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ABSTRACT

Ai Ni: Variable Selection For Case-Cohort Studies With Failure Time Outcome
(Under the direction of Jianwen Cai)

Case-cohort design is widely used in large cohort studies with failure time data to

reduce the cost associated with covariate measurement. Many of those studies collect a

large number of covariates. Therefore, an e�cient variable selection method is needed

for the case-cohort design. In this dissertation, we study the properties of the Smoothly

Clipped Absolute Deviation (SCAD) penalty based variable selection procedure in Cox

proportional hazards model and additive hazards model in a case-cohort design with a

diverging number of parameters.

We prove that the SCAD penalized variable selection procedure can identify the true

model with probability tending to one as n → ∞ under Cox proportional hazards model.

We then establish the consistency and asymptotic normality of the penalized estimator. We

show via simulation that the BIC-based tuning parameter selection method outperforms

the AIC-based method under typical case-cohort study settings. The proposed procedure

is applied to the Busselton Health Study (Cullen 1972, Knuiman et al. 2003).

Additive hazards model is a useful alternative to the Cox model for analyzing failure

time data. In the second part of the dissertation, we extend the SCAD-penalized variable

selection procedure to the additive hazards model with a strati�ed case-cohort design

and a diverging number of parameters. We again establish variable selection consistency,

estimation consistency, and asymptotic normality of the penalized estimator under this

setting. We propose a new tuning parameter selection method and evaluate its performance

via simulation. We show that the proposed tuning parameter selection method outperforms
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the conventional k-fold cross-validation method. The proposed procedure is applied to the

Atherosclerosis Risk in Communities (ARIC) study (Ballantyne et al. 2004).

Tuning parameter selection is critical to the success of a regularized variable selection

method. A consistent tuning parameter selection method has not been established for the

SCAD-penalized Cox model with a diverging dimension. In the last part of the disserta-

tion, we propose a generalized information criterion (GIC) for tuning parameter selection

and establish conditions required for its variable selection consistency under this setting.

Simulation study shows that GIC performs well under the required conditions with �nite

sample size. It is then applied to the Framingham Heart Study (Dawber 1980).
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CHAPTER 1: INTRODUCTION

Modern epidemiological cohort studies and disease prevention trials often need to fol-

low thousands of subjects for many years. There are two typical features of large-scale

cohort studies and prevention trials. First, the investigators are usually interested in the

association of a large number of risk factors with an outcome. However, the assembly of

some covariates may require the analysis of previously stored precious biological samples

such as serum and genetic materials using expensive bioassays, genotyping, or sequencing

technology. Therefore, it can be prohibitively expensive to collect all covariates from every

subject in the study. Second, the rate of occurrence of event of interest is usually low,

especially for such events as cancer or death. Consequently, subjects without the event of

interest (noncases) constitute a predominant portion of the cohort, and if the covariates

were to be measured for every subject, most of the associated cost would be spent on the

noncases, which do not contribute as much information as subjects with the event of inter-

est (cases) in the analysis of failure time data. To reduce the cost and e�ort in collecting

expensive covariates without decreasing much e�ciency in the analysis of failure time data,

Prentice (1986) proposed the case-cohort design, where the complete covariate information

is only obtained from a random subcohort sample plus all cases. Case-cohort design has

been widely used in practice. For example, in the Busselton Health Study (Cullen 1972,

Knuiman et al. 2003) a cohort of 1,401 Australian from Busselton in West Australia was

followed for 15 years, and the time to stroke was analyzed under case-cohort design where

the main risk factor serum ferritin level was only measured for the case-cohort of size 513.

In case-cohort studies where a large number of covariates are collected, researchers are
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often interested in selecting a subset of the covariates that are related to the event of

interest. With the inclusion of interaction terms and polynomial terms, the number of

candidate covariates can be very large. In the aforementioned Busselton Health Study,

there are a number of potential confounders or e�ect modi�ers that need to be considered

in the modeling process. With the pairwise interactions between ferritin level and all the

other covariates as well as the squared continuous covariates, the total number of terms

in the model exceeds 30, which is fairly high considering that there are only 118 incidence

of stroke in the cohort. As Huber (1973) argued, in the context of variable selection the

number of parameters should be considered as increasing with sample size, and goes to

in�nity as sample size goes to in�nity. Therefore, an e�cient variable selection proce-

dure that allows a diverging number of parameters is needed for the case-cohort design.

Although we consider the dimension of the parameter to increase with sample size, we

restrict ourselves to the p≪ n scenario in this dissertation. The traditional variable selec-

tion methods such as stepwise and best subset selection su�er from two major drawbacks.

First, they are unstable in that covariates are either retained or dropped from the model,

and therefore small changes in the data can result in very di�erent models being selected.

Second, they are computationally intensive, and becomes infeasible when the number of

covariates increases with sample size. To overcome these drawbacks, penalized likelihood

based variable selection procedures have been developed over the last few decades. Under

certain regularity conditions, these procedures can automatically and simultaneously select

variables and estimate their coe�cients. The penalty-based variable selection procedures

have been successfully applied to linear, generalized linear, Cox proportional hazards, and

additive hazards model. However, to our knowledge, the properties of these procedures

have not been studied under proportional hazards or additive hazards model with case-

cohort design and a diverging number of parameters. This dissertation intends to �ll in

this gap.
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The properties of the regularized variable selection procedures depend on the penalty

function that is applied to the likelihood function. Many penalty functions have been pro-

posed in the literature. Among them, the smoothly clipped absolute deviation (SCAD)

penalty (Fan and Li 2001) has been shown to possess the so-called oracle property, namely,

as sample size goes to in�nity, the procedure correctly identi�es the true model with prob-

ability one and estimates the standard errors of nonzero parameters as e�ciently as if the

zero parameters were never included in the estimation process. For the �rst topic of the

dissertation, we investigate both the asymptotic and �nite sample properties of the SCAD

estimator under Cox proportional hazards model with a case-cohort design and a diverg-

ing number of parameters. We �rst establish the rate of convergence of the maximum

SCAD-penalized pseudo-partial likelihood estimator. We then prove its oracle property

and establish its asymptotic distribution. As mentioned before, the rate of event of inter-

est is often very low in case-cohort studies (typically over 90% censoring rate). However,

most previous studies on regularized variable selection in survival analysis investigated

its �nite sample properties with fairly low censoring percentage. The performance of the

method in high censoring percentage situation is largely unknown. We conduct extensive

simulation studies to assess its �nite sample properties under a case-cohort design with

high censoring percentages.

Although Cox proportional hazards model has gained tremendous popularity in the

analysis of time-to-event data, its proportional hazards assumption may fail to hold in

many situations. The additive hazards model was developed as a useful alternative to

the proportional hazards model. It does not require the assumption that the covariate

e�ect on the hazard function is proportional. It has sound biological and empirical basis.

The additive covariate e�ect on the hazard function is easier to interpret and communicate

with investigators. In fact, investigators are sometimes more interested in the risk di�erence

attributed to the covariates. The risk di�erence is more relevant to public health because it
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translates directly into the number of disease cases that would be avoided by eliminating a

particular exposure (Kulich and Lin 2000). Over the years, estimators for additive hazards

model with full cohort and case-cohort have been proposed and their asymptotic properties

studied (Lin and Ying 1994, Kulich and Lin 2000). Variable selection procedures under

additive hazards model have also been extensively studied with Lasso (Leng and Ma 2007),

adaptive Lasso (Martinussen and Scheike 2009), and SCAD penalty (Lin and Lv 2013).

However, to our knowledge, variable selection under additive hazards model with case-

cohort design has not been studied. As the second topic of the dissertation, we theoretically

and empirically investigate the properties of SCAD-penalized variable selection procedure

in additive hazards model with a strati�ed case-cohort design and a diverging number of

parameters. We also propose an e�ective tuning parameter selection method for the SCAD-

based variable selection procedure in additive hazards model under case-cohort design.

All regularized variable selection procedures involve one or several tuning parameters

that control the complexity of the selected model by adjusting the magnitude of the penalty.

The optimal performance of these variable selection procedure are heavily dependent on the

selection of the tuning parameters. There are mainly two data-driven tuning parameter

selection methods: K-fold cross-validation (Efron and Tibshirani 1993) and generalized

cross-validation (GCV) (Craven and Wahba 1979). The latter is more computationally

e�cient and is analogous to the Akaike information criteria (AIC) whose properties are

thoroughly studied in the traditional variable selection literature. It has been shown that

the original GCV is selection inconsistent. That is, the tuning parameter selected from

GCV identi�es a model di�erent from the true one with probability tending to one as sample

size goes to in�nity. A number of authors developed various modi�ed tuning parameter

selection method that is selection consistent. However, their work lies in the framework

of linear and generalized linear model. The tuning parameter selection method has not

been theoretically studied for Cox proportional hazards model with a diverging number of
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parameters. The third topic of the dissertation is devoted to developing a variable selection

consistent tuning parameter selection method. We provide theoretical justi�cation and

empirical evidence via simulation that the proposed tuning parameter selection method

leads to the correct tuning parameter that identi�es the true model with probability tending

to one under Cox proportional hazards model with a diverging number of parameters.

The overall goal of this dissertation is to provide theoretical foundation as well as

practical guidance for regularized variable selection in a case-cohort design, and thereby

facilitates large-scale epidemiological studies on public health issues.
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CHAPTER 2: LITERATURE REVIEW

In this chapter, we review the literature on the following topics: 1) estimation method

for Cox proportional hazards model under a case-cohort design; 2) regularized variable

selection procedures for Cox proportional hazards model; 3) estimation method for additive

hazards model under a case-cohort design; 4) regularized variable selection procedures for

additive hazards model; 5) tuning parameter selection for regularized variable selection

procedures.

2.1 Estimation Method for Cox Proportional Hazards Model under a

Case-Cohort Design

The Cox proportional hazards model (Cox 1972) has been the most widely used model

to study the e�ect of covariates on failure times. Under Cox model, the hazard function

for the failure time T given time-dependent covariate vector Z(⋅) is given by

λ{t∣Z(t)} = λ0(t) exp{βT0 Z(t)},

where λ0(t) is an unspeci�ed baseline hazard function and β is a vector of regression

coe�cients.

Let C be the censoring time and X =min(T,C) be the observed time and ∆ = I(T ≤ C)

be the failure indicator, where I(⋅) is an indicator function. T and C are assumed to be

independent conditional on Z. De�ne the counting process N(t) = I(X ≤ t,∆ = 1), and

the at risk process Y (t) = I(X ≥ t). The partial likelihood function introduced by Cox

6



(1972) is given by

`n(β) =
n

∑
i=1

[β′Zi(t) − log
n

∑
j=1

Yj(t) exp{βTZj(t)}]∆i.

The maximum partial likelihood estimator of β0 can be obtained by solving the score

equation

Un(β) =
n

∑
i=1

{Zi(t) −
S(1)(β, t)
S(0)(β, t)}∆i = 0,

where S(0)(β, t) = n−1∑n
i=1 Yi(t) exp{βTZi(t)} and

S(1)(β, t) = n−1∑n
i=1 Yi(t)Zi(t) exp{βTZi(t)}. If the longest follow-up time is τ , then the

score equation can be equivalently written in the counting process format as

Un(β) =
n

∑
i=1

ˆ τ

0

{Zi(t) −
S(1)(β, t)
S(0)(β, t)}dNi(t) = 0.

The covariance matrix of the above estimator β̂ can be consistently estimated by the

inverse of the observed information matrix Σ̂−1 = −{∂Un(β)/∂β∣β=β̂}−1 (Andersen and Gill

1982).

In the case-cohort design, the covariate information is available only for a random

subcohort plus all cases. As a result, the risk set at each failure time needs to be modi�ed so

that only subjects with available covariate information are used. Prentice (1986) introduced

a pseudolikelihood to estimate the regression coe�cients,

˜̀
n(β) =

n

∑
i=1

⎡⎢⎢⎢⎢⎣
β′Zi(t) − log ∑

j∈R̃(t)

Yj(t) exp{βTZj(t)}
⎤⎥⎥⎥⎥⎦

∆i,

where R̃(t) = D(t) ∪ C, D(t) = {i ∶ Ni(t) ≠ Ni(t−)}, and C is the random subcohort.

In words, the risk set at each failure time t includes all subcohort members at risk at t

and any subjects outside the subcohort that fail at t. The author provided a heuristic
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estimation procedure for the pseudolikelihood. Self and Prentice (1988) slightly modi�ed

the risk set by setting R̃(t) = C. That is, only subcohort members at risk are included

in the risk set of each failure time. While the estimator of Prentice is score-unbiased,

that of Self and Prentice is not. Nevertheless, the latter is asymptotically equivalent to

the former provided an individual's contributions to S(1) and S(0) are asymptotically neg-

ligible. Under mild regularity conditions, the authors used a combination of martingale

and �nite population convergence results to prove that the maximum pseudolikelihood

estimator has an asymptotic normal distribution with mean β0 and covariance matrix of

the form n−1Σ−1(Σ +∆)Σ−1. The matrix Σ can be consistently estimated by the observed

information matrix. The matrix ∆ takes on a very complicated expression and re�ects the

extra variance induced by the sampling of the subcohort. To circumvent direct estimation

of ∆, Wacholder et al. (1989) developed a bootstrap estimate of the variance of the maxi-

mum pseudolikelihood estimator. Their method imitates the original sampling scheme by

resampling separately cases and subcohort controls. However, it is very computationally

intensive. Barlow (1994) and Lin and Ying (1993) proposed di�erent variance estimators

that are easily computed.

Barlow (1994) proposed a robust estimator of the variance based on the in�uence of an

individual observation on the overall score function. The author also proposed a slightly

di�erent pseudolikelihood function than those of Prentice (1986) and Self and Prentice

(1988). In the modi�ed pseudolikelihood function, the author introduced a time-dependent

weight for individual i given by wi(t) = dNi(t) + {1 − dNi(t)}ξim(t)/m̃(t), where ξi = 1 if

individual i belongs to the subcohort and 0 otherwise, m(t) is the number of individuals in

the full cohort at risk at time t, and m̃(t) is the number of individuals in the subcohort at

risk at time t. This weight is di�erent from that in Prentice (1986) in that individuals with

dNi(t) = 0 and ξi = 1 receives a weight of m(t)/m̃(t) instead of 1. The log-pseudolikelihood
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function is then given by

˜̀
n(β) =

n

∑
i=1

ˆ τ

0

[βTZi(t) − log∑n

j=1
Yj(t)wj(t) exp{βTZi(t)}]dNi(t) = 0. (2.1)

Lin and Ying (1993) developed a general solution to the problem of missing covariates

under the Cox proportional hazards model. It approximates the partial likelihood score

function with full covariate measurements and includes case-cohort design as a special

case. Let the p−dimensional covariate vector (possibly time-dependent) for individual i be

Zi(⋅) = {Z1i(⋅), ..., Zpi(⋅)}T . Let H0i(t) be an indicator function that equals 1 if Zi(t) is

completely observed and 0 otherwise. Let Hi(⋅) be a p × p diagonal matrix with indicator

functions {H1i(⋅), ...,Hpi(⋅)} as the diagonal elements, where Hji(t) = 1 if Zji(t) is available

and 0 otherwise. The authors proposed the following approximate partial-likelihood score

function for estimation of β0

Ũ(β) =
n

∑
i=1

∆iHi(Xi){Zi(Xi) −E(β,Xi)},

whereXi is the observed time for individual i, E(β, t) = S(1)(β, t)/S(0)(β, t), and S(r)(β, t) =

n−1∑n
i=1H0i(t)Yi(t) exp{βTZi(t)}Zi(t)⊗d, d = 0,1. Let β̂ be the root of the above score func-

tion. Under certain regularity conditions, the authors showed that n1/2(β̂ − β0) converges

to a zero-mean normal distribution. Under case-cohort design, the covariance matrix of

the limiting distribution is much easier to estimate than those in Prentice (1986) and Self

and Prentice (1988).

If the complete covariate history is available for the cases outside the subcohort, then

a more e�cient pseudolikelihood function can be constructed as proposed by Kalb�eisch

and Lawless (1988). Their original pseudolikelihood function (13) can be equivalently ex-

pressed as (2.1) with the weight function wi = ∆i + (1 − ∆i)ξi/α, where α = ñ/n is the

sampling probability of the subcohort and ∆i and ξi are the same as de�ned before. With
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this weight function, cases outside the subcohort are always included in the risk set for all

failure times rather than only the ones at which they fail. Borgan et al. (2000) considered

a time-varying version of this weight in their Estimator II in which the true sampling prob-

ability α is replaced with its sample estimate α̂(t) = ∑n
i=1 ξi(1−∆i)Yi(t)/∑n

i=1(1−∆i)Yi(t).

Using an estimated rather than the known true sampling probability can actually im-

prove e�ciency (Robins et al. 1994). Kulich and Lin (2004) rigorously proved the asymp-

totic properties of the estimator based on this e�cient time-varying weight function and

generalized it to doubly weighted estimator by replacing the scalar α̂(t) with a matrix

α̂(t) = {∑n
i=1(1 −∆i)Ai(t)}−1{∑n

i=1 ξi(1 −∆i)Ai(t)}, where Ai(t) is a p × p diagonal matrix

with p potentially di�erent random processes on the diagonal to capture the covariate in-

formation that is available for all cohort members as well as surrogate measurements of

the expensive covariates. Kang and Cai (2009) extended the e�ciently weighted estimator

of Borgan et al. (2000) to studies with multiple outcomes of interest. The authors used a

marginal model to handle the correlation among multiple outcomes and derived a sandwich

estimator of the covariance matrix of the estimated parameters. Kim et al. (2013) further

improved the e�ciency of the estimators for case-cohort studies with multiple outcomes

by replacing the weight function wi(t) in (2.1) with a modi�ed one that uses the covariate

information from cases of all types. Let K be the number of outcome types. ∆ij = 1 if

individual i has the outcome j and 0 otherwise. The modi�ed weight function for outcome

type k is given by

ψik(t) = {1 −
K

∏
j=1

(1 −∆ij)} +
K

∏
j=1

(1 −∆ij)ξiα̃−1
k (t),

where α̃k(t) = ∑n
i=1 ξi{∏K

j=1(1−∆ij)}Yik(t)/∑n
i=1{∏K

j=1(1−∆ij)}Yik(t). In words, this weight

function makes use of the complete covariate history of cases of all other types that are out-

side the subcohort when constructing the pseudolikelihood function for a speci�c outcome

type.
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In this dissertation, we use the time-varying e�cient weight considered in the Estimator

II in Borgan et al. (2000) and Kulich and Lin (2004) in a univariate case-cohort design.

2.2 Regularized Variable Selection Procedures for Cox Proportional

Hazards Model

Variable selection is an important component of statistical modeling. The idea of penal-

ization has long been used in the modeling process to achieve the balance between goodness-

of-�t and model complexity. Among others, Akaike's information criterion (AIC) (Akaike

1973), Mallows' Cp (Mallows 1973), and Bayesian information criterion (BIC) (Schwarz

1978) are probably the most commonly used traditional penalty-based variable selection

criteria. These criteria, however, rely on stepwise or subset selection procedures and are

separated from the parameter estimation procedure. As a result, they are computationally

intensive and unstable (Breiman 1996), and their sampling properties are hard to derive.

Tibshirani (1996) proposed a seminal method for variable selection in linear models based

on penalized sum of squares. The author named the procedure least absolute shrinkage

and selection operator or Lasso. Let Xi = (Xi1, ...,Xip)T be the p-dimensional covari-

ate vector for individual i (i = 1, ..., n), yi be the response variable for individual i, and

β0 = (β01, ..., β0p)T be p-dimensional regression coe�cients. In its original form, the Lasso

estimate β̂ is de�ned by

β̂ = argmin
⎧⎪⎪⎨⎪⎪⎩

n

∑
i=1

(yi −
p

∑
j=1

βjxij)
2⎫⎪⎪⎬⎪⎪⎭

subject to
p

∑
j=1

∣βj ∣ ≤ t, (2.2)

where t ≥ 0 is a tuning parameter that controls model complexity. The Lasso estimator can

be more generally expressed as the maximizer of the L1 penalized log-likelihood function

β̂ = argmax{`n(β) − λ
p

∑
j=1

∣βj ∣} ,
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where λ is a tuning parameter that has a one-to-one relationship with t in (2.2). Tibshirani

(1996) showed that the Lasso procedure shrinks all parameter estimates towards 0 and sets

some estimates to exactly 0, thus achieves model selection purpose. There are a number of

algorithms proposed in the literature to compute the Lasso estimator. Tibshirani (1996)

used an iterative reweighted least squares (IRLS) method. Fu (1998) developed a "shooting

algorithm" in the linear model framework. Efron et al. (2004) proposed an elegant and

powerful variable selection algorithm named least angle regression or LARS that computes

Lasso estimator as a special case. Moreover, LARS can compute the entire solution path as

a function of the tuning parameter. Tibshirani (1997) extended the Lasso variable selection

method to the Cox proportional hazards model, where the Lasso estimator is the maximizer

of the L1 penalized log-partial likelihood function. Park and Hastie (2007) introduced a

L1 penalty solution path algorithm for generalized linear and Cox proportional hazards

model.

Fan and Li (2001) proposed a new penalty function under linear and generalized linear

models, which they named Smoothly Clipped Absolute Deviation Penalty or SCAD. The

SCAD estimator is the maximizer of the following penalized likelihood function

Qn(β) = `n(β) − n
p

∑
j=1

Pλ(∣βj ∣),

where the �rst derivative of the penalty function satis�es

P ′
λ(θ) = λI(θ ≤ λ) +

(aλ − θ)+
a − 1

I(θ > λ)

for some a > 2, λ > 0, and θ > 0, with Pλ(0) = 0.

The SCAD penalty is di�erent from the Lasso penalty in that it does not over penalize

large β's. The authors showed that, under some regularity conditions, SCAD estimator

12



correctly shrinks zero-valued parameters to 0, and consistently estimates the non-zero pa-

rameters. Moreover, it estimates the non-zero parameters as e�cient as if the underlying

true model is known a priori, a property often called oracle property in the literature. As

pointed out by the authors, the Lasso estimator does not possess oracle property because

it underestimates the non-zero parameters due to its over-penalization on large parame-

ters. Fan and Li (2001) also proposed a new uni�ed algorithm to compute the estimates

from penalty functions that are singular at the origin, which include Lasso and SCAD.

In this local quadratic approximations or LQA algorithm, the penalty function is locally

approximated by a quadratic function as follows. Suppose an initial value β(0) is obtained.

If β
(0)
j is very close to 0 by a pre-speci�ed threshold value, then it is set to 0. Otherwise

the penalty function for βj is approximated by

Pλ(∣βj ∣) ≈ Pλ(∣β(0)
j ∣) + 1

2
{P ′

λ(∣β
(0)
j ∣)/∣β(0)

j ∣} {β2
j − (β(0)

j )2} for βj ≈ β(0)
j .

With the approximated penalty function, the minimization problem becomes a quadratic

minimization problem and standard Newton-Raphson algorithm can be used to solve for

the minimizer, which is used as the new initial value β(0). These steps are iterated until

convergence. In practice, the authors suggested using the unpenalized maximum likelihood

estimator as the initial value β(0). It should be noted that the SCAD penalty is not convex

on (−∞,∞), and therefore the SCAD penalized likelihood function is not concave. As a

result, the SCAD estimator obtained by the above algorithm cannot be guaranteed to be

the global maximizer. In practice it is suggested that di�erent initial values be used to

increase the probability of obtaining the global maximizer. Fan and Li (2002) extended

the SCAD estimator to Cox proportional hazards model and proved its oracle property.

Several other penalty functions have been proposed and their properties studied in Cox

proportional hazards model. Zou (2006) proposed an adaptive Lasso method for variable

selection where the L1 penalty for βj is multiplied by a weight de�ned by ŵj = 1/∣β̂j ∣γ,
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where β̂j is a root-n-consistent estimator of the true parameter β0 and γ is a positive

constant that is chosen by the analyst. Under certain regularity conditions, the author

established the oracle property of the adaptive Lasso estimator. Zhang and Lu (2007)

extended the adaptive Lasso estimator to the Cox proportional hazards model and proved

its oracle property. Zou and Hastie (2005) proposed a new penalty function that is a linear

combination of L2 and L1 penalties. The authors named their penalty elastic net. The

elastic net penalty successfully addresses the p ≫ n scenario and high correlation among

groups of covariates. Wu (2012) recently extended the elastic net method to Cox model

and developed a path algorithm for it.

As mentioned in the introduction, in many real data applications the number of co-

variates should be modeled as diverging with sample size. On this frontier, Peng and Fan

(2004) provided a rather complete theoretical framework for the asymptotic properties of

nonconcave penalized likelihood under generalized linear model with a diverging number

of parameters. Cai et al. (2005) investigated the SCAD penalty in Cox proportional haz-

ards model with correlated outcomes and a diverging number of parameters. The authors

proved the oracle property of the variable selection procedure and derived the asymptotic

distribution of the parameter estimates. Zou and Zhang (2009) proposed an adaptive elas-

tic net penalty which is a modi�ed elastic net penalty with the L1 penalty component

replaced by a weighted L1 penalty as in the adaptive Lasso. The authors established the

oracle property of the procedure with a diverging number of parameters and showed by

simulations that the proposed method dealt with collinearity problem better than other

oracle-possessing variable selection methods.
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2.3 Estimation Method for Additive Hazards Model under a Case-Cohort

Design

Additive hazards model is an important alternative to the Cox proportional hazards

model. It models risk di�erence, which bares more intuitive interpretation than risk ratio

in many epidemiological and biological studies (Hu�er and McKeague 1991). Additive

hazards model was originally proposed by Aalen (1980). The hazard function under the

additive hazards model for the failure time T given time-dependent covariate vector Z(⋅)

is given by

λ(t∣Z(t)) = λ0(t) + βT0 Z(t), (2.3)

where λ0(t) is an unspeci�ed baseline hazard function and β is a vector of regression

coe�cients. Lin and Ying (1994) proposed an estimator for model (2.3) and derived its

asymptotic properties. The authors proposed the following score equation under counting

process framework

U(β) =
n

∑
i=1

ˆ τ

0

{Zi(t) − Z̄(t)}{dNi(t) − Yi(t)βTZi(t)dt} ,

where Z̄(t) = ∑n
j=1 Yj(t)Zj(t)/∑n

j=1 Yj(t). The estimator β̂ is obtained by solving U(β) = 0,

which has a closed form

β̂ = [
n

∑
i=1

ˆ τ

0

Yi(t) {Zi(t) − Z̄(t)}⊗2
dt]

−1

[
n

∑
i=1

ˆ τ

0

{Zi(t) − Z̄(t)}dNi(t)] . (2.4)

Under some regularity conditions, n1/2(β̂ −β0) has been shown to converge in distribu-

tion to a p-dimensional normal distribution with mean 0 and covariance matrix that can
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be consistently estimated by a sandwich type estimator A−1BA−1, where

A = n−1
n

∑
i=1

ˆ τ

0

Yi(t) {Zi(t) − Z̄(t)}⊗2
dt, B = n−1

n

∑
i=1

ˆ τ

0

{Zi(t) − Z̄(t)}⊗2
dNi(t).

Kulich and Lin (2000) extended the additive hazards model to case-cohort studies.

Sharing the same spirit of Kalb�eisch and Lawless (1988), the authors proposed a weighted

pseudo-score function

UH(β) =
n

∑
i=1

ρi

ˆ τ

0

{Zi(t) − Z̄H(t)}{dNi(t) − Yi(t)βTZi(t)dt} ,

where Z̄H(t) = ∑n
j=1 ρjYj(t)Zj(t)/∑n

j=1 ρjYj(t), ρi = ∆i + (1 − ∆i)ξi/pi and pi = Pr(ξi = 1).

The estimator β̂ solves UH(β) and takes a similar closed form as (2.4). Under some

regularity conditions, the authors showed that n1/2(β̂ − β0) converges to a p-dimensional

normal distribution with mean 0 and covariance matrix D−1
A (ΣA +ΣH)D−1

A , where

DA = E [
ˆ τ

0

{Z1(t) − e(t)}⊗2
Y1(t)dt] , ΣA = E [

ˆ τ

0

{Z1(t) − e(t)}⊗2
dN1(t)] ,

ΣH(β0) = E{(1 − p1)(1 −∆1)S⊗2
1 (β0)

p1

} ,

where e(t) = E{Z1(t)Y1(t)}/E{Y1(t)}, Si(β0) =
´ τ

0
{Zi(t)−e(t)}dMi(t), andMi(t) = Ni(t)−´ τ

0
Yi(s)dΛ0(s) −

´ τ
0
βT0 Zi(s)Yi(s)ds.

2.4 Regularized Variable Selection Procedures for Additive Hazards Model

Many researchers have applied the penalty-based variable selection procedures to the

additive hazards model to achieve a sparse model from a large number of candidate co-

variates. Ma and Huang (2005) proposed a Lasso type estimator to select important genes
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under additive hazards model. The authors applied an L1 constraint that ∑d
s=1 ∣βs∣ ≤ u (d

is the number of the covariates; u is a tuning parameter) to the loss function

M(β) =
d

∑
s=1

{(
n

∑
i=1

Lis,1)β1 + ... + (
n

∑
i=1

Lis,d)βd −
n

∑
i=1

Ri
s}

2

,

where Lis,l is the (s, l) component of matrix Li =
´∞

0
Yi(t) {Zi − Z̄(t)}⊗2

dt and Ri
s is the

sth component of Ri =
´∞

0
{Zi − Z̄(t)}dNi(t). The Lasso type estimator is the minimizer

of the above loss function under the L1 constraint. The authors proposed using weighted

bootstrap technique to compute the covariance matrix of the Lasso type estimator. This

estimator shares the same drawback of regular Lasso estimator that it is not path consistent.

In other words, there is a positive probability that the solution path of this procedure does

not contain the true model. Leng and Ma (2007) proposed a weighted Lasso estimator

under additive hazards model which is the maximizer of the following objective function

1

2
(βTAnβ − 2βT bn) + nλn

p

∑
j=1

ωj ∣βj ∣,

where An = ∑n
i=1

´∞
0
Yi(t) {Zi − Z̄(t)}⊗2

dt, bn = ∑n
i=1

´∞
0

{Zi − Z̄(t)}dNi(t), and ωj is a

non-negative weight whose inverse is a consistent estimator of βj. The authors showed

that the weighted Lasso estimator is path consistent and possesses the oracle property.

Martinussen and Scheike (2009) independently proposed the same weighted Lasso estima-

tor. They formally justi�ed the choice of the loss function L(β) = βTAnβ − 2βT bn used

in the variable selection procedure. Unlike the Cox proportional hazards model where the

log-partial likelihood function is a natural choice of loss function for variable selection,

under additive hazards model the likelihood function is di�cult to work with due to the

nonparametric baseline function and the additive structure of the model. Motivated by

the similarity between the Lin-Ying estimator (Lin and Ying 1994) and the least square

estimator, Martinussen and Scheike (2009) argued that the above loss function L(β) should
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be used in variable selection for additive hazards model. In fact, L(β) can be obtained by

integrating the Lin-Ying score function U(β) with respect to β, which further justi�es the

use of L(β) as the loss function.

Lin and Lv (2013) applied a class of penalty function that includes Lasso and SCAD to

the aforementioned loss function L(β), and investigated their variable selection properties

in a high dimensional framework. Under mild regularity conditions, they proved the weak

oracle property (Lv and Fan 2009) and the oracle property for the penalized estimators.

Gai�as and Guilloux (2012) applied the same weighted L1 penalty as in Leng and Ma

(2007) and Martinussen and Scheike (2009) to a more general form of loss function which

includes the L(β) used in Leng and Ma (2007) and Martinussen and Scheike (2009) as

a special case. The authors established non-asymptotic sharp oracle inequalities for the

estimator under high dimensional setting using a new version of Bernstein's inequality.

2.5 Tuning Parameter Selection for Regularized Variable Selection

Procedures

Tuning parameter selection plays a central role in the implementation of penalty based

variable selection procedures. The realization of the desirable theoretical properties of the

variable selection procedures in real data analyses is heavily dependent on the selection

of the correct tuning parameters. In practice, tuning parameters are usually selected by

a data-driven fashion that involves minimization of a certain criterion over the tuning

parameter space. A grid search method is typically used to identify the minimizer of the

selection criterion. There are two major categories of tuning parameter selection methods:

K-fold cross-validation (Efron and Tibshirani 1993) and generalized cross-validation (GCV)

(Craven and Wahba 1979). In K-fold cross-validation method, the full dataset D is evenly

divided intoK random subsetsDk (k = 1, ...,K). Denote the training and test set byD−Dk

and Dk, respectively. Denote the observed response and covariate vector for individual i
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by (yi, xi). For each tuning parameter value λ over a pre-speci�ed grid and subset Dk,

a penalized estimator β̂(k)(λ) is obtained using the training set D −Dk. Then the cross-

validation criterion is given by

CV(λ) =
K

∑
k=1

∑
(yi,xi)∈Dk

{yi − xTi β̂(k)(λ)}2.

The λ̂ is chosen as the minimizer of CV(λ). The K-fold cross-validation method is compu-

tationally intensive, and CV(λ) is less intuitive for right censored outcome such as survival

time. As an alternative, generalized cross-validation has been widely used in tuning param-

eter selection for various penalty based variable selection procedures. The GCV criterion

is de�ned in linear model as

GCV(λ) = ∥Y −Xβ̂λ∥2

n{1 − e(λ)/n}2
,

and de�ned in generalized linear model as

GCV(λ) = −`n(β̂λ)
n{1 − e(λ)/n}2

,

where `n(β̂λ) is the log-likelihood function evaluated at the penalized estimates, e(λ) is

the e�ective number of parameters given by e(λ) = tr[X{XTX + nΣλ(β̂λ)}−1XT ] for lin-

ear model and e(λ) = tr[{`′′n(β̂λ) − nΣλ(β̂λ)}−1`′′n(β̂λ)] for generalized linear model, and

Σλ(β̂λ) = diag{P ′
λ(∣β̂λ1∣)/∣β̂λ1∣, ..., P ′

λ(∣β̂λp∣)/∣β̂λp∣}. The GCV criterion can be deemed as a

weighted version of the leave-one-out cross-validation criterion (Craven and Wahba 1979).

In Cox proportional hazards model, the partial likelihood is used in the numerator of the

GCV statistic.
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Wang et al. (2007) demonstrated in linear model the similarity between GCV and

traditional AIC criterion with a logarithm transformation of GCV

log{GCV(λ)} = log(∥Y −Xβ̂λ∥2/n) − 2 log{1 − e(λ)/n}.

When e(λ) ≫ n we have

log{GCV(λ)} ≈ log(∥Y −Xβ̂λ∥2/n) + 2e(λ)/n,

which is analogous to the traditional AIC criterion. The authors showed with SCAD

penalty that GCV is not a consistent selection criterion. Namely, tuning parameter selected

by GCV criterion results in over�tted model with a positive probability as sample size goes

to in�nity. The authors proposed a new criterion that is analogous to the traditional BIC

criterion, which is de�ned in linear model as

BIC(λ) ≡ log(∥Y −Xβ̂λ∥2/n) + log(n)e(λ)/n.

They showed that the BIC criterion can identify the true model with probability 1 as n

goes to in�nity. Zhang et al. (2010) obtained similar results in generalized linear models

with nonconcave penalized likelihood. The authors introduced a generalized information

criterion (GIC) de�ned as

GIC(λ) ≡D(y; β̂λ)/n + κne(λ)/n, (2.5)

where D(y; β̂λ) = 2{`n(y; y)−`n(β̂λ; y)} is the deviance and κn is a positive constant chosen

by the analyst. The tuning parameter is selected as the minimizer of GIC. The authors

showed that when κn is bounded above, then the selected tuning parameter over�ts the

model with a positive probability, whereas when κn →∞ and κn/
√
n→ 0, then the selected
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tuning parameter identi�es the true model with probability tending to one.

Both Wang et al. (2007) and Zhang et al. (2010) considered tuning parameter selection

in a �nite dimensional setting where the number of candidate covariates is a �xed �nite

constant. Wang et al. (2009) extended the investigation on tuning parameter selection

into the realm of diverging number of parameters. In linear model framework, the authors

de�ned a slightly modi�ed BIC criterion as

BICλ(β̂λ) ≡ log(∥Y −Xβ̂λ∥2/n) +Cn log(n)∣Sλ∣/n,

where ∣Sλ∣ is the size of the model identi�ed by tuning parameter λ and Cn is a positive

constant chosen by the analyst. The selected tuning parameter minimizes this criterion.

The authors showed that, under some regularity conditions, the BIC criterion consistently

identi�es the true model as n goes to in�nity given that Cn → ∞ and Cnp log(n)/n →

0, where p is the dimension of the parameters that goes to in�nity with sample size,

and ∥P ′
λ(β̂λ,a)∥2 = op{log(n)/n}, where β̂λ,a is the penalized estimates of the non-zero

components of β0. The authors showed that both SCAD and adaptive Lasso penalties

satisfy the last condition.

Chen and Chen (2008) investigated the selection property of an extended BIC in high

dimensional linear model where p grows at a polynomial rate with n. Assume that the

model space S is partitioned into ⋃pj=1 Sj such that models in each Sj have equal dimension.

Let τ(Sj) be the size of Sj. Therefore, τ(Sj) = (p
j
). The authors proposed an extended

BIC for a model s ∈ Sj

BICγ(s) ≡ −2`n{θ̂(s)} + ν(s) log(n) + 2γ log τ(Sj),

where β̂(s) is the maximum likelihood estimator for model s, ν(s) is the size of model s,

γ ∈ [0,1] is a constant that is related to the divergence rate of the model dimension. The
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authors showed in linear model that when p = O(nκ) for some constant κ ≥ 0, γ > 1−1/(2κ),

and certain asymptotic identi�ability condition is satis�ed, the extended BIC can identify

the true model with probability tending to one as sample size goes to in�nity. Wang and

Zhu (2011) further proposed a new family of BIC-like criteria for ultra-high dimensional

variable selection in linear model where log(p) = O(nκ). The new criteria they proposed is

de�ned as

HBICγ(M) ≡ n log ( 1

n
RSSM) + 2γ log(p)∣M ∣,

where ∣M ∣ is the size of model M, RSSM is the residual sum of squares of model M , and

γ ≥ 1 is a constant as in the above de�nition of extended BIC (Chen and Chen 2008).

Let integer K be the upper bound of the true model M0 that is set by the researcher.

