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ABSTRACT 

 

Timothy David Challener: Postcentral Topectomy Optimization by Selective Ablations of the 

Primary Somatosensory Cortex 

(Under the direction of Oleg Favorov) 

 

Postcentral topectomy is a neurosurgical procedure, practiced in the mid-20th century, in 

which surgical ablations of the primary somatosensory cortex (SI) were used as a therapeutic 

means of treating patients suffering from intractable chronic pain. While successful in treating 

many cases, the procedure was poorly understood and eventually became displaced by methods 

that more consistently stopped patient complaints of pain, such as opiates and frontal lobotomies.   

SI contains nociresponsive neurons in two regions: one region in cytoarchitectonic area 1, with 

properties resembling sharp, discriminative, first pain; and the other in the anterior part of area 

3a, with properties resembling burning, affective, second pain. To test the hypothesis that 

permanent pain loss in postcentral topectomy was achieved when the nociresponsive part of area 

3a was removed, we trained unrestrained squirrel monkeys to obtain a juice reward by pulling a 

noxiously heated metal rod. Pull duration shows high sensitivity to rod temperature and was used 

as a measure of each animal’s pain sensibility. After training, all monkeys gave consistent 

baseline pull durations for each trial in a series of chosen neutral (control) and noxious 

temperatures. 

            Next, we made small electrolytic cortical lesions in 2 monkeys, targeting the hand region 

of nociresponsive area 3a. These lesions significantly elevated pull durations for at least 4 
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months (at which time the animals were euthanized), thus indicating permanently reduced pain 

sensibility. In contrast, ablation of motor cortex anterior to area 3a in the 3rd monkey 

significantly reduced pull durations, indicating permanently elevated pain sensibility.  

The current opioid crisis makes these results particularly relevant to clinical medicine. 

Although the precise location of area 3a in the central sulcus varies extensively among humans, 

its nociresponsive region can be accurately localized in any given patient by using high-

resolution fMRI. Once localized, the area 3a nociresponsive region can be targeted for reversible 

or permanent inactivation. Such precisely targeted inactivation might greatly improve the success 

rate of the postcentral topectomy in amelioration of pathological pain, making it a highly 

attractive means of treating otherwise intractable chronic pain. 
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CHAPTER 1: INTRODUCTION 

 

Pain and the Somatosensory Cortex 

 That the primary somatosensory cortex (SI) in the postcentral gyrus is involved in pain 

perception is uncontroversial.  In 1888, Dana made one of the earliest maps of lesion locations 

which produced deficits in pain sensation (Dana et al, 1888).  The clustering around the central 

sulcus is obvious (figure 1).  Decades later, World War I provided Kleist with numerous cases of 

soldiers who had localized brain damage and suffered from a variety of symptoms.  Having 

observed that superficial wounds to the somatosensory cortex spared temperature and pain 

sensibilities, but deeper wounds were far more likely to cause changes in those submodalities, 

Kleist concluded “pain and temperature sensations belong to the anterior, post-central area 3a 

and 3b” (Kleist, 1934).  Marshall later conducted similar research on injured World War II 

soldiers, and came to the same conclusions (Marshall, 1951). 

In the late 1990s and early 2000s, Barry Whitsel, Mark Tommerdahl, Oleg Favorov, and 

Chuck Vierck used optical intrinsic signal (OIS) imaging and microelectrode recordings to study 

area 3a in squirrel monkeys, directly demonstrating the involvement of anterior sector of area 3a 

in nociception (Tommerdahl et al, 1996, 1998; Whitsel et al, 2009).  This function is distinct 

from posterior 3a’s well-known involvement in proprioception. 
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Figure 1: Figure from Dana (1888).  All lesions marked were from patients who experienced 

analgesia while alive, and had the exact lesion locations recorded in postmortem autopsies. 

 

 Anterior 3a not only has a different function from posterior 3a, it is also a 

cytoarchitecturally distinct region (figure 2).  Traditionally, motor cortical area 4 is defined as a 

region extending posteriorly as far as the large pyramidal neurons (Betz cells) in layer V, and 

area 3a is defined as extending as far anterior as the thin band of small layer IV cells.  However, 

the somatosensory territory activated by noxious stimuli lies in the disputed region which meets 

both these definitions.  For sake of clarity, and because it has significant C-afferent input, I will 

be referring to this specific transitional zone as “area 3c”. 
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Figure 2: Histological slice at border between area 3a and 4.  The layer IV which defines the 

traditional extent of area 3a is highlighted in blue, the layer V defining area 4 in red.  Arrow 

points to a lesion marking the location of a studied nociceptive neuron, which is located in area 

“3c”. (Modified from Whitsel et al, 2009) 

 

 

Not only is there sound theoretical support for 3c’s involvement in pain, there also is 

practical experience modulating pain perception through surgical interventions in the SI cortex 

(Vierck et al, 2013).  These surgical interventions – the ‘postcentral topectomy’ – are worth 

investigating in depth. 
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CHAPTER 2: POSTCENTRAL TOPECTOMY 

 

Postcentral Topectomy: A Meta-Analysis 

 Postcentral topectomy is a surgical procedure which was used in the mid-20th century as 

a last-resort treatment for otherwise-incurable chronic pain.  Surgeons opened the skull, 

electrically stimulated the surface of the somatosensory cortex, and wherever the stimulation 

evoked pain, they ablated the cortex.  While this treatment often provided long term pain relief, it 

was eventually displaced by treatment options that more consistently ended patient complaints of 

pain, such as narcotics and frontal lobotomies.  

 We identified 28 cases from 17 full-text reports in 5 languages (Gutierrez-Mahoney 1944; 

Lhermitte and Puech 1946; Horrax 1946; Odom and Lyman 1946; Echols and Colclough 1947; 

Gutierrez-Mahoney 1948; Wertheimer and Mansuy 1949; Stone 1950; Akhundov 1950; Sugar 

and Bucy 1951; Lewin and Phillips 1952; Pool and Bridges 1954; Török 1960; Carbonin 1961; 

Deák and Tóth 1966; Lende and Druckman 1971; Woolsey et al 1979).   

 PubMed, JSTOR and Google Scholar searches were conducted using the terms 

“postcentral topectomy”, “parietal topectomy” “parietal cortex pain surgery”, “parietal phantom 

limb surgery”, and “phantom pain surgical treatment”.  No date boundaries or language 

restrictions were set.  Inclusion criteria for the studies were used.  Those criteria were that the 

study must be used to treat a chronic pain syndrome, give a firsthand description of the region 

ablated, that the region ablated primarily consist of the postcentral gyrus, and that the outcome of 
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the surgery be known.  Studies where the cortex was obviously damaged upon visual inspection 

of the surface were also excluded. 

 In 24 of the 28 patients the surgery was successful.  Success was defined as the patient 

experiencing significant relief from the original pain at the end of the period recorded in the case 

report.  Of these successes, 20 had a recording period that lasted at least six months after the 

surgery, and 14 were recorded for at least ten months.  Of the failures, in 1 of the 28 cases, the 

surgery was entirely unsuccessful (with no pain relief whatsoever), and in 3 of 28 cases the 

original pain completely returned at some later point. 

 

Figure 3: Selected Case Reports.  Successes are cases with significant reduction of the original 

pain at the last recorded point, “Lasting” successes indicating a follow-up of at least six months, 

and “putative” successes a follow-up period of less than six months.  Recurrence indicates the 

complete return of the original pain.  
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Chronological Case Reports  

 The detailed postcentral topectomy case reports are scattered across the literature in five 

different languages.  In order to do a proper analysis of the surgery, the case reports included in 

the statistical analysis have been summarized here. 

  In 1941, Gutierrez-Mahoney was the first to perform a postcentral topectomy (Gutierrez-

Mahoney, 1944).  His patient suffered from painful phantom fingers after a hand injury.  Based 

on a previous report from Holmes, where a cerebral lesion abolished a phantom limb, Gutierrez-

Mahoney decided to operate, assuming that the pain originated somewhere in the sensory cortex.  

He explored the postcentral parietal cortex with electrostimulation to locate regions that evoked 

pain in the phantom limb.  After those regions were identified and mapped, he excised them 

through subpial resection.  The patient was cured, and remained so for at least two years after the 

operation. 

