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ABSTRACT
JEREMY CRIBB: Driven and Thermal Microparticle Rheology of

Complex Biopolymer Systems.
(Under the direction of Rich Superfine.)

Mucociliary clearance is the process by which cilia actively transport mucus from

the airway in order to keep a sterile environment in the lung. The flow properties, or

the rheology, of mucus is of particular importance when considering mucus function

since its modulus and viscosity result in net mucociliary transport. For example, when

the protective layer of mucus is too thick, transport stops because the cilia cannot carry

the increased load, as is the case in several lung-related pathologies like cystic fibrosis,

COPD, and asthma.

The 3DFM is an instrument we designed, implemented, and validated in our lab.

Evolving significantly over the last several years, the 3DFM is a system that can im-

age and manipulate biological specimens in all three spatial dimensions at microscopic

length scales. When we subject a bead embedded in a fluid to an applied force, its

spatiotemporal response depends on the rheological properties of the surrounding fluid.

For example, in a Newtonian fluid the terminal velocity of a bead is inversely propor-

tional to the fluid viscosity.

Applying magnetic forces to micron sized spheres or even rod-shaped particles (i.e.

bacteria or magnetically permeable nanoparticles) allows us to study the correspon-

dence (or lack thereof) between micro-physical measurements and the canonical char-

acterizations of macroscopic rheology techniques like cone-and-plate rheometers. Also,
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such a microscale technique is desirable since it is often difficult to acquire sufficient

volume of a purified biological sample to test using macroscale rheological techniques

such as cone and plate. Biological systems can also be highly heterogeneous and present

a challenge for any measurement technique because of this variability. Finally, we must

mention the necessity of performing measurements at relevant length scales since evo-

lutionary pressure is the driving force for these biopolymer systems.

Here I will argue the usefulness of driven microbead rheology (DMBR) as a mea-

surement technique for soft biopolymer solutions. I begin by explaining the effects of

probe shape and make first observations regarding a preference in particle shape for

drug delivery. Next, I describe the fundamental measurements in our DMBR system

and offer data for well-characterized Newtonian and homogeneous viscoelastic polymer

solutions. I will present experimental results and will establish the ability of DMBR

as a technique for measuring both linear and nonlinear properties of non-Newtonian

fluids. Finally, there will be particular attention on strain-thickening, a dynamic and

nonlinear rheological property of mucus that I have observed for the first time at the

microscale, making it interesting in understanding mucociliary clearance.
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Chapter 1

Introduction

1.1 Overview

Materials fascinate us. Anthropologists named the early ages of history for our

ability to engineer tools with particular materials. Stone, bronze, and iron all require

specific knowledge and innovation before successful fracturing, shaping, or smelting

can occur. Early engineers must have found the challenge exciting, with each new in-

cremental development expanding the state-of-the-art. Alongside the evolution of our

engineering ability and our machines, we as humans evolved a passionate interest in

the study of human disease. We have hence tasked ourselves with curing ills that range

from simple inconvenient aches to incurable conditions. A most interesting develop-

ment in our technology over the past 60 years is the explosion in our understanding of

biomaterials, the most complex materials in our world.

Nature works patiently, taking millennia to design strategies for handling any given

type of environmental pressure. In many cases these methods produced biopolymers

like proteins or carbohydrate chains that function as fundamental structural elements.



Combining these constituent elements in various ways allows nature to create a diverse

array of materials such as bone, keratin, tubulin, actin, fibrin, DNA, or mucus, whereby

all exhibit vast differences from one another in their physical properties. These materi-

als form biopolymer systems that can safely encode genetic information, solve diverse

morphological challenges, and provide protection against invading microorganisms.

All of these substances exist as viscoelastic (VE) materials, located somewhere be-

tween the canonical liquid and solid phases of matter and most exhibit easily measurable

properties of both phases. As such, VE materials have time-dependent responses where

they store energy in the network as well as dissipate it into the background solvent.

Storing energy in the polymer network results in a material similar to mayonnaise that

holds its shape better than a typical liquid under a small load but flows when subjected

to sufficient stress.

Rheology is the term used to describe the study of VE materials. Coined by Eugene

Bingham in 1920, the word is derived from the Greek verb, ρειν, which means to flow.

Thus, rheology is the study of the deformation of matter subjected to an external force

or, more specifically, to an anisotropic stress (Macosko and Larson, 1994).

Here, I will focus on creating a reliable methodology for studying the rheology of

mucus, the biopolymer system for mucociliary clearance (MCC). Our bodies use MCC

to free our lungs of collected debris and pathogens and keep us healthy. Mucus serves

as a moving trap for inhaled particulates, including bacteria. A sterile environment is

maintained in the lung through the MCC process, where cellular organelles called cilia

actively beat and propel mucus along the lung’s surface. A hydrodynamic perspective
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on MCC would argue that because the cilia are ultimately force-limited (Hill et al.,

2010), it is the rheology of the mucus that dictates successful MCC (Eliezer et al.,

1970). Suboptimal MCC leads to the devastating properties of the pathology of sev-

eral respiratory diseases, including chronic obstructive pulmonary disorder (COPD),

asthma, and cystic fibrosis (CF).

Rheology is of particular importance when considering mucus function since its

modulus and viscosity must be optimal for successful transport (Shih et al., 1977;

Puchelle et al., 1980a; Chen and Dulfano, 1978). If the protective layer of mucus is too

elastic, transport ceases because the cilia, which are responsible for moving it, cannot

carry the increased load (Hill et al., 2010). In contrast, if the elasticity is too small,

the fluid might not maintain its association with a vertical surface and could collect in

the bottom of the lung due to gravimetric flow (King and Macklem, 1977).

To determine the rheology of a viscoelastic material, we need a volume of the testing

material and an instrument capable of measuring the response to a known input strain

rate or stress. The conventional instrumentation for making such measurements is the

macroscale cone-and-plate (CAP) rheometer. The CAP geometry imparts a simple

uniform shear rate in the material for a given stress (or vice versa) and measures the

rheology of materials at length scales that can range from 10−4 m to 10−2 m with

volumes as small as 100 µm. Collecting enough mucus to use in conventional cone and

plate (CAP) rheometry is extremely difficult, costly, and time-consuming.

In contrast, our microscale rheology techniques can take microliter volumes of mucus

directly from a single cell culture and perform similar measurements as seen in CAP,
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except at smaller and physiologically relevant length scales. At these smaller length

scales CAP averages out heterogeneity. Whatever the method, I retain the fundamental

hypothesis that mucus is first and foremost a collection of heavily glycosylated proteins

that cooperate to form a polymer network and that associations between these pro-

teins might form transient crosslinks, possibly by smaller linking molecules. Mucus is

therefore not a homopolymer system, nor is it spatially homogeneous. This hypothesis

guides the logic I use to create the aforementioned methodology.

I make use of both the homogeneous, macroscale shear field when acquiring mea-

surements with CAP and the heterogeneous shear field when I use microrheology tech-

niques. I assume that all specimens I examine are spatially homogeneous at the length

scales explored by the probe so that I might use the principles of continuum mechanics.

Again, this assumption of continuity has its hazards as it requires the dominant length

scales of the specimen to be smaller than the probe used to measure the physical prop-

erties. Also, I do not consider other processes that may be vitally important in MCC,

such as osmotic pressure or mucin adhesion.

Using the 3D force microscope (3DFM), an instrument designed, implemented, and

validated in our lab, we can make microrheological measurements (Fisher et al., 2005).

Ultimately, the 3DFM is a system that images and manipulates biological samples in

all three spatial dimensions at microscopic length scales. Among others, the 3DFM

includes a magnetics subsystem encapsulated in a modular shell into which I place

a 2 µL specimen volume (see Figure 3.9). The entire assembly fits into the body

of a commercially manufactured inverted optical microscope. Thin films of µ-metal
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in various geometries channel magnetic flux to the region of interest. Magnetomotive

force actuates the displacement of magnetic particles embedded in the specimen. While

some pole geometries generate forces with variable magnitudes in any direction, others

sacrifice directional control for a supplemented force magnitude (Fisher et al., 2006a;

Fisher et al., 2006b).

When we subject a bead embedded in a fluid to an applied force, its spatiotempo-

ral response depends on the rheological properties of the surrounding fluid (Zwanzig

and Bixon, 1970). For example, in a Newtonian fluid the terminal velocity of a bead

is inversely proportional to the fluid viscosity (Happel and Brenner, 1991). Applying

magnetic forces allows us to study the correspondence between micro-physical mea-

surements and the canonical characterizations of macroscopic rheology techniques like

CAP rheometers.

This work is my contribution to the state-of-the-art, a continuing effort to better

understand the material properties of these biopolymer systems and to develop tools

to study them.

1.2 Thesis statement and contributions

The thesis here argues the usefulness of driven microbead rheology (DMBR) as a

measurement technique for the non-Newtonian rheology of soft biopolymer solutions.

I begin with by comparing the flow fields and stresses for both macroscale CAP and

microscale particle rheologies for both spherical and rod-like geometries. I then follow
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with a review of the literature and describe the theory behind both thermal and driven

microbead rheology techniques. In subsequent chapters, I introduce the 3DFM, our

DMBR system, and describe how we calibrate our applied forces, and validate our

3DFM microrheology measurements. I offer data for well-characterized Newtonian and

homogeneous viscoelastic polymer solutions and present experimental results, thereby

establishing the ability of DMBR as a technique that can consistently measure both

linear and non-linear properties of non-Newtonian fluids for the first time. Next, I study

how probe shape affects the surrounding system rheology and make first observations

regarding a preference in particle shape for drug delivery. Finally, I present a study

on strain-thickening, a dynamic rheological property not previously reported in the

literature at the microscale. I have successfully made first measurements of strain

thickening in DNA, guar, porcine gastric mucus, as well as in human mucus which may

help explain the mechanism behind mucociliary clearance.

Biological systems can present a challenge for any measurement technique because

of their wide variability and the lack of knowledge of their constituent elements. It

is also often difficult to acquire sufficient volume of a purified sample to test using

macroscale rheological techniques such as CAP. Finally, we must mention the necessity

of performing measurements at relevant length scales since evolutionary pressure is the

driving force for these biopolymer systems. Based on the wide range of topics addressed

in this dissertation, the information herein contributes directly to the studies of rhe-

ology and biomaterials and illuminates possible mechanisms for successful mucociliary

transport.
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1.3 Outline

This work is organized as follows:

Chapter 2 models a sphere moving through a Newtonian fluid with the Navier-Stokes

(NS) equation and uses it to review current passive and driven microbead techniques.

The NS equation provides a framework that can predict shear thinning and even strain

thickening of material that surrounds a bead when it is subjected to an externally ap-

plied force. Results from this microscale modeling are then compared with reviewed

macroscale cone and plate methods. Emphasis is placed on mechanical models used in

CAP and how microscale measurements correspond to these models. I use this infor-

mation to generate a methodology for performing these experiments in the microscale.

In Chapter 3, I explain the general design of the 3D force microscope (3DFM) and its

implementation as a microrheometer. The video and tracking systems will be illustrated

along with their limits of measure. Additionally, I will highlight a new method called

variable force calibration (VFC) that we now use to quantify the magnetic forces in the

3DFM as a function of both drive current and distance from the pole-tip. Concluding

this chapter will be an error analysis of our methods.

Chapter 4 uses polymer physics to model several polymer solutions including DNA,

HA, and mucus. I will expand on the Navier-Stokes interpretation for the experimental

design and then present CAP and DMBR data that shows the correspondence between

macroscale and microscale measurements at steady state.

Chapter 5 discusses the effects of shape on the mobility of sub-micron particles
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through basic Newtonian as well as shear-thinning viscoelastic biopolymer solutions.

Considering a particle’s shape offers the scientist another parameter to modify when

considering tradeoffs in payload and rate of transport in nanoscale drug delivery sys-

tems.

Chapter 6 ramps up the complexity of the modeling and shows probe sensitivity

to measurements of dynamic phenomena in viscoelastic materials. Strain thickening is

shown as a dynamic, non-linear rheological response of polymer systems at the micron-

sized length scales. A spontaneous shift from high to low viscosity occurs at a quasi-

steady state velocity. I will show this behavior in data collected for several polymer

systems: DNA, reconstituted PGM, guar gum, and human mucus. Because mucus

exhibits this nonlinear response, it may offer profound implications in the mechanism

used by cilia in successful mucociliary transport.

A global discussion about these results along with conclusions and future directions

follows in Chapter 7.
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Chapter 2

Measuring Microrheology

2.1 Overview

Typical microparticle rheology techniques include the passive or active transport

of particles such as spheres or prolate ellipsoids through a viscoelastic medium. Over

macroscale techniques such as cone and plate (CAP), microrheology offers the advan-

tages of smaller sample size, sensitivity to heterogeneity, and physiologically relevant

probe sizes. In this chapter I begin with a general description of the physics involved

when a material experiences a stress/strain inside a CAP rheometer and then follow

with the microscale analog when a spherical or prolate ellipsoidal particle is pulled

through a viscous medium. This description will use the Navier-Stokes equation and

general concepts of fluid mechanics to wed both thermal and driven microbead rheology

techniques to macroscale CAP. With these concepts in hand we can measure for the

first time shear-thinning and even strain-thickening of surrounding biomaterials when

the probe is subjected to an externally applied force. I find in such experiments that

the maximum shear rate dominates the responses for both beads (Chapter 4) and rod-



shaped (Chapter 5) microparticles in a shear thinning fluid. For driven microparticle

techniques, emphasis is placed on mechanical models used in CAP rheometry and how

microscale measurements can correspond to these models. Later, in Chapters 4, 5, and

6, I will present empirical results from experiments that show these relationships for

both microscale methods and compare them with reviewed macroscale CAP methods.

2.2 Probe Geometries and Navier-Stokes

Types of flow in fluids can be described in several different ways. Fluid flow can

be laminar or turbulent, terms which describe the direction of adjacent fluid parcels

wherein a “parcel” describes an infinitesimal volume element of fluid. When the stream-

lines for two closely spaced fluid parcels are parallel, the flow is called laminar whereas

nonparallel streamlines indicate turbulent flow conditions. Flow is also described as

steady or unsteady. In unsteady flow there is no restriction on the velocity of fluid

parcels, whereas in steady flow, the velocity is not allowed to change with respect to

time. Other types of flows include rotational flows, which describe the motion of fluid

parcels around an axis of rotation, versus uniform flows which have identical velocity

magnitude and direction at all points in space.

The Navier-Stokes (NS) equation (Eq. 2.10) provides a generalized framework for

understanding both thermal and driven microparticle rheologies. To derive the NS

equation, I first restrict flows to particular types and apply assumptions about them in

order to derive a flow field. Secondly, I identify the fundamental equation of motion for
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a fluid parcel. Lastly, I apply the constitutive equation for a Newtonian fluid, which

defines the relationship between stress and strain rate.

2.2.1 Momentum balance produces the equation of motion.

In continuum mechanics, solving for the balance of forces on a fluid parcel using

Newton’s Second Law results in

ρ
D~v

Dt
= −∇ · Π + ~F (2.1)

where ~F describes an externally applied force such as gravity (~F = ρ~g). The operator

D/Dt defines the substantive derivative, equal to

D

Dt
= ∂/∂t+ ~v · ∇ (2.2)

and when used it provides a clearer view of Equation 2.1 as a momentum balance.

Finally, Π is the total stress tensor, which is a sum of the isotropic stress, or bulk

pressure, p, and the extra stress tensor, σ

Π = pI + σ (2.3)

Expanding Π and simplifying the right side of Equation 2.1 results in the equation of

motion in terms of σ

ρ
D~v

Dt
= −∇p−∇ · σ + ~F (2.4)
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2.2.2 Constitutive laws relate stress to flow (strain-rate)

The Navier-Stokes equation describes the motion of a Newtonian fluid. It intrinsi-

cally contains a constitutive equation which is empirically derived from observations in

the lab and defines the relationship between the stress, σ, and the strain rate γ̇. The

constitutive equation for a compressible Newtonian fluid is

σ = −η
[
∇~v + (∇~v)T

]
+

(
2η

3
− κ
)

(∇ · ~v) I (2.5)

where η is the shear viscosity, κ is the dilatational viscosity, and I is the identity

tensor (Morrison, 2001). If we assume the fluid is incompressible, then, at any given

moment the mass entering the system is exactly equal to the mass exiting the system.

Mathematically this is easily described as the zero divergence of the velocity field

∇ · ~v = 0 (2.6)

where Equation 2.6 is called the continuity equation for incompressible fluids. For an

incompressible Newtonian fluid we can substitute the continuity equation and simplify

the constitutive relation to

σ = −η
[
∇~v + (∇~v)T

]
(2.7)

Then we define the strain rate tensor as

γ̇ = ∇~v + (∇~v)T (2.8)
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reducing the expression to a tensor form similar to Newton’s first description of viscous

drag

σ = ηγ̇ (2.9)

. The above equation is the constitutive law for an incompressible Newtonian fluid,

where the fluid stress is related to its resulting strain rate through a constant viscosity.

Several models in the literature provide progressively more complex constitutive laws

that attempt to replicate the behavior of non-Newtonian fluids. The Rolie-Poly model

is another constitutive equation that uses polymer physics principles such as reptation

and convective-constraint release (CCR) to model non-Newtonian behavior like strain

thickening and shear thinning found in some polymer systems (Likhtman and Graham,

2003). I discuss this constitutive equation in more detail and use it to model flow in

biopolymer systems in Chapter 6.

2.2.3 The Navier-Stokes Equation

Substituting the Newtonian constitutive equation (Eq. 2.9) into the equation of

motion (Eq. 2.4) results in the common form of the Navier-Stokes relationship for

incompressible, Newtonian flows

ρ
D~v

Dt
= −∇p+ η∇2~v + ~F (2.10)

To reduce the NS equation to the simpler Stokes equation, we assume steady, creeping

flow conditions such that D~v/Dt = 0. In order to validate this assumption, I need to
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be able to disregard the inertial terms so that the velocity field does not change with

respect to time (∂~v/∂t = 0). In a liquid, motion at the microscopic scale is highly

dissipative, as shown by the dimensionless Reynolds number, Re, defined as the ratio

of inertial to viscous forces, or

Re =
ρvL

η
(2.11)

where L and v are characteristic length and velocity scales, ρ and η are the density

and viscosity of the surrounding medium. When Re is sufficiently low (Re � 1), the

inertial effects become vanishingly small (Purcell, 1977), thus minimizing the impact

the object’s mass has on its own motion, and eliminating any turbulence in the now

laminar flow field. For a neutrally buoyant 1 µm bead in water (1 mPa s) moving at

100 µm/s, the Re is 10−4, well within the low Reynolds number regime.

When in the low Reynolds number regime, the NS equation becomes equivalent to

the Stokes equation (Happel and Brenner, 1991),

∇p = η∇2~v + ~F (2.12)

2.2.4 Stream Functions

Utilizing streamlines is a convenient method for representing and visualizing a two-

dimensional flow field for Stokes flows. Computed from the aptly named stream func-

tion, ψ, streamlines indicate the direction of flow because, by definition, the direction

of the velocity vector field is always tangent to the streamline at every point. Con-
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ceptually, the streamline traces the paths of neutrally buoyant, non-diffusing, passive

particle trajectories in a steady flow.

A number of conditions must be met to allow the use of the stream function. First,

it must be true that the flow field be irrotational, meaning that the vorticity (curl)

must be equal to zero

∇× ~v =

(
∂vz
∂y
− ∂vy

∂z

)
î+

(
∂vx
∂z
− ∂vz
∂x

)
ĵ +

(
∂vy
∂x
− ∂vx

∂y

)
k̂ = 0 (2.13)

Flows such as these are called potential flows. In a potential flow, ~v must be equal to the

gradient of a scalar function called the velocity potential, φ, described mathematically

as

~v = ∇φ =
∂φ

∂x
î+

∂φ

∂y
ĵ +

∂φ

∂z
k̂ (2.14)

Secondly, we must meet the conditions of continuity (Eq. 2.6), meaning that

∇ · ~v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= ∇ · ∇φ = ∇2φ = 0 (2.15)

where ∇2 is the Laplacian operator, which in Cartesian coordinates is

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 (2.16)

for the velocity potential.

For planar flow in xy, the stream function, ψ, is defined as a function of x and y,
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i.e. ψ = ψ(x, y), making vz and ∂/∂z both zero in Equations 2.13 through 2.16. In

these flows, the streamline functions are defined as

vy =
∂ψ

∂y
(2.17)

vx =
−∂ψ
∂x

(2.18)

which is equivalent to

~v = ∇× ~ψ (2.19)

where ~v = vxî+ vy ĵ and ~ψ = ψk̂.

2.2.5 Solving for Stokes flow

Substituting the continuity equation (Eq. 2.6) into the Stokes equation, shown as

Equation 2.12, expands in two dimensions to

− ∂p

∂x
+ η

(
∂2vx
∂x2

+
∂2vx
∂y2

)
= 0 (2.20)

−∂p
∂y

+ η

(
∂2vy
∂x2

+
∂2vy
∂y2

)
= 0 (2.21)

Using the stream functions defined for planar flow in Equations 2.17 and 2.18, differenti-

ating with respect to y and x and subtracting equations, one can eliminate the pressure

term and result in a fourth order differential equation that in Cartesian coordinates is

∂4ψ

∂x4
+

2∂4ψ

∂x2∂y2
+
∂4ψ

∂y4
= 0 (2.22)
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which is equivalent to

∇4ψ = 0 (2.23)

with the biharmonic operator, ∇4, defined in Cartesian coordinates as

∇4 = ∇2
(
∇2
)

=
∂4

∂x4
+

2∂4

∂x2∂y2
+

∂4

∂y4
(2.24)

Solving this differential equation for ψ generates the two dimensional stream function

ψ(x, y) for creeping Stokes flows in the desired coordinate system. In later sections

of this chapter, I will briefly show these solutions for the sphere and prolate spheroid

shapes. For more detailed information regarding the derivations, the reader is referred

to (Happel and Brenner, 1991).

2.2.6 The Cone and Plate Rheometer

Currently, the cone and plate rheometer finds widespread use as a macroscale mea-

surement standard. Named after its shape, the CAP rheometer takes advantage of

small cone angles, ϕ, to apply a constant rate of shear, γ̇, across the entire cone with

surface area, A, approximated as

A ≈ πR2
cap (2.25)

where Rcap is the radius of the cone and the plate.

Turning the cone induces a shear stress, σ, or, inversely, applying a stress turns

the cone and induces a shear strain, γ. The stress, defined physically as σ = F/A, is
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applied through a torque, T , on the cone, making the stress in the CAP geometry equal

to

σ =
3T/2Rcap

πR2
cap

=
3T

2πR3
cap

(2.26)

Turning the cone from rest to an angle, θ, rotates each position in the surface by the

arc length, Rcapθ. The effective distance, h, between the cone and the plate is related

to the cone angle by

h = Rcaptanϕ (2.27)

which reduces by the small angle approximation to h = Rcapϕ for ϕ ≤ 4◦. The shear

strain is defined physically as

γ =
∆x

h
(2.28)

where x denotes a displacement in one dimension. In the CAP geometry, this physical

definition becomes

γ =
θ

ϕ
(2.29)

after factoring out Rcap. Similarly, the shear strain-rate is independent of Rcap, and

depends on the natural frequency at which the cone rotates, ω as

γ̇ =
ω

ϕ
(2.30)

The resulting strain field is homogeneous, meaning that for any given height from

the plate, the strain is constant across the entire cone. Sample sizes range from 100
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µL to a milliliter or more. Applied stresses or strains often span several orders of

magnitude, with an oscillatory limitation of < 100 Hz due to the imperfect and thus

non-zero moment of inertia (Ferry, 1980; Macosko and Larson, 1994).

Two primary experimental modes are available with the macroscale CAP rheometer:

unidirectional and oscillatory. For controlled-stress rheometry, the unidirectional mode

is used in creep and flow experiments, where the primary result is a viscosity at one

or more input stresses. The creep experiment is useful for direct examination of test

material to a step stress. The flow experiment typically measures viscosity as a function

of a stepped-series or even a ramp of input stresses or shear rates and provides insight

into shear-thinning, one of the simplest nonlinear properties of non-Newtonian fluids.

Procedurally, one can think of a flow measurement as a series of creep measurements

where the viscosity estimate is taken from the constant, steady-state shear rate resulting

from the input stress. For a Newtonian fluid, the creep test should result immediately in

a constant shear rate when driven by a constant stress and satisfies the basic constitutive

equation defined earlier as Equation 2.9. Any deviations from this expected behavior

indicates that either the material is non-Newtonian or the instrument is not linear in

the applied stresses for the tested regime (Ferry, 1980).

In contrast to unidirectional mode, oscillatory measurements in CAP rheometry

involve rotating the cone in an oscillatory fashion, with an input of frequency or am-

plitude. The frequency dependence of viscoelastic materials uses the complex shear

modulus, G∗(ω), which is a sum of the in-phase storage modulus, G′(ω), and the out-
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of-phase loss modulus, G′′(ω), i.e.

G∗(ω) = G′(ω) + iG′′(ω) (2.31)

The complex modulus is related to the complex viscosity, η∗(ω) by the relationship

G∗(ω) = −iωη∗(ω) (2.32)

where η∗(ω) = η′(ω) − iη′′(ω), the real part of which is called the dissipative or real

viscosity and the imaginary part, the elasticity.

2.2.7 Spherical Probe Geometry

2.2.7.1 Stokes Flow Field around Sphere

The velocity field, ~v, around a sphere moving steadily through an unbounded New-

tonian solution is one of the few geometries where an analytical solution for Equation

2.10 can be found. Given that the fluid flows past the sphere with a velocity in the

ẑ-direction such that ~v = vẑ as r → ∞, and no-slip conditions exist at the bound-

ary (~v |Ω= 0), we get the linear problem of Stokes flow around a sphere, where the

flow equation is independent of coordinate systems, provided as Equation 2.12. We

can reformulate the problem in terms of the dimensionless stream function (Eq. 2.19).

We start with transforming Cartesian coordinates into spherical coordinates, which are
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Figure 2.1: The CAP rheometer makes use of its small cone angle to balance
specimen strain across the entire cone surface, thus making it a homogeneous
strain device. Shown in the figure are (A) top-down, (B) aspect, and (C) cross-
sectional angles.
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related through the equations

x = a sin(θ) cos(φ) (2.33)

y = a sin(θ) sin(φ) (2.34)

z = a cos(θ) (2.35)

For axisymmetric flow, the operator ∇2 is given by

∇2 =
d2

dr2
− 2

r2
(2.36)

which generates the stream function

ψ(r, θ) =
vdr

2
s

4

[
2

(
r

rs

)2

− 3r

rs
+
rs
r

]
sin2 θ (2.37)

where the components of ~v are given by

vr = −vdcosθ
(

1− 3rs
2r

+
r3
s

2r3

)
(2.38)

vθ = vd sin θ

(
1− 3rs

4r
− r3

s

4r3

)
(2.39)

where rs is the sphere’s radius, r is the radial location of the fluid moving with respect

to the sphere, and θ is the angular location for the velocity in question (Happel and

Brenner, 1991).
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2.2.7.2 Stokes Drag Force on a Sphere

The fluid pressure, P against a sphere in laminar flow, moving in the direction of

the unit vector v̂d, generates a drag force FP , expressed as

FP =

∫ 2π

0

∫ π

0

~P · d ~A · v̂d (2.40)

where the normal force against each surface area element of the sphere is integrated

into a total force.

Drag forces due to shear stress applied by the incoming fluid upon the sphere is

Fγ =

∫ 2π

0

∫ π

0

~σγ · v̂d · dA (2.41)

It follows that the total drag force is

~Fd = ~FP + ~Fγ (2.42)

Generally, the frictional Stokes drag force, Fd, on a particle under such conditions

is

~Fd = βη~v (2.43)

where ~v is the particle velocity, η is the medium viscosity, and β is the geometry

coefficient specific to the particle geometry (Happel and Brenner, 1991). This relation

enables the determination of forces when particles are transported in a fluid of known
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viscosity and vice-versa when the applied forces are well understood. In Newtonian

fluids the medium viscosity is constant and particle motion lacks inertial effects because

of the low Reynolds number (Re < 10−4) conditions. Actuating particles under such

conditions provides a convenient and simple method for computing the force on a

particle when the effects of its geometry are known.

For a spherical geometry with radius rs, the geometry coefficient βs is simply

βs = 6πrs (2.44)

When we substitute βs into the generalized form of Equation 2.43, our result is the

well-recognized form of Stokes equation on a sphere:

~F = 6πrsη~vs (2.45)

where η is the dynamic viscosity of the fluid, and ~vs is the sphere velocity. A particle

tracking algorithm measures particle velocity in a Newtonian fluid of known viscosity,

allowing one to compute the force applied to the sphere.

2.2.7.3 Maximum Shear rate around Sphere

The strain rate tensor in spherical coordinates is

γ̇ =

 ∂vr
∂r

1
2

(
r ∂(vθ/r)

∂r
+ 1

r
∂vr
∂θ

)
1
2

(
r ∂(vθ/r)

∂r
+ 1

r
∂vr
∂θ

)
1
r
∂vθ
∂θ

+ vr
r

 (2.46)

24



Figure 2.2: The fluid pressure against the sphere in laminar flow consists of
normal and shear drag forces for each area element, where the integral across all
area patches becomes the total force.

For the conversion of bead velocity to shear rate in a viscous fluid, we use the azimuthal

velocity, vθ, of the fluid with respect to the bead given earlier as Equation 2.39.

Figure 2.3: Shear rate imposed on fluid by bead

The maximum shear rate component of the strain rate tensor is found by differenti-

ating vθ with respect to r, setting r = rs, and θ = π/2. Taking the norm of the tensor
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yields

γ̇max =
3vd√
2rs

(2.47)

which agrees with results found in the literature.

2.2.8 Rod Probe Geometry

2.2.8.1 Stokes Flow around Rod (Prolate Spheroid)

Let us consider the case of a prolate spheroid in an unbounded fluid. Given that

the fluid flows past the spheroid with a velocity ~v in the z-direction and that we are

sufficiently in the low Reynolds number regime so that we may disregard the inertial

(nonlinear) term in the Navier-Stokes equation (Eq. 2.10), we get the linear problem

of Stokes flow around a prolate spheroid.

