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ABSTRACT 

 

BRADFORD D. FISCHER: Interactions between Opioid Agonists and  

Glutamate Receptor Antagonists 

(Under the direction of Linda A. Dykstra) 

 

The following studies systematically examine the interactive effects of opioids and 

glutamate receptor antagonists in assays of schedule-controlled responding and thermal 

nociception. 

Experiment 1 examines the effects of morphine, buprenorphine, butorphanol, and 

nalbuphine alone and in combination with an N-Methyl-D-Aspartate (NMDA) receptor 

antagonist on schedule-controlled responding and thermal nociception. The results from this 

study indicate that NMDA antagonist/morphine and NMDA antagonist/buprenorphine 

mixtures produce additive or infra-additive effects on schedule-controlled responding, 

whereas NMDA antagonist/butorphanol and NMDA antagonist/nalbuphine mixtures 

produced additive or supra-additive effects. In addition, mixtures of an NMDA antagonist in 

combination with morphine, buprenorphine, butorphanol, and nalbuphine produce additive or 

supra-additive effects on thermal nociception.  

Experiment 2 examines the interactive effects of morphine in combination with 

metabotropic glutamate (mGlu) receptor antagonists selective for mGlu1, mGlu5, and 

mGlu2/3 receptor subtypes on schedule-controlled responding and thermal nociception. The 

results from this experiment suggest that mGlu1, mGlu5, and mGlu2/3 antagonists produce 

additive effects when administered in combination with morphine on schedule-controlled 
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responding. In contrast, mGlu1 and mGlu2/3 antagonists produced supra-additive effects 

with morphine when assessed on thermal nociception.  

Experiment 3 assesses the effects of NMDA, mGlu1, mGlu5, and mGlu2/3 receptor 

antagonists on the efficacy of buprenorphine and dezocine in an assay of thermal 

nociception. Under conditions in which buprenorphine and dezocine produce sub-maximal 

antinociceptive effects, these drugs are assessed after pretreatment with NMDA, mGlu1, 

mGlu5, and mGlu2/3 antagonists. The results from this study indicate that NMDA, mGlu1, 

and mGlu2/3 receptor antagonists increase the efficacy of both buprenorphine and dezocine 

on thermal nociception. 

Taken together, these experiments assessed the interactive effects of opioid receptor 

agonists and glutamate receptor antagonists on schedule-controlled responding and thermal 

nociception. The experimental results obtained from these studies suggest that these 

interactive effects are dependent upon factors such as the relative proportions of drugs and 

the experimental endpoint under study. In addition, the pharmacological affinity of the opioid 

and glutamate receptor antagonist being examined is an important determinant of their 

behavioral effects. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

GLUTAMATERGIC MODULATION OF THE  

BEHAVIORAL EFFECTS OF OPIOIDS 

Glutamate is the most prominent excitatory neurotransmitter in the central nervous 

system. It is known to work through activation of both ionotropic (iGlu) and G-protein-

coupled metabotrobic (mGlu) receptor subtypes. The three iGlu receptors were named after 

the agonists that activate them selectively: N-methyl-D-aspartate (NMDA), α-amino-3-

hydroxy-5-methyl-4-isoazolepropionic acid (AMPA), and 2-carboxy-3-carboxymethyl-4-

isopropenylpyrrolidine (kainite). To date, eight mGlu receptor subtypes have been identified, 

and have been divided into three groups: group I (mGlu1 and mGlu5), group II (mGlu2 and 

mGlu3), and group III (mGlu4, mGlu6, mGlu7, and mGlu8).  

The development of drugs with selectivity for iGlu and mGlu receptor subtypes has 

allowed for experiments assessing the role of glutamate in the behavioral effects of opioids. 

As a result of these studies, it is becoming increasingly clear that endogenous receptor 

activity at glutamate sites has a modulatory role in these effects. In support of this 

hypothesis, pharmacological antagonists with selectivity for iGlu and mGlu receptor 

subtypes modulate the effects of opioids on numerous behavioral endpoints. Among the iGlu 

and mGlu receptor subtypes, there is substantial evidence in support of a modulatory role of 
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the NMDA receptor and Group I and II mGlu receptors in the behavioral effects of the 

prototypical µ-opioid receptor agonist morphine. 

To date, the most thoroughly investigated system of the glutamate receptor subtypes is 

the NMDA receptor. In what is now a seminal study, Trujillo and Akil (1991) first 

demonstrated that an NMDA receptor antagonist inhibits the development of morphine 

tolerance, suggesting that NMDA receptors have a central role in this effect. Subsequently, 

the interactive effects of NMDA receptor antagonists and morphine have been assessed on 

other endpoints. For example, several lines of evidence suggest that pharmacological 

antagonism of the NMDA receptor also blocks morphine-induced conditioned place 

preference (Papp et al., 2002), sensitization (Jeziorski et al., 1994), and physical dependence 

(Tanganelli et al., 1991), further suggesting that the effects of morphine can be modulated by 

NMDA receptors across a range of behaviors. 

More recently, attention has turned to the interactive effects of opioids and mGlu receptor 

antagonists. Experimental evidence suggests that mGlu receptor antagonists modulate 

morphine’s effects in a similar manner as ionotropic NMDA receptor antagonists on 

numerous behavioral endpoints. For example, co-administration of an mGlu receptor 

antagonist blocks morphine-induced conditioned place preference (Popik and Wrobel, 2002; 

Aoki et al., 2004), attenuates the development of morphine tolerance (Kozela et al., 2003; 

Smith et al., 2004) and attenuates the development of morphine dependence (Rasmussen et 

al., 2005) after repeated morphine administration. The results from these experiments are 

particularly exciting as they implicate alternative glutamate sites as modulators of 

morphine’s behavioral effects. 
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Over the past ten years, our laboratory has focused on elucidating glutamatergic 

mechanisms in the antinociceptive effects of opioids. Throughout these studies, it has 

become increasingly clear that antagonists at the NMDA receptor enhance the acute 

antinociceptive effects of morphine and other opioids in a primate shock titration procedure 

(Allen and Dykstra, 2001; Allen et al., 2002; Allen et al., 2003), and in a mouse model of 

thermal nociception (Fischer et al., 2005). Together, these studies provided some of the first 

behavioral evidence to suggest that, in addition to other behavioral endpoints, NMDA 

receptor antagonists also increase the acute antinociceptive effects of opioids. To date, it 

remains to be determined if antagonists with selectivity for mGlu receptors also increase 

antinociception induced by opioid agonists. 

One disadvantage of assessing glutamate antagonist/opioid combinations exclusively on 

an antinociceptive endpoint is that the results may lead to “false-positive” conclusions. For 

example, in preclinical assays of thermal nociception, a noxious stimulus is often presented 

that induces a specific withdrawal response (e.g., tail-flick from radiant heat, jump from a 

hot-plate surface). In these assays, a decrease in response latency after the presentation of the 

noxious stimulus is indicative of nociception and a subsequent increase in latency after 

administration of an opioid agonist is indicative of an antinociceptive response. Further, an 

increase in response latency that is quantitatively larger after administration of a glutamate 

receptor antagonist relative to the opioid alone is interpreted as an increase in opioid-induced 

antinociception. Clearly, alterations in response latency may be a result of alterations in other 

behaviors (motor function, sedation, etc.) that are unrelated to nociception. This observation 

is particularly important to address when examining glutamate receptor antagonists that can 
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produce marked effects on motor function when administered alone (Koek and Colpaert, 

1990; Carter, 1994; Geter-Douglass and Witkin, 1999).  

One particular advantage of the shock titration procedure used in some of the 

aforementioned studies is that the antinociceptive effects of NMDA antagonist/opioid agonist 

drug combinations are assessed in conjunction with their effects on operant rates of 

responding. Using this procedure, our laboratory has previously demonstrated that although 

NMDA antagonists increase the antinociceptive effects of morphine and other opioids, they 

do so without affecting rates of responding (Allen and Dykstra, 2001; Allen et al., 2002; 

Allen et al., 2003). These data suggest a separation between alterations in nociceptive 

behaviors and behaviors that are not related to nociception and further suggest that opioid-

induced antinociception is not due to nonspecific motor effects. In addition, these previous 

studies demonstrate the importance of assessing the interactive effects of drugs across 

behavioral endpoints. 

Together with reports from other laboratories assessing the interactive effects of opioids 

and NMDA antagonists (Mao et al., 1996; Bespalov et al., 1998; Pleasn et al., 1998; Bulka et 

al., 2002; Nemmani et al., 2004), the understanding of glutamatergic mechanisms in the acute 

antinociceptive effects of opioids has been enhanced. Taken together, these reports suggest 

that NMDA antagonists increase the acute antinociceptive effects of morphine and do so 

without affecting their rate-reducing effects (at least in the primate shock titration procedure). 

Less is know of the interactive effects of opioids and mGlu receptor antagonists on these 

endpoints. In addition, a formal quantitative analysis on these drug interactions has not been 

performed. 
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QUANTITATIVE METHODS FOR ASSESSING  

DRUG INTERACTIONS 

If two drugs are administered concurrently, they may interact in an additive, infra-

additive, or supra-additive manner. If two drugs produce behavioral effects through distinct 

cellular processes, the effects produced by their combination can be predicted to follow a 

dose-additive model. Briefly, this model predicts that the potency required of a mixture of the 

two drugs to produce a given effect is directly related to the potency of each drug 

administered alone.  

In contrast, drugs that produce effects in an infra-additive or supra-additive manner 

produce effects that are less than or greater than expected, respectively, based on the 

individual potencies of the drugs administered alone. The detection of infra-additivity or 

supra-additivity suggests that some interaction has occurred between the pharmacokinetic or 

pharmacodynamic processes of the drugs. For example, one drug may affect the absorption, 

distribution, metabolism, or excretion of the other drug, resulting in an enhancement or a 

decrement its bioavailability. In addition, if the drugs are chemically related or act upon co-

localized receptor sites, they may interact by altering drug affinity or efficacy, membrane 

function, or synaptic efficiency. Detection of this interaction may have both clinical and/or 

mechanistic implications. 

Preclinical assessment of the effects of two drugs administered concurrently was first 

approached graphically by Loewe (1953). Loewe described a simple, yet eloquent graph, 

which represents the locus of equieffective dose pairs of two drugs in a mixture, or isobols, in 

accord with the potency of each drug administered alone (Figure 1.1). If two drugs are fully 

efficacious on the same endpoint, the dose of each required to produce a desired effect can be 
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denoted by A for drug A and B for drug B. Loewe’s isobologram has Cartesian coordinates 

that represent equieffective combinations of the two drugs (a, b) that satisfy the following 

equation: 

1=+
B

b

A

a
 

For example, if a desired effect is achieved at a dose of 10 mg/kg of drug A (A = 10) and 

5 mg/kg of drug B (B = 5), this leads to isobols of (8, 1), (6, 2), (4, 3), (2, 4), etc. The 

isobologram is also useful in displaying experimentally determined effects from mixtures of 

the two drugs, which can be compared to isobols that are predictive of dose-additivity. If 

experimentally determined doses required to produce a desired effect deviate from the line of 

additivity, it is suggestive of some interaction between the drugs. For example, if the desired 

effect is achieved in the above example at a dose of 3 mg/kg of drug A and 1 mg/kg of drug 

B, the coordinate (3, 1) would fall below the line of additivity. This is suggestive of a supra-

additive interaction, as the desired effect was reached with lesser quantities of the drugs. In 

contrast, if the same effect required 10 mg/kg of drug A and 4 mg/kg of drug B, the 

coordinate (10, 4) would fall above the line of additivity, suggestive of an infra-additive 

interaction of the drugs. The isobologram is convenient for displaying the predicted and 

experimentally determined effects of drug mixtures. However, it does not contribute to the 

necessary statistical analysis that distinguishes deviation from additivity. 

Advancement in quantitative methods for assessing the interactions of two drugs began 

with an analysis of the toxicity of poisons applied jointly. In what are now seminal papers, 

Bliss (1939) and Finney (1942) considered the problem of predicting the toxicity of a mixture 

of two drugs administered concurrently from the known dose-effect curves of each drug 

administered alone. These papers derived the necessary statistical analysis for the assessment 
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of drug mixtures, based on probit analysis, as well as the theoretical bases of the mixture’s 

possible effects. However, the analysis described was not only complex, but was based on 

quantal data, consisting of the proportion of subjects responding to a particular dose. Thus, 

its application to behavioral endpoints, which are often based on continuous (graded) data 

sets, was limited. 

Numerous methods have been employed to circumvent the statistical evaluation of data 

sets on an isobologram. One approach was utilized in a well publicized study by Gessner and 

Cabana (1970) on the interactive effects of chloral hydrate and ethanol. These authors 

assessed the effects of chloral hydrate, ethanol, and various mixtures of the two on the 

endpoints of loss of righting reflex and lethality. In this study, it was demonstrated that 

certain chloral hydrate/ethanol mixtures produced the desired effect at lower doses than 

expected, suggestive of a supra-additive interaction. Importantly, their findings suggest that 

the detection of synergism of two drugs depends on the relative proportions of the drugs, and 

the endpoint under study. 

The statistical analysis utilized in the Gessner and Cabana (1970) study relied on plotting 

the coordinates of the experimentally determined doses together with their 95% confidence 

limits. Therefore, drug mixtures that produced the desired effect at doses with confidence 

limits that did not cross the theoretical dose-additive line were considered to deviate from 

additivity. This approach has since been used in the field of behavioral pharmacology (e.g., 

Woolverton and Balster, 1981; Foltin et al., 1983) and although it provided a quantitative 

dimension to the data sets, it was not supported by existing statistical methodology. 

Specifically, these studies did not recognize that the dose-additive line is an estimate based 
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on the experimentally determined dose-effect curve of each drug alone, and therefore is not 

free of error. 

Drug combination studies in behavioral pharmacology have been discussed in reviews by 

Wessinger (1986) and Woolverton (1987), however it was noted that “no careful statistical 

evaluation [of dose-addition] has been published, and this is an area which needs further 

research” (Wessinger, 1986). Woolverton (1987) adds that “it remains for future research to 

refine the quantitative treatment of differences from additivity”. More recently, the statistical 

analysis of the interactive effects of two drugs has been advanced by the work of Tallarida 

(1992, 2000). 

A dose-addition analysis based on a fixed proportion design (Tallarida, 2000) can be 

applied to behavioral pharmacology questions. In this method, drug combinations are 

administered in amounts that keep the proportions of the drugs in the mixture constant, 

simplifying the analysis of the data. Escalating doses of the mixture of the two drugs can be 

tested at fixed proportions until the desired effect is reached. For example, consider the 

example previously described in which drug A produced a desired effect at 10 mg/kg and 

drug B produced the same effect at 5 mg/kg. If a proportion of 2:1 is selected, dose pairs (in 

mg/kg) of (2, 1), (4, 2), (6, 3) are administered until the desired effect is reached. The 

analysis is simplified so that the total dose in the mixture required to produce the effect is 

compared to the predicted effect in relation to the fraction (f) of its constitutes. The predicted 

additive dose (Zadd) can then be represented by the following equation: 

BffAZ add )1( −+=  

From the experimentally determined total dose (Zmix) and the predicted additive dose 

(Zadd), a statistical test of significance can be made (Zadd - Zmix). If the difference is 
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significantly different from zero, it can be concluded that the drugs are interacting in a infra-

additive (Zadd < Zmix) or supra-additive (Zadd > Zmix) manner. This approach is applicable to 

graded data sets, and has recently been utilized to quantify the interactive effects of two 

drugs on numerous behavioral endpoints (e.g., Stevenson et al., 2003, 2005; Negus, 2005; 

Craft and Leitl, 2006). From the development of rigorous quantitative analyses for the 

assessment of drug interactions, a comprehensive behavioral assessment of NMDA 

antagonist/opioid and mGlu antagonist/opioid drug mixtures will advance our understanding 

of drug mechanism as well as shed light on the possible clinical utility of these drug 

combinations. 

 

IONOTROPIC AND METABOTROPIC GLUTAMATE RECEPTOR PHARMACOLOGY 

The conclusions gleaned from studies assessing of the role of glutamate receptor subtypes 

in the antinociceptive effects of opioids are only as valid as the selectivity of the glutamate 

receptor antagonists employed in these studies. Clearly, it is important to take advantage of 

the most recent advances in glutamate receptor pharmacology. Since the discovery of iGlu 

receptors in the late 1950’s and mGlu receptors by Sladeczek and colleagues in 1985, there 

has been considerable progress in the development of drugs that are selective for iGlu and 

mGlu receptor subtypes. The identification of iGlu and mGlu receptor antagonists in 

particular has enabled considerable advances in the understanding of the role of glutamate in 

the behavioral effects of morphine.  

Pharmacological antagonists selective for iGlu and mGlu receptor subtypes can be 

divided into competitive and noncompetitive antagonists. Competitive antagonists selective 

for the NMDA receptor have high affinity for either the glutamate or glycine recognition site, 
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whereas noncompetitive antagonists block the ion channel pore of the receptor. Although 

noncompetitive antagonists have been approved for human use (Farlow, 2004), these drugs 

often have steep dose-response curves and low therapeutic indexes (Kew and Kemp, 1998), 

limiting their clinical utility. Of the numerous competitive antagonists available, (-)-6-

phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid (LY235959) is a potent and 

highly selective NMDA antagonist with affinity for the glutamate site on the NMDA receptor 

complex (Schoepp et al., 1991). 