 Gutierrez-Mahoney went on to perform postcentral topectomies on three more patients 

(Gutierrez-Mahoney, 1948).  The results were somewhat mixed.  In the first of these cases there 

was considerable pain relief, with a small amount of remaining pain that could be controlled with 

aspirin.  In the second, a patient with a mid-thigh amputation, the pain from the phantom limb 

was abolished, but the pain in his hip recurred within six months.  In the final case, a variation 

upon the technique was performed; the precentral gyrus was removed along with the postcentral.  

This surgery ultimately proved less effective, as the patient’s pain was abolished in the short term 

but recurred within six months. 

 Lhermitte and Puech (1945) were the second group to intentionally attempt a surgical 

intervention.  It was, unfortunately, unsuccessful; their parietal resection caused only a temporary 

vanishing of the phantom limb, and also restored spontaneous movements of the stump, which 
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had previously been abolished by a myelotomy.  Lhermitte suspected that the operation failed 

due to an insufficiently large resection, but didn’t provide exact details of the lesion’s location 

and extent beyond saying he ‘resected the left parietal lobe’. 

 The next year, Horrax (1946) reported on the four postcentral topectomies he performed.  

In his first patient, he was unable to produce lasting pain relief, despite performing two separate 

surgeries and removing the pre- and post-central cortex both ipsilateral and contralateral to the 

phantom hand.  The longest duration of pain relief lasted only twenty-two days.  His later 

interventions, however, were more successful.  The second patient experienced chronic pain in 

both arms after a spinal cord injury at the C6 vertebra, which had only been exacerbated by a 

cervical laminectomy.  He received considerable relief from the pain in the arm contralateral to 

the topectomy (the more painful limb).  Horrax’s third patient previously suffered from a glial 

tumor in the temporal lobe that damaged the basal ganglia and internal capsule.  After its 

removal, he began experiencing pain in his right hand, arm, foot, and leg.  Horrax mapped the 

motor cortex for the arm and leg and removed a large section of the postcentral cortex posterior 

to it.  At five months, pain returned to the arm and hand, however as of fourteen months, there 

had been no pain in the leg and foot.  The hand and arm were entirely anesthetic to external pain 

as well.  The final patient had previously suffered from a fibrillary astrocytoma situated 

parasagitally in the arm and leg centers, which had been removed surgically.  Two years after its 

removal, he suffered incapacitating pain in the right arm and hand, along with lesser pain in the 

right face and leg and hypoesthesia in all four locations.  The surgeons conducted electrical 

stimulation of the postcentral cortex to evoke pain, followed by guided excisions.  Relief of the 

patient’s upper extremity pain was complete at ten months, when he died from a pontine 
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hemorrhage.  Notably, until death the patient experienced a total loss of pain sensation in his 

right hand.  

 Odom and Lyman had an unusual case report later in 1946.  Their patient, a 68-year-old 

woman, experienced left trigeminal nerve pain for four years.  A complete left trigeminal 

rhizotomy removed tic pains, but did not remove the burning pain on the left side of her face.  A 

postcentral topectomy was performed in order to alleviate this pain.  The motor and sensory 

areas for the face and left arm were mapped electrically, then removed.  After the surgery, there 

was a loss of sensation on the left face and arm, except for the left eye, in which the patient 

complained of pain and photophobia.  In addition, there was also a puzzling ataxic dysarthria 

observed, a symptom unique among postcentral topectomy patients.  It is possible that the 

extensive removal of motor cortex is responsible.  It is also possible that brain damage occurred 

outside the region of incision, as after the surgery the patient spent five days with a fever, and 

during that time was “confused and incoherent”.  As she was only followed for a month post-

surgery, it is impossible to know the long term results.   

 In 1946, Echols and Colclough (1947) performed a fully successful postcentral topectomy 

on a 53 year old male patient suffering from phantom limb pain in his leg, after an attempt at 

spinal anesthetic proved effective for only five minutes.  Stimulation of the leg’s motor cortex 

made the stump jerk, while stimulation of the corresponding sensory cortex made the phantom 

foot feel hot.  Both the gray matter and some white matter of the leg and foot sensory cortex 

were removed, with the patient spontaneously announcing partway through the ablation that the 

phantom foot and pain had vanished.  Although the patient experienced some Jacksonian seizures 

and aphasia due to an extradural blood clot, after it was removed in a second surgery he made a 
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full recovery.  Eleven months later he remained completely free of both the phantom and the 

pain.   

 Wertheimer and Mansuy (1949) operated on a 58-year old male patient whose leg was 

amputated in World War One.  He had experienced phantom limb pain in his foot since 1916, and 

had undergone multiple surgical treatments in the intervening 31 years, all unsuccessful.  During 

the surgery, the motor cortex was explored with electrical stimulation, and the corresponding 

region of the postcentral cortex was ablated, resecting two square centimeters with deep 

coagulation at the top and inside.  The patient felt nonpainful jerks of the stump when stimulated, 

and the pain vanished at the end of the procedure.  However, shortly after the surgery, the patient 

soon grew increasingly agitated, confused, and restless.  The surgical staff discovered that he 

had—foiling all attempts at surveillance—secretly been treating his pain with daily doses of up 

to 24 cg of morphine, and was now suffering the withdrawal symptoms.  He was released after 

ten days of detoxification, and six months later was in excellent condition. 

 Stone (1950) and John Martin operated on three phantom limb patients: two males, 27 

and 28, and one female, 58.  The first had his left forearm amputated after a shell fragment 

wound in 1944.  After several failed procedures, including three neuroma operations, he was 

eventually taken in for a postcentral topectomy.  When Martin attempted to identify the correct 

brain region through electrical stimulation, the patient had a generalized convulsion and lost 

consciousness.  Nevertheless, Martin excised the region which seemed to be the sensory cortex 

for the hand, approximately 2 cm by 1 cm, to 1 cm of depth.  The patient had no pain or 

awareness of his phantom limb post-surgery, and while the phantom itself reappeared four weeks 

after discharge, the pain was still absent ten months later.  The second patient had his leg 

amputated at the thigh after a motorcycle accident.  His phantom limb pain was concentrated in 
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the heel, and any movement of the stump, including wearing his artificial leg, exacerbated it.  A 

postcentral gyrectomy was decided upon.  Electrical stimulation of the postcentral gyrus exactly 

at the midline produced “exquisite pain and tingling” in the phantom limb.  When the excision 

was completed, the patient said he no longer felt the phantom.  He remained free of the pain for 

at least eleven months post-surgery.  The final patient, a 58 year old woman, suffered from both 

central pain and phantom pain, and because of this pain had attempted suicide on three 

occasions.   The surgery excised the entire sensory gyrus, from the posterior border to the next 

gyrus.  Although the patient had a “truly stormy convalescence”, and temporarily suffered motor 

aphasia, her phantom limb pain was immediately cured, and remained so at the fourteen month 

mark. 

 Also in 1950, Akhundov treated a patient (male, 41) who was run over by a car and 

subsequently suffered from a form of supernumerary phantom limb pain (Akhundov, 1950).  

While his arm was physically intact, the nerves had been severed, and he felt a phantom with a 

harshly contracted elbow and hand, with both a continuous burning pain and intermittent 

increases in the ulnar or radial areas.  Surgery was conducted four and a half months after the 

accident.  Stimulation in the postcentral gyrus for the hand caused ‘pricking’ pains that 

immediately grew into the full phantom pain.  They then electrocoagulated all the blood vessels 

in the region, and removed cortical matter 1 cm deep, 1 cm medial, and 2.5 cm posterior, all the 

way to the lower temporal lobe (removing not only S1, but also areas 5, 7, and 40).  Recovery 

followed an unusual course.  After one hour, the phantom was still present, with pain only 

present in digit 5, much diminished and periodic instead of continuous.  At day four, the pain and 

sensation in the fingers was totally gone.  However, on day 9 the phantom hand and pain 

abruptly reappeared, somewhat diminished, and then started vanishing again on day 12.  As of 
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the last recorded time - seven months after surgery - the phantom arm and pain were both 

completely abolished. 

 Sugar and Bucy (1951) attempted to treat postherpetic trigeminal neuralgia with a 

postcentral topectomy in 1946.  The patient (male, 67) had a painful vesicular eruption on the left 

side of his face, with constant burning pain that persisted even after the rash vanished.  Over the 

course of the next three years, several operations on the left trigeminal nerve proved ineffective, 

eventually leaving the area numb, but with continuing pain.  Severing all the root fibers of the 

gasserian ganglion resulted in pain relief for only two days.  All other courses having failed, they 

decided to perform a postcentral topectomy.  Despite extensive attempts to stimulate both the 

precentral and postcentral gyri, they could not evoke the same kind of pain from the patient (one 

location caused a feeling of ‘strangulation’ accompanied by involuntary clearing of the throat).  