Cartesian coordinates are related to prolate spheroidal coordinates through the

equations

x = a sinh(ξ) sin(θ) cos(φ) (2.48)

y = a sinh(ξ) sin(θ) sin(φ) (2.49)

z = a cosh(ξ) cos(θ) (2.50)
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Here we introduce the following transformation for convenience

τ = cosh(ξ) (2.51)

ζ = cos(θ) (2.52)

In this basis, the operator ∇2 is given by

∇2 =
1

a (τ 2 − ζ2)

[(
τ 2 − 1

) ∂2

∂τ 2
+
(
1− ζ2

) ∂2

∂ζ2

]
(2.53)

The velocity equations in terms of the stream functions are given by

vτ =
1

a
√

(τ 2 − ζ2) (τ 2 − 1)

∂ψ

∂ζ
(2.54)

vζ =
1

a
√

(τ 2 − ζ2) (1− ζ2)

∂ψ

∂τ
(2.55)

The divergence condition is automatically satisfied by the above conditions and ap-

plying the no-slip and limiting case boundary conditions yields the well-known stream

function for the case of a prolate spheroid (Dassios et al., 1995) as

ψ(τ, ζ) =
a

2

(
τ 2 − 1

) (
1− ζ2

)(
1−

τα+1
τα−1

coth−1 τ − τ
τ2−1

τα+1
τα−1

coth−1 τα − τα
τ2
α−1

)
(2.56)

where τα is the value of τ at the surface of the spheroid. The velocity field is then given
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by the equations

vτ =
ζ(−(τα − τ)(1 + τατ)− (1 + τα

2)(τ 2 − 1) coth−1(τα) + (1 + t2)(τ 2 − 1) coth−1(τ))√
ζ2 − (1 + ζ2)τ 2 + τ 4(−τα + (1 + τ 2

α) coth−1(τα))

(2.57)

vζ =
τ(ζ2 − 1)(τα(τα − τ) + (1 + τ 2

α)(coth−1 τα − coth−1 τ))√
(ζ2 − 1)(ζ2 − τ 2)(−τα + (1 + τ 2

α) coth−1 τα)
(2.58)

2.2.8.2 Stokes Drag Force on an Axially translating rod

Tirado, et al. approximated the geometry coefficient, βc, for an axially translating

cylindrical rod with an aspect ratio greater than 2 as

βc =
2πL

ln L
2rc

+ γ‖
(2.59)

where rc is the rod radius, L is the length of the rod, and γ‖ is equal to -0.19, as an

end correction factor (Tirado and de la Torre, 1979).

2.2.8.3 Maximum Shear rate around Rod (Prolate Spheroid)

Equations 2.57 and 2.58 can be transformed back into the dimensional prolate

spheroidal coordinates using the transforms given in Equation 2.52. The shear rate

tensor, γ̇, can then be calculated using the defined relationship in Equation 2.8 making

its form in prolate spheroidal coordinates given by

γ̇ =
1

aM


∂vξ
∂ξ

+ vθ cos(θ) sin(θ)
M2 γshear

γshear
∂vθ
∂θ

+
vξ cosh(ξ) sinh(ξ)

M2

 (2.60)
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where the shear component expands to

γshear =
1

2

(
∂vξ
∂θ

+
∂vθ
∂ξ
− Uξ cos(θ) sin(θ)

M2
− Uθ cosh(ξ) sinh(ξ)

M2

)
(2.61)

and M =
√

sin2 θ sinh2 ξ. Uξ and Uθ indicate coordinate specific components for the

particle velocity.

Substituting in the appropriate equations into the tensor above and setting ξ = ξα

and θ = π/2 gives the maximum shear rate tensor at the top of the spheroid to be

γ̇12 = γ̇21 =
∂U

a sinh 2ξα
(
−2 cosh ξα + (3 + cosh 2ξα) coth−1 (cosh ξα)

) (2.62)

where ξα is the value of ξ at the surface of the spheroid. The shear rate magnitude at

the surface of the prolate spheroid is then given by the equation

|γ̇top| =
8
√

2U

a sinh 2ξα
(
−2 cosh ξα + (3 + cosh 2ξα) coth−1 (cosh ξα)

) (2.63)

where ξα = 1/2 [ln (c+ b)− ln (c− b)] and a =
√
c2 − b2.

When the major axis, b of the prolate spheroid is much greater than its equatorial

radius, c, the spheroid resembles a long, thin rod. For this limiting case the following
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approximations can be made (Happel and Brenner, 1991):

τα ≈ 1 +
1

2

(
b

c

)2

(2.64)

coth−1 τα ≈ ln 2 + ln
c

b
(2.65)

a ≈ c (2.66)

Making the appropriate substitutions leads to an approximate expression for the shear

rate at the top of a long rod

|γ̇top| =
32c5
√

2U

(b2 + 2c2)
√
c−4 (b4 + 4b2c2) (−2c2 (b2 + 2c2) + (b4 + 4b2c2 + 8c4) (ln 2c− ln b))

(2.67)

This equation simplifies by defining s = (b/c)2 to

|γ̇top| =
64
√

2U

(s+ 2)
√
s (4 + s) (−8 + 16 ln 2 + 2s (−2 + s ln 2 + ln 16)− (8 + s (4 + s)) ln s)

(2.68)

Using the fact that in this geometry, s � 1, and making the substitution s = p−2 we

can simplify the equation significantly to

|γ̇top| =
2
√

2U

b(−1 + ln 4− 2 ln p)
(2.69)

Equation 2.69 deviates from the exact solution by 0.5% at an aspect ratio of 15 and

converges better for aspect ratios greater than 15. Later, in Chapter 5, I will use

this shear rate equation to quantify shear thinning around a magnetically actuatable
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rod-shaped particle.

2.3 Passive Microrheology

Microrheological measurements can be successfully subdivided into passive and ac-

tive techniques. Passive microrheology measurements make use of the stochastic, ther-

mal displacements of particles provided by the kT energy that serves as the background

thermal fluctuations of molecular motion (Rubinstein and Colby, 2003), whereas active

measurements use a deterministic, directed, and controlled force of known magnitude

that drives the particles through the medium in a manner that belies the medium’s

viscoelastic properties (Waigh, 2005).

In 1827 Robert Brown first documented the random motion of micron-sized parti-

cles in which he observed pollen grains “very evidently in motion ... [arising] neither

from currents in the fluid, nor from its gradual evaporation” (Brown, 1828). Caused

by a constant bombardment of solvent molecules, “Brownian motion” was not well un-

derstood and characterized fundamentally until Einstein began to tackle it during his

Annus Mirabilis in 1905 (Stachel and Raman, 1990; Einstein, 1905).

Several experimental methods in the literature take advantage of particle diffusion to

measure microrheology, some of which include Dynamic Light Scattering (DLS) (Maret

and Wolf, 1987), Diffusing Wave Spectroscopy (DWS) (Pine et al., 1988; Mason and

Weitz, 1995), Single Particle Tracking (SPT) (Mason et al., 1997), Multiple Particle

Tracking (MPT) (Apgar et al., 2000), and two-particle microrheology (TPM) (Crocker
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et al., 2000).

Developed first, DLS monitors time-dependent fluctuations from a molecular light

scatterer and uses a detector such as a photomultiplier tube to record information about

the particle size or surrounding solution viscosity. DWS, while based on DLS, does not

share its single scatterer constraint. Both DLS and DWS offer rheology information

across several orders of magnitude but only for solutions that are close to optically clear.

Biological systems such as biopolymers or cell cultures become difficult to measure with

these methods because they often contain scatterers of unknown size and/or shape

(Gardel et al., 2005).

Passive, or thermal microbead rheology (TMBR) is an umbrella technique that

estimates response functions for materials with a greater focus on those materials tra-

ditionally difficult to obtain in large quantities or for those with heterogeneities at small

length scales. It can include single, multiple, and two particle methods. By using laser

interferometric or video-based tracking techniques one can measure the displacement

of spheres on the order of 1 µm in diameter to a few nanometers of resolution using

only the thermal motion of the sphere as the driving force. By monitoring only the

displacement of particles at constant temperature as a function of time, we can use

mean-square displacement (MSD) and Generalized Stokes-Einstein Relation (GSER)

methods to generate estimates of the viscoelastic response functions.

The remaining methods, single particle tracking (SPT), multiple particle tracking

(MPT), and two-point microrheology (TPM) all use particle tracking methods in a

video microscopy configuration. SPT monitors the displacement of single particles,
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traditionally fluorophores or microspheres (Saxton and Jacobson, 1997), while MPT

handles simultaneous tracking of many particles in the same field of view, treating

each as a distinct, isolated particle (Apgar et al., 2000). Particle tracking methods are

more sensitive to heterogeneous materials, generating wide variances in the results that

macroscale rheometry methods such as CAP would otherwise average across its vast

contact area (Schmidt et al., 2000). While this is a limitation when trying to generate

data comparable to CAP but with a much smaller specimen, it can also be considered

an advantage when one wants to sample the heterogeneity in a material such as mucus

for a given length scale.

Generally, the characterized length and time scales must be relevant to the phe-

nomenon of interest. A variant on multiple particle tracking (MPT) is two particle

microrheology (TPM), which uses the correlated motion between pairs of particles.

TPM recovers and reproduces macroscale results more faithfully because the probed

length scales become the intervening distances between particles and not the sizes of

the particles themselves (Crocker et al., 2000).

Random walks are used to describe many of these stochastic processes. Molecules

diffusing in solvent codify the lower bound on the rate at which chemical reactions take

place. The diffusion rate for any particle in solution is described by the Stokes-Einstein

relation, (Eq. 2.73), which depends on the temperature of the solution and the viscous

drag the solution imparts on the particle’s motion. (Berg, 1993).

The root-mean-square displacement, 〈r〉 =
√
〈r2〉, defines a characteristic length

scale for a diffusing particle with radius a and is a relationship that functions at every
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observational time and length scale, a consequence of the fractal nature of stochastic

processes and the ergodic theorem. The mean-squared displacement (MSD), 〈r2〉, of a

diffusing particle in a Newtonian fluid will vary in time according to the statistics of a

random walk, 〈
r2
〉

= 2dDτ (2.70)

where d defines the dimensionality of the observed process (d = 2 for either diffusion in

two dimensions or for the two-dimensional projection of diffusion in three dimensions,

such as that measured by a camera). D is the diffusion coefficient, and τ describes a

window of time, or period of duration (Rubinstein and Colby, 2003).

Raw position data of diffusing particles as a function of time are used to compute

the MSD across varying τ by

∆r2(τ) = (N − τ)
N−τ∑
k=τ

(rk+τ − rk)2 (2.71)

where rk defines the position of the particle by

rk =

√
(xk − xo)2 + (yk − yo)2 (2.72)

Einstein described the diffusion coefficient in a general form, i.e.

D = kT/ζ (2.73)
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where ζ is a quantity that defines the Stokes drag interaction between a solvent with

viscosity, η, and a diffusing particle’s size and shape (Einstein, 1905). For a diffusing

sphere with radius, a, ζs = 6πaη, the the specific diffusion coefficient is

D =
kT

6πηa
(2.74)

commonly called the Stokes-Einstein relation (Rubinstein and Colby, 2003). Expanded,

this makes the MSD equation, 〈
r2
〉

=
2dkTτ

6πηa
(2.75)

It is important to notice that this equation describes an averaged, statistical value

for 〈r2〉 in a Newtonian fluid, as is the case when a single particle is monitored for

an extended period of time, or when a large number of particles are tracked and their

squared displacements averaged together. The MSD will be a linear function of τ ,

and the average displacement will be zero (Rubinstein and Colby, 2003). Because of

its linear dependence on τ shown in Equation 2.75, the MSD as a function of τ for a

Newtonian fluid will have a slope equal to one in log space. When the test material is

viscoelastic this slope will decrease to < 1 for some time scales and for purely elastic

materials the slope would decrease even further to equal zero for all time scales (Fig.

2.4).

In 1995 Mason and Weitz proposed a generalized Stokes-Einstein relation (GSER)

that extracted linear viscoelastic moduli for DLS (Mason and Weitz, 1995). By 2000
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Figure 2.4: Expected MSD power laws for spheres diffusing in viscous, viscoelas-
tic, and elastic materials

the technique had spread to cover single and multiple particle tracking (Mason, 2000).

Briefly, the GSER generalizes the Stokes-Einstein relation by making the diffusion

coefficient, D, a function of complex frequency which propagates into the complex

shear modulus, G∗(ω),

G∗(ω) =
kT

6πaD∗(ω)
(2.76)

where D∗(ω) is a frequency-dependent complex diffusion function. Mason estimates

the transform from the time to the frequency domain first with a power law expansion

about the frequency, ω

〈
∆r2(t)

〉
≈
〈
∆r2(1/ω)

〉
(ωt)α(ω) (2.77)
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where α(ω) is the power-law slope, defined by Mason as

α(ω) ≡ d ln 〈∆r2(t)〉
d ln t

(2.78)

evaluated with t = 1/ω. The Fourier transform for the power law is approximately

iωF
{〈

∆r2(t)
〉}
≈
〈
∆r2(1/ω)

〉
Γ[1 + α(ω)] · i−α(ω) (2.79)

where the well-known gamma function is Γ(x) =
∫∞

0
t(x−1)e−tdt (Mason, 2000; Green-

berg, 1998). Finally, the complex shear modulus, G∗(ω) = G′(ω) + iG′′(ω) with its

components equal to

G′(ω) = |G∗(ω)| cos (πα(ω)/2) (2.80)

G′′(ω) = |G∗(ω)| sin (πα(ω)/2) (2.81)

and its scalar magnitude equal to

|G∗(ω)| = kT

πa 〈∆r2(1/ω)〉Γ [1 + α(ω)]
(2.82)

A consequence of this methodology extends the slope from only the diffusive range

with α(ω) = 1 across all time scales down to α = 0 corresponding to a material that

is completely elastic (Gardel et al., 2005). The limits for each of these slopes, their

terminal values in both displacement and time scales are all predictable according to

37



polymer physics models such as the Doi-Edwards tube model of polymer reptation

(Rubinstein and Colby, 2003).

In summary, by tracing particle paths in the material, the GSER provides an ad-

equate estimate for frequency-dependent relationships between the viscous and elastic

moduli for a given material without the large amount of material that macroscale

measurements such as CAP require. However, because the nature of the process is

stochastic, large numbers of particles must be tracked, and because of the linear rela-

tionship between D∗(ω) and 〈r2〉, the method is limited to the linear viscoelastic regime.

Size-dependence properties which may be inherent in the material are measurable by

this method but is limited when one wants to make large length scale measurements.

Even with these precautions the GSER can have artifacts at extremes of frequency due

to data truncation (Mason, 2000).

2.4 Active microrheology

Unlike passive microrheology, active microrheology techniques can be divided into

methods where the measuring probe is attached to the host instrumentation and into

those with detached probes (Fisher et al., 2006b). Systems with attached probes typ-

ically use different types of deflection technologies. Earlier systems used microneedles

or glass fibers to measure the effects of forces on chromosome movement (Kishino and

Yanagida, 1988; Schmitz et al., 2000) and those of myosin on actin (Skibbens and

Salmon, 1997). More recent methods like atomic force microscopy (AFM) still use ba-
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sic cantilever deflection but with exceptional spatial and force resolution (Florin et al.,

1998). The primary disadvantage of these methods for living biological systems lies

in their invasiveness; measuring subcellular elements inherently destroys the system of

interest.

Systems with detached probes typically use optical or magnetic forces to control

the position and velocity of a microscopic probe particle. The probe, typically a micro-

sphere, is often made of polystyrene and, if magnetic, is also embedded with enough

ferrous material to make it superparamagnetic. The probe is free to diffuse or directly

move throughout the volume and sample its environment. Its position provides informa-

tion in time regarding the rheological parameters of its surroundings. Optical tweezers

systems use a high-powered laser to interact with a probe of different refractive index

than the background solvent to generate sufficient optical force to maintain a trap, or

energy well, in which the probe inhabits (Ashkin and Dziedzic, 1987). In addition to

being force-limited to ≤ 200 pN, optical tweezers suffer from specimen heating (Peter-

man et al., 2003; Mao et al., 2005) and lack specificity with regard to probes located

in the sample space. Sub-cellular organelles will migrate to the center of an optical

trap provided the objects refract with respect to the background solvent. In spite of

these shortcomings, optical traps have managed rousing success with measurements of

transcription forces (Yin et al., 1995) as well as forces generated by molecular motors

(Block et al., 1990; Hirakawa et al., 2000; Kuo and Sheetz, 1993; Mao et al., 2005;

Peterman et al., 2003).

Contrasting the optical trap, magnetic tweezers systems like the 3DFM offer probe
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specificity, do not appreciably heat the specimen, and offer forces greater than 10 nN

on 4.5 µm and close to 1 nN on 1 µm sized beads (Fisher et al., 2006a). Early magne-

torheometry systems offered even higher forces but with the caveat of larger probes that

limited frequency response because of inertial effects. Even so, many experiments suc-

cessfully measured rheological properties for canine mucus (King and Macklem, 1977).

More recently, similar systems with smaller probes measured the viscoelastic properties

of cell membranes (Bausch et al., 1998; Feneberg et al., 2004; de Morales et al., 2001),

actin (Amblard et al., 1996a; Schmidt et al., 2000; Uhde et al., 2005a; Uhde et al.,

2005b), as well as hyaluronan and sputum (Parkin et al., 2006; O’Brien et al., 2008).

Aside from thermal motion, all biological systems move in some fashion at some

length and time scales, whether it involves a cheetah running at 70 mph, the incremental

growth of the mighty sequoia, or an ATP synthase lodged on the cell membrane’s surface

cranking out new ATP. The motion in biological systems ties them inextricably to the

other scientific discipline concerned on a fundamental level with motion, i.e. physics.

Using a form of Newton’s laws of motion we find the displacement, x, velocity, v, and

acceleration, a, of an object depend on the force applied to it, Fext, as well as the

object’s mass, m, and friction, fv, and spring constant, k, between the object and its

environment

Fext − fvv − kx = ma (2.83)

. With this relationship, we realize that to draw conclusions regarding the physics of
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a biological system, our fundamental measurements would need to quantify forces and

displacements, in addition to keeping track of the passage of time.

(a) Maxwell Model (b) strain response

Figure 2.5: The Maxwell model and its strain response

Here, we concern ourselves with the biophysics at microscopic length scales along

with relatively fast time scales. Motion at this scale is highly overdamped, as shown by

the dimensionless Reynolds Number (Re) defined in Equation 2.11. Re is sufficiently

low (Re < 10−2) for all experiments discussed in this work, such that the inertial effects

are vanishingly small (Purcell, 1977), which reduces Eq. 2.83 to

F = fvv + kx (2.84)

This equation has been used to describe the motion of many different types of

overdamped objects, including macroscale Kelvin-Voight viscoelastic materials (Ferry,

1980) and, at micron-sized length scales, bacteria. A relative measure that is an appar-

ent favorite among researchers computes the “coasting” distance of a bacterium devoid
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of motor activity; because the bacterium travels through a highly overdamped system,

the coasting distance is much smaller than even the size of the water (solvent) molecules

(Berg, 1993; Howard, 2001)!

In viscoelastic systems, fv in Eq. 2.84 is due to the viscosity, η, (Figure 2.5) expe-

rienced by some component in the system while k correlates with the elastic modulus,

G, of the system. The viscosity is acquired by solving Stokes flow for a sphere for η

η =
F

6πrsv(t)
(2.85)

while computing the shear modulus requires computing the compliance J first,

J = 1/G =
6πrsx(t)

F
(2.86)

(a) Kelvin-Voight Model (b) strain response

Figure 2.6: Kelvin-Voight Model: the viscoelastic solid and its strain response

Measuring the microrheology of biological materials with active techniques began
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early in the 1920s with the manipulation of iron filings (Gardel et al., 2005). Probably

most notable of the early work with magnetics was Crick’s experiments with cytoplasm

in 1949, in which he measured the viscoelastic parameters of cytoplasm in vitro. (Crick

and Hughes, 1949).

Measurements of linear viscoelastic materials with DMBR can be modeled easily

with canonical mechanical models. For instance, for a Newtonian fluid the expected

response of a sphere to a step force input would reduce to Stokes Law (Eq. 2.45).

The Jeffrey model, shown in Figure 2.7 with its step response, captures behavior

typically seen in a viscoelastic liquid. The η0 damper accesses viscous-only modes of

the material. The stress-controlled step response, J(t) is

J(t) =
1

G
+

t

η0

− 1

G
exp

(
−Gt
η1

)
(2.87)

The steady-state, zero-shear viscosity is extracted from the slope of the test material’s

step response while the modulus, G, can be estimated from the projected intercept

(Maxwell model approximation).

2.4.1 Magnetic Force on a Spherical Particle

To describe the magnetic driving forces, ~Fm, applied to spherical and cylindrical

particles in these studies we start with

~Fm =
(
~meff · ~∇

)
~B (2.88)
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Figure 2.7: The Jeffrey model: strain response to input stress

where the effective magnetization of the particles ~meff is a function of the magnetic

induction ~B and the magnetic properties of the particles. In addition to ~meff , ~Fm is a

function of ~∇B. Under the conditions of these experiments, the applied force, ~Fm is

~Fm = χB · ∇B (2.89)

In addition, particle shape affects the magnetic force sensed by the particle from a

given source. This occurs because of the changes in magnitude of the magnetizing

force, H, with respect to particle orientation. Isotropic particles, like the sphere, have

equal demagnetization factors for all degrees of freedom and thus show no preference

or optimization along any one given axis (Osborn, 1945).
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We previously described the force applied to a magnetic bead in a magnetophoretic

system in Fisher, et al. To summarize here, the force on a soft, magnetically permeable,

and unsaturated sphere, Fs, is

Fs =
πd3

4µ0

(
µr − 1

µr + 2

)
∇(B ·B) (2.90)

where d is the bead diameter, µ0 is the permeability of free space in SI units. We use

the standard definition of relative permeability, µr, as µr = µ/µ0, and is the ratio of

the material permeability to the permeability of free space. Finally, ∇(B · B) is the

incident magnetic field and field gradient, indicating, for a permanent drive magnet, a

dependence on its material properties as well as its shape (Fisher et al., 2006a).

We can rewrite the relation in Equation 2.90 that defines the magnetic force on a

sphere as

Fs =
(µr − 1)

2µ0

· 3

8 (µr + 2)
· Vs · ∇

(
B2
)

(2.91)

where Vs and µr are the volume and the relative permeability of the sphere, respectively

(Meehan, 2007).

2.4.2 Magnetic Force on a Rod-shaped Particle

From (Osborn, 1945), the magnetization of an ellipsoid in the ith direction is

Mi =
H0,i

Ni − 1
χ0

(2.92)
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where H is the applied field, N is the demagnetization factor, and χ is its susceptibility.

By rewriting this equation in terms of SI units, and dropping the subscript, we get

M =
1

µ0

· B

N − 1
χ

(2.93)

Replacing χ with µ by µ = µ0 (1 + χ):

M =
1

µ0

· B

N − µ0

µ−µ0

(2.94)

Then, according to Osborn, the demagnetization factor, N , along the length of a suf-

ficient aspect ratio ellipsoid is zero, resulting in magnetization per unit volume, M ,

of

M =
B

µ0

(µr − 1) (2.95)

where µr is the relative permeability of the magnetic material. For the magnetic mo-

ment, m, we simply multiply M by the volume of a cylinder, Vc = πr2
cL, to get

m =
πr2

cL

µ0

(µr − 1)B (2.96)

Finally, by substituting equation 2.96 into equation 2.88 we approximate the force

applied to a cylinder in the axial direction as

Fc =
πr2

cL

2µ0

(µr − 1)∇(B2) (2.97)
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Figure 2.8: Effect of aspect ratio on demagnetization factor

Because Equation 2.97 is an approximation of the force on a cylinder as a prolate

ellipsoid, we must establish the constraints concerning the allowable aspect ratios for

our cylindrical particles. When we plot the effect of aspect ratio on the demagnetization

factor computed by Osborn and shown in Figure 2.8, we can conclude that particles

with an aspect ratio greater than 20 contributes minimal error in the computed force

in the axial direction (Osborn, 1945).

We can now rewrite equation 2.97 the force exerted on a cylinder, Fc, as

Fc =
(µr − 1)

2µ0

· Vc · ∇
(
B2
)

(2.98)

where Vc is the volume of a cylinder and µr is the relative permeability of the magnetic

material (Osborn, 1945).

Under low Reynolds number (Re � 1) conditions, the driven particle transport
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described above enables the correlation of magnetic driving forces, particle geometries,

and velocities in any Newtonian fluid through Stokes Law. We compared these em-

pirical magnetophoretic forces with predicted values based on independently measured

magnetic characteristics of the system. Due to the low Reynolds number conditions,

we set Fm equal to the magnitude of the frictional drag force on the particle, Fd.

2.5 Conclusions

In this chapter I reviewed the Navier-Stokes equation and showed how it arises

from basic fluid mechanics principles. I showed how NS can be used to estimate the

maximum shear rate imparted on the fluid by two simple particle geometries. I reviewed

the literature and illustrated the basic principles of both thermal and active microbead

rheology.
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Chapter 3

The 3DFM as a microrheometer

3.1 Overview

The three-dimensional force microscope (3DFM) provides a wide variety of test-

ing modalities for small volumes of soft viscoelastic specimens at nanometer length

scales. Video, magnetic, and interferometric tracking subsystems comprise its general

framework. Here we explain how these subsystems are used together to perform new

experiments in microrheology and provide knowlegde regarding heretofore unknown

phenomena in biopolymer systems.

I briefly introduced microrheology methods in Chapter 2. Here I begin with a

description of our methods of sample preparation for both thermal and driven-bead

microrheology experiments which include neutralizing bead polymer interactions as

well as methods for distributing particles into thick or highly viscoelastic materials.

Following, I define the components and capabilities for the video and tracking subsys-

tems, thus defining error in position for the video-based technique and compare it to

our high resolution 3D laser interferometric tracking subsystem. Next, I describe the



magnetics subsystem for the 3DFM, taking care to elaborate in detail the calibration

techniques I use to provide a complete force map as a function of both distance and

drive current. Finally, I combine these subsystems to define useful force ranges and to

predict the forces required to make effective measurements of viscoelasticity with the

3DFM.

3.2 Methods

3.2.1 Sample Preparation

For either thermal or driven microbead rheology techniques, a “specimen” is defined

as a volume of some viscous or viscoelastic material as small as 10 – 20 µL through

which are distributed microparticles that can be fluorescent, magnetic, surface-coated,

or any combination thereof (see Figure 3.2a). A smaller volume (1 – 2 µL) is ultimately

placed into a “sandwich’ of coverslips measuring 24× 40 mm with 100 µm (No. 0) or

175 µm (No. 11
2
) thickness (Fig. 3.10). If using driven microbead rheology (DMBR),

the coverslip sandwich includes a magnetically permeable pole tip, calibrated for forces.

Before making a finished sample, one must control for experimental conditions. The

surface fictionalization of the bead can affect the microrheology measurement through

bead interactions with the polymer in the sample. We compensate for these interactions

by PEGylating the bead surface thus neutralizing the charge.
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3.2.2 Bead PEGylation

PEGylating particles involves attaching polyethylene glycol (PEG) molecules with

appropriate chemical modification to beads with complimentary surface modification.

In short, the reaction utilizes common EDAC chemistry, where EDAC (linker) and NHS

(stabilizer) are used to react and attach PEG to the probe surface. The resulting PEG

coated surface reduces the surface charge and thus the adhesion of the probes to the

materials in which they are embedded.

We use the method found in (Lai et al., 2007) to PEGylate our probes because

interactions between the particles and their environment may cause unwanted artifacts

in the determination of solution material properties/rheology. To test the efficacy of

our PEGylated beads, we measured the zeta potential of the beads before and after

the PEGylation process, looking for a significant drop in the magnitude of the surface

charge. Specifics for the protocol are located in Appendix A.2.

3.2.3 Distributing beads into a sample

A critical step in measuring the microrheology of any soft material involves the

distribution of the probe particles in the material of interest. For materials like DNA

or mucus, vortexing the sample, or subjecting the sample to large amounts of repeated

shearing can cause irreversible damage to the viscoelastic network. I first tried evap-

orating test particles onto a cover slip and then raked the sample through the dried

bead field, a method unsuccessful due to rapid evaporation of water (solvent) from the

specimen. Because this did not work we devised a method that achieved a good number
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of beads, evenly distributed throughout the test material, provided the material was

pipettable.

To summarize the approach, we place a small amount of bead solution, where the

beads are highly concentrated, into the tip of a clean pipette (Fig. 3.1a). The pipette

tip is placed in an oven at 80 ◦C and the buffer surrounding the beads is allowed

to dry. The beads become lightly associated with the pipette surface (Fig. 3.1b).

Once the tip is dry and cooled to room temperature, the specimen of interest is pulled

into the pipette, applying a shear stress of sufficient magnitude to dislodge the beads

and disperse them through the specimen (Fig. 3.1c). Delivering the payload inside

the pipette to a new container ensures even better mixing. The pipette tips remain

viable for 1–2 days in the oven at 80 ◦C. Storage at cooler temperatures is not advised

unless done under dry conditions. As a general note, this method only works well with

PEGylated beads. When performed with non-PEG coated beads, a substantial number

of large aggregates form inside the rheology sample. For more detail, the protocol is

located in Appendix A.3.

3.2.4 Boundary Effects

Experimental conditions for microrheology studies in the 3DFM are subject to two

types of boundary effects. “End” effects refer to the change in the expected velocity of

a bead as it directly approaches and collides with a wall (See Fig. 3.2(a) for schematic).

Knowing when this effect becomes substantial is important especially in the case of our
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Figure 3.1: a. A 200 µL pipette tip is filled with about 10 µL of 5:1 EtOH:Bead
solution. The solution is allowed to dry at 80◦Celsius. b. After the 1 µm or 2.8
µm PEGylated beads have dried on the surface of the pipette tip, the beads are
dispersed in the sample when this tip is used for transport. c. When the sample
is pipetted up and down, the beads are dispersed. The sample is now ready for
microbead experiments without having been destroyed.

DMBR experiments because the beads translate towards and directly into the pole tip.

Assuming the pole tip is a large, flat wall compared to the bead size, we can account

for these end effects by scaling the expected Stokes force, FStokes = 6πaηv, to a new

apparent force “felt” by the bead, Fend

Fend = FStokes

(
1 +

1.145a

W1

+
3a2

W1

)(
1 +

1.145a

W2

+
3a2

W 2
2

)
(3.1)

where W1 and W2 are the distances from the bead to the approaching wall and its

spatial opposite (King and Macklem, 1977). The typical distance between the pole tip

and the flat opposing piece of µ-metal is approximately 550 µm. Any bead in a typical

field of view that contains the pole tip will be more than 450 µm from the flat. This
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vast distance allows us to ignore the W2 term as insignificant, resulting in a correction

factor of

Fend = FStokes

(
1 +

1.145a

W1

+
3a2

W 2
1

)
(3.2)

where W1 is the distance of the bead from the pole tip surface. Plotting this correction

factor results in Figure 3.2(b)

Edge effects where the bead translates in a direction parallel to a close surface make

use of the Faxén correction to account for the additional drag (Ferry, 1980):

FFaxen = FStokes

(
1− 9

16

(a
h

)
+

1

8

(a
h

)3

− 45

256

(a
h

)4

− 1

16

(a
h

)5
)−1

(3.3)

According to these relationships, end effects will cause a 10% systematic error at

a distance of 6 bead diameters away while edge effects will cause a similar systematic

bias when the bead is 2.5 diameters from the bottom coverslip surface. These biases

are easily avoided by choosing beads that are more central to the specimen volume. It

is important to note that these corrections are only true for a Newtonian fluid. When

moving about in a material with a more complex rheology, these equations provide a

limiting and optimistic estimate.
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(a) Cross-section of Specimen Chamber

(b) End & Edge Effects

Figure 3.2: In 3.2(a) is a cross-section through the specimen chamber with the +z
direction pointed upwards. The bottom coverslip serves as the edge boundary,
contributing to drag when the bead is too close. The pole tip defines another
boundary as the bead travels towards it, called here an “end”. Both boundaries
affect the force required to maintain a constant velocity. Both curves in 3.2(b)
illustrate the change in the magnitude for this necessary force. The distance on
the x-axis is a measure of bead diameters from the boundary edge to the center
of the bead.