This bound relieves the searching endeavor by focusing exclusively on the class of sub-

models {M ∶ ∣M ∣ ≤ K}. Under some regularity conditions, if γ > 1, for any K satisfying

K log(p) = o(n), the authors proved that the HBICγ consistently selects the true model

from the model space {M ∶ ∣M ∣ ≤K} as sample size goes to in�nity.

Fan and Tang (2013) studied tuning parameter selection in generalized linear model

under ultra-high dimensional setting with log(p) = o(n). They used the GIC de�ned in

(5.3) as the selection criterion. They introduced a quantity δn which they call the signal

strength of the true model. For any model α, let ∣α∣ be the size of model. De�ne its

"population parameter" β∗(α) to be the minimizer of the Kullback-Leibler (KL) distance

I{β(α)} = Eβ0 [log{f0(β0)/fα(β(α))}], where f0 and fα are the density under the true

model and model α, respectively. Note that the expectation is taken under the true model.

Let K be the upper bound of the true model as described in Wang and Zhu (2011). For

K = o(n), the signal strength δn is de�ned as

δn ≡ inf
α⊅α0, ∣α∣≤K

1

n
I{β∗(α)}.
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Then under some regularity conditions, the authors showed that GIC is a consistent tun-

ing parameter selector provided the constant κn diverges to in�nity at a rate that is a

function of δn, K, parameter dimension p, and true model size s, and the form of the

function depends on whether the outcome variable is bounded, Gaussian, or unbounded

non-Gaussian. They recommended for practical implementation to use a uniform choice of

κn = log{log(n)} log(p).
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CHAPTER 3: REGULARIZED VARIABLE SELECTION FOR COX
PROPORTIONAL HAZARDS MODEL WITH A CASE-COHORT DESIGN

3.1 Introduction

Large-scale epidemiological studies and disease prevention trials often need to follow

thousands of subjects for an extended period of time. The assembly of covariates for the

entire study cohort can be prohibitively expensive, especially when it requires precious

biological samples or expensive bioassays. Moreover, the occurrence rate of the event of

interest is usually low in these studies, especially for such events as cardiovascular disease,

cancer, or death. We refer to subjects who develop the event during the study as cases and

the others as noncases. If the covariates were to be measured for everyone in the study,

most of the cost would be spent on noncases, which do not contribute as much information

as cases. To reduce the cost and e�ort in collecting expensive covariates without decreasing

much e�ciency in the analysis of time-to-event data, Prentice (1986) proposed the case-

cohort design, where the complete covariate information is only obtained from a random

subcohort of the sample plus all cases.

Various estimation methods have been developed for case-cohort studies under the pro-

portional hazard model (Cox 1972). Prentice (1986) and Self and Prentice (1988) proposed

a pseudo-partial likelihood method that modi�es the risk set to account for subcohort sam-

pling. Barlow (1994) introduced a time-dependent weight to estimate the risk set from the

subcohort sample and developed a robust variance estimate for the regression parameters.

Kalb�eisch and Lawless (1988) proposed a more e�cient weight that uses the complete

covariate history of all cases. Borgan et al. (2000) further studied several types of weight
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under the strati�ed case-cohort design. Kulich and Lin (2004) rigorously proved the asymp-

totic properties of the e�ciently weighted estimator (Kalb�eisch and Lawless 1988). Kang

and Cai (2009) extended the weighted estimator to studies with multivariate failure time

outcome. Kim et al. (2013) further improved the e�ciency of the estimators for case-cohort

studies with multivariate failure time outcome. In this chapter, we focus on the e�cient

weight proposed by Kalb�eisch and Lawless (1988) in a univariate unstrati�ed case-cohort

design.

In the large epidemiological studies that use the case-cohort design a large number of

covariates are usually collected, especially with the increasing availability of the electronic

medical record data. Thus, one research goal is often to identify a subset of them that are

related to the event of interest. With the inclusion of interaction terms and polynomial

terms, the number of candidate covariates can be very large. As Huber (1973) argued, in the

context of variable selection the number of parameters should be considered as increasing

to in�nity with sample size n. Therefore, an e�cient variable selection procedure that

allows a diverging number of parameters is needed for the case-cohort design. In this

chapter of the dissertation, we consider the scenario where the model size dn diverges to

in�nity at a slower rate than the sample size. Therefore, dn → ∞ but dn ≪ n. The

traditional variable selection methods such as stepwise and best subset selection are known

to be computationally intensive and unstable. Since the introduction of Lasso method by

Tibshirani (1996), penalty-based variable selection procedures have achieved great success.

Under certain regularity conditions, these procedures can simultaneously select variables

and estimate their coe�cients. Many penalty functions have been proposed, among which

the smoothly clipped absolute deviation (Fan and Li 2001), adaptive Lasso (Zou 2006),

adaptive elastic net (Zou and Zhang 2009), and minimax concave (Zhang 2010) penalties

have been shown to possess the so-called oracle property, namely, as n goes to in�nity,

the procedure correctly identi�es the true model with probability one and estimates the
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standard errors of nonzero parameters as e�ciently as if the zero parameters were never

included in the estimation process. Fan and Li (2002) applied the smoothly clipped absolute

deviation penalty to the proportional hazard model and proved its oracle property. Cai

et al. (2005) further extended the penalized partial likelihood procedure to multivariate

models with a diverging number of parameters. However, to our knowledge, the properties

of penalized variable selection procedure have not been studied under the case-cohort design

where not all covariates are fully observed. This chapter intends to �ll this gap.

3.2 Pseudo-Partial Likelihood for Case-Cohort Design

Suppose there are n independent subjects in a cohort. Let T and C be respectively

the time to the outcome of interest and the censoring time. Let Zi(t) be the dn × 1

possibly time-dependent covariate vector for subject i at time t. Let β = (β1, ..., βdn)T be

a vector of unknown regression coe�cients. Let X = min(T,C) be the observed time and

∆ = I(T ≤ C) be the censoring indicator, where I(⋅) is an indicator function. T and C

are assumed to be independent conditional on Z. De�ne for subject i the counting process

Ni(t) = I(Xi ≤ t,∆i = 1), and the at risk process Yi(t) = I(Xi ≥ t). Let λi(t) denote the

hazard function for subject i. Cox (1972) proposed the proportional hazard model where

λi{t∣Zi(t)} = λ0(t) exp{βTZi(t)}, where λ0(t) is an unspeci�ed baseline hazard function.

Under the case-cohort design, suppose we randomly select a subcohort of �xed size ñ from

the full cohort of size n. Let ξi denote the indicator for the ith subject being selected into

the subcohort, and α = ñ/n = Pr(ξi = 1) denote the selection probability of the ith subject.

Here we consider simple random sampling without replacement with �xed subcohort size.

Under this sampling scheme (ξ1, ..., ξn) are correlated. The covariate histories are not

observed for censored subjects outside the subcohort. Assuming the complete covariate

histories are available for all the cases, one can use the following pseudo-partial likelihood
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to estimate the regression coe�cients β (Kalb�eisch and Lawless 1988):

˜̀
n(β) =

n

∑
i=1

ˆ τ

0

[βTZi(t) − log∑n

j=1
ρj(t)Yj(t) exp{βTZj(t)}]dNi(t), (3.1)

where τ is the time at the end of study, ρi(t) = ∆i + (1 − ∆i)ξiα̂−1(t), α̂(t) = ∑n
i=1(1 −

∆i)ξiYi(t)/{∑n
i=1(1 − ∆i)Yi(t)} is an estimator of the true sampling probability α. The

corresponding pseudo-partial score equation is

Ũn(β) =
n

∑
i=1

ˆ τ

0

⎧⎪⎪⎨⎪⎪⎩
Zi(t) −

S̃
(1)
n (β, t)
S̃

(0)
n (β, t)

⎫⎪⎪⎬⎪⎪⎭
dNi(t) = 0, (3.2)

where S̃
(k)
n (β, t) = n−1∑n

i=1 ρi(t)Yi(t)Zi(t)⊗keβ
′Zi(t) for k = 0,1,2. For a vector a, a⊗0 = 1,

a⊗1 = a, and a⊗2 = aaT .

3.3 Variable Selection with a Penalized Pseudo-Partial Likelihood

3.3.1 Penalized Pseudo-Partial Likelihood

We de�ne a penalized pseudo-partial likelihood as

Q̃n(β) = ˜̀
n(β) − n

dn

∑
j=1

Pλjn(∣βj ∣), (3.3)

where Pλjn(∣βj ∣) is a nonnegative penalty function with λjn as the nonnegative tuning pa-

rameter controlling the model complexity. We use smoothly clipped absolute deviation

penalty proposed by Fan and Li (2001) with the modi�cation of covariate-speci�c tun-

ing parameters λjn, which allows di�erent regression coe�cients to have di�erent penalty

functions. When λjn = 0, no penalty is applied to βj. The �rst derivative of the penalty is

P ′
λjn

(θ) = λjnI(θ ≤ λjn) +
(aλjn − θ)+

a − 1
I(θ > λjn)
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for some a > 2 and θ > 0, with Pλjn(0) = 0.

3.3.2 Notations and Regularity Conditions

We denote by β̂ the penalized pseudo-partial likelihood estimator that maximizes (3.3).

We denote by β0 the true value of β. Let β0 = (βTI0, βTII0)T , where βI0 and βII0 are the

nonzero and zero components of β0, respectively. Let β̂ = (β̂TI , β̂TII)T , where β̂I and β̂II are

the penalized pseudo-partial likelihood estimators of βI0 and βII0, respectively. Denote by

kn the dimension of βI0 and kn/dn converges to a constant c ∈ [0,1]. For each n, we de�ne

the following notations:

S
(k)
n (β, t) = 1

n

n

∑
i=1

Yi(t)Zi(t)⊗keβ
′Zi(t), k = 0,1,2,

S̃
(k)
n (β, t) = 1

n

n

∑
i=1

ρi(t)Yi(t)Zi(t)⊗keβ
′Zi(t), k = 0,1,2,

Vn(β, t) =
S

(2)
n (β, t)S(0)

n (β, t) − S(1)
n (β, t)⊗2

S
(0)
n (β, t)2

,

Ṽn(β, t) =
S̃

(2)
n (β, t)S̃(0)

n (β, t) − S̃(1)
n (β, t)⊗2

S̃
(0)
n (β, t)2

,

s
(k)
n (β, t) = E{S(k)

n (β, t)}, k = 0,1,2, en(β, t) = s(1)n (β, t)/s(0)n (β, t),

In(β) = E{
ˆ τ

0

Vn(β, t)S(0)
n (β, t)dΛ0(t)} , Γn(β) =

1

n
var{˜̀′

n(β)},

an = max
1≤j≤kn

{∣P ′
λjn

(∣βj0∣)∣}, bn = max
1≤j≤kn

{∣P ′′
λjn

(∣βj0∣)∣},

Σn = diag{P ′′
λ1n

(∣β10∣), ..., P ′′
λknn

(∣βkn0∣)},

Bn = {P ′
λ1n

(∣β10∣)sgn(β10), ..., P ′
λknn

(∣βkn0∣)sgn(βkn0)}T .

We require the following regularity conditions:

(A)
´ τ

0
λ0(t)dt < ∞.
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(B) E{Y (τ)} > 0.

(C) ∣ Zij(0) ∣ +
´ τ

0
∣dZij(t)∣ < C1 < ∞ almost surely for some constant C1 and i = 1, ..., n

and j = 1, ..., dn. That is, Zij(t) has bounded variation almost surely.

(D) There exists a neighborhoodB of β0 such that for all β ∈ B and t ∈ [0, τ], ∂s(0)n (β, t)/∂β =

s
(1)
n (β, t), and ∂2s

(0)
n (β, t)/∂β∂βT = s(2)n (β, t). The functions s(k)n (β, t) (k = 0,1,2) are

continuous and bounded and s
(0)
n (β, t) is bounded away from 0 on B × [0, τ].

(E) α = ñ/n converges to a constant C2 ∈ (0,1] as n→∞.

(F) For each n, there exist positive constants C3, C4, C5, and C6 such that

0 < C3 < eigenmin{In(β0)} ≤ eigenmax{In(β0)} < C4 < ∞,

0 < C5 < eigenmin{Γn(β0)} ≤ eigenmax{Γn(β0)} < C6 < ∞,

where eigenmin{⋅} and eigenmax{⋅} are the minimum and maximum eigenvalues of a

matrix.

(G) min1≤j≤kn ∣β0j ∣/λjn →∞ as n→∞.

(H) lim infn→+∞ lim infθ→0+P ′
λjn

(θ)/λjn > 0 for j = 1, ..., dn.

3.3.3 Asymptotic Properties of Penalized Pseudo-Partial Likelihood

Estimator

Throughout this dissertation we use Op(⋅) and op(⋅) to denote in probability order rela-

tions and O(⋅) and o(⋅) to denote almost sure order relations. We �rst prove the existence of

a penalized pseudo-partial likelihood estimator that converges at rate Op{d1/2
n (n−1/2+an)},

and then establish its oracle property. The proofs of Theorem 3.3.1 and 3.3.2 are provided

in section 3.7.
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Theorem 3.3.1. Under Conditions (A) to (G), if bn → 0 and d4
n/n → 0 as n → ∞,

then with probability tending to one there exists a local maximizer β̂ of Q̃n(β) = ˜̀
n(β) −

n∑dn
j=1Pλjn(∣βj ∣), such that ∥β̂ − β0∥ = Op{d1/2

n (n−1/2 + an)}.

From Theorem 3.3.1 one can obtain a (n/dn)1/2-consistent penalized pseudo-partial

likelihood estimator, provided that an = O(n−1/2), which is the case for smoothly clipped

absolute deviation penalty under Condition (G). This consistency rate is the same as that

of the maximum likelihood estimator for the exponential family (Portnoy 1988).

Theorem 3.3.2. (Oracle property) Under Conditions (A) to (H), if bn → 0, d5
n/n→ 0, λjn →

0, λjn(n/dn)1/2 →∞, and an = O(n−1/2) as n→∞, the (n/dn)1/2-consistent local maximizer

β̂ = (β̂TI , β̂TII)T must satisfy that β̂II = 0 with probability tending to one and for any nonzero

kn × 1 constant vector u with uTu = 1,

n1/2uTΓ
−1/2
n11 (In11 +Σn){β̂I − βI0 + (In11 +Σn)−1Bn} → N(0,1)

in distribution, where In11 consists of the �rst kn × kn components of In(β0), and Γn11

consists of the �rst kn × kn components of Γn(β0).

The matrix In(β0) can be estimated by În(β̂) = n−1∑n
i=1

´ τ
0
Ṽn(β̂, t)dNi(t). The estima-

tion of matrix Γn(β0) is derived in section 3.7. For the smoothly clipped absolute deviation

penalty, an = 0, Σn = 0, and Bn = 0 for large n under Condition (G). Therefore, the result

of Theorem 3.3.2 reduces to

n1/2uTΓ
−1/2
n11 In11(β̂I − βI0) → N(0,1)

in distribution. The conditions d4
n/n→ 0 and d5

n/n→ 0 in the above theorems only describe

the divergence rate of dn when sample size goes to in�nity. They do not impose any one-

to-one relationship between �nite dn and n.
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3.4 Considerations in Practical Implementation

3.4.1 Local Quadratic Approximation and Variance Estimation

Since the smoothly clipped absolute deviation penalty function is singular at the ori-

gin, in practical implementation the Newton-Raphson algorithm cannot be directly applied

to maximize (3.3). Instead, we use a modi�ed Newton-Raphson algorithm with a local

quadratic approximation to the penalty function. The unpenalized pseudo-partial likeli-

hood (3.1) can be seen as a special case of the penalized pseudo-partial likelihood (3.3) with

Pλjn(∣βj ∣) = 0 for all j = 1, ..., dn. Applying Theorem 3.3.1 with an = 0, we know there exists

a (n/dn)1/2-consistent maximizer of (3.1). We use this maximizer as the initial value β(0)

for the modi�ed Newton-Raphson algorithm. If ∣β(0)
j ∣ is less than a pre-speci�ed small pos-

itive constant cj, then set β̂j = 0. Otherwise, the penalty function is locally approximated

by a quadratic function as

Pλjn(∣βj ∣) ≈ Pλjn(∣β
(0)
j ∣) + P ′

λjn
(∣β(0)

j ∣)(2∣β(0)
j ∣)−1(β2

j − β
(0)2
j )

and therefore P ′
λjn

(∣βj ∣) ≈ {P ′
λjn

(∣β(0)
j ∣)/∣β(0)

j ∣}βj. With the approximated penalty function,

one step Newton-Raphson algorithm is performed and the updated nonzero estimate is

used as the new initial value. The process is iterated until convergence or no nonzero

estimate is left.

The sandwich estimate of the covariance matrix for β̂ can be directly obtained from the

last iteration of the above algorithm as ˆcov(β̂) = {˜̀′′
n(β̂) − nΣλ(β̂)}−1v̂ar{˜̀′

n(β̂)}{˜̀′′
n(β̂) −

nΣλ(β̂)}−1, where Σλ(β) = diag{P ′
λ1n

(∣β(0)
1 ∣)/∣β(0)

1 ∣, ..., P ′
λdnn

(∣β(0)
dn

∣)/∣β(0)
dn

∣}. The sandwich

estimate of the covariance matrix is only applicable to the nonzero estimate of the param-

eters.
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3.4.2 Selection of Tuning Parameters

The tuning parameter λ in the smoothly clipped absolute deviation penalty function

Pλ(⋅) controls the magnitude of the penalty on each regression coe�cient and thereby

control the complexity of the selected model. In practical implementation, the proper-

ties of the penalized estimator heavily depend on the choice of the appropriate tuning

parameters. The typical methods of selecting the tunng parameters are data-driven proce-

dures such as K-fold cross-validation and generalized cross-validation (Craven and Wahba

1979). We use the generalized cross-validation method in our implementation. For pro-

portional hazard model the e�ective number of parameters is de�ned as e(λ1n, ..., λdnn) =

tr[{˜̀′′
n(β̂) − nΣλ(β̂)}−1 ˜̀′′

n(β̂)]. The generalized cross-validation statistic is de�ned as

GCV(λ1n, ..., λdnn) =
−˜̀

n(β̂)
n{1 − e(λ1n, ..., λdnn)/n}2

.

The optimal tuning parameters are chosen as argmin(λ1n,...,λdnn)
GCV(λ1n, ..., λdnn). The dn-

dimensional optimization problem is di�cult to solve in practice. We follow Cai et al. (2005)

to take λjn = λnŝe(β(0)
j ), where ŝe(β(0)

j ) is the estimated standard error of the unpenalized

pseudo-partial likelihood estimator used in section 3.4.1. Then the optimization problem

reduces to 1-dimensional search for the optimal λn.

When e(λn)/n is small, as is the case under the conditions for Theorem 3.3.1 and 3.3.2,

the log-transformation of GCV(λn) can be approximated by

log{GCV(λn)} = log{−˜̀
n(β̂)/n} − 2 log{1 − e(λn)/n} ≈ log{−˜̀

n(β̂)/n} + 2e(λn)/n.

This expression is analogous to the Akaike information criterion (Akaike 1973). Therefore,

we denote log{GCV(λn)} as AIC(λn), and de�ne λAIC
n ∶= argminλnAIC(λn). Wang et al.

(2007) and Zhang et al. (2010) showed in linear and generalized linear models with �nite

number of parameters that AIC(λn) over�ts the model with a positive probability as
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n → ∞. Following the idea of Bayesian information criterion (Schwarz 1978), we de�ne

another tuning parameter selection criteria, where the optimal tuning parameter, denoted

by λBIC
n , minimizes BIC(λn) ∶= log{− ˜̀

n(β̂)/n} + log(n)e(λn)/n. In the simulation section

that follows, we will empirically investigate the performance of the tuning parameter λAIC
n

and λBIC
n in penalty-based variable selection. Following Fan and Li (2001), we set the

second tuning parameter a in the smoothly clipped absolute deviation penalty function to

3.7 in our simulation.

In practice, researchers can perform a grid search to identify λAIC
n and λBIC

n . The lower

limit of the search range is 0 and the upper limit is the minimum λn that gives an empty

model. From our simulation experience, the upper limit rarely exceeds 2. Moreover, the

model selection result is fairly insensitive to the �neness of the search grid.

3.5 Numerical Study and Application

3.5.1 Simulation Study

Independent failure times are generated from the proportional hazard model. We set

λ0(t) = 2 and model dimension dn = [5n1/5−1/500
c ] to re�ect its dependence on sample size,

where nc is the number of cases and [x] rounds x to the nearest integer. We relate the model

dimension to the number of cases rather than sample size as the former better represents

the amount of information in the dataset. The �rst component of β is the smallest nonzero

parameter in terms of the absolute value and is set to either 0.34 (large e�ect scenario with

corresponding hazard ratio of 1.4) or 0.18 (small e�ect scenario with corresponding hazard

ratio of 1.2). There is one nonzero parameter for every two zero parameters, with the

other nonzero parameters recycling from values 0.6 and -0.8. For example, when dn = 15,

β1 = 0.34, then β = (0.34,0,0,0.6,0,0,−0.8,0,0,0.6,0,0,−0.8,0,0). We generate the design

matrix Z as a mixture of correlated binary and continuous variables. First, dn-dimensional

multivariate standard normal variable Z∗ are generated with the correlation coe�cient
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between Z∗
i and Z∗

j being 0.5∣i−j∣. Then the �rst three components of Z∗ are kept as

continuous, and the next three components are dichotomized at 0, and this pattern is

repeated for the rest of Z∗. Thus half of the covariates become binary with parameter 0.5.

Censoring times Ci are generated from a uniform distribution U(0, c) where c is adjusted

to achieve desired censoring percentage.

Two sample sizes, two censoring rates, and two noncase to case ratios are considered

for each β1 value (0.34 or 0.18). Performance of penalized variable selection procedures

with tuning parameter λAIC
n and λBIC

n are assessed. As a benchmark, we include the hard

threshold variable selection procedure, where the component of the the unpenalized max-

imum pseudo-partial likelihood estimator from the full model is selected if it p-value from

the Wald test is less than 0.05. We also include the result from the oracle procedure where

the correct subset of covariates is used to �t the model. As the censoring rate is typically

high in case-cohort studies, we set it to 80% and 90% in the simulation. For each setting

1000 replications are conducted.

We de�ne model error of a variable selection procedure as ME(µ̂) = E{E(T ∣z)− µ̂(z)}2,

and the relative model error as the ratio of its model error to that of the unpenalized

pseudo-partial likelihood estimates from the full model. We use the median and the median

absolute deviation of the relative model error to compare the performance of di�erent

variable selection procedures. We also calculate the average number of parameters correctly

estimated as 0, the average number of parameters erroneously estimated as 0, and the

overall rate of identifying the true model. Point estimates, empirical and model-based

standard errors, and the empirical 95% con�dence interval coverage are also calculated for

β̂1 using replications with nonzero β̂1.

Table 3.1 summarizes the variable selection performance under large e�ect size (β1 =

0.34). Larger sample size, lower censoring rate, and higher noncase to case ratio are as-

sociated with better variable selection performance in all three methods. The penalized
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method with λBIC
n outperforms the other two methods in all settings. The inferior per-

formance of λAIC
n is apparently due to its over�tting e�ect as shown by the low average

number of correctly identi�ed zero parameters. This is consistent with the theoretical �nd-

ings from Wang et al. (2007) and Zhang et al. (2010) that λAIC
n over�ts the model with a

positive probability when n goes to in�nity in linear and generalized linear models. Table

3.2 summarizes the parameter estimation of β1 under the same settings as in Table 3.1.

Given that β1 is correctly identi�ed as nonzero, all procedures produce approximately un-

biased point and standard error estimates and the 95% con�dence interval coverage is close

to the nominal level. The parameter is slightly overestimated under 90% censoring rate.

This is due to the fact that very small β̂1 are set to 0 in the variable selection algorithm

and therefore excluded from the computation of the average of point estimates. This bias

decreases as the variable selection performance improves.

Table 3.3 summarizes the variable selection performance under small e�ect size scenario

(β1 = 0.18). Similar patterns are observed as in Table 3.1, although the variable selection

performance of all three procedures decreases substantially. Nevertheless, the procedure

with λBIC
n outperforms the other procedures in all settings. Even with small e�ect size,

λBIC
n method performs almost as well as the oracle procedure when n = 10000 with 80%

censoring rate, which is a reasonable setting for case-cohort study. Table 3.4 shows the pa-

rameter estimation of β1 under settings in Table 3.3. Conditional on correctly identifying

β1 all procedures perform reasonably well in parameter estimation. Again, slight overes-

timation is observed under 90% censoring rate for the same reason as described before,

which disappears when the variable selection performance increases.

We also conducted simulation with smaller e�ect size (β1 = 0.095 corresponding to haz-

ard ratio= 1.1). The sample size and censoring rate needed to achieve reasonable variable

selection performance under this e�ect size become unrealistic. The result is not shown

due to space limit.
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Finally, the normality of the sampling distributions of β̂1 under all scenarios is graphi-

cally assessed by Q-Q plots (Figure 3.1 to 3.4). It can be seen that the sampling distribution

of β̂1 is a mixture of a point mass at 0 and a left-truncated distribution, which is well ap-

proximated by a truncated normal distribution as indicated by the straight line in the plots

and the conditional 95% con�dence interval coverage in Table 3.2 and 3.4. Furthermore,

from the Q-Q plots and Table 3.1 and 3.3, the number of 0 estimates decreases as the rate

of identifying the true model increases.
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Table 3.1: Model selection performance with large e�ect size (β1 = 0.34, hazard ratio = 1.4)

80% Censored 90% Censored

RME Zero Parm. RITM RME Zero Parm. RITM

Method median (MAD) C I (%) median (MAD) C I (%)

n = 2500, noncase:case = 1:1, dn = 17 for 80% censored, dn = 15 for 90% censored

HT 0.69 (0.23) 10.28 0.05 47.9 0.92 (0.31) 9.09 0.75 15.7

SCAD(AIC) 0.67 (0.23) 9.75 0.02 29.3 0.93 (0.16) 6.36 0.22 0.9

SCAD(BIC) 0.46 (0.3) 10.97 0.27 74.8 0.77 (0.35) 9.24 0.7 21.8

Oracle 0.35 (0.18) 11 0 100 0.33 (0.18) 10 0 100

n = 2500, noncase:case = 2:1, dn = 17 for 80% censored, dn = 15 for 90% censored

HT 0.69 (0.21) 10.35 0 52.9 0.78 (0.33) 9.33 0.36 35.5

SCAD(AIC) 0.54 (0.22) 10.46 0 58.4 0.82 (0.2) 7.58 0.06 8

SCAD(BIC) 0.39 (0.21) 11 0.14 86.7 0.58 (0.38) 9.75 0.47 49.3

Oracle 0.37 (0.18) 11 0 100 0.32 (0.16) 10 0 100

n = 5000, noncase:case = 1:1, dn = 20 for 80% censored, dn = 17 for 90% censored

HT 0.67 (0.21) 12.23 0 46.2 0.8 (0.28) 10.2 0.25 35.1

SCAD(AIC) 0.64 (0.21) 11.79 0 31.5 0.89 (0.13) 7.2 0.03 2.1

SCAD(BIC) 0.35 (0.17) 12.99 0.01 98.1 0.57 (0.29) 10.48 0.23 49.1

Oracle 0.34 (0.17) 13 0 100 0.35 (0.16) 11 0 100

n = 5000, noncase:case = 2:1, dn = 20 for 80% censored, dn = 17 for 90% censored

HT 0.65 (0.21) 12.25 0 48.2 0.68 (0.21) 10.32 0.06 48.5

SCAD(AIC) 0.48 (0.2) 12.49 0 62 0.8 (0.17) 8.41 0.01 7

SCAD(BIC) 0.34 (0.15) 13 0 100 0.42 (0.21) 10.85 0.08 81.2

Oracle 0.34 (0.15) 13 0 100 0.35 (0.16) 11 0 100

RME: relative model error; MAD: median absolute deviation; C: average number of 0 pa-
rameters correctly identi�ed as 0; I: average number of nonzero parameters incorrectly iden-
ti�ed as 0; RITM: rate of identifying true model; HT: hard threshold method; SCAD(AIC):
smoothly clipped absolute deviation with λAIC

n ; SCAD(BIC): smoothly clipped absolute de-
viation with λBIC

n .
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Table 3.2: Parameter estimation for β1 with large e�ect size (β1 = 0.34, hazard ratio = 1.4)

80% Censored 90% Censored

Method β̂1 see sem 95% CIe β̂1 see sem 95% CIe

n = 2500, noncase:case = 1:1, dn = 17 for 80% censored, dn = 15 for 90% censored
HT 0.35 0.08 0.07 93.1 0.41 0.11 0.12 92.4
SCAD(AIC) 0.35 0.07 0.06 92.1 0.37 0.12 0.11 91.2
SCAD(BIC) 0.35 0.07 0.06 95.3 0.38 0.1 0.11 93
Oracle 0.34 0.07 0.06 93.7 0.34 0.12 0.11 92.4

n = 2500, noncase:case = 2:1, dn = 17 for 80% censored, dn = 15 for 90% censored
HT 0.35 0.07 0.06 91.8 0.37 0.09 0.1 94.5
SCAD(AIC) 0.34 0.06 0.05 92.4 0.35 0.1 0.09 91.4
SCAD(BIC) 0.34 0.06 0.05 94.5 0.36 0.08 0.09 95
Oracle 0.34 0.06 0.05 93.7 0.35 0.09 0.09 93.3

n = 5000, noncase:case = 1:1, dn = 20 for 80% censored, dn = 17 for 90% censored
HT 0.34 0.05 0.05 93.6 0.36 0.09 0.09 92.5
SCAD(AIC) 0.34 0.05 0.05 93.1 0.36 0.09 0.08 90.3
SCAD(BIC) 0.34 0.05 0.05 94.5 0.36 0.08 0.08 93
Oracle 0.34 0.05 0.05 94.6 0.35 0.09 0.08 92.7

n = 5000, noncase:case = 2:1, dn = 20 for 80% censored, dn = 17 for 90% censored
HT 0.34 0.04 0.04 95.5 0.35 0.07 0.07 94.1
SCAD(AIC) 0.34 0.04 0.04 94 0.35 0.07 0.06 92.7
SCAD(BIC) 0.34 0.04 0.04 94.8 0.34 0.06 0.06 94.2
Oracle 0.34 0.04 0.04 94.8 0.34 0.06 0.06 94

see: empirical standard error; sem: model-based standard error; 95% CIe: empirical 95%
con�dence interval coverage; HT: hard threshold method; SCAD(AIC): smoothly clipped
absolute deviation with λAIC

n ; SCAD(BIC): smoothly clipped absolute deviation with λBIC
n .

The parameter estimation results are calculated based on replications with nonzero β̂1.
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Table 3.3: Model selection performance with small e�ect size (β1 = 0.18, hazard ratio = 1.2)

80% Censored 90% Censored

RME Zero Parm. RITM RME Zero Parm. RITM

Method median (MAD) C I (%) median (MAD) C I (%)

n = 5000, noncase:case = 1:1, dn = 20 for 80% censored, dn = 17 for 90% censored

HT 0.66 (0.21) 12.21 0.06 43.4 0.79 (0.26) 10.17 0.63 21.5

SCAD(AIC) 0.63 (0.22) 11.75 0.02 29.1 0.89 (0.14) 7.27 0.17 1.6

SCAD(BIC) 0.42 (0.22) 12.98 0.33 66.7 0.6 (0.28) 10.45 0.6 30.5

Oracle 0.35 (0.16) 13 0 100 0.36 (0.16) 11 0 100

n = 5000, noncase:case = 2:1, dn = 20 for 80% censored, dn = 17 for 90% censored

HT 0.65 (0.21) 12.27 0.01 48.2 0.7 (0.21) 10.29 0.32 33.6

SCAD(AIC) 0.5 (0.22) 12.5 0.01 61.6 0.79 (0.18) 8.49 0.09 8.4

SCAD(BIC) 0.44 (0.22) 13 0.26 74.2 0.48 (0.23) 10.83 0.45 51.2

Oracle 0.35 (0.16) 13 0 100 0.35 (0.16) 11 0 100

n = 10000, noncase:case = 1:1, dn = 23 for 80% censored, dn = 20 for 90% censored

HT 0.66 (0.18) 14.15 0 43.8 0.7 (0.2) 12.1 0.17 33.9

SCAD(AIC) 0.61 (0.18) 13.74 0 30.3 0.89 (0.14) 8.75 0.03 0.6

SCAD(BIC) 0.38 (0.17) 15 0.03 96.7 0.49 (0.21) 12.51 0.18 53.2

Oracle 0.37 (0.16) 15 0 100 0.33 (0.15) 13 0 100

n = 10000, noncase:case = 2:1, dn = 23 for 80% censored, dn = 20 for 90% censored

HT 0.66 (0.17) 14.16 0 44.8 0.67 (0.19) 12.26 0.07 44.8

SCAD(AIC) 0.49 (0.2) 14.55 0 65.3 0.79 (0.18) 10.27 0.02 6.3

SCAD(BIC) 0.39 (0.17) 15 0.02 98.4 0.42 (0.19) 12.85 0.12 77.4

Oracle 0.38 (0.17) 15 0 100 0.35 (0.16) 13 0 100

RME: relative model error; MAD: median absolute deviation; C: average number of 0 pa-
rameters correctly identi�ed as 0; I: average number of nonzero parameters incorrectly iden-
ti�ed as 0; RITM: rate of identifying true model; HT: hard threshold method; SCAD(AIC):
smoothly clipped absolute deviation with λAIC

n ; SCAD(BIC): smoothly clipped absolute de-
viation with λBIC

n .
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Table 3.4: Parameter estimation for β1 with small e�ect size (β1 = 0.18, hazard ratio = 1.2)

80% Censored 90% Censored

Method β̂1 see sem 95% CIe β̂1 see sem 95% CIe

n = 5000, noncase:case = 1:1, dn = 20 for 80% censored, dn = 17 for 90% censored
HT 0.19 0.05 0.05 96.4 0.26 0.06 0.09 92.2
SCAD(AIC) 0.19 0.05 0.05 94.8 0.22 0.08 0.08 92.6
SCAD(BIC) 0.21 0.03 0.05 95.9 0.25 0.06 0.08 90.7
Oracle 0.18 0.05 0.05 94.5 0.19 0.08 0.08 92.3

n = 5000, noncase:case = 2:1, dn = 20 for 80% censored, dn = 17 for 90% censored
HT 0.18 0.04 0.04 96.3 0.22 0.06 0.07 94.5
SCAD(AIC) 0.18 0.04 0.04 93.9 0.2 0.06 0.06 94.8
SCAD(BIC) 0.2 0.03 0.04 96.8 0.22 0.04 0.06 95.7
Oracle 0.18 0.04 0.04 94.1 0.18 0.06 0.06 94.8

n = 10000, noncase:case = 1:1, dn = 23 for 80% censored, dn = 20 for 90% censored
HT 0.18 0.04 0.04 95 0.21 0.05 0.06 95.8
SCAD(AIC) 0.18 0.03 0.03 94 0.19 0.06 0.06 94.7
SCAD(BIC) 0.19 0.03 0.03 97.1 0.2 0.05 0.06 95.9
Oracle 0.18 0.03 0.03 94.9 0.19 0.06 0.06 94.7

n = 10000, noncase:case = 2:1, dn = 23 for 80% censored, dn = 20 for 90% censored
HT 0.18 0.03 0.03 94.9 0.19 0.05 0.05 95.9
SCAD(AIC) 0.18 0.03 0.03 93.4 0.18 0.05 0.05 94.1
SCAD(BIC) 0.19 0.03 0.03 95.2 0.19 0.04 0.05 96.6
Oracle 0.18 0.03 0.03 93.7 0.18 0.05 0.05 94.7

see: empirical standard error; sem: model-based standard error; 95% CIe: empirical 95%
con�dence interval coverage; HT: hard threshold method; SCAD(AIC): smoothly clipped
absolute deviation with λAIC

n ; SCAD(BIC): smoothly clipped absolute deviation with λBIC
n .

The parameter estimation results are calculated based on replications with nonzero β̂1.
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Figure 3.1: Q-Q plot of β̂ for the smallest nonzero parameter by three procedures (Hard
threshold, λAIC

n , λBIC
n ). Sample size n = 2500. True β = 0.34 (hazard ratio= 1.4).
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Figure 3.2: Q-Q plot of β̂ for the smallest nonzero parameter by three procedures (Hard
threshold, λAIC

n , λBIC
n ). Sample size n = 5000. True β = 0.34 (hazard ratio= 1.4).
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Figure 3.3: Q-Q plot of β̂ for the smallest nonzero parameter by three procedures (Hard
threshold, λAIC

n , λBIC
n ). Sample size n = 5000. True β = 0.18 (hazard ratio= 1.2).
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Figure 3.4: Q-Q plot of β̂ for the smallest nonzero parameter by three procedures (Hard
threshold, λAIC

n , λBIC
n ). Sample size n = 10000. True β = 0.18 (hazard ratio= 1.2).
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3.5.2 Analysis of Busselton Health Study

We use the proposed variable selection procedures to analyze the Busselton Health

Study data (Cullen 1972, Knuiman et al. 2003). The study is a series of cross-sectional

health surveys conducted in the town of Busselton in Western Australia. Every 3 years from

1966 to 1981, general health information for adult participants were collected by question-

naire and clinical visit. In this analysis we are interested in the e�ect of cardiovascular risk

factors on the risk of stroke. In particular, the main risk factor of interest is the serum fer-

ritin level. We also consider several other risk factors in the variable selection process: age

(years), body mass index (BMI), blood pressure treatment (0=no, 1=yes), systolic blood

pressure (mmHg), cholesterol (mmol/L), triglycerides (mmol/L), hemoglobin (g/100ml),

and smoking (1=never, 2=former, 3=current). The full cohort of this analysis consists of

1401 subjects aged 40 to 89 years who participated in the Busselton Health Survey in 1981

and had no history of diagnosed coronary heart disease or stroke at that time. Subjects

were followed until December 31, 1998, and their time to stroke was recorded if any. They

were treated as censored if they left Western Australia during the follow-up period. There

were 118 (8.4%) incidences of stroke in the full cohort during the follow-up period. To

reduce costs and preserve stored serum, a case-cohort design was used where the serum

ferritin level was measured for a randomly selected subcohort plus all stroke cases only.

The random subcohort size was 450, and the case-cohort size was 513.

Table 3.5 summarizes the baseline characteristics of the full cohort and the subcohort.

The average ferritin level is not available for the full cohort due to the case-cohort design.