All of the postcentral gyrus was removed between the representation of the throat, and the 

representation of the thumb and index finger.  Repeated stimulation still could not evoke pain, 

and the patient spontaneously said that the pain in the face had been completely relieved.  

However, on the fifth day a slight stinging pain recurred, spreading to including all the initial 

area on the twelfth day, and eventually returning to its original strength.  Speculating that the 

failure might have been caused by the bilateral representation of the face, they attempted another 

topectomy five months later, on the ipsilateral side.  However their region of excision was too 

posterior, and missed the postcentral gyrus entirely, resulting in an unsuccessful surgery. 

 Lewin and Phillips (1952) operated on two patients injured in World War I.  The first 

patient (male, 66) had a left thigh amputation after a torpedo explosion.  While his phantom limb 

was initially painless, by 1941 the phantom started hurting, and by the time of admission in 1951 

he had undergone numerous local operations to treat the pain, all unsuccessful.  Electrical 
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stimulation of the postcentral gyrus immediately and repeatedly reproduced his pain.  Excision of 

an area 1 cm in diameter had no effect on the pain, and stimulation deep in the anterior cut edge 

(on the posterior bank of the sulcus) still produced pain.  The excision was increased in size until 

a 3 cm x 1 cm x 1 cm piece of cortex was removed.  At this point the patient’s pain had been 

considerably reduced (though not fully eliminated), and the operation was ended.  This minor 

pain faded over the course of the next few weeks, but returned to a small extent six months later, 

controllable with aspirin.   Their second patient (male, 58) had a mid-thigh amputation due to a 

gunshot wound.  For 27 years he had no phantom limb sensation, however in 1946 the stump 

abruptly became extremely painful, and by the time of admission in 1951 he had numerous local 

operations, a cordotomy, and a spinal analgesic.  Only the cordotomy offered any relief, which 

lasted for three weeks.  Stimulation of the postcentral gyrus immediately and repeatedly 

reproduced the ‘gripping’ pain in his stump.   Once again, the initial excision of 1 cm in diameter 

was insufficient to alter the pain.  Unusually, using forceps to pinch a small blood vessel at the 

bottom of this excision reproduced the pain.  As deeper gray matter was removed, the pain 

disappeared, leaving a final excision 2.0 cm × 1.5 cm × 1.5 cm deep.  Following the operation 

the patient had some superficial tingling, with an attack of burning pain five days later, “quite 

different from any pain he had had previously”, which vanished after 17 hours.  Five weeks post-

operation, he had been completely relieved of the pain existing before the operation, although he 

now had a few new and minor aches over a small area of the stump1.   

 Pool and Bridges (1954) took a similar approach to Akhundov, removing both the 

postcentral gyrus and a large portion of the cortex posterior to it.  The patient (female, 66) was 

                                                 
1 : The same paper includes a third successful (4 years) case report not included in the overall analysis.  The surgery 
removed abnormal postcentral cortex to prevent painful epileptic fits - the epilepsy is a complication which makes 

this case insufficiently unambiguous to include as an example. 
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admitted in 1952 for constant burning and cramping phantom arm pain.    Pool first electrically 

stimulated the motor cortex to identify it, then drove a ‘fence’ of needles 2.5 cm down into the 

sensory cortex along the border with the motor cortex.  Pool then started undercutting from a 

point 7.5 cm posterior to the central fissure, continuing the cut to the anterior until the pins 

blocked his blade.  Recovery was difficult for the first six weeks, due to withdrawal symptoms 

from taking the patient off narcotics too quickly.  By the sixth week, there were occasional 

twinges of phantom pain, but the original constant pain did not recur, and the occasional pains 

gradually decreased over the next four months.  The patient continued to experience relief from 

her phantom limb syndrome at least seventeen months after surgery. 

 Török (1960) treated a patient (male, 59) who had suffered numerous accidents, leaving 

him blind and resulting in an arm amputation.  Phantom pain appeared in the arm immediately 

after surgery, could not be controlled by drugs and prevented him from sleeping.  After eight 

days of conservative treatments proved unsuccessful, a postcentral gyrectomy was performed.  

Electrical stimulation outlined the area of interest, but did not provoke any pain.  The topectomy 

was performed on both pre and post central gyri for both the hand and arm areas.  Immediately 

after, the patient was a little stunned, and still complained about pain but without any emotion - 

by the next day, however, he was relieved that he had no more pain and his stump no longer 

convulsed.  After a month, the patient started occasionally feeling a different kind of dull, drawn-

out pain in his hand at irregularly spaced intervals.  He reported going days without any need for 

analgesics, and during his weeklong follow-up clinic visit six months later, there were no 

complaints of pain.  As the original phantom pain was gone, and the patient could now sleep at 

night, Török considered the surgery a success. 
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 Carbonin (1961) treated a patient (male, 64) who had suffered an amputation of the lower 

two thirds of his arm in 1953.  Three weeks after the amputation, the patient began experiencing 

a painful burning electric current sensation from the shoulder stump to the tip of his fingers.  

Novocainization of the stump, infiltration of the stellate ganglion, and resection of the median 

nerve all proved ineffective, granting only short-term temporary relief.  Over the next few years 

the patient underwent ten different operations to treat his intolerable pain, all unsuccessful.  In 

August 1959 a postcentral topectomy was performed.  The sensory cortex corresponding to the 

arm was removed, with a total excision of 3 cm along the length of the convolution, 1 cm wide 

and 1 cm deep.  Immediately upon waking, the patient was happy to find the pain had 

disappeared, except for a small point on his wrist and little finger.  Two days later, he had a 

Bravais-Jacksonniene seizure.  The surgeons reopened the site, removed coagulated blood from 

the cortical resection, and while they were there, removed a couple more millimeters of gray and 

white matter from the upper and lower limits of the incision.  This succeeded at removing the 

wrist pain and all of the finger’s pain but a small dot under the fingernail.  Notably, a period of 

time after the surgery, the patient returned to the surgeons, claiming to be suffering from horrible 

pain.  However, further investigation revealed the true source of this complaint lay in his severe 

opioid addiction, which had reached 219 codeine pills in 15 days.  After a round of detox, the 

addiction and claims of pain were both gone, and as of a year later the patient remained cured of 

his pain. 

 Deák and Tóth (1966) attempted to treat two patients with postcentral topectomy (female, 

49 and male, 48).  The first had her arm amputated due to malignant tumor in the shoulder joint, 

which became painful over the course of the next four months.  Injections of procaine locally and 

to the plexus brachialis were ineffective, giving only a few hours of relief.  The surgeons 
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performed a postcentral topectomy, stimulating the brain for mapping, excising the sensory 

representations of the face and arm, and getting no reaction from the resected areas.  Recovery 

was uneventful, and as of five years later, the patient was entirely free of symptoms, aside from 

occasional headaches.  The second patient had his foot amputated in world war two, phantom 

pain resulting in three additional reamputations and removal of a neurinoma, all unsuccessful.  

Removal of two additional neuromas halted the pain for two months, after which severe pain 

resurfaced and the patient attempted suicide.  A right posterior radicotomy provided pain relief 

for a few more months, then failed.  Severing and reconnecting the sciatic nerve also proved 

ineffective.  As all peripheral options had failed, a postcentral topectomy was attempted.  The 

sensory area corresponding to the foot was stimulated, paraesthesia was evoked, and the 

corresponding cortical areas was excised.  While the pain stopped immediately, two months later 

osteomyelitis developed in the stump, and the pain returned.  After this failure, he refused further 

operations. 

 Lende and Druckman (1971) decided to treat two patients with intractable facial pain 

(male, 61 and female, 41) by ablating both the postcentral and precentral cortex.  The first patient 

had what was believed to be a pontine lesion, resulting in continuous burning left facial pain.  

