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ABSTRACT 

Christopher M. Grulke 
Development and Extension of Cheminformatics Techniques for 

Integration of Diverse Data to Enhance Drug Discovery 
 

The scientific community has fallen headlong into the age of data.  With the available crop of 

information available to scientists growing at an exponential pace, tools to harvest this data and 

process it into knowledge are needed.  This blanket statement is nowhere more true than in drug 

discovery today. 

The increasing quantities of bioactivity and protein crystallographic data provide key 

information capable of improving the state of virtual screening.  The CoLiBRI methodology 

attempts to learn from the large knowledge base of protein-ligand interactions to discover a 

comprehensive model capable of filtering large libraries very quickly using only a protein 

structure.  This modeling procedure has been greatly expanded to encompass a wide range of 

descriptor techniques and to use advanced statistical methods of multidimensional mapping.   

The growth of virtual screening methods (including CoLiBRI) has provided a plethora of 

options to cheminformaticians with little guidance on their strengths and weaknesses.  This 

oversight in methodology benchmarking should be addressed to reduce the time and effort 

wasted applying subpar screening protocols.  To attend to this issue, we developed a benchmark 

dataset that will enable a flood of methodology experimentation and validation. 



 

 

The recent generation of gene expression data and cancer cell growth inhibition data enable 

identification of signatures of cellular resistance.  These signatures can be used as validated 

prognostic markers to guide patient management thereby fueling the personalization of cancer 

treatment.  From the available data, we have derived hypothetical biomarkers of multidrug 

resistance and a flood of links between gene expression and chemical specific resistance that 

require experimental validation. 

The increasing capabilities of cheminformatics techniques require dissemination to the public 

to produce the greatest impact. We have therefore developed a web portal providing 

cheminformatics software and models to fuel public drug discovery efforts.  
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Chapter 1: Background and Significance 

1.1. Data and Drug Discovery 

Publicly available data in all forms of science is increasing at an exponential pace.
1
  This 

increase in data is nowhere more evident than in the field of drug discovery.  High-throughput 

technologies (e.g., parallel synthesis and high throughput screening) have become commonplace 

and bold publicly funded projects (e.g., the Molecular Libraries Initiative (MLI)
2
 and the Human 

Genome Project(HGP)) harness these technologies to create large amounts of publicly accessible 

data.  As a result, these large publicly available databases are ready to accelerate chemical 

biology and drug discovery. 

As an example, the availability of data linked to chemical compounds in the public domain 

has exploded.  Several databases have sprung up offering structural, biochemical, and phenotypic 

data in a chemocentric way.  The PubChem database
3
 (http://pubchem.ncbi.nlm.nih.gov/), 

developed as the central repository for chemical structure-activity data, is just a single instance 

of such databases.  In the short time since its introduction in 2005, PubChem has grown to 

contain nearly 31 million chemical compound records; over 1.5 million of these chemicals have 

been ―tested‖ in an assay with more than 300 thousand appearing active at least once.   Many 

similarly structured databases have emerged recently as well (e.g., ChemSpider,
4
 ChEMBL,

5
 

PDSP Ki,
6
 and others (cf. this recent review

7
)).  

http://pubchem.ncbi.nlm.nih.gov/


2 

 

Additional resources are available with protein centric data (PDB, SCOP, UniProt), gene 

centric data (NCBI Genome, UniGene), and pathway/protein interaction centric data (KEGG, 

BioCyc, GeneNet). With the vast increase in the data related to the function of our bodies, one 

would expect that the rate of drug discovery would also have increased. 

Unfortunately, while available data to fuel drug discovery has drastically expanded, the 

number of new drugs introduced into the market has, in fact, remained stagnant.
8, 9

  With the 

increased output of ―me-too‖ drugs
10

, one could argue that the rate of drug discovery has 

decreased even as our knowledge has increased.  Also, the attrition of drug candidates entering 

clinical trials remains high.
11, 12

  The cost of drug discovery and development is continuing to 

grow,
13

 and the time to develop a drug remains roughly the same as it was 30 years ago.
12

   

The slow rate of drug discovery in the midst of an explosion of biomedical data is a 

conundrum that can be addressed by developing methods and studies that utilize the expanse of 

data to inform decisions related to the discovery of drugs.  In the last few years, the use of in 

silico methods to leverage data for drug discovery has become much more common.
14

 However, 

because the amount and breadth of the available data is constantly increasing, there is an 

abundance of unaddressed areas that require attention. 