3.3 Video Subsystem

Traditional microrheology techniques use either a laser interferometry or a video

tracking setup. Laser interferometry uses the incident beam of a laser to generate a
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diffraction pattern when a bead is placed in the light path. The diffraction pattern

is cast onto a quadrant photodiode and the resulting signals indicate particle motion.

The higher bandwidth of laser interferometry can provide information about the mi-

crorheology of materials at higher decades of frequency.

While particle tracking using laser interferometry is satisfying because of its high

bandwidth and its ability to track particles in three dimensions, tracking with video

frames has distinct advantages with regard to microrheology experiments— tracking

several to many particles simultaneously, sensitivity to spatial heterogeneity within the

field of view, and the benefit of visual context. To that end, we used a fast frame

rate camera (120 – 300 Hz), a frame grabber board, and custom-build video capture

software as the constituent elements of the 3DFM video subsystem.

The fast frame camera in the 3DFM is a Jai-Pulnix, model PTM-6710CL (www.

jaipulnix.com) which can capture full 8-bit progressive-scan frames with 648 × 484

pixel resolution at 120 frames per second (fps) and smaller regions of interest (100×100

pixels) at 300 fps. At full spatial resolution each frame is 306 kilobytes in size and each

minute of video at full frame rate generates over 2 GB of data that must be transferred

to disk in real-time due to a lack of on-camera RAM. The camera connects to the frame-

grabber board via a CameraLink interface that boasts data transfer rates of 260 MB

per second. When this camera is added to the optical path of our microscope (model

TE-2000-E, Nikon Instruments, Melville, NY), and is used to image a field of view with

a 60× water-immersion objective, the length calibration is 0.152 µm per pixel, making
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Figure 3.3: Brightfield imaging in the 3DFM systems use a fast 120 fps camera,
a frame grabber board, and a RAID array of SCSI disks to acquire and store all
video with little to no dropped frames.

the imaged field approximately 100µm ×75 µm .

3.3.1 Image Acquisition

Once a video frame is read by the Pulnix camera, the frame-grabber card “grabs” the

frame and puts it into computer RAM (Random Access Memory) via Direct Memory

Access (DMA). From Engineering Design Team (EDT) (www.edt.com), the PCI-DV C-

Link PCI is a 33/66 MHz PCI board with sufficient bandwidth that can easily handle

the amount of data coming from the Pulnix camera at full frame rate. EDT has

a comprehensive and well-designed Application Programming Interface (API) that is

available across platforms (Windows, Linux, Mac) and is complete with example code
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to aid in software development. By combining this API with other critical components

we are capable of grabbing full-sized frames at full frame rate (120 fps) and spin them

directly to disk without frame loss. I was able to implement a simple video capture

software application named GLUItake that has been used in our lab for more than 5

years. For more information, see Section 3.3.3.

3.3.2 Data Collection

In order to capture full video frames (648× 484× 256) at full frame rates (120 fps),

the computer used to manage the hardware and process the incoming data must have a

memory bus that is fast enough to manage the incoming data stream (easy) as well as a

disk controller and drive fast enough to handle the incoming data from the memory bus

(harder). Standard IDE drives are not sufficient since they are not capable of handling

sustained bit rates of 40 MB per second and the drive’s data buffer becomes quickly

overrun. To circumvent this issue we use a 320 MB/s RAID (Redundant Array of

Inexpensive Disks) controller (Adaptec, PERC 320/DC) and a set of two SCSI (Small

Computer System Interface) drives (Seagate, model no. ST373453LW) placed in a

striped array (Mode 0), such that roughly one-half of the data is captured by one drive

whilst the second drive captures the rest. When configured so that the data stripe size

is 64 KB, the RAID array provides sufficient and sustained throughput for our data

collection needs. As long as there is little file fragmentation, the drive has sufficient

space, and the computer’s scheduler is not overbooked, we can collect all necessary data

in a non-realtime operating system like Microsoft’s Windows XP without dropping any
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frames. The collected data from the EDT board are recorded into two separate data

files, where the first is a binary file containing every pixel’s luminance in sequence and

the second being timestamp information saved as simple text (Figure 3.3).

3.3.3 GLUItake Software

GLUItake is a software application I wrote that simultaneously takes full-sized video

data at full frame rate and allows the user to see the experiment on the screen in situ.

Observing the progress of experiments in realtime is important because it reduces the

feedback loop between the researcher and the resulting data, allowing one to proceed

in research at a faster rate. For example, it is very satisfying to personally observe and

know that magnetic particles moved when applying a current to our 3DFM magnetics

subsystem before all the data are taken.

Aptly named, GLUItake (user interface seen in Figure 3.4) essentially combines the

source code found in the example EDT application take with example code that uses

the GLUI (GLUT User Interface) toolkit. With GLUItake, one can capture frames at

120 fps or any divisor of 120 that results in an integer greater than one, as GLUItake

just skips the requisite number of frames to reduce data load. Other parameters in

GLUItake include EDT board ID (called “unit”), EDT channel (in the case more than

one camera is available in hardware), gain, and video duration.

GLUItake requires the use of two separate threads; the first thread has a higher

priority in order to successfully record data while the second and less important thread
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Figure 3.4: GLUItake is a software application that grabs collections of video
frames as RAW files with various parameters and allows a scientist to view the
progress of an experiment in realtime while collecting video at maximum frame
rate (120 fps).

is responsible for updating the image on the display. Even so, there may be several

reasons for the processor of a non-realtime operating system to be busy, and to assuage

this problem we use a circular, revolving FIFO (first-in first-out) buffer.

Because GLUItake is multi-threaded and needs to function in near realtime, the

system requirements for top performance can be high. At minimum one needs a dual

core or hyper-threaded machine running at clock speeds in excess of 2 GHz. The

GLUItake project exists as a subproject of the CISMM Video software package writ-

ten and maintained by Russ Taylor. Project dependencies for GLUItake include li-

braries for the EDT hardware (www.edt.edu), the Virtual Reality Peripheral Network

(VRPN) (http://www.cs.unc.edu/Research/vrpn), as well as the aforementioned

GLUI toolkit (http://glui.sourceforge.net/).
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Figure 3.5: GLUItake streams two threads to the processors simultaneously, one
high priority thread collects the video frames and writes to disk at a max 120 fps
while the low priority thread handles the user interface and the display of the
current frame at a constant 30 fps.

3.3.4 Particle Tracking

Also part of the CISMM Video package, the Video Spot Tracker (VST) program

effectively tracks objects that are rod-shaped or radially symmetric. VST, at version

5.27 at the time of this writing, offers many features to aid the burdened user who is

required to track objects through pervasive visual noise such as dead pixels, background

obfuscation, and drifting in and out of the image plane. Using three kernel types, i.e.

disk, cone, or radial, a user can hand-select spots that fit these shape/luminance profiles,

watch as VST follows the trackers, and save the location information to a vrpn logfile.

A tracking heuristic along with a “debug kernel” option provides the user with some
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measure of confidence that objects are being tracked with sufficient precision.

Measures are largely implemented or currently in development to reduce the amount

of user involvement necessary to track useful objects successfully. Examples of such

additional functionality include a tracking integrity heuristic that identifies when a

tracker is “lost” and can then delete such a tracker, hover about the area until a viable

signal resurfaces, or alert the user to intercede on the software’s behalf. Also in place is

a method for automatically identifying potentially trackable objects. The combination

of these two algorithms has the potential for making VST completely hands-off and a

great tool for high-throughput implementations of the 3DFM (Spero et al., 2008).

3.3.5 Measurement Resolution

Characterizing the noise of VST occurs in two major steps. To determine the

accuracy and precision of the algorithm and the robustness of the software, VST is

checked against a set of completely reproducible and simulated test images, complete

with quantifiable amounts of background noise. In idealized images with little to no

noise and optimal contrast, VST can track stationary objects with a mean radial error

of ∼0.001 pixels. For more realistic cases of a moving spot with moderate noise, this is

reduced to 1/100th pixel precision (Schubert, 2009).

We can use the same method to test the position detection sensitivity for the video

tracking that we used for the laser tracking system (Fisher, 2007). Using the same

method will allow us to cleanly compare the noise levels found for each system. We im-
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Figure 3.6: Tracking a bead that translates in a staircase shape reveals the sensi-
tivity of the Hercules video tracking system which includes the optics and camera
hardware in addition to the algorithms of the Video Spot Tracker software. Track-
ing ideal spots is about 10× better than actual beads imaged in the microscope.

mobilize 1 µm polystyrene beads (Polysciences, Inc., Warrington, PA) in a 1% solution

of agarose. Another method we commonly use (only for video tracking) immobilizes

the same type beads by evaporation (1:10 bead solution:ethanol) onto a 24 × 50 #0

coverslip which are then cured into place with an optical adhesive (Norland No. 81;

Norland Products, Cranbury, NJ). For both methods we tracked the bead motion while

applying steps with the nanopositioning Mad City Labs (MCL) stage (model Nano-LP

100; Mad City Labs Inc., Madison, WI). We trust the MCL stage as a position reference

because it operates on a position feedback loop and has a reported position error of 1

nm, which is more precise than we expect for video tracking.

The laser tracking system for the 3DFM should be more sensitive than the video

tracking. When we compare these video tracking sensitivities with those found in for the

laser tracking subsystem of the 3DFM (pictured in Figure 3.7), we find our suspicions
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true within a factor of four.

Figure 3.7: The 3DFM laser tracking system is more sensitive (4 nm) to bead
position compared to video tracking (16 nm) and can track at much higher band-
width (100 kHz compared to 120 Hz), but is limited to tracking only sphere which
are similar in size or smaller than the beam waist of the laser and to tracking
only one sphere at a time. Simultaneously tracking many particles of differing
geometries is one of the advantages video tracking algorithms have over similar
laser tracking systems.

We get a quantifiable amount of noise in position 1/20th of a pixel for most test

cases. For a 60× water-immersion objective, 1.5× multiplier tube (0.1 µm/pixel), this

results in an error of ∼5 nm, and ∼8 nm for 1.0× multiplier tube (0.15 µm/pixel).

3.3.6 Editing Video Tracking Data

Once we collect the video data and track the particle trajectories with VST, we

quickly edit the new data, taking care to remove any stray points where the tracker

strays from the target as well as subtract out any bulk sample drift that may obfus-

64



cate results, especially those where true diffusion is necessary. The Edit Video Track-

ing GUI (evt GUI) is a user-interface constructed using Matlab that helps to quickly

manage, browse, and edit video tracking data obtained from the CISMM VST. The

VRPNtoMatlab utility must first be used to convert the logfiles from VRPN format

to a matlab workspace (.MAT). Once the data are loaded and edited, the user can also

take advantage of features in evt GUI that plot relationships commonly found in both

TMBR and DMBR measurements. All of the figures seen in this dissertation were ini-

tially constructed using evt GUI or related software. More information about evt GUI

can be found in the user’s manual.

3.4 Magnetics Subsystem

Forces within the 3DFM are difficult to predict due to the many variables that affect

the magnetic field and field gradient experienced by the sample-embedded probe. Sys-

tem performance depends on both the pole plate assembly and individual experiment

parameters. The field and field gradient are sensitive to the pole plate material and

microscopic changes to the geometry and tip sharpness. Variation exists between exper-

iments because of changes to the magnet drive current and bead location, as well as the

bead type and diameter (O’Brien et al., 2008). In the past, each pole plate required re-

calibration for every new experimental setup to determine absolute force values. It was

also impossible to systematically evaluate many of the variables necessary to optimize

pole plate design.
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Figure 3.8: Time-lapsed image projection of beads pulled into the magnetized
pole-tip located in the bottom left corner. Contour lines indicate the applied
force at the appropriate distance.

Variable force calibration (VFC) provides a convenient and accurate way to con-

struct a spatial force map and determine the effects of different construction techniques

(Spero et al., 2008). Prime considerations in the design of the VFC protocol are the

dependences of ∇(B ·B) on both input current, I and distance, r, from the pole tip. We

can use the VFC technique to determine the effect of material, tip geometry, and input

current on force magnitude. To accomplish the calibration, I drive the magnets with

a repeated sequence of step pulses with ascending amplitude and use video tracking

to record the changing position of beads in a Newtonian fluid of known viscosity. To

ensure no bead-bead coupling, I use a small enough concentration of beads that the
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average bead-to-bead distance is 20 bead diameters or more and exclude any tracks

that have bead-bead distances of less than 5 bead diameters. After synchronizing the

force and position information with the magnet drive history, I use best linear fits to

determine bead velocity and then compute the force on a bead as a function of location

and drive current.

3.4.1 The Magnetics Stage

The 3DFM magnetic stage subsystem (Figure 3.9), described previously in Fisher,

et al., consists primarily of magnetically permeable material for cores, surrounded by

20+ Amp turns of low-resistance copper wire and supplanted with thin-foil pole tips in

one of many different custom geometries (Fisher et al., 2006a). In such experiments,

we used top-only magnetic cores coupled with the thin-foil “pole-flat” geometry shown

in Figure 3.10. The pole tips, glued to a 24 × 40 #1½ cover-slip with quick-drying

no-sag epoxy, were, in turn, glued to the castellation cores of the magnetics system

driving ring via Elmers� glue (Fisher et al., 2006a). A Newtonian viscosity standard

embedded with magnetic microbeads fills the space between the upper and lower cover-

slips containing the magnetic pole tips. We minimized fluid drift by encasing the sample

inside a silicon grease ring and using sample volumes of 10 µL or less.
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Figure 3.9: The stage lid and base are shown opened, with the magnetically
permeable cores showing, each wrapped around with copper wire. For DMBR
experiments, we attach a poleflat geometry to the top cores and place a small
volume of sample on a coverslip placed on the bottom cores. X and Y positioners
handle the translation of the Sample with respect to the magnetic pole tip.

3.4.2 Pole Tips

Magnetic Shield Corporation (http://www.magnetic-shield.com) supplied the

two soft magnetic foils, Netic and Co-Netic AA, we used to construct the 3DFM pole

tips. Table 3.1 summarizes the magnetic properties of both materials.

The high saturation point for the Netic material should result in a higher achievable

maximum force than those for the Co-Netic foils. The higher permeability of the Co-
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Material Saturation Induction (Tesla) Permeability Coercivity (Oersteds)
Netic 2.1 200 1.0

Co-Netic AA 0.8 30,000 0.015

Table 3.1: Magnetic Materials used for 3DFM pole tips

Netic material should cause a faster rise in force than that found in the Netic material

for an equal step increase in drive current. The low Co-Netic coercivity should reduce

the remanence experienced after magnetization.

Currently, the pole tips are prepared commercially by FotoFab (http://www.fotofab.

com/), where acid etches them to their desired geometries via a photolithography pro-

cess (Fisher, 2007) with minimum diameters (maximum sharpness) of 15-20 µm. We

hypothesized that a sharper tip would increase the field gradient and therefore the force

applied to a bead. By scraping off the excess material with a #0 glass cover slip and a

dissection grade microscope, we sharpened tips manually and attained a minimum tip

diameter of 5-6 µm.

Figure 3.10: The pole flat geometry used in DMBR experiments with the 3DFM.

To mount the tip rigidly to its substrate we glued the tip and its accompanying flat

piece to a #0 glass coverslip with a cyanoacrylate glue. In addition to tip diameter, we
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Method CAP-Visc CAP-Freq CAP-Creep TMBR DMBR
N 7 30 3 12 1
Mean Viscosity (mPa s) 27.6 30.2 28.2 26.2 27.3
Standard Deviation (mPa s) 0.34 0.27 0.7 4.4 0.9
Standard Error (mPa s) 0.13 0.05 0.4 1.3 0.9
Expected Value from Model 23.5 23.5 23.5 23.5 23.5
Percent Error from Model 17% 27% 20% 6.0% 15%

Table 3.2: Newtonian viscosity of 2 M sucrose. Solution temperature is assumed
to 23 ◦C for TMBR and DMBR and is controlled at 23 ◦C for all rheometer meth-
ods. All methods report expected values within acceptable error for viscosity.

believed that the spacing between the tip and flat should affect the field by influencing

the flux return path. For trials where we compared multiple pole plates, we fixed the

gap between tip and flat at 900 µm in order to minimize the effect of any inaccuracy

in tip position.

3.4.3 Calibrating with Newtonian Fluids

In theory, we can use any Newtonian fluid for the VFC protocol provided that its

viscosity is well characterized. Large noise values in the viscosity of the calibrator fluid

will propagate into the determination of force. For instance, sucrose solutions are good

candidates since they are highly water-soluble and have predictable viscosities for any

concentration below solubility limits and any temperature below 100 ◦C by a published

model to 1% error (Mathlouthi and Reiser, 1995). In contrast, a disadvantage of these

solutions is their relatively low viscosities. Although less fully characterized, we also

use Karo� corn syrup for calibrations that require high forces because of its relatively

high viscosity of 3.4 Pa s (see Figure 5.5)
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The Mathlouthi model predicts the viscosity of a sucrose solution as a function

of the sucrose concentration and the solution’s temperature (Mathlouthi and Reiser,

1995). The solution density is determined through a recursion model that repeats the

algorithm until the error is below a low tolerance value. The function fails to converge

at concentrations that exceed solubility limits of sucrose at the given test temperature.

As such, the model is a fourth-order polynomial fit published by Bubnick in (Mathlouthi

and Reiser, 1995) that predicts viscosity values to within 1%, provided these solubility

and temperature constraints are met.

The expected viscosity for a 2 M sucrose solution at 23 ◦C is 23.5 mPa s. The percent

error for a test solution made using the protocol in Appendix A.1 is systematically high

at about 15.4% from the expected value (see Table 3.2). This error could have been

introduced during the preparation of the sucrose solution and demonstrates the need

to check each Newtonian standard after its manufacture. Less likely, the error may

be attributed to evaporative losses around the sample-air interface on the rheometer

during testing. Evaporation would contribute to a higher concentration of the test

solution and thus a higher viscosity.

Briefly, the model published in (Mathlouthi and Reiser, 1995) computes the viscosity

of a sucrose solution when given an input molar concentration and solution temperature.

The ability to predict the viscosities of sucrose solutions have proven invaluable when

modeling or simulating a rheology experiment, force calibration, or when planning an

experiment whose dynamics need to be slowed to meet observation requirements in

the instrumentation (Fisher, 2007). Typically sucrose solutions are well tolerated in
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biological situations.

Newtonian fluids, such as the 2 M sucrose solution used here, exhibit independence

of their viscosities to varying input stress/shear rates. Shear stresses ranging across four

orders of magnitude, from 0.01 Pa to 100 Pa, were applied to the standard 2M sucrose

solution and resulted in a population of 8 viscosities ranging from 27.0 - 28.1 mPa

s. A single-factor analysis of variance shows statistically that varying the input shear

rate does not influence sucroses viscosity (p = 0.58, where p < 0.05 denotes statistical

significance). Treating these values as a population of independent observations results

in a mean viscosity of 27.6 mPa s with a standard error of 0.13 mPa s.

Solution Model Viscosity CAP Viscosity Temperature Force Range
(units) (mPa s) (mPa s) (◦C) (pN)

2M sucrose 23.5 28.2± 0.4 23 < 300
2.5M sucrose 122.2 125± 1 23 < 1000

Karo – 3400± 100 23 > 1000

Table 3.3: Newtonian Standard Solutions used in VFC

We collected viscosity data for these solutions with either a Bohlin Gemini or a

TA Instruments AR-G2 stress-controlled cone and plate rheometers. For the sucrose

solutions, we used a 1◦/60mm cone and for the corn syrup we used a 1◦/40 mm or 4◦/40

mm cone. Using the creep compliance test method, we applied step stresses that ranged

from 1 Pa to 1000 Pa. When subjected to an input step stress, Newtonian fluids such

as these standards result in a constant shear rate. Dividing the applied input stress by

this resulting constant shear rate provides the dynamic viscosity of the test solution.

Listed in Table 3.3 are the solutions currently used in VFC as well as their predicted
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and measured viscosities.

3.4.4 Variable Force Calibration

I developed the VFC software to sample the force field around the pole tip as a

function of both distance, r, from the pole tip and the drive current, I. I use VFC with

the 3DFM to explore the effect of pole material, drive current, and bead position on

force.

A datum of calibration is the bead velocity at each drive current in each pulse

sequence. Consider, for instance, a population of n beads, each subjected to p pulse

sequences in which each pulse sequence comprises d pulses at specified drive currents.

A calibration set then includes npd data, where typical values are n = 20, p = 10, and

d = 10. As a consequence of this design, increasing d improves resolution in measuring

how force varies with drive current. Increasing n minimizes error due to bead-to-bead

variation in force. Finally, shortening the dwell time of each pulse increases p and

also moves the beads a shorter distance during each pulse sequence, thereby improving

spatial resolution in the force calibration (Spero et al., 2008).

3.4.4.1 Randomization of Magnetic Domains through Degauss

After applying a magnetic field materials suffer hysteretic effects due to residual,

internal ordering of the microscopic magnetic domains. Observed as residual magnetic

field with zero applied current, these effects induce a net drift velocity for the magnetic

probe beads. The remanent magnetization may mask a lower current when first a high
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Figure 3.11: I use a decaying sine wave of current to degauss the pole tip and
eliminate remanent magnetization.

current is used to drive the system. A degaussing routine reduces the residual field

by scrambling the orientations of the magnetic domains. We apply a decaying sine

function to the magnetic coils of the form

I(t) = Imaxe
−t/τ sin(2πft) (3.4)

where I(t) is the time-dependent current, Imax is the maximum current applied since

the last degauss, τ is the decay time constant, and f is the frequency of the incident

sinusoid. Our magnetic drive system is capable of driving its full power of 2.5 A at

frequencies up to 10 kHz (Vicci, 2005).

Applying a short duration (> 10 ms) degauss pulse successfully eliminates the
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remanent magnetization from the pole tips. To degauss the poles, we applied a drive

current in the form shown in Equation 3.4. For the 3DFM, the pulse consisted of

a decaying 10 kHz sine wave sampled at 100 kHz with a time constant of 1.2 ms,

equivalent to a 10% decay in amplitude for each cycle (Fig. 3.11). The first 10 ms of

the degauss procedure has an RMS current is 440 mA while during the next 10 ms it is

only 0.11 mA. We determined the bead velocities at zero current prior to each degauss

pulse in order to estimate the remanent force and after to estimate forces due to bulk

fluid flow or instrumental drift.

The degauss routine decimates even the remanence force produced by a Netic pole

tip. Figure 3.12 shows a 0.1 s, 2.5 A drive pulse followed by 0.4 s with no actuation,

except for the degauss routine occurring at 0.25 s. The force achieved during the initial

5 volt pulse was 72 pN, which dropped to 12 pN when actuation ceased. The degauss

further reduced the remanence to less than 0.3 pN, making it nearly indistinguishable

from Brownian effects. The high forces initially generated during the degauss procedure

have a negligible affect due to their minimal duration and low RMS.

3.4.4.2 Driving the Magnets

Using Matlab, we created a graphical environment where the user constructs a

sequence of step currents and drives the magnetics system by repeating these sequences.

Each pulse sequence typically uses increasing step functions (Fig. 3.13) to prevent

remanent effects during any given sequence. Inserted midway in the zero current pulse

is the degauss function that eliminates remanence before beginning the next sequence.
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Figure 3.12: Bead displacement during and after applied current and after de-
gaussing. The degauss pulse is fast enough to be scarcely detected with regard
to bead displacement and yet is completely successful in eliminating the poletip’s
remanent magnetization.

The user sets the amplitude and duration of each pulse as well as the total number of

sequences. Though not strictly necessary, we actuated the three coils driving the flat

with -1/3 the current powering the pole tip drive coil to provide an active flux return

path. A National Instruments PCI-6713 Data Acquisition card provided the voltages

used as inputs that controlled the transconductance amplifier (Vicci, 2005) and drive

the magnet coils. Matlab stored each experimental protocol as a metadata file that

included the sequence parameters as well as the starting time on the DAC clock as well

as the DAC board ID.
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Figure 3.13:

3.4.4.3 Capturing and Processing Video Data

The GLUItake program captured and stored video frames in a RAW pixel for-

mat (648 × 484 × 256) at rates up to 120 frames per second (fps) for variable dura-

tions that rarely exceeded 180 seconds. Version 5.x of CISMM Video Spot Tracker

(http://cismm.org/downloads) tracked bead position and recorded the changing XY

coordinates of each bead during every frame. The output vrpn file was converted to a

Matlab workspace using the CISMM vrpntoMatlab software package (http://cismm.

org/downloads). Tracking artifacts and data for beads outside the region of interest

were manually removed using evt gui, also available from CISMM.
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3.4.4.4 Locating the Pole-tip

To determine the physical location of a particle with respect to a coordinate system,

we must locate its origin. To do this, we must find the virtual monopole located

somewhere within the pole tip (shown in Figure 3.14). We first measure the radius of

the inscribed circle found at the pole tip because placing the monopole at the center of

this circle is a good first approximation. To be more precise, we fit the last 40 points

of each tracker to a set of parametric equations linear in x and y extending the bead

trajectories to a point of common intersection. These line fits roughly intersect at the

monopole location because the particle trajectories converge onto the pole tip. We can

increase the accuracy of the initial estimate by minimizing the orthogonal distances to

the aforementioned fits and place the monopole at the intersection point. After locating

the origin of the polar coordinate system, we transform the coordinates of [x(t), y(t)]

into this system to find r(t).

3.4.4.5 Analyzing the Processed Data

After we tracked the particle displacements in the video streams, we synchronized

and merged them with the magnet drive history to a temporal resolution of approx-

imately 8.6 milliseconds. This synchronization minimized discrepancies between the

clocks of different computers running the 3DFM and ensured that a given bead trace

was associated with the correct magnet drive current.

During each single magnet pulse, we gave each particle trace a linear fit whose slope
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Figure 3.14: Locating Virtual monopole in 3DFM

corresponded to the average bead velocity. The robustfit function in Matlab managed

these fits. robustfit uses an iterative method to find the best fit line, throwing out

any outlier it finds according to its protocol. The reported error in forces determined

here is not calculated using robustfit, i.e. it includes all points including outliers.

The velocities were each converted to corresponding forces with Stokes drag for the

prescribed particle geometry, described earlier as Equation 2.43. For each pulse, we

used the force occurring at the geometric midpoint of the particle path. The line fit

approximation is valid because the local magnetic field and gradient remain relatively

constant over small bead displacements. To complete the spatial map, we fit the force

versus distance data for each current to a line in logarithmic space. This allows one to
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interpolate the force at any point (see Figure 3.12) using the expression:

F = 10m log(d)+b (3.5)

where d is the distance from the pole tip, F is the force on a bead, and m and b

are constants determined by the linear fit. We measured the position radially within

the sample plane from the pole tip center minus the tip radius. Because COMSOL

modeling showed that field and field gradient are consistent for narrow cone angles at

a given radius, we chose to ignore the effect of arc angles less than 30◦. Beads found

outside the ±30◦ angle from the line of symmetry for the pole geometry were removed

from the computation as the force varies significantly outside that angle.

To estimate the error in the calibration of forces, we analyze Eq. 3.5 for propagation

of error in m, b, and D, i.e.

δ2
F =

(
∂F

∂m
δm

)2

+

(
∂F

∂b
δb

)2

+

(
∂F

∂d
δd

)2

(3.6)

where,

∂F

∂m
=

ln(d)

ln(10)
F · ln(10) (3.7)

∂F

∂b
=

m

d ln(10)
F · ln(10) (3.8)

∂F

∂d
= F · ln(10) (3.9)
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Figure 3.15: Maximum current applied to magnetic system produces maximum
force vs displacement curves for 1 and 2.8 µm beads.

Therefore the relative error in F becomes

δF

F
=

√(
m ln d · δm

m

)2

+

(
m · δd

d

)2

+

(
b ln 10 · δb

b

)2

(3.10)

The largest relative error should be that of d, the position of the bead with respect

to the poletip. This error should be less than 10% and includes not just the bead’s

tracked position, but the monopole location as well. The relative error in d must be an

order of magnitude larger than relative errors in m and b to contribute equally to the

error in F . As such,errors in m and b should be approximately 1% to get a reasonable

error in F .
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We tested the precision of the VFC technique through repeated experiments with

the same pole plate but with different fluid standards. Figure 3.16(a) shows the force

on a 1 µm bead located 12 µm from the pole tip as measured with both 2 M sucrose

and corn syrup. The results have less than 10% error at currents less then 1.5 A and

20% thereafter (full dataset not shown).

When we used 2.5 M sucrose as the standard fluid we were able to measure forces

for all input currents during a single calibration run with moderate and acceptable

error. When we took advantage of different calibration fluids for different force ranges

we were able to increase the sensitivity to and lower the standard error on our low force

measurements. This sensitivity is demonstrated in Figure 3.16(a) where we measured

low current pulls using 2 M sucrose and high currents with corn syrup.

3.4.4.6 Bead and Poletip Saturation

We used the new range of easily measurable forces to demonstrate the magnetic

saturation of 1 µm Dynal beads at various distances from the pole tip, shown in Fig-

ures 3.16(a) and 3.17. Although readily predicted, it is the first time we observed

bead saturation solely with the 3DFM. In Section 2.4.1 I reported the magnetic force

experienced by a particle as ~Fm =
(
~meff · ~∇

)
~B (Eq. 2.88) when the incident field

behaves approximately as a monopole source at far distances from the poletip. The

effective magnetization of the particle, ~meff , is itself a function of ~B while we assume

~B and ∇ ~B are linearly proportional to the current applied to the electromagnet, Iapp.

This assumption breaks down once the bead and/or the poletip reaches it saturation
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(a) linear space- Early quadratic appearance, late linear

(b) log space- power law with slope=2

Figure 3.16: Low applied current shows I2
app dependence on force because neither

beads nor poletip have saturated.
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Figure 3.17: Applying high currents shows saturation of poletip as evidenced by
the lack of increase in force for any corresponding increase in current.

magnetization. When both the bead and poletip are unsaturated ~Fm ∝ I2
app. The bead

should saturate first, leaving ~Fm ∝ Iapp. When both become saturated ~Fm becomes

invariant to any additional Iapp.

Bead and poletip saturation become apparent in the data seen in Figure 3.16. For

small input currents the empirical curve possesses the proper theoretical quadratic

shape (Fig. 3.16(a)) and a power law value close to 2 (Fig. 3.16(b)) that is consistent

with the monopole approximation. As the current increases the bead reaches its satura-

tion limit first, primarily because of its smaller volume and density, making its induced
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~B insensitive to additional Iapp and reduces the applied force to a linear dependence

on current. Further increases in current saturate the poletip and the force-current

relationship plateaus to a slope of zero, shown in Figure 3.17.

3.4.4.7 Netic vs. CoNetic Material Response

We calibrated the pole tips with the complete force range and measured the mag-

netic saturation curves for various pole tip types. Figure 3.18 compares the forces as

a function of current for Netic and CoNetic pole tips, 21 and 32 µm respective diam-

eters, experienced by a 1 µm Dynal bead located 10 µm from the pole tip. Although

the magnetic properties of both materials are well characterized, never before had we

established saturation, primarily because of the unknown field strength and the afore-

mentioned difficulty calibrating at the full range of currents. The calibration curve

confirms the theoretical prediction for the materials performances. These data estab-

lish the dominant effect of the saturation point over the permeability, revealing a nearly

8-fold increase to the maximum force. The known presence of saturation will improve

future instrument designs by relaxing constraints on the minimum field strength.