The summary statistics of the baseline characteristics are similar between the full cohort

and sub-cohort, suggesting that the subcohort is representative of the full cohort.

We apply the hard threshold, penalty with tuning parameter λAIC
n and λBIC

n variable

selection procedures to the Busselton Health Study data to identify important risk factors

for stroke. In order not to miss any potentially important e�ects, we also include the
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Table 3.5: Baseline characteristics of the Busselton Health Study

Full cohort (n=1401) Subcohort (ñ=450)
Variables Mean (SD) or % Mean (SD) or %
Age (yrs) 58.0 (10.8) 58.9 (10.9)
Body mass index 25.9 (3.9) 25.9 (4.0)
Blood pressure treatment (%) 17.2 18.4
Systolic blood pressure (mmHg) 132.2 (20.0) 132.9 (20.2)
Cholesterol (mmol/L) 6.14 (1.14) 6.24 (1.17)
Triglycerides (mmol/L) 1.52 (0.97) 1.55 (0.97)
Hemoglobin (g/100ml) 141.9 (12.0) 142.0 (11.5)
Smoking (%)

Never 49.5 51.6
Former 32.4 32.0
Current 18.1 16.4

Ferritin (µg/L) � 148.1 (140.8)
log(ferritin) � 4.57 (1.01)

quadratic terms of all continuous covariates as well as interactions between ferritin and all

covariates in the initial model. The total number of parameters is 32. To decrease the

skewness in the distribution we log-transform ferritin and triglycerides values. The follow-

ing continuous covariates are standardized: age, body mass index, systolic blood pressure,

cholesterol, log(triglycerides), and hemoglobin. The tuning parameter selector identi�ed

λAIC
n = 0.1724 and λBIC

n = 0.2405. Table 3.6 shows the selected terms and their estimated

coe�cients and standard errors by the two penalized procedures with λAIC
n and λBIC

n . The

λBIC
n selected 16 terms and λAIC

n selected additional 6 terms. This is consistent with the fact

that λAIC
n tends to select more variables than λBIC

n . Both methods selected the main e�ect

of log(ferritin) and a number of interaction, suggesting that the e�ect of ferritin on risk

of stroke is modi�ed by other risk factors. The 6 terms selected by only λAIC
n are squared

systolic blood pressure, squared log(triglycerides), hemoglobin, log(ferritin)*hemoglobin,

log(ferritin)*squared log(triglycerides), and log(ferritin)*sex. Hard threshold method only

selected the blood pressure treatment into the �nal model.
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Table 3.6: Estimated coe�cients and standard errors from Busselton Health Study data

SCAD (BIC) SCAD (AIC)

Variable β̂ (ŝe) β̂ (ŝe)
Age (yrs) 1.76 (0.28) 1.55 (0.27)
Age2 -0.58 (0.02) -0.57 (0.4)
Sex (1=female) 0 (�) 0 (�)
Body mass index 0 (�) 0 (�)
Body mass index2 0 (�) 0 (�)
Blood pressure treatment 0.73 (0.26) 0.80 (0.27)
Systolic blood pressure 1.06 (0.06) 1.04 (0.71)
Systolic blood pressure2 0 (�) 0.12 (0.01)
Cholesterol 0 (�) 0 (�)
Cholesterol2 -0.59 (0.01) -0.62 (0.03)
log(triglycerides) 0 (�) 0 (�)
log2(triglycerides) 0 (�) -0.30 (0.02)
Hemoglobin 0 (�) 0.24 (0.004)
Hemoglobin2 0.19 (0.06) 0.25 (0.07)
Smoking (former vs. never) 2.12 (1.42) 2.04 (1.43)
Smoking (current vs. never) 2.23 (1.20) 2.26 (1.22)
log(ferritin) 0.40 (0.13) 0.27 (0.09)
log(ferritin)*body mass index 0 (�) 0 (�)
log(ferritin)*body mass index2 0 (�) 0 (�)
log(ferritin)*age -0.20 (0.03) -0.14 (0.02)
log(ferritin)*age2 0.12 (0.03) 0.11 (0.09)
log(ferritin)*cholesterol 0 (�) 0 (�)
log(ferritin)*cholesterol2 0.11 (0.02) 0.12 (0.02)
log(ferritin)*hemoglobin 0 (�) -0.05 (0.02)
log(ferritin)*hemoglobin2 -0.03 (0.02) -0.05 (0.02)
log(ferritin)*systolic blood pressure -0.16 (0.02) -0.19 (0.15)
log(ferritin)*systolic blood pressure2 0 (�) 0 (�)
log(ferritin)*log(triglycerides) 0 (�) 0 (�)
log(ferritin)*log2(triglycerides) 0 (�) 0.08 (0.01)
log(ferritin)*sex 0 (�) -0.10 (0.02)
log(ferritin)*smoking (former vs. never) -0.38 (0.28) -0.41 (0.29)
log(ferritin)*smoking (current vs. never) -0.42 (0.26) -0.46 (0.26)

SCAD(AIC): smoothly clipped absolute deviation with λAIC
n ; SCAD(BIC): smoothly

clipped absolute deviation with λBIC
n .
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3.6 Discussion

In this chapter of the dissertation we proposed a variable selection procedure based

on smoothly clipped absolute deviation penalized pseudo-partial likelihood in case-cohort

studies with failure time outcome. We showed that under certain regularity conditions,

as sample size goes to in�nity, the variable selection procedure identi�es the true model

with probability tending to one, and the nonzero estimate from this procedure is consistent

and asymptotically normally distributed. Moreover, the nonzero estimate is estimated as

e�cient as if the true model is known by the investigator. The theorems presented in this

chapter only establish local consistency and oracle property in the neigborhood of β0. Due

to the non-convexity of the penalty function, there may be multiple maximizers for the

penalized objective function. However, since the initial value β(0) for the local quadratic

approximation algorithm is (n/dn)1/2-consistent, the maximizer identi�ed by this algorithm

will also be likely to converge to β0.

Our simulation study found that the penalized variable selection procedure with tun-

ing parameter selected by Bayesian information criteria performs much better than that

selected by Akaike information criterion. The poor performance of variable selection with

tuning parameter λAIC
n may seem inconsistent with previous simulation studies such as Fan

and Li (2002), Cai et al. (2005) where the �nite sample performance of λAIC
n is quite good

despite its theoretical property of over�tting the model with positive probability. However,

those studies used much lower censoring rates (15-40%) than our simulations. Our results

demonstrate that in survival analysis with high censoring rate, as is usually the case in

case-cohort studies, the over�tting e�ect of λAIC
n becomes prominent, and λBIC

n works much

better in comparison. Based on our simulation results of di�erent noncase to case ratios,

we also recommend including more noncases in a case-cohort design if possible to improve

the accuracy of the proposed variable selection procedure.

Since the smoothly clipped absolute deviation penalty is a non-linear function of the
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parameter, the variable selection result is not invariant to covariate standardization. In

practice, we recommend standardization of continuous covariates before carrying out the

proposed variable selection procedure so that the estimated coe�cients are comparable

across covariates. For covariates that are not available for all subjects due to the case-

cohort design, the random sub-cohort should be used to compute the sample mean and

standard deviation for standardization. Another practical issue is that as the number of

noncases in the random subcohort becomes small, α̂(t)−1 becomes less reliable. When

there is no noncase left in the subcohort, α̂(t)−1 is not well de�ned. In practice, to avoid

this di�culty, we recommend selecting the stopping time τ such that there are at least 10

subjects at risk from the subcohort on [0, τ].

The proposed variable selection procedure does not guarantee a hierarchical �nal model.

Although it does not pose any theoretical di�culty, it makes the interpretation less straight-

forward. This is a future research topic that could incorporate a group penalized variable

selection method into case-cohort design to ensure hierarchical model structure.

With any given sample size the proposed procedure may not be able to detect some

very small e�ect, resulting in false negative �nding. By decreasing the tuning parameter

size one can decrease the false negative rate but it also increases the false positive rate.

Therefore, the proposed procedure bares a trade-o� between the two types of error under

a �nite sample as any other variable selection methods do. If some covariates are known

scienti�cally to be associated with the risk of outcome, the investigator can set the tuning

parameters to 0 for them to ensure their inclusion in the �nal model.

3.7 Proof of Theorems

Throughout the proofs, we denote ˜̀′
n(β0)j = ∂ ˜̀

n(β0)/∂βj, ˜̀′′
n(β0)jk = ∂2 ˜̀

n(β0)/∂βj∂βk,

and ˜̀′′′
n (β0)jkl = ∂3 ˜̀

n(β0)/∂βj∂βk∂βl. We let Ṽnjk(β0, t), Vnjk(β0, t), S̃(2)
njk(β0, t), and S(2)

njk(β0, t)

be the (j, k) component of corresponding matrices. For a matrix A = {aij}, (i, j = 1, ..., n),
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the norm is de�ned as ∥A∥ = (∑n
i=1∑n

j=1 a
2
ij)1/2. The following two lemmas will be used

repeatedly in the proof of the theorems.

Lemma 3.7.1. Let ξ = (ξ1, ..., ξn) be a random vector containing ñ ones and n − ñ zeros,

with each permutation equally likely. Let Bi(t), i = 1, ..., n be i.i.d. real-valued random

processes on [0, τ] with E{B(t)} = µB(t),var{B(0)} < ∞ and var{B(τ)} < ∞. Let B(t) =

(B1(t), ...,Bn(t)) and ξ be independent. Suppose that almost all paths of Bi(t) have �nite

variation. Then n−1/2∑n
i=1 ξi{Bi(t)−µB(t)} converges weakly to a tight zero mean Gaussian

process and therefore n−1∑n
i=1 ξi{Bi(t) − µB(t)} converges in probability to 0 uniformly in

t.

The proof of this lemma can be found in Lemma A1 in Kang and Cai (2009). Under

�nite population sampling, µB(t) = n−1∑n
i=1Bi(t). It follows that n−1/2∑n

i=1 ξi{Bi(t) −

µB(t)} = n−1/2∑n
i=1(ξi − ñ/n)Bi(t) = n−1/2α∑n

i=1(ξi/α − 1)Bi(t).

Lemma 3.7.2. Let Wn(t) and Gn(t) be two sequences of processes with bounded variation

almost surely, and Gn(t) is progressively measurable and cadlag. For some constant τ , as-

sume that sup0≤t≤τ ∥Wn(t)−W (t)∥ → 0 in probability for some bounded processW (t), Wn(t)

is monotone on [0, τ], and Gn(t) converges to a zero mean process with continuous sample

paths. Then both sup0≤t≤τ ∥
´ t

0
{Wn(s) −W (s)}dGn(s)∥ and sup0≤t≤τ ∥

´ t
0
Gn(s)d{Wn(s) −W (s)}∥

converge to 0 in probability.

The proof of this lemma can be found in Lemma 1 in Lin (2000).

We also need the following lemmas.

Lemma 3.7.3. Given that ξ is independent of ∆ and Y (t), n1/2{α̂−1(t) − α−1} converges

to a zero-mean Gaussian process.

Proof. By Taylor expansion of α̂(t) around α,

n1/2{α̂−1(t) − α−1} = − n1/2

α∗(t)2
{α̂(t) − α}
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= − n1/2

α∗(t)2
{∑

n
i=1(1 −∆i)ξiYi(t)
∑n
i=1(1 −∆i)Yi(t)

− α}

= α

α∗(t)2

n

∑n
i=1(1 −∆i)Yi(t)

n−1/2
n

∑
i=1

(1 − ξi
α
) (1 −∆i)Yi(t),

where α∗(t) lies between α̂(t) and α. Since var{(1 −∆i)Yi(0)} < ∞, var{(1 −∆i)Yi(τ)} <

∞, and (1 − ∆)Y (t) is of bounded variation, by Lemma 3.7.1, n−1/2∑n
i=1(ξi/α − 1)(1 −

∆i)Yi(t) converges weakly to a tight zero mean Gaussian process. This implies that

n−1∑n
i=1(ξi/α − 1)(1 −∆i)Yi(t) converges to 0 in probability uniformly in t ∈ [0, τ]. Since

n−1/2∑n
i=1 [(1 −∆i)Yi(t) −E{(1 −∆)Y (t)}] can be seen as a special case of the expression

n−1/2∑n
i=1 ξi [(1 −∆i)Yi(t) −E{(1 −∆)Y (t)}] with ξi = 1 for all i, by Lemma 3.7.1 it con-

verges weakly to a zero mean Gaussian process. This implies that n−1∑n
i=1(1 − ∆i)Yi(t)

converges to E{(1−∆)Y (t)} in probability uniformly in t. Under Conditions (A) and (B),

E{(1−∆)Y (t)} is uniformly bounded away from 0 on [0, τ]. By law of large numbers and

Slutsky's theorem, under Condition (E), it follows that α̂(t) and α converge to the same

constant limit C2 uniformly in t. Therefore, α∗(t) and α also converge to the same limit.

By Slutsky's theorem,

n1/2{α̂−1(t) − α−1} = 1

αE{(1 −∆)Y (t)}n
−1/2

n

∑
i=1

(1 − ξi
α
) (1 −∆i)Yi(t) + op(1),

which converges to a zero mean Gaussian process. ◻

Lemma 3.7.4. Under Conditions (C) and (D), for any nonzero dn × 1 constant vector u

with ∥u∥ = C < ∞ and ∥u∥0 = cn > 0 where ∥ ⋅ ∥0 denotes the number of nonzero compo-

nents of a vector, n1/2{S̃(0)
n (β0, t) − S(0)

n (β0, t)}, (n/cn)1/2uT{S̃(1)
n (β0, t) − S(1)

n (β0, t)}, and

n1/2c−1
n u

T{S̃(2)
n (β0, t) − S(2)

n (β0, t)}u all converge to tight zero mean Gaussian processes.

Proof. The three processes can be written in a uni�ed form as (k = 0,1,2),

n1/2 [n−1
n

∑
i=1

ρi(t)Yi(t)eβ
T
0 Zi(t){c−1/2

n uTZi(t)}k − n−1
n

∑
i=1

Yi(t)eβ
T
0 Zi(t){c−1/2

n uTZi(t)}k]
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= n−1/2
n

∑
i=1

{∆i + (1 −∆i)ξiα̂(t)−1}Yi(t)eβ
T
0 Zi(t){c−1/2

n uTZi(t)}k

− n−1/2
n

∑
i=1

(1 −∆i)ξiα−1Yi(t)eβ
T
0 Zi(t){c−1/2

n uTZi(t)}k

+ n−1/2
n

∑
i=1

[(1 −∆i)ξiα−1Yi(t)eβ
T
0 Zi(t){c−1/2

n uTZi(t)}k − Yi(t)eβ
T
0 Zi(t){c−1/2

n uTZi(t)}k]

= n−1/2
n

∑
i=1

(1 −∆i)ξiα̂(t)−1Yi(t)eβ
T
0 Zi(t){c−1/2

n uTZi(t)}k

− n−1/2
n

∑
i=1

(1 −∆i)ξiα−1Yi(t)eβ
T
0 Zi(t){c−1/2

n uTZi(t)}k

+ n−1/2
n

∑
i=1

[(1 −∆i)ξiα−1Yi(t)eβ
T
0 Zi(t){c−1/2

n uTZi(t)}k

−(1 −∆i)Yi(t)eβ
T
0 Zi(t){c−1/2

n uTZi(t)}k]

= n−1/2
n

∑
i=1

{α̂(t)−1 − α−1}(1 −∆i)ξiYi(t)eβ
T
0 Zi(t){c−1/2

n uTZi(t)}k

− n−1/2
n

∑
i=1

(1 − ξi
α
) (1 −∆i)Yi(t)eβ

T
0 Zi(t){c−1/2

n uTZi(t)}k

= [ n−1/2

E{(1 −∆)Y (t)}
n

∑
j=1

(1 − ξj
α
) (1 −∆j)Yj(t) + op(1)]×

[ 1

n

n

∑
i=1

(1 −∆i)
ξi
α
Yi(t)eβ

T
0 Zi(t){c−1/2

n uTZi(t)}k]

− n−1/2
n

∑
i=1

(1 − ξi
α
) (1 −∆i)Yi(t)eβ

T
0 Zi(t){c−1/2

n uTZi(t)}k. (3.4)

The last equality holds by Lemma 3.7.3. By Cauchy-Schwarz inequality, uTZi(t) ≤

∥u∥∥Zi(t)∥ = C{∑dn
j=1Z

2
ij(t)}1/2. Under Condition (C), Z2

ij(t) has bounded variation, and

therefore c
−1/2
n uTZi(t) has bounded variation. This along with Condition (D) gives that

(1 − ∆i)Yi(t)eβT0 Zi(t){c−1/2
n uTZi(t)}k is of bounded variation for i = 1, ..., n. Therefore, by

Lemma 3.7.1, n−1∑n
i=1(1−∆i)ξi/αYi(t)eβT0 Zi(t){c−1/2

n uTZi(t)}k converges to a deterministic

process L(t) in probability uniformly on [0, τ]. Therefore,

(3.4) = n−1/2
n

∑
i=1

(1 −∆i) (1 − ξi
α
)Yi(t) [

L(t)
E{(1 −∆)Y (t)} − e

βT0 Zi(t){c−1/2
n uTZi(t)}k]

+ op(1). (3.5)
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Under Conditions (C) and (D) the term in the square brackets of (3.5) is of bounded

variation. It follows by Lemma A3.7.1 that (3.5) converges weakly to a tight zero mean

Gaussian process. Therefore, n1/2{S̃(0)
n (β0, t)−S(0)

n (β0, t)}, (n/cn)1/2uT{S̃(1)
n (β0, t)−S(1)

n (β0, t)},

and n1/2c−1
n u

T{S̃(2)
n (β0, t) − S(2)

n (β0, t)}u all converge weakly to tight zero mean Gaussian

processes. ◻

Lemma 3.7.5. Under Conditions (A) to (D), for any nonzero dn × 1 constant vector u

with ∥u∥ = 1, n−1/2uTΓ
−1/2
n (β0)˜̀′

n(β0) converges to a standard normal distribution, where

Γn(β0) is the covariance matrix of n−1/2 ˜̀′
n(β0).

Proof. Let cn = ∥u∥0, the number of nonzero components of u. We �rst consider the

quantity (ncn)−1/2uT ˜̀′
n(β0), which can be decomposed as

(ncn)−1/2uT ˜̀′
n(β0) = (ncn)−1/2uT

n

∑
i=1

ˆ τ

0

⎧⎪⎪⎨⎪⎪⎩
Zi(t) −

S
(1)
n (β0, t)
S

(0)
n (β0, t)

⎫⎪⎪⎬⎪⎪⎭
dNi(t)

+ (ncn)−1/2uT
n

∑
i=1

ˆ τ

0

⎧⎪⎪⎨⎪⎪⎩

S
(1)
n (β0, t)
S

(0)
n (β0, t)

− S̃
(1)
n (β0, t)
S̃

(0)
n (β0, t)

⎫⎪⎪⎬⎪⎪⎭
dNi(t)

= I1 + I2.

I1 is a linear combination of the partial likelihood score vector of the full cohort data.

The score vector was shown by Andersen and Gill (1982) to converge to a zero mean mul-

tivariate normal distribution. Therefore, I1 converges to a zero mean normal distribution.

I2 can be further decomposed as

I2 =
ˆ τ

0

c
−1/2
n

⎧⎪⎪⎨⎪⎪⎩

uTS
(1)
n (β0, t)

S
(0)
n (β0, t)

− u
T S̃

(1)
n (β0, t)

S̃
(0)
n (β0, t)

⎫⎪⎪⎬⎪⎪⎭
d{n−1/2

n

∑
i=1

Mi(t)}

+
ˆ τ

0

(ncn)−1/2

⎧⎪⎪⎨⎪⎪⎩

uTS
(1)
n (β0, t)

S
(0)
n (β0, t)

− u
T S̃

(1)
n (β0, t)

S̃
(0)
n (β0, t)

⎫⎪⎪⎬⎪⎪⎭

n

∑
i=1

Yi(t)eβ
T
0 Zi(t)dΛ0(t). (3.6)
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The �rst term on the right-hand side of (3.6) can be written as

ˆ τ

0

c
−1/2
n

⎧⎪⎪⎨⎪⎪⎩

uTS
(1)
n (β0, t)

S
(0)
n (β0, t)

− u
T S̃

(1)
n (β0, t)

S̃
(0)
n (β0, t)

⎫⎪⎪⎬⎪⎪⎭
d{n−1/2

n

∑
i=1

Mi(t)}

=
ˆ τ

0

c
−1/2
n

⎧⎪⎪⎨⎪⎪⎩

uTS
(1)
n (β0, t)

S
(0)
n (β0, t)

− uT en(β0, t)
⎫⎪⎪⎬⎪⎪⎭
d{n−1/2

n

∑
i=1

Mi(t)}

−
ˆ τ

0

c
−1/2
n

⎧⎪⎪⎨⎪⎪⎩

uT S̃
(1)
n (β0, t)

S̃
(0)
n (β0, t)

− uT en(β0, t)
⎫⎪⎪⎬⎪⎪⎭
d{n−1/2

n

∑
i=1

Mi(t)} . (3.7)

Under Conditions (C) and (D) along with ∥u∥ = 1, c
−1/2
n uTS

(1)
n (β0, t)/S(0)

n (β0, t), and

c
−1/2
n uT S̃

(1)
n (β0, t)/S̃(0)

n (β0, t) are of bounded variation, so they can both be written as

sum of two monotone functions in t. By the fact that s
(k)
n (β, t) = E{S(k)

n (β, t)} for

k = 0,1,2 and Lemma 3.7.1 (with ξi = 1 for all i) it is easy to show that n1/2{S(0)
n (β0, t) −

s
(0)
n (β0, t)} and (n/cn)1/2uT{S(1)

n (β0, t) − s(1)n (β0, t)} converge weakly to tight zero mean

Gaussian processes. It is then straightforward from Lemma 3.7.4 that n1/2{S̃(0)
n (β0, t) −

s
(0)
n (β0, t)} and (n/cn)1/2uT{S̃(1)

n (β0, t) − s(1)n (β0, t)} converge weakly to tight zero mean

Gaussian processes. Thus, we have that c
−1/2
n uTS

(1)
n (β0, t)/S(0)

n (β0, t)− c−1/2
n uT en(β0, t) and

c
−1/2
n uT S̃

(1)
n (β0, t)/S̃(0)

n (β0, t) − c−1/2
n uT en(β0, t) both converge to 0 in probability uniformly

in t ∈ [0, τ].

On the other hand, ∑n
i=1Mi(t) is a sum of i.i.d. random processes whose sample paths

are of bounded variation under Condition (C). Therefore, Mi(t) can be decomposed into

two monotone functions in t. Since E{Mi(t)} = 0, it follows from the Example 2.11.16

of van der Vaart and Wellner (1996) (p215) that n−1/2∑n
i=1Mi(t) converges weakly to a

tight zero mean Gaussian process, say GM(t). It can be shown that E{GM(t)−GM(s)}4 ≤

CM(t − s)2 for all t, s ∈ [0, τ] and some constant CM . Therefore, by Kolmogorov-Centsov

Theorem (Karatzas and Shereve, 1988, p53), GM(t) has continuous sample path almost

surely. Since GM(t) is also of bounded variation almost surely, it follows from Lemma

3.7.2 that both terms of (3.7) converge to 0 in probability. Therefore, the �rst term on the
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right-hand side of (3.6) converges to 0 in probability.

For the second term on the right-hand side of (3.6) we have

(ncn)−1/2

ˆ τ

0

⎧⎪⎪⎨⎪⎪⎩

uTS
(1)
n (β0, t)

S
(0)
n (β0, t)

− u
T S̃

(1)
n (β0, t)

S̃
(0)
n (β0, t)

⎫⎪⎪⎬⎪⎪⎭

n

∑
i=1

Yi(t)eβ
T
0 Zi(t)dΛ0(t)

= ( n
cn

)
1/2 ˆ τ

0

⎧⎪⎪⎨⎪⎪⎩
uTS

(1)
n (β0, t) − uT S̃(1)

n (β0, t) +
uT S̃

(1)
n (β0, t)S̃(0)

n (β0, t)
S̃

(0)
n (β0, t)

−u
T S̃

(1)
n (β0, t)S(0)

n (β0, t)
S̃

(0)
n (β0, t)

⎫⎪⎪⎬⎪⎪⎭
dΛ0(t)

=
ˆ τ

0

[( n
cn

)
1/2

uT {S(1)
n (β0, t) − S̃(1)

n (β0, t)}

−( n
cn

)
1/2

{S(0)
n (β0, t) − S̃(0)

n (β0, t)}uT en(β0, t)]dΛ0(t) + op(1). (3.8)

By Lemma 3.7.4, (n/cn)1/2uT{S(1)
n (β0, t) − S̃(1)

n (β0, t)}, n1/2{S(0)
n (β0, t) − S̃(0)

n (β0, t)}

converge to tight zero mean Gaussian processes. Let ejn(β0, t) be the jth component of

en(β0, t) (j = 1, ..., dn), and e∗jn(β0, t) = I(uj ≠ 0)ejn(β0, t). Since ejn(β0, t) is a bounded

deterministic process, by Cauchy-Schwarz inequality, c
−1/2
n uT en(β0, t) = c−1/2

n uT e∗n(β0, t) ≤

c
−1/2
n ∥u∥∥e∗n(β0, t)∥ = c

−1/2
n O(c1/2

n ) = O(1). Hence by Slutsky theorem, n1/2{S(0)
n (β0, t) −

S̃
(0)
n (β0, t)}c−1/2

n uT en(β0, t) converges to a tight zero mean Gaussian process. It then fol-

lows that the integrand of the integration in (3.8) converges to a tight zero mean Gaus-

sian process, say G(t). Therefore, (3.8) =
´ τ

0
G(t)dΛ0(t) + op(1). Under Condition (A),

´ τ
0
G(t)dΛ0(t) is a continuous linear function from `∞[0, τ] to R. By the tightness of G(t),

it follows from Lemma 3.9.8 of van der Vaart and Wellner (1996) (p377) that
´ τ

0
G(t)dΛ0(t)

is normally distributed with mean zero. Therefore, (3.8) converges to a zero mean normal

distribution. It follows that I2 converges to a zero mean normal distribution.

Finally, we need to show that I1 and I2 are independent of each other. I2 can be written
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as

I2 = (ncn)−1/2uT
ˆ τ

0

⎡⎢⎢⎢⎣
{S̃(0)

n (β0, t) − S(0)
n (β0, t)}S̃(1)

n (β0, t)
S

(0)
n (β0, t)S̃(0)

n (β0, t)

− S̃
(1)
n (β0, t) − S(1)

n (β0, t)
S

(0)
n (β0, t)

⎤⎥⎥⎥⎦
d{

n

∑
i=1

Ni(t)} .

Replace S̃
(0)
n (β0, t)−S(0)

n (β0, t) and S̃(1)
n (β0, t)−S(1)

n (β0, t) in the above expression with

(3.5), and denote A
(k)
n (β, t) = n−1∑n

i=1(1 − ∆i)ξiα−1Yi(t)eβTZi(t){c−1/2
n uTZi(t)}k where k =

0,1. Then I2 is asymptotically equivalent to

I2 = n−1/2
n

∑
i=1

(1 −∆i) (1 − ξi
α
)
ˆ τ

0

Yi(t)
⎛
⎝
⎡⎢⎢⎢⎣

A
(0)
n (β0, t)

E{(1 −∆)Y (t)} − e
βTZi(t)

⎤⎥⎥⎥⎦
×

c
−1/2
n uT S̃

(1)
n (β0, t)

S
(0)
n (β0, t)S̃(0)

n (β0, t)
−
⎡⎢⎢⎢⎣

A
(1)
n (β0, t)

E{(1 −∆)Y (t)} − e
βTZi(t)c

−1/2
n uTZi(t)

⎤⎥⎥⎥⎦
×

1

S
(0)
n (β0, t)

)d{ 1

n

n

∑
i=1

Ni(t)}

= n−1/2
n

∑
i=1

(1 −∆i) (1 − ξi
α
)
ˆ τ

0

Ri(β0, t)d{
1

n

n

∑
j=1

Nj(t)} ,

where Ri(β0, t) denotes the integrand of the integration in the second last expression above.

De�ne F (τ) to be the sigma algebra generated by Yi(t), Ni(t), and Zi(t) for 0 ≤ t ≤ τ and

i = 1, ..., n. Thus, conditional on F (τ), the only random element is ξi, and E{ξ∣F (τ)} = α.

Given that E(I1) = 0 and E(I2) = 0, we have

cov(I1, I2) = n−1c
−1/2
n E

⎛
⎝

E

⎡⎢⎢⎢⎢⎣
uT

n

∑
i=1

ˆ τ

0

⎧⎪⎪⎨⎪⎪⎩
Zi(t) −

S
(1)
n (β0, t)
S

(0)
n (β0, t)

⎫⎪⎪⎬⎪⎪⎭
dNi(t)×

n

∑
i=1

(1 −∆i) (1 − ξi
α
)
ˆ τ

0

Ri(β0, t)d{
1

n

n

∑
j=1

Nj(t)}∣F (τ)])

= n−1c
−1/2
n E

⎡⎢⎢⎢⎢⎣
uT

n

∑
i=1

ˆ τ

0

⎧⎪⎪⎨⎪⎪⎩
Zi(t) −

S
(1)
n (β0, t)
S

(0)
n (β0, t)

⎫⎪⎪⎬⎪⎪⎭
dNi(t)×

n

∑
i=1

(1 −∆i)E(1 − ξi
α
∣F (τ))

ˆ τ

0

Ri(β0, t)d{
1

n

n

∑
j=1

Nj(t)}] = 0.
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Therefore, (ncn)−1/2uT ˜̀′
n(β0) converges to a zero mean normal distribution. Now de�ne

vector u∗ = uTΓ
−1/2
n (β0)∥uTΓ

−1/2
n (β0)∥−1. Then ∥u∗∥ = 1. Let c∗n = ∥u∗∥0. The quan-

tity n−1/2uTΓ
−1/2
n (β0)˜̀′

n(β0) = ∥uTΓ
−1/2
n (β0)∥(c∗n)1/2(nc∗n)−1/2(u∗)T ˜̀′

n(β0), which converges

to a zero mean normal distribution up to a scalar by the above result. Its variance

var{n−1/2uTΓ
−1/2
n (β0)˜̀′

n(β0)} = uTΓ
−1/2
n (β0)var{n−1/2 ˜̀′

n(β0)}Γ
−1/2
n (β0)u = 1, since Γn(β0) =

var{n−1/2 ˜̀′
n(β0)} and ∥u∥ = 1. Therefore, n−1/2uTΓ

−1/2
n (β0)˜̀′

n(β0) converges to a standard

normal distribution. ◻

Lemma 3.7.6. Under Conditions (A) to (D), n−1/2{˜̀′′
n(β0)jk + nIn(β0)jk} is Op(1) for

j, k = 1, ..., dn, where In(β0)jk is the (j, k) component of In(β0) as de�ned in the Notations

and Regularity Conditions section.

Proof. The (j, k) component of the quadratic variation matrix of the partial score func-

tion under full cohort is ⟨`′n(β0)⟩jk = n
´ τ

0
Vnjk(β0, t)S(0)

n (β0, t)dΛ0(t). We decompose

n−1/2{˜̀′′
n(β0)jk + nIn(β0)jk} as

− n−1/2 {
n

∑
i=1

ˆ τ

0

Ṽnjk(β0, t)dNi(t) − ⟨`′n(β0)⟩jk} − n−1/2 {⟨`′n(β0)⟩jk − nIn(β0)jk}

= −n1/2

ˆ τ

0

{Ṽnjk(β0, t) − Vnjk(β0, t)}
1

n

n

∑
i=1

dMi(t) − n1/2

ˆ τ

0

Vnjk(β0, t)
1

n

n

∑
i=1

dMi(t)

− n1/2

ˆ τ

0

{Ṽnjk(β0, t) − Vnjk(β0, t)}S(0)
n (β0, t)dΛ0(t) − n1/2 { 1

n
⟨`′n(β0)⟩jk − In(β0)jk}

= −I1 − I2 − I3 − I4.

The integrand of I1 can be further written as

n1/2 {Ṽnjk(β0, t) − Vnjk(β0, t)}

= n1/2

⎧⎪⎪⎨⎪⎪⎩

S̃
(2)
njk(β0, t)
S̃

(0)
n (β0, t)

−
S

(2)
njk(β0, t)
S

(0)
n (β0, t)

⎫⎪⎪⎬⎪⎪⎭
− n1/2

⎧⎪⎪⎨⎪⎪⎩

S̃
(1)
nj (β0, t)S̃(1)

nk (β0, t)
S̃

(0)
n (β0, t)2

−
S

(1)
nj (β0, t)S(1)

nk (β0, t)
S

(0)
n (β0, t)2

⎫⎪⎪⎬⎪⎪⎭

=
n1/2 {S̃(2)

njk(β0, t) − S(2)
njk(β0, t)}

S̃
(0)
n (β0, t)

−
n1/2 {S̃(0)

n (β0, t) − S(0)
n (β0, t)}S(2)

njk(β0, t)

S̃
(0)
n (β0, t)S(0)

n (β0, t)
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−
n1/2 {S̃(1)

nj (β0, t) − S(1)
nj (β0, t)} S̃(1)

nk (β0, t)

S̃
(0)
n (β0, t)2

−
n1/2 {S̃(1)

nk (β0, t) − S(1)
nk (β0, t)}S(1)

nj (β0, t)

S̃
(0)
n (β0, t)2

+
n1/2 {S̃(0)

n (β0, t) − S(0)
n (β0, t)}{S̃(0)

n (β0, t) + S(0)
n (β0, t)}S(1)

nj (β0, t)S(1)
nk (β0, t)

{S̃(0)
n (β0, t)S(0)

n (β0, t)}
2

= J1 − J2 − J3 − J4 + J5.

By Lemma 3.7.4 and Slutsky's theorem together with Condition (D) we have that

J1, J2, J3, J4, and J5 all converge to tight zero mean Gaussian processes. Therefore,

n1/2 {Ṽnjk(β0, t) − Vnjk(β0, t)} converges to a tight zero mean Gaussian process. It implies

that Ṽnjk(β0, t) − Vnjk(β0, t) converges to 0 in probability uniformly in t. It can also be

shown that Ṽnjk(β0, t) is of bounded variation. As shown in the proof of Lemma 3.7.5,

n−1/2∑n
i=1 dMi(t) converges weakly to a zero mean Gaussian process with continuous sample

paths and has bounded variation almost surely. It follows by Lemma 3.7.2 that I1 converges

to 0 in probability.

Since Vnjk(β0, t) is a predictable process, I2 is a locally square integrable martingale. To

use martingale central limit theorem, we verify the two required conditions. Its quadratic

variation process is

⟨I2⟩ =
ˆ τ

0

n−1V 2
njk(β0, t)

n

∑
i

Yi(t)eβ
T
0 ZidΛ0(t) =

ˆ τ

0

V 2
njk(β0, t)S(0)

n (β0, t)dΛ0(t). (3.9)

By Conditions (A) and (D), Lemma 3.7.4, and Slutsky's theorem, (3.9) converges to a

�nite value as n goes to in�nity. Thus, the �rst condition is satisi�ed. Next we verify the

Lindeberg condition. For any ε > 0,

ˆ τ

0

n−1V 2
njk(β0, t)I {∣n−1/2V 2

njk(β0, t)∣ > ε}
n

∑
i

Yi(t)eβ
T
0 ZidΛ0(t)

=
ˆ τ

0

V 2
njk(β0, t)I {∣n−1/2V 2

njk(β0, t)∣ > ε}S(0)
n (β0, t)dΛ0(t). (3.10)
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By Condition (D), Lemma 3.7.4, and Slutsky's theorem, V 2
njk(β0, t) converges uniformly

to a bounded process, thus I {∣n−1/2V 2
njk(β0, t)∣ > ε} converges to 0. Then by Conditions

(A) and (D) and Lemma 3.7.4, (3.10) converges to 0 as n goes to in�nity. Therefore, the

Lindeberg condition is satis�ed. By martingale central limit theorem, I2 converges to a

zero mean normal distribution.

I3 =
ˆ τ

0

n1/2 {Ṽnjk(β0, t) − Vnjk(β0, t)}S(0)
n (β0, t)dΛ0(t)

≤
ˆ τ

0

sup
t∈[0,τ]

∣n1/2 {Ṽnjk(β0, t) − Vnjk(β0, t)}S(0)
n (β0, t)∣dΛ0(t)

= sup
t∈[0,τ]

∣n1/2 {Ṽnjk(β0, t) − Vnjk(β0, t)}S(0)
n (β0, t)∣ {Λ0(τ) −Λ0(0)} = Op(1).

The last equality holds because n1/2{Ṽnjk(β0, t)−Vnjk(β0, t)} converges to a tight zero mean

Gaussian process and S
(0)
n (β0, t) converges uniformly to s

(0)
n (β0, t) which is bounded away

from 0.

We now consider I4. By Chebyshev inequality, for any ε > 0 and any sequence γn →∞,

pr{∣ 1
n
⟨`′n(β0)⟩jk − In(β0)jk∣ ≥ εγnn−1/2} ≤ nE{n−1⟨`′n(β0)⟩jk − In(β0)jk}2

ε2γ2
n

= var{⟨`′n(β0)⟩jk}
nε2γ2

n

. (3.11)

Let νnjk(β0, t) = {s(2)njk(β0, t)s(0)n (β0, t) − s(1)nj (β0, t)s(1)nk (β0, t)} /s(0)n (β0, t)2. Then

n1/2 { 1

n
⟨`′n(β0)⟩jk −

ˆ τ

0

νnjk(β0, t)s(0)n (β0, t)dΛ0(t)}

=
ˆ τ

0

⎡⎢⎢⎢⎢⎣
n1/2 {S(2)

njk(β0, t) − s(2)njk(β0, t)} −
S

(1)
nj (β0, t)n1/2{S(1)

nk (β0, t) − s(1)nk (β0, t)}
S

(0)
n (β0, t)

−
s
(1)
nk (β0, t)n1/2{S(1)

nj (β0, t) − s(1)nj (β0, t)}
S

(0)
n (β0, t)

+
s
(1)
nj (β0, t)s(1)nk (β0, t)n1/2{S(0)

n (β0, t) − s(0)n (β0, t)}
S

(0)
n (β0, t)s(0)n (β0, t)

⎤⎥⎥⎥⎥⎦
dΛ0(t). (3.12)
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Denote the integrand of (3.12) as Hnjk(β0, t). By the weak convergence of S
(0)
n (β0, t),

S
(1)
nj (β0, t), and S

(2)
njk(β0, t) to respectively s

(0)
n (β0, t), s(1)nj (β0, t), and s

(2)
njk(β0, t) (j, k =

1, ..., dn) and Slutsky's theorem, Hnjk(β0, t) converges to a tight zero mean Gaussian pro-

cess. Therefore,

∣(3.12)∣ ≤
ˆ τ

0

sup
t∈[0,τ]

∣Hnjk(β0, t)∣dΛ0(t) = sup
t∈[0,τ]

∣Hnjk(β0, t)∣ {Λ0(τ) −Λ0(0)} = Op(1).