To leverage the enormous amount and types of available data to address effectively the 

variety of questions in the field of drug discovery, specialized techniques are needed.  For many 

years, our group has been engaged in the development and application of innovative 

methodologies and approaches in the field of QSAR modeling.  This focus on conversion of 

statistical techniques to enable cheminformatics research, has given us a unique ability to select, 
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modify, and apply methods for analysis of data involving chemical structure.  The studies 

contained in this dissertation address only a few situations where developments have been made. 

1.2. Virtual Screening 

The contributions of virtual screening to drug discovery are many:
15

 cheminformatics 

techniques have aided in the discovery of such drugs as Dorxolamide for glaucoma
16

, Zanamavir 

for influenza
17

, and Raltegravir for HIV infection.
18

 The advancement of virtual screening could 

provide a steady stream of new hits to the drug discovery process, but such advancement requires 

both novel techniques and detailed comparisons of available tools. 

‗Virtual screening‘ has typically implied the use of protein structure to identify subsets of 

molecules in large chemical databases or virtual chemical libraries that are likely to bind to the 

target protein with appreciable affinity and specificity.  Structure-based virtual screening has 

become a fundamental part of modern computer-aided drug design
19, 20

.  It requires the posing 

and scoring of libraries of small molecules to find compounds that fit into the binding site and 

bind tightly to the receptor. Since the seminal publication by the Kuntz group in 1982
21

, this 

approach has been used successfully in numerous studies (such as that of HIV protease 

inhibitors) resulting in the design of approved drugs
22

. Numerous algorithms and programs have 

been introduced.  (For reviews, see Wong and McCammon
23

, Taylor et al.
24

, and Muegge
25

.) 

Examples of widely used docking programs include Autodock
26

, FlexE
27

, and Gold
28

. 

While the implication has been that virtual screening and structure-based virtual screening 

are synonymous, there has been an increase in the use of ligand-based techniques to identify hits 

from large chemical databases
29-32

.  Numerous algorithms have been introduced (cf. the recent 

reviews
33-35

).  Most recently, reviews
36, 37

 in the area of virtual screening have begun noting 
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studies comparing structure-based techniques to ligand-based techniques.  Use of 

cheminformatics techniques to cull large chemical databases to a size more conducive to 

application of slower docking methods is discussed frequently.  Novel scoring functions 

generated using methods typically applied in QSAR modeling
38

 or directly integrating ligand 

similarity
39

 have been reported.  This view of virtual screening as a field in which both ligand 

and structure-based techniques are applied to yield optimal results is good for drug discovery as 

a whole. 

Two chapters of this dissertation are focused on advancing the field of virtual screening.  

Chapter 2 details the efforts of the author to advance a novel method of structure-based virtual 

screening that uses techniques commonly applied in ligand-based virtual screening.  Chapter 3 

documents the creation of benchmark dataset intended to thoroughly assess various virtual 

screening methods and preliminary studies to verify its usefulness. 

1.3. Chemotherapeutic Resistance 

The resistance of cancer cells to chemotherapeutic treatment has been of interest for more 

than half a century.
40

  With chemotherapy being the preferred method of tumor treatment, the 

understanding of drug resistance is vital to provide quality care to cancer patients.  With the 

dawn of the genomic age, the investigation of chemotherapy resistance turned to analysis of 

genomic data to determine underlying factors and markers indicative of a tumor‘s resistance to 

chemical treatment. Even with the many new discoveries, our ability to accurately predict the 

response of a patient to a chemotherapeutic is limited.
41

 

The goal of personalizing treatments for patients to yield better clinical outcomes has been 

marked by both successes and disappointments.
42, 43

  It is hypothesized that a portion of the 



5 

 

difficulty in predicting patient outcomes is due to the large variety of mechanisms for drug 

resistance, while the remainder can be attributed to the lack of a single measurement type 

capable of capturing all types of resistance.  The use of gene expression signature to predict 

outcome only captures a portion of the potential causes of therapy failure.  

While the study described in Chapter 4 focused purely on the use of gene expression profiles 

to develop a series of markers of chemotherapeutic resistance, we recognize that to fully address 

the problems in personalization of medicine we need to include other data types such as SNP 

variations.  However, we believe that gene-expression profiles provide a great deal of insight in 

cellular resistance to drug agents and that treatment of this data (and others) to identify generic or 

multidrug biomarkers followed by analysis of single compound outcome biomarkers is most 

rational.  

1.4. Dissemination of Tools and Results 

A large portion of the results obtained by analysis of data is published, but not easily 

searchable, accessible, or usable.  The recently increased public availability of experimental data 

highlights the lack of a public repository to store tools to examine such data and the hypotheses 

generated by such examinations.  This deficiency is most evident in the field of cheminformatics. 

