mg, 0.07 mmol, 68% 

yield, >30:1 syn:anti) as a white solid (mp 145-150 °C). Analytical data for 50b: HPLC: 

Chiralpak AD3 column, H/IPA/EtOH = 16:3:1, flow rate = 1.0 mL/min, λ = 210 nm, 15.8 min 

(minor diastereomer), 20.5 min (minor isomer of major diastereomer), 22.4 min (minor 

diastereomer), 25.3 min (major isomer of major diastereomer), 94.5:5.5 e.r.; IR (thin film): 3397, 

2982, 2955, 2859, 2361, 2342, 1734, 1468, 1456, 1368, 1258, 1200, 1132, 1045, 1015, 957, 924, 

851, 762, 696 cm-1; 1H NMR (400 MHz, CDCl3): δ 8.03 (s, 1H), 7.92-7.86 (m, 3H), 7.82 (dd, J 

= 8.7, 1.4 Hz, 1H), 7.54-7.52 (m, 2H), 7.20-7.17 (m, 3H), 7.12-7.10 (m, 2H), 5.80 (d, J = 8.2 Hz), 

4.24 (q, J = 7.3 Hz, 2H), 3.63 (d, J = 11.0 Hz, 3H), 3.59 (s, 1H), 3.34 (d, J = 11.4 Hz, 3H), 3.01 

(d, J = 13.7 Hz, 1H), 2.45 (d, J = 13.8 Hz, 1H), 1.36 (t, J = 7.3 Hz, 3H); 13C NMR (101 MHz, 

CDCl3): δ 173.3, 134.9, 133.7, 132.9, 132.8, 130.2, 128.9, 128.5, 128.1, 127.8, 127.1, 126.8, 

126.4, 126.3, 83.2 (d, JP–C = 5.8 Hz), 80.8 (d, JP–C = 7.7 Hz), 62.8, 54.5 (d, JP–C = 6.8 Hz), 54.2 

(d, JP–C = 6.8 Hz), 41.5, 14.3, one carbon was not found due to overlap; 31P NMR (162 MHz, 

CDCl3): δ 1.1; TLC (40% acetone:hexane): Rf 0.44; HRMS (FAB): Calcd. for C24H27O7NaP 

([M+Na]+): 481.1387, Found: 481.1388. 

(2S,3R)-Ethyl 2-benzyl-3-((dimethoxyphosphoryl)oxy)-3-(2-fluorophenyl)-

2-hydroxypropanoate (50c): The title compound was prepared according to 

General Procedure E using 41e (30.2 mg, 0.10 mmol) and 2-

fluorobenzaldehyde (53 µL, 0.50 mmol) affording the aldol adduct 50c (24.0 mg, 0.06 mmol, 

56% yield, >30:1 syn:anti) as a white solid (mp 85-93 °C). Analytical data for 50c: HPLC: 

Chiralpak AD3 column, H/IPA = 4:1, flow rate = 1.0 mL/min, λ = 210 nm, 7.5 min (minor 

diastereomer), 9.5 min (minor isomer of major diastereomer), 10.7 min (major isomer of major 

diastereomer), 29.3 min (minor diastereomer), 94:6 e.r.; IR (thin film): 3505, 2959, 2855, 2361, 
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1734, 1616, 1587, 1491, 1456, 1279, 1204, 1126, 1040, 1011, 912, 851, 754, 700 cm-1; 1H NMR 

(400 MHz, CDCl3): δ 7.78 (dt, J = 7.3, 1.8 Hz, 1H), 7.41-7.35 (m, 1H), 7.25 (t, J = 7.3 Hz, 1H), 

7.21-7.18 (m, 3H), 7.14-7.09 (m, 2H), 7.12 (t, J = 7.3 Hz, 1H), 6.07 (d, J = 8.7 Hz, 1H), 4.21 

(ddq, J = 7.3, 3.7, 3.2 Hz, 2H), 3.60 (d, J = 11.0 Hz, 3H), 3.55 (s, 1H), 3.50 (d, J = 11.4 Hz, 3H), 

3.05 (d, J = 13.7 Hz, 1H), 2.44 (d, J = 13.8 Hz, 1H), 1.32 (t, J = 7.3 Hz, 3H); 13C NMR (101 

MHz, CDCl3): δ 173.0, 159.7 (d, JF–C = 149.6 Hz), 134.8, 130.9 (d, JF–C = 2.9 Hz), 130.8 (d, JF–C 

= 8.7 Hz), 130.3, 127.1, 124.4 (d, JF–C = 2.9 Hz), 122.9 (d, JF–C = 13.6 Hz), 115.2 (d, JF–C = 22.3 

Hz), 80.8 (d, JP–C = 7.7 Hz), 75.2 (d, JP–C = 5.8 Hz), 62.9, 54.5 (d, JP–C = 5.8 Hz), 54.4 (d, JP–C = 

5.8 Hz), 40.3, 14.2; 31P NMR (162 MHz, CDCl3): δ 0.9; TLC (40% acetone:hexane): Rf 0.38; 

HRMS (FAB): Calcd. for C20H24O7FNaP ([M+Na]+): 449.1136, Found: 449.1138. 

(2S,3R)-Ethyl 2-benzyl-3-(2-chlorophenyl)-3-((dimethoxyphosphoryl)oxy)-

2-hydroxypropanoate (50d): The title compound was prepared according to 

General Procedure E using 41e (30.2 mg, 0.10 mmol) and 2-

chlorobenzaldehyde (56.3 mg, 0.50 mmol) affording the aldol adduct 50d (27.4 mg, 0.06 mmol, 

64% yield, >30:1 syn:anti) as a pale yellow oil. Analytical data for 50d: HPLC: Chiralpak AD3 

column, H/EtOH = 10:1, flow rate = 1.0 mL/min, λ = 210 nm, 15.6 min (minor diastereomer), 

16.9 min (major isomer of major diastereomer), 24.3 min (minor isomer of major diastereomer), 

48.0 min (minor diastereomer), 95:5 e.r.; IR (thin film): 3503, 2957, 2855, 2359, 2342, 1734, 

1474, 1445, 1277, 1207, 1121, 1040, 1009, 912, 851, 748, 700 cm-1; 1H NMR (400 MHz, 

CDCl3): δ 7.89 (dd, J = 7.8, 1.8 Hz, 1H), 7.43 (dd, J = 7.8, 1.0 Hz, 1H), 7.39 (dt, J = 7.8, 1.0 Hz, 

1H), 7.33 (dt, J = 7.8, 1.0 Hz, 1H), 7.20-7.18 (m, 3H), 7.13-7.11 (m, 2H), 6.28 (d, J = 8.7 Hz, 

1H), 4.24 (ddq, J = 7.3, 3.7, 3.3 Hz, 2H), 3.58 (d, J = 11.0 Hz, 3H), 3.56 (s, 1H), 3.50 (d, J = 

11.5 Hz, 3H), 3.17 (d, J = 13.7 Hz, 1H), 2.40 (d, J = 13.8 Hz, 1H), 1.34 (t, J = 7.3 Hz, 3H); 13C 
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NMR (101 MHz, CDCl3): δ 173.0, 134.8, 133.8, 133.6, 131.6, 130.3, 129.3, 128.1, 127.11, 

127.06, 81.1 (d, JP–C = 8.7 Hz), 77.7 (d, JP–C = 5.8 Hz), 62.9, 54.5 (d, JP–C = 5.8 Hz), 54.4 (d, JP–C 

= 5.8 Hz), 40.2, 14.2; 31P NMR (162 MHz, CDCl3): δ 1.1; TLC (40% acetone:hexane): Rf 0.47; 

HRMS (FAB): Calcd. for C20H24O7ClNaP ([M+Na]+): 465.0840, Found: 465.0841. 

(2S,3R)-Ethyl 2-benzyl-3-(3-cyanophenyl)-3-((dimethoxyphosphoryl)oxy)-

2-hydroxypropanoate (50e): The title compound was prepared according to 

General Procedure E using 41e (30.2 mg, 0.10 mmol) and 3-

formylbenzonitrile (65.6 mg, 0.50 mmol) affording the aldol adduct 50e (35.4 mg, 0.09 mmol, 

89% yield, >30:1 syn:anti) as a white solid (mp 108-116 °C). Analytical data for 50e: HPLC: 

Chiralpak AD3 column, H/IPA = 4:1, flow rate = 1.0 mL/min, λ = 210 nm, 11.2 min (minor 

diastereomer), 12.2 min (minor isomer of major diastereomer), 14.2 min (major isomer of major 

diastereomer), 22.8 min (minor diastereomer), 94:6 e.r.; IR (thin film): 3503, 2959, 2359, 2232, 

1738, 1456, 1369, 1269, 1202, 1125, 1038, 1016, 851, 746, 702 cm-1; 1H NMR (400 MHz, 

CDCl3): δ 7.93 (s, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.70 (dt, J = 7.8, 1.4 Hz, 1H), 7.54 (t, J = 7.8 Hz, 

1H), 7.24-7.20 (m, 3H), 7.11-7.09 (m, 2H), 5.63 (d, J = 8.2 Hz, 1H), 4.21 (ddq, J = 7.3, 3.6, 3.2 

Hz, 2H), 3.66 (d, J = 11.0 Hz, 3H), 3.55 (s, 1H), 3.46 (d, J = 11.5 Hz, 3H), 2.94 (d, J = 13.8 Hz, 

1H), 2.36 (d, J = 13.8 Hz, 1H), 1.33 (t, J = 7.3 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 172.6, 

137.1, 134.3, 133.5, 132.9, 132.8, 130.2, 129.2, 128.3, 127.4, 118.6, 112.7, 81.7 (d, JP–C = 5.8 

Hz), 80.2 (d, JP–C = 7.7 Hz), 63.1, 54.7 (d, JP–C = 5.8 Hz), 54.4 (d, JP–C = 5.8 Hz), 41.4, 14.2; 31P 

NMR (162 MHz, CDCl3): δ 1.0; TLC (40% acetone:hexane): Rf 0.35; HRMS (FAB): Calcd. for 

C21H24O7NNaP ([M+Na]+): 456.1183, Found: 456.1182. 
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(2S,3R)-Ethyl 2-benzyl-3-(3-bromophenyl)-3-

((dimethoxyphosphoryl)oxy)-2-hydroxypropanoate (50f): The title 

compound was prepared according to General Procedure E using 41e (30.2 mg, 

0.10 mmol) and 3-bromobenzaldehyde (58 µL, 0.50 mmol) affording the aldol adduct 50f (42.2 

mg, 0.09 mmol, 87% yield, >30:1 syn:anti) as a white solid (mp 132-136 °C). Analytical data for 

50f: HPLC: Chiralpak AD3 column, H/IPA = 4:1, flow rate = 1.0 mL/min, λ = 210 nm, 7.4 min 

(minor diastereomer), 10.5 min (major isomer of major diastereomer), 11.4 min (minor isomer of 

major diastereomer), 17.4 min (minor diastereomer), 95:5 e.r.; IR (thin film): 3503, 2957, 2359, 

2342, 1734, 1570, 1456, 1431, 1271, 1209, 1125, 1038, 914, 851, 700 cm-1; 1H NMR (400 MHz, 

CDCl3): δ 7.77 (s, 1H), 7.53 (d, J = 7.8 Hz, 2H), 7.29 (t, J = 7.8 Hz, 1H), 7.23-7.19 (m, 3H), 

7.13-7.11 (m, 2H), 5.56 (d, J = 8.2 Hz, 1H), 4.20 (ddq, J = 7.3, 6.9, 2.3 Hz, 2H), 3.64 (d, J = 11.4 

Hz, 3H), 3.51 (s, 1H), 3.45 (d, J = 11.4 Hz, 3H), 2.93 (d, J = 13.3 Hz, 1H), 2.44 (d, J = 13.7 Hz, 

1H), 1.32 (t, J = 7.3 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 173.0, 137.6, 134.7, 132.4, 132.1, 

130.2, 129.9, 128.2, 127.8, 127.2, 122.4, 82.1 (d, JP–C = 5.8 Hz), 80.4 (d, JP–C = 7.7 Hz), 62.9, 

54.5 (d, JP–C = 5.8 Hz), 54.3 (d, JP–C = 5.8 Hz), 41.4, 14.2; 31P NMR (162 MHz, CDCl3): δ 0.9; 

TLC (40% acetone:hexane): Rf 0.47; HRMS (FAB): Calcd. for C20H24O7BrNaP ([M+Na]+): 

509.0335, Found: 509.0338. 

(2S,3R)-Ethyl 2-benzyl-3-(4-chlorophenyl)-3-

((dimethoxyphosphoryl)oxy)-2-hydroxypropanoate (50g): The title 

compound was prepared according to General Procedure E using 41e (30.2 

mg, 0.10 mmol) and 4-chlorobenzaldehyde (70.2 mg, 0.50 mmol) affording the aldol adduct 50g 

(37.2 mg, 0.08 mmol, 82% yield, >30:1 syn:anti) as a white solid (mp 123-125 °C). Analytical 

data for 50g: HPLC: Chiralpak AD3 column, H/IPA = 10:1, flow rate = 1.0 mL/min, λ = 210 nm, 
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19.6 min (minor isomer of major diastereomer), 21.0 min (minor diastereomer), 25.9 min (minor 

diastereomer), 33.7 min (major isomer of major diastereomer), 95:5 e.r.; IR (thin film): 3354, 

2959, 2361, 2342, 1742, 1597, 1491, 1454, 1368, 1256, 1209, 1144, 1022, 1005, 910, 853, 748, 

700 cm-1; 1H NMR (400 MHz, CDCl3): δ 7.56 (d, J = 8.7 Hz, 2H), 7.40 (d, J = 8.7 Hz, 2H), 

7.21-7.19 (m, 3H), 7.12-7.09 (m, 2H), 5.59 (d, J = 8.7 Hz, 1H), 4.20 (ddq, J = 7.2, 6.9, 2.8 Hz, 

2H), 3.63 (d, J = 11.4 Hz, 3H), 3.51 (s, 1H), 3.43 (d, J = 11.9 Hz, 3H), 2.91 (d, J = 13.3 Hz, 1H), 

2.40 (d, J = 13.7 Hz, 1H), 1.32 (t, J = 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 173.0, 135.3, 

134.7, 133.9, 130.6, 130.2, 128.6, 128.2, 127.2, 82.2 (d, JP–C = 5.8 Hz), 80.5 (d, JP–C = 8.7 Hz), 

62.9, 54.5 (d, JP–C = 5.8 Hz), 54.3 (d, JP–C = 5.8 Hz), 41.4, 14.2; 31P NMR (162 MHz, CDCl3): δ 

1.0; TLC (40% acetone:hexane): Rf 0.47; HRMS (FAB): Calcd. for C20H24O7ClNaP ([M+Na]+): 

465.0840, Found: 465.0841. 

(2S,3R)-Ethyl 2-benzyl-3-(4-bromophenyl)-3-

((dimethoxyphosphoryl)oxy)-2-hydroxypropanoate (50h): The title 

compound was prepared according to General Procedure E using 41e (30.2 

mg, 0.10 mmol) and 4-bromobenzaldehyde (92.5 mg, 0.50 mmol) affording the aldol adduct 50h 

(44.2 mg, 0.09 mmol, 91% yield, >30:1 syn:anti) as a white solid (mp 125-129 °C). Analytical 

data for 50h: HPLC: Chiralpak AD3 column, H/IPA = 10:1, flow rate = 1.0 mL/min, λ = 210 

nm, 20.3 min (minor isomer of major diastereomer), 23.3 min (minor diastereomer), 25.9 min 

(minor diastereomer), 40.5 min (major isomer of major diastereomer), 95.5:4.5 e.r.; IR (thin 

film): 3397, 2959, 2361, 1742, 1489, 1454, 1414, 1368, 1256, 1209, 1144, 1020, 1005, 910, 853, 

747, 700 cm-1; 1H NMR (400 MHz, CDCl3): δ 7.56 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 9.1 Hz, 2H), 

7.21-7.19 (m, 3H), 7.12-7.09 (m, 2H), 5.68 (d, J = 9.4 Hz, 1H), 4.20 (ddq, J = 7.8, 7.3, 2.7 Hz, 

2H), 3.63 (d, J = 11.5 Hz, 3H), 3.50 (s, 1H), 3.43 (d, J = 11.4 Hz, 3H), 2.91 (d, J = 13.8 Hz, 1H), 
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2.40 (d, J = 13.3 Hz, 1H), 1.32 (t, J = 7.4 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 173.0, 134.6, 

134.4, 131.5, 130.8, 130.2, 128.2, 127.2, 123.6, 82.2 (d, JP–C = 5.8 Hz), 80.4 (d, JP–C = 8.7 Hz), 

62.9, 54.5 (d, JP–C = 5.8 Hz), 54.3 (d, JP–C = 5.8 Hz), 41.4, 14.2; 31P NMR (162 MHz, CDCl3): δ 

1.0; TLC (40% acetone:hexane): Rf 0.51; HRMS (FAB): Calcd. for C20H24O7BrNaP ([M+Na]+): 

509.0335, Found: 509.0337. 

Methyl 4-((1R,2S)-2-benzyl-1-((dimethoxyphosphoryl)oxy)-3-ethoxy-

2-hydroxy-3-oxopropyl)benzoate (50i): The title compound was 

prepared according to General Procedure E using 41e (30.2 mg, 0.10 

mmol) and methyl 4-formylbenzoate (82.1 mg, 0.50 mmol) affording the aldol adduct 50i (41.6 

mg, 0.09 mmol, 89% yield, >30:1 syn:anti) as a white solid (mp 155-156 °C). Analytical data for 

50i: HPLC: Chiralpak AD3 column, H/EtOH = 7:3, flow rate = 1.0 mL/min, λ = 210 nm, 17.5 

min (minor diastereomer), 19.9 min (minor isomer of major diastereomer), 22.5 min (minor 

diastereomer), 28.2 min (major isomer of major diastereomer), 97:3 e.r.; IR (thin film): 3495, 

2957, 2359, 2342, 1722, 1614, 1437, 1277, 1211, 1111, 1036, 1009, 910, 851, 723, 700 cm-1; 1H 

NMR (400 MHz, CDCl3): δ 8.09 (d, J = 8.7 Hz, 2H), 7.68 (d, J = 8.7 Hz, 2H), 7.23-7.19 (m, 3H), 

7.11-7.09 (m, 2H), 5.67 (d, J = 8.2 Hz, 1H), 4.21 (ddq, J = 7.8, 7.3, 1.8 Hz, 2H), 3.93 (s, 3H), 

3.63 (d, J = 11.0 Hz, 3H), 3.52 (s, 1H), 3.42 (d, J = 11.4 Hz, 3H), 2.95 (d, J = 13.3 Hz, 1H), 2.40 

(d, J = 13.3 Hz, 1H), 1.33 (t, J = 7.3 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 172.9, 166.8, 

140.2, 134.6, 131.0, 130.2, 129.5, 129.2, 128.2, 127.2, 82.3 (d, JP–C = 5.8 Hz), 80.4 (d, JP–C = 8.7 

Hz), 62.9, 54.6 (d, JP–C = 5.8 Hz), 54.3 (d, JP–C = 5.8 Hz), 52.4, 41.3, 14.2; 31P NMR (162 MHz, 

CDCl3): δ 1.0; TLC (40% acetone:hexane): Rf 0.40; HRMS (FAB): Calcd. for C22H27O9NaP 

([M+Na]+): 489.1285, Found: 489.1285. 
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CHAPTER THREE: ASYMMETRIC SYNTHESIS OF CHLOROHYDRINS 

VIA DYNAMIC KINETIC REDUCTION* 

3.1 Introduction  

 A highly stereoselective synthesis of β-chloro-α-hydroxy esters was realized through the 

application of a dynamic kinetic resolution via asymmetric transfer hydrogenation (DKR-ATH) 

of racemic β-chloro-α-keto esters (Scheme 3-1). The requisite β-chloro-α-keto esters were 

prepared via Ni(II)-catalyzed direct β-chlorination of α-keto esters under mild reaction 

conditions with good levels of mono:di selectivity. A Ru(II)-amido complex bearing a bulky m-

terphenylsulfonamide ligand provided a remarkable ligand-controlled switch in 

diastereoselectivity in the reduction affording anti-chlorohydrins. Excellent levels of selectivity 

were observed across a wide spectrum of aliphatic and aryl β-chloro-α-keto esters providing 

chlorohydrins that serve as viable substrates for various secondary transformations. 

Scheme 3-1. Preparation of Optically Active Halohydrins 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
* Reproduced in part by permission of the American Chemical Society: Steward, K. M.; Corbett, 
M. T.; Goodman, C. G.; Johnson, J. S. J. Am. Chem. Soc. 2012, 134, 20197–20206.	
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3.2 Background 

3.2.1 Extant Methods for the Preparation of Optically Active Halohydrins 

 Optically active halohydrins are fundamental building blocks in organic chemistry. These 

versatile functional arrays can be converted to their derived enantioenriched epoxides or can 

engage in nucleophilic substitution to provide a variety of functionalized product classes 

(Scheme 3-2). The emergence of halohydrin dehalogenase (HheC), an enzyme produced by 

Agrobacterium radiobacter AD1, as a biocatalyst for the kinetic resolution of racemic 

haloalcohols highlights the importance of methods for the preparation of optically pure 

halohydrins.1 The catalytic asymmetric preparation of halohydrins, however, has been limited 

principally to desymmetrization reactions of epoxides2 and alkenes3 or kinetic resolution of 

terminal epoxides.4 

Scheme 3-2. Transformations of Optically Active Halohydrins 

 

 Given the broad utility of halohydrins, significant effort has been made towards the 

development of catalytic asymmetric methodologies to access this chemical motif in a highly 

efficient manner from simple starting materials. Early efforts utilized desymmetrization of meso-

epoxides to access optically active internal haloalcohols, which has been achieved employing a 

wide-range of chiral Lewis acids and bases. Denmark and Doyle have independently applied this 
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strategy to the synthesis of chlorohydrins and fluorohydrins, respectively (Scheme 3-3). In 1998, 

Denmark reported a method utilizing a chiral phosphoramide (R)-1 that served as a Lewis base to 

coordinate to tetrachlorosilane generating the nucleophilic chloride ion and silicate Lewis acid 

that activated the epoxide for nucleophilic attack (Scheme 3-3a).2b This methodology, however, 

was limited to the desymmetrization of simple acyclic meso-epoxides. More recently, Doyle 

reported a method for the preparation of fluoroalcohols through the use of a Co(salen) complex 

(R,R)-3 (Scheme 3-3b).2l Reaction of 2 and benzoyl fluoride provided in situ generation of 

fluoride, which underwent nucleophilic addition into cyclic meso-epoxides activated by the 

Co(salen) complex. 

Scheme 3-3. Halohydrins via Desymmetrization of meso-Epoxides 
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bis(trimethylsilyl) peroxide (BTSP), was followed by subsequent nucleophilic displacement of 

the alkyl tin intermediate 4 by chloride. Acid hydrolysis of the TMS-protected chlorohydrin 

provides the desired product in good yield and enantioselectivity. Although this methodology 

does not provide comparable selectivities to extant strategies, it obviates the need to preform the 

epoxide through the direct functionalization of the parent alkene. 

Scheme 3-4. Halohydrins via Desymmetrization of Symmetric Alkenes 
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superstoichiometric baker’s yeast to access anti-chlorohydrins 6 in excellent enantioselectivity, 

but with poor diastereocontrol (Scheme 3-5).6a 

Scheme 3-5. Enzymatic Reduction of β-Chloro-α-Keto Esters 
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nonselective in the reduction of carbonyls (8: 52:48 er). The active Ru–H species 9 is generated 

via exposure of the RuCl2(BINAP) precatalyst with H2 generating HCl, which was found to 

accelerate the reaction (Scheme 3-6b). Coordination of β-keto ester 7 generates a complex 10, 

the stereochemistry of which is controlled by the chirality of the BINAP backbone. Protonation 

of the ketone and subsequent diastereoselective hydride transfer results in the formation of 

cationic ruthenium complex 11. Ligand exchange liberates β-hydroxy ester 8 providing cationic 

complex 12, which can react with a further equivalent of H2 to regenerate the active catalyst 

species 9. This mechanism relies on the presence of a coordinating functional group geminal to 

the carbonyl to achieve effective discrimination of diastereotopic transition states. This 

methodology was quickly generalized to exhibit excellent levels of enantiofacial selectivity in 

the reduction of a wide-range of α-functionalized ketones (Scheme 3-6c).10 

Scheme 3-6. Ruthenium-Catalyzed Asymmetric Hydrogenation of Functionalized Ketones 
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 Despite the success of the RuCl2(BINAP) system in the reduction of functionalized 

carbonyls, it was ineffective for the reduction of simple ketones. During optimization of reaction 

conditions for the asymmetric hydrogenation of methyl 2-naphthyl ketone (13) in 2-propanol, 

Noyori and coworkers observed a 1000-fold rate enhancement through the incorporation of a 

1,2-diamine and KOH (Scheme 3-7a).11 Employing a chiral diamine ligand derived from L-

valine, the hydrogenation provided sec-alcohol 14 in 98% yield with 97.5:2.5 er under a balloon 

of H2 at room temperature. A key structural requirement of the 1,2-diamine was the presence of 

at least one primary amine, suggesting that the protonated ammonium moiety was involved in 

the activation of the carbonyl. Given this observation, Noyori proposed that the hydrogenation 

was proceeding through a six-membered pericyclic transition state 15 that was later confirmed 

by Morris, which is mechanistically divergent from the four-membered transition state 16 

observed for the hydrogenation of β-keto esters (Scheme 3-7b).12 

Scheme 3-7. Ruthenium-Catalyzed Asymmetric Hydrogenation of Simple Ketones 
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attractive from an industrial perspective since it obviates the use of H2 as the stoichiometric 

reductant (often used under high pressure).13 Inspired by the Meerwein–Ponndorf–Verley 

reduction, Noyori identified a new class of (arene)RuCl(monosulfonamide) catalysts that 

effectively promoted the transfer hydrogenation of 13 using 2-propanol as the stoichiometric 

organic reductant (Scheme 3-8a).14 The following year, Noyori reported a complementary 

asymmetric transfer hydrogenation of 13 employing the same (S,S)-TsDPEN-derived catalyst 

using an azeotrope of formic acid:triethylamine (5:2) as the organic reductant (Scheme 3-8b).15 

In addition to enabling the application of more tractable organic reductants, 

(arene)RuCl(monosulfonamide) complexes are highly air and moisture stable and have even 

found application in asymmetric transfer hydrogenation reactions in aqueous media.16 

Scheme 3-8. Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation of Simple Ketones 
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reversible dehydrogenation of 2-propanol to acetone.17 The carbonyl associates to hydride 
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Me

O

Me

OH

Ru
N

H2
N

Cl

Ph

Ph
O2S

Me
(S,S)-Ru cat

(S,S)-Ru cat (0.5 mol%)
KOH (2.5 mol%)

2-propanol, rt

13 14
93% yield

99:1 er

(a)

(b) Me

O

Me

OH
(S,S)-Ru cat (0.5 mol%)

HCO2H:Et3N (5:2), rt

13 14
>99% yield

98:2 er



114 

hydride and a proton in a concerted mechanism to reduce the ketone to the alcohol regenerating 

16-electron amide complex 18. Despite the efficacy of this process, at higher conversions and 

longer reactions times this process becomes reversible since the product alcohol can undergo 

transfer hydrogenation with acetone providing a racemization pathway. Strategies employing 

formic acid:triethylamine circumvent this problem by utilizing a reductant (HCO2H) whose 

byproduct is irreversibly removed from the reaction system (CO2) eliminating product 

racemization pathways. Mechanistically analogous to the latter, 16-electron amide complex 18 

cooridinates with formic acid to generate an intermediate formate complex that undergoes 

decarboxylation to generate ruthenium hydride species 19 (Scheme 3-9b).18 Identical 

outersphere delivery of the hydride to the carbonyl substrate through a six-membered transition 

state with concomitant delivery of a proton from the amine delivers the desired sec-alcohol and 

regenerates the active amide complex 18. 
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Scheme 3-9. Mechanism of Ruthenium-Catalyzed Asymmetric Transfer Hydrogenations 

 

3.2.3 Dynamic Kinetic Resolution of β-Keto Esters via Asymmetric (Transfer) 
Hydrogenation 
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blocks. Application of RuBr2[(R)-BINAP], a complex that provided high efficiency and 

selectivity in the reduction of unsubstituted β-keto esters, to the reduction of α-methyl-β-keto 

ester (±)-20 resulted in the isolation of a 1:1 diastereomeric mixture of 21 (Scheme 3-10a).9 

Despite the poor diastereoselectivity observed in the reduction of (±)-20, structurally similar α-

amino-β-keto ester (±)-22 underwent facile reduction with RuBr2[(R)-BINAP] to afford methyl 

acetyl-L-threoninate (syn-23) in 99% yield with 99:1 dr and 99:1 er (Scheme 3-10b).19 The 

exceptional levels of selectivity observed in the hydrogenation are attributed to the highly 

diastereoselective two-point coordination of the β-keto ester to the ruthenium complex allowing 

for high enantiofacial selectivity in the intersphere delivery of the hydride (24). Notably, the 

hydrogenation of racemic α-amino-β-keto ester (±)-22 proceeded via dynamic kinetic resolution 

resulting in the isolation of a single enantiopure product from a racemate. 

Scheme 3-10. Dynamic Kinetic Resolution of β-Keto Esters via Asymmetric Hydrogenation 
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 Genêt extended the scope of Noyori’s dynamic kinetic resolution via asymmetric 

resolution (DKR-AH) of α-stereogenic-β-keto esters methodology to provide access to α-chloro-

β-hydroxy carboxylic acid derivatives (Scheme 3-11),20 which are particularly relevant in the 

context of this chapter. Although Noyori’s parent RuBr2[(R)-BINAP] complex provided 26 in 

poor diastereo- and enantioselectivity, a modified (COD)Ru(allyl)2 precatalyst provided a 

marked improvement in the dynamic reduction of (±)-25 providing 26 as a single diastereomer in 

quantitative yield with 99.5:0.5 er. This methodology was designed to provide efficient access to 

chlorohydrins that could undergo subsequent intramolecular O-alkylation to afford enantiopure 

glycidic esters through a stepwise Darzens pathway. 

Scheme 3-11. DKR-AH of α-Chloro-β-Keto Esters 
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Scheme 3-12. Dynamic Kinetic Resolution of β-Keto Esters via Asymmetric Transfer 
Hydrogenation 
 

 

 The success of these dynamic kinetic resolutions relies not only on the exquisite levels of 
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Scheme 3-13. Dynamic Kinetic Resolution of α-Stereogenic-β-Keto Esters 

 

3.2.4 Dynamic Kinetic Resolution of α-Keto Esters via Asymmetric Transfer 
Hydrogenation 
 
 The Ru-catalyzed asymmetric (transfer) hydrogenation of β-keto esters has served as the 
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Scheme 3-14. Dynamic Kinetic Resolution of β-Stereogenic-α-Keto Esters 

 

 With these challenges in mind, Kimberly Steward in our group investigated the dynamic 

kinetic resolution of racemic β-aryl-α-keto ester (±)-29 under asymmetric transfer hydrogenation 

conditions (Scheme 3-15).24 It was hypothesized that the incorporation of a β-aryl group would 
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Scheme 3-15. Dynamic Kinetic Resolution of β-Aryl-α-Keto Esters via Asymmetric Transfer 
Hydrogenation 
 

 

3.2.5 Proposed Dynamic Kinetic Resolution of β-Halo-α-Keto Esters via Asymmetric 
Transfer Hydrogenation 
 
 Given the success of β-aryl-α-keto esters in the DKR-ATH reaction, we became 

interested in exploring the generality of this methodology to provide access to a diverse range of 

β-stereogenic-α-glycolic acid derivatives. In considering new substrates that might be useful for 

DKR-ATH reactions, the potential integration of β-halo substituents was appealing on several 

levels (Scheme 3-16). As previously discussed, optically active halohydrins are fundamental 
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enantioenriched epoxides or engage in nucleophilic substitution to provide a variety of 

functionalized product classes. Also, we reasoned that the electronegativity of a haloalkane 

might similarly engender the α-keto ester with a sufficient level of C–H acidity required to favor 

a dynamic process under transfer hydrogenation conditions (formic acid:triethylamine). This 

methodology would provide isomeric products to those reported by Genêt in the DKR-AH of α-

chloro-β-keto esters employing a chiral Ru(BINAP) complex (Scheme 3-11). 
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Scheme 3-16. Proposed DKR-ATH of β-Halo-α-Keto Esters 

 

3.3 Results and Discussion 

3.3.1 Identification of a Direct β-Chlorination of α-Keto Esters 

  Given Genêt’s success in the application of chloroalkanes in the DKR-AH, we chose to 

initially explore the reactivity of β-chloro-α-keto esters in our proposed DKR-ATH reaction. 

However, the relative dearth of catalytic direct β-functionalizations of α-keto esters presented an 

obstacle to the implementation of this synthetic plan; in particular, methods for the direct β-

halogenation of α-keto esters are scarce.6b,6c,25 Prior to our study, only two examples of the direct 
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Takeda reported that treatment of α-keto ester 31 with sulfuryl chloride provided slow 

conversion to the desired β-chloro-α-keto ester 32 in good yield after 60 h (Scheme 3-17a).25a 

More recently, Tsuboi demonstrated that CuCl2 and LiCl effected the direct chlorination of α-

keto ester 33 under driving reaction conditions to afford 34 in 53% yield (Scheme 3-17b).6b 

Although both of these methodologies provide access to the requisite β-chloro substrates, they 

require either long reaction times or harsh reaction conditions. 

 

 

 

 

REtO

O

O

X

(±) REtO

O

OH

X

* *
DKR-ATH



123 

Scheme 3-17. Extant Methods for the Direct β-Chlorination of α-Keto Esters 

 

 We sought to develop a mild chlorination reaction of α-keto esters that could proceed 

under Lewis acid catalysis. A survey of the literature led us to a recent report by Sodeoka that 

utilized a chiral Ni(OAc)2-diamine complex to achieve the direct Michael addition of α-keto 

esters to nitroolefins (Scheme 3-18a).26 The Michael addition proceeded under mild reaction 

conditions to afford 36 as a single diastereomer in 96:4 er. Although exogenous base was utilized 

to promote catalyst turnover, Sodeoka proposed that Ni(OAc)2 served both as a Lewis acid to 

activate the 1,2-dicarbonyl moiety through chelation as well as provided an endogenous base to 

enable intramolecular deprotonation of the α-keto ester to generate the reactive enolate species. 
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otherwise identical reaction conditions (Scheme 3-18b). The reaction proceeded to moderate 
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Scheme 3-18. Ni(II)-Catalzyed Direct Functionalization of α-Keto Esters 

 

3.3.2 Optimization of Ni(II)-Catalyzed β-Chlorination of α-Keto Esters 

 We began our optimization studies by exploring the effects of the metal precatalyst and 
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and 6). Since 40 only provided marginal improvement on the yield of the chlorination reaction, 

we moved forward with NCS (37) since it is inexpensive and easier to handle. 

Table 3-1. Initial Optimization of Catalytic Direct β-Chlorination of α-Keto Estersa 

 

entry metal salt Cl+ source yield (%)b 
1 Ni(OAc)2 37 48 
2 Cu(OAc)2 37 46 
3 NiBr2 37 <5 
4 CuBr2 37 <5 
5 Ni(OAc)2 39 <5 
6 Ni(OAc)2 40 51 

aReactions were performed on 0.20 mmol scale in 2-propanol (2 mL) employing a precomplexed 
catalyst unless otherwise noted. bIsolated yield of analytically pure product. 
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required for effective reactivity; however, both 2,2'-bipyridine (L4) and 1,10-phenanthroline 

(L5) provided 38a in low yield (entries 4-6). 

Table 3-2. Screening Diamine Ligands in Catalytic Direct β-Chlorination of α-Keto Estersa 

 

entry ligand yield (%)b 
1c none 0d 
2 (±)-L1 48 
3 L2 35 
4 L3 0d 
5 L4 24 
6 L5 23 

aReactions were performed on 0.20 mmol scale in 2-propanol (2 mL) employing a precomplexed 
catalyst unless otherwise noted. bIsolated yield of analytically pure product. cEmploying 
Ni(OAc)2•4H2O (10 mol%) as the catalyst. dNo reaction was observed. 

 
 Since structural deviations from Sodeoka’s Ni(OAc)2-L1 complex were largely 

unsuccessful, we turned our attention to an optimization of reaction conditions to improve the 

efficiency of the direct catalytic β-chlorination of α-keto esters (Table 3-3). Addition of Et3N (20 

mol%) as an exogenous base provided little improvement in the yield of 38a (entry 2). Since 

Sodeoka reported that DME provided comparable results to 2-propanol in the direct Michael 

addition of α-keto esters into nitroolefins, we examined its application and observed an increase 

in yield of 38a to 62% (entry 3). An examination of base additives was conducted and revealed, 
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that although addition of Et3N provided only trace product, both KOAc and NaHCO3 provided 

an increase in the yield of 38a to 72% (entries 4-6 and 8). In reactions utilizing base additives, 

significant formation of dimerization byproduct 41 was observed (~10-15% yield by NMR). This 

product results from aldol dimerization/cyclization of the α-keto ester starting material (Scheme 

3-19).27 Inclusion of acid additives, such as trichloroacetic acid (TCA), resulted in only trace 

conversion suggesting that acid was inhibiting the catalyst (entry 7). Given the formation of 41 in 

the presence of exogenous base, we turned our attention to the effect of solvent in the 

chlorination reaction as a means of improving the yield of 38a. Diglyme and CH2Cl2 both 

provided low yields of 38a (entries 9 and 10). Other ethereal solvents such as THF and Et2O 

provided a boost in yield to 78% and 73%, respectively (entries 11 and 12). Optimized 

conditions were realized by employing THF at 0 °C for 4 h before allowing the reaction to room 

temperature overnight in order to reduce the amount of dichlorination observed (entry 13). 
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Table 3-3. Optimization of Ni(II)-Catalyzed Direct β-Chlorination of α-Keto Estersa 

 

entry additive (mol%) solvent yield (%)b 
1 none 2-propanol 48 
2 Et3N (20) 2-propanol 51 
3 none DME 62 
4 Et3N (20) DME <5 
5 KOAc (20) DME 72 
6 NaHCO3 (20) DME 72 
7 TCA (20) DME <5 
8c KOAc (20) DME 71 
9 none diglyme 23 
10 none CH2Cl2 37 
11 none THF 78 
12 none Et2O 73 
13d none THF 85 

aReactions were performed on 0.2 mmol scale unless otherwise noted. bIsolated yield of 
analytically pure product. cReaction performed at 45 °C for 16 h. dReaction performed at 0 °C for 
4 h before being warmed to room temperature for 12 h. 

 
Scheme 3-19. Byproduct Generated via Dimerization of α-Keto Ester 35a 
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products in high yield and good, selectivity for the singly halogenated product. Functional group 

compatibility was good allowing for incorporation of alkene, alkyne, and benzyloxy 

functionality in the products (entries 6, 7, and 9). Despite the generality observed for aliphatic 

substrates, the reaction resulted in selective dichlorination of aryl substrates due to their elevated 

acidity (entry 10). In order to further demonstrate the utility of this method, β-chlorination of 35a 

was performed on multigram scale providing 38a with little loss in efficiency or selectivity 

(entry 2). 

Table 3-4. Scope of Ni(II)-Catalyzed Direct β-Chlorination of α-Keto Estersa 

 

entry R 38 mono:dib yield (%)c 
1 –CH2Ph 38a 10:1 85 
2d –CH2Ph 38a 9:1 81 
3 –CH2-p-ClPh 38b 10:1 83 
4 –CH2-p-MeOPh 38c 12:1 84 
5 –(CH2)2Ph 38d 8:1 78 
6 –CH2CH=CH2 38e 13:1 86 
7 –CH2C≡CTMS 38f 10:1 79 
8 –(CH2)2CH3 38g 13:1 87 
9 –(CH2)3OBn 38h 13:1 86 
10 –Ph 38i 1:>20 <5b 

aReactions were performed on 1.0 mmol scale unless otherwise noted. bDetermined by 1H NMR 
analysis of the crude reaction mixture. cIsolated yield of analytically pure monochlorination 
product. dReaction performed on 8.0 mmol scale. 
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chloro-α-keto esters (Scheme 3-20).28 Darzens condensation of tert-butyl dichloroacetate (42) 

with an aryl aldehyde using KOtBu as the base resulted in the clean formation of 2-

chloroglycidic ester 43, which can be isolated via column chromatography in high yield. The 

addition of AgNO3 was necessary to precipitate AgCl from the reaction since free chloride ion 

was found to partially convert 43 to 38 during the Darzens condensation. The desired aryl β-

chloro-α-keto ester 38 was found to be unstable to column chromatography so we needed to 

identify a method for the conversion of 43 to 38 that obviated purification via chromatography. 

Conversion of 2-chloroglycidic ester 43 to β-chloro-α-keto ester 38 was originally examined 

using Tsuboi’s conditions (PPh3, benzene, reflux);29 however, these conditions were 

incompatible with our tert-butyl esters, resulting in decomposition of starting material. Given the 

propensity of chloride ions to rearrange 43 to 38 during the Darzens reaction, we reasoned that 

the addition of chloride to the reaction would effect the desired rearrangement. Treating 43 with 

a catalytic amount of tetrabutylammonium chloride (TBACl) provided clean isomerization of 43 

to 38 in quantitative yield following removal of the tetrabutylammonium salt via aqueous washes. 

Scheme 3-20. Preparation of β-Aryl-β-Chloro-α-Keto Esters via Darzens Reaction 
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 Having identified methods for the preparation of both aliphatic and aryl β-chloro-α-keto 
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via enzymatic acylation, Tsuboi observed that the reduction of β-chloro-α-keto esters with 

NaBH4 proceeded with high syn-selectivity due to Felkin–Anh control (Scheme 3-21).7a We 

hoped that the propensity of β-halo-α-keto esters to undergo Felkin–Anh controlled 

diastereoselective nucleophilic addition would be retained in our proposed dynamic reduction. 

Scheme 3-21.  Felkin–Anh Control in the Reduction of β-Chloro-α-Keto Esters 

 

 We commenced our studies by subjecting β-chloro-α-keto ester (±)-38a to a series of 

(arene)RuCl(monosulfonamide) complexes 45 bearing sterically-distinct ligands in DMSO at 

room temperature employing a mixture of formic acid:triethylamine (5:2) as the organic 

reductant (Scheme 3-22). Achiral ethylenediamine-derived 45a afforded excellent levels of syn-

selectivity in the reduction of (±)-38a, which was consistent with Tsuboi’s observation. Upon 

switching to Noyori’s parent (S,S)-TsDPEN complex 45b, a significant erosion in syn-

diastereoselection to 3:1 dr was observed, although syn-44a was obtained with promising levels 

of enantioselectivity (89:11 er). Application of a (S,S)-DPEN ligand bearing the bulkier 

triisopropylphenyl sulfonamide (45c) resulted in a switch in diastereoselectivity favoring anti-

44a in 3.5:1 dr with improved enantiocontrol. Given the success of the m-terphenylsulfonamide 

in our seminal work (Scheme 3-15), we applied (S,S)-DPEN-derived complex 45d to the 

dynamic reduction of (±)-38a, which resulted in the formation of anti-44a with 8:1 dr and 

excellent levels of enantioselectivity (98:2 er). Further amplification of this remarkable ligand-
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controlled diastereoselection was explored through the use of the (S,S)-α-naphthyl backbone 

which provided anti-44a with slightly higher levels of diastereoselection albeit with a small 

erosion in enantioselectivity. Considering diastereoselectivity only, the continuum expressed by 

ligands 45a and 45e (>20:1 syn:anti → 1:9 syn:anti at 298 K) represents approximately 2.5 

kcal/mol modulation of diastereomeric transition states through simple substituent modifications 

on a common ligand framework. 

Scheme 3-22.  Screening Ligands in the DKR-ATH of β-Chloro-α-Keto Estersa 

 
aReactions performed on 0.155 mmol scale employing 45 (4 mol%) and 5 equivalents of 
HCO2H:Et3N (5:2) in DMSO (1.5 mL) at room temperature unless otherwise noted. 
Diastereomeric ratio was determined by 1H NMR analysis of the crude reaction mixture. 
Enantiomeric ratio was determined by chiral SFC analysis. 
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Although (arene)RuCl(monosulfonamide) complex 45d already provided 44a in good 

diastereoselectivity and excellent enantioselectivity, we explored catalyst loading, solvent, and 

temperature in order to further increase activity and selectivity in the dynamic reduction (Table 

3-5). Switching to DMF as the solvent provided comparable results to DMSO (entry 2); however, 

DMF’s lower freezing point provides more flexibility to explore the role of temperature in the 

reduction. Decreasing the temperature to 0 °C resulted in an increase in diastereo- and 

enantioselectivity, whereas increasing the temperature to 40 °C provided 44a in lower 

diastereoselectivity than at room temperature (entries 2 and 3). Content with the high levels of 

diastereoselectivity observed in the reduction at 0 °C, we turned our attention to increasing the 

TON of the transformation by decreasing the catalyst loading. We also began to explore using 

the active bench-stable 16-electron amide complex 45da directly in the reduction in order to 

facilitate the operational simplicity of the reaction. We were pleased to observe that dropping the 

catalyst loading of 45da to 1 mol% (TON = 100) or 0.5 mol% (TON = 200) provided identical 

levels of selectivity, although the reaction took 10 and 24 h, respectively, to reach full conversion 

at 0 °C (entries 6 and 7). 
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Table 3-5. Optimization of DKR-ATH of β-Chloro-α-Keto Estersa 

 

entry 45 (mol%) solvent T (°C) t (h) drb ere 
1 45d (4) DMSO 23 2 9:1 98:2 
2 45d (4) DMF 23 2 8:1 97.5:2.5 
3 45d (4) DMF 0 6 12:1 98.5:1.5 
4 45d (4) DMF 40 1 6:1 97.5:2.5 
5 45d (1) DMF 0 10 12:1 98.5:1.5 
6 45da (1) DMF 0 10 12:1 99:1 
7 45da (0.5) DMF 0 24 12:1 99:1 

aReactions performed on 0.155 mmol scale employing 5 equivalents of HCO2H:Et3N (5:2) in 
solvent (1.5 mL) unless otherwise noted. bDetermined by 1H NMR analysis of the crude reaction 
mixture. cDetermined by chiral SFC analysis. 

 
3.3.6 Scope of the DKR-ATH of β-Chloro-α-Keto Esters 

 With optimized reaction conditions in hand the relationship between α-keto ester 

structure and reaction stereoselectivity was assayed (Table 3-6). A variety of aliphatic substrates 

were found to be amenable to the reaction conditions providing β-chloro-α-hydroxy esters 44 

with excellent levels of diastereo- and enantioselection. Alkene, alkyne, and benzyloxy 

functionality was tolerated under the reaction conditions offering value-added functional handles 

that are incompatible with extant methods (entries 6, 7, and 9). The method was also scalable 

with no observed loss in activity or selectivity (entry 2). The efficiency of these aliphatic 

substrates under the DKR-ATH reaction conditions is a marked structural departure from the β-

aryl requirements in antecedent work from our group. 
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Table 3-6. Scope of β-Aliphatic-β-Chloro-α-Keto Esters in the DKR-ATHa 

 

entry R 44 yield (%)b drc erd 
1 –CH2Ph 44a 90 12:1 99:1 
2e –CH2Ph 44a 89 12:1 99:1 
3 –CH2-p-ClPh 44b 90 16:1 99.5:0.5 
4 –CH2-p-MeOPh 44c 93 20:1 98.5:1.5 
5 –(CH2)2Ph 44d 93 16:1 98.5:1.5 
6 –CH2CH=CH2 44e 95 >20:1 98:2f 
7g –CH2C≡CTMS 44f 91 >20:1 96.5:3.5f 
8 –(CH2)2CH3 44g 94 >20:1 98.5:1.5f 
9 –(CH2)3OBn 44h 91 18:1 98:2 

aReactions performed on 0.155 mmol scale employing 5 equivalents of HCO2H:Et3N (5:2) in 
DMF (1.5 mL) at 0 °C for 10 h unless otherwise noted. bIsolated yield of anti-diastereomer. 
cDetermined by 1H NMR analysis of the crude reaction mixture. dDetermined by chiral 
SFC/HPLC analysis. ePerformed on 6.5 mmol scale. fDetermined following benzoylation of the 
product. gPerformed at 23 °C for 10 h. 

 
Compatibility with β-aryl substrates was also demonstrated under the optimized reaction 

conditions, providing adducts 44 with excellent levels of enantioselectivity (Table 3-7). The 

electronic character of the aromatic ring was found to significantly impact the 

diastereoselectivity of the reaction. Electron-releasing groups engendered excellent 

diastereocontrol (entries 2, 3, and 10) whereas electron-withdrawing groups provided somewhat 

lower diastereoselection (entries 4, 7, and 8). 
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Table 3-7. Scope of β-Aryl-β-Chloro-α-Keto Esters in the DKR-ATHa 

 

entry Ar 44 yield (%)b drc erd 
1 Ph 44i 93 14:1 99.5:0.5 
2 o-MeOPh 44j 95 >20:1 99:1 
3 m-MeOPh 44k 94 19:1 99.5:0.5 
4 m-NO2Ph 44l 74 5:1 97.5:2.5 
5 p-ClPh 44m 85 10:1 98.5:1.5 
6 p-CF3Ph 44n 80 8:1 98.5:1.5 
7g p-CNPh 44o 82 6:1 98:2 
8 p-NO2Ph 44p 73 4:1 99:1 
9 p-MePh 44q 91 14:1 99.5:0.5 
10 p-MeOPh 44r 93 >20:1 99:1 

aReactions performed on 0.155 mmol scale employing 5 equivalents of HCO2H:Et3N (5:2) in 
DMF (1.5 mL) at 0 °C for 10 h unless otherwise noted. bIsolated yield of anti-diastereomer. 
cDetermined by 1H NMR analysis of the crude reaction mixture. dDetermined by chiral 
SFC/HPLC analysis. 

 
3.3.7 Selectivity in the DKR-ATH of β-Chloro-α-Keto Esters 

 Detailed studies by Noyori into the origin of enantioselectivity in the ATH of aryl 

ketones catalyzed by (S,S)-TsDPEN 45b revealed that the enantioselection results from attractive 

C–H/π interactions between the η6-arene and the aryl group in the substrate (Scheme 3-23a).30 In 

the hydrogen-bonding coordination of acetophenone to form the six-membered pericyclic 

transition state 46, enantiotopic discrimination of the two faces of the carbonyl is achieved by the 

alignment of a C–H on the η6-arene into the center of the phenyl ring to effect stabilization of the 

transition state. Given the need for strong attractive interactions to control the enantiofacial 

approach of the carbonyl to the ruthenium complex, we were surprised to observe high levels of 

tBuO

O

O

Cl

Ar
45da (1 mol%)

HCO2H:Et3N (5:2)
DMF (0.1 M), 0 °C, 10 h

tBuO

O

OH

Cl

Ar

44(±)-38

Ru
N

H
N Ph

Ph

Ph
O2S Ph

45da



137 

enantioselectivity in the reductions of (±)-38e-g, substrates lacking aryl functionality (Table 3-6). 

In order to better understand the strucutral requirements necessary to obtain high levels of 

enantioselectivity in the DKR-ATH of β-chloro-α-keto esters, we compared the selectivities 

obtained from (±)-38a, (±)-47, and 35a (Scheme 3-23b-d). Decreasing the steric bulk of the 

ester group from tert-butyl to ethyl resulted in a large drop in enantioselectivity suggesting that 

the α-keto ester’s approach occurs as to minimize catalyst/ester interactions; however, 44a and 

48 were obtained in nearly identical diastereoselectivity. The role of the chlorine atom was found 

to be unsubstantial in governing facial selectivity in the reduction, as 49 was obtained in only 

slightly lower enantioselectivity. 

Scheme 3-23.  Origin of Enantioselectivity in the DKR-ATH of β-Chloro-α-Keto Esters 
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3.3.8 Secondary Transformations of Chlorohydrin Products 

 To highlight the synthetic utility of the enantioenriched chlorohydrins as synthetic 

building blocks, illustrative secondary transformations were pursued. Exposure of chlorohydrin 

(2S,3R)-44i to KOtBu provides access to glycidic ester (2R,3S)-49 in 88% yield (Scheme 3-24a). 

The absolute stereochemistry of the products was determined by comparing the optical rotation 

of glycidic ester (2R,3S)-49 to the literature value and other products were assigned by analogy.31 

Treatment of chlorohydrin 44i with NaN3 afforded the azido alcohol 50 representing a formal 

synthesis of the paclitaxel C13 side-chain (Scheme 3-24b).32 Notably, the syn-product 50 is 

stereocomplementary to the anti diastereomer obtained from the glycidic esters that one might 

derive from Darzens or Weitz-Scheffer reactions. Following triflate formation of chloroalcohol 

44a, chemoselective displacement with NaN3 affords α-azido-β-chloro ester 51 providing access 

to β-chloro amino acid derivatives (Scheme 3-24c). 

Scheme 3-24.  Secondary Transformations of Chlorohydrin Products 
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3.3.9 Application to Other β-Halo-α-Keto Esters 

 During the development of our DKR-ATH of β-chloro-α-keto esters, Sodeoka reported a 

method for the preparation of β-fluoro-α-hydroxy esters from α-keto esters (Scheme 3-25).25d 

Employing a two-step asymmetric fluorination/diastereoselective reduction sequence, α-keto 

ester 35a was converted to fluorohydrin 52 in high yield with 9:1 dr and 97:3 er. Despite the high 

levels of enantioselectivity obtained in the Pd-catalyzed fluorination, conditions to provide high 

diastereocontrol in the reduction of the intermediate β-fluoro-α-keto esters proved challenging. 

Although 52 was obtained in 7:1 dr, most substrates were only obtained in moderate 

diastereoselection (<5:1 dr). 

Scheme 3-25.  Synthesis of Optically Active Fluorohydrins 
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any improvements on the diastereoselectivities observed by Sodeoka. Early experiments 

examining the potential use of β-bromo-α-keto esters in the DKR-ATH were largely 

unsuccessful (Scheme 3-26b). Subjecting (±)-55 to typical reaction conditions led to complete 

consumption of starting material with only trace product detected by crude 1H NMR. This is 

attributed to the increased lability of bromine relative to chlorine or fluorine leading to 

deleterious pathways such as C–Br cleavage under the hydrogenation conditions.33 

Scheme 3-26.  DKR-ATH of β-Halo-α-Keto Esters 
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3.5 Experimental Details 

Methods: Infrared (IR) spectra were obtained using a Jasco 260 Plus Fourier transform 

infrared spectrometer. Proton and carbon magnetic resonance spectra (1H NMR, 13C NMR, and 

19F NMR) were recorded on a Bruker model DRX 400 or 600 (1H NMR at 400 MHz or 600 

MHz, 13C NMR at 100 MHz or 150 MHz, and 19F NMR at 376 MHz or 565 MHz) spectrometer 

with solvent resonance as the internal standard (1H NMR: CDCl3 at 7.26 ppm and 13C NMR: 

CDCl3 at 77.0 ppm). 1H NMR data are reported as follows: chemical shift, multiplicity (s = 

singlet, br s = broad singlet, d = doublet, dd = doublet of doublet, t = triplet, q = quartet, sept = 

septuplet, oct = octuplet, m = multiplet), coupling constants (Hz), and integration. Supercritical 

fluid chromatography was performed on a Berger SFC system equipped with Chiralcel AD and 

WO columns (φ 4.6 mm x 250 mm). Samples were eluted with SFC grade CO2 at the indicated 

percentage of MeOH. HPLC analysis was performed on an Agilent Technologies 1200 System 

equipped with Chiralpak IA, IB, and IC columns (φ 4.6 mm x 250 mm, constant flow at 1.00 

mL/min). Optical rotations were measured using a 2 mL cell with a 1 dm path length on a Jasco 

DIP 1000 digital polarimeter. Mass spectra were obtained using a Micromass Quattro II (triple 

quad) instrument with nanoelectrospray ionization (Note: All samples prepared in acetonitrile or 

methanol). Analytical thin layer chromatography (TLC) was performed on Whatman or Sorbtech 

0.25 mm silica gel 60 plates. Visualization was accomplished with UV light and/or aqueous ceric 

ammonium molybdate solution followed by heating. Purification of the reaction products was 

carried out by using Siliaflash-P60 silica gel (40-63µm) purchased from Silicycle. All reactions 

were carried out under an atmosphere of nitrogen in flame-dried glassware with magnetic stirring. 

Yield refers to isolated yield of analytically pure material unless otherwise noted. Yields and 
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diastereomeric ratios (dr) are reported for a specific experiment and as a result may differ 

slightly from those found in the tables, which are averages of at least two experiments. 

Materials: Ni(OAc)2-diamine complex from L1 ((±)-S1),26 α-keto esters 35a-e and 

35g,25d,26,34 and β-aryl-β-chloro-α-keto esters 38i-l, 38p, and 38r28,35 were prepared according to 

literature procedures.  N-Chlorosuccinimide (NCS) was recrystallized from toluene.36 N,N-

Dimethylformamide (DMF) was distilled from phosphorous pentoxide and stored under nitrogen 

over 3Å molecular sieves. Dimethyl sulfoxide (DMSO) was distilled from calcium hydride and 

stored under nitrogen over 3Å molecular sieves. Triethylamine (Et3N) was freshly distilled from 

calcium hydride prior to use. Toluene (PhCH3), diethyl ether (Et2O), dichloromethane (CH2Cl2), 

and tetrahydrofuran (THF) were dried by passage through a column of neutral alumina under 

nitrogen prior to use. All other reagents were purchased from commercial sources and were used 

as received unless otherwise noted. 

General Procedure A for the Preparation of α-Keto Esters 35 

 

A 3-neck round-bottomed flask affixed with a reflux condenser and addition funnel was 

charged with magnesium turnings (12 mmol, 1.2 equiv). The apparatus was flame-dried under 

high vacuum. Upon cooling to room temperature, the apparatus was placed under an atmosphere 

of nitrogen and diethyl ether (6 mL) was added. The solution was heated to reflux. 1,2-

Dibromoethane (1 mmol, 0.1 equiv) was added dropwise over 5 min to the refluxing solution.  