Although the pharmacokinetic profile of competitive Group I mGlu receptor antagonists 

has restricted their utility in vivo (Kew and Kemp, 2005), selective noncompetitive 

antagonists (allosteric modulators) have been developed. To date, only (3aS,6aS)-6a-

naphtalan-2-ylmethyl-5-methyliden-hexahydro-cyclopenta[c]furan-1-on (BAY 36-7620) and 

more recently (3,4-Dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-

methanone (JNJ16259685) have been shown to be centrally active at mGlu1 receptors, with 

JNJ16259685 showing increased potency over BAY 36-7620 (Carroll et al., 2001; Lavreysen 

et al., 2004). The first noncompetitive mGlu5 receptor antagonists to be described were 6-

methyl-2-(phenylazo)-3-pyridinol (SIB-1757) and (E)-2-methyl-6-(2-phenylethenyl)-

pyridine (SIB-1893), which are selective over other mGlu receptor subtypes (Varney et al., 

1999). Subsequently, a more potent and selective mGlu5 receptor antagonist, 2-methyl-6-

(phenylethynyl)-pyridine (MPEP) has been identified (Gasparini et al., 1999). 

Group II mGlu receptor antagonists selective for either mGlu2 or mGlu3 receptors have 

not been synthesized. The most potent mGlu2/3 receptor antagonist identified to date is 2S-2-

amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl) propanoic acid (LY341495). As a 

competitive antagonist at mGlu2/3 receptors, LY341495 interacts with the extracellular N-
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terminal binding domain, inhibiting receptor function (Kingston et al., 1998; Kew and Kemp, 

2005). 

 

EXPERIMENTAL AIMS 

The purpose of the present series of experiments is to examine the interactive effects of 

opioids and glutamate receptor antagonists in assays of schedule-controlled responding and 

thermal nociception. Experiment 1 examines the effects of morphine, buprenorphine, 

butorphanol, and nalbuphine alone and in combination with the NMDA receptor antagonist 

LY235959. Although previous reports have assessed the interactive effects of opioids and 

NMDA receptor antagonists on thermal nociception, the first purpose of this study is to 

analyze these interactions using a formally quantitative approach. Dose addition analysis is 

used to differentiate effects that are additive from effects that are infra-additive or supra-

additive. The second purpose of this study is to determine whether these interactions extend 

to another behavioral endpoint. An assay of schedule-controlled responding is used to assess 

the extent to which LY235959 selectively increases opioid-induced antinociception. 

Experiment 2 examines the interactive effects of morphine in combination with 

metabotropic glutamate (mGlu) receptor antagonists selective for mGlu1 (JNJ16259685), 

mGlu5 (MPEP), and mGlu2/3 (LY341495) receptor subtypes in assays of schedule-

controlled responding and thermal nociception. These studies provide the first systematic 

analysis of the interactive effects of mGlu receptor antagonists and morphine on these 

endpoints. Drug interactions are analyzed with the quantitative methods used in Experiment 

1 to differentiate effects that are additive from effects that are infra-additive or supra-

additive.  
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The purpose of Experiment 3 is to use opioid efficacy as a tool to dissociate the 

mechanism by which mGlu receptor antagonists increase the antinociceptive effects of 

morphine and other opioids. In this experiment, morphine and the low-efficacy µ-opioid 

receptor agonists buprenorphine and dezocine are first assessed in an assay of thermal 

nociception under conditions of low (53°C) and high (56°C) stimulus intensity. Under 

conditions in which the low-efficacy µ-opioid receptor agonists produce sub-maximal 

effects, these drugs are assessed after pretreatment with LY235959, JNJ16259685, MPEP, 

and LY341495. 
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Figure 1.1 Hypothetical dose-effect curves and isobologram. Left, dose-effect curves for 

fully efficacious drugs A and B. Arrows highlight the ED50 value for each drug. Right, 

isobologram for mixtures of drug A and drug B at the 50% effect level. Abscissae, ED50 

value for drug B. Ordinate, ED50 value for drug A. 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 2 

EXPERIMENT 1: INTERACTIONS BETWEEN AN NMDA ANTAGONIST AND 

LOW-EFFICACY OPIOID RECEPTOR AGONISTS IN ASSAYS OF SCHEDULE-

CONTROLLED RESPONDING AND THERMAL NOCICEPTION 

 

INTRODUCTION 

A substantial literature has implicated N-Methyl-D-Aspartate (NMDA) receptor 

mechanisms in the acute antinociceptive effects of morphine. For example, behavioral 

evidence suggests that pretreatment or coadministration of an NMDA receptor antagonist can 

increase the acute effects of morphine in animal models of thermal nociception (Allen and 

Dykstra, 2003; Nemmani et al., 2004; Fischer et al., 2005). In addition, NMDA antagonists 

can increase morphine-induced analgesia in humans under certain conditions (Javery et al., 

1996; Bossard et al., 2002; Suzuki et al., 2005). 

Although NMDA receptor involvement in morphine-induced antinociception has 

received considerable attention, less is known of NMDA receptor involvement in 

antinociception induced by low-efficacy opioids. To date, a single study has assessed these 

interactions, showing that coadministration with the competitive NMDA antagonist 

LY235959 can increase the antinociceptive activity of the low-efficacy opioids 

buprenorphine and butorphanol in monkeys responding under a schedule of shock titration, 

suggesting NMDA receptor involvement in these effects (Allen et al., 2003). This latter 
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finding is particularly intriguing as the enhancement of the antinociceptive effects of low-

efficacy opioids may increase their clinical utility. 

Taken together, these results suggest that inhibition of the NMDA receptor may increase 

the antinociceptive effects of morphine and certain low-efficacy agonists. Although these 

data implicate the NMDA receptor system in opioid antinociception, these interactions have 

not been quantified precisely in order to determine deviation from simple additivity. The use 

of dose-addition analysis can provide a more quantitative evaluation of drug interactions and 

can be used to differentiate effects that are additive from effects that are infra-additive or 

supra-additive (Wessinger, 1986; Tallarida, 2000). 

In the present study, dose-addition analysis was used to further evaluate NMDA/opioid 

interactions. The effects of combinations of the NMDA receptor antagonist LY235959 and 

various opioid receptor agonists were examined in C57BL/6 mice using two different assays. 

To assess the extent to which NMDA antagonists selectively increase opioid-induced 

antinociception, the rate-decreasing effects of LY235959/opioid mixtures were first 

examined in an assay of schedule-controlled responding maintained by liquid food. Second, 

the antinociceptive effects of LY235959/opioid mixtures were examined in an assay of 

thermal nociception. Drug interactions were assessed using a fixed-proportion design, as this 

has been recommended for the study of drug interactions (Wessinger, 1996; Tallarida, 2000) 

and has been used to study similar drug mixtures on similar endpoints (Stevenson et al., 

2003, 2005).  

The opioid receptor agonists examined were morphine and the low-efficacy agonists 

buprenorphine, butorphanol, and nalbuphine as these are each structurally diverse drugs that 

differ in pharmacological selectivity, specifically their affinity for the µ-opioid receptor and 
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κ-opioid receptor (e.g. Chen et al., 1992; Walker et al., 1994, 1998; Emmerson et al., 1996). 

LY235959, the active isomer of LY274614, was selected because it is a potent NMDA 

antagonist with high selectivity for the competitive site on the NMDA receptor complex 

(Schoepp et al., 1991). 
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METHODS 

Animals. Adult male C57BL/6 mice weighing between 26 and 34 g were purchased from 

Jackson Labs (Raleigh, N-C). Upon arrival, mice were group housed in standard plexiglas 

cages in a colony room maintained on a 12-h light/dark cycle (lights on at 7:00 PM). All 

mice had continuous access to food and water throughout the study and were habituated to 

the colony room environment for 2 weeks prior to any experimental manipulation. Mice were 

also exposed to the testing environment and handled for two days prior to initiation of an 

experiment. All testing procedures were conducted between 11:00 AM and 3:00 PM. 

Throughout all testing the “Guide for the Care and Use of Laboratory Animals” (National 

Research Council, National Academy of Sciences, Washington, D.C., 1996) was adhered to. 

Drugs. Morphine sulfate and buprenorphine hydrochloride were provided by NIDA 

(Bethesda, MD) and LY235959 by Lilly Research Laboratories (Indianapolis, IN). 

Butorphanol tartate and nalbuphine hydrochloride were purchased from Sigma (St.Louis, 

MO). All drugs were dissolved in 0.9% phosphate buffered saline. Drugs were injected i.p. at 

a volume of 0.1 ml/10 g. 

Schedule-Controlled Responding. Response rates in the assay of schedule-controlled 

responding were assessed in an experimental operant chamber (approximately 14 cm×14 

cm×14 cm) equipped with a house light, ventilator fan, and two nosepoke holes (1.2 cm 

diameter) that were located on either side of a liquid dipper. The operant chamber was 

controlled by a MED-PC interface and an IBM compatible computer programmed with MED 

Associates software (MED Associates, St. Albans, VT). 

Mice were trained under a multiple-cycle procedure during experimental sessions 

conducted 5 days each week. Each training cycle consisted of a 10-min pretreatment period 
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followed by a 5-min response period. During the pretreatment period, stimulus lights were 

not illuminated and responding had no scheduled consequences. During the response period, 

the right nosepoke was illuminated and mice could obtain up to 10 liquid food reinforcers (8 

s access to 8 µl Ensure
®
) under a fixed ratio 3 schedule of food presentation. If all 10 

reinforcers were earned before 5 min had elapsed, the light was turned off, and responding 

had no scheduled consequences for the remainder of the response period. The left nosepoke 

was inactive, and responding at this hole had no scheduled consequences. Training sessions 

consisted of five consecutive cycles, and testing began once response rates were stable 

throughout the session.  

Test sessions replaced the last training session of each week if responding was stable 

throughout the preceding training sessions. Test sessions were identical to training sessions 

except that cumulative doses of drug mixtures were administered i.p. during the first minute 

of the pretreatment period of each cycle (i.e., 15-min inter injection interval), increasing in 

one-quarter or one-half log unit increments. Data are expressed as a percentage of control 

responding using the average rate of responding from the previous day as the control value 

(average of 5 cycles). 

Thermal Nociception. Antinociception was assessed with a tail-flick analgesia meter 

(Columbus Instruments, Columbus, OH). During this procedure, the stimulus intensity was 

adjusted to provide baseline latencies between 3-5 s. The antinociceptive response was 

evaluated by recording the latency to flick the tail from the light source. Responses were 

measured using a stopwatch to the nearest 0.1 s. A predetermined cutoff time of 10 s was 

defined as a maximal response and was employed to prevent tissue damage. Immediately 

following the termination of a trial, mice were removed from the apparatus and returned to 
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the homecage. The latency to respond to the light source was measured twice at each 

determination, at least 30 s apart, at 3 and 5 cm from the tip of the tail. These data were 

averaged to yield one value. Following baseline latency measurements, multiple 15 min 

cycles were run and drugs mixtures were administered cumulatively. During this procedure, 

cumulative doses of drug mixtures were administered i.p. during the first min of each cycle 

(i.e., 15-min inter injection interval), increasing in one-quarter or one-half log unit 

increments and antinociceptive measurements were determined during the last minute of 

each cycle. Latencies are expressed as a percentage of the maximal possible effect (%MPE) 

using the following formula: %MPE = [postdrug latency (seconds) - baseline latency 

(seconds)] / [cutoff time (10 s) - baseline latency (seconds)]. 

Data analysis. The dose of each drug mixture required to produce a 50% decrease in 

responding (ED50) in the assay of schedule-controlled responding was derived using log-

linear interpolation by linear regression. The dose of each drug mixture required to produce 

50% maximum antinociceptive effect was derived in a similar manner. In each assay, ED50 

values were determined using the linear portion of the dose-effect curve up to doses that 

produced a maximal effect. 

Interactions between LY235959 and opioid agonists were assessed using both graphical 

and statistical approaches (Wessinger, 1986; Tallarida, 2000). Graphically, the distinction 

between infra-additive, additive, or supra-additive interactions were made with the use of 

isobolograms. In the current study, isobolograms were constructed by connecting the ED50 of 

LY235959 alone plotted on the abscissa with the ED50 of the opioid receptor agonist alone 

plotted on the ordinate to obtain an additivity line. The additivity line contains the loci of 

dose pairs that produce an ED50 equal to the ED50 of LY235959 or an opioid receptor agonist 
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alone. Dose pairs that fall below the additivity line suggest an ED50 was reached with lesser 

quantities of the drugs, suggestive of synergism. In contrast, experimental points representing 

dose pairs that fall above the line are suggestive of subadditivity. 

Isobolograms of dose pairs (a,b) were also constructed based on the relative efficacy of 

LY235959 and an opioid receptor agonist. Each opioid was fully efficacious in both assays, 

and was used as the reference drug. Therefore, the shape of the isobologram is dependent on 

the efficacy of LY235959 from the equation 
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where B is the ED50 for an opioid alone, Amax is related to the efficacy of LY235959, and Ac 

is the dose of LY235959 that attains half of Amax (Grabovsky and Tallarida, 2004). For the 

assay of schedule-controlled responding, in which all drugs were fully efficacious, the 

equation describing the isobologram is reduced to  
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For the assay of thermal nociception, LY235959 was ineffective when administered alone. 

Therefore, as the value of Amax approaches 0, the equation describing this isobologram 

reduces to 
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Drug interactions were statistically analyzed by comparing the experimentally 

determined ED50 values for each mixture (Zmix) with predicted additive ED50 values (Zadd) as 

described by Tallarida (2000). Zmix was defined as the total drug dose (i.e., dose LY235959 + 

dose opioid receptor agonist) that produced a 50% decrease in rates of responding (assay of 

schedule-controlled responding) or a 50% maximum antinociceptive effect (assay of thermal 

nociception).  

For the assay of schedule-controlled responding, in which all drugs were equieffective, 

Zadd values were calculated individually for each mouse based on the ED50 values of each 

drug from the equation 

BffAZ add )1( −+=  

where A is the ED50 for LY235959 alone and B is the ED50 for the opioid receptor agonist 

alone. The proportion of LY235959 (ρA) in each mixture is determined by the equation  

BffA

fA
A

)1( −+
=ρ . 

 The present study examined effects produced by mixtures in which ƒ = 0.25, 0.5, and 0.75. 

When ƒ = 0.25, the mixture contains a proportion of [A/ (A + 3B)] LY235959 and a mixture 

ratio of [(A/ B) ÷ 3] parts LY235959 to 1 part opioid receptor agonist; ƒ = 0.50 leads to a 

proportion of [A/ (A + B)] LY235959 in the mixture and a mixture ratio of (A/ B) parts 

LY235959 to 1 part opioid agonist; and ƒ = 0.75 leads to a proportion of [A/ (A + B/ 3)] 

LY235959 in the mixture and a mixture ratio of [(A/ B) x 3] parts LY235959 to 1 part opioid 

receptor agonist. 

For the assay of thermal nociception LY235959 alone was ineffective, and the hypothesis 

of additivity predicts that LY235959 would not contribute to the effects of a mixture of 

LY235959 in combination with an opioid receptor agonist (Tallarida, 2000). Therefore, Zadd 
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is calculated based on the proportion of opioid agonist (ρB) in each particular mixture from 

the equation  

B

add

B
Z

ρ
= . 

Mean experimentally determined ED50 values (Zmix) and predicted additive ED50 values (Zadd) 

for each mixture were compared with a t-test.  

Data were further analyzed by calculating opioid ED50 values for each opioid receptor 

agonist alone and in combination with various proportions of LY235959. A dose ratio was 

defined as the ED50 value of the opioid receptor agonist alone divided by the ED50 value of 

the opioid receptor agonist in the mixture. Dose ratios were determined for each 

LY235959/opioid agonist mixture in both the assay of schedule-controlled responding and 

the assay of thermal nociception. The dose ratios for each mixture were then compared 

between assays (Assay Ratio) according to the equation: [Dose Ratio (thermal nociception)] 

÷ [Dose Ratio (schedule-controlled responding)].  
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RESULTS 

Schedule-controlled responding. 

LY235959 and opioid agonists alone. Figure 2.1 (left panel) shows the rate-decreasing 

effects of LY235959, morphine, buprenorphine, butorphanol, and nalbuphine. Each drug 

produced dose-dependent decreases in the rate of responding resulting in ED50 values (± 95% 

confidence limits) of 1.4 (0.97-1.9) for morphine, 0.11 (0.088-0.15) for buprenorphine, 0.15 

(0.088-0.24) for butorphanol, and 4.2 (1.6-11) for nalbuphine. Therefore, the relative 

potencies for the opioid agonists in the assay of schedule-controlled responding was 

buprenorphine = butorphanol > morphine = nalbuphine. Dose-effect curves for LY235959 

were determined separately for each group resulting in ED50 values (± 95% confidence 

limits) of 5.2 (3.7-7.4), 6.1 (3.4-11), 6.6 (3.5-12), and 5.8 (3.9-8.7), and the relative potencies 

of these values were used to determine relative proportions of the compounds used in 

subsequent studies for morphine, buprenorphine, butorphanol, and nalbuphine, respectively 

(see Data Analysis). 

LY235959 and opioid agonist mixtures. The rate-decreasing effects of each opioid 

agonist alone and in combination with LY235959 are shown in Figure 2.2. Each drug 

mixture produced dose-dependent decreases in response rates. Addition of LY235959 

produced leftward shifts in the dose-effect curves for morphine and buprenorphine, and the 

magnitude of shift was correlated with the proportion of LY235959 in the mixture. Figure 2.2 

also shows the graphical analysis of these drug combinations. Mixtures with a lower 

proportion of LY235959 relative to morphine (i.e., 1.3:1 LY235959/morphine and 3.9:1 

LY235959/morphine) or to buprenorphine (i.e., 18:1 LY235959/buprenorphine) produced 

infra-additive effects, as these ED50 values fell above the line of additivity. Mixtures with a 
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higher proportion of LY235959 relative to morphine and buprenorphine produced additive 

effects, as these ED50 values fell close to the line of additivity. Statistical comparison of 

experimentally determined ED50 values (Zmix) and predicted additive ED50 values (Zadd) 

confirmed these findings (i.e., Zadd > Zmix or Zadd = Zmix) (Table 2.1). 