Sectioning the trigeminal nerve had no effect.  The mapping stimulation provoked a burning 

feeling in the hand, but not the face.  The facial region’s representation in both the precentral and 

postcentral gyri was removed, extending from the border of hand representation inferiorly to the 

Sylvian fissure, and exposing the insular gyri.  The patient’s pain was fully relieved after the 

operation, although he suffered from some slight weakness of the left hand he remained free of 

pain until his death from a coronary thrombosis 20 months later.  The second patient suffered 

from constant facial pain caused by trigeminal neuralgia.  She underwent multiple alcohol 
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injections, resections of the trigeminal sensory root, numerous medications, and a frontal 

lobotomy, all unsuccessful.  A postcentral gyrectomy was performed, and as with the other 

patient, the excision extended from the area of arm representation to the Sylvian fissure, 

exposing the insular gyri.  After the procedure, the patient was completely free of pain, suffered 

from some weakness of the left hand, and pain could no longer be elicited from the left side of 

the face.  As of the report two and half years later, the patient remained completely free of facial 

pain. 

 Woolsey published the most recent report on postcentral gyrectomies in 1979 (Woolsey et 

al, 1979).  Two patients (female and male, age unknown) were treated for intractable phantom 

pain.  The first had her leg amputated 13 years earlier, and now suffered from pain in the 

phantom leg.  Stimulation of the postcentral gyrus was capable of evoking the pain at multiple 

locations.  The region of interest was then excised, which immediately caused the patient to lose 

awareness of the phantom limb entirely.  Six month later, the phantom was still present, but 

greatly diminished in size, and while the phantom pain had not entirely disappeared, it was less 

intense.  The second patient had his arm amputated after getting it stuck in a hay-baler.  Since the 

accident, he had severe chronic pain in his hand, sometimes intensifying to the point where it 

caused nausea.  Every point in the hand stimulated in the postcentral cortex gave rise to a 

burning sensation, which the patient described as like his normal pain.  The whole postcentral 

arm area was removed surgically.  While no recurrence was noted, long term follow-up was 

impossible, as the patient died within a year. 
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Additional Case Reports 

 Bornstein provides the most dramatic postcentral topectomy case report (Bornstein, 

1949).  Serving as a medic in World War II, he treated a Russian officer whose leg had been shot 

and amputated.  This officer now suffered from crippling phantom limb pain which grew even 

more intense at night.  One day, Bornstein walked in to find the officer collapsed on the floor, 

unconscious, in a pool of his own blood.  He had tried to take his own life.  However, the suicide 

attempt was unsuccessful, and when the officer stabbed himself in the brain, he successfully 

wounded the contralateral parietal lobe, apparently precisely in the sensory cortex associated 

with the missing leg.  When he regained consciousness a few days later, the phantom limb – and 

the pain – were both gone, and remained so for the rest of his life.  As this occurred in 1942, by 

sheer dumb luck, this Russian officer was the second person to successfully perform a 

postcentral topectomy.  Unfortunately, the exact details of this impromptu operation weren’t 

particularly detailed, so this case is entirely omitted from the overall analysis of the surgery’s 

success or failure. 

 Several other case reports were also omitted from overall analysis for a variety of 

reasons.  Some were insufficiently detailed.  Echols reports “5 consecutive successful cases”, but 

only went into detail for one of them.  John Martin reports three of his five patients had 

“immediate and lasting relief”, but did not go into enough detail to clarify how this overlaps with 

the procedures he performed with Stone (Martin, 1952).   Sorgo gives a one sentence summary 

detailing a relapse at three months (Sorgo, 1951).  Penfield and Welch mention a relapse at 18 

months, but were primarily concerned with the supplementary motor cortex (Penfield and Welch, 

1951).  H.C. Trumble produced temporary relief in a paraplegic patient suffering from chronic 

pain with some variety of cortical excision, but never published (Sunderland and Kelly, 1948).  
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Sweet and White made several secondhand references to cases from their personal 

communications as well (Sweet and White, 1969). 

 Cases where noticeably abnormal cortex was excised, or where seizures were the primary 

cause of pain, were also omitted.  Lewin and Phillips included a third patient suffering from 

painful seizures in their case reports, who was successfully treated by a postcentral gyrectomy.  

Hamby treated a patient who suffered from central pain after a car accident with a post-central 

topectomy, resulting in a total release from pain which lasted at least ten years after surgery 

(Hamby, 1961).  However, the surface of the postcentral cortex removed appeared “leathery and 

atrophic”, so the reason for the success cannot be unequivocally determined.  Hécaen and 

Penfield also had a case that was successful at a four and half year follow-up, but the postcentral 

cortex they removed was heavily scarred (Hécaen et al, 1956).   

 In addition, a few frequently-cited case reports were of historical interest, but were not 

entirely comparable to a traditional postcentral topectomy.  Leriche (1949) was the first to 

attempt a postcentral treatment for phantom pain, however he injected procaine instead of 

ablating the area, and the treatment only lasted for two months.  Lenshoek (1959) treated three 

patients, one of which was still cured ten years post-surgery; however, he ablated multiple 

regions of the brain in addition to the postcentral cortex, and the secondary somatosensory area 

appears to have been more important for his cases.  Similarly, Sano (1977) operated in the cm/pf 

complex, outside the region of interest. 

 

Previous Postcentral Topectomy Reviews 

 There have previously been three major reviews conducted assessing the postcentral 

topectomy’s effectiveness.  Gutierrez-Mahoney, as the first person to perform the surgery, stayed 
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in contact with the surgeons who attempted to replicate his early successes.  His initial review 

was delivered at a combined meeting of the New York Academy of Medicine and the New York 

Neurological Society in 1949.  Of the 28 patients treated by resection of the somatosensory 

cortex, the results were ‘good’ in 19, ‘fair’ in 4, and ‘poor’ in 5 (Gutierrez-Mahoney, 1950).   

Unfortunately, despite continuing work on the review for over six years (Sweet and White, 

1955), he never published his completed results.  Attempts to locate it proved unsuccessful 

(including the archives of the New York Neurology Society, the New York Academy of 

Medicine, the former Harvey Cushing Society, the National Library of Medicine, and the 

Gutierrez-Mahoney papers at the Georg-August-Universität Göttingen). 

 Talairach (inventor of the eponymous coordinate scheme) reviewed the postcentral 

topectomy as part of a more comprehensive analysis of parietal involvement in pain sensation 

(Talairach, 1959).  He viewed the postcentral topectomy as a surgical technique based more upon 

experimental and empirical results than logical reasoning from a theory.  This was partially 

because the literature has very few detailed surgical examples, patients are not followed up on 

for long periods, and evaluation of the long-term results of a surgery are thus often left to chance.  

He also noted that actually performing the surgery properly is quite difficult, as minimizing the 

damage to the pia mater limits how effectively the involved cortex can be excised.  He was more 

complimentary when assessing the surgery’s results, judging based on 40 cases that the surgery 

fully succeeded in roughly half, with the caveat that many of the ‘failures’ in the other half still 

provided extended temporary relief, which should still be regarded as valuable to the patient.   

 The final review, Sweet and White’s 1969 section in Pain and the Neurosurgeon, 

diverged significantly from the others, and contributed significantly to the decline of the 

surgery’s use.  Sweet and White assessed the procedure as having been successful in only 4 out 



20 

 

of 23 cases of phantom pain, and deemed its side effects too risky, due to the chance of seizures 

produced by scarring of the excision site, and a single patient of the 38 they investigated dying 

four days after surgery.  They recommended treating phantom pain patients by performing a 

tractotomy, and cutting into the medulla instead.  For thalamic pain and postcordotomy 

dysesthesia, on the other hand, Sweet and White recommended a conservative frontal lobotomy 

instead, claiming the procedure didn’t risk “significant mental deterioration”. 

 While influential, this review had several problematic elements.  The methodology used 

to get the statistic of ‘4 successes out of 23 cases’ for a phantom limb treatment was extremely 

misleading.  They only counted successes from case reports that had a follow-up at least one year 

later, but they include all case reports in the denominator.  If, for example, every case was last 

followed up on exactly 11 months later, and the patient was entirely free of pain at that time, this 

methodology would yield a rate of 0 successes out of 23 cases.  Sweet and White also seem to 

have applied a binary success/failure criterion, where recurrence of any amount of pain is 

considered a failure; this included patients of Gutierrez-Mahoney and Lewin and Phillips who 

had mild pain which could be controlled with aspirin.  In addition, they classified surgeries 

performed in multiple different locations in the cortex outside of the postcentral gyrus as 

‘postcentral topectomies’.   