Following addition, the solution was allowed to cool to room temperature. A solution of the alkyl 

bromide (10 mmol, 1.0 equiv) in diethyl ether (4 mL) was added dropwise from the addition 
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funnel over 30 min. The reaction was allowed to age for 1 h at room temperature following 

addition. 

A flame-dried round-bottomed flask affixed with an addition funnel was charged with 

mono-tert-butyloxalic acid-N-methoxy-N-methylamide26 (10 mmol, 1.0 equiv) in methylene 

chloride (20 mL) under a nitrogen atmosphere. The solution was cooled to -78 ºC. The 

previously prepared Grignard solution (~1M, 1.0 equiv) was added dropwise to the reaction over 

30 min. Following addition, the reaction was allowed to stir for 90 min at -78 ºC. The reaction 

was quenched with sat. aq. NH4Cl (30 mL) and allowed to warm to room temperature. The 

layers were separated and the aqueous layer was extracted with methylene chloride (2 x 30 mL). 

The combined organic extracts were washed with brine (50 mL), dried over Na2SO4, filtered, and 

concentrated in vacuo. The obtained residue was purified by column chromatography on silica 

gel eluting with 5% ethyl acetate:hexanes to afford the α-keto ester 35. 

tert-Butyl 2-oxo-6-(trimethylsilyl)hex-5-ynoate (35f): The title 

compound was prepared according to General Procedure A using (4-

bromobut-1-yn-1-yl)trimethylsilane37 (2.05 g, 10 mmol) affording α-keto ester 35f (1.74 g, 6.8 

mmol, 68% yield) as a pale yellow oil. Analytical data for 35f: 1H NMR (400 MHz, CDCl3): δ 

2.97 (t, J = 7.1 Hz, 2H), 2.46 (t, J = 6.7 Hz, 2H), 1.49 (s, 9H), 0.07 (s, 9H); 13C NMR (101 

MHz) δ 193.1, 159.9, 104.6, 85.3, 84.0, 38.3, 27.7, 13.7, -0.1; IR (thin film) 2983, 2359, 2178, 

1735, 1718, 1646, 1371, 1252, 1140, 1077, 842 cm-1; TLC (5% EtOAc:Hexanes) Rf = 0.23; 

LRMS (ESI) Calcd. for C14H26NaO4Si ([M+MeOH+Na]+): 309.15, Found: 309.20. 

tert-Butyl 6-(benzyloxy)-2-oxohexanoate (35h): The title compound 

was prepared according to General Procedure A using ((4-

bromobutoxy)methyl)benzene38 (2.43 g, 10 mmol) affording α-keto ester 35h (2.07 g, 7.1 mmol, 
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71% yield) as a pale yellow oil. Analytical data for 35h: 1H NMR (400 MHz, CDCl3) δ 7.34-

7.33 (m, 5H), 4.49 (s, 2H), 3.48 (t, J = 6.1 Hz, 2H), 2.80 (t, J = 7.1 Hz, 2H), 1.77-1.62 (m, 4H), 

1.54 (s, 9H); 13C NMR (101 MHz) δ 195.2, 160.6, 138.3, 128.1, 127,4, 127.3, 83.5, 72.6, 69.6, 

38.6, 28.7, 27.6, 19.7; IR (thin film) 2359, 1752, 1721, 1646, 1370, 1161, 698 cm-1; TLC (10% 

EtOAc:Hexanes) Rf = 0.31; LRMS (ESI) Calcd. for C18H28NaO5 ([M+MeOH+Na]+): 347.18, 

Found: 347.28. 

General Procedure B for the Ni(II)-Catalyzed Chlorination of α-Keto Esters 

 

A round-bottomed flask was charged with α-keto ester 35 (1.0 mmol, 1.0 equiv) and 

Ni(II)-diamine complex (±)-S1 (47.2 mg, 0.1 mmol, 0.1 equiv) in THF (10 mL). The solution 

was cooled to 0 ºC. N-Chlorosuccinimide (160.2 mg, 1.2 mmol, 1.2 equiv) was added to the 

reaction, which was allowed to stir for 4 h at 0 ºC before being allowed to warm to room 

temperature overnight. The reaction was diluted with Et2O (20 mL) and quenched by the 

addition of H2O (20 mL). The layers were separated the organic layer was washed with H2O (20 

mL) and brine (20 mL). The organic layer was dried over MgSO4, filtered, and concentrated in 

vacuo. The obtained residue was purified by column chromatography on silica gel to afford the 

β-chloro-α-keto ester 38. 
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tert-Butyl 3-chloro-2-oxo-4-phenylbutanoate (38a): The title compound 

was prepared according to General Procedure B using α-keto ester 35a (1.87 

g, 8.0 mmol) affording β-chloro-α-keto ester 38a (1.75 g, 6.50 mmol, 81% yield) as a pale 

yellow oil. Analytical data for 38a: 1H NMR (400 MHz, CDCl3) δ 7.31-7.22 (m, 5H), 5.08 (dd, J 

= 8.2, 6.2 Hz, 1H), 3.41 (dd, J = 14.3, 6.2 Hz, 1H), 3.11 (dd, J = 14.3, 8.2 Hz, 1H), 1.52 (s, 9H); 

13C NMR (101 MHz) δ 187.7, 159.6, 135.7, 129.4, 128.6, 127.3, 85.2, 58.8, 38.8, 27.3; IR (thin 

film) 2917, 2089, 1753, 1726, 1646, 1456, 1371, 1260, 1157, 699 cm-1; TLC (10% 

EtOAc:Hexanes) Rf = 0.24; LRMS (ESI) Prepared in MeCN, Calcd. for C14H18ClO3 ([M+H]+): 

269.09, Found: 269.03. 

tert-Butyl 3-chloro-4-(4-chlorophenyl)-2-oxobutanoate (38b): The title 

compound was prepared according to General Procedure B using α-keto 

ester 35b (269 mg, 1.0 mmol) affording β-chloro-α-keto ester 38b (251 mg, 0.83 mmol, 83% 

yield) as a white crystalline solid (mp: 51-54 ºC). Analytical data for 38b: 1H NMR (400 MHz, 

CDCl3) δ 7.29 (d, J = 8.3 Hz, 2H), 7.19 (d, J = 8.3 Hz, 2H), 5.06 (dd, J = 8.2, 6.3 Hz, 1H), 3.39 

(dd, J = 14.4, 6.2 Hz, 1H), 3.10 (dd, J = 14.4, 8.2 Hz, 1H), 1.55 (s, 9H); 13C NMR (101 MHz) δ 

187.3, 159.6, 134.2, 133.2, 130.8, 128.8, 85.4, 58.5, 38.0, 27.7; IR (thin film) 2941, 1753, 1731, 

1645, 1491, 1372, 1260, 1158, 1093, 1016, 751 cm-1; TLC (10% EtOAc:Hexanes) Rf = 0.19; 

LRMS (ESI) Prepared in MeCN, Calcd. for C14H16Cl2NaO3 ([M+Na]+): 325.04, Found: 325.06. 

tert-Butyl 3-chloro-4-(4-methoxyphenyl)-2-oxobutanoate (38c): The 

title compound was prepared according to General Procedure B using 

α-keto ester 35c (264 mg, 1.0 mmol) affording β-chloro-α-keto ester 38c (251 mg, 0.84 mmol, 

84% yield) as a pale yellow oil. Analytical data for 38c: 1H NMR (400 MHz, CDCl3) δ 7.17 (d, J 

= 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 5.05 (dd, J = 7.9, 6.7 Hz, 1H), 3.79 (s, 3H), 3.37 (dd, J = 
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14.4, 6.5 Hz, 1H), 3.08 (dd, J = 14.4, 8.0 Hz, 1H), 1.54 (s, 9H); 13C NMR (101 MHz) δ 187.8, 

159.6, 158.8, 130.5, 127.6, 114.0, 85.2, 59.0, 55.2, 38.0, 27.7; IR (thin film) 2983, 2360, 1751, 

1717, 1653, 1515, 1457, 1252, 750 cm-1; TLC (10% EtOAc:Hexanes) Rf = 0.22; LRMS (ESI) 

Calcd. for C16H23ClNaO5 ([M+MeOH+Na]+): 353.11, Found: 353.08. 

tert-Butyl 3-chloro-2-oxo-5-phenylpentanoate (38d): The title 

compound was prepared according to General Procedure B using α-keto 

ester 35d (248 mg, 1.0 mmol) affording β-chloro-α-keto ester 38d (219 mg, 0.78 mmol, 78% 

yield) as a pale yellow oil. Analytical data for 38d: 1H NMR (400 MHz, CDCl3) δ 7.33-7.30 (m, 

2H), 7.25-7.20 (m, 3H), 4.83 (dd, J = 9.0, 4.8 Hz, 1H), 2.92-2.85 (m, 1H), 2.82-2.75 (m, 1H), 

2.40-2.31 (m, 1H), 2.25-2.15 (m, 1H), 1.55 (s, 9H); 13C NMR (101 MHz) δ 188.2, 160.0, 139.8, 

128.6, 128.5, 126.4, 85.2, 58.4, 33.9, 31.8, 27.7; IR (thin film) 2983, 2360, 1732, 1713, 1647, 

1541, 1456, 1372, 1157, 700 cm-1; TLC (10% EtOAc:Hexanes) Rf = 0.24; LRMS (ESI) Calcd. 

for C16H23ClNaO4 ([M+MeOH+Na]+): 337.12, Found: 337.09. 

tert-Butyl 3-chloro-2-oxohex-5-enoate (38e): The title compound was 

prepared according to General Procedure B using α-keto ester 35e (184 mg, 

1.0 mmol) affording β-chloro-α-keto ester 38e (162 mg, 0.74 mmol, 74% yield) as a pale yellow 

oil. Analytical data for 38e: 1H NMR (400 MHz, CDCl3) δ 5.85-5.75 (m, 1H), 5.20 (d, J = 17.2 

Hz, 1H), 5.18 (d, J = 9.6 Hz, 1H), 4.91 (t, J = 6.9 Hz, 1H), 2.85-2.79 (m, 1H), 2.69-2.61 (m, 1H), 

1.57 (s, 9H); 13C NMR (101 MHz) δ 187.7, 159.9, 131.9, 119.5, 85.2, 57.8, 36.7, 27.8; IR (thin 

film) 2991, 2358, 2091, 1736, 1725, 1646, 1539, 1452, 1259 cm-1; TLC (10% EtOAc:Hexanes) 

Rf = 0.24; LRMS (ESI) Calcd. for C11H19ClNaO4 ([M+MeOH+Na]+): 273.09, Found: 273.10. 
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tert-Butyl 3-chloro-2-oxo-6-(trimethylsilyl)hex-5-ynoate (38f): The 

title compound was prepared according to General Procedure B using α-

keto ester 35f (254 mg, 1.0 mmol) affording β-chloro-α-keto ester 38f (205 mg, 0.71 mmol, 71% 

yield) as a pale yellow oil. Analytical data for 38f: 1H NMR (400 MHz, CDCl3) δ 4.99 (t, J = 6.9 

Hz, 1H), 2.99 (dd, J = 17.3, 6.6 Hz, 1H), 2.83 (dd, J = 17.3, 7.4 Hz, 1H), 1.57 (s, 9H), 0.14 (s, 

9H); 13C NMR (101 MHz) δ 186.3, 159.3, 100.0, 88.7, 85.4, 55.5, 27.8, 24.3, -0.18; IR (thin 

film) 2692, 2183, 1751, 1728, 1371, 1252, 1157, 1091, 844, 761 cm-1; TLC (10% 

EtOAc:Hexanes) Rf = 0.16; LRMS (ESI) Calcd. for C14H26ClO4Si ([M+MeOH+H]+): 321.13, 

Found: 321.17. 

tert-Butyl 3-chloro-2-oxohexanoate (38g): The title compound was prepared 

according to General Procedure B using α-keto ester 35g (186 mg, 1.0 mmol) 

affording β-chloro-α-keto ester 38g (192 mg, 0.87 mmol, 87% yield) as a pale yellow oil. 

Analytical data for 38g: 1H NMR (400 MHz, CDCl3) δ 4.86 (dd, J = 8.7, 5.2 Hz, 1H), 2.05-1.96 

(m, 1H), 1.91-1.81 (m, 1H), 1.56 (s, 9H), 1.54-1.44 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H); 13C NMR 

(101 MHz) δ 188.4, 160.2, 85.1, 59.0, 34.3, 27.8, 19.1, 13.3; IR (thin film) 1747, 1723, 1647, 

1457, 1371, 1258, 1159, 1060 cm-1; TLC (10% EtOAc:Hexanes) Rf = 0.22; LRMS (ESI) Calcd. 

for C11H21ClNaO4 ([M+MeOH+Na]+): 275.10, Found: 275.14. 

tert-Butyl 6-(benzyloxy)-3-chloro-2-oxohexanoate (38h): The title 

compound was prepared according to General Procedure B using α-keto 

ester 35h (292 mg, 1.0 mmol) affording β-chloro-α-keto ester 38h (280 mg, 0.86 mmol, 86% 

yield) as a pale yellow oil. Analytical data for 38h: 1H NMR (400 MHz, CDCl3) δ 7.37-7.26 (m, 

5H), 4.96 (dd, J = 8.3, 5.6 Hz, 1H), 4.49 (s, 2H), 3.56-3.47 (m, 2H), 2.26-2.17 (m, 1H), 2.04-1.95 

(m, 1H), 1.90-1.71 (m, 2H), 1.55 (s, 9H); 13C NMR (101 MHz) δ 188.0, 160.0, 138.2, 128.4, 
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127.6, 85.1, 72.9, 69.1, 58.8, 29.5, 27.7, 26.1; IR (thin film) 2866, 1743, 1724, 1641, 1455, 1371, 

1258, 1160, 1117 cm-1; TLC (10% EtOAc:Hexanes) Rf = 0.19; LRMS (ESI) Calcd. for 

C18H27ClNaO5 ([M+MeOH+Na]+): 381.14, Found: 381.22. 

General Procedure C for the Synthesis of β-Aryl-β-Chloro-α-Keto Esters 

 

A flame-dried round-bottomed flask was charged with tert-butyl 2,2-dichloroacetate28 

(0.74 g, 4.0 mmol, 1.3 equiv), aldehyde (3.0 mmol, 1.0 equiv), and AgNO3 (0.51 g, 3.0 mmol, 

1.0 equiv) in THF (6 mL). The solution was cooled to -78 ºC.  KOtBu (0.50 g, 4.5 mmol, 1.5 

equiv) was added. The reaction was allowed to stir for 10 h as it slowly warmed to room 

temperature. The reaction was diluted with Et2O (20 mL) and quenched by the addition of H2O 

(20 mL). The layers were separated and the organic layer was washed with brine (20 mL), dried 

over MgSO4, filtered, and concentrated in vacuo. The crude glycidic ester was filtered through a 

short plug of silica gel eluting with 20% EtOAc:hexanes to afford pure glycidic ester S2, which 

was immediately dissolved in CH2Cl2 (10 mL) in a flame-dried round-bottomed flask. 

Tetrabutylammonium chloride (83 mg, 0.3 mmol, 0.1 equiv) was added and the reaction stirred 

at room temperature for 2 h. The reaction was concentrated in vacuo. The crude residue was 

partitioned between Et2O (20 mL) and H2O (20 mL). The layers were separated and the organic 

layer was washed with H2O (2 x 20 mL) and brine (20 mL). The organic layer was dried over 

MgSO4, filtered, and concentrated in vacuo to afford the pure β-chloro-α-keto ester 38. 
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Note: The β-aryl-β-chloro-α-keto esters 38 were found to exist in equilibrium with a 

dimeric aldol adduct when the aryl group was electron-poor. The mixture was found to readily 

interconvert back to the β-chloro-α-keto ester 38 under the reduction conditions. 

tert-Butyl 3-chloro-3-(4-chlorophenyl)-2-oxopropanoate (38m): The title 

compound was prepared according to General Procedure C using 4-

chlorobenzaldehyde (422 mg, 3.00 mmol) affording β-chloro-α-keto ester 

38m (796 mg, 2.75 mmol, 92% yield) as a pale yellow oil. Analytical data for 38m: 1H NMR 

(400 MHz, CDCl3) δ 7.36 (d, J = 8.7 Hz, 2H), 7.33 (d, J = 8.8 Hz, 2H), 6.03 (s, 1H), 1.44 (s, 

9H); 13C NMR (101 MHz) δ 185.4, 159.1, 135.7, 131.9, 130.2, 129.2, 85.6, 61.3, 27.6; IR (thin 

film) 2360, 1747, 1721, 1642, 1491, 1369, 1158, 776 cm-1; TLC (30% EtOAc:Hexanes) Rf = 

0.48; LRMS (ESI) Calcd. for C14H18Cl2NaO4 ([M+MeOH+Na]+): 343.05, Found: 343.14. 

tert-Butyl 3-chloro-2-oxo-3-(4-(trifluoromethyl)phenyl)propanoate 

(38n): The title compound was prepared according to General Procedure 

C using 4-(trifluoromethyl)benzaldehyde (522 mg, 3.00 mmol) affording 

β-chloro-α-keto ester 38n (853 mg, 2.64 mmol, 88% yield) as a pale yellow oil. Analytical data 

for 38n: 1H NMR (400 MHz, CDCl3) δ 7.66 (d, J = 8.2 Hz, 2H), 7.54 (d, J = 8.2 Hz, 2H), 6.09 (s, 

1H), 1.46 (s, 9H); 13C NMR (101 MHz) δ 185.3, 159.1, 137.4, 129.3, 127.5 (q, J = 125.7 Hz), 

125.9 (q, J = 3.7 Hz), 85.8, 61.0, 27.6; IR (thin film) 2987, 2363, 1751, 1728, 1627, 1372, 1129, 

1068, 839 cm-1; TLC (30% EtOAc:Hexanes) Rf = 0.45; LRMS (ESI) Calcd. for C15H19ClF3O4 

([M+MeOH+H]+): 355.09, Found: 355.05. 

tert-Butyl 3-chloro-3-(4-cyanophenyl)-2-oxopropanoate (38o): The title 

compound was prepared according to General Procedure C using 4-

formylbenzonitrile (393 mg, 3.00 mmol) affording β-chloro-α-keto ester 38o (769 mg, 2.75 
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mmol, 92% yield) as a pale yellow oil.  Analytical data for 38o: 1H NMR (400 MHz, CDCl3) δ 

7.69 (d, J = 8.3 Hz, 2H), 7.53 (d, J = 8.3 Hz, 2H), 6.06 (s, 1H), 1.47 (s, 9H); 13C NMR (101 

MHz) δ 184.9, 158.9, 138.5, 132.6, 129.6, 117.9, 113.4, 86.0, 60.6, 27.6; IR (thin film) 2985, 

2232, 1747, 1731, 1372, 1258, 1156, 838 cm-1; TLC (30% EtOAc:Hexanes) Rf = 0.28; LRMS 

(ESI) Calcd. for C15H19ClNO4 ([M+MeOH+H]+): 312.10, Found: 312.10. 

tert-Butyl 3-chloro-2-oxo-3-(p-tolyl)propanoate (38q): The title 

compound was prepared according to General Procedure C using p-

tolualdehyde (360 mg, 3.00 mmol) affording β-chloro-α-keto ester 38q (674 mg, 2.51 mmol, 

83% yield) as a pale yellow oil. Analytical data for 38q: 1H NMR (600 MHz, CDCl3) δ 7.27 (d, 

J = 7.9 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 6.04 (s, 1H), 2.36 (s, 3H), 1.42 (s, 9H); 13C NMR (101 

MHz) δ 186.0, 159.5, 139.8, 130.4, 129.8, 128.9, 85.3, 62.6, 27.7, 21.3; IR (thin film) 2981, 

1750, 1725, 1371, 1253, 1157, 1058, 840, 741 cm-1; TLC (10% EtOAc:Hexanes) Rf = 0.23; 

LRMS (ESI) Calcd. for C15H22ClO4 ([M+MeOH+H]+): 301.12, Found: 301.12. 

Procedure for the in situ Formed Ru-complex 45d 

 

A flame-dried 1-dram vial was charged with [RuCl2(p-cymene)]2 (1.9 mg, 0.0031 mmol, 

1.0 equiv) and S3 (3.4 mg, 0.0068 mmol, 2.2 equiv) in DMF (2 mL). The vial was purged with 

N2, capped, and stirred at 60 ºC for 30 min. The reaction was cooled to room temperature to 

afford a 1.55 mM solution of the Ru-complex 45d in DMF, which was immediately used. 
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Procedure for the Preparation of Preformed Ru-complex 45da 

 

A 1-dram vial was charged with [RuCl2(p-cymene)]2 (23.7 mg, 0.039 mmol, 1.0 equiv) 

and S3 (39.2 mg, 0.078 mmol, 2.0 equiv) in CH2Cl2 (1 mL). A solution of KOH (61.1 mg, 1.088 

mmol, 18.0 equiv) in H2O (1 mL) was added. The biphasic solution was vigorously stirred for 1 

h at room temperature. The reaction was diluted with CH2Cl2 (10 mL) and H2O (10 mL) and the 

phases were separated. The aqueous phase was extracted with CH2Cl2 (2 x 10 mL).  The 

combined organic phases were washed with brine (15 mL), dried over Na2SO4, filtered, and 

concentrated in vacuo to afford the Ru-complex 45da as a brown powder that could be stored on 

the bench top under nitrogen. 

General Procedure D for the DKR-ATH of β-Chloro-α-Keto Esters 

 

Note: Identical results were obtained employing both the preformed (Method A) and in 

situ generated (Method B) catalysts and can be used interchangeably in the title reaction. 

Method A: 

A flame-dried 1-dram vial was charged with the β-chloro-α-keto ester 38 (0.1550 mmol, 

1.00 equiv) and preformed Ru-complex 45da (1.2 mg, 0.0016 mmol, 0.01 equiv) in DMF (1.5 
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mL). The solution was cooled to 0 ºC. Formic acid:triethylamine (5:2) (67 mg, 0.7750 mmol, 

5.00 equiv) was added to the reaction. The vial was purged with N2, capped, and stirred at 0 ºC 

for 10 h. The reaction was diluted with EtOAc (20 mL) and washed with H2O (2 x 20 mL) and 

brine (20 mL). The organic layer was dried over Na2SO4, filtered, and concentrated in vacuo. 

The diastereomeric ratio was determined by 1H NMR analysis of the crude residue. The crude 

residue was purified by column chromatography on silica gel to afford the β-chloro-α-hydroxy 

ester 44. 

Method B: 

A flame-dried 1-dram vial was charged with the β-chloro-α-keto ester (0.1550 mmol, 

1.00 equiv) in DMF (1.0 mL). A 1.55 mM solution of in situ generated Ru-complex 45da (0.5 

mL, 0.0016 mmol, 0.01 equiv) was added to the reaction. The solution was cooled to 0 ºC. 

Formic acid:triethylamine (5:2) (67 mg, 0.7750 mmol, 5.00 equiv) was added to the reaction. 

The vial was purged with N2, capped, and stirred at 0 ºC for 10 h. The reaction was diluted with 

EtOAc (20 mL) and washed with H2O (2 x 20 mL) and brine (20 mL). The organic layer was 

dried over Na2SO4, filtered, and concentrated in vacuo. The diastereomeric ratio was determined 

by 1H NMR analysis of the crude residue. The crude residue was purified by column 

chromatography on silica gel to afford the β-chloro-α-hydroxy ester 44. 

(2S,3R)-tert-Butyl 3-chloro-2-hydroxy-4-phenylbutanoate (anti-44a): The 

title compound was prepared according to General Procedure D using 38a 

(1.75 g, 6.50 mmol) affording β-chloro-α-hydroxy ester anti-44a (1.56 g, 5.76 mmol, 89% yield) 

as a pale yellow oil. Analytical data for anti-44a: 1H NMR (400 MHz, CDCl3) δ 7.35-731 (m, 

2H), 7.28-7.24 (m, 3H), 4.34 (dt, J = 6.4, 2.7 Hz, 1H), 4.29 (dd, J = 6.1, 2.6 Hz, 1H), 3.32 (d, J = 

6.2 Hz, 1H), 3.20 (dd, J = 14.3, 6.4 Hz, 1H), 3.13 (dd, J = 14.3, 8.4 Hz, 1H), 1.57 (s, 9H); 13C 
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NMR (101 MHz) δ 170.3, 137.2, 129.3, 128.6, 127.0, 84.0, 73.2, 64.6, 40.0, 28.1; IR (thin film) 

3435, 2983, 2363, 1725, 1641, 1369, 1245, 1154, 780 cm-1; TLC (10% EtOAc:Hexanes) Rf = 

0.23; LRMS (ESI) Calcd. for C14H19ClNaO3 ([M+Na]+): 293.09, Found: 293.09; SFC AD 

Column, 5% MeOH, flow rate = 1.5 mL/min, 150 bar, λ = 210 nm, 6.1 min (major isomer), 8.1 

min (minor isomer), 99:1 er; [α]D -27 (c = 0.8, CHCl3). 

 (2S,3S)-tert-Butyl 3-chloro-2-hydroxy-4-phenylbutanoate (syn-44a): 

Analytical data for syn-44a: 1H NMR (400 MHz, CDCl3) δ 7.32-7.21 (m, 

5H), 4.33 (t, J = 7.8 Hz, 1H), 4.06 (d, J = 6.2 Hz, 1H), 3.21 (dd, J = 13.7, 7.6 Hz, 1H), 3.13 (br s, 

1H), 3.13 (dd, J = 15.0, 7.1 Hz, 1H), 1.44 (s, 9H); 13C NMR (101 MHz) δ 170.9, 137.1, 129.5, 

128.6, 127.1, 83.6, 71.2, 63.8, 41.0, 27.9; TLC (10% EtOAc:Hexanes) Rf = 0.33. 

(2S,3R)-tert-Butyl 3-chloro-4-(4-chlorophenyl)-2-hydroxybutanoate 

(44b): The title compound was prepared according to General Procedure 

D using 38b (47.0 mg, 0.155 mmol) affording β-chloro-α-hydroxy ester 44b (42.5 mg, 0.139 

mmol, 90% yield) as a pale yellow oil. Analytical data for 44b: 1H NMR (400 MHz, CDCl3) δ 

7.29 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H), 4.29-4.26 (m, 2H), 3.31 (d, J = 5.9 Hz, 1H), 

3.14 (dd, J = 14.5, 6.0 Hz, 1H), 3.09 (dd, J = 14.5, 8.5 Hz, 1H), 1.55 (s, 9H); 13C NMR (101 

MHz) δ 170.1, 135.6, 132.9, 130.7, 128.7, 84.2, 73.3, 64.2, 39.3, 28.1; IR (thin film) 3436, 2979, 

2359, 1731, 1640, 1492, 1369, 1156, 1097, 839 cm-1; TLC (10% EtOAc:Hexanes) Rf = 0.21; 

LRMS (ESI) Calcd. for C14H18Cl2NaO3 ([M+Na]+): 327.05, Found: 327.10; SFC AD Column, 

5% MeOH, flow rate = 1.5 mL/min, 150 bar, λ = 210 nm, 9.7 min (minor isomer), 12.3 min 

(major isomer), 99.5:0.5 er; [α]D -14 (c = 1.6, CHCl3). 
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(2S,3R)-tert-Butyl 3-chloro-2-hydroxy-4-(4-

methoxyphenyl)butanoate (44c): The title compound was prepared 

according to General Procedure D using 38c (46.3 mg, 0.155 mmol) affording β-chloro-α-

hydroxy ester 44c (43.2 mg, 0.144 mmol, 93% yield) as a pale yellow oil. Analytical data for 

44c: 1H NMR (400 MHz, CDCl3) δ 7.16 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 4.31-4.27 

(m, 2H), 3.79 (s, 3H), 3.29 (br s, 1H), 3.14 (dd, J = 14.3, 6.7 Hz, 1H), 3.07 (dd, J = 14.3, 8.4 Hz, 

1H), 1.56 (s, 9H); 13C NMR (101 MHz) δ 170.3, 158.6, 130.3, 129.2, 114.0, 84.0, 73.1, 65.0, 

55.2, 39.2, 28.1; IR (thin film) 3435, 2976, 2356, 1732, 1641, 1514, 1365, 1248, 1159, 1039 cm-

1; TLC (10% EtOAc:Hexanes) Rf = 0.15; LRMS (ESI) Calcd. for C15H21ClNaO4 ([M+Na]+): 

323.10, Found: 323.15; SFC AD Column, 5% MeOH, flow rate = 1.5 mL/min, 150 bar, λ = 210 

nm, 8.9 min (minor isomer), 12.5 min (major isomer), 99:1 er; [α]D -21 (c = 1.7, CHCl3). 

(2S,3R)-tert-Butyl 3-chloro-2-hydroxy-5-phenylpentanoate (44d): The 

title compound was prepared according to General Procedure D using 38d 

(43.8 mg, 0.155 mmol) affording β-chloro-α-hydroxy ester 44d (41.1 mg, 0.144 mmol, 93% 

yield) as a pale yellow oil. Analytical data for 44d: 1H NMR (400 MHz, CDCl3) δ 7.32-7.29 (m, 

2H), 7.23-7.19 (m, 3H), 4.27 (br s, 1H), 4.05 (dt, J = 10.8, 2.9 Hz, 1H), 3.21 (br s, 1H), 2.97-2.90 

(m, 1H), 2.78-2.71 (m, 1H), 2.28-2.18 (m, 1H), 1.95-1.89 (m, 1H), 1.43 (s, 9H); 13C NMR (101 

MHz) δ 170.3, 140.5, 128.6, 128.5, 126.2, 83.7, 74.4, 62.9, 34.6, 32.3, 27.9; IR (thin film) 3433, 

2983, 2360, 2344, 1729, 1641, 1365, 1249, 1154 cm-1; TLC (10% EtOAc:Hexanes) Rf = 0.23; 

LRMS (ESI) Calcd. for C15H21ClNaO3 ([M+Na]+): 307.11, Found: 307.16; SFC AD Column, 

1.5% MeOH, flow rate = 1.5 mL/min, 150 bar, λ = 210 nm, 19.5 min (major isomer), 22.5 min 

(minor isomer), 98.5:1.5 er; [α]D -27 (c = 1.4, CHCl3). 
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(2S,3R)-tert-Butyl 3-chloro-2-hydroxyhex-5-enoate (44e): The title 

compound was prepared according to General Procedure D using 38e (33.9 mg, 

0.155 mmol) affording β-chloro-α-hydroxy ester 44e (32.4 mg, 0.147 mmol, 95% yield) as a pale 

yellow oil. Analytical data for 44e: 1H NMR (600 MHz, CDCl3) δ 5.87-5.80 (m, 1H), 5.17 (d, J 

= 16.1 Hz, 1H), 5.15 (d, J = 10.0 Hz, 1H), 4.28 (d, J = 2.5 Hz, 1H), 4.13 (ddd, J = 8.6, 6.0, 2.7 

Hz, 1H), 3.26 (br s, 1H), 2.64-2.55 (m, 2H), 1.52 (s, 9H); 13C NMR (151 MHz) δ 170.2, 133.6, 

118.6, 83.9, 73.5, 63.1, 38.1, 28.0; IR (thin film) 3435, 2986, 2359, 1725, 1643, 1369, 1298, 

1244, 1157 cm-1; TLC (10% EtOAc:Hexanes) Rf = 0.26; LRMS (ESI) Calcd. for C10H17ClNaO3 

([M+Na]+): 243.08, Found: 243.05; [α]D -4 (c = 1.4, CHCl3). 

(2S,3R)-tert-Butyl 3-chloro-2-hydroxy-6-(trimethylsilyl)hex-5-ynoate 

(44f): The title compound was prepared according to General Procedure 

D using 38f (44.8 mg, 0.155 mmol) affording β-chloro-α-hydroxy ester 44f (40.9 mg, 0.141 

mmol, 91% yield) as a pale yellow oil. Analytical data for 44f: 1H NMR (400 MHz, CDCl3) δ 

4.44 (br s, 1H), 4.19 (dt, J = 7.5, 3.0 Hz, 1H), 3.30 (d, J = 3.9 Hz, 1H), 2.87 (dd, J = 17.2, 7.7 Hz, 

1H), 2.81 (dd, J = 17.2, 7.6 Hz, 1H), 1.53 (s, 9H), 0.16 (s, 9H); 13C NMR (101 MHz) δ 169.9, 

101.4, 87.9, 84.1, 72.7, 61.1, 28.0, 26.2, -0.1; IR (thin film) 3505, 2960, 2179, 1738, 1370, 1252, 

1160, 1119, 844, 760 cm-1; TLC (10% EtOAc:Hexanes) Rf = 0.41; LRMS (ESI) Calcd. for 

C13H23ClNaO3Si ([M+Na]+): 313.10, Found: 313.15; [α]D -4 (c = 1.4, CHCl3). 

(2S,3R)-tert-Butyl 3-chloro-2-hydroxyhexanoate (44g): The title compound 

was prepared according to General Procedure D using 38g (34.2 mg, 0.155 

mmol) affording β-chloro-α-hydroxy ester 44g (32.5 mg, 0.146 mmol, 94% yield) as a pale 

yellow oil. Analytical data for 44g: 1H NMR (400 MHz, CDCl3) δ 4.26 (dd, J = 6.5, 3.5 Hz, 1H), 

4.12 (dt, J = 10.0, 3.3 Hz, 1H), 3.20 (d, J = 6.5 Hz, 1H), 1.92-1.81 (m, 1H), 1.71-1.56 (m, 2H), 
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1.51 (s, 9H), 1.48-1.41 (m, 1H), 0.98 (t, J = 7.3 Hz, 3H); 13C NMR (101 MHz) δ 170.4, 83.7, 

74.3, 64.0, 35.4, 28.0, 19.8, 13.4; IR (thin film) 3442, 2964, 2877, 2363, 1731, 1460, 1370, 1246, 

1159, 1089, 836 cm-1; TLC (10% EtOAc:Hexanes) Rf = 0.26; LRMS (ESI) Prepared in MeCN, 

Calcd. for C10H19ClNaO3 ([M+Na]+): 245.09, Found: 245.08; [α]D -3 (c = 1.2, CHCl3). 

(2S,3R)-tert-Butyl 6-(benzyloxy)-3-chloro-2-hydroxyhexanoate (44h): 

The title compound was prepared according to General Procedure D using 

38h (50.7 mg, 0.155 mmol) affording β-chloro-α-hydroxy ester 44h (46.5 mg, 0.142 mmol, 91% 

yield) as a pale yellow oil. Analytical data for 44h: 1H NMR (400 MHz, CDCl3) δ 7.36-7.27 (m, 

5H), 4.50 (s, 2H), 4.27 (dd, J = 6.5, 3.0 Hz, 1H), 4.17-4.13 (m, 1H), 3.56-3.46 (m, 2H), 3.23 (d, J 

= 6.5 Hz, 1H), 1.97-1.89 (m, 3H), 1.76-1.70 (m, 1H), 1.49 (s, 9H); 13C NMR (101 MHz) δ 170.3, 

138.3, 128.3, 127.5, 83.7, 74.2, 72.9, 69.3, 64.2, 30.2, 28.0, 27.0, one carbon not found due to 

overlap; IR (thin film) 3435, 2976, 2934, 2360, 1730, 1634, 1456, 1365, 1158, 731 cm-1; TLC 

(10% EtOAc:Hexanes) Rf = 0.18; LRMS (ESI) Calcd. for C17H25ClNaO4 ([M+Na]+): 351.13, 

Found: 351.16; HPLC Chiralpak IA, H/IPA = 99:1, flow rate = 1.0 mL/min, λ = 210 nm, 23.3 

min (major isomer), 25.2 min (minor isomer), 98:2 er; [α]D -2 (c = 1.2, CHCl3). 

(2S,3R)-tert-Butyl 3-chloro-2-hydroxy-3-phenylpropanoate (44i): The title 

compound was prepared according to General Procedure D using 38i (39.5 mg, 

0.155 mmol) affording β-chloro-α-hydroxy ester 44i (36.9 mg, 0.144 mmol, 93% yield) as a pale 

yellow oil. Analytical data for 44i: 1H NMR (400 MHz, CDCl3) δ 7.47-7.45 (m, 2H), 7.35-7.32 

(m, 3H), 5.21 (d, J = 3.7 Hz, 1H), 4.54 (dd, J = 6.3, 3.8 Hz, 1H), 3.15 (d, J = 6.5 Hz, 1H), 1.39 (s, 

9H); 13C NMR (101 MHz) δ 169.7, 136.2, 128.8, 128.2, 128.2, 83.8, 75.2, 63.2, 27.8; IR (thin 

film) 3435, 1731, 1643, 1373, 1162, 1117, 704 cm-1; TLC (10% EtOAc:Hexanes) Rf = 0.29; 

LRMS (ESI) Calcd. for C13H17ClNaO3 ([M+Na]+): 279.08, Found: 279.08; HPLC Chiralpak IC, 
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H/IPA = 19:1, flow rate = 1.0 mL/min, λ = 210 nm, 7.0 min (minor isomer), 8.5 min (major 

isomer), 99.5:0.5 er; [α]D -74 (c = 1.6, CHCl3). 

(2S,3R)-tert-Butyl 3-chloro-2-hydroxy-3-(2-methoxyphenyl)propanoate 

(44j): The title compound was prepared according to General Procedure D 

using 38j (44.1 mg, 0.155 mmol) affording β-chloro-α-hydroxy ester 44j (42.1 mg, 0.147 mmol, 

95% yield) as a pale yellow oil. Analytical data for 44j: 1H NMR (600 MHz, CDCl3) δ 7.66 (d, J 

= 7.1 Hz, 1H), 7.29 (t, J = 7.2 Hz, 1H), 6.98 (t, J = 7.6 Hz, 1H), 6.87 (d, J = 8.2 Hz, 1H), 5.68 (d, 

J = 4.0 Hz, 1H), 4.58 (dd, J = 7.6, 4.0 Hz, 1H), 3.87 (s, 3H), 3.35 (d, J = 7.6 Hz, 1H), 1.33 (s, 

9H); 13C NMR (151 MHz) δ 170.2, 155.9, 129.8, 129.6, 124.9, 120.5, 110.1, 83.1, 73.9, 58.7, 

55.5, 27.7; IR (thin film) 3434, 1732, 1639, 1491, 1249, 1158, 1033 cm-1; TLC (30% 

EtOAc:Hexanes) Rf = 0.46; LRMS (ESI) Calcd. for C14H20ClO4 ([M+H]+): 287.11, Found: 

287.11; HPLC Chiralpak IC, H/IPA = 97:3, flow rate = 1.0 mL/min, λ = 210 nm, 13.7 min 

(minor isomer), 21.6 min (major isomer), 99:1 er; [α]D -94 (c = 0.9, CHCl3). 

(2S,3R)-tert-Butyl 3-chloro-2-hydroxy-3-(3-methoxyphenyl)propanoate 

(44k): The title compound was prepared according to General Procedure D 

using 38k (44.1 mg, 0.155 mmol) affording β-chloro-α-hydroxy ester 44k 

(41.7 mg, 0.146 mmol, 94% yield) as a pale yellow oil. Analytical data for 44k: 1H NMR (400 

MHz, CDCl3) δ 7.24 (t, J = 8.5 Hz, 1H), 7.04 (s, 1H), 7.00 (d, J = 7.6 Hz, 1H), 6.86 (dd, J = 8.2, 

2.3 Hz, 1H), 5.17 (d, J = 3.8 Hz, 1H), 4.53 (dd, J = 6.6, 3.9 Hz, 1H), 3.80 (s, 3H), 3.13 (d, J = 6.7 

Hz, 1H), 1.40 (s, 9H); 13C NMR (101 MHz) δ 169.7, 159.4, 137.6, 129.2, 120.5, 114.2, 114.1, 

83.8, 75.2, 63.1, 55.2, 27.9; IR (thin film) 3433, 2979, 1729, 1644, 1491, 1369, 1263, 1156, 

1048 cm-1; TLC (30% EtOAc:Hexanes) Rf = 0.46; LRMS (ESI) Calcd. for C14H19ClNaO4 
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([M+Na]+): 309.09, Found: 309.14; HPLC Chiralpak IC, H/IPA = 9:1, flow rate = 1.0 mL/min, λ 

= 210 nm, 6.9 min (minor isomer), 9.8 min (major isomer), 99.5:0.5 er; [α]D -65 (c = 1.7, CHCl3). 

(2S,3R)-tert-Butyl 3-chloro-2-hydroxy-3-(3-nitrophenyl)propanoate (44l): 

The title compound was prepared according to General Procedure D using 38l 

(46.5 mg, 0.155 mmol) affording β-chloro-α-hydroxy ester 44l (34.7 mg, 

0.115 mmol, 74% yield) as a pale yellow oil. Analytical data for 44l: 1H NMR (600 MHz, 

CDCl3) δ 8.30 (t, J = 1.9 Hz, 1H), 8.20 (ddd, J = 8.2, 2.0, 0.8 Hz, 1H), 7.87 (d, J = 7.8 Hz, 1H), 

7.55 (t, J = 8.0 Hz, 1H), 5.30 (d, J = 3.4 Hz, 1H), 4.57 (dd, J = 5.5, 3.5 Hz, 1H), 3.24 (d, J = 5.6 

Hz, 1H), 1.41 (s, 9H); 13C NMR (151 MHz) δ 169.4, 147.8, 138.3, 134.6, 129.3, 123.7, 123.3, 

84.7, 74.8, 61.8, 27.9; IR (thin film) 3435, 1729, 1640, 1531, 1351, 1253, 1155, 1116 cm-1; TLC 

(30% EtOAc:Hexanes) Rf = 0.38; LRMS (ESI) Calcd. for C13H16ClNNaO5 ([M+Na]+): 324.06, 

Found: 324.07; HPLC Chiralpak IC, H/IPA = 85:15, flow rate = 1.0 mL/min, λ = 230 nm, 7.9 

min (minor isomer), 8.8 min (major isomer), 97.5:2.5 er; [α]D -36 (c = 1.3, CHCl3). 

(2S,3R)-tert-Butyl 3-chloro-3-(4-chlorophenyl)-2-hydroxypropanoate 

(44m): The title compound was prepared according to General Procedure D 

using 38m (44.8 mg, 0.155 mmol) affording β-chloro-α-hydroxy ester 44m (38.5 mg, 0.132 

mmol, 85% yield) as a pale yellow oil. Analytical data for 44m: 1H NMR (600 MHz, CDCl3) δ 

7.40 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 5.18 (d, J = 3.6 Hz, 1H), 4.52 (dd, J = 6.1, 3.7 

Hz, 1H), 3.15 (d, J = 6.1 Hz, 1H), 1.40 (s, 9H); 13C NMR (151 MHz) δ 169.6, 134.75, 134.71, 

129.7, 128.4, 84.1, 72.0, 62.3, 27.9; IR (thin film) 3435, 1725, 1643, 1494, 1373, 1249, 1158, 

1014 cm-1; TLC (10% EtOAc:Hexanes) Rf = 0.29; LRMS (ESI) Calcd. for C13H16Cl2NaO3 

([M+Na]+): 313.04, Found: 313.09; SFC AD Column, 2% MeOH, flow rate = 1.5 mL/min, 150 
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bar, λ = 210 nm, 17.3 min (major isomer), 21.2 min (minor isomer), 98.5:1.5 er; [α]D -56 (c = 1.3, 

CHCl3). 

(2S,3R)-tert-Butyl 3-chloro-2-hydroxy-3-(4-

(trifluoromethyl)phenyl)propanoate (44n): The title compound was 

prepared according to General Procedure D using 38n (50.0 mg, 0.155 mmol) affording β-

chloro-α-hydroxy ester 44n (40.2 mg, 0.124 mmol, 80% yield) as a pale yellow oil. Analytical 

data for 44n: 1H NMR (600 MHz, CDCl3) δ 7.61 (d, J = 8.8 Hz, 2H), 7.59 (d, J = 8.9 Hz, 2H), 

5.25 (d, J = 3.6 Hz, 1H), 4.56 (dd, J = 6.1, 3.7 Hz, 1H), 3.20 (d, J = 6.2 Hz, 1H), 1.39 (s, 9H); 

13C NMR (151 MHz) δ 169.5, 140.2, 130.9 (q, JC-F = 32.6 Hz), 128.8, 125.2 (q, JC-F = 4.2 Hz), 

123.8 (q, JC-F = 272.3 Hz), 84.3, 75.0, 62.3, 27.9; IR (thin film) 3435, 2987, 1736, 1615, 1418, 

1326, 1253, 1123, 844 cm-1; TLC (10% EtOAc:Hexanes) Rf = 0.24; LRMS (ESI) Calcd. for 

C14H16ClF3NaO3 ([M+Na]+): 347.06, Found: 347.15; HPLC Chiralpak IB, H/IPA = 99:1, flow 

rate = 1.0 mL/min, λ = 230 nm, 9.1 min (minor isomer), 9.9 min (major isomer), 98.5:1.5 er; 

[α]D -56 (c = 1.0, CHCl3). 

(2S,3R)-tert-Butyl 3-chloro-3-(4-cyanophenyl)-2-hydroxypropanoate 

(44o): The title compound was prepared according to General Procedure D 

using 38o (43.4 mg, 0.155 mmol) affording β-chloro-α-hydroxy ester 44o (35.9 mg, 0.128 mmol, 

82% yield) as a pale yellow oil. Analytical data for 44o: 1H NMR (600 MHz, CDCl3) δ 7.64 (d, 

J = 8.3 Hz, 2H), 7.58 (d, J = 8.3 Hz, 2H), 5.22 (d, J = 3.7 Hz, 1H), 4.54 (dd, J = 5.8, 3.7 Hz, 1H), 

3.24 (d, J = 5.9 Hz, 1H), 1.39 (s, 9H); 13C NMR (151 MHz) δ 169.3, 141.4, 131.9, 129.1, 118.2, 

112.6, 84.4, 74.8, 62.1, 27.8; IR (thin film) 3435, 2231, 1732, 1644, 1369, 1286, 1257, 1162, 

1139 cm-1; TLC (30% EtOAc:Hexanes) Rf = 0.35; LRMS (ESI) Calcd. for C28H32Cl2N2NaO6 

([2M+Na]+): 585.15, Found: 585.18; HPLC Chiralpak IC, H/IPA = 9:1, flow rate = 1.0 mL/min, 
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λ = 250 nm, 11.3 min (minor isomer), 12.0 min (major isomer), 98:2 er; [α]D -53 (c = 0.8, 

CHCl3). 

(2S,3R)-tert-Butyl 3-chloro-2-hydroxy-3-(4-nitrophenyl)propanoate 

(44p): The title compound was prepared according to General Procedure 

D using 38p (46.5 mg, 0.155 mmol) affording β-chloro-α-hydroxy ester 44p (34.0 mg, 0.113 

mmol, 73% yield) as a pale yellow oil. Analytical data for 44p: 1H NMR (600 MHz, CDCl3) δ 

8.20 (d, J = 8.8 Hz, 2H), 7.65 (d, J = 8.8 Hz, 2H), 5.27 (d, J = 3.6 Hz, 1H), 4.57 (dd, J = 5.8, 3.6 

Hz, 1H), 3.23 (d, J = 5.8 Hz, 1H), 1.40 (s, 9H); 13C NMR (151 MHz) δ 169.3, 147.9, 143.2, 

129.4, 123.3, 84.6, 74.8, 61.7, 27.9; IR (thin film) 3446, 2981, 1732, 1524, 1348, 1156, 1117, 

836 cm-1; TLC (30% EtOAc:Hexanes) Rf = 0.43; LRMS (ESI) Calcd. for C13H16ClNNaO5 

([M+Na]+): 324.06, Found: 324.13; HPLC Chiralpak IC, H/IPA = 19:1, flow rate = 1.0 mL/min, 

λ = 254 nm, 16.6 min (minor isomer), 17.5 min (major isomer), 99:1 er; [α]D -44 (c = 1.1, 

CHCl3). 

(2S,3R)-tert-Butyl 3-chloro-2-hydroxy-3-(p-tolyl)propanoate (44q): The 

title compound was prepared according to General Procedure D using 38q 

(41.7 mg, 0.155 mmol) affording β-chloro-α-hydroxy ester 44q (38.0 mg, 0.140 mmol, 91% 

yield) as a pale yellow oil. Analytical data for 44q: 1H NMR (600 MHz, CDCl3) δ 7.34 (d, J = 

8.0 Hz, 2H), 7.14 (d, J = 7.9 Hz, 2H), 5.18 (d, J = 3.8 Hz, 1H), 4.52 (dd, J = 6.6, 3.8 Hz, 1H), 

3.08 (d, J = 6.7 Hz, 1H), 2.33 (s, 3H), 1.41 (s, 9H); 13C NMR (151 MHz) δ 169.6, 138.7, 133.2, 

128.9, 128.2, 83.7, 75.3, 63.1, 27.9, 21.1; IR (thin film) 3448, 2983, 1732, 1649, 1370, 1249, 

1156, 1119, 844 cm-1; TLC (10% EtOAc:Hexanes) Rf = 0.29; LRMS (ESI) Calcd. for 

C14H19ClNaO3 ([M+Na]+): 293.09, Found: 293.09; HPLC Chiralpak IC, H/IPA = 19:1, flow rate 
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= 1.0 mL/min, λ = 210 nm, 7.4 min (minor isomer), 9.1 min (major isomer), 99.5:0.5 er; [α]D -50 

(c = 1.3, CHCl3). 

(2S,3R)-tert-Butyl 3-chloro-2-hydroxy-3-(4-

methoxyphenyl)propanoate (44r): The title compound was prepared 

according to General Procedure D using 38r (44.1 mg, 0.155 mmol) affording β-chloro-α-

hydroxy ester 44r (41.4 mg, 0.144 mmol, 93% yield) as a pale yellow oil. Analytical data for 

44r: 1H NMR (400 MHz, CDCl3) δ 7.39 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 5.18 (d, J 

= 3.8 Hz, 1H), 4.52 (dd, J = 6.2, 3.8 Hz, 1H), 3.80 (s, 3H), 3.07 (d, J = 6.3 Hz, 1H), 1.40 (s, 9H); 

13C NMR (101 MHz) δ 169.9, 159.9, 129.6, 128.3, 113.6, 83.8, 75.3, 62.9, 55.3, 27.9; IR (thin 

film) 3450, 2359, 1730, 1683, 1599, 1251, 1143, 1025, 836 cm-1; TLC (30% EtOAc:Hexanes) Rf 

= 0.40; LRMS (ESI) Calcd. for C14H20ClO4 ([M+H]+): 287.11, Found: 287.11; HPLC Chiralpak 

IC, H/IPA = 19:1, flow rate = 1.0 mL/min, λ = 230 nm, 10.4 min (minor isomer), 13.1 min 

(major isomer), 99:1 er; [α]D -31 (c = 0.5, CHCl3). 

General Procedure E for the Benzoylation of β-Chloro-α-Hydroxy Esters 

 

 A flame-dried 1-dram vial was charged with the alcohol (1.0 equiv) in CH2Cl2. To the 

stirred solution was sequentially added benzoyl chloride (1.2 equiv), 4-dimethylaminopyridine 

(0.1 equiv), and triethylamine (2.0 equiv). After stirring for 30 minutes at room temperature, the 

reaction was quenched with sat. aq. NH4Cl (5 mL). The aqueous layer was diluted with H2O (10 

mL) and extracted with CH2Cl2 (3 x 10 mL). The combined organic extracts were washed with 
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brine (15 mL), dried over Na2SO4, filtered and concentrated in vacuo. The crude residue was 

purified by column chromatography on silica gel to afford the β-chloro-α-benzoyloxy ester. 

(2S,3R)-1-(tert-Butoxy)-3-chloro-1-oxohex-5-en-2-yl benzoate (44ea): The 

title compound was prepared according to General Procedure E using 44e 

(32.4 mg, 0.147 mmol) affording β-chloro-α-benzoyloxy ester 44ea (44.9 mg, 0.138 mmol, 94% 

yield) as a pale yellow oil. Analytical data for 44ea: 1H NMR (400 MHz, CDCl3) δ 8.11 (d, J = 

7.3 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 5.95-5.83 (m, 1H), 5.23 (d, J = 3.5 

Hz, 1H), 5.20 (d, J = 15.4 Hz, 1H), 5.52 (d, J = 7.8 Hz, 1H), 4.42-4.37 (m, 1H), 2.75-2.72 (m, 

2H), 1.50 (s, 9H); 13C NMR (101 MHz) δ 165.6, 165.5, 133.5, 133.2, 129.9, 129.2, 128.5, 118.9, 

83.4, 75.3, 59.3, 38.2, 27.9; IR (thin film) 2938, 1754, 1729, 1642, 1448, 1373, 1275, 1110, 712 

cm-1; TLC (5% EtOAc:Hexanes) Rf = 0.21; LRMS (ESI) Calcd. for C17H21ClNaO4 ([M+Na]+): 

347.10, Found: 347.09; HPLC Chiralpak IC, H/IPA = 99:1, flow rate = 1.0 mL/min, λ = 230 nm, 

10.4 min (minor isomer), 13.1 min (major isomer), 99:1 er; [α]D -3 (c = 0.8, CHCl3). 

(2S,3R)-1-(tert-Butoxy)-3-chloro-1-oxo-6-(trimethylsilyl)hex-5-yn-2-yl 

benzoate (44fa): The title compound was prepared according to General 

Procedure E using 44f (40.9 mg, 0.141 mmol) affording β-chloro-α-benzoyloxy ester 44fa (51.2 

mg, 0.130 mmol, 92% yield) as a pale yellow oil. Analytical data for 44fa: 1H NMR (400 MHz, 

CDCl3) δ 8.10 (d, J = 7.1 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.9 Hz, 2H), 5.52 (d, J = 

3.7 Hz, 1H), 4.43 (dt, J = 6.9, 3.7 Hz, 1H), 2.95 (d, J = 7.0 Hz, 2H), 1.50 (s, 9H), 0.17 (s, 9H); 

13C NMR (101 MHz) δ 165.4, 165.2, 133.5, 129.9, 129.0, 128.5, 101.0, 88.3, 83.6, 74.6, 57.6, 

27.9, 26.2, -0.1; IR (thin film) 2979, 2359, 2178, 1753, 1729, 1641, 1365, 1248, 840 cm-1; TLC 

(5% EtOAc:Hexanes) Rf = 0.21; LRMS (ESI) Calcd. for C40H54Cl2NaO8Si2 ([2M+Na]+): 811.26, 
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Found: 811.29; HPLC Chiralpak IC, H/IPA = 19:1, flow rate = 1.0 mL/min, λ = 230 nm, 10.4 

min (minor isomer), 13.1 min (major isomer), 99:1 er; [α]D -5 (c = 0.3, CHCl3). 

(2S,3R)-1-(tert-Butoxy)-3-chloro-1-oxohexan-2-yl benzoate (44ga): The title 

compound was prepared according to General Procedure E using 44g (32.5 mg, 

0.146 mmol) affording β-chloro-α-benzoyloxy ester 44ga (45.6 mg, 0.139 mmol, 96% yield) as a 

pale yellow oil. Analytical data for 44ga: 1H NMR (400 MHz, CDCl3) δ 8.11 (d, J = 7.2 Hz, 2H), 

7.59 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 5.45 (d, J = 3.4 Hz, 1H), 4.39 (dt, J = 10.4, 3.4 

Hz, 1H), 2.07-1.97 (m, 1H), 1.86-1.78 (m, 1H), 1.74-1.64 (m, 1H), 1.53-1.46 (m, 1H), 1.49 (s, 

9H), 0.98 (t, J = 7.3 Hz, 3H); 13C NMR (101 MHz) δ 165.8, 165.6, 133.4, 129.9, 129.3, 128.4, 

83.3, 76.0, 59.9, 35.4, 28.0, 19.7, 13.3; IR (thin film) 2965, 1755, 1730, 1642, 1452, 1370, 1270, 

1110, 711 cm-1; TLC (5% EtOAc:Hexanes) Rf = 0.23; LRMS (ESI) Calcd. for C17H23ClNaO4 

([M+Na]+): 349.12, Found: 349.13; HPLC Chiralpak IC, H/IPA = 99:1, flow rate = 1.0 mL/min, 

λ = 210 nm, 6.1 min (major isomer), 7.0 min (minor isomer), 98.5:1.5 er; [α]D -1 (c = 1.8, 

CHCl3). 

General Procedure F for the Racemic Reduction of β-Chloro-α-Keto Esters 

 

 A flame-dried round-bottomed flask was charged with the β-chloro-α-keto ester (0.15 

mmol, 1.0 equiv) in THF (1.5 mL). The reaction was cooled to -78 ºC. A 1M solution of 

diisobutylaluminum hydride (DIBAL) in THF (0.45 mL, 0.45 mmol, 3.0 equiv) was added 

dropwise. The reaction was allowed to stir for 1 hour at -78 ºC before being quenched by the 

dropwise addition of acetone (5 mL). After warming to room temperature, the reaction was 

diluted with Et2O (10 mL) and sat. aq. Rochelle’s salt (10 mL). The reaction stirred at room 

tBuO

O
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Cl
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temperature for 30 minutes. The layers were separated (1 M HCl was added to help break the 

emulsion). The aqueous layer was extracted with Et2O (2 x 10 mL). The combined organic 

extracts were washed with brine (20 mL), dried over MgSO4, filtered, and concentrated in vacuo. 

The crude residue was purified by column chromatography on silica gel to afford the racemic 

chlorohydrin as a mixture of diastereomers. 

 Note: Other reducing agents (NaBH4 (>20:1 dr), LTBA (11:1 dr), and Super-Hydride 

(>20:1 dr)) all provided a strong preference for the syn diastereomer. Only DIBAL was found to 

provide a ~1:1 mixture of diastereomers. 