Addition of LY235959 also produced leftward shifts in the dose-effect curves for 

butorphanol and nalbuphine, and the magnitude of shift was correlated with the proportion of 

LY235959 in the mixture. Graphical analysis of these drug combinations indicates that 

mixtures with a lower proportion of LY235959 relative to butorphanol and nalbuphine 

produced additive effects, as these ED50 values fell close to the line of additivity. Mixtures 

with a higher proportion of LY235959 relative to butorphanol (i.e., 140:1 

LY235959/butorphanol) or to nalbuphine (i.e., 1.4:1 LY235959/nalbuphine and 4.1:1 

LY235959/ nalbuphine) produced supra-additive effects, as these ED50 values fell below the 

line of additivity. Statistical comparison of experimentally determined ED50 values (Zmix) and 

predicted additive ED50 values (Zadd) confirmed these findings (Table 2.1). 

Thermal nociception. 

LY235959 and opioid agonists alone. Figure 2.1 (right panel) shows the antinociceptive 

effects of LY235959, morphine, nalbuphine, buprenorphine, and butorphanol. LY235959 

was without effect in this assay up to a dose of 10 mg/kg, which produced severe motor 

impairment. Each opioid receptor agonist produced dose-dependent increases in latency to 

respond to the tail-flick apparatus, resulting in ED50 values (± 95% confidence limits) of 3.5 

(2.3-5.1) for morphine, 0.25 (0.21-0.31) for buprenorphine, 0.12 (0.078-0.19) for 

butorphanol, and 3.4 (2.1-5.5) for nalbuphine. The relative potencies for the opioid agonists 

in the assay of thermal nociception was similar to the relative potencies determined in the 
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assay of schedule-controlled responding (butorphanol = buprenorphine > nalbuphine = 

morphine). LY235959 was without effect in this assay, therefore the relative potencies 

determined in the assay of schedule-controlled responding were used to determine the 

relative proportions of the compounds in each mixture. 

LY235959 and opioid agonist mixtures. The antinociceptive effects of the opioid 

receptor agonists alone and in combination with LY235959 are shown in Figure 2.3. Each 

drug mixture produced dose-dependent increases in antinociception. Addition of LY235959 

produced leftward shifts in the dose-effect curves for each of the opioid receptor agonists, 

and the magnitude of shift was correlated with the proportion of LY235959 in the mixture. 

Graphical analysis of these drug combinations indicates that each mixture with a relatively 

lower proportion of LY235959 to morphine (i.e., 1.3:1 LY235959/morphine), buprenorphine 

(i.e., 18:1 LY235959/buprenorphine), or butorphanol (i.e., 15:1 LY235959/butorphanol) 

produced supra-additive effects, while the effects of the LY235959/nalbuphine mixture was 

additive. Mixtures with an intermediate or higher proportion of LY235959 relative to all four 

of the opioid receptor agonists examined also produced supra-additive effects, as these ED50 

values fell to the left of the line of additivity. Statistical comparison determined that the 

experimentally determined ED50 values (Zmix) for these mixtures were less than the predicted 

additive ED50 values (Zadd) (Table 2.2). 

Tables 2.3, 2.4, and 2.5 show the dose ratios obtained in the assay of schedule-controlled 

responding, the dose ratios obtained in the assay of thermal nociception, and the ratios 

between these assays for each LY235959/opioid agonist mixture. In the assay of schedule-

controlled responding, the addition of the lesser proportion LY23959 to morphine, 

buprenorphine and butorphanol produced rightward shifts in the opioid dose curves relative 
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to the opioid alone. Increasing proportions of LY235959 in the mixture of these drugs 

produced proportion-dependent leftward shifts in the opioid dose-effect curves. The addition 

of LY235959 to nalbuphine produced leftward shifts in the nalbuphine dose-effect curve at 

all proportions in a proportion-dependent manner. In the assay of thermal nociception, the 

addition of LY235959 to the mixture of each opioid agonist produced leftward shifts in the 

opioid dose-effect curves. For each drug tested, the dose-effect curves were shifted in a 

proportion-dependent manner with the exception of morphine and butorphanol, where the 

intermediate proportion of morphine was shifted the least relative to the LY235959/morpine 

mixtures and the intermediate proportion of butorphanol was shifted to the greatest extent 

relative to the LY235959/butorphanol mixtures.  

Assay ratios were determined as a measure of the degree to which addition of LY235959 

shifted the opioid dose-effect curve in the assay of thermal nociception relative to the assay 

of schedule-controlled responding. The addition of LY235959 to morphine, buprenorphine, 

and butorphanol produced greater shifts in the opioid dose-effect curves in the assay of 

thermal nociception relative to the assay of schedule-controlled responding across all 

proportions. Conversely, LY235959 shifted the nalbuphine dose-effect curve to a greater 

extent in the assay of schedule-controlled responding relative to the assay of thermal 

nociception.  
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DISCUSSION 

The present study provides a quantitative assessment of the degree to which the NMDA 

antagonist LY235959 can modulate the antinociceptive and rate-decreasing effects of 

morphine, buprenorphine, butorphanol, and nalbuphine. Previous research has demonstrated 

that NMDA antagonists can increase the antinociceptive effects of morphine (Allen and 

Dykstra, 2003; Nemmani et al., 2004; Fischer et al., 2005; Grisel et al., 2005). Although the 

interactive effects of morphine and NMDA receptor antagonists have been investigated in 

various antinociceptive measures, the first purpose of the current study was to assess these 

interactions using a formally quantitative approach. The quantitative assessment of behavior 

using dose-addition analysis was used to distinguish interactive effects of morphine and 

LY235959 that were additive from effects that were infra-additive or supra-additive. 

A second purpose was to determine if NMDA/opioid interactions extend to another 

behavioral endpoint. Specifically, the effects of NMDA/opioid mixtures unrelated to 

antinociception can be addressed systematically by, for example, comparing doses required 

to produce antinociception to doses that eliminate food maintained responding. Therefore, an 

assay of schedule-controlled responding was used to determine the selectivity of the drug 

combinations to produce antinociceptive effects vs. nonspecific effects.  

A third purpose of the present study was to extend these findings to opioids with lower 

efficacy that vary in pharmacological selectivity. Behavioral evidence with opioid 

antagonists suggest the rate-decreasing and antinociceptive effects of the drugs selected for 

analysis in the current study are mediated through actions at opioid receptors (e.g. 

Zimmerman et al., 1987; Pitts et al., 1996). Furthermore, similar studies have demonstrated 

differences in the relative efficacies between these opioid receptor agonists (Zimmerman et 
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al., 1987; Adams et al., 1990; Walker et al., 1998). In vitro studies confirm these findings, 

suggesting that buprenorphine, butorphanol, and nalbuphine are lower in efficacy relative to 

morphine (Chen et al., 1992; Toll, 1995; Emmerson et al., 1996). 

In the current study, three different proportions of LY235959 to each opioid agonist were 

studied as it has been suggested that deviation from additivity depends on the relative 

proportions of the drugs under study (Gessner and Cabana, 1970; Tallarida, 2000). In 

agreement with these findings, the nature of the LY235959/opioid interactions in the assay of 

schedule-controlled responding was dependent on the proportion of LY235959 in each 

mixture. For example, the LY235959/morphine mixture with the higher proportion of 

LY235959 produced additive effects in this assay, whereas LY235959/morphine mixtures 

with a relatively lower proportion of LY235959 produced infra-additive effects. Similar to 

LY235959/morphine mixtures, the effects of LY235959/buprenorphine mixtures were either 

additive or infra-additive, depending on the proportions of each of the drugs. 

In addition to the relative proportions of drugs in a mixture, the effect of an interaction of 

two drugs may depend on the experimental endpoint under study (Stevenson et al., 2003, 

2005). In agreement with these findings, LY235959 produced a supra-additive interaction 

with each of the opioids, regardless of efficacy, in the assay of thermal nociception. These 

findings agree with data obtained in squirrel monkeys (Allen et al., 2003), suggesting 

efficacy is not an important determinant of interactions between NMDA and opioid receptors 

on the endpoint of antinociception. 

If the mechanism of action of each of the drugs in a mixture is mediated through different 

receptors, the detection of synergism suggests an interaction between their receptor mediated 

signals (Tallarida, 2000). In the current study, LY235959 and each of the low-efficacy 



   

 29 

opioids produced supra-additive effects in the assay of thermal nociception. Previous 

research has suggested a model of NMDA receptor activation contributing to neural and 

behavioral plasticity that may underlie the alterations in the antinociceptive effectiveness of 

morphine. According to this model, administration of morphine activates NMDA receptors 

through intracellular mechanisms, increasing intracellular calcium levels, leading to an 

increase in protein kinase C and subsequent reduction in the sensitivity of µ-opioid receptors 

(Mao et al., 1995). The current study suggests that similar receptor mediated interactions may 

occur with opioids of lower efficacy. 

The present study demonstrates that studying drug interactions across a range of relative 

proportions and across experimental endpoints can reveal characteristics of these interactions 

that may have clinical potential. For example, in the assay of schedule-controlled responding, 

the LY235959/buprenorphine mixture with the lowest proportion of LY235959 produced 

sub-additive effects in the assay of schedule-controlled responding while producing supra-

additive effects in the assay of thermal nociception. This LY235959/buprenorphine mixture 

resulted in a favorable ED50 ratio across experimental endpoints confirming a greater 

increase in buprenorphine’s antinociceptive effects relative to its rate-decreasing effects. This 

finding was similar to LY235959/morphine mixtures, and suggests that LY235959 may 

specifically increase the antinociceptive properties of these drugs relative to their nonspecific 

effects. 

Drugs such as buprenorphine, butorphanol and nalbuphine have a lower potential for 

abuse and exert less side effects relative to morphine (Hoskin and Hanks, 1991; Preston and 

Jasinski, 1991), however they also are less effective, at least in animal models of 

antinociception (Dykstra 1990; Walker, et al. 1993; Morgan, et al. 1999). If NMDA 
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antagonists potentiate the antinociceptive effects of low-efficacy opioids without increasing 

opioid-induced side effects, combination treatment might be useful for the management of 

various pain states. Therefore, manipulation of pharmacological selectivity and relative 

concentrations of low-efficacy opioids in a drug cocktail may enhance clinical utility. Further 

characterization of NMDA antagonist/opioid agonist interactions are necessary to determine 

their interactive effects on other behavioral endpoints (such as respiratory depression and 

self-administration) and to determine if the effects of low-efficacy opioids are modulated by 

an NMDA antagonist other than LY235959. 
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Table 2.1 Predicted additive ED50 values (Zadd) and experimentally determined ED50 values 

(Zmix) of mixtures of LY235959 administered in combination with opioid agonists in the 

assay of schedule-controlled responding. 

*, Zmix significantly different from Zadd (p < .05). 

 

Drug Mixture     Zadd (± 95% CL)   Zmix (± 95% CL) 

LY235959 + Morphine       

 1.3:1 LY235959/Morphine  2.2 (1.7-3.0)   4.5 (3.3-6.5)* 

 3.9:1 LY235959/Morphine  3.1 (2.4-4.0)   5.1 (4.2-6.2)* 

 12:1 LY235959/Morphine  3.9 (2.9-5.1)   3.7 (2.7-5.1) 

LY235959 + Buprenorphine 

 18:1 LY235959/Buprenorphine  1.5 (0.98-2.3)   2.8 (2.2-3.4)* 

 54:1 LY235959/Buprenorphine  2.9 (1.9-4.4)   3.1 (2.2-4.3) 

 160:1 LY235959/Buprenorphine  4.2 (2.7-6.5)   5.5 (4.1-7.2) 

LY235959 + Butorphanol 

 15:1 LY235959/Butorphanol  1.9 (1.1-3.3)   2.8 (1.7-4.5) 

 45:1 LY235959/Butorphanol  3.5 (2.0-6.1)   2.8 (1.4-5.8) 

 140:1 LY235959/Butorphanol  5.1 (2.9-9.0)   1.9 (1.0-3.6)* 

LY235959 + Nalbuphine 

 0.46:1 LY235959/Nalbuphine  4.9 (2.2-11)   1.8 (0.91-3.6) 

 1.4:1 LY235959/Nalbuphine  5.7 (3.3-9.8)   1.4 (0.80-2.7)* 

 4.1:1 LY235959/Nalbuphine  5.9 (4.3-8.3)   0.67 (0.099-4.5)* 
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Table 2.2 Predicted additive ED50 values (Zadd) and experimentally determined ED50 

values (Zmix) of mixtures of LY235959 administered in combination with opioid 

agonists in the assay of thermal nociception. 

*, Zmix significantly different from Zadd (p < .05). 

 

Drug Mixture     Zadd (± 95% CL)   Zmix (± 95% CL) 

LY235959 + Morphine       

 1.3:1 LY235959/Morphine  7.7 (5.0-12)   1.4 (0.43-4.5)* 

 3.9:1 LY235959/Morphine  16 (11-25)   5.5 (3.4-8.8)* 

 12:1 LY235959/Morphine  42 (28-64)   5.7 (2.6-13)* 

LY235959 + Buprenorphine 

 18:1 LY235959/Buprenorphine  4.7 (4.0-5.6)   1.5 (1.2-1.9)* 

 54:1 LY235959/Buprenorphine  14 (11-16)   2.9 (1.2-7.0)* 

 160:1 LY235959/Buprenorphine  40 (34-48)   5.5 (3.4-8.9)* 

LY235959 + Butorphanol 

 15:1 LY235959/Butorphanol  1.9 (0.96-3.8)   0.34 (0.12-1.0)* 

 45:1 LY235959/Butorphanol  5.5 (2.8-11)   0.63 (0.24-1.7)* 

 140:1 LY235959/Butorphanol  16 (8.2-32)   1.3 (0.46-3.5)* 

LY235959 + Nalbuphine 

 0.46:1 LY235959/Nalbuphine  4.8 (2.7-8.4)   4.3 (2.6-6.9) 

 1.4:1 LY235959/Nalbuphine  7.8 (4.4-14)   2.8 (1.1-7.1)* 

 4.1:1 LY235959/Nalbuphine  17 (9.5-29)   4.6 (2.8-7.4)* 
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Table 2.3 ED50 values and dose ratios of opioids alone and in mixtures with LY235959 in 

the assay of schedule-controlled responding. 

*, Significantly different from opioid alone 

 

Drug Mixture     ED50 (± 95% CL)  Dose Ratio 

Morphine Alone    1.4 (0.97-1.9)  

 1.3:1 LY235959/Morphine  2.4 (1.8-3.4)   0.58 

 3.9:1 LY235959/Morphine  1.1 (0.73-1.7)   1.3 

 12:1 LY235959/Morphine  0.31 (0.24-0.42)*  4.5 

Buprenorphine Alone    0.11 (0.088-0.15) 

 18:1 LY235959/Buprenorphine  0.15 (0.11-0.19)  0.73 

 54:1 LY235959/Buprenorphine  0.061 (0.032-0.12)  1.8 

 160:1 LY235959/Buprenorphine  0.035 (0.024-0.52)  3.1 

Butorphanol Alone    0.15 (0.088-0.24) 

 15:1 LY235959/Butorphanol  0.16 (0.096-0.28)  0.94 

 45:1 LY235959/Butorphanol  0.080 (0.066-0.10)  1.9 

 140:1 LY235959/Butorphanol  0.018 (0.013-0.025)*  8.3 

Nalbuphine Alone    4.2 (1.6-11) 

 0.46:1 LY235959/Nalbuphine  2.2 (0.75-6.2)   1.9 

 0.46:1 LY235959/Nalbuphine  0.65 (0.38-1.1)*  6.5 

 1.4:1 LY235959/Nalbuphine  0.14 (0.035-0.59)*  30 
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Table 2.4 ED50 values and dose ratios of opioids alone and in mixtures with LY235959 in 

the assay of thermal nociception. 

*, Significantly different from opioid alone 

 

Drug Mixture     ED50 (± 95% CL)  Dose Ratio 

Morphine Alone    3.5 (2.3-5.1)  

 1.3:1 LY235959/Morphine  0.87 (0.51-1.5)*  4.0 

 3.9:1 LY235959/Morphine  1.2 (0.82-1.7)*  2.9 

 12:1 LY235959/Morphine  0.48 (0.20-1.2)*  7.3 

Buprenorphine Alone    0.25 (0.21-0.31) 

 18:1 LY235959/Buprenorphine  0.082 (0.067-0.10)*  3.0 

 54:1 LY235959/Buprenorphine  0.070 (0.053-0.091)*  3.6 

 160:1 LY235959/Buprenorphine  0.038 (0.021-0.070)*  6.6 

Butorphanol Alone    0.12 (0.078-0.19) 

 15:1 LY235959/Butorphanol  0.034 (0.022-0.053)*  3.5 

 45:1 LY235959/Butorphanol  0.0086 (0.0047-0.016)* 14 

 140:1 LY235959/Butorphanol  0.012 (0.0057-0.026)* 10 

Nalbuphine Alone    3.4 (2.1-5.5) 

 0.46:1 LY235959/Nalbuphine  2.5 (1.8-3.6)   1.4 

 0.46:1 LY235959/Nalbuphine  1.5 (1.1-2.0)*   2.3 

 1.4:1 LY235959/Nalbuphine  1.1 (0.47-2.5)   3.1 
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Table 2.5 Assay ratios between the assays of schedule-controlled responding and thermal 

nociception. Assay ratios were defined for a LY235959/opioid mixture as [Dose Ratio 

(thermal nociception)] ÷ [Dose Ratio (schedule-controlled responding)]. 

 

Drug Mixture     Assay Ratio   

LY235959 + Morphine       

 1.3:1 LY235959/Morphine  6.9    

 3.9:1 LY235959/Morphine  2.2    

 12:1 LY235959/Morphine  1.6    

LY235959 + Buprenorphine 

 18:1 LY235959/Buprenorphine  4.1    

 54:1 LY235959/Buprenorphine  2.0    

 160:1 LY235959/Buprenorphine  2.1    

LY235959 + Butorphanol 

 15:1 LY235959/Butorphanol  3.7 

 45:1 LY235959/Butorphanol  7.4 

 140:1 LY235959/Butorphanol  1.2    

LY235959 + Nalbuphine 

 0.46:1 LY235959/Nalbuphine  0.74    

 0.46:1 LY235959/Nalbuphine  0.35    

 1.4:1 LY235959/Nalbuphine  0.10    
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Figure 2.1 Morphine, buprenorphine, butorphanol, nalbuphine, and LY235959 in the assay 

of schedule-controlled responding (left) and in the assay of thermal nociception (right). 