By Conditions (A) to (D), the variable n−1⟨`′n(β0)⟩jk =
´ τ

0
Vnjk(β0, t)S(0)

n (β0, t)dΛ0(t) is

bounded, and therefore its �rst and second moment exist. Using the fact that ∣(3.12)∣ =

Op(1), it follows that var [n1/2 {n−1⟨`′n(β0)⟩jk −
´ τ

0
νnjk(β0, t)s(0)n (β0, t)dΛ0(t)}] = O(1).

With some algebra and the fact that
´ τ

0
νnjk(β0, t)s(0)n (β0, t)dΛ0(t) is a constant, we have

that var{⟨`′n(β0)⟩jk} = O(n). It follows that (3.11) is o(1). Therefore, n−1⟨`′n(β0)⟩jk −

In(β0)jk = Op(n−1/2) and I4 = Op(1).

Taking all results together, we have shown that n−1/2{˜̀′′
n(β0)jk +nIn(β0)jk} is Op(1) for

j, k = 1, ..., dn. ◻

Proof of Theorem 3.3.1. Let β0 be the true parameters, and αn = d1/2
n (n−1/2 + an).

It su�ces to show that, for any ε > 0 and any constant vector u with ∥u∥ = C, there exists

a large enough C such that pr{sup∥u∥=C Q̃n(β0 + αnu) < Q̃n(β0)} ≥ 1 − ε. This implies

that there exists a local maximizer β̂ such that ∥β̂ − β0∥ = Op(αn). Since Pλjn(0) = 0 and

Pλjn(⋅) ≥ 0, we have

Q̃n(β0 + αnu) − Q̃n(β0) ≤ {˜̀
n(β0 + αnu) − ˜̀

n(β0)} − n
kn

∑
j=1

{Pλjn(∣βj0 + αnuj ∣) − Pλjn(∣βj0∣)}

= I1 + I2.
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We �rst consider I1. By Taylor expansion we have

I1 = αnuT ˜̀′
n(β0) +

1

2
α2
nu

T ˜̀′′
n(β0)u +

1

6
α3
n

n

∑
i=1

dn

∑
j,k,l=1

˜̀′′′
i (β∗)jklujukul = I11 + I12 + I13,

where β∗ lies between β0 and β0 + αnu.

From Lemma 3.7.5 we have ˜̀′
n(β0)j = Op(n1/2) for j = 1, ..., dn. Therefore,

∣I11∣ ≤ αn∥u∥∥˜̀′
n(β0)∥ = αn∥u∥Op{(dnn)1/2} = ∥u∥Op(d1/2

n n−1/2αnn) = ∥u∥Op(α2
nn).

The term I12 can be written as α2
nu

T{˜̀′′
n(β0)+nIn(β0)}u/2−α2

nu
TnIn(β0)u/2 = J1 −J2. By

Cauchy-Schwarz inequality and {˜̀′′
n(β0)jk + nIn(β0)jk} = Op(n1/2) for j, k = 1, ..., dn, and

Lemma 3.7.6, we have ∣J1∣ ≤ α2
n∥u∥2∥˜̀′′

n(β0)+nIn(β0)∥/2 = ∥u∥2Op(α2
nn

1/2dn) = ∥u∥2op(α2
nn).

By spectral decomposition of In(β0) and Condition (F) we have that ∣J2∣ ≥ α2
n∥u∥2neigenmin{In(β0)}/2 ≥

∥u∥2(α2
nn)C3/2. Under Conditions (A) to (D), ∂Ṽnjk(β∗, t)/∂βl is of bounded variation in t

for i = 1, ..., n, j, k, l = 1, ..., dn. Therefore ˜̀′′′
i (β∗)jkl = −

´ τ
0
∂Ṽnjk(β∗, t)/∂βldNi(t) is Op(1).

Along with αn = d1/2
n (n−1/2 + an), d4

n/n→ 0 and d2
nan → 0, we have ∣I13∣ = Op(d3/2

n )nα3
n∥u∥3 =

Op{d2
n(n−1/2 + an)}nα2

n∥u∥3 = Op(d2
nn

−1/2 + d2
nan)nα2

n∥u∥3 = ∥u∥3op(α2
nn). Therefore, for

large enough ∥u∥, ∣J2∣ dominates ∣I11∣, ∣J1∣, and ∣I13∣.

We now consider I2. By Taylor expansion and Cauchy-Schwarz inequality

∣I2∣ = ∣n
kn

∑
j=1

P ′
λjn

(∣βj0∣)sgn(βj0)αnuj +
1

2
n
kn

∑
j=1

P ′′
λjn

(∣βj0∣)α2
nu

2
j{1 + o(1)}∣

≤ n ∣
kn

∑
j=1

P ′
λjn

(∣βj0∣)αnuj∣ +
1

2
n ∣

kn

∑
j=1

P ′′
λjn

(∣βj0∣)α2
nu

2
j{1 + o(1)}∣

≤ nαnank1/2
n ∥u∥ + 1

2
nα2

nbn∥u∥2{1 + o(1)}

= ∥u∥Op(α2
nn).

61



The last equality holds because an = Op(αnd−1/2
n ) and bn → 0 under Condition (G). There-

fore, ∣J2∣ dominates ∣I2∣ for large enough C. Since J2 is negative, it follows that for large

enough C, Q̃n(β0 +αnu) − Q̃n(β0) is negative with probability tending to one as n→∞. ◻

Lemma 3.7.7. Under Conditions (A) to (G), if d4
n/n→ 0, λjn → 0, and λjnn1/2d

−1/2
n →∞,

then with probability tending to one, for any βI satisfying ∥βI −βI0∥ = O(d1/2
n n−1/2) and any

constant C, we have Q̃n{(βTI ,0T )T} = max
∥βII∥≤Cd

1/2
n n−1/2 Q̃n{(βTI , βTII)T}.

Proof. It su�ces to show that with probability tending to one, for any βI satisfying ∥βI −

βI0∥ = O(d1/2
n n−1/2) and ∥βII∥ ≤ Cd

1/2
n n−1/2, ∂Q̃n(β)/∂βj and βj have di�erent signs for

j = (kn + 1), ..., dn. By Taylor expansion,

∂Q̃n(β)
∂βj

= ˜̀′
n(β0)j +

dn

∑
k=1

˜̀′′
n(β0)jk(βk − β0k) +

dn

∑
k,l=1

˜̀′′′
n (β∗)jkl(βk − β0k)(βl − β0l)

− nP ′
λjn

(∣βj ∣)sgn(βj)

= I1 + I2 + I3 + I4,

where β∗ lies between β0 and β. From Lemma 3.7.5 we have I1 = Op(n1/2) = op(d1/2
n n1/2).

I2 =
dn

∑
k=1

{˜̀′′
n(β0)jk + nIn(β0)jk} (βk − β0k) −

dn

∑
k=1

nIn(β0)jk(βk − β0k) = I21 − I22.

From Lemma 3.7.6 we have ˜̀′′
n(β0)jk + nIn(β0)jk = Op(n1/2) for j, k = 1, ..., dn. Using

Cauchy-Schwarz inequality along with ∥β − β0∥ = Op(d1/2
n n−1/2),

∣I21∣ ≤ ∥β − β0∥{
dn

∑
k=1

{˜̀′′
n(β0)jk + nIn(β0)jk}2}

1/2

= Op(dn) = op(d1/2
n n1/2).

As eigenmax{In(β0)} is bounded by Condition (F), it follows that

∣I22∣ ≤ n∥β − β0∥{
dn

∑
k=1

I2
n(β0)jk}

1/2

= nOp(d1/2
n n−1/2)O(1) = Op(d1/2

n n1/2).
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It follows that ∣I2∣ = Op(d1/2
n n1/2). By Cauchy-Schwarz inequality,

∣I3∣ =
RRRRRRRRRRR

n

∑
i=1

dn

∑
k,l=1

˜̀′′′
i (β∗)jkl(βk − β0k)(βl − β0l)

RRRRRRRRRRR
≤ ∥β − β0∥2

n

∑
i=1

(
dn

∑
k,l=1

˜̀′′′
i (β∗)2

jkl)
1/2
.

As shown in the proof of Theorem 3.3.1, ˜̀′′′
i (β∗)jkl = Op(1). Therefore, we have that

{∑dn
k,l=1

˜̀′′′
i (β∗)2

jkl}1/2 = Op(dn) and ∣I3∣ = Op{(dn/n)ndn} = Op(d2
n) = Op(d1/2

n n1/2), and

therefore I1 + I2 + I3 = Op(d1/2
n n1/2). Hence,

∂Q̃n(β)
∂βj

= −nP ′
λjn

(∣βj ∣)sgn(βj) +Op(d1/2
n n1/2)

= nλjn
⎧⎪⎪⎨⎪⎪⎩
−
P ′
λjn

(∣βj ∣)
λjn

sgn(βj) +Op(
d

1/2
n n−1/2

λjn
)
⎫⎪⎪⎬⎪⎪⎭
.

For j = (kn + 1), ..., dn, since ∣βj ∣ = O{(dn/n)1/2} and λjn(n/dn)1/2 → ∞, the quantity

P ′
λjn

(∣βj ∣)/λjn is positive under Condition (H) for all su�ciently large n. Therefore, the

quantity in the curly brackets is negative with probability tending to one. Thus, ∂Q̃n(β)/∂βj

and βj have di�erent signs with probability tending to one as n→∞. ◻

Proof of Theorem 3.3.2. The assertion that β̂TII = 0 with probability tending to one

as n→∞ follows directly from Lemma 3.7.7. To prove the second assertion, we �rst show

that

n1/2uTΓ
−1/2
n11 (In11 +Σn)(β̂I − βI0)(1 + op(1)) + n1/2uTΓ

−1/2
n11 Bn

= n−1/2uTΓ
−1/2
n11

˜̀′
n1(β0) + op(1), (3.13)

where ˜̀′
n1(β0) consists of the �rst kn components of ˜̀′

n(β0). Since β̂I is the maximum

penalized pseudo-partial likelihood estimator, ∂Q̃n(β̂)/∂βI = 0. By Taylor expansion of

∂Q̃n(β̂)/∂βI at βI0 and the fact that β̂II −βII0 = 0 with probability tending to one, we have

˜̀′
n1(β0) + ˜̀′′

n1(β0)(β̂I − βI0) + (β̂I − βI0)T ˜̀′′′
n1(β∗)(β̂I − βI0)/2 − nBn − nΣ∗∗

n (β̂I − βI0) = 0 with
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probability tending to one, where ˜̀′′
n1(β0) consists of the �rst kn×kn components of ˜̀′′

n(β0),
˜̀′′′
n1(β∗) consists of the �rst kn × kn × kn components of ˜̀′′′

n (β∗), β∗ lies between β̂ and β0,

Σ∗∗
n = Σn(β∗∗), β∗∗ lies between β̂ and β0. After rearranging the above equation we have

for all large n,

{˜̀′′
n1(β0) − nΣ∗∗

n }(β̂I − βI0) − nBn = −˜̀′
n1(β0) −

1

2
(β̂I − βI0)T ˜̀′′′

n1(β∗)(β̂I − βI0). (3.14)

Denote νn = (β̂I − βI0)T ˜̀′′′
n1(β∗)(β̂I − βI0). Multiple both sides of (3.14) by n−1/2uTΓ

−1/2
n11 ,

n1/2uTΓ
−1/2
n11 { 1

n
˜̀′′
n1(β0) −Σ∗∗

n }(β̂I − βI0) − n1/2uTΓ
−1/2
n11 Bn

= −n−1/2uTΓ
−1/2
n11

˜̀′
n1(β0) − n−1/2uTΓ

−1/2
n11 νn/2. (3.15)

By Cauchy-Schwarz inequality, ∥νn∥ ≤ ∥β̂I − βI0∥2∑n
i=1{∑kn

j,k,l=1
˜̀′′′
i1(β∗)2

jkl}1/2. As shown in

the proof of Theorem 1, ˜̀′′′
i1(β∗)jkl = Op(1). Therefore, ∥νn∥ = Op{(dn/n)nk3/2

n } = Op(d5/2
n ).

By spectral decomposition of Γ
−1/2
n11 , d

5
n/n→ 0, and Condition 6,

1

2
n−1/2uTΓ

−1/2
n11 νn ≤

∥u∥∥νn∥
2

n−1/2eigenmax(Γ
−1/2
n11 ) ≤ ∥u∥∥νn∥

2
n−1/2eigenmax(Γ

−1/2
n )

= Op(d5/2
n n−1/2) = op(1). (3.16)

The second inequality in (3.16) holds by interlacing inequality of symmetric matrix. Mean-

while, uTΓ
−1/2
n11 n

−1 ˜̀′′
n1(β0)(β̂I−βI0) = uTΓ

−1/2
n11 {n−1 ˜̀′′

n1(β0)+In11(β0)}(β̂I−βI0)−uTΓ
−1/2
n11 In11(β0)(β̂I−

βI0) = J1−J2. By Cauchy-Schwarz inequality and Lemma 3.7.6, we have ∣J1∣ ≤ ∥uTΓ
−1/2
n11 ∥∥n−1 ˜̀′′

n1(β0)+

In11(β0)∥∥β̂I −βI0∥ = ∥uTΓ
−1/2
n11 ∥∥β̂I −βI0∥Op(dnn−1/2). By spectral decomposition of In11, we

have ∣J2∣ ≥ ∥uTΓ
−1/2
n11 ∥∥β̂I − βI0∥eigenmin(In11) ≥ ∥uTΓ

−1/2
n11 ∥∥β̂I − βI0∥eigenmin(In). Therefore,

by Condition 6 we have

∣J1

J2

∣ ≤ ∥uTΓ
−1/2
n11 ∥∥β̂I − βI0∥Op(dnn−1/2)

∥uTΓ
−1/2
n11 ∥∥β̂I − βI0∥eigenmin(In)

= Op(dnn−1/2) = op(1).
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Therefore, J1 = op(J2), and uTΓ
−1/2
n11 n

−1 ˜̀′′
n1(β0)(β̂I − βI0) = −uTΓ

−1/2
n11 In11(β0)(β̂I − βI0){1 +

op(1)}. Since β̂ converges to β0 in probability, it follows that

uTΓ
−1/2
n11 { 1

n
˜̀′′
n1(β0) −Σ∗∗

n }(β̂I − βI0) = −uTΓ
−1/2
n11 {In11(β0) +Σn} (β̂I − βI0){1 + op(1)}.

(3.17)

By (3.15), (3.16), (3.17), we know (3.13) holds. By Lemma 3.7.5, n−1/2uTΓ
−1/2
n11

˜̀′
n1(β0)

converges to the standard normal distribution. Therefore,

n1/2uTΓ
−1/2
n11 (In11 +Σn){β̂I − βI0 + (In11 +Σn)−1Bn} → N(0,1)

in distribution. ◻

Derivation of Γ̂n(β̂). As de�ned in Section 3.3.2, Γn(β0) = n−1var{˜̀′
n(β0)}. We

�rst derive its asymptotic expression. Since the dimension of ˜̀′
n(β0) goes to in�nity, it

is only meaningful to consider the variance of its linear combination (ncn)−1/2uT ˜̀′
n(β0),

where u is an arbitrary constant vector with ∥u∥ = 1, and ∥u∥0 = cn. Under this setting,

var{(ncn)−1/2uT ˜̀′
n(β0)} = c−1

n u
TΓn(β0)u. Let the limit of c−1

n u
TΓn(β0)u be Γ(β0).

As shown in the proof of Lemma 3.7.5, (ncn)−1/2uT ˜̀′
n(β0) is asymptotically equivalent

to

(ncn)−1/2uT
n

∑
i=1

ˆ τ

0

⎧⎪⎪⎨⎪⎪⎩
Zi(t) −

S
(1)
n (β0, t)
S

(0)
n (β0, t)

⎫⎪⎪⎬⎪⎪⎭
dNi(t) + n−1/2

n

∑
i=1

(1 − ξi
α
)×

ˆ τ

0

(1 −∆i)Yi(t)
⎛
⎝
⎡⎢⎢⎢⎣

A
(0)
n (β0, t)

E{(1 −∆)Y (t)} − e
βT0 Zi(t)

⎤⎥⎥⎥⎦
c
−1/2
n uT S̃

(1)
n (β0, t)

S
(0)
n (β0, t)S̃(0)

n (β0, t)

−
⎡⎢⎢⎢⎣

A
(1)
n (β0, t)

E{(1 −∆)Y (t)} − e
βT0 Zi(t)c

−1/2
n uTZi(t)

⎤⎥⎥⎥⎦
1

S
(0)
n (β0, t)

⎞
⎠
d{ 1

n

n

∑
i=1

Ni(t)} , (3.18)

where A
(k)
n (β0, t) = n−1∑n

i=1(1 − ∆i)ξiα−1Yi(t)eβT0 Zi(t){c−1/2
n uTZi(t)}k (k = 0,1). Consider

the quantity c
−1/2
n uTZi(t) in A

(k)
n (β0, t). By Condition (C) and ∥u∥ = 1, it is a bounded
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deterministic process for each sample path Zi(t) and all n. Assume c
−1/2
n uTZi(t) converges

to L{u,Zi(t)} as n → ∞. Then by Lemma 3.7.1, A
(k)
n (β0, t) is asymptotically equivalent

to E[(1 −∆)Y (t)eβT0 Zi(t)L{u,Zi(t)}k]. Therefore, (3.18) is asymptotically equivalent to

(ncn)−1/2uT
n

∑
i=1

ˆ τ

0

⎧⎪⎪⎨⎪⎪⎩
Zi(t) −

S
(1)
n (β0, t)
S

(0)
n (β0, t)

⎫⎪⎪⎬⎪⎪⎭
dNi(t)

+ n−1/2
n

∑
i=1

(1 − ξi
α
)
ˆ τ

0

(1 −∆i)Yi(t){[
E{(1 −∆)Y (t)eβT0 Zi(t)}

E{(1 −∆)Y (t)}

−eβT0 Zi(t)] c
−1/2
n uT S̃

(1)
n (β0, t)

S
(0)
n (β0, t)S̃(0)

n (β0, t)
− (E[(1 −∆)Y (t)eβT0 Zi(t)L{u,Zi(t)}]

E{(1 −∆)Y (t)}

−eβT0 Zi(t)c−1/2
n uTZi(t))

1

S
(0)
n (β0, t)

}d{ 1

n

n

∑
i=1

Ni(t)}

= I1 + I2.

The quantity I1 is a linear combination of the partial likelihood score vector of the

full cohort data. Let s(0)(β0, t), s(1)(β0, t), and s(2)(β0, t) be the limit of S
(0)
n (β0, t),

c
−1/2
n uTS

(1)
n (β0, t), and c−1

n u
TS

(2)
n (β0, t)u respectively as n → ∞. By Andersen and Gill

(1982), the asymptotic variance of I1 is

I1(β0) =
ˆ τ

0

s(2)(β0, t)s(0)(β0, t) − {s(1)(β0, t)}2

s(0)(β0, t)
dΛ0(t).

Let Wi(β0) be the integration in I2, which equals n−1/2∑n
i=1 (1 − ξi/α)Wi(β0).

De�ne F (τ) as the sigma algebra generated by Yi(t), Ni(t), and Zi(t) for 0 ≤ t ≤ τ and

i = 1, ..., n. Conditional on F (τ), the only random element in I2 is ξ. Since E{ξ∣F (τ)} = α,

the asymptotic variance of I2, denoted by I2(β0), can be derived as

I2(β0) =
1

n
E [var{

n

∑
i=1

(1 − ξi
α
)Wi(β0)∣F (τ)}] + 1

n
var [E{

n

∑
i=1

(1 − ξi
α
)Wi(β0)∣F (τ)}]

= 1

n
E [

n

∑
i=1

var{ξi∣F (τ)}
α2

W 2
i (β0)] +

1

n
var(

n

∑
i=1

[1 − E{ξi∣F (τ)}
α

]Wi(β0))
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= 1 − α
α

E{W 2(β0)}.

Finally, since I1 and I2 are independent as shown in the proof of Lemma 3.7.5, the

asymptotic variance of (ncn)−1/2uT ˜̀′
n(β0) is

Γ(β0) = I1(β0) +I2(β0)

=
ˆ τ

0

s(2)(β0, t)s(0)(β0, t) − {s(1)(β0, t)}2

s(0)(β0, t)
dΛ0(t) +

1 − α
α

E{W 2(β0)}.

Under �nite sample, the matrix Γn(β0) has �nite dimension and is therefore well de�ned.

Then it can be estimated by estimating I1(β0) and I2(β0) without linear combination.

Thus,

Γ̂n(β̂) = În1(β̂) + În2(β̂)

= 1

n

n

∑
i=1

S̃
(2)
n (β̂, ti)S̃(0)

n (β̂, ti) − {S̃(1)
n (β̂, ti)}⊗2

{S̃(0)
n (β̂, ti)}2

∆i+

1 − α
α

1

n

n

∑
i=1

ξi
α

{ 1

n
(1 −∆i)

n

∑
j=1

∆jYi(tj)([
Ê{(1 −∆)Y (tj)eβ̂TZi(tj)}

Ê{(1 −∆)Y (tj)}
− eβ̂TZi(tj)]×

S̃
(1)
n (β̂, tj)

{S̃(0)
n (β̂, tj)}2

− [ Ê{(1 −∆)Y (tj)eβ̂TZi(tj)Zi(tj)}
Ê{(1 −∆)Y (tj)}

− eβ̂TZi(tj)Zi(tj)]
1

S̃
(0)
n (β̂, tj)

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭

2

,

where

Ê{(1 −∆)Y (t)} = 1

n

n

∑
i=1

(1 −∆i)Yi(t),

Ê{(1 −∆)Y (tj)eβ̂
TZi(tj)} = 1

n

n

∑
i=1

ξi
α̂(t)(1 −∆i)Yi(t)eβ̂

TZi(tj),

Ê{(1 −∆)Y (tj)eβ̂
TZi(tj)Zi(tj)} =

1

n

n

∑
i=1

ξi
α̂(t)(1 −∆i)Yi(t)eβ̂

TZi(tj)Zi(tj).
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CHAPTER 4: REGULARIZED VARIABLE SELECTION FOR ADDITIVE
HAZARDS MODEL WITH A STRATIFIED CASE-COHORT DESIGN

4.1 Introduction

In modern large-scale epidemiological cohort studies, investigators are usually inter-

ested in assessing the association between a large number of risk factors and the outcome.

Collecting information on risk factors often requires expensive bioassays and precious bio-

logical specimens such as serum and genetic material. When the outcome is time-to-event

data, Prentice (1986) proposed a case-cohort design to reduce the cost and e�ort in mea-

suring expensive covariates without decreasing much e�ciency in the estimation. In a

case-cohort design, the complete covariate information is only obtained from a randomly

sampled subset of the full cohort plus all subjects who developed the outcome. In prac-

tice, some covariates that are correlated with the more expensive exposure variables may be

readily available for the entire cohort. Borgan et al. (2000) proposed a strati�ed case-cohort

design based on the correlated covariates to gain e�ciency in the estimation. For example,

in the Atherosclerosis Risk in Communities (ARIC) study (Ballantyne et al. 2004) a large

cohort of 15,792 individuals aged 45 to 64 years old were sampled from four U.S. communi-

ties and were followed for ten years for the development of Coronary Heart Disease (CHD).

The primary interest was to assess the association between the protein hs-CRP level and

risk of incident CHD. To preserve stored plasma and reduce costs, a strati�ed case-cohort

design was implemented, where a random subset was selected from each stratum de�ned

by sex, race, and baseline age. The hs-CRP level was measured only on these subsets plus

all incident CHD cases.
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Perhaps the most popular model for the analysis of time-to-event data is the Cox

proportional hazards model (Cox 1972), where the e�ect of covariates on the risk of event

is assumed multiplicative. The popularity of the Cox proportional hazards model is largely

due to its desirable theoretical properties and wide availability of its implementation in

computer programs. However, the critical assumption of proportional hazards may fail to

hold in many situations, making the Cox model invalid. For example, in the ARIC study

there is evidence that the risk of CHD does not satisfy the proportionality assumption

(Kang et al. 2013). Moreover, investigators are sometimes more interested in the risk

di�erence attributed to the covariates. The risk di�erence is more relevant to public health

because it translates directly into the number of disease cases that would be avoided by

eliminating a particular exposure (Kulich and Lin 2000). The risk di�erence is also easier to

interpret and communicate to medical practitioners. Therefore, the additive hazards model

is often used as an important alternative to the Cox proportional hazards model to analyze

time-to-event outcome. As its name suggests, the additive hazards model assumes that the

e�ect of covariates on the risk of event is additive. Since Aalen (1980) �rst introduced the

additive hazards model, many authors have investigated its estimation procedure and the

properties of the estimator. Lin and Ying (1994) proposed a semiparametric estimating

equation for a special case of additive hazards model where the regression coe�cients

are time-independent. The authors derived the limiting distribution of the estimator and

studied its semiparametric e�ciency. Kulich and Lin (2000) extended this estimation

method to case-cohort design and assessed its asymptotic relative e�ciency with respect

to the full cohort analysis.

In case-cohort studies where a large number of covariates are collected, researchers are

often interested in selecting a subset of the covariates that are related to the event of

interest. With the inclusion of interaction terms and polynomial terms, the number of

candidate covariates can be very large. In the ARIC study, there are a number of potential
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confounders or e�ect modi�ers that need to be considered in the modeling process. With

the pairwise interactions between hs-CRP level and all the other covariates as well as the

squared continuous covariates, the total number of candidate covariates is quite large in

comparison to the number of events. As Huber (1973) argued, in the context of variable

selection the number of parameters should be considered as increasing with sample size,

and goes to in�nity as sample size goes to in�nity. Therefore, an e�cient variable selection

procedure that allows a diverging number of parameters is needed for an additive hazards

model with a case-cohort design. Here we allow the number of parameters to increase at a

slower rate than the sample size. Thus, the model dimension is still less than the sample

size even though it diverges to in�nity.

Regularized variable selection procedures have been developed over the last few decades.

Under certain regularity conditions, these procedures can simultaneously select variables

and estimate their coe�cients. Among various penalty functions used in these procedures,

the smoothly clipped absolute deviation (SCAD) penalty (Fan and Li 2001) and a few other

have been shown to identify the true model with probability tending to one as sample size

goes to in�nity and estimate the non-zero parameters with full e�ciency as if the true

model is known a priori. The SCAD variable selection procedure has been successfully

applied to linear, generalized linear, Cox proportional hazards, and additive hazards model.

However, to our knowledge, its properties have not been studied under additive hazards

model with strati�ed case-cohort design where covariates are not observed for all subjects.

The diverging number of parameters adds to the complexity of the theoretical derivation.

In this chapter of the dissertation, we investigate the asymptotic properties and �-

nite sample performance of the SCAD-penalized variable selection procedure in additive

hazards model with a strati�ed case-cohort design. We focus on Lin and Ying (1994) es-

timation method assuming time-independent parameters and simple random sampling in
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the case-cohort design. We �rst establish the rate of convergence of the maximum penal-

ized pseudo-partial likelihood estimator. We then prove the model selection consistency

of the procedure and derive the limiting distribution of the estimator. As tuning param-

eter selection is critical for the performance of regularized variable selection procedure,

we propose a new cross-validation based tuning parameter selection strategy, and empiri-

cally evaluate its performance under large cohort size but fairly high censoring percentage

settings, which are two typical features of case-cohort studies. The aim of this chapter

is to provide theoretical foundation as well as practical guidance for variable selection in

additive hazards model under strati�ed case-cohort design and a diverging dimension, and

thereby facilitates large-scale studies on public health issues.

4.2 Additive Hazards Model with A Strati�ed Case-Cohort Design

Suppose the full cohort of size n is divided into H mutually exclusive strata based on

some categorical variables that are available for all subjects. For subject i in stratum h,

let T and C be respectively the time to the outcome of interest and the censoring time,

and Z(t) be the dn × 1 possibly time-dependent covariate vector. T and C are assumed to

be independent conditional on Z. Let β = (β1, ..., βdn)T be a vector of unknown regression

coe�cients. Let X = min(T,C) be the observed time and ∆ = I(T ≤ C) be the censoring

indicator, where I(⋅) is an indicator function. Let τ be the time at the end of study. De�ne

for subject i in stratum h the counting process Nhi(t) = I(Xhi ≤ t,∆hi = 1), and the at risk

process Yhi(t) = I(Xhi ≥ t). Let λhi(t) denote the hazard function for subject i in stratum

h. The additive hazards model assumes

λhi(t∣Zhi(t)) = λ0(t) + βTZhi(t), (4.1)

where λ0(t) is an unspeci�ed common baseline hazard function for all strata, and β is

constant over time. Under the strati�ed case-cohort design, we randomly select a subcohort
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of �xed size from each stratum. We assume that the selection of subcohort is independent

across the strata. Let ñh denote the size of subcohort in stratum h, nh denote the size of

stratum h, and ξhi be the indicator of subject i being selected into the subcohort in stratum

h. Then for subject in stratum h = 1, ...,H, the selection probability pr(ξhi = 1) = ñh/nh =

αh. Under the simple random sampling (ξh1,...,ξhnh) are correlated. Assuming the complete

covariate histories are available for the cases outside the subcohort throughout their at-risk

periods, we proposed the following estimating equation for the regression coe�cients β,

U(β) =
H

∑
h=1

nh

∑
i=1

ˆ τ

0

ρhi(t) {Zhi(t) − Z̄(t)}{dNhi(t) − Yhi(t)βTZhi(t)dt} ,

where Z̄(t) = ∑H
h=1∑nh

j=1 ρhj(t)Yhj(t)Zhj(t)/∑H
h=1∑nh

j=1 ρhj(t)Yhj(t), ρhi(t) = ∆hi+(1−∆hi)ξhiα̂−1
h (t),

and α̂h(t) = ∑nh
i=1 ξhi(1 −∆hi)Yhi(t)/∑nh

i=1(1 −∆hi)Yhi(t). This estimating equation is based

on Kulich and Lin (2000) with the selection probability αh replaced by its time-dependent

sample estimate α̂h(t). The estimator β̂ solves U(β) and takes on a closed form

β̂ = [
H

∑
h=1

nh

∑
i=1

ˆ τ

0

ρhi(t) {Zhi(t) − Z̄(t)}⊗2
Yhi(t)dt]

−1

[
H

∑
h=1

nh

∑
i=1

ˆ τ

0

{Zhi(t) − Z̄(t)}dNhi(t)] ,

(4.2)

where a⊗2 = aaT for a vector a.

4.3 Variable Selection in Additive Hazards Model with A Strati�ed

Case-Cohort Design

4.3.1 Penalized loss function

Unlike the Cox proportional hazards model where the log-partial likelihood function

is a natural choice of loss function for variable selection, under additive hazards model

the likelihood function is di�cult to work with due to the nonparametric baseline hazard

function and the additive structure. Motivated by the similarity between the Lin-Ying
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estimator for additive hazards model (Lin and Ying 1994) and the least square estimator,

Martinussen and Scheike (2009) proposed the loss function that is the integral of the Lin-

Ying estimating equation with respect to β. We propose a loss function under strati�ed

case-cohort design

L̃n(β) =
1

2
(βT Ãnβ − 2βT b̃n),

where

Ãn =
H

∑
h=1

nh

∑
i=1

ˆ τ

0

ρhi(t) {Zhi − Z̄(t)}⊗2
Yhi(t)dt,

b̃n =
H

∑
h=1

nh

∑
i=1

ˆ τ

0

{Zhi − Z̄(t)}dNhi(t).

We then propose the following objective function for variable selection,

Q̃n(β) = L̃n(β) + n
dn

∑
j=1

Pλjn(∣βj ∣), (4.3)

where Pλjn(∣βj ∣) is a nonnegative penalty function with λjn as the tuning parameter con-

trolling the model complexity. We use SCAD penalty proposed by Fan and Li (2001) with

the modi�cation that the tuning parameter λn is covariate-speci�c, which allows di�erent

regression coe�cients to have di�erent penalty functions. When λjn = 0, no penalty is

applied to βj. The �rst derivative of the SCAD penalty is given by

P ′
λn

(θ) = λnI(θ ≤ λn) +
(aλn − θ)+
a − 1

I(θ > λn), (4.4)

for some a > 2 and θ > 0, with Pλn(0) = 0.

4.3.2 Notations and Regularity Conditions

We denote by β̂ the penalized estimator that minimizes (4.3). We denote by β0 the true

value of β. Let β0 = (βTI0, βTII0)T , where βI0 and βII0 are the nonzero and zero components
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of β0, respectively. Let β̂ = (β̂TI , β̂TII)T , where β̂I and β̂II are the penalized pseudo-partial

likelihood estimators of βI0 and βII0, respectively. Denote by kn the dimension of βI0 with

kn/dn converging to a constant c ∈ [0,1]. We de�ne the following notations.

S(k)(t) = n−1
H

∑
h=1

nh

∑
i=1

Yhi(t)Zhi(t)⊗k S̃(k)(t) = n−1
H

∑
h=1

nh

∑
i=1

ρhi(t)Yhi(t)Zhi(t)⊗k, k = 0,1,2

s(k)(t) = E{S(k)(t)}, k = 0,1,2, e(t) = s
(1)(t)
s(0)(t)

An(β) = E [
ˆ τ

0

{Z(t) − e(t)}⊗2Y (t)dt] Γn(β) =
1

n
var{L̃′n(β)}

φn = max
1≤j≤kn

{∣P ′
λjn

(∣βj0∣)∣}, ψn = max
1≤j≤kn

{∣P ′′
λjn

(∣βj0∣)∣}

Ψn = diag{P ′′
λ1n

(∣β10∣), ..., P ′′
λknn

(∣βkn0∣)}

Φn = (P ′
λ1n

(∣β10∣)sgn(β10), ..., P ′
λsnn

(∣βkn0∣)sgn(βkn0))
T

We require the following regularity conditions. The conditions on the higher-order

moment of the loss function is necessary due to the diverging number of parameters.

(A)
´ τ

0
λ0(t)dt < ∞ and E{Y (τ)} > 0.

(B) ∣Zhij(0)∣ +
´ τ

0
∣dZhij(t)∣ < C1 < ∞ almost surely for some constant C1 and h = 1, ...,H,

i = 1, ..., n, and j = 1, ..., dn, i.e. Zhij(t) has bounded variation almost surely.

(C) There exists a neighborhoodB of β0 such that for all β ∈ B and t ∈ [0, τ], ∂s(0)(β, t)/∂β =

s(1)(β, t), and ∂2s(0)(β, t)/∂β∂βT = s(2)(β, t). The functions s(k)(β, t) (k = 0,1,2) are

continuous and bounded and s(0)(β, t) is bounded away from 0 on B × [0, τ].

(D) αh = ñh/nh converges to a constant C2h ∈ (0,1) for h = 1, ...,H as n→∞.

(E) For each n, there exist positive constants C3, C4, C5, and C6 such that

0 < C3 < eigenmin{An(β0)} ≤ eigenmax{An(β0)} < C4 < ∞
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0 < C5 < eigenmin{Γn(β0)} ≤ eigenmax{Γn(β0)} < C6 < ∞

where eigenmin{⋅} and eigenmax{⋅} are the minimum and maximum of the eigenvalues

of a matrix, respectively.

(F) lim infn→+∞ lim infθ→0+P ′
λjn

(θ)/λjn > 0.

(G) min1≤j≤kn ∣β0j ∣/λjn →∞ as n→∞.

4.3.3 Asymptotic Properties of Penalized Estimator

We �rst prove the existence of a penalized estimator and establish its convergence rate.

Only main results are presented here. The outline of the proofs are provided in Section

4.7.

Theorem 4.3.1. Under Conditions (A) to (E), if ψn → 0 and d2
n/n → 0 as n → ∞, then

with probability tending to one there exists a local minimizer β̂ of Q̃n(β), as de�ned in

(4.3), such that ∥β̂ − β0∥ = Op{d1/2
n (n−1/2 + φn)}.

From Theorem 4.3.1 one can obtain a n1/2d
−1/2
n -consistent penalized estimator, provided

that φn = O(n−1/2), which is the case for SCAD penalty.

Theorem 4.3.2. Under Conditions (A) to (H), as n → ∞, if ψn → 0, d2
n/n → 0, λjn →

0, λjnn1/2d
−1/2
n → ∞, and φn = O(n−1/2), then the n1/2d

−1/2
n -consistent local minimizer β̂ =

(β̂TI , β̂TII)T must satisfy

(i) β̂II = 0 with probability tending to one;

(ii) for any nonzero kn × 1 constant vector u with uTu = 1,

n1/2uTΓ
−1/2
n11 (β0){An11(β0) +Ψn}{β̂I − βI0 + (An11(β0) +Ψn)−1Φn} → N(0,1)

in distribution, where An11(β0) consists of the �rst kn × kn components of An(β0),

and Γn11(β0) consists of the �rst kn × kn components of Γn(β0).
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For the SCAD penalty, φn = 0, Ψn = 0, and Φn = 0 for large enough n under Condition

(G). Therefore, the result of Theorem 4.3.2 reduces to

n1/2uTΓ
−1/2
n11 (β0)An11(β0)(β̂I − βI0) → N(0,1)

in distribution.

4.4 Considerations in Practical Implementation

4.4.1 Local Quadratic Approximation and Variance Estimation

Since the SCAD penalty function is singular at the origin, in practical implementation

the penalized estimator cannot be directly obtained by solving the �rst derivative of (4.3).