The field of bioinformatics may be considered the most closely related discipline to 

cheminformatics.  However, when we compare the two fields, the lack of publicly available 

cheminformatics tools is underscored.  In bioinformatics, tools are widely available to 

accomplish gene and protein sequence alignments
44, 45

 and classifications.
46-48

  Web interfaces 

are provided for several protein pocket identification schemes.
49-52

  The analysis of gene 

expression can be complete using software available through the web.
53

  This availability of tools 
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in the field of bioinformatics aids in the advancement of their field.  Access to some of this 

bioinformatics software was vital to complete portions of the studies discussed in this 

dissertation.  

Because the availability of tools enables research, the development of a web portal for 

cheminformatics investigation of data and dispersement of cheminformatics techniques was 

undertaken.  Chapter 5 provides information regarding the completion and impact of this portal, 

which we call Chembench. 



 

 

 

Chapter 2: Complementary Ligand Binding Receptor 

Interactions (CoLiBRI) 

2.1. Introduction 

Computer Aided Drug Design (CADD) can be defined as any method that uses 

computational power to analyze input information in order to enhance the drug discovery 

process.  Traditionally, these methods have been subcategorized into two classes based on the 

input that they require.  Structure based methods rely on the three-dimensional structure of the 

macromolecular target for which drugs are being designed while ligand-based methods analyze 

the chemical structures of compounds with known activity.  As such, each class of 

methodologies has its own domain of applicability and its own limitations. 

Structure based methods are often used to screen chemical databases for potential compound 

leads based on steric and electronic complementarity to a macromolecular target‘s binding 

pocket.  Several successes have been reported using a variety of popular software; however, 

accurate scoring and ranking of chemicals using structure-based methods is still difficult
54

 and 

being thoroughly researched
38, 55, 56

.  Additionally, since the docking technique relies on accurate 

3-D macromolecular structure, it is difficult to apply to several potential targets for which 

structures are rarely available (notably G-Protein Coupled Receptors (GPCRs) and ion channels).  

Finally, because of the complexity of conformational sampling and posing of chemicals, even the 

fastest methods take several seconds to screen a single compound.  
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Ligand-based methods, likely due to a longer history, cover a broader range of techniques; 

however, the most common approach is to represent compounds which have known target 

activity using chemical descriptors and subsequently apply statistical tools to discover 

correlations between the calculated descriptors and the target activity.  This activity need not be 

related to interaction with a single known macromolecular target.  This type of approach has 

been used successfully to screen chemical libraries to find new chemical leads
29, 57, 58

.  While 

screening with these methods is typically very fast, a drawback to this traditional Quantitative 

Structure-Activity Relationship (QSAR) approach is that it may be less likely to find active 

chemicals of different structural class from the set used to discern the SAR (though this is a point 

of contention among computational scientists).  Additionally, it requires a certain amount of 

bioactivity information that is often lacking in the early discovery process.  

In a recent publication from our lab, a traditional ligand-based method (SA-kNN) trained 

using publicly available 3-D macromolecular data was shown to be fast and effective for 

screening a large number of protein targets
59

.  This novel computational drug discovery strategy 

outlined in Figure 1 combines the strengths of both structure-based and ligand-based approaches 

while attempting to surpass their individual shortcomings.  The training of CoLiBRI models 

starts from a dataset of protein-ligand complexes.  From this dataset, the binding pocket of each 

protein is identified.  While the task of pocket selection has been well studied
60

, it is one that still 

lacks a complete solution.  Both ligands and the identified pockets are then transformed into 

multidimensional descriptors.  While description of ligands is often done in QSAR studies, there 

is little precedent for description of the chemical fragments that comprise a binding pocket.  

Based on best practices in analogous ensemble QSAR modeling workflows, modeling sets are 

separated into training and test sets.  Based on the hypothesis that the relative location of a novel 
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binding site with respect to other binding sites in multidimensional chemistry space could be 

used to predict the location of the ligand(s) complementary to this site in the ligand chemistry 

space, models that map the two multidimensional spaces are developed using the training sets.  

These models are used to rank the test set ligands within a large chemical library of putative 

inactives.  Models that appear to be predictive are then applied to the binding pocket of a protein 

of interest to generate a virtual ligand point that is used as a query in chemical similarity searches 

to identify putative ligands of the protein in available chemical databases. 

In the published approach testing of the CoLiBRI workflow was completed using 800 diverse 

protein-ligand complexes comprising the PDBBind dataset
61

.  The authors extracted the binding 

pocket from the protein using protein-ligand tessellation and then represented both the receptor 

 
 
Figure 1. The CoLiBRI workflow for model generation and virtual screening of an external compound database 
for a protein of interest. 
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active site and its corresponding ligand in the same universal, multidimensional chemical 

descriptor space (note that in principle, the descriptors used for receptors and ligands do not have 

to be the same, and we explored this aspect in the current project).  The authors reasoned that 

mapping of both binding pockets and corresponding ligands onto the same multidimensional 

chemistry space would preserve the complementary relationships between binding sites and their 

respective ligands. Thus, it is expected that ligands binding to similar active sites are also similar. 