Conversion of Chlorohydrin 44a to Glycidic Ester 49 

 

 (2R,3S)-tert-Butyl 3-phenyloxirane-2-carboxylate (49): A flame-dried 1-dram vial 

was charged with the chlorohydrin 44i (51.3 mg, 0.200 mmol, 1.0 equiv) in THF (2.0 mL). The 

solution was cooled to 0 ºC. A freshly prepared 1 M solution of KOtBu in THF (0.240 mL, 0.240 

mmol, 1.2 equiv) was added dropwise and the reaction was allowed to stir for a further 1 h at 0 

ºC. The reaction was quenched with sat. aq. NH4Cl (1 mL) and diluted with H2O (10 mL). The 

aqueous layer was extracted with Et2O (3 x 10 mL). The combined organic extracts were washed 

with brine (20 mL), dried over MgSO4, filtered, and concentrated in vacuo. The crude residue 

was purified by column chromatography on silica gel eluting with 5% EtOAc:hexanes to afford 

the glycidic ester 49 (38.9 mg, 0.177 mmol, 88% yield) as a white crystalline solid (mp: 64-65 

ºC). Analytical data for 49: 1H NMR (400 MHz, CDCl3) δ 7.38-7.28 (m, 5H), 4.03 (d, J = 1.6 Hz, 

1H), 3.41 (d, J = 1.8 Hz, 1H), 1.52 (s, 9H); 13C NMR (101 MHz) δ 167.1, 135.2, 128.8, 128.5, 
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125.8, 82.5, 57.5, 57.3, 27.9; IR (thin film) 2979, 1746, 1541, 1507, 1418, 1246, 1155, 745, 696 

cm-1; TLC (5% EtOAc:Hexanes) Rf = 0.23; LRMS (ESI) Calcd. for C13H17O3 ([M+H]+): 221.12, 

Found: 221.08; SFC AD Column, 2% MeOH, flow rate = 1.5 mL/min, 150 bar, λ = 210 nm, 6.3 

min (major isomer), 9.0 min (minor isomer), 99:1 er; [α]D -129 (c = 0.9, CHCl3). 

Synthesis of β-Azido-α-Hydroxy Ester 50 from 44i 

 

 (2R,3S)-tert-Butyl 3-azido-2-hydroxy-3-phenylpropanoate (50): A flame-dried 1-

dram vial was charged with the chlorohydrin 44i (51.3 mg, 0.200 mmol, 1.0 equiv) in DMF (2.0 

mL). NaN3 (65.0 mg, 1.000 mmol, 5.0 equiv) was added and the reaction was warmed to 50 ºC 

where it was left to stir for 40 h. The reaction was cooled to room temperature and diluted with 

EtOAc (20 mL). The organic layer was extracted with H2O (2 x 20 mL) and brine (20 mL). The 

organic layer was dried over Na2SO4, filtered, and concentrated in vacuo. The crude residue was 

purified by column chromatography on silica gel eluting with 10% EtOAc:hexanes to afford β-

azido-α-hydroxy ester 50 (48.3 mg, 0.183 mmol, 92% yield) as a pale yellow oil. Analytical data 

for 50: 1H NMR (400 MHz, CDCl3) δ 7.47-7.34 (m, 5H), 4.76 (d, J = 3.4 Hz, 1H), 4.28 (dd, J = 

6.3, 3.4 Hz, 1H), 3.17 (d, J = 6.3 Hz, 1H), 1.48 (s, 9H); 13C NMR (101 MHz) δ 171.0, 135.8, 

128.7, 128.7, 127.9, 83.7, 74.0, 67.4, 27.9; IR (thin film) 3436, 2104, 1735, 1645, 1456, 1257, 

1155, 700 cm-1; TLC (10% EtOAc:Hexanes) Rf = 0.32; LRMS (ESI) Calcd. for C13H17N3NaO3 

([M+Na]+): 286.12, Found: 286.12; [α]D +109 (c = 0.8, CHCl3). 
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Synthesis of α-Azido-β-Chloro Ester 51 from 44a 

 

A flame-dried round-bottomed flask was charged with the chloroalcohol 44a (54.2 mg, 

0.200 mmol, 1.0 equiv) in CH2Cl2 (2 mL). The solution was cooled to 0 ºC. Tf2O (67 µL, 0.400 

mmol, 2.0 equiv) and 2,6-lutidine (35 µL, 0.300 mmol, 1.5 equiv) were sequentially added 

dropwise. The resulting solution was allowed to stir for 1 h at 0 ºC. The reaction was quenched 

by addition of 0.5 M HCl (5 mL). Following dilution with CH2Cl2 (8 mL), the layers were 

separated and the organic phase was washed with 0.5 M HCl (2 x 5 mL) and brine (5 mL). The 

organic phase was dried over Na2SO4, filtered, and concentrated to afford the crude triflate as a 

pale yellow oil. 

A round-bottomed flask was charged with the crude triflate in acetone (2 mL). NaN3 

(130.0 mg, 2.00 mmol, 10.0 equiv) was added and the heterogeneous mixture was stirred for 16 

h at room temperature. The crude reaction mixture was filtered through Celite eluting with Et2O 

and concentrated in vacuo. The crude residue was purified by column chromatography on silica 

gel eluting with 2.5% EtOAc:hexanes to afford (2R,3R)-tert-butyl 2-azido-3-chloro-4-

phenylbutanoate (51) (45.7 mg, 0.155 mmol, 77% yield) as a white solid (mp: 81-82 ºC). 

Analytical data for 51: 1H NMR (600 MHz, CDCl3) δ 7.38 (t, J = 7.4 Hz, 2H), 7.32 (t, J = 7.4 

Hz, 1H), 7.29-7.28 (m, 2H), 4.57 (ddd, J = 8.6, 6.7, 2.7 Hz, 1H), 3.85 (d, J = 2.7 Hz, 1H), 3.24 

(dd, J = 13.6, 6.7 Hz, 1H), 3.21 (dd, J = 13.6, 8.5 Hz, 1H), 1.54 (s, 9H); 13C NMR (151 MHz) δ 

166.7, 136.4, 129.3, 128.9, 127.4, 84.1, 63.8, 62.3, 41.6, 27.9; IR (thin film) 2979, 2359, 2116, 
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1744, 1455, 1370, 1261, 1152, 703 cm-1; TLC (5% EtOAc:Hexanes) Rf = 0.20; LRMS (ESI) 

Calcd. for C28H36Cl2N6NaO4 ([2M+Na]+): 613.21, Found: 613.24; [α]D +64 (c = 1.1, CHCl3). 

Synthesis of β-Fluoro-α-Keto Ester 53 and Reduction to Fluorohydrin 54 

 

 Using a procedure adapted from Yang and coworkers,39 a 20-mL Nalgene scintillation 

vial was charged with tert-butyl 3-phenyloxirane-2-carboxylate (S4) (440 mg, 2.00 mmol, 1.0 

equiv) in CH2Cl2 (10 mL). The solution was cooled to -20 ºC. A solution of HF/pyridine (70%, 

0.2 mL) was added dropwise. After stirring for a further 15 min at -20 ºC, the reaction was 

carefully quenched by the dropwise addition of sat. aq. NH4Cl (5 mL). The reaction was further 

diluted with H2O (20 mL) and extracted with CH2Cl2 (3 x 15 mL). The combined organic 

extracts were washed with brine (20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. 

The crude residue was purified by column chromatography on silica gel eluting with 10% 

EtOAc:hexanes to afford β-fluoro-α-hydroxy ester (±)-54 (268 mg, 1.12 mmol, 56% yield, 1:1 

dr) as a pale yellow oil along with recovered S4 (164 mg, 0.74 mmol, 37% yield). 

 A round-bottomed flask was charged with β-fluoro-α-hydroxy ester (±)-54 (240 mg, 

1.00 mmol, 1.0 equiv) in CH2Cl2 (10 mL). Dess–Martin periodinane (DMP) (1.27 g, 3.00 mmol, 

3.0 equiv) was added to the reaction. After stirring for 1 h at room temperature, the reaction was 

quenched with sat. aq. NaHCO3:Na2S2O3 (1:1, 10 mL). The reaction was diluted with Et2O (50 

mL) and the layers were separated. The aqueous layer was washed with sat. aq. 

NaHCO3:Na2S2O3 (1:1, 2 x 25 mL) and brine (25 mL). The organic layer was dried over MgSO4, 

filtered, and concentrated in vacuo to afford tert-butyl 3-fluoro-2-oxo-3-phenylpropanoate (53) 
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(228 mg, 0.96 mmol, 96% yield) as a pale yellow oil that was used without further purification. 

Analytical data for 53: 1H NMR (600 MHz, CDCl3) δ 7.42 (s, 5H), 6.35 (d, J = 47.4 Hz, 1H), 

1.42 (s, 9H); 13C NMR (151 MHz) δ 188.5 (d, JC-F = 24.3 Hz), 159.1, 131.7 (d, JC-F = 19.9 Hz), 

130.1 (d, JC-F = 2.0 Hz), 129.0, 128.0 (d, JC-F = 5.1 Hz), 93.5 (d, JC-F = 187.4 Hz), 85.4, 27.6; 19F 

NMR (565 Hz) δ -183.5; IR (thin film) 2981, 2349, 1753, 1726, 1456, 1371, 1259, 1157, 1013, 

698 cm-1; TLC (30% EtOAc:Hexanes) Rf = 0.36; LRMS (ESI) Calcd. for C14H20FO4 

([M+MeOH+H]+): 271.13, Found: 271.12. 

(2S,3S)-tert-Butyl 3-fluoro-2-hydroxy-3-phenylpropanoate (54): The title 

compound was prepared according to General Procedure D using 53 (36.9 mg, 

0.1550 mmol) affording β-fluoro-α-hydroxy ester 54 (36.1 mg, 0.150 mmol, 97% yield, 1.1:1 dr) 

as a pale yellow oil. Analytical data for 54: 1H NMR (400 MHz, CDCl3) major diastereomer δ 

7.41-7.34 (m, 5H), 5.79 (d, J = 2.4 Hz, 1H), 4.32 (ddd, J = 27.6, 6.3, 2.3 Hz, 1H), 3.12 (d, J = 6.4 

Hz, 1H), 1.50 (s, 9H), minor diastereomer δ 7.41-7.34 (m, 5H), 5.67 (d, J = 2.2 Hz, 1H), 4.32 

(ddd, J = 18.0, 6.9, 3.1 Hz, 1H), 3.04 (d, J = 7.1 Hz, 1H), 1.39 (s, 9H); 13C NMR (101 MHz) 

major diastereomer δ 170.4 (d, JC-F = 3.7 Hz), 135.9 (d, JC-F = 20.6 Hz), 128.6, 128.3,126.0 (d, 

JC-F = 7.6 Hz), 93.5 (d, JC-F = 180.2 Hz), 83.7, 73.7 (d, JC-F = 23.6 Hz), 27.9, minor diastereomer 

δ 169.8 (d, JC-F = 9.5 Hz), 135.1 (d, JC-F = 21.0 Hz), 128.7, 128.1, 126.1 (d, JC-F = 7.9 Hz), 94.1 

(d, JC-F = 181.2 Hz), 83.6, 73.8 (d, JC-F = 24.4 Hz), 27.8; 19F NMR (376 MHz) major 

diastereomer δ -194.2, minor diastereomer δ -189.6; IR (thin film) 3437, 1732, 1649, 1456, 

1369, 1258, 1162, 1018 cm-1; TLC (10% EtOAc:Hexanes) Rf = 0.27; LRMS (ESI) Prepared in 

MeCN, Calcd. for C13H17FNaO3 ([2M+Na]+): 503.22, Found: 503.22; HPLC Chiralpak IA, 

H/IPA = 19:1, flow rate = 1.0 mL/min, λ = 210 nm, 8.9 min (minor diastereomer, major isomer), 

9.5 min (minor diastereomer, minor isomer), 11.0 min (major diastereomer, major isomer), 13.5 
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min (major diastereomer, minor isomer), 99.5:0.5 er (major), 98:2 er (minor); [α]D -31 (c = 0.7, 

CHCl3). 
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CHAPTER FOUR: DYNAMIC KINETIC REDUCTION 

OF RACEMIC ACYL PHOSPHONATES* 

4.1 Introduction 

  A strategy for the preparation of β-stereogenic-α-hydroxy phosphonic acid derivatives via 

dynamic kinetic resolution via asymmetric transfer hydrogenation (DKR-ATH) of racemic α-aryl 

acyl phosphonates is discussed in this chapter (Scheme 4-1). An (arene)RuCl(monosulfonamide) 

complex bearing a bulky m-terphenylsulfonamide ligand provided excellent levels of diastereo- 

and enantiocontrol in the reduction. Interestingly, an unexpected dichotomy was observed in the 

title reaction, which was determined to proceed from the opposite face relative to that observed 

in the analogous reduction of β-stereogenic-α-keto esters providing pseudo-diastereomeric 

products. This methodology was extended to the catalytic enantioselective reduction of acyl 

phosphonates to provide complementary access to challenging Pudovik adducts. 

Scheme 4-1. Preparation of β-Stereogenic-α-Hydroxy Phosphonic Acid Derivatives via Dynamic 
Kinetic Reduction 
 

 

 

 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
* Reproduced in part by permission of the American Chemical Society: Corbett, M. T.; Johnson, 
J. S. J. Am. Chem. Soc. 2013, 135, 594–597.	
  

(±) P
MeO

O

MeO O

Ar

R
P

MeO

O

MeO OH

Ar

R* *
DKR-ATH



175 

4.2 Background 

4.2.1 Preparation of Optically Active α-Hydroxy Phosphonates via Pudovik Reaction 

 The leading methodology in the literature for the preparation of α-hydroxy phosphonates 

is the addition of dialkyl phosphites to carbonyl compounds under acid or base catalysis via C–P 

bond formation (Pudovik reaction). Wynberg reported the first asymmetric Pudovik reaction 

between dimethyl phosphite (1) and 2-nitrobenzaldehyde (2) under chiral base catalysis (Scheme 

4-2).1 Although 3 was obtained with low enantiomeric ratio (64:36), this pioneering work 

illustrated the potential to induce asymmetry through the addition of phosphorus-centered 

nucleophiles to prochiral electrophiles. 

Scheme 4-2. Quinine-Catalyzed Pudovik Reaction 

 

 Since Wynberg’s seminal work, a number of groups have developed highly selective 

chiral Lewis acid and Brønsted base catalysts to achieve enantioselective Pudovik reaction of 

dialkyl phosphites to aldehydes (Scheme 4-3).2 A majority of the developed systems employ 

chiral Schiff base architectures for aluminum and titanium metal centers with a single report 

utilizing a chiral base catalyst to achieve high levels of asymmetric induction. Although these 

systems achieve excellent levels of enantiocontrol in the addition of dialkyl phosphites to aryl 

aldehydes, the complementary product class prepared via addition into aliphatic aldehydes was 

obtained with substantial erosion in enantiofacial bias even at cryogenic temperatures. 
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Scheme 4-3. Chiral Catalysts Employed in Enantioselective Pudovik Reactions 

 

 Despite its synthetic utility as a C–P bond-forming reaction, the absence of a 

diastereoselective variant has hindered its incorporation in complex-molecule synthesis. A 

number of groups have investigated the development of diastereoselective Pudovik reactions into 

α-chiral aldehydes; however, these methodologies are often substrate specific and succumb to 

racemization under the reaction conditions.3 An early example by Wróblewski examined the 

addition of dimethyl phosphite (1) to 2,4-O-benzylidene-D-erythrose (4) under Et3N/DMAP 

catalysis (Scheme 4-4).4 Although the Pudovik reaction provided the desired α-hydroxy 

phosphonates in good combined yield, no diastereoselectivity was observed yielding equimolar 

quantities of 5 and 6. 
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Scheme 4-4. Diastereoselective Pudovik Reactions 

 

4.2.2 Preparation of Optically Active α-Hydroxy Phosphonates via Asymmetric 
Hydrogenation 
 
 In principle, a complementary approach to the enantioselective Pudovik reaction for the 

synthesis of enantiopure α-hydroxy phosphonates is the asymmetric reduction of acyl 

phosphonates, which are readily prepared via Michaelis–Arbuzov reaction of trialkyl phosphites 

and acyl chlorides. Their ease of synthesis renders them versatile building blocks for the 

construction of optically active phosphorous-containing compounds. Gajda first demonstrated 

the applicability of acyl phosphonates to serve as competent substrates in asymmetric reductions 

utilizing a Corey–Bakshi–Shibata (CBS)5 oxazaborolidine-mediated borane reduction (Scheme 

4-5).6 Subjection of acyl phosphonate 7 to CBS reduction conditions resulted in the formation of 

α-hydroxy phosphonate 8 in moderate yield with high levels of enantioselectivity at room 

temperature. Stereochemical analysis of 8 confirmed that the stereochemistry obtained via CBS 

reduction of 7 was consistent with the mechanism proposed by Corey for the reduction of 

ketones. 

Scheme 4-5. Enantioselective CBS Reduction of Acyl Phosphonates 
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 Despite the early success of strategies for the synthesis of α-hydroxy phosphonates via 

CBS reduction, asymmetric hydrogenation methodologies remained largely unexplored. In 1999, 

Burk reported the first method for the preparation of α-hydroxy phosphonate derivatives via 

catalytic asymmetric hydrogenation utilizing a cationic rhodium complex (Scheme 4-6).7 

Employing enolbenzoate phosphonate 9, hydrogenation proceeded under mild hydrogenation 

conditions to provide α-benzoyloxy phosphonate 10 in 96:4 er, which can be deprotected upon 

treatment with K2CO3/MeOH. This methodology worked well for alkyl substrates providing 

products in high enantioselectivity; however, use of aryl substrates resulted in diminished levels 

of selectivity. Since Burk’s seminal report, a number of groups have developed even more 

efficient and selective ligands for application in catalytic asymmetric hydrogenations of enol 

phosphonates employing cationic rhodium catalyst complexes.8 

Scheme 4-6. Catalytic Asymmetric Hydrogenation of Enol Phosphonates 

 

 Catalytic enantioselective hydrogenation of acyl phosphonates in their native form to 

directly access α-hydroxy phosphonates remained a long-standing challenge for synthetic 

chemists. Recently, Goulioukina and Beletskaya reported the first catalytic asymmetric 

hydrogenation of acyl phosphonates employing a chiral palladium complex (Scheme 4-7).9 
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need for the development of new catalysts to achieve reduction with high levels of 

enantioselectivity. 

Scheme 4-7. Catalytic Asymmetric Hydrogenation of Acyl Phosphonates 

 

4.2.3 Acyl Phosphonates as Structural Congeners of α-Keto Esters 

 Asymmetric catalysis relies on the fundamental paradigm that privileged catalysts 

generate well-defined chiral spaces, which provide an environment capable of effectively 

directing similarly structured small molecules for enantiofacial discrimination.10 This principle 

has led to the interchangeable application of catalysts and reaction modes developed for α-keto 

esters and their structural congeners, acyl phosphonates, due to their structural and electronic 

similarities. The activation of α-keto esters has been primarily achieved through the generation 

of a tight five-membered chelate with a Lewis or Brønsted acid catalyst via coordination to the 

1,2-dicarbonyl moiety (Scheme 4-8). This well-defined chelate often allows for high levels of 

enantiocontrol to be realized in the addition of a nucleophile. 
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Scheme 4-8. Activation Modes of α-Keto Esters for Nucleophilic Attack 

 

 Given their structural similarity, Evans and Jørgensen were able to interchangeably 
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(Scheme 4-9b).12 The products 15 and 18 were obtained with identical stereoinduction 

highlighting the interchangeability of α-keto esters and acyl phosphonates and the potential 

generality of these substrate classes in asymmetric catalysis by utilizing a common activation 

mode (Scheme 4-9c). Although sparingly utilized relative to α-keto esters, acyl phosphonates 

have been broadly employed as electrophiles in asymmetric methodologies.11-13 
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Scheme 4-9. Common Reactivity of α-Keto Esters and Acyl Phosphonates 

 

4.2.4 DKR-ATH Strategy for the Synthesis of Optically Active α-Hydroxy Phosphonates 

 As described in Chapter Three, our group has been actively involved in the development 
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the preparation of β-stereogenic-α-glycolic acid derivatives. Utilizing 

(arene)RuCl(monosulfonamide) complexes bearing a bulky m-terphenylsulfonamide, the 

dynamic reduction of β-aryl-, β-chloro-, and β-amino-α-keto esters provides direct access to a 

diverse class of products with excellent levels of diastereo- and enantioselectivity (Scheme 4-

10).15 
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Scheme 4-10. Synthesis of β-Stereogenic-α-Glycolic Acid Derivatives via DKR-ATH 

 

The generality of this reaction manifold for the reduction of β-stereogenic-α-keto esters 

led us to consider the potential extrapolation of this precedent to the reduction of racemic α-

stereogenic acyl phosphonates (Scheme 4-11). Given the aforementioned studies by Evans and 

Jørgensen, we proposed that the dynamic reduction of acyl phosphonates could be achieved 

through the application of our previously developed catalyst architectures to provide a flexible 

entry point into new β-stereogenic-α-hydroxy phosphonates with high levels of absolute and 

relative stereocontrol. Enantiopure α-hydroxy phosphonic acid subunits appear in compounds 

exhibiting antibacterial, antiviral, antibiotic, pesticidal, and anticancer properties;16 however, 

prior art designed to access this structural motif bearing a β-stereogenic center efficiently are 

scarce.17 

Scheme 4-11. Synthesis of β-Stereogenic-α-Hydroxy Phosphonic Acid Derivatives via DKR-
ATH 
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4.3 Results and Discussion 

4.3.1 Optimization of DKR-ATH of Racemic α-Aryl Acyl Phosphonates 

 We began our studies by examining the reduction of racemic α-aryl acyl phosphonates 19 

with our library of (arene)RuCl(monosulfonamide) catalysts employing a mixture of 

HCO2H:NEt3 (5:2) as our organic reductant (Table 4-1). Employing α-phenyl acyl phosphonate 

19b as a test substrate, Noyori’s (p-cymene)RuCl[(S,S)-TsDPEN] complex18 was found to 

provide α-hydroxy phosphonate 20b with modest anti/syn selectivity, but with excellent levels of 

enantiocontrol for both diastereomers (entry 1). Based on our group’s recent success in tuning 

the diastereoselectivity of the DKR-ATH of β-chloro-α-keto esters through the application of a 

bulky m-terphenylsulfonamide ligand,15b aminosulfonamide L2 was employed in the reduction 

of 19b in N,N-dimethylformamide (DMF) delivering a marked increase in diastereoselectivity to 

14:1 dr (entry 2). Changing the solvent to dimethyl sulfoxide (DMSO) resulted in a boost in 

diastereoselection up to 20:1 (entry 3). α-Naphthyl ethylenediamine-derived L3 was tested and 

found to engender even higher levels of diastereocontrol with optimized reaction conditions 

being realized with DMSO as the solvent (entries 4 and 5). Both dimethyl and diethyl 

phosphonates were found to provide comparable levels of reactivity and selectivity (entries 5 and 

6); however, the bulkier diisopropyl phosphonate 19c suffered from reduced reactivity 

presumably due to its increased steric requirements (entry 7). 
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Table 4-1. Optimization of Ligand and Substrate in DKR-ATH of Racemic α-Aryl Acyl 
Phosphonatesa 
 

 

entry 19 L solvent conv. (%)b drb erc 
1 19b L1 DMSO >95 3:1 >99.5:0.5 (98.5:1.5)d 
2 19b L2 DMF >95 14:1 99:1 
3 19b L2 DMSO >95 20:1 >99.5:0.5 
4 19b L3 DMF >95 22:1 >99.5:0.5 
5 19b L3 DMSO >95 (93)e 29:1 >99.5:0.5 
6 19a L3 DMSO >95 (91)e >30:1 >99.5:0.5 
7 19c L3 DMSO 19 – – 

aReactions were performed on 0.155 mmol scale employing 5 equiv of HCO2H:Et3N (5:2). 
bDetermined by 31P NMR analysis of the crude reaction mixture. cDetermined by chiral HPLC 
analysis. dThe value in parentheses is the enantiomeric ratio for the syn isomer. eThe value in 
parentheses is the isolated yield of analytically pure product. 

 
4.3.2 Examination of Substrate Scope in DKR-ATH of Racemic α-Aryl Acyl Phosphonates 

With optimized reaction conditions in hand, the reaction scope was next examined 
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excellent levels of diastereo- and enantiocontrol.  Ortho-substituents resulted in reduced 

reactivity necessitating elevated temperatures (45 °C) and longer reaction times to provide 20j in 
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providing 20j in 11:1 dr demonstrating that the elevated reaction conditions required in the 

reduction led to reduced selectivity. 

Table 4-2. Examination of Aromatic Substrate Scopea 

 
aReactions were performed on 0.155 mmol scale employing 5 equiv of HCO2H:Et3N (5:2) in 
DMSO (1.5 mL) at room temperature for 10 h. Isolated yields of analytically pure material are 
reported. Diastereomeric ratios were determined by 31P NMR analysis of the crude reaction 
mixture; enantiomeric ratios were determined by chiral HPLC analysis. bReaction was performed 
at 45 °C for 20 h. 
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slower under the reactions conditions, requiring 36 h to provide 20p in 5:1 dr while retaining 

excellent enantiocontrol. 

Table 4-3. Examination of Aliphatic Substrate Scopea 

 
aReactions were performed on 0.155 mmol scale employing 5 equiv of HCO2H:Et3N (5:2) in 
DMSO (1.5 mL) at room temperature for 10 h. Isolated yields of analytically pure material are 
reported. Diastereomeric ratios were determined by 31P NMR analysis of the crude reaction 
mixture; enantiomeric ratios were determined by chiral HPLC analysis. bReaction was performed 
at room temperature for 36 h. 

 
To further probe the utility of this reaction, the bicyclic substrate 19q was subjected to 

the reduction conditions affording 20q in high yield and comparable levels of selectivity as the 

acyclic examples (Scheme 4-12). In contrast to ortho-substituted 20j, α-hydroxy phosphonate 
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substituent occupies a sterically encumbering conformation when unconstrained causing 

nonideal substrate-catalyst interactions. The absolute stereochemistry of the products was 

established as (1R,2R) via x-ray crystallographic analysis of 20e and 20q confirming the anti 

orientation of the alcohol and aryl groups.19 
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Scheme 4-12. DKR-ATH of Cyclic α-Aryl Acyl Phosphonate 19q 

 

 

4.3.3 Application of ATH Methodology to the Reduction of Simple Acyl Phosphonates 
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the reduction to 0 °C was found to be ineffective at increasing the levels of enantioselection 

providing 22a in 91:9 er (entry 5). Changing the phosphonate ester identity from methyl to ethyl 

had little effect on the stereochemical outcome of the reaction (entry 6). Reverting to a (S,S)-

DPEN backbone (L2) led to comparable enantioselectivities in DMF and DMSO (entries 7 and 

8); however, reaction in DMF led to the isolation of (R)-22a20 in 95% yield with 92:8 er. 

Table 4-4. Optimization of Ligand and Substrate in ATH of Acyl Phosphonatesa 

 

entry 21 L solvent conv. (%)b erc 
1 21a L3 DMSO >95 88.5:11.5 
2 21a L3 DMF >95 91.5:8.5 
3 21a L3 DMA >95 89.5:10.5 
4 21a L3 NMP >95d – 
5e 21a L3 DMF >95 91:9 
6 21b L3 DMF >95 89.5:10.5 
7 21a L2 DMF >95 (95)f 92:8 
8 21a L2 DMSO >95 90:10 

aReactions were performed on 0.155 mmol scale employing 5 equiv of HCO2H:Et3N (5:2). 
bDetermined by 31P NMR analysis of the crude reaction mixture. cDetermined by chiral HPLC 
analysis. dThe reaction resulted in the complete decomposition of starting material with no 
desired product observed. eReaction was performed at 0 °C for 10 h. fThe value in parentheses is 
the isolated yield of analytically pure product. 

 
 The levels of enantioselection achieved with aryl acyl phosphonate 21a were found to be 

uncompetitive with those observed via known Pudovik methods into aryl aldehydes (Scheme 4-

13a). Upon consideration of the structural differences between 19a and 21a, we wondered if our 
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acyl phosphonates. Interestingly, the presence of a α-substituent was found to be unnecessary for 

high levels of enantioselectivity in the reduction of aliphatic acyl phosphonates providing 

enantiopure products 22c-e in high yield (Scheme 4-13b). The excellent levels of enantiocontrol 

observed for 22c-e are a marked improvement over Pudovik-based methodologies, highlighting 

the potential utility and complementarity of this transfer hydrogenation in the preparation of 

enantiopure aliphatic α-hydroxy phosphonic acids bearing one stereocenter. 

Scheme 4-13. ATH of Aliphatic Acyl Phosphonates 
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substrate-catalyst interactions.21 In our analysis of x-ray crystal structures obtained of the α-

hydroxy phosphonate products F, it was shown that the reduction of the acyl phosphonates (path 

d) was proceeding from the opposite face of the carbonyl than observed with their α-keto ester 

congeners which afford α-hydroxy esters E (path c). 

Scheme 4-14. Reversal in Enantiofacial Selectivity 
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have switched due to the presence of the chlorine atom). Methyl benzoylformate (30) was 

subjected to the standard reduction conditions affording methyl mandelate (31) in high yield and 

excellent enantioselectivity (Scheme 4-15d). The absolute stereochemistry of (R)-31 was 

determined by comparison of optical rotations to those reported in the literature,23 confirming 

that aliphatic and aryl α-keto esters undergo reduction from the same face of the carbonyl. 

Scheme 4-15. Facial Selectivity in the ATH of α-Keto Esters 
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analysis of 20e and 20q (Scheme 4-16a-b). Both reductions proceeded with diastereofacial 

selectivity opposite of what was observed in the preparation of 24 and 26. This facial selectivity 

is not dependent on the presence of a α-substituent since the reduction of 21e proceeds to afford 

22e (Scheme 4-16c); the configuration of the latter was determined by comparison of the optical 

rotation of the derived benzoate (R)-32e with that reported in the literature.7 (Note: In reference 7, 

there is a mistake in the structure corresponding to 32e (one extra carbon) for that paper.  The 

Supporting Information shows the correct structure consistent with the provided analytical data.) 

The reduction of aryl acyl phosphonate 21 proceeded to provide (R)-22a based on comparison of 

the optical rotation to that reported in the literature (Scheme 4-16d).20 

Scheme 4-16. Facial Selectivity in the ATH of Acyl Phosphonates 
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Given these collective data, it can be concluded that the Ru-catalyzed asymmetric 

transfer hydrogenation of both aliphatic and aryl acyl phosphonates proceeds from the opposite 

face observed in the reduction of α-keto esters. Obtaining a full understanding of the reversal in 

stereoselectivity will require further investigation, but some initial observations that are relevant 

can be offered. Despite being electronic congeners of α-keto esters, acyl phosphonates are 

tetrahedral rather than trigonal at the α-center to the carbonyl, a circumstance that alters the steric 

environment of the ketone undergoing reduction (Scheme 4-17a). The impact of this geometric 

change is probably compounded by the fact that the outersphere carbonyl activation mode in the 

(amido)Ru(II) complex is dramatically different than in the bis(oxazoline)Cu(II) systems 

(Scheme 4-9 and Scheme 4-17b). 

Scheme 4-17. Potential Variables to Account for Stereoselectivity Inversion 
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length of the P–C bond (1.84 Å) found in the acyl phosphonate moiety is significantly longer 

than the C–C bond (1.54 Å) possessed by α-keto esters. This effect can be substantial when 

considering the potential penalties incurred due to substrate-catalyst interactions by the ester and 

phosphonate groups. Therefore, another possible explanation is that the ester and phosphonate 

moieties do not occupy the same chiral space in the six-membered transition state required for 

transfer hydrogenation. 

4.4 Conclusion 

An unexpected reversal in facial selectivity was observed in the 

(arene)RuCl(monosulfonamide)-mediated asymmetric transfer hydrogenation of acyl 

phosphonates from their structural mimics, α-keto esters. This dichotomy in reactivity was 

exploited in the development of an extremely selective dynamic kinetic resolution of α-aryl acyl 

phosphonates providing β-stereogenic-α-hydroxy phosphonic acid derivatives. The first highly 

selective catalytic reduction of acyl phosphonates also provides complementary access to 

challenging Pudovik adducts. Substrate-catalyst interactions, reactant orientations, and activation 

modes are proposed to be influential in providing the observed facial divergence between α-keto 

esters and acyl phosphonates. 
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4.5 Experimental Details 

Methods: Infrared (IR) spectra were obtained using a Jasco 260 Plus Fourier transform 

infrared spectrometer. Proton and carbon magnetic resonance spectra (1H NMR, 13C NMR, and 

31P NMR) were recorded on a Bruker model DRX 400 or 600 (1H NMR at 400 MHz or 600 

MHz, 13C NMR at 100 MHz or 150 MHz, and 31P NMR at 162 MHz or 243 MHz) spectrometer 

with solvent resonance as the internal standard (1H NMR: CDCl3 at 7.26 ppm and 13C NMR: 

CDCl3 at 77.0 ppm). Chemical shifts for 31P NMR are reported in ppm from H3PO4 resonance 

(0.00 ppm) as the external standard. 1H NMR data are reported as follows: chemical shift, 

multiplicity (s = singlet, br s = broad singlet, d = doublet, dd = doublet of doublet, t = triplet, q = 

quartet, sept = septuplet, oct = octuplet, m = multiplet), coupling constants (Hz), and integration. 

HPLC analysis was performed on an Agilent Technologies 1200 System equipped with 

Chiralpak IA, IB, and IC columns (φ 4.6 mm x 250 mm, constant flow at 1.00 mL/min). Optical 

rotations were measured using a 2 mL cell with a 1 dm path length on a Jasco DIP 1000 digital 

polarimeter. Mass spectra were obtained using a Micromass Quattro II (triple quad) instrument 

with nanoelectrospray ionization (Note: All samples prepared in methanol). Analytical thin layer 

chromatography (TLC) was performed on Sorbtech 0.25 mm silica gel 60 plates. Visualization 

was accomplished with UV light and/or aqueous ceric ammonium molybdate solution followed 

by heating. Purification of the reaction products was carried out by using Siliaflash-P60 silica gel 

(40-63µm) purchased from Silicycle. All reactions were carried out under an atmosphere of 

nitrogen in flame-dried glassware with magnetic stirring. Yield refers to isolated yield of 

analytically pure material unless otherwise noted. 

Materials: α-Aryl aldehydes,24 ligands L1-3,15a,15b acyl phosphonates 21a-e,7,25 and 

Dess–Martin periodinane (DMP)26 were prepared according to known procedures. Dimethyl 
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sulfoxide (DMSO) was distilled from calcium hydride and stored under nitrogen over 3Å 

molecular sieves. Triethylamine (Et3N) was freshly distilled from calcium hydride prior to use. 

Diethyl ether (Et2O), dichloromethane (CH2Cl2), and tetrahydrofuran (THF) were dried by 

passage through a column of neutral alumina under nitrogen prior to use. All other reagents were 

purchased from commercial sources and were used as received unless otherwise noted. 

Preparation of S3 

 

A flame-dried 50-mL round-bottomed flask equipped with a magnetic stir bar was 

charged with methoxymethyl(triphenyl)phosphonium chloride (1.54 g, 4.50 mmol, 1.5 equiv) in 

Et2O (15 mL). KOtBu (0.50 g, 4.50 mmol, 1.5 equiv) was added to the stirring suspension. After 

30 min, the blood red solution was cooled to 0 °C in an ice bath. Ketone S1 (0.94 g, 3.00 mmol, 

1.0 equiv) was added and the resulting solution was allowed to warm to room temperature and 

stir for 10 h. The reaction was quenched with H2O (30 mL) and diluted with Et2O (30 mL). The 

layers were separated and the organic layer was washed with brine (30 mL), dried over MgSO4, 

filtered, and concentrated in vacuo. The crude residue was filtered through a plug of silica 

eluting with 30% ethyl acetate:hexanes to afford the crude enol ether S2 as an E/Z mixture, 

which was used without further purification. 

A 25-mL round-bottomed flask equipped with a magnetic stir bar was charged with the 

crude enol ether S2 in acetone:H2O (4:1) (5 mL). The solution was cooled to 0 °C in an ice bath. 

HBr (48%) (1 mL) was carefully added to the reaction. After stirring at 0 °C for 30 min, the ice 

bath was removed and the reaction was allowed to stir for 10 h at room temperature. The reaction 
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was diluted with H2O (10 mL) and extracted with CH2Cl2 (3 x 20 mL). The combined organic 

extracts were washed with brine (30 mL), dried over Na2SO4, filtered, and concentrated in vacuo. 

The crude residue was purified by column chromatography on silica gel eluting with 30% ethyl 

acetate:hexanes to afford 2-(1-tosyl-1H-indol-3-yl)propanal (S3) (0.78 g, 2.38 mmol, 79% yield) 

as a viscous yellow oil. Analytical data for S3: 1H NMR (600 MHz, CDCl3): δ 9.62 (d, J = 1.9 

Hz, 1H), 8.01 (d, J = 8.3 Hz, 1H), 7.78 (d, J = 8.4 Hz, 2H), 7.50 (s, 1H), 7.47 (d, J = 7.9 Hz, 1H), 

7.35 (t, J = 7.6 Hz, 1H), 7.26-7.21 (m, 3H), 3.82 (dq, J = 7.1, 0.9 Hz, 1H), 2.32 (s, 3H), 1.52 (d, J 

= 7.1 Hz, 3H); 13C NMR (151 MHz, CDCl3): δ 199.7, 145.1, 135.2, 134.9, 129.9, 129.6, 126.7, 

125.1, 123.7, 123.3, 119.5, 119.0, 113.7, 44.0, 21.4, 13.3; IR (thin film): 1730, 1653, 1448, 1370, 

1174, 1130, 1089 cm-1; TLC (30% ethyl acetate:hexanes): Rf = 0.35; LRMS (ESI): Calcd. for 

C19H21NaNO4S ([M+MeOH+Na]+): 360.13, Found: 360.17. 

General Procedure A for the Preparation of Racemic β-Aryl-α-Hydroxy Phosphonates 
20a-q 
 

 

A 25-mL round-bottomed flask equipped with a magnetic stir bar was charged with 

dialkyl phosphite (2.40 mmol, 1.2 equiv) in Et3N:CH2Cl2 (1:10) (5.0 mL). The solution was 

cooled to 0 °C in an ice bath. α-Aryl aldehyde (2.00 mmol, 1.0 equiv) was added dropwise. After 

stirring at 0 °C for 30 min, the ice bath was removed and the reaction was stirred for 10 h at 

room temperature. The reaction was diluted with Et2O (40 mL) and sequentially washed with 1 

M HCl (1 x 20 mL), H2O (2 x 20 mL), and brine (1 x 20 mL). The organic layer was dried over 

MgSO4, filtered, and concentrated in vacuo. The crude residue was purified by column 
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chromatography on silica gel eluting with a 30% to 50% acetone:hexanes gradient to afford to 

racemic β-aryl-α-hydroxy phosphonate 20 as an inseparable mixture of diastereomers. 

General Procedure B for the Preparation of α-Aryl Acyl Phosphonates 19a-q 

 

A 25-mL round-bottomed flask equipped with a magnetic stir bar was charged with β-

aryl-α-hydroxy phosphonate 20 (0.50 mmol, 1.0 equiv) in CH2Cl2 (5.0 mL). Dess-Martin 

periodinane (424 mg, 1.00 mmol, 2.0 equiv) was added and the reaction stirred 2 h at room 

temperature. The reaction was diluted with Et2O (25 mL) and washed with sat. aq. NaHCO3:sat. 

aq. Na2S2O3 (1:1) (3 x 10 mL) and brine (1 x 10 mL).  The organic layer was dried over MgSO4, 

filtered, and concentrated in vacuo to afford α-aryl acyl phosphonate 19, which was used in the 

reduction without further purification. 

Dimethyl (2-phenylpropanoyl)phosphonate (19a): The title compound was 

prepared according to General Procedure B using β-aryl-α-hydroxy phosphonate 

20a (122 mg, 0.50 mmol) affording α-aryl acyl phosphonate 19a (120 mg, 99% yield) as a pale 

yellow oil. Analytical data for 19a: 1H NMR (400 MHz, CDCl3): δ 7.36-7.32 (m, 2H), 7.29-7.24 

(m, 2H), 4.38 (q, J = 6.9 Hz, 1H), 3.70 (d, J = 10.7 Hz, 3H), 3.39 (d, J = 10.9 Hz, 3H), 1.44 (d, J 

= 6.9 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 209.7 (d, JP-C = 161.8 Hz), 136.6, 128.82, 128.81, 

127.6, 53.8 (d, JP-C = 7.3 Hz), 53.1 (d, JP-C = 6.9 Hz), 52.7 (d, JP-C = 54.6 Hz), 16.6 (d, JP-C = 3.2 

Hz); 31P NMR (151 MHz, CDCl3): δ -0.64; IR (thin film): 2959, 1692, 1454, 1258, 1032, 837, 

701 cm-1; TLC (30% acetone:hexanes): Rf = 0.35; LRMS (ESI): Calcd. for C11H15NaO4P 

([M+Na]+): 265.06, Found: 265.02. 
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Diethyl (2-phenylpropanoyl)phosphonate (19b): The title compound was 

prepared according to General Procedure B using β-aryl-α-hydroxy phosphonate 

20b (136 mg, 0.50 mmol) affording α-aryl acyl phosphonate 19b (131 mg, 97% yield) as a pale 

yellow oil. Analytical data for 19b: 1H NMR (600 MHz, CDCl3): δ  7.31-7.28 (m, 2H), 7.24-

7.21 (m, 3H), 4.39 (q, J = 7.0 Hz, 1H), 4.11-3.97 (m, 2H), 3.82-3.68 (m, 2H), 1.41 (d, J = 7.0 Hz, 

3H), 1.24 (t, J = 7.1 Hz, 3H), 1.07 (t, J = 7.1 Hz, 3H); 13C NMR (151 MHz, CDCl3): δ  210.4 (d, 

JP-C = 162.2 Hz), 137.0, 128.73, 128.71, 127.5, 63.6 (d, JP-C = 6.9 Hz), 63.0 (d, JP-C = 7.1 Hz), 

52.5 (d, JP-C = 53.9 Hz), 16.8 (d, JP-C = 2.9 Hz), 16.1 (d, JP-C = 5.7 Hz), 15.9 (d, JP-C = 6.0 Hz); 

31P NMR (243 MHz, CDCl3): δ  -2.15; IR (thin film): 1685, 1646, 1254, 1021, 700 cm-1; TLC 

(30% acetone:hexanes): Rf = 0.40; LRMS (ESI): Calcd. for C13H20O4P ([M+H]+): 271.11, 

Found: 271.12. 

Diisopropyl (2-phenylpropanoyl)phosphonate (19c): The title compound was 

prepared according to General Procedure B using β-aryl-α-hydroxy phosphonate 

20c (150 mg, 0.50 mmol) affording α-aryl acyl phosphonate 19c (137 mg, 92% yield) as a pale 

yellow oil. Analytical data for 19c: 1H NMR (400 MHz, CDCl3): δ 7.29-7.25 (m, 2H), 7.22-7.18 

(m, 3H), 4.63 (dq, J = 12.6, 6.3 Hz, 1H), 4.47-4.36 (m, 2H), 1.40 (d, J = 7.0 Hz, 3H), 1.26 (d, J = 

6.2 Hz, 3H), 1.20 (d, J = 6.2 Hz, 3H), 1.12 (d, J = 6.2 Hz, 3H), 1.06 (d, J = 6.2 Hz, 3H); 13C 

NMR (101 MHz, CDCl3): δ 211.1 (d, JP-C = 166.0 Hz), 137.5, 128.7, 128.6, 127.3, 72.6 (d, JP-C 

= 7.5 Hz), 72.4 (d, JP-C = 7.6 Hz), 52.1 (d, JP-C = 54.3 Hz), 23.9 (d, JP-C = 3.6 Hz), 23.8 (d, JP-C = 

5.4 Hz), 23.5 (d, JP-C = 4.8 Hz), 23.4 (d, JP-C = 5.4 Hz), 17.0 (d, JP-C = 2.7 Hz); 31P NMR (162 

MHz, CDCl3): δ -3.89; IR (thin film): 2981, 1695, 1653, 1455, 1387, 1254, 993 cm-1; TLC (30% 

acetone:hexanes): Rf = 0.46; LRMS (ESI): Calcd. for C15H24O4P ([M+H]+): 299.14, Found: 

299.14. 
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Dimethyl (2-(4-methoxyphenyl)propanoyl)phosphonate (19d): The title 

compound was prepared according to General Procedure B using β-aryl-α-

hydroxy phosphonate 20d (143 mg, 0.50 mmol) affording α-aryl acyl 

phosphonate 19d (134 mg, 98% yield) as a pale yellow oil. Analytical data for 19d: 1H NMR 

(400 MHz, CDCl3): δ 7.14 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 4.30 (q, J = 6.9 Hz, 1H), 

3.74 (s, 1H), 3.68 (d, J = 10.7 Hz, 3H), 3.39 (d, J = 10.9 Hz, 3H), 1.38 (d, J = 7.0 Hz, 3H); 13C 

NMR (101 MHz, CDCl3): δ 209.6 (d, JP-C = 160.6 Hz), 159.1, 130.0, 128.3, 114.2, 55.1, 53.8 (d, 

JP-C = 7.2 Hz), 53.2 (d, JP-C = 6.8 Hz), 51.9 (d, JP-C = 54.5 Hz), 16.5 (d, JP-C = 3.4 Hz); 31P NMR 

(162 MHz, CDCl3): δ 0.12; IR (thin film): 1730, 1683, 1653, 1509, 1253, 1179, 1030 cm-1; TLC 

(30% acetone:hexanes): Rf = 0.24; LRMS (ESI): Calcd. for C12H17NaO5P ([M+Na]+): 295.07, 

Found: 295.07. 

Dimethyl (2-(p-tolyl)propanoyl)phosphonate (19e): The title compound was 

prepared according to General Procedure B using β-aryl-α-hydroxy phosphonate 

20e (129 mg, 0.50 mmol) affording α-aryl acyl phosphonate 19e (119 mg, 93% 

yield) as a pale yellow oil. Analytical data for 19e: 1H NMR (400 MHz, CDCl3): δ 7.12-7.08 (m, 

4H), 4.30 (dq, J = 6.9, 0.9 Hz, 1H), 3.66 (d, J = 10.7 Hz, 3H), 3.37 (d, J = 10.9 Hz, 3H), 2.27 (s, 

3H), 1.37 (d, J = 6.9 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 209.6 (d, JP-C = 161.3 Hz), 137.3, 

133.4, 129.4, 128.6, 53.7 (d, JP-C = 7.2 Hz), 53.1 (d, JP-C = 7.1 Hz), 52.2 (d, JP-C = 54.5 Hz), 20.8, 

16.5 (d, JP-C = 3.3 Hz); 31P NMR (162 MHz, CDCl3): δ -0.56; IR (thin film): 2959, 1732, 1698, 

1515, 1497, 1248, 1038 cm-1; TLC (30% acetone:hexanes): Rf = 0.33; LRMS (ESI): Calcd. for 

C12H18O4P ([M+H]+): 257.10, Found: 257.12. 
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Dimethyl (2-(naphthalen-2-yl)propanoyl)phosphonate (19f): The title 

compound was prepared according to General Procedure B using β-aryl-α-

hydroxy phosphonate 20f (147 mg, 0.50 mmol) affording α-aryl acyl 

phosphonate 19f (141 mg, 96% yield) as a pale yellow oil. Analytical data for 

19f: 1H NMR (600 MHz, CDCl3): δ 7.83-7.79 (m, 3H), 7.73 (s, 1H), 7.48-7.44 (m, 2H), 7.35 (dd, 

J = 8.5, 1.7 Hz, 1H), 4.57 (q, J = 6.9 Hz, 1H), 3.70 (d, J = 16.7 Hz, 3H), 3.32 (d, J = 16.9 Hz, 

3H), 1.53 (d, J = 6.9 Hz, 3H); 13C NMR (151 MHz, CDCl3): δ 209.7 (d, JP-C = 161.7 Hz), 134.0, 

133.3, 132.6, 128.6, 127.9, 127.7, 127.5, 126.29, 126.28, 126.1, 53.9 (d, JP-C = 6.9 Hz), 53.2 (d, 

JP-C = 7.1 Hz), 52.8 (d, JP-C = 54.7 Hz), 16.7 (d, JP-C = 3.0 Hz); 31P NMR (243 MHz, CDCl3): δ -

0.57; IR (thin film): 1716, 1698, 1558, 1457, 1254, 1034 cm-1; TLC (30% acetone:hexanes): Rf 

= 0.31; LRMS (ESI): Calcd. for C15H18O4P ([M+H]+): 293.10, Found: 293.16. 

Dimethyl (2-(4-nitrophenyl)propanoyl)phosphonate (19g): The title 

compound was prepared according to General Procedure B using β-aryl-α-

hydroxy phosphonate 20g (137 mg, 0.50 mmol) affording α-aryl acyl 

phosphonate 19g (133 mg, 97% yield) as a pale yellow oil. Analytical data for 19g: 1H NMR 

(400 MHz, CDCl3): δ 8.17 (d, J = 8.8 Hz, 2H), 7.41 (d, J = 8.8 Hz, 2H), 4.49 (dq, J = 7.0, 0.8 Hz, 

1H), 3.76 (d, J = 10.8 Hz, 3H), 3.58 (d, J = 10.9 Hz, 3H), 1.48 (d, J = 7.0, 0.8 Hz, 3H); 13C 

NMR (101 MHz, CDCl3): δ 209.2 (d, JP-C = 177.4 Hz), 147.3, 144.5, 129.5, 123.9, 54.1 (d, JP-C 

= 7.5 Hz), 53.7 (d, JP-C = 7.4 Hz), 52.3 (d, JP-C = 54.7 Hz), 16.7 (d, JP-C = 1.8 Hz); 31P NMR (162 

MHz, CDCl3): δ -1.50; IR (thin film): 1716, 1698, 1605, 1521, 1348, 1038 cm-1; TLC (30% 

acetone:hexanes): Rf = 0.21; LRMS (ESI): Calcd. for C11H15NO6P ([M+H]+): 288.07, Found: 

288.10. 
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Dimethyl (2-(4-bromophenyl)propanoyl)phosphonate (19h): The title 

compound was prepared according to General Procedure B using β-aryl-α-

hydroxy phosphonate 20h (162 mg, 0.50 mmol) affording α-aryl acyl 

phosphonate 19h (157 mg, 98% yield) as a pale yellow oil. Analytical data for 19h: 1H NMR 

(600 MHz, CDCl3): δ 7.46 (d, J = 8.5 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H), 4.34 (q, J = 7.0 Hz, 1H), 

3.73 (d, J = 10.7 Hz, 3H), 3.49 (d, J = 10.9 Hz, 3H), 1.42 (dd, J = 7.0, 0.8 Hz, 3H); 13C NMR 

(151 MHz, CDCl3): δ 209.5 (d, JP-C = 162.9 Hz), 135.9, 132.0, 130.4, 121.8, 54.0 (d, JP-C = 6.9 

Hz), 53.4 (d, JP-C = 6.8 Hz), 52.1 (d, JP-C = 54.2 Hz), 16.6 (d, JP-C = 2.7 Hz); 31P NMR (162 MHz, 

CDCl3): δ -1.01; IR (thin film): 1732, 1652, 1507, 1457, 1258, 1030 cm-1; TLC (30% 

acetone:hexanes): Rf = 0.31; LRMS (ESI): Calcd. for C11H15BrO4P ([M+H]+): 320.99, Found: 

320.99. 

Dimethyl (2-(benzo[d][1,3]dioxol-5-yl)propanoyl)phosphonate (19i): The 

title compound was prepared according to General Procedure B using β-aryl-α-

hydroxy phosphonate 20i (144 mg, 0.50 mmol) affording α-aryl acyl 

phosphonate 19i (137 mg, 96% yield) as a pale yellow oil. Analytical data for 19i: 1H NMR (400 

MHz, CDCl3): δ 6.73 (dd, J = 6.6, 1.9 Hz, 1H), 6.68 (s, 1H), 6.67 (dd, J = 6.6, 1.7 Hz, 1H), 5.89 

(s, 2H), 4.25 (dq, J = 6.9, 0.8 Hz, 1H), 3.70 (d, J = 10.7 Hz, 3H), 3.47 (d, J = 10.9 Hz, 3H), 1.35 

(dd, J = 7.0, 0.8 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 209.5 (d, JP-C = 161.5 Hz), 148.0, 

147.1, 130.1, 122.3, 108.8, 108.4, 101.0, 53.8 (d, JP-C = 7.3 Hz), 53.3 (d, JP-C = 7.0 Hz), 52.1 (d, 

JP-C = 54.6 Hz), 16.6 (d, JP-C = 3.2 Hz); 31P NMR (162 MHz, CDCl3): δ -0.63; IR (thin film): 

1716, 1685, 1558, 1506, 1488, 1035 cm-1; TLC (30% acetone:hexanes): Rf = 0.22; LRMS (ESI): 

Calcd. for C12H15NaO6P ([M+Na]+): 309.05, Found: 309.14. 
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Dimethyl (2-(2-methoxyphenyl)propanoyl)phosphonate (19j): The title 

compound was prepared according to General Procedure B using β-aryl-α-

hydroxy phosphonate 20j (137 mg, 0.50 mmol) affording α-aryl acyl 

phosphonate 19j (133 mg, 97% yield) as a pale yellow oil. Analytical data for 19j: 1H NMR 

(400 MHz, CDCl3): δ 7.21 (dt, J = 8.2, 1.7 Hz, 1H), 7.08 (dd, J = 7.5, 1.7 Hz, 1H), 6.90 (dt, J = 

7.5, 0.6 Hz, 1H), 6.84 (dd, J = 8.2, 0.6 Hz, 1H), 4.48 (dq, J = 7.0, 1.3 Hz, 1H), 3.76 (s, 3H), 3.63 

(d, J = 10.7 Hz, 3H), 3.52 (d, J = 10.8 Hz, 3H), 1.37 (dd, J = 7.0, 0.6 Hz, 3H); 13C NMR (101 

MHz, CDCl3): δ 210.1 (d, JP-C = 163.2 Hz), 156.7, 128.9, 128.7, 126.1, 120.6, 110.5, 55.2, 53.5 

(d, JP-C = 7.3 Hz), 53.2 (d, JP-C = 7.3 Hz), 46.9 (d, JP-C = 56.3 Hz), 14.7 (d, JP-C = 2.3 Hz); 31P 

NMR (162 MHz, CDCl3): δ -0.46; IR (thin film): 1698, 1653, 1541, 1495, 1247, 1029 cm-1; 

TLC (30% acetone:hexanes): Rf = 0.28; LRMS (ESI): Calcd. for C12H18O5P ([M+H]+): 273.09, 

Found: 273.10. 

Dimethyl (2-(1-tosyl-1H-indol-3-yl)propanoyl)phosphonate (19k): The 

title compound was prepared according to General Procedure B using β-aryl-

α-hydroxy phosphonate 20k (219 mg, 0.50 mmol) affording α-aryl acyl 

phosphonate 19k (216 mg, 99% yield) as a pale yellow oil. Analytical data for 19k: 1H NMR 

(600 MHz, CDCl3): δ 7.95 (d, J = 8.3 Hz, 1H), 7.76 (d, J = 8.4 Hz, 2H), 7.54 (s, 1H), 7.47 (d, J = 

7.9 Hz, 1H), 7.31-7.28 (m, 2H), 7.22-7.19 (m, 3H), 4.52 (q, J = 7.1 Hz, 1H), 3.59 (d, J = 10.8 Hz, 

3H), 3.37 (d, J = 10.9 Hz, 3H), 2.29 (s, 3H), 1.53 (d, J = 7.1 Hz, 3H); 13C NMR (151 MHz, 

CDCl3): δ 209.0 (d, JP-C = 162.9 Hz), 144.9, 134.94, 134.87, 129.7, 129.3, 126.8, 125.0, 124.9, 

123.3, 119.5, 118.0, 113.6, 53.8 (d, JP-C = 7.2 Hz), 53.3 (d, JP-C = 7.2 Hz), 43.8 (d, JP-C = 56.0 

Hz), 21.4, 15.4; 31P NMR (243 MHz, CDCl3): δ -0.83; IR (thin film): 1695, 1653, 1597, 1448, 

P(OMe)2

O

O

Me

MeO

P(OMe)2

O

O

Me

NTs



204 

1372, 1260, 1175, 1034 cm-1; TLC (30% acetone:hexanes): Rf = 0.18; LRMS (ESI): Calcd. for 

C20H23NO6PS ([M+H]+): 436.10, Found: 436.14. 

Dimethyl (2-phenylbutanoyl)phosphonate (19l): The title compound was 

prepared according to General Procedure B using β-aryl-α-hydroxy 

phosphonate 20l (129 mg, 0.50 mmol) affording α-aryl acyl phosphonate 19l (123 mg, 96% 

yield) as a pale yellow oil. Analytical data for 19l: 1H NMR (400 MHz, CDCl3): δ 7.31-7.27 (m, 

2H), 7.23-7.18 (m, 3H), 4.15 (t, J = 7.4 Hz, 1H), 3.66 (d, J = 10.7 Hz, 3H), 3.33 (d, J = 10.9 Hz, 

3H), 2.10-2.00 (m, 1H), 1.77-1.66 (m, 1H), 0.79 (t, J = 7.4 Hz, 3H); 13C NMR (101 MHz, 

CDCl3): δ 209.6 (d, JP-C = 161.3 Hz), 134.9, 129.2, 128.7, 127.6, 60.2 (d, JP-C = 52.2 Hz), 53.8 (d, 

JP-C = 7.3 Hz), 53.0 (d, JP-C = 6.8 Hz), 24.5 (d, JP-C = 3.4 Hz), 11.6; 31P NMR (162 MHz, 

CDCl3): δ -0.77; IR (thin film): 2693, 1696, 1653, 1456, 1259, 1033 cm-1; TLC (30% 

acetone:hexanes): Rf = 0.33; LRMS (ESI): Calcd. for C12H18O4P ([M+H]+): 257.10, Found: 

257.12. 