Instead, we follow Fan and Li (2001) to use a local quadratic approximation (LQA) to

the penalty function. The unpenalized loss function L̃n(β) is a special case of (4.3) with

Pλjn(∣βj ∣) = 0 for all j = 1, ..., dn. Applying Theorem 4.3.1 with an = 0, we know there exists

a n1/2d
−1/2
n -consistent minimizer of (4.3). We use this minimizer as the initial value β(0)

for the LQA algorithm. If ∣β(0)
j ∣ is less than a pre-speci�ed small positive constant cj, then

set β̂j = 0. In practice cj is set to equal λjn. Otherwise, the penalty function is locally

approximated by a quadratic function as

Pλjn(∣βj ∣) ≈ Pλjn(∣β
(0)
j ∣) + 1

2

P ′
λjn

(∣β(0)
j ∣)

∣β(0)
j ∣

(β2
j − β

(0)2
j ),

and therefore P ′
λjn

(∣βj ∣) ≈ {P ′
λjn

(∣β(0)
j ∣)/∣β(0)

j ∣}βj. With the approximated quadratic penalty

function, a closed-form maximizer can be computed by solving the �rst derivative of the

approximated objective function. The absolute value of each component of the minimizer

is again compared to the pre-speci�ed constant cj and set to 0 if it is smaller than cj.

The remaining nonzero updated parameter estimate is used as the new initial value. This
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process is iterated until convergence or no nonzero parameter estimate is left.

The sandwich estimate of the covariance matrix for β̂∗, the nonzero components of β̂,

can be directly obtained from the last iteration of the above LQA algorithm as

ˆcov(β̂∗) ={L̃∗′′n + nΦn(β̂∗)}−1v̂ar{L̃∗′n (β̂∗)}{L̃∗′′n + nΦn(β̂∗)}−1

={Ã∗
n + nΦn(β̂∗)}−1nΓ̂n(β̂∗)}{Ã∗

n + nΦn(β̂∗)}−1,

where Ã∗
n is the sub-matrix of Ãn corresponding to β̂∗, Φn(β∗) = diag{P ′

λ1n
(∣β̂∗1 ∣)/∣β̂∗1 ∣, ...,

P ′
λk∗nn

(∣β̂∗k∗n ∣)/∣β̂
∗
k∗n

∣}, Γ̂n(β̂∗) is the estimate of Γn(β̂∗), and k∗n is the dimension of β̂∗. Note

that the sandwich estimate of the covariance matrix does not apply to the zero estimate

of the parameters.

4.4.2 Selection of Tuning Parameters

The tuning parameters λ's involved in the SCAD penalty function Pλ(⋅) control the

magnitude of the penalty on each regression coe�cient and thereby control the complexity

of the selected model. In practical implementation, the attractive properties of the penal-

ized estimator heavily depend on the choice of the appropriate tuning parameters. The

typical methods of selecting the tuning parameters are automatic data-driven procedures

such as K-fold cross-validation and generalized cross-validation (GCV) (Craven and Wahba

1979). The dn-dimensional optimization problem is di�cult to solve in practice. We follow

Cai et al. (2005) to take λjn = λnse(β(0)
j ), where se(β(0)

j ) is the estimated standard error of

the unpenalized estimator. Then the optimization problem reduces to 1-dimensional and

a grid-search can be performed to identify the optimal λn. In the literature of variable

selection in Cox's proportional hazards model the GCV is predominantly used due to the

availability of the partial likelihood function. Under additive hazards model, however, no

such likelihood function is available. Therefore, authors have been exclusively using K-fold

cross-validation with L̃n(β) as the natural choice of loss function. In this study we take
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K = 5. Denote the full dataset by D and the training and validation dataset by D−Dν and

Dν , respectively, for ν = 1, ...,5. For each λ, compute L̃nν(β̂−ν(λ)) based on the validation

dataset, where β̂−ν(λ) is the penalized estimate based on the training dataset and λ. The

conventional cross-validation statistics is de�ned as

CV(λ) =
5

∑
ν=1

L̃nν(β̂−ν(λ)), (4.5)

and λ is chosen by minimizing (4.5). However, cross-validation method is based on minimiz-

ing the prediction error rather than model selection consistency. In fact, it is asymptotically

equivalent to the Akaike information criterion (AIC) (Akaike 1973), which has a positive

probability of over�tting the model as sample size goes to in�nity. Case-cohort studies

usually bare the distinctive property of large sample size. Therefore, the over�tting e�ect

of cross-validation may become more prominent in case-cohort studies. In this study we

propose a modi�ed cross-validation method that incorporates an additional penalty term

in the cross-validation statistics. The penalized statistic is de�ned as

CVP(λ) =
5

∑
ν=1

{L̃nν(β̂−ν(λ)) + k−ν}, (4.6)

where k−ν is the number of nonzero components of β̂−ν . We denote the minimizer of

(4.5) and (4.6) as λCV
n and λCVP

n , respectively. In the simulation section that follows,

we empirically investigate the model selection performance of these two tuning parameter

selection criteria. According to Fan and Li (2001), the second tuning parameter a in the

SCAD penalty is set to 3.7 in our study.
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4.5 Numerical Study and Application

4.5.1 Simulation Study

Independent failure times are generated by the additive hazards model λi(t∣Zi(t)) =

λ0(t)+βTZi(t). We set λ0(t) = 2 and the dimension of β to be dn = [0.3∗n1/2
c ] to re�ect its

dependence on sample size, where nc is the number of cases and [x] rounds x to the nearest

integer. We use nc instead of n to determine model size because the former better represents

the amount of information in the dataset. The smallest nonzero parameter in terms of

the absolute value is set to 0.70 or 0.43, which represents 35% and 22% increase from the

baseline hazard for one standard deviation increase in the covariate. The remaining nonzero

parameters recycling from values -0.8 and 1. There is one nonzero parameter for every two

zero parameters. To generate the design matrix and strata, we �rst generate a (dn +

1)-dimensional multivariate standard normal variable Z∗ with the correlation coe�cient

between Z∗
i and Z∗

j being 0.5∣i−j∣. The �rst component is then dichotomized with a cuto�

value of 0 and used to de�ne two strata. For the remaining dn components, we dichotomize

half of them with a cuto� value of 0. As a result, the design matrix consists of a mixture

of correlated binary and continuous covariates that are correlated with the strati�cation

variable. A simple random sample is selected independently for each stratum. Censoring

times Ci are generated from a uniform distribution U(0, c) where c is adjusted to achieve

desired censoring percentage.

Two sample sizes, two censoring rates, and two sampling proportions of the random sub-

cohort are considered for each minimum e�ect size (βmin=0.70 and 0.43). Comparisons are

made on the performance of penalized variable selection procedures with tuning parameter

λCV
n and λCVP

n . As a benchmark, we include the hard threshold variable selection procedure,

where the component of the minimizer of the unpenalized loss function L̃n(β) is set to 0 if

its p-value from the Wald test is larger than 0.05. We also include as another benchmark

the Oracle procedure where the correct subset of covariates is used to �t the model. As
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the censoring rate in case-cohort studies is typically high, we set it to 80% and 90% in

our simulation to better mimic real-world studies. For each setting 1000 replications are

conducted.

The performance of the model selection procedure is evaluated by model error de�ned

as ME(µ̂) = E{E(Y ∣Z)− µ̂(Z)}2. Under the additive hazards model with constant baseline

hazard λ0, it can be shown that E(Y ∣Z) = (λ0+βT0 Z)−1 and µ̂(Z) = (λ0+β̂TZ)−1. Therefore,

ME(µ̂) = E{(λ0+β̂TZ)−1−(λ0+βT0 Z)−1}2. We further de�ne the relative model error (RME)

of a model selection procedure as the ratio of its model error to that of the unpenalized

estimates from the full model. Following Tibshirani (1996), we use the median and the

median absolute deviation (MAD) of the relative model error to compare the performance of

di�erent model selection procedures. We also calculate the average number of parameters

correctly estimated as 0, the average number of parameters erroneously estimated as 0,

and the overall rate of identifying the true model (RITM). In addition, point estimates,

empirical and model-based standard errors, and the empirical 95% con�dence interval

coverage are calculated for β̂min using replications with nonzero β̂min.

Table 4.1 summarizes the model selection performance when βmin = 0.70. The CVP

tuning parameter selection method outperforms the CV tuning parameter selection method

in all settings in terms of relative model error (RME) and the rate of identifying the true

model (RITM). It also outperforms the hard threshold method except for the scenarios with

n = 5000 and 90% censoring rate. Further, higher sampling proportion of the random sub-

cohort is associated with better model selection performance of the CVP method but seems

to have no e�ect on the performance of CV and hard threshold methods. The relatively

low RITM for the CV method is apparently due to its over�tting e�ect as shown by the

low average number of correctly identi�ed zero parameters. Table 4.2 summarizes the

estimation result of βmin under settings in Table 4.1. Given that βmin is correctly identi�ed

as nonzero, all procedures produce approximately unbiased point estimates. The estimates
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are slightly smaller than the true value when the model dimension is the largest (dn = 13).

The model-based standard error estimates are very close to the empirical standard errors

and the 95% con�dence interval coverage is close to the nominal level.

Table 4.3 summarizes the model selection performance when βmin = 0.43. Under the

same setting, there is a decrease in the model selection performance for all three procedures

in comparison to that with larger βmin. This is expected as smaller e�ect is more di�cult to

detect. Nevertheless, similar to Table 4.1, the procedure with λCVP
n outperforms the other

procedures in all settings. Higher sampling proportion of the random sub-cohort is again

associated with better performance of the CVP method but not the other two methods.

Table 4.4 shows the estimation result of βmin under settings in Table 4.3. Conditional on

correctly identifying βmin all procedures produce fairly unbiased estimation in the parame-

ter and its standard error and the 95% con�dence interval coverage is close to the nominal

level.

4.5.2 Analysis of ARIC Study

We use the model selection procedures investigated in Section 4.5.1 to analyze the

ARIC study data (Ballantyne et al. 2004). As mentioned in Section 4.1, a cohort of 15,792

individuals were sampled from four U.S. communities and followed for ten years for the

development of CHD. After excluding subjects for missing data and other reasons, a total

of 12,351 subjects comprised the potential full cohort. Those who were alive or free of

disease by the end of 1998 or lost to follow-up in the middle of the study periods were

treated as censored. A random subcohort of size 890 was selected by strati�ed random

sampling from strata de�ned by sex, race (black versus white), and age at baseline (≤

55 versus >55). After including all CHD cases, the case-cohort size is 1567. There is a

total of 735 CHD cases, corresponding to a censoring rate of 94.1%. In this analysis we

are primarily interested in identifying risk factors for incidence CHD. In particular, the
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Table 4.1: Model selection performance with βmin = 0.70

80% Censored 90% Censored

RME Zero Parm. RITM RME Zero Parm. RITM

Method median (MAD) C I (%) median (MAD) C I (%)

n = 5000, α = 0.3, dn = 9 for 80% censored, dn = 7 for 90% censored

HT 0.76 (0.33) 5.7 0 74.2 0.81 (0.33) 3.78 0.06 76.2

CV 0.79 (0.21) 5.09 0.02 63.6 0.92 (0.19) 3.23 0.08 56.6

CVP 0.63 (0.29) 5.92 0.08 86.6 0.84 (0.46) 3.93 0.31 66.6

Oracle 0.58 (0.28) 6 0 100 0.59 (0.29) 4 0 100

n = 5000, α = 0.5, dn = 9 for 80% censored, dn = 7 for 90% censored

HT 0.79 (0.32) 5.68 0 71.6 0.78 (0.31) 3.79 0.03 78.4

CV 0.78 (0.22) 5.08 0.01 65 0.93 (0.18) 3.16 0.09 55.6

CVP 0.58 (0.29) 5.96 0.05 91.2 0.76 (0.43) 3.95 0.26 71.6

Oracle 0.54 (0.26) 6 0 100 0.59 (0.28) 4 0 100

n = 10000, α = 0.3, dn = 13 for 80% censored, dn = 9 for 90% censored

HT 0.77 (0.25) 7.57 0 65.2 0.72 (0.31) 5.69 0 73.8

CV 0.77 (0.28) 7.09 0.01 65.6 0.74 (0.26) 5.13 0.02 67.8

CVP 0.6 (0.32) 7.88 0.04 86.4 0.54 (0.26) 5.96 0.05 91.6

Oracle 0.51 (0.27) 8 0 100 0.5 (0.25) 6 0 100

n = 10000, α = 0.5, dn = 13 for 80% censored, dn = 9 for 90% censored

HT 0.76 (0.24) 7.59 0 67.4 0.79 (0.32) 5.69 0 73.8

CV 0.79 (0.26) 7.07 0 66 0.76 (0.24) 5.09 0.01 65.4

CVP 0.59 (0.31) 7.96 0.02 94.6 0.54 (0.27) 5.96 0.04 92.8

Oracle 0.57 (0.31) 8 0 100 0.51 (0.26) 6 0 100

n: sample size; α: sampling proportion of random sub-cohort for both strata; dn: number
of parameters; RME: relative model error; MAD: median absolute deviation; C: average
number of 0 parameters correctly identi�ed as 0; I: average number of nonzero parame-
ters incorrectly identi�ed as 0; RITM: rate of identifying true model; HT: hard threshold
method; CV: SCAD-penalized method with cross validation for tuning parameter selec-
tion; CVP: SCAD-penalized method with modi�ed cross validation for tuning parameter
selection.

82



Table 4.2: Estimation result for βmin = 0.70

80% Censored 90% Censored

Method β̂min see sem 95% CIe β̂min see sem 95% CIe

n = 5000, α = 0.3, dn = 9 for 80% censored, dn = 7 for 90% censored
HT 0.69 0.14 0.13 94.4 0.68 0.14 0.15 97.4
CV 0.69 0.12 0.11 92.4 0.68 0.13 0.14 96.4
CVP 0.69 0.1 0.1 94 0.69 0.13 0.13 96.8
Oracle 0.69 0.1 0.1 94.6 0.68 0.13 0.13 95.8

n = 5000, α = 0.5, dn = 9 for 80% censored, dn = 7 for 90% censored
HT 0.69 0.12 0.11 92.8 0.67 0.13 0.14 96.4
CV 0.68 0.1 0.09 92.4 0.68 0.12 0.12 96
CVP 0.69 0.09 0.09 94.2 0.68 0.12 0.12 97.1
Oracle 0.69 0.09 0.09 94.2 0.68 0.12 0.12 96

n = 10000, α = 0.3, dn = 13 for 80% censored, dn = 9 for 90% censored
HT 0.67 0.1 0.1 93.8 0.69 0.11 0.12 95.6
CV 0.67 0.09 0.09 93.6 0.69 0.1 0.1 94.4
CVP 0.67 0.09 0.09 94.2 0.68 0.09 0.09 94.4
Oracle 0.67 0.09 0.09 94.8 0.68 0.09 0.09 94.4

n = 10000, α = 0.5, dn = 13 for 80% censored, dn = 9 for 90% censored
HT 0.67 0.09 0.09 92.6 0.69 0.11 0.11 95.6
CV 0.67 0.08 0.08 90.8 0.68 0.09 0.09 93
CVP 0.67 0.08 0.08 92.2 0.68 0.09 0.09 93.6
Oracle 0.67 0.08 0.08 92.4 0.68 0.09 0.09 93.4

n: sample size; α: sampling proportion of random sub-cohort for both strata; dn: num-
ber of parameters; see: empirical standard error; sem: model-based standard error; 95%
CIe: empirical 95% con�dence interval coverage; HT: hard threshold method; CV: SCAD-
penalized method with cross validation for tuning parameter selection; CVP: SCAD-
penalized method with modi�ed cross validation for tuning parameter selection. The
parameter estimation results are calculated based on replications with nonzero β̂min.
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Table 4.3: Model selection performance with βmin = 0.43

80% Censored 90% Censored

RME Zero Parm. RITM RME Zero Parm. RITM

Method median (MAD) C I (%) median (MAD) C I (%)

n = 10000, α = 0.3, dn = 13 for 80% censored, dn = 9 for 90% censored

HT 0.7 (0.26) 7.61 0.02 66.8 0.73 (0.33) 5.74 0.03 75.2

CV 0.72 (0.28) 6.83 0.03 61 0.76 (0.24) 5.06 0.06 59

CVP 0.54 (0.28) 7.89 0.09 83.8 0.6 (0.34) 5.95 0.22 76.8

Oracle 0.47 (0.24) 8 0 100 0.47 (0.27) 6 0 100

n = 10000, α = 0.5, dn = 13 for 80% censored, dn = 9 for 90% censored

HT 0.7 (0.25) 7.63 0 68.6 0.69 (0.32) 5.73 0.02 76

CV 0.69 (0.31) 7.07 0.01 67.2 0.75 (0.25) 5 0.04 61.8

CVP 0.53 (0.28) 7.92 0.05 88.6 0.58 (0.3) 5.95 0.17 80.8

Oracle 0.49 (0.25) 8 0 100 0.49 (0.26) 6 0 100

n = 15000, α = 0.3, dn = 16 for 80% censored, dn = 11 for 90% censored

HT 0.73 (0.28) 9.46 0.05 54.9 0.72 (0.32) 6.67 0.03 70.5

CV 0.7 (0.3) 8.81 0.08 53 0.78 (0.28) 5.82 0.05 57.4

CVP 0.58 (0.31) 9.78 0.25 66.5 0.61 (0.35) 6.86 0.22 74

Oracle 0.44 (0.23) 10 0 100 0.48 (0.26) 7 0 100

n = 15000, α = 0.5, dn = 16 for 80% censored, dn = 11 for 90% censored

HT 0.73 (0.27) 9.46 0.01 57.1 0.72 (0.35) 6.7 0.01 73.2

CV 0.73 (0.28) 8.84 0.03 57.6 0.8 (0.27) 5.91 0.04 61.3

CVP 0.59 (0.32) 9.85 0.18 75.6 0.58 (0.32) 6.92 0.13 83.4

Oracle 0.47 (0.26) 10 0 100 0.51 (0.3) 7 0 100

n: sample size; α: sampling proportion of random sub-cohort for both strata; dn: number
of parameters; RME: relative model error; MAD: median absolute deviation; C: average
number of 0 parameters correctly identi�ed as 0; I: average number of nonzero parame-
ters incorrectly identi�ed as 0; RITM: rate of identifying true model; HT: hard threshold
method; CV: SCAD-penalized method with cross validation for tuning parameter selec-
tion; CVP: SCAD-penalized method with modi�ed cross validation for tuning parameter
selection.
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Table 4.4: Estimation result for βmin = 0.43

80% Censored 90% Censored

Method β̂min see sem 95% CIe β̂min see sem 95% CIe

n = 10000, α = 0.3, dn = 13 for 80% censored, dn = 9 for 90% censored
HT 0.43 0.09 0.1 95.9 0.44 0.1 0.12 98.6
CV 0.43 0.09 0.09 95.7 0.44 0.09 0.1 96.8
CVP 0.43 0.08 0.09 97.2 0.45 0.08 0.09 98
Oracle 0.42 0.08 0.09 95.6 0.43 0.09 0.09 96.2

n = 10000, α = 0.5, dn = 13 for 80% censored, dn = 9 for 90% censored
HT 0.42 0.09 0.09 93.6 0.43 0.1 0.11 97
CV 0.42 0.08 0.08 93.5 0.43 0.09 0.09 95.4
CVP 0.43 0.07 0.08 96 0.44 0.08 0.09 97.9
Oracle 0.42 0.08 0.08 94.6 0.43 0.08 0.08 96.2

n = 15000, α = 0.3, dn = 16 for 80% censored, dn = 11 for 90% censored
HT 0.43 0.1 0.11 98.5 0.44 0.11 0.11 96.2
CV 0.43 0.1 0.1 95.9 0.43 0.1 0.09 94.8
CVP 0.44 0.09 0.1 97.2 0.45 0.09 0.09 96.9
Oracle 0.42 0.1 0.1 95 0.43 0.09 0.09 94.4

n = 15000, α = 0.5, dn = 16 for 80% censored, dn = 11 for 90% censored
HT 0.42 0.1 0.1 96 0.43 0.1 0.1 96.5
CV 0.42 0.1 0.09 92.9 0.43 0.09 0.09 93.9
CVP 0.43 0.09 0.09 96.6 0.44 0.08 0.08 96.4
Oracle 0.42 0.09 0.09 93.8 0.43 0.08 0.08 95.7

n: sample size; α: sampling proportion of random sub-cohort for both strata; dn: num-
ber of parameters; see: empirical standard error; sem: model-based standard error; 95%
CIe: empirical 95% con�dence interval coverage; HT: hard threshold method; CV: SCAD-
penalized method with cross validation for tuning parameter selection; CVP: SCAD-
penalized method with modi�ed cross validation for tuning parameter selection. The
parameter estimation results are calculated based on replications with nonzero β̂min.
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Table 4.5: Baseline characteristics of the cohort of ARIC study

Full cohort (n=12,351) Subcohort (ñ=890)
Variables Mean (SD) or % Mean (SD) or %
Age (yrs) 58.4 (5.5) 58.2 (5.6)
BMI 28.4 (5.4) 28.1 (5.5)
Systolic blood pressure (mmHg) 126.6 (20.2) 123.5 (18.9)
LDL (mmol/L) 139.4 (38.3) 133.3 (36.6)
HDL (mmol/L) 46.9 (15.6) 49.9 (17.0)
Diabetes (%) 22.9 18.0
Current Smoker (%) 25.5 20.9
CRP level � 3.12 (3.30)
CRP category (%)

Low (<1.0mg/L) � 35.7
Middle (1.0 - 3.0mg/L) � 33.6
High (>3.0mg/L) � 25.1

main risk factor of interest is the protein hs-CRP level, which is modeled as a categorical

variable of low (<1.0mg/L), middle (1.0 - 3.0mg/L), and high (>3.0mg/L) levels due to its

nonlinear e�ect on the risk of CHD. Since CRP level is the main exposure variable, we

do not penalize its regression coe�cients and therefore set their tuning parameters to 0.

Similarly, we keep the CRP terms in the model for the hard threshold method regardless

of their p values. We also consider several other factors in the model selection process: age

(years), BMI, systolic blood pressure (mmHg), LDL (mmol/L), HDL (mmol/L), diabetes

(yes/no), and current smoker (yes/no). As shown in Kang et al. (2013), the empirical

cumulative hazards functions for the di�erent CRP groups increase approximately in a

linear fashion. Therefore, the additive hazards model is a reasonable choice.

Table 4.5 summarizes the baseline characteristics of the full cohort and the subcohort.

Note that the CRP level is not available for the full cohort due to the case-cohort design.

It seems that the distribution of the covariates are similar between the full cohort and

sub-cohort, so the subcohort is representative of the full cohort.

We apply the Hard threshold, SCAD penalized variable selection procedures with tuning

parameter λCV
n or λCVP

n to the ARIC study data to identify important risk factors for
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CHD. We include all covariates in Table 4.5 in the initial model. To ensure we do not

miss any higher order e�ect of continuous variables and interactions between CRP and

other variables, we include quadratic terms of all continuous variables as well as pairwise

interaction between CRP and all other variables in the initial model. All continuous

variables are standardized. The tuning parameter selector identi�ed λCV
n = 1.577 and

λCVP
n = 2.467. Table 4.6 shows the selected covariates and their estimated coe�cients and

standard errors by the three methods. The SCAD with λCV
n selected the largest model and

SCAD with λCVP
n selected the smallest model. This is consistent with the observation in the

simulation study that λCV
n tends to over-select variables compared to λCVP

n . Besides CRP

levels, all three methods identi�ed current smoker, age, LDL, HDL, HDL2, systolic blood

pressure, and interaction between CRP2 and BMI as signi�cant risk factors for CHD. The

SCAD with λCV
n additionally included diabetes, age2, SBP2, interaction between CRP3

and BMI, and interaction between CRP2 and SBP in the model.

Based on the model selection result from SCAD penalty with λCVP
n , the risk of CHD

for subjects who are current smoker is 1.099×10−5 per-day, or 4.01 per 1,000 person years,

higher than those who are not current smoker. Increased age, LDL level, and systolic

blood pressure are associated with higher risk of CHD. The e�ect of HDL level on risk

of CHD follows a quadratic form with the minimum risk achieved at an HDL level of 4.4

standard deviations above population mean. This point is so far away from the mean that

vast majority of the population lie below this level. Hence there is a negative association

between HDL level and risk of CHD, and the magnitude of the association decreases as

HDL level increases. This result is consistent with the common knowledge that HDL is the

�good" cholesterol. The interaction between CRP2 and BMI means that the e�ect of BMI

on risk of CHD is di�erent in the middle CRP group than the other two CRP groups.

87



Table 4.6: Estimated coe�cients and standard errors from ARIC study data

Hard Threshold SCAD (λCV
n ) SCAD (λCVP

n )

Variable β̂ (ŝe) (×10−5) β̂ (ŝe) (×10−5) β̂ (ŝe) (×10−5)
CRP2 (middle (1.0 - 3.0mg/L)) -0.550(0.282) -0.4(0.731) -0.351(0.73)
CRP3 (high (>3.0mg/L)) 0.251(0.306) 0.27(0.787) 0.319(0.738)
Current Smoker 1.062(0.362) 1.045(0.738) 1.099(0.733)
Diabetes 0(�) 1.861(0.879) 0(�)
Age 0.457(0.141) 0.401(0.327) 0.469(0.32)
Age2 0(�) 0.209(0.34) 0(�)
BMI 0(�) 0(�) 0(�)
BMI2 0(�) 0(�) 0(�)
LDL (mmol/L) 0.57(0.184) 0.615(0.316) 0.587(0.315)
LDL2 0(�) 0(�) 0(�)
HDL (mmol/L) -1.328(0.187) -1.407(0.37) -1.46(0.366)
HDL2 0.301(0.058) 0.319(0.173) 0.331(0.172)
Systolic blood pressure (mmHg) 0.745(0.21) 0.967(0.432) 0.858(0.318)
SBP2 0(�) 0.152(0.193) 0(�)
CRP2*age 0(�) 0(�) 0(�)
CRP3*age 0(�) 0(�) 0(�)
CRP2*BMI -0.906(0.339) -0.569(0.647) -0.515(0.633)
CRP3*BMI 0(�) -0.466(0.441) 0(�)
CRP2*LDL 0(�) 0(�) 0(�)
CRP3*LDL 0(�) 0(�) 0(�)
CRP2*HDL 0(�) 0(�) 0(�)
CRP3*HDL 0(�) 0(�) 0(�)
CRP2*SBP -0.546(0.266) -0.746(0.642) 0(�)
CRP3*SBP 0(�) 0(�) 0(�)
CRP2*current smoker 0(�) 0(�) 0(�)
CRP3*current smoker 0(�) 0(�) 0(�)
CRP2*diabetes 0(�) 0(�) 0(�)
CRP3*diabetes 0(�) 0(�) 0(�)

All continuous covariates are standardized.
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4.6 Discussion

In this chapter of the dissertation, we proposed a variable selection procedure based on

SCAD penalty in additive hazards model with a strati�ed case-cohort design and a diverg-

ing number of parameters. We investigated its asymptotic and �nite sample properties.

We showed that, under certain regularity conditions, the variable selection procedure iden-

ti�es the true model with probability one as samples size goes to in�nity, and the penalized

estimates from this procedure is consistent and asymptotically normally distributed.

In the simulation study we compared the model selection performance of the conven-

tional cross-validation tuning parameter selection method and the proposed AIC-penalized

cross-validation method. We found that the proposed tuning parameter selection method

outperforms the conventional cross-validation method in identifying the true model under

all simulation scenarios. The cross-validation method focuses on minimizing the prediction

error, and have been shown to yield over�tted models (Hastie et al. 2009). Our proposed

tuning parameter selection method incorporate an additional penalty term to compensate

for the over�tting e�ect of cross-validation, and therefore gives better result in terms of

identifying the true model. In many epidemiological studies, one typical purpose of model

�tting is to investigate risk factors and underlying biological mechanisms of diseases on

the population level. Under such situation, the emphasis is on identifying the true model

rather than predicting the risk of a new individual. In light of this argument, we rec-

ommend the AIC-penalized cross-validation method for tuning parameter selection when

performing SCAD-penalized model selection in additive hazards model with case-cohort

design. Although we have provided empirical evidence for the superiority of AIC-penalized

cross-validation method, a theoretical proof is yet to be established.

It is interesting to observe from the simulation study that the variable selection perfor-

mance of the hard threshold method is closely related to the number of parameters. More

parameters in the model leads to decreased performance even if the censoring rate is lower
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and sample size is larger. In contrast, the penalized variable selection method identi�es

the true model with higher rate with increased number of cases and sample size despite the

associated larger number of parameters. Therefore, when the model size becomes larger,

one can expect the penalized variable selection method to be far more useful than the hard

threshold method.

The proposed variable selection method does not have any mechanism to ensure the

hierarchical structure of the candidate covariates such as polynomial terms and interactions.

As a result, the selected models from the ARIC study does not maintain the hierarchical

structure. For example, the model identi�ed by SCAD with λCVP
n contains an interaction

between CRP2 and BMI but not the main e�ect of BMI. Although this issue does not pose

any theoretical di�culties and one can argue that the �nal model is still a special case of

hierarchical model with the coe�cients of lower order terms being exactly 0, it poses some

di�culties in interpretation. Therefore, a future research topic would be to consider the

hierarchical structure of the candidate covariates in model selection of additive hazards

model with case-cohort design by using group variable selection techniques.

4.7 Proof of Theorems

Throughout the proofs, denote ˜̀′
n(β0)j = ∂L̃n(β0)/∂βj, ˜̀′′

n(β0)jk = ∂2L̃n(β0)/∂βj∂βk.

For a matrix A = {aij}, i, j = 1, ..., n, the norm is de�ned as ∥A∥ = (∑n
i=1∑n

j=1 a
2
ij)1/2.

Lemma 4.7.1. Given that ξ is independent of ∆ and Y (t), for stratum h = 1, ...,H,

n
1/2
h {α̂−1

h (t) − α−1
h } converges to independent zero-mean Gaussian processes.

Proof. By Taylor expansion of α̂h(t) around αh,

n
1/2
h {α̂−1

h (t) − α−1
h } = − n

1/2
h

α∗h(t)2
(∑

nh
i=1(1 −∆hi)ξhiYhi(t)
∑nh
i=1(1 −∆hi)Yhi(t)

− αh)

= −n
1/2
h {∑nh

i=1(1 −∆hi)ξhiYhi(t) − αh∑nh
i=1(1 −∆hi)Yhi(t)}

α∗h(t)2∑nh
i=1(1 −∆hi)Yhi(t)
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= αh
α∗h(t)2

nh

∑nh
i=1(1 −∆hi)Yhi(t)

n
−1/2
h

nh

∑
i=1

(1 − ξhi
αh

) (1 −∆hi)Yhi(t),

where α∗h(t) lies between α̂h(t) and αh. Since (1 − ∆)Y (t) is of bounded variation al-

most surely, and var{(1 − ∆)Y (0)} < ∞ and var{(1 − ∆)Y (τ)} < ∞, by Lemma 3.7.1,

n
−1/2
h ∑nh

i=1(ξhi/αh − 1)(1 −∆hi)Yhi(t) converges weakly to a tight zero mean Gaussian pro-

cess. This implies that n−1∑nh
i=1(ξhi/αh−1)(1−∆hi)Yhi(t) converges to 0 in probability uni-

formly in t ∈ [0, τ]. Since n−1/2
h ∑nh

i=1 [(1 −∆hi)Yhi(t) −E{(1 −∆h)Yh(t)}] is a special case of

n
−1/2
h ∑nh

i=1 ξhi [(1 −∆hi)Yhi(t) −E{(1 −∆h)Yh(t)}] with ξhi = 1 for all i, by Lemma 3.7.1 it

converges weakly to a zero mean Gaussian process. This implies that n−1
h ∑

nh
i=1(1−∆hi)Yhi(t)

converges to E{(1−∆h)Yh(t)} in probability uniformly in t. By Condition (D), α̂h(t) and

αh converge to the same constant limit C2h uniformly in t. Therefore, α∗h(t) and αh also

converge to the limit. By Slutsky's theorem,

n
1/2
h {α̂−1

h (t) − α−1
h } = 1

αhE{(1 −∆h)Yh(t)}
n
−1/2
h

nh

∑
i=1

(1 − ξhi
αh

) (1 −∆hi)Yhi(t) + op(1), (4.7)

which converges to a zero mean Gaussian process. Since the sampling process is indepen-

dent across the H strata, n
1/2
h {α̂−1

h (t)−α−1
h } converges to independent zero-mean Gaussian

processes for h = 1, ...,H. ◻

Lemma 4.7.2. Under Conditions (B) and (C), for any nonzero dn × 1 constant vector u

with ∥u∥ = C < ∞ and ∥u∥0 = cn > 0 where ∥ ⋅ ∥0 denotes the number of nonzero components

of a vector, n1/2{S̃(0)(β, t)−S(0)(β, t)} and (n/cn)1/2uT{S̃(1)(β, t)−S(1)(β, t)} converge to

tight zero mean Gaussian processes.

Proof. The two processes can be written in a uni�ed form as the following (k = 0,1),

n1/2 {n−1
H

∑
h=1

nh

∑
i=1

ρhi(t)Yhi(t){c−1/2
n uTZhi(t)}k − n−1

H

∑
h=1

nh

∑
i=1

Yhi(t){c−1/2
n uTZhi(t)}k}

= n−1/2
H

∑
h=1

nh

∑
i=1

{∆hi + (1 −∆hi)ξhiα̂h(t)−1}Yhi(t){c−1/2
n uTZhi(t)}k
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− n−1/2
H

∑
h=1

nh

∑
i=1

(1 −∆hi)ξhiα−1
h Yhi(t){c

−1/2
n uTZhi(t)}k

+ n−1/2
H

∑
h=1

nh

∑
i=1

((1 −∆hi)ξhiα−1
h Yhi(t){c

−1/2
n uTZhi(t)}k − Yhi(t){c−1/2

n uTZhi(t)}k)

= n−1/2
H

∑
h=1

nh

∑
i=1

(1 −∆hi)ξhiα̂h(t)−1Yhi(t){c−1/2
n uTZhi(t)}k

− n−1/2
H

∑
h=1

nh

∑
i=1

(1 −∆hi)ξhiα−1
h Yhi(t){c

−1/2
n uTZhi(t)}k

+ n−1/2
H

∑
h=1

nh

∑
i=1

((1 −∆hi)ξhiα−1
h Yhi(t){c

−1/2
n uTZhi(t)}k

−(1 −∆hi)Yhi(t){c−1/2
n uTZhi(t)}k)

= n−1/2
H

∑
h=1

nh

∑
i=1

{α̂h(t)−1 − α−1
h }(1 −∆hi)ξhiYhi(t){c−1/2

n uTZhi(t)}k

− n−1/2
H

∑
h=1

nh

∑
i=1

(1 − ξhi
αh

) (1 −∆hi)Yhi(t){c−1/2
n uTZhi(t)}k

= {n−1/2
H

∑
h=1

1

E{(1 −∆h)Yh(t)}
nh

∑
i=1

(1 − ξhi
αh

) (1 −∆hi)Yhi(t) + op(1)}×

{ 1

nh

nh

∑
i=1

(1 −∆hi)
ξhi
αh
Yhi(t){c−1/2

n uTZhi(t)}k}

− n−1/2
H

∑
h=1

nh

∑
i=1

(1 − ξhi
αh

) (1 −∆hi)Yhi(t){c−1/2
n uTZhi(t)}k. (4.8)

The last equality holds by (4.7). By Cauchy-Schwarz inequality, uTZhi(t) ≤ ∥u∥∥Zhi(t)∥ =

C{∑dn
j=1Z

2
hij(t)}1/2. Under Condition (B), Z2

hij(t) has bounded variation, and therefore

c
−1/2
n uTZhi(t) has bounded variation. This along with Condition (C) gives that (1 −

∆hi)Yhi(t){c−1/2
n uTZhi(t)}k is of bounded variation. By Lemma 3.7.1, n−1

h ∑
nh
i=1(1−∆hi)(ξhi/αh)Yhi(t){c−1/2

n uTZhi(t)}k

converges to a deterministic process Lh(t) in probability uniformly in [0, τ] for h = 1, ...,H.

Therefore,

(4.8) = n−1/2
H

∑
h=1

nh

∑
i=1

(1 −∆hi) (1 − ξhi
αh

)Yhi(t){
Lh(t)

E{(1 −∆h)Yh(t)}
− {c−1/2

n uTZhi(t)}k}

+ op(1). (4.9)
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Under Conditions (B) and (C) the term in the curly braces of (4.9) is of bounded varia-

tion. It follows by Lemma 3.7.1 that (4.9) converges weakly to a tight zero mean Gaussian

process. Therefore, n1/2{S̃(0)(β, t)−S(0)(β, t)} and (n/cn)1/2uT{S̃(1)(β, t)−S(1)(β, t)} con-

verge weakly to tight zero mean Gaussian processes. ◻

Lemma 4.7.3. Under Conditions (A), (B), and (C), for any nonzero dn×1 constant vector

u with ∥u∥ = 1, n−1/2uTΓ
−1/2
n (β0)˜̀′

n(β0) converges to a standard normal distribution, where

Γn(β0) is the covariance matrix of n−1/2 ˜̀′
n(β0).

Proof. Let cn = ∥u∥0, the number of nonzero components of u. We �rst consider the

quantity (ncn)−1/2uT ˜̀′
n(β0), which can be written as

(ncn)−1/2uT
H

∑
h=1

nh

∑
i=1

ˆ τ

0

[{Zhi(t) − Z̄(t)}dNhi(t) − {Zhi(t) − Z̄(t)}ρhi(t)Yhi(t)βT0 Zhi(t)dt]

= (ncn)−1/2uT {
H

∑
h=1

nh

∑
i=1

ˆ τ

0

{Zhi(t) − Z̄(t)}dMhi(t)

+
H

∑
h=1

nh

∑
i=1

ˆ τ

0

{Zhi(t) − Z̄(t)}Yhi(t){λ0(t) + βT0 Zhi(t)}dt

−
H

∑
h=1

nh

∑
i=1

ˆ τ

0

{Zhi(t) − Z̄(t)}ρhi(t)Yhi(t)βT0 Zhi(t)dt}

= (ncn)−1/2uT
H

∑
h=1

nh

∑
i=1

ˆ τ

0

{Zhi(t) − Z̄(t)}dMhi(t)

+ (ncn)−1/2uT
H

∑
h=1

nh

∑
i=1

ˆ τ

0

{Zhi(t) − Z̄(t)}{1 − ρhi(t)}Yhi(t){λ0(t) + βT0 Zhi(t)}dt

− (ncn)−1/2uT
H

∑
h=1

nh

∑
i=1

ˆ τ

0

{Zhi(t) − Z̄(t)}ρhi(t)Yhi(t)λ0(t)dt

= I1 + I2 + I3.