Using a k nearest neighbor (kNN) pattern recognition approach and variable selection, it has 

been shown that knowledge of the binding pocket structure affords identification of its 

complimentary ligand among the top 1% of a large chemical database in over 90% of all test 

binding sites when a binding pocket of the same protein family was present in the training set.  

However, in a more realistic case where test receptors are highly dissimilar and not present 

among the receptor families in the training set, the prediction accuracy is decreased; still, 

CoLiBRI was able to quickly eliminate 75% of the chemical database as improbable ligands.  

The authors also showed that the method was highly computationally efficient allowing a user to 

process ca. 30K compounds per minute on a single Pentium 4 CPU 
59

.   

Unfortunately, the seminar work on CoLiBRI was relatively limited. Herein, we document 

our attempts to improve upon this method by examining and enhancing its key components: 

active site determination, active site and ligand descriptor generation, and model generation. 

2.2. Materials and Methods 

2.2.1. Dataset Preparation 

Coordinates for the protein-ligand complexes were obtained from multiple versions of the 

PDBBind Database
61

.  The PDBBind database provides an organized repository of protein ligand 
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complexes extracted from the PDB and annotated with binding constants extracted from 

literature.  From this compendium of protein-ligand complexes with affinities, a ―refined‖ set of 

complexes meeting the following criteria is pulled.  Complexes must have a resolution of greater 

than 2.5 angstrom; not contain covalent bonds between the protein and ligand; contain a ligand 

consisting only of C, N, O, S, P, H, and halogens with a molecular weight less than 1000; and 

have no unnatural amino acids in the binding pocket.  The ―refined‖ set is clustered using 

BLAST and a threshold of 90% similarity.  For each cluster containing 4 or more complexes, 3 

representatives are chosen—the one with the highest binding affinity, the one with the lowest 

binding affinity, and a one with the medium binding affinity—to form the ―core‖ set. 

In all cases, Sybyl
62

 was used to preprocess the proteins including the removal of 

crystallographic water, elimination of salts and metals, and addition of hydrogen atoms.  Ligands 

were ―washed‖ using the Wash Molecules application in MOE
63

. This application normalizes 

chemical structures by carrying out a number of operations including 2D depiction layout, 

hydrogen correction, salt and solvent removal, chirality and bond type normalization, adjustment 

and enumeration of protonation states, and expansion of fragment abbreviations. 

2.2.2. Active Site Determination 

The identification of the binding pocket is a crucial part of the CoLiBRI workflow.  In this 

study three methods of active site determination were investigated: protein-ligand tessellation, 

CastP, and SCREEN.   

2.2.2.1. Protein-Ligand Tessellation 

To appropriately calculate binding pocket descriptors, we are first required to identify 

individual atoms or amino acid fragments that are the pocket.  The first method we applied to 
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 Figure 2. Illustration of Voronoi/Delaunay 
tessellation in 2D space (Voronoi polyhedra are 
represented by dashed line, and Delaunay simplices by 
solid line). For the collection of points with 3D 
coordinates, such as atoms of the protein-ligand 
complex, Delaunay simplices are tetrahedra whose 
vertices correspond to the atoms. 

complete this task utilized a computational 

geometry technique known as Delaunay 

tessellation to isolate the protein atoms that 

made contacts with bound ligands. Applied 

to a collection of randomly distributed 

points, Delaunay tessellation partitions the 

space occupied by these points into an 

aggregate of space filling, irregular triangles 

(in 2D) or tetrahedra (in 3D) with the 

original points as vertices. Thus, this 

approach effectively identifies all nearest 

neighbor triplets (or quadruplets) of vertices.  An example of Delaunay tessellation in two 

dimensions is illustrated in Figure 2.  

Protein-ligand complexes are represented by the coordinates of their heavy atoms (i.e., in a 

hydrogen-depleted form). Delaunay tessellation of this representation uniquely defines all sets of 

nearest neighbor atom quadruplets, including three types of interfacial quadruplets: three 

receptor atoms and one ligand atom; two receptor and two ligand atoms; and one receptor and 

three ligand atoms. Thus, Delaunay tessellation affords an easy way of detecting all receptor 

atoms that directly contact the ligand.  These are then specified as the binding site. 