Dimethyl (2-phenylpent-4-enoyl)phosphonate (19m): The title compound 

was prepared according to General Procedure B using β-aryl-α-hydroxy 

phosphonate 20m (135 mg, 0.50 mmol) affording α-aryl acyl phosphonate 19m (132 mg, 98% 

yield) as a pale yellow oil. Analytical data for 19m: 1H NMR (400 MHz, CDCl3): δ 7.35-7.31 (m, 

2H), 7.29-7.23 (m, 3H), 5.68-5.58 (m, 1H), 5.00 (d, J = 26.2 Hz, 1H), 4.97 (d, J = 19.3 Hz, 1H), 

4.39 (t, J = 7.5 Hz, 1H), 3.69 (d, J = 10.8 Hz, 3H), 3.36 (d, J = 10.9 Hz, 3H), 2.86-2.78 (m, 1H), 

2.51-2.44 (m, 1H); 13C NMR (101 MHz, CDCl3): δ 208.9 (d, JP-C = 162.8 Hz), 134.5, 134.4, 

129.3, 128.8, 127.8, 117.2, 58.1 (d, JP-C = 53.1 Hz), 53.9 (d, JP-C = 7.1 Hz), 53.1 (d, JP-C = 6.9 

Hz), 35.4 (d, JP-C = 3.6 Hz); 31P NMR (162 MHz, CDCl3): δ -0.98; IR (thin film): 2958, 1693, 
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1644, 1496, 1456, 1261, 1032 cm-1; TLC (30% acetone:hexanes): Rf = 0.29; LRMS (ESI): 

Calcd. for C13H18O4P ([M+H]+): 269.10, Found: 269.09. 

Dimethyl (2-phenylpent-4-ynoyl)phosphonate (19n): The title compound 

was prepared according to General Procedure B using β-aryl-α-hydroxy 

phosphonate 20n (134 mg, 0.50 mmol) affording α-aryl acyl phosphonate 19n (126 mg, 95% 

yield) as a pale yellow oil. Analytical data for 19n: 1H NMR (600 MHz, CDCl3): δ 7.35-7.33 (m, 

2H), 7.29-7.27 (m, 1H), 7.24-7.22 (m, 2H), 4.50 (t, J = 7.4 Hz, 1H), 3.67 (d, J = 10.8 Hz, 3H), 

3.35 (d, J = 11.0 Hz, 3H), 2.88 (ddd, J = 16.9, 7.4, 2.6 Hz, 1H), 2.60-2.55 (m, 1H), 1.91 (t, J = 

2.6 Hz, 1H); 13C NMR (151 MHz, CDCl3): δ 207.8 (d, JP-C = 166.7 Hz), 133.4, 129.2, 129.0, 

128.3, 80.7, 70.2, 57.4 (d, JP-C = 54.4 Hz), 54.0 (d, JP-C = 7.2 Hz), 53.3 (d, JP-C = 6.6 Hz), 20.9 (d, 

JP-C = 4.2 Hz); 31P NMR (243 MHz, CDCl3): δ -0.78; IR (thin film): 3292, 2958, 1696, 1653, 

1456, 1262, 1031 cm-1; TLC (30% acetone:hexanes): Rf = 0.25; LRMS (ESI): Calcd. for 

C13H16O4P ([M+H]+): 267.08, Found: 267.11. 

Dimethyl (2,3-diphenylpropanoyl)phosphonate (19o): The title compound 

was prepared according to General Procedure B using β-aryl-α-hydroxy 

phosphonate 20o (160 mg, 0.50 mmol) affording α-aryl acyl phosphonate 19o (151 mg, 95% 

yield) as a pale yellow oil. Analytical data for 19o: 1H NMR (400 MHz, CDCl3): δ 7.33-7.11 (m, 

8H), 7.05 (d, J = 7.2 Hz, 2H), 4.63 (t, J = 7.4 Hz, 1H), 3.57 (d, J = 10.8 Hz, 3H), 3.43 (dd, J = 

13.9, 7.4 Hz, 1H), 3.32 (d, J = 10.9 Hz, 3H), 2.98 (ddd, J = 13.9, 7.4, 1.6 Hz, 1H); 13C NMR 

(101 MHz, CDCl3): δ 209.1 (d, JP-C = 162.6 Hz), 138.4, 134.4, 129.4, 128.9, 128.8, 128.2, 127.8, 

126.2, 77.2, 60.3 (d, JP-C = 53.0 Hz), 53.7 (d, JP-C = 7.0 Hz), 53.1 (d, JP-C = 6.7 Hz), 37.6 (d, JP-C 

= 3.6 Hz); 31P NMR (162 MHz, CDCl3): δ -1.66; IR (thin film): 2853, 1716, 1691, 1495, 1454, 
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1263, 1031, 699 cm-1; TLC (30% acetone:hexanes): Rf = 0.30; LRMS (ESI): Calcd. for 

C17H20O4P ([M+H]+): 319.11, Found: 319.14. 

Dimethyl (2-cyclopropyl-2-phenylacetyl)phosphonate (19p): The title 

compound was prepared according to General Procedure B using β-aryl-α-

hydroxy phosphonate 20p (135 mg, 0.50 mmol) affording α-aryl acyl phosphonate 19p (129 mg, 

96% yield) as a pale yellow oil. Analytical data for 19p: 1H NMR (400 MHz, CDCl3): δ 7.33-

7.22 (m, 5H), 3.65 (d, J = 10.7 Hz, 3H), 3.47 (d, J = 9.9 Hz, 1H), 3.41 (d, J = 10.9 Hz, 3H), 1.48-

1.40 (m, 1H), 0.69-0.62 (m, 1H), 0.53-0.46 (m, 1H), 0.34-0.28 (m, 1H), 0.17-0.11 (m, 1H); 13C 

NMR (101 MHz, CDCl3): δ 209.7 (d, JP-C = 159.7 Hz), 135.2, 128.9, 128.7, 127.6, 63.3 (d, JP-C 

= 53.4 Hz), 53.8 (d, JP-C = 7.2 Hz), 53.2 (d, JP-C = 6.9 Hz), 12.3 (d, JP-C = 4.2 Hz), 4.9, 3.4 (d, 

JP-C = 1.1 Hz); 31P NMR (162 MHz, CDCl3): δ -0.83; IR (thin film): 3006, 1696, 1653, 1456, 

1258, 1034 cm-1; TLC (30% acetone:hexanes): Rf = 0.35; LRMS (ESI): Calcd. for C13H18O4P 

([M+H]+): 269.10, Found: 269.09. 

Dimethyl (1,2,3,4-tetrahydronaphthalene-1-carbonyl)phosphonate (19q): 

The title compound was prepared according to General Procedure B using β-

aryl-α-hydroxy phosphonate 20q (135 mg, 0.50 mmol) affording α-aryl acyl 

phosphonate 19q (131 mg, 97% yield) as a pale yellow oil. Analytical data for 19q: 1H NMR 

(400 MHz, CDCl3): δ 7.17-7.09 (m, 3H), 6.95 (d, J = 8.6 Hz, 1H), 4.41 (q, J = 6.2 Hz, 1H), 3.78 

(d, J = 10.7 Hz, 3H), 3.76 (d, J = 10.8 Hz, 3H), 2.81-2.73 (m, 2H), 2.27-2.21 (m, 1H), 2.14-2.09 

(m, 1H), 1.84-1.73 (m, 2H); 13C NMR (101 MHz, CDCl3): δ 211.3 (d, JP-C = 159.4 Hz), 137.9, 

131.0 (d, JP-C = 4.0 Hz), 129.5, 129.4, 127.1, 125.7, 77.2, 53.8 (d, JP-C = 7.5 Hz), 53.7 (d, JP-C = 

7.4 Hz), 52.3 (d, JP-C = 55.2 Hz), 28.7, 24.5, 19.8; 31P NMR (162 MHz, CDCl3): δ -0.85; IR 
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(thin film): 2955, 1694, 1558, 1496, 1456, 1254, 1183 cm-1; TLC (30% acetone:hexanes): Rf = 

0.60; LRMS (ESI): Calcd. for C13H18O4P ([M+H]+): 269.10, Found: 269.09. 

General Procedure C for the DKR-ATH of α-Aryl Acyl Phosphonates 19a-q 

 

A flame-dried 1-dram vial was charged with [RuCl2(p-cymene)]2 (1.9 mg, 0.0031 mmol, 

0.02 equiv) and L3 (7.5 mg, 0.0124 mmol, 0.08 equiv) in DMSO (0.5 mL). The vial was purged 

with N2, capped, and stirred at 60 ºC for 30 min.  After cooling to room temperature, a solution 

of α-aryl acyl phosphonate 19 (0.1550 mmol, 1.00 equiv) in DMSO (1.0 mL) and formic 

acid:triethylamine (5:2) (67 mg, 0.7750 mmol, 5.00 equiv) were added to the reaction.  The vial 

was purged with N2, capped, and stirred at room temperature for 10 h.  The reaction was diluted 

with EtOAc (20 mL) and washed with H2O (2 x 20 mL) and brine (20 mL).  The organic layer 

was dried over Na2SO4, filtered, and concentrated in vacuo.  The diastereomeric ratio was 

determined by 31P NMR analysis of the crude residue.  The crude residue was purified by 

column chromatography on silica gel to afford β-aryl-α-hydroxy phosphonate 20. 

Dimethyl ((1R,2R)-1-hydroxy-2-phenylpropyl)phosphonate (20a): The title 

compound was prepared according to General Procedure C using α-aryl acyl 

phosphonate 19a (37.5 mg, 0.1550 mmol) affording β-aryl-α-hydroxy 

phosphonate 20a (34.3 mg, 91% yield) as a pale yellow oil. Analytical data for 20a: 1H NMR 

(400 MHz, CDCl3): δ 7.32-7.29 (m, 4H), 7.25-7.19 (m, 1H), 4.06 (t, J = 6.4 Hz, 1H), 3.66 (d, J = 

10.4 Hz, 3H), 3.60 (d, J = 10.4 Hz, 3H), 3.42 (br s, 1H), 3.28-3.20 (m, 1H), 1.45 (d, J = 7.1 Hz, 

3H); 13C NMR (101 MHz, CDCl3): δ 143.6 (d, JP-C = 10.2 Hz), 128.4, 127.8, 126.7, 72.3 (d, JP-C 
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= 158.8 Hz), 53.0 (d, JP-C = 7.5 Hz), 52.9 (d, JP-C = 7.5 Hz), 41.2 (d, JP-C = 3.2 Hz), 16.4 (d, JP-C 

= 7.2 Hz); 31P NMR (162 MHz, CDCl3): δ 26.23; IR (thin film): 3289, 2359, 1219, 1044, 700 

cm-1; TLC (50% acetone:hexanes): Rf = 0.36; LRMS (ESI): Calcd. for C13H22O4P ([M+H]+): 

245.10, Found: 245.08; HPLC Chiralpak IC, H:IPA = 90:10, flow rate = 1.0 mL/min, λ = 210 

nm, 13.3 min (major diastereomer, major isomer), 15.8 min (minor diastereomer), 24.0 min 

(major diastereomer, minor isomer), 25.8 min (minor diastereomer), >99.5:0.5 er; [α]D +1 (c = 

1.3, CHCl3). 

Diethyl ((1R,2R)-1-hydroxy-2-phenylpropyl)phosphonate (20b): The title 

compound was prepared according to General Procedure C using α-aryl acyl 

phosphonate 19b (41.9 mg, 0.1550 mmol) affording β-aryl-α-hydroxy 

phosphonate 20b (39.4 mg, 93% yield) as a pale yellow oil. Analytical data for 20b: 1H NMR 

(400 MHz, CDCl3): δ 7.31-7.28 (m, 4H), 7.23-7.18 (m, 1H), 4.08-3.91 (m, 5H), 3.57 (br s, 1H), 

3.28-3.19 (m, 1H), 1.44 (d, J = 7.0 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H); 13C 

NMR (101 MHz, CDCl3): δ 144.0 (d, JP-C = 10.1 Hz), 128.3, 127.8, 126.6, 72.4 (d, JP-C = 158.8 

Hz), 62.4 (d, JP-C = 7.4 Hz), 41.2 (d, JP-C = 3.0 Hz), 16.6 (d, JP-C = 7.1 Hz), 16.31 (d, JP-C = 5.1 

Hz), 16.26 (d, JP-C = 5.2 Hz); 31P NMR (162 MHz, CDCl3): δ 24.02; IR (thin film): 3429, 2925, 

1645, 1454, 1216, 1026, 700 cm-1; TLC (50% acetone:hexanes): Rf = 0.50; LRMS (ESI): Calcd. 

for C11H18O4P ([M+H]+): 273.11, Found: 273.10; HPLC Chiralpak IC, H:IPA = 80:20, flow rate 

= 1.0 mL/min, λ = 210 nm, 5.8 min (major diastereomer, major isomer), 6.4 min (minor 

diastereomer), 7.4 min (major diastereomer, minor isomer), 8.5 min (minor diastereomer), 

>99.5:0.5 er; [α]D +1 (c = 1.4, CHCl3). 
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Dimethyl ((1R,2R)-1-hydroxy-2-(4-methoxyphenyl)propyl)phosphonate 

(20d): The title compound was prepared according to General Procedure C 

using α-aryl acyl phosphonate 19d (42.2 mg, 0.1550 mmol) affording β-aryl-α-

hydroxy phosphonate 20d (39.2 mg, 92% yield) as a pale yellow oil. Analytical data for 20d: 1H 

NMR (400 MHz, CDCl3): δ 7.21 (d, J = 8.6 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 4.01 (t, J = 6.2 Hz, 

1H), 3.78 (s, 3H), 3.67 (d, J = 10.4 Hz, 3H), 3.61 (d, J = 10.4 Hz, 3H), 3.32 (t, J = 7.0 Hz, 1H), 

3.25-3.16 (m, 1H), 1.42 (d, J = 7.0 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 158.3, 135.6 (d, 

JP-C = 10.4 Hz), 128.8, 113.7, 72.5 (d, JP-C = 158.1 Hz), 55.2, 53.0 (d, JP-C = 7.4 Hz), 52.9 (d, JP-C 

= 7.3 Hz), 40.3 (d, JP-C = 3.1 Hz), 16.5 (d, JP-C = 7.4 Hz); 31P NMR (162 MHz, CDCl3): δ 26.34; 

IR (thin film): 3320, 1514, 1247, 1039, 832, 759 cm-1; TLC (50% acetone:hexanes): Rf = 0.28; 

LRMS (ESI): Calcd. for C12H19NaO5P ([M+Na]+): 297.09, Found: 297.04; HPLC Chiralpak IC, 

H:IPA = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 13.9 min (major diastereomer, major 

isomer), 16.8 min (minor diastereomer), 23.2 min (major diastereomer, minor isomer), 24.9 min 

(minor diastereomer), >99.5:0.5 er; [α]D +5 (c = 1.0, CHCl3). 

Dimethyl ((1R,2R)-1-hydroxy-2-(p-tolyl)propyl)phosphonate (20e): The title 

compound was prepared according to General Procedure C using α-aryl acyl 

phosphonate 19e (39.7 mg, 0.1550 mmol) affording β-aryl-α-hydroxy 

phosphonate 20e (36.2 mg, 90% yield) as a white solid (mp: 62-64 °C). Analytical data for 20e: 

1H NMR (600 MHz, CDCl3): δ 7.18 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 4.03 (t, J = 6.2 

Hz, 1H), 3.68 (br s, 1H), 3.66 (d, J = 10.4 Hz, 3H), 3.59 (d, J = 10.4 Hz, 3H), 3.23-3.19 (m, 1H), 

2.31 (s, 3H), 1.43 (d, J = 7.1 Hz, 3H); 13C NMR (151 MHz, CDCl3): δ 140.6 (d, JP-C = 10.1 Hz), 

136.2, 129.0, 127.6, 72.3 (d, JP-C = 158.2 Hz), 53.0 (d, JP-C = 7.1 Hz), 52.9 (d, JP-C = 6.9 Hz), 

40.7 (d, JP-C = 3.6 Hz), 21.0, 16.4 (d, JP-C = 6.9 Hz); 31P NMR (243 MHz, CDCl3): δ 27.05; IR 
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(thin film): 3324, 2956, 1515, 1456, 1218, 1042, 823 cm-1; TLC (50% acetone:hexanes): Rf = 

0.38; LRMS (ESI): Calcd. for C12H20O4P ([M+H]+): 259.11, Found: 259.09; HPLC Chiralpak 

IB, H:IPA = 95:5, flow rate = 1.0 mL/min, λ = 210 nm, 10.8 min (major diastereomer, major 

isomer), 12.8 min (major diastereomer, minor isomer), 13.9 min (minor diastereomer), 15.5 min 

(minor diastereomer), >99.5:0.5 er; [α]D +7 (c = 1.5, CHCl3). 

Dimethyl ((1R,2R)-1-hydroxy-2-(naphthalen-2-yl)propyl)phosphonate (20f): 

The title compound was prepared according to General Procedure C using α-

aryl acyl phosphonate 19f (45.3 mg, 0.1550 mmol) affording β-aryl-α-hydroxy 

phosphonate 20f (42.4 mg, 93% yield) as a pale yellow oil. Analytical data for 20f: 1H NMR 

(400 MHz, CDCl3): δ 7.81-7.78 (m, 3H), 7.75 (s, 1H), 7.47-7.41 (m, 3H), 4.17 (br s, 1H), 3.77 

(br s, 1H), 3.64 (d, J = 10.4 Hz, 3H), 3.56 (d, J = 10.4 Hz, 3H), 3.47-3.39 (m, 1H), 1.55 (d, J = 

7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 141.2 (d, JP-C = 10.4 Hz), 133.4, 132.4, 127.9, 

127.7, 127.5, 126.3, 126.2, 125.9, 125.5, 72.2 (d, JP-C = 159.2 Hz), 53.0 (d, JP-C = 7.5 Hz), 52.9 

(d, JP-C = 7.6 Hz), 41.3 (d, JP-C = 6.5 Hz), 16.3 (d, JP-C = 7.0 Hz); 31P NMR (162 MHz, CDCl3): δ 

26.21; IR (thin film): 3300, 1218, 1050, 824, 753 cm-1; TLC (50% acetone:hexanes): Rf = 0.38; 

LRMS (ESI): Calcd. for C15H20O4P ([M+H]+): 295.11, Found: 295.13; HPLC Chiralpak IC, 

H:IPA = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 11.0 min (major diastereomer, major 

isomer), 13.8 min (minor diastereomer), 15.9 min (major diastereomer, minor isomer), 20.2 min 

(minor diastereomer), >99.5:0.5 er; [α]D +8 (c = 1.6, CHCl3). 

Dimethyl ((1R,2R)-1-hydroxy-2-(4-nitrophenyl)propyl)phosphonate (20g): 

The title compound was prepared according to General Procedure C using α-

aryl acyl phosphonate 19g (44.5 mg, 0.1550 mmol) affording β-aryl-α-hydroxy 

phosphonate 20g (38.6 mg, 86% yield, 19:1 dr) as a pale yellow oil. Analytical data for 20g: 1H 
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NMR (600 MHz, CDCl3): δ 8.16 (d, J = 8.7 Hz, 2H), 7.47 (d, J = 8.7 Hz, 2H), 4.05 (t, J = 6.1 Hz, 

1H), 4.00 (br s, 1H), 3.69 (d, J = 10.4 Hz, 6H), 3.36-3.31 (m, 1H), 1.47 (d, J = 7.1 Hz, 3H); 13C 

NMR (151 MHz, CDCl3): δ 151.6 (d, JP-C = 11.6 Hz), 146.8, 128.7, 123.5, 71.5 (d, JP-C = 159.0 

Hz), 53.3 (d, JP-C = 7.7 Hz), 53.2 (d, JP-C = 7.9 Hz), 41.2 (d, JP-C = 3.2 Hz), 16.1 (d, JP-C = 6.3 

Hz); 31P NMR (243 MHz, CDCl3): δ 21.59; IR (thin film): 3397, 1519, 1349, 1217, 1039, 857 

cm-1; TLC (50% acetone:hexanes): Rf = 0.30; LRMS (ESI): Calcd. for C11H17NO6P ([M+H]+): 

290.08, Found: 290.07; HPLC Chiralpak IB, H:IPA = 95:5, flow rate = 1.0 mL/min, λ = 210 nm, 

30.5 min (major diastereomer, major isomer), 33.3 min (major diastereomer, minor isomer), 36.4 

min (minor diastereomer), 40.7 min (minor diastereomer), >99.5:0.5 er; [α]D +4 (c = 1.0, CHCl3). 

Dimethyl ((1R,2R)-2-(4-bromophenyl)-1-hydroxypropyl)phosphonate (20h): 

The title compound was prepared according to General Procedure C using α-

aryl acyl phosphonate 19h (49.8 mg, 0.1550 mmol) affording β-aryl-α-hydroxy 

phosphonate 20h (46.7 mg, 93% yield) as a pale yellow oil. Analytical data for 20h: 1H NMR 

(400 MHz, CDCl3): δ 7.40 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.4 Hz, 2H), 4.17 (br s, 1H), 3.98 (t, J 

= 6.4 Hz, 1H), 3.65 (d, J = 10.4 Hz, 3H), 3.61 (d, J = 10.4 Hz, 3H), 3.22-3.14 (m, 1H), 1.41 (d, J 

= 7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 142.8 (d, JP-C = 10.4 Hz), 131.3, 129.6, 120.3, 

71.9 (d, JP-C = 159.3 Hz), 53.1 (d, JP-C = 7.3 Hz), 53.0 (d, JP-C = 7.1 Hz), 40.7 (d, JP-C = 3.7 Hz), 

14.4 (d, JP-C = 7.1 Hz); 31P NMR (162 MHz, CDCl3): δ 26.55; IR (thin film): 3429, 2153, 1646, 

1488, 1407, 1217, 1039, 1010 cm-1; TLC (50% acetone:hexanes): Rf = 0.39; LRMS (ESI): 

Calcd. for C11H17BrO4P ([M+H]+): 323.01, Found: 323.02; HPLC Chiralpak IB, H:IPA = 93:7, 

flow rate = 1.0 mL/min, λ = 230 nm, 10.0 min (major diastereomer, major isomer), 11.0 min 

(major diastereomer, minor isomer), 12.0 min (minor diastereomer), 12.9 min (minor 

diastereomer), >99.5:0.5 er; [α]D +8 (c = 1.9, CHCl3). 
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Dimethyl ((1R,2R)-2-(benzo[d][1,3]dioxol-5-yl)-1-

hydroxypropyl)phosphonate (20i): The title compound was prepared 

according to General Procedure C using α-aryl acyl phosphonate 19i (44.4 mg, 

0.1550 mmol) affording β-aryl-α-hydroxy phosphonate 20i (41.6 mg, 93% yield) as a pale 

yellow oil. Analytical data for 20i: 1H NMR (400 MHz, CDCl3): δ 6.81 (s, 1H), 6.73 (s, 2H), 

5.91 (s, 2H), 3.99 (q, J = 6.9 Hz, 1H), 3.69 (d, J = 10.4 Hz, 3H), 3.65 (d, J = 10.5 Hz, 3H), 3.58 

(t, J = 7.0 Hz, 1H), 3.21-3.12 (m, 1H), 1.39 (d, J = 7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 

147.5, 146.1, 137.7 (d, JP-C = 11.1 Hz), 120.8, 108.2, 108.0, 100.8, 72.3 (d, JP-C = 158.3 Hz), 

53.1 (d, JP-C = 7.6 Hz), 53.0 (d, JP-C = 7.0 Hz), 40.8 (d, JP-C = 3.5 Hz), 16.4 (d, JP-C = 6.8 Hz); 31P 

NMR (162 MHz, CDCl3): δ 26.19; IR (thin film): 3299, 1489, 1440, 1244, 1038, 930, 834 cm-1; 

TLC (50% acetone:hexanes): Rf = 0.30; LRMS (ESI): Calcd. for C12H18O6P ([M+H]+): 289.09, 

Found: 289.14; HPLC Chiralpak IC, H:IPA = 80:20, flow rate = 1.0 mL/min, λ = 230 nm, 11.6 

min (major diastereomer, major isomer), 13.6 min (minor isomer), 14.7 min (major diastereomer, 

minor isomer), 24.4 min (minor isomer), >99.5:0.5 er; [α]D +8 (c = 0.9, CHCl3). 

Dimethyl ((1R,2R)-1-hydroxy-2-(2-methoxyphenyl)propyl)phosphonate 

(20j): The title compound was prepared according to General Procedure C 

using α-aryl acyl phosphonate 19j (42.2 mg, 0.1550 mmol) affording β-aryl-

α-hydroxy phosphonate 20j (35.7 mg, 84% yield, 6:1 dr) as a pale yellow oil. Analytical data for 

20j: 1H NMR (600 MHz, CDCl3): δ 7.28 (dd, J = 7.5, 1.4 Hz, 1H), 7.21-7.18 (m, 1H), 6.95-6.87 

(m, 1H); 6.84 (d, J = 8.1 Hz, 1H), 4.26-4.23 (m, 1H), 3.81 (s, 3H), 3.69 (d, J = 10.4 Hz, 3H), 

3.65 (d, J = 10.4 Hz, 3H), 3.65-3.58 (m, 1H), 3.52 (t, J = 7.5 Hz, 1H), 1.41 (t, J = 7.2 Hz, 3H); 

13C NMR (151 MHz, CDCl3): δ 156.6, 131.6 (d, JP-C = 12.2 Hz), 128.9, 127.6, 120.6, 110.4, 

70.6 (d, JP-C = 158.7 Hz), 55.3, 53.0 (d, JP-C = 7.1 Hz), 52.8 (d, JP-C = 6.8 Hz), 35.1, 14.4 (d, JP-C 

P(OMe)2

OH

O

Me

O
O

P(OMe)2

OH

O

Me

MeO



213 

= 5.6 Hz); 31P NMR (243 MHz, CDCl3): δ 26.68; IR (thin film): 3314, 2955, 1493, 1457, 1241, 

1032, 833 cm-1; TLC (50% acetone:hexanes): Rf = 0.32; LRMS (ESI): Calcd. for C12H20O5P 

([M+H]+): 275.11, Found: 275.14; HPLC Chiralpak IB, H:IPA = 85:15, flow rate = 1.0 mL/min, 

λ = 210 nm, 6.9 min (major diastereomer, major isomer), 7.6 min (major diastereomer, minor 

isomer), 9.3 min (minor diastereomer), 16.3 min (minor diastereomer), 98.5:1.5 er; [α]D -15 (c = 

0.5, CHCl3). 

Dimethyl ((1R,2R)-1-hydroxy-2-(1-tosyl-1H-indol-3-

yl)propyl)phosphonate (20k): The title compound was prepared according to 

General Procedure C using α-aryl acyl phosphonate 19k (67.5 mg, 0.1550 

mmol) affording β-aryl-α-hydroxy phosphonate 20k (63.9 mg, 94% yield) as a white solid (mp: 

134-136 °C). Analytical data for 20k: 1H NMR (400 MHz, CDCl3): δ 7.95 (d, J = 8.2 Hz, 1H), 

7.74 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 6.5 Hz, 2H), 7.29 (d, J = 7.4 Hz, 1H), 7.23-7.17 (m, 3H), 

4.17 (br s, 1H), 3.86 (t, J = 7.0 Hz, 1H), 3.63 (d, J = 10.4 Hz, 6H), 3.53-3.45 (m, 1H), 2.30 (s, 

3H), 1.48 (d, J = 7.0 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 144.7, 135.1 (d, JP-C = 15.2 Hz), 

129.8, 129.7, 126.7, 125.1, 124.9, 124.6, 123.6, 123.0, 119.5, 113.7, 70.4 (d, JP-C = 160.6 Hz), 

53.1 (d, JP-C = 7.4 Hz), 53.0 (d, JP-C = 7.0 Hz), 32.1 (d, JP-C = 4.2 Hz), 21.5, 14.8 (d, JP-C = 4.8 

Hz); 31P NMR (162 MHz, CDCl3): δ 25.89; IR (thin film): 3286, 1597, 1447, 1366, 1215, 1174, 

1035, 748 cm-1; TLC (50% acetone:hexanes): Rf = 0.40; LRMS (ESI): Calcd. for 

C20H24NaNO6PS ([M+Na]+): 460.10, Found: 460.09; HPLC Chiralpak IC, H:IPA = 65:35, flow 

rate = 1.0 mL/min, λ = 210 nm, 15.8 min (major diastereomer, major isomer), 18.2 min (minor 

diastereomer), 28.1 min (minor diastereomer), 36.8 min (major diastereomer, minor isomer), 

>99.5:0.5 er; [α]D -19 (c = 3.1, CHCl3). 
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Dimethyl ((1R,2R)-1-hydroxy-2-phenylbutyl)phosphonate (20l): The title 

compound was prepared according to General Procedure C using α-aryl acyl 

phosphonate 19l (39.7 mg, 0.1550 mmol) affording β-aryl-α-hydroxy phosphonate 20l (35.2 mg, 

88% yield) as a pale yellow oil. Analytical data for 20l: 1H NMR (400 MHz, CDCl3): δ 7.34-

7.22 (m, 5H), 4.07 (t, J = 7.1 Hz, 1H), 4.05 (br s, 1H), 3.64 (d, J = 10.4 Hz, 3H), 3.50 (d, J = 

10.5 Hz, 3H), 2.99-2.92 (m, 1H), 2.29-2.19 (m, 1H), 1.78-1.67 (m, 1H), 0.77 (t, J = 7.4 Hz, 3H); 

13C NMR (101 MHz, CDCl3): δ 141.1 (d, JP-C = 7.4 Hz), 128.7, 128.2, 126.7, 72.0 (d, JP-C = 

158.9 Hz), 53.0 (d, JP-C = 7.2 Hz), 52.8 (d, JP-C = 7.2 Hz), 49.2 (d, JP-C = 3.1 Hz), 23.8 (d, JP-C = 

9.2 Hz), 11.7; 31P NMR (162 MHz, CDCl3): δ 26.60; IR (thin film): 3301, 2957, 1227, 1051, 

835 cm-1; TLC (50% acetone:hexanes): Rf = 0.39; LRMS (ESI): Calcd. for C12H20O4P 

([M+H]+): 259.11, Found: 259.09; HPLC Chiralpak IC, H:IPA = 95:5, flow rate = 1.0 mL/min, 

λ = 210 nm, 19.7 min (major diastereomer, major isomer), 24.7 min (minor diastereomer), 36.4 

min (minor diastereomer), 38.4 min (major diastereomer, minor isomer), >99.5:0.5 er; [α]D -4 (c 

= 1.6, CHCl3). 

Dimethyl ((1R,2R)-1-hydroxy-2-phenylpent-4-en-1-yl)phosphonate 

(20m): The title compound was prepared according to General Procedure C 

using α-aryl acyl phosphonate 19m (41.6 mg, 0.1550 mmol) affording β-aryl-α-hydroxy 

phosphonate 20m (39.2 mg, 94% yield) as a pale yellow oil. Analytical data for 20m: 1H NMR 

(400 MHz, CDCl3): δ 7.34-7.20 (m, 5H), 5.66-5.55 (m, 1H), 4.96 (d, J = 35.5 Hz, 1H), 4.93 (d, J 

= 28.6 Hz, 1H), 4.23 (br s, 1H), 4.10 (t, J = 6.9 Hz, 1H), 3.61 (d, J = 10.4 Hz, 3H), 3.49 (d, J = 

10.5 Hz, 3H), 3.20-3.13 (m, 1H), 2.97-2.91 (m, 1H), 2.58-2.50 (m, 1H); 13C NMR (101 MHz, 

CDCl3): δ 140.7 (d, JP-C = 6.7 Hz), 136.1, 128.8, 128.2, 126.8, 116.5, 71.7 (d, JP-C = 159.4 Hz), 

53.0 (d, JP-C = 7.1 Hz), 52.9 (d, JP-C = 7.2 Hz), 47.4 (d, JP-C = 3.6 Hz), 35.4 (d, JP-C = 9.4 Hz); 31P 
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NMR (162 MHz, CDCl3): δ 26.26; IR (thin film): 3431, 1646, 2135, 1217, 1054 cm-1; TLC 

(50% acetone:hexanes): Rf = 0.36; LRMS (ESI): Calcd. for C13H20O4P ([M+H]+): 271.11, 

Found: 271.12; HPLC Chiralpak IC, H:IPA = 95:5, flow rate = 1.0 mL/min, λ = 210 nm, 18.0 

min (major diastereomer, major isomer), 20.2 min (minor diastereomer), 25.4 min (minor 

diastereomer), 32.0 min (major diastereomer, minor isomer), >99.5:0.5 er; [α]D -7 (c = 0.3, 

CHCl3). 

Dimethyl ((1R,2R)-1-hydroxy-2-phenylpent-4-yn-1-yl)phosphonate (20n): 

The title compound was prepared according to General Procedure C using α-

aryl acyl phosphonate 19n (41.3 mg, 0.1550 mmol) affording β-aryl-α-hydroxy phosphonate 20n 

(37.9 mg, 91% yield, 14:1 dr) as a pale yellow oil. Analytical data for 20n: 1H NMR (600 MHz, 

CDCl3): δ 7.38-7.31 (m, 4H), 7.28-7.25 (m, 1H), 4.51 (dd, J = 7.2, 4.4 Hz, 1H), 4.21 (q, J = 7.2 

Hz, 1H), 3.60 (d, J = 10.5 Hz, 3H), 3.47 (d, J = 10.5 Hz, 3H), 3.32 (ddd, J = 16.9, 9.7, 3.6 Hz, 

1H), 2.96 (dt, J = 16.9, 3.6 Hz, 1H), 2.78 (ddd, J = 16.9, 9.7, 2.5 Hz, 1H), 1.91 (t, J = 2.6 Hz, 

1H); 13C NMR (101 MHz, CDCl3): δ 140.0 (d, JP-C = 5.7 Hz), 128.6, 128.2, 127.3, 82.3, 70.6 (d, 

JP-C = 161.4 Hz), 70.2, 53.1 (d, JP-C = 7.3 Hz), 53.0 (d, JP-C = 7.3 Hz), 46.0 (d, JP-C = 4.3 Hz), 

21.6 (d, JP-C = 11.0 Hz); 31P NMR (162 MHz, CDCl3): δ 25.83; IR (thin film): 3289, 2955, 1684, 

1219, 1055, 834 cm-1; TLC (50% acetone:hexanes): Rf = 0.35; LRMS (ESI): Calcd. for 

C13H18O4P ([M+H]+): 269.10, Found: 269.09; HPLC Chiralpak IC, H:IPA = 90:10, flow rate = 

1.0 mL/min, λ = 210 nm, 14.0 min (minor diastereomer), 16.0 min (minor diastereomer), 18.7 

min (major diastereomer, major isomer), 25.8 min (major diastereomer, minor isomer), >99.5:0.5 

er; [α]D +11 (c = 1.1, CHCl3). 
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Dimethyl ((1R,2R)-1-hydroxy-2,3-diphenylpropyl)phosphonate (20o): The 

title compound was prepared according to General Procedure C using α-aryl 

acyl phosphonate 19o (49.3 mg, 0.1550 mmol) affording β-aryl-α-hydroxy phosphonate 20o 

(44.3 mg, 89% yield, 19:1 dr) as a pale yellow oil. Analytical data for 20o: 1H NMR (400 MHz, 

CDCl3): δ 7.23-7.07 (m, 8H), 6.97-6.95 (m, 2H), 4.74 (br s, 1H), 4.19 (t, J = 6.6 Hz, 1H), 3.65 (d, 

J = 10.4 Hz, 3H), 3.67-3.59 (m, 1H), 3.39 (d, J = 10.2 Hz, 3H), 3.43-3.33 (m, 1H), 2.93 (dd, J = 

13.3, 11.0 Hz, 1H); 13C NMR (101 MHz, CDCl3): δ 140.4 (d, JP-C = 5.9 Hz), 139.8, 129.3, 128.9, 

128.0, 127.8, 126.7, 125.6, 71.5 (d, JP-C = 159.9 Hz), 53.2 (d, JP-C = 7.1 Hz), 52.8 (d, JP-C = 7.5 

Hz), 49.8 (d, JP-C = 4.9 Hz), 37.8 (d, JP-C = 10.0 Hz); 31P NMR (162 MHz, CDCl3): δ 26.57; IR 

(thin film): 3276, 3028, 1603, 1454, 1222, 1057, 831 cm-1; TLC (50% acetone:hexanes): Rf = 

0.42; LRMS (ESI): Calcd. for C17H21NaO4P ([M+Na]+): 343.11, Found: 343.14; HPLC 

Chiralpak IC, H:IPA = 90:10, flow rate = 1.0 mL/min, λ = 210 nm, 10.8 min (major diastereomer, 

major isomer), 11.6 min (minor diastereomer), 14.7 min (minor diastereomer), 16.3 min (major 

diastereomer, minor isomer), >99.5:0.5 er; [α]D -52 (c = 2.5, CHCl3). 

Dimethyl ((1R,2R)-2-cyclopropyl-1-hydroxy-2-phenylethyl)phosphonate 

(20p): The title compound was prepared according to General Procedure C 

using α-aryl acyl phosphonate 19p (41.6 mg, 0.1550 mmol) affording β-aryl-α-hydroxy 

phosphonate 20p (36.1 mg, 86% yield, 5:1 dr) as a pale yellow oil. Analytical data for 20p: 1H 

NMR (600 MHz, CDCl3): δ 7.35-7.28 (m, 4H), 7.24-7.20 (m, 1H), 4.23 (t, J = 6.4 Hz, 1H), 3.68 

(d, J = 10.4 Hz, 3H), 3.52 (d, J = 10.5 Hz, 3H), 3.38 (br s, 1H), 2.44-2.39 (m, 1H), 1.38-1.32 (m, 

1H), 0.74-0.70 (m, 1H), 0.53-0.49 (m, 1H), 0.47-0.43 (m, 1H), 0.02-(-)0.02 (m, 1H); 13C NMR 

(151 MHz, CDCl3): δ 141.8 (d, JP-C = 9.2 Hz), 128.4, 128.2, 126.7, 72.4 (d, JP-C = 159.8 Hz), 

53.1 (d, JP-C = 7.6 Hz), 52.6 (d, JP-C = 6.9 Hz), 51.9 (d, JP-C = 3.6 Hz), 12.0 (d, JP-C = 8.2 Hz), 6.8, 
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3.0; 31P NMR (243 MHz, CDCl3): δ 25.42; IR (thin film): 3420, 1218, 1036, 701 cm-1; TLC 

(50% acetone:hexanes): Rf = 0.36; LRMS (ESI): Calcd. for C13H19NaO4P ([M+Na]+): 293.09, 

Found: 293.09; HPLC Chiralpak IB, H:IPA = 96:4, flow rate = 1.0 mL/min, λ = 210 nm, 15.2 

min (major diastereomer, major isomer), 16.2 min (minor diastereomer), 17.4 min (major 

diastereomer, minor isomer), 22.8 min (minor diastereomer), >99.5:0.5 er; [α]D -13 (c = 0.3, 

CHCl3). 

Dimethyl ((R)-hydroxy((R)-1,2,3,4-tetrahydronaphthalen-1-

yl)methyl)phosphonate (20q): The title compound was prepared according to 

General Procedure C using α-aryl acyl phosphonate 19q (41.6 mg, 0.1550 

mmol) affording β-aryl-α-hydroxy phosphonate 20q (38.2 mg, 91% yield) as a white solid (mp: 

105-106 °C). Analytical data for 20q: 1H NMR (400 MHz, CDCl3): δ 7.27 (d, J = 8.4 Hz, 1H), 

7.17-7.07 (m, 3H), 4.54 (d, J = 10.8 Hz, 1H), 3.80 (d, J = 10.4 Hz, 3H), 3.78 (d, J = 10.5 Hz, 3H), 

3.36-3.30 (m, 1H), 2.82-2.68 (m, 3H), 2.13-1.97 (m, 3H), 1.72-1.65 (m, 1H); 13C NMR (101 

MHz, CDCl3): δ 139.5, 135.9 (d, JP-C = 15.2 Hz), 129.4, 127.5, 126.2, 126.0, 71.7 (d, JP-C = 

162.0 Hz), 53.2 (d, JP-C = 7.2 Hz), 53.0 (d, JP-C = 7.3 Hz), 39.5 (d, JP-C = 4.4 Hz), 29.6, 23.7 (d, 

JP-C = 3.6 Hz), 21.5; 31P NMR (162 MHz, CDCl3): δ 26.47; IR (thin film): 3292, 1541, 1466, 

1217, 1038, 833 cm-1; TLC (50% acetone:hexanes): Rf = 0.38; LRMS (ESI): Calcd. for 

C13H19NaO4P ([M+Na]+): 293.09, Found: 293.09; HPLC Chiralpak IC, H:IPA = 88:15, flow rate 

= 1.0 mL/min, λ = 210 nm, 10.7 min (major diastereomer, major isomer), 12.8 min (minor 

isomer), 14.1 min (major diastereomer, minor isomer), 19.7 min (minor isomer), >99.5:0.5 er; 

[α]D -36 (c = 0.7, CHCl3). 
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General Procedure D for the ATH of Acyl Phosphonates 21a-d 

 

A flame-dried 1-dram vial was charged with [RuCl2(p-cymene)]2 (1.9 mg, 0.0031 mmol, 

0.02 equiv) and L2 (6.3 mg, 0.0124 mmol, 0.08 equiv) in DMSO (0.5 mL). The vial was purged 

with N2, capped, and stirred at 60 ºC for 30 min.  After cooling to room temperature, a solution 

of acyl phosphonate 21 (0.1550 mmol, 1.00 equiv) in DMSO (1.0 mL) and formic 

acid:triethylamine complex (5:2) (67 mg, 0.7750 mmol, 5.00 equiv) were added to the reaction.  

The vial was purged with N2, capped, and stirred at room temperature for 10 h.  The reaction was 

diluted with EtOAc (20 mL) and washed with H2O (2 x 20 mL) and brine (20 mL).  The organic 

layer was dried over Na2SO4, filtered, and concentrated in vacuo. The crude residue was purified 

by column chromatography on silica gel to afford α-hydroxy phosphonate 22. 

(R)-Dimethyl (hydroxy(phenyl)methyl)phosphonate (22a): The title 

compound was prepared according to General Procedure D using acyl 

phosphonate 21a (33.2 mg, 0.1550 mmol) affording α-hydroxy phosphonate 22a (31.8 mg, 95% 

yield) as a white solid (mp: 92-93 °C) whose spectral properties matched those reported in the 

literature.5 Analytical data for 22a: HPLC Chiralpak IC, H:IPA = 85:15, flow rate = 1.0 mL/min, 

λ = 210 nm, 24.1 min (minor isomer), 24.6 min (major isomer), 92:8 er; [α]D +38 (c = 0.3, 

CHCl3). 

(R)-Dimethyl (1-hydroxy-3-phenylpropyl)phosphonate (22b): The title 

compound was prepared according to General Procedure D using acyl 

phosphonate 21b (37.5 mg, 0.1550 mmol) affording α-hydroxy phosphonate 22b (35.6 mg, 94% 
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yield) as a pale yellow oil whose spectral properties matched those reported in the literature.2g 

Analytical data for 22b: HPLC Chiralpak IC, H:IPA = 85:15, flow rate = 1.0 mL/min, λ = 210 

nm, 10.3 min (major isomer), 11.2 min (minor isomer), >99.5:0.5 er; [α]D -16 (c = 0.8, CHCl3). 

(R)-Dimethyl (cyclohexyl(hydroxy)methyl)phosphonate (22c): The title 

compound was prepared according to General Procedure D using acyl 

phosphonate 21c (34.1 mg, 0.1550 mmol) affording α-hydroxy phosphonate 22c (31.4 mg, 91% 

yield) as a pale yellow oil whose spectral properties matched those reported in the literature.27 

(R)-Dimethyl (1-hydroxyhexyl)phosphonate (22d): The title compound 

was prepared according to General Procedure D using acyl phosphonate 

21d (32.3 mg, 0.1550 mmol) affording α-hydroxy phosphonate 22d (30.5 mg, 94% yield) as a 

pale yellow oil whose spectral properties matched those reported in the literature.7 Analytical 

data for 22d: 1H NMR (400 MHz, CDCl3): δ 3.91-3.82 (m, 1H), 3.79 (d, J = 10.3 Hz, 3H), 3.78 

(d, J = 10.3 Hz, 3H), 1.75-1.59 (m, 3H), 1.43-1.24 (m, 5H), 0.87 (t, J = 6.6 Hz, 3H); 13C NMR 

(101 MHz, CDCl3): δ 67.6 (d, JP-C = 160.8 Hz), 53.2 (d, JP-C = 7.8 Hz), 53.1 (d, JP-C = 7.7 Hz), 

31.3 (d, JP-C = 13.3 Hz), 25.3, 25.2, 22.4, 13.9; 31P NMR (162 MHz, CDCl3): δ 27.08. 

General Procedure E for the Benzoylation of α-Hydroxy Phosphonates 22 

  

A flame-dried 1-dram vial was charged with α-hydroxy phosphonate 22 (1.0 equiv) in 

CH2Cl2.  To the stirred solution was sequentially added benzoyl chloride (1.2 equiv), 4-

dimethylaminopyridine (0.1 equiv), and triethylamine (2.0 equiv).  After stirring for 2 h at room 

temperature, the reaction was quenched with sat. aq. NH4Cl (5 mL).  The aqueous layer was 
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diluted with H2O (10 mL) and extracted with CH2Cl2 (3 x 10 mL).  The combined organic 

extracts were washed with brine (15 mL), dried over Na2SO4, filtered and concentrated in vacuo.  

The crude residue was purified by column chromatography on silica gel to afford benzoate S4. 

(R)-Cyclohexyl(dimethoxyphosphoryl)methyl benzoate (S4c): The title 

compound was prepared according to General Procedure E using α-hydroxy 

phosphonate 22c (34.1 mg, 0.14 mmol) affording benzoate S4c (40.7 mg, 89% yield) as a pale 

yellow oil. Analytical data for S4c: 1H NMR (600 MHz, CDCl3): δ 8.04 (d, J = 7.5 Hz, 2H), 

7.54 (t, J = 7.5 Hz, 1H), 7.42 (t, J = 7.8 Hz, 2H), 5.38 (dd, J = 9.3, 6.4 Hz, 1H), 3.73 (d, J = 10.7 

Hz, 3H), 3.72 (d, J = 10.6 Hz, 3H), 2.06-2.00 (m, 1H), 1.93 (d, J = 12.5 Hz, 1H), 1.87 (d, J = 

12.5 Hz, 1H), 1.70 (d, J = 13.0 Hz, 2H), 1.59 (d, J = 13.0 Hz, 1H), 1.28-1.05 (m, 5H); 13C NMR 

(151 MHz, CDCl3): δ 165.3 (d, JP-C = 5.1 Hz), 133.3, 129.7, 129.1, 128.4, 71.7 (d, JP-C = 164.7 

Hz), 53.2 (d, JP-C = 7.6 Hz), 52.8 (d, JP-C = 6.2 Hz), 38.4, 29.7 (d, JP-C = 7.9 Hz), 28.1 (d, JP-C = 

7.6 Hz), 25.8, 25.7, 25.6; 31P NMR (243 MHz, CDCl3): δ 22.55; IR (thin film): 2930, 1725, 

1253, 1109, 1027, 710 cm-1; TLC (30% acetone:hexanes): Rf = 0.30; LRMS (ESI): Calcd. for 

C16H24O5P ([M+H]+): 327.14, Found: 327.16; HPLC Chiralpak IA, H:IPA = 95:5, flow rate = 

1.0 mL/min, λ = 230 nm, 11.5 min (major isomer), 12.6 min (minor isomer), >99.5:0.5 er; [α]D -

1 (c = 1.3, CHCl3). 

(R)-1-(Dimethoxyphosphoryl)hexyl benzoate (S4d): The title compound 

was prepared according to General Procedure E using a-hydroxy 

phosphonate 22d (30.5 mg, 0.15 mmol) affording benzoate S4d (41.2 mg, 91% yield) as a pale 

yellow oil whose spectral properties matched those reported in the literature.7 Analytical data for 

S4d: HPLC Chiralpak IA, H:IPA = 95:5, flow rate = 1.0 mL/min, λ = 210 nm, 9.8 min (major 

isomer), 10.8 min (minor isomer), >99.5:0.5 er; [α]D -8 (c = 3.1, CHCl3). 
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ATH of Methyl Benzoylformate (30) 

 

A flame-dried 1-dram vial was charged with [RuCl2(p-cymene)]2 (1.9 mg, 0.0031 mmol, 

0.02 equiv) and L2 (6.3 mg, 0.0124 mmol, 0.08 equiv) in DMSO (0.5 mL). The vial was purged 

with N2, capped, and stirred at 60 ºC for 30 min.  After cooling to room temperature, a solution 

of methyl benzoylformate (30) (25.4 mg, 0.1550 mmol, 1.00 equiv) in DMSO (1.0 mL) and 

formic acid:triethylamine complex (5:2) (67 mg, 0.7750 mmol, 5.00 equiv) were added to the 

reaction.  The vial was purged with N2, capped, and stirred at room temperature for 10 h.  The 

reaction was diluted with EtOAc (20 mL) and washed with H2O (2 x 20 mL) and brine (20 mL).  

The organic layer was dried over Na2SO4, filtered, and concentrated in vacuo. The crude residue 

was purified by column chromatography on silica gel to afford methyl mandelate (22). The 

absolute stereochemistry of (R)-22 was determined by comparison to that reported in the 

literature.23 Analytical data for 22: HPLC Chiralpak IC, H:IPA = 95:5, flow rate = 1.0 mL/min, 

λ = 210 nm, 15.3 min (major isomer), 17.0 min (minor isomer), 97:3 er; [α]D -143 (c = 1.2, 

CHCl3). 
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CHAPTER FIVE: DYNAMIC KINETIC ALDOLIZATION OF 

CONFIGURATIONALLY LABILE ELECTROPHILES* 

5.1 Introduction 

 Deracemization is a valuable method for the generation of chiral molecules from simple 

racemic starting materials.1 While there are a plethora of reported dynamic kinetic processes, 

most are arguably either complexity-neutral transformations (hydrogenation, acylation, etc.) or 

generate a single chiral center. Dynamic kinetic asymmetric transformations (DyKATs) that 

utilize a C–C bond forming step in the construction of multiple stereocenters are highly valuable 

synthetic strategies.2 In this chapter, we describe DyKATs of racemic β-bromo-α-keto esters 

through direct aldolization of nitromethane and acetone, providing access to fully-substituted α-

glycolic acid derivatives bearing a β-stereocenter (Scheme 5-1). Mechanistic studies revealed 

that the reactions proceed via facile catalyst-mediated racemization of the β-bromo-α-keto esters 

under a DyKAT Type I manifold. 

Scheme 5-1. Dynamic Kinetic Asymmetric Transformations of Configurationally Labile 
Electrophiles 
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5.2 Background 

5.2.1 Catalytic, Asymmetric Addition of Carbon Nucleophilies to α-Keto Esters 

Methods for the catalytic enantioselective addition of carbon nucleophiles to α-keto esters 

have been extensively developed during the past 15 years as a strategy to directly access fully-

substituted α-glycolic acid derivatives (Scheme 5-2). In addition to enhancing the 

electrophilicity of the ketone through inductive effects, the ester moiety provides a 1,2-

dicarbonyl motif that is well suited for activation by Lewis or Brønsted acids through chelation. 

The generation of a five-membered chelate provides a method to directly control the chiral 

environment of the α-keto ester allowing for enantioselective approach of the carbon nucleophile. 

Scheme 5-2. Preparation of Fully-Substituted Glycolates via Nucleophilic Addition to α-Keto 
Esters 
 

 

This concept was first developed by Evans as an extension of earlier work in the 

activation of α-oxy aldehydes.3 Employing C2-symmetric (S,S)-Cu(II) complex 4, the catalytic 

enantioselective Mukaiyama aldol addition of silyl enol ethers to pyruvates was developed 

providing access to fully-substituted glycolic acid derivatives (Scheme 5-3).4 Addition of (Z)-

silylketene acetal 2 to methyl pyruvate (1) afforded 3 in excellent yield with high diastereo- and 
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directed addition of the nucleophile to the Si face of the carbonyl to avoid approach over the 

bulky tert-butyl group. This activation mode has also found applicability in the vinylogous 

Mukaiyama aldolization of dienosilanes to α-keto esters.5 

Scheme 5-3. Catalytic Asymmetric Mukaiyama Aldolization of Pyruvates 

 

In addition to silyl enol ether nucleophiles, numerous examples have since been reported 

for the addition of carbon nucleophiles to α-keto esters. Leading examples include Henry 

additions,6 direct aldolizations,7 Alder–ene reactions,8 arylations,9 alkynylations,10 reductive 

couplings,11 Friedel–Crafts alkylations,12 among others13 (Scheme 5-4). These methods largely 

rely on the use of pyruvates or aryl α-keto esters in order to avoid deleterious side reactions 

resulting from α-keto ester dimerization, which is facile under basic reaction conditions (Scheme 

5-5).14 
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Scheme 5-4. Representative Catalytic Enantioselective Additions of Carbon Nucleophiles to α-
Keto Esters 
 

 

Scheme 5-5. Dimerization of α-Keto Esters via Aldol/Cyclization Pathway 

 

5.2.2 Catalytic Enantioselective Henry Additions to α-Keto Esters 

 The Henry reaction (or nitroaldol reaction) is a widely employed method for the 

construction of β-nitro alcohols via addition of nitroalkanes to aldehydes or ketones under acid or 

base catalysis (Scheme 5-6).15 The products can be reduced to generate valuable β-amino alcohol 

derivatives.16 Despite this utility, asymmetric Henry additions into simple un-activated ketones 

are difficult due to their reversibility under basic reaction conditions limiting methods for their 

preparation to kinetic resolution strategies.17 To circumvent reversibility, alternative approaches 
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have utilized activated carbonyls, such as α-keto esters6 or trifluoromethyl ketones,18 to access 

chiral tertiary nitroladol adducts. 

Scheme 5-6. Preparation of β-Amino Alcohols via Henry Addition 

 

In 2001, Jørgensen reported the first example of an asymmetric Henry addition of 

nitromethane to ethyl pyruvate (5) to provide β-nitro-α-hydroxy ester 6 in excellent yield and 

enantioselectivity (Scheme 5-7).6a,6b Activation of the pyruvate was achieved through the use of 

the same C2-symmetric (S,S)-Cu(II) complex 4 that Evans employed in the Mukaiyama aldol 

reaction with pyruvates (Scheme 5-3); however, catalytic amount of triethylamine was added in 

order to generate the reactive nitronate species. Since this initial report, a number of methods 

have been reported for the asymmetric Henry addition to pyruvates under chiral acid and base 

catalysis.6c-6l 

Scheme 5-7. Catalytic Enantioselective Henry Addition into Pyruvates 
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 Despite the multitude of methods developed for the addition of nitroalkanes to pyruvates, 

there is limited precedent for the addition into non-pyruvic alkyl α-keto esters and β-branched 

substrates.6f,6g Deng developed the first organocatalytic Henry reaction to α-keto esters using a 

bifunctional cinchona alkaloid-derived catalyst V (Scheme 5-8).6f Under mild reaction 

conditions, a variety of simple α-keto esters underwent productive reaction to afford the desired 

Henry adducts in excellent yield and enantioselectivity. Bifunctional catalyst V serves as a chiral 

base to generate the reactive nitronate species, which can react with the α-keto ester that is 

concomitantly activated by the acidic phenol moiety through hydrogen-bonding through a 

pseudo-intramolecular process. Notably, no byproducts associated with α-keto ester dimerization 

were observed (Scheme 5-5). 

Scheme 5-8. Organocatalytic Henry Addition into α-Keto Esters 
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catalyst and substrate can circumvent a majority of the challenges associated with the selective 

generation of a single enol(ate) or enamine species in the presence of other carbonyl species. The 

electronic and steric properties of α-keto esters render them particularly attractive substrates for 

direct aldol reactions under primary and secondary amine catalysis. The inductive effects of the 

ester moiety render the ketone more electrophilic than a normal ketone; however, it is more 

sterically encumbered than a simple ketone, such as cyclohexanone, due to the proximity of a 

large ester group. Furthermore, the generated enamine is a poor nucleophile since it is 

deactivated by the electron-withdrawing nature of the proximal ester functionality.20 These two 

attributes render α-keto esters amenable to serve as electrophiles in direct aldolizations with 

simple ketone nucleophiles. 

Scheme 5-9. Selectivity Issues in Direct Catalytic Asymmetric Aldolizations 
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This proposed transition state was supported by experiments employing L-proline methyl ester as 

the catalyst, which afforded racemic product. 

Scheme 5-10. Proline-Catalyzed Direct Catalytic Asymmetric Aldolizations 

 

 Extension of this aldolization methodology to less activated α-keto ester substrates 
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Scheme 5-11. Amine-Catalyzed Direct Acetone Aldolization of α-Keto Esters 
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Scheme 5-12. Asymmetric “Interrupted” Feist−Bénary Reaction of β-Bromo-α-Keto Esters 
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Scheme 5-13. Tandem α-Chlorination/Aldolization of Aliphatic Aldehydes 

 

 In 2007, Zhang reported a dynamic kinetic resolution of 2-oxo-3-aryl-succinates 

employing a direct acetone aldolization catalyzed by L-proline (Scheme 5-14).25 The addition of 

acetone into (±)-16 was found to occur with high enantioselectivity, but low diastereoselectivity. 

Due to its heightened acidity, (±)-16 existed in its enol form removing any challenges with 

developing a racemization pathway to render the reaction dynamic. This work was later extended 

to the development of a DKR of β,γ-diketo esters via direct acetone aldolization employing 

catalyzed by L-proline.26 

Scheme 5-14. Dynamic Kinetic Resolution of 2-Oxo-3-Aryl-Succinates 
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of β-stereogenic-α-keto esters affording secondary glycolic acid derivatives (Scheme 5-

15a).22f,22g,27 Our group’s longstanding interest in the synthesis of complex fully-substituted 

glycolates,28 however, prompted us to investigate reaction manifolds for the dynamic addition of 

carbon nucleophiles to β-stereogenic-α-keto esters to provide access to products of this type 

(Scheme 5-15b). We postulated that under judiciously selected reaction conditions, starting 

material racemization could be achieved via keto-enol(ate) tautomerism to render the β-

stereocenter labile. Catalyst controlled diastereo- and enantioeelective addition of a carbon 

nucleophile to one of the two β-stereogenic-α-keto ester enantiomers would allow for the 

preparation of fully-substituted α-glycolic acid derivatives bearing a β-stereocenter. 