Let Z̄0(t) = ∑H
h=1∑nh

i=1 Yhi(t)Zhi(t)/∑H
h=1∑nh

i=1 Yhi(t). I1 can be decomposed as

(ncn)−1/2uT
H

∑
h=1

nh

∑
i=1

ˆ τ

0

{Zhi(t) − Z̄0(t)}dMhi(t)

+
ˆ τ

0

c
−1/2
n uT{Z̄0(t) − Z̄(t)}n−1/2

H

∑
h=1

nh

∑
i=1

dMhi(t)
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= I11 + I12.

Let F (t−) be the �ltration generated by Yi(s), Ni(s), and Zi(s) for s ∈ [0, t). Since

E{dNhi(t)∣F (t−)} = Yhi(t−){λ0(t−) + βT0 Zhi(t−)}dt, we have that dMhi(t) is a martingale

and therefore n−1/2∑H
h=1∑nh

i=1 dMhi(t) converges to a tight zero mean Gaussian process,

say GM(t). It follows that I11 is a linear combination of a multivariate martingale. By

standard martingale theorem (Andersen and Gill 1982) I11 converges to a zero mean normal

distribution with variance Σ1(β0) = c−1
n E{

´ τ
0
uT{Z(t) − Z̄0(t)}⊗2udN(t)}.

It can be shown that E{GM(t) −GM(s)}4 ≤ CM(t − s)2 for all 0 ≤ s < t ≤ τ and some

constant CM . Therefore, by Kolmogorov-Centsov Theorem (Karatzas and Shereve, 1988,

p53), GM(t) has continuous sample path almost surely. GM(t) is also of bounded varia-

tion almost surely. On the other hand, c
−1/2
n uT{Z̄0(t) − Z̄(t)} = c−1/2

n uT{Z̄0(t) − e(t)} −

c
−1/2
n uT{Z̄(t) − e(t)}. By Lemma 4.7.2 and Slutsky's theorem, both c

−1/2
n uT Z̄0(t) and

c
−1/2
n uT Z̄(t) converge to c−1/2

n uT e(t) in probability uniformly in t. Moreover, c
−1/2
n uT Z̄0(t)

and c
−1/2
n uT Z̄(t) are of bounded variation almost surely and c

−1/2
n uT e(t) has bounded vari-

ation. It then follows from Lemma 3.7.2 that I12 converges to 0 in probability. Thus, I1

converges in distribution to a zero mean normal distribution with variance Σ1(β0).

I2 can be further decomposed as

(ncn)−1/2uT
H

∑
h=1

nh

∑
i=1

ˆ τ

0

{Zhi(t) − Z̄(t)}(1 − ξhi
αh

) (1 −∆hi)Yhi(t){λ0(t) + βT0 Zhi(t)}dt

− (ncn)−1/2uT
H

∑
h=1

nh

∑
i=1

ˆ τ

0

{Zhi(t) − Z̄(t)}{α̂−1
h (t) − α−1

h }×

ξhi(1 −∆hi)Yhi(t){λ0(t) + βT0 Zhi(t)}dt

= I21 − I22.
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By Lemma 4.7.1, I22 can be written as

(ncn)−1/2uT
H

∑
h=1

nh

∑
i=1

ˆ τ

0

{ 1

αhE{(1 −∆h)Yh(t)}
n−1
h

nh

∑
j=1

(1 − ξhj
αh

) (1 −∆hj)Yhj(t) + op(1)}×

{Zhi(t) − Z̄(t)}ξhi(1 −∆hi)Yhi(t){λ0(t) + βT0 Zhi(t)}dt

= (ncn)−1/2uT
H

∑
h=1

nh

∑
j=1

(1 − ξhj
αh

) (1 −∆hj)
ˆ τ

0

Yhj(t)
E{(1 −∆h)Yh(t)}

×

{ 1

nh

nh

∑
i=1

ξhi
αh

(1 −∆hi){Zhi(t) − Z̄(t)}Yhi(t){λ0(t) + βT0 Zhi(t)}}dt + op(1)

= (ncn)−1/2uT
H

∑
h=1

nh

∑
j=1

(1 − ξhj
αh

) (1 −∆hj)
ˆ τ

0

Yhj(t)
E{(1 −∆h)Yh(t)}

×

E [(1 −∆h){Zh(t) − e(t)}Yh(t){λ0(t) + βT0 Zh(t)}]dt + op(1).

The last equality holds by Lemma 3.7.1. Therefore, I2 is asymptotically equivalent to

n−1/2
H

∑
h=1

nh

∑
i=1

(1 − ξhi
αh

) (1 −∆hi)
ˆ τ

0

c
−1/2
n uT {Rhi(β0, t) −

Yhi(t)E{(1 −∆h)Rh(β0, t)}
E{(1 −∆h)Yh(t)}

}dt,

(4.10)

where Rhi(β0, t) = {Zhi(t) − e(t)}Yhi(t){λ0(t) + βT0 Zhi(t)}. Under Condition (A), (B), and

(C), the integration in (4.10) is bounded in probability. By Lemma 3.7.1, I2 converges in

distribution to a zero mean normal distribution. Let

Whi(β0) = (1 −∆hi)
ˆ τ

0

c
−1/2
n uT {Rhi(β0, t) −

Yhi(t)E{(1 −∆h)Rh(β0, t)}
E{(1 −∆h)Yh(t)}

}dt.

For a given stratum h, de�ne Fh(τ) to be the sigma algebra generated by Yhi(t), Nhi(t),

and Zhi(t) for 0 ≤ t ≤ τ and i = 1, ..., n. Conditional on Fh(τ), the only random element

in I2 is ξ and E{ξh∣Fh(τ)} = αh. Furthermore, Fh(τ) are independent of each other for
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h = 1, ...,H. Then the asymptotic variance of I2, denoted by Σ2(β0), can be derived as

Σ2(β0) =
1

n

H

∑
h=1

nh

∑
i=1

var{(1 − ξhi
αh

)Whi(β0)}

= 1

n

H

∑
h=1

nh

∑
i=1

E [var{(1 − ξhi
αh

)Whi(β0)∣Fh(τ)}]

+ 1

n

H

∑
h=1

nh

∑
i=1

var [E{(1 − ξhi
αh

)Whi(β0)∣Fh(τ)}]

= 1

n

H

∑
h=1

nh

∑
i=1

E [var{ξhi∣Fh(τ)}
α2
h

W 2
hi(β0)] +

1

n

H

∑
h=1

nh

∑
i=1

var [(1 − E{ξhi∣Fh(τ)}
αh

)Whi(β0)]

= 1

n

H

∑
h=1

nhE [αh(1 − αh)
α2
h

W 2
h(β0)] + 0

=
H

∑
h=1

nh
n

1 − αh
αh

E{W 2
h(β0)}.

It is easy to see that I3 = 0. Furthermore, I1 and I2 are asymptotically independent of

each other since their asymptotic covariance Σ12 = 0. To show this, notice that E(I1) = 0

and E(I2) = 0. De�ne F (τ) to be the sigma algebra generated by Yhi(t), Nhi(t), and

Zhi(t) for 0 ≤ t ≤ τ , i = 1, ..., n, and h = 1, ...,H. Conditional on F (τ), the only random

element is ξ and E{ξh∣F (τ)} = αh.Then

Σ12 = E [E{ uT

nc
1/2
n

H

∑
h=1

nh

∑
i=1

ˆ τ

0

{Zhi(t) − Z̄0(t)}dMhi(t)
H

∑
h=1

nh

∑
i=1

(1 − ξhi
αh

)Whi(β0)∣F (τ)}]

= E [ uT

nc
1/2
n

H

∑
h=1

nh

∑
i=1

ˆ τ

0

{Zhi(t) − Z̄0(t)}dMhi(t)
H

∑
h=1

nh

∑
i=1

(1 − E{ξhi∣F (τ)}
αh

)Whi(β0)]

= 0.

Taken the above results together, (ncn)−1/2uT ˜̀′
n(β0) converges to a zero mean nor-

mal distribution with variance Σ(β0) = Σ1(β0) + Σ2(β0). Now de�ne a vector u∗ ∶=

uTΓ
−1/2
n (β0)∥uTΓ

−1/2
n (β0)∥−1. Let c∗n = ∥u∗∥0. Then n−1/2uTΓ

−1/2
n (β0)˜̀′

n(β0) = ∥uTΓ
−1/2
n (β0)∥(c∗n)1/2(nc∗n)−1/2(u∗)T ˜̀′

n(β0).

Since ∥u∗∥ = 1, the above quantity converges to a zero mean normal distribution up to a
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scalar by previous derivation. Since Γn(β0) = var{n−1/2 ˜̀′
n(β0)} and ∥u∥ = 1, we have

var{n−1/2uTΓ
−1/2
n (β0)˜̀′

n(β0)} = uTΓ
−1/2
n (β0)var{n−1/2 ˜̀′

n(β0)}Γ
−1/2
n (β0)u = 1.

Therefore, n−1/2uTΓ
−1/2
n (β0)˜̀′

n(β0) converges to a standard normal distribution. ◻

Lemma 4.7.4. Under Conditions (A), (B), and (C), ˜̀′′
n(β0)jk −nAn(β0)jk is Op(n1/2) for

j, k = 1, ..., dn, where An(β0)jk is the (j, k) component of An(β0) as de�ned in the Notations

and Regularity Conditions section.

Proof. Let Zhi(t)j, S̃(1)(t)j, Z̄(t)j, s(1)(t)j, and e(t)j be the jth component of the cor-

responding vectors. De�ne Z̄hi(t)jk = {Zhi(t)j − Z̄(t)j}{Zhi(t)k − Z̄(t)k} and E(t)jk =

{Zhi(t)j − e(t)j}{Zhi(t)k − e(t)k}. Then n−1/2{˜̀′′
n(β0)jk − nAn(β0)jk} can be written as

n−1/2{˜̀′′
n(β0)jk − nAn(β0)jk}

= n−1/2 {
H

∑
h=1

nh

∑
i=1

ˆ τ

0

ρhi(t)Z̄hi(t)jkYhi(t)dt − nE(
ˆ τ

0

E(t)jkYhi(t)dt)}

= n−1/2
H

∑
h=1

nh

∑
i=1

ˆ τ

0

{ρhi(t)Z̄hi(t)jk −E(t)jk}Yhi(t)dt

+ n−1/2
H

∑
h=1

nh

∑
i=1

{
ˆ τ

0

E(t)jkYhi(t)dt −E(
ˆ τ

0

E(t)jkYhi(t)dt)}

= I1 + I2.

We further decompose I1 as

I1 = n−1/2
H

∑
h=1

nh

∑
i=1

ˆ τ

0

{ρhi(t) − 1}Z̄hi(t)jkYhi(t)dt

+ n−1/2
H

∑
h=1

nh

∑
i=1

ˆ τ

0

{Z̄hi(t)jk −E(t)jk}Yhi(t)dt

= I11 + I12.
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The term I11 can be written as

I11 = n−1/2
H

∑
h=1

nh

∑
i=1

ˆ τ

0

(1 −∆hi)(
ξhi
α̂h(t)

− 1) Z̄hi(t)jkYhi(t)dt

= n−1/2
H

∑
h=1

nh

∑
i=1

ˆ τ

0

(1 −∆hi) (
ξhi
αh

− 1) Z̄hi(t)jkYhi(t)dt

+ n−1/2
H

∑
h=1

nh

∑
i=1

ˆ τ

0

(1 −∆hi){α̂−1
h (t) − α−1

h }ξhiZ̄hi(t)jkYhi(t)dt.

By Lemma 4.7.1 and following similar derivation as for I2 in the proof of Lemma 4.7.3, we

have

I11 = n−1/2
H

∑
h=1

nh

∑
i=1

(1 −∆hi) (
ξhi
αh

− 1)×
ˆ τ

0

⎧⎪⎪⎨⎪⎪⎩
Z̄hi(t)jkYhi(t) −

E{(1 −∆h)Z̄h(t)jkYh(t)}Yhi(t)
E{(1 −∆h)Yh(t)}

⎫⎪⎪⎬⎪⎪⎭
dt.

Since the integration of the above expression is bounded in probability under Conditions

(A) and (B), by Lemma 3.7.1 I11 converges to a zero mean normal distribution. Thus,

I11 = Op(1).

Now we consider I12. We �rst show that Z̄(t)j − e(t)j is Op(n−1/2) for j = 1, ..., dn.

Z̄(t)j − e(t)j =
S̃(1)(t)j
S̃(0)(t)j

− s
(1)(t)j
s(0)(t)j

= {S̃(1)(t)j − s(1)(t)j}s(0)(t) − {S̃(0)(t) − s(0)(t)}s(1)(t)j
S̃(0)(t)s(0)(t)

.

By Lemma 4.7.2 with uk = I(k = j) for k = 1, ..., dn, we have that S̃(1)(t)j − s(1)(t)j and

S̃(0)(t) − s(0)(t) are both Op(n−1/2). Under Condition (C), it follows that Z̄(t)j − e(t)j is

Op(n−1/2). Therefore,

Z̄hi(t)jk −E(t)jk
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= {Zhi(t)j − Z̄(t)j}{Zhi(t)k − Z̄(t)k} − {Zhi(t)j − e(t)j}{Zhi(t)k − e(t)k}

= {Zhi(t)jZhi(t)k −Zhi(t)jZ̄(t)k − Z̄(t)jZhi(t)k + Z̄(t)jZ̄(t)k}

− {Zhi(t)jZhi(t)k −Zhi(t)je(t)k − e(t)jZhi(t)k + e(t)je(t)k}

= −Zhi(t)j{Z̄(t)k − e(t)k} −Zhi(t)k{Z̄(t)j − e(t)j} + Z̄(t)j{Z̄(t)k − e(t)k}

+ e(t)k{Z̄(t)j − e(t)j}

= Op(n−1/2).

Thus,

ˆ τ

0

{Z̄hi(t)jk −E(t)jk}Yhi(t)dt ≤
ˆ τ

0

sup
t∈[0,τ]

∣Z̄hi(t)jk −E(t)jk∣dt

= sup
t∈[0,τ]

∣Z̄hi(t)jk −E(t)jk∣τ = Op(n−1/2).

It follows that I12 = Op(1), and therefore I1 = Op(1).

By central limit theorem, we have that I2 is Op(1). Taken the above results together,

we conclude that n−1/2{˜̀′′
n(β0)jk−nAn(β0)jk} = Op(1), which implies ˜̀′′

n(β0)jk−nAn(β0)jk =

Op(n1/2). ◻

Proof of Theorem 4.3.1. Let β0 be the true parameters, and αn = d1/2
n (n−1/2 + an).

It su�ces to show that, for any given ε > 0, there exists a constant vector u and a large

enough constant C such that pr{inf∥u∥=C Q̃n(β0 + αnu) > Q̃n(β0)} ≥ 1 − ε. This implies

that there exists a local minimizer β̂ such that ∥β̂ − β0∥ = Op(αn). Since Pλjn(0) = 0 and

Pλjn(⋅) ≥ 0,

Q̃n(β0 + αnu) − Q̃n(β0) ≥ {L̃n(β0 + αnu) − L̃n(β0)} + n
kn

∑
j=1

{Pλjn(∣βj0 + αnu∣) − Pλjn(∣βj0∣)}

= I1 + I2.
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By Taylor expansion,

I1 = αnuT ˜̀′
n(β0) +

1

2
α2
nu

T ˜̀′′
n(β0)u = I11 + I12.

By Lemma 4.7.3 we have ˜̀′
n(β0)j = Op(n1/2) for j = 1, ..., dn. Therefore,

∣I11∣ = ∣αnuT ˜̀′
n(β0)∣ ≤ αn∥u∥∥˜̀′

n(β0)∥ = αn∥u∥Op(d1/2
n n1/2) = ∥u∥Op(d1/2

n n−1/2αnn)

= ∥u∥Op(α2
nn).

The term I12 can be written as

I12 =
1

2
α2
nu

T{˜̀′′
n(β0) − nAn(β0)}u +

1

2
α2
nu

TnAn(β0)u = J1 − J2.

By Lemma 4.7.4, Cauchy-Schwarz inequality, and the fact that d2
n/n→ 0,

∣J1∣ ≤
1

2
α2
n∥u∥2∥˜̀′′

n(β0) − nAn(β0)∥ = ∥u∥2Op(α2
nn

1/2dn) = ∥u∥2op(α2
nn).

By spectral decomposition of An(β0) and Condition (E)

∣J2∣ ≥
1

2
α2
n∥u∥2neigenmin{An(β0)} ≥ ∥u∥2(α2

nn)
C3

2
.

Then ∣I12∣ ≥ ∣J2∣−∣J1∣ ≥ ∥u∥2(α2
nn)C3/2−∥u∥2op(α2

nn) as n→∞. Therefore, for large enough

∥u∥, ∣I12∣ dominates ∣I11∣.

We now consider I2. By Taylor expansion and Cauchy-Schwarz inequality

∣I2∣ = ∣n
kn

∑
j=1

P ′
λjn

(∣βj0∣)sgn(βj0)αnuj +
1

2
n
kn

∑
j=1

P ′′
λjn

(∣βj0∣)α2
nu

2
j{1 + o(1)}∣

≤ n ∣
kn

∑
j=1

P ′
λjn

(∣βj0∣)αnuj∣ +
1

2
n ∣

kn

∑
j=1

P ′′
λjn

(∣βj0∣)α2
nu

2
j{1 + o(1)}∣
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≤ n ∣
kn

∑
j=1

φnαnuj∣ +
1

2
n ∣

kn

∑
j=1

ψnα
2
nu

2
j{1 + o(1)}∣

≤ nαnφnk1/2
n ∥u∥ + 1

2
nα2

nψn∥u∥2{1 + o(1)}

= ∥u∥Op(α2
nn).

The last equality holds because φn = Op(αnd−1/2
n ) and ψn → 0 under Condition (G). There-

fore, ∣I12∣ also dominates ∣I2∣ for large enough C. By Condition (E) I12 is positive as n→∞,

it follows that for large enough C, Q̃n(β0+αnu)− Q̃n(β0) is positive with probability tend-

ing to one as n→∞. ◻

The following Lemma proves that the SCAD-penalized estimator must possess the

sparsity property β̂II = 0 with probability tending to one.

Lemma 4.7.5. Under conditions (A)-(H), as n→∞, if d2
n/n→ 0, λjn → 0, and λjnn1/2d

−1/2
n →

∞, with probability tending to one, for any given βI satisfying ∥βI − βI0∥ = Op(d1/2
n n−1/2)

and any constant C,

Q̃n{(βTI ,0)T} = min
∥βII∥≤Cd

1/2
n n−1/2

Q̃n{(βTI , βTII)T}.

Proof. It su�ces to show that with probability tending to one as n → ∞, for any βI

satisfying ∥βI − βI0∥ = Op(d1/2
n n−1/2) and ∥βII∥ ≤ Cd1/2

n n−1/2, ∂Q̃n(β)/∂βj and βj have the

same signs for j = kn + 1, ..., dn. By Taylor expansion,

∂Q̃n(β)
∂βj

= ˜̀′
n(β0)j +

dn

∑
k=1

˜̀′′
n(β0)jk(βk − βk0) + nP ′

λjn
(∣βj ∣)sgn(βj) = I1 + I2 + I3.

From Lemma 4.7.3 we have I1 = Op(n1/2). The term I2 can be written as

I2 =
dn

∑
k=1

{˜̀′′
n(β0)jk − nAn(β0)jk} (βk − β0k) +

dn

∑
k=1

nAn(β0)jk(βk − β0k) = I21 − I22.

From Lemma 4.7.4 we have ˜̀′′
n(β0)jk − nAn(β0)jk = Op(n1/2) for j, k = 1, ..., dn. Using
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Cauchy-Schwarz inequality along with ∥β − β0∥ = Op(d1/2
n n−1/2),

∣I21∣ ≤ ∥β − β0∥ [
dn

∑
k=1

{˜̀′′
n(β0)jk − nAn(β0)jk}

2]
1/2

= Op(dn) = op(d1/2
n n1/2).

As eigenmax{An(β0)} is bounded by Condition (E), it follows that

∣I22∣ ≤ n∥β − β0∥{
dn

∑
k=1

A 2
n (β0)jk}

1/2

= nOp(d1/2
n n−1/2)O(1) = Op(d1/2

n n1/2).

It follows that ∣I2∣ = Op(d1/2
n n1/2). Therefore, I1 + I2 = Op(d1/2

n n1/2). Hence,

∂Q̃n(β)
∂βj

= nP ′
λjn

(∣βj ∣)sgn(βj) +Op(
√
dnn) = nλjn

⎧⎪⎪⎨⎪⎪⎩

P ′
λjn

(∣βj ∣)
λjn

sgn(βj) +Op(
d

1/2
n n−1/2

λjn
)
⎫⎪⎪⎬⎪⎪⎭
.

For j = (kn + 1), ..., dn, since ∣βj ∣ = O{d1/2
n n−1/2} and λjnd

−1/2
n n1/2 → ∞, the quantity

P ′
λjn

(∣βj ∣)/λjn is positive under Condition (F) for all su�ciently large n. Therefore, the

quantity in the curly brackets is positive with probability tending to one. Thus, ∂Q̃n(β)/∂βj

and βj have the same signs with probability tending to one as n→∞. ◻

Proof of Theorem 4.3.2. Part (i) follows directly from Lemma 4.7.5. To prove

assertion (ii), we �rst show that

n1/2uTΓ
−1/2
n11 (An11 +Ψn)(β̂I − βI0)(1 + op(1)) + n1/2uTΓ

−1/2
n11 Φn

= −n−1/2uTΓ
−1/2
n11

˜̀′
n1(β0) + op(1), (4.11)

where ˜̀′
n1(β0) consists of the �rst kn components of ˜̀′

n(β0) and An11(β0) is the �rst kn×kn

components of An(β0). Since β̂I is the minimizer of Q̃n(β), we have ∂Q̃n(β̂)/∂βI = 0. By

Taylor expansion of ∂Q̃n(β̂)/∂βI at βI0 and the fact that β̂II − βII0 = 0,

˜̀′
n1(β0) + ˜̀′′

n1(β0)(β̂I − βI0) + nΦn + nΨ∗
n(β̂I − βI0) = 0,
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where ˜̀′′
n1(β0) consists of the �rst kn × kn components of ˜̀′′

n(β0), β∗ lies between β̂ and β0,

Ψ∗
n = Ψn(β∗), β∗ lies between β̂ and β0. Rearrange the above equation we have,

{˜̀′′
n1(β0) + nΨ∗

n}(β̂I − βI0) + nΦn = −˜̀′
n1(β0). (4.12)

Multiply both sides of (4.12) by n−1/2uTΓ
−1/2
n11 ,

n1/2uTΓ
−1/2
n11 { 1

n
˜̀′′
n1(β0) +Ψ∗

n}(β̂I − βI0) + n1/2uTΓ
−1/2
n11 Φn = −n−1/2uTΓ

−1/2
n11

˜̀′
n1(β0).

(4.13)

The quantity uTΓ
−1/2
n11 n

−1 ˜̀′′
n1(β0)(β̂I − βI0) can be written as,

uTΓ
−1/2
n11 { 1

n
˜̀′′
n1(β0) −An11(β0)} (β̂I − βI0) + uTΓ

−1/2
n11 An11(β0)(β̂I − βI0) = I1 + I2.

By Cauchy-Schwarz inequality and Lemma 4.7.4,

∣I1∣ ≤ ∥uTΓ
−1/2
n11 ∥ ∥ 1

n
˜̀′′
n1(β0) −An11(β0)∥ ∥β̂I − βI0∥ = ∥uTΓ

−1/2
n11 ∥∥β̂I − βI0∥Op(dnn−1/2).

By spectral decomposition of An11,

I2 ≥ ∥uTΓ
−1/2
n11 ∥∥β̂I − βI0∥eigenmin(An11) ≥ ∥uTΓ

−1/2
n11 ∥∥β̂I − βI0∥eigenmin(An).

Therefore, by Condition (E) and d2
n/n→ 0 we have

∣I1

I2

∣ ≤ ∥uTΓ
−1/2
n11 ∥∥β̂I − βI0∥Op(dnn−1/2)

∥uTΓ
−1/2
n11 ∥∥β̂I − βI0∥eigenmin(An)

= Op(dnn−1/2) = op(1).

Therefore, I1 = op(I2), and uTΓ
−1/2
n11 n

−1 ˜̀′′
n1(β0)(β̂I − βI0) = uTΓ

−1/2
n11 An11(β0)(β̂I − βI0){1 +
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op(1)}. Since β̂ converges to β0 in probability, Ψ∗
n converges to Ψn in probability. Therefore

uTΓ
−1/2
n11 { 1

n
˜̀′′
n1(β0) +Ψ∗

n}(β̂I − βI0) = uTΓ
−1/2
n11 {An11(β0) +Ψn} (β̂I − βI0){1 + op(1)}.

(4.14)

By (4.13) and (4.14), we have that (4.11) holds.

By Lemma 4.7.3, n−1/2uTΓ
−1/2
n11

˜̀′
n1(β0) converges to the standard normal distribution.

Thus,

n1/2uTΓ
−1/2
n11 (β0){An11(β0) +Ψn}{β̂I − βI0 + (An11(β0) +Ψn)−1Φn} → N(0,1)

in distribution. ◻
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CHAPTER 5: TUNING PARAMETER SELECTION FOR
REGULARIZED VARIABLE SELECTION UNDER COX

PROPORTIONAL HAZARDS MODEL

5.1 Introduction

In the �rst two topics of the dissertation, we have shown that the SCAD-penalized

variable selection procedure can identify the true model with probability tending to one

as the sample size goes to in�nity under Cox proportional hazards model and additive

hazards model with a case-cohort design. This result implies that with probability ap-

proaching one the true model is contained in the solution path of the tuning parameter

λ. If one can select the correct tuning parameter λ0, then one will be able to identify

the true model. However, the theorems developed in the �rst two topics do not o�er any

theoretical insight to the tuning parameter selection methods used there (AIC- and BIC-

based method). Wang et al. (2007) studied the asymptotic properties of the two tuning

parameter selection methods in linear models. Zhang et al. (2010) proposed a new tuning

parameter selection criterion in generalized linear models. Wang et al. (2009) extended

the investigation on tuning parameter selection to linear models with a diverging number

of parameters. More recently, Fan and Tang (2013) studied tuning parameter selection in

generalized linear model with ultra-high dimension. To the best of our knowledge, a con-

sistent tuning parameter selection method for regularized variable selection has not been

established for Cox proportional hazards model with a diverging number of parameters.

In this chapter of the dissertation we focus on regular Cox model without the case-cohort

design and propose a tuning parameter selection criterion that consistently identi�es the

true model. We theoretically prove its asymptotic properties and empirically demonstrate
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its �nite sample performance via simulation. We then apply the proposed method to the

Framingham Heart Study (Dawber 1980).

5.2 Tuning Parameter Selection Criterion under Cox Proportional Hazards

Model

Suppose there are n subjects in the dataset. Let T and C be respectively the time

to the outcome of interest and the censoring time. Let X = min(T,C) be the observed

time and ∆ = I(T ≤ C) be the censoring indicator, where I(⋅) is an indicator function.

Let Zi(t) be the dn × 1 possibly time-dependent covariate vector for subject i at time t,

where dn goes to in�nity with the sample size n. T and C are assumed to be independent

conditional on Z. Let β = (β1, ..., βdn)T be a vector of unknown regression coe�cients

and β0 = (β01, ..., β0dn)T be its true value. Without loss of generality, assume the �rst kn

components of β0 is nonzero and the other components of β0 are zero. Hence, kn is the size

of the true model, which is allowed to go to in�nity with sample size and kn/dn converges

to a constant c ∈ [0,1]. De�ne for subject i the counting process Ni(t) = I(Xi ≤ t,∆i = 1),

and the at risk process Yi(t) = I(Xi ≥ t). The partial likelihood under Cox proportional

hazards model is

`n(β) =
n

∑
i=1

ˆ τ

0

[βTZi(t) − log
n

∑
j=1

Yj(t) exp{βTZj(t)}]dNi(t), (5.1)

where τ is the time at the end of study. Let Pλjn(⋅) be the SCAD penalty function with

tuning parameter λjn. For notational simplicity, we suppress the subscript n for λjn and

assume it is the same for all parameters. The SCAD-penalized maximum partial likelihood

estimator β̂λ is the maximizer of the following objective function,

`n(β) − n
dn

∑
j=1

Pλ(∣βj ∣). (5.2)
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Let αλ be the model that is identi�ed by the tuning parameter λ . Let ∣αλ∣ be the size

of model αλ. We propose the generalized information criterion

GIC(λ) = 1

n
{−`n(β̂λ) + an∣αλ∣}, (5.3)

where an is a positive sequence depending on n. When an = 2, GIC becomes the AIC

statistic. When an = log(n), GIC becomes the BIC statistic. The selected tuning parameter

λ̂ is the minimizer of (5.3). We have shown in the previous chapters that there exists one

or a range of λ that gives rise to the true model α0. Note that ∣α0∣ = kn. Our goal in this

chapter is to determine the characteristic of the sequence an in (5.3) so that the λ that

gives the true model is identi�ed with probability tending to one as sample size goes to

in�nity.

5.3 Notations and Regularity Conditions

Denote for any model αλ the penalized maximum partial likelihood estimator and the

unpenalized maximum partial likelihood estimator as β̂αλ and β̂αλ , respectively. De�ne

β0
α0

as the true parameter under the true model. Similar to Fan and Tang (2013), for any

model αλ, we de�ne its "population parameter" β0
αλ

to be the minimizer of the Kullback-

Leibler distance DKL(βαλ) ∶= n−1Eβ0
α0

{`n(β0
α0

) − `n(βαλ)}, where `n(β0
α0

) and `n(βαλ) are

the partial likelihood de�ned in (5.1) under model α0 and αλ, respectively. The expectation

is taken under the true model with respect to all random variables.

We de�ne the following notations for each n:

S
(k)
n (β, t) = 1

n

n

∑
i=1

Yi(t)Zi(t)⊗keβ
′Zi(t), s

(k)
n (β, t) = E{S(k)

n (β, t)}, k = 0,1,2,

en(β, t) =
s
(1)
n (β, t)
s
(0)
n (β, t)

, Vn(β, t) =
S

(2)
n (β, t)S(0)

n (β, t) − S(1)
n (β, t)⊗2

S
(0)
n (β, t)2

,
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In(β) = −
1

n
E{∂

2`n(β)
∂β2

} = E{
ˆ τ

0

Vn(β, t)S(0)
n (β, t)dΛ0(t)} .

We require the following regularity conditions for theoretical derivations in this chapter:

(A)
´ τ

0
λ0(t)dt < ∞.

(B) E{Y (τ)} > 0.

(C) ∣ Zij(0) ∣ +
´ τ

0
∣dZij(t)∣ < C1 < ∞ almost surely for some constant C1 and i = 1, ..., n

and j = 1, ..., dn. That is, Zij(t) has bounded variation almost surely. This implies

that ∣Zij(t)∣ is bounded almost surely. De�ne Kn ∶= max1≤j≤dn,1≤i≤n ∥Zij(t)∥∞ < ∞.

(D) For any model αλ, there exists a neighborhood Bαλ of β0
αλ

such that for all βαλ ∈

Bαλ and t ∈ [0, τ], ∂s(0)n (βαλ , t)/∂βαλ = s
(1)
n (βαλ , t), and ∂2s

(0)
n (βαλ , t)/∂βαλ∂βTαλ =

s
(2)
n (βαλ , t). The functions s

(k)
n (βαλ , t) (k = 0,1,2) are continuous and bounded and

s
(0)
n (βαλ , t) is bounded away from 0 on Bαλ × [0, τ].

(E) For any model αλ, there exists a neighborhood Bαλ of β
0
αλ

such that for all βαλ ∈ Bαλ ,

there exist positive constants C3, C4 such that

0 < C3 < eigenmin{In(βαλ)} ≤ eigenmax{In(βαλ)} < C4 < ∞,

where eigenmin{⋅} and eigenmax{⋅} are the minimum and maximum eigenvalues of a

matrix.

(F) min1≤j≤kn ∣β0j ∣/λ0 →∞ as n→∞.

(G) lim infn→+∞ lim infθ→0+P ′
λ0
(θ)/λ0 > 0 for j = 1, ..., dn.

(H) d5
n/n→ 0 and kn/dn → c ∈ [0,1) as n→∞.
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(I) Ln ∶= ∥β0∥1 < ∞, where ∥ ⋅ ∥1 denotes the L1 norm. As a consequence of this condition

and Condition (C), we can de�ne exp(∣βT0 Zi(t)∣) ≤ exp(KnLn) ∶= Un < ∞ for i =

1, ..., n.

5.4 Asymptotic Properties of the Generalized Information Criterion

Let λmax be the smallest λ that results in an empty model (i.e. a model with no non-

zero parameters). We partition the tuning parameter space Ω = [0, λmax] into the under�t,

true, and over�t subspaces as follows,

Ω− = {λ ∶ αλ ⊅ α0}, Ω0 = {λ ∶ αλ = α0}, Ω+ = {λ ∶ αλ ⊋ α0},

where a ⊋ b means a contains b but is not equal to b. Since β̂λ is the maximizer of the

nonconcave objective function (5.2), the asymptotic property of `n(β̂λ) is di�cult to study.

Instead, we work with the unpenalized version of the likelihood. De�ne an approximation

of GIC(λ) as

GIC∗(αλ) =
1

n
{−`n(β̂αλ) + an∣αλ∣} .

Note that GIC(λ) is a function of the tuning parameter whereas GIC∗(αλ) is a function

of the model.

We only present main results in this section. The proof of the lemmas and theorems

presented in this section can be found in Section 5.7. The following lemma states that

the di�erence between GIC(λ) and GIC(λ0) is no less than that between GIC∗(αλ) and

GIC∗(α0) for any λ with probability tending to one as sample size goes to in�nity.

Lemma 5.4.1. Under Conditions (A) to (H), for any λ ∈ Ω, pr{GIC(λ) − GIC(λ0) ≥

GIC∗(αλ) −GIC∗(α0)} → 1 as n→∞.

Lemma 5.4.1 allows us to study the asymptotic properties of GIC∗(αλ) instead of
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GIC(λ).

The following theorem describes the uniform stochastic rate of the di�erence between

`n(β̂αλ) − `n(β̂α0) and the corresponding Kullback-Leibler distance between model αλ and

α0 over all possible model αλ, the number of which increases to in�nity combinatorially

fast with sample size. All expectations are taken under the true model.

Theorem 5.4.2. Under Conditions (A) to (I), uniformly for all models,

sup
αλ

1

∣αλ∣
∣`n(β̂αλ) −E{`n(β0

αλ
)}∣ = Op[n1/2{log(dn)}1/2].

Based on Theorem 5.4.2, for any under�tted model αλ ⊅ α0 we have that,

inf
αλ⊅α0

{GIC∗(αλ) −GIC∗(α0)}

= inf
αλ⊅α0

1

n
{`n(β̂α0) − `n(β̂αλ) + an(∣αλ∣ − ∣α0∣)}

= inf
αλ⊅α0

1

n
[`n(β̂α0) − `n(β̂αλ) −E{`n(β0

α0
) − `n(β0

αλ
)} +E{`n(β0

α0
) − `n(β0

αλ
)}

+an(∣αλ∣ − ∣α0∣)]

≥ − 1

n
sup
αλ⊅α0

∣`n(β̂αλ) −E{`n(β0
αλ

)}∣ − 1

n
∣`n(β̂α0) −E{`n(β0

α0
)}∣ + inf

αλ⊅α0

DKL(β0
αλ

)

+ inf
αλ⊅α0

1

n
an(∣αλ∣ − ∣α0∣)

≥ − 1

n
∣α0∣Op[n1/2{log(dn)}1/2] − 1

n
∣α0∣Op[n1/2{log(dn)}1/2] + δn −

1

n
ankn

≥ − 2

n
knOp[n1/2{log(dn)}1/2] + δn −

1

n
ankn

= δn −
1

n
kn (Op[n1/2{log(dn)}1/2] + an) (5.4)

where δn ∶= infαλ⊅α0 DKL(β0
αλ

) de�nes the smallest Kullback-Leibler distance to the true

model among all under�tted models. It can be deemed as the signal strength of the true

model. Since δn is always positive, when δnk−1
n n

1/2{log(dn)}−1/2 → ∞ and an = o(δnnk−1
n ),

(5.4) is positive with probability tending to one. By Lemma 5.4.1, we then have that
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pr [infλ∈Ω−{GIC(λ) −GIC(λ0)} > 0] → 1 as n→∞. This result suggests that as long as the

signal strength of the true model does not decay to 0 too fast and the sequence an does

not go to in�nity too fast, then the GIC of any under�tted model is larger than that of

the true model with probability tending to one as sample size goes to in�nity. Note that

an = Op[n1/2{log(dn)}1/2] always works as long as δn satis�es its requirement.

For over�tted models, the Kullback-Leibler distance based method used in Theorem

5.4.2 does not apply anymore. This is because for any over�tted model αλ ⊋ α0, its

Kullback-Leibler distance to the true model is always 0. We instead study the asymptotic

property of `n(β̂αλ)−`n(β̂α0) directly. If the dimension of the model is �nite, then it is well

established that 2 times the log-partial likelihood ratio converges to a χ2 distribution with

∣αλ∣ − ∣α0∣ degree of freedom. However, when the model size goes to in�nity, we have to

consider higher order terms in the linearization of the log-partial likelihood ratio statistic.

Moreover, obtaining a uniform stochastic rate of `n(β̂αλ)−`n(β̂α0) over all over�tted models

is also challenging since the number of over�tted models increases to in�nity at an extremely

fast rate.

Theorem 5.4.3. Under Conditions (A) to (I), uniformly for all αλ ⊋ α0,

sup
αλ⊋α0

1

∣αλ∣ − ∣α0∣
{`n(β̂αλ) − `n(β̂α0)} = Op{log(dn)}.

As a consequence of Theorem 5.4.3, uniformly for all over�tted model we have that

inf
αλ⊋α0

GIC∗(αλ) −GIC∗(α0)
∣αλ∣ − ∣α0∣

= inf
αλ⊋α0

1

n(∣αλ∣ − ∣α0∣)
{`n(β̂α0) − `n(β̂αλ) + an(∣αλ∣ − ∣α0∣)}

= − sup
αλ⊋α0

1

n(∣αλ∣ − ∣α0∣)
{`n(β̂αλ) − `n(β̂α0)} +

an
n

= −Op{n−1 log(dn)} +
an
n
. (5.5)

111



Therefore, when an/ log(dn) → ∞, (5.5) is positive with probability tending to one.