Abscissae, dose of drug in mg/kg. Ordinate, response rate as percentage of control rate of 

responding (left) or antinociception as percent maximum possible effect (right). 
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Figure 2.2 Morphine, buprenorphine, butorphanol, and nalbuphine alone and in combination 

with LY235959 in the assay of schedule-controlled responding. Top, dose-effect curves for 

opioid agonists alone and in combination with LY235959. Abscissae, dose of opioid in 

mg/kg. Ordinate, response rate as percentage of control. Bottom, isobolograms for 

LY235959/opioid mixtures. Abscissae, ED50 value for opioid in mg/kg. Ordinate, ED50 value 

for LY235959 in mg/kg. 

*, Significantly different from additivity. 
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Figure 2.3 Morphine, buprenorphine, butorphanol, and nalbuphine alone and in combination 

with LY235959 in the assay of thermal nociception. Top, dose-effect curves for opioid 

agonists alone and in combination with LY235959. Abscissae, dose of opioid in mg/kg. 

Ordinate, antinociception as percent maximum possible effect. Bottom, isobolograms for 

LY235959/opioid mixtures. Abscissae, ED50 value for opioid in mg/kg. Ordinate, ED50 value 

for LY235959 in mg/kg. 

*, Significantly different from additivity. 
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CHAPTER 3 

EXPERIMENT 2: MORPHINE IN COMBINATION WITH METABOTROPIC 

GLUTAMATE RECEPTOR ANTAGONISTS ON SCHEDULE-CONTROLLED 

RESPONDING AND THERMAL NOCICEPTION 

 

INTRODUCTION 

Glutamatergic neurotransmission works by activating both ionotropic (iGlu) and G-

protein-coupled metabotropic (mGlu) receptor subtypes, and is thought to play a modulatory 

role in the behavioral effects of morphine. To date, the most thoroughly investigated system 

of the glutamate receptor subtypes is the ionotropic N-Methyl-D-Aspartate (NMDA) 

receptor. Several lines of evidence suggest that pharmacological antagonism of the NMDA 

receptor blocks morphine-induced conditioned place preference (Papp et al., 2002), 

sensitization (Jeziorski et al., 1994), and physical dependence (Trujillo and Akil, 1991). 

NMDA receptor antagonists also attenuate the development of morphine tolerance (Trujillo 

and Akil, 1991; Kozela et al., 2003) and increase the acute antinociceptive effects of 

morphine (Nemmani et al. 2004; Fischer et al., 2005).  

Pre-clinical data demonstrating that NMDA receptor antagonists increase the acute 

antinociceptive effects of morphine have led to the development of NMDA 

antagonist/morphine combinations for clinical use, albeit with mixed results (Bossard et al., 

2002; Galer et al., 2005). The rationale for combination therapy is that NMDA 

antagonist/morphine mixtures may decrease morphine-induced side effects since increased 
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analgesia would be produced at a lower morphine dose. However, one disadvantage of this 

approach is the undesirable side effects associated with some NMDA antagonists (e.g. 

nausea, fatigue and dizziness, psychomimetic effects), most likely due to the ubiquitous 

involvement of NMDA receptors in excitatory neurotransmission throughout the central 

nervous system.  

Interestingly, activation of postsynaptic mGlu receptors results in the potentiation of 

NMDA-mediated responses in dorsal horn neurons (Cerne and Randic, 1992; Kelso et al., 

1992; Skeberdis et al., 2001), a region implicated in acute nociceptive neurotransmission. 

This potentiation likely modulates NMDA-mediated increases in morphine antinociception. 

Therefore, drugs that have antagonist action at postsynaptic mGlu receptors may provide an 

alternative to NMDA receptor antagonists in clinically therapeutic drug mixtures for the 

treatment of pain. 

Recently, selective and bioavailable mGlu receptor antagonists have been synthesized. 

The present study was designed to assess the acute interactive effects of mGlu receptor 

antagonists and morphine on two behavioral endpoints. To assess the extent to which mGlu 

receptor antagonists selectively enhance morphine-induced antinociception, the rate-

decreasing effects of mGlu antagonist/morphine mixtures were first examined in an assay of 

schedule-controlled responding maintained by liquid food. Second, the antinociceptive 

effects of mGlu antagonist/morphine mixtures were examined in an assay of thermal 

nociception. The interactive effects of mGlu antagonist/morphine mixtures were assessed 

using both graphical (isobolographic analysis; Loewe, 1953) and statistical (dose-addition 

analysis; Tallarida, 2000) approaches to distinguish effects that are additive from effects that 

are infra-additive or supra-additive. 
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To date, eight mGlu receptor subtypes have been identified, and have been divided into 

three groups: group I (mGlu1 and mGlu5), group II (mGlu2 and mGlu3), and group III 

(mGlu4, mGlu6, mGlu7, and mGlu8). The present study investigated the interactive effects 

of morphine in combination with antagonists selective for group I and group II mGlu 

receptors, as these receptor subtypes have been previously implicated in the behavioral 

effects of morphine on other endpoints (Popik and Wrobel, 2002; Kozela et al., 2003; Smith 

et al., 2004). The group I mGlu receptor antagonists used were (3,4-Dihydro-2H-pyrano[2,3-

b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone (JNJ16259685) and 2-Methyl-6-

(phenylethynyl)pyridine hydrochloride (MPEP) which display selectivity for mGlu1 and 

mGlu5 receptors, respectively (Gasparini et al., 1999; Lavreysen et al., 2004). The interactive 

effects of morphine and (2S)-2-Amino-2-[(1S,2S-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) 

propanoic acid (LY341495), a group II mGlu receptor antagonist (Kingston et al., 1998), 

were also assessed. 
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METHODS 

Animals. Adult male C57BL/6 mice weighing between 22 and 30 g were purchased from 

Jackson Labs (Raleigh, NC). Upon arrival, mice were group housed in standard plexiglas 

cages in a colony room maintained on a 12-h light/dark cycle (lights on at 7:00 PM). All 

mice had continuous access to food and water throughout the study and were habituated to 

the colony room for 2 weeks prior to any experimental manipulation. Mice were also 

exposed to the testing environment and handled for two days prior to initiation of an 

experiment. All testing procedures were conducted between 11:00 AM and 3:00 PM. 

Animals used in this study were cared for in accordance with the guidelines of the 

Institutional Animal Care and Use Committee of the University of North Carolina at Chapel 

Hill and all testing adhered to the “Guide for the Care and Use of Laboratory Animals” 

(National Research Council, National Academy of Sciences, Washington, D.C., 1996). 

Drugs. Morphine sulfate was provided by NIDA (Bethesda, MD). JNJ16259685, MPEP, 

and LY341495 were purchased from Tocris (Ellisville, MO). Morphine and LY341495 were 

dissolved in 0.9% phosphate buffered saline, and the pH of LY341495 solutions was adjusted 

to 7.0 with NaOH. JNJ16259685 and MPEP were dissolved in 45% (w/v) 2-hydroxypropyl-

β-cyclodextrin. All drugs were injected i.p. at a volume of 0.1 ml/10 g. 

Schedule-Controlled Responding. Schedule-controlled responding was assessed in an 

experimental operant chamber (approximately 14 cm×14 cm×14 cm) equipped with a house 

light, ventilator fan, and two nosepoke holes (1.2 cm diameter) that were located on either 

side of a liquid dipper. The operant chamber was controlled by a MED-PC interface and an 

IBM compatible computer programmed with MED Associates software (MED Associates, 

St. Albans, VT). 
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Mice were trained under a multiple-cycle procedure conducted 5 days each week. Each 

training cycle consisted of a 25-min pretreatment period followed by a 5-min response 

period. During the pretreatment period, stimulus lights were not illuminated and responding 

had no scheduled consequences. During the response period, the right nosepoke was 

illuminated and mice could obtain up to 10 liquid food reinforcers (8 s access to 8 µl 

Ensure
®

) under a fixed ratio 3 schedule of food presentation. If all 10 reinforcers were earned 

before 5 min had elapsed, the light was turned off, and responding had no scheduled 

consequences for the remainder of the response period. The left nosepoke was inactive, and 

responding at this hole had no scheduled consequences. Training sessions consisted of 5 

consecutive cycles, and testing began once response rates were stable throughout the session.  

Test sessions replaced the last training session of each week if responding was stable 

throughout the preceding training sessions. For dose-effect curve determinations, test 

sessions were identical to training sessions except that cumulative doses of drug mixtures 

were administered i.p. at the start of each cycle (i.e., 30-min inter-injection interval), 

increasing in one-quarter or one-half log unit increments. For time course determinations, a 

single dose of a drug was administered i.p. at the start of the session, and 5-min response 

periods identical to those described above began at 10, 20, 40, 80, 160, and 240 min after the 

injection. Data are expressed as a percentage of control responding using the average rate of 

responding from the previous day as the control value (average of 5 cycles). 

Thermal Nociception. Antinociception was assessed using a tail-flick analgesia meter 

(Columbus Instruments, Columbus, OH). For this procedure, the stimulus intensity was 

adjusted to provide baseline latencies between 3-5 s. The antinociceptive response was 

evaluated by recording the latency to flick the tail from the light source. Responses were 
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measured using a stopwatch to the nearest 0.1 s. A predetermined cutoff time of 10 s was 

defined as a maximal response and was employed to prevent tissue damage. Immediately 

following the termination of a trial, mice were removed from the apparatus and returned to 

the homecage. The latency to respond to the light source was measured twice at each 

determination, at least 30 s apart, with the light source focused 3 and 5 cm from the tip of the 

tail. These data were averaged to yield one value. Following baseline latency measurements, 

multiple 30 min cycles were conducted and drug mixtures were administered cumulatively. 

During dose-effect determinations, cumulative doses of drug mixtures were administered i.p. 

at the start of each cycle (i.e., 30-min inter injection interval), increasing in one-quarter or 

one-half log unit increments and antinociceptive measurements were determined during the 

last minute of each cycle. For time course determinations, a single injection of a drug or drug 

mixture was administered i.p., and antinociceptive measurements were assessed at 15, 30, 45, 

and 60 min. Latencies are expressed as a percentage of the maximal possible effect (%MPE) 

using the following formula: %MPE = [postdrug latency (seconds) - baseline latency 

(seconds)] / [cutoff time (10 s) - baseline latency (seconds)]. 

Dose-effect analysis. The dose of each drug mixture required to produce a 50% decrease 

in schedule-controlled responding or 50% maximum antinociceptive effect in the assay of 

thermal nociception was derived using log-linear interpolation by linear regression. 

Individual ED50 values were converted to their log values for calculation of means and 95% 

confidence limits and then converted back to linear values for presentation. 

Isobolographic analysis. The effects of mGlu antagonist/morphine mixtures were 

assessed graphically with the use of isobolograms. In the present study, isobolograms were 

constructed by connecting the ED50 of morphine alone plotted on the abscissa with the ED50 
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of the mGlu antagonist alone plotted on the ordinate to obtain an additivity line. The 

additivity line contains the loci of dose pairs that would produce an ED50 equal to the ED50 of 

morphine or an mGlu receptor antagonist alone if the combination is additive. Dose pairs that 

fall below the additivity line suggest an ED50 was reached with lesser quantities of the drugs, 

suggestive of supra-additivity. In contrast, experimental points representing dose pairs that 

fall above the line are suggestive of infra-additivity. 

Isobolograms of dose pairs (a,b) were constructed based on the relative efficacy of 

morphine and an mGlu receptor antagonist. Morphine was fully efficacious in both assays, 

and was used as the reference drug. Therefore, the shape of the isobologram is dependent on 

the efficacy of the mGlu receptor antagonist under study from the equation 
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where B is the ED50 for morphine alone, Amax is related to the efficacy of the mGlu 

antagonist, and Ac is the dose of mGlu antagonist that attains half of Amax (Grabovsky and 

Tallarida, 2004). For the assay of schedule-controlled responding, in which all drugs were 

fully efficacious, the equation describing the isobologram is reduced to  
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For the assay of thermal nociception, the mGlu antagonists JNJ16259685, MPEP, and 

LY341495 were ineffective when administered alone. Therefore, as the value of Amax 

approaches 0, the equation describing this isobologram reduces to 
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Dose-addition analysis. Drug interactions were statistically analyzed by comparing the 

experimentally determined ED50 values for each mixture (Zmix) with predicted additive ED50 

values (Zadd) as described by Tallarida (2000). Zmix was defined as the total drug dose (i.e., 

dose morphine + dose mGlu receptor antagonist) that produced a 50% decrease in rates of 

responding (schedule-controlled responding) or a 50% maximum antinociceptive effect 

(thermal nociception).  

For the assay of schedule-controlled responding, in which all drugs were equieffective, 

Zadd values were calculated individually for each mouse based on the ED50 values of each 

drug from the equation 

BffAZ add )1( −+=  

where A is the ED50 for the mGlu receptor antagonist alone and B is the ED50 for morphine 

alone, and f is related to the proportion of the mGlu receptor antagonist in the mixture. The 

proportion of mGlu receptor antagonist (ρA) in each mixture is determined by the equation  
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and the proportion of morphine (ρB) in each mixture is determined by the equation 
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For the assay of thermal nociception, the mGlu antagonists JNJ16259685, MPEP, and 

LY341495 were ineffective when administered alone, and the hypothesis of additivity 

predicts that these drugs would not contribute to morphine’s effects when administered in 
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combination (Tallarida, 2000). Therefore, Zadd is calculated based on the proportion of 

morphine in each particular mixture from the equation  

B

add

B
Z

ρ
= . 

Mean experimentally determined ED50 values (Zmix) and predicted additive ED50 values 

(Zadd) for each mixture were compared with a t-test. 
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RESULTS 

Schedule-controlled responding.  

Morphine and mGlu antagonists alone. Figure 3.1 (top panel) shows that morphine, 

JNJ16259685, MPEP, and LY341495 produced dose-dependent decreases in the rate of 

responding. A statistical test for parallelism revealed that the morphine dose-effect curve was 

parallel to the dose-effect curves for JNJ16259685, MPEP, and LY341495 (p < .05). The 

mean ED50 values for each drug and the relative potencies for each mGlu antagonist in 

comparison to morphine are shown in Table 3.1. These relative potency values were used to 

determine relative proportions of the compounds used in subsequent studies assessing mGlu 

antagonist/morphine mixtures. 

To confirm a similar duration of action, the rate-decreasing effects of morphine, 

JNJ16259685, MPEP, and LY341495 were assessed over time. As shown in Figure 3.2, each 

drug produced similar decreases in response rates (> 50% of control) for 40 min. Rates of 

responding gradually returned to near control rates at 160 min for morphine, JNJ16259685, 

and MPEP (91%, 88%, and 86% of control, respectively), and 240 min for LY341495 (81% 

of control). These data suggest that morphine, JNJ16259685, MPEP, and LY341495 produce 

similar peak effects and duration of action. 

Morphine and group I mGlu antagonist mixtures. The rate-decreasing effects of 

morphine alone and in combination with JNJ16259685 and MPEP are shown in Figure 3.3. 

Each drug mixture produced dose-dependent decreases in response rates. Addition of 

JNJ16259685 produced leftward shifts in the morphine dose-effect curve, and the graphical 

analysis of these drug combinations is shown in Figure 3.3. Mixtures of JNJ16259685 and 

morphine produced additive effects across a range of proportions as these ED50 values fell 
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close to the line of additivity. Statistical comparison of experimentally determined ED50 

values (Zmix) and predicted additive ED50 values (Zadd) confirmed these findings (i.e., Zadd = 

Zmix) (Table 3.2). 

Addition of MPEP to morphine also produced leftward shifts in the morphine dose-effect 

curve and the magnitude of shift was correlated with the proportion of MPEP in the mixture. 

Figure 3.3 also shows the graphical analysis of these drug combinations. Mixtures of MPEP 

and morphine produced additive effects across a range of proportions as these ED50 values 

fell close to the line of additivity. Statistical comparison of experimentally determined ED50 

values (Zmix) and predicted additive ED50 values (Zadd) confirmed these findings (i.e., Zadd = 

Zmix) (Table 3.2). 

Morphine and group II mGlu antagonist mixtures. The rate-decreasing effects of 

morphine alone and in combination with LY341495 are shown in Figure 3.3. Each drug 

mixture produced dose-dependent decreases in response rates and addition of LY341495 to 

morphine produced leftward shifts in the morphine dose-effect curve. The magnitude of this 

shift was correlated with the proportion of LY341495 in the mixture. Figure 3.3 also shows 

the graphical analysis of these drug combinations. Mixtures of LY341495 and morphine 

produced additive effects across a range of proportions as these ED50 values fell close to the 

line of additivity. Statistical comparison of experimentally determined ED50 values (Zmix) and 

predicted additive ED50 values (Zadd) confirmed these findings (i.e., Zadd = Zmix) (Table 3.2). 

Thermal nociception.  

Morphine and mGlu antagonists alone. Figure 3.1 (bottom panel) shows the 

antinociceptive effects of morphine, JNJ16259685, MPEP, and LY341495. Morphine 

produced dose-dependent increases in latency to respond to the tail-flick apparatus, and this 



   

 52 

ED50 value is shown in Table 3.1. JNJ16259685, MPEP, and LY341495 were without effect 

in this assay, therefore the relative potencies determined in the assay of schedule-controlled 

responding were used to determine the relative proportions of the compounds in each 

mixture. 