Although the effect of pole tip geometry has been modeled in COMSOL, nonideal-

ities require that we collect empirical data from the 3DFM. Figure 3.18 also compares

the forces produced by photo-etched and manually sharpened pole tips at 21 and 5 µm

diameters respectively.
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Figure 3.18: Forces on MyOne beads, 10 µm from pole-tip surface

3.5 Limits of measure with 3DFM Rheometry

With the system noise quantified for both our tracking and magnetic manipulation

subsystems, we can identify and define our limits for microrheometric measurements in

both thermal and driven techniques.

3.5.1 Thermal Methods

Measuring the microrheological properties of any material involves recording images

with the video subsystem and tracking the random paths of embedded and diffusing

particles. Diffusive measurements sample a bandwidth-limited frequency response of a

material, here assumed to follow the Maxwell model with a constant shear modulus, G
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and viscosity, η. Three instrumental quantities constrain our measurements of G and

η with thermal microbead techniques: maximum video bandwidth, maximum video

duration, and video tracking resolution.

The maximum video bandwidth defines the smallest time scale for the MSD mea-

surements. In the 3DFM the maximum frame rate when to capturing full-frames is 120

fps, or, a frame every 8.6 ms. Limiting video duration is either storage space for the ac-

quired video data or drift in the instrument or specimen. For 3DFM experiments, drift

begins to emulate particle diffusion in the MSD plots at time scales greater than 100

seconds. In Section 3.3.5, we determined a maximum tracking resolution of 5 nm for

1 µm microspheres at full bandwidth, which corresponds to an approximate minimum

MSD value of 2× 10−17 m2 at 60 Hz.

To predict the maximum G we can measure in the 3DFM system, we assume that

the 1 µm bead translates on the order of the noise floor (5 nm) across sufficient data

points such that the slope of the MSD, α, is approximately zero. Using Eq. 2.82 this

corresponds to G∗(ω) = kT/π(500nm)(2× 10−17)Γ(1) = 70 Pa.

Similarly, to calculate both limits on η which are intrinsically linked to sampling

duration, we would need sufficient data (assumed 10 points, here) to make a good

estimate of α with an expected value of 1. To compute the maximum η at our longest

sampled time scales we would need 10 points at the lowest sampled decade in τ . For our

camera, operating at 120 Hz, this would correspond to close to the entire decade between

10−2 and 10−1 seconds, making our shortest dataset about 0.1 s with a maximum

measurable viscosity of 0.3 Pa s and our longest dataset about 100 s in duration with
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a maximum measurable viscosity of 3000 Pa s.

Figure 3.19: Limits of Measure for TMBR

While referring to the limits for TMBR in 3DFM, pictured in Figure 3.19, it is

important to note that in the leftmost region we can still measure G. Presumably, if

the probed material is a viscoelastic liquid at long time scales, the slope of the MSD

would roll up to equal 1 and reveal viscous-only modes, but the 3DFM would be unable

to detect it. Similarly, in the bottom-right region of Figure 3.19, the instrument can

measure viscosities that range up to 3000 Pa s, but the roll-off for the elastic behavior

happens at time scales so short we cannot measure them. Incidentally, there is no lower

bound to G and η with respect to diffusion measurements as we can always lower the
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magnification in the microscope or increase the probe size, provided the probe remains

in the same length-scale regime relative to the polymer solution. In addition, liquids

only extend down to ∼ 10−4 Pa s in viscosity.

3.5.2 Driven Methods

DMBR methods sample a larger range of material parameters, including nonlinear

effects through the application of the external force. To determine the limits of measure

for DMBR, we use the same video system parameters as for the thermal methods, but

add the magnitude of the applied force as well as the time scale that corresponds to

the duration the magnets are turned on, applying force to the system here 10 s. We

use the Maxwell model, pictured in Figure 2.5(a) along with its strain response, to

calculate an idealized viscoelastic fluid response, which responds instantaneously to an

applied force followed immediately by a constant velocity. We extract G and η from

the instantaneous displacement and constant velocity, respectively.

Our measurement of G is constrained by the minimum elastic displacement we can

measure, pulling at maximum force. As stated before, our tracking resolution is∼ 5 nm.

The measurement of η is constrained by the minimum detectable bead velocity which

corresponds to pulling at maximum force. Our minimum detectable bead velocity is

0.5 nm/s. Assuming a maximum applied force of 2 nN and a 4.5 µm bead, we reach

a signal to noise ratio of one with a maximum G of 10 kPa and a maximum η of

100 kPa s. Increasing the range of measurement for G and η would require a lower

spatial resolution in acquired video. The upper bound on η could also be enhanced by
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increasing the frame rate.

Figure 3.20: Limits of measure for thermal and driven microrheology experiments
in the 3DFM

3.5.3 Measurements of Selected Biopolymer Systems

Shown in Figure 3.21 are several microrheology measurements for varying materials,

most of which are biopolymer systems. Mechanical properties for cell membranes (b)

were measured by (Bausch et al., 1999) with another magnetic tweezers system while

(Gardel et al., 2003) measured entangled solutions of actin (a) with 1 & 2 particle ther-

mal methods. Remaining data shown as (c) are all measurements our lab conducted,

while the elastin measurements were done at the macroscale by Dana Nettles from

Duke (personal communication). As a control, Karo syrup was measured successfully

90



Figure 3.21: Shown is a range of biomaterials measurable with TMBR and/or
DMBR. Open, blue circles denote TMBR data/limits while closed, red circles
denote DMBR data/limits. The black X’s for elastin are data collected by Dana
Nettles at Duke with parallel plate rheometry, a common macroscale technique
similar to CAP (personal communication).

as a Newtonian fluid with viscosity of 3.4 Pa s.

Protofibril samples comprise a solution of polymerizing fibrin before the clot has

fully formed. Due to the breadth of parameter space for clotting conditions, protofibril

solutions sweep out a wide area of this parameter space, shown shaded in blue. Es-

timates of fibrin microrheology used a clotted fibrin gel that stiffens over a period of

∼ 30 times the clotting time.

Saliva was sampled from one donor. Cells and cellular debris were removed via

centrifugation. The measurement shown here was done with DMBR and represents

one pull from one specimen. The DMBR data obtained from the sputum sample

was collected from a patient at UNC Hospitals afflicted by COPD. HBE Mucus was
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concentrated from cell culture washings at 2.5% and 8% and tested via TMBR.

3.6 Predicting Force Requirements

Now that we can measure time, displacement, force, modulus, and viscosity with

some reliability, it would be nice to approximate the forces required to observe these

quantities for any material by using previous values found in the literature. As explained

in Section 2.2.7.2, the drag force on a particle is generalized by F = βηv where β is a

shape prefactor known for specific geometries. For a sphere, the geometric prefactor is

βs = 6πrs.

In Section 2.2.7.3, I assumed Stokes flow along the surface of a sphere and derived

the fluid’s shear rate which reaches its maximum 90◦ from the direction of flow and is

equal to γ̇ = 3v/
√

2rs (Eq. 2.47). Substituting this in for the velocity of the sphere, v,

results in a force equation that is a function of shear rate:

F =

√
2βsaηγ̇

3
(3.11)

For the sphere, substituting in the geometric prefactor 6πa for βs gives us a force-

viscosity relationship in terms of shear rate:

F = 2
√

2πr2
sηγ̇ (3.12)

Many non-Newtonian fluids experience shear thinning where the fluid viscosity de-
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creases with an increase in shear rate. The Carreau model describes a shear thinning

fluid whereby the viscosity as a function of shear would be

η(γ̇) = (η0 − η∞)[1 + (λγ̇)m](n−1)/m + η∞ (3.13)

where λ is the thinning time constant, (n− 1) is the power-law slope, and m describes

the width of the shear thinning regime.

If one further assumes that the medium surrounding the sphere is a shear thin-

ning fluid (like DNA) and follows the form of a Carreau model, the force-viscosity

relationship then depends on the shear rate and is equal to

F = 2
√

2πa2η[(η0 − η∞)[1 + (λγ̇)m](n−1)/m + η∞] (3.14)

In Section 2.2.8.2 I provided the drag coefficient for a rod moving in the direction

of its easy axis as Equation 2.59. The force follows the general form shown above for

the sphere, i.e. F = βcηv which is linear in η and, as always, still reduces to F = fv.

The fluid’s maximum shear rate along the surface of a rod moving in the axial direction

was approximated in Section 2.2.8.3 as

|γ̇top| =
2
√

2U

b(−1 + ln 4− 2 ln p)
(3.15)

where p is the aspect ratio, U is the rod velocity, and b is the radius of the rod.

Just as in the sphere example, we assume that the viscosity is shear rate dependent
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and the medium experiences shear-thinning at high shear rates

F =

√
2πLrcγ̇c (1− ln 4 + 2 ln p)

2
(
v‖ + ln p

) η(γ̇) (3.16)

and follows the form of a Carreau model, resulting in a final force-viscosity relationship

that depends on the shear rate

F =

√
2πLrcγ̇c (1− ln 4 + 2 ln p)

2
(
v‖ + ln p

) η(γ̇)[(η0 − η∞)[1 + (λγ̇)m](n−1)/m + η∞] (3.17)

Shown in Figure 3.22 is a plot that depicts the shear thinning rheology for a 4%

PGM solution as measured by CAP. Using the relationships derived here the macroscale

rheology information can provide us with expected force requirements at the microscale

for a range of bead sizes. Predictions of required forces for the rod geometry are

demonstrated in Figure 5.8.

3.7 Conclusions

Here I demonstrated the efficacy of the 3DFM as an instrument for microrheology

measurements of biopolymer systems which have different needs than the measurements

at the macroscale, but can also provide more insight regarding the interactions between

a polymer system with micron-sized length scales and a probe of similar size. We started

saying that to make measurements of the noise of our tracking system. In this chapter I

demonstrated the 3DFM’s ability to measure viscoelastic parameters using both passive
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Figure 3.22: Force requirements to pull beads of varying diameter through
porcine gastric mucus at any defined strain rate, γ̇.
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and active microrheology techniques.
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Chapter 4

Multiscale Rheology of selected

biofluids

4.1 Overview

In Chapter 3 I surveyed 3DFM hardware, reviewed the literature, and provided the

methodology for TMBR and DMBR experiments. Here I report on my polymer systems

of interest, DNA, HA, PGM, and guar as simple solutions and mucus and sputum as

solutions of direct biological origin. For each simple polymer system I determine its

salient polymer physics parameters and present new macroscale and microscale results

that supports great correspondence between the two techniques. I also present similar

rheological measurements for mucus and sputum.

Each biofluid I used had been tested in the literature and had its own unique charac-

teristics that made it an interesting choice for testing in microbead rheology. λ-DNA is

a monodispersed polyelectrolyte and has the highest persistence length. The rheology

of DNA is physiologically relevant to MCC because it is found in high concentrations



in purulent sputum (Rubin, 2006). HA is a softer polyelectrolyte found throughout

the body, is homogeneous in reagent form, and is the smallest and shortest of the four.

Guar is a neutral molecule of plant origin often used in foods as a thickening agent

(Imeson, 1999). It shares similar rigidity to HA but has a much larger degree of poly-

merization, N , and had early success as a mucus simulant albeit showing limited MCC

(King and Macklem, 1977). Finally, the PGM I used should be the simulant closest to

a real mucus. Using dynamic light scattering (DLS) I found its molecules quite large

and a Lp calculated from the DLS data showed that it shared similar stiffness to the

model λ-DNA solution.

In summary, λ-DNA solutions probed with 1 µm and 2.8 µm beads had low apparent

viscosities because of shear thinning around the probe at relatively large shear rates, a

phenomenon previously unreported for a biological fluid at the microscale. HA solutions

show a linear viscoelastic response when tested with 2.8 µm beads resulting in a constant

steady-state viscosity of 10 Pa s, consistent with cone and plate. Previously unseen in

the literature, measurements of microscale shear thinning are new to the community.

PGM and guar specimens also show signs of shear thinning, but with a larger spread in

the data, presumably due to solution or polymer system heterogeneities. All solutions

show acceptable agreement when their viscoelastic properties are compared with the

macroscale cone and plate testing.
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4.2 Polymer systems

Four possible states exist for polymer systems: elastic, semicrystalline, glass, and

viscous. Elastic polymers are solid-like and typically contain a large number of crosslinks

per chain and as a result have high elasticity. Semicrystalline systems are also more

solid-like but contain crystalline regions intermixed with amorphous ones. Glasses are

amorphous polymer systems utilized at temperatures below the glass transition tem-

perature, Tg, where the chains only move with respect to each other at monomer length

scales and no larger (Rubinstein and Colby, 2003).

Three polymer system types are typically interpreted as being solid-like because

they exhibit elastic responses when subjected to a stress. When the recovery of the

elastic response is complete and instantaneous (within the length-scale and time-scale

error of the instrument) that material is considered “solid.” A non-zero time constant

indicates viscous modes in the material response, and is a viscoelastic solid (Rubinstein

and Colby, 2003). A polymer solution is in its viscous state when its temperature

exceeds Tg and no crosslinking exists between strands. Polymer systems in this state

exhibit lossy recovery because the viscous element relaxes during the application of

stress (Rubinstein and Colby, 2003). All of the polymer systems I examine in detail in

this work are in the soft, viscous state.

I prepared HA, PGM, and guar solutions by adding each material in powder form

to its appropriate buffer and using vortex addition (See Appendix A.4 for details). All

solutions were left to rotate at slow speeds and equilibrate overnight at 4◦C before
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performing any rheology studies. Polymer physics information for all of these solutions

can be found summarized in Tables 4.1 and 4.2. Briefly, all solutions were at concentra-

tions that placed them in the entanglement regime except for HA at 10 mg/mL which

instead was semi-dilute, unentangled.

– units λ-DNA HA PGM Guar
Rg nm 500 115 310 425
R0 nm 1270 282 760 1040
lp nm 50 8 36 10
b nm 100 16 72 20
Nb – 165 310 111 2700
lc µm 16 5 8 54
Mw MD 32 1.5 56 50
Mb kD 197 5 500 18
c∗ mg/mL 0.08 0.83 0.75 0.26
φ∗ – 9e-5 1.2e-5 3e-4 2.5e-4
τ0 s 7.8e-5 3.2e-7 2.9e-5 6.2e-7
τR s 2.1 0.012 0.4 4.5

Table 4.1: Summary of intrinsic polymer system modeling parameters.

– units λ-DNA HA PGM Guar
cwork mg/mL 1.4 10 40 12
φwork – 0.002 0.001 0.018 0.012
P – 17.5 12 54 46

regime – SD,EN SD,UN? SD,EN SD,EN
Ge – 0.9 140 1.2 40
Me MD 3.9 0.14 83 0.9
Ne – 8 11 1 54
Z – 20 18 164 50
a nm 285 54 59 147

Kn(1µm) – 0.28 0.05 0.06 0.15

Table 4.2: Summary of extrinsic polymer system modeling parameters.
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4.3 DNA

DNA is the biomacromolecule that comprises the genetic code of an organism as a

varying sequence of four different nucleotides, adenine (A), cytosine (C), guanine (G),

and thymine (T). These nucleotides are the constituent monomers of a DNA polymer

strand, classifying DNA as a heteropolymer as it has more than one monomer type. In

solution, DNA is a viscous type polymer, because it will, exhibit liquid-like behavior

at long time scales (Rubinstein and Colby, 2003).

In 1953 James Watson and Francis Crick, with the first accurate structure of DNA,

reported the axial distance between base pairs in the DNA strand to be 3.4 Å with a

strand diameter of 2 nm, resulting in a monomeric cylindrical volume of 1.1 nm3 for

each base pair. The molar mass for an average of the available base pairs is 660 g/mol

(Watson and Crick, 1953). The contour length of a polymer strand is simply equal to

the number of monomers (bp) multiplied by the axial distance between monomers, or

Lc = LaxNbp.

I used λ-DNA in these experiments. λ-DNA is derived from the λ-bacteriophage, a

virus that injects its genetic code into a host bacterium. It is commercially available

in large quantities for relatively low cost. It has 48502 base-pairs (bp) and comes from

the manufacturer in a linearized form with 12 unpaired base-pairs at each end. Because

each base-pair has an average molar mass of 660 g/mol, the λ-phage DNA strand has

a molecular weight of 32 MD. Because it has axial distance between each bp of 3.4 Å,

it must have a contour length of 16 µm per strand.
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Polymer Lp Reference
HA 8 nm (Buhler and Boue, 2004)
Guar 10 nm (Morris et al., 2008)
MUC5AC 10 nm (Round et al., 2002)
DNA 50 nm (Rubinstein and Colby, 2003)
Fibrin 5 µm (Guthold et al., 2007)
Actin 15 µm (Howard, 2001)
Microtubules 6 mm (Howard, 2001)

Table 4.3: Persistence lengths for several biopolymers.

The measure of stiffness for a polymer is its persistence length, Lp, a function of

its flexural rigidity that describes the distance over which the direction of the poly-

mer backbone becomes uncorrelated (Rubinstein and Colby, 2003). The source of the

bending in the polymer is thermal forces, making it also dependent on the temperature

of the solution. Lp = EI/kT , where E is the Young’s modulus and I is the second

moment of inertia for a slender rod, or I = πr4/4 for a circular cross-section. The

persistence lengths for many polymer systems have been measured, with some shown

in Table 4.3.

To be predictive for λ-DNA as a polymer solution, we must first determine whether

it exists as a neutral molecule or a polyelectrolyte whilst in its TRIS-EDTA buffer (10

mM Tris-HCl (pH 7.4), 5 mM NaCl, 0.1 mM EDTA, and 0.05% Sodium Azide). The

pKa for the phosphate backbone is such that the typical base pair in a 7.4 pH buffer

has a net charge of −2.

Because λ-DNA exists as a polyelectrolyte, we must determine the ionic strength of

the solvent and the polymer Debye screening length to determine whether the molecule

interacts with itself or adjacent polymers because of the exposed charge. The Bjer-
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rum length, LB, describes the distance where the interaction between two elementary

charges, e, would be equal to thermal energy kT in a solvent with a dielectric constant,

ε (Dobrynin and Rubinstein, 2005). In SI units

LB =
e2

4πε0εkT
(4.1)

where ε0 is the permittivity of free space, equal to 8.85 × 10−12 C2 N−1 m−2. For the

λ-DNA solution described here the LB is approximately 7 Å. At distances less than

LB the energy of kT is insufficient to stop the recruitment of counterions from the

surrounding buffer to charged regions on the polymer molecule.

As stated earlier, the ionic strength, Ic, of the buffer solution also bears great impact

on the screening of charge in polyelectrolyte solutions. Equal to

Ic =
1

2

∑
i

ciz
2
i (4.2)

where i is an index of charged species in the buffer, c is the species concentration,

and z its elementary charge. Ic for this DNA buffer is 8 mmol kg−1. Finally, the

Debye screening length, Ld, identifies the distance at which a charged species on a

macromolecule “sees“ another charged species, and as such uses both LB and Ic

Ld =

√
1

8πNALBIc
(4.3)

where NA is Avogadro’s Number (Dobrynin and Rubinstein, 2005). LD for the λ-DNA
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solution used here is about 4 nm, much smaller than the inherent stiffness of a polymer

with an Lp of 50 nm.

Finally, to determine the solvent conditions for λ-DNA in TE buffer, I must calculate

the size of the thermal blob, LT , which is

LT = Lp

(
L3
p

Vx

)2

(4.4)

where the excluded volume, Vx, per chain segment, is

Vx = L2
pLd (4.5)

making LT finally equivalent to

LT =
L3
p

L2
d

(4.6)

For λ-DNA in TE buffer, the thermal blob size is about 10 µm, about two-thirds the

size of the chain’s Lc. Such a result lies on the boundary between ideal and real chain

representations of the λ-DNA strands in solution. For the purposes of the work shown

here, I have assumed the λ-DNA chain is not swollen in solution and as such resides as

an ideal chain in θ-solvent conditions.

The simplest physical model that describes a polymer system is the Gaussian (or

Ideal) chain model, of which there are several types: freely jointed chain (FJC), freely

rotating chain (FRC), worm-like chain (WLC), hindered rotation (HR), and rotational

isometric state (RIS). In the literature DNA is modeled as a WLC, a good model for
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polymers with moderate stiffness. Technically, the WLC is a special case of the FRC

model, where the bond angle, θ, is small and the contour length is larger than the

polymer’s characteristic stiffness (Rubinstein and Colby, 2003).

In Section 2.3, I defined particle diffusion in the context of a temporal random walk.

Similarly, the geometry for an ideal polymer chain is a random walk, but in space rather

than time, where the characteristic step size is governed by the stiffness of the polymer

strand. The convenient value is no longer the RMS displacement as a function of the

mean time to escape. Rather, it is now the RMS end-to-end vector of the polymer

path, which defines the straight-lined average vector distance from the beginning of a

typical polymer to its other terminal end, equal to

〈Ro〉 = b
√
N (4.7)

where b is the Kuhn length and N corresponds to the number of Kuhn segments that

exist in each polymer chain. For the WLC, b = 2Lp and is the length at which successive

Kuhn monomers follow a random walk in space (Rubinstein and Colby, 2003).

I chose to use λ-DNA as a model polymer system because its shear rate and fre-

quency dependent rheology profile is well documented in the present body of literature

(Teixeira et al., 2007; Heo and Larson, 2005; Mason et al., 1997; Mason and Weitz,

1995). Additionally, λ-DNA is found in prodigious amounts in pathological sputum, its

prevalence responsible for altering sputum rheological properties (Rubin, 2006). Lastly,

the rheology of entangled λ −DNA solutions is easily measured by the magnetically-
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driven microbead rheometry capabilities of our magnetic tweezers system, the 3DFM

(Fisher et al., 2006b).

To prepare solutions of λ-DNA (Invitrogen, Carlsbad CA), I first had to anneal one

of the single-stranded, hanging ends with a complementary 12 base pair oligonucleotide

(UNC oligonucleotide synthesis facility, Chapel Hill NC). This step prevented the for-

mation of cyclic DNA and minimized potential solution heterogeneity (Braun et al.,

1998). A more detailed version of the protocol used to prepare the λ-DNA solution

is in Appendix A.5. A solution of λ-DNA reaches its overlap concentration at 0.07

mg/mL, and its entanglement concentration is roughly 10 times that at 0.7 mg/mL

(Zhu et al., 2008). PEGylated beads with 1 µm or 2.8 µm diameters were mixed in the

DNA storage buffer and used to dilute the λ-DNA to the tested concentrations of 2.4

mg/mL and 1.44 mg/mL. Mixing the beads into the solution was done via short vortex

bursts of 2 s over a 2 minute period. λ-DNA solutions were stored at 4 ◦C and allowed

to equilibrate at least overnight before rheology experiments.

I checked for non-specific adsorption of λ-DNA to the particles, which might con-

found driven transport, by imaging suspensions of particles dispersed in λ-DNA, fluo-

rescently labeled with YOYO-1 (data not shown). Observing no significant increase in

fluorescence near these particles indicates little λ-DNA adsorption.

4.3.1 CAP

Extensive CAP measurements on λ-DNA solutions provided useful parameter es-

timates for subsequent studies. For the stress amplitude sweep shown in Figure 4.1
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the CAP oscillates at a single frequency (ω = 1 rad/s) and increases the stress am-

plitude in steps. The primary reason for performing the stress amplitude sweep is to

determine the linear range for the tested material, where an increase in stress results

in a corresponding and proportional increase in strain. This region corresponds to a

range of strain where the resulting modulus is flat, with zero slope. Once the linear

response range is determined for a material at high frequency, one can better choose

the strain/stress amplitude and frequency range for the frequency sweep. This practice

ensures the collected data for the frequency sweep is in the linear regime.

Figure 4.1: Shown here plotted alongside literature values for calf-thymus DNA
(Mason et al., 1998) is the strain amplitude response for 1.4 mg/mL λ-DNA
(G′(ω) �, G′′(ω) �) tested by the AR-G2 CAP controlled-stress rheometer at a
constant frequency of ω = 1 rad/s.

All data shown in Figure 4.1 for calf thymus DNA are from (Mason et al., 1998)

while the λ-DNA is our formulation. Calf thymus DNA has a shorter contour length
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of 4.5 µm compared to λ-DNA at 16 µm. Both DNA solutions used here are in the

entangled regime where the dominant length scale is the tube diameter, meaning that

G should be independent of both Mw and Lc. As such, I should expect the 1.44 mg/mL

λ-DNA solution to have lower shear moduli, with G′′ being the greater of the two. This

discrepancy in the rheological response occurs due to a confluence of differences in the

testing. The calf-thymus DNA was tested at 25 ◦C while the λ-DNA was tested at 23

◦C. The calf-thymus DNA was tested at a pH of 7.9 while the λ-DNA was tested at a pH

of 7.4. Finally, the ionic strength of the buffer for the calf-thymus DNA was more than

10x the λ-DNA buffer, meaning the calf-thymus chains are easily ideal chains, while,

as described in the previous section, the λ-DNA chains are only marginally ideal.

With these caveats in mind, I consider that the resulting rheology values for λ-DNA

are consistent with the literature values. Additional stress sweeps were done at 10 Hz

with linear strain responses at 10% strain or less (not shown).

Two separate CAP rheometers were used to check the linear frequency response

for two different preparations of 1.44 mg/mL λ-DNA. Both instruments showed sim-

ilar responses with less than 10% difference at frequencies less than 10 Hz (Fig. 4.2)

denoting the reliability of the λ-DNA solution preparation and of the CAP protocols

I used. Dissimilar responses at frequencies higher than 10 Hz occurred due to instru-

ment inertia. Consistency exists between the amplitude sweep data in Figure 4.1 and

the frequency sweep in Figure 4.2. The zero-shear linear viscoelastic response in the

amplitude sweep intersects the frequency sweep at the appropriate frequency (labeled

as stars in Figure 4.2).
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Besides a consistency check, the frequency sweep provides information regarding

material properties. For entangled solutions, the plateau modulus, Ge, appears as a

flat region in G′(ω) at intermediate frequencies, and corresponds to time scales where

the material exhibits a solid-like response. Knowing the plateau modulus allows one to

calculate the molar mass of the entanglement strand, Me,

Ge =
ρRT

Me

(4.8)

where R is the universal gas constant, equal to 8.31 J mol−1 K−1. For the 1.4 mg/mL

λ-DNA solution, Ge occurs at G′(ω) ∼ 0.9, which corresponds to an Me of 3.9 MD. To

determine the number of Kuhn monomers per entanglement strand, Ne,

Ne =
Me

Mb

(4.9)

where Mb is the molar mass of a Kuhn monomer. This λ-DNA solution has Ne ≈ 8.

The number of entanglements per strand, Z, is just the ratio of Kuhn monomers in an

entire polymer chain compared to the number within an entanglement strand,

Z =
N

Ne

(4.10)

For the test solution of λ-DNA, Z results in approximately 20 entanglements per chain.
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Finally, the confining tube diameter, a, used in the Doi-Edwards tube model is

a = bN1/2
e (4.11)

for ideal chains (Rubinstein and Colby, 2003). This relationship results in a tube

diameter of 285 nm for the 1.4 mg/mL λ-DNA test solution.

Figure 4.2: I used two different CAP rheometers to test the frequency-dependent
modulus of two different formulations of 1.4 mg/mL λ-DNA. The Bohlin Gem-
ini (N,4) and the TA AR-G2 (�,�) show very similar responses below 10 Hz.
Above 10 Hz, inertia begins to dominate the response, as seen by the sudden
loss of measurable strain (×). Steady state strain amplitude sweep values from
Figure 4.1 are shown as F at the appropriate frequencies and provide supporting
evidence the response is linear.

CAP steady-state flow measurements were also performed on λ-DNA specimens,

where the unidirectional shear rate increases in steps while the stress is measured. The

rheometer waits for a steady shear rate before recording the apparent viscosity value.
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Shown in Figure 4.3 are the shear thinning profiles for solutions of λ-DNA at varying

concentrations. Data for 0.7 mg/mL and 1.4 mg/mL were my formulations while data

for those concentrations less than 0.7 mg/mL were from work done by Heo and Larson

(Heo and Larson, 2005). Later, in Chapter 5, I compare these CAP results to shear-

thinning data found while driving rod-shaped microparticles in the same solutions.

Figure 4.3: λ-DNA solutions shear thin when subjected to sufficient shear rates.
Data shown in this figure are CAP taken from (Heo and Larson, 2005) for 0.72
mg/mL and lower concentrations. I obtained data for the 1.4 mg/mL solution
with our CAP instrumentation. I also tested the 0.72 mg/mL concentration with
the data accumulating less than 8% error from the literature values.

4.3.2 TMBR

My first microscale rheology measurements used Thermal Microbead Rheology

(TMBR) to measure the mean square displacement (MSD) of 500 nm and 1 µm beads
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embedded in solutions ranging from buffer to 1.44 mg/mL λ-DNA. The DNA buffer

(10 mM TRIS, 5 mM NaCl, 0.1mM EDTA) is a Newtonian fluid with a viscosity of

2–3 cP, slightly higher than that of water under the same conditions. Newtonian fluids

present an MSD function that has a constant slope equal to one for all timescales,

shown schematically in Figure 2.4, and experimentally in Figure 4.4.

As the concentration of λ-DNA increases, the expected slope of one found in the

Newtonian buffer solution begins to decrease to a shallower value at moderate τ . At

long τ the MSD for all of the λ-DNA solutions converge to viscous only modes and as

such have slopes equal to one.

Chains of λ-DNA have an overlap concentration, c∗, of 0.07 mg/mL. The first λ-

DNA solution tested and shown in Figure 4.4 had a concentration of 0.14 mg/mL,

or 2c∗. Even at this semi-dilute concentration, before the chains entangle, there is a

slight shift in the linear character in the solution MSD at a τ of 0.3 s. This slight

decrease in the slope indicates an increase in the modulus of the solution, due to chains

interpenetrating, increasing the free energy of each chain above the background entropic

value.

Increasing the concentration of λ-DNA to 0.7 mg/mL corresponds to 10c∗, which is

on the boundary between the unentangled and entangled polymer regimes. The MSD

function for this solution, also shown in Figure 4.4, has a distinct decrease in slope

from the Newtonian value of one at τ ranging from 0.01 – 3 seconds. These time scales

correspond to the beginning signatures of this polymer system’s plateau modulus in

the frequency response (not shown).
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Increasing the λ-DNA concentration even further to 1.4 mg/mL, or 20c∗, continues

to reduces the MSD slope and expands the time scales at which the system is vis-

coelastic. The plateau modulus for this solution presents itself in the frequency sweep,

explored and discussed in detail in Figure 4.2. Long-τ scales, where the slope converges

to one, corresponds to a zero-shear TMBR-obtained viscosity of 2.7 ± 0.2 Pa s, about

half of the magnitude at the lowest test frequency, shown in Figure 4.3.

I also tested this solution with smaller, 0.5 µm diameter beads that had the same

surface functionalization, obtaining an MSD function that portrayed a long-τ viscosity

that was lower by half when compared to the larger 1 µm diameter beads. This discrep-

ancy probably occurs due to solution heterogeneity at bead length scales as because

the bead size is close to the solution’s tube diameter, approximately 300 nm.

4.3.3 DMBR

For DMBR measurements in λ-DNA, I start with constant, relatively low force,

long duration pulls in 1.4 mg/mL λ-DNA where the force was applied for 10 seconds.