Scheme 5-15. Synthesis of β-Stereogenic-α-Glycolic Acid Derivatives from α-Keto Esters 

 

5.3 Results and Discussion 

5.3.1 Synthesis and Properties of β-Halo-α-Keto Esters 
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(Scheme 5-12).23a,27a The requisite β-halo-α-keto esters can be prepared directly from their 

parent α-keto esters in high yield employing extant methodologies providing access to bromo 

and chloro derivatives (Scheme 5-16).27a,29 

Scheme 5-16. Methods for the Synthesis of β-Halo-α-Keto Esters 

 

 In addition to their facile synthesis, β-halo-α-keto esters have an attractive reactivity 

profile that engenders high diastereocontrol in the addition of nucleophiles to the ketone moiety. 

Tsuboi found that the reduction of β-chloro-α-keto esters with NaBH4 proceeded with high syn-

selectivity due to Felkin–Anh control.30 We reasoned that we could take advantage of this 

affinity for β-halo-α-keto esters to undergo Felkin–Anh controlled addition of nucleophiles to 

control the reactive conformation of the electrophile in our desired addition reactions. 

Scheme 5-17. Diastereoselectivity in the Reduction of β-Halo-α-Keto Esters 
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5.3.2 Development of a Catalytic Friedel–Crafts Alkylation of Indoles with β-Halo-α-Keto 
Esters 
 
 Based on prior art by Franz and Deng, we believed that the addition of indoles to β-

stereogenic-α-keto esters could be realized under mild reaction conditions.12,31 Although both of 

these reports were limited to the use of α-keto esters and isatins lacking a β-proton, we sought to 

adapt their previously reported reaction conditions to incorporate a racemization pathway to 

allow for the development of a highly diastereo- and enantioselective variant. To this end, we 

sought to examine both Lewis acid and Brønsted base catalysis modes to examine the potential 

development of a dynamic addition of indole to racemic β-halo-α-keto esters (Scheme 5-18). 

Scheme 5-18. Dynamic Addition of Indole to β-Halo-α-Keto Esters 
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moiety through chelation, while also providing a mechanism for enolization.32 Exposure of β-
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Employing 3.0 equivalents of indole effectively increased the rate of the reaction catalyzed by 

Sc(OTf)3/C providing 19 in 89% isolated yield after 24 h, but with a significant drop in 

enantioselectivity to 53:47 er (entry 9). Further attempts employing an In(OTf)3/C or Sc(OTf)3/D 

catalyst system resulted in low conversions in the Friedel–Crafts alkylation (entries 10 and 12). 

Since enriched product is obtained at partial conversion (entry 7) and racemic product is obtained 

at full conversion (entries 9 and 11), we presumed that this reaction is proceeding through a 

classical kinetic resolution. In order to promote racemization and render the reaction dynamic, 

exogenous bases, such as 2,6-lutidine or Hünig's base, were added; however, they inhibited the 

reaction and resulted in only trace conversion after 24 h (entries 13 and 14). 
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Table 5-1. Optimization of Lewis Acid-Catalyzed Friedel–Crafts Alkylation of Indolea 

 

entry 18 (equiv) Acid Ligand conv (%)b drb erc 
1d 1.3 Cu(OTf)2 – 0 – – 
2 1.3 Cu(OTf)2 – 0 – – 
3 1.3 Sc(OTf)3 – 44 >20:1 – 
4 1.3 In(OTf)3 – 56 >20:1 – 
5 1.3 Sc(OTf)3 A 0 – – 
6 1.3 Sc(OTf)3 B 46 (42) >20:1 58:42 
7 1.3 Sc(OTf)3 C 49 (39) >20:1 67.5:32.5 
8 3.0 Sc(OTf)3 – 83 >20:1 – 
9 3.0 Sc(OTf)3 C >95 (89) >20:1 53:47 
10 3.0 In(OTf)3 C <10 >20:1 N/D 
11 3.0 Sc(OTf)3 D >95 >20:1 51.5:48.5 
12 3.0 Sc(OTf)3 E 12 >20:1 N/D 
13e 1.3 Sc(OTf)3 C 14 >20:1 N/D 
14f 1.3 Sc(OTf)3 C 19 >20:1 N/D 

aReactions were performed on 0.20 mmol scale with 4Å MS (50 mg), unless otherwise noted. 
bDetermined by 1H NMR analysis of crude reaction mixture; numbers in parentheses represent 
isolated yield of analytically pure product. cDetermined by chiral SFC analysis. dReaction 
performed at room temperature for 24 h. eReaction performed with 2,6-lutidine (20 mol%) as an 
additive. fReaction performed with Hünig's base (20 mol%) as an additive. 
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material. Deng has previously demonstrated that cinchona alkaloid-derived organocatalysts 

effectively promoted the Friedel–Crafts alkylation of indoles with a variety of carbonyl and 

imine electrophiles in high enantioselectivity.12,34 Attempts employing quinidine in the addition 

of indole to 17 were unsuccessful, resulting in no reaction (Scheme 5-19). 

Scheme 5-19. Attempted Organocatalytic Friedel–Crafts Alkylation of Indole 
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environment, we believed that β-halo-α-keto esters possessed the necessary C–H acidity to 
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required for the generation of the reactive nitronate species. 

Scheme 5-20. Dynamic Addition of Nitromethane to β-Halo-α-Keto Esters 
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 We commenced our investigations with β-chloro-α-keto ester 20, which had found 

previous success in our Ru-catalyzed DKR-ATH methodologies.27a Treatment of (±)-20 and 

nitromethane (10 equiv) with Hünig's base in CH2Cl2 resulted in the rapid formation of 21 in 

quantitative yield, but in low diastereoselectivity (Table 5-2, entry 1). Application of the chiral 

base quinidine resulted in the isolation of 21 in only 3:1 dr and 56.5:43.5 er at room temperature 

(entry 2). Cooling the reaction to 0 °C led to a slight boost in enantioselectivity to 64:36 er, but 

the Henry reaction was still proceeding with poor diastereocontrol (entry 3). Attempts to further 

reduce the temperature of the reaction to increase the selectivity were unsuccessful as the 

reaction was not operational at -50 °C (entry 4). 

Table 5-2. Henry Addition of Nitromethane to β-Chloro-α-Keto Estersa 

 

entry base T (°C) t (h) conv (%)b drb erc 
1 Hünig's base 23 4 >95 3:1 – 
2 quinidine 23 4 >95 3:1 56.5:43.5 
3 quinidine 0 12 >95 3:1 64:36 
4 quinidine -50 24 0 – – 

aReactions were performed on 0.20 mmol scale, unless otherwise noted. bDetermined by 1H 
NMR analysis of crude reaction mixture. cDetermined by chiral SFC analysis. 
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the Henry addition was proceeding in 8:1 dr. Employing quinidine (I) as the catalyst, the reaction 

proceeded to full conversion in 18 h affording the Henry adduct 22 in quantitative yield with 

13:1 dr and 62:38 er (entry 2). Although lowering the reaction temperature to 0 °C increased the 

diastereoselectivity to 18:1 dr, there was no improvement in enantioselectivity (entries 3). 

Examination of bifunctional cinchona alkaloid-derived thiourea catalysts II and III resulted in 

low conversions and poor selectivities in the Henry reaction (entries 4 and 5); however, 

cupreidine (IV)35 was found to provide a boost in enantioselection up to 72:28 er (entries 6 and 

7). Adding steric bulk to the secondary alcohol of cupreidine resulted in a further increase in 

selectivity generating 22 in 80:20 er (entry 8). Iminophosphorane (P,S)-VI provided slow 

conversion to 22 in high diastereoselectivity and moderate enantioselectivity (entry 9). 
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Table 5-3. Initial Catalyst Screen in Henry Addition of Nitromethane to β-Bromo-α-Keto Estersa 

 

entry base T (°C) t (h) conv (%)b drb erc 
1 Hünig's base 23 18 48 8:1 – 
2 I 23 18 >95 13:1 62:38 
3 I 0 12 94 18:1 62.5:37.5 
4 II 0 24 47 5:1 46.5:53.5 
5 III 0 24 84 7:1 48.5:51.5 
6 IV 0 18 86 15:1 72:28 
7 IV 23 18 >95 12:1 72:28 
8 V 23 18 >95 11:1 80:20 
9d VI 23 18 32 18:1 30.5:69.5 

aReactions were performed on 0.20 mmol scale, unless otherwise noted. bDetermined by 1H 
NMR analysis of crude reaction mixture. cDetermined by chiral SFC analysis. dReaction 
performed with THF as solvent. 
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examination of solvents in the reaction (Table 5-4). Although both EtOAc and THF provided the 

product as a single diastereomer with significant increase in enantioselection to 89:11 and 92:8 er, 

respectively, the reactions were very slow at room temperature providing only partial conversion 

after 18 h (entries 2 and 4). Toluene and MeCN both provided small increases in 

diastereoselectivity, but did not improve the enantioselection (entries 3 and 5). Since the highest 
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enantioselectivity was observed with THF, a screen of ethereal solvents was conducted and 

showed that methyl tert-butyl ether (MTBE) provided 22 as a single diastereomer in quantitative 

yield with 92.5:7.5 er (entry 9). An enantiomeric ratio of 94.5:5.5 was obtained with cyclopentyl 

methyl ether (CPME); however, only partial conversion was observed after 18 h at room 

temperature. 

Table 5-4. Initial Solvent Screen in Henry Addition of Nitromethane to β-Bromo-α-Keto Estersa 

 

entry solvent conv (%)b drb erc 
1 CH2Cl2 >95 12:1 80:20 
2 THF 17 >20:1 92:8 
3 Toluene >95 16:1 80.5:19.5 
4 EtOAc 51 >20:1 89:11 
5 MeCN >95 >20:1 88:12 
6 CPME 48 >20:1 94.5:5.5 
7 DME 60 18:1 91.5:8.5 
8 2Me-THF 15 >20:1 91:9 
9 MTBE >95 >20:1 92.5:7.5 

aReactions were performed on 0.20 mmol scale, unless otherwise noted. bDetermined by 1H 
NMR analysis of crude reaction mixture. cDetermined by chiral SFC analysis. 

 

 Although conditions were identified with catalyst V to provide the product in high yield 

and diastereoselectivity, we were interested in the identification of a catalyst that would provide 

slightly higher levels of enantioselectivity. A survey of the literature identified a report by 

Bandini and Umani-Ronchi that utilized modified C9-benzoylcupreines, structural derivatives of 

V, to achieve the highly enantioselective Henry reaction of nitromethane with fluoromethyl 

ketones.36 Based on their success with catalyst derivatization, we set out to synthesize a library 
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of catalysts based on the C9-acylcupreidine framework V (Scheme 5-21). Demethylation of 

quinidine (I) with BBr3 provided cupreidine (IV), which was subsequently TIPS-protected to 

afford silyl ether 23 in 89% yield over two steps. Acylation of the secondary alcohol followed by 

cleavage of the silyl ether with HF•pyr provides C9-acylcupreidine derivatives VII-XIV in good 

yield over two steps. Acylation of 23 with 2,4,6-trimethylbenzoyl chloride, however, proved 

challenging due to its steric requirements resulting in no reaction. 

Scheme 5-21. Synthesis of C9-Acylcupreidine Catalysts 

 

 With a library of catalysts in hand, the Henry addition of nitromethane to (±)-17 was 

reinvestigated (Table 5-5). Catalysts VII and VIII bearing electron-withdrawing groups on the 

benzoyl moiety provided comparable enantioselectivities to the parent catalyst V (entries 2 and 

3). Adamantyl-derived catalyst IX provided 22 in reduced enantioselectivity suggesting that the 

aryl group was important for high levels of selectivity (entry 4). The o-toluoyl-derived catalyst X 
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provided a small increase in enantioselection to 93:7 er (entry 5); however, an examination of 

other ortho-substituted aryl groups resulted in no further improvement in selectivity (entries 6-8). 

Table 5-5. Screening of C9-Acylcupreidine Catalysts in Henry Addition of Nitromethane to β-
Bromo-α-Keto Estersa 
 

 

entry catalyst conv (%)b drb erc 
1 V >95 >20:1 92.5:7.5 
2 VII >95 >20:1 92:8 
3 VIII >95 >20:1 92:8 
4 IX >95 >20:1 87.5:12.5 
5 X >95 >20:1 93:7 
6 XII >95 >20:1 89:11 
7 XIII >95 >20:1 89.5:10.5 
8 XIV >95 >20:1 92:8 

aReactions were performed on 0.20 mmol scale, unless otherwise noted. bDetermined by 1H 
NMR analysis of crude reaction mixture. cDetermined by chiral SFC analysis. 

 
 Having identified an optimal catalyst structure, an examination of reaction parameters 

was conducted to further optimize the enantioselectivity of the reaction (Table 5-6). Addition of 

LiClO4 to the reaction resulted in a drastic drop in enantioselection to 63.5:36.5 er suggesting 

that the Li+ ions were interfering with hydrogen-bonding required for high levels of 

enantioselectivity to be observed (entry 1). Since Calter saw an increase in diastereo- and 

enantiocontrol upon addition of TBABr in the “interrupted” Feist−Bénary reaction of β-bromo-

α-keto esters, we investigated the addition of varying amounts of exogenous bromide in our 
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Henry addition. Although 10 mol% of TBABr provided no change in the reaction, further 

increasing the loading to 50 mol% caused a noticeable decrease in selectivity to 83.5:16.5 er 

(entries 2 and 3). Attempts to increase enantioselectivity by decreasing or increasing the 

concentration or adjusting the equivalencies of nitromethane were largely unsuccessful (entries 

4-6). The identity of the ester group was important since the methyl ester resulted in a drop in 

selectivity to 88.5:11.5 er, but the isopropyl ester led to comparable levels of selectivity (entries 

7 and 8). Gratifyingly, reexamination of ethereal solvents with the isopropyl ester led to the 

identification of optimized conditions providing 27a in 97% yield as a single diastereomer with 

96:4 er (entries 9-11). 

Table 5-6. Final Optimization of Conditions for Henry Addition of Nitromethane to β-Bromo-α-
Keto Estersa 
 

 

entry R additive (mol%) solvent ([M]) conv (%)b drb erc 
1 Et LiClO4 (10) MTBE (0.2) >95 >20:1 63.5:36.5 
2 Et TBABr (10) MTBE (0.2) >95 >20:1 93:7 
3 Et TBABr (50) MTBE (0.2) 89 >20:1 83.5:16.5 
4 Et – MTBE (0.1) 84 >20:1 95:5 
5 Et – MTBE (0.5) >95 >20:1 90:10 
6d Et – MTBE (0.2) >95 >20:1 93.5:6.5 
7 Me – MTBE (0.2) >95 >20:1 88.5:11.5 
8 iPr – MTBE (0.2) >95 >20:1 92:8 
9 iPr – CPME (0.2) >95 >20:1 93.5:6.5 
10 iPr – 2Me-THF (0.2) >95 (97) >20:1 96:4 
11 iPr – THF (0.2) >95 >20:1 94.5:5.5 

aReactions were performed on 0.20 mmol scale, unless otherwise noted. bDetermined by 1H 
NMR analysis of crude reaction mixture; numbers in parentheses represent isolated yield of 
analytically pure product. cDetermined by chiral SFC analysis. dReaction performed with MeNO2 
(5 equiv) for 36 h. 
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5.3.4 Identification and Optimization of a Catalytic Direct Acetone Aldolization of β-
Bromo-α-Keto Esters 
 
 During the course of our optimization of Henry conditions, we also became interested in 

the potential application of ketones, such as acetone, in the dynamic aldolization reaction of β-

bromo-α-keto esters to access β-bromo-γ´-oxo glycolic acid derivatives (Scheme 5-22). We saw 

a potential to utilize primary or secondary amine catalysts to not only generate a nucleophilic 

enamine species, but to also promote the racemization of the β-bromo-α-keto ester starting 

material if deployed under acidic or basic reaction conditions. 

Scheme 5-22. Dynamic Addition of Acetone to β-Bromo-α-Keto Esters 

 

 We initially found that treating a solution of β-bromo-α-keto ester (±)-25a in acetone 

with D/L-proline (rac-XV) resulted in the formation of aldol adduct 28a in quantitative yield in 

2:1 dr (Scheme 5-23). Despite this poor diastereoselectivity in the aldolization, L-proline (XV) 

afforded ent-28a in 96:4 er. Other hydrogen-bonding secondary amine catalysts, such as 

diphenylprolinol XVI, did not catalyze the reaction. Based on these results, we were encouraged 

by the high levels of enantioinduction observed with L-proline, but felt that different catalyst 

structures would need to be probed to introduce higher levels of diastereoselection in the 

transformation. 
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Scheme 5-23. Secondary Amine Catalysts for Acetone Aldolization of β-Bromo-α-Keto Estersa 

 

 Based on our earlier success with cinchona alkaloid-catalysts for the Henry addition, we 

considered examining primary amine catalysts derived from the cinchona alkaloids.37 

Cinchonidine-derived primary amine catalyst XVII with p-nitrobenzoic acid (PNBA) as 

cocatalyst7h in acetone:dioxane (1:9) delivered ent-28a in good diastereo- and enantioselection 

(Table 5-7, entry 1). An examination of other polar solvents did not provide satisfactory 

improvement (entries 2-5); however, reaction with XVII run in acetone as the solvent provided 

ent-28a in 95.5:4.5 er as a single diastereomer (entry 6). Attempts to further increase the 

enantioselectivity employing either XVII or XIX proved ineffective (entries 7 and 8), but 

pseudo-enantiomeric XX provided slight improvement delivering 28a quantitatively with 96:4 er 

as a single diastereomer (entry 9). 
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Table 5-7. Optimization of Direct Acetone Aldolization of β-Bromo-α-Keto Estersa 

 

entry catalyst solvent conv (%)b drb erc 
1 XVII acetone:dioxane (1:9) >95 14:1 12:88 
2 XVII acetone:EtOAc (1:9) >95 6:1 19.5:80.5 
3 XVII acetone:DMSO (1:9) >95d – – 
4 XVII acetone:DMF (1:9) >95 9:1 9.5:90.5 
5 XVII acetone:MeCN (1:9) >95 5:1 16:84 
6 XVII acetone >95 (96) >20:1 4.5:95.5 
7 XVIII acetone >95 >20:1 10.5:89.5 
8 XIX acetone >95 >20:1 14.5:85.5 
9 XX acetone >95 (95) >20:1 96:4 

aReactions were performed on 0.20 mmol scale, unless otherwise noted. bDetermined by 1H 
NMR analysis of crude reaction mixture; numbers in parentheses represent isolated yield of 
analytically pure product. cDetermined by chiral SFC analysis. dObtained a complex mixture. 

 
5.3.5 Scope of Direct Aldolizations of β-Bromo-α-Keto Esters 

 With optimized reaction conditions in hand, we probed the scope of both the direct Henry 
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and catalyst are not required for high levels of selectivity. The increased steric requirements of γ-

branching resulted in low diastereoselectivity and moderate enantioselectivity in the formation of 

27i and 28i. The absolute configuration of (2R,3R)-27a and (2R,3R)-28d was in each case 

determined by x-ray crystallography and the other products were assigned by analogy (Scheme 

5-24).38 

Scheme 5-24. Determination of Absolute Configuration of (2R,3R)-27a and (2R,3R)-28d 
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Table 5-8. Substrate Scope for Direct Aldolization of β-Bromo-α-Keto Estersa 

 

aReactions were performed on 0.20 mmol scale. Yield of isolated product reported. 
Diastereomeric ratio (dr) determined by 1H NMR analysis of crude reaction mixture. 
Enantiomeric ratio (er) determined by chiral HPLC analysis. bReaction performed for 42 h. 
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5.3.6 Accessing Both Enantiomeric Series of Products in the Direct Aldolization of β-
Bromo-α-Keto Esters 
 
 Since catalysts X and XX are derived from cinchona alkaloids, their pseudo-enantiomeric 

catalysts XXI and XVII are readily available and provide access to both enantiomeric series of 

Henry and acetone aldolization adducts (Scheme 5-25). Although XXI provides ent-27a in only 

87:13 er, a single recrystallization provides enantioenrichment to 99:1 er. The utility of these 

reactions is highlighted not only by the mild, operationally simple reaction conditions, but by the 

near quantitative yield of products obtained following a simple filtration of the crude reaction 

mixtures through a plug of silica gel obviating the need for aqueous workup. 

Scheme 5-25. Accessing Both Enantiomeric Series of Aldol Adducts 

 

5.3.7 Mechanistic Divergence from Calter’s “Interrupted” Feist−Bénary Reaction 

 In order to better understand the mechanistic nuances of our direct aldolization reactions, 
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promoted by TBABr or TBAI (Scheme 5-26a).23a,23b Since our reactions do not generate 

stoichiometric bromide and addition of TBABr provided no improvement (Scheme 5-26b), we 

sought to examine the nature of our dynamic reaction by studying the Henry reaction as a 

representative system. 

Scheme 5-26. Dynamic Kinetic Resolution via Nucleophilic Displacement 
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We began our studies by monitoring the enantiomeric compositions of both starting 

material (!) and product (!) during the course of the reaction of (R)-25a (Figure 5-1). While 

substrate racemization is obligatory to successful dynamic kinetic resolutions and certain 

DyKAT subtypes, this assay is seldom performed.39 The enantiomeric composition of unreacted 

starting material was most easily assayed by subjecting reaction aliquots to stereoselective 

NaBH4 reduction, thereby converting (R)-25a to (2R,3R)-29 (diastereoselection >20:1). This 

study confirmed that (2R,3R)-27a is obtained in uniform selectivity and that 25a remains racemic 

throughout the entire course of the reaction. Since a racemization pathway is operative under the 

reaction conditions, this eliminates the possibility that the Henry reaction is an 

enantioconvergent transformation. 

Figure 5-1. Enantiomeric Composition of 29 and (2R,3R)-27a as a Function of Conversion 
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Based on the results from this experiment, we assumed that the reaction was operating as 

either a DKR or a matched DyKAT (Type I or II) since the starting material was being 

deracemized in a process that delivered product in uniform enantioselectivity (Scheme 5-27). In 

a mismatched DyKAT, the enantioselectivity of the product would decrease at higher 

conversions due to a build-up of the undesired enantiomer of starting material due to inefficient 

racemization. Although DKR and DyKAT are similar, a distinct different between these two 

processes is the identity of the catalyst/reagent that induces racemization and the identity of the 

intermediate that is formed during racemization. In a DKR, racemization is generally promoted 

by an achiral catalyst/reagent that is not involved in the enantiodetermining step, which leads to 

an intermediate (I) that is achiral. Alternatively, in a DyKAT racemization is mediated by the 

chiral catalyst/reagent generating a chiral complex between substrate and catalyst (SC*). 

Scheme 5-27. Deracemization Methods 

 

I

SR
kR

kS

kSI

kRI

PR

SS PS

SR

SS

SRC*

SSC*

PR

PS

kRC*

kSC*

kC*R

kC*S

SC*

DyKAT Type I

SR

SS

PR

PS

kRC*

kSC*

kC*R

kC*S

SC*

DyKAT Type II

kRC*C*

kSC*C*

DKR



258 

To determine if the chiral catalyst X was responsible for racemization, as to distinguish 

between DKR and DyKAT mechanisms, (R)-25a was treated with X in 2Me-THF at room 

temperature (Scheme 5-28). Notably, (R)-25a is racemized in less than 30 min to (±)-29 

highlighting the configurational lability of β-bromo-α-keto esters under base catalysis. Since X 

effectively promoted the racemization of (R)-25a in the absence of nitromethane, we proposed 

that the quinuclidine moiety of X was capable of enolizing the starting material to generate a 

chiral ammonium complex with the enolate of 25a. The generated onium salt 30 is chiral due to 

its intimate ion-pairing with the chiral catalyst suggesting that the Henry reaction is occurring 

through a DyKAT pathway. 

Scheme 5-28. Catalyst-Mediated Racemization of (R)-25a 
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serve as the reactive intermediate and undergo direct addition by aci-nitromethane through an 

ene-type mechanism. This pathway would lead to complete D incorporation at the β-position of 

the product in a deuterium labeling experiment. Conducting the catalyzed Henry addition with 

CD3NO2 resulted in a primary kinetic isotope effect (kH/kD = 2.8) and only 36% D incorporation 

at the β-position (Scheme 5-29, Figure 5-2). 

Scheme 5-29. Deuterium-Labeling Studies in Direct Henry Addition 

 

Figure 5-2. Initial Rates of Formation of 27a in Direct Henry Addition of CH3NO2 (!) and 
CD3NO2 (!) to Determine Kinetic Isotope Effect 
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These data suggest that racemization is at least partially an intimate ion process with 

protonation from the ammonium salt (protonated catalyst) rather than nitromethane, and 

generation of the reactive nitronate species contributes to the overall reaction rate.  Furthermore, 

in situ monitoring of the reaction by No-D 1H NMR spectroscopy40 in 2-MeTHF revealed no 

intermediates, confirming that the catalyst resting state is the neutral amine and corroborating 

that nitronate formation is an uphill process. The moderate deuterium incorporation excludes a 

DyKAT Type II mechanism wherein the chiral onium enolate would directly participate in an 

ene-type reaction with aci-nitromethane. Based on these collective data, we propose that the 

reaction proceeds through a DyKAT Type I manifold (Scheme 5-30). 

Scheme 5-30. Proposed DyKAT Mechanism for Direct Henry Addition 

 

5.3.10 Non-Linear Effects in the Direct Henry Addition 

 Although not explicitly discussed in their work, Calter employed a pyrimidinyl-bridged 

bis(quinidine) catalyst in their “interrupted” Feist−Bénary reaction to overcome poor selectivities 

observed with quinidine itself suggesting that both chiral amines in the catalyst structure may be 

involved in the enantio-determining step (Scheme 5-12). Non-linear effects have been sparingly 

studied with cinchona-derived catalysts.41 To elucidate if a non-linear effect was observed in our 

Henry reaction, we employed a mixture of pseudo-enantiomeric catalysts X and XXI. The Henry 
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and reaction enantioselectivity (R2 = 0.997), eliminating the possibility of a dimeric catalyst 

species with concomitant activation of electrophile and nucleophile (Figure 5-3). 

Figure 5-3. Examination of Non-Linear Effects in Direct Henry Reaction 
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enantioselectivity in near quantitative yield. The operationally simple protocols offer rapid 

generation of molecular complexity through formation of vicinal stereocenters in a single C–C 

bond forming event. Mechanistic studies provide evidence for a DyKAT Type I manifold in the 

Henry addition of nitromethane into β-bromo-α-keto esters. The mechanistic insight gained in 

this work will serve as the basis for the design and development of new dynamic reaction 

manifolds employing α-labile carbonyls, which will explore the use of more complex 

nucleophile/electrophile pairings. 
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5.5 Experimental Details 

Methods: Infrared (IR) spectra were obtained using a Jasco 260 Plus Fourier transform 

infrared spectrometer. Proton and carbon magnetic resonance spectra (1H NMR, 13C NMR, and 

19F NMR) were recorded on a Bruker model DRX 400 or 600 (1H NMR at 400 MHz or 600 

MHz, 13C NMR at 101 MHz or 151 MHz, and 19F NMR at 376 or 565 MHz) spectrometer with 

solvent resonance as the internal standard (1H NMR: CDCl3 at 7.26 ppm and 13C NMR: CDCl3 at 

77.0 ppm). 1H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, br s = 

broad singlet, d = doublet, dd = doublet of doublet, t = triplet, q = quartet, sept = septuplet, oct = 

octuplet, m = multiplet), coupling constants (Hz), and integration. HPLC analysis was performed 

on an Agilent Technologies 1200 System equipped with Chiralpak IA, IB, and IC columns (φ 4.6 

mm x 250 mm, constant flow at 1.00 mL/min). Supercritical fluid chromatography (SFC) was 

performed on a Berger SFC system equipped with Chiralpak AD, AS, and OD columns (φ 4.6 

mm x 250 mm). Samples were eluted with SFC grade CO2 at the indicated percentage of MeOH 

with an oven temperature of 40 °C. Optical rotations were measured using a 2 mL cell with a 1 

dm path length on a Jasco DIP 1000 digital polarimeter. Mass spectra were obtained using a 

Thermo Scientific LTQ FT Ultra instrument with electrospray ionization. Analytical thin layer 

chromatography (TLC) was performed on Sorbtech 0.25 mm silica gel 60 plates. Visualization 

was accomplished with UV light and/or aqueous ceric ammonium molybdate solution followed 

by heating. Purification of the reaction products was carried out by using Siliaflash-P60 silica gel 

(40-63µm) purchased from Silicycle. All reactions were carried out with magnetic stirring. Yield 

refers to isolated yield of analytically pure material unless otherwise noted. Yields and 

diastereomeric ratios (dr) are reported for a specific experiment and as a result may differ 

slightly from those found in the tables, which are averages of at least two experiments. 
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Materials: Catalysts were prepared according to known literature procedures.6f,42 α-Keto 

esters S1a,43 S1f,44 S1h,45 and S1i46 were prepared according to General Procedure A and 

matched spectral data reported in the literature. β-Bromo-α-keto esters 25f47 and 25i47 were 

prepared according to General Procedure B and matched spectral data reported in the literature. 

Triethylamine (Et3N) was freshly distilled from calcium hydride prior to use. 2Me-THF was 

freshly distilled from lithium aluminum hydride prior to use. Dichloromethane (CH2Cl2), diethyl 

ether (Et2O), tetrahydrofuran (THF), and toluene were dried by passage through a column of 

neutral alumina under nitrogen prior to use. All other reagents were purchased from commercial 

sources and were used as received unless otherwise noted. 

General Procedure A for the Preparation of α-Keto Esters S1 

 

A 100-mL 3-neck round-bottomed flask affixed with a reflux condenser and addition 

funnel was charged with magnesium turnings (400 mg, 16.5 mmol, 1.65 equiv). The apparatus 

was flame-dried under high vacuum. Upon cooling to room temperature, the apparatus was 

placed under an atmosphere of nitrogen and THF (10 mL) was added. A solution of the alkyl 

bromide (15 mmol, 1.5 equiv) in THF (5 mL) was added dropwise from the addition funnel over 

15 min. The reaction was allowed to age for 1 h at room temperature following addition. The 

solution was cooled to -78 ºC. A solution of diisopropyl oxalate (1.74 g, 10 mmol, 1.0 equiv) in 

THF (10 mL) was added dropwise. Following addition, the reaction was allowed to stir for 1 h at 

-78 ºC. The reaction was quenched with sat. aq. NH4Cl (30 mL) and allowed to warm to room 

temperature. The layers were separated and the aqueous layer was extracted with Et2O (2 x 30 
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mL). The combined organic extracts were washed with brine (50 mL), dried over MgSO4, 

filtered, and concentrated in vacuo. The obtained residue was purified by column 

chromatography on silica gel to afford α-keto ester S1. 

Isopropyl 4-(2-fluorophenyl)-2-oxobutanoate (S1b): The title compound 

was prepared according to General Procedure A using 1-(2-bromoethyl)-2-

fluorobenzene (3.05 g, 15.0 mmol) affording S1b (2.23 g, 94% yield) as a pale yellow oil. 

Analytical data for S1b: 1H NMR (400 MHz, CDCl3): δ 7.22-7.14 (m, 2H), 7.06-6.97 (m, 2H); 

5.11 (sept, J = 6.3 Hz, 1H), 3.15 (t, J = 7.6 Hz, 1H), 2.96 (t, J = 7.4 Hz, 1H), 1.32 (d, J = 6.3 Hz, 

6H); 13C NMR (101 MHz, CDCl3): δ 193.5, 162.2, 160.0 (d, JC–F = 46.2 Hz), 130.7 (d, JC–F = 4.8 

Hz), 128.1 (d, JC–F = 8.2 Hz), 126.9 (d, JC–F = 15.8 Hz), 124.0 (d, JC–F = 3.6 Hz), 115.2 (d, JC–F = 

21.9 Hz), 70.6, 39.4, 22.7, 22.6, 21.4; 19F NMR (376 MHz, CDCl3): δ -118.3; IR (thin film): 

1725, 1493, 1456, 1376, 1255, 1231, 1072 cm-1; TLC (15% ethyl acetate:hexanes): Rf = 0.47; 

HRMS (ESI): Calcd. for C13H16FO3 ([M+H]+): 239.1084, Found: 239.1078. 

Isopropyl 4-(4-chlorophenyl)-2-oxobutanoate (S1c): The title 

compound was prepared according to General Procedure A using 1-(2-

bromoethyl)-4-chlorobenzene (3.29 g, 15.0 mmol) affording S1c (2.37 g, 93% yield) as a pale 

yellow oil. Analytical data for S1c: 1H NMR (400 MHz, CDCl3): δ 7.25 (d, J = 8.5 Hz, 2H), 7.14 

(d, J = 8.5 Hz, 2H), 5.12 (sept, J = 6.3 Hz, 1H), 3.14 (t, J = 7.4 Hz, 2H), 2.92 (t, J = 7.4 Hz, 2H), 

1.33 (d, J = 6.3 Hz, 6H); 13C NMR (101 MHz, CDCl3): δ 193.6, 160.4, 138.6, 132.1, 129.8, 

128.6, 70.8, 40.7, 28.3, 21.5; IR (thin film): 1724, 1646, 1491, 1456, 1257, 1106 cm-1; TLC 

(15% ethyl acetate:hexanes): Rf = 0.43; HRMS (ESI): Calcd. for C13H15ClNaO3 ([M+Na]+): 

277.0608, Found: 277.0602. 
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Isopropyl 4-(4-methoxyphenyl)-2-oxobutanoate (S1d): The title 

compound was prepared according to General Procedure A using 1-(2-

bromoethyl)-4-methoxybenzene (3.23 g, 15.0 mmol) affording S1d (2.17 g, 87% yield) as a pale 

yellow oil. Analytical data for S1d: 1H NMR (400 MHz, CDCl3): δ 7.12 (d, J = 8.6 Hz, 2H), 

6.83 (d, J = 8.6 Hz, 2H), 5.12 (sept, J = 6.3 Hz, 1H), 3.78 (s, 3H), 3.12 (t, J = 7.5 Hz, 2H), 2.89 (t, 

J = 7.5 Hz, 2H), 1.32 (d, J = 6.3 Hz, 6H); 13C NMR (101 MHz, CDCl3): δ 194.0, 160.5, 158.1, 

132.1, 129.3, 113.9, 70.6, 55.2, 41.2, 28.1, 21.5; IR (thin film): 1727, 1651, 1492, 1378, 1231, 

1102 cm-1; TLC (15% ethyl acetate:hexanes): Rf = 0.35; HRMS (ESI): Calcd. for C14H18NaO4 

([M+Na]+): 273.1103, Found: 273.1097. 

Isopropyl 2-oxo-4-(thiophen-2-yl)butanoate (S1e): The title compound was 

prepared according to General Procedure A using 2-(2-bromoethyl)thiophene 

(2.87 g, 15.0 mmol) affording S1e (2.02 g, 89% yield) as a yellow oil. Analytical data for S1e: 

1H NMR (400 MHz, CDCl3): δ 7.13 (dd, J = 5.1, 1.1 Hz, 1H), 6.91 (dd, J = 5.1, 3.4 Hz, 1H), 

6.83 (d, J = 3.3 Hz, 1H), 5.13 (sept, J = 6.3 Hz, 1H), 3.24-3.15 (m, 4H), 1.34 (d, J = 6.3 Hz, 6H); 

13C NMR (101 MHz, CDCl3): δ 193.3, 160.3, 142.6, 126.9, 124.9, 123.6, 70.8, 41.1, 23.2, 21.5; 

IR (thin film): 1725, 1651, 1491, 1377, 1255, 1183, 1016 cm-1; TLC (15% ethyl 

acetate:hexanes): Rf = 0.43; HRMS (ESI): Calcd. for C11H14NaO3S ([M+Na]+): 249.0562, 

Found: 249.0556. 

Isopropyl 2-oxo-4-(thiophen-2-yl)butanoate (S1g): The title compound 

was prepared according to General Procedure A using 1-bromobutane (2.06 

g, 15.0 mmol) affording S1g (1.51 g, 88% yield) as a yellow oil. Analytical data for S1g: 1H 

NMR (400 MHz, CDCl3): δ 5.08 (sept, J = 6.3 Hz, 1H), 2.76 (t, J = 7.4 Hz, 2H), 1.60-1.52 (m, 

2H), 1.36-1.25 (m, 2H), 1.30 (d, J = 6.3 Hz, 6H), 0.87 (t, J = 7.4 Hz, 3H); 13C NMR (101 MHz, 
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CDCl3): δ 195.0, 160.9, 70.3, 38.8, 25.0, 22.0, 21.4, 13.6; IR (thin film): 1717, 1647, 1541, 1466, 

1376, 1279, 1106 cm-1; TLC (15% ethyl acetate:hexanes): Rf = 0.61; HRMS (ESI): Calcd. for 

C9H16NaO3 ([M+Na]+): 195.0997, Found: 195.0991. 

General Procedure B for the Preparation of β-Bromo-α-Keto Esters 25 

 

A 200-mL round-bottomed flask affixed with a reflux condenser was charged with α-keto 

ester S1 (4.0 mmol, 1.0 equiv) in CHCl3:EtOAc (1:2, 60 mL). CuBr2 (2.7 g, 12.0 mmol, 3.0 

equiv) was added in one portion. The reaction was allowed to stir at a gentle reflux for 12 h. The 

reaction was cooled to room temperature and filtered through a pad of Celite® washing with 

EtOAc (3 x 20 mL). The filtrate concentrated in vacuo. The crude residue was purified by 

column chromatography on silica gel to afford β-bromo-α-keto ester 25. 

Isopropyl 3-bromo-2-oxo-4-phenylbutanoate (25a): The title compound 

was prepared according to General Procedure B using S1a (0.88 g, 4.0 

mmol) affording 25a (1.09 g, 91% yield) as a yellow oil. Analytical data for 25a: 1H NMR (400 

MHz, CDCl3): δ  7.34-7.24 (m, 5H); 5.25 (t, J = 7.5 Hz, 1H), 5.17 (sept, J = 6.3 Hz, 1H), 3.53 

(dd, J = 14.5, 7.3 Hz, 1H), 3.24 (dd, J = 14.5, 7.7 Hz, 1H), 1.36 (d, J = 6.3 Hz, 3H), 1.34 (d, J = 

6.3 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 185.6, 159.7, 136.5, 129.3, 128.6, 127.3, 71.5, 47.8, 

38.2, 21.5, 21.4; IR (thin film): 1730, 1698, 1653, 1456, 1376, 1283, 1089 cm-1; TLC (15% 

ethyl acetate:hexanes): Rf = 0.44; HRMS (ESI): Calcd. for C13H15BrNaO3 ([M+Na]+): 321.0103, 

Found: 321.0107. 
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Isopropyl 3-bromo-4-(2-fluorophenyl)-2-oxobutanoate (25b): The title 

compound was prepared according to General Procedure B using S1b (0.95 g, 

4.0 mmol) affording 25b (1.21 g, 95% yield) as a yellow oil. Analytical data for 25b: 1H NMR 

(400 MHz, CDCl3): δ 7.29-7.24 (m, 2H), 7.11-7.03 (m, 2H), 5.32 (t, J = 7.3 Hz, 1H), 5.18 (sept, 

J = 6.3 Hz, 1H), 3.53 (dd, J = 14.6, 6.9 Hz, 1H), 3.31 (dd, J = 14.6, 8.1 Hz, 1H), 1.36 (d, J = 6.3 

Hz, 3H), 1.35 (d, J = 6.3 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 185.5, 162.5, 159.8 (d, JC–F = 

40.3 Hz), 132.0 (d, JC–F = 4.3 Hz), 129.3 (d, JC–F = 8.2 Hz), 124.2 (d, JC–F = 3.5 Hz), 123.4 (d, 

JC–F = 15.4 Hz), 115.4 (d, JC–F = 21.7 Hz), 71.6, 46.3 (d, JC–F = 1.6 Hz), 32.1 (d, JC–F = 1.8 Hz), 

21.5, 21.4; 19F NMR (376 MHz, CDCl3): δ -117.5; IR (thin film): 1731, 1655, 1492, 1377, 1291, 

1257, 1104 cm-1; TLC (15% ethyl acetate:hexanes): Rf = 0.39; HRMS (ESI): Calcd. for 

C14H18BrFNaO4 ([M+Na+MeOH]+): 371.0270, Found: 371.0263. 

Isopropyl 3-bromo-4-(4-chlorophenyl)-2-oxobutanoate (25c): The title 

compound was prepared according to General Procedure B using S1c 

(1.02 g, 4.0 mmol) affording 25c (1.16 g, 87% yield) as a yellow oil. Analytical data for 25c: 1H 

NMR (400 MHz, CDCl3): δ 7.29 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 5.23-5.13 (m, 2H), 

3.48 (dd, J = 14.6, 7.2 Hz, 1H), 3.21 (dd, J = 14.6, 7.7 Hz, 1H), 1.35 (d, J = 6.3 Hz, 3H), 1.34 (d, 

J = 6.3 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 185.4, 159.7, 134.9, 133.3, 130.7, 128.9, 71.7, 

47.3, 37.5, 21.49, 21.46; IR (thin film): 1732, 1698, 1647, 1541, 1457, 1259, 1015 cm-1; TLC 

(15% ethyl acetate:hexanes): Rf = 0.29; HRMS (ESI): Calcd. for C14H18BrClNaO4 

([M+Na+MeOH]+): 386.9975, Found: 386.9968. 

Isopropyl 3-bromo-4-(4-methoxyphenyl)-2-oxobutanoate (25d): The 

title compound was prepared according to General Procedure B using 

S1d (1.00 g, 4.0 mmol) affording 25d (1.28 g, 97% yield) as a yellow oil. Analytical data for 
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25d: 1H NMR (400 MHz, CDCl3): δ 7.17 (d, J = 8.6 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 5.22-5.11 

(m, 2H), 3.78 (s, 3H), 3.47 (dd, J = 14.5, 7.6 Hz, 1H), 3.18 (dd, J = 14.5, 7.4 Hz, 1H), 1.35 (d, J 

= 6.2 Hz, 3H), 1.34 (d, J = 6.2 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 185.7, 159.7, 158.8, 

130.4, 128.5, 114.0, 71.5, 55.2, 48.0, 37.4, 21.5, 21.4; IR (thin film): 1725, 1697, 1647, 1514, 

1457, 1251, 1180 cm-1; TLC (15% ethyl acetate:hexanes): Rf = 0.31; HRMS (ESI): Calcd. for 

C15H21BrNaO5 ([M+Na+MeOH]+): 383.0470, Found: 383.0463. 

Isopropyl 3-bromo-2-oxo-4-(thiophen-2-yl)butanoate (25e): The title 

compound was prepared according to General Procedure B using S1e (0.91 g, 

4.0 mmol) affording 25e (1.17 g, 96% yield) as an orange oil. Analytical data for 25e: 1H NMR 

(400 MHz, CDCl3): δ 7.20 (dd, J = 5.0, 1.2 Hz, 1H), 6.95-6.92 (m, 2H), 5.25-5.15 (m, 2H), 3.75 

(dd, J = 15.4, 7.7 Hz, 1H), 3.47 (dd, J = 15.4, 6.9 Hz, 1H), 1.36 (d, J = 6.2 Hz, 6H); 13C NMR 

(101 MHz, CDCl3): δ 185.3, 159.6, 138.2, 127.1, 127.0, 125.0, 71.6, 46.8, 32.4, 21.49, 21.46; IR 

(thin film): 1727, 1647, 1466, 1374, 1293, 1235, 1104 cm-1; TLC (15% ethyl acetate:hexanes): 

Rf = 0.34; HRMS (ESI): Calcd. for C12H17BrNaO4S ([M+Na+MeOH]+): 358.9929, Found: 

358.9922. 

Isopropyl 3-bromo-2-oxohexanoate (25g): The title compound was 

prepared according to General Procedure B using S1g (0.69 g, 4.0 mmol) 

affording 25g (0.88 g, 88% yield) as a yellow oil. Analytical data for 25g: 1H NMR (400 MHz, 

CDCl3): δ 5.18 (sept, J = 6.3 Hz, 1H), 5.01 (dd, J = 8.4, 6.0 Hz, 1H), 2.09-1.92 (m, 2H), 1.61-

1.51 (m, 1H), 1.47-1.31 (m, 1H), 1.36 (d, J = 6.3 Hz, 6H), 0.96 (t, J = 6.6 Hz, 3H); 13C NMR 

(101 MHz, CDCl3): δ 186.2, 160.3, 71.4, 48.3, 33.8, 21.49, 21.47, 20.3, 13.4; IR (thin film): 

1731, 1698, 1645, 1457, 1376, 1279, 1058 cm-1; TLC (15% ethyl acetate:hexanes): Rf = 0.54; 

HRMS (ESI): Calcd. for C10H19BrNaO4 ([M+Na+MeOH]+): 305.0365, Found: 305.0359. 
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Isopropyl 3-bromo-2-oxohex-5-enoate (25h): The title compound was 

prepared according to General Procedure B using S1h (0.68 g, 4.0 mmol) 

affording 25h (0.81 g, 81% yield) as a yellow oil. Analytical data for 25h: 1H NMR (600 MHz, 

CDCl3): δ 5.81-5.74 (m, 1H), 5.21-5.16 (m, 3H), 5.04 (t, J = 7.6 Hz, 1H), 2.91-2.86 (m, 1H), 

2.74-2.69 (m, 1H), 1.36 (d, J = 6.2 Hz, 3H), 1.35 (d, J = 6.2 Hz, 3H); 13C NMR (151 MHz, 

CDCl3): δ 185.6, 159.9, 132.7, 119.4, 71.5, 46.6, 36.1, 21.48, 21.45; IR (thin film): 1735, 1697, 

1636, 1490, 1237, 1105 cm-1; TLC (15% ethyl acetate:hexanes): Rf = 0.48; HRMS (ESI): Calcd. 

for C10H17BrNaO4 ([M+Na+MeOH]+): 303.0208, Found: 303.0201. 

Synthesis of Bifunctional Catalysts X and XXI 

 

(S)-(6-hydroxyquinolin-4-yl)((1S,2R,4S,5R)-5-vinylquinuclidin-2-yl)methyl 2-

methylbenzoate (X): A flame-dried 25-mL round-bottomed flask equipped with a magnetic stir 

bar was charged with alcohol 236f (934 mg, 2.0 mmol, 1.0 equiv) in CH2Cl2 (10 mL). The 

solution was cooled to 0 ºC in an ice bath. 2-Methylbenzoyl chloride (460 µL, 3.0 mmol, 1.5 

equiv) and Et3N (840 µL, 6.0 mmol, 3.0 equiv) were added sequentially. The reaction was 

allowed to stir overnight as it slowly warmed to room temperature. After 12 h, the reaction was 

quenched with H2O (10 mL). The layers were separated and the aqueous layer was extracted 

with CH2Cl2 (3 x 5 mL). The combined organic extracts were dried over Na2SO4, filtered, and 

concentrated in vacuo to afford crude S2. 
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A 50-mL Nalgene® Erlenmeyer flask equipped with a magnetic stir bar was charged with 

crude S2 in MeCN (20 mL). The solution was cooled to 0 ºC in an ice bath. HF-Pyridine (~70% 

HF, 1 mL) was added dropwise. The reaction was allowed to stir for 30 min at 0 ºC before being 

carefully quenched with sat. aq. NaHCO3 (10 mL). The mixture was diluted with EtOAc (30 mL) 

and the layers were separated. The organic layer was washed with sat. aq. NaHCO3 (2 x 10 mL) 

and brine (1 x 10 mL). The combined organic extracts were dried over Na2SO4, filtered, and 

concentrated in vacuo. The crude residue was purified by column chromatography on silica gel 

eluting with EtOAc:MeOH:Et3N (50:2:1) to afford bifunctional catalyst X (689 mg, 80% yield) 

as an off-white solid (mp: 201-203 ºC). Analytical data for X: 1H NMR (600 MHz, CD3OD): δ 

8.61 (d, J = 4.6 Hz, 1H), 8.17 (d, J = 7.8 Hz, 1H), 7.95 (d, J = 9.1 Hz, 1H), 7.56 (d, J = 4.6 Hz, 

1H), 7.51-7.48 (m, 2H), 7.41-7.35 (m, 2H), 7.31 (d, J = 7.4 Hz, 1H), 6.82 (d, J = 4.6 Hz, 1H), 

6.08-6.02 (m, 1H), 5.13-5.07 (m, 2H), 3.58-3.57 (m, 1H), 3.23-3.19 (m, 1H), 3.11-3.03 (m, 2H), 

2.93-2.88 (m, 1H), 2.50 (s, 3H), 2.51-2.45 (m, 1H), 2.25-2.21 (m, 1H), 1.92 (br s, 1H), 1.72-1.70 

(m, 2H), 1.62-1.57 (m, 1H), 1.31-1.27 (m, 1H), 1.15-1.09 (m, 1H); 13C NMR (151 MHz, 

CD3OD): δ 167.1, 158.1, 147.5, 144.6, 144.4, 142.1, 140.2, 134.0, 133.1, 131.8, 131.7, 129.7, 

128.4, 127.2, 123.6, 119.8, 116.2, 105.2, 60.1, 50.8, 50.1, 39.8, 32.8, 28.8, 26.1, 23.7, 23.3, 21.8, 

17.6, 14.5, 14.4, 13.0, 12.9; IR (thin film): 3430, 2125, 1732, 1636, 1520, 1472, 1418, 1243, 

1067 cm-1; TLC (40:2:1 ethyl acetate:methanol:triethylamine): Rf = 0.45; HRMS (ESI): Calcd. 

for C27H29N2O3 ([M+H]+): 429.2179, Found: 429.2170; [α]D -4 (c = 0.5, CHCl3). 
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(R)-(6-hydroxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl 2-

methylbenzoate (XXI): A flame-dried 25-mL round-bottomed flask equipped with a magnetic 

stir bar was charged with alcohol S36f (934 mg, 2.0 mmol, 1.0 equiv) in CH2Cl2 (10 mL). The 

solution was cooled to 0 ºC in an ice bath. 2-Methylbenzoyl chloride (460 µL, 3.0 mmol, 1.5 

equiv) and Et3N (840 µL, 6.0 mmol, 3.0 equiv) were added sequentially. The reaction was 

allowed to stir overnight as it slowly warmed to room temperature. After 12 h, the reaction was 

quenched with H2O (10 mL). The layers were separated and the aqueous layer was extracted 

with CH2Cl2 (3 x 5 mL). The combined organic extracts were dried over Na2SO4, filtered, and 

concentrated in vacuo to afford crude S4. 

A 50-mL Nalgene® Erlenmeyer flask equipped with a magnetic stir bar was charged with 

crude S4 in MeCN (20 mL). The solution was cooled to 0 ºC in an ice bath. HF-Pyridine (~70% 

HF, 1 mL) was added dropwise. The reaction was allowed to stir for 30 min at 0 ºC before being 

carefully quenched with sat. aq. NaHCO3 (10 mL). The mixture was diluted with EtOAc (30 mL) 

and the layers were separated. The organic layer was washed with sat. aq. NaHCO3 (2 x 10 mL) 

and brine (1 x 10 mL). The combined organic extracts were dried over Na2SO4, filtered, and 

concentrated in vacuo. The crude residue was purified by column chromatography on silica gel 

eluting with EtOAc:MeOH:Et3N (50:2:1) to afford bifunctional catalyst XXI (787 mg, 92% 

yield) as an off-white solid (mp: 203-205 ºC). Analytical data for XXI: 1H NMR (600 MHz, 

DMSO-d6): δ 8.63 (br s, 1H), 8.01 (d, J = 7.6 Hz, 1H), 7.90 (d, J = 7.7 Hz, 1H), 7.57 (s, 1H), 
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7.51 (d, J = 12.8 Hz, 1H), 7.36-7.32 (m, 3H), 6.42 (d, J = 6.2 Hz, 1H), 5.96-5.93 (m, 1H), 5.00 

(dd, J = 20.3, 10.1 Hz, 2H), 3.48 (br s, 1H), 3.09 (br s, 1H), 2.85-2.84 (m, 1H), 2.45 (s, 3H), 

2.50-2.42 (m, 1H), 2.22 (br s, 1H), 1.97 (br s, 1H), 1.77 (br s, 1H), 1.66 (br s, 1H), 1.50-1.47 (m, 

2H), 1.13 (br s, 1H); 13C NMR (151 MHz, DMSO-d6): δ 165.9, 155.7, 146.7, 143.3, 142.3, 139.7, 

132.7, 131.9, 131.4, 130.3, 128.6, 127.2, 126.3, 121.7, 114.5, 104.6, 59.4, 55.9, 48.6, 45.6, 41.7, 

27.3, 27.2, 25.3, 21.2; IR (thin film): 3419, 2132, 1734, 1647, 1576, 1541, 1472, 1436, 1244, 

1069 cm-1; TLC (40:2:1 ethyl acetate:methanol:triethylamine): Rf = 0.50; HRMS (ESI): Calcd. 

for C27H29N2O3 ([M+H]+): 429.2179, Found: 429.2169; [α]D +67 (c = 0.5, CHCl3). 

General Procedure C for the Preparation of rac-27 

 

A 1 dram vial equipped with a magnetic stir bar was charged with β-bromo-α-keto ester 

25 (0.20 mmol, 1.0 equiv) and MeNO2 (110 µL, 2.00 mmol, 10.0 equiv) in 2Me-THF (1.0 mL, 

0.2 M). Hünig's base (7 µL, 0.04 mmol, 0.2 equiv) was added, the vial was capped, and the 

reaction was allowed to stir for 18 h at room temperature. The reaction was filtered through a 2 

cm pad of SiO2 washing with Et2O (5 x 2 mL) and concentrated in vacuo. The diastereomeric 

ratio was determined by 1H NMR analysis of the crude residue. The crude residue was purified 

by column chromatography on silica gel to afford rac-27 as a mixture of diastereomers. 
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General Procedure D for the Henry Aldolization 

 

A 1 dram vial equipped with a magnetic stir bar was charged with β-bromo-α-keto ester 

25 (0.20 mmol, 1.0 equiv) and MeNO2 (110 µL, 2.00 mmol, 10.0 equiv) in 2Me-THF (1.0 mL, 

0.2 M). Catalyst X (8.6 mg, 0.02 mmol, 0.1 equiv) was added, the vial was capped, and the 

reaction was allowed to stir for 18 h at room temperature. The reaction was filtered through a 2 

cm pad of SiO2 washing with Et2O (5 x 2 mL) and concentrated in vacuo to afford analytically 

pure 27. The diastereomeric ratio was determined by 1H NMR analysis of the crude residue. 

Isopropyl (2R,3R)-3-bromo-2-hydroxy-2-(nitromethyl)-4-

phenylbutanoate (27a): The title compound was prepared according to 

General Procedure D using β-bromo-α-keto ester 25a (59.8 mg, 0.20 mmol) affording 27a (69.9 

mg, 97% yield, >20:1 dr) as a white solid (mp: 113-116 ºC). Analytical data for 27a: 1H NMR 

(400 MHz, CDCl3): δ 7.37-7.23 (m, 5H), 5.27 (sept, J = 6.3 Hz, 1H), 5.03 (d, J = 13.2 Hz, 1H), 

4.71 (d, J = 13.2 Hz, 1H), 4.24 (dd, J = 10.7, 3.4 Hz, 1H), 4.18 (br s, 1H), 3.42 (dd, J = 10.7, 7.4 

Hz, 1H), 2.98 (dd, J = 14.6, 10.7 Hz, 1H), 1.38 (d, J = 6.3 Hz, 3H), 1.36 (d, J = 6.3 Hz, 3H); 13C 

NMR (101 MHz, CDCl3): δ 169.7, 137.2, 129.1, 128.6, 127.3, 79.0, 77.2, 72.5, 56.3, 38.9, 21.6, 

21.4; IR (thin film): 3445, 1735, 1717, 1647, 1374, 1235, 1059 cm-1; TLC (20% ethyl 

acetate:hexanes): Rf = 0.41; HRMS (ESI): Calcd. for C14H18BrNNaO5 ([M+Na]+): 382.0266, 

Found: 382.0260; HPLC Chiralpak IC, H:IPA = 95:5, flow rate = 1.0 mL/min, λ = 210 nm, tR 

(major) 17.2 min, tR (minor) 22.2 min, 96:4 er; [α]D -28 (c = 1.2, CHCl3). 
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Isopropyl (2R,3R)-3-bromo-4-(2-fluorophenyl)-2-hydroxy-2-

(nitromethyl)butanoate (27b): The title compound was prepared according 

to General Procedure D using β-bromo-α-keto ester 25b (63.4 mg, 0.20 mmol) affording 27b 

(74.2 mg, 98% yield, >20:1 dr) as a white solid (mp: 90-92 ºC). Analytical data for 27b: 1H 

NMR (400 MHz, CDCl3): δ 7.32-7.23 (m, 2H), 7.14-7.04 (m, 2H), 5.26 (sept, J = 6.3 Hz, 1H), 

5.04 (d, J = 13.2 Hz, 1H), 4.83 (d, J = 13.2 Hz, 1H), 4.29 (dd, J = 11.0, 2.9 Hz, 1H), 4.16 (br s, 

1H), 3.45 (dd, J = 14.3, 1.8 Hz, 1H), 3.02 (dd, J = 14.7, 11.1 Hz, 1H), 1.37 (d, J = 6.3 Hz, 3H), 

1.35 (d, J = 6.3 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 169.6, 161.2 (d, JC–F = 246.0 Hz), 

132.0 (d, JC–F = 4.2 Hz), 129.3 (d, JC–F = 8.2 Hz), 124.2 (d, JC–F = 3.5 Hz), 123.4 (d, JC–F = 15.4 

Hz), 115.4 (d, JC–F = 21.7 Hz), 71.6, 46.3 (d, JC–F = 1.6 Hz), 32.1 (d, JC–F = 1.8 Hz), 21.5, 21.4; 

19F NMR (376 MHz, CDCl3): δ -118.4; IR (thin film): 3451, 1733, 1717, 1645, 1451, 1281, 

1105 cm-1; TLC (20% ethyl acetate:hexanes): Rf = 0.39; HRMS (ESI): Calcd. for 

C14H17BrFNNaO5 ([M+Na]+): 400.0172, Found: 400.0165; HPLC Chiralpak IC, H:IPA = 95:5, 

flow rate = 1.0 mL/min, λ = 210 nm, tR (major) 17.5 min, tR (minor) 19.2 min, 92:8 er; [α]D -20 (c = 

1.1, CHCl3). 