Since ∣αλ∣ − ∣α0∣ is positive for all over�tted model, it follows that infαλ⊋α0 GIC∗(αλ) −

GIC∗(α0) is positive with probability tending to one. By Lemma 5.4.1 we then have that

pr [infλ∈Ω+{GIC(λ) −GIC(λ0)} > 0] → 1 as n→∞.

With Theorem 5.4.2 and 5.4.3, we �nally arrive at the following theorem.

Theorem 5.4.4. Under Conditions (A) to (I), if δnk−1
n n

1/2{log(dn)}−1/2 →∞, an = o(δnnk−1
n ),

and an/ log(dn) → ∞, then as n→∞,

pr{ inf
λ∈Ω−∪Ω+

GIC(λ) > GIC(λ0)} → 1.

Theorem 5.4.4 is a direct consequence of Theorem 5.4.2 and 5.4.3. It entails that, if

the signal strength of the true model does not decrease to 0 too fast and an diverges with

sample size within a proper range of rate, then by minimizing GIC we can identify the

tuning parameter that leads to the true model with probability tending to one as sample

size goes to in�nity.

5.5 Numerical Study and Application

5.5.1 Simulation Study

Independent failure times are generated from the exponential hazard model. We set

λ0(t) = 2 and the dimension of β to be dn = [10n
1/5−1/500
c ], where nc is the number of

cases and [x] rounds x to the nearest integer. We relate the model dimension to the

number of cases rather than sample size as the former better represents the amount of

information carried in the dataset. The �rst component of β is the smallest nonzero

parameter in terms of the absolute value, which is related to δn, the signal strength of

the true model. As it is not possible to verify the requirement on the convergence rate

of δn under �nite sample size, we consider two di�erent values of the smallest nonzero
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parameter in terms of the absolute value: 0.34 (large e�ect scenario with corresponding

hazard ratio of 1.4) and 0.18 (small e�ect scenario with corresponding hazard ratio of 1.2).

There is one nonzero parameter for every two zero parameters, with the other nonzero

parameters recycling from values 0.6 and -0.8. For example, when dn = 15, βmin = 0.34, then

β = (0.34,0,0,0.6,0,0,−0.8,0,0,0.6,0,0,−0.8,0,0). We generate the design matrix Z as a

mixture of correlated binary and continuous variables. First, dn-dimensional multivariate

standard normal variable Z∗ are generated with the correlation coe�cient between Z∗
i and

Z∗
j being 0.5∣i−j∣. Then the �rst three components of Z∗ are kept as continuous, and the

next three components are dichotomized at 0, and this pattern is repeated for the rest of

Z∗. Thus half of the covariates become binary with parameter 0.5. Censoring times Ci

are generated from a uniform distribution U(0, c) where c is adjusted to achieve desired

censoring percentage.

Two sample sizes and two censoring rates are considered for each βmin value (0.34 or

0.18). Performance of the SCAD-penalized variable selection procedures with the GIC

tuning parameter selection criterion is assessed for four di�erent choices of an: 2, log(n),

log{log(n)} log(dn), and log{log(dn)} log(dn). The �rst two choices correspond to the AIC

and BIC statistic, respectively. Obviously an = 2 does not satisfy the required divergence

rate as described in Theorem 5.4.4, whereas the other three choices all meet the requirement

on an. We will empirically evaluate their performance. As a benchmark, we include

the hard threshold variable selection procedure, where the component of the unpenalized

maximum partial likelihood estimator from the full model is selected if its p-value from

the Wald test is less than 0.05. We also include the result from the oracle procedure where

the correct subset of covariates is used to �t the model. For each setting 500 replications

are conducted.

We de�ne model error of a variable selection procedure as ME(µ̂) = E{E(T ∣z)− µ̂(z)}2,

and the relative model error as the ratio of its model error to that of the unpenalized
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pseudo-partial likelihood estimates from the full model. We use the median and the median

absolute deviation of the relative model error to compare the performance of di�erent

variable selection procedures. We also calculate the average number of parameters correctly

estimated as 0, the average number of parameters erroneously estimated as 0, and the

overall rate of identifying the true model. Point estimates, empirical and model-based

standard errors, and the empirical 95% con�dence interval coverage are also calculated for

β̂min using replications with nonzero β̂min.

Table 5.1 summarizes the variable selection performance for di�erent GIC statistics.

Overall, GIC 4 with an = log{log(dn)} log(dn) gives the best performance in terms of rate

of identifying the true model and the median relative model error. This observation is

consistent across di�erent βmin sizes, censoring rates, and sample sizes. The only scenarios

where the performance of GIC 2 and 3 are similar to or slightly better than that of GIC 4

are when all these GICs have very high rate of identifying the true model (over 90%). Based

on the average number of correctly identi�ed zero parameters (column C) and incorrectly

identi�ed zero parameters (column I), GIC 1 tends to select more parameters into the �nal

model than does GIC 4, whereas GIC 2 and 3 tend to select less parameters than does GIC

4. This is consistent with the fact that the divergence rate of an in GIC 4 lies between that

in GIC 1 (an = 2) and GIC 2 (an = log(n)) and 3 (an = log{log(n)} log(dn)). As a result,

the penalty from GIC 4 on the model size lies between that from GIC 1 and GIC 2 and

3. As expected, the variable selection performance of all procedures increases with larger

e�ect size, lower censoring rate, and larger sample size.

Table 5.2 summarizes the parameter estimation of βmin for di�erent GIC statistics under

the same settings as in Table 5.1. Under large βmin (0.34) scenario, given that it is correctly

identi�ed as nonzero, GIC 4 produces approximately unbiased point and standard error

estimates and the 95% con�dence interval coverage is close to the nominal level. Under

small βmin (0.18) scenario, given that it is correctly identi�ed as nonzero, GIC 4 tends to
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overestimates the parameter as the other three GICs. However, the bias decreases as their

variable selection performance increases. The overestimation is due to the fact that very

small β̂min are set to 0 by the variable selection algorithm and therefore are not accounted

for in the computation of average of the point estimates. Eventually, when the rate of

identifying the true model is over 90%, all GICs give unbiased point and standard error

estimates and correct 95% con�dence interval coverage. This observation is consistent with

the simulation result of Chapter 3.

5.5.2 Analysis of Framingham Heart Study

We apply the proposed tuning parameter selection method to the Framingham Heart

Study (Dawber 1980). This study was initiated in 1948, with 2,336 men and 2,873 women

aged between 30 and 62 years at their baseline examination. Participants were followed

up to the year 1980, and times to multiple cardiovascular events were observed from each

individual. For the analysis in this section, we only include participants who had an

examination at age 44 or 45 and were event-free at that time. We use that examination

time as the time origin for the survival analysis. We analyze the time to obtain the �rst

evidence of coronary heart disease (CHD). The dataset consists of 1,571 participants, 250 of

which developed evidence of CHD, corresponding to a censoring rate of 84.1%. We consider

the following risk factors of interest: body mass index (BMI), cholesterol level, systolic

blood pressure (SBP), smoking status (1=smoker and 0=otherwise), gender (1=female,

0=male). The risk factors were measured at the time origin of each participant. Since some

individuals were in the study for several years prior to their time origin for this analysis,

the waiting time from entering the study to the time origin is used as another covariate to

account for the potential cohort e�ect. All continuous covariates are standardized for the

analysis. To explore possible quadratic and interaction e�ects of the risk factors, we include

quadratic terms of all continuous covariates and all pairwise interactions in addition to the

115



Table 5.1: Model selection performance of di�erent choice of an in the GIC statistic.

80% Censored 90% Censored

RME Zero Parm. RITM RME Zero Parm. RITM

Method median (MAD) C I (%) median (MAD) C I (%)

n = 1500, βmin = 0.34, dn = 31 for 80% censored, dn = 27 for 90% censored

HT 0.72 (0.17) 18.75 0.05 29.6 0.81 (0.25) 16.87 0.63 16.6

GIC 1 0.46 (0.18) 19.25 0.02 48 0.71 (0.21) 15.31 0.21 8

GIC 2 0.56 (0.39) 19.98 0.73 52.8 3.64 (2.48) 17.99 3.25 2

GIC 3 0.46 (0.29) 19.97 0.53 62.4 2.65 (1.91) 17.98 2.8 6

GIC 4 0.36 (0.18) 19.88 0.12 80.6 0.86 (0.57) 17.77 1.24 24.4

Oracle 0.33 (0.14) 20 0 100 0.29 (0.14) 18 0 100

n = 2500, βmin = 0.34, dn = 34 for 80% censored, dn = 30 for 90% censored

HT 0.71 (0.15) 20.74 0 31.2 0.7 (0.19) 18.87 0.1 31.2

GIC 1 0.47 (0.18) 21.45 0 60 0.63 (0.18) 17.55 0.02 9.8

GIC 2 0.36 (0.16) 22 0.03 96.8 1.61 (1.25) 19.98 1.59 20.6

GIC 3 0.36 (0.16) 22 0.03 97.4 1.22 (0.91) 19.97 1.19 28

GIC 4 0.37 (0.16) 21.94 0 93.8 0.44 (0.25) 19.85 0.29 67.2

Oracle 0.36 (0.15) 22 0 100 0.31 (0.13) 20 0 100

n = 2500, βmin = 0.18, dn = 34 for 80% censored, dn = 30 for 90% censored

HT 0.71 (0.15) 20.74 0.07 26 0.69 (0.19) 18.87 0.38 21.8

GIC 1 0.49 (0.17) 21.45 0.05 54.6 0.66 (0.18) 17.59 0.16 10.6

GIC 2 0.45 (0.21) 22 0.56 47.6 2.27 (1.74) 19.99 2.48 3

GIC 3 0.44 (0.2) 22 0.5 52.8 1.51 (1.15) 19.98 2.03 6.6

GIC 4 0.4 (0.17) 21.92 0.17 77.2 0.5 (0.28) 19.85 0.79 35.8

Oracle 0.36 (0.15) 22 0 100 0.32 (0.14) 20 0 100

n = 5000, βmin = 0.18, dn = 39 for 80% censored, dn = 34 for 90% censored

HT 0.71 (0.18) 24.56 0 24.6 0.67 (0.16) 20.7 0.06 27.4

GIC 1 0.44 (0.16) 25.47 0 59.2 0.66 (0.18) 19.59 0.01 9

GIC 2 0.37 (0.15) 25.99 0.08 91.6 0.47 (0.2) 21.99 0.62 43.8

GIC 3 0.36 (0.15) 25.99 0.05 94 0.44 (0.19) 21.99 0.49 53.4

GIC 4 0.37 (0.15) 25.94 0.01 93.2 0.4 (0.17) 21.93 0.17 79.2

Oracle 0.35 (0.14) 26 0 100 0.37 (0.16) 22 0 100

RME: relative model error; MAD: median absolute deviation; C: average number of 0
parameters correctly identi�ed as 0; I: average number of nonzero parameters incorrectly
identi�ed as 0; RITM: rate of identifying true model; HT: hard threshold; GIC 1: an = 2;
GIC 2: an = log(n); GIC 3: an = log{log(n)} log(dn); GIC 4: an = log{log(dn)} log(dn).
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Table 5.2: Parameter estimation for βmin for di�erent choice of an in the GIC statistic.

80% Censored 90% Censored

Method β̂min see sem 95% CIe β̂min see sem 95% CIe

n = 1500, βmin = 0.34, dn = 31 for 80% censored, dn = 27 for 90% censored
HT 0.35 0.07 0.07 92.8 0.37 0.09 0.1 96.1
GIC 1 0.35 0.06 0.06 92 0.35 0.09 0.09 93.4
GIC 2 0.35 0.05 0.06 96.7 0.36 0.07 0.08 48.8
GIC 3 0.35 0.06 0.06 96.3 0.38 0.06 0.08 96
GIC 4 0.35 0.06 0.06 94.4 0.36 0.07 0.08 96.8
Oracle 0.35 0.06 0.06 94.8 0.34 0.09 0.08 94.2

n = 2500, βmin = 0.34, dn = 34 for 80% censored, dn = 30 for 90% censored
HT 0.34 0.05 0.05 94.4 0.35 0.08 0.08 94.9
GIC 1 0.34 0.05 0.05 94.2 0.35 0.07 0.07 93.2
GIC 2 0.34 0.05 0.05 95.2 0.34 0.06 0.06 86.2
GIC 3 0.34 0.05 0.05 95 0.35 0.06 0.06 98.3
GIC 4 0.34 0.05 0.05 94.8 0.34 0.06 0.06 95.5
Oracle 0.34 0.05 0.05 95 0.34 0.06 0.06 94.6

n = 2500, βmin = 0.18, dn = 34 for 80% censored, dn = 30 for 90% censored
HT 0.19 0.05 0.05 97 0.22 0.05 0.08 95.7
GIC 1 0.19 0.04 0.05 96.4 0.2 0.05 0.07 96.5
GIC 2 0.23 0.02 0.05 92.3 0.24 0.03 0.06 19.7
GIC 3 0.22 0.03 0.05 95.1 0.27 0.03 0.06 91.5
GIC 4 0.2 0.04 0.05 96.9 0.23 0.04 0.06 95.4
Oracle 0.18 0.05 0.05 94.2 0.18 0.06 0.06 95.6

n = 5000, βmin = 0.18, dn = 39 for 80% censored, dn = 34 for 90% censored
HT 0.18 0.04 0.04 95 0.19 0.05 0.05 96
GIC 1 0.18 0.03 0.03 93.6 0.19 0.05 0.05 95.1
GIC 2 0.19 0.02 0.03 96.9 0.2 0.03 0.05 59.8
GIC 3 0.18 0.03 0.03 97.3 0.22 0.03 0.05 94.7
GIC 4 0.18 0.03 0.03 94.5 0.2 0.04 0.05 96.4
Oracle 0.18 0.03 0.03 93.8 0.18 0.05 0.05 94.2

see: empirical standard error; sem: model-based standard error; 95% CIe: empirical 95%
con�dence interval coverage; HT: hard threshold; GIC 1: an = 2; GIC 2: an = log(n); GIC
3: an = log{log(n)} log(dn); GIC 4: an = log{log(dn)} log(dn). The parameter estimation
results are calculated based on replications with nonzero β̂min.
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main e�ects. Thus, the full Cox proportional hazards model contains 25 covariates in total.

We analyze the data with the SCAD-penalized variable selection procedure with the

four tuning parameter selection criteria assessed in the simulation. The hard threshold

method is also used for comparison. The selected tuning parameters are: λ = 0.2560 for

an = 2, λ = 0.3572 for an = log(n), λ = 0.3572 for an = log{log(n)} log(dn), and λ = 0.3235

for an = log{log(dn)} log(dn). The selected models are summarized in Table 5.3. Consistent

with the observations in the simulation study, the GIC with an = 2 identi�es a larger model

than the other methods. The GIC with an = log(n) and an = log{log(n)} log(dn) both

identify the same model with only two covariates (gender and BMI*wait time). The hard

threshold method also selects a model with only two covariates (SBP and smoking status).

In comparison, the GIC with an = log{log(dn)} log(dn) identi�es a model that contains the

smaller models selected by the GICs with an = log(n) and an = log{log(n)} log(dn) and the

hard threshold method, yet not as many covariates as the one from the GIC with an = 2.

Based on the results from GIC 4 model in Table 5.3, with other covariates being equal,

higher systolic blood pressure, being a smoker, or being a male is associated with higher

risk of developing coronary heart disease. There is also a cohort e�ect represented by the

interaction between BMI and wait time. BMI seems to exhibit a negative association with

the risk of CHD in people with longer wait time.

5.6 Discussion

In this chapter of the dissertation, we propose a tuning parameter selection criterion for

the SCAD-penalized variable selection procedure under regular Cox proportional hazards

model with a random sample and a diverging number of parameters. We prove that

the proposed generalized information criterion (GIC) can identify the true model with

probability tending to one as sample size goes to in�nity, and establish the conditions

required on the true model signal strength and divergence rate of the penalty term in the
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Table 5.3: Estimated coe�cients and standard errors from Framingham Heart Study.

HT GIC 1 GIC 2 GIC 3 GIC 4

Variable β̂ (ŝe) β̂ (ŝe) β̂ (ŝe) β̂ (ŝe) β̂ (ŝe)

BMI 0 (�) 0 (�) 0 (�) 0 (�) 0 (�)

Cholesterol 0 (�) 0.17 (0.06) 0 (�) 0 (�) 0 (�)

SBP 0.45 (0.18) 0.20 (0.06) 0 (�) 0 (�) 0.24 (0.06)

Smoke (Y vs. N) 0.49 (0.24) 0.27 (0.14) 0 (�) 0 (�) 0.30 (0.14)

Gender (F vs. M) 0 (�) -0.61 (0.14) -0.82 (0.13) -0.82 (0.13) -0.69 (0.13)

Wait time (years) 0 (�) 0 (�) 0 (�) 0 (�) 0 (�)

BMI2 0 (�) -0.07 (0.05) 0 (�) 0 (�) 0 (�)

Cholesterol2 0 (�) 0 (�) 0 (�) 0 (�) 0 (�)

SBP2 0 (�) 0 (�) 0 (�) 0 (�) 0 (�)

Wait time2 0 (�) 0 (�) 0 (�) 0 (�) 0 (�)

BMI*Cholesterol 0 (�) 0 (�) 0 (�) 0 (�) 0 (�)

BMI*SBP 0 (�) 0 (�) 0 (�) 0 (�) 0 (�)

BMI*Smoke 0 (�) 0.22 (0.10) 0 (�) 0 (�) 0 (�)

BMI*Gender 0 (�) 0 (�) 0 (�) 0 (�) 0 (�)

BMI*Wait time 0 (�) -0.11 (0.08) -0.14 (0.07) -0.14 (0.07) -0.13 (0.06)

Chol*SBP 0 (�) 0 (�) 0 (�) 0 (�) 0 (�)

Chol*Smoke 0 (�) 0 (�) 0 (�) 0 (�) 0 (�)

Chol*Gender 0 (�) 0 (�) 0 (�) 0 (�) 0 (�)

Chol*Wait time 0 (�) 0 (�) 0 (�) 0 (�) 0 (�)

SBP*Smoke 0 (�) 0 (�) 0 (�) 0 (�) 0 (�)

SBP*Gender 0 (�) 0 (�) 0 (�) 0 (�) 0 (�)

SBP*Wait time 0 (�) 0 (�) 0 (�) 0 (�) 0 (�)

Smoke*Gender 0 (�) 0 (�) 0 (�) 0 (�) 0 (�)

Smoke*Wait time 0 (�) 0 (�) 0 (�) 0 (�) 0 (�)

Gender*Wait time 0 (�) 0 (�) 0 (�) 0 (�) 0 (�)

HT: hard threshold; GIC 1: an = 2; GIC 2: an = log(n); GIC 3: an = log{log(n)} log(dn);
GIC 4: an = log{log(dn)} log(dn).
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GIC for the model selection consistency to hold.

The theorems developed in this chapter specify a range of divergence rates required

for the sequence an. Any rate within that range leads to model selection consistency

asymptotically. However, in real-life applications with �nite sample size, di�erent choice of

an may yield di�erent result. Therefore, we conduct simulation to compare four di�erent

choices of an, three of which satisfy the asymptotic requirement. The simulation results

suggest that when the variable selection performance is close to perfect, there is not much

di�erence among the three choices of an. When the setting is such that the variable selection

performance is moderate, the choice of an = log{log(dn)} log(dn) works much better than

the other choices. Based on this observation, we recommend using an = log{log(dn)} log(dn)

in practice.

Some of the parameter estimation and inference results presented in Table 5.2 are less

than satisfactory. This observation is related to the so-called post-selection inference prob-

lem (Buehler and Feddersen 1963, Leeb and Potscher 2005; 2006, Potscher and Leeb 2009),

which exists for all inference procedures that involve model selection process. The con-

ventional statistical inference does not take into account the fact that the selected model

itself is stochastic, and thereby distort the true sampling distribution of the estimates.

This topic is beyond the scope of this dissertation. Fortunately, when the variable selec-

tion performance is reasonably good, the parameter estimation and inference results are

acceptable.

5.7 Proof of Theorems

Proof of Lemma 5.4.1. We �rst consider the penalized estimate under the true

model, β̂λ0 , the support of which is {1, ..., kn}. By de�nition, β̂λ0 solves the equations

∂`n(β̂λ0)
∂βj

− nbλ0j = 0, j = 1, ..., kn,
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where bλ0j = P ′
λ(∣β̂λ0j ∣)sgn(β̂λ0j) and β̂λ0j is the jth component of β̂λ0 . Under Conditions

(A) to (H), β̂λ0 possesses the oracle property. Therefore, ∣β̂λ0j ∣ → ∣β0j ∣ ≥ min1≤j≤sn ∣β0j ∣, and

∣β̂λ0j ∣/λ0 → ∞. Consequently, pr(P ′
λ(∣β̂λ0j ∣) = 0) → 1 by the formula of the SCAD penalty,

and therefore pr(bλ0j = 0) → 1 for all j = 1, ..., kn. As a result, with probability tending to

one, β̂λ0 solves the equations

∂`n(β̂λ0)
∂βj

= 0, j = 1, ..., kn,

which are the same equations that β̂α0 solves by de�nition. This implies that β̂λ = β̂α0 with

probability tending to one. It follows that

pr{GIC(λ0) = GIC∗(α0)} → 1. (5.6)

On the other hand, for any λ ∈ Ω and any model αλ, by the de�nition of β̂αλ we have

GIC(λ) ≥ GIC∗(αλ). (5.7)

By (5.6) and (5.7), Lemma 5.4.1 is proved. ◻

The log-partial likelihood function under Cox proportional hazards model can be writ-

ten in the summation format as

`n(β) =
n

∑
i=1

[βTZi(ti) − log∑n

j=1
Yj(ti) exp{βTZj(ti)}]∆i.

Since the log-partial likelihood is a sum of dependent random variables, we introduce the

following intermediate function to facilitate the theoretical derivation:

¯̀
n(β) =

n

∑
i=1

[βTZi(ti) − log{ns(0)n (β, ti)}]∆i,
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where s
(0)
n (β, t) is de�ned in Section 5.3. It is obvious that E{¯̀

n(β)} = E{`n(β)}. De�ne

supp(β) to be the support of β consisting of indices of nonzero components of β. De�ne

the set Bαλ(N) ∶= {β ∈ Rdn ∶ ∥β − β0
αλ

∥ ≤ N, supp(β) = αλ} ∪ {β0
αλ

} for some N > 0. We

then de�ne

Zαλ,N(β) ∶= 1

n
∣`n(β) − `n(β0

αλ
) − [E{`n(β) − `n(β0

αλ
)}] ∣,

for any β ∈ Bαλ(N). Fan and Tang (2013) studied the stochastic order of the supremum of

Zαλ,N(β) over all β ∈ Bαλ(N) in a generalized linear model by using the Lipschitz property

of the log likelihood. In Cox model, however, the log partial-likelihood does not possess

Lipschitz property (Kong and Nan 2014). Therefore, we only consider pointwise stochastic

order of Zαλ,N(β) for any given β ∈ Bαλ(N), which is adequate for our purpose because

our focus is only on the penalized estimator.

Lemma 5.7.1. Under Conditions (A) to (I), uniformly for all model αλ,

sup
αλ

1

∣αλ∣
Zαλ,N(β) = Op

⎡⎢⎢⎢⎣
N { log(dn)

n
}

1/2⎤⎥⎥⎥⎦
.

Proof. We �rst restate some of the theorems from Van de Geer (2008) that will be used in

our proofs.

Theorem A.1 in Van de Geer (2008) (Bousquet concentration theorem):

Let X1, ...,Xn be independent random variables in space X and let Γ be a class of

real-valued functions on X satisfying for some positive constants ηn and τn

∥γ∥∞ ≤ ηn and
1

n

n

∑
i=1

var{γ(Xi)} ≤ τ 2
n ∀γ ∈ Γ.
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De�ne Z ∶= supγ∈Γ ∣n−1∑n
i=1{γ(Xi) −Eγ(Xi)}∣. Then for any ε > 0,

pr [Z ≥ EZ + ε{2(τ 2
n + 2ηnEZ)}1/2 + 2ε2ηn

3
] ≤ exp(−nε2).

Theorem A.2 in Van de Geer (2008) (Symmetrization theorem):

Let X1, ...,Xn be independent random variables in space X and let ε1, ..., εn be a Rademacher

sequence independent of X1, ...,Xn, where pr(εi = 1) = pr(εi = −1) = 1/2 for all i. Let Γ be

a class of real-valued functions on X . Then

E [sup
γ∈Γ

∣
n

∑
i=1

{γ(Xi) −Eγ(Xi)}∣] ≤ 2E{sup
γ∈Γ

∣
n

∑
i=1

εiγ(Xi)∣] .

Lemma A.1 in Van de Geer (2008):

Let X1, ...,Xn be independent random variables in space X and let γ1, ..., γm be real-

valued functions on X satisfying for k = 1, ...,m,

Eγk(Xi) = 0 ∀i ∥γk∥∞ ≤ ηn
1

n

n

∑
i=1

Eγ2
k(Xi) ≤ τ 2

n.

Then

E{max
1≤k≤m

∣ 1
n

2

∑
i=1

γk(Xi)∣} ≤ {2τ 2
n log(2m)

n
} + ηn log(2m)

n
.

We then introduce the following two intermediate quantities:

Qαλ,N(β) ∶= 1

n
∣¯̀n(β) − ¯̀

n(β0
αλ

) − [E{`n(β) − `n(β0
αλ

)}] ∣,

Rαλ,N(β) ∶= 1

n
∣`n(β) − `n(β0

αλ
) − {¯̀

n(β) − ¯̀
n(β0

αλ
)}∣.
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We will study the tail probabilities of the above two quantities separately.

We would like to use Theorem A.1 in Van de Geer (2008) to establish a probability

bound for Qαλ,N(β). However, the theorem involves the expectation of the quantity under

study. Thus, we �rst derive a bound for E{Qαλ,N(β)}. Let ε1, ..., εn be a Rademacher

sequence, independent of ¯̀
1(β) − ¯̀

1(β0
αλ

), ..., ¯̀n(β) − ¯̀
n(β0

αλ
). By Theorem A.2 in Van de

Geer (2008) with Xi = ¯̀
n(β) − ¯̀

n(β0
αλ

), γ being the identity function, and Γ = {γ},

E{Qαλ,N(β)} = 1

n
E∣¯̀n(β) − ¯̀

n(β0
αλ

) − [E{`n(β) − `n(β0
αλ

)}] ∣ ≤ 2

n
E∣

n

∑
i=1

εi{¯̀
i(β) − ¯̀

i(β0
αλ

)}∣

= 2

n
E∣

n

∑
i=1

εi ([βTZi(ti) − log {ns(0)n (β, ti)}]∆i − [(β0
αλ

)TZi(ti) − log {ns(0)n (β0
αλ
, ti)}]∆i) ∣

≤ 2

n
E∣

n

∑
i=1

εi {βTZi(ti) − (β0
αλ

)TZi(ti)}∆i∣ +
2

n
E∣

n

∑
i=1

εi {log s
(0)
n (β, ti) − log s

(0)
n (β0

αλ
, ti)}∆i∣

= I1 + I2.

We �rst consider I1. By Cauchy-Schwarz inequality,

I1 =
2

n
E∣

n

∑
i=1

εi

⎧⎪⎪⎨⎪⎪⎩

∣αλ∣

∑
j=1

(βj − β0
αλj

)Zij(ti)
⎫⎪⎪⎬⎪⎪⎭

∆i∣ = 2E∣
∣αλ∣

∑
j=1

{(βj − β0
αλj

) 1

n

n

∑
i=1

εiZij(ti)∆i} ∣

≤ 2∥β − β0
αλ

∥E
⎡⎢⎢⎢⎢⎣

∣αλ∣

∑
j=1

{
n

∑
i=1

1

n
εiZij(ti)∆i}

2⎤⎥⎥⎥⎥⎦

1/2

≤ 2∥β − β0
αλ

∥E
⎡⎢⎢⎢⎢⎣

∣αλ∣

∑
j=1

{ max
1≤j≤∣αλ∣

1

n
∣
n

∑
i=1

εiZij(ti)∆i∣}
2⎤⎥⎥⎥⎥⎦

1/2

= 2∥β − β0
αλ

∥∣αλ∣1/2E{ max
1≤j≤∣αλ∣

1

n
∣
n

∑
i=1

εiZij(ti)∆i∣} .

Since E{εiZij(ti)∆i} = E(εi)E{Zij(ti)∆i} = 0, ∥εiZij(ti)∆i∥∞ ≤ ∥Zij(ti)∥∞ ≤ Kn, and

n−1∑n
i=1 E{εiZij(ti)∆i}2 ≤ n−1∑n

i=1 E{Zij(ti)2} ≤ n−1∑n
i=1 E∥Zij(ti)∥2

∞ ≤ K2
n, by Lemma A.1

in Van de Geer (2008) with Xi = εi∆iZi(t), γk(⋅) equal the k-th component of its argument,
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ηn =Kn, and τ 2
n =K2

n,

E{ max
1≤j≤∣αλ∣

1

n
∣
n

∑
i=1

εiZij(ti)∆i∣} ≤ {2K2
n log(2∣αλ∣)

n
}

1/2

+ Kn log(2∣αλ∣)
n

.

It follows that,

I1 ≤ 2∣αλ∣1/2NKn

⎡⎢⎢⎢⎣
{2 log(2∣αλ∣)

n
}

1/2

+ log(2∣αλ∣)
n

⎤⎥⎥⎥⎦
.

Next we consider I2. By mean value theorem, for some β∗αλ that lies between β0
αλ

and

β we have that

I2 =
2

n
E∣

n

∑
i=1

εi∆i

∣αλ∣

∑
j=1

(βj − β0
αλj

)
s
(1)
nj (β∗αλ , ti)
s
(0)
n (β∗αλ , ti)

∣ = 2E∣
∣αλ∣

∑
j=1

(βj − β0
αλj

) 1

n

n

∑
i=1

εi∆i

s
(1)
nj (β∗αλ , ti)
s
(0)
n (β∗αλ , ti)

∣,

where s
(1)
nj (β, t) denotes the j-th component of s

(1)
n (β, t), which is de�ned in Section 5.3.

By Cauchy-Schwarz inequality we have that

I2 ≤ 2∥β − β0
αλ

∥E
⎡⎢⎢⎢⎢⎢⎣

∣αλ∣

∑
j=1

⎧⎪⎪⎨⎪⎪⎩

1

n

n

∑
i=1

εi∆i

s
(1)
nj (β∗αλ , ti)
s
(0)
n (β∗αλ , ti)

⎫⎪⎪⎬⎪⎪⎭

2⎤⎥⎥⎥⎥⎥⎦

1/2

≤ 2∥β − β0
αλ

∥E
⎡⎢⎢⎢⎢⎢⎣

∣αλ∣

∑
j=1

⎧⎪⎪⎨⎪⎪⎩
max

1≤j≤∣αλ∣

1

n
∣
n

∑
i=1

εi∆i

s
(1)
nj (β∗αλ , ti)
s
(0)
n (β∗αλ , ti)

∣
⎫⎪⎪⎬⎪⎪⎭

2⎤⎥⎥⎥⎥⎥⎦

1/2

= 2∥β − β0
αλ

∥∣αλ∣1/2E

⎧⎪⎪⎨⎪⎪⎩
max

1≤j≤∣αλ∣

1

n
∣
n

∑
i=1

εi∆i

s
(1)
nj (β∗αλ , ti)
s
(0)
n (β∗αλ , ti)

∣
⎫⎪⎪⎬⎪⎪⎭
.

By the de�nition of s
(1)
nj (β, t) we have that

s
(1)
nj (β, t) = E [Y (t)Zj(t) exp{βTZ(t)}] ≤KnE [Y (t) exp{βTZ(t)}] =Kns

(0)
n (β, t).
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Therefore, we have the following fact for all i = 1, ..., n and j = 1, ..., dn:

E

⎧⎪⎪⎨⎪⎪⎩
εi∆i

s
(1)
nj (β∗αλ , ti)
s
(0)
n (β∗αλ , ti)

⎫⎪⎪⎬⎪⎪⎭
= 0, ∥εi∆i

s
(1)
nj (β∗αλ , ti)
s
(0)
n (β∗αλ , ti)

∥
∞

≤ ∥
Kns

(0)
n (β∗αλ , ti)

s
(0)
n (β∗αλ , ti)

∥
∞

=Kn,

1

n

n

∑
i=1

E

⎧⎪⎪⎨⎪⎪⎩
εi∆i

s
(1)
nj (β∗αλ , ti)
s
(0)
n (β∗αλ , ti)

⎫⎪⎪⎬⎪⎪⎭

2

≤ 1

n

n

∑
i=1

E

⎧⎪⎪⎨⎪⎪⎩

s
(1)
nj (β∗αλ , ti)
s
(0)
n (β∗αλ , ti)

⎫⎪⎪⎬⎪⎪⎭

2

≤ 1

n

n

∑
i=1

E

⎡⎢⎢⎢⎢⎣

Kns
(0)
n (β∗αλ , ti)

s
(0)
n (β∗αλ , ti)

⎤⎥⎥⎥⎥⎦

2

=K2
n.

By Lemma A.1 in Van de Geer (2008) with Xi = εi∆is
(1)
n (β∗αλ , ti){s

(0)
n (β∗αλ , ti)}−1, γk(⋅)

equal the k-th component of its argument, ηn =Kn and τ 2
n =K2

n,

E

⎧⎪⎪⎨⎪⎪⎩
max

1≤j≤∣αλ∣

1

n
∣
n

∑
i=1

εi∆i

s
(1)
nj (β∗αλ , ti)
s
(0)
n (β∗αλ , ti)

∣
⎫⎪⎪⎬⎪⎪⎭
≤ {2K2

n log(2∣αλ∣)
n

}
1/2

+ Kn log(2∣αλ∣)
n

.

It follows that,

I2 ≤ 2∣αλ∣1/2NKn

⎡⎢⎢⎢⎣
{2 log(2∣αλ∣)

n
}

1/2

+ log(2∣αλ∣)
n

⎤⎥⎥⎥⎦
.

Therefore, for any β ∈ Bαλ(N),

E{Qαλ,N(β)} ≤ I1 + I2 ≤ 4∣αλ∣1/2NKn

⎡⎢⎢⎢⎣
{2 log(2∣αλ∣)

n
}

1/2

+ log(2∣αλ∣)
n

⎤⎥⎥⎥⎦
.

Now we check the two conditions for Theorem A.1 in Van de Geer (2008). By Cauchy-

Schwarz inequality and mean value theorem, for all i we have

∣¯̀i(β) − ¯̀
i(β0

αλ
)∣ ≤ ∣βTZi(ti) − (β0

αλ
)TZi(ti)∣∆i + ∣ log s

(0)
n (β, ti) − log s

(0)
n (β0

αλ
, ti)}∣∆i

≤ ∥β − β0
αλ

∥
⎡⎢⎢⎢⎢⎣

∣αλ∣

∑
j=1

{Zij(ti)}2

⎤⎥⎥⎥⎥⎦

1/2

+ ∣
∑∣αλ∣
j=1 (βj − β0

αλj
)s(1)nj (β∗αλ , ti)

s
(0)
n (β∗αλ , ti)

∣

≤ ∣αλ∣1/2∥β − β0
αλ

∥Kn + ∥β − β0
αλ

∥
{∑∣αλ∣

j=1 K
2
ns

(0)
n (β∗αλ , ti)2}

1/2

s
(0)
n (β∗αλ , ti)

= ∣αλ∣1/2∥β − β0
αλ

∥Kn + ∣αλ∣1/2∥β − β0
αλ

∥Kn
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≤ 2∣αλ∣1/2NKn.

Therefore, ∥¯̀
i(β)− ¯̀

i(β0
αλ

)∥∞ ≤ 2∣αλ∣1/2NKn and var{¯̀
i(β)− ¯̀

i(β0
αλ

)} ≤ E{¯̀
i(β)− ¯̀

i(β0
αλ

)}2 ≤

4∣αλ∣N2K2
n. Let ā ∶= n−1/2 {2 log(2∣αλ∣)}1/2 + n−1 log(2∣αλ∣), ηn = 2∣αλ∣1/2NKn, and τ 2

n =

4∣αλ∣N2K2
n. Then by Theorem A.1 in Van de Geer (2008) with Xi = ¯̀

n(β) − ¯̀
n(β0

αλ
), γ

being the identity function, and Γ = {γ}, for any ε > 0,

pr [Qαλ,N(β) ≥ 4∣αλ∣1/2NKnā + ε{2(4∣αλ∣N2K2
n + 16∣αλ∣N2K2

nā)}1/2 + 4ε2∣αλ∣1/2NKn

3
]

= pr [Qαλ,N(β) ≥ 2∣αλ∣1/2NKn {2ā + ε(2 + 8ā)1/2 + 2ε2

3
}] ≤ exp(−nε2). (5.8)

Next we consider Rαλ,N(β). By mean value theorem, for some β∗αλ that lies between

β0
αλ

and β we have that

Rαλ,N(β) = 1

n

n

∑
i=1

∣ (log [ 1

n

n

∑
j=1

Yj(ti) exp{βTZj(ti)}
s
(0)
n (β, ti)

]

− log

⎡⎢⎢⎢⎢⎣

1

n

n

∑
j=1

Yj(ti) exp{(β0
αλ

)TZj(ti)}
s
(0)
n (β0

αλ
, ti)

⎤⎥⎥⎥⎥⎦

⎞
⎠

∆i∣

≤ sup
0≤t≤τ

∣ log [
n

∑
j=1

Yj(t) exp{βTZj(t)}
s
(0)
n (β, t)

] − log

⎡⎢⎢⎢⎢⎣

n

∑
j=1

Yj(t) exp{(β0
αλ

)TZj(t)}
s
(0)
n (β0

αλ
, t)

⎤⎥⎥⎥⎥⎦
∣

= sup
0≤t≤τ

∣ log

⎧⎪⎪⎨⎪⎪⎩

S
(0)
n (β, t)
s
(0)
n (β, t)

⎫⎪⎪⎬⎪⎪⎭
− log

⎧⎪⎪⎨⎪⎪⎩

S
(0)
n (β0

αλ
, t)

s
(0)
n (β0

αλ
, t)

⎫⎪⎪⎬⎪⎪⎭
∣

= sup
0≤t≤τ

∣(β − β0
αλ

)T
⎧⎪⎪⎨⎪⎪⎩

S
(1)
n (β∗αλ , t)
S

(0)
n (β∗αλ , t)

−
s
(1)
n (β∗αλ , t)
s
(0)
n (β∗αλ , t)

⎫⎪⎪⎬⎪⎪⎭

≤ sup
0≤t≤τ

∥β − β0
αλ

∥
⎡⎢⎢⎢⎢⎢⎣

∣αλ∣

∑
j=1

⎧⎪⎪⎨⎪⎪⎩

S
(1)
nj (β∗αλ , t)
S

(0)
n (β∗αλ , t)

−
s
(1)
nj (β∗αλ , t)
s
(0)
n (β∗αλ , t)

⎫⎪⎪⎬⎪⎪⎭

2⎤⎥⎥⎥⎥⎥⎦

1/2

= sup
0≤t≤τ

∥β − β0
αλ

∥
⎧⎪⎪⎨⎪⎪⎩

∣αλ∣

∑
j=1

⎛
⎝

1

S
(0)
n (β∗αλ , t)

⎡⎢⎢⎢⎢⎣
S

(1)
nj (β∗αλ , t) − s

(1)
nj (β∗αλ , t)

+
s
(1)
nj (β∗αλ , t)
s
(0)
n (β∗αλ , t)

{s(0)n (β∗αλ , t) − S
(0)
n (β∗αλ , t)}

⎤⎥⎥⎥⎥⎦

⎞
⎠

2⎫⎪⎪⎪⎬⎪⎪⎪⎭

1/2
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≤ sup
0≤t≤τ

∥β − β0
αλ

∥
⎧⎪⎪⎨⎪⎪⎩

∣αλ∣

∑
j=1

⎛
⎝

1

S
(0)
n (β∗αλ , t)

[ max
1≤j≤∣αλ∣

∣S(1)
nj (β∗αλ , t) − s

(1)
nj (β∗αλ , t)∣

+Kn∣S(0)
n (β∗αλ , t) − s

(0)
n (β∗αλ , t)∣])

2⎫⎪⎪⎬⎪⎪⎭

1/2

= sup
0≤t≤τ

∥β − β0
αλ

∥∣αλ∣1/2
1

S
(0)
n (β∗αλ , t)

{ max
1≤j≤∣αλ∣

∣S(1)
nj (β∗αλ , t) − s

(1)
nj (β∗αλ , t)∣

+Kn∣S(0)
n (β∗αλ , t) − s

(0)
n (β∗αλ , t)∣}

≤ ∥β − β0
αλ

∥∣αλ∣1/2 sup
0≤t≤τ

1

S
(0)
n (β∗αλ , t)

sup
0≤t≤τ

{ max
1≤j≤∣αλ∣

∣S(1)
nj (β∗αλ , t) − s

(1)
nj (β∗αλ , t)∣

+Kn∣S(0)
n (β∗αλ , t) − s

(0)
n (β∗αλ , t)∣} . (5.9)

Under Condition (I) we have that

S
(0)
n (β∗αλ , t) ≥

1

n

n

∑
i=1

Yi(t) inf
β,Zi

exp{βTZi(t)} =
1

n

n

∑
i=1

Yi(t) exp{− sup
β,Zi

βTZi(t)} = U−1
n

1

n

n

∑
i=1

Yi(t).