Plotted in Figure 4.5, the resulting compliance curve reaches the long time, viscous

only mode of the polymer system, where the velocity becomes constant. A good fit

to the Jeffrey model is overlaid in red and shows the response to be predominately

linear, with the exception of small ripples or fluctuations in the bead path, attributed

to possible small length-scale heterogeneity in the λ-DNA solution or diffusion of the

bead over such long time scales. The recovery distance of the bead is not 100%, which
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Figure 4.4: Shown here is the dependence of bead mean-square displacement
on time and polymer concentration. Beads in buffer show viscous only modes
with expected dependence on τ with a power law slope equal to one. Even
at 0.14 mg/mL (2c∗) there is a slight shift in the primarily linear dependence
at τ = 0.3s. As the concentration of λ-DNA increases, the viscoelastic modes
become detectable by the diffusing bead. At 1.4 mg/mL, the λ-DNA solution
is entangled, with time scales that correspond to a plateau modulus with slope
close to zero.

indicates that 1.4 mg/mL λ-DNA is a viscoelastic liquid. With a total relaxation of

the imposed stress, the bead reaches a stable and relatively driftless position over time.

The suddenness of the elastic response at very early times relative to the pull duration

illustrates how the Maxwell model approximation can serve as a limiting case of the

Jeffrey model.

Fitting for model parameters during the forced period results in a G of 0.9 Pa and

an η0 of 1.2 Pa s, values that are approximately one-half of the TMBR data and one-
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Figure 4.5: Pulling a bead in 1.4 mg/mL λ-DNA with DMBR. Pulling with 2 pN
of force, the 1 µm bead reports an η0 of 1.2 Pa s, and a G of 0.9 Pa, values that
agree with the CAP taken and shown in Figure 4.2

quarter of the data collected by the CAP frequency sweep (Fig. 4.2). As described

later, the smaller viscosity found in this DMBR experiment is probably due to the

higher-shear conditions in the space immediately surrounding the bead. Using the flow

measurements seen in Figure 4.3, and the maximum shear rate around the bead for this

particular pull (0.05 s−1), the corresponding CAP apparent viscosity is equal to 1.8 Pa

s. I also used the Cox-Merz approximation on the TMBR data, setting the shear rate

equal to the probed frequency in rad/s, and obtained an apparent viscosity of 1.4 Pa

s, within 20% of the DMBR value.

Using these parameters to also model the recovery portion of the data returns a

close but not as good fit. Zooming into the early response of the forced period (Figure

4.5, inset) reveals an additional systematic deviation from the Jeffrey model. Both of
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Figure 4.6: Shown with error bars are averaged creep compliance curves taken in
1.44 mg/mL λ-DNA with ≤3.2 pN input force where the response appears linear.
Data shown input forces of 1.5 pN or 1.9 pN show a linear viscoelastic response
with complete recovery. Each curve is an average of multiple sequences, showing
good repeatability from pulse to pulse. The 3.2 pN input force data shows a
quasi-linear viscoelastic liquid response where the elastic component becomes
dominated at long times by a viscous mode equivalent to 0.2 Pa s and does not
experience complete recovery upon relaxation.

these deviations indicate that a more complex model, perhaps a Jeffrey model with

multiple modes, is required to fit all of the behavior seen in the data.

Figure 4.6 shows the repeatability of successive creep measurements in DMBR when

the longest probed time mode is allowed to fully relax. These 1 µm MyOne superparam-

agnetic beads were pulled through the 1.4 mg/mL λ-DNA solution under indicated step

forces. Quasi-linear creep compliance curves are averages of several pulses of identical

parameters. Good control over the DMBR technique combined with a homogeneous,

viscoelastic λ-DNA solution produces reproducible results with high signal-to-noise ra-
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tio.

When viewed in the context of shear thinning, the viscosities measured by DMBR

during forced periods match those generated by CAP and TMBR techniques. Moduli

values are also close to CAP and TMBR, provided the duration of the DMBR pull is

sufficient to exhaust the “spring” and probe the long-time viscous only mode of the

material response. However, these modulus values do not exactly fit data obtained

during the recovery period. In addition, the Maxwell and Jeffrey step responses require

an incomplete recovery of the rheology probe as seen in the step response equation

(Jeffrey shown):

J(t) =
1

G
+
t− t1
η2

− 1

G
exp

(
−G(t− t1)

η1

)
(4.12)

The second term is nonzero for any t1 > 0 and disappears altogether during the recovery

period. This asymmetry in the step response provides a necessary net displacement for

any pull duration. In the data shown in Figure 4.6 however, a total recovery with no

net displacement is found.

To resolve this contradiction I must concede that Jeffrey or Maxwell models do not

accurately describe the DNA response curve seen in Figure 4.6. When pulled with low

forces for very short periods of time the bead experiences a full and complete recovery.

Is this because there is some inherent difference between the behavior of DNA and the

model or is it possible the net displacement is hidden beneath the noise floor of the

instrumentation? The pulse duration is 200 ms and the applied force less than 2 pN.

The highest viscosity for the 1.4 mg/mL λ-DNA measured by DMBR is 1.2 Pa s. In
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these conditions, the net displacement would be approximately 3–4 nm, on the order

of the noise level in the tracking software. In these experiments, it appears the reason

for the lack of net displacement is indeterminable due to system noise.

An interesting observation about DMBR, and probably concerns all active microrhe-

ology techniques, refers to a sensitivity of the probe to specimen history. Shown in

Figure 4.7 are the fitted relaxation times for a sequence of constant force DMBR pulls

in λ-DNA. Each pull results in an apparent complete recovery of the bead displacement

once the external force is removed from the system. As the number of pulls increases,

so does the relaxation time of the bead. Even though the bead has returned to its

initial position along its previous path, the polymer dynamics become slower, presum-

ably because of the perturbation the bead has imposed on the surrounding material.

To compensate for this effect and obtain consistent curve shape and dynamics, the

relaxation period must be of sufficient length to relieve the stress still imposed on the

strands closest to the bead.

The linear increase in relaxation time does not continue forever, but experiences a

sudden drop in magnitude once the bead leaves its initial and immediate environment

and probes fresh (not previously probed) material. Such behavior suggests the polymer

surrounding the bead has experienced an increase in Le, generating longer relaxation

modes. More discussion about the dynamic properties of this solution can be found in

Chapter 6.

Concluding the rheology analysis for λ-DNA solutions is a combination of all three

118



Figure 4.7: Shown as �’s are fitted relaxation times measured for DMBR creep
pulls in 1.4 mg/mL λ-DNA. A systematic increase in the relaxation time occurs
subsequent to each pull of the bead. Shown in �’s are the correlation coefficient
(R2) values. While R2 is not a conclusive measure of the goodness of fit, most
of these values are sufficiently close to one to establish confidence in the trend.
Total relaxation occurred for every pulse shown here.

Figure 4.8: λ-DNA solutions tested for rheological response. CAP, TMBR, and
DMBR methods are all used and show similar viscosities, even those that show
the thinning behavior that depend on input shear rate.
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techniques showing repeatability across length scales. Using Equation 2.47, we calcu-

late the maximum shear rate the solution experiences from the moving bead. Viscosity

estimates are computed by inverting the slope of the steady state compliance measure-

ments as described in Section 2.4. TMBR estimates the expected zero-shear η from

CAP while DMBR replicates steady-state shear thinning also consistent with CAP.

4.4 HA

For HA and the remaining materials, cone and plate measurements were taken us-

ing the amplitude sweep, frequency sweep, creep compliance, and steady state flow

protocols while only creep data were taken via DMBR. Like the λ-DNA measurements

described in the last section, the linear viscoelastic region was determined using the

amplitude sweep. Frequency sweeps were acquired with attention placed on the strain

amplitude to ensure that testing across frequencies remained within the linear range.

Creep compliance testing ensured incomplete recovery with full relaxation upon termi-

nating the test. In viscometric flow tests the minimum applied shear rate either resulted

in the zero shear viscosity or was extrapolated using model fits. These shear thinning

curves were fit with the Carreau model to produce parameters and generate force re-

quirements as described in Section 3.6. In the interest of space, all figures resulting

from this testing are not shown for all materials.

Hyaluronan (HA) is a linear glycosaminoglycan (GAG) that has disaccharides as

monomers (mol. wt. 387 g/mol), making it a polyelectrolyte with a surface chemistry
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similar to heavily glycosylated mucins. It is practically ubiquitous in the body and can

be found in extracellular matrix (ECM), the vitreous humour of the eye, and synovial

fluid (Balazs and Gibbs, 1970). Even cell types in the alveolar wall co-produce HA

alongside the lung surfactant (Sahu et al., 1980) that eases inflation and optimizes gas

exchange (Creuwels et al., 1997). Naturally occurring HA has molecular weights that

typically range from 0.1 – 10 MD (Hardingham, 2004) and has a persistence length of

approximately 8 nm (Buhler and Boue, 2004).

I used recombinant HA derived from Streptococcus equi (Sigma-Aldrich cat# 53747-

10G) at a concentration of 10 mg/mL. As packaged, the material had a molecular weight

of 1.63 MD. When measured by light scattering, the molecular weight was 1.5 MD and

a radius of gyration of 115 nm.

For 10 mg/mL HA, the zero-shear viscosity using CAP was 12.1 ± 0.1 Pa s (Fig.

4.10, inset). DMBR testing used 2.8 µm diameter SPM beads to generate displacement

and compliance curves (Fig. 4.9). A total of 29 curves (sequences) from 6 beads were

analyzed, fit to Jeffrey model with similar systematic deviation to those found in the

previous section for λ-DNA. All of these curves were of sufficient force and duration to

present incomplete and non-zero recovery, indicative of a viscoelastic fluid.

Using this HA solution I have successfully demonstrated linear response in terms

of compliance at the microscale with DMBR (O’Brien et al., 2008). The compliance

response function is computed by normalizing the displacement with the applied mag-

netic force using Equation 2.86. In Figure 4.10b, the compliance functions for all input
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Figure 4.9: 10mg/mL HA solution tested for rheological response using DMBR.
G = 19, zero-shear viscosity equal to 12.8 Pa s, with an R2 value of 0.9992. Sys-
tematic deviations from model are shown as insets for both forced and relaxation
periods.

forces are coincident, implying a linear response. Where the bead displacement in time

(shown in Fig. 4.10a) depends on the input force, the compliance curves collapse to a

single line which only occurs in the linear regime of the material where vanishingly small

input forces result in correspondingly small strains. The high density of monomers in

the solution corresponds to a small correlation length, producing a much better collapse

in compliance space and showing a well-behaved linear response. The computed steady

state viscosity for the HA solution is 12.5 ± 0.2 Pa s using this technique, very close

to CAP zero-shear with only 3% difference in their average values.

The relaxation times seen in the λ-DNA experiments in Section 4.3 had different

values when comparing the forced versus the relaxed parameters. This difference in

parameters may be due to a heterogeneous environment at bead-sized length scales
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combined with the decay of the bead motion from a deterministic process to a stochastic

one (diminishing signal to constant noise). For HA, the relaxation times for both “off”

and “on” periods of the force are equal within standard error, with 0.67±0.04 s for the

forced period and 0.78± 0.07 s for the relaxation period, denoting similar G values for

both periods. The larger error during the relaxation period is probably due to the decay

of stored stress as a deterministic process to steady state bead diffusion, a stochastic

process. As the stress decays to zero, the signal to noise ratio likewise decays to a value

of one. The stochastic nature of bead diffusion does not factor in the mechanical model

analogues; it is treated as noise. Both CAP and DMBR data are plotted in Figure 4.11.

Figure 4.10: DMBR measurements of hyaluronan (HA) using 3DFM tools de-
scribed in Chapter 3. Panel (a) shows displacement of 2.8 µm beads as they
are pulled through 10 mg/mL HA solution with forces that range from 80–120
pN. Displacement curvature at early time scales indicates elastic behavior, while
steady state velocity is related to the zero-shear viscosity, η0. Panel (b) shows the
reproducibility of the DMBR technique by plotting displacement normalized by
the step force, which results in creep compliance. Since this HA solution is a lin-
ear viscoelastic material at the probed shear rates, disparate displacement curves
in (a) collapse into a single curve when plotted as compliance in (b). Inverting
the slope of the steady state compliance is equal to η0 for HA.
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Figure 4.11: The inset plots a collection of these viscosities with HA’s cone
and plate (CAP) flow profile, showing that not only is the DMBR technique
internally reproducible but is consistent with CAP under specific polymer system
conditions.

4.5 Guar

Of the four biopolymer systems tested here guar is the only non-electrolyte. It

is a naturally occurring polysaccharide extracted from milled and filtered guar bean

(Imeson, 1999). Primarily a linear polymer, guar contains a variable number of galac-

tose (monosaccharide) side chains, has an average monomeric molecular weight of 485

g/mol, and can be found with large molecular weights of 2 MD or higher. The lack

of the number of galactose side chains reduces the molecule’s solubility and increases

its stiffness (Petkowicz et al., 1998; Gittings et al., 2000). Guar gum has been used

with some limited success as a mucus simulant, making it of some interest to these

experiments as a test material for refining methodology and quantifying MCC (King
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and Macklem, 1977). With a published persistence length of 10 nm (Picout et al., 2001;

Morris et al., 2008) the guar gum chains more closely match the physical stiffness of

HA but has a molecular weight closer to that of a mucin.

Our light scattering measurements put the molecular weight of the guar gum sample

at approximately 54 MD and the Rg at 425 nm. Assuming the guar molecules are ideal

chains with this molecular weight would indicate polymer strands with a 54 µm contour

length. Rheology measurements of guar show a dependence on shear rate using both

CAP and DMBR techniques (Figure 4.12). More of its viscoelastic properties will be

discussed in Chapter 6.

Figure 4.12: Consistency between CAP and DMBR measurements in 1.5% guar
solution. Larger spread in data indicates larger heterogeneity than seen in DNA
or HA. Error in CAP measurement is less than 5% and in DMBR less than 15%.
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4.6 PGM

According to the literature, endogenous porcine gastric mucus (PGM) e xperiences

a transition from liquid-like sol-phase to a more solid-like gel-phase when the pH of

the system is reduced from neutral (pH=7) to acidic (pH=2) conditions and the ionic

strength is less than the equivalent conductivity of 200 mM NaCl. The PGM used in the

Celli study was harvested directly from porcine stomach, purified by chromatographic

separation and cesium chloride density centrifugation, and lyophilized. Lastly, these

specimens were reconstituted with a phosphate/succinate buffer system tuned to the

desired pH (Celli et al., 2007).

An industrial source exists for PGM (Sigma-Aldrich cat#M1778-10g) but its use is

largely discouraged by the community. The use of Sigma-PGM (Σ-PGM) is rejected be-

cause of Sigma’s protease treatment that renders the material into an undesirable state

when it destroys mucin integrity; the degraded glycoproteins result in qualitatively dif-

ferent rheological profiles than actual mucus as shown by previous measurements done

by Kocevar-Nared in 1997 (Kocevar-Nared et al., 1997). Our light scattering measure-

ments indicate that the majority of molecules in the Σ-PGM are large, averaging at

56 MD in molecular weight, and 310 nm in Rg, and may be related to aggregates of

MUC5AC.

I used this polymer system assuming the molecules were qualitatively like mucins,

such as being mostly linear in shape and heavily glycosylated. At concentrations greater

than 4% this PGM had a physical consistency that by eye, looked qualitatively much
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like mucus, and became entangled as expected of any other polymer system. These

entanglements are mimics of transient crosslinks albeit with possibly higher zero-shear

viscosities. I did attempt to gel Σ-PGM by controlling the conductivity and then

acidifying its pH to about 2, but this was unsuccessful, probably because the protease

treatment damaged the more vulnerable, non-glycosylated regions of the protein. Gela-

tion is thought to occur due to confomational changes in the protein structure when

exposed to low pH (Celli et al., 2007). Shown in Figure 4.13 is the shear rate depen-

Figure 4.13: Shown as the solid line is the shear thinning response curve for 4%
PGM. Overlaid as points are the steady state viscosity values as measured by
DMBR in our high-throughput system (Spero et al., 2008). The results shown
here originate from three different specimens tested by three different calibrated
pole tips. All wells report viscosities similar to one another, implying the spread
in the data is due to sample heterogeneity.

dence of PGM viscosity on input shear rate. It is a shear thinning fluid, as expected,

with DMBR measurements on 4.5 µm beads retrieving on average the correct steady-

state viscosity similar to CAP, but with much higher noise between measurements. To
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distinguish the noise source I tested three different specimens drawn from one vial of

reconstituted PGM with three different calibrated pole tips using our high-throughput

DMBR system (Spero et al., 2008). Results are taken from three different wells marked

as A2, B3, and A3. Each well contains steady viscosity values from all aggregate values

seen in the figure across two orders of magnitude in viscosity. This result with DMBR

reveals the degree of heterogeneity in the viscosity of PGM, a property of this solution

to which CAP is insensitive.

This section focused primarily on PGM as a mucus simulant and a more compre-

hensive discussion of mucus as a biologically active biopolymer system

4.7 Mucus

Broadly defined, mucus refers to a family of soft, viscoelastic materials secreted at

the cellular and tissue scales by a wide variety of organisms, vertebrates and inverte-

brates alike. Its persistence through the evolutionary record speaks to its success in

coating, protecting, and/or lubricating cells and cell surfaces often found at interfaces

with epithelial cells (Desseyn et al., 2000). While one mucus may have drastically differ-

ent material properties from another, they all share a set of fundamental components:

water, electrolytes, and a distribution of macromolecules called mucins (Kesimer et al.,

2009). Indeed, mucus function relies heavily on its mucin profile. For example, gastric

mucins experience a sol-gel phase transition in the low-pH environment of the stomach

to limit diffusion and protect the lining from denaturation (Celli et al., 2007). Every
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mucus is intrinsically a polymer system, specially tuned to perform its role within its

target environment.

Mucins are typically giant glycoproteins, heavily glycosylated (more than 50% by

wt) mostly by O-glycans along the mucin protein core. O-glycosylation is a post-

translational modification believed to occur in the Golgi complex whereby glycan chains

are constructed one carbohydrate at a time, binding to serine, threonine, hydroxypro-

line, or hydroxylysine residues. Prevalent negative charge surrounds each polysaccha-

ride, creating a repelling force between O-glycans and thus maximizing the distance

among them, as well as increasing the mucin’s hydrophilicity. The mucin swells in the

good solvent which increases its pervaded volume, offering the largest possible spatial

coverage for protection or lubrication. The end result is a very long and mostly un-

folded macromolecule with monomer units that are best modeled as cylinders, each with

its own polymer brush (Perez-Vilar and Hill, 1999) where the sum might be mentally

visualized as a “fuzzy” and floppy pipe cleaner.

Membrane Bound MUC1, MUC3A, MUC3B, MUC4, MUC12, MUC13, MUC16
Secretory MUC2, MUC5AC, MUC5B, MUC6
Unclassified MUC7, MUC8

Table 4.4: Human Mucin Family

In the airways, mucus serves as the first line of defense against the inhalation of

pollutants or pathogens during breathing activity. It lines the upper part of the airways,

creating a physical barrier between the epithelium and air interface and providing a
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favorable environment where pollutants are readily entrained. Once attached to a

healthy mucus network, they are removed from the lung altogether through the tireless

beating of millions of cilia lining the airway epithelium in a process called mucociliary

clearance. A successful mucus network is defined here as one that a wild-type ciliary

system successfully transports. Ultimately, it is this flow profile, i.e. the rheology, of

the mucus that dictates successful MCC.

Figure 4.14: DMBR measurements of a small volume sample of human sputum
using 3DFM. Panel (a) plots the displacements while Panel (b) plots compliance
for successive pulls on three different 1 µm beads embedded in human sputum.
Displacement curves vary widely and show no tendency to collapse when nor-
malized to creep compliance, implying that sputum could either be non-linear at
the shear rates seen immediately surround the bead surface, or that it is highly
heterogeneous. Inconsistency in the curve shapes indicate that this is due to
spatial heterogeneity in the sputum at length scales on the order of the bead’s
diameter. The inset shows that the range of computed viscosity felt by the beads
in this sputum ranges widely across two orders of magnitude, from ∼ 1 Pa s up to
∼ 100 Pa s. While not enough volume was present to run CAP on this material,
such testing on similar specimen show a non-linear viscoelastic response that is
consistent when retested within a short (< 1 h) time scale.

To understand the origin of physical properties for a cilia-clearing mucus network

in the airway, one must first identify its constituent components; i.e. its mucin pro-
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file. Identified as contributing the most to the physical properties of human airway

mucus in vitro are two mucins, MUC5B and MUC5AC. Referred to as the gel-forming

mucins, MUC5B and MUC5AC, like other mucins, are heavily glycosylated and are

large even for macromolecules, having molecular weights on the order of 1 to 100 MDa.

Their primary sequences include cysteine-rich domains responsible for disulfide bonds

often found in protein-protein interactions. These domains provide the biochemistry

necessary for covalent mucin-mucin associations end to end.

Just as the gastric mucus is tuned for the vagaries of its environment through its

mucin profile, so too must the mucus in the airway. That balance can be upset in a

number of ways, possibly resulting in pathology. It is generally agreed in the literature

that the presence of persistent bacterial lung infections is the most common pathology

experienced by Cystic Fibrosis patients. Because of the absent or ill-formed CFTR

protein (Cystic Fibrosis Transmembrane conductance Regulator), Na+ and Cl – ions

are not transported in sufficient quantities to maintain an osmotic balance that would

otherwise keep the surface epithelial mucus layer adequately hydrated.

The inadequate hydration of mucus in CF results in a thickened mucus that over-

whelms the mucociliary system and impedes mucus clearance. This may be considered

as an increase in the concentration of mucins in the mucus. A change in polymer con-

centration changes the length scale regime that drives diffusion rates, interactions, and

dynamics. Increasing the concentration of even non-associating polymers can shift the

system to a different regime, e.g. from non-entangled to entangled. It is the concen-

tration of interaction points, whether by entanglements or transient cross-links, that is
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responsible for the elastic properties or modulus of the polymer solution (Rubinstein

and Colby, 2003). In addition, experiments have shown that low mucin concentrations

also reduce the effectiveness of mucus clearance (Shih et al., 1977; Chen and Dulfano,

1978; Puchelle et al., 1980b).

The physical properties of mucus can be drastically altered through the existence of

dynamic and adjustable associations between mucins. Up to the entanglement regime,

the overall concentration of polymers is responsible for the system’s viscosity. It is

the concentration of interactions or cross-links that dictates the system’s elasticity.

Adjustable associations between mucin strands and adjustable water concentration

through electrolyte balance work together to modulate the system’s rheology.

Physiological relevance becomes an issue when considering macro-scale measure-

ments because the rheological response of polymeric systems is time and length scale

dependent. The main task of MCC is to transport micron-sized and smaller particles

from the lung. The CAP rheometer can measure the rheological response of mucus

for large length scales that correspond to organ sized clearance. While cone and plate

techniques successfully even out the smaller heterogeneities found in a mucus network,

they do not accurately describe the material environment sampled by a bacterium, a

piece of particulate matter, or even a cilia tip responsible for the propulsion of mucus

in MCC.

While it is possible for their mucin compositions to be similar, there is a distinction

between mucus and sputum. Mucus is the material secreted into the lung and ac-

tively transported by the mucociliary system whereas sputum is typically a pathogenic
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substance eliminated from the lung by cough (Yeates et al., 1997). Mucus typically

contains little to no actin, DNA, or neutrophils while sputum contains all of these in

significant quantities (Rubin, 2006). These additional biopolymers would contribute to

higher viscosity and shear moduli and thus would lower flow rates. A confocal image

I took for HBE mucus obtained from cell culture is shown in Figure 4.15, and it does

show the presence of small amounts of actin (red, phalloidin) and DNA (green, YOYO-

1) but their concentrations are dwarfed by the amounts seen in (Rubin, 2006). These

small amounts of actin and DNA might contribute to heterogeneity in the HBE mucus

specimens, but is probably not enough to drastically alter the specimen’s large scale

rheology.

Figure 4.15: Confocal imaging of DNA and actin in a specimen of HBE mucus.
DNA and actin are stained with YOYO (green) and phalloidin (red), respectively.
This cluster of actin was the only one present in the 3 µL specimen used here.
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Figure 4.16: Shown as the solid line is the shear thinning response curve for two
specimens of HBE mucus. I performed CAP measurments for both the 2.5% (�)
and the 5.3% (◦) mucus specimen. TMBR measurements (�) for 2.5% mucus
are lower than the CAP data by about 50%. DMBR measurements (M) for 5.3%
mucus exhibit shear thinning, with error in each measurement being <15%.

4.8 Discussion

Shown here are many cases where the steady state values for DMBR, TMBR, and

CAP correspond given a few assumptions. First, the bead is sensitive to rheology of

material in its immediate surroundings. The further

In Figure 4.17 I have plotted the zero-shear viscosity against the Maxwell Model

approximation for G at infinite frequency. This representation is related to the data

shown in Figure 3.20, where each material shown is in the context of measureable quan-

tities using the TMBR and DMBR methodologies. In this figure, the λ-DNA solutions

present a fairly linear relationship in log space, with a power law slope of . Saliva,
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PGM, and 2.5% HBE mucus solutions are relatively close in magnitude to the DNA

line, somewhere between 0.7 and 1.4 mg/mL. Guar and HA exhibit rheologies similar

to 8% mucus and sputum. This collection of results, combined with with its sestivity

to heterogeneity, shows how DMBR can provide useful as well as unique information

about polymer solutions.

Figure 4.17: Phase plane of Viscoelasticity using the modulus and viscosity ele-
ments of the Maxwell Model. Instantaneous shear modulus (infinite frequency)
and long-time approximations zero-shear viscosity for the materials studied here.
The λ-DNA solutions show a predictable power law response with respect to con-
centration. The viscoelastic responses of saliva and normal mucus lie somewhere
between the 0.7 mg/mL and 1.4 mg/mL λ-DNA.

4.9 Conclusions

Here I presented empirical data where I used several different methods of measuring

the rheology of biomaterials. From these measurements we learned that λ-DNA has
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viscoelastic material properties that lie in the same order of magnitude as mucus and

can be used a quasi-linear viscoelastic standard material.

DMBR and CAP methods result in similar values for the viscosity and elasticity of

linear viscoelastic materials. It can also replicate shear-thinning modes in the compli-

ance response for all tested materials. One potential divergence between the methods

concerns the timescales over which each method is sensitive. DMBR results differ from

CAP results in the time it takes for either method to relax the inputted stress.
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Chapter 5

Shape Effects

5.1 Overview

Increasingly, the research community applies magnetophoresis to micro and nanoscale

particles for drug delivery applications and the nanoscale rheological characterization of

complex biological materials. Of particular interest is the design and transport of these

magnetic particles through entangled polymeric fluids commonly found in biological

systems. We report the magnetophoretic transport of spherical and rod-shaped parti-

cles through viscoelastic, entangled solutions using lambda-phage DNA (λ-DNA) as a

model system. To understand and predict the observed phenomena, we fully charac-

terize three fundamental components: the magnetic field and field gradient, the shape

and magnetic properties of the probe particles, and the macroscopic rheology of the

solution. Particle velocities obtained in Newtonian solutions correspond to macroscale

rheology, with forces calculated via Stokes Law. In λ-DNA solutions, nanorod veloci-

ties are 100 times larger than predicted by measured zero-shear viscosity. These results

are the first published observations of shear thinning in a polymer network induced



by sub-micron sized driven particles. Particles experiencing transport through a shear

thinning fluid indicate that magnetically-driven transport in shear thinning fluids may

be especially effective and favor narrow diameter, high aspect ratio particles. A com-

plete framework for designing single-particle magnetics-based delivery systems results

when we combine a quantified magnetic system with qualified particles embedded in a

characterized viscoelastic medium.

5.2 Background

Micron and nanoscale magnetic particles attract much attention in research as ac-

tive probes of the microrheological properties for biological polymer systems and as

potential drug carriers in clinical settings. Because of this, magnetophoresis is becom-

ing more common in diagnostic and analytical devices (Jain, 2003), general research

techniques (Amblard et al., 1996b; Gijs, 2004; Lehmann et al., 2006), and clinical appli-

cations (Safarik and Safarikova, 2002). This latter area of medical science is developing

rapidly, employing magnetophoretic systems for drug delivery (Berry and Curtis, 2003;

Okada and Toguchi, 1995; Tartaj et al., 2003), gene transfection (Dobson, 2006), and

hyperthermic therapies (Goya et al., 2008; Wust et al., 2002) where particle delivery

to a targeted site is critical. Materials encountered in these biomedical applications

such as tissue, extracellular matrix (ECM), cytoplasm, and synovial fluid contain com-

plex microstructures that present multiple challenges to particle transport. Confined

paths in dense meshes necessitate the use of nanoscale particles, while the flexibility
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of the mesh in viscoelastic solids or liquids results in complex rheological behavior and

requires the consideration of high shear rate effects. For example, where some bioma-

terials such as the ECM can be considered viscoelastic solids (gel), synovial fluid is an

entangled polymer system that exhibits yield phenomena and shear thinning (Krause

et al., 2001). Furthermore, the question of particle shape arises as one balances consid-

erations of drug loading, force generation, and transport (drag) effects. Solving these

challenges will open new opportunities for the transport of particles and for applications

of magnetophoresis in medical science.

The use of magnetophoresis to manipulate particles predictably in these challenging

biological environments demands a quantitative understanding of the forces required

to produce transport. Despite the increased use of magnetophoresis over a broad range

of fields, limited studies have investigated quantitative microparticle magnetophoresis

within the context of a well-characterized system (Amblard et al., 1996b). To date

there are no reports in microstructured biological media relevant to practical biomedical

applications that establish full characterizations of applied forces, particle and media

properties, alongside single particle measurements. Kuhn, et. al. showed effective

transport for a solution of magnetic particles with observations at the macroscale where

the transport of bulk fluid was measured (Kuhn et al., 2006b). In a later paper Kuhn,

et. al. focused on the effects of the particle chemistry and showed increased rates of

transport for nanoparticles functionalized with a proteolytic colleganase (Kuhn et al.,

2006a). The goal of the current study is to develop a predictive understanding of

particle magnetotransport that may be used for the design of drug delivery carriers
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in medical applications. To that end, we require well characterized biofluid media,

particles and magnetic fields as well as single particle transport measurements.

The concentrated solutions of lambda-phage DNA (λ-DNA) used here function as

useful models of entangled networks typically found in biological media and exhibit

complex rheological phenomena. DNA has several advantages over other biopolymer

systems that might otherwise be suitable models. It contains a highly monodispersed

distribution of polymer lengths which is atypical in synthetic polymer systems, allowing

for predictable and reproducible rheological properties from one DNA sample to the

next. DNA has a persistence length that is intermediate between synovial fluid and

the filaments of ECM (collagen) and cytoplasm (actin, microtubules). In addition, it

serves as a model for infected mucus which may contain a high percentage of entangled

DNA (Rubin, 2006). For our purposes, the measured macroscale rheological properties

of the λ-DNA solutions are sufficient to explain our transport data. Using these rheo-

logical properties, we can predict the forces required to move a sphere or rod through

a shear thinning material like λ-DNA. For probe particles, we used commercial 1 µm

diameter spheres and fabricated nanorods with nominal diameters of 200 nm. We char-

acterized the latter with regard to shape and size using scanning electron microscopy,

and measured their magnetic properties using SQUID magnetometry. Finally, we im-

plemented a simple magnetics system distinguished here from the 3DFM system (see

Chapter 3) with a characterized field and field gradient whose magnitudes are suitable

for deployment in medical applications.