Isopropyl (2R,3R)-3-bromo-4-(4-chlorophenyl)-2-hydroxy-2-

(nitromethyl)butanoate (27c): The title compound was prepared 

according to General Procedure D using β-bromo-α-keto ester 25c (66.7 mg, 0.20 mmol) 

affording 27c (77.3 mg, 98% yield, >20:1 dr) as a white solid (mp: 96-98 ºC). Analytical data for 

27c: 1H NMR (400 MHz, CDCl3): δ 7.31 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 5.26 (sept, 

J = 6.3 Hz, 1H), 5.07 (d, J = 13.2 Hz, 1H), 4.72 (d, J = 13.2 Hz, 1H), 4.21 (br s, 1H), 4.17 (dd, J 

= 11.1, 3.1 Hz, 1H), 3.38 (dd, J = 14.7, 3.1 Hz, 1H), 2.92 (dd, J = 14.7, 3.1 Hz, 1H), 1.37 (d, J = 

6.3 Hz, 3H), 1.35 (d, J = 6.3 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 169.6, 135.6, 133.1, 130.5, 
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128.8, 78.9, 77.0, 72.6, 56.0, 38.1, 21.6, 21.4; IR (thin film): 3471, 1733, 1716, 1647, 1374, 

1235, 1061 cm-1; TLC (20% ethyl acetate:hexanes): Rf = 0.38; HRMS (ESI): Calcd. for 

C14H17BrClNNaO5 ([M+Na]+): 415.9877, Found: 415.9870; HPLC Chiralpak IC, H:IPA = 95:5, 

flow rate = 1.0 mL/min, λ = 210 nm, tR (major) 15.9 min, tR (minor) 21.0 min, 95.5:4.5 er; [α]D -35 (c 

= 1.2, CHCl3). 

Isopropyl (2R,3R)-3-bromo-2-hydroxy-4-(4-methoxyphenyl)-2-

(nitromethyl)butanoate (27d): The title compound was prepared 

according to General Procedure D using β-bromo-α-keto ester 25d (65.8 mg, 0.20 mmol) 

affording 27d (76.2 mg, 98% yield, >20:1 dr) as a pale yellow oil. Analytical data for 27d: 1H 

NMR (400 MHz, CDCl3): δ 7.14 (d, J = 8.5 Hz, 2H), 6.87 (d, J = 8.5 Hz, 2H), 5.25 (sept, J = 6.3 

Hz, 1H), 5.01 (d, J = 13.2 Hz, 1H), 4.69 (d, J = 13.2 Hz, 1H), 4.20 (dd, J = 10.6, 3.6 Hz, 1H), 

4.17 (br s, 1H), 3.80 (s, 3H), 3.35 (dd, J = 14.8, 3.6 Hz, 1H), 2.93 (dd, J = 14.8, 2.6 Hz, 1H), 

1.37 (d, J = 6.3 Hz, 3H), 1.35 (d, J = 6.3 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 169.7, 158.8, 

130.2, 129.2, 114.0, 79.0, 77.2, 72.4, 56.9, 55.2, 38.1, 21.6, 21.4; IR (thin film): 3446, 1733, 

1717, 1653, 1515, 1457, 1249, 1178 cm-1; TLC (20% ethyl acetate:hexanes): Rf = 0.30; HRMS 

(ESI): Calcd. for C15H20BrNNaO6 ([M+Na]+): 412.0372, Found: 412.0366; HPLC Chiralpak IC, 

H:IPA = 95:5, flow rate = 1.0 mL/min, λ = 210 nm, tR (major) 27.5 min, tR (minor) 37.2 min, 96:4 er; 

[α]D -28 (c = 1.1, CHCl3). 

Isopropyl (2R,3R)-3-bromo-2-hydroxy-2-(nitromethyl)-4-(thiophen-2-

yl)butanoate (27e): The title compound was prepared according to General 

Procedure D using β-bromo-α-keto ester 25e (61.0 mg, 0.20 mmol) affording 27e (68.3 mg, 93% 

yield, >20:1 dr) as an off-white solid (mp: 77-79 ºC). Analytical data for 27e: 1H NMR (400 

MHz, CDCl3): δ 7.23 (d, J = 5.0 Hz, 1H), 6.98-6.94 (m, 2H), 5.25 (sept, J = 6.3 Hz, 1H), 5.00 (d, 
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J = 13.3 Hz, 1H), 4.67 (d, J = 13.3 Hz, 1H), 4.17 (dd, J = 10.0, 3.8 Hz, 1H), 4.16 (br s, 1H), 3.61 

(dd, J = 15.7, 3.8 Hz, 1H), 3.27 (dd, J = 15.7, 10.0 Hz, 1H), 1.37 (d, J = 6.3 Hz, 3H), 1.35 (d, J = 

6.3 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 169.5, 139.3, 127.0, 126.9, 124.9, 78.8, 77.1, 72.6, 

55.8, 33.6, 21.6, 21.4; IR (thin film): 3445, 1732, 1716, 1653, 1541, 1457, 1374, 1253 cm-1; 

TLC (20% ethyl acetate:hexanes): Rf = 0.38; HRMS (ESI): Calcd. for C12H16BrNNaO5S 

([M+Na]+): 387.9831, Found: 387.9825; HPLC Chiralpak IC, H:IPA = 95:5, flow rate = 1.0 

mL/min, λ = 210 nm, tR (major) 19.5 min, tR (minor) 24.5 min, 95.5:4.5 er; [α]D -37 (c = 1.1, CHCl3). 

Isopropyl (2R,3R)-3-bromo-2-hydroxy-2-(nitromethyl)butanoate (27f): The 

title compound was prepared according to General Procedure D using β-bromo-

α-keto ester 25f (44.6 mg, 0.20 mmol) affording 27f (54.1 mg, 95% yield, >20:1 dr) as a white 

solid (mp: 57-59 ºC). Analytical data for 27f: 1H NMR (400 MHz, CDCl3): δ 5.23 (sept, J = 6.3 

Hz, 1H), 4.93 (d, J = 13.1 Hz, 1H), 4.64 (d, J = 13.1 Hz, 1H), 4.22 (q, J = 6.8 Hz, 1H), 3.98 (br s, 

1H), 1.73 (d, J = 6.8 Hz, 3H), 1.35 (d, J = 6.3 Hz, 3H), 1.33 (d, J = 6.3 Hz, 3H); 13C NMR (101 

MHz, CDCl3): δ 169.8, 78.5, 77.1, 72.3, 49.2, 21.6, 21.4, 19.9; IR (thin film): 3517, 1732, 1717, 

1698, 1515, 1450, 1298, 1106 cm-1; TLC (20% ethyl acetate:hexanes): Rf = 0.35; HRMS (ESI): 

Calcd. for C8H14BrNNaO5 ([M+Na]+): 305.9953, Found: 305.9947; HPLC Chiralpak IC, H:IPA 

= 90:10, flow rate = 1.0 mL/min, λ = 210 nm, tR (minor) 10.0 min, tR (major) 10.9 min, 94:6 er; [α]D -

15 (c = 0.9, CHCl3). 

Isopropyl (2R,3R)-3-bromo-2-hydroxy-2-(nitromethyl)hexanoate (27g): 

The title compound was prepared according to General Procedure D using β-

bromo-α-keto ester 25g (50.2 mg, 0.20 mmol) affording 27g (60.1 mg, 96% yield, 17:1 dr) as a 

white solid (mp: 37-38 ºC). Analytical data for 27g: 1H NMR (400 MHz, CDCl3): δ 5.22 (sept, J 

= 6.3 Hz, 1H), 5.01 (d, J = 13.2 Hz, 1H), 4.70 (d, J = 13.2 Hz, 1H), 4.04 (br s, 1H), 4.07 (dd, J = 
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9.6, 3.8 Hz, 1H), 1.81-1.67 (m, 3H), 1.43-1.31 (m, 1H), 1.35 (d, J = 6.3 Hz, 3H), 1.33 (d, J = 6.3 

Hz, 3H), 0.94 (t, J = 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 169.8, 79.1, 77.2, 72.3, 56.2, 

34.1, 21.6, 21.4, 21.0, 13.1; IR (thin film): 3417, 1735, 1715, 1683, 1541, 1335, 1298, 1191 cm-

1; TLC (20% ethyl acetate:hexanes): Rf = 0.45; HRMS (ESI): Calcd. for C10H18BrNNaO5 

([M+Na]+): 334.0266, Found: 334.0260; HPLC Chiralpak IC, H:IPA = 95:5, flow rate = 1.0 

mL/min, λ = 210 nm, tR (minor) 13.3 min, tR (major) 13.9 min, 92.5:7.5 er; [α]D -42 (c = 1.0, CHCl3). 

Isopropyl (2R,3R)-3-bromo-2-hydroxy-2-(nitromethyl)hex-5-enoate (27h): 

The title compound was prepared according to General Procedure D using β-

bromo-α-keto ester 25h (49.8 mg, 0.20 mmol) affording 27h (60.8 mg, 98% yield, >20:1 dr) as a 

pale yellow oil. Analytical data for 27h: 1H NMR (400 MHz, CDCl3): δ 5.87-5.77 (m, 1H), 5.26-

5.16 (m, 3H), 5.01 (d, J = 13.2 Hz, 1H), 4.73 (d, J = 13.2 Hz, 1H), 4.06 (br s, 1H), 4.03 (dd, J = 

10.6, 3.2 Hz, 1H), 2.77-2.71 (m, 1H), 2.57-2.49 (m, 1H), 1.36 (d, J = 6.3 Hz, 3H), 1.34 (d, J = 

6.3 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 169.6, 133.9, 118.8, 78.9, 77.1, 72.4, 54.7, 36.8, 

21.6, 21.4; IR (thin film): 3451, 1736, 1717, 1653, 1558, 1457, 1374, 1105 cm-1; TLC (20% 

ethyl acetate:hexanes): Rf = 0.42; HRMS (ESI): Calcd. for C11H20BrNNaO6 ([M+Na+MeOH]+): 

364.0372, Found: 364.0383; HPLC Chiralpak IB, H:IPA = 95:5, flow rate = 1.0 mL/min, λ = 

210 nm, tR (minor) 7.5 min, tR (major) 8.0 min, 92.5:7.5 er; [α]D -30 (c = 1.1, CHCl3). 

Isopropyl (2R,3R)-3-bromo-2-hydroxy-4-methyl-2-(nitromethyl)pentanoate 

(27i): The title compound was prepared according to General Procedure D using 

β-bromo-α-keto ester 25i (50.2 mg, 0.20 mmol) affording 27i (59.3 mg, 95% yield, 5:1 dr) as a 

pale yellow oil. Analytical data for 27i: 1H NMR (600 MHz, CDCl3): major diastereomer δ 

5.25-5.17 (m, 1H), 4.96 (d, J = 13.6 Hz, 1H), 4.73 (d, J = 13.6 Hz, 1H), 4.17 (d, J = 1.7 Hz, 1H), 

4.02 (br s, 1H), 2.01-1.96 (m, 1H), 1.26-1.32 (m, 6H), 1.06-0.99 (m, 6H), minor diastereomer δ 
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5.25-5.17 (m, 1H), 5.10 (d, J = 13.6 Hz, 1H), 4.80 (d, J = 13.6 Hz, 1H), 4.07 (d, J = 1.4 Hz, 1H), 

3.79 (br s, 1H), 1.76-1.71 (m, 1H), 1.26-1.32 (m, 6H), 1.06-0.99 (m, 6H); 13C NMR (151 MHz, 

CDCl3): major diastereomer δ 170.3, 79.3, 77.7, 72.3, 64.5, 29.7, 29.5, 23.4, 21.5, 21.4, 17.6, 

minor diastereomer δ 169.8, 172.4, 81.9, 78.4, 72.3, 64.0, 31.2, 21.5, 21.4, 18.2; IR (thin film): 

3416, 1734, 1716, 1698, 1559, 1418, 1243, 1102 cm-1; TLC (20% ethyl acetate:hexanes): Rf = 

0.49; HRMS (ESI): Calcd. for C10H18BrNNaO5 ([M+Na]+): 334.0266, Found: 334.0260; HPLC 

Chiralpak IC, H:IPA = 95:5, flow rate = 1.0 mL/min, λ = 210 nm, tR (major) 13.3 min, tR (minor) 14.9 

min, 87:13 er; [α]D -14 (c = 1.1, CHCl3). 

General Procedure E for the Preparation of rac-28 

 

A 1 dram vial equipped with a magnetic stir bar was charged with β-bromo-α-keto ester 

25 (0.20 mmol, 1.0 equiv) in acetone (1.0 mL, 0.2 M). D/L-Proline (4.6 mg, 0.04 mmol, 0.2 

equiv) was added, the vial was capped, and the reaction was allowed to stir for 3 h at room 

temperature. The reaction was filtered through a 2 cm pad of SiO2 washing with Et2O (5 x 2 mL) 

and concentrated in vacuo to afford analytically pure rac-28. The diastereomeric ratio was 

determined by 1H NMR analysis of the crude residue. The diastereomers were separated by 

column chromatography on silica gel. 
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General Procedure F for the Acetone Aldolization 

 

A 1 dram vial equipped with a magnetic stir bar was charged with β-bromo-α-keto ester 

25 (0.20 mmol, 1.0 equiv) in acetone (1.0 mL, 0.2 M). Catalyst XX (5.9 mg, 0.02 mmol, 0.1 

equiv) and PNBA (6.7 mg, 0.04 mmol, 0.2 equiv) were added, the vial was capped, and the 

reaction was allowed to stir for 12 h at room temperature. The reaction was filtered through a 2 

cm pad of SiO2 washing with Et2O (5 x 2 mL) and concentrated in vacuo to afford analytically 

pure 28. The diastereomeric ratio was determined by 1H NMR analysis of the crude residue. The 

diastereomers were separated by column chromatography on silica gel (if applicable). 

Isopropyl (R)-2-((R)-1-bromo-2-phenylethyl)-2-hydroxy-4-

oxopentanoate (28a): The title compound was prepared according to 

General Procedure F using β-bromo-α-keto ester 25a (59.8 mg, 0.20 mmol) affording 28a (67.9 

mg, 95% yield, >20:1 dr) as a white solid (mp: 103-105 ºC). Analytical data for 28a: 1H NMR 

(400 MHz, CDCl3): δ 7.35-7.23 (m, 5H), 5.16 (sept, J = 6.3 Hz, 1H), 4.25 (dd, J = 11.2, 2.8 Hz, 

1H), 4.10 (br s, 1H), 3.42 (dd, J = 10.8, 2.8 Hz, 1H), 3.11 (dd, J = 20.8, 16.6 Hz, 2H), 2.99 (dd, J 

= 14.8, 11.2 Hz, 1H), 2.20 (s, 3H), 1.31 (d, J = 6.3 Hz, 3H), 1.29 (d, J = 6.3 Hz, 3H); 13C NMR 

(101 MHz, CDCl3): δ 205.1, 171.7, 138.1, 129.2, 128.4, 126.9, 70.7, 60.7, 48.9, 38.7, 31.0, 21.57, 

21.55; IR (thin film): 3446, 1732, 1684, 1541, 1450, 1376, 1141 cm-1; TLC (30% ethyl 

acetate:hexanes): Rf = 0.41; HRMS (ESI): Calcd. for C16H21BrNaO4 ([M+Na]+): 379.0521, 
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Found: 379.0514; HPLC Chiralpak IA, H:IPA = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, tR 

(minor) 7.3 min, tR (major) 8.6 min, 96:4 er; [α]D +1 (c = 1.1, CHCl3). 

Isopropyl (R)-2-((R)-1-bromo-2-(2-fluorophenyl)ethyl)-2-hydroxy-4-

oxopentanoate (28b): The title compound was prepared according to 

General Procedure F using β-bromo-α-keto ester 25b (63.4 mg, 0.20 mmol) affording 28b (71.2 

mg, 95% yield, >20:1 dr) as a pale white solid (mp: 64-65 ºC). Analytical data for 28b: 1H NMR 

(600 MHz, CDCl3): δ 7.28-7.24 (m, 2H), 7.10 (t, J = 7.4 Hz, 1H), 7.05 (t, J = 9.7 Hz, 1H), 5.15 

(sept, J = 6.2 Hz, 1H), 4.29 (dd, J = 11.3, 2.1 Hz, 1H), 4.05 (br s, 1H), 3.49 (d, J = 14.6 Hz, 1H), 

3.15 (dd, J = 31.0, 16.7 Hz, 2H), 2.99 (dd, J = 14.6, 11.3 Hz, 1H), 2.21 (s, 3H), 1.30 (d, J = 6.2 

Hz, 3H), 1.28 (d, J = 6.2 Hz, 3H); 13C NMR (151 MHz, CDCl3): δ 204.9, 171.7, 161.2 (d, JC–F = 

244.8 Hz), 132.2 (d, JC–F = 4.4 Hz), 128.9 (d, JC–F = 6.8 Hz), 125.0 (d, JC–F = 14.9 Hz), 123.9 (d, 

JC–F = 3.3 Hz), 115.2 (d, JC–F = 21.3 Hz), 70.8, 59.1, 48.7, 32.8, 30.9, 21.6, 21.5; 19F NMR (376 

MHz, CDCl3): δ -118.5; IR (thin film): 3445, 1734, 1653, 1561, 1494, 1376, 1235, 1102 cm-1; 

TLC (30% ethyl acetate:hexanes): Rf = 0.43; HRMS (ESI): Calcd. for C16H20BrFNaO4 

([M+Na]+): 397.0427, Found: 397.0421; HPLC Chiralpak IA, H:IPA = 85:15, flow rate = 1.0 

mL/min, λ = 210 nm, tR (minor) 7.8 min, tR (major) 8.6 min, 95.5:4.5 er; [α]D +6 (c = 1.2, CHCl3). 

Isopropyl (R)-2-((R)-1-bromo-2-(4-chlorophenyl)ethyl)-2-hydroxy-4-

oxopentanoate (28c): The title compound was prepared according to 

General Procedure F using β-bromo-α-keto ester 25c (66.7 mg, 0.20 mmol) affording 28c (75.9 

mg, 97% yield, >20:1 dr) as a pale yellow oil. Analytical data for 28c: 1H NMR (600 MHz, 

CDCl3): δ 7.29 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.3 Hz, 2H), 5.15 (sept, J = 6.2 Hz, 1H), 4.18 (dd, 

J = 11.5, 2.6 Hz, 1H), 4.10 (br s, 1H), 3.38 (dd, J = 14.8, 2.5 Hz, 1H), 3.11 (dd, J = 35.8, 16.6 Hz, 

2H), 2.94 (dd, J = 14.8, 11.5 Hz, 1H), 2.20 (s, 3H), 1.30 (d, J = 6.2 Hz, 3H), 1.28 (d, J = 6.2 Hz, 
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3H); 13C NMR (151 MHz, CDCl3): δ 205.0, 171.6, 136.5, 132.7, 130.5, 128.5, 76.8, 70.8, 60.3, 

48.9, 37.9, 31.0, 21.57, 21.55; IR (thin film): 3457, 1734, 1647, 1561, 1494, 1243, 1141, 1101 

cm-1; TLC (30% ethyl acetate:hexanes): Rf = 0.35; HRMS (ESI): Calcd. for C16H20BrClO4 

([M+Na]+): 413.0131, Found: 413.0125; HPLC Chiralpak IA, H:IPA = 85:15, flow rate = 1.0 

mL/min, λ = 210 nm, tR (minor) 8.1 min, tR (major) 9.4 min, 96.5:3.5 er; [α]D -2 (c = 1.4, CHCl3). 

Isopropyl (R)-2-((R)-1-bromo-2-(4-methoxyphenyl)ethyl)-2-

hydroxy-4-oxopentanoate (28d): The title compound was prepared 

according to General Procedure F using β-bromo-α-keto ester 25d (65.8 mg, 0.20 mmol) 

affording 28d (72.1 mg, 93% yield, >20:1 dr) as a white solid (mp: 107-108 ºC). Analytical data 

for 28d: 1H NMR (600 MHz, CDCl3): δ 7.15 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 5.15 

(sept, J = 6.2 Hz, 1H), 4.20 (dd, J = 11.3, 2.8 Hz, 1H), 4.08 (br s, 1H), 3.79 (s, 3H), 3.34 (dd, J = 

14.9, 2.6 Hz, 1H), 3.11 (dd, J = 18.7, 16.7 Hz, 2H), 2.92 (dd, J = 14.8, 11.3 Hz, 1H), 2.20 (s, 3H), 

1.30 (d, J = 6.2 Hz, 3H), 1.28 (d, J = 6.2 Hz, 3H); 13C NMR (151 MHz, CDCl3): δ 205.2, 171.8, 

158.5, 130.1, 130.0, 113.8, 77.2, 70.7, 61.4, 55.2, 48.9, 37.8, 31.0, 21.57, 21.56; IR (thin film): 

3444, 1733, 1646, 1541, 1514, 1377, 1249 cm-1; TLC (30% ethyl acetate:hexanes): Rf = 0.33; 

HRMS (ESI): Calcd. for C17H23BrNaO5 ([M+Na]+): 409.0627, Found: 409.0619; HPLC 

Chiralpak IA, H:IPA = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, tR (minor) 8.8 min, tR (major) 10.7 

min, 96:4 er; [α]D -3 (c = 1.3, CHCl3). 

Isopropyl (R)-2-((R)-1-bromo-2-(thiophen-2-yl)ethyl)-2-hydroxy-4-

oxopentanoate (28e): The title compound was prepared according to 

General Procedure F using β-bromo-α-keto ester 25e (61.0 mg, 0.20 mmol) affording 28e (69.8 

mg, 96% yield, >20:1 dr) as a yellow oil. Analytical data for 28e: 1H NMR (400 MHz, CDCl3): 

δ 7.21-7.20 (m, 1H), 6.97-6.93 (m, 2H), 5.15 (sept, J = 6.2 Hz, 1H), 4.21 (dd, J = 10.8, 2.8 Hz, 
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1H), 4.09 (br s, 1H), 3.60 (dd, J = 11.4, 2.3 Hz, 1H), 3.28 (dd, J = 15.7, 10.8 Hz, 1H), 3.08 (dd, J 

= 31.4, 16.6 Hz, 2H), 2.19 (s, 3H), 1.31 (d, J = 6.2 Hz, 3H), 1.28 (d, J = 6.2 Hz, 3H); 13C NMR 

(101 MHz, CDCl3): δ 205.0, 171.5, 140.3, 126.8, 126.6, 124.4, 77.2, 70.8, 60.2, 48.8, 33.4, 31.0, 

21.60, 21.57; IR (thin film): 3456, 1732, 1697, 1542, 1507, 1375, 1233 cm-1; TLC (30% ethyl 

acetate:hexanes): Rf = 0.40; HRMS (ESI): Calcd. for C14H19BrNaO4S ([M+Na]+): 385.0085, 

Found: 385.0078; HPLC Chiralpak IA, H:IPA = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, tR 

(major) 9.2 min, tR (minor) 13.1 min, 95.5:4.5 er; [α]D -15 (c = 1.7, CHCl3). 

Isopropyl (R)-2-((R)-1-bromoethyl)-2-hydroxy-4-oxopentanoate (28f): The 

title compound was prepared according to General Procedure F using β-bromo-

α-keto ester 25f (44.6 mg, 0.20 mmol) affording 28f (54.0 mg, 96% yield, >20:1 dr) as a pale 

yellow oil. Analytical data for 28f: 1H NMR (400 MHz, CDCl3): δ 5.12 (sept, J = 6.3 Hz, 1H), 

4.21 (q, J = 6.8 Hz, 1H), 3.85 (br s, 1H), 2.94 (br s, 2H), 2.16 (s, 3H), 1.71 (d, J = 6.8 Hz, 3H), 

1.29 (d, J = 6.3 Hz, 3H), 1.25 (d, J = 6.3 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 204.9, 172.0, 

77.1, 70.5, 53.5, 48.3, 30.9, 21.6, 21.5, 19.9; IR (thin film): 3445, 1733, 1642, 1558, 1457, 1276, 

1159 cm-1; TLC (30% ethyl acetate:hexanes): Rf = 0.35; HRMS (ESI): Calcd. for C10H17BrNaO4 

([M+Na]+): 303.0208, Found: 303.0203; HPLC Chiralpak IA, H:IPA = 85:15, flow rate = 1.0 

mL/min, λ = 210 nm, tR (major) 6.4 min, tR (minor) 7.1 min, 95.5:4.5 er; [α]D +28 (c = 0.9, CHCl3). 

Isopropyl (2R,3R)-3-bromo-2-hydroxy-2-(2-oxopropyl)hexanoate (28g): 

The title compound was prepared according to General Procedure F using 

β-bromo-α-keto ester 25g (50.2 mg, 0.20 mmol) affording 28g (58.3 mg, 94% yield, >20:1 dr) as 

a pale yellow oil. Analytical data for 28g: 1H NMR (400 MHz, CDCl3): δ 5.11 (sept, J = 6.3 Hz, 

1H), 4.04 (dd, J = 7.0, 6.7 Hz, 1H), 3.96 (br s, 1H), 3.00 (br s, 2H), 2.16 (s, 3H), 1.83-1.64 (m, 

3H), 1.42-1.33 (m, 1H), 1.29 (d, J = 6.3 Hz, 3H), 1.25 (d, J = 6.3 Hz, 3H), 0.93 (t, J = 7.4 Hz, 
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3H); 13C NMR (101 MHz, CDCl3): δ 205.4, 171.9, 77.4, 70.5, 60.6, 48.7, 48.3, 34.1, 30.9, 21.6, 

21.5, 21.2, 13.2; IR (thin film): 3451, 1736, 1653, 1542, 1452, 1376, 1249 cm-1; TLC (30% 

ethyl acetate:hexanes): Rf = 0.47; HRMS (ESI): Calcd. for C12H22BrO4 ([M+H]+): 309.0702, 

Found: 309.0695; HPLC Chiralpak IA, H:IPA = 95:5, flow rate = 1.0 mL/min, λ = 210 nm, tR 

(minor) 8.3 min, tR (major) 10.2 min, 95.5:4.5 er; [α]D -4 (c = 1.2, CHCl3). 

Isopropyl (2R,3R)-3-bromo-2-hydroxy-2-(2-oxopropyl)hex-5-enoate 

(28h): The title compound was prepared according to General Procedure F 

using β-bromo-α-keto ester 25h (49.8 mg, 0.20 mmol) affording 28h (58.6 mg, 95% yield, >20:1 

dr) as a pale yellow oil. Analytical data for 28h: 1H NMR (600 MHz, CDCl3): δ 5.88-5.81 (m, 

1H), 5.17-5.09 (m, 3H), 4.05 (dd, J = 11.0, 2.8 Hz, 1H), 3.97 (br s, 1H), 3.03 (br s, 2H), 2.76-

2.72 (m, 1H), 2.58-2.52 (m, 1H), 2.17 (s, 3H), 1.30 (d, J = 6.2 Hz, 3H), 1.26 (d, J = 6.2 Hz, 3H); 

13C NMR (151 MHz, CDCl3): δ 205.0, 171.7, 134.8, 118.0, 77.2, 70.7, 59.1, 48.7, 36.7, 30.9, 

21.6, 21.5; IR (thin film): 3444, 1733, 1646, 1560, 1457, 1376, 1248, 1147 cm-1; TLC (30% 

ethyl acetate:hexanes): Rf = 0.44; HRMS (ESI): Calcd. for C12H19BrNaO4 ([M+Na]+): 329.0365, 

Found: 329.0359; HPLC Chiralpak IA, H:IPA = 90:10, flow rate = 1.0 mL/min, λ = 210 nm, tR 

(minor) 7.0 min, tR (major) 8.8 min, 96:4 er; [α]D -4 (c = 0.9, CHCl3). 

Isopropyl (2R,3R)-3-bromo-2-hydroxy-4-methyl-2-(2-oxopropyl)pentanoate 

(28i): The title compound was prepared according to General Procedure F using 

β-bromo-α-keto ester 25i (50.2 mg, 0.20 mmol) affording 28i (55.7 mg, 90% yield, 2.5:1 dr) as a 

pale yellow oil. Analytical data for 28i: 1H NMR (400 MHz, CDCl3): major diastereomer δ 

5.15-5.05 (m, 1H), 4.16 (d, J = 1.8 Hz, 1H), 3.80 (br s, 1H), 3.04 (d, J = 16.3 Hz, 1H), 2.96 (d, J 

= 16.3 Hz, 1H), 2.15 (s, 3H), 2.11-2.04 (m, 1H), 1.30-1.23 (m, 6H), 1.04 (d, J = 3.2 Hz, 3H), 

1.02 (d, J = 3.2 Hz, 3H), minor diastereomer δ 5.15-5.05 (m, 1H), 4.04 (d, J = 1.8 Hz, 1H), 3.82 
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(br s, 1H), 3.38 (d, J = 17.4 Hz, 1H), 2.98 (d, J = 17.4 Hz, 1H), 2.13 (s, 3H), 1.77-1.71 (m, 1H), 

1.30-1.23 (m, 6H), 1.05 (d, J = 2.6 Hz, 3H), 0.97 (d, J = 2.6 Hz, 3H); 13C NMR (101 MHz, 

CDCl3): major diastereomer  δ 204.6, 172.4, 77.9, 70.6, 68.6, 30.9, 29.5, 23.6, 21.5, 17.8, minor 

diastereomer δ 206.7, 172.0, 78.6, 70.4, 68.6, 31.1, 30.7, 21.49, 21.45, 18.5; IR (thin film): 3446, 

1734, 1684, 1560, 1489, 1376, 1250, 1102 cm-1; TLC (30% ethyl acetate:hexanes): Rf = 0.54; 

HRMS (ESI): Calcd. for C12H21BrNaO4 ([M+Na]+): 331.0521, Found: 331.0515; HPLC 

Chiralpak IA, H:IPA = 90:10, flow rate = 1.0 mL/min, λ = 210 nm, tR (minor) 6.0 min, tR (major) 7.3 

min, 90:10 er; [α]D +11 (c = 1.4, CHCl3). 

Synthesis of ent-27a 

 

Isopropyl (2S,3S)-3-bromo-2-hydroxy-2-(nitromethyl)-4-phenylbutanoate (ent-27a): 

A 1 dram vial equipped with a magnetic stir bar was charged with β-bromo-α-keto ester 25a 

(59.8 mg, 0.20 mmol, 1.0 equiv) and MeNO2 (110 µL, 2.00 mmol, 10.0 equiv) in 2Me-THF (1.0 

mL, 0.2 M). Catalyst XXI (8.6 mg, 0.02 mmol, 0.1 equiv) was added, the vial was capped, and 

the reaction was allowed to stir for 18 h at room temperature. The reaction was filtered through a 

2 cm pad of SiO2 washing with Et2O (5 x 2 mL) and concentrated in vacuo to afford analytically 

pure ent-27a (65.5 mg, 95% yield, >20:1 dr) as a white solid (mp: 114-116 ºC). The product was 

recrystallized in a 20-mL scintillation vial by dissolving the crude residue in acetone (0.2 mL). 

Hexanes (3.8 mL) was carefully layered on top of the acetone solution. The vial was capped and 

carefully transferred to a freezer. The biphasic mixture was left to slowly diffuse in the freezer 

iPrO

O

O

Br
Ph

Br
Ph

HO CO2
iPr

O2N(±)

(2S,3S)-27a25a

XXI (10 mol%)
MeNO2 (10 equiv)

2Me-THF, rt, 18 h

N

O
N

OH

O

Me

XXI



286 

overnight. The obtained crystals were collected and washed with hexanes. Spectral data is 

consistent with that reported for 27a. Analytical data for ent-27a: HPLC Chiralpak IC, H:IPA = 

95:5, flow rate = 1.0 mL/min, λ = 210 nm, tR (minor) 17.2 min, tR (major) 22.2 min, 99:1 er; [α]D +21 

(c = 1.3, CHCl3). 

Synthesis of ent-28a 

 

Isopropyl (S)-2-((S)-1-bromo-2-phenylethyl)-2-hydroxy-4-oxopentanoate (ent-28a): 

A 1 dram vial equipped with a magnetic stir bar was charged with β-bromo-α-keto ester 25a 

(59.8 mg, 0.20 mmol, 1.0 equiv) in acetone (1.0 mL, 0.2 M). Catalyst XVII (5.9 mg, 0.02 mmol, 

0.1 equiv) and PNBA (6.7 mg, 0.04 mmol, 0.2 equiv) were added, the vial was capped, and the 

reaction was allowed to stir for 12 h at room temperature. The reaction was filtered through a 2 

cm pad of SiO2 washing with Et2O (5 x 2 mL) and concentrated in vacuo to afford analytically 

pure ent-28a (66.4 mg, 96% yield, >20:1 dr) as a white solid (mp: 102-105 ºC). Spectral data is 

consistent with that reported for 28a. Analytical data for ent-28a: HPLC Chiralpak IA, H:IPA = 

85:15, flow rate = 1.0 mL/min, λ = 210 nm, tR (major) 7.3 min, tR (minor) 8.6 min, 95.5:4.5 er; [α]D -1 

(c = 0.9, CHCl3). 
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Enantioselective Synthesis of (R)-25a 

 

(E)-4-phenylbut-2-en-1-ol (S6): A flame-dried 500-mL round-bottomed flask equipped 

with a stir bar was charged with triethyl phosphonoacetate (12.4 mL, 62.5 mmol, 1.25 equiv) in 

THF (125 mL). The solution was cooled to 0 ºC in an ice bath. NaH (60%, 2.5 g, 62.5 mmol, 

1.25 equiv) was added portionwise over 10 min. The reaction was allowed to stir for 30 min at 0 

ºC. Phenylacetaldehyde (6.5 mL, 50.0 mmol, 1.00 equiv) was added dropwise at 0 ºC. Following 

addition, the ice bath was removed and the reaction was allowed to stir for 4 h as it slowly 

warmed to room temperature. The reaction was cooled to 0 ºC and quenched with sat. aq. 

NaHCO3 (75 mL). The layers were separated and the aqueous layer was extracted with Et2O (3 x 

50 mL). The combined organic extracts were washed with brine (75 mL), dried over MgSO4, 

filtered, and concentrated in vacuo to afford crude ester S5 (5:1 E/Z) as a pale yellow oil. 

A flame-dried 1-L round-bottomed flask equipped with a stir bar was charged with ester 

S5 (5:1 E/Z) in toluene (200 mL). The solution was cooled to 0 ºC in an ice bath. DIBAL (17.8 

mL, 100 mmol, 2.00 equiv) was added dropwise to maintain the internal temperature of the 

reaction at 0-10 ºC. Following addition, the reaction was allowed to stir at 0 ºC for 2 h. The 

reaction was quenched by sequential addition of acetone (20 mL) and 1 N HCl (200 mL). The 

layers were separated and the aqueous layer was extracted with EtOAc (3 x 100 mL). The 

combined organic extracts were washed with brine (150 mL), dried over Na2SO4, filtered, and 

concentrated in vacuo. The crude residue was purified by column chromatography on silica gel 
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eluting with 20% ethyl acetate:hexanes to afford allyl alcohol S6 (5.76 g, 70% yield, >20:1 E/Z) 

as a colorless oil whose spectral properties matched those reported in the literature.48 

 

((2S,3S)-3-benzyloxiran-2-yl)methanol (S7): A flame-dried 250-mL round-bottomed 

flask equipped with a stir bar was charged with activated powdered 4Å molecular sieves (1.5 g) 

in CH2Cl2 (50 mL). The suspension was cooled to -20 ºC. Titanium isopropoxide (1.5 mL, 5 

mmol, 0.33 equiv) and (+)-diethyl L-tartrate (1.0 mL, 6 mmol, 0.40 equiv) were added 

sequentially. tert-Butyl hydroperoxide solution (~5.5 M in decane, 6.5 mL, 36 mmol, 2.40 equiv) 

was added dropwise and the mixture was allowed to stir at -20 ºC for 30 min. A solution of allyl 

alcohol S6 (2.46 g, 15 mmol, 1.00 equiv) in CH2Cl2 (10 mL) was added dropwise and the 

reaction was allowed to stir at -20 ºC for 18 h. The reaction was quenched with sat. aq. Na2S2O3 

(20 mL) and was allowed to stir at room temperature for 30 min. The emulsion was filtered 

through a pad of Celite® rinsing with CH2Cl2. The layers were separated and the aqueous layer 

was extracted with CH2Cl2 (2 x 25 mL). The combined organic extracts were washed with brine 

(50 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The crude residue was purified 

by column chromatography on silica gel eluting with 30% ethyl acetate:hexanes to afford alcohol 

S7 (2.12 g, 70% yield, 84.5:14.5 er) as a colorless oil whose spectral properties matched those 

reported in the literature.49 The enantiomeric ratio of S7 was determined by analysis of S10 (vide 

infra). 
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Isopropyl (2R,3S)-3-benzyloxirane-2-carboxylate (S9): A 250-mL round-bottomed 

flask equipped with a stir bar was charged with alcohol S7 (1.55 g, 9.4 mmol, 1.00 equiv) in 

CCl4 (20 mL). NaIO4 (6.00 g, 28.2 mmol, 3.00 equiv), MeCN (20 mL), and H2O (40 mL), and 

RuCl3·3H2O (50 mg, 0.2 mmol, 0.02 equiv) were added sequentially. The reaction was 

vigorously stirred at room temperature for 2 h. The suspension was filtered through a pad of 

Celite® rinsing with Et2O. The layers are separated and the aqueous layer was extracted with 

Et2O (3 x 25 mL). The combined organic extracts were washed with brine (50 mL), dried over 

MgSO4, filtered, and concentrated in vacuo to afford crude carboxylic acid S8 as a purple oil. 

A flame-dried 250-mL round-bottomed flask equipped with a stir bar was charged with 

crude carboxylic acid S8 in CH2Cl2 (50 mL). The solution was cooled to 0 ºC in an ice bath. 

DCC (2.91 g, 14.1 mmol, 1.50 equiv), isopropanol (2.9 mL, 37.6 mmol, 4.00 equiv), and DMAP 

(50 mg) were added sequentially. The reaction was allowed to stir overnight as it slowly warmed 

to room temperature. The suspension was filtered through a pad of Celite® rinsing with CH2Cl2. 

The crude residue was purified by column chromatography on silica gel eluting with 10% ethyl 

acetate:hexanes to afford glycidic ester S9 (1.42 g, 69% yield) as a pale orange oil. Analytical 

data for S9: 1H NMR (400 MHz, CDCl3): δ 7.34-7.30 (m, 2H), 7.27-7.24 (m, 3H), 5.08 (sept, J 

= 6.3 Hz, 1H), 3.39 (ddd, J = 6.4, 1.8, 1.0 Hz, 1H), 3.23 (d, J = 1.8 Hz, 1H), 2.99 (dd, J = 14.8, 

4.6 Hz, 1H), 2.91 (dd, J = 14.8, 5.8 Hz, 1H), 1.26 (d, J = 6.3 Hz, 6H); 13C NMR (101 MHz, 

CDCl3): δ 168.4, 135.8, 129.0, 128.5, 126.9, 69.2, 58.0, 52.8, 37.5, 21.63, 21.57; IR (thin film): 

1725, 1455, 1435, 1374, 1288, 1204, 1107, 984 cm-1; TLC (20% ethyl acetate:hexanes): Rf = 

Ph
HO

S7

O
RuCl3·3H2O (2 mol%)

NaIO4 (3 equiv)

CCl4:MeCN:H2O (1:1:2)
rt, 2 h

Ph
HO

S8

O
O

DCC (1.5 equiv)
DMAP (cat)

iPrOH, CH2Cl2�
0 ºC to rt, 12 h

PhiPrO

S9

O
O
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0.44; HRMS (ESI): Calcd. for C13H16NaO3 ([M+Na]+): 243.0997, Found: 243.0993; [α]D -15 (c 

= 0.9, CHCl3). 

 

Isopropyl (2S,3R)-3-bromo-2-hydroxy-4-phenylbutanoate (S10): A flame-dried 50-

mL round-bottomed flask equipped with a stir bar was charged with glycidic ester S9 (660 mg, 

3.0 mmol, 1.00 equiv) in Et2O (18 mL). MgBr2·Et2O (1.16 g, 4.5 mmol, 1.50 equiv) was added 

and the reaction was allowed to stir at room temperature for 2 h. The reaction was diluted with 

Et2O (20 mL) and washed with H2O (2 x 20 mL) and brine (1 x 20 mL). The organic layer was 

dried over MgSO4, filtered, and concentrated in vacuo. The crude residue was purified by 

column chromatography on silica gel eluting with 15% ethyl acetate:hexanes to afford anti-

bromohydrin S10 (819 mg, 91% yield) as a pale yellow oil. Analytical data for S11: 1H NMR 

(400 MHz, CDCl3): δ 7.35-7.23 (m, 5H), 5.14 (sept, J = 6.3 Hz, 1H), 4.45 (ddd, J = 6.9, 2.7, 1.4 

Hz, 1H), 4.37 (dd, J = 6.2, 2.8 Hz, 1H), 3.36-3.22 (m, 3H), 1.36 (d, J = 6.3 Hz, 6H); 13C NMR 

(101 MHz, CDCl3): δ 170.6, 137.6, 129.2, 128.5, 127.1, 73.1, 70.7, 56.6, 40.6, 21.9, 21.8; IR 

(thin film): 3460, 1732, 1496, 1455, 1387, 1266, 1224, 1103, 1031 cm-1; TLC (20% ethyl 

acetate:hexanes): Rf = 0.32; HRMS (ESI): Calcd. for C13H17BrNaO3 ([M+Na]+): 323.0259, 

Found: 323.0259; SFC Chiralpak AS, 3% MeOH, pressure = 150 bar, flow rate = 1.5 mL/min, λ 

= 210 nm, tR (minor) 7.3 min, tR (minor) 8.1 min, 84.5:15.5 er; [α]D -15 (c = 1.0, CHCl3). 

 

 

PhiPrO

S9

O
O MgBr2·Et2O (1.5 equiv) PhiPrO

S10

O Br

OH
Et2O, rt, 2 h
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Isopropyl (R)-3-bromo-2-oxo-4-phenylbutanoate ((R)-25a): A 20-mL scintillation vial 

equipped with a stir bar was charged with bromohydrin S10 (301 mg, 1.0 mmol, 1.00 equiv) in 

CH2Cl2 (10 mL). Dess-Martin periodinane (828 mg, 2.0 mmol, 2.00 equiv) was added and the 

reaction was allowed to stir at room temperature for 2 h. The reaction was diluted with Et2O (30 

mL) and washed with sat. aq. Na2S2O3:sat. aq. NaHCO3 (1:1) (3 x 15 mL) and brine (1 x 15 mL). 

The organic layer was dried over MgSO4, filtered, and concentrated in vacuo to afford 

analytically pure (R)-25a (296 mg, 99% yield) as a pale yellow oil whose spectral properties 

matched those obtained via General Procedure B. The enantiomeric ratio of (R)-25a was 

determined via stereoselective reduction to (2R,3R)-29 employing NaBH4 (vide infra). Analytical 

data for (R)-25a: [α]D +90 (c = 0.9, CHCl3). 

Stereospecific Stereoselective Reduction of (R)-25a to (2R,3R)-29 

 

Isopropyl (2R,3R)-3-bromo-2-hydroxy-4-phenylbutanoate ((2R,3R)-29): A 20-mL 

scintillation vial equipped with a stir bar was charged with β-bromo-α-keto ester (R)-25a (59.8 

mg, 0.20 mmol, 1.00 equiv) in MeOH (4 mL). The solution was cooled to 0 ºC in an ice bath. 

NaBH4 (15.1 mg, 0.40 mmol, 2.00 equiv) was added and the reaction was allowed to stir at 0 ºC 

for 1 min. The reaction was carefully quenched with sat. aq. NH4Cl (4 mL). The reaction was 

extracted with CH2Cl2 (3 x 10 mL). The combined organic extracts were dried over Na2SO4, 

PhiPrO

S10

O Br

OH

DMP (2 equiv)

CH2Cl2, rt, 2 h
PhiPrO

(R)-25a

O Br

O

PhiPrO

(R)-25a

O Br

O

PhiPrO

(2R,3R)-29

O Br

OH

NaBH4

MeOH, 0 ºC
1 min
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filtered, and concentrated in vacuo to afford analytically pure (2R,3R)-29 (59.3 mg, 98% yield, 

>20:1 dr) as a pale yellow oil. Analytical data for (2R,3R)-29: 1H NMR (400 MHz, CDCl3): δ 

7.37-7.27 (m, 5H), 5.13 (sept, J = 6.3 Hz, 1H), 4.49 (ddd, J = 8.9, 7.0, 1.2, 1H), 4.12 (dd, J = 7.0, 

1.2 Hz, 1H), 3.38 (dd, J = 13.8, 8.9 Hz, 1H), 3.29 (dd, J = 13.8, 7.0 Hz, 1H), 3.24 (d, J = 7.0 Hz, 

1H), 1.29 (d, J = 6.3 Hz, 3H), 1.26 (d, J = 6.3 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 171.4, 

137.6, 129.4, 128.7, 127.1, 70.9, 70.5, 56.4, 41.7, 21.7, 21.6; IR (thin film): 3445, 1734, 1653, 

1505, 1375, 1288, 1106, 997 cm-1; TLC (20% ethyl acetate:hexanes): Rf = 0.34; HRMS (ESI): 

Calcd. for C13H17BrNaO3 ([M+Na]+): 323.0259, Found: 323.0259; SFC Chiralpak AS, 3% 

MeOH, pressure = 150 bar, flow rate = 1.5 mL/min, λ = 210 nm, tR (major) 5.0 min, tR (minor) 6.3 

min, 84.5:15.5 er; [α]D -14 (c = 0.9, CHCl3). 

Monitoring the Enantiomeric Composition of Species in Henry Aldolization 

Procedure: A 20-mL scintillation vial equipped with a magnetic stir bar was charged 

with β-bromo-α-keto ester (±)-25a (239 mg, 0.80 mmol, 1.0 equiv), mesitylene (120.2 mg, 1.00 

mmol), and MeNO2 (430 µL, 8.00 mmol, 10.0 equiv) in 2Me-THF (4.0 mL, 0.2 M). Catalyst X 

(34.3 mg, 0.08 mmol, 0.1 equiv) was added, the vial was capped, and the reaction was allowed to 

stir at room temperature. Aliquots (250 µL) were removed at various time points during the 

course of the reaction. 

Analysis: The aliquot was added to a 1-dram vial equipped with a magnetic stir bar was 

charged with MeOH (1.5 mL) at 0 ºC. A spatula tip of NaBH4 (~5 mg) is added to the reaction at 

0 ºC (Note: Quenching at 0 ºC is imperative for accurate data). After 1 min, the reaction was 

quenched with sat. aq. NH4Cl (0.5 mL). The reaction was diluted with CH2Cl2 (5 mL) and H2O 

(5 mL). The layers were separated and the aqueous layer was extracted with CH2Cl2 (2 x 5 mL). 

The combined organic extracts were dried over Na2SO4, filtered, and concentrated in vacuo. The 



293 

resulting residue was filtered through a 2 cm pad of SiO2 washing with Et2O (5 x 2 mL) to 

remove the catalyst and concentrated in vacuo to afford a mixture of 27a and 29. The 

diastereomeric ratio of 27a and conversion (comparison with mesitylene internal standard) was 

determined by 1H NMR analysis of the crude residue. The enantiomeric excess of 27a and 29 

were determined by chiral HPLC analysis: HPLC Chiralpak IA, H:IPA = 90:10, flow rate = 1.0 

mL/min, λ = 210 nm, syn-29: tR  7.1 min, tR  7.9 min, anti-27a: tR  15.6 min, tR  18.0 min, syn-

27a: tR  17.5 min, tR  21.8 min. 
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Aliquot Conversion (%) 
Enantiomeric 
Composition 

of 27a 

Enantiomeric 
Composition 

of 29 
1 17 94 51 
2 33 94 52 
3 47 94 52 
4 60 95 53 
5 71 94 53 
6 83 93 53 
7 90 94 51 
8 95 94 51 

 

Procedure: A 20-mL scintillation vial equipped with a magnetic stir bar was charged 

with β-bromo-α-keto ester (R)-25a (239 mg, 0.80 mmol, 1.0 equiv), mesitylene (120.2 mg, 1.00 

mmol), and MeNO2 (430 µL, 8.00 mmol, 10.0 equiv) in 2Me-THF (4.0 mL, 0.2 M). Catalyst X 

(34.3 mg, 0.08 mmol, 0.1 equiv) was added, the vial was capped, and the reaction was allowed to 

stir at room temperature. Aliquots (250 µL) were removed at various time points during the 

course of the reaction and analyzed as previous described. 

iPrO

O

O

Br X (10 mol%)
MeNO2 (10 equiv)

2Me-THF (0.2 M), rt
then NaBH4

(2R,3R)-27a
Br

HO CO2
iPr

O2NPh
Ph iPrO

O
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Br

(2R,3R)-29

Ph

(±)-25a
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Aliquot Conversion (%) 
Enantiomeric 
Composition 

of 27a 

Enantiomeric 
Composition 

of 29 
1 0 - 84.5 
2 9 86 50 
3 24 91 51 
4 35 92 51 
5 46 91 51 
6 56 94 52 
7 64 92 50 
8 73 93 52 
9 84 94 53 
10 95 93 53 
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O
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Br

(2R,3R)-29

Ph
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84.5:15.5 er



296 

Racemization Studies with (R)-25a 

 

A 1 dram vial equipped with a magnetic stir bar was charged with β-bromo-α-keto ester 

(R)-25a (15.0 mg, 0.05 mmol, 1.0 equiv) in 2Me-THF (250 µL, 0.2 M). Catalyst X (2.1 mg, 

0.005 mmol, 0.1 equiv) was added, the vial was capped, and the reaction was allowed to stir for 

30 min at room temperature. The reaction was cooled to 0 ºC in an ice bath and diluted with 

MeOH (1.5 mL). A spatula tip of NaBH4 (~5 mg) is added to the reaction at 0 ºC. After 1 min, 

the reaction was quenched with sat. aq. NH4Cl (0.5 mL). The reaction was diluted with CH2Cl2 

(5 mL) and H2O (5 mL). The layers were separated and the aqueous layer was extracted with 

CH2Cl2 (2 x 5 mL). The combined organic extracts were dried over Na2SO4, filtered, and 

concentrated in vacuo. The resulting residue was filtered through a 2 cm pad of SiO2, washing 

with Et2O (5 x 2 mL) to remove the catalyst, and concentrated in vacuo to afford rac-29 (14.7 

mg, 98% yield, >20:1 dr) as a pale yellow oil. Spectral properties were consistent with those 

reported for (2R,3R)-29. Analytical data for rac-29: SFC Chiralpak AS, 3% MeOH, pressure = 

150 bar, flow rate = 1.5 mL/min, λ = 210 nm, tR (minor) 4.8 min, tR (major) 6.0 min, 50:50 er. 

 

 

 

 

 

 

iPrO

O

O

Br
X (10 mol%)
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then NaBH4
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85:15 er
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Deuterium Labeling Studies with CD3NO2 in Henry Aldolization 

 

A 1 dram vial equipped with a magnetic stir bar was charged with β-bromo-α-keto ester 

(±)-25a (59.8 mg, 0.20 mmol, 1.0 equiv) and CD3NO2 (110 µL, 2.00 mmol, 10.0 equiv) in 2Me-

THF (1.0 mL, 0.2 M). Catalyst X (8.6 mg, 0.02 mmol, 0.1 equiv) was added, the vial was capped, 

and the reaction was allowed to stir for 66 h at room temperature. The reaction was filtered 

through a 2 cm pad of SiO2 washing with Et2O (5 x 2 mL) and concentrated in vacuo to afford 

analytically pure 27a (69.2 mg, 96% yield, >20:1 dr). The deuterium incorporation was 

determined by 1H NMR analysis of the crude residue. 

Determination of Initial Rates and Kinetic Isotope Effect 

Procedure: A 20-mL scintillation vial equipped with a magnetic stir bar was charged 

with β-bromo-α-keto ester (±)-25a (239 mg, 0.80 mmol, 1.0 equiv), mesitylene (120.2 mg, 1.00 

mmol), and MeNO2 or CD3NO2 (430 µL, 8.00 mmol, 10.0 equiv) in 2Me-THF (4.0 mL, 0.2 M). 

Catalyst X (34.3 mg, 0.08 mmol, 0.1 equiv) was added, the vial was capped, and the reaction was 

allowed to stir at room temperature. Aliquots (250 µL) were removed at the indicated time points. 

Analysis: The aliquot was added to a 1-dram vial equipped with a magnetic stir bar was 

charged with MeOH (1.5 mL) at 0 ºC. A spatula tip of NaBH4 (~5 mg) is added to the reaction at 

0 ºC (Note: Quenching at 0 ºC is imperative for accurate data). After 1 min, the reaction was 

quenched sat. aq. NH4Cl (0.5 mL). The reaction was diluted with CH2Cl2 (5 mL) and H2O (5 

mL). The layers were separated and the aqueous layer was extracted with CH2Cl2 (2 x 5 mL). 

The combined organic extracts were dried over Na2SO4, filtered, and concentrated in vacuo. The 

iPrO

O

O

Br X (10 mol%)
CD3NO2 (10 equiv)

2Me-THF (0.2 M)
rt, 66h

(±)-25a (2R,3R)-27a

HO CO2
iPr

Ph
Ph

Br H/D 36% DO2N

D
D
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resulting residue was filtered through a 2 cm pad of SiO2 washing with Et2O (5 x 2 mL) to 

remove the catalyst and concentrated in vacuo to afford a mixture of 27a and 29. The conversion 

and concentration of (2R,3R)-27a was determined by comparison with mesitylene internal 

standard by 1H NMR analysis of the crude residue. 

 

 
CH3NO2 (!) 

y = 0.2710x – 1.9473 
R2 = 0.98548 

 
time (min) conversion (%) (2R,3R)-27a [mM] 

15 2.3 4.6 
30 6.3 12.6 
45 9.2 18.3 
60 15.4 30.8 
75 18.1 36.2 
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Br HO2N

H
H
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CD3NO2 (!) 

y = 0.0967x – 2.8049 
R2 = 0.99528 

 
time (min) conversion (%) (2R,3R)-27a [mM] 

60 2.7 5.3 
120 9.0 18.0 
180 15.2 30.5 
240 19.9 39.8 

 

kH/kD = (0.2710/0.0967) = 2.8 

Non-Linear Effects in Henry Aldolization 

 

Procedure: Stock solutions (0.2 M in 2Me-THF) of catalysts X (42.9 mg, 1.00 mmol) 

and XXI (42.9 mg, 1.00 mmol) were prepared in 20-mL scintillation vials. A 1-dram vial 

equipped with a magnetic stir bar was charged with β-bromo-α-keto ester (±)-25a (59.8 mg, 0.20 

mmol, 1.0 equiv) and MeNO2 (110 µL, 2.00 mmol, 10.0 equiv). Solutions of catalyst X (n x 100 

µL) and catalyst XXI ((10-n) x 100 µL) was added, the vial was capped, and the reaction was 

allowed to stir for 18 h at room temperature. The reaction was filtered through a 2 cm pad of 
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SiO2 washing with Et2O (5 x 2 mL) and concentrated in vacuo to afford analytically pure 27a. 

The enantiomeric ratio was determined by HPLC analysis. 

 

R2 = 0.99715 

n 0.2 M X (µL) 0.2 M XXI (µL) ee of (2R,3R)-2b 
0 1000 0 91 
1 900 100 72 
2 800 200 54 
3 700 300 39 
4 600 400 25 
5 500 500 11 
6 400 600 -4 
7 300 700 -18 
8 200 800 -34 
9 100 900 -51 
10 0 1000 -74 
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CHAPTER SIX: ENANTIOSELECTIVE SYNTHESIS OF HINDERED CYCLIC 
DIALKYL ETHERS VIA ORGANOCATALYTIC OXA-MICHAEL/MICHAEL 

DESYMMETRIZATION* 
 

6.1 Introduction 

 Sterically hindered dialkyl ethers are ubiquitous in natural products; however, efficient 

and selective methods for their stereocontrolled preparation remain a challenge to the synthetic 

community. Modern approaches to the asymmetric synthesis of dialkyl ethers through C–O bond 

formation rely largely on the use of metal-mediated alkene functionalizations where a single α-

stereocenter is generated in the etherification. In this chapter, we report a tractable metal-free 

approach to the synthesis of tert/sec ethers employing an oxa-Michael/Michael desymmetrization 

strategy involving achiral tertiary carbinols and α,β-unsaturated aldehydes (Scheme 6-1). The 

present art provides direct access to densely functionalized bicycles with the concomitant 

formation of four stereocenters including both α-stereocenters of the ether linkage. 

Scheme 6-1. Oxa-Michael/Michael Desymmetrization Strategy 

 

 

 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
* Reproduced in part by permission of The Royal Society of Chemistry: Corbett, M. T.; Johnson, 
J. S. Chem. Sci. 2013, 4, 2828–2832. 
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6.2 Background 

6.2.1 Extant Methods for the Synthesis of Hindered Ethers 

 The Williamson ether synthesis is a fundamental chemical transformation for the 

preparation of ethers via SN2 displacement of an alkyl halide with an alkoxide (Figure 6-1).1 

Despite its utility in the synthesis of simple acyclic and cyclic ethers, the harsh reaction 

conditions of the Williamson ether synthesis render it incompatible to asymmetric synthesis due 

to competitive racemization/epimerization and elimination pathways. To address these 

limitations, myriad methods for the construction of chiral tertiary ethers via C–O bond formation 

have been developed through the use of metal-mediated alkene functionalizations,2 carbonyl 

ylide cycloadditions,3 among others (Scheme 6-2).4 Despite significant advancement, these 

methods are largely limited to metal-mediated intramolecular reactions and generally result in 

the formation of a single α-stereocenter. 

Figure 6-1. Williamson Ether Synthesis 
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Scheme 6-2. Representative Catalytic Asymmetric Hindered Ether Syntheses 
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through application of chiral organic bases, generating a chiral nucleophile through ion-pairing. 

Alternatively, electrophile activation can be achieved through hydrogen-bonding (i.e., 
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of carbonyls). 