2.2.2.2. CastP 

The CastP method
64

 of identifying pockets also relies on the use of tessellation; however, this 

tessellation does not involve the bound ligand.  Instead, the protein is tessellated with all small 

molecules removed and cavities are detected using alpha shape theory.  Figure 3 and Figure 4 
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 Figure 3. Illustration of concepts in alpha theory (from Liang et al.
63

). A: A 
two-dimensional molecule consisting of disks of uniform radii. The dashed lines 
show the Voronoi diagram of the molecule. Arrows indicate 2 of the 10 Voronoi 
edges that are completely outside the molecule. B: The convex hull of the atom 

centers in Figure IA (all shaded area) with Delaunay triangulation (triangles 
defined by dark lines). C: The alpha shape of the molecule in A. The alpha shape. 
or dual complex, consists of the light-shaded triangles. the dark line segments, 
and the atom centers. There are 10 shaded line segments corresponding to the 10 
Voronoi edges that are completely outside the molecule. Any triangle with one or 
more shaded edges is an “empty triangle.” A void formed by three empty triangles 
can be seen at the bottom center. It encloses a molecular cavity. 

 

 Figure 4. Illustration of discrete flow for two-dimensional pockets (from Liang 
et al

 63
). A: Discrete flow of a pocket. Obtuse empty triangles ( I , 3. 4. and 5) flow 

to the acute triangle (2). Collectively, they form a pocket of the dual complex, 
which can he mapped to the molecular pocket. B: A depression for which obtuse 
triangles sequentially flow to the outside (to infinity). Depressions of this type are 
not identified as pockets. 

taken from Liang et al 

illustrate how the alpha 

shape theory can be 

applied in 2D space to 

identify protein 

pockets.  First the 

protein is tessellated 

(triangulated) and the 

Voronoi diagram is 

determined.  All 

Voronoi edges fully 

external to the protein are omitted.  Delaunay tetrahedra (triangles) that have edges crossing 

these fully external Voronoi edges are considered ―empty‖.  Empty tetrahedra (triangles) are 

merged together as long as they share a triangle (edge) into potential pockets.  Provided one of 

the tetrahedra 

(triangles) contained in 

a potential pocket is 

acute, the pocket is 

designated a protein 

pocket.  Pockets were 

identified in this 

manner for all proteins 

in our datasets using the CastP webserver
50, 65

 at http://sts.bioengr.uic.edu/castp/. The binding 

http://sts.bioengr.uic.edu/castp/
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pocket was identified by visual inspection of the identified pockets overlaid with the bound 

ligand. 

2.2.2.3.  SCREEN 

The Surface Cavity REcognition and EvaluatioN (SCREEN) method
49

 of pocket detection 

identifies the gap between a protein‘s molecular surface and a surface generated by rolling a 

intermediately sized sphere over the molecular surface.  Cavities were identified in this manner 

for all proteins in our datasets using the SCREEN2 webserver at 

http://luna.bioc.columbia.edu/honiglab/screen2/cgi-bin/screen2.cgi. The binding pocket was 

identified by visual inspection of the identified cavities overlaid with the bound ligand. 

2.2.3. Active Site Descriptor Calculation 

Descriptor generation for the set of chemical fragments is a significant difficulty in the 

CoLiBRI process.  Most molecular descriptors cannot be generated for chemical fragments.  As 

such, two newly developed methods of protein pocket description (feature point pairs and RDF) 

were added to the previously published TAE/RECON technique.   

2.2.3.1. TAE/RECON 

The generation of TAE/RECON descriptors relies on the concepts of Transferable Atom 

Equivalents (TAE) developed by Breneman and co-workers
66-68

.  The major advantage of these 

descriptors over other descriptor types is that they are derived from the electronic and shape 

properties of isolated atoms or chemical groups.  The additivity principle is used to calculate 

molecular descriptors by summing up the individual descriptor type values for all atoms in the 

molecule, using the RECON method.  In the case of ligands, this leads to the generation of 

molecular descriptors, similar to other approaches.  The same additivity principle can also be 

http://luna.bioc.columbia.edu/honiglab/screen2/cgi-bin/screen2.cgi
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used to derive pseudo-molecular descriptors for any group of atoms, e.g., binding site fragments, 

making the TAE descriptors exceptionally well suited for our approach. 

2.2.3.2. Feature Point Pairs 

While the application of atom pairs as a description of binding pockets is straightforward, the 

use of feature points overlaid on chemical structure rather than specific atom points provides an 

abstraction that could prove more biologically relevant.  Through collaboration with 

computational scientists in GlaxoSmithKline (GSK), a set of feature point representations of 

amino acids were implemented and used to transform binding pockets to a feature space.  This 

feature space first described by Yang
69

 provides a simple representation of amino acids based on 

their physicochemical properties.  Counts of feature pairs occurring within respective distance 

bins were used as a set of quantitative descriptors of the 3D characteristics of the binding pocket.  