For quantitative magnetophoresis and the understanding of particle shape effects,
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we first show that calculated and measured transport velocities agree in the transport

of the microbeads and the nanorods moving in a Newtonian viscosity standard. Fol-

lowing calibration of the magnetophoretic system, we investigated particle transport

in λ-DNA solutions at two concentrations within the entanglement regime. Particles

traveled at velocities over 100 times faster than expected based on Stokes Law and the

low shear rate viscosity of the λ-DNA solutions. We inferred the viscosities from the

calculated forces and measured velocities, and determined that the viscosities seen by

the particles decreased with increasing particle velocity. This phenomena is consistent

with our measurements of shear thinning in λ-DNA solutions using CAP, and results

when an applied shear stress aligns the polymer strands in a semi-dilute or entangled

network (Hyun et al., 2002) or disrupts the size and arrangement of aggregate polymer

strands in solution (Quemada, 1998). While shear thinning has been measured for λ-

DNA using bulk rheological techniques (Heo and Larson, 2005), this is the first report

of shear thinning of a polymer network induced by sub-micron sized driven particles.

These results have profound implications regarding transport in biomaterials where

short delivery times is a common requirement. Such applications often have practical

constraints where the magnitude of driving forces is limited. Demonstrating that par-

ticles can induce shear thinning at the sub-micron scale reduces the force requirements

for a magnetophoresis system or might provide faster transport over greater distances

than one might otherwise anticipate.
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5.3 Methodology

This chapter describes the motion of magnetic particles under an applied magnetic

field. The force balance Fm = Fd describes particle dynamics in low Reynolds number

situations where Fm is the applied magnetic force and Fd is the drag force due to

the fluid. The former depends on particle magnetic properties and the magnitude

and gradient of the magnetic field. The latter depends on the medium properties and

the particle geometry. First, I describe particle magnetic properties, followed by a

characterization of medium properties and particle geometry. The characterization of

these quantities follows thereafter.

5.3.1 Nanoparticles

The particles used here were non-magnetic 1 µm polystyrene control beads (Poly-

sciences, Warrington PA), superparamagnetic 1 µm carboxy-functionalized MyOne®

microspheres (Invitrogen, Carlsbad CA) and nickel rods fabricated in house. Highly

monodispersed, the MyOne bead radius was 525 nm, as reported by the manufacturer

and confirmed by our in-house SEM measurements. We used electrochemical deposi-

tion to fabricate nickel rods inside 200 nm pores in a commercially available anodized

alumina oxide (AAO) template (Whatman, Maidstone UK). The nickel rods varied in

length from 5 20 µm. This range in rod length provided us with a range of aspect ra-

tios, none of which were below 15. These large aspect ratios allowed us to approximate

a nanorod as a prolate ellipsoid in order to estimate the magnetomotive force induced
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(a) Dynal M-280 beads (d=2.8 µm) (b) Nickel nanorods (d=200 nm)

Figure 5.1: Shown are SEM images for 2.8 µm in 5.1(a) and nickel nanorods in
5.1(b). Both particles are used in the driven microrheology experiments per-
formed in this dissertation.

by the source magnet and the shear rate along the surface of the rod. We adapted

the electrochemical plating bath and deposition parameters from a method devised by

Neilsch and co-workers (Nielsch et al., 2000). After dissolving the membrane, ultrason-

ication suspended the freed rods into a 0.01% SDS solution that we later exposed to a

magnetic field in excess of 0.4 T.

5.3.2 Magnetic Characterization of Nanoparticles

A Superconducting Quantum Interference Device (SQUID) magnetometer (Quan-

tum Design, Inc. MPMS-5S) measured the magnetic characteristics of the beads and

rods at room temperature. Because their long axis was always parallel to the ap-

plied magnetic field during experiments, we characterized the nickel rods as a vertically

aligned array while still embedded inside their host template. We measured the physical
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Figure 5.2: Magnetic susceptibility characterization of nanoparticles used in
DMBR experiments. Measured magnetization per MyOne bead or nickel nanorod
long axis as a function of the applied magnetic field (±5 T), measured at 290K
by SQUID magnetometry. We tested the beads as a dried suspension and the
rods as a membrane-bound array. The bead polymer matrix and the sample
holder induce a slight diamagnetic background that we removed by normaliza-
tion. We also normalized the sample magnetization with respect to the number
of particles. Beads show an absence of area inside the hysteresis loop, indicating
these particles exhibit only paramagnetic behavior whereas rods do show a small
amount of remanent magnetization, indicating slight ferromagnetic behavior. We
define particle saturation at fields where particle magnetization reaches 95% of
its maximum.
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dimensions of the particles using electron and optical microscopy.

5.3.3 Newtonian fluid and Viscoelastic λ-DNA solution

Needing a viscous, Newtonian standard to calibrate the magnetophoretic system,

we used Light Karo Syrup (ACH Food Companies, Inc.), a commercial product derived

from corn. For our viscoelastic polymer system, we prepared entangled solutions of λ-

DNA (Invitrogen, Carlsbad CA), first being careful to anneal one of the single-stranded,

hanging ends with a complementary 12 base pair oligonucleotide (UNC oligonucleotide

synthesis facility, Chapel Hill NC). This prevented the formation of cyclic DNA, and

minimized potential solution heterogeneity (Braun et al., 1998). We prepared all λ-

DNA solutions from a stock solution of 2.4 mg/mL. Test conditions for nanoparticle

experiments included two λ-DNA solutions within the entanglement regime at 0.7 and

2.0 mg/mL. Due to the large quantity of solution needed for cone and plate (CAP)

rheometry, we restricted the macroscale viscometry measurements to a solution at 1.4

mg/mL and 0.7 mg/mL. The agreement between our data and literature values and

the consistency of the concentration dependent rheology of λ-DNA solutions supported

this limited application of CAP. We checked for non-specific adsorption of λ-DNA

to the particles, which might confound driven transport, by imaging suspensions of

particles dispersed in λ-DNA, fluorescently labeled with YOYO-1 (data not shown). We

observed no significant increase in fluorescence near these particles, indicating little λ-

DNA adsorption. Non-specific absorption of λ-DNA to the particles was minimal when

suspended in a solution labeled with fluorophore. More information and additional

145



parameters for the DNA polymer solutions used here are given in more detail in Table

4.1 and Table 4.2.

DNA Conc [mg/mL] 0.7 1.4 2.0
η0 [cP] 1300 3900 17000
η∞[cP ] 5 8 11
λ [s] 5.7 7.1 16
n 0.15 0.038 0.034
a 1.3 1.0 0.8

testing regime DMBR CAP DMBR

Table 5.1: Carreau Parameters for λ-DNA solutions

5.3.4 Viscometry of transport media

A controlled-stress cone and plate rheometer (TA Instruments, model AR-G2) mea-

sured the viscometry of the Newtonian and λ-DNA solutions at 23 ◦C with a 40 mm,

1◦ cone across feedback-controlled input shear rates ranging from 1 to 1000 s−1. We fit

the viscometry data for the λ-DNA solutions to a Carreau-Yasuda model,

η − η∞
η0 − η∞

= [1 + (λγ̇)a](n−1)/a (5.1)

where η0 and η∞ are the medium viscosities at zero and infinite shear, respectively, λ

the thinning time constant, m modulates the width of the thinning regime, and n is

the flow-behavior index that leads to the power-law slope equal to (n − 1) (Heo and

Larson, 2005). Following the method used by Heo, et al., we tried first to fit our data

to a Cross model, which is one-parameter simpler than the Carreau-Yasuda model for
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shear thinning. We found that where the Carreau-Yasuda model provided sufficient

parameters to fit the observed behavior, the Cross model did not. Also, because we

were comparing our data with Heo et al., we chose the Carreau-Yasuda model for

consistency.

5.3.5 Microparticle Magnetophoresis Apparatus

For these experiments we chose to use a magnetophoresis apparatus that was sepa-

rate from the 3DFM magnetics subsystem described in detail in Section 3.4. A goal of

this study was to close the loop on magnetophoretic measurements by characterizing

the source magnet field and field gradient both empirically and from theoretical model,

allowing us to compare expected force values from both approaches.

The microparticle magnetophoresis apparatus used here consisted of a one inch long

cylindrical rare earth (NdFeB) permanent magnet (K&J Magnetics, Inc.) mounted on

a translation stage and an inverted optical microscope. The sample, enclosed in a

transparent microfluidic chamber, contained nanoparticles dispersed in a small volume

of test fluid (Fig. 5.3, inset). Adjustments made to the axial position of the magnet with

respect to the sample exposed the particles to variable forces during magnetophoresis

experiments. We used a digital Gauss/Teslameter Model 5080 (W. Bell, Orlando, FL)

to measure the magnitude of the magnetic field applied to the particles as a function of

distance from the axial face of the magnet. We determined particle positions by taking

time-lapse images of the driven particles using a microscope. The image-acquisition

system consisted of a Pulnix camera, model PTM-6710CL (JAI, Inc., San Jose CA),
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Figure 5.3: Measured magnetic field as a function of distance from the face of
the cylindrical permanent source magnet with mathematical fit (red, solid). The
shaded box represents the field measurements over the experimentally relevant
distance range. Inset: Apparatus. At left is the axially adjustable cylindrical
magnet we use to actuate the microparticles. At right is a microscope objective
with a sample volume within a PDMS well (top and bottom glass coverslips are
not shown). The inset shows the time-lapsed paths of magnetically translating
particles as a series of dots.

an EDT-PCI DV (Engineering Design Team, Beaverton OR) frame grabber card, and

a PC workstation. The CISMM Video Spot Tracker software (http://cismm.org/

downloads/) handled particle tracking while MATLAB routines computed velocities.

We mounted the entire experimental apparatus onto a floating optics table in order to

minimize mechanical vibrations.

A microliter-sized volume chamber contained the sample of particles dispersed in

the media. We constructed a sealed sample well from a 50 µm thick sheet of poly-

dimethylsiloxane (PDMS) containing a 1.5 mm round hole and two glass coverslips.

The diameter of the sample well was less than the width of the magnet to minimize
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lateral variations of the magnetic field within the sample chamber. Before applying

any magnetic field and collecting data, the sample rested for at least ten minutes to

ensure the sample reached hydrodynamic equilibrium. Each particle suspension con-

tained non-magnetic particles as well as magnetic particles, enabling a quantitative

measure of remaining drift. We subtracted the velocities of the control particles to

correct magnetically-driven particle velocities.

5.3.6 Modeling and Measuring Field and Field Gradient

Derived from first principles, the magnitude of the magnetic field Bm of a cylindrical

source as a function of the axial distance from the face is

Bm(z) =
µ0M0

2

[
Lm − z√

R2
m + (z − Lm)2

+
z√

R2
m + z2

]
(5.2)

where Ms is the magnetic saturation of the magnet, z is the axial distance from the face

of the magnet, Lm is the length of the magnet, and Rm is the magnet radius (Meehan,

2007). We measured Bm of the permanent magnet as a function of z from the face of

the magnet (Fig. 5.3, inset), collecting values from the magnet face to 18 mm away.

During magnetophoresis experiments, the nanoparticles were always within a range of

3 to 10 mm from the magnet face (Fig. 5.3).

Using least-squares regression, we fit the magnetic field as a function of distance

in the z direction, Bm(z), over the experimentally relevant z range (Eq. 5.2). We

calculated the axial distance dependent field gradient of the magnet in the z direction,
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∇Bz, by taking the derivative of 5.2 with respect to z (Eq. 5.3) and substituting the

variable values obtained through the fit procedure.

dBm(z)

dt
=
µ0Ms

2

 −z2

(R2
m + z2)3/2

+
1√

R2
m + z2

+
(Lm − z)2(

R2
m + (z − Lm)2)3/2

− 1√
R2
m + (z − Lm)2


(5.3)

5.3.7 Quantitative Microparticle Magnetophoresis

To describe the magnetic driving forces, ~Fm, I described the force equation for the

sphere geometry in Section 2.4.1 and for the rod geometry in Section 2.4.2 for the

rod geometry. These relationships were used to compute the force expected for either

geometry as a function of field, field gradient, or distance from the axial face of the

source magnet.

5.3.8 Stokes Drag Forces

Previously I defined the Stokes drag force for the sphere geometry in Section 2.2.7.2

and for the rod geometry in Section 2.2.8.2. These relationships enable the determina-

tion of forces when particles are actuated in a fluid of known viscosity and vice-versa

when the applied forces are well understood. In Newtonian fluids the medium viscos-

ity is constant and particle motion lacks inertial effects because of the low Reynolds

number (Re < 10−2) conditions. Actuating particles under such conditions provides a

convenient and simple method for computing the force on a particle when the effects

of its geometry are known.
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Rod motion was always in the axial direction, because the rods align naturally along

their axis length to the field lines that emanate from the drive magnet. The nickel rods

had radii between 100 and 175 nm and a range of different lengths due to breakage

during processing which required an individual calculation of βc for each rod. Error

analysis indicates this range of rod radii would add 10% variability to the viscosity

results.

5.3.9 Validating Particle Transport Experiments

One typically applies Stokes Law in particle transport experiments to deduce the

applied force on a particle, with independent coefficients for particle geometry and

fluid viscosity. To use Stokes Law to measure fluid viscosity, we need to know the force

applied to the particle. We obtain this in two ways and show their agreement. First, we

compute ~Fm(z) for the particles based on equations 2.90 and 2.98. Second, we obtain

the applied particle force using ~Fd = βηv, with measured values of η of the Newtonian

solution, of the geometries of the particles, and of their measured velocities. We can

then use the force on the particle as a measured quantity and apply a generalized form

of Stokes Law to show that our transport measurements are consistent with the shear

rate dependent viscosity of the λ-DNA solutions.

5.3.10 Estimating Shear Thinning

To determine the maximum shear rate on a rod in axisymmetric flow, we approxi-

mated the shape as a prolate ellipsoid given that the equations of motion for the case of
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cylindrical geometry is not analytically soluble. We modeled the geometries in COM-

SOL to show the convergence between the two distinct geometries and the provide the

analytical solutions for the equations of motion. Finally, we compared the shear rate

magnitudes for the sphere, the prolate ellipsoid, the rounded cylinder (an intermediate

case), and the cylinder using COMSOL models. The analytic solutions for the shear

rate magnitudes are compared for the sphere and the prolate spheroid. The simulations

confirm the analytical solutions derived for the sphere in Section 2.2.7.3 and for the

rod in Section 2.2.8.3;

We used data from the CAP studies of the λ-DNA solution to understand the

enhanced transport seen by our nanoparticles. To place our measurements within the

shear thinning regime we use the Generalized Newtonian fluid (Morrison, 2001), writing

the Stokes equation as η = −~Fd/βv and the velocity in terms of the shear rate according

to Equation 2.43. Finally, we equate the drag and magnetic forces to obtain a form of

Stokes Law that explicitly contains the shear rate:

η (γ̇) =
3Fm
2rβγ̇

(5.4)

This relationship assumes a Stokes flow field for a non-Newtonian fluid which is not

correct and assumes that the bead is mostly sensitive to the material immediately

surrounding it. With this equation we can plot our transport data in direct comparison

with the Carreau-Yasuda model fits to viscometry data.
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5.3.11 Shape Effect Attributes

5.3.11.1 Particle velocity vs. shape

The delivery speed of a carrier particle and the number of deliverable molecules are

of paramount significance when one designs a magnetophoretic drug delivery system,

where both characteristics depend on particle size and shape. The magnetophoretic

velocity results from a combination of driving and drag forces (Eq. 5.4) applied to the

particle, which themselves are related to the volume of magnetized material and the

drag coefficients respectively. The ratio of the velocities can be written as a product of

three ratios:

vc
vs

=

(
βs
βc

)
·
(
Fc
Fs

)
·
(
ηs (γ̇s)

ηc (γ̇c)

)
(5.5)

Attached to the surface of delivery particles and/or loaded internally, the number of

deliverable payload molecules is a function of the surface area or volume of the particle.

5.3.11.2 Drag force vs. shape

We can now compare the selection between spherical and cylindrical shapes in the

context of nanoparticles transport. Assuming that both particle shapes studied here

have equal volume, the relationship between the radius of a sphere and the radius and

axial length of a cylinder is

rs =

(
3L

4

)1/3

r2/3
c (5.6)
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which shows a higher sensitivity to rc over L. Given a constant particle velocity and

Newtonian viscosity, we can now compute the ratio of the geometry coefficients as

βc
βs

=

(
81

16

)−1/3

p2/3
(
ln(p) + v‖

)−1
(5.7)

where the aspect ratio of the cylinder is p = L/2rc. For p > 1, we find that βc/βs > 1

resulting in a drag penalty when one switches from a spherical to a cylindrical shape.

For our cylinders p ranges from 15-105, corresponding to an increase in drag of up to

65% (βc/βs ≈ 1.65) for the cylinder over that of the sphere.

5.3.11.3 Magnetic force vs. shape

Given the smaller viscous drag coefficient of a sphere versus a rod of equal volume,

a researcher might conclude that a spherical particle would outperform a cylindrical

particle of the same volume with regard to particle velocity. However, one must also

consider the effect that shape has on the driving force, which does not depend solely

on magnetic content. When comparing the forces on a sphere (Eq. 2.91) and cylinder

(Eq. 2.98) made of the same material and equal volume, the force ratio is

Fc
Fs

=
8 (µr + 2)

3
(5.8)

which must be greater than 1 when using any magnetic material, implying that for

these conditions, Fc > Fs. For our nickel nanorods, where µr = 18.3, this results in an

applied force that is about 50 times higher for a cylinder than for a sphere of the same
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volume (Fs/Fc ≈ 50).

5.3.11.4 Viscosity vs. shear rate

Because the spheres and cylinders experience different shear rates, we must recog-

nize the concomitant change in the shear rate dependent viscosity and compare the

viscosity ratio, ηc (γ̇c) /ηs (γ̇s), via the Carreau-Yasuda model. Because η0 � η∞, we

can approximate η∞ as zero, and because we focus on just the high shear rates in the

thinning regime, we can further simplify the ratio to

ηc (γ̇c)

ηs (γ̇s)
≈
(
γ̇c
γ̇s

)n−1

(5.9)

which incorporates an error of 5% for our experiments. When we combine the effects of

magnetic and drag forces (Table 5.2), we can compute the composite ratio of particle

velocities within 10% error with

vc
vs

=
3p2/3 (µr + 2)

2
(
ln p+ v‖

) ( γ̇c
γ̇s

)n−1

(5.10)

The velocity ratios for the types of particles used in our experiments for the same shear

rate show a clear bias for the rod geometry, with approximately 30 times the effective

transport rate. The primary contributor to the effectiveness of rod transport is the

force ratio, with the drag and viscosity ratios mostly canceling each other out.
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5.3.11.5 Shear rate vs. shape

We will find that because a rod has a smaller diameter than a sphere of equal

volume, it has the potential to experience greater shear thinning due to a higher driven

velocity and therefore shear rate. The γ̇c/γ̇s ratio shows dependence upon the aspect

ratio as well as the flow behavior index, n.

γ̇c/γ̇s = (3p/2)1/3 (5.11)

We used the range of aspect ratios found in our experiments to compute ratios that

range from 7 to 11. These γ̇c/γ̇s ratios indicate a 7 to 11-fold increase in the shear rate

for the cylinder over the sphere. It is important to note that the cylinder’s high shear

rate advantage vanishes for a Newtonian fluid as its viscosity lacks shear rate depen-

dence. In a shear thinning fluid, however, this increase in the shear rate results in a

greater velocity for the rod compared to the sphere. Access to these higher shear rates

allows a rod-shaped particle to propagate almost 10 times more effectively through a

lower viscosity medium. We note that a rod-shaped particle might have additional ad-

vantages over a bead in its ability to penetrate the interstitial spaces and entanglements

between polymer molecules in biomaterials, though we do not explore these advantages

here.
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Figure 5.4: The aspect ratio, p, is the ratio between the axial length and the
diameter of a rod.

5.4 Results

5.4.1 Solution Viscometry

The Newtonian solution used in this investigation had a zero-shear viscosity of

3.38±0.04 Pa s and was constant at shear rates below 100 s−1 (Fig. 5.5). The particles

driven in this solution had γ̇ values less than 100 s−1. In contrast, CAP rheometry of

a 1.4 mg/mL λ-DNA solution revealed significant shear thinning at shear rates greater

than 0.14 s−1, which corresponds to a λ of 7 s. The thinning regime extended to the

highest shear rates tested, i.e. 20 s−1. The power-law slope for the thinning regime was

-0.96, leaving n = 0.04. Both of these values for the Carreau-Yasuda model parameters

agree well when compared to data published in Heo and Larson (Heo and Larson,

2005). Our data from CAP rheometry of 0.7 mg/mL λ-DNA solution showed less than

8% average variability when compared to the data published in Heo and Larson (Heo

and Larson, 2005). In light of the agreement of our CAP study with published values

and because of the expense of λ-DNA at the required concentrations and volumes, we

fit power-law slopes to the tested concentrations in Heo and Larson (Heo and Larson,

2005) and extrapolated to a slope for our microscale tested concentration at 2 mg/mL.
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Figure 5.5: The viscosity (ηapp) of the Newtonian standard solution as a function
of the applied shear rate (γ̇) measured by CAP rheometry (�) and driven particle
velocitometry (MyOne beads ♦, nickel rods �). The viscosity is constant as a
function of the applied shear rate indicative of Newtonian behavior. The CAP
rheometer and microparticle probes both measure the same average viscosity.

5.4.2 Nanoparticle Magnetic Properties

Under experimental conditions, the maximum magnetic field experienced by the

particles in our magnetophoresis system was less than 0.06 T, as determined by mea-

surements with a Hall probe in our permanent magnet system. We obtained excellent

fits for the expected position dependence of the magnetic field for the permanent cylin-

drical magnet (Fig. 5.3). This value sets the relevant range of magnetic fields for the

magnetometry measurements of the microbeads and nanorods. We measured the mag-

netic characteristics of the particles to enable the calculation of the magnetic driving

forces applied during magnetophoresis experiments. Using the SQUID magnetometry
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data we determined that, at low fields, the volumetric susceptibility of MyOne beads

was 0.86± 0.02 (Fig. 5.2). From these measurements, the MyOne beads magnetically

saturated at an applied field of 0.5 T and had a saturation magnetization Msat of 53±1

kA/m.

For the nickel nanorods we found the volumetric susceptibility was 18.3± 0.3 based

on magnetometry measurements and the pore density of the membrane (Fig. 5.2).

This value incorporates a normalization factor (Meehan, 2007) derived from reports

of the magnetic characterization of similar rods by other researchers (Ciureanu et al.,

2005; Encinas-Oropesa et al., 2001; Hultgren et al., 2003; Li and Lodder, 1990) and

accounts for the influence of the rod packing density on the measured magnetization.

In addition to the magnetization induced by the applied field, the rods showed some

ferromagnetic character which resulted in a remanent magnetization of 39 ± 2 kA/m.

The rods saturated at an applied field of 0.4 T and had a Msat value of 590±30 kA/m.

5.4.3 Magnetic Forces on Particles

Since the magnetic particles did not saturate in our transport measurements, we

calculated ~Fm using the magnetic characteristics of the particles (Eq. 2.91 and 2.98)

and the applied magnetic field (Eq. 5.2 and 5.3). Because ~Fm and ~Fd for the rods should

be proportional to L , we normalized the force values for each rod by dividing out L,

enabling comparisons between individual rods. The predicted and experimental values

of ~Fm(z) for both the MyOne beads and the rods agreed well within the experimental

uncertainties as shown in Figure 5.6, which lends confidence to our ability to calculate
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Figure 5.6: The average magnetophoretic force applied to MyOne beads (�) and
length-normalized nickel nanorods (�) plotted as functions of the distance from
the permanent magnet. The bars on these data indicate the standard deviation of
force as calculated based on the velocities of individual nanoparticles in the New-
tonian standard solution. The black solid line plots the theoretical force imposed
on the beads based on the measured field and measured magnetic properties of
the nanoparticles. The red lines indicate the upper and lower bounds on the
uncertainty of the theoretical force.

viscosities of λ-DNA solutions by solving for the η term using Stokes drag.

5.4.4 Driven particle transport in complex fluids

To understand the nature of driven particle transport in biological fluids, we applied

magnetic forces and drove MyOne beads and rods through λ-DNA solutions at 0.7 and

2.0 mg/mL. Particles experience two different shape dependent forces, one imparted

by particle magnetization and is proportional to volume, and the other by drag and

is proportional to cross-sectional radius and apparent viscosity, which is also geometry
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dependent. To separate the effects of these two forces on transport, we first plot the

particle velocity normalized by the shape dependence of the drag coefficient versus

B(z)~∇B(z), the quantity responsible for the driving force (Fig. 5.7). If the particles

experienced only the shape dependent effects on their drag, and experienced the same

viscosity, then their curves in the same fluid should lie on top of each other. This

is approximately the case for the beads and rods in the Newtonian standard. As

expected, particle velocities increase as the magnetic field and field gradient increase.

Focusing on the particle transport in the Newtonian standard, we see that the nanorods

achieve higher normalized velocities than the microbeads in part due to their higher

magnetizations in the same applied fields. We present no data for MyOne beads in

2.0 mg/mL λ-DNA because we found no measurable displacement on experimental

timescales.

Compared to Newtonian solutions, the relative transport properties of particles

are dramatically different when the medium is a viscoelastic λ-DNA solution. Figure

5.7 shows that, relative to the velocity of the particles in a Newtonian fluid, the beads

experience slower velocities while the nanorods experience faster velocities in λ-DNA. In

λ-DNA solutions, nanorods move with more than 100 times the bead velocity compared

to a five-fold increase when using the Newtonian standard. We interpret the relative

differences in the driven velocities as a change in the apparent media viscosity ηapp

experienced by the particles. These differences result from the responses of the media

to the shear stresses applied by the driven motion of the particles.
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Figure 5.7: Normalized mobilities of rods (�,�) and MyOne beads (�,�) in the
Newtonian solution (open symbols) and 0.7 mg/mL DNA solutions (closed sym-
bols) as functions of the magnetic force proportionality B∇B. We normalized the
particle mobilities with respect to their geometry-dependent drag and further
normalized the rods with respect to their lengths in microns. The units of the
normalized velocities for the rods and the beads are m2/s per µm length of the
rod and m2/s respectively. The bars on the data points represent the range of
particle velocity and do not indicate measurement error.

To investigate the driven particle induced shear thinning of the λ-DNA solutions,

we plot in Figure 5.8 the apparent viscosity, ηapp, as measured by the particles as a

function of the maximum shear rate, γ̇max. The CAP measurements (shown as red solid

lines) reveal the λ-DNA solution as a shear thinning material at shear rates greater than

10−1 s−1. The nanoparticles (shown as discrete points) roughly reproduce the apparent

solution viscosity measured by the CAP. In conjunction with the maximum shear rate,

we plot the measured rod velocity normalized by length (indicated by green axis and

arrows).
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In contrast to the behavior of the particle motion in the Newtonian standard, the

apparent viscosity of the λ-DNA solution, as derived from particle motion, indicates a

power-law dependence that corresponds to shear thinning of the matrix, where fits re-

vealed exponents of -0.8 for rods (both concentrations) and -0.6 for beads (0.7 mg/mL).

These power-law exponents are consistent with those measured for λ-DNA by bulk rhe-

ological techniques. As expected in all cases, the values of ηapp of the λ-DNA solutions

are greater than the viscosity of pure buffer (10−3 Pa s).

p 15 105

βc/βs =
(

81
16

)−1/3
p2/3

(
ln(p) + v‖

)−1
1.4 2.9

Fc/Fs = 8(µr+2)
3

56 56

γ̇c/γ̇s = (3p/2)1/3 7.2 11.1

ηc (γ̇c) /ηs (γ̇s) =
(
γ̇c
γ̇s

)n−1

0.15 0.1

vc/vs =
(
βs
βc

)
·
(
Fc
Fs

)
·
(
ηs(γ̇s)
ηc(γ̇c)

)
265 196

Table 5.2: Ratios of Particle Velocity

5.5 Discussion

With a quantitative understanding of magnetic particle transport in hand, I now

relate these measurements to a set of force requirements given particle size and shape.
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Figure 5.8: Apparent viscosity (ηapp) as a function of the maximum applied shear
rate (γ̇max) in λ-DNA solutions. The data shown for 0.7 mg/mL as the solid,
red line are macroscale measurements from Heo and Larson (Heo and Larson,
2005). Corresponding lines for 1.4 mg/mL and 2 mg/mL concentrations are
CAP measurements by our lab and extrapolated values, respectively. Shown as
discrete data points is ηapp as experienced by magnetophoretically driven rods
(�,�) in 0.7 mg/mL and 2 mg/mL solutions. The decrease in ηapp with increasing
γ̇max indicates shear thinning. Also shown are force requirements (blue lines)
for translating a 1 µm long rod with a 100 nm diameter through 0.72 and 1.44
mg/mL DNA solutions as a function of shear rate. Because the DNA solution
shear thins, small increments in force yield much higher particle velocities than
expected because of the shear thinning effect.

In Figure 5.8, I show the generated force requirements for a 1 µm long rod, driven

through 0.7 and 2 mg/mL λ-DNA solutions (shown in blue, dashed lines), alongside

the plotted viscosities and their dependence on velocity and shear rate (shown in red).

These lines indicate the force necessary to achieve a shear rate or velocity (black/green)

when one expects a given shear dependent viscosity (red). For example, to deliver a
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rod within the shear thinning region of λ-DNA at 2.0 mg/mL with a 10 µm rod at

1 s−1, find the shear rate along the x-axis and locate the expected viscosity; for this

example, the viscosity is 1 Pa s, well within the shear thinning regime for this material.

At this shear rate, also note the force requirement for each concentration. For 2 mg/mL

λ-DNA, one applies approximately 3 pN/µm to achieve the desired shear rate, whereas

0.7 mg/mL λ-DNA requires on 0.3 pN.

There are a variety of physiological contexts where shear thinning particle delivery

may be useful. Here we discuss three: extracellular matrix, mucus barriers and syn-

ovial fluid. In the context of particle delivery through tissue, Lai et al. used canonical

CAP methods to measure bovine-hide collagen viscosities as high as 400 Pa s (Lai

et al., 2008). Kong and Vazquez measured the viscoelastic properties of gelled collagen

used as an extracellular matrix simulant and found shear thinning at 0.05 s−1 with a

zero-shear viscosity at 1 Pa s (Kong and Vazquez, 2008). Particle delivery through

mucus is important for pulmonary or cervical delivery of drugs. Besseris and Yeates

utilized rotating magnetic micron-sized particles to measure a zero-shear viscosity for

canine tracheal mucus that lies between 10 - 7500 Pa s (Besseris and Yeates, 2007)

and measurements by Powell et al. (Powell et al., 1974) showed that mucus can thin

at shear rates greater than 1 s−1. Our measurements in solutions of DNA are rele-

vant to measurements of mucus rheology because large amounts of DNA are found in

pathological (i.e. CF) sputum (Rubin, 2006). Heo and Larson demonstrated that the

application of shear stress results in shear thinning in λ-DNA at the macro-scale where

the measured viscosities are diminished by an order of magnitude or more (Heo and
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Larson, 2005). Delivery of drugs to or through cartilaginous tissue requires particle

transport through synovial fluid and corresponding measurements by Jay et al. (Jay

et al., 2007) in bovine synovial fluid found thinning at shear rates greater than 0.1 s−1.