 

OH
Me

Me

Me Pd(OCOCF3) (10 mol%)
(S,S)-boxax (10 mol%)

benzoquinone
MeOH

O

Me
Me

Hayashi (1997): Wacker-Type Cyclization

O
CO2Et

N2

O
Rh2(S-DOSP)4 (1 mol%)

hexane OO
CO2Et

Hodgson (1997): Tandem Carbonyl Ylide Formation/Cycloaddition

76% yield
76.5:23.5 er

75% yield
98:2 er

N

O

N

O

iPriPr

(S,S)-boxax

N
SO2Ar O

O

Rh

Rh

4

Ar = 4-OMe-C6H4

Rh2(S-DOSP)4

OH

O

N

Ph
N

OMe Me

O

N

Ph
N

99% yield
98:2 er

cat (10 mol%)
30% H2O2 (2 equiv)

Ar

Ar

N

I

Ar = 3,5-(CF3)2-C6H3

cat

Et2O:H2O (5:1)

Ishihara (2010): Oxidative Cycloetherification



308 

Figure 6-2. Mechanism of Oxa-Michael Reaction 

 

Despite the potential utility of this reactivity profile, poor nucleophilicity of oxygen 
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demonstrated the potential of the oxa-Michael addition of oximes to serve as a valuable method 

for the construction of β-hydroxy carboxylic acid derivatives following N–O bond cleavage 

(Scheme 6-3).7b The utility of the oxa-Michael reaction in the preparation of hindered alkyl 

ethers has been comparatively underdeveloped with limited examples of secondary and tertiary 

alcohol nucleophiles.8 Furthermore, starting material stereogenicity is an additional challenge 

with secondary and tertiary alcohol nucleophiles that limits either the substrate scope or reaction 
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Scheme 6-3. Formal Enantioselective Hydration of α,β-Unsaturated Imides 

 

R2
EWGR1 OH

R2
EWG

O
HR1

R2
EWG

O
R1

H

O

N
H

Ph

O

Me

1) (R,R)-Al(salen) (5 mol%)
     cyclohexane, rt

2) H2, Pd(OH)2/C
    AcOH, EtOH, rt

O

N
H

Ph

O

Me

OH
N N

HH

O O tBu

tButBu

tBu
Al

X

X = O-Al(salen)
(R,R)-Al(salen)

N
OH

HO

90% yield
98.5:1.5 er



309 

 Early efforts by Marouka highlighted the challenges associated with the development of 

an efficient asymmetric intermolecular oxa-Michael addition (Scheme 6-4).8b Employing 

bifunctional secondary amine catalyst 1, the oxa-Michael addition of methanol to α,β-unsaturated 

aldehydes proceeded in good yield with moderate enantioselectivity. Although methanol was a 

competent nucleophile in formation of β-methoxy aldehydes with no observed competitive acetal 

formation, more hindered nucleophiles, such as 2-propanol, were incompatible with the 

developed system. This observed difference in reactivity could arise from either reduced 

nucleophilicity of the more hindered alcohol or a competitive retro-Michael pathway that favors 

elimination over proton-transfer. 

Scheme 6-4. Catalytic Asymmetric Oxa-Michael Addition of Hindered Alcohols 
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functionalization of the Michael acceptor can be realized. By harnessing the transient enolate 

equivalent 2 in favorable constructive pathways, competitive retro-Michael pathways are 

repressed allowing for the development of highly efficient Michael additions. 

Scheme 6-5. Michael Addition Triggered Domino Reactions 
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Michael, subsequent Michael addition to afford 6 effectively drove the reaction to completion 

suggesting that sterically hindered oxygen nucleophiles are competent reaction partners when the 

reaction is driven through domino processes. 

Scheme 6-6. Oxa-Michael/Michael Kinetic Resolution of Secondary Alcohols 
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propargyl alcohol (10a) to an α,β-unsaturated aldehyde was achieved via iminium-ion activation 

employing Jørgensen–Hayashi catalyst 7c followed by intramolecular carbocyclization mediated 

by PdCl2 to afford 11a in high yield and excellent enantioselectivity. Notably, tertiary alcohol 

10b was found to be compatible with the reaction affording the tert/sec-dihydrofuran 11b in 

slightly reduced yield and selectivity. The success of 10b was attributed to facile intramolecular 

carbocylization; effectively funneling material away from the deleterious retro-Michael pathway. 

Furthermore, Córdova’s work provides strong evidence that sterically encumbered secondary 

amine catalysts, such as 7c, can effectively direct the intermolecular approach of bulky oxygen-

centered nucleophiles in the oxa-Michael addition. 

Scheme 6-7. Synthesis of Dihydrofurans via Oxa-Michael/Carbocyclization Cascade 
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nucleophile to provide access to chiral cyclohexanone derivatives bearing malleable enone 

functionality that can be deployed in secondary transformations. 

Figure 6-3. Enantioselective Desymmetrization of 4,4-Disubstituted Cyclohexadienones 
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Scheme 6-8. Desymmetrization of Cyclohexadieneones via Asymmetric Michael Addition 
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Scheme 6-9. Acetalization/Oxa-Michael Cascade of p-Peroxyquinols 
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Scheme 6-10. Asymmetric Approach to Hindered Ether Synthesis 

 

6.3 Results and Discussion 
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as valuable intermediates in organic synthesis.16 In addition to their inherent utility, phenols are 

susceptible to oxidative dearomatization with oxygen-centered nucleophiles providing direct 

access to benzoquinones and quinols. Traditionally employed Pb(OAc)4 protocols for the 

oxidation of phenols have since been replaced by metal-free hypervalent iodine reagents, such as 

phenyliodine diacetate (PIDA) and phenyliodine bis(trifluoroacetate) (PIFA).12 For 

intramolecular and intermolecular reactions, the regioselectivity of the dearomatization (ortho vs. 

para) is dictated by the substitution pattern on the phenol where nucleophilic attack occurs at the 

most stable carbenium ion (Scheme 6-11). This observed regioselectivity allows for the selective 

preparation of p-quinols via oxidative dearomatization of 4-substituted phenols in the presence of 

H2O. 
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Scheme 6-11. Regioselectivity in Oxidative Dearomatization of Phenols by Hypervalent Iodine 
Reagents 
 

 

As originally described by Antus and Pelter, coordination of the phenol to the 

hypervalent iodine reagent generates the reactive aryloxyiodonium(III) intermediate 18 (Scheme 

6-12).17 From 18, two pathways are possible: 1) dissociation to generate phenoxenium ion 19 

that undergoes direct nucleophilic attack that is controlled by electronic effects (path a); or 2) 

direct nucleophilic attack on 18 that is governed by sterics (path b). Although dissociation to 19 

was originally proposed to be the dominant pathway based on observed regioselectivities, the 

success of elegantly designed chiral hypervalent iodine reagents by Kita and Ishihara strongly 

suggest that an associative pathway (path b) can be active based on the observed chiral induction 

that can only be rationalized through covalent coordination of the hypervalent iodine reagent to 

the phenol in the enantiodetermining step.18 
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Scheme 6-12. Mechanism of Oxidative Dearomatization of Phenols by Hypervalent Iodine 
Reagents 
 

 

 An alternative synthesis of p-peroxyquinols and p-quinols from 4-substituted phenols 

employs singlet oxygen (1O2), which is generated by irradiation of gaseous oxygen with UV light 

in the presence of a sensitizer.19 A more attractive approach for the generation of singlet oxygen 

for the preparation of p-quinols was developed by Carreño through the use of Oxone®, which 

decomposes in aqueous basic media to generate 1O2 (Scheme 6-13).13,20 Electron-rich 4-

substituted phenols undergo [4+2]-cycloaddition with 1O2 to generate the 1,4-endoperoxide 20, 

which rapidly decomposes in the presence of H2O to form the desired p-peroxyquinol 14. One-

pot reductive work-up in the presence of Na2S2O3 cleanly provides the p-quinol 17 in near 

quantitative yield. Based on its operational simplicity, scalability and greenness, we chose to 

prepare our requisite alkyl p-quinols employing Carreño’s Oxone®-based strategy over more 

established hypervalent iodine reagent methods. 2,2´-Disubstituted-4-methyl p-quinols, however, 

necessitated PIDA-mediated oxidation conditions. 

 

 

OH
R1

R2

O
R1

R2

PhIX2
O

R1

R2

I Ph

X

- HX
OR3

(path a)

O

R2

O
R1

OR3
R2

R2 OR3

18 19

OH
R1

R2

O
R1

R2

I Ph

X

18

OR3

- PhI

(path b)

- PhI

X

PhIX2

- HX



319 

Scheme 6-13. Oxidative Dearomatization of Phenols by Singlet Oxygen (1O2) 

 

6.3.2 Identification of Secondary Amine Catalysts 

 In order to achieve the proposed domino reactivity, iminium-ion/enamine activation of 

α,β-unsaturated aldehydes was investigated using secondary amine catalysis (Scheme 6-14). 

Since Langenbeck’s pioneering work,21 a variety of chiral secondary amine catalysts have been 

shown to achieve LUMO-lowering activation of α,β-unsaturated carbonyls through iminium-ion 

formation.22 Based on their prior success in catalytic asymmetric transformations of enals, 

diarylprolinol ether catalysts 7 developed by Hayashi and Jørgensen and imidazolidinone 

catalysts 21 developed by MacMillan were selected for initial screening.23 Both of these catalyst 

architectures have been shown to provide excellent levels of enantioselectivity in 1,4-conjugate 

addition reactions of α,β-unsaturated aldehydes through chiral control where bulky groups on the 

secondary amine control iminium-ion geometry and effectively shield one face of the extended 

π-system. 

 

 

 

OH

R1

1O2 O
O
OH

R1

H2O

20

O

R1 OOH

Na2S2O3

O

R1 OH
14 17

Oxone®
NaHCO3

H2O
HOOSO3 OOSO3

1O2 HOSO3 OSO3



320 

Scheme 6-14. Secondary Amine Activation of α,β-Unsaturated Carbonyls 

 

 We commenced our investigation by examining the reaction of p-quinol 17a with 

cinnamaldehyde (22a) under secondary amine catalysis in the presence of acid additives 

(Scheme 6-15). Although MacMillan’s imidazolidinone catalyst 21·TFA provided only trace 

product after 24 h, Hayashi’s catalyst 7b·PhCO2H efficiently catalyzed the reaction providing 

the desired (3+2)-annulation adduct 23a in 61% yield with 15:1 dr (23a:Σothers) and 99.5:0.5 er. 

The excellent levels of enantioselectivity observed in the annulation suggest that the oxa-Michael 

addition proceeds with excellent facial selectivity due to steric control provided by the bulky 

amine catalyst. 
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Scheme 6-15. Screening of Chiral Secondary Amine Catalysts 

 

6.3.3 Optimization of Catalyst Structure and Reaction Conditions 

 Having identified an efficient catalyst for the oxa-Michael/Michael desymmetrization, we 

turned our attention to screening catalysts and conditions to optimize both reaction efficiency 

and selectivity (Table 6-1). The use of basic additives like NaHCO3 was found to be detrimental 

to the reaction (entry 2). Although running the reaction in EtOAc or Et2O resulted in dramatic 

drops in diastereoselection (entries 3 and 4), switching the solvent to toluene and utilizing 4-

nitrobenzoic acid (PNBA) increased the yield to 82% with no loss in stereocontrol (entry 7). 

Although high levels of enantioselectivity were observed in the initial oxa-Michael addition, 

efforts to increase the diastereoselection of the subsequent intramolecular Michael addition 

through structural modifications of the catalyst 7 were largely unsuccessful. Both 

diphenylprolinol (7a) and Jørgensen’s catalyst 7d completely shut down the reaction (entries 8 

and 10). Catalysts possessing a bulkier TES group (7c) or 3,5-Me2-Ph aryl groups (7e) provided 

23a in good yield, but lower levels of diastereoselection (entries 9 and 11). Optimized conditions 
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were realized using commercially available 7b with 1.5 equivalents of cinnamaldehyde (22a) 

affording 23a in 81% yield with 15:1 dr and >99.5:0.5 er (entry 12). 

Table 6-1. Reaction Optimizationa 

 

entry 7 additive solvent yield (%)b drc erd 
1 7b PhCO2H CH2Cl2 61 15:1 99.5:0.5 
2 7b NaHCO3 CH2Cl2 tracec – – 
3 7b PhCO2H EtOAc N/D 6:1 N/D 
4 7b PhCO2H Et2O N/D 2:1 N/D 
5 7b PhCO2H CH2Cl2:H2O (10:1) 68 10:1 >99.5:0.5 
6 7b PhCO2H toluene 78 15:1 >99.5:0.5 
7 7b PNBA toluene 82 16:1 >99.5:0.5 
8 7a PNBA toluene 0 – – 
9 7c PNBA toluene 72 7:1 >99.5:0.5 
10 7d PNBA toluene 0 – – 
11 7e PNBA toluene 75 9:1 >99.5:0.5 
12e 7b PNBA toluene 81 15:1 >99.5:0.5 

aReactions were performed on 0.30 mmol scale, using 3.0 equiv. aldehyde unless otherwise 
noted. bIsolated yield of major diastereomer. cDetermined by 1H NMR analysis of crude reaction 
mixture. dDetermined by chiral SFC analysis. eEmploying 1.5 equiv. aldehyde. 
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bearing strongly electron-releasing and withdrawing para-substituents on the aldehyde with 

slightly reduced diasterecontrol (23b and 23c). Aromatic aldehydes bearing ortho-substituents 

were found to provide excellent levels of diastereocontrol regardless of electronic features (23d, 

23e, and 23f). The bulky mesityl-group could be incorporated providing 23g in good chemical 

yield and enantioselectivity, but with low diastereocontrol (4:1 dr). Thien-2-yl and indol-3-yl 

functionality was amenable to the reaction providing access to heteroaromatic substrates 23h and 

23i. Aldehydes bearing a γ-enolizable site are also compatible under the reaction conditions as 

crotonaldehyde provides access to Me-substituted 23j in 58% yield and 7:1 dr with 99:1 

enantioselection. Only trace byproducts were observed from undesired dienamine formation. 

Although 1,4-conjugate addition pathways predominate in acyclic α,β-γ,δ-unsaturated aldehyde 

systems, attempts at employing 2,4-dienals resulted in a complex reaction mixture (23k).24 β-

Disubstituted α,β-unsaturated aldehydes were found to be unreactive under the reaction 

conditions suggesting that they are too sterically encumbered for the oxa-Michael addition of 

tertiary carbinols (23l). 
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Table 6-2. Scope of Aldehydesa 

 
aReactions were performed on 1.00 mmol scale, using 1.5 equiv aldehyde. Isolated yields of 
analytically pure major diastereomer are reported. Diastereomer ratios were determined by 1H 
NMR analysis of the crude reaction mixtures; enantiomer ratios were determined by chiral 
HPLC/SFC analysis. btoluene:CH2Cl2 (1:1) (0.25 M). 
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In addition to methyl-substituted 17a, a variety of p-quinols bearing linear aliphatic 

substituents were tolerated in the addition to cinnamaldehyde (22a) allowing for the 

incorporation of pendant siloxy and ester functionality (23m, 23r, and 23s). The bulkier iPr-

derived p-quinol provided 23n in 71% yield, but with modest diastereoselection in the 

intramolecular Michael addition. The Ph-substituted p-quinol afforded a complex mixture in the 

reaction (23o). Examination of 2,2´-disubtititued-4-methyl p-quinols in the reaction was pursued 

to install an additional stereocenter thereby increasing molecular complexity; however, 

attempted annulations were unfruitful (23p and 23q). 
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Table 6-3. Scope of p-Quinolsa 

 
aReactions were performed on 1.00 mmol scale, using 1.5 equiv aldehyde. Isolated yields of 
analytically pure major diastereomer are reported. Diastereomer ratios were determined by 1H 
NMR analysis of the crude reaction mixtures; enantiomer ratios were determined by chiral 
HPLC/SFC analysis. bIsolated yield of 10:1 dr mixture. 
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 In order to further highlight the potential applicability of this methodology, the reaction 

of 17a and 22d was performed on 20 mmol scale employing commercially available catalyst 7b 

with technical grade reagents under ambient atmosphere providing 23d in 82% yield after a 
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Scheme 6-16. Gram-scale Synthesis 

 

6.3.6 Determination of Absolute Stereochemistry and Secondary Transformations of 
Products 
 

In addition to providing complex fused bicyclic frameworks with good stereocontrol, the 

products contain synthetically useful aldehyde and enone functional handles for further 

orthogonal manipulations. Chemoselective reduction of aldehyde 23a afforded alcohol 24a (92% 

yield), which was subsequently converted to the p-nitrobenzoate 25 (Scheme 6-17). The absolute 

stereochemistry of the product was assigned by an X-ray diffraction study of (2S,3S,3aR,7aR)-25 

and other products were assigned by analogy.25 
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Scheme 6-17. Determination of Absolute Stereochemistry 

 

The illustrated X-ray structure reveals interesting topology that was projected to engender 

excellent stereocontrol in manipulations of π-functional groups (Scheme 6-18). Indeed, Weitz-

Scheffer reaction of 23d afforded epoxide 26 as a single diastereomer bearing six contiguous 

stereocenters. Chemoselective Horner-Wadsworth-Emmons olefination of 23s provided diester 

27 in 96% yield. A one-pot TBS-cleavage/oxa-Michael cyclization of 23r gave access to 

aldehyde 28 bearing a tricyclic framework found in the physalins.26 
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Scheme 6-18. Complexity-Building Secondary Transformations 

 

Exposure of 23d to benzylamine and NaBH3CN generated tricycle 29 presumably via 

sequential epimerization, reductive amination, and intramolecular aza-Michael addition from the 

concave surface of the bicyclic enone (Scheme 6-19). The structure 29 was supported by 2D-

NMR analysis of nOe interactions as well as mechanistic observations. Based on deuterium 

incorporation α-aldehyde, it can be assumed that under the acidic conditions epimerization 

occurs via enamine/iminum tautomerization. This observation is also consistent with 

experimental observations related to the time required for condensation/epimerization to occur. 

When the aldehyde and amine are premixed for shorter periods of time before NaBH3CN is 

added, the yield of 29 is lower with the remaining mass being the formation of 24d via direct 

reduction of the aldehyde. Deuterium incorporation α-ketone is consistent with protonation 
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following aza-Michael addition, with protonation of the enol from the convex face preferentially 

(85% D for exo and <5% D for endo). 

Scheme 6-19. Reductive Amination/Aza-Michael Cascade 

 

6.3.7 Origin of Stereoselectivity in Oxa-Michael/Michael Domino Reaction 

 The stereochemistry obtained in the reaction can be rationalized through a careful 

examination of the individual oxa-Michael and Michael steps in the domino reaction enroute to 

bicyclic tetrahydrofurans. The oxa-Michael addition is presumed to be the enantiodetermining 

step in the reaction sequence. Therefore, 1,4-conjugate addition of p-quinol 17a to iminium-ion 

activated (E)-30 needs to occur with high facial selectivity (Scheme 6-20). The chiral secondary 

amine catalyst blocks the top face of the conjugated system preventing Re approach of p-quinol 

17a due to unfavorable steric interactions with the catalyst. Alternatively, Se approach of 17a can 

occur with minimal steric penalties providing intermediate enamine (S)-31 with high 

enantiocontrol following proton-transfer. 
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Scheme 6-20. Model for Asymmetric Induction in Oxa-Michael Addition 

 

The resultant enamine (S)-31 is well positioned to undergo intramolecular 

diastereoselective Michael addition into the quinol moiety. Following minimization of allylic 

strain through bond rotation, the quinol moiety is positioned away from the steric bulk of the 

catalyst (Scheme 6-21). In order for high diastereoselectivity to be observed in the final product 

23a, discrimination of diastereotopic π-groups is necessary in the Michael addition. Based on the 

stereochemistry established during the oxa-Michael addition, two possible diastereomeric 

transition states (32 and 33) for the Michael addition are possible. In transition state 32, the steric 

bulk of the quinol moiety is directed below the plane of the chiral catalyst. Michael addition 

from transition state 32 provides the correct syn-relationship between the Me and Ph groups 

observed in the products. The aldehyde stereochemistry is incorrect following hydrolysis, but 

epimerization under the acidic reaction conditions is proposed to be favorable in order to move 

from the concave to convex surfaces of the molecule to provide the stereochemistry observed in 

the isolated product 23a. Transition state 33, however, is expected to undergo slow Michael 

addition due to unfavorable steric interactions between the quinol moiety and the chiral catalyst 

that occupy the same plane. Michael addition would afford an anti-relationship between the Me 

and Ph groups not observed in the products. 
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Scheme 6-21. Model for Diasterocontrol in Michael Addition 

 

6.4 Conclusion 

 In conclusion, we have developed an asymmetric synthesis of hindered cyclic dialkyl 

ethers via intermolecular oxa-Michael addition of p-quinols and α,β-unsaturated aldehydes under 

secondary amine catalysis. Iminium-ion activation of α,β-unsaturated aldehydes promotes 

intermolecular oxa-Michael addition of achiral tertiary carbinols, which can undergo 

desymmetrization via intramolecular Michael addition to afford the (3+2)-annulation adducts in 

high diastereoselectivity and excellent enantioselectivity. The reaction sequence provides rapid 

access to complex bicyclic frameworks with the concomitant formation of four contiguous 

stereocenters. Furthermore, the reaction is a rare example of a reaction sequence that establishes 

both α-stereocenters of a dialkyl ether in a single operation. Rapid construction of molecular 

complexity in the domino reaction provides products that contain malleable enone and aldehyde 

functionality that can be orthogonally manipulated. We have also demonstrated that the products 

can undergo a range of complexity-building secondary transformations providing access to 

complex, highly functionalized tricyclic frameworks of interest to the synthetic community. 
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6.5 Experimental Details 

Methods: Infrared (IR) spectra were obtained using a Jasco 260 Plus Fourier transform 

infrared spectrometer. Proton and carbon magnetic resonance spectra (1H NMR, 13C NMR, and 

19F NMR) were recorded on a Bruker model DRX 400 or 600 (1H NMR at 400 MHz or 600 

MHz, 13C NMR at 101 MHz or 151 MHz, and 19F NMR at 565 MHz) spectrometer with solvent 

resonance as the internal standard (1H NMR: CDCl3 at 7.26 ppm and 13C NMR: CDCl3 at 77.0 

ppm). 1H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, br s = broad 

singlet, d = doublet, dd = doublet of doublet, t = triplet, q = quartet, sept = septuplet, oct = 

octuplet, m = multiplet), coupling constants (Hz), and integration. HPLC analysis was performed 

on an Agilent Technologies 1200 System equipped with Chiralpak IA, IB, and IC columns (φ 4.6 

mm x 250 mm, constant flow at 1.00 mL/min). Supercritical fluid chromatography (SFC) was 

performed on a Berger SFC system equipped with Chiralpak AD, AS, and OD columns (φ 4.6 

mm x 250 mm). Samples were eluted with SFC grade CO2 at the indicated percentage of MeOH 

with an oven temperature of 40 °C. Optical rotations were measured using a 2 mL cell with a 1 

dm path length on a Jasco DIP 1000 digital polarimeter. Mass spectra were obtained using a 

Thermo Scientific LTQ FT Ultra instrument with electrospray ionization. Analytical thin layer 

chromatography (TLC) was performed on Sorbtech 0.25 mm silica gel 60 plates. Visualization 

was accomplished with UV light and/or aqueous ceric ammonium molybdate solution followed 

by heating. Purification of the reaction products was carried out by using Siliaflash-P60 silica gel 

(40-63 µm) purchased from Silicycle. All reactions were carried out with magnetic stirring. Yield 

refers to isolated yield of analytically pure material unless otherwise noted. Yields and 

diastereomeric ratios (dr) are reported for a specific experiment and as a result may differ 

slightly from those found in the tables, which are averages of at least two experiments. 
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Materials: p-Quinols 17,13,27 α,β-unsaturated aldehydes 22,28 and Jørgensen–Hayashi 

catalysts 723b were prepared according to known literature procedures. Triethylamine (Et3N) was 

freshly distilled from calcium hydride prior to use. Dichloromethane (CH2Cl2) and 

tetrahydrofuran (THF) were dried by passage through a column of neutral alumina under 

nitrogen prior to use. All other reagents were purchased from commercial sources and were used 

as received unless otherwise noted. 

Synthesis of (E)-3-Mesitylacrylaldehyde (22g) 

 

A flame-dried 100-mL round-bottom flask equipped with a magnetic stir bar was charged 

with NaH (60%) (0.5 g, 12.5 mmol, 1.25 equiv) suspended in THF (25 mL). The suspension was 

cooled to 0 ºC. Triethyl phosphonoacetate (2.5 mL, 12.5 mmol, 1.25 equiv) was added dropwise. 

The homogenous solution was allowed to stir at 0 ºC for 20 min before mesitaldehyde (A) (1.5 

mL, 10.0 mmol, 1.00 equiv) was added dropwise. The ice bath was removed and the resulting 

solution was allowed to stir for 3 h as it slowly warmed to room temperature. The reaction was 

cooled to 0 ºC and quenched with sat. aq. NH4Cl (25 mL). The reaction was diluted with Et2O 

(100 mL) and washed with H2O (40 mL) and brine (40 mL). The organic layer was dried over 

MgSO4, filtered, and concentrated in vacuo to afford analytically pure unsaturated ester B, which 

was used without further purification. 
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A flame-dried 250-mL round-bottom flask equipped with a magnetic stir bar was charged 

with unsaturated ester B in CH2Cl2 (100 mL). The solution was cooled to 0 ºC. DIBAL (4.0 mL, 

22.0 mmol, 2.20 equiv) was added dropwise. The reaction was allowed to stir at 0 ºC for 2 h. The 

reaction was quenched by sequential addition of acetone (25 mL) and 1 N HCl (100 mL). The 

layers were separated and the aqueous layer was extracted with CH2Cl2 (2 x 75 mL). The 

combined organic extracts were dried over Na2SO4, filtered, and concentrated in vacuo to afford 

analytically pure allyl alcohol C, which was used without further purification. 

A flame-dried 250-mL round-bottom flask equipped with a magnetic stir bar was charged 

with allyl alcohol C in CH2Cl2 (100 mL). Activated MnO2 (4.4 g, 50.0 mmol, 5.00 equiv) was 

added and the reaction was allowed to stir at room temperature for 16 h. The reaction was 

filtered through a pad of Celite® rinsing with CH2Cl2 (3 x 50 mL). The filtrate was concentrated 

in vacuo. The crude residue was purified by column chromatography on silica gel to afford (E)-

3-mesitylacrylaldehyde (22g) (1.27 g, 73% yield) as a white solid (mp 72-73 ºC). Analytical data 

for 22g: 1H NMR (600 MHz, CDCl3): δ 9.70 (d, J = 7.7 Hz, 1H), 7.68 (d, J = 16.3 Hz, 1H), 6.94 

(s, 2H), 6.41 (dd, J = 16.3, 7.7 Hz, 1H), 2.36 (s, 6H), 2.31 (s, 3H); 13C NMR (151 MHz, CDCl3): 

δ 194.32,† 194.28,‡ 151.5, 139.5, 137.1, 133.5, 130.0, 129.5, 21.2, 21.1 (†Rotomer A, ‡Rotomer 

B); IR (thin film): 1662, 1626, 1136, 1020, 984, 845 cm-1; TLC (20% ethyl acetate:hexanes): Rf 

= 0.49; HRMS (ESI): Calcd. for C12H15O ([M+H]+): 175.1124, Found: 175.1117. 
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General Procedure A for the Preparation of rac-23 

 

A 20-mL scintillation vial equipped with a magnetic stir bar was charged with α,β-

unsaturated aldehyde 22 (1.50 mmol, 1.5 equiv), rac-7b (70.5 mg, 0.20 mmol, 0.2 equiv), and 4-

nitrobenzoic acid (33.4 mg, 0.20 mmol, 0.2 equiv) in toluene (4.0 mL, 0.25 M). The solution was 

stirred for 5 min at room temperature until homogeneous. p-Quinol 17 (1.00 mmol, 1.0 equiv) 

was added, the vial was capped, and the reaction was allowed to stir for 16 h at room temperature. 

The reaction was diluted with EtOAc (30 mL) and sequentially washed with sat. aq. NaHCO3 (1 

x 15 mL), H2O (1 x 15 mL), and brine (1 x 15 mL). The organic layer was dried over Na2SO4, 

filtered, and concentrated in vacuo. The diastereomeric ratio was determined by 1H NMR 

analysis of the crude residue. The crude residue was purified by column chromatography on 

silica gel to afford rac-23. 
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General Procedure B for the Preparation of 23 

 

Note: No precautions were taken to preclude water or air from the reactions. Reactions 

were performed in non-flame-dried glassware using reagent grade solvents as received under 

ambient atmosphere. Reactions can be performed employing CH2Cl2 or CHCl3 in place of 

toluene with comparable levels of selectivity, but in slightly reduced yields. 

A 20-mL scintillation vial equipped with a magnetic stir bar was charged with α,β-

unsaturated aldehyde 22 (1.50 mmol, 1.5 equiv), 7b (70.5 mg, 0.20 mmol, 0.2 equiv), and 4-

nitrobenzoic acid (33.4 mg, 0.20 mmol, 0.2 equiv) in toluene (4.0 mL, 0.25 M). The solution was 

stirred for 5 min at room temperature until homogeneous. p-Quinol 17 (1.00 mmol, 1.0 equiv) 

was added, the vial was capped, and the reaction was allowed to stir for 16 h at room temperature. 

The reaction was diluted with EtOAc (30 mL) and sequentially washed with sat. aq. NaHCO3 (1 

x 15 mL), H2O (1 x 15 mL), and brine (1 x 15 mL). The organic layer was dried over Na2SO4, 

filtered, and concentrated in vacuo. The diastereomeric ratio was determined by 1H NMR 

analysis of the crude residue. The crude residue was purified by column chromatography on 

silica gel to afford 23. The enantiomeric ratio was determined following reduction to 24 (with 

subsequent benzoate formation for 23h and 23j) or olefination to 27. 
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 (2S,3R,3aR,7aR)-7a-Methyl-5-oxo-2-phenyl-2,3,3a,4,5,7a-

hexahydrobenzofuran-3-carbaldehyde (23a): The title compound was prepared 

according to General Procedure B using p-quinol 17a (124 mg, 1.00 mmol) and 

α,β-unsaturated aldehyde 22a (198 mg, 1.50 mmol) affording a 15:1 

(23a:Σothers) mixture of diastereomers. Purification provided 23a (207 mg, 81% yield, >20:1 dr) 

as a pale yellow oil. The enantiomeric ratio was determined following reduction to 24a. 

Analytical data for 23a: 1H NMR (600 MHz, CDCl3): δ 8.99 (d, J = 1.7 Hz, 1H), 7.36-7.33 (m, 

2H), 7.29-7.27 (m, 3H), 6.71 (dd, J = 10.3, 1.5 Hz, 1H), 6.08 (d, J = 10.3 Hz, 1H), 5.23 (d, J = 

9.7 Hz, 1H), 3.14 (dt, J = 9.5, 1.7 Hz, 1H), 3.06-3.03 (m, 1H), 2.70 (dd, J = 17.4, 5.4 Hz, 1H), 

2.55 (d, J = 17.4 Hz, 1H), 1.67 (s, 3H); 13C NMR (151 MHz, CDCl3): δ 198.9, 196.4, 152.0, 

136.9, 129.8, 128.8, 128.4, 126.3, 79.6, 79.1, 60.4, 43.0, 37.3, 23.2; IR (thin film): 2973, 1718, 

1679, 1494, 1455, 1122, 1045, 703 cm-1; TLC (40% ethyl acetate:hexanes): Rf = 0.50; HRMS 

(ESI): Calcd. for C16H17O3 ([M+H]+): 257.1178, Found: 257.1173; [α]D -116 (c = 1.9, CHCl3). 

(2S,3R,3aR,7aR)-2-(4-Methoxyphenyl)-7a-methyl-5-oxo-2,3,3a,4,5,7a-

hexahydrobenzofuran-3-carbaldehyde (23b): The title compound was 

prepared according to General Procedure B using p-quinol 17a (124 mg, 1.00 

mmol) and α,β-unsaturated aldehyde 22b (243 mg, 1.50 mmol) affording a 9:1 

(23b:Σothers) mixture of diastereomers. Purification provided 23b (223 mg, 78% yield, >20:1 

dr) as a pale yellow oil. The enantiomeric ratio was determined following reduction to 24b. 

Analytical data for 23b: 1H NMR (400 MHz, CDCl3): δ 9.02 (d, J = 1.8 Hz, 1H), 7.18 (d, J = 8.7 

Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 6.72 (dd, J = 10.3, 1.8 Hz, 1H), 6.08 (d, J = 10.3 Hz, 1H), 5.19 

(d, J = 9.3 Hz, 1H), 3.78 (s, 3H), 3.14-3.04 (m, 2H), 2.70 (dd, J = 17.4, 5.2 Hz, 1H), 2.55 (d, J = 

17.4 Hz, 1H), 1.66 (s, 3H); 13C NMR (101 MHz, CDCl3): δ 199.1, 196.5, 159.5, 152.1, 129.8, 
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128.9, 127.7, 114.2, 79.3, 78.9, 60.4, 55.2, 42.9, 37.3, 23.2; IR (thin film): 2930, 1717, 1682, 

1612, 1513, 1249, 1032, 836 cm-1; TLC (40% ethyl acetate:hexanes): Rf = 0.36; HRMS (ESI): 

Calcd. for C17H19O4 ([M+H]+): 287.1284, Found: 287.1279; [α]D -87 (c = 1.6, CHCl3). 

 (2S,3R,3aR,7aR)-7a-Methyl-2-(4-nitrophenyl)-5-oxo-2,3,3a,4,5,7a-

hexahydrobenzofuran-3-carbaldehyde (23c): The title compound was 

prepared according to General Procedure B using p-quinol 17a (124 mg, 1.00 

mmol) and α,β-unsaturated aldehyde 22c (266 mg, 1.50 mmol) affording a 17:1 

(23c:Σothers) mixture of diastereomers. Purification provided 23c (214 mg, 77% yield, >20:1 dr) 

as a pale yellow oil. The enantiomeric ratio was determined following reduction to 24c. 

Analytical data for 23c: 1H NMR (400 MHz, CDCl3): δ 9.02 (d, J = 2.5 Hz, 1H), 8.22 (d, J = 8.8 

Hz, 2H), 7.48 (d, J = 8.6 Hz, 2H), 6.72 (dd, J = 10.3, 2.0 Hz, 1H), 6.13 (dd, J = 10.3, 1.0 Hz, 1H), 

5.32 (d, J = 9.6 Hz, 1H), 3.25 (dt, J = 9.5, 2.5 Hz, 1H), 3.08-3.03 (m, 1H), 2.73 (dd, J = 17.4, 5.4 

Hz, 1H), 2.56 (ddd, J = 17.4, 2.1, 1.1 Hz, 1H), 1.71 (s, 3H); 13C NMR (101 MHz, CDCl3): δ 

198.0, 195.9, 151.2, 147.8, 144.2, 130.3, 127.2, 124.1, 80.3, 78.3, 60.5, 43.4, 37.2, 23.3; IR (thin 

film): 2089, 1716, 1681, 1645, 1520, 1457, 1348, 529 cm-1; TLC (40% ethyl acetate:hexanes): 

Rf = 0.24; HRMS (ESI): Calcd. for C16H16NO5 ([M+H]+): 302.1029, Found: 302.1019; [α]D -115 

(c = 0.5, CHCl3). 

 (2S,3R,3aR,7aR)-2-(2-Chlorophenyl)-7a-methyl-5-oxo-2,3,3a,4,5,7a-

hexahydrobenzofuran-3-carbaldehyde (23d): The title compound was prepared 

according to General Procedure B using p-quinol 17a (124 mg, 1.00 mmol) and 

α,β-unsaturated aldehyde 22d (250 mg, 1.50 mmol) affording a 17:1 

(23d:Σothers) mixture of diastereomers. Purification provided 23d (273 mg, 94% yield, >20:1 

dr) as an off-white solid (mp 150-153 ºC). The enantiomeric ratio was determined following 
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reduction to 24d. Analytical data for 23d: 1H NMR (600 MHz, CDCl3): δ 9.09 (d, J = 2.0 Hz, 

1H), 7.52 (d, J = 7.7 Hz, 1H), 7.34 (d, J = 7.9 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 7.25-7.22 (m, 

1H), 6.71 (dd, J = 10.3, 1.9 Hz, 1H), 6.12 (d, J = 10.3 Hz, 1H), 5.47 (d, J = 9.5 Hz, 1H), 3.35 (dt, 

J = 9.5, 2.0 Hz, 1H), 3.01-2.98 (m, 1H), 2.69 (dd, J = 17.5, 5.5 Hz, 1H), 2.56 (dd, J = 17.5, 1.0 

Hz, 1H), 1.68 (s, 3H); 13C NMR (151 MHz, CDCl3): δ 198.6,† 198.5,‡ 196.4, 151.7, 135.0, 131.3, 

130.4, 129.4, 129.3, 127.34, 127.29, 79.5, 75.9, 58.6, 43.0, 37.3, 23.1 (†Rotomer A, ‡Rotomer B); 

IR (thin film): 2089, 1717, 1682, 1653, 1474, 1374, 1120, 1049 cm-1; TLC (40% ethyl 

acetate:hexanes): Rf = 0.51; HRMS (ESI): Calcd. for C16H16ClO3 ([M+H]+): 291.0789, Found: 

291.0785; [α]D -205 (c = 1.4, CHCl3). 

 (2S,3R,3aR,7aR)-2-(2-Methoxyphenyl)-7a-methyl-5-oxo-2,3,3a,4,5,7a-

hexahydrobenzofuran-3-carbaldehyde (23e): The title compound was prepared 

according to General Procedure B using p-quinol 17a (124 mg, 1.00 mmol) and 

α,β-unsaturated aldehyde 22e (243 mg, 1.50 mmol) affording a 14:1 (23e:Σothers) 

mixture of diastereomers. The enantiomeric ratio was determined following reduction to 24e. 

Purification provided 23e (247 mg, 86% yield, >20:1 dr) as a white  solid (mp 101-103 ºC). 

Analytical data for 23e: 1H NMR (400 MHz, CDCl3): δ 9.00 (d, J = 2.5 Hz, 1H), 7.42 (d, J = 7.0 

Hz, 1H), 7.23 (dt, J = 8.0, 1.6 Hz, 1H), 6.94 (t, J = 7.5 Hz, 1H), 6.80 (d, J = 10.3, 1.9 Hz, 1H), 

6.68 (dd, J = 10.3, 1.9 Hz, 1H), 6.06 (dd, J = 10.3, 0.7 Hz, 1H), 5.36 (d, J = 9.3 Hz, 1H), 3.77 (s, 

3H), 3.35 (dt, J = 9.2, 2.5 Hz, 1H), 2.89-2.84 (m, 1H), 2.65 (dd, J = 17.4, 5.4 Hz, 1H), 2.52 (d, J 

= 17.4 Hz, 1H), 1.63 (s, 3H); 13C NMR (101 MHz, CDCl3): δ 199.5, 196.6, 155.1, 152.2, 129.9, 

129.0, 126.1, 125.5, 120.7, 109.8, 79.1, 74.5, 58.6, 55.0, 43.1, 37.2, 23.1; IR (thin film): 2839, 

1717, 1684, 1490, 1296, 1116, 1046, 757 cm-1; TLC (40% ethyl acetate:hexanes): Rf = 0.46; 
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HRMS (ESI): Calcd. for C17H19O4 ([M+H]+): 287.1284, Found: 287.1279; [α]D -182 (c = 1.8, 

CHCl3). 

 (2S,3R,3aR,7aR)-7a-Methyl-5-oxo-2-(2-(trifluoromethyl)phenyl)-

2,3,3a,4,5,7a-hexahydrobenzofuran-3-carbaldehyde (23f): The title compound 

was prepared according to General Procedure B using p-quinol 17a (124 mg, 1.00 

mmol) and α,β-unsaturated aldehyde 22f (300 mg, 1.50 mmol) affording a >20:1 

(23f:Σothers) mixture of diastereomers. Purification provided 23f (295 mg, 91% yield, >20:1 dr) 

as a white solid (mp 99-100 ºC). The enantiomeric ratio was determined following reduction to 

24f. Analytical data for 23f: 1H NMR (600 MHz, CDCl3): δ 8.95 (d, J = 1.1 Hz, 1H), 7.65 (d, J = 

7.9 Hz, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.57 (t, J = 7.7 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 6.73 (dd, 

J = 10.3, 2.0 Hz, 1H), 6.12 (d, J = 10.3 Hz, 1H), 5.52 (d, J = 9.8 Hz, 1H), 3.21 (t, J = 9.5 Hz, 1H), 

3.10-3.07 (m, 1H), 2.70 (dd, J = 17.5, 5.4 Hz, 1H), 2.53 (dt, J = 17.5, 1.1 Hz, 1H), 1.68 (s, 3H); 

13C NMR (151 MHz, CDCl3): δ 198.4,† 198.3,‡ 196.3, 151.5, 135.8, 132.6, 130.4, 128.5, 128.0, 

127.1 (q, JC–F = 30.2 Hz), 125.8 (q, JC–F = 6.0 Hz), 124.0 (q, JC–F = 273.3 Hz), 79.6, 74.61,† 

74.60,‡ 60.5, 42.6, 37.3, 23.1 (†Rotomer A, ‡Rotomer B); 19F NMR (565 MHz, CDCl3): δ -59.3; 

IR (thin film): 2089, 1717, 1683, 1653, 1314, 1165, 1121, 770 cm-1; TLC (40% ethyl 

acetate:hexanes): Rf = 0.49; HRMS (ESI): Calcd. for C17H16F3O3 ([M+H]+): 325.1052, Found: 

325.1048; [α]D -127 (c = 0.8, CHCl3). 

 (2S,3R,3aR,7aR)-2-Mesityl-7a-methyl-5-oxo-2,3,3a,4,5,7a-

hexahydrobenzofuran-3-carbaldehyde (23g): The title compound was 

prepared according to General Procedure B using p-quinol 17a (124 mg, 1.00 

mmol) and α,β-unsaturated aldehyde 22g (261 mg, 1.50 mmol) affording a 4:1 

(23g:Σothers) mixture of diastereomers. Purification provided 23g (215 mg, 72% yield, >20:1 dr) 
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as a pale yellow oil. The enantiomeric ratio was determined following reduction to 24g. 

Analytical data for 23g: 1H NMR (600 MHz, CDCl3): δ 9.04 (d, J = 1.3 Hz, 1H), 6.79 (br s, 2H), 

6.68 (dd, J = 10.3, 2.0 Hz, 1H), 6.11 (dd, J = 10.3, 0.8 Hz, 1H), 5.47 (d, J = 10.5 Hz, 1H), 3.18-

3.15 (m, 1H), 3.04 (dt, J = 8.9, 1.3 Hz, 1H), 2.73 (dd, J = 17.3, 5.3 Hz, 1H), 2.60 (dd, J = 17.3, 

0.9 Hz, 1H), 2.27 (br s, 6H), 2.22 (s, 3H), 1.63 (s, 3H); 13C NMR (151 MHz, CDCl3): δ 199.0, 

196.8, 152.4, 137.7, 136.2,† 135.3,‡ 131.6,† 130.5, 129.4,‡ 128.7, 79.2, 76.3, 59.02,† 58.98, 43.2,† 

43.1,‡ 37.8, 22.7, 22.1,† 20.8,‡ 20.71,† 20.68‡ (†Rotomer A, ‡Rotomer B); IR (thin film): 2929, 

1732, 1684, 1653, 1558, 1507, 1220, 1124 cm-1; TLC (40% ethyl acetate:hexanes): Rf = 0.56; 

HRMS (ESI): Calcd. for C19H23O3 ([M+H]+): 299.1648, Found: 299.1643; [α]D -81 (c = 1.5, 

CHCl3). 

 (2S,3R,3aR,7aR)-7a-Methyl-5-oxo-2-(1-tosyl-1H-indol-3-yl)-2,3,3a,4,5,7a-

hexahydrobenzofuran-3-carbaldehyde (23h): The title compound was 

prepared according to General Procedure B using p-quinol 17a (124 mg, 1.00 

mmol) and α,β-unsaturated aldehyde 22h (488 mg, 1.50 mmol) affording a 5:1 

(23h:Σothers) mixture of diastereomers. Purification provided 23h (328 mg, 73% yield, >20:1 

dr) as a viscous pale yellow oil. The enantiomeric ratio was determined following reduction and 

benzoate formation to S1a. Analytical data for 23h: 1H NMR (400 MHz, CDCl3): δ 9.00 (d, J = 

2.0 Hz, 1H), 7.94 (d, J = 8.3 Hz, 1H), 7.72 (d, J = 8.4 Hz, 2H), 7.61 (s, 1H), 7.39 (d, J = 7.8 Hz, 

1H), 7.31 (d, J = 7.4 Hz, 1H), 7.22-7.19 (m, 3H), 6.70 (dd, J = 10.3, 1.7 Hz, 1H), 6.11 (d, J = 

10.3 Hz, 1H), 5.40 (d, J = 8.6 Hz, 1H), 3.18-3.08 (m, 2H), 2.73 (dd, J = 17.9, 5.1 Hz, 1H), 2.57 

(d, J = 17.1 Hz, 1H), 2.31 (s, 3H), 1.69 (s, 3H); 13C NMR (101 MHz, CDCl3): δ 198.3, 196.2, 

151.5, 145.2, 135.3, 134.8, 130.4, 129.9, 127.7, 126.7, 125.3, 124.2, 123.6, 119.7, 118.7, 113.8, 

79.6, 77.2, 73.1, 59.6, 43.3, 37.3, 23.2, 21.5; IR (thin film): 2917, 1717, 1698, 1684, 1507, 1457, 
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1373, 1174 cm-1; TLC (40% ethyl acetate:hexanes): Rf = 0.29; HRMS (ESI): Calcd. for 

C50H47N2O10S2 ([2M+H]+): 899.2673, Found: 899.2696; [α]D -98 (c = 1.2, CHCl3). 

 (2S,3R,3aR,7aR)-7a-Methyl-5-oxo-2-(thiophen-2-yl)-2,3,3a,4,5,7a-

hexahydrobenzofuran-3-carbaldehyde (23i): The title compound was prepared 

according to General Procedure B using p-quinol 17a (124 mg, 1.00 mmol) and 

α,β-unsaturated aldehyde 22i (207 mg, 1.50 mmol) affording a 7:1 (23i:Σothers) 

mixture of diastereomers. Purification provided 23i (171 mg, 65% yield, >20:1 dr) as a pale 

yellow oil. The enantiomeric ratio was determined following reduction to 24i. Analytical data for 

23i: 1H NMR (400 MHz, CDCl3): δ 9.17 (d, J = 1.9 Hz, 1H), 7.28-7.26 (m, 1H), 6.97-6.96 (m, 

2H), 6.69 (dd, J = 10.3, 1.9 Hz, 1H), 6.04 (dd, J = 10.3, 0.9 Hz, 1H), 5.57 (d, J = 9.3 Hz, 1H), 

3.15 (dt, J = 9.8, 1.9 Hz, 1H), 3.10-3.05 (m, 1H), 2.71 (dd, J = 17.5, 5.2 Hz, 1H), 2.58 (ddd, J = 

17.5, 2.0, 1.1 Hz, 1H), 1.65 (s, 3H); 13C NMR (101 MHz, CDCl3): δ 198.2, 196.2, 151.7, 141.2, 

129.4, 127.2, 125.9, 125.0, 79.9, 75.4, 60.0, 42.9, 36.9, 23.5; IR (thin film): 2973, 1868, 1717, 

1683, 1558, 1457, 1374, 1120 cm-1; TLC (40% ethyl acetate:hexanes): Rf = 0.39; HRMS (ESI): 

Calcd. for C14H15O3S ([M+H]+): 263.0743, Found: 263.0736; [α]D -90 (c = 1.3, CHCl3). 

 (2R,3R,3aR,7aR)-2,7a-Dimethyl-5-oxo-2,3,3a,4,5,7a-hexahydrobenzofuran-3-

carbaldehyde (23j): The title compound was prepared according to General 

Procedure B using p-quinol 17a (124 mg, 1.00 mmol) and α,β-unsaturated 

aldehyde 22j (105 mg, 1.50 mmol) affording a 7:1 (23j:Σothers) mixture of diastereomers. 

Purification provided 23j (116 mg, 60% yield, >20:1 dr) as a pale yellow oil. The enantiomeric 

ratio was determined following reduction and benzoate formation to S1b. Analytical data for 23j: 

1H NMR (600 MHz, CDCl3): δ 9.72 (d, J = 2.1 Hz, 1H), 6.60 (dd, J = 10.3, 1.5 Hz, 1H), 5.99 (d, 

J = 10.3 Hz, 1H), 4.32 (dq, J = 6.6, 2.2 Hz, 1H), 2.96-2.94 (m, 1H), 2.90 (dt, J = 9.0, 2.0 Hz, 1H), 
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2.64 (dd, J = 17.3, 5.4 Hz, 1H), 2.51 (d, J = 17.3 Hz, 1H), 1.52 (s, 3H), 1.27 (d, J = 6.6 Hz, 3H); 

13C NMR (151 MHz, CDCl3): δ 200.10,† 200.06,‡ 196.7, 152.5, 129.4, 78.9, 73.7, 59.2, 43.1, 

37.3, 23.5, 18.0 (†Rotomer A, ‡Rotomer B); IR (thin film): 3420, 1716, 1683, 1653, 1541, 1457, 

1367, 709 cm-1; TLC (40% ethyl acetate:hexanes): Rf = 0.29; HRMS (ESI): Calcd. for C11H15O3 

([M+H]+): 195.1022, Found: 195.0995; [α]D -38 (c = 0.7, CHCl3). 

 (2S,3R,3aR,7aR)-7a-Ethyl-5-oxo-2-phenyl-2,3,3a,4,5,7a-

hexahydrobenzofuran-3-carbaldehyde (23m): The title compound was 

prepared according to General Procedure B using p-quinol 17b (138 mg, 1.00 

mmol) and α,β-unsaturated aldehyde 22a (198 mg, 1.50 mmol) affording a 12:1 

(23m:Σothers) mixture of diastereomers. Purification provided 23m (212 mg, 78% yield, >20:1 

dr) as a pale yellow oil. The enantiomeric ratio was determined following reduction to 24m. 

Analytical data for 23m: 1H NMR (600 MHz, CDCl3): δ 9.02 (d, J = 2.7 Hz, 1H), 7.39-7.29 (m, 

5H), 6.77 (dd, J = 15.5, 2.5 Hz, 1H), 6.18 (d, J = 15.5 Hz, 1H), 5.24 (d, J = 13.3 Hz, 1H), 3.21-

3.13 (m, 2H), 2.71 (dd, J = 26.4, 7.9 Hz, 1H), 2.55 (d, J = 26.4 Hz, 1H), 2.13-1.93 (m, 2H), 1.20 

(t, J = 11.3 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 199.0, 196.6, 151.4, 137.0, 130.6, 128.8, 

128.3, 126.3, 81.6, 78.8, 60.7, 40.3, 37.6, 29.8, 8.1; IR (thin film): 2972, 1718, 1683, 1576, 1507, 

1457, 1396, 1219 cm-1; TLC (40% ethyl acetate:hexanes): Rf = 0.55; HRMS (ESI): Calcd. for 

C17H19O3 ([M+H]+): 271.1335, Found: 271.1329; [α]D -110 (c = 1.3, CHCl3). 

 (2S,3R,3aR,7aR)-7a-Isopropyl-5-oxo-2-phenyl-2,3,3a,4,5,7a-

hexahydrobenzofuran-3-carbaldehyde (23n): The title compound was 

prepared according to General Procedure B using p-quinol 17c (152 mg, 1.00 

mmol) and α,β-unsaturated aldehyde 22a (198 mg, 1.50 mmol) affording a 6:1 

(23n:Σothers) mixture of diastereomers. Purification provided 23n (202 mg, 71% yield, 10:1 dr) 
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as a pale yellow oil. The enantiomeric ratio was determined following reduction to 24n. 

Analytical data for 23n: 1H NMR (400 MHz, CDCl3): δ 9.02 (d, J = 2.0 Hz, 1H), 7.39-7.29 (m, 

5H), 6.75 (dd, J = 10.4, 1.7 Hz, 1H), 6.28 (d, J = 10.4 Hz, 1H), 5.19 (d, J = 9.3 Hz, 1H), 3.34-

3.31 (m, 1H), 3.12-3.07 (m, 1H), 2.74 (dd, J = 17.7, 6.0 Hz, 1H), 2.53 (d, J = 17.7 Hz, 1H), 2.34-

2.23 (m, 1H), 1.21 (dd, J = 10.1, 7.0 Hz, 6H); 13C NMR (101 MHz, CDCl3): δ 199.0, 197.1, 

150.5, 136.8, 131.9, 128.9, 128.4, 126.4, 83.6, 78.6, 62.1, 39.1, 38.2, 35.4, 18.0, 17.1; IR (thin 

film): 2967, 2089, 1717, 1683, 1636, 1457, 1268, 1222 cm-1; TLC (40% ethyl acetate:hexanes): 

Rf = 0.60; HRMS (ESI): Calcd. for C18H21O3 ([M+H]+): 285.1491, Found: 285.1486; [α]D -122 

(c = 0.8, CHCl3). 

 (2S,3R,3aR,7aR)-7a-(2-((tert-Butyldimethylsilyl)oxy)ethyl)-5-oxo-2-

phenyl-2,3,3a,4,5,7a-hexahydrobenzofuran-3-carbaldehyde (23r): The 

title compound was prepared according to General Procedure B using p-

quinol 17d (268 mg, 1.00 mmol) and α,β-unsaturated aldehyde 22a (198 mg, 

1.50 mmol) affording a 13:1 (23r:Σothers) mixture of diastereomers. Purification provided 23r 

(329 mg, 82% yield, >20:1 dr) as a pale yellow oil. The enantiomeric ratio was determined 

following reduction to 24r. Analytical data for 23r: 1H NMR (600 MHz, CDCl3): δ 8.99 (d, J = 

2.3 Hz, 1H), 7.36-7.34 (m, 2H), 7.30-7.27 (m, 3H), 6.75 (dd, J = 10.3, 1.9 Hz, 1H), 6.12 (d, J = 

10.3 Hz, 1H), 5.22 (d, J = 9.8 Hz, 1H), 4.03-3.99 (m, 1H), 3.91-3.87 (m, 1H), 3.37-3.34 (m, 1H), 

3.13 (dt, J = 9.6, 2.3 Hz, 1H), 2.83 (dd, J = 17.5, 5.5 Hz, 1H), 2.53 (dd, J = 17.5, 1.1 Hz, 1H), 

2.24-2.19 (m, 1H), 2.15-2.11 (m, 1H), 0.90 (s, 9H), 0.08 (d, J = 6.9 Hz, 3H); 13C NMR (151 

MHz, CDCl3): δ 199.0, 197.1, 151.6, 137.0, 130.2, 128.9, 128.5, 126.4, 81.1, 79.0, 60.5, 58.4, 

41.4, 39.9, 37.4, 25.8, 18.1, -5.5; IR (thin film): 2953, 2856, 1717, 1684, 1472, 1255, 1089, 837 
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cm-1; TLC (40% ethyl acetate:hexanes): Rf = 0.69; HRMS (ESI): Calcd. for C23H33O4Si 

([M+H]+): 401.2149, Found: 401.2144; [α]D -69 (c = 1.2, CHCl3). 

Methyl 3-((2S,3R,3aR,7aR)-3-formyl-5-oxo-2-phenyl-2,3,3a,4,5,7a-

hexahydrobenzofuran-7a-yl)propanoate (23s): The title compound was 

prepared according to General Procedure B using p-quinol 17e (196 mg, 

1.00 mmol) and α,β-unsaturated aldehyde 22a (198 mg, 1.50 mmol) 

affording a 6:1 (23s:Σothers) mixture of diastereomers. Purification provided 23s (246 mg, 75% 

yield, >20:1 dr) as a pale yellow oil. The enantiomeric ratio was determined following 

olefination to 27. Analytical data for 23s: 1H NMR (400 MHz, CDCl3): δ 8.96 (s, 1H), 7.36-7.22 

(m, 5H), 6.71 (d, J = 10.4 Hz, 1H), 6.14 (d, J = 10.3 Hz, 1H), 5.19 (dd, J = 14.8, 1.8 Hz, 1H), 

3.68 (s, 3H), 3.15-3.09 (m, 2H), 2.73-2.62 (m, 3H), 2.52 (d, J = 17.4 Hz, 1H), 2.38-2.22 (m, 2H); 

13C NMR (101 MHz, CDCl3): δ 198.6, 196.3, 173.2, 150.3, 136.6, 131.0, 128.9, 128.5, 126.4, 

80.5, 79.1, 60.3, 51.8, 40.6, 37.3, 31.4, 28.4; IR (thin film): 2952, 1733, 1717, 1683, 1636, 1200, 

1028, 755 cm-1; TLC (40% ethyl acetate:hexanes): Rf = 0.32; HRMS (ESI): Calcd. for C19H21O5 

([M+H]+): 329.1390, Found: 329.1385; [α]D -78 (c = 0.9, CHCl3). 

Gram Scale Synthesis of 23d 

 

A 250-mL round bottom flask equipped with a magnetic stir bar was charged with α,β-

unsaturated aldehyde 22d (5.00 g, 30.0 mmol, 1.5 equiv), 7b (1.41 g, 4.0 mmol, 0.2 equiv), and 
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4-nitrobenzoic acid (0.67 g, 4.0 mmol, 0.2 equiv) in toluene (80.0 mL, 0.25 M). The solution was 

stirred for 5 min at room temperature until homogeneous. p-Quinol 17a (2.48 g, 20.0 mmol, 1.0 

equiv) was added and the reaction was allowed to stir for 16 h at room temperature. The reaction 

was diluted with EtOAc (400 mL) and sequentially washed with sat. aq. NaHCO3 (1 x 100 mL), 

H2O (1 x 100 mL), and brine (1 x 100 mL). The organic layer was dried over Na2SO4, filtered, 

and concentrated in vacuo. The diastereomeric ratio was determined by 1H NMR analysis of the 

crude residue. The crude residue was purified by column chromatography on silica gel eluting 

with 20% ethyl acetate:hexanes. The obtained solid was recrystallized from 10% ethyl 

acetate:hexanes to afford 23d (4.76 g, 82% yield, >20:1 dr, >99.5:0.5 er) as colorless crystals 

(mp 150-153 ºC). 