 Lenshoek is one of the authors included in their phantom pain assessment.  In an earlier 

1955 paper, Sweet and White requested that pain surgeries be followed up on for longer 

durations.  In response, Lenshoek published a ten-year follow-up to one of his pain surgeries in 

1959, specifically mentioning Sweet and White’s request in his introduction.  Ironically enough, 

Sweet and White appear to have missed this paper, as their 1969 review listed Lenshoek as 

having made ‘no late observations’, despite one of his patients remaining pain free ten years after 
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the surgery.  Lenshoek is therefore inaccurately listed as having performed three surgeries with 

zero long-term successes.  This number is especially misleading because, of the three, only the 

successful surgery had any excisions in the postcentral cortex, and even in that case Lenshoek 

ascribes the pain relief to one of the excisions he made in the secondary somatosensory cortex. 

 Another particularly odd element is the Robert S. case report.  Robert S. was a patient 

suffering from intractable phantom pain in the thumb, index, and middle fingers of his right 

hand.  He was treated by Sweet and Carmody on January 9th, 1946, through a postcentral 

topectomy.  The success of this procedure was reported inconsistently.  In Sweet’s 1947 article 

Relief of Pain by Operations on Nervous System, he described the outcome of the surgery, 

reporting that it lasted more than a year, a very promising result: “The patient has remained 

practically free of his pain for the fourteen months which have elapsed since operation”.  In the 

1955 Pain: Its Mechanisms and Surgical Control, Sweet stated “the disagreeable phantom 

disappeared, but only for a period of several months” (Sweet, 1955).  Finally, in 1969, Pain and 

The Neurosurgeon listed Robert S. in Table CIII as having “recurred after 2 months” (Sweet and 

White 1969).  This is a patient personally treated by Sweet, and should ideally be the most 

accurate data he included.    

 There are a few other differences between the published papers and what Sweet and 

White report.  Some of these are intentional; Sweet and White reference personal 

communications with other scientists as follow-ups, although they do not include any direct 

quotations and did not create a consolidated list of what additional information came from these 

secondhand sources.  Their apparent criteria that any degree of pain returning in the 

postoperative period rendered the surgery a failure explains some of the other differences.  

However, even taking those into account, the reason why a few cases diverge is still unclear.  
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One of Lewin and Phillip’s patients being listed as having recurred despite only needing aspirin 

to control his pain has been previously discussed; the other one, however, was reported by Lewin 

and Phillips as “completely relieved of his pre-operative pain”, but is listed as having recurred.  

One of Erickson’s patients is listed as being free of pain for three months, instead of until the 

time of death at five months; they also omit the ‘until time of death’ for one of Erickson’s other 

patients, despite recording that elsewhere in their chart.  One of Horrax’s patients had both his 

arm and leg pain cured; the arm pain recurred at five months, but as of the last record he was free 

of leg pain at 14 months; Sweet and White record this as a recurrence at 14 months.   

One of the cases that made Sweet and White worry about the procedure’s safety, an 

attempted chronic pain surgery by Dimitri and Balado which led to the death of the patient four 

days later, is also odd.  This surgery actually ablated the inferior parietal lobule; despite the 

operation taking place outside the postcentral gyrus this case is still included in the analysis 

(David et al, 1947). 

 As Sweet and White’s review makes it difficult to assess the outcomes of the surgeries it 

references, the conclusions it draws are hard to justify.  In several cases it appears to not just 

misrepresent the results of surgical procedures, but also what procedures were being performed.  

In light of this, Sweet and White’s pessimistic assessment of the Postcentral Topectomy does not 

appear to be justified.   

 

Postcentral Topectomy Conclusions 

 Our analysis of the postcentral topectomy’s effectiveness is in line with Gutierrez-

Mahoney’s original review of the surgery.  Out of Mahoney’s 28 patients, he declared ‘good’ 

results in 19, ‘fair’ in 4, and ‘poor’ in 5.  In our analysis of 28 patients, we found success in 20, 
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putative success (less than six months of tracking) in 4, and total failure or relapse in 4.  While 

Gutierrez-Mahoney’s exact category definitions are unknown, these numbers are very close, 

particularly since 16 of our 28 cases were published after his 1949 review. Our analysis is least 

consistent with Sweet and White’s review.  The discrepancy between these reviews appears to 

arise from differences in our methodologies.   

 The results of the postcentral topectomy are consistent with the hypothesis that its effects 

were due to area 3c being ablated by surgeons.  In the cases where the ablation was successful, 

the somatotopically related region of 3c was excised; in cases where the ablation was 

unsuccessful, 3c was only temporarily suppressed, or missed entirely.  As 3c is extremely 

difficult to find in the convolutions of the human central sulcus, it was not possible to precisely 

identify the region to be cut with the technology available.  This hypothesis, however, is much 

easier to test in squirrel monkeys, as in squirrel monkeys area 3c is on the surface of the cortex 

and easily accessible. 
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CHAPTER 3: BEHAVORIAL TEST OF PAIN SENSIBILITY 

 

Testing the area 3c hypothesis 

 Testing area 3c’s involvement in pain perception is straightforward on a surface level.  It 

is as simple as ablating 3c, then testing to see if pain perception changes.  However, measuring 

subjective perceptions in non-human subjects can be quite difficult.  Thus, before determining 

whether or not area 3c ablation reduces pain sensibility in squirrel monkeys, first we need to 

determine how to measure pain sensibility in squirrel monkeys. 

Training Methodology 

 Pain assessment – and, in particular, measurements in animal models of pain – has been a 

topic of considerable discussion in nociception research.  There are many challenges with current 

methods, ranging from the obvious difficulties in interpreting animal behavior to animals 

deliberately attempting to avoid noxious stimuli (Anil et al, 2002). 

 Currently, hot plate tests are commonly used to assess C-afferent pain response (Vogel, 

1997).  In a hot plate test, the animal is put onto a metal floor, which is gradually heated up 

(Hunskaar, 1986).  The researcher observes with a stopwatch and times when the animal shows 

signs of discomfort (such as jumping off the hot surface).  This form of test has some elements 

which make it difficult to apply and interpret.  First, the animal can easily become accustomed to 

removing its limb or tail from the plate upon sensing an increase in temperature, avoiding the 

painful stimulus before it occurs.  Second, the basic form of the hot plate test is subjective; what 
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a researcher interprets as signs of discomfort can be more a judgment call than an objective 

measurement.  Variations using an automated system are less subjective, but it remains unclear 

how closely paw licking or jumping behaviors reflect pain perception, even when accurately 

timed (Yezierski and Vierck, 2011).  Counterintuitively, behaviors that are more conscious 

appear to have more consistent results than reflexive behaviors; rats will exhibit escape 

responding to even mild heat (44�C) consistently, but at the same temperature do not 

consistently alter their licking, guarding, or reflex responses (Yezierski and Vierck, 2015).  The 

classical hot plate test also cannot test individual limbs, and risks stress and anxiety confounding 

results.  Tests using a Hargreaves method, which uses intense light to heat a smaller area of the 

body, solve some of the issues of a hot plate test but are largely similar (Ma et al, 2015). 

 With the input of Dr. Vierck, we developed our own C-afferent nociception test to address 

these problems: the heated lever test.  In this pain tolerance test, the animal pulls on a metal lever 

heated to a particular temperature, and while the lever is actively pulled a juice reward is 

delivered.  The animal stops pulling (and thus stops receiving its reward) when the lever 

becomes too uncomfortable to hold.  This addresses many of the issues of the hot plate test.  

First, the use of a positive reinforcer incentivizes the animal to hold onto the lever even after the 

first painful sensation - the animals get more juice if they ‘tough it out’.  As actively pulling the 

lever is necessary for the reward to be dispensed, the animal must maintain firm contact with the 

lever’s heated surface.  Second, the lever pull durations can be accurately and easily timed.  

Third, this test relies upon the animal’s conscious behavior, rather than its reflexive actions.  

Finally, as this is a volitional test that the animal initiates itself, and requires no restraint, the test 

is less stressful for both the animal and researcher.  In fact, the animals are both willing and eager 

to participate, and usually run into the training cage the moment it is opened. 
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 The heated lever test is relatively quick to train (2-4 weeks), and gives results that are 

remarkably consistent over time.  It also improves upon the hot plate task by allowing a wider 

variety of experiments; analgesic effects upon specific limbs can easily be tested.  More 

elaborate versions of the task – such as testing left and right hands on alternating days – are not 

only feasible, but easy to perform. 