For the purposes of determining a proper applied force regime, the materials we first

consider the zero-shear viscosity limit. Initially, to achieve a 100 nm/s velocity, a 200

nm diameter rod would require forces ranging from 0.4 to 300 pN/µm. This velocity

would correspond to a shear rate of 1.5 s−1, and would be sufficient to engage shear

thinning in any of the biomaterials enumerated above. A bead with the same volume

(and thus equal payload) and made from the same magnetically-permeable material

would require 3 to 5 times more force to achieve similar shear rates. To achieve this

same magnetomotive force, (B · ∇)B would need to be 75 times higher (assuming no

saturation), and therefore require a larger or closer permanent magnet. Choosing rod-

shaped particles as drug carriers becomes obvious when one considers the impact of

the lower required magnetic fields and field gradients.

A functioning apparatus may not require very large and unwieldy magnets posi-

tioned uncomfortably close to the patient’s body. In this report, we used a rare-earth

permanent source magnet that was relatively small, (2 mm diameter, 1 inch length)

which generated a shear thinning flow for rods at distances as far away as 5 mm in

a fluid with rheological properties comparable to healthy mucus. In terms of source

magnet design, the force generated varies minimally with respect to changes in aspect

ratio of the magnet. However, increasing the radius of the magnet leads to an increased

force and increased penetration depth of the force. In fact, to achieve maximum force at
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a given depth, a magnet with a radius of about twice the desired depth is required, but

the maximum force for a given depth is not necessarily required to achieve significant

shear thinning. As the magnetomotive force depends on the product of the field and

field gradient, the force generated by a cylindrical magnet scales as z−2 at distances

larger than twice the diameter, where z is the distance from the face of the magnet.

Our calculations indicate that shear thinning in 2 mg/mL λ-DNA can be achieved at

depths typically seen in the lung (∼1 in) (Seddon and Snashall, 1989) with a NdFeB

source magnet as small as 20.5 mm in diameter and 20.5 mm long. We used the magne-

tization value of our experimental source magnet to calculate that a magnet with these

specifications and using our nickel rods with a radius of 0.1 µm and 1.5 mum in length

would produce about 0.11 pN of force. As shown in Figure 5.8, the force produced

would lead to a 100 fold decrease in viscosity in 2 mg/mL λ-DNA, a relevant model for

infected mucus (Rubin, 2006). In the context of a drug delivery system, the velocity of

the rod shaped particles would be on the order of 1 µm/s and can therefore traverse the

approximate length of the mucus layer of the lung epithelia in seconds and the typical

length of a mucus plug in a matter of minutes. If the material did not shear thin and

instead exhibited only the zero shear viscosity, the same particle would travel 1000 fold

slower, and therefore take 1000 times longer to reach the desired displacement.

Shear thinning of mucus by these micro-particles opens up a myriad of possibil-

ities in drug delivery, specifically inhalation delivery. Two main pathways exist for

the clearance of particles transported through the respiratory epithelium: the mu-

cociliary clearance system and alveolar macrophages (Groneberg et al., 2003). The
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internalization of carrier particles by alveolar macrophages has been shown to be heav-

ily dependent upon particle size. In fact, using carrier particles smaller than 0.26 µm

in diameter, which are within the parameters of the experiments described here, avoids

macrophageal phagocytosis altogether (Holma, 1967). By designing a drug delivery

system that takes advantage of the shear thinning of mucus to increase particle trans-

port rate, the problems arising from mucociliary clearance can be obviated, increasing

bioavailability of the drug in the lungs. However, in order to get net transport, the

particle motion through the mucus layer to the epithelium would need to compete

with the mucociliary clearance rate, which in a normal human trachea is 200 µm/s

(Yager et al., 1978). Magnetic driven transport in this case may tilt the balance toward

effective transfection.

5.6 Conclusions

By using solutions of λ-DNA within the entanglement range, we demonstrated that

the transport of magnetically driven nanoparticles can induce shear thinning of a poly-

mer network, indicating that driven particles experience viscosities in biological ma-

terials that are significantly less than the bulk material viscosities as measured under

zero-shear conditions. Consequently, predictions based on zero-shear viscosity assump-

tions alone overestimate the force required to obtain sufficient particle transport. This

finding has practical implications for a host of biomedical applications ranging from

drug delivery to hyperthermic therapies, where the rapid particle transport with mini-

168



mal driving force is essential.

We fully characterized the magnetophoretic system used in this study, calibrated it

using a Newtonian fluid standard, and confirmed our calibration with SQUID measure-

ments. This enabled us to predict and quantify magnetic driving forces and viscous

drag forces on individual particles. We found that magnetic fields and field gradients

required to transport a rod-shaped geometry are reasonable in that large magnetic sys-

tems are not necessary to impart sufficient force. Our source was a widely available

rare earth (NdFeB) permanent magnet and the distance between particles and magnet

was in the millimeter to centimeter range, a relevant scale of driving forces consid-

ered practical for biomedical applications. The combination of a magnetically-driven

system, fully characterized probe particles, and a non-Newtonian medium comprises a

generic framework for performing drug-delivery studies.
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Chapter 6

Strain Thickening

6.1 Overview

In vivo, it is the constant beating of cilia that drives the mucus flow responsible for

maintaining sterility in the lung. The interaction between the rapidly moving cilia tip

and the viscoelastic mucus layer is largely unknown yet is critical for understanding the

role of viscoelasticity in mucus clearance including the failure of clearance when mucus

becomes excessively dehydrated. In this chapter I study related phenomena using

driven microbead rheology (DMBR). By placing a magnetic micron(s)-diameter bead

into polymeric solutions and applying forces, I can generate shear rates representative of

cilia. In these data, we will find that sometimes under a constant force a spherical bead

in a shear thinning entangled polymer solution experiences a sudden and substantial (>

200%) increase in velocity. The first and slower quasi-steady state behavior corresponds

in compliance space to a linear viscoelastic model such as a Jeffrey model. The bead

then experiences an acceleration presumably due to viscosity changes in the vicinity of

the bead surface. I present this velocity increase as associated with known experimental



work on transient viscosity overshoots (i.e. strain thickening) in polymer solutions

during the startup of shear flow. The increase in viscosity for the work mentioned is

about a factor of two and occurs at a constant material strain (Hur et al., 2001). I use

a Stokes flow continuum approach to model and characterize the instantaneous shear

velocity in the field around the bead as it moves through an incompressible liquid.

This velocity allows us to calculate the Weissenburg number (Wi) for a field around

the bead. The bead must satisfy two criteria to exhibit this sudden increase in velocity:

Wi needs to be above a critical value (∼ 10), and the total strain experienced in the

local neighborhood of the bead (calculated from integrating the local shear rate over

time in the sphere of influence surrounding the bead) needs to exceed another critical

value (∼ 3− 4). I then determine the dynamic viscosity field and model the expected

properties of the surrounding polymer solution.

To show the generality of this phenomenon empirically, I used DMBR to measure the

rheological properties of several biopolymer solutions. In Chapter 4 I presented DMBR

measurements on 10 mg/mL HA with 2.8 µm beads, where the response indicated a

linear viscoelastic fluid with a steady-state viscosity of 10 Pa s, a value equivalent to

CAP (Figure 4.10b, inset). λ-DNA solutions probed with 2.8 µm beads exhibited a

quasilinear response for small input forces that can be interpreted as traditional shear

thinning behavior between pulls (Figure 4.8). However, when tested with 1 µm beads, a

non-linear increase in bead velocity occurs which I propose is from the bead overcoming

a local strain-thickening field.

Finally, I consider cilia as a physiological system where this dynamic strain thick-
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ening phenomenon may be responsible for successful mucus transport. This dynamic

strain-thickening phenomenon has been observed in several of our test solutions: DNA,

guar, porcine gastric mucus (PGM), human sputum, and human bronchial epithelium

(HBE) mucus. Additionally, strain-thickening could also have beneficial implications

in magnetophoretic drug delivery as well.

6.2 Introduction

The driven microrheology technique can measure the viscoelastic properties of poly-

mer systems, with much of today’s interest placed on systems of biological origin or

relevance. Many questions regarding the responses of these soft materials to active

or driven microrheology techniques have yet to be answered. Typical approaches at-

tempt to quantify rheological parameters and compare them to macroscale techniques

such as cone and plate for validation (Schmidt et al., 2000; Mason et al., 1997; Mason

et al., 1998; Schnurr et al., 1997). While this may not be the best approach, it works

so long as the probe diameter is larger than the dominating length scale, correlation

length, in the polymer system (Gittes and MacKintosh, 1998). Measurements using

thermal diffusion track particle displacements as a function of time without any exter-

nally applied force and as such are limited to probing only the linear properties of the

polymer system. Alternatively, experiments that take advantage of applied forces (like

DMBR) have the potential to measure linear and nonlinear material properties and are

not always expected to follow from macro-scale to smaller, microscale measurements
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(Squires, 2008). Understanding the results of experiments such as these requires un-

derstanding the phenomenological, continuum-based interpretation commonly found in

macroscale measurements as well as the polymer physics, molecular-based approaches

found in microscale measurements.

6.3 Background

A material’s rheological profile depends on the time and length scales inherent

in the material itself in addition to those which correspond to the measuring probe

(Gittes et al., 1997). When measuring macroscale properties, such as those obtained

with regard to cone and plate (CAP) rheometry, this distinction is largely unimportant

because of the vast difference between the time-length scales of the probe compared

to those of the test material. Once these time-length scales converge, the properties

measured by the probe diverge from the properties of the macroscale material, as

documented in many places in the current literature (Gittes et al., 1997; Waigh, 2005).

The community often implicates this discrepancy between the large and small scale

measurements as a constraint, limiting the ability to measure material properties to a

predefined volume and/or geometry. This constraint will certainly be true when consid-

ering the length scale over which heterogeneity in the material presents itself. Indeed,

the microrheologist must consider the probe itself when making any measurement in

order to discern an accurate response for that particular time-length scale. Two signif-

icant length scales for the lung are the length scales of cilia (200 nm, 10 Hz) and those
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of invading bacteria (1-2 µm, ∼50 µm/s) (Schneider and Doetsch, 1974).

Not only are there discrepancies between passive measurements, but several are doc-

umented in the literature for active microrheology techniques (Squires, 2008). Because

the time-length scales traversed by the bead are longer than for diffusion, and because

of the similarities in driving functions, the response of particles in DMBR are expected

by and large to converge and correspond to macroscale techniques, which is true in

many cases (Mason et al., 1997; Ter-Oganessian et al., 2005; Wilking and Mason, 2008;

Waigh, 2005).

In this work I document an example of a dynamic nonlinearity in DMBR and

define its origin as a strain-thickening response of the medium to the particle’s motion.

This non-linearity is expected to be ubiquitous in polymer systems at or above the

entanglement concentration, ce, i.e. the semi-dilute, entangled regime.

I start with an exploration of the empirical DMBR data and then diagram the typical

response of the dynamic strain thickening event (DSTE) as probed by the magnetic

bead. Next, I explore the environment immediately surrounding the bead and derive

the expected apparent viscosity field as a function of Weissenburg number, with the

longest time scale of the material, λ, first determined by CAP rheometry. Using this

approach I model the strain-thickening phenomenon surrounding the bead and explain

how the material response the bead “sees” is not necessarily the same response reported

as the macroscopic scale.
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6.4 Nonlinear active microrheology

Active microrheology experiments have a rich history with the earliest known docu-

mented work taking place in the 1920s (Gardel et al., 2005). Most work done in the past

15 years have used actin solutions (Ziemann et al., 1994) or was performed directly on

cells (Bausch et al., 1998). Some of the latest work done on polymerized actin networks

interprets results as an osmotic pressure effect (Uhde et al., 2005a). Nonlinear behav-

ior in microrheology experiments has been previously shown in colloidal suspensions,

where a shear thinning phenomenon created an almost 50% reduction of zero-shear

rate viscosity (Meyer et al., 2006). More recently, a non-linear effect was interpreted

as a yield strain for well-entangled collagen solutions that matched macroscale results,

previously unreported in the literature (Wilking and Mason, 2008). Challenges arise in

interpreting DMBR results and reconciling them with CAP measurements because of

the heterogeneous and unsolved nature of fluid flow around driven spheres, and/or de-

termining if they are probing qualities of their environment that may not be resolvable

by macroscale techniques. (Squires, 2008).

In Chapter 4 I found shear thinning to carry over into soft biopolymer solutions and

in Chapter 5 I reported on the effects of shape for perceived viscosity in the context of

drug delivery.
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6.5 Materials and Methods

I obtained the non-linear compliance response functions of entangled biopolymer

solutions including λ-DNA, Hyaluronic Acid (HA), commercially available Porcine Gas-

tric Mucus (PGM), and guar using DMBR. Described in detail in Section 2.4, I applied

to 1 µm and 2.8 µm beads repeated rectangular force pulse trains with 0.2 s to 15 s

durations and amplitudes ranging from 1.5 to 200 pN. Bead displacements varied from

a typical linear viscoelastic response to grossly non-linear behavior in the form of shear

thinning and strain thickening as the bead probes the entangled polymer solutions and

perhaps travels into new material. Using steady state bead velocities I can replicate

in driven microbead techniques the power law dependence of viscosity as a function

of shear rate as seen in macroscale cone and plate techniques. Using a fluid dynam-

ics approach I also modeled the fluid immediately surrounding the sphere with the

Rolie-Poly model (Likhtman and Graham, 2003; Teixeira et al., 2007). The RP model

qualitatively reproduces the increase in viscosity, and its quantitative results depend

on the interpretation of time scales found in either CAP or DMBR.

6.5.1 Probes

The magnetic particles used in this study were monodispersed, superparamagnetic

(SPM) microspheres (Invitrogen, Carlsbad CA) that had diameters of 1 µm (MyOne®)

or 2.8 µm (M-270). Bead size was confirmed by in-house SEM measurements as in other

studies (Figure 5.1(a)). Both bead sizes were originally surface-coated with terminal
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carboxyl groups by the manufacturer and were either used in this form, or were PEGy-

lated in-house (for the PEGylation protocol, see Appendix A.2) to reduce bead-polymer

interaction as well as bead-bead aggregation.

6.5.2 Solutions

The preparation of all solutions as functioning polymer systems is documented in

detail in Sections 4.3 through 4.5. The UNC CF Center graciously donated samples of

HBE mucus specimens which were obtained by collecting the washings from HBE cell

culture over a period of several weeks and concentrating the resultant fluid by methods

explained by Matsui, et al. (Matsui et al., 2006). The final material usually has

concentrations between 2.5% (considered “normal”) and 8% (considered “CF-like”)

solids as measured by dried weight. Specimens of induced or expectorated human

sputum come directly from patients following HIPAA standards and stored at 4◦C.

6.5.3 Light Scattering

The results of light scattering measurements were described in detail in Sections

4.3 through 4.6 and were performed using a Dawn multi-angle laser light scattering

apparatus (MALLS) coupled in line to an Optilab refractometer (Wyatt Corp.). For

all polymer solutions save DNA, the light scattering measurements allowed for the

computation of their respective physical properties, with that data presented here in

Table 6.1. For the λ-DNA data shown in Table 6.1, the Mw is from the package insert

and the Rg computed using 50 nm as the persistence length (Rubinstein and Colby,
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2003) and WLC model assumptions.

– units λ-DNA HA guar PGM
Mw MD 32 0.29± 0.01 13.7± 0.2 56± 2
Rg nm 520 104± 3 190± 10 310± 30

Table 6.1: Measurements of Molecular Weight and Radius of Gyration.

6.5.4 CAP Methods

In shear thinning materials, the apparent viscosity depends on applied shear rates

that exceed a time constant. To test for this behavior a flow curve or viscometry test

is performed where a steady state strain rate is measured for a given input stress. The

apparent viscosity for samples of λ-DNA at 0.7 and 1.4 mg/mL were measured as a

function of shear strain rate. Measurements similar to these were made by Larson in

2005; the data from that paper are also plotted here, showing good agreement.

With the 40 mm cone in position on the TA Instruments AR-G2 stress-controlled

rheometer, 330 µL of sample was loaded onto the peltier plate set at 23 ◦C. The peak

hold protocol was used with a feedback-controlled shear rate and measurements were

made by enabling the fast sampling mode. The instantaneous viscosity was measured

as a function of time/strain. A Newtonian solution would exhibit a constant viscosity

for any shear rate, however, we find that for certain viscoelastic materials, the instan-

taneous viscosity exhibits an overshoot and then subsequently settles down to a steady

state value.
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Figure 6.1: Viscosity overshoots in 1.5 mg/mL λ-DNA from Teixeira, 2007. The
cone is turned at constant shear rates with a strain-controlled rheometer for a
range of strain rates from 0.1 to 100 s−1. In time, the maximum viscosity occurs
at different times, but at approximately constant strain. For a γ̇ = 0.1 s the
overshoot is minuscule, barely detectable by the instrumentation. The overshoot
in η occurs due to the stretching of chains at high Wi number. Steady state
viscosities are consistent with our 1.4 mg/mL λ-DNA solution tested with CAP,
DMBR, and TMBR.

6.5.5 DMBR Methods

I used force pulsed microrheometry (Ziemann et al., 1994) to measure the creep

response curves for λ-DNA solutions from 0.2 s to 15 s in time. To do this, the magnetics

subsystem of the 3D force microscope (3DFM) was used in conjunction with a Nikon

TE-2000E microscope with a 60× water-immersion objective (Fisher et al., 2006a).

Magnetomotive force actuates the displacement of magnetic particles embedded in the
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Figure 6.2: Transient viscosity overshoots in 1% guar using our TA AR-G2 stress-
controlled CAP rheometer which applies step strain rates using feedback. Over-
shoots in viscosity occur at different times which correspond roughly to constant
strain. Empirical data are indicated as blue points. Overlaid as pink lines are fits
to the Rolie-Poly model.

test material. The geometry for the DMBR technique described here consists of a sharp

tip opposing a flat plate with a gap distance of 550 µm mounted on a #0 (100 µm)

thickness 24x40 glass coverslip (Figure 3.10). The 100 µm thick tip has a cylindrical

radius that averages about 10 µm at the pole tip. A small volume of specimen (∼1 –

3 µL) is placed between the pole tip and plate, surrounded by silicone grease to dissuade

sample drift and evaporation, and mounted inside the magnetic stage. With the 3DFM

I can generate forces ranging from 1 to ∼1000 pN on a 1 µm bead (Fisher et al., 2006a).
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More detailed information about the magnetics system can be found in Section 3.4.4).

For video, I used a Jai-Pulnix PTM-6710CL progressive scan camera and a PCI-

DV EDT frame grabber board which provided a video temporal resolution of 8 ms

(120 frames per second). Experiments generally lasted from 10 - 600 seconds, with all

images spun directly to disk. The video system is discussed in more detail in Section

3.3. For the particle tracking of microbeads I used version 5.x+ of the CISMM video

spot tracker which, combined with our optics system, has a step spatial resolution of

approximately 10 nm sized steps at full frame rate (Section 3.3.5).

6.5.6 Force Actuation and Extraction of VE parameters

When a step current is applied to the coils of the magnetics system, a step force, F ,

is generated over small excursions, x(t), of the bead (≤5 µm) in the sampling space. The

applied force to the bead incurs a drag force in the opposite direction with a geometric

coefficient of 6πrs, where rs is the bead radius. The displacement of the bead as a

function of time can be converted to compliance by normalizing for the geometry and

the input force amplitude, resulting in Equation 2.86 and repeated here (Ziemann et al.,

1994).

J = 1/G =
6πrsx(t)

F
(6.1)

The linear viscoelastic properties of a viscoelastic liquid can be extracted from the creep

compliance function via a fit to a Jeffrey model step response. The long-time, zero-

shear viscosity is equal to the inverse of the asymptotic slope while the elastic modulus
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can be approximated via the Maxwell model approximation, using the intercept of

this terminal slope fit. These two estimated values are made more precise by providing

them as initial guesses and calculating the least-squares fit to the Jeffrey model response

function (Morrison, 2001).

I derived the maximum shear rate imparted on the fluid by the bead by taking the

derivative of the Stokes flow field around a bead and computed the magnitude of the

strain rate tensor at at the bead surface at an angle of θ=90◦, resulting in Equation

2.47 (repeated here):

γ̇max(t) =
3vd(t)√

2rs
(6.2)

where vd(t) is the time-dependent velocity of the bead (Squires, 2008). The derivation

can be found in detail in Section 2.2.7.3.

6.6 Results

I measured creep compliance by monitoring bead displacements during a succession

of constant force pulses each held for a known duration of time, complete with an

introductory drift estimate period. Early pulses showed little evidence of the thickening

phenomenon with zero net displacement. Later pulses presented the DSTE and, after

relaxation, showed a net displacement of the bead through its environment. Figure 6.3

shows an expansion of two of these pulses after the viscous mode of the material was

probed. This particular pulse shows a reduction of the bead velocity (inset) to almost
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Figure 6.3: Plotted on top of data first shown in Figure 4.6 are two examples of
the DSTE in 1.4 mg/mL λ-DNA. Where the previously shown quasilinear data
used lower forces, these DSTE occur when higher forces, and thus higher Wi,
are applied to beads. The reproducibility at lower applied forces for the same
solution, indicated by error bars, shows that DSTE do not occur due to solution
heterogeneity.

zero as the mechanisms of stretch and orientation in the polymer respond to bead

displacement. Looking at the DSTE schematic plot shown in Figure 6.4, two phases

of motion appear during the application of the input force pulse. At early times, the

bead begins by moving quickly. Later, the bead slows to almost zero velocity. Next,

there is a moment during the pulse where the velocity suddenly shifts from slow to fast

and appears to migrate through the DNA at a constant velocity, implying a Newtonian

material response to an input force. After the pulse force is completed, the bead relaxes

along its original path and experiences incomplete recovery, the canonical response of
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Figure 6.4: A schematic for the dynamic strain thickening event (DSTE). Early
behavior is qualitatively similar to the Maxwell model step response with a zero
shear compliance, Jo, equal to the projected intercept, where the slope is equal
to the inverse viscosity at long times. After the DSTE, the velocity of the bead is
mostly constant with an estimated viscosity again equal to the inverted slope. The
time constant for the forced period, τon, is approximately equal to the relaxation
time constant, τoff . Recovery is never complete in datasets such as these.

a viscoelastic fluid. The relaxation time of the recovery period is approximately the

same as the forced period, regardless of whether the bead samples a well-trod location

or a completely new space.

Changes in slope were distinct and easy to see within the displacement data. The

new velocity, established as steady state, corresponds to a viscosity and a shear rate

found in the macroscopic cone and plate data (See Figure 4.8). The possibility of
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the shift in velocity being system noise is rejected by the fact that immobilized beads

(Figure 3.6) or beads moving in Newtonian fluids (Figure 3.12) show no sign of the

DSTE.

6.7 What the DSTE is NOT

In this section I present a set of phenomena that at first glance might explain the

DSTE. For each I show through experiment or modeling why these proposed explana-

tions are incorrect.

6.7.1 Edge Effects

The first and easiest explanation for the DSTE assumes that the bead interacts

with the boundary of the sample cell, where zero-velocity boundary conditions apply.

If the bead begins its journey near a side wall and induces a compression by moving

towards the wall, the bead is expected to slow until it hits the wall, because it must

push the intervening dna strands out of its path. No reason for a sudden increase in

velocity such as those seen in these data is known. Moving away from the wall might

result in an increase in velocity, but this should be a smooth transition, whereas the

DSTE often has a sharp transition. If the bead is close to the upper or lower specimen

surface, and the bead moves appreciably in the z direction away from the surface, one

might see a net increase in bead velocity, but again this should be a smooth transition.

Experimentally, these concerns are easily remedied by only choosing to actuate
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beads that are more than 10 bead diameters away from any surface. All beads tracked

in these experiments are 10 to 50 bead diameters away from any edge. Therefore, these

DSTE do not occur as a result of edge effects.

6.7.2 Local Concentration Inhomogeneities

Local DNA concentration inhomogeneity is possibly an explanation for some of the

data collected in these experiments. If these spatial inhomogeneities are larger then

the size of the bead, the bead could move into a volume element where there is no

polymer; it would “snap” from its polymer-laden volume into a free space, much like

a rabbit might escape from a particularly dense brier patch and into a meadow. Free

to move through solvent, the bead would move at a constant velocity. Eventually,

however, the bead should encounter another volume element containing polymer (and

the rabbit another brier patch) and initiate another viscoelastic response. If the spatial

inhomogeneities are smaller than the size of the bead, there should be an oscillatory

signal on top of the gross viscoelastic response as the bead passes through regions of

relatively high and low polymer concentration. This type of expected behavior can be

seen when using DMBR on a visually heterogeneous sputum sample found in Figure

4.14c&d. Not only do the curves not collapse when in compliance space, they appear

to have large swings in their velocity from slow to fast, as seen in DSTE but with

substantial slowing thereafter. Beads moving at high velocity can also suddenly slow.

Both of these events happen at length scales much larger than the bead size, denoting

great spatial heterogeneity between pulls.
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What concentration inhomogeneities cannot explain is a recovery response inside

an empty pocket, where only solvent touches the bead. In every response there is a

recovery; if the force on the bead was removed while the bead was in a solvent pocket,

no recovery should be seen. If there is a lower concentration of polymer inside the new

pocket, the relaxation times should slow, but the opposite tends to occur when the

DSTE begins to manifest itself. Because of these reasons it is probably safe to assume

that local concentration inhomogeneities are not responsible for the DSTE.

6.7.3 DNA Sticks to Bead

Another possible reason for the DSTE is electrostatic interactions between the poly-

mer and probe surface. Such an association might increase the apparent hydrodynamic

radius of the probe when the polymer arranges itself into a surrounding semi-ordered

structure. Alternatively, there may be a strong dissociation between polymer and

probe, creating a polymer depletion region around the probe. For the molecules I have

tested and for all the probes I have used here, the surface charge is always negative

or neutral, implying the tendency for the development of a depletion region. To avoid

this I PEGylate the surface of the probe A.2. Even so, experiments with λ-DNA show

no preference or change in the DSTE when testing with PEGylated or non-PEGylated

probes. For these reasons, surface interactions do not cause the DSTE.
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6.7.4 Dynamic Instability

If the model were simplified such that the DNA strands in solution were viewed as

a continuum viscoelastic material subjected to shear, the takeoff phenomenon could be

explained by a dynamic instability. The maximum shear rate experienced by material

at the bead surface is defined as Equation 2.47. Rearranging the equation for velocity

and substituting into Stokes equation results in

F = 6πrsηv = 2
√

2πr2
s γ̇ (6.3)

Solving for viscosity:

η(γ̇) =
F

4πr2
s γ̇

(6.4)

A canonical curve used to describe shear thinning is plotted in Figure 6.5 and

shows the dependence of the materials apparent viscosity on the applied shear rate.

For a Newtonian fluid where there is no shear thinning, the result would be a constant

viscosity. For non-Newtonian materials, this results in a curve with three linear regions

in log space. The initial flat regime is the zero-shear regime; here the polymers in

the material have not been subjected to enough energy to stretch the entropic springs

and/or align themselves in the direction of the flow field and thus remain in randomized

configurations. Once the shear rate reaches the time constant of the material, the

polymers begin to align in the direction of flow and the apparent viscosity decreases.

This begins the shear thinning regime whose quasilinear slope corresponds to the power
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Figure 6.5: Dynamic Instability

law dependence for the material (Colby et al., 2007; Hackley and Ferraris, 2001). Once

all the polymer strands are aligned in the direction of flow, the viscosity is at its

minimum and does not change for any increase in shear rate; this is the third regime.

η − η∞
η0 − η∞

=
1

(1 + λγ̇)m
(6.5)

Shown in Equation 6.5 is the Cross model which attempts to describe the shear thinning

dependence on shear rate where the power-law dependence m ≤ 1.

For the microbead experiments, a given force results in a line of force in flow space

(see Figure 6.5) with an inherent slope of -1. Each force line describes measured vis-

cosities as the result of a known shear rate (velocity, force).
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The data to support a model such as this are shown in Figure 4.8. The force exerted

on the bead is predetermined by calibration, so any change in shear rate (velocity) is

due to a change in viscosity. The pink data points show the measured viscosity via 1

µm beads. Some of the data are shown in pairs, where a pair is measured viscosity

before and after a takeoff event. Prior to the takeoff, the shear rate around the bead

is relatively low, resulting in a higher viscosity. The power law slope matches the cone

and plate data (shown in blue). Shown in yellow are the data reported in (Heo and

Larson, 2005) for 0.72 mg/mL λ-DNA.

The slope of the Cross model is defined as a “dimensionless constant with a typical

range between 2/3 and 1” (Hackley and Ferraris, 2001); because of this, the force

line and apparent viscosity functions will intersect no more than once. However, if

the apparent viscosity slope approaches that of the force line falloff, there may be an

ambiguity in viscosity due to heterogeneities or concentration gradients on probe-sized

length scales. The shear rate is proportional to bead velocity; if the bead encounters

a spatial region containing only solvent, whose viscosity is low, the bead velocity will

increase for a given force. When the bead re-encounters a polymer strand, initially it

will be under high shear rate (velocity) conditions, possibly aligning polymer strands

and lowering the apparent viscosity (high velocity).

If changes in concentration were responsible for the sudden increase in bead velocity,

then the power law slope should exceed the same regime slope for a single concentration.

If the slope remains the same, it may be explained by the stretching of λ-DNA chains

by the bead. Therefore, these DSTE do not occur as a result of this type of dynamic
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instability.

6.8 Rolie-Poly model

The Rolie-Poly model is a tube model for entangled polymer solutions. Its derivation

is complicated but can be summarized and explained physically as the follows (Likht-

man and Graham, 2003). Stress in the polymer accumulates due to velocity gradients

in the fluid (flow). Polymer strands relax stress in the polymer through different type

of strand-strand interactions, three of which are capturable by the Rolie-Poly model.

The first interaction describes reptation of the entire tube as a diffusive phenomenon

that releases entanglements because the chain ends have higher degrees of freedom.

Secondly, the polymer may retract inside its primitive tube in a process called contour

length fluctuations (CLF). Last is the process of convective constraint release, where

the polymer wriggles loose from entanglements during external flow. The general form

of the Rolie-Poly constitutive law is

dσ

dt
= κ · σ + σ · κT − 1

τd

(
σ − I

)
− fretr

(
trσ
)
σ − fccr

(
trσ
) (
σ − I

)
(6.6)

where fccr and fretr are defined by (Likhtman and Graham, 2003) as

fretr(tr σ) =


2(tr σ)−3

τR
, tr σ − 3� 1

2
τR
, tr σ − 3� 1

(6.7)
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fccr(tr σ) =


2β(tr σ)−3

τR
, tr σ − 3� 1

2β(tr σ)/3)δ

τR
, tr σ − 3� 1

(6.8)

All three of these mechanisms should behave as functions of accumulated strain in

the polymer and on different time scales. The behavior of stress in the asymptotic limits

follow logically. When the rate of deformation is much faster than τd and much slower

than τR the stress should behave accordingly. Interpolating between these asymptotes

yields the overall form for the equation. While this model can be made more compli-

cated by adding temporal modes (Likhtman and Graham, 2003), we assume here that

the true physical behavior is dominated by one mode and can at least qualitatively

predict the behavior.

6.9 Modeling a Rolie-Poly fluid around a moving

sphere

In this model I take a continuum approach to the surrounding polymer solution. I

make the assumption that the polymer contribution to the stress does not significantly

affect the flow field in the neighborhood of the bead (∇ · ~σ 6= 0). This assumption is

obviously incorrect and not without flaw.