The table of amino acid atom to feature transformations is contained in Appendix I. 

2.2.3.3. Radial Distribution Function 

Radial Distribution Function (RDF) descriptors were developed in 1999 by Hemmer, et al.
70

 

to better describe the three dimensional characteristics of small molecules.  Because other 

implementations of RDF descriptor generation could not be used to describe the disconnected 

chemical fragments that comprise our binding pockets, we implemented our own version of these 

descriptors.   

To start, a peptide containing each of the 20 standard amino acids bordered on its N- and C- 

termini by glycine was treated as a small molecule within the PETRA software from Molecular 

Networks
71

 to generate a table of atomic properties (including partial charge, electronegativity, 

and polarizability) for each atom type contained within proteins. The methods of property 
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calculation within the PETRA program have been shown to be quite accurate
72-76

. This table of 

properties along with the coordinates of the chemical fragments comprising the pocket was then 

processed using Equation 1.   In Equation 1, prop(atomi) is a predefined property of atom i;  

Distij is distance in 3D coordinate space between the atoms measured in Angstroms; and D and 

damp are bin and damping parameters.  RDF descriptors were calculated for binding pockets 

using values of D ranging from 0 to 20 with a step size of 0.2.  

     (1) 

2.2.4. Ligand Descriptor Calculation 

Ligand descriptors were generated using a variety of commercially available techniques.  

Specifically, TAE/RECON, Dragon, MOE2D, MolconnZ, and autocorrelation descriptors were 

all generated in the course of our study of the CoLiBRI methodology. 

2.2.5. Model Generation 

2.2.5.1. Simulated Annealing k-Nearest Neighbors  

While kNN is an excellent pattern recognition technique, it requires that the similarities to 

which it is applied be related to the property being modeled.  Because some descriptors 

generated for a ligand/binding pocket may be irrelevant to the binding interaction, these 

descriptors generate a level of inaccuracy within the resulting compound rankings. Variable 

selection—in particular simulated annealing (SA)—is a technique that has been successfully 

applied with the kNN principle to generate more robust and predictive models for traditional 

QSAR datasets
58, 77, 78

.  
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The first version of the CoLiBRI methodology is a SA-kNN model generation tool which 

optimizes the 

predicted mean 

rank (PMR) of 

the true ligand 

of a binding 

pocket using 

Leave-One-

Out(LOO) 

cross validation 

(outlined in Figure 5) where PMR is calculated by averaging the ranks at which a pocket‘s true 

bind ligand is retrieved across all pockets.   This generates a model that in theory should be more 

accurate in virtual screening than the kNN principle applied to distances calculated in the whole 

descriptor space. Additional details of this method are described in the original CoLiBRI 

publication
59

. 

2.2.5.2. CCA and kCCA 

The SA-kNN method attempts to select a descriptor subspace where similar proteins bind 

similar chemicals; however, when dealing with two multi-dimensional spaces the optimization 

becomes more complex.   Fortunately, Canonical Correlation Analysis (CCA) originally 

developed by Hotelling
79

 is specifically formulated to correlate multidimensional spaces.  

Therefore, its application in this situation is ideal.   

Considering two multidimensional spaces X and Y, if we limit ourselves to bilinear mapping 

of the multidimensional spaces, the optimization problem can be written as Equation 2 where wx 

 
 

Figure 5. SA-kNN model generation workflow. 
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and wy are the corresponding mapping matrices.  The problem defined in Equation 2 is that of 

the well-known canonical correlation analysis that can be rearranged into a generalized eigen 

problem and subsequently solved.  This provides a mapping of the two multidimensional spaces 

such that corresponding proteins and chemicals should be located near each other in their 

projected spaces. 

  (2) 

Additionally, CCA can be extended using kernel methods.  Although there are a multitude of 

potential kernels which could be applied, in this study we applied a newly developed spectral 

kernel
80

.  Because the datasets are diverse and the similarity principle is only applicable in a 

local sense, the spectral kernel defined in Equation 3 and 4 provides a logical extension to the 

CCA method for this application.   

                         (3) 

                                                                       (4) 

  where:   xi = descriptor vector for observation i 

N(xi) = the k nearest neighbors of observation i 

    n = number of observations 
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Once CCA is completed, the similarity in the projected spaces allows prediction of the point 

in chemical space using a more advanced method than weighted averaging of the ligand 

descriptors for the neighboring proteins.  Ridge regression
81

 is used to build two models.  Both 

models are generated using the binding site descriptors of the active site being predicted as the 

independent variables; however, one uses ligand descriptors of the k nearest neighbors as 

independent variables and the other uses the binding site descriptors of the k nearest neighbors as 

independent variables. The weights generated by this modeling are averaged and then applied to 

the ligand descriptors of the k nearest neighbors to predict the ligand point in the projected 

chemical space.  This ligand point is then used to rank the chemical library. 