 Because squirrel monkeys have a cortex that closely resembles that of humans, they can 

be used as an effective model for human C-afferent nociception.  We trained four squirrel 

monkeys to perform this test, although we only gathered neural data from three of them. 

All experiments were conducted at the University of North Carolina. The experimental 

protocol was in compliance with NIH guidelines for the care and use of animals in research, and 

was approved by the University of North Carolina Animal Care and Use Committee. 

Testing Procedure 

 The heated lever test relies upon a food reward for motivation.  Therefore, during the four 

hours preceding, as well as during the training/testing period, the subjects were deprived of food.  

During a typical training session, each subject could earn up to 10 mL of apricot juice2.  The 

juice dispenser was gravity fed, controlled by a solenoid valve, with a flow rate of approximately 

0.1 mL/s.  A plastic tube from the dispenser extended into the cage, positioned within easy reach 

of the monkey's mouth.  Testing was typically conducted on each weekday (with rest days on 

weekends), five days a week.  After testing of all animals was complete, the monkeys were given 

treats and their solid food dispensers were returned to the cages. 

                                                 
2 Finding a juice reward the monkeys all liked was somewhat difficult.  After testing several varieties, Looza brand 

apricot juice was the one that made them most enthusiastic. 
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 Before the test, the subject was separated from the other animals by opening the door 

connecting the main cage to the testing chamber.  The subject then entered the testing chamber, 

and the door was closed behind it.  This was necessary because the animals were highly 

motivated to receive their juice reward, and given the opportunity they would shove each other 

away from the apparatus and try to steal each other’s juice.  During the first few weeks, it was 

sometimes necessary to give the monkeys 3-5 minutes to settle themselves in the testing chamber 

before testing began.  However, the monkeys soon became accustomed to the task, and upon 

entering the chamber would immediately attempt to pull the lever before testing began (or 

attempted to remove the panel separating them from the lever).  In this case, to prevent 

frustration, the tests were started immediately.  

 

 

Figure 3: Testing Device.  Heated lever is visible in center, valve controlling juice flow visible at right.  

When in use, a longer tube is screwed onto the valve and attached to the cage. 
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The lever was a hollow aluminum rod sized to make it easy for the squirrel monkey to 

grip with its whole hand (a “power grip”).  Inside the rod was a heating element attached to a 

thermocouple and a PID controller.  Between the lever and the cage was an opaque plastic panel, 

physically separating the monkey from the lever. 

At the beginning of each trial in the testing battery 

 *An electronic tone played 

 *The panel was removed, revealing the lever and juice dispenser. 

When the monkey first pulled the lever 

 *The timer started 

So long as the monkey actively continued pulling 

 *A different tone played 

 *The juice dispenser dispensed juice 

The trial ended after any of the following happened: 

 *Ten seconds elapsed since the start, or 

 *The monkey physically let go of the lever, or 

 *Two seconds passed since the monkey last actively pulled the lever 

When the trial was concluded 

 *The time elapsed between the first and last pull was recorded to the nearest 0.1 seconds. 

 *A buzzer sounded 

 *The tone and juice dispensing stopped (even if the monkey was still pulling the lever) 

 *The panel shielding the lever was restored 

 *The lever temperature was set to the value needed for the next trial. 

 *The 90 second countdown until the beginning of the next trial started 
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Initial Pull Training 

 The machine’s design was relatively simple, making it fairly straightforward to train the 

monkeys to pull the lever and engage in testing.  Squirrel monkeys are very “grabby”, and will 

attempt to stick their hands out of the cage and handle any foreign object that is within sight.  

This behavior could easily be reinforced on a specific object, then transferred. 

The first phase of training was conditioning the monkey to pull on a pipette to get juice.  

Training began by holding a soft disposable plastic pipette full of apricot juice just outside the 

animal's cage, with the tip pointed inwards.  Soon, a monkey would grab onto the tip and attempt 

to pull it into the cage.  Experimenter allowed this, while maintaining a firm grip on the other 

half of the pipette.  Once the pipette's tip was inside the cage, the experimenters slightly 

squeezed the bulb, dispensing juice for the monkey to drink.  The pipette was pulled out of the 

cage either after one mL of juice is dispensed, or if the monkey stopped pulling or released the 

pipette.  Training for the day continued until each monkey had received 10 mL of juice.  Within 

three days, the monkeys became very proficient in this behavior, and eagerly engaged in it. 

 Once the pipette pulling skill had been acquired, the monkey could be separated from the 

others for testing.  The monkey was transferred into the smaller testing cage attached to the main 

one, and the same procedure was applied once again, until the monkey was familiarized with the 

change in setting and presence of experimental equipment.  Because the new cage was now 

where they received juice, the monkeys formed positive associations with going into it. 

 Transference of the pipette-pulling skill to the heated lever was fairly quick.  Once a 

monkey was in the testing cage, the juice dispenser nozzle could be triggered to give small 

amounts of juice, so the monkey recognized the nozzle as a juice source.  The pipette was then 



30 

 

physically attached to the unheated metal lever, such that it could be grabbed onto from inside 

the cage, but the pipette tip was not close enough to drink from.  The nozzle for the juice 

dispenser was placed for easy ergonomic access to the monkey’s mouth when its arm was 

extended to pull on the pipette. 

 When the monkey pulled on the pipette, it was also pulling on the lever, causing juice to 

flow out of the nozzle in front of the monkey’s mouth.  The monkeys soon learned to transfer the 

location they drank from to the nozzle.  Only 3 days of training were necessary until the 

monkeys consistently pulled the lever for a full 10 second trial.  Over the course of the next two 

weeks, the plastic pipette could then be shortened by a quarter of an inch in each test, until each 

monkey was pulling on the lever directly.  At this point, the monkey was successfully completing 

a lever-pulling task. 

 

Lever Handedness Control 

 In order to control the hand used by the monkey for the task, the nozzle was placed off 

center from the lever (figure 4).  As the monkey will put its mouth on the juice nozzle, if the 

lever is to the left of the nozzle, the monkey must use the left hand to operate it.  If the nozzle is 

moved to the other side of the lever, it becomes far easier to use the right hand instead.   
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Figure 4: View of machine from inside cage.  Nozzle position can be moved to select which hand 

is used.  For the right hand the nozzle is in position A, for the left hand the nozzle is in position 

B.  The heated lever always remains at location C. 

 

 

 In training, subjects initially favored one hand over the other, and attempted to twist their 

bodies to use the “wrong” hand.  However, the poor ergonomics of using the wrong hand made 

even a 'successful' pull uncomfortable, and the increased difficulty meant they also received less 

juice reward.  As such, they quickly used the proper hand exclusively.  After six days of 10-trial 

batteries (alternating between left-hand-only and right-hand-only days3), the monkeys 

successfully pulled for a full 10 seconds using only the proper arm for each of the 10 trials. 

  

                                                 
3 While we trained them to be able to use both hands, we only performed tests on the right hand of each monkey.   
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Temperature Training 

 Once a monkey was trained to pull the lever with the proper arm for full 10-second trial 

periods, the next stage of training was to introduce varying temperatures.  To avoid the monkey 

associating every warm sensation on the lever with a painful experience, non-noxious 

temperatures were introduced first.   

 The lever started at an initial non-noxious temperature of 114�F.  If the monkey pulled 

the lever for a full trial five times within the first seven trials (allowing for two mistakes), the 

temperature was increased to 120�F for the remaining trials. 

 This continued until the monkey succeeded at full 10 second trials for all ten tests. 

 After the monkey was acclimated to warmed levers, the next step was introducing 

changes in temperature between tests.  The monkeys were given two test days of batteries with 

temperature patterns alternating between 114 and 120�F tests – a difference sufficient to be 

noticeable, but still outside the noxious range.  They did not have any difficulties completing 

these tests. 