Morphine and group I mGlu antagonist mixtures. The antinociceptive effects of 

morphine alone and in combination with JNJ16259685 and MPEP are shown in Figure 3.4. 

Each drug mixture produced dose-dependent increases in antinociception, and addition of 

JNJ16259685 produced leftward shifts in the morphine dose-effect curve. Graphical analysis 

of these drug combinations indicates that each JNJ16259685/morphine mixture produced 

supra-additive effects, as these ED50 values fell to the left of the line of additivity. Statistical 

comparison determined that the experimentally determined ED50 values (Zmix) for these 

mixtures were significantly less than the predicted additive ED50 values (Zadd) (Table 3.3). 

Addition of MPEP did not significantly shift the morphine dose-effect curve, as the ED50 

values for MPEP/morphine mixtures were similar to the ED50 value of morphine alone. 

Graphical analysis of these drug combinations indicates that mixtures of MPEP and 

morphine produced additive effects across a range of proportions as these ED50 values fell 

close to the line of additivity. Statistical comparison of experimentally determined ED50 

values (Zmix) and predicted additive ED50 values (Zadd) confirmed these findings (i.e., Zadd = 

Zmix) (Table 3.3). 

The antinociceptive effects of morphine alone and in combination with JNJ16259685 and 

MPEP assessed over time are shown in Figure 3.5 (top panel). Morphine alone produced a 

moderate antinociceptive effect, with peak effects reached at 30 min post injection (13% 

maximum possible effect). Addition of JNJ16259685 produced a significant increase (p < 
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.05) in morphine-induced antinociception with peak effects reached at 45 min post injection 

(47% maximum possible effect). Coadministration of morphine and MPEP did not produce 

an antinociceptive effect that was significantly different from morphine alone at any time 

point. 

Morphine and group II mGlu antagonist mixtures. The antinociceptive effects of 

morphine alone and in combination with LY341495 are shown in Figure 3.4. Each drug 

mixture produced dose-dependent increases in antinociception, and addition of LY341495 

produced leftward shifts in the morphine dose-effect curve. The magnitudes of these shifts 

were correlated with the proportion of LY341495 in the mixture. Graphical analysis of these 

drug combinations indicates that the LY341495/morphine mixture with a lower proportion of 

LY341495 (i.e., 0.31:1 LY341495/morphine) produced additive effects, as these ED50 values 

fell close to line of additivity. In contrast, mixtures with a higher proportion of LY341495 

(i.e., 0.93:1 and 2.8:1 LY341495/morphine) produced supra-additive effects, as these ED50 

values fell to the left of the line of additivity. Statistical comparison of experimentally 

determined ED50 values (Zmix) and predicted additive ED50 values (Zadd) confirmed these 

findings (i.e., Zadd = Zmix or Zadd > Zmix) (Table 3.3). 

The antinociceptive effects of morphine alone and in combination with LY341495 

assessed over time are shown in Figure 3.5 (bottom panel). Morphine produced a moderate 

antinociceptive effect, with peak effects reached at 30 min post injection (13% maximum 

possible effect). Addition of LY341495 produced a significant increase (p < .05) in 

morphine-induced antinociception at 15, 30, and 45 min after drug administration. The peak 

effects of the LY341495/morphine mixture was reached at 30 min post injection (69% 

maximum possible effect).  
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DISCUSSION 

The purpose of the present study was to assess the interactive effects of morphine and 

antagonists selective for group I and group II mGlu receptors on schedule-controlled 

responding and thermal nociception. The main finding from these experiments is that mGlu1 

receptor antagonist/morphine mixtures and mGlu2/3 receptor antagonist/morphine mixtures 

produce a supra-additive effect on thermal nociception, whereas mGlu5 receptor 

antagonist/morphine mixtures produce an additive effect. Each mGlu antagonist/morphine 

mixture, however, produced an additive effect on schedule-controlled responding. Taken 

together, these data suggest that the interactive effects of mGlu antagonist/morphine mixtures 

depend on the mGlu receptor antagonist under study and the experimental endpoint.  

Morphine and mGlu receptor antagonists administered alone. 

In the assay of schedule-controlled responding, the µ-opioid receptor agonist morphine, 

the mGlu1 receptor antagonist JNJ16259685, the mGlu5 receptor antagonist MPEP, and the 

mGlu2/3 receptor antagonist LY341495 dose-dependently decreased rates of responding. In 

addition, the decreases in operant responding are time-dependent, with peak effects occurring 

at 10-40 min. Previous research suggests that MPEP also reduces operant responding at doses 

similar to those used in the present experiment (Varty et al., 2005), whereas the response rate 

altering effects of JNJ16259685 and LY341495 have not been assessed. 

Previous research suggests that mGlu receptor antagonists produce antinociceptive 

effects in animal models of chronic pain (cf. Neugebauer, 2002). Reports on the acute 

antinociceptive effects of mGlu antagonists in assays of thermal nociception are limited, 

although at least one report suggests that mGlu antagonists with affinity for mGlu5 receptors 

do not modulate acute nociceptive processing (Walker et al., 2001). The present study further 



   

 55 

suggests that mGlu antagonists selective for group I and group II receptor subtypes do not 

modulate acute nociceptive processing after systemic administration. 

Morphine and group I mGlu receptor antagonist interactions. 

The findings from the present study suggest that mixtures containing the mGlu1 receptor 

antagonist JNJ16259685 and morphine produce a supra-additive antinociceptive effect, while 

producing an additive effect on schedule-controlled responding. Although the present study 

is the first to demonstrate that an mGlu1 receptor antagonist potentiates morphine-induced 

antinociception, these effects have been evaluated in rats following antisense knockdown of 

mGlu1 receptors. In this study, knockdown of mGlu1 receptors increased the effectiveness of 

morphine in an animal model of neuropathic pain (Fundytus et al., 2001). The finding from 

the present study that JNJ16259685 increased morphine’s antinociceptive effects 

corroborates this report. Taken together, these data suggest that mGlu1 receptors mediate the 

antinociceptive effects of morphine. 

In contrast to the supra-additive effect of JNJ16259685/morphine mixtures on thermal 

nociception, mixtures containing the mGlu5 antagonist MPEP and morphine produced an 

additive effect on this endpoint. This agrees with and extends a study assessing single-dose 

combinations of MPEP and morphine (Kozela et al., 2003). Taken together, these data 

suggest that the antinociceptive effects of morphine may not be modulated by mGlu5 

antagonists. 

Both mGlu1 and mGlu5 receptors are expressed postsynaptically on dorsal horn neurons 

in the spinal cord (Vidnyanszky et al., 1994; Jia et al., 1999; Alvarez et al., 2000). 

Interestingly, these mGlu receptors are physically linked to NMDA receptors in this region 

(Naisbitt et al., 1999; Tu et al., 1999). Activation of mGlu1 and mGlu5 receptors results in 



   

 56 

the potentiation of NMDA-mediated responses, through an activation of protein kinase C and 

a reduction of the voltage-dependent block of NMDA receptors by Mg
2+

 (Cerne and Randic, 

1992; Kelso et al., 1992; Skeberdis et al., 2001). Increases in morphine-induced 

antinociception after NMDA antagonist administration have been demonstrated in assays of 

acute thermal nociception (Nemmani et al. 2004; Fischer et al., 2005). Therefore, the results 

from the present study suggest that inactivation of mGlu1 receptors, but not mGlu5 receptors, 

increases morphine-induced antinociception, most likely via a NMDA-dependent 

mechanism. 

In view of the functional similarities of mGlu1 and mGlu5 receptors, the additive effects 

of MPEP/morphine mixtures on thermal nociception are surprising. Indeed, a growing body 

of experimental evidence indicates that MPEP modulates the effects of morphine on other 

endpoints (Popik and Wrobel, 2002; Kozela et al., 2003; Smith et al., 2004). Notably, as 

demonstrated in the current study, the behavioral effects of two drugs may depend on the 

experimental endpoint under study (Gessner and Cabana, 1970; Tallarida, 2000; Stevenson et 

al., 2003, 2005). In addition, these interactive effects may depend on factors including the 

relative proportion of the drugs in the mixture and the type of nociceptive assay used 

(Tallarida, 2000; Nemmani et al. 2004; Craft and Lee, 2005). Therefore, studies with 

MPEP/morphine mixtures in other proportions or in other assays of thermal nociception 

could yield results that are different from those reported here. Nevertheless, these data 

suggest that despite the functional similarities of mGlu1 and mGlu5 receptors, the manner in 

which they interact with morphine may be fundamentally different. 

Morphine and group II mGlu receptor antagonist interactions. 
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The results from this study suggest that mixtures of morphine and the mGlu2/3 receptor 

antagonist LY341495 produce supra-additive effects in an acute model of thermal 

nociception after systemic administration. This finding agrees with a recent preliminary 

report by Yoon et al. (2006), which demonstrated that a LY341495/morphine mixture 

produces a supra-additive effect in the rat formalin test after intrathecal administration. The 

present study extends these findings to an acute model of nociception and to an assay of 

schedule-controlled responding, an endpoint where additive effects were observed. 

The underlying mechanisms mediating the interactive effects of LY341495 and morphine 

in the assay of thermal nociception are not clear. Numerous reports have demonstrated that 

mGlu2/3 receptors are located presynaptically in numerous brain regions, and that drugs that 

act as agonists at these receptors decrease glutamate release and subsequent postsynaptic 

binding to both iGlu and mGlu receptor subtypes (Pin and Duvoisin, 1995). Indeed, some 

behavioral reports are consistent with this finding, suggesting that the mGlu2/3 agonist 

LY354740 attenuates behavioral signs of morphine tolerance and withdrawal in a similar 

manner as antagonists with affinity at the NMDA receptor or group I mGlu receptors 

(Klodzinska et al., 1999; Popik et al., 2000). 

The specific function of mGlu2/3 receptors in the dorsal horn of the spinal cord, a region 

thought to mediate the behavioral responses in the assay of thermal nociception, is less clear. 

Both pre- and post-synaptic mGlu2/3 receptors have been identified in the dorsal horn 

(Carlton et al., 2001) and conflicting results are often reported from both in vitro and in vivo 

preparations. For example, mGlu2/3 agonists produce both facilitation and inhibition of 

neuronal activity (Bond and Lodge, 1995; Cao et al., 1995; King and Liu, 1996). In addition, 

both agonism and antagonism of mGlu2/3 receptors decrease pain related behaviors in 
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animal models of inflammation (Jones et al., 2005; Yoon et al., 2006). These results may 

reflect the complex interaction of pre- and post-synaptic mGlu2/3 receptors in the dorsal 

horn, and make the interpretation of mGlu2/3 antagonist/morphine interactions difficult. 

Therefore, further research is necessary to elucidate the mechanisms mediating the 

interactive effects of mGlu2/3 antagonist/morphine mixtures on nociceptive behavior. 

Drug interactions across behavioral endpoints.  

Previous research suggests that interactions between two drugs may depend on the 

experimental endpoint under study (Gessner and Cabana, 1970; Tallarida, 2000; Stevenson et 

al., 2003, 2005). For example, in Experiment 1, mixtures containing the NMDA antagonist 

LY235959 and morphine produced supra-additive effects on thermal nociception and 

additive or infra-additive effects on schedule-controlled responding. Similarly, in the present 

study, mixtures of morphine and the mGlu1 antagonist JNJ16259685 and mixtures of 

morphine and the mGlu2/3 antagonist LY341495 produced supra-additive effects in the 

assay of thermal nociception, while the same drug mixtures produced additive effects in the 

assay of schedule-controlled responding.  

The behavioral selectivity of these interactions suggests that there is corresponding 

selectivity across brain regions mediating each behavior, rather than a general enhancement 

of all behavioral effects. The data from the present study suggest that it is possible to develop 

mGlu antagonist/morphine mixtures that interact in a supra-additive manner specifically at 

brain regions that mediate the targeted behavior of antinociception. Further research is 

necessary to expand the current findings across different measures of antinociception and on 

behavior maintained by other schedules of reinforcement. In addition, research assessing 

mGlu antagonist/morphine mixtures on other behavioral endpoints (e.g. respiratory 
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depression and/or drug self-administration) is necessary to predict further the clinical utility 

of these drug mixtures. 
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Table 3.1 ED50 values for morphine, JNJ16259685, MPEP, and LY341495 administered 

alone on schedule-controlled responding and thermal nociception. 

 

Assay/Drug    ED50 value (± 95% CL)  Relative potency 

Schedule-controlled responding 

 Morphine    3.0 (1.9-5.0) 

 JNJ16259685   2.6 (1.6-4.2)    0.87 

 MPEP    17 (10-28)    5.7 

 LY341495    2.8 (1.6-4.8)    0.93 

Thermal nociception       

 Morphine    5.6 (4.8-7.4) 

 JNJ16259685   not determined 

 MPEP    not determined 

 LY341495    not determined 
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Table 3.2 Predicted additive ED50 values (Zadd) and experimentally determined ED50 values 

(Zmix) of morphine and mGlu receptor antagonist mixtures in the assay of schedule-controlled 

responding. 

 

Drug Mixture     Zadd (± 95% CL)   Zmix (± 95% CL) 

JNJ16259685 + morphine       

 0.29:1 JNJ16259685/morphine  1.7 (1.3-2.3)   3.1 (1.8-5.3) 

 0.87:1 JNJ16259685/morphine  3.5 (2.3-5.3)   3.1 (2.0-4.9) 

 2.6:1 JNJ16259685/morphine  3.1 (2.7-3.6)   3.0 (2.0-4.5) 

MPEP + morphine 

 1.9:1 MPEP/morphine   4.7 (2.1-11)   6.1 (3.9-9.4) 

 5.7:1 MPEP/morphine   6.9 (3.2-15)   9.5 (6.1-15) 

 17:1 MPEP/morphine   14 (5.5-35)   13 (8.2-21) 

LY341495 + morphine 

 0.31:1 LY341495/morphine  3.4 (2.0-5.9)   3.3 (2.2-4.9) 

 0.93:1 LY341495/morphine  2.9 (1.7-5.1)   3.3 (2.2-5.0) 

 2.8:1 LY341495/morphine  2.7 (1.3-5.6)   3.1 (2.0-4.9) 



   

 62 

Table 3.3 Predicted additive ED50 values (Zadd) and experimentally determined ED50 values 

(Zmix) of morphine and mGlu receptor antagonist mixtures in the assay of thermal 

nociception. 

*, Zmix significantly different from Zadd (p < .05). 

a
, The highest dose tested (5.6 mg/kg morphine + 95.2 mg/kg MPEP) did not increase the 

latency to respond to the tail-flick apparatus to > 50% in three of eight mice. For analysis, a 

Zmix of 100.8 was assigned to these mice. 

 

Drug Mixture     Zadd (± 95% CL)  Zmix (± 95% CL) 

JNJ16259685 + morphine       

 0.29:1 JNJ16259685/morphine  8.7 (6.2-12)   3.7 (2.5-5.4)* 

 0.87:1 JNJ16259685/morphine  13 (8.9-18)   2.6 (2.1-3.2)* 

 2.6:1 JNJ16259685/morphine  24 (17-34)   6.5 (4.1-10)* 

MPEP + morphine 

 1.9:1 MPEP/morphine   17 (12-26)   13 (10-16) 

 5.7:1 MPEP/morphine   40 (27-59)   34 (25-46) 

 17:1 MPEP/morphine   110 (71-160)   > 94 (84-100)
a
 

LY341495 + morphine 

 0.31:1 LY341495/morphine  7.0 (4.7-10)   5.0 (3.2-8.0) 

 0.93:1 LY341495/morphine  10 (7.0-15)   3.6 (2.1-6.3)* 

 2.8:1 LY341495/morphine  20 (14-30)   5.4 (3.5-8.3)* 
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Figure 3.1 Morphine, JNJ16259685, MPEP, and LY341495 in the assay of schedule-

controlled responding (top) and in the assay of thermal nociception (bottom). Abscissae, dose 

of drug in mg/kg. Ordinate, response rate as percentage of control (top) or antinociception as 

percent maximum possible effect (bottom). 
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Figure 3.2 Morphine, JNJ16259685, MPEP, and LY341495 in the assay of schedule-

controlled responding as assessed over time. Abscissae, time after drug administration. 

Ordinate, response rate as percentage of control rate of responding. 
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Figure 3.3 Morphine alone and in combination with JNJ16259685, MPEP, or LY341495 in 

the assay of schedule-controlled responding. Top, dose-effect curves for morphine alone and 

in combination with JNJ16259685, MPEP, or LY341495. Abscissae, dose of morphine in 

mg/kg. Ordinate, response rate as percentage of control. Bottom, isobolograms for mGlu 

antagonist/morphine mixtures. Abscissae, ED50 value for morphine in mg/kg. Ordinate, ED50 

value for mGlu antagonist in mg/kg. 

*, Significantly different from additivity. 
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Figure 3.4 Morphine alone and in combination with JNJ16259685, MPEP, or LY341495 in 

the assay of thermal nociception. Top, dose-effect curves for morphine alone and in 

combination with JNJ16259685, MPEP, or LY341495. Abscissae, dose of morphine in 

mg/kg. Ordinate, antinociception as percent maximum possible effect. Bottom, isobolograms 

for mGlu antagonist/morphine mixtures. Abscissae, ED50 value for morphine in mg/kg. 

Ordinate, ED50 value for mGlu antagonist in mg/kg. 

*, Significantly different from additivity. 

>
, The highest dose tested (5.6 mg/kg morphine + 95.2 mg/kg MPEP) did not increase the 

latency to respond to the tail-flick apparatus to > 50% in three of eight mice. For analysis, a 

morphine ED50 of 5.6 and a MPEP ED50 of 95.2 was assigned to these mice. 
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Figure 3.4 
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Figure 3.5 Morphine alone and in combination with JNJ16259685, MPEP, or LY341495 in 

the assay of thermal nociception as assessed over time. Abscissae, time after drug 

administration. Ordinate, antinociception as percent maximum possible effect. 

*, Significantly different from morphine alone.  