2.3. Results and Discussion 

2.3.1. External Validation of the CoLiBRI Workflow 

The previously published work by our lab indicated that the CoLiBRI methodology may 

have potential as a fast and accurate structure–based virtual screening methodology; however, 

the experiment in 

the published work 

focus on extraction 

from a large 

chemical database 

of a single co-

crystallized 

binding partner.  

While similar, this 

 
Figure 6. Recall of HIV protease ligands dissolved in World Drug Index using 

consensus prediction by CoLiBRI models. 
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is not the same experiment as attempting to find all known chemicals that bind to a protein.  

Additionally, the accuracies reported were for the test set, not a fully external validation set.   

Since, we have expanded the training set using more recent versions of the PDBBind dataset.  

We have also applied the models generated from these sets to fully external test cases in order to 

more accurately determine the validity of this modeling technique.  Figure 6 contains the results 

of a sample virtual screen for HIV protease inhibitors dissolved in the World Drug Index (WDI) 

using SA-kNN CoLiBRI models.  Models trained using three versions of the PDBBind database 

with all HIV protease complexes removed recalled more than half the active ligands in 1% of the 

database.  These results are comparable to those found in literature for virtual screening by 

conventional 3-D docking methods
82

.  However, while docking typically takes over second for 

each screened ligand, the entire library of over 50,000 compounds were screened in less than 100 

seconds The success of this pilot study indicates that the CoLiBRI method can filter large 

chemical databases to recall cognate ligands much more quickly than traditional methods.   

2.3.2. Preliminary CCA Testing 

The limitations of using only a single method of multidimensional optimization to build 

CoLiBRI models led to the desire to integrate additional methods.  In particular, research into 

CCA and kCCA being conducted in the Department of Statistics at UNC provided access to a 

deterministic method of multidimensional optimization that is significantly faster than the 

stochastic SA-kNN method applied previously.  To ascertain the capabilities of this technique, 

CCA was applied to the 800 protein-ligand complexes contained in PDBBind.  Figure 7 

demonstrates that when the multidimensional binding pocket and ligand points are projected onto 

their respective CCA vectors generated from combined analysis of the respective TAE 
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multidimensional spaces, they correlate very well.  Figure 8 is a scatter plot of projection on 

these same variates of the 800 binding sites (in red) and ligands (in blue) represented using their 

 internal ids.  The subfigure contains a magnified view of a portion of the project space.  Visual 

inspection indicates that although the overlay is not perfect, it can be noted that ligands from a 

complex are near to their corresponding binding site and the neighborhood distributions are quite 

similar.  For example, when inspecting the region surrounding pocket 666, it is clear that ligand 

666 is located near it in space.  Additionally, the pocket neighbors of pocket 666 (pockets 96, 

135, 657, 658, 659, and 686) match the ligand neighbors of ligand 666.   

2.3.3. Integration of CCA in the CoLiBRI Workflow 

Because CCA provides a telling visual correlation between these two spaces, we believed 

that applying this method during the model development process could greatly improve our 

prediction accuracy.  Therefore, we initiated a direct study comparing the SA-kNN, linear CCA, 

and kCCA.  This study relied on the 1300 complexes of the refined set of the 2007 version of 

 
Figure 7.  Correlation of the (a) first and (b) second canonical variates from ligands and proteins 
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PDBBind.  In addition, 210 of these complexes belonged to the core set, which is selected based 

on clustering of the 1300 complexes using protein sequence similarity and retaining only 3 

complexes from each cluster.   

From this data, we selected three different separations of the data by applying different 

methods for extracting the external validation set.  For the first separation, an external validation 

set of 135 complexes was selected randomly from the 1300 complex refined set.  For the second 

separation, an external validation set of 4 proteins (132 complexes) was extracted from the 1300 

complex refined set based on the protein names stored in PDBBind for these complexes.    For 

the third separation, an external validation set of 7 clusters (21 complexes) was taken randomly 

from the 70 cluster (210 complexes) core set.  The remaining complexes which were not to be 

 

Figure 8. Projection of binding sites and their cognate ligands from PDBBind V2003 onto the first two 
canonical vectors 
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used for external validation were then split using the Sphere Exclusion Algorithm
83

 yielding 

training and test sets of size 966 and 169 complexes for the first separation, 1006 and 162 

complexes for the second separation, 153 and 36 complexes for the third separation. 