 

Determining Individual Baselines 

While individual monkeys had consistent pull durations at a given temperature, these 

durations varied from monkey to monkey.  While one monkey would pull on the lever for 8 

seconds at 128�F, another would pull for only 5 seconds.  As this test was being used to assess 

changes in perceptual pain response, individualized baseline temperatures needed to be found 

that produced the same pull durations across different monkeys.  In this way, changes in 

individual pain sensibility could be controlled for. 
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An exploratory battery was used in order to discover the individual set of temperatures 

which result in desired pull durations for a given monkey.  This was done by locating the highest 

temperatures at which the monkey would consistently hold onto the rod for 10 seconds, 8 

seconds, 5 seconds, and 2 seconds.  These are defined as the ‘threshold’, 'low', 'medium', and 

'high' temperatures, respectively.  The 'neutral' temperature is defined as two degrees below the 

threshold temperature, to ensure that the neutral temperature is non-noxious. 

  

 

 

Figure 5:  Pull duration as a function of rod temperature for two subjects.  Notably, the decline in 

duration as a function of temperature is similar across both subjects, but is horizontally offset.  
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These temperature responses were found through staggered ramp-up trials.  A series of 

increasing test temperatures alternated with neutral temperatures, allowing the animal to get an 

easy reward half the time, and preventing the rod pulling being associated only with pain.  In 

addition, all test sessions began and ended with a much lower temperature ‘reward’ test, to 

ensure the first and last impressions were of the test being easy, and to prevent the animal from 

seeing the test as constantly increasing in difficulty. 

 For instance, a typical exploratory battery was 114F, 120F, 124F, 120F, 126F, 120F, 128F, 

120F, 130F, 114F. 

 Once temperatures with the appropriate pull duration were identified, the final testing 

regimen was established. 

 

Testing Regimen 

 The final testing regimen was structured similarly to the exploratory battery, as the 

considerations were largely the same.  However, as the testing regimen also needed to control for 

different levels of animal motivation, a warm-up period was added.   

 The monkeys were often unfocused at the beginning of a series of trials.  They spent the 

first one or two tests unmotivated and easily distracted, but after that point became attentive and 

well-behaved.  In some rare cases, however, after one or two tests the monkey remained 

completely unmotivated and unwilling to participate.  Sometimes this was due to an obvious 

environmental factor influencing its mood, such as having a new member of the staff assigned to 

the room.  Other times they just seemed “cranky” for no understandable reason. 

 The three test warmup existed to prevent this initial lack of motivation from skewing the 

early test results.  The first two tests were entirely non-noxious, and the third was a low 
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temperature test which is only borderline noxious.  If the monkey had low performance on the 

warmup: either pulling less than nine seconds at the reward or neutral temperature trial, or less 

than five seconds at the low temperature trial, then that test was repeated, up to a maximum of 

three total repetitions.   

 Most of the time the warm-ups were successfully completed, and the monkeys had no 

trouble completing the following tests.  In the rare cases the monkey was too unmotivated to 

drink ‘free’ juice, and failed the warm-up, the door of the test cage was opened and they were let 

back into their home cage.   

Thus, the final testing regime was 

 

Warmup: 
 

 
Reward 

 
Neutral 

 
Low 

Main Test: 

 
Neutral 

 
Medium 

 
Neutral 

 
High 

 
Neutral 

 
Medium 

 
Neutral 

 
High 

 
Neutral 

 
Low 

 
Neutral 
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 This test pattern collected two data points at each noxious temperature.  As with the 

exploratory tests, the temperatures were not a continuous ramp-up, and the most noxious 

temperatures were separated.4  The neutral tests served multiple purposes – they gave an 

additional incentive for participating in testing, allowed for temporary thermal sensitization from 

high temperature exposure to wear off, and also helped to assess whether or not some 

environmental factor has disturbed the monkey partway through the test set.  If the monkey 

pulled for only a short duration on a non-noxious test, that indicated either lack of motivation or 

distraction.  In either case, repeated unwillingness to pull for a full neutral test indicated that the 

test results for the day were unreliable, and should be discarded.  Discarding a trial set was rare, 

but enabled controlling for mid-test changes in mood. 

 

  

                                                 
4 An obvious criticism of using a consistent test pattern is that the monkeys may have learned the temperature 

pattern and simply pulled for an appropriate duration “by rote”.  However, the volitional nature of the test appears to 

avoid this; occasional breaks in the pattern (such as setting the lever to a neutral temperature instead of a high 

temperature) consistently resulted in pull durations appropriate to the temperature, rather than its position in the 
normal test order.  In addition, since our experiment is looking for a change in pull duration, an influence that biases 

towards the pull duration remaining unchanged is unlikely to produce false positives. 
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CHAPTER 4:  EFFECT OF CORTICAL ABLATION ON PAIN SENSIBILITY 

  

Lesioning Preparations 

 Once the temperature sets for each subject were established, preparations for lesioning 3c 

began.  The first phase was surgically attaching a recording chamber to the skull.  The monkey 

was anesthetized, a hole was cut in the skull exposing sensorimotor cortex, and a polycarbonate 

chamber (Figure 6) was attached to the skull with dental cement.  The chamber had an inner and 

outer screw-in lids, which allowed it to be sealed when outside the sterile surgery room. 

 Each subject’s pre-lesioning baseline rod-pulling durations were tested after the chamber 

was attached.  This avoided confounding the post-lesion performance with side-effects of the 

surgical procedure; baselines were only used from the period after the animal already had a 

chance to recover from any transient effects of the chamber attachment.  These effects of 

attaching the chamber seemed to be fairly minor.  The monkeys were uninterested in testing for 

two or three days after the surgery, but aside from that brief change in motivation, and some 

curious exploratory grasps at the new attachment to their heads, the monkeys quickly returned to 

their normal routines.   
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Figure 6: Recording Chamber Schematic.  Left: During everyday wear, the chamber is entirely 

sealed with two seperate lids (light and dark blue colored).  Right: During neural recording and 

ablation, the chamber is attached to a bridge via an extension sleeve (green colored), and the 

lids are removed to expose the cortex. 

 

 

Figure 7: Monkey with recording chamber attached. 
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Lesioning Procedure 

 After a pre-lesion rod-pulling baseline had been established, the next step was to lesion 

area 3c in the cortex.  With the monkey under general isoflurane and nitrous oxide in oxygen 

anesthesia, the recording chamber was affixed to a bridge, the chamber was opened, and the 

surface of the somatosensory cortex became accessible. 

 Nociresponsive region of area 3c was localized experimentally through multiple 

microelectrode penetrations (Figure 8).  Submersion of the contralateral hand in noxiously 

heated water bath was used as a thermonoxious stimulus.  While finding the general 

neighborhood for the hand’s somatotopic representation was straightforward, locating 

nociresponsive area 3c took multiple penetrations.  In subject A, of the fourteen electrode sites 

recorded from, three showed a strong response specific to the noxious stimulus.  When the 

noxious stimulus was applied, the electrode recordings showed the characteristic slow buildup of 

spike firing activity, as well as a long decay period lasting multiple seconds after the stimulus 

was withdrawn.  Such a time-course of stimulus-evoked neural activity matches human pain 

sensations evoked by the same thermonoxious stimuli; the stimulus does not start off painful, but 

slowly starts ramping up until it becomes very intense, and after the stimulus is removed the pain 

still lingers, gradually reducing down and only fully disappearing after a significant amount of 

time.  All three of the nociceptive sites were located in a thin strip running in the medial to lateral 

direction anterior to the central sulcus (Figure 8). 
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Figure 8: (A) Recording from 3c in subject A.  Fourteen microelectrode penetrations were 

conducted.  Of them, eleven did not show firing rates consistent with responsivity to 

thermonoxious hand stimulation (black dots), and three did (yellow dots). Circles enclosing the 

yellow dots mark locations of 3 electrolytic lesions.  (B) Electrode recordings from 

nociresponsive sites. Noxious stimuli were applied to the hand during times noted with the red 

bar.  Firing rates increase while noxious stimuli are being applied and decay gradually 

afterwards, which matches human experience of noxious heat. (C) Lesion histology.  Note that 

while the original lesions were spherical, over time the ablated tissue contracted, resulting in a 

narrower lesion profile in histology. 

 

 

Once recording sites with thermonoxious hand responses had been identified, they were 

then lesioned.  The lesioning current was a conservative 35 µA applied for 100 seconds.  As 

such, each lesion was approximately half a millimeter in diameter.  Histology shows that the 

lesions were successfully placed in area 3c, between anterior 3a and area 4 (Figure 8C).   