 

 

 



 

 

 

CHAPTER 4 

EXPERIMENT 3: INCREASED EFFICACY OF µµµµ-OPIOID AGONIST-INDUCED 

ANTINOCICEPTION BY METABOTROPIC GLUTAMATE RECEPTOR 

ANTAGONISTS: COMPARISON WITH (-)-6-PHOSPHONOMETHYL-DECA-

HYDROISOQUINOLINE-3-CARBOXYLIC ACID 

 

INTRODUCTION 

Opioid agonists with affinity at the µ-opioid receptor are commonly used for the 

treatment of various pain states. Behavioral evidence suggests that activation of subtype-

specific glutamate receptors counteract the antinociceptive effects of µ-opioids. To date, the 

most thoroughly investigated system of these glutamate receptor subtypes is the ionotropic 

N-Methyl-D-Aspartate (NMDA) receptor. Evidence based on both pre-clinical and clinical 

studies suggest that pharmacological antagonists with affinity for the NMDA receptor 

increase the antinociceptive effects of µ-opioid receptor agonists across a range of testing 

conditions (Allen and Dykstra, 2001; Bossard et al., 2002; Nemmani et al., 2004; Fischer et 

al., 2005).  

In addition to ionotropic receptors, endogenous glutamate exerts its action through a 

family of metabotropic glutamate (mGlu) receptors that activate various intracellular second 

messenger systems through G-proteins. To date, eight receptor subtypes have been identified 

and divided into three groups based on sequence similarity, pharmacology, and signal 

transduction mechanisms. Group I mGlu receptors include mGlu1 and mGlu5, and are 
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positively coupled to phospholipase C (PLC) through Gq. Group II mGlu receptors, including 

mGlu2 and mGlu3, and Group III mGlu receptors, including mGlu4, mGlu6, mGlu7, and 

mGlu8, are negatively coupled to adenylyl cyclase (AC) through Gi/Go. 

Recently, selective and bioavailable ligands with antagonist activity at mGlu receptors 

have been synthesized. New experimental evidence suggests that mGlu receptor antagonists 

with selectivity for either mGlu1 or mGlu2/3, but not mGlu5, also increase morphine-

induced antinociception (Kozela et al., 2003; Yoon et al., 2006; results from Experiment 2). 

Although these data implicate mGlu receptors in opioid antinociception, the pharmacological 

basis of this interaction is poorly understood.  

Numerous mechanisms may account for these findings, including interactive effects at a 

number of pharmacokinetic and pharmacodynamic loci (cf. Wessinger, 1986). For example, 

mGlu receptor antagonists may alter opioid absorption, distribution, metabolism, and/or 

excretion, thereby changing the effective concentration of the opioid at the µ-opioid receptor 

(e.g. Chen et al., 2005). In addition, mGlu receptor antagonists may directly modulate the µ-

opioid receptor, thereby enhancing the affinity of the opioid for the receptor. Finally, the 

interactive effects of mGlu receptor antagonists and µ-opioid receptor agonists may result 

from alterations in the efficacy of the µ-opioid receptor through a change in G-protein 

mediated signaling cascades. Previous demonstrations that mGlu receptor antagonists 

produce leftward shifts in the morphine dose-effect curve do not discriminate between these 

possible mechanisms. 

One research tool that can be used to delineate the mechanism by which mGlu receptor 

antagonists increase the antinociceptive effects of morphine is opioid intrinsic efficacy. 

Relative to high efficacy µ-opioid receptor agonists such as morphine, low-efficacy µ-opioid 
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receptor agonists are less effective in activating G-protein mediated processes and thus 

require a larger proportion of µ-opioid receptors to produce an effect. In assays of thermal 

nociception, the intensity of the nociceptive stimulus can be systematically manipulated to 

impose receptor requirements underlying a drug-induced effect. For example, under 

conditions of high stimulus intensity, a low-efficacy opioid agonist may produce only a 

partial effect if the number of receptors required to produce a maximum effect exceeds the 

number of opioid receptors available in the tissue mediating the effect. Under these 

conditions, an increase in opioid-induced antinociception by an inactive drug suggests that 

mGluR antagonists increase µ-opioid agonist efficacy.. 

The present study addresses the hypothesis that mGluR antagonists enhance opioid-

induced antinociception through an increase in opioid receptor agonist efficacy. Morphine 

and the low-efficacy µ-opioid receptor agonists buprenorphine and dezocine are first 

assessed in a hot plate procedure under conditions of low (53°C) and high (56°C) stimulus 

intensity. Under conditions in which the low-efficacy µ-opioid receptor agonists produce 

sub-maximal effects, buprenorphine and dezocine are assessed after pretreatment with the 

mGlu1 receptor antagonist (3,4-Dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-(cis-4-

methoxycyclohexyl)-methanone (JNJ16259685), the mGlu5 receptor antagonist 2-Methyl-6-

(phenylethynyl)pyridine hydrochloride (MPEP), and the mGlu2/3 receptor antagonist (2S)-2-

Amino-2-[(1S,2S-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495). For 

comparison, the NMDA receptor antagonist (-)-6-phosphonomethyl-deca-hydroisoquinoline-

3-carboxylic acid (LY235959) is also assessed as a pretreatment to morphine and the low-

efficacy µ-opioid receptor agonists. 
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METHODS 

Animals. Adult male C57BL/6 mice 10 weeks of age were purchased from Jackson 

Laboratory (Raleigh, NC). Upon arrival, mice were group housed in standard plexiglas cages 

in a colony room maintained on a 12-h light/dark cycle (lights on at 7:00 PM). All mice had 

continuous access to food and water throughout the study and were habituated to the colony 

room environment for 2 weeks prior to any experimental manipulation. Mice were also 

exposed to the testing environment and handled for two days prior to initiation of an 

experiment. All testing procedures were conducted between 11:00 AM and 3:00 PM. 

Animals used in this study were cared for in accordance with the guidelines of the 

Institutional Animal Care and Use Committee of the University of North Carolina at Chapel 

Hill and all testing adhered to the “Guide for the Care and Use of Laboratory Animals” 

(National Research Council, National Academy of Sciences, Washington, D.C., 1996).  

Drugs. Morphine sulfate and buprenorphine hydrochloride were provided by NIDA 

(Bethesda, MD), dezocine hydrochloride by AstraZeneca (Wilmington, DE), and LY235959 

by Lilly Research Laboratories (Indianapolis, IN). JNJ16259685, MPEP, and LY341495 

were purchased from Tocris (Ellisville, MO). Morphine, LY235959, and LY341495 were 

dissolved in 0.9% phosphate buffered saline, and the pH of LY341495 solutions was adjusted 

to 7.0 with NaOH. JNJ16259685 and MPEP were dissolved in 45% (w/v) 2-hydroxypropyl-

β-cyclodextrin. All drugs were injected i.p. at a volume of 0.1 ml/10 g. 

Thermal nociception. Antinociception was assessed using a hot plate analgesia meter 

(25.3 × 25.3 cm) (Columbus Instruments, Columbus, OH) maintained at either 53 ± 0.1°C or 

56 ± 0.1°C. The antinociceptive response was evaluated by recording the latency to lick or 

shuffle the hind paw(s), and/or to jump from the hot plate surface. A stopwatch measured 
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responses to the nearest 0.1 s. A predetermined cutoff time of 20 s was defined as a maximal 

response and was employed to prevent tissue damage. Immediately following the termination 

of a trial, mice were removed from the hot plate surface and returned to the homecage. The 

antinociceptive response was measured twice at 30 and 15 min prior to the beginning of drug 

administration. These data were averaged to yield one baseline value. After baseline 

measurements, saline or a glutamate receptor antagonist (i.p.) was administered 30 min prior 

to administration of an opioid agonist (s.c.). Antinociceptive responses were recorded at 15, 

30, 45, 60, 90, and 120 min following administration of the second drug. Latencies obtained 

following drug administration represent one trial and are expressed as a percentage of the 

maximal possible effect (%MPE) from the following formula: %MPE = [postdrug latency 

(seconds) - baseline latency (seconds)] / [20 - baseline latency (seconds)]. 

Data analysis. Data are expressed as the mean (± S.E.M.) antinociceptive response. 

Dose-effect curves were constructed from data obtained 30 min following administration of 

an opioid agonist. If an opioid was fully efficacious, the dose required to produce a 50% 

(ED50) maximal antinociceptive effect was derived using log-linear interpolation. Statistical 

analyses for buprenorphine and dezocine dose-effect curves in combination with a glutamate 

receptor antagonist were conducted using a two-factor analysis of variance (ANOVA). 

Fisher’s protected least significant difference (PLSD) was then conducted to determine 

specific opioid dose combinations that were significantly different from baseline. All 

statistical analyses were conducted with a level of significance set at p < .05.  
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RESULTS 

Figure 4.1 shows the antinociceptive effects of buprenorphine, dezocine, and morphine 

under conditions of low (53°C) and high (56°C) stimulus intensity. At 53°C, each drug 

produced dose-dependent increases in antinociception resulting in ED50 values (± 95% 

confidence limits) of 0.17 (0.12-0.23) for buprenorphine, 0.33 (0.28-0.41) for dezocine, and 

3.4 (2.7-4.4) for morphine. At 56°C, only morphine produced dose-dependent 

antinociception, resulting in an ED50 value of 7.7 (6.2-9.6). At this stimulus intensity, 

buprenorphine and dezocine produced sub-maximal antinociception (i.e. < 50% MPE), and 

an ED50 value could not be determined. To confirm a decrease in efficacy of buprenorphine 

and dezocine, the highest doses tested were assessed in combination with a dose of morphine 

(32 mg/kg) that produced 100% MPE (data not shown). When administered in combination 

with morphine, 3.2 mg/kg buprenorphine significantly decreased its antinociceptive effects, 

resulting in a MPE (± 95% confidence limits) of 36% (21%-50%). In addition, 10 mg/kg 

dezocine significantly decreased the antinociceptive effects of morphine, resulting in a MPE 

of 38% (21%-55%). 

The effects of glutamate receptor antagonists on morphine antinociception as assessed in 

a tail-flick procedure have been previously described in Experiments 1 and 2, and these 

previous findings were replicated in the current experiment on the hot plate. Similar to the 

previous reports, morphine’s antinociceptive potency was increased when administered in 

combination with the mGlu1 receptor antagonist JNJ16259685, the mGlu2/3 receptor 

antagonist LY341495, and the NMDA receptor antagonist LY235959 as evidenced by 

significant leftward shifts in the morphine dose-effect curve. The antinociceptive potency of 

morphine was not increased when administered in combination with the mGlu5 receptor 
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antagonist MPEP. The resulting ED50 values for morphine in combination with 

JNJ16259685, MPEP, LY341495, and LY235959 are shown in Table 4.1. 

Figure 4.2 shows the antinociceptive effects of buprenorphine and dezocine, alone and in 

combination with the mGlu1 antagonist JNJ16259685 (1.0-3.2 mg/kg). JNJ16259685 did not 

produce an antinociceptive effect when administered alone (points above “S”). Pretreatment 

with JNJ16259685 significantly shifted the dose-effect cures for buprenorphine (F14,119 = 

15.82, P < .001) and dezocine (F11,95 = 20.84, P < .001) upward. PLSD analysis revealed that 

both 1.0 and 3.2 mg/kg JNJ16259685 significantly increased antinociception at 0.32-3.2 

mg/kg buprenorphine and at 3.2-10 mg/kg of dezocine. When assessed over time, 

JNJ16259685 significantly increased the antinociceptive effects of both 1.0 mg/kg 

buprenorphine (F1,21 = 16.86, P < .001) and 3.2 mg/kg dezocine (F1,21 = 25.83, P < .001) 

during the 120 min test period. PLSD analysis revealed that 1.0 mg/kg JNJ16259685 

significantly increased antinociception at time points 15-30 min for buprenorphine, and that 

3.2 mg/kg JNJ16259685 significantly increased the antinociceptive effects over the 120 min 

timecourse for buprenorphine and dezocine. 

The antinociceptive effects of buprenorphine and dezocine were also assessed after 

pretreatment with the mGlu5 receptor antagonist MPEP, and are shown in Figure 4.3. 

Administration of MPEP (1.0-3.2 mg/kg) did not produce an antinociceptive effect when 

administered alone. When administered as pretreatment to 1.0 mg/kg buprenorphine and 3.2 

mg/kg dezocine, MPEP did not increase antinociception relative to buprenorphine or 

dezocine administered alone at any time point across the 120 min timecourse. 

Figure 4.4 shows the antinociceptive effects of buprenorphine and dezocine, alone and 

after pretreatment with the mGlu2/3 antagonist LY341495. When administered alone, 
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LY341495 (1.0-3.2 mg/kg) did not produce an antinociceptive effect. Pretreatment with 

LY341495 prior to administering buprenorphine and dezocine significantly shifted the dose-

effect curve for both drugs upward (buprenorphine, F14,119 = 15.57, P < .001; dezocine, F11,95 

= 14.81, P < .001). PLSD analysis revealed that 1.0 mg/kg LY341495 significantly increased 

antinociception at 0.1-1.0 mg/kg buprenorphine and at 10 mg/kg dezocine. Analysis also 

revealed that 3.2 mg/kg LY341495 increased the effects of 0.1-3.2 mg/kg buprenorphine and 

3.2-10 mg/kg dezocine. When assessed over time, LY341495 significantly increased the 

antinociceptive effects of both 1.0 mg/kg buprenorphine (F1,21 = 17.38, P < .001) and 3.2 

mg/kg dezocine (F1,21 = 23.22, P < .001) during the 120 min test period. PLSD analysis 

revealed that 3.2 mg/kg LY341495 significantly increased antinociception across the 120 min 

timecourse for buprenorphine and dezocine. 

Figure 4.5 shows the antinociceptive effects of buprenorphine and dezocine, both alone 

and in combination with the NMDA receptor antagonist LY235959 (0.32-1.0 mg/kg). When 

administered alone, LY235959 did not produce an antinociceptive effect. When administered 

as a pretreatment to buprenorphine and dezocine, LY235959 significantly shifted the dose-

effect curve for both drugs upward (buprenorphine, F14, 118 = 19.77, P < .001; dezocine, F11,95 

= 16.55, P < .001). PLSD analysis revealed that 0.32 mg/kg LY235959 significantly 

increased the antinociceptive effect of 0.32-3.2 mg/kg buprenorphine and 3.2-10 mg/kg 

dezocine. Analysis also revealed that 1.0 mg/kg LY235959 increased buprenorphine’s effects 

at 0.1-3.2 mg/kg and dezocine’s effects at 1.0-10 mg/kg. When assessed over time, 

LY235959 significantly increased the antinociceptive effects of both 1.0 mg/kg 

buprenorphine (F1,20 = 14.48, P < .001) and 3.2 mg/kg dezocine (F1,21 = 15.51, P < .001) 

during the 120 min test period. PLSD analysis revealed that 1.0 mg/kg LY235959 
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significantly increased antinociception at time points 30-90 min for buprenorphine and 15-90 

min for dezocine.  
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DISCUSSION 

The present series of studies examined the interactive effects of opioids and glutamate 

receptor antagonists that vary in selectivity. In agreement with previous reports (Allen and 

Dykstra, 2001; Fischer et al., 2005; Yoon et al., 2006; results from Experiments 1 and 2), the 

mGlu1 receptor antagonist JNJ16259685, the mGlu2/3 receptor antagonist LY341495, and 

the NMDA antagonist LY235959 increased the antinociceptive potency of morphine as 

evidenced by ~ 3-fold leftward shifts in the morphine dose-effect curve (Table 4.1). This 

effect was dependent on the pharmacological selectivity of the glutamate receptor antagonist 

under study since JNJ16259685, LY341495, and LY235959 shifted the morphine dose-effect 

curve to the left, but the mGlu5 receptor antagonist MPEP did not. Together, these data 

confirm previous investigations (Allen and Dykstra, 2001; Kozela et al., 2003; Fischer et al., 

2005; Yoon et al., 2006; results from Experiments 1 and 2) indicating that JNJ16259685, 

LY341495, and LY235959, but not MPEP, increase the antinociceptive potency of morphine  

The initial purpose of the present study was to develop behavioral conditions under 

which to examine the effects of mGlu receptor antagonists on the efficacy of µ-opioid 

receptor agonists. Towards this end, the effects of them µ-opioid receptor agonists 

buprenorphine, dezocine, and morphine were examined under conditions of relatively low 

(53°C) and high (56°C) nociceptive stimulus intensities. Morphine produced dose-dependent 

increases in antinociception, and was fully efficacious under both conditions. In contrast, the 

efficacy of both buprenorphine and dezocine was dependent on the intensity of the 

nociceptive stimulus. Under conditions of low stimulus intensity, both buprenorphine and 

dezocine produced dose-dependent antinociceptive effects, and were fully efficacious. Under 

conditions of high stimulus intensity, however, increasing doses of buprenorphine and 
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dezocine produced only low levels of antinociception and in no instance did the maximal 

effect of these drugs exceed 50% MPE. 

Buprenorphine and dezocine are lower in efficacy relative to morphine (Chen et al., 

1992; Toll, 1995; Gharagozlou et al., 2003). By definition, low-efficacy µ-opioid receptor 

agonists activate G-protein mediated processes less efficiently and require a larger proportion 

of receptors to produce an effect. The findings from the present study are in agreement with 

assumptions derived from receptor theory. Under conditions of low stimulus intensity, the 

number of µ-opioid receptors required to produce a maximal effect is relatively low and a 

maximum effect is attainable by both high and low-efficacy agonists (cf. Morgan et al., 

1999). In contrast, when high stimulus intensities are used, the proportion of µ-opioid 

receptors required to produce a maximal effect is increased, and the maximal effect attainable 

by a µ-opioid receptor agonist is dependent on the intrinsic efficacy of the µ-opioid receptor 

agonist under study (Morgan et al., 1999). In agreement with these assumptions, 

buprenorphine and dezocine produced only a partial antinociceptive effect under conditions 

of high stimulus intensity. 