The first separation was referred to as the ―standard set‖ since it closely mimics the normal 

method of 3-way data splitting applied by our lab to generate traditional QSAR models
84

.   The 

second separation is referred to as the ―name set‖ intended to have completely virgin proteins in 

the external set, and therefore, provide a more robust test of the modeling methods.  The third 

separation is referred to as the ―cluster set‖ and while containing the least amount of data, 

guarantees that the external set proteins are not exceedingly similar to proteins used during 

model development.   

 

Figure 9. Comparison of external prediction accuracies of different methods of CoLiBRI model generation. 
“Best”, “average”, and “random-best” refer to single model prediction by the model that did best on the test set, 
average prediction of all generated models, and single model prediction by the best model generated using 
randomized pocket-ligand associations. 
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Both training and test sets were used to optimize the models for prediction of the external set 

though only the training set is used as a knowledge-base for the kNN predictions.  In order to 

more closely replicate the act of virtual screening, the World Drug Index (WDI) compound 

database
85

 was added to the test and external sets.  To verify accuracies were not based on 

chance correlations, an additional set of models were generated where the training set ligand-

pocket associations were randomly shuffled.  

To assess the necessity of optimization procedures, both sequence similarity based (as 

determined using ClustalW
45

) and pocket similarity based kNN methods were also applied to all 

data splits with varied k values. TAE/RECON descriptors were used for both binding pockets 

(identified using protein-ligand tessellation) and ligands. 

   The PMRs for prediction of the external sets are shown in Figure 9.  While SA-kNN 

provided only a very minor improvement over non-variable selected kNN techniques, CCA and 

kCCA performance was clearly superior.  However, the results of linear CCA appear to be for 

both the cluster and standard sets indistinguishable from the results with randomized pocket-

ligand associations.  On the other hand, kCCA provided the best predictions for every external 

set and for what could be considered the most difficult case (the cluster set) predicted the true 

ligand on average in the top 10 compounds of the nearly 54000 contained in the screening 

database.  This results indicates that CoLiBRI is capable of re-identifying the ―true ligand‖ for a 

pocket in less than 0.1% of the database. 

2.3.4. RDF descriptors 

Through collaboration with Molecular Networks
71

, software capable of developing RDF 

descriptors for binding pockets was developed.  The effect of this method of descriptor 
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calculation was compared to the TAE/RECON method of binding pocket description on 

modeling of a regeneration of the cluster set described above from the 2008 version of PDBBind.  

Figure 10 displays the distribution of retrieved ranks for true ligands when screened with 

CoLiBRI for both the test and external sets.  Based on the test set results, it appears as though 

neither TAE nor RDF descriptors of active sites provide superior predictive power.  However, 

when applying the best model for each descriptor type, RDF descriptors and autocorrelation 

descriptors for pockets and ligands respectively showed clearly improved prediction over using 

TAE descriptors.  This indicates that similar to traditional QSAR modeling, a ―combi‖ approach 

may lead to more predictive results. 

2.3.5. True Ligand Identification or Virtual Screening 

Generally speaking, CoLiBRI models have been developed and validated using the retrieval 

of the ―true ligand‖ for a binding pocket.  While similar, this is not the goal of virtual screening 

which attempts to identify all (or at least most) of the ligands that will bind to a pocket.  This 

distinction required a reprocessing of the PDBBind core set in order to properly test it.   

In the 2009 version of PDBBind, the core set consists of 219 protein-ligand complexes 

organized into 73 clusters.  For each cluster, its 3 members were aligned using ClustalX
45

 to 

determine whether the proteins contained therein were actually the same protein.  A protein was 

considered to be the same as another if there was no more than 1 point mutation or insertion in 

the body of the protein.  5% of the protein‘s residues at the head and tail of the protein were 

omitted from consideration when examining the protein sequence since alterations at the head or 

tail are common to aid protein purification and crystallization.  49 of the 73 clusters proved to 

meet the above criteria and the three complexes‘ ligands for each cluster were considered to be 

―true 
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Figure 10. Comparison of (a) test and (b) external predictive power for different methods of CoLiBRI binding pocket/ligand 
description. 
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ligands‖ for that protein target.  This set was used for all further analysis of the CoLiBRI 

technique and its members are recorded in Appendix II. 

2.3.5.1. Pocket Consistency 

A key difficulty that must be addressed when examining the three protein-ligand complexes as a 

whole is the definition of a pocket.  The protein-ligand tessellation method of pocket 

identification provides a unique pocket for each protein-ligand complex.  These pocket 

definitions can have a wide variability in their level of overlap.  Figure 11 contains example 

Venn diagrams of the atoms selected as pocket members for different PDB entries