 In subjects A and B, lesions were placed in area 3c.  In subject C, however, we placed the 

lesion in area 4 instead.   
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Lesioning Results 

The behavioral results of the lesioning were both immediate and dramatic.  In subject A, 

the lesioning resulted in a dramatic decrease in pain sensibility, which persisted for the four 

months, until the end of the experiment (Figure 9).  The performance at all three test 

temperatures increased significantly.  Notably, as the apparatus only distributes a maximum of 

ten seconds of juice in any given trial, on several days the animal’s low noxious temperature 

performance reached the maximum value our test could record (i.e., 10s).  Without this 

maximum limit, it can be expected that the animal would have pulled for a duration longer than 

ten seconds.  The medium temperature had the greatest deviation from baseline.  This is as 

expected, because pain sensation follows a sigmoid curve as a function of temperature, and thus 

the moderate temperatures have the highest slope (Jepma et al, 2014). 

 

 

Figure 9: Results of Ablation in Subject A.  The average High, Medium, and Low noxious 

temperature pull durations on a given day (Black, Red, and Blue plots respectively) are tracked 

as a function of time. Dotted lines represent pre-ablation averages, p-values are calculated using 

a 2-tailed t-test.  The effects of the ablation are obvious and highly significant. 
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In subject B, extremely strong immediate results of the first lesioning tapered off after 

two weeks, resulting in a return to baseline (Figure 10).  However, after a second ablation, this 

subject also experienced a permanent decrease in pain sensation which lasted until the end of the 

experiment.  The effect of lesioning twice appears to have had some cumulative results, as the 

high temperature pull duration in subject B increased more dramatically than in subject A. 

 

 

Figure 10: Results of 3c Ablation in Subject B.  The first lesion had only a transient effect on 

pain sensibility, which was followed by a second lesion with a permanent effect. 

 

 

In subject C, ablations in area 4 resulted in the opposite effect from ablations in area 3c; 

the subject demonstrated an immediate and dramatic increase in pain sensibility (Figure 11).  

This increase was cumulative with a second lesioning in area 4, resulting in a permanent 

hypersensitivity to pain which persisted until the end of the experiment, over six months later.   
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Figure 11: Subject C was ablated twice in area 4.  This resulted in a dramatic increase in 

nociceptive sensibility, which was cumulative across two ablations. 

 

 

Ablation of area 4 causing hypersensitivity is consistent with previous understanding of 

the region’s functionality.  Motor cortex stimulation is currently in clinical use as a treatment for 

chronic pain (Sæhle, 2017).  As stimulation of area 4 reliably suppresses area 3c, inactivation of 

area 4 should be expected to potentiate area 3c.  Similarly, optogenetic stimulation of the visible 

surface of the SI cortex has analgesic effects in mice (Lee, 2017).  Ablating the crown of the 

postcentral gyrus posterior to area 3c in macaques have been previously observed to result in 

pain hypersensitivity as well (Peele, 1944). 

In combination with our observations, we can conclude that area 3c is a thin strip of pain-

promoting sensorimotor cortex bordered on both sides by pain-suppressing regions.  Kleist 

(1934) and Marshall (1945) both observed hypersensitivity to pain in some patients with parietal 

injuries, including some which had hypersensitivity in one region and reduced pain sensibility in 



44 

 

the region adjacent to it.  This also explains an odd effect noted by Talairach: "the reasons for a 

more or less prolonged disappearance of painful phenomena do not seem to be due to the extent 

of excision in the post-central gyrus ... the widest ablations (which appear to have been 

performed by Horrax and White and Sweet) were performed precisely in the patients who 

recurred most rapidly"(Talairach, 1959).  As 3c is surrounded by pain-suppressing regions, and 

surgeons typically continue to ablate cortex until the pain can no longer be evoked, a wider 

ablation is more likely to result in the removal of additional inhibitory cortex, resulting in a less-

effective surgery. 

One obvious question is whether any of the lesions resulted in changes in motor 

performance.  Potentially, if a subject lost its ability to perform the test properly, the recorded 

pull duration could change due to physical inability rather than perceptual changes.  However, 

there was no apparent change in motor performance among the animals.  They continued to 

climb and swing around their cages with full agility, and were just as capable after the lesions as 

before at grasping for treats placed outside the cage – including moving targets such as live 

mealworms.  In addition, at the neutral temperatures subjects continued to pull on the lever for a 

full ten seconds, indicating that loss of motor function is not responsible for an inability to 

consistently grip the lever.  
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CHAPTER 5: CONCLUSIONS 

 

Postcentral topectomy was an effective surgery held back primarily due to technological 

constraints.  When area 3c was ablated precisely, immediate and lasting pain relief could be 

produced.  However, even with electrical exploration, the convolutions of the tissue within the 

central sulcus make determining the location of area 3c solely through viewing the surface of the 

brain impossible (Figure 12).  As such, incomplete removal or temporary suppression through 

removal of adjacent tissue produced failed surgeries and relapses.  However, advances in medical 

technology allow for new and more reliable variations upon this surgery to be developed.  

Recently, in a collaborative pilot fMRI study with Dr. Sue Francis at Sir Peter Mansfield Imaging 

Centre, University of Nottingham, UK, we confirmed that thermonoxious skin stimulation in 

humans evokes prominent response in the depth of the central sulcus consistent with area 3c.  

This or some other form of noninvasive imaging can be used in conjunction with a variety of 

noninvasive surgical methods as part of an improved procedure.  In short, new technology allows 

surgeons to use imaging instead of guesswork, and precisely target and ablate only the necessary 

region. 

 High-frequency repetitive transcranial magnetic stimulation (rTMS) is a noninvasive, but 

nonpermanent technology for modulation of cortical function.  Essentially, a coil is used to emit 

a strong magnetic field, which induces an electrical current in the region of the brain just below 

it.   It is possible to produce lasting inhibition or facilitation of cortical neuron excitability 

(Pascual-Leone, 1998).  However the major challenge of using rTMS is that the stimulated area 
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is relatively broad and shallow, and as such fine precision is difficult to achieve (Sack and 

Linden, 2003).  Nevertheless, early results have shown robust successes in reducing pain through 

stimulation of the motor cortex, and occasional successes through inhibition of the secondary 

somatosensory cortex (Lefaucheur et al, 2014). 

 

 

Figure 12: Sagittal cross-sections of the human central sulcus, spaced 5 mm apart (Area 4 in 

light gray, areas 3a and 3b in dark gray).  Note how inconsistent the underlying areas are 

relative to the visible surface of the sulcus (from White, 1997, Figure 10). 

 

 Radiosurgery (as with a Gamma Knife) is currently the most precise method of 

noninvasively ablating arbitrary regions of the brain.  While radiosurgery does not offer the same 

flexibility in effect type as other noninvasive methods, it is a mature and reliable technology with 

clinical accuracy averaging as small as 0.15 millimeters (Wright, 2017).  Stereotactic 

radiosurgery is currently used as a noninvasive procedure to treat trigeminal nerve pain, 
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selectively ablating in the trigeminal root entry zone (Régis, 2015).  The largest drawback of 

radiosurgery is that the patient can’t actively give feedback about the subjective effects of the 

brain region, and the effects of the gamma knife only appear gradually over the course of weeks 

or months, and may not be immediately noticeable post-surgery.  

 MR-guided transcranial focused ultrasound (MRgFUS) is an emerging noninvasive 

neurosurgical tool.  As with rTMS, MRgFUS can be tuned to have different effects on the 

targeted region, with ultrasound waves capable of not only causing permanent ablations, but also 

temporarily exciting or inhibiting a region without heating or damage (Dallapiazza, 2018).  As 

ultrasound can be delivered through nonmagnetic methods, MR guidance and thermometry can 

be used continuously throughout the procedure.  While the technology is still being developed, 

and the area of effect is generally a thin cylinder perpendicular to the brain’s surface, current 

models have already obtained submillimeter precision in thalamic lesions (Moser et al, 2013).  It 

has already been used in the thalamus to treat patients with neuropathic pain (Jeanmonod, 2012), 

essential tremor, and Parkinson’s (Iacopino et al, 2018).  Using MRgFUS as a method of 

inhibiting area 3c is a very appealing prospect, as it could significantly reduce the risks inherent 

in lesioning while still allowing the patient to give ongoing feedback about the perceptual effects 

of the ultrasound.   

 The technological advancements that enable this precise targeting of area 3c are 

particularly timely.  The opioid crisis has resulted in a massive increase in deaths from painkiller 

overdoses, and non-opioid alternatives for intractable chronic pain are urgently needed. 
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