General Procedure C for the Reduction of Aldehydes 23 to Alcohols 24 

 

A 10-mL round-bottom flask equipped with a magnetic stir bar was charged with 

aldehyde 23 (1.00 equiv) in MeOH (0.1 M). The solution was cooled to -78 ºC. NaBH4 (0.25 

equiv) was added and the reaction was allowed to stir for 15 min at -78 ºC. The reaction was 

quenched with sat. aq. NH4Cl (2 mL) at -78 ºC and allowed to warm to room temperature. After 

stirring at room temperature for 30 min, the reaction was partitioned between CH2Cl2 (15 mL) 

and H2O (30 mL). The layers were separated and the aqueous layer was extracted with CH2Cl2 (2 

x 15 mL). The combined organic extracts were dried over Na2SO4, filtered, and concentrated in 
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vacuo. The crude residue was purified by column chromatography on silica gel to afford alcohol 

24. 

(2S,3S,3aR,7aR)-3-(Hydroxymethyl)-7a-methyl-2-phenyl-2,3,3a,4-

tetrahydrobenzofuran-5(7aH)-one (24a): The title compound was prepared 

according to General Procedure C using aldehyde 23a (90 mg, 0.35 mmol) and 

NaBH4 (3.3 mg, 0.09 mmol) affording 24a (83 mg, 92% yield) as a pale yellow 

oil. Analytical data for 24a: 1H NMR (600 MHz, CDCl3): δ 7.35-7.32 (m, 2H), 7.30-7.27 (m, 

3H), 6.68 (dd, J = 10.3, 1.4 Hz, 1H), 6.02 (d, J = 10.3 Hz, 1H), 5.00 (d, J = 8.4 Hz, 1H), 3.25-

3.19 (m, 2H), 2.71 (d, J = 17.2 Hz, 1H), 2.65 (dd, J = 16.8, 4.9 Hz, 1H), 2.46-2.39 (m, 2H), 1.62 

(s, 3H), 1.40 (br s, 1H); 13C NMR (151 MHz, CDCl3): δ 197.7, 152.8, 138.6, 129.0, 128.3, 127.8, 

126.4, 80.3, 79.0, 62.5, 49.7, 46.7, 37.9, 23.4; IR (thin film): 3445, 2937, 1683, 1456, 1387, 

1027, 703 cm-1; TLC (50% ethyl acetate:hexanes): Rf = 0.38; HRMS (ESI): Calcd. for 

C32H36NaO6 ([2M+Na]+): 539.2410, Found: 539.2419; SFC Chiralpak OD, 9% MeOH, pressure 

= 150 bar, flow rate = 1.5 mL/min, λ = 210 nm, tR (minor) 13.6 min, tR (major) 14.7 min, >99.5:0.5 er; 

[α]D -117 (c = 1.2, CHCl3). 

(2S,3S,3aR,7aR)-3-(Hydroxymethyl)-2-(4-methoxyphenyl)-7a-methyl-

2,3,3a,4-tetrahydrobenzofuran-5(7aH)-one (24b): The title compound was 

prepared according to General Procedure C using aldehyde 23b (129 mg, 0.45 

mmol) and NaBH4 (4.1 mg, 0.11 mmol) affording 24b (108 mg, 83% yield) as a 

pale yellow oil. Analytical data for 24b: 1H NMR (400 MHz, CDCl3): δ 7.21 (d, J = 7.9 Hz, 2H), 

6.86 (d, J = 7.7 Hz, 2H), 6.67 (d, J = 10.2 Hz, 1H), 6.01 (d, J = 10.2 Hz, 1H), 4.97 (d, J = 7.6 Hz, 

1H), 3.77 (s, 3H), 3.24-3.23 (m, 2H), 2.72-2.61 (m, 2H), 2.43-2.38 (m, 2H), 1.60 (s, 3H); 13C 

NMR (101 MHz, CDCl3): δ 197.7, 159.1, 152.9, 130.6, 129.0, 127.6, 113.7, 80.0, 78.9, 62.5, 
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55.2, 49.8, 46.6, 37.8, 23.5; IR (thin film): 3420, 2928, 1671, 1514, 1248, 1174, 1033, 835 cm-1; 

TLC (50% ethyl acetate:hexanes): Rf = 0.24; HRMS (ESI): Calcd. for C17H20NaO4 ([M+Na]+): 

311.1260, Found: 311.1255; HPLC Chiralpak IC, H:IPA = 55:45, flow rate = 1.0 mL/min, λ = 

210 nm, tR (major) 16.0 min, tR (minor) 20.7 min, 98:2 er; [α]D -99 (c = 1.0, CHCl3). 

(2S,3S,3aR,7aR)-3-(Hydroxymethyl)-7a-methyl-2-(4-nitrophenyl)-2,3,3a,4-

tetrahydrobenzofuran-5(7aH)-one (24c): The title compound was prepared 

according to General Procedure C using aldehyde 23c (135 mg, 0.45 mmol) and 

NaBH4 (4.1 mg, 0.11 mmol) affording 24c (109 mg, 80% yield) as a white solid 

(mp 135-137 ºC). Analytical data for 24c: 1H NMR (400 MHz, CDCl3): δ 8.17 (d, J = 8.7 Hz, 

2H), 7.49 (d, J = 8.5 Hz, 2H), 6.68 (dd, J = 10.2, 1.7 Hz, 1H), 6.03 (d, J = 10.2 Hz, 1H), 5.11 (d, 

J = 9.0 Hz, 1H), 3.24-3.16 (m, 2H), 2.74-2.63 (m, 2H), 2.58-2.50 (m, 1H), 2.42-2.39 (m, 1H), 

1.65 (s, 3H), 1.59 (br s, 1H); 13C NMR (101 MHz, CDCl3): δ 197.4, 152.3, 147.3, 146.4, 129.3, 

127.6, 123.2, 79.6, 79.6, 62.3, 49.8, 46.9, 37.9, 23.5; IR (thin film): 3431, 2088, 1671, 1520, 

1347, 1231, 1121, 1047 cm-1; TLC (50% ethyl acetate:hexanes): Rf = 0.22; HRMS (ESI): Calcd. 

for C16H17NNaO5 ([M+Na]+): 326.1005, Found: 326.0999; SFC Chiralpak OD, 9% MeOH, 

pressure = 150 bar, flow rate = 3.0 mL/min, λ = 210 nm, tR (minor) 26.1 min, tR (major) 28.4 min, 

>99.5:0.5 er; [α]D -98 (c = 1.5, CHCl3). 

(2S,3S,3aR,7aR)-2-(2-Chlorophenyl)-3-(hydroxymethyl)-7a-methyl-2,3,3a,4-

tetrahydrobenzofuran-5(7aH)-one (24d): The title compound was prepared 

according to General Procedure C using aldehyde 23d (250 mg, 0.86 mmol) and 

NaBH4 (8.1 mg, 0.21 mmol) affording 24d (234 mg, 93% yield) as a white solid 

(mp 147-148 ºC). Analytical data for 24d: 1H NMR (400 MHz, CDCl3): δ 7.58 (dd, J = 7.7, 1.6 

Hz, 1H), 7.33-7.19 (m, 3H), 6.67 (dd, J = 10.2, 1.1 Hz, 1H), 6.09 (dd, J = 10.2, 1.0 Hz, 1H), 5.20 
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(dd, J = 13.8, 5.8 Hz, 1H), 3.32-3.29 (m, 1H), 3.16-3.13 (m, 1H), 2.77 (d, J = 17.3 Hz, 1H), 2.67 

(dd, J = 17.3, 5.3 Hz, 1H), 2.58-2.50 (m, 2H), 1.63 (s, 3H), 1.30 (br s, 1H); 13C NMR (101 MHz, 

CDCl3): δ 197.9, 152.3, 136.6, 131.9, 130.2, 129.2, 128.7, 127.4, 126.8, 78.8, 76.8, 62.9, 48.5, 

47.3, 38.4, 23.3; IR (thin film): 3420, 1683, 1558, 1473, 1374, 1121, 1049, 748 cm-1; TLC (50% 

ethyl acetate:hexanes): Rf = 0.38; HRMS (ESI): Calcd. for C16H18ClO3 ([M+H]+): 293.0945, 

Found: 293.0939; SFC Chiralpak OD, 9% MeOH, pressure = 150 bar, flow rate = 1.5 mL/min, λ 

= 210 nm, tR (minor) 10.2 min, tR (major) 13.1 min, >99.5:0.5 er; [α]D -201 (c = 0.7, CHCl3). 

(2S,3S,3aR,7aR)-3-(Hydroxymethyl)-2-(2-methoxyphenyl)-7a-methyl-

2,3,3a,4-tetrahydrobenzofuran-5(7aH)-one (24e): The title compound was 

prepared according to General Procedure C using aldehyde 23e (200 mg, 0.70 

mmol) and NaBH4 (6.7 mg, 0.17 mmol) affording 24e (176 mg, 87% yield) as a 

white solid (mp 124-126 ºC). Analytical data for 24e: 1H NMR (600 MHz, CDCl3): δ 7.51 (d, J 

= 7.4 Hz, 1H), 7.30-7.27 (m, 1H), 7.01 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 8.2 Hz, 1H), 6.71 (dd, J = 

10.2, 1.1 Hz, 1H), 6.08 (d, J = 10.3 Hz, 1H), 5.26 (d, J = 7.9 Hz, 1H), 3.82 (s, 3H), 3.25 (br s, 

2H), 2.74-2.67 (m, 2H), 2.53-2.48 (m, 2H), 1.62 (s, 3H), 1.36 (br s, 1H); 13C NMR (151 MHz, 

CDCl3): δ 198.0, 155.5, 153.0, 129.5, 128.6, 127.3, 126.2, 120.8, 110.1, 78.5, 75.2, 62.5, 55.29,† 

55.25,‡ 49.2, 46.1, 38.1, 23.4 (†Rotomer A, ‡Rotomer B); IR (thin film): 3446, 2929, 1682, 1491, 

1244, 1125, 1046, 756 cm-1; TLC (50% ethyl acetate:hexanes): Rf = 0.30; HRMS (ESI): Calcd. 

for C17H20NaO4 ([M+Na]+): 311.1260, Found: 311.1254; SFC Chiralpak OD, 9% MeOH, 

pressure = 150 bar, flow rate = 1.5 mL/min, λ = 210 nm, tR (minor) 10.9 min, tR (major) 12.0 min, 

>99.5:0.5 er; [α]D -175 (c = 1.5, CHCl3). 
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(2S,3S,3aR,7aR)-3-(Hydroxymethyl)-7a-methyl-2-(2-

(trifluoromethyl)phenyl)-2,3,3a,4-tetrahydrobenzofuran-5(7aH)-one (24f): 

The title compound was prepared according to General Procedure C using 

aldehyde 23f (195 mg, 0.60 mmol) and NaBH4 (5.6 mg, 0.15 mmol) affording 

24f (161 mg, 82% yield) as a white solid (mp 133-135 ºC). Analytical data for 24f: 1H NMR 

(600 MHz, CDCl3): δ 7.74 (d, J = 7.9 Hz, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 

7.38 (t, J = 7.6 Hz, 1H), 6.68 (dd, J = 10.3, 2.0 Hz, 1H), 6.08 (dd, J = 10.3, 0.9 Hz, 1H), 5.23 (d, 

J = 9.0 Hz, 1H), 3.18 (dd, J = 10.9, 5.0 Hz, 1H), 3.08-3.05 (m, 1H), 2.80 (ddd, J = 17.5, 2.0, 1.1 

Hz, 1H), 2.66 (d, J = 17.3 Hz, 1H), 2.50-2.47 (m, 1H), 2.42-2.37 (m, 1H), 1.64 (s, 3H), 1.63 (br s, 

1H); 13C NMR (151 MHz, CDCl3): δ 198.0, 152.3, 136.7, 131.6, 130.2, 128.1, 127.8, 127.4 (q, 

JC–F = 30.4 Hz), 125.7 (q, JC–F = 5.6 Hz), 124.0 (q, JC–F = 274.2 Hz), 79.0, 75.8, 63.7, 49.7, 48.5, 

38.5, 23.3; 19F NMR (565 MHz, CDCl3): δ -59.2; IR (thin film): 3432, 2931, 1677, 1313, 1163, 

1123, 1035, 771 cm-1; TLC (50% ethyl acetate:hexanes): Rf = 0.37; HRMS (ESI): Calcd. for 

C17H17F3NaO3 ([M+Na]+): 349.1028, Found: 349.1020; SFC Chiralpak OD, 9% MeOH, 

pressure = 150 bar, flow rate = 1.5 mL/min, λ = 210 nm, tR (minor) 5.3 min, tR (major) 6.6 min, 

99.5:0.5 er; [α]D -124 (c = 1.5, CHCl3). 

 (2S,3S,3aR,7aR)-3-(Hydroxymethyl)-2-mesityl-7a-methyl-2,3,3a,4-

tetrahydrobenzofuran-5(7aH)-one (24g): The title compound was prepared 

according to General Procedure C using aldehyde 23g (142 mg, 0.48 mmol) and 

NaBH4 (4.5 mg, 0.12 mmol) affording 24g (127 mg, 88% yield) as a pale yellow 

oil. Analytical data for 24g: 1H NMR (600 MHz, CDCl3): δ 6.80 (s, 1H), 6.77 (s, 1H), 6.66 (dd, 

J = 10.3, 1.9 Hz, 1H), 6.07 (d, J = 10.3 Hz, 1H), 5.24 (d, J = 9.3 Hz, 1H), 3.31-3.28 (m, 2H), 

2.78 (d, J = 17.2 Hz, 1H), 2.66 (dd, J = 17.2, 5.2 Hz, 1H), 2.48-2.43 (m, 1H), 2.45 (s, 3H), 2.38-
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2.36 (m, 1H), 2.22 (s, 3H), 2.18 (s, 3H), 1.35 (br s, 1H); 13C NMR (151 MHz, CDCl3): δ 197.9, 

153.0, 136.9, 136.4, 135.5, 131.4, 130.3, 130.0, 129.2, 78.7, 77.67,† 77.66,‡ 63.5, 49.3, 48.2, 38.4, 

22.9,† 22.8,‡ 20.70,† 20.69,‡ 20.67,† 20.66‡ (†Rotomer A, ‡Rotomer B); IR (thin film): 3444, 

2925, 1673, 1457, 1371, 1126, 1052, 754 cm-1; TLC (50% ethyl acetate:hexanes): Rf = 0.42; 

HRMS (ESI): Calcd. for C19H25O3 ([M+H]+): 301.1804, Found: 301.1799; SFC Chiralpak OD, 

9% MeOH, pressure = 150 bar, flow rate = 1.5 mL/min, λ = 210 nm, tR (minor) 10.1 min, tR (major) 

12.1 min, 99:1 er; [α]D -136 (c = 1.5, CHCl3). 

(2S,3S,3aR,7aR)-3-(Hydroxymethyl)-7a-methyl-2-(thiophen-2-yl)-2,3,3a,4-

tetrahydrobenzofuran-5(7aH)-one (24i): The title compound was prepared 

according to General Procedure C using aldehyde 23i (95 mg, 0.36 mmol) and 

NaBH4 (3.4 mg, 0.09 mmol) affording 24i (83 mg, 87% yield) as a white solid 

(mp 99-101 ºC). Analytical data for 24i: 1H NMR (400 MHz, CDCl3): δ 7.28-7.26 (m, 1H), 

7.00-6.96 (m, 2H), 6.67 (dd, J = 10.2 Hz, 1H), 5.97 (d, J = 10.2 Hz, 1H), 5.39 (d, J = 7.9 Hz, 1H), 

3.44 (br s, 2H), 2.74-2.63 (m, 2H), 2.57-2.46 (m, 2H), 1.62 (s, 3H), 1.37 (br s, 1H); 13C NMR 

(101 MHz, CDCl3): δ 197.2, 152.7, 143.3, 128.3, 126.9, 125.1, 124.4, 79.7, 77.5, 61.8, 49.7, 45.6, 

37.3, 23.8; IR (thin film): 3430, 2924, 1672, 1374, 1236, 1115, 1027, 708 cm-1; TLC (50% ethyl 

acetate:hexanes): Rf = 0.32; HRMS (ESI): Calcd. for C14H16O3NaS ([M+Na]+): 287.0718, 

Found: 287.0713; SFC Chiralpak OD, 9% MeOH, pressure = 150 bar, flow rate = 1.5 mL/min, λ 

= 210 nm, tR (minor) 16.8 min, tR (major) 18.6 min, 97:3 er; [α]D -77 (c = 1.2, CHCl3). 
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(2S,3S,3aR,7aR)-7a-Ethyl-3-(hydroxymethyl)-2-phenyl-2,3,3a,4-

tetrahydrobenzofuran-5(7aH)-one (24m): The title compound was prepared 

according to General Procedure C using aldehyde 23m (189 mg, 0.70 mmol) 

and NaBH4 (6.6 mg, 0.18 mmol) affording 24m (141 mg, 74% yield) as a pale 

yellow oil. Analytical data for 24m: 1H NMR (400 MHz, CDCl3): δ 7.37-7.26 (m, 5H), 6.72 (dd, 

J = 10.3, 1.8 Hz, 1H), 6.11 (d, J = 10.3 Hz, 1H), 5.01 (d, J = 8.7 Hz, 1H), 3.27-3.19 (m, 2H), 

2.71 (dd, J = 17.3, 1.5 Hz, 1H), 2.64 (dd, J = 17.4, 1.1 Hz, 1H), 2.52-2.40 (m, 2H), 2.08-1.86 (m, 

2H), 1.49 (br s, 1H), 1.16 (t, J = 7.5 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 198.1, 152.2, 

138.6, 130.0, 128.3, 127.7, 126.4, 81.0, 79.8, 77.2, 62.7, 50.1, 44.3, 38.4, 30.1, 8.1; IR (thin 

film): 3420, 2925, 1683, 1558, 1457, 1027, 703 cm-1; TLC (50% ethyl acetate:hexanes): Rf = 

0.34; HRMS (ESI): Calcd. for C17H20NaO3 ([M+Na]+): 295.1310, Found: 295.1305; SFC 

Chiralpak OD, 9% MeOH, pressure = 150 bar, flow rate = 1.5 mL/min, λ = 210 nm, tR (minor) 12.5 

min, tR (major) 14.6 min, >99.5:0.5 er; [α]D -126 (c = 1.6, CHCl3). 

(2S,3S,3aR,7aR)-3-(Hydroxymethyl)-7a-isopropyl-2-phenyl-2,3,3a,4-

tetrahydrobenzofuran-5(7aH)-one (24n): The title compound was prepared 

according to General Procedure C using aldehyde 23n (108 mg, 0.38 mmol) 

and NaBH4 (3.6 mg, 0.09 mmol) affording 24n (81 mg, 74% yield) as a pale 

yellow oil. Analytical data for 24n: 1H NMR (400 MHz, CDCl3): δ 7.37-7.27 (m, 5H), 6.69 (dd, 

J = 10.4, 1.4 Hz, 1H), 6.23 (d, J = 10.4 Hz, 1H), 4.97 (d, J = 8.5 Hz, 1H), 3.32-3.24 (m, 2H), 

2.69-2.59 (m, 3H), 2.40-2.32 (m, 1H), 2.27-2.17 (m, 1H), 1.16 (dd, J = 12.4, 6.9 Hz, 6H), 0.92 

(br s, 1H); 13C NMR (101 MHz, CDCl3): δ 198.2, 150.9, 138.4, 131.5, 128.5, 127.9, 126.3, 82.9, 

79.1, 62.7, 51.8, 42.2, 39.8, 35.6, 18.0, 17.1; IR (thin film): 3420, 2963, 1683, 1558, 1387, 1265, 

1051, 714 cm-1; TLC (50% ethyl acetate:hexanes): Rf = 0.41; HRMS (ESI): Calcd. for 
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C18H22NaO3 ([M+Na]+): 309.1467, Found: 309.1461; SFC Chiralpak OD, 9% MeOH, pressure = 

150 bar, flow rate = 1.5 mL/min, λ = 210 nm, tR (minor) 11.2 min, tR (major) 13.9 min, 99:1 er; [α]D -

131 (c = 2.0, CHCl3). 

(2S,3S,3aR,7aR)-7a-(2-((tert-Butyldimethylsilyl)oxy)ethyl)-3-

(hydroxymethyl)-2-phenyl-2,3,3a,4-tetrahydrobenzofuran-5(7aH)-one 

(24r): The title compound was prepared according to General Procedure C 

using aldehyde 23r (274 mg, 0.68 mmol) and NaBH4 (6.5 mg, 0.17 mmol) 

affording 24r (238 mg, 87% yield) as a pale yellow oil. Analytical data for 24r: 1H NMR (400 

MHz, CDCl3): δ 7.37-7.27 (m, 5H), 6.72 (dd, J = 10.3, 1.8 Hz, 1H), 6.07 (d, J = 10.3 Hz, 1H), 

5.03 (d, J = 9.0 Hz, 1H), 4.02-3.97 (m, 1H), 3.93-3.87 (m, 1H), 3.27 (t, J = 5.3 Hz, 2H), 2.78 (dd, 

J = 17.5, 5.6 Hz, 1H), 2.69-2.64 (m, 2H), 2.49-2.41 (m, 1H), 2.22-2.07 (m, 2H), 0.97 (br s, 1H), 

0.89 (s, 9H), 0.08 (d, J = 3.4 Hz, 6H); 13C NMR (101 MHz, CDCl3): δ 198.0, 152.1, 138.7, 

129.6, 128.4, 127.9, 126.5, 80.4, 80.0, 62.5, 58.6, 50.0, 44.9, 40.4, 38.0, 25.8, 18.1, -5.43, -5.44; 

IR (thin film): 3444, 2953, 2084, 1671, 1472, 1255, 1091, 836 cm-1; TLC (50% ethyl 

acetate:hexanes): Rf = 0.50; HRMS (ESI): Calcd. for C23H34O4NaSi ([M+Na]+): 425.2124, 

Found: 425.2119; SFC Chiralpak AD, 9% MeOH, pressure = 150 bar, flow rate = 1.5 mL/min, λ 

= 210 nm, tR (major) 7.7 min, tR (minor) 9.3 min, 99:1 er; [α]D -71 (c = 1.0, CHCl3). 
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General Procedure D for the Conversion of 23h and 23j to S1a and S1b 

 

A 10-mL round-bottom flask equipped with a magnetic stir bar was charged with 

aldehyde 23 (1.00 equiv) in MeOH (0.1 M). The solution was cooled to -78 ºC. NaBH4 (0.25 

equiv) was added and the reaction was allowed to stir for 15 min at -78 ºC. The reaction was 

quenched with sat. aq. NH4Cl (2 mL) at -78 ºC and allowed to warm to room temperature. After 

stirring at room temperature for 30 min, the reaction was partitioned between CH2Cl2 (15 mL) 

and H2O (30 mL). The layers were separated and the aqueous layer was extracted with CH2Cl2 (2 

x 15 mL). The combined organic extracts were dried over Na2SO4, filtered, and concentrated in 

vacuo to afford the crude alcohol, which was used without further purification. 

A flame-dried 10-mL round-bottom flask equipped with a magnetic stir bar was charged 

with the crude alcohol (1.00 equiv) in CH2Cl2 (0.1 M). 4-Dimethylaminopyridine (0.10 equiv), 

benzoyl chloride (1.20 equiv), and triethylamine (3.00 equiv) were added sequentially. The 

reaction was allowed to stir for 60 min at room temperature. The reaction was quenched with sat. 

aq. NH4Cl (2 mL). The reaction was partitioned between CH2Cl2 (15 mL) and H2O (30 mL). The 

layers were separated and the aqueous layer was extracted with CH2Cl2 (2 x 15 mL). The 

combined organic extracts were dried over Na2SO4, filtered, and concentrated in vacuo. The 

crude residue was purified by column chromatography on silica gel to afford benzoate S1. 
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((2S,3S,3aR,7aR)-7a-Methyl-5-oxo-2-(1-tosyl-1H-indol-3-yl)-2,3,3a,4,5,7a-

hexahydrobenzofuran-3-yl)methyl benzoate (S1a): The title compound was 

prepared according to General Procedure D using aldehyde 23h (300 mg, 0.67 

mmol) affording S1a (193 mg, 52% yield) as a viscous pale yellow oil. 

Analytical data for S1a: 1H NMR (600 MHz, CDCl3): δ 7.92 (d, J = 8.4 Hz, 1H), 7.67 (d, J = 8.4 

Hz, 2H), 7.64 (s, 1H), 7.54 (d, J = 7.1 Hz, 2H), 7.48-7.45 (m, 2H), 7.31-7.27 (m, 3H), 7.16 (t, J = 

7.5 Hz, 1H), 7.08 (d, J = 8.2 Hz, 2H), 6.70 (dd, J = 10.3, 1.7 Hz, 1H), 6.14 (d, J = 10.3 Hz, 1H), 

5.29 (d, J = 8.4 Hz, 1H), 4.04 (dd, J = 11.3, 7.4 Hz, 1H), 3.90 (dd, J = 11.3, 6.8 Hz, 1H), 2.81-

2.72 (m, 3H), 2.49-2.47 (m, 1H), 2.23 (s, 3H), 1.67 (s, 3H); 13C NMR (151 MHz, CDCl3): δ 

196.9, 165.8, 151.8, 144.9, 135.0, 134.7, 132.8, 130.2, 129.7, 129.2, 128.9, 128.2, 126.5, 124.9, 

123.8, 123.7, 123.4, 119.7, 119.5, 113.8, 78.8, 73.8, 64.74, 64.68,† 64.6,‡ 48.3, 46.7, 38.2, 23.5, 

21.42,† 21.39‡ (†Rotomer A, ‡Rotomer B); IR (thin film): 2974, 1716, 1683, 1372, 1271, 1174, 

1120, 750 cm-1; TLC (40% ethyl acetate:hexanes): Rf = 0.26; HRMS (ESI): Calcd. for 

C64H58N2NaO12S2 ([2M+Na]+): 1133.3330, Found: 1133.3330; SFC Chiralpak AD, 10% MeOH, 

pressure = 150 bar, flow rate = 3.0 mL/min, λ = 210 nm, tR (major) 18.8 min, tR (minor) 27.4 min, 

>99.5:0.5 er; [α]D -52 (c = 1.6, CHCl3). 

((2R,3S,3aR,7aR)-2,7a-Dimethyl-5-oxo-2,3,3a,4,5,7a-hexahydrobenzofuran-

3-yl)methyl benzoate (S1b): The title compound was prepared according to 

General Procedure D using aldehyde 23j (90 mg, 0.46 mmol) affording S1b (32 

mg, 23% yield) as a pale yellow oil. Analytical data for S1b: 1H NMR (600 MHz, CDCl3): δ 

8.02 (dd, J = 8.4, 1.1 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.47-7.44 (m, 2H), 6.62 (dd, J = 10.3, 1.8 

Hz, 1H), 6.01 (dd, J = 10.3, 0.7 Hz, 1H), 4.41 (dd, J = 11.2, 6.9 Hz, 1H), 4.30 (d, J = 11.2, 7.0 

Hz, 1H), 4.22-4.17 (m, 1H), 2.75 (dd, J = 17.2, 1.0 Hz, 1H), 2.67 (dd, J = 17.2, 5.4 Hz, 1H), 
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2.51-2.46 (m, 1H), 2.35-2.32 (m, 1H), 1.51 (s, 3H), 1.28 (d, J = 6.6 Hz, 3H); 13C NMR (151 

MHz, CDCl3): δ 197.3, 166.4, 152.9, 133.2, 129.6, 129.5, 128.9, 128.5, 78.3, 74.31,† 74.28,‡ 64.3, 

47.6, 45.3, 37.9, 24.1, 16.7 (†Rotomer A, ‡Rotomer B); IR (thin film): 2973, 1717, 1684, 1456, 

1273, 1114, 713 cm-1; TLC (40% ethyl acetate:hexanes): Rf = 0.31; HRMS (ESI): Calcd. for 

C18H20NaO4 ([M+Na]+): 323.1260, Found: 323.1252; SFC Chiralpak AD, 9% MeOH, pressure = 

150 bar, flow rate = 1.5 mL/min, λ = 210 nm, tR (major) 6.4 min, tR (minor) 8.1 min, 99.5:0.5 er; [α]D 

-9 (c = 1.4, CHCl3). 

Synthesis of Benzoate 25 from 24a 

 

((2S,3S,3aR,7aR)-7a-Methyl-5-oxo-2-phenyl-2,3,3a,4,5,7a-hexahydrobenzofuran-3-

yl)methyl 4-nitrobenzoate (25): A flame-dried 10-mL round-bottom flask equipped with a 

magnetic stir bar was charged with alcohol 24a (77 mg, 0.30 mmol, 1.00 equiv) in CH2Cl2 (3 mL, 

0.1 M). 4-Dimethylaminopyridine (3.7 mg, 0.03 mmol, 0.10 equiv), 4-nitrobenzoyl chloride (67 

mg, 0.36 mmol, 1.20 equiv), and triethylamine (125 mL, 0.90 mmol, 3.00 equiv) were added 

sequentially. The reaction was allowed to stir for 60 min at room temperature. The reaction was 

quenched with sat. aq. NH4Cl (2 mL). The reaction was partitioned between CH2Cl2 (15 mL) and 

H2O (30 mL). The layers were separated and the aqueous layer was extracted with CH2Cl2 (2 x 

15 mL). The combined organic extracts were dried over Na2SO4, filtered, and concentrated in 

vacuo. The crude residue was purified by column chromatography on silica gel to afford 

benzoate 25 (102 mg, 83% yield) as a white solid (mp 125-126 ºC). Analytical data for 25: 1H 
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NMR (400 MHz, CDCl3): δ 8.15 (d, J = 8.9 Hz, 2H), 7.90 (d, J = 8.8 Hz, 2H), 7.26-7.10 (m, 5H), 

6.64 (dd, J = 10.2, 1.8 Hz, 1H), 5.99 (d, J = 10.2 Hz, 1H), 5.03 (d, J = 8.8 Hz, 1H), 3.95-3.83 (m, 

2H), 2.74-2.64 (m, 3H), 2.38-2.35 (m, 1H), 1.58 (s, 3H); 13C NMR (101 MHz, CDCl3): δ 196.8, 

164.0, 152.4, 150.5, 137.8, 134.9, 130.5, 129.3, 128.3, 128.0, 126.5, 123.5, 80.2, 79.2, 65.6, 47.8, 

46.7, 38.0, 23.6; IR (thin film): 2975, 2097, 1725, 1683, 1529, 1371, 1279, 1171, 1133 cm-1; 

TLC (40% ethyl acetate:hexanes): Rf = 0.33; HRMS (ESI): Calcd. for C46H42N2NaO12 

([2M+Na]+): 837.2636, Found: 837.2626; [α]D -50 (c = 0.5, CHCl3). 

X-ray suitable crystals were grown by dissolving 25 (100 mg) in a minimal amount of 

acetone (~0.2 mL) in a 20-mL scintillation vial. Without disturbing the acetone layer, hexanes 

(~4 mL) was carefully pipetted on top to form a second layer. The vial was capped and carefully 

transferred to a freezer (-10 ºC) where it was left to age overnight. 

Synthesis of Epoxide 26 from 23d 

 

(1aR,3aR,4R,5S,6aS,6bS)-5-(2-Chlorophenyl)-6a-methyl-2-oxooctahydrooxireno[2,3-

g]benzofuran-4-carbaldehyde (26): A 10-mL round-bottom flask equipped with a magnetic stir 

bar was charged with aldehyde 23d (116 mg, 0.40 mmol, 1.0 equiv) in MeOH:CH2Cl2 (3:1) (1.6 

mL, 0.25 M). The solution was cooled to 0 ºC. H2O2 (30 wt. % in H2O) (0.8 mL) and NaOH (20 

wt. % in H2O) (0.2 mL) were sequentially added. The reaction was allowed to at 0 ºC for 12 h. 

The reaction was carefully quenched with sat. aq. Na2S2O3 (5 mL) to remove excess peroxides. 

The reaction was partitioned between CH2Cl2 (15 mL) and H2O (30 mL). The layers were 
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separated and the aqueous layer was extracted with CH2Cl2 (2 x 15 mL). The combined organic 

extracts were dried over Na2SO4, filtered, and concentrated in vacuo. The crude residue was 

purified by column chromatography on silica gel to afford epoxide 26 (117 mg, 95% yield, >20:1 

dr) as a white solid (mp 73 ºC). Analytical data for 26: 1H NMR (600 MHz, CDCl3): δ 9.03 (d, J 

= 1.4 Hz, 1H), 7.47 (dd, J = 7.6, 1.5 Hz, 1H), 7.36 (dd, J = 7.8, 1.5 Hz, 1H), 7.30-7.24 (m, 2H), 

5.54 (d, J = 8.3 Hz, 1H), 3.50 (dd, J = 3.7, 1.8 Hz, 1H), 3.41 (dd, J = 3.7, 0.7 Hz, 1H), 3.33-3.31 

(m, 1H), 3.13-3.10 (m, 1H), 3.07 (dd, J = 13.8, 5.3 Hz, 1H), 2.07 (ddd, J = 13.8, 2.6, 0.9 Hz, 1H), 

1.77 (s, 3H); 13C NMR (151 MHz, CDCl3): δ 206.0, 197.9, 134.1, 131.3, 129.5, 129.4, 127.4, 

127.2, 78.2, 76.8, 64.3, 58.7, 55.7, 46.1, 35.3, 23.0; IR (thin film): 2978, 1720, 1684, 1653, 1541, 

1473, 1375, 1127, 1034 cm-1; TLC (20% ethyl acetate:hexanes): Rf = 0.28; HRMS (ESI): Calcd. 

for C32H30Cl2NaO8 ([2M+Na]+): 635.1216, Found: 635.1217; [α]D -104 (c = 1.3, CHCl3). 

Synthesis of Diester 27 from 23s 

 

(E)-Ethyl 3-((2S,3R,3aR,7aR)-7a-(3-methoxy-3-oxopropyl)-5-oxo-2-phenyl-

2,3,3a,4,5,7a-hexahydrobenzofuran-3-yl)acrylate (27): A flame-dried 10-mL round-bottom 

flask equipped with a magnetic stir bar was charged with NaH (60%) (23 mg, 0.57 mmol, 1.25 

equiv) suspended in THF (2 mL). The suspension was cooled to 0 ºC. Triethyl phosphonoacetate 

(115 mL, 0.57 mmol, 1.25 equiv) was added dropwise. The homogenous solution was allowed to 

stir at 0 ºC for 20 min before a solution of aldehyde 23s (150 mg, 0.46 mmol, 1.00 equiv) in THF 

(0.5 mL) was added dropwise. The ice bath was removed and the resulting solution was allowed 
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to stir for 3 h as it slowly warmed to room temperature. The reaction was cooled to 0 ºC and 

quenched with sat. aq. NH4Cl (5 mL). The reaction was diluted with Et2O (30 mL) and washed 

with H2O (15 mL) and brine (15 mL). The organic layer was dried over MgSO4, filtered, and 

concentrated in vacuo. The crude residue was purified by column chromatography on silica gel 

to afford diester 27 (176 mg, 96% yield, >20:1 E:Z) as a pale yellow oil. Analytical data for 27: 

1H NMR (600 MHz, CDCl3): δ 7.31 (t, J = 7.4 Hz, 2H), 7.26-7.23 (m, 1H), 7.17 (d, J = 7.4 Hz, 

2H), 6.78 (dd, J = 10.3, 2.0 Hz, 1H), 6.12-6.08 (m, 2H), 5.65 (d, J = 15.5 Hz, 1H), 5.13 (d, J = 

9.1 Hz, 1H), 4.10-3.99 (m, 2H), 3.70 (s, 3H), 3.06 (q, J = 9.7 Hz, 1H), 2.74-2.61 (m, 3H), 2.49 (d, 

J = 17.8 Hz, 1H), 2.46-2.43 (m, 1H), 2.38-2.26 (m, 2H), 1.17 (t, J = 7.1 Hz, 3H); 13C NMR (151 

MHz, CDCl3): δ 196.3, 173.4, 165.4, 150.9, 145.7, 138.0, 130.1, 128.4, 127.9, 126.3, 123.2, 81.7, 

80.9, 60.3, 52.1, 51.9, 47.2, 36.1, 32.4, 28.6, 14.0; IR (thin film): 1734, 1716, 1683, 1456, 1387, 

1248, 1175, 1028 cm-1; TLC (50% ethyl acetate:hexanes): Rf = 0.50; HRMS (ESI): Calcd. for 

C23H26NaO6 ([M+Na]+): 421.1627, Found: 421.1622; SFC Chiralpak OD, 9% MeOH, pressure = 

150 bar, flow rate = 1.5 mL/min, λ = 210 nm, tR (major) 9.4 min, tR (minor) 10.4 min, >99.5:0.5 er; 

[α]D -17 (c = 1.6, CHCl3). 
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Synthesis of bis(Tetrahydrofuran) 28 from 23r 

 

(3aS,5S,6R,6aR,9aS)-8-Oxo-5-phenyloctahydro-2H-benzo[1,2-b:2,3-b']difuran-6-

carbaldehyde (28): A 20-mL Nalgene® scintillation vial equipped with a magnetic stir bar was 

charged with silyl ether 23r (400 mg, 1.00 mmol, 1.00 equiv) in THF (10 mL, 0.1 M). The 

solution was cooled to 0 ºC. HF-pyridine (70% HF) (4 mL) was slowly added to the reaction. 

The ice bath was removed and the resulting solution was allowed to stir for 3 h as it slowly 

warmed to room temperature. The reaction was quenched by carefully pipetting the reaction 

mixture into a beaker containing sat. aq. NaHCO3 (60 mL). The biphasic solution was diluted 

with H2O (40 mL) and extracted with CH2Cl2 (3 x 40 mL). The combined organic extracts were 

dried over Na2SO4, filtered, and concentrated in vacuo. The crude residue was purified by 

column chromatography on silica gel to afford tricycle 28 (235 mg, 82% yield, >20:1 dr) as a 

pale yellow oil. Analytical data for 28: 1H NMR (400 MHz, CDCl3): δ 9.05 (s, 1H), 7.38-7.34 

(m, 2H), 7.31-7.28 (m, 3H), 5.47 (d, J = 8.5 Hz, 1H), 4.17 (t, J = 5.4 Hz, 1H), 4.07 (dt, J = 8.6, 

3.1 Hz, 1H), 3.98 (q, J = 8.9 Hz, 1H), 3.20 (q, J = 6.0 Hz, 1H), 3.09 (t, J = 7.2 Hz, 1H), 2.70-

2.57 (m, 3H), 2.55-2.49 (m, 1H), 2.43-2.34 (m, 2H); 13C NMR (101 MHz, CDCl3): δ 207.3, 

198.8, 136.7, 128.8, 128.4, 125.9, 89.1, 80.4, 80.1, 66.5, 60.6, 43.1, 40.8, 38.9, 38.3; IR (thin 

film): 1716, 1653, 1636, 1541, 1457, 1397, 1209, 1065 cm-1; TLC (40% ethyl acetate:hexanes): 

Rf = 0.25; HRMS (ESI): Calcd. for C17H18NaO4 ([M+Na]+): 309.1103, Found: 309.1100; [α]D -

72 (c = 1.2, CHCl3). 
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Synthesis of Tricycle 29 from 23d 

 

(2S,3R,3aR,7R,7aS)-8-Benzyl-2-(2-chlorophenyl)-7a-methylhexahydro-7,3-

(epiminomethano)benzofuran-5(6H)-one (29): A 10-mL round-bottom flask equipped with a 

magnetic stir bar was charged with aldehyde 23d (116 mg, 0.40 mmol, 1.00 equiv) and 

benzylamine (86 mg, 0.80 mmol, 2.00 equiv) in MeOH:AcOH (9:1) (4 mL, 0.1 M). The solution 

was allowed to stir at room temperature for 4 h. NaBH3CN (50 mg, 0.80 mmol, 2.00 equiv) was 

added in one portion resulting in vigorous gas formation. After stirring at room temperature for 

30 min, the reaction was quenched with sat. aq. NaHCO3 (4 mL). The reaction was partitioned 

between CH2Cl2 (15 mL) and sat. aq. NaHCO3 (30 mL). The layers were separated and the 

aqueous layer was extracted with CH2Cl2 (2 x 15 mL). The combined organic extracts were dried 

over Na2SO4, filtered, and concentrated in vacuo. The crude residue was purified by column 

chromatography on silica gel to afford tricycle 29 (136 mg, 89% yield, >20:1 dr) as a pale yellow 

oil. Analytical data for 29: 1H NMR (600 MHz, CDCl3): δ 7.59 (d, J = 7.7 Hz, 1H), 7.44 (d, J = 

7.2 Hz, 2H), 7.34-7.28 (m, 4H), 7.27-7.24 (m, 1H), 7.20 (dt, J = 7.7, 1.4 Hz, 1H), 5.48 (s, 1H), 

3.80 (dd, J = 22.4, 13.7 Hz, 2H), 3.17 (bs, 1H), 2.93-2.88 (m, 2H), 2.61-2.58 (m, 3H), 2.43 (t, J = 

3.8 Hz, 1H), 2.30 (dd, J = 17.3, 3.8 Hz, 1H), 2.29-2.27 (m, 1H), 1.71 (s, 3H); 13C NMR (151 

MHz, CDCl3): δ 209.5, 141.0, 138.3, 131.3, 129.3, 128.4, 128.3, 128.0, 127.0, 126.4, 80.7, 79.7, 

62.4, 57.1, 47.7, 46.9, 40.3, 38.7, 38.5, 22.0; IR (thin film): 2905, 2813, 1707, 1558, 1457, 1338, 
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1121, 751 cm-1; TLC (20% ethyl acetate:hexanes): Rf = 0.28; HRMS (ESI): Calcd. for 

C23H27ClNO2 ([M+H]+): 382.1575, Found: 382.1568; [α]D +38 (c = 1.1, CHCl3). 

NOESY of Tricycle 29 
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Deuterium Labeling Experiment and Structure Determination 

 

A 10-mL round-bottom flask equipped with a magnetic stir bar was charged with 

aldehyde 23d (58 mg, 0.20 mmol, 1.00 equiv) and benzylamine (43 mg, 0.40 mmol, 1.00 equiv) 

in CD3OD:CD3CO2D (9:1) (2 mL, 0.1 M). The solution was allowed to stir at room temperature 

for 4 h. NaBH3CN (25 mg, 0.40 mmol, 2.00 equiv) was added in one portion resulting in 

vigorous gas formation. After stirring at room temperature for 30 min, the reaction was quenched 

with sat. aq. NaHCO3 (2 mL). The reaction was partitioned between CH2Cl2 (15 mL) and sat. aq. 

NaHCO3 (30 mL). The layers were separated and the aqueous layer was extracted with CH2Cl2 

(2 x 15 mL). The combined organic extracts were dried over Na2SO4, filtered, and concentrated 

in vacuo. The crude residue was purified by column chromatography on silica gel to afford 

tricycle 29-D (64 mg, 84% yield, >20:1 dr) as a pale yellow oil. 

 

 

 

 

 

 

 

 



365 

6.6 References 

1) Feuer, H.; Hooz, J. in The Chemistry of the Ether Linkage, Patai, S., Ed.; Wiley: New 
York, 1967, p. 445–498. 

2) Selected examples: (a) Uozumi, Y.; Kato, K.; Hayashi, T. J. Am. Chem. Soc. 1997, 119, 
5063–5064; (b) Zenner, J. M.; Larock, R. C. J. Org. Chem. 1999, 64, 7312–7322; (c) 
Trost, B. M.; Shen, H. C.; Dong, L.; Surivet, J.-P. J. Am. Chem. Soc. 2003, 125, 9276–
9277; (d) Tietze, L. F.; Sommer, K. M.; Zinngrebe, J.; Stecker, F. Angew. Chem., Int. Ed. 
2004, 44, 257–259; (e) Shu, C.; Hartwig, J. F. Angew. Chem., Int. Ed. 2004, 43, 4794–
4797; (f) Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science 2007, 317, 496–
499; (g) Ueno, S.; Hartwig, J. F. Angew. Chem., Int. Ed. 2008, 47, 1928–1931; (h) 
Mullen, C. A.; Campbell, A. N.; Gagné, M. R. Angew. Chem., Int. Ed. 2008, 47, 6011–
6014; (i) Hamilton, G. L.; Kanai, T.; Toste, F. D. J. Am. Chem. Soc. 2008, 130, 14984–
14986; (j) Tanaka, S.; Seki, T.; Kitamura, M. Angew. Chem., Int. Ed. 2009, 48, 8948–
8951; (k) Jensen, K. H.; Pathak, T. P.; Zhang, Y.; Sigman, M. S. J. Am. Chem. Soc. 2009, 
131, 17074–17075; (l) Pathak, T. P.; Gligorich, K. M.; Welm, B. E.; Sigman, M. S. J. Am. 
Chem. Soc. 2010, 132, 7870–7871; (m) Sethofer, S. G.; Mayer, T.; Toste, F. D. J. Am. 
Chem. Soc. 2010, 132, 8276–8277; (n) Denmark, S. E.; Kornfilt, D. J. P.; Vogler, T. J. 
Am. Chem. Soc. 2011, 133, 15308–15311; (o) Miller, Y.; Miao, L.; Hosseini, A. S.; 
Chemler, S. R. J. Am. Chem. Soc. 2012, 134, 12149–12156. 

3) Selected examples: (a) Hodgson, D. M.; Stupple, P. A.; Johnstone, C. Tetrahedron Lett. 
1997, 38, 6471–6472; (b) Hodgson, D. M.; Stupple, P. A.; Johnstone, C. Chem. Commun. 
1999, 2185–2186; (c) Kitagaki, S.; Anada, M.; Kataoka, O.; Matsuno, K.; Umeda, C.; 
Watanabe, N.; Hashimoto, S. J. Am. Chem. Soc. 1999, 121, 1417–1418. For a review of 
carbonyl ylide cycloadditions: (d) Padwa, A. Helv. Chim. Acta 2005, 88, 1357–1374. 

4) Selected examples: (a) Ishihara, K.; Nakamura, S. Yamamoto, H. J. Am. Chem. Soc. 1999, 
121, 4906–4907; (b) Yao, S.; Roberson, M.; Reichel, F.; Hazell, R. G.; Jørgensen, K. A. J. 
Org. Chem. 1999, 64, 6677–6687; (c) Nakamura, S.; Ishihara, K. Yamamoto, H. J. Am. 
Chem. Soc. 2000, 122, 8131–8140; (d) Bolm, C.; Simić, O. J. Am. Chem. Soc. 2001, 123, 
3830–3831; (e) Liu, K.; Chougnet, A.; Woggon, W.-D. Angew. Chem., Int. Ed. 2008, 47, 
5827–5829; (f) Yaji, K.; Shindo, M. Synlett 2009, 2524–2528; (g) Uyanik, M.; Okamoto, 
H.; Yasui, T.; Ishihara, K. Science 2010, 328, 1376–1379; (h) Ishida, K.; Kusama, H.; 
Iwasawa, N. J. Am. Chem. Soc. 2010, 132, 8842–8843; (i) Filloux, C. M.; Lathrop, S. P.; 
Rovis, T. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 20666–20671; (j) Mikami, K.; Aikawa 
K.; Aida, J. Synlett 2011, 2719–2724; (k) Greenaway, K.; Dambruoso, P.; Ferrali, A.; 
Hazelwood, A. J.; Sladojevich, F.; Dixon, D. J. Synthesis 2011, 1880–1886. 

5) Recent reviews on oxa-Michael reactions: (a) Vicario, J. L.; Badía, D.; Carrillo, L. 
Synthesis 2007, 2065–2092; (b) Nising, C. F.; Bräse, S. Chem. Soc. Rev. 2008, 37, 1218–
1228; (c) Nising, C. F.; Bräse, S. Chem. Soc. Rev. 2012, 41, 988–999. 

6) Zhang, Y.; Wang, W. Catal. Sci. Technol. 2012, 2, 42–53. 

7) Selected examples: (a) van Lingen, H. L.; Zhuang, W.; Hansen, T.; Rutjes, F. P. J. T.; 
Jørgensen, K. A. Org. Biomol. Chem. 2003, 1, 1953–1958; (b) Vanderwal, C. D.; 



366 

Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 14724–14725; (c) Govender, T.; Hojabri, 
L.; Moghaddam, F. M.; Arvidsson, P. I. Tetrahedron: Asymmetry 2006, 17, 1763–1767; 
(d) Bertelsen, S.; Dinér, P.; Johansen, R. L.; Jørgensen, K. A. J. Am. Chem. Soc. 2007, 
129, 1536–1537; (e) Carlone, A.; Bartoli, G.; Bosco, M.; Pesciaioli, F.; Ricci, P.; Sambri, 
L.; Melchiorre, P. Eur. J. Org. Chem. 2007, 5492–5495; (f) Reyes, E.; Talavera, G.; 
Vicario, J. L.; Badía, D.; Carrillo, L. Angew. Chem., Int. Ed. 2009, 48, 5701–5704; (g) 
Zhang, X.; Zhang, S.; Wang, W. Angew. Chem., Int. Ed. 2010, 49, 1481–1484; (h) Zhang, 
F.-G.; Yang, Q.-Q.; Xuan, J.; Lu, H.-H.; Duan, S.-W.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 
2010, 12, 5636–5639. 

8) Selected examples: (a) Dumez, E.; Rodriguez, J.; Dulcère, J.-P. Chem. Commun. 1997, 
1831–1832; (b) Kano, T.; Tanaka, Y.; Maruoka, K. Tetrahedron 2007, 63, 8658–8664; 
(c) Lin, S.; Zhao, G.-L.; Deiana, L.; Sun, J.; Zhang, Q.; Leijonmarck, H.; Córdova, A. 
Chem.–Eur. J. 2010, 16, 13930–13934; (d) McGarraugh, P. G.; Brenner-Moyer, S. E. 
Org. Lett. 2011, 13, 6460–6463; (e) McGarraugh, P. G.; Johnston, R. C.; Martínez-
Muñoz, A.; Cheong, P. H.-Y.; Brenner-Moyer, S. E. Chem.–Eur. J. 2012, 18, 10742–
10752. 

9) Recent reviews on organocatalytic domino reactions: (a) Enders, D.; Grondal, C.; Hüttl, 
M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570–1581; (b) Alba, A.-N.; Companyo, X.; 
Viciano, M.; Rios, R. Curr. Org. Chem. 2009, 13, 1432–1474; (c) Grondal, C.; Jeanty, 
M.; Enders, D. Nat. Chem. 2010, 2, 167–178; (d) Albrecht, Ł.; Jiang, H.; Jørgensen, K. A. 
Angew. Chem., Int. Ed. 2011, 50, 8492–8509; (e) Pellissier, H. Adv. Synth. Catal. 2012, 
354, 237–294; (f) Pellissier, H. Chem. Rev. 2013, 113, 442–524. 

10) (a) Tietze, L. F.; Beifuss, U. Angew. Chem. Int. Ed. Engl. 1993, 32, 131–163; (b) Tietze, 
L. F. Chem. Rev. 1996, 96, 115–136. 

11) (a) Breuning, M.; Corey, E. J. Org. Lett. 2001, 3, 1559–1562; (b) Imbos, R.; Minnaard, A. 
J.; Feringa, B. L. Tetrahedron 2001, 57, 2485–2489; (c) Imbos, R.; Minnaard, A. J.; 
Feringa, B. L. J. Am. Chem. Soc. 2002, 124, 184–185; (d) Hayashi, Y.; Gotoh, H.; 
Tamura, T.; Yamaguchi, H.; Masui, R.; Shoji, M. J. Am. Chem. Soc. 2005, 127, 16028–
16029; (e) Liu, Q.; Rovis, T. J. Am. Chem. Soc. 2006, 128, 2552–2553; (f) Vo, N. T.; 
Pace, R. D. M.; O’Hara, F.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 404–405; (g) Gu, 
Q.; Rong, Z.-Q.; Zheng, C.; You, S.-L. J. Am. Chem. Soc. 2010, 132, 4056–4057; (h) 
Leon, R.; Jawalekar, A.; Redert, T.; Gaunt, M. J. Chem. Sci. 2011, 2, 1487–1490; (i) Gu, 
Q.; You, S.-L. Chem. Sci. 2011, 2, 1519–1522; (j) Gu, Q.; You, S.-L. Org. Lett. 2011, 13, 
5192–5195; (k) Tello-Aburto, R.; Kalstabakken, K. A.; Volp, K. A.; Harned, A. M. Org. 
Biomol. Chem. 2011, 9, 7849–7859; (l) Takizawa, S.; Nguyen, T. M.-N.; Grossmann, A.; 
Enders, D.; Sasai, H. Angew. Chem., Int. Ed. 2012, 51, 5423–5426; (m) Rubush, D. M.; 
Morges, M. A.; Rose, B. J.; Thamm, D. H.; Rovis, T. J. Am. Chem. Soc. 2012, 134, 
13554–13557; (n) Ratnikov, M. O.; Farkas, L. E.; Doyle, M. P. J. Org. Chem. 2012, 77, 
10294–10303; (o) Jia, M.-Q.; You, S.-L. Chem. Commun. 2012, 48, 6363–6365; (p) Jia, 
M.-Q.; Liu, C.; You, S.-L. J. Org. Chem. 2012, 77, 10996–11001; (q) Wu, W.; Li, X.; 
Huang, H.; Yuan, X.; Lu, J.; Zhu, K.; Ye, J. Angew. Chem., Int. Ed. 2013, 52, 1743–
1747; (r) Keilitz, J.; Newman, S. G.; Lautens, M. Org. Lett. 2013, 15, 1148–1151; (s) He, 
Z.-T.; Tian, B.; Fukui, Y.; Tong, X.; Tian, P.; Lin, G.-Q. Angew. Chem., Int. Ed. 2013, 52, 
5314–5318. 



367 

12) Ding, Q.; Ye, Y.; Fan, R. Synthesis 2013, 45, 1–16. 

13) Carreño, M. C.; González-López, M.; Urbano, A. Angew. Chem., Int. Ed. 2006, 45, 
2737–2741. 

14) Carreño, M. C.; Ribagorda, M. Org. Lett. 2003, 5, 2425–2428. 

15) Selected examples and reviews on asymmetric (3+2)-THF forming reactions: (a) 
Akiyama, T.; Yasusa, T.; Ishikawa, K.; Shoichiro, O. Tetrahedron Lett. 1994, 35, 8401–
8404; (b) Masse, C. E.; Panek, J. S. Chem Rev. 1995, 95, 1293–1316; (c) Micalizio, G. 
C.; Roush, W. R. Org. Lett. 2000, 2, 461–464; (d) Pohlhaus, P. D.; Johnson, J. S. J. Am. 
Chem. Soc. 2005, 127, 16014–16015; (e) Wolfe, J. P.; Hay, M. B. Tetrahedron 2007, 63, 
261–290; (f) Campbell, M. J.; Johnson, J. S.; Parsons, A. T.; Pohlhaus, P. D.; Sanders, S. 
D. J. Org. Chem. 2010, 75, 6317–6325. 

16) The Chemistry of Phenols, Rappoport, Z., Ed.; Wiley: New York, 2003. 

17) Kürti, L.; Herczegh, P.; Visy, J.; Simonyi, M.; Antus, S.; Pelter A. J. Chem. Soc., Perkin 
Trans. 1 1999, 379–380. 

18) (a) Dohi, T.; Maruyama, A.; Takenaga, N.; Senami, K.; Minamitsuji, Y.; Fujioka, H.; 
Caemmerer, S. B.; Kita, Y. Angew. Chem., Int. Ed. 2008, 47, 3787–3790; (b) Uyanik, M.; 
Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2010, 49, 2175–2177. 

19) (a) Matsuura, T.; Omura, K.; Nakashima, R. Bull. Chem. Soc. Jpn. 1965, 38, 1358–1362; 
(b) Adam, W.; Kiliç, H.; Saha-Möller, C. R. Synlett 2002, 510–512. 

20) (a) Ball, D. L.; Edwards, J. O. J. Am. Chem. Soc. 1956, 78, 1125–1129; (b) Evans, D. F.; 
Upton, M. W. J. Chem. Soc. Dalton Trans. 1985, 1151–1153. 

21) Langenbeck, W.; Sauerbier, R. Chem. Ber. 1937, 70, 1540–1541. 

22) Erkkilä, A.; Majander, I.; Pihko, P. M. Chem. Rev. 2007, 107, 5416–5470. 

23) (a) Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 1172–1173; (b) 
Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Angew. Chem., Int. Ed. 
2005, 44, 794–797; (c) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem., Int. 
Ed. 2005, 44, 4212–4215; (d) Jensen, K. L.; Dickmeiss, G.; Jiang, H.; Albrecht, Ł.; 
Jørgensen, K. A. Acc. Chem. Res. 2012, 45, 248–264. 

24) (a) Tian, X.; Liu, Y.; Melchiorre, P. Angew. Chem., Int. Ed. 2012, 51, 6439–6442; (b) 
Hayashi, Y.; Okamura, D.; Umemiya, S.; Uchimaru, T. ChemCatChem 2012, 4, 959–962. 

25) CCDC 926927 contains the supplementary crystallographic data for this chapter. This 
data can be obtained free of charge from The Cambridge Crystallographic Centre via 
www.ccdc.cam.c.uk/data_request/cif. The structure in Scheme 6-17 was generated with 
CYLview: Legault, C. Y. CYLview, version 1.0b; Université de Sherbrooke: Sherbrooke, 
QC, 2009; http://www.cylview.org. 



368 

26) (a) Matsuura, T.; Kawai, M.; Makashima, R.; Butsugan, Y. J. Chem. Soc. C 1970, 664–670; (b) 
Ohkubo, M.; Hirai, G.; Sodeoka, M. Angew. Chem., Int. Ed. 2009, 48, 3862–3866. 

27) Brown, P. D.; Willis, A. C.; Sherburn, M. S.; Lawrence, A. L. Org. Lett. 2012, 14, 4537–4539. 

28) Patil, N. T.; Singh, V. Chem. Commun. 2011, 47, 11116–11118. 

 