Since Y (t) is a non-increasing function of t, we have that

inf
0≤t≤τ

S
(0)
n (β∗αλ , t) ≥ U

−1
n

1

n

n

∑
i=1

Yi(τ),

and therefore

sup
0≤t≤τ

1

S
(0)
n (β∗αλ , t)

≤ Un {
1

n

n

∑
i=1

Yi(τ)}
−1

.

De�ne µ ∶= E{Y (τ)}. By Lemma 3.2 in Kong and Nan (2014),

pr{ 1

n

n

∑
i=1

Yi(τ) ≤
µ

2
} = pr

⎡⎢⎢⎢⎢⎣
{ 1

n

n

∑
i=1

Yi(τ)}
−1

≥ 2

µ

⎤⎥⎥⎥⎥⎦
≤ 2 exp(−nµ

2

2
) .
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Therefore,

pr

⎧⎪⎪⎨⎪⎪⎩
sup
0≤t≤τ

1

S
(0)
n (β∗αλ , t)

≥ 2Un
µ

⎫⎪⎪⎬⎪⎪⎭
≤ 2 exp(−nµ

2

2
) .

By a modi�cation of Lemma 3.3 and 3.4 in Kong and Nan (2014) we have that for any

positive constant ε,

pr{ sup
0≤t≤τ

∣S(0)
n (β∗αλ , t) − s

(0)
n (β∗αλ , t)∣ ≥ Unε} ≤ 1

5
W 2 exp(−nε2),

pr{ sup
0≤t≤τ

max
1≤j≤∣αλ∣

∣S(1)
nj (β∗αλ , t) − s

(1)
nj (β∗αλ , t)∣ ≥ UnKnε} ≤ 1

5
∣αλ∣W 2 exp(−nε2),

where W is a constant determined by the bracketing number of the class of functions

indexed by t, F = {Y (t) exp{βTZ(t)}U−1
n ∶ t ∈ [0, τ], exp{βTZ(t)} ≤ Un}. Applying these

results to (5.9) we have

pr{Rαλ,N(β) ≥ 2N ∣αλ∣1/2U2
nKnε

µ
} ≤ 2 exp(−nµ

2

2
) + 1

5
(∣αλ∣ + 1)W 2 exp(−nε2). (5.10)

Since Zαλ,N(β) ≤ Qαλ,N(β) +Rαλ,N(β), by (5.8) and (5.10) we have that

pr [Zαλ,N(β) ≥ 2NKn∣αλ∣1/2 {2ā + ε(2 + 8ā)1/2 + 2ε2

3
+ U

2
nε

µ
}]

≤ 2 exp(−nµ
2

2
) + {1

5
(∣αλ∣ + 1)W 2 + 1} exp(−nε2).

To establish the stochastic order of Zαλ,N(β), we use the following result: for any random

sequence Xn, an, bn and a diverging sequence γn, pr(Xn ≥ an + bnγn) = o(1) implies that

Xn = Op(an + bn). Let ε = {∣αλ∣ log(dn)}1/2n−1/2γn, where γn is any diverging sequence.

Then,

pr
⎛
⎝
Zαλ,N(β) ≥ 2NKn∣αλ∣1/2

⎡⎢⎢⎢⎣
2ā + γn {

∣αλ∣ log(dn)(2 + 8ā)
n

}
1/2

+ 2∣αλ∣ log(dn)γ2
n

3n
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+U
2
n{∣αλ∣ log(dn)}1/2γn

n1/2µ
])

≤ 2 exp(−nµ
2

2
) + {1

5
(∣αλ∣ + 1)W 2 + 1} exp{−∣αλ∣ log(dn)γ2

n}. (5.11)

Since ā = n−1/2 {2 log(2∣αλ∣)}1/2 + n−1 log(2∣αλ∣) and log(2∣αλ∣) < ∣αλ∣ for all ∣αλ∣, we have

that ā < (2∣αλ∣)1/2n−1/2 + 2∣αλ∣n−1 < 2(2∣αλ∣)1/2n−1/2. Hence,

pr
⎛
⎝
Zαλ,N(β) ≥ 2NKn∣αλ∣1/2

⎡⎢⎢⎢⎣
2ā + γn {

∣αλ∣ log(dn)(2 + 8ā)
n

}
1/2

+ 2∣αλ∣ log(dn)γ2
n

3n

+U
2
n{∣αλ∣ log(dn)}1/2γn

n1/2µ
])

≥ pr

⎡⎢⎢⎢⎢⎣
Zαλ,N(β) ≥ 2NKn∣αλ∣1/2

⎛
⎝

4(2∣αλ∣
n

)
1/2

+ γn [
∣αλ∣ log(dn){2 + 16(2∣αλ∣)1/2n−1/2}

n
]

1/2

+2∣αλ∣1/2d1/2
n log(dn)γ2

n

3n
+ U

2
n{∣αλ∣ log(dn)}1/2γn

n1/2µ

⎞
⎠

⎤⎥⎥⎥⎥⎦

= pr

⎡⎢⎢⎢⎢⎣
Zαλ,N(β) ≥ 2NKn∣αλ∣

n1/2

⎛
⎝

4 ∗ 21/2 + γn [log(dn){2 + 16(2∣αλ∣)1/2n−1/2}]1/2

+2d
1/2
n log(dn)γ2

n

3n1/2
+ U

2
n{log(dn)}1/2γn

µ

⎞
⎠

⎤⎥⎥⎥⎥⎦
. (5.12)

By (5.11) and (5.12) we have that

pr

⎡⎢⎢⎢⎢⎣
Zαλ,N(β) ≥ 2NKn∣αλ∣

n1/2

⎛
⎝

4 ∗ 21/2 + γn [log(dn){2 + 16(2∣αλ∣)1/2n−1/2}]1/2

+2d
1/2
n log(dn)γ2

n

3n1/2
+ U

2
n{log(dn)}1/2γn

µ

⎞
⎠

⎤⎥⎥⎥⎥⎦
≤ 2 exp(−nµ

2

2
) + {1

5
(∣αλ∣ + 1)W 2 + 1} exp{−∣αλ∣ log(dn)γ2

n}.

Now we derive the probability bound for the supremum of Zαλ,N(β) over all possible

model ∣αλ∣. We use the fact that (dn
k
) ≤ (dne/k)k for any 0 ≤ k ≤ dn, where e is the Euler's
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number.

pr

⎡⎢⎢⎢⎢⎣
sup
αλ

1

∣αλ∣
Zαλ,N(β) ≥ 2NKn

n1/2

⎛
⎝

4 ∗ 21/2 + γn [log(dn){2 + 16(2∣αλ∣)1/2n−1/2}]1/2

+2d
1/2
n log(dn)γ2

n

3n1/2
+ U

2
n{log(dn)}1/2γn

µ

⎞
⎠

⎤⎥⎥⎥⎥⎦

≤
dn

∑
∣αλ∣=1

pr

⎡⎢⎢⎢⎢⎣
Zαλ,N(β) ≥ 2NKn∣αλ∣

n1/2

⎛
⎝

4 ∗ 21/2 + γn [log(dn){2 + 16(2∣αλ∣)1/2n−1/2}]1/2

+2d
1/2
n log(dn)γ2

n

3n1/2
+ U

2
n{log(dn)}1/2γn

µ

⎞
⎠

⎤⎥⎥⎥⎥⎦

≤
dn

∑
k=1

(dn
k
) [2 exp(−nµ

2

2
) + {1

5
(k + 1)W 2 + 1} exp{−k log(dn)γ2

n}]

≤
dn

∑
k=1

(dne
k

)
k

[2 exp(−nµ
2

2
) + {1

5
(k + 1)W 2 + 1} exp{−k log(dn)γ2

n}]

=
dn

∑
k=1

( e
k
)
k

[2dkn exp(−nµ
2

2
) + {1

5
(k + 1)W 2 + 1}d(1−γ

2
n)k

n ] . (5.13)

By Condition (H), {(dn + 1) log(dn)/n} = o(1). Thus ddn+1
n = o{exp(n)} and the �rst term

in the square brackets in (5.13) is o(d−1
n ). Since γn diverges to in�nity, the second term in

the square brackets in (5.13) is also o(d−1
n ). Moreover, (e/k)k < 1 for all k ≥ 3. Therefore,

it is easy to see that (5.13) goes to 0 as n → ∞. Since γn diverges at an arbitrary rate, it

follows that,

sup
αλ

1

∣αλ∣
Zαλ,N(β) = Op

⎡⎢⎢⎢⎢⎣

2NKn

n1/2

⎛
⎝

4 ∗ 21/2 + [log(dn){2 + 16(2∣αλ∣)1/2n−1/2}]1/2

+2d
1/2
n log(dn)

3n1/2
+ U

2
n{log(dn)}1/2

µ

⎞
⎠

⎤⎥⎥⎥⎥⎦
= Op

⎡⎢⎢⎢⎣
N { log(dn)

n
}

1/2⎤⎥⎥⎥⎦

since {dn log(dn)/n} = o(1) under Condition (H).

◻
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Lemma 5.7.2. Under Conditions (A) to (I), uniformly for all model αλ,

sup
αλ

1

∣αλ∣1/2
∥β̂αλ − β0

αλ
∥ = Op

⎡⎢⎢⎢⎣
{ log(dn)

n
}

1/2⎤⎥⎥⎥⎦
.

Proof. Denote ∥β̂αλ − β0
αλ

∥ = Nn,αλ . Since β̂αλ maximizes `n(βαλ), we have that `n(β0
αλ

) ≤

`n(β̂αλ). Since β0
αλ

minimizes the Kullback-Leibler distance, we have that E{`n(β0
αλ

)} ≥

E{`n(β̂αλ)} and ∂E{`n(β0
αλ

)}/∂β = 0, where the expectation is taken under the true model.

It then follows that,

0 ≤ E{`n(β0
αλ

) − `n(β̂αλ)} ≤ `n(β̂αλ) −E{`n(β̂αλ) − [`n(β0
αλ

) −E{`n(β0
αλ

)}]

≤ nZαλ,Nn,αλ(β̂αλ). (5.14)

By Taylor expansion, for some β∗αλ that lies between β̂αλ and β
0
αλ

we have that

E{`n(β̂αλ) − `n(β0
αλ

)}

= (β̂αλ − β0
αλ

)T
∂E{`n(β0

αλ
)}

∂β
+ 1

2
(β̂αλ − β0

αλ
)T
∂2E{`n(β∗αλ)}

∂β2
(β̂αλ − β0

αλ
)

= −n
2
(β̂αλ − β0

αλ
)T In(β∗αλ)(β̂αλ − β

0
αλ

)

≤ −n
2
∥β̂αλ − β0

αλ
∥2

eigenmin{In(β∗αλ)}

≤ −n
2
N2
n,αλ

C3. (5.15)

The last two inequalities in (5.15) hold by spectral decomposition on In(β∗αλ) and Condition

(E). By (5.14) and (5.15) it must hold for β̂αλ that Nn,αλ ≤ {2Zαλ,Nn,αλ(β̂αλ)}1/2C
−1/2
3 . Then

by Lemma 5.7.1 it can be shown that supαλ ∣αλ∣−1/2∥β̂αλ − β0
αλ

∥ = Op [{log(dn)/n}1/2].

◻
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Lemma 5.7.3. Under Conditions (A) to (I), uniformly for all model αλ,

sup
αλ

1

∣αλ∣
∣`n(β̂αλ) − `n(β0

αλ
)∣ = Op {log(dn)} .

Proof. De�ne the event An ∶= {supαλ ∣αλ∣−1/2∥β̂αλ − β0
αλ

∥ ≤ γn{log(dn)/n}1/2}, where γn is

any diverging sequence. Denote A c
n as the complement of An. Then for any positive

number ε,

pr{sup
αλ

1

∣αλ∣
∣`n(β̂αλ) − `n(β0

αλ
)∣ ≥ ε} ≤ pr{sup

αλ

1

∣αλ∣
∣`n(β̂αλ) − `n(β0

αλ
)∣ ≥ ε ∣ An} + pr(A c

n ).

By the de�nition of β̂αλ and β0
αλ
, we know that `n(β0

αλ
) ≤ `n(β̂αλ) and E{`n(β0

αλ
)} ≥

E{`n(β̂αλ)} for any model αλ. Thus,

`n(β̂αλ) − `n(β0
αλ

) ≤ `n(β̂αλ) −E{`n(β̂αλ) − [`n(β0
αλ

) −E{`n(β0
αλ

)}] ≤ nZαλ,Nn,αλ(β̂αλ),

(5.16)

where Nn,αλ = ∥β̂αλ − β0
αλ

∥. De�ne N∗
n = γn{log(dn)/n}1/2}. By Lemma 5.7.1, we have that

supαλ ∣αλ∣−1Zαλ,N∗
n
(β̂αλ) = Op{γn log(dn)/n}. Therefore, we also have that E{supαλ n∣αλ∣−1Zαλ,N∗

n
(β̂αλ)} =

O{γn log(dn)}. Since supαλ n∣αλ∣−1Zαλ,N∗
n
(β̂αλ) is a positive integrable random variable, by

Markov inequality,

pr{sup
αλ

n

∣αλ∣
Zαλ,N∗

n
(β̂αλ) ≥ ε} ≤ E{sup

αλ

n

∣αλ∣
Zαλ,N∗

n
(β̂αλ)} ε−1 = O{γn log(dn)}

ε
.

Let ε = γ2
n log(dn), then

pr{sup
αλ

n

∣αλ∣
Zαλ,N∗

n
(β̂αλ) ≥ γ2

n log(dn)} ≤ O(γ−1
n ) = o(1). (5.17)
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By (5.16) and (5.17), it can be shown that

pr{sup
αλ

∣αλ∣−1∣`n(β̂αλ) − `n(β0
αλ

)∣ ≥ γ2
n log(dn) ∣ An} = o(1).

By Lemma 5.7.2, pr(A c
n ) = o(1). Therefore,

pr{sup
αλ

1

∣αλ∣
∣`n(β̂αλ) − `n(β0

αλ
)∣ ≥ γ2

n log(dn)} ≤ o(1) + o(1) = o(1).

It follows that supαλ ∣αλ∣−1∣`n(β̂αλ) − `n(β0
αλ

)∣ = Op {log(dn)}.

◻

Lemma 5.7.4. Under Conditions (A) to (I), uniformly for all model αλ,

sup
αλ

1

∣αλ∣1/2
∣`n(β0

αλ
) −E{`n(β0

αλ
)}∣ = Op [{n log(dn)}1/2] .

Proof. Since `n(β0
αλ

) is a sum of dependent random variables, we decompose the quantity

in the statement of the lemma as follows,

sup
αλ

1

∣αλ∣1/2
∣`n(β0

αλ
) −E{`n(β0

αλ
)}∣

≤ sup
αλ

1

∣αλ∣1/2
{∣`n(β0

αλ
) − ¯̀

n(β0
αλ

)∣ + ∣¯̀n(β0
αλ

) −E{`n(β0
αλ

)}∣}

= sup
αλ

1

∣αλ∣1/2
(I1 + I2).

We �rst consider I1.

I1 =
RRRRRRRRRRR

n

∑
i=1

log

⎧⎪⎪⎨⎪⎪⎩

s
(0)
n (β0

αλ
, ti)

S
(0)
n (β0

αλ
, ti)

⎫⎪⎪⎬⎪⎪⎭
∆i

RRRRRRRRRRR
≤ n

RRRRRRRRRRR
sup
0≤t≤τ

log

⎧⎪⎪⎨⎪⎪⎩

s
(0)
n (β0

αλ
, t)

S
(0)
n (β0

αλ
, t)

⎫⎪⎪⎬⎪⎪⎭

RRRRRRRRRRR
≤ n sup

0≤t≤τ
∣ log{S(0)

n (β0
αλ
, t)} − log{s(0)n (β0

αλ
, t)}∣. (5.18)

By mean value theorem, log{S(0)
n (β0

αλ
, t)}−log{s(0)n (β0

αλ
, t)} = (S∗n)−1{S(0)

n (β0
αλ
, t)−s(0)n (β0

αλ
, t)},
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where S∗n lies between S
(0)
n (β0

αλ
, t) and s(0)n (β0

αλ
, t). By Lemma 3.3 in Kong and Nan (2014)

we have that for any positive number ε,

pr{ sup
0≤t≤τ

∣S(0)
n (β0

αλ
, t) − s(0)n (β0

αλ
, t)∣ ≥ Unε} ≤ 1

5
W 2 exp(−nε2), (5.19)

where W is a constant determined by the bracketing number of the class of functions

indexed by t, F = {Y (t) exp{βTZ(t)}/Un ∶ t ∈ [0, τ], exp{βTZ(t)} ≤ Un}. It follows from

(5.19) that S
(0)
n (β0

αλ
, t) converges to s(0)n (β0

αλ
, t) in probability uniformly on t ∈ [0, τ], and

therefore so does S∗n. By Condition (D), s
(0)
n (β0

αλ
, t) is uniformly bounded away from 0. Let

C5 be a constant satisfying 0 < C5 < inf0≤t≤τ s
(0)
n (β0

αλ
, t). De�ne the event An ∶= {S∗n > C5}.

Denote A c
n as the complement of A . Consider

pr [ sup
0≤t≤τ

∣ log{S(0)
n (β0

αλ
, t)} − log{s(0)n (β0

αλ
, t)}∣ ≥ Unε

C5

]

= pr [ sup
0≤t≤τ

∣ 1

S∗n
{S(0)

n (β0
αλ
, t) − s(0)n (β0

αλ
, t)}∣ ≥ Unε

C5

]

≤ pr [ sup
0≤t≤τ

∣ 1

S∗n
{S(0)

n (β0
αλ
, t) − s(0)n (β0

αλ
, t)}∣ ≥ Unε

C5

∣ An] + pr(A c
n )

= I11 + I12.

By (5.19) we have

I11 ≤ pr [ sup
0≤t≤τ

∣ 1

C5

{S(0)
n (β0

αλ
, t) − s(0)n (β0

αλ
, t)}∣ ≥ Unε

C5

]

= pr{ sup
0≤t≤τ

∣S(0)
n (β0

αλ
, t) − s(0)n (β0

αλ
, t)∣ ≥ Unε}

≤ 1

5
W 2 exp(−nε2).

Further, we have that I12 = o(1) since S∗n converges to s
(0)
n (β0

αλ
, t) in probability uniformly
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on t ∈ [0, τ]. Therefore, by replacing ε with n−1/2ε, from (5.18) we have that

pr(I1 ≥
n1/2Unε

C5

) ≤ 1

5
W 2 exp(−ε2). (5.20)

Next we consider I2. For any i, ∣¯̀i(β0
αλ

)∣ ≤ ∣(β0
αλ

)TZi(ti)−log{s(0)n (β0
αλ
, ti)}∣ ≤ ∣(β0

αλ
)TZi(ti)∣+

∣ log{s(0)n (β0
αλ
, ti)}∣ ≤ ∣ log(Un)∣ + ∣ log(E[exp{(β0

αλ
)TZi(ti)}])∣ ≤ 2∣ log(Un)∣. It implies that

−2 log(Un) ≤ ¯̀
i(β0

αλ
) ≤ 2 log(Un) for all i. Therefore, by Hoe�ding's inequality, for any

positive number ε,

pr(I2 ≥ ε) ≤ 2 exp [− ε2

2∑n
i=1 4{log(Un)}2

] = 2 exp [− ε2

8n{log(Un)}2
] .

By replacing ε with n1/2ε we have

pr(I2 ≥ n1/2ε) ≤ 2 exp [− ε2

2∑n
i=1 4{log(Un)}2

] = 2 exp [− ε2

8{log(Un)}2
] . (5.21)

From (5.20) and (5.21) we get

pr(I1 + I2 ≥
n1/2Unε

C5

+ n1/2ε) ≤ 1

5
W 2 exp(−ε2) + 2 exp [− ε2

8{log(Un)}2
] .

Let ε = {γn∣αλ∣ log(dn)}1/2, where γn is any diverging sequence. Then,

pr [I1 + I2 ≥ {nγn∣αλ∣ log(dn)}1/2 (Un
C5

+ 1)]

≤ 1

5
W 2 exp{−γn∣αλ∣ log(dn)} + 2 exp [−γn∣αλ∣ log(dn)

8{log(Un)}2
] .

By using the fact that (dn
k
) ≤ (dne/k)k for any 0 ≤ k ≤ dn, we have that

pr [sup
αλ

1

∣αλ∣1/2
(I1 + I2) ≥ {nγn log(dn)}1/2 (Un

C5

+ 1)]
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≤
dn

∑
∣αλ∣=1

pr [I1 + I2 ≥ {nγn∣αλ∣ log(dn)}1/2 (Un
C5

+ 1)]

≤
dn

∑
k=1

(dne
k

)
k

(1

5
W 2 exp{−γnk log(dn)} + 2 exp [− γnk log(dn)

8{log(Un)}2
])

=
dn

∑
k=1

( e
k
)
k

[1

5
W 2dk−kγnn + 2d

k− kγn
8{log(Un)}2

n ] . (5.22)

Since γn diverges to in�nity, the two terms in the square brackets are both o(d−1
n ). More-

over, (e/k)k < 1 for all k ≥ 3. Therefore, (5.22) goes to 0 as n→∞. Hence, supαλ ∣αλ∣−1/2(I1+

I2) = Op[{n log(dn)}1/2]. It then follows that supαλ ∣αλ∣−1/2∣`n(β0
αλ

)−E{`n(β0
αλ

)}∣ = Op [{n log(dn)}1/2].

◻

Proof of Theorem 5.4.2. For all model αλ we have that

sup
αλ

1

∣αλ∣
∣`n(β̂αλ) −E{`n(β0

αλ
)}∣

= sup
αλ

1

∣αλ∣
∣`n(β̂αλ) − `n(β0

αλ
) + `n(β0

αλ
) −E{`n(β0

αλ
)}∣

≤ sup
αλ

1

∣αλ∣
∣`n(β̂αλ) − `n(β0

αλ
)∣ + sup

αλ

1

∣αλ∣1/2
∣`n(β0

αλ
) −E{`n(β0

αλ
)}∣. (5.23)

By Lemma 5.7.3 and 5.7.4, (5.23) = Op{log(dn)} +Op[{n log(dn)}1/2] = Op[{n log(dn)}1/2]

under Condition (H). ◻

Proof of Theorem 5.4.3. We �rst restate the corollary of Lemma 1 in Laurent and

Massart (2000) that will be used in our proof.

Corollary of Lemma 1 in Laurent and Massart (2000):

Let U be a χ2 statistic with D degrees of freedom. For any positive ε,

pr{U −D ≥ 2(Dε)1/2 + 2ε} ≤ exp(−ε).
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By Taylor expansion, for some β∗αλ that lies between β̂αλ and β̂α0 ,

`n(β̂αλ) − `n(β̂α0) = (β̂αλ − β0
αλ

)T `′n(β0
αλ

) + 1

2
(β̂αλ − β0

αλ
)T `′′n(β0

αλ
)(β̂αλ − β0

αλ
)

+ 1

6

n

∑
i=1

dn

∑
j,k,l=1

˜̀′′′
i (β∗αλ)jkl(β̂αλj − β

0
αλj

)(β̂αλk − β0
αλk

)(β̂αλl − β0
αλl

)

= I1 + I2 + I3.

Since αλ ⊋ α0, β0
αλ

= β0, the true parameter. As the regular Cox proportional hazards

model is a special case of that with a case-cohort design with the subcohort sampling proba-

bility being one, from Theorem 3.3.1 in Chapter 3 we have that ∥β̂αλ−β0
αλ

∥ = Op(∣αλ∣1/2n−1/2)

for any αλ ⊋ α0. By using Lemma 3.7.5 and 3.7.6 in Chapter 3 we can derive the stochastic

orders of I1, I2, and I3 for any αλ ⊋ α0 as follows. I1 ≤ ∥β̂αλ −β0
αλ

∥∥`′n(β0
αλ

)∥ = Op(∣αλ∣). We

decompose I2 as

I2 =
1

2
(β̂αλ − β0

αλ
)T{`′′n(β0

αλ
) + nIn(β0

αλ
)}(β̂αλ − β0

αλ
) − 1

2
(β̂αλ − β0

αλ
)TnIn(β0

αλ
)(β̂αλ − β0

αλ
)

= I21 − I22.

Since I21 ≤ ∥β̂αλ − β0
αλ

∥2Op(n1/2∣αλ∣) = Op(∣αλ∣2n−1/2) = op(∣αλ∣) under Condition (H) and

I22 ≥ n∥β̂αλ − β0
αλ

∥2eigenmin{In(β0
αλ

)}/2 ≥ n∥β̂αλ − β0
αλ

∥2C3/2 = Op(∣αλ∣), it follows that

I21 = op(I22). Also, in the proof of Theorem 3.3.1 we established that ˜̀′′′
i (β∗αλ)jkl is Op(1).

Thus, I3 ≤ Op{(∣αλ∣/n)3/2∣αλ∣3/2n} = Op(∣αλ∣3n−1/2) = op(∣αλ∣). Thus, I3 = op(I22). Let

R1 = I21 + I3 = op(I22) = op(∣αλ∣), then

`n(β̂αλ) − `n(β̂α0) = (β̂αλ − β0
αλ

)T `′n(β0
αλ

) − 1

2
(β̂αλ − β0

αλ
)TnIn(β0

αλ
)(β̂αλ − β0

αλ
) +R1. (5.24)

On the other hand, since β̂αλ maximizes `n(βαλ), by Taylor expansion, for some β∗αλ
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that lies between β̂αλ and β̂α0

0 = `′n(β̂αλ) = `′n(β0
αλ

) + {`′′n(β0
αλ

) + nIn(β0
αλ

)}(β̂αλ − β0
αλ

) − nIn(β0
αλ

)(β̂αλ − β0
αλ

)

+ 1

2

⎛
⎝
n

∑
i=1

dn

∑
j,k=1

˜̀′′′
i (β∗αλ)jk1(β̂αλj − β0

αλj
)(β̂αλk − β0

αλk
), ...,

n

∑
i=1

dn

∑
j,k=1

˜̀′′′
i (β∗αλ)jkdn(β̂αλj − β

0
αλj

)(β̂αλk − β0
αλk

)
⎞
⎠

T

= J1 + J2 − J3 + J4. (5.25)

Denote the vector J2 as (ν1, ..., ν∣αλ∣)T and J3 as (υ1, ..., υ∣αλ∣)T . Since we have shown

that I21 = op(I22), it follows that ∑∣αλ∣
j=1 (β̂αλj − β0

αλj
)νj = op{∑∣αλ∣

j=1 (β̂αλj − β0
αλj

)υj}. Since

`′′n(β0
αλ

) + nIn(β0
αλ

) and nIn(β0
αλ

) are both symmetric matrices, under Condition (E) we

have that νj = op(υj) for all j, and therefore J2 = op(J3) component-wise. Since I3 =

op(I22), similar argument gives that J4 = op(J3) component-wise. Let R2 = J2 + J4 =

op(J3), then J1 − J3 +R2 = 0 by (5.25). Using proof by contradiction, it is necessary that

R2 = op(J1) = op{`′n(β0
αλ

)} component-wise. By solving (5.25) we have that β̂αλ − β0
αλ

=

n−1{In(β0
αλ

)}−1{`′n(β0
αλ

) +R2}. Plug this result into (5.24) we get

`n(β̂αλ) − `n(β̂α0) = {`′n(β0
αλ

) +R2}Tn−1{In(β0
αλ

)}−1`′n(β0
αλ

)

− 1

2
{`′n(β0

αλ
) +R2}Tn−1{In(β0

αλ
)}−1nIn(β0

αλ
)n−1{In(β0

αλ
)}−1{`′n(β0

αλ
) +R2} +R1

= `′n(β0
αλ

)T 1

n
{In(β0

αλ
)}−1`′n(β0

αλ
) +RT

2

1

n
{In(β0

αλ
)}−1`′n(β0

αλ
)

− 1

2
`′n(β0

αλ
)T 1

n
{In(β0

αλ
)}−1`′n(β0

αλ
) −RT

2

1

n
{In(β0

αλ
)}−1`′n(β0

αλ
)

− 1

2
RT

2

1

n
{In(β0

αλ
)}−1R2 +R1

= 1

2
`′n(β0

αλ
)T 1

n
{In(β0

αλ
)}−1`′n(β0

αλ
) − 1

2
RT

2

1

n
{In(β0

αλ
)}−1R2 +R1

=K1 −K2 +R1.
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Since R2 = op{`′n(β0
αλ

)} component-wise, K2 = op(K1). Furthermore, by spectral decom-

position and Condition (E) we have that K1 ≥ ∥`′n(β0
αλ

)∥2n−1eigenmin[{In(β0
αλ

)}−1]/2 =

∥`′n(β0
αλ

)∥2n−1[eigenmax{In(β0
αλ

)}]−1/2 ≥ Op(∣αλ∣n)n−1C−1
4 = Op(∣αλ∣). Thus, R1 = op(K1)

since R1 = op(∣αλ∣). Since for any αλ ⊋ α0, In(β0
αλ

) is the covariance matrix of n−1/2`′n(β0
αλ

),

it follows that 2K1 converges to a Chi-square distribution with degree of freedom ∣αλ∣−∣α0∣.

Therefore, `n(β̂αλ)− `n(β̂α0) converges to a Chi-square distribution with degree of freedom

∣αλ∣ − ∣α0∣ for any αλ ⊋ α0. Then, by the corollary of Lemma 1 in Laurent and Massart

(2000) as restated in the beginning of the proof, for any positive number ε,

pr [`n(β̂αλ) − `n(β̂α0) ≥ ∣αλ∣ − ∣α0∣ + 2{(∣αλ∣ − ∣α0∣)ε}1/2 + 2ε] ≤ exp(−ε).

Let ε = γn log(dn)(∣αλ∣ − ∣α0∣), where γn is any diverging sequence. Then

pr [`n(β̂αλ) − `n(β̂α0) ≥ ∣αλ∣ − ∣α0∣ + 2
√

(∣αλ∣ − ∣α0∣)2γn log(dn) + 2γn log(dn)(∣αλ∣ − ∣α0∣)]

= pr (`n(β̂αλ) − `n(β̂α0) ≥ (∣αλ∣ − ∣α0∣) [1 + 2{γn log(dn)}1/2 + 2γn log(dn)])

≤ exp{−γn log(dn)(∣αλ∣ − ∣α0∣)} .

Therefore, by using the fact that (dn
k
) ≤ (dne/k)k for any 0 ≤ k ≤ dn, we have that

pr [ sup
αλ⊋α0

`n(β̂αλ) − `n(β̂α0)
∣αλ∣ − ∣α0∣

≥ 1 + 2{γn log(dn)}1/2 + 2γn log(dn)]

≤
dn

∑
∣αλ∣=∣α0∣+1

pr (`n(β̂αλ) − `n(β̂α0) ≥ (∣αλ∣ − ∣α0∣) [1 + 2{γn log(dn)}1/2 + 2γn log(dn)])

≤
dn

∑
k=∣α0∣+1

(dne
k

)
k

exp{−γn log(dn)(k − ∣α0∣)}

=
dn

∑
k=∣α0∣+1

( e
k
)
k

d
{k−(k−∣α0∣)γn}
n . (5.26)

Since γn diverges to in�nity and k = O(k−∣α0∣) as k →∞ under Condition (H), d
{k−(k−∣α0∣)γn}
n =
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o(d−1
n ). Moreover, (e/k)k < 1 for all k ≥ 3. Therefore, (5.26) goes to 0 as n→∞. It follows

that

sup
αλ⊋α0

1

∣αλ∣ − ∣α0∣
{`n(β̂αλ) − `n(β̂α0)} = Op [1 + 2{log(dn)}1/2 + 2 log(dn)] = Op{log(dn)}.

◻
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CHAPTER 6: SUMMARY AND FUTURE RESEARCH

In this dissertation we have studied the regularized variable selection procedure in both

Cox proportional hazards model and additive hazards model with a case-cohort design

and a diverging number of parameters. We focused on the smoothly clipped absolute

deviation (SCAD) penalty, but the results can be extended to other penalty functions as

well. We investigated both the asymptotic properties and �nite sample performance of the

variable selection procedures. Due to the non-predictability of the weight function ρi(t)

in the estimating equations, we employed modern empirical process techniques instead of

traditional martingale theorems in most of the theoretical development. To accommodate

the common features of case-cohort studies, we considered high censoring rates and large

sample sizes in the simulation studies.

In Chapter 3, we proved that the SCAD-penalized variable selection procedure can iden-

tify the true model with probability tending to one as sample size goes to in�nity under Cox

proportional hazards model with a case-cohort design and a diverging dimension. The con-

sistency and asymptotic normality of the penalized estimator were also established. Based

on the simulation results, the BIC-based tuning parameter selection method outperforms

the AIC-based one. The variable selection procedure was applied to the Busselton Health

Study. In Chapter 4, we extended the SCAD-penalized variable selection procedure to

additive hazards model with a strati�ed case-cohort design and a diverging dimension. We

again proved the model selection consistency of the procedure as well as the consistency and

asymptotic normality of the penalized estimator. We proposed a penalized cross-validation

method for tuning parameter selection for additive hazards model and evaluated its �nite
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sample performance via simulation. It is found that the proposed penalized tuning pa-

rameter selection method outperforms the conventional �ve-fold cross-validation method.

The variable selection procedure was applied to the Atherosclerosis Risk in Communities

(ARIC) study. In Chapter 5, we shifted our focus to the tuning parameter selection for

regularized variable selection method under Cox proportional hazards model with a diverg-

ing number of parameters in a random sample. We proposed a generalized information

criterion (GIC) for tuning parameter selection and proved that, under certain conditions

on the signal strength of the true model and the diverging sequence an, GIC can identify

the true model with probability tending to one as sample size goes to in�nity. We then

conducted simulations to compare the variable selection performance of GIC with four

di�erent choices of an: 2, log(n), log{log(n)} log(dn), and log{log(dn)} log(dn). It is found

that the GIC with an = log{log(dn)} log(dn) gives better overall performance and therefore

we recommended it for practical use. The proposed tuning parameter selection method

was applied to the Framingham Heart Study.

There are several future directions where we can extend the research presented in this

dissertation.

First, we have only investigated in this dissertation the scenarios where the dimension

of the model is smaller than the sample size (p≪ n). With the increasing availability of the

so-called �Big Data�, it is desirable to extend the proposed variable selection procedures

and the tuning parameter selection methods to the high-dimensional realm where p ≫ n.

The theoretical framework used in this dissertation will no longer be valid for this scenario.

More advanced dimension-reduction techniques need to be developed for the case-cohort

design with failure time outcome. One potential starting point could be to introduce the

iterative sure independence screening (ISIS) method proposed by Fan and Lv (2008) into

the Cox proportional hazards model and additive hazards model with a case-cohort design.

Second, we can extend the current variable selection methods to a case-cohort design
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with multivariate failure time outcome. Multivariate failure time data arise frequently from

biomedical research. For instance, elderly people may develop both coronary heart disease

(CHD) and stroke; patients with kidney failure who are on dialysis may experience multiple

events of infection. The potential correlation among failure times of di�erent events poses

additional challenge in the theoretical development. Meanwhile, a more e�cient weight

function is available for the case-cohort design with multivariate failure time outcome (Kim

et al. 2013), the properties of which have not been studied in the context of regularized

variable selection and tuning parameter selection.

Last, as a natural continuation, the proposed GIC statistic for tuning parameter selec-

tion in Chapter 5 needs to be extended from regular Cox proportional hazards model to

one with a case-cohort design. The main challenge is to incorporate the weight function

ρi(t), which is not independent across subjects, into the empirical process techniques used

to derive the probability bounds of various random quantities.
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