I apply a spatially well-defined Stokes solution to creeping flow of an incompressible

viscous fluid and generate a flow field in space. We assume this field develops instan-

taneously with the beads velocity. At any point in the polymer solution, I imagine a
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single volume element as a continuum, and can track its strain history as it evolves in

space and time around the bead.

I then assume that each infinitesimal polymer element contributes to the apparent

viscosity of the overall fluid element as defined by fits and parameterizations of the

empirical data observed for this solution in simple rheological flows at different flow rates

(Hur et al., 2001; Likhtman and Graham, 2003; Woo et al., 2004; Teixeira et al., 2007).

Coarsely fitting experimental data and the Rolie-Poly fits is motivated by the underlying

polymer physics at play (CCR, reptation, stretch, etc). I now have a field of continuous

(to the resolution of our grid or interpolation) strain history, strain rate (governed by

flow) and through the framework of our fits, viscosity. From this I can calculate the

Weissenburg number as well as revert back to the incompressible Newtonian assumption

and calculate the apparent viscosity the bead sees by summing the shear and pressure

terms over the surface of the bead. Once this apparent viscosity is calculated, the

velocity of the bead is assumed to update instantaneously along with the flow field and

the process is repeated.

The primary goal is to model the viscoelastic environment immediately surrounding

the probe. I can interpolate the material’s properties in the continuum sense in an effort

to replicate the empirical evidence of a strain thickening material. I used the parameters

from the Carreau model to initialize values of η0. The infinite shear viscosity, η∞,

defines the minimum viscosity attainable when a solution of monomers size b interact

individually as hard spheres with the solvent (Colby et al., 2007; Silbert et al., 1999).

I used η∞ from the Carreau model to evaluate the first value of fluid velocity in the
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domain that immediately surrounds the bead. The strain rate follows explicitly from

the velocity gradient in closed form.

6.9.1 Parameters for Rolie-Poly simulations

Models were run with parameters determined from both CAP and DMBR tech-

niques. The three material parameters used in the Rolie-Poly modeling were the plateau

modulus, Ge, the retraction time, τR, the time scale for dissipative reptation, τd.

– units λ-DNA guar PGM
τd s 0.28 0.74 0.91
τR s 0.015 0.055 0.08

Table 6.2: RP parameters for different polymer systems.

6.10 Results

Modeling bead motion through a Rolie-Poly (RP) fluid (Fig. 6.6) results in paths

qualitatively similar to the schematic in Figure 6.4 and the λ-DNA data presented in

Figure 6.3. Beads pulled at very low force never experienced a DSTE, asymptoting

instead to a steady-state, or constant, velocity. As the force used to pull the bead

increases, the DSTE begins to manifest itself as a subtle change in the curve’s concavity.

These inflection points mark the apex of the strain thickened state, the time at which

the viscosity is its greatest. Post-DSTE, the bead velocity converges to a constant

value.
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Figure 6.6: Shown in this figure are modeled displacements for a 1 µm bead
in a Rolie-Poly fluid. Beads were subjected to forces ranging from 0.1 to 100
pN. The DSTE is present in pulls with forces greater than 2.5 pN. The material
parameters for the Rolie-Poly fluid were chosen to closely match experimental
values for the 1.4 mg/mL λ-DNA solution, listed in Table 4.2.

Normalizing the bead displacement by the applied force generates the compliance

function, plotted in Figure 6.7. The curves collapsed at early times (t < 10 ms) but

quickly diverged. Beads pulled at low force never experienced a DSTE, and a few of

the lowest force pulls completely collapsed, indicating a linear response.

I assumed the long-time response was at steady-state and used the slope to compute

the apparent viscosity for each pull. Following the same methodology I used in Chapter

4, I plotted the calculated η0 versus the maximum shear rate (Fig. 6.8). The low

force, small displacment curves generated the early plateau, again because of the linear

response. The middle, power law region includes curves that do and do not show the

DSTE. Curves in this regime that do not exhibit the DSTE show intracurve linearity,
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Figure 6.7: Normalizing the displacement by the applied force results in the
compliance function which is shown here. For linear viscoelastic materials, this
operation would result in a collapse of disparate displacement curves to a single
compliance curve, like we see for HA in Figure 4.10.

where a linear Jeffrey model fits well for a single curve, but requires different parameters

for a second curve. The second plateau occurs when the model begins to challenge

the lower bound, η∞. The RP model and the empirical data (Fig. 6.9) converge at

moderate shear rates. However, the zero-shear viscosities differ by more than one order

of magnitude. The reason for this divergence is currently unknown.

Plotting the instantaneous apparent viscosity as a function of time results in a

figure qualitatively similar to my own results in 1% guar (Fig. 6.2) as well as Figure

7 in (Teixeira et al., 2007), replicated earlier as Figure 6.1. The pull with the lowest

applied force (0.1 pN) resulted in the highest final apparent viscosity. At the earliest

time scales, the bead senses the solvent viscosity. For low force, small displacment
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Figure 6.8: Just like the analysis used to generate Figures 4.8 and 4.13, we can
recover the canonical relationship found in the CAP shear thinning curve.

Figure 6.9: While I can recover the canonical relationship found in the CAP
shear thinning curve, the RP model expects to achieve zero-shear at a much
lower viscosity.
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Figure 6.10: Plotting the viscosity as a function of time results in a figure sim-
ilar to macroscale CAP shown by Teixeira and replicated here in Figure 6.1 for
1.5 mg/mL λ-DNA and measured by me in Figure 6.2 for 1% guar. Each line
shown here corresponds to a pull shown in Figure 6.6 with a constant force. The
minimum force for a pull was 0.1 pN which belongs to the data shown here with
the highest steady state viscosity. These lower forces result in a simpler, linear
viscoelastic response and correspond to the zero-shear viscosity plotted in the
shear thinning curve in Figure 6.9.

pulls the viscosity quickly rises soon thereafter to a terminal, steady state value. As

the applied force increases, the bead’s response becomes more complicated, rising first

to a thickened state before settling to its thinned, steady state value.

Finally, plotting compliance as a function of time for several materials, normalizing

each by their maximum values, provides a look at the qualitative characteristics of

each curve. In the empirical data, PGM and guar have sharper transitions than DNA

and induced sputum. DNA and sputum being similar to one another shouldn’t be too

surprising since DNA is known to exist in sputum in large quantities. The DSTE does

not transition as quickly in the modeled DNA fluid when compared to the empirical
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data. This systematic error could be attributed to the order used for the RP modeling;

which here is only first order. It is reasonable to assume that a higher order model

could recover the sudden shift in bead velocity.

Figure 6.11: DMBR DSTE and strain thickening in four different polymer sys-
tems, normalized by the maximum compliance and time.

6.11 Discussion

Strain thickening may be relevant to understanding dynamic biological systems.

Biological systems are always “on the move”— biochemical networks are modulated

continuously through feedback loops, blood flows through the cardiovascular system

delivering oxygen, gas exchange in the lungs keeps that oxygen biologically available

and the organism in homeostasis. Also present in the lung are many billions of active

cilia, increasing in relative population from the ninth bronchus generation up to the

trachea. (Hubbard et al., 1991). These cilia are responsible for maintaining mucociliary
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clearance, a homeostatic process where mucus, combined with pollutants and invading

bacteria, is transported from the distal airways and to the trachea, finally being replaced

with fresh, new mucus.

If the effective stroke length of a cilium is approximately 4 µm at a frequency of 10

Hz, then the maximum velocity of the cilium tip would be ≈250 µm/s. Applying the

same maximum shear rate analysis used in Section 2.2.7.3 and modeling the tip of the

cilium as a half-sphere with a 200 nm diameter approximates the maximum shear rate

(Eq. 2.47) applied by the cilium as 3750 s−1 and a Wi� 1. The shear rate experienced

by the fluid falls off as r−4.

6.12 Conclusions

The sudden decrease in steady-state viscosity occurs repeatably in viscoelastic poly-

mer solutions such as DNA, guar, and PGM and include induced sputum and HBE

mucus. These signature behaviors appear to be related to convective constraint release

and chain stretching (Teixeira et al., 2007) here by analogy.

The RP model is self-consistent and derived from polymer physics principles. It

effectively and accurately models the canonical rheological response of entangled poly-

mer solutions over a large experimental window. The RP model could prove useful in

understanding the success or failure of some physiological processes such as mucociliary

transport.
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Chapter 7

Conclusion

Through the experiments and modeling done here, I present information in this

dissertation that directly contributes to the studies of biomaterials and their rheologies

at multiple scales. I found the process of shear thinning, a steady state rheological

phenomenon, measurable not just with CAP but with the microscale DMBR technique

as well, an observation previously unreported in the literature for flexible biopolymers.

I was able to recover the macroscopic shear thinning behavior at the microscale by using

the maximum shear rate experienced by the fluid because of the probe’s velocity. This

approach worked for two different probe geometries as seen in Chapter 4 and Chapter

5. Cast into the context of drug delivery, I made first observations regarding a shape

preference for rod-shaped magnetic particles over sphere of equal volume, primarily due

to the probe’s response to the incident magnetic field and secondarily because of the

shear thinning occurring at the probe’s surface perpendicular to the direction of flow.

Additionally, I discovered the dynamic process of strain thickening in microrheology,

unreported in the literature for microrheology techniques. Further, I speculated on how

strain thickening might be important in studies of mucociliary interactions which are



integral to our full understanding of functional mucociliary clearance.

Substantial consistency exists between the macroscale and microscale rheology tech-

niques for both steady-state shear thinning and dynamic strain thickening modalities in

biopolymer systems. Such consistency reassures that large volumes of purified biomate-

rial are unnecessary for successful rheological testing. I also provided insight regarding

the detection of heterogeneity in the polymer systems studied here in order to address

possible inconsistency between measurements due to the wide variability in materials

created by biological systems.

To perform these experiments I designed and implemented a process to calibrate

variable forces across a sampling field in our magnetic tweezers system, the 3-dimensional

force microscope (3DFM). I then used this system to present data for well-characterized

Newtonian and homogeneous viscoelastic polymer solutions. My experimental results

establish the ability of DMBR as a technique that can measure both linear and non-

linear properties of non-Newtonian fluids for the first time.

A future direction of this project lies in the design of a high-throughput thermal

and driven microbead system, where the video and tracking systems used here become

automated. Such a system will be integral in understanding the breadth of variability

in the microrheology of polymer systems across biological origin. This high-throughput

system would as well provide the ability to quickly perform dose-response experiments

where drug discovery is vital for the treatment of rheological pathologies as in the case

of CF or COPD sputum.
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Appendix A

Reagent Protocols

A.1 Preparation of Newtonian Fluids

A.1.1 2 M Sucrose Solution

To prepare a 2M sucrose solution, start by quantitatively adding 34.2 g of sucrose

(dried at 80◦C for 12-16 hours) to a 50 mL volumetric flask. Add approximately 25

mL of distilled water to the flask and heat the resulting solution to approximately 80-

90◦C. Occasionally agitate the solution to encourage dissolution. Add small amounts

of water until the sucrose was fully dissolved. Add sodium azide to the solution (final

concentration, 0.05%) to discourage microbial growth. Dilute the solution to volume

at room temperature. The viscosity of the solution was predicted by a published

model (Mathlouthi and Reiser, 1995) and confirmed by conventional cone and plate

viscometric methods. To compare with model prediction it becomes important to be

especially quantitative to reduce systematic error.
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A.1.2 2.5 M Sucrose Solution

Follow the same protocol in Section A.1.1 except use 42.8 g of sucrose. Dissolution is

substantially more difficult for 2.5 M sucrose and requires additional care when heating

and mixing. Before adding additional water to volume, make sure that solution is at

room temperature and mix until Schlieren lines dissipate.

A.1.3 Corn Syrup

Purchase corn syrup from a local grocery store and add sodium azide to a final

concentration of 0.05-0.1% w/v in order to discourage bacterial growth. Test the syrup

for viscosity magnitude as well as shear thinning (which it should not) using a cone and

plate rheometer. When adding beads, heat the corn syrup in a hot water bath to 65-70

◦C to reduce the syrup’s viscosity which ensures successful mixing with a vortexer.

A.2 Bead PEGylation

A.2.1 Materials

� 200 nm, –COOH volume-labeled fluorescent beads

� 25 mM MES Buffer

� 5 mM NHS Buffer

� PEG Solution
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� 500 mM TRIS Buffer, pH 7.6

� 15 mM EDAC Solution (cannot premake - decomposes quickly)

� Slow Rotator - use one in fridge if available

A.2.2 Reaction Protocol

1. Prepare 25 mM MES buffer. Add 40 mL water to 3.124 g of MES.

2. Dilute Molecular Probes 200 nm –COOH beads to 1:500 in 25 mM MES buffer.

3. Prepare 5 mM NHS solution. Add 50 µL MES buffer to 15 mg of NHS.

4. Add 20 µL of the 5 mM NHS solution to bead dilution and vortex.

5. Prepare 15 mM EDAC solution. Add 100 µL MES buffer to 15 mg of EDAC.

(Do not prepare EDAC solution until ready to add to reaction.)

6. Immediately add 20 µL of the 15 mM EDAC solution to the bead/NHS mixture.

7. Vortex and place the beads on the rotator. Allow beads to rotate for 30 minutes.

8. To wash beads with MES buffer, spin beads down in centrifuge (For 200 nm

beads, use 18,000 rpm for 10 minutes.) and gently remove supernatant. Add 1

mL MES buffer. Vortex and sonicate to redisperse. Repeat washing procedure

(Start by spinning beads down again). Resuspend beads in 1 mL MES buffer.

9. Prepare PEG solution. Add 330 µL MES buffer to 47.5 mg of Nektar mPEG-NH2.
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10. Add 20 µL of the PEG solution to the reacted beads.

11. Vortex beads and rotate for 2 hours.

12. Wash beads with 500 mM TRIS buffer (pH=7.6). Spin beads down in centrifuge

(12,000 rpm for 10 minutes.) Remove supernatant. Add 1 mL TRIS buffer.

Vortex and sonicate. Repeat washing procedure 3 times. On last wash, resuspend

beads in 300 µL TRIS buffer.

A.3 Distributing Probes into Specimen

1. In a small Eppendorf tube, create an ethanol/bead solution mixture with the

desired concentration of beads. Approximately 6 µL of PEG-bead solution works

fairly well with a 100 µL sample used in 3DFM pulling experiments. The ethanol:bead

solution ratio should be 5:1. That is, if 6 µL of bead solution is used, 30 µL of

ethanol should be added. Vortex the ethanol/bead solution mixture lightly.

2. Put a new pipette tip on the pipetter. If the sample is very viscous, snip the

pipette tip off with scissors to enable easier pipetting (a few mm off the end

should be fine). Using a permanent marker, label the pipette tip with the type

of beads you are using for later identification.

3. Set the pipette to about 2 µL more than the amount of the ethanol/bead solution

you made. Draw the ethanol/bead solution into the pipette tip. Because you

specified more volume than was actually there, there should be a small air bubble
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on the bottom.

4. Hold the pipette horizontally with the pipette tip over a clean Kimwipe. CARE-

FULLY remove the pipette tip and place it horizontally on the Kimwipe. None

of the ethanol/bead solution should spill out, but a tiny drop or two is fine.

Somewhere on the Kimwipe, clearly mark DO NOT TOUCH.

5. Place the pipette tip on the Kimwipe in the incubator for 20 minutes at 80◦C.

Do not incubate at a much higher temperature as it may warp the plastic of the

pipette tip.

6. While the tip is incubating, remove 100 µL of sample from its stock and place it

into a separate Eppendorf tube. This is important to ensure that beads are not

accidentally dispersed into the stock.

7. Remove the pipette tip from the incubator. If done correctly, there should appear

to be nothing in the pipette tip except for a brown cake-like “ring” around the

very edge of the tip (the dried beads).

8. Put the prepared pipette tip on the pipette by hand and adjust the setting on

the pipette to slightly more than 100 µL. Pipette the sample that was in the

Eppendorf tube back into its own container. This only needs to be done once,

but can be done multiple times if the sample is very viscous. There will still be a

brown cake-like ring on the edge of the tip, but it should be lighter than before.

9. When analyzing the sample, first try to gather it from the bottom of the new
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Eppendorf tube, as this will often be the location of the highest concentration of

beads. If the bead population is too low, try gathering the sample from other

locations in the Eppendorf tube. The middle of the tube usually has the lowest

population of beads, and the edges typically have more.

A.4 Vortex Addition

Vortex addition simply refers the the method used to add a polymer in solid form

to a buffer and get fast and efficient dissolution of material, resulting in a homogeneous

dispersion. To achieve this, use a 50 mL Falcon tube and use no more than 10 mL

of buffer. Weigh out the appropriate amount of polymer material onto a piece of wax

paper that has been folded in half at least once and reopened, generating a sharp crease

in which to put the polymer material. While the opened Falcon tube is on the vortex

mixer, smoothly add the polymer to the sides of the vortex of buffer. If the addition is

too slow, the vortex may degrade before all the polymer is added, leaving the remaining

polymer on the surface to dissolve slower. If the addition is too fast, the polymer may

form large clumps and take extra time to wet and dissolve.

A.5 λ-DNA Polymer System

The goal of this protocol is to construct a homogeneous viscoelastic standard, where

the viscoelastic properties arise solely from associations called entanglements between

DNA strands.
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1. Order λ-DNA. Liquid form (protocol A): As of January 2006, the primary source

for our λ-DNA is Invitrogen (www.invitrogen.com, catalog no. 25250). This

material is not sold by volume or concentration, but is titrated by mass of λ-DNA.

6 mg of material runs about $750 US dollars and will make a highly entangled

solution with enough volume to do several experiments in the TA AR-G2 cone-

and-plate rheometer ( 0.3 mL per sample). Lyophilized form (protocol B): As

of Summer 2008, a lyophilized form of λ-DNA was found from Sigma-Aldrich

(www.sigmaaldrich.com, product no. D9768). 10 UN of material runs about

$140, and each unit is about 50 µg. If you want to make 1 mL of 2 mg/mL

material, its going to run about $560.

2. Order Oligonucleotide. The λ-DNA we use has 12 base pairs on each end that

lack complimentary base-pairs. Each end is complementary with its opposite.

When the λ-DNA solution is sufficiently concentrated and cooled (as it comes

from Invitrogen), the ends are “sticky” and associate with one another and cause

circular, star, or random cross-links or topologies between strands. To disrupt

this we add high concentrations of one of the oligonucleotide sequences. There are

two oligonucleotides one can order (one for each end) from UNCs Oligonucleotide

Synthesis Core Facility (http://www.med.unc.edu/olioli)

Oligonucleotide #1: 5’ - GGG CGG CGA CCT - 3’

Oligonucleotide #2: 5’ - AGG TCG CCG CCC - 3’

I have always ordered oligo #1. It is VERY important not to order both ends
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and use them in the same solution, as this can result in associations between

complementary oligos!

The method used by the Synthesis Core has three scales of production: 40 nmol,

0.2 µmol, and 1 µmol, where these values indicate the number of reaction sites

located on the reaction plate. Order the 1 µmol size with HPLC filtration for

each oligonucleotide sequence. On the site, the field next to “Oligo A” and “Oligo

B” is just a chooseable tag. You list “GGG” down each column to specify the

structure of the oligo. The total cost for this should be $60 per oligonucleotide.

Add λ-DNA buffer to resuspend the oligonucleotide, if necessary.

3. Make necessary solutions and buffers.

5M NaCl– To a 50 mL conical centrifuge tube, add 14.61 g of NaCl and dilute

to 50 mL. Vortex until dissolved.

400 mM Tris-HCl (pH 7.4)– To a 50 mL conical centrifuge tube, add 2.42

g of Tris-Base and dilute to 40 mL. Vortex to dissolve. The initial pH is about

10.5. Adjust pH to 7.4 using HCl. Typical volume added is ∼2 mL of 3M HCl.

Once pH of 7.4 is attained, dilute to 50 mL.

100 mM EDTA– To a 50 mL conical centrifuge tube, add 1.46 g of EDTA.

Dilute to 50 mL. Vortex to dissolve.

Invitrogen λ-DNA Storage Buffer– The buffer Invitrogen uses in their λ-DNA

solutions contains 10 mM Tris-HCl (pH 7.4), 5mM NaCl, and 0.1 mM EDTA

(Inv, 2007)
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The Tris-HCl serves as the pH buffer of which the ionic forms are monovalent. The

Na+ and Cl – ions of the NaCl are both monovalent and should not contribute

to any secondary ordered complexes between two negatively charged chemical

species such as a DNA molecule and a negatively charged –COOH bead. The

EDTA is a chelating agent that is deprotonated up to 4 times at high pH. This

should effectively bind any divalent ions like Ca2+ and minimize their effect on

the state of the network.

The pH of the buffer solution is slightly basic, ensuring the deprotonation of the

–COOH groups on the surface of the bead to the –COO− ionic form. This sphere

of negative charge around the beads helps by keeping them from coagulating.

4. Reconstitute λ-DNA (ONLY if using lyophilized material from Sigma). Add the

appropriate amount of Invitrogen storage buffer to each vial. As an example, if

there is 500 µg of material in each vial, add 250 µL to each one if the desired

concentration is 2 mg/mL. Allow the vial to sit in the refrigerator either overnight

or over the weekend to ensure proper reconstitution.

5. Combine λ-DNA vials. Remove λ-DNA solution from each vial via pipetting

(maybe not pipetting, shear stress may be a concern here) and mix gently into

a 15 mL Falcon tube by vortexing (again, this may be worth looking into for

shear stress concerns. You dont want to break λ-DNA strands from too much

shear stress. Maybe rocking?). Take out 70 µL of this solution for gel-filtration

chromatography and laser scattering technique (aliquot A).
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If you are using the lyophilized λ-DNA from Sigma, some of the material will

be stuck to the side (particularly if you are making a high concentration) after

you pipette the material out. Tie some yarn around one of the vials and spin it

around lasso-style for a few minutes, then pipette out again. There is probably a

better way to do this, but this works for now, as none of the centrifuges we have

currently fit the sigma vials.

**IMPORTANT** Whenever transferring this material, it is very important to

ensure that all of the material that could be stuck to the sides has been gathered.

First just pipette the material normally, then spin it down in the big centrifuge in

161 (lowest setting ≥ 2 minutes works fine), then pipette again. You should see

some material “magically” appear at the bottom of the Falcon tube. It is usually

a fairly substantial amount 50 µL or so. Make sure you pipette this as well to

ensure the highest possible volume transfer and consistency in concentration.

6. Determine solution logistics via Spreadsheet. The current spreadsheet location is

//nsrg/nanodata/cribb/doc/rheology/DNA. Remember to modify only the val-

ues that are in yellow.

7. Cap λ-DNA. The idea here is to heat λ-DNA between 65 and 90 ◦C for 15 minutes.

Boil water and add to Styrofoam container (cooler). This will “melt” the λ-

DNA and break up strand-strand interactions. Add the appropriate volume of

oligonucleotides to λ-DNA solution. Set the solution in a Styrofoam container

and allow it to cool slowly over 16 hours or overnight. Take out 70 µL of this
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solution for gel-filtration chromatography and laser scattering technique (aliquot

B).

8. Determine concentration of λ-DNA via UV/Vis. The λ-DNA vials that come from

Invitrogen each contain 500 µg of λ-DNA in approximately 1 mL (Inv, 2007). The

specific extinction of λ-DNA is 0.02 mL µg−1cm−1 at a wavelength of 260 nm.

The UV/Vis Spectrometer is a Cary 400-Bio, with a 1 cm cell path. Beer’s Law

states that A = εbc, where A is the absorbance read by the instrument, ε is the

specific extinction, b is the distance the light travels through the material (cell

length), and c is the concentration of the material. Put 5 µL of the sample into a

cuvette and dilute to 1 mL with λ-DNA buffer. This results in a dilution factor

of 1000/5 = 200. If all of the above protocol is followed, the concentration of the

material can be measured by simply taking the absorbance number on screen and

multiplying it by ten. **Important** Use UV-Clear cuvettes when taking these

measurements.

9. Concentrate and Purify Capped λ-DNA Strands. This step is only necessary if the

measured concentration is lower than the desired concentration. Currently, there

are two methods to do this. Alcoholic precipitation is much more unpredictable

and takes longer thus, it is not the currently preferred method. It certainly has

benefits, however, if a large enough volume has to be concentrated. It has been

included for completeness, but the microcentrifuge method is highly preferred

when possible.
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10. Check Concentration by UV/Vis. This λ-DNA solution should have about 2

times more λ-DNA per unit volume than the stock Invitrogen solution. Use 5

µL of λ-DNA solution in 495 µL of λ-DNA storage buffer and check concentra-

tion using method in Step 8. Take out 70 µL of this solution for gel-filtration

chromatography and laser scattering technique (aliquot C).

11. Adjust Concentration and confirm by UV/Vis. If the resulting concentration

from step 10 is too high, simply dilute the solution back down to the desired

concentration with the λ-DNA buffer. This should be confirmed (again) by UV-

Vis (method in Step 8).

12. Compute yield/recovery. This can be done in the same spreadsheet from Step 6.

13. Confirm Capping Procedure via Fluorescence Microscopy. Dilute the stock λ-

DNA solution to a concentration of 0.01c∗ (c∗ = 0.04 mg/mL) and look for

homogeneous spot size (do this by eye or matlab has routine that can do this

easily).

14. Add oligonucleotide at 1000× stoichiometric requirements.

15. Heat mixture to 65◦C to break up strand-strand associations.

16. Concentrate by appropriate method (alcoholic precipitation or microcon filtra-

tion).

17. Check concentration by spectrophotometric methods at 260 nm.

18. Confirm by fluorescence at 1/100 c∗ by imaging for homogeneous spot size.
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A.6 Concentrating λ-DNA

A.6.1 Microcentrifugation

Order Microcon YM-100 centrifugal concentrators from Fisher (www.fishersci.com,

catalog no. Millipore 42412). These are mesh filters that have a nominal molecular

weight limit (NMWL) of 100,000 Daltons that have been specially designed for use in

any centrifugal device compatible with Eppendorf tubes. Each filter membrane has a

maximum of three uses before physical failure.

� Insert the sample reservoir (blue part) into the vial, with the larger, non-ridged

side on top.

� Pipette the solution into the sample reservoir (0.5 mL maximum volume for each

reservoir, so multiple assemblies might need to be made depending on initial

volume of solution) without touching the membrane with the pipette tip.

� Seal with attached cap.

� Place the assembly into the centrifuge, making sure to counterbalance, and spin

at 500× g for 12 minutes.

� Take the sample reservoir out of the vial and place it upside down in a new clean

vial, then spin for 6 minutes at 500× g to transfer the concentrate for a new vial.

This process can be repeated multiple times to ensure higher concentrations, but

keep in mind that each membrane can only be used three times before failure.
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� Take the concentrate from each new vial and combine into one large vial when

finished.

� Each membrane has a “dead volume” of 10 µL, which means that 10 µL of solution

will be lost for each filter that is used. This is typically negligible, but the lowest

possible number of filters should be used each time.

� As a point of reference, it took two spin cycles to concentrate from 1.2 mg/mL

to 1.8 mg/mL. At lower concentrations, the microcentrifuge process will typically

concentrate more effectively.

� The final concentration can be adequately estimated via the volume of solvent

removed, but should be checked via UV-Vis (see step 6 and 10).

A.6.2 Alcoholic Precipitation

λ-DNA can be concentrated/purified by precipitation in the presence of ethanol

(60% – 80% final volume) or isopropanol (30% – 50% final volume) and salt (LiCl,

NaCl, NaOAc, or NH4Ac is commonly used) , and cold environmental conditions (-20

C) and pelleted by high-speed (13, 000×g) centrifugation. When alcoholic precipitation

is used to concentrate λ-DNA strands, the free oligomers should not precipitate or spin

out during centrifugation.

� Place 0.4 mL of capped λ-DNA into the appropriate number of 1.5 mL centrifuge

tubes.
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� Add 50 µL of 5 M NaCl solution to each tube.

� Vortex lightly, pulsing for no more than 1 second at a time.

� Add 800 µL of cold ethanol (EtOH) to each tube. Leave the EtOH in the freezer

until needed.

� Vortex lightly, pulsing for no more than 1 second at a time.

� Place tubes at -20◦C (standard consumer-grade freezer temperature) for 30 min.

� Confirm visually that precipitation has occurred. If not, then leave in freezer for

another 30 min.

� Centrifuge for 10 minutes at 13, 000× g.

� Place tubes at -20◦C (standard consumer-grade freezer temperature) for 5 min.

� Centrifuge for 5 minutes at 13, 000× g.

� Typically the pellet is stuck to the side of the tube and will not dislodge when

you pour out the supernatant. Save the supernatant. If you dont want to risk it,

you can aspirate the supernatant. Dry pellets are not required prerinse.

� Rinse: Add 80 µL of storage buffer and 800 µL of cold EtOH to each tube.

� Centrifuge for 2–3 minutes at 13, 000× g.

� Aspirate or pour out the supernatant. Allow the pellet to dry by leaving the

tubes suspended upside-down for 5–10 min. Use a swab to remove excess liquid

in the upper portion of the Eppendorf tube.
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� You may want to segregate vials with large pellets from those with little to no

pellet.

� Add appropriate volume of storage buffer such that the final collective volume is

2 mL. This will allow for sufficient volume to do cone-and-plate at the highest

possible λ-DNA concentration.

� Leave the vials in the refrigerator overnight. The next day, vortex lightly, pulsing

for no more than 1 second at a time. Centrifuge for 30 seconds at 5000× g.

� Combine all vials that are equivalent (i.e. if you separated into “big pellet” vs.

“little pellet”, then combine all big pellet vials separately from all little pellet

vials).

� Rotate on slow rotator at room temperature for 30 minutes to ensure maximum

hydration and strand intercolation and polymer homogeneity.
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Appendix B

Optimized Sequences for Varible

Force Calibration

Pole-tip saturation for Netic material

This is the most complete calibration protocol that creates force data across the

entire range of available voltages.

Fluid 2.5M sucrose
Voltages [V] [0.0 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.5 3.0 3.5 4.0 4.5 5.0]

Pulse Widths [s] [0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]
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Fluid 2.5M sucrose
Voltages [V] [0 0.1 0.2 0.4 0.5 0.6 0.8 1 1.2]

Pulse Widths [s] [.624 0.416 0.416 0.208 0.208 0.208 0.104 0.104 0.104]

Pole-tip saturation for Co-Netic material

Bead saturation for Netic material (low-voltage cal-

ibration)

This method demonstrates bead saturation for 1 µm MyOne beads. More generally,

this method provides precise data for calibrations at low force.

Fluid 2.0M sucrose
Voltages [V] [0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6]

Pulse Widths [s] [0.3 0.4 0.4 0.4 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1]

Measuring remanence in Pole tips (force ratio)

Fluid 2.5M sucrose
Voltages [V] [5.0 0.0]

Pulse Widths [s] [0.2 0.5]
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Fluid Karo (3.4 Pa s)
Voltages [V] [5.0 0.0]

Pulse Widths [s] [0.1 0.2]

Measuring maximum force on 1 µm or 2.8 µm beads

Measuring viscosity of 2 M or 2.5 M sucrose

Fluid Karo (3.4 Pa s)
Voltages [V] [0.6 0.0]

Pulse Widths [s] [0.2 0.3]
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