The main purpose of the present study was to test the hypothesis that mGlu receptor 

antagonists increase opioid antinociception through an alteration in the efficacy of the µ-

opioid receptor, and to compare these results with data obtained with an NMDA receptor 

antagonist. If the aforementioned increases in opioid potency were due to mechanisms other 

than alterations in efficacy and subsequent G-protein mediated signaling cascades, it would 

be expected that pretreatment with a glutamate receptor antagonist would result in leftward 

shifts in the buprenorphine and dezocine dose-effect curves, without an increase in their 

maximal effects. The main finding from these experiments is that, similar to the NMDA 
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antagonist LY235959, the mGlu1 receptor antagonist JNJ16259685 and the mGlu2/3 

receptor antagonist LY341495, but not the mGlu5 receptor antagonist MPEP, increased the 

efficacy of buprenorphine and dezocine. These data suggest that, similar to an NMDA 

receptor antagonist, mGlu1 and mGlu2/3 antagonists increase opioid-induced antinociception 

through an alteration in the efficacy of the µ-opioid receptor. 

Although speculative, the interactive effects of JNJ16259685 and µ-opioid receptor 

agonists can be conceptualized through receptor-mediated processes. Both µ-opioid receptors 

and mGlu1 receptors are expressed postsynaptically on dorsal horn neurons in the spinal cord 

(Jia et al., 1999; Alvarez et al., 2000), a region thought to mediate nociceptive transmission. 

In this region, mGlu1 receptors are physically linked to NMDA receptors through 

postsynaptic density proteins (Naisbitt et al., 1999; Tu et al., 1999). Activation of mGlu1 

receptors in the dorsal horn results in the potentiation of NMDA-mediated responses, through 

an activation of protein kinase C and a reduction of the voltage-dependent block of NMDA 

receptors by Mg
2+

 (Cerne and Randic, 1992; Kelso et al., 1992; Skeberdis et al., 2001). In 

view of the observed increases in µ-opioid receptor agonist-induced antinociception after 

NMDA antagonist administration, it is possible that the increases after administration of an 

mGlu1 antagonist results from functionally similar processes. 

In addition to the mGlu1 antagonist JNJ16259685, the mGlu2/3 receptor antagonist 

LY341495 increased the efficacy of buprenorphine and dezocine; however, the underlying 

mechanisms mediating this interaction are less clear. Numerous reports have demonstrated 

that mGlu2 and mGlu3 receptors are located presynaptically in numerous brain regions, 

although both pre- and post-synaptic receptors have been identified in the dorsal horn 

(Carlton et al., 2001). As a result, conflicting results are often reported from both in vitro and 
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in vivo preparations. For example, mGlu2/3 agonists produce both facilitation and inhibition 

of neuronal activity (Bond and Lodge, 1995; Cao et al., 1995; King and Liu, 1996), and both 

agonism and antagonism of mGlu2 and mGlu3 receptors decrease pain related behaviors in 

animal models of inflammation (Jones et al., 2005; Yoon et al., 2006). These results may 

reflect the complex interaction of pre- and post-synaptic receptors in the dorsal horn, and 

make it difficult to interpret the mGluR2/3-mediated increases in opioid efficacy observed in 

the current study. Nevertheless, the data from the current study suggests that antagonism of 

mGlu2 and mGlu3 receptors increase the efficacy of µ-opioid receptor agonists through 

alterations in the efficacy of the µ-opioid receptor. 

 Although the intention of assessing the antinociceptive effects of buprenorphine and 

dezocine under conditions of high stimulus intensity in the present study was to enhance the 

understanding of the pharmacological nature of mGlu receptor/opioid interactions, the 

findings from these experiments may also have important clinical implications. Although 

low-efficacy opioid agonists such as buprenorphine and dezocine are less effective than 

morphine, they are often characterized as having a lower potential for abuse and an improved 

side-effect profile (Hoskin and Hanks, 1991; Preston and Jasinski, 1991). If glutamate 

receptor antagonists increase the functional efficacy of these drugs in assays of nociception, 

without increasing effects unrelated to antinociception (cf. Experiment 2), combination 

treatment might be useful for the management of various pain states. Clearly, the clinical 

utility of these drug combinations will rely on behavioral assessment on other endpoints, 

such as models of abuse potential, physical dependence, and other off-target effects. 
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Table 4.1 ED50 values and dose ratios for morphine alone and in combination with 

JNJ16259685, MPEP, LY341495, and LY235959 on thermal nociception at 56°C. 

*, Significantly different from morphine alone. 

 

      ED50 (± 95% CL)  Dose Ratio 

Morphine Alone    7.7 (6.2-9.6) 

 + 3.2 mg/kg JNJ16259685  2.2 (1.7-2.8)*   3.5 

 + 3.2 mg/kg MPEP   9.0 (7.2-11)   0.86 

 + 3.2 mg/kg LY341495   2.7 (2.1-3.4)*   2.9 

 + 1.0 mg/kg LY235959   2.2 (1.5-3.3)*   3.5 
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Figure 4.1 Buprenorphine, dezocine, and morphine on thermal nociception. Top, dose-effect 

curves for buprenorphine, dezocine, and morphine at 53°C. Bottom, dose-effect curves for 

buprenorphine, dezocine, and morphine at 56°C. Abscissa, dose of opioid in mg/kg. 

Ordinate, antinociception as percent maximum possible effect. 
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Figure 4.2 Buprenorphine and dezocine in combination with JNJ16259685 on thermal 

nociception at 56°C. Top, dose effect curves for buprenorphine (left) and dezocine (right) 

alone and in combination with JNJ16259685. Abscissa, dose of buprenorphine or dezocine in 

mg/kg. Ordinate, antinociception as percent maximum possible effect. Bottom, timecourse of 

1.0 mg/kg buprenorphine (left) and 3.2 mg/kg dezocine (right) alone and in combination with 

JNJ16259685. Abscissa, time after administration of buprenorphine or dezocine. Ordinate, 

antinociception as percent maximum possible effect.  

*, Significantly different from buprenorphine or dezocine alone. 
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Figure 4.2 
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Figure 4.3 Buprenorphine and dezocine in combination with MPEP on thermal nociception 

at 56°C. Left, timecourse of 1.0 mg/kg buprenorphine alone and in combination with MPEP. 

Right, timecourse of 3.2 mg/kg dezocine alone and in combination with MPEP. Abscissa, 

time after administration of buprenorphine or dezocine. Ordinate, antinociception as percent 

maximum possible effect. 
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Figure 4.4 Buprenorphine and dezocine in combination with LY341495 on thermal 

nociception at 56°C. Top, dose effect curves for buprenorphine (left) and dezocine (right) 

alone and in combination with LY341495. Abscissa, dose of buprenorphine or dezocine in 

mg/kg. Ordinate, antinociception as percent maximum possible effect. Bottom, timecourse of 

1.0 mg/kg buprenorphine (left) and 3.2 mg/kg dezocine (right) alone and in combination with 

LY341495. Abscissa, time after administration of buprenorphine or dezocine. Ordinate, 

antinociception as percent maximum possible effect.  

*, Significantly different from buprenorphine or dezocine alone. 
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Figure 4.4 
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Figure 4.5 Buprenorphine and dezocine in combination with LY235959 on thermal 

nociception at 56°C. Top, dose effect curves for buprenorphine (left) and dezocine (right) 

alone and in combination with LY235959. Abscissa, dose of buprenorphine or dezocine in 

mg/kg. Ordinate, antinociception as percent maximum possible effect. Bottom, timecourse of 

1.0 mg/kg buprenorphine (left) and 3.2 mg/kg dezocine (right) alone and in combination with 

LY235959. Abscissa, time after administration of buprenorphine or dezocine. Ordinate, 

antinociception as percent maximum possible effect.  

*, Significantly different from buprenorphine or dezocine alone. 
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Figure 4.5 



 

 

 

CHAPTER 5 

GENERAL DISCUSSION 

 

EXPERIMENTAL RESULTS 

The present series of studies assessed the interactive effects of opioids and glutamate 

receptor antagonists in assays of schedule-controlled responding and thermal nociception. 

Experiment 1 examined the effects of morphine, buprenorphine, butorphanol, and nalbuphine 

alone and in combination with the NMDA receptor antagonist LY235959. Although previous 

reports have assessed the interactive effects of opioids and NMDA receptor antagonists, the 

purpose of this study was to analyze these interactions using a formally quantitative approach 

and to determine whether these interactions extend to another behavioral endpoint. The 

results from this study indicate that LY235959/morphine and LY235959/buprenorphine 

mixtures produced additive or infra-additive effects on schedule-controlled responding, 

whereas LY235959/butorphanol and LY235959/nalbuphine mixtures produced additive or 

supra-additive effects. In addition, mixtures of LY235959 in combination with morphine, 

buprenorphine, butorphanol, and nalbuphine produced additive or supra-additive effects on 

thermal nociception. Together, these data suggest that the interactive effects of opioids and 

NMDA receptor antagonists depend on the behavioral endpoint, the relative proportions of 

drugs in the mixture, and the opioid under study. 

In addition to ionotropic receptors, endogenous glutamate exerts its action through a 

family of metabotropic glutamate (mGlu) receptors that activate various intracellular second 
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messenger systems through G-proteins. Experiment 2 examined the interactive effects of 

morphine in combination with the mGlu1 receptor antagonist JNJ16259685, the mGlu5 

receptor antagonist MPEP, and the mGlu2/3 receptor antagonist LY341495 in assays of 

schedule-controlled responding and thermal nociception. The results from this experiment 

suggest that JNJ16259685, MPEP, and LY341495 produce additive effects when 

administered in combination with morphine on schedule-controlled responding. In contrast, 

JNJ16259685 and LY341495 produced supra-additive effects with morphine when assessed 

on thermal nociception. Together, these data implicate the mGlu receptor system in the 

antinociceptive effects of morphine, and suggest that interactions between mGlu receptor 

antagonists and morphine depend on the mGlu receptor subtype and behavioral endpoint 

being examined. 

The purpose of Experiment 3 was to use opioid efficacy as a tool to dissociate the 

mechanism by which NMDA and mGlu receptor antagonists increase the antinociceptive 

effects of morphine and other opioids. In this experiment, morphine and the low-efficacy 

opioid receptor agonists buprenorphine and dezocine were first assessed in conditions of low 

(53°C) and high (56°C) stimulus intensity. The antinociceptive effects of buprenorphine and 

dezocine were dependent on the nociceptive stimulus intensity, as these opioid receptor 

agonists produced sub-maximal effects at 56°C. Under these conditions, buprenorphine and 

dezocine were assessed after pretreatment with LY235959, JNJ16259685, MPEP, and 

LY341495. The results from this study indicated that LY235959, JNJ16259685, and 

LY341495 increased the efficacy of both buprenorphine and dezocine. The findings from this 

experiment provide additional evidence that NMDA, mGlu1, and mGlu2/3 receptor 
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antagonists increase the acute antinociceptive effects of opioids, and further suggest that this 

enhancement results from an increase in opioid efficacy. 

Taken together, these experiments assessed the interactive behavioral effects of opioid 

receptor agonists and glutamate receptor antagonists. The experimental results obtained from 

these studies suggest that these interactive effects are dependent upon factors such as the 

relative proportions of drugs and the experimental endpoint under study. In addition, the 

pharmacological affinity of the opioid and glutamate receptor antagonists being examined is 

an important determinant of their behavioral effects. 

 

RELATIVE PROPORTIONS OF DRUGS AS A DETERMINANT OF DRUG INTERACTIONS 

Throughout Experiments 1 and 2, drug interactions were assessed using a fixed-

proportion design. This approach is advantageous for several reasons (Tallarida, 2000). First, 

a drug mixture manufactured for clinical use would most likely contain a fixed ratio of the 

drugs. In addition, in preclinical work, administration of drugs in fixed proportions simplifies 

the analysis of the data. Finally, previous research has demonstrated that deviation from 

additivity depends on the relative proportions of the drugs under study (Gessner and Cabana, 

1970; Tallarida, 2000; Stevenson et al., 2003, 2005; Craft and Leitl, 2006). 

In what is now a seminal study, Gessner and Cabana (1970) reported on the interactive 

effects of chloral hydrate and ethanol on the loss of righting reflex in mice. These authors 

demonstrated that supra-additive effects occurred between chloral hydrate and ethanol if the 

drugs were administered at a ratio equal to or greater than 1:7.2 chloral hydrate/ethanol, 

whereas additive effects were observed at ratios less than 1:7.2 chloral hydrate/ethanol. The 

results from this study were among the first to demonstrate that deviation from additivity is 
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not only a property of the two drugs under study, but also depends in the relative amounts of 

each drug in the combination tested  

In the current series of experiments, drug interactions that were administered in fixed-

proportions (Experiments 1 and 2) were assessed at three different drug ratios. In agreement 

with the findings of Gessner and Cabana (1970), the interactive effects of opioids and 

glutamate receptor antagonists were often dependent on the relative proportions of drugs in 

mixture. For example, in the assay of schedule-controlled responding, a mixture containing a 

ratio of 1.3:1 LY235959/morphine produced infra-additive effects, whereas a mixture 

containing a ratio of 12:1 LY235959/morphine produced additive effects. Similar proportion-

dependent effects were observed in the assay of thermal nociception. For example, a mixture 

of 0.31:1 LY341495/morphine resulted in an additive interaction whereas a mixture of 0.93:1 

LY341495/morphine produced supra-additive effects. Together, these data provide further 

evidence that the relative proportions of two drugs in a mixture is an important determinant 

of their behavioral effects. 

 

BEHAVIORAL ENDPOINT AS A DETERMINANT OF DRUG INTERACTIONS 

Previous research has suggested that the interactive effects of two drugs may vary as a 

function of the experimental endpoint under study (Gessner and Cabana, 1970; Tallarida, 

2000; Stevenson et al., 2003, 2005). For example, Stevenson and colleagues reported on the 

interactive effects of heroin and the δ-opioid receptor agonist SNC80 in assays of thermal 

nociception, schedule-controlled responding, and drug self-administration (Stevenson et al., 

2005). In this study, mixtures of heroin and SNC80 produced supra-additive effects on 

thermal nociception while producing additive effects on schedule-controlled responding. 
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Furthermore, these same drug mixtures produced additive effects on drug self-administration 

as measured under both a fixed ratio and a food versus heroin concurrent-choice schedule of 

reinforcement. These data demonstrate that there is a behavioral selectivity in the interactive 

effects of drug mixtures under certain conditions. 

In Experiments 1 and 2, the interactive effects of opioid receptor agonists and mGlu 

receptor antagonists were assessed on two experimental endpoints: thermal nociception and 

schedule-controlled responding. In agreement with the aforementioned studies, the effects of 

mGlu receptor antagonist/opioid receptor agonist mixtures were often dependent on the 

behavioral endpoint under study. For example, JNJ16259685/morphine mixtures produced 

additive effects in the assay of schedule-controlled responding across a range of proportions. 

In contrast, these same drug mixtures produced supra-additive effects in the assay of thermal 

nociception. This finding was similar to LY235959/morphine and LY341495/morphine 

mixtures, and suggests that these glutamate receptor antagonists may specifically increase the 

antinociceptive properties of morphine relative to their rate-reducing effects. 

 

NOCICEPTIVE ENDPOINT AS A DETERMINANT OF DRUG INTERACTIONS 

In the current series of experiments, the interactive effects of opioid receptor agonists and 

mGlu receptor antagonists were assessed across two different measures of antinociception: a 

tail-flick procedure (Experiments 1 and 2) and a hot plate procedure (Experiment 3). These 

measures of antinociception were chosen to discriminate between spinal (tail-flick) and 

supraspinal (hot plate) mechanisms of the drug interactions. The tail-flick apparatus is 

thought to elicit nociceptive transmission directly from the tail to the dorsal horn via Aδ-

fibers, resulting in one of the simple spinal reflexes through the reflex arc (Chapman et al., 
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1985). The behavior required to respond on the hot plate (licking or shuffling of the hind 

paw) requires higher brain function, and is thought to be associated with both spinal and 

supraspinal involvement in nociception (Chapman et al., 1985; Dubner and Ren, 1999). 

In addition to possible differences in anatomical sites, research has implicated cellular 

differences mediating responses between the hot plate and tail-flick procedures. Specifically, 

reports suggest that the serotonergic system mediates the transmission of nociceptive stimuli. 

Extensive studies have suggested that serotonin (5-HT) receptors are expressed in the spinal 

cord, and that 5-HT1A and 5-HT1B receptors are particularly expressed in the superficial 

laminae of the dorsal horn (e.g. Hamon and Bourgoin 1999). In addition, recent studies with 

5-HT1A and 5-HT1B receptor knock-out mice suggest that these receptor subtypes may 

differentially mediate nociceptive transmission from the tail-flick apparatus and the hot plate 

(Kayser et al., 2007). Specifically, these studies suggest that 5-HT1A receptors meditate 

behaviors on the hot plate, whereas both 5-HT1A and 5-HT1B receptors mediate responses in 

the tail-flick procedure. 

The results from the present study confirm previous findings demonstrating that NMDA 

receptor antagonists can increase opioid-induced antinociception as measured in both hot 

plate (Bernardi et al., 1996; Plesan et al., 1998; Baker et al., 2002; Bulka et al., 2002) and 

tail-flick procedures (Mao et al., 1996; Belozertseva et al., 2000; Kozela et al., 2001; 

Holtman et al., 2003; Nemmani et al., 2004). In addition, the present study suggests that 

mGlu1 and mGlu2/3 receptor antagonists increase morphine’s antinociceptive effects across 

both procedures. Together, these data suggest that nociceptive endpoint is not an important 

determinant of glutamate receptor antagonist/opioid receptor agonist interactions. Further, 

the results from these experiments suggest that supraspinal mechanisms are not necessary for 
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these interactions. Finally, the present series of studies suggest that differences in 

serotonergic mediation between the tail-flick and hot plate assays do not result in differential 

interactive effects between opioids and glutamate receptor antagonists. 

 

OPIOID RECEPTOR AGONIST AFFINITY AS A DETERMINANT OF DRUG INTERACTIONS 

The opioid receptor agonists selected for study in Experiment 1 were chosen based on 

their relative affinities for opioid receptor subtypes. Specifically, morphine, buprenorphine, 

butorphanol, and nalbuphine differ in their affinity for µ- and κ-opioid receptors. Similar to 

morphine, buprenorphine produces behavioral effects primarily through activation of the µ-

opioid receptor (Adams et al., 1990; Walker et al., 1998, 1999). Butorphanol and nalbuphine 

have affinity for both µ-opioid receptors and κ-opioid receptors (Leander 1983; Gerak et al., 

1994; Walker et al., 1994; Smith et al., 1999) and can act as an agonist or antagonist at these 

receptors depending on the experimental procedure (Leander, 1983; Dykstra 1990; Butelman 

et al., 1995; Vivian et al., 1999).  

In the assay of schedule-controlled responding, administration of LY235959 in 

combination with morphine and buprenorphine resulted in an additive interaction. In 

contrast, some LY235959/butorphanol and LY235959/nalbuphine mixtures produced supra-

additive effects. Among the low-efficacy opioids examined in Experiment 1, butorphanol and 

nalbuphine possess significant agonist activity at κ-opioid receptors in rodent models other 

than antinociception (Jaw et al., 1993; Smith and Picker, 1995; Leander et al., 1997; Craft, 

2000) and in vitro (Zhu et al., 1997; Remmers et al., 1999). Therefore, it is possible that the 

supra-additive rate-decreasing effects are mediated, in part, by their κ component. To date, 
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the interactive effects of selective κ-opioid receptor agonists and NMDA antagonists have 

not been assessed on this endpoint. 

Differences in drug interactions between the opioid agonists were also observed in the 

assay of thermal nociception. On this endpoint, LY235959 produced supra-additive effects 

with each of the opioids, regardless of pharmacological selectivity. However, although supra-

additive effects of LY235959/nalbuphine mixtures with a higher proportion of LY235959 

were statistically significant, the shifts in the nalbuphine dose-effect curves were modest 

relative to the other opioids tested. Although this difference is unclear, the degree to which 

nalbuphine was increased relative to the other opioids may be due to differences in 

pharmacological selectivity. 

In antinociceptive assays, the effects of morphine, buprenorphine, butorphanol, and 

nalbuphine are mediated predominately through agonist activity at the µ-opioid receptor in 

monkeys and rodents (Zimmerman et al., 1987; Walker et al., 1993; Butelman et al., 1995; 

Garner et al., 1997) although nalbuphine has been shown to have some κ-opioid receptor 

activity in mice (Pick et al., 1992). Behavioral evidence suggests drugs with affinity for µ-

opioid receptors are increased to a greater extent by NMDA antagonists relative to drugs with 

affinity for κ-opioid receptors (e.g. Chen et al., 2005). Therefore, although significant supra-

additive effects were determined for LY235959/nalbuphine mixtures in this assay, the effects 

may be blunted by the differential pharmacological selectivity of nalbuphine. 

 

GLUTAMATE RECEPTOR ANTAGONIST AFFINITY AS A DETERMINANT OF DRUG 

INTERACTIONS 
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The results from the current series of experiments suggest that the NMDA antagonist 

LY235959, the mGlu1 antagonist JNJ16259685, and the mGlu2/3 antagonist LY341495 

increase opioid-induced antinociception. This effect was dependent on the pharmacological 

selectivity of the glutamate receptor antagonist under study in that the mGlu5 antagonist 

MPEP did not affect opioid antinociception. Together, these data suggest that glutamate 

receptor affinity is an important determinant of glutamate receptor antagonist/µ-opioid 

receptor agonist interactions. 

Opioid + NMDA receptor antagonist interactions. The interactive effects of 

LY235959 and the opioid receptor agonists in Experiments 1 and 3 were expected, as 

previous research has demonstrated that NMDA receptor antagonists increase the 

antinociceptive effects of µ-opioid receptor agonists under numerous conditions (Mao et al., 

1996; Bespalov et al., 1998; Pleasn et al., 1998; Allen and Dykstra, 2001; Bulka et al., 2002; 

Allen et al., 2003; Nemmani et al., 2004). From these studies and others, a cellular model for 

the interactive effects of NMDA receptor antagonists and µ-opioid receptor agonists has been 

developed. According to this model, activation of NMDA receptors contributes to the 

development of acute opioid tolerance through an increase in protein kinase C and 

subsequent reduction in the sensitivity of µ-opioid receptors (Ben-Eliyahu et al., 1992; Mao 

et al., 1995). This concept is based on experimental evidence showing that serum and brain 

concentrations of morphine last longer than morphine antinociception (Kissin et al., 1991) 

and is reinforced by studies demonstrating that an NMDA antagonist blocks the development 

of acute tolerance revealed after a second consecutive injection of an opioid (Larcher et al., 

1998). Additionally, it has been demonstrated that antinociception induced by acute 

administration of opioids is reduced by NMDA-mediated opposing effects (Celerier et al., 
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1999). The finding from the present study that the NMDA antagonist LY235959 increases 

the intrinsic efficacy of µ-opioid receptor agonists corroborates this model. 

Opioid + mGlu1 receptor antagonist interactions. The results from Experiments 2 and 

3 provide the first experimental evidence that the antinociceptive effects of opioids are 

increased by an mGlu1 antagonist. Although speculative, these interactive effects of 

JNJ16259685 and µ-opioid receptor agonists can be conceptualized through receptor-

mediated processes. Both µ-opioid receptors and mGlu1 receptors are expressed 

postsynaptically on dorsal horn neurons in the spinal cord (Jia et al., 1999; Alvarez et al., 

2000), where mGlu1 receptors are physically linked to NMDA receptors through 

postsynaptic density proteins (Naisbitt et al., 1999; Tu et al., 1999). Activation of mGlu1 

receptors in the dorsal horn results in the potentiation of NMDA-mediated responses, through 

an activation of protein kinase C and a reduction of the voltage-dependent block of NMDA 

receptors by Mg
2+

 (Cerne and Randic, 1992; Kelso et al., 1992; Skeberdis et al., 2001). 

Considering the observed increases in µ-opioid receptor agonist-induced antinociception 

after administration of the NMDA antagonist LY235959 (results from Experiment 1), it is 

possible that the increases after administration of JNJ16259685 are a result of a functionally 

similar process. 

Opioid + mGlu5 receptor antagonist interactions. Experiments 2 and 3 suggest that, in 

contrast to the mGlu1 receptor antagonist JNJ16259685, the mGlu5 receptor antagonist 

MPEP did not modulate the antinociceptive effects of morphine. As both mGlu1 and mGlu5 

receptor subtypes are Group I mGlu receptors, they are both coupled to Gq protein. 

Activation of both mGlu1 and mGlu5 receptors results in the dissociation of the Gq protein 

into Gqα and Gqβγ subunits, which elicit similar intracellular signaling processes. In view of 
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the functional similarities of mGlu1 and mGlu5 receptors, the additive effects of 

MPEP/morphine mixtures on thermal nociception are surprising. However, although the 

specific mechanisms enabling mGlu1 and mGlu5 receptors to differentially interact with µ-

opioid receptor agonists are unclear, available data suggests at least three possibilities: 1) 

differences in the anatomical distribution of mGlu1 and mGlu5 receptors, 2) different 

organization of the receptors in cellular microdomains, and 3) different intracellular signaling 

regulation of the receptors by phosphorylation. 

The antinociceptive effects of opioids and mGlu antagonist/opioid mixtures are thought 

to be mediated in the dorsal horn of the spinal cord. Although the expression of mGlu1 and 

mGlu5 mRNA’s are abundant in the dorsal horn, localization of immunoreactivity for these 

mGlu receptor subtypes suggests that mGlu5 receptors may not be present in this region 

(Yung, 1998; but see Vidnyánszky et al., 1994). Clearly, this anatomical difference between 

mGlu1 and mGlu5 receptors would result in differential interactive effects with opioids in 

assays of nociception. Although the lack of mGlu5 immunoreactivity does not directly 

preclude the existence of mGlu5 receptors in the dorsal horn, this possibility illustrates how 

differences in the anatomical distribution of mGlu1 and mGlu5 receptors may contribute to 

the behavioral differences in their interaction with opioids. 

In addition to differences in the distribution of mGlu1 and mGlu5 receptors at anatomical 

sites, these receptor subtypes may differ in their spatial distribution within a neuron. As an 

example, Delmas and colleagues (2002) have demonstrated a role for signaling 

microdomains in the induction of differential responses from receptors using similar 

signaling cascades. Using bradykinin B2 and muscarinic M1 receptors as a model, it was 

shown that, despite activating the same signaling pathway, activation of bradykinin receptors 
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results in relatively larger Ca
2+

-mediated responses. Through a series of experiments, these 

authors demonstrate that the different responses mediated by the two receptor subtypes are a 

result of the spatial proximity of bradykinin B2 receptors with modulatory IP3 receptors. 

Together, bradykinin B2 receptors and IP3 receptors form signaling microdomains together, 

resulting in an enhanced Ca
2+

 response. In contrast, muscarinic M1 receptors are randomly 

distributed, and this spatial separation causes a reduced Ca
2+

 response. Whether a related 

mechanism mediates the differences in mGlu1/opioid and mGlu5/opioid interactions 

observed in the present study remains to be determined. 

In addition, the discrepancy between mGlu1 and mGlu5 receptors may be due to different 

regulation by phosphorylation. mGlu1 and mGlu5 receptors differ in particular sites of their 

amino acid sequence that account for differences in their downstream signaling processes. 

For example, the amino acids aspartate and threonine are located within the G-protein-

interacting domains of mGlu1 and mGlu5 receptors, respectively. PKC-induced 

phosphorylation of the aspartate residue results in a single-peak release of Ca
2+

 from 

intracellular stores in cultured cells expressing the mGlu1 receptor (Kawabata et al., 1996). 

In cells expressing mGlu5, however, phosphorylation of the theonine residue by PKC results 

in an oscillatory release of Ca
2+

 (Kawabata et al., 1996; Nakanishi et al., 1998; Nash et al., 

2002). Although the implications of these or other differences in phosphorylation on 

mGlu5/opioid receptor agonist interactions are not known, differences in the specific 

biochemical mechanisms underlying the responses of mGlu1 and mGlu5 receptors may 

contribute to their different interactive effects with opioids. 

It is also important to note that the lack of an effect after administration of MPEP may be 

due to the specific experimental conditions under which MPEP/opioid interactions were 
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assessed. As mentioned above, the behavioral effects of two drugs may depend on the 

experimental endpoint under study and on the proportion of drugs in the mixture (Gessner 

and Cabana, 1970; Tallarida, 2000; Stevenson et al., 2003, 2005; Craft and Leitl, 2006). 

Indeed, a growing body of experimental evidence indicates that MPEP modulates the effects 

of opioids on other endpoints (Popik and Wrobel, 2002; Kozela et al., 2003; Smith et al., 

2004), and different results may be obtained if assessed in other nociceptive assays. Although 

the current set of experiments failed to show an effect in both a hot plate and tail-flick 

procedure, this does not rule out the possibility that MPEP/opioid mixtures may interact in 

other assays of nociception. Additional studies assessing the interactive effects of MPEP and 

opioids in other proportions or in other assays of thermal nociception could yield results that 

are different from those reported here. 

Regardless of the mechanism underlying the differences in mGlu1/opioid and 

mGlu5/opioid interactions, these data suggest that despite the functional similarities of 

mGlu1 and mGlu5 receptors, the manner in which they interact with morphine on thermal 

nociception may be fundamentally different. 

Opioid + mGlu2/3 receptor antagonist interactions. In addition to the results obtained 

with the MPEP/morphine interactions, the supra-additive interaction between LY341495 and 

the opioid receptor agonists observed in Experiments 2 and 3 were unexpected (but see Yoon 

et al., 2006). Numerous reports have demonstrated that mGlu2 and mGlu3 receptors are 

located on presynaptic neurons in numerous brain regions, and drugs that act as agonists at 

these receptors decrease glutamate release and subsequent postsynaptic binding to both iGlu 

and mGlu receptor subtypes (Pin and Duvoisin, 1995). In agreement with these reports, some 

behavioral data suggest that mGlu2/3 agonists inhibit the development of tolerance and 



   

 105 

dependence in a similar manner as NMDA antagonists (Klodzinska et al., 1999; Popik et al., 

2000). 

 In the dorsal horn, both pre- and post-synaptic mGlu2 and mGlu3 receptors have been 

identified and, as a result, conflicting results are often reported from both in vitro and in vivo 

preparations (Carlton et al., 2001), For example, mGlu2/3 agonists produce both facilitation 

and inhibition of neuronal activity (Bond and Lodge, 1995; Cao et al., 1995; King and Liu, 

1996), and both agonism and antagonism of mGlu2/3 receptors decrease pain related 

behaviors in animal models of inflammation (Jones et al., 2005; Yoon et al., 2006). These 

results may reflect the complex interaction of pre- and post-synaptic mGlu2 and mGlu3 

receptors in the dorsal horn, and make the interpretation of mGlu2/3-mediated increases in 

opioid efficacy observed in the current study difficult. 

The understanding of mGlu2/3 antagonist/opioid interactions is further limited by the 

selectivity of available mGlu2/3 antagonists. In contrast to available noncompetitive 

antagonists of group I mGlu receptors, only competitive antagonists have been developed for 

group II mGlu receptors. As a result of the high level of conservation of the orthosteric 

binding site between mGlu receptor subtypes, the selectivity of these competitive mGlu2/3 

antagonists is compromised (Pin and Duvoisin, 1995). LY341495 is among the most 

selective mGlu2/3 antagonists reported to date, with optimal affinity for mGlu2 and mGlu3 

receptors relative to compounds with structural similarity (Ornstein et al., 1998). LY341495 

possesses antagonist selectivity for mGlu receptors with a potency order of mGlu3 >= mGlu2 

> mGlu8 > mGlu7 >> mGlu1 = mGlu5 > mGlu4, with inhibitory activity at mGlu1 and 

mGlu5 receptors at 50-500 fold higher doses than mGlu2 and mGlu3 receptors (Kingston et 

al., 1998). However, it is worthy to note that at greater than micromolar concentrations, 
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LY341495 and other available mGlu2/3 antagonists may show antagonist activity across 

other mGlu receptors. As more selective mGlu2/3 antagonists become available (e.g. 

Hemstapat et al., 2007), further research is necessary to elucidate the mechanisms mediating 

mGlu2/3 antagonist/morphine interactions. 

 

IMPLICATIONS 

The primary intention of assessing the behavioral effects of opioids alone and in 

combination with glutamate receptor antagonists in the present series of experiments was to 

enhance the understanding of the pharmacological nature of glutamate/opioid interactions. 

However, the findings from these experiments may also have important clinical implications. 

Together, the experiments described here may provide a basis for the assessment of 

glutamate receptor antagonist/opioid receptor agonist combinations in animal models of more 

clinically relevant pain states (e.g. models of inflammation, hyperalgesia, allodynia, etc.) and 

ultimately for the assessment of these combinations in a human population. 

Throughout Experiments 1 and 2, the interactive effects of opioid agonists and glutamate 

receptor antagonists were assessed in assays of thermal nociception and schedule controlled 

responding. These two endpoints were chosen to discriminate the interactive effects of 

glutamate antagonist/opioid mixtures on the targeted behavior of antinociception, rather than 

a general modulation of all behavioral effects. The results from these studies demonstrate that 

studying drug interactions across a range of relative proportions and across experimental 

endpoints can reveal characteristics of these interactions that may have clinical potential. 

Specifically, these data suggest that it is possible to develop glutamate antagonist/opioid 
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mixtures that interact in a supra-additive manner specifically at brain regions that mediate the 

targeted behavior of antinociception.  

Clinical interest in combining NMDA and mGlu receptor antagonists with opioids that 

are lower in efficacy for the treatment of pain may also arise from the results of Experiment 1 

and 3. Although low-efficacy opioid agonists are less effective than morphine (e.g. Dykstra, 

1990; Walker et al., 1993; Morgan et al., 1999), they are often characterized as having a 

lower potential for abuse and an improved side-effect profile (Hoskin and Hanks, 1991; 

Preston and Jasinski, 1991). The results from Experiment 1 suggest that an NMDA 

antagonist and low-efficacy opioids produce supra-additive effects on thermal nociception. In 

addition, the results from Experiment 3 suggest that NMDA and mGlu receptor antagonists 

increase the efficacy of low-efficacy opioids when assessed at high stimulus intensities. 

Together, these results demonstrate that glutamate receptor antagonists can increase the 

antinociceptive effects of low-efficacy opioids, suggesting that these drug combinations may 

be useful for various pain states. 

Although mGlu receptor antagonist/opioid combinations have not been assessed 

clinically, NMDA receptor antagonists are well tolerated in human populations when 

administered in combination with opioid agonists for the treatment of pain (Goldblum, 2000). 

To date, a majority of the efforts to develop combination medications have focused on the 

administration of the noncompetitive NMDA receptor antagonists dextromethorphan and 

ketamine in conjunction with morphine and fentanyl treatment (Monck, 2003; Tucker et al., 

2005). The results from the current series of experiments suggest that a competitive NMDA 

receptor antagonist can increase the antinociceptive effects of other opioids, regardless of 

efficacy at the µ-opioid receptor. In addition, these experiments suggest that mGlu receptor 



   

 108 

antagonists can also increase opioid antinociception, providing alternative glutamate sites as 

modulators of opioid antinociception. Together, these data suggest that combining NMDA or 

mGlu receptor antagonists with µ-opioid receptor agonists may prove useful for the treatment 

of pain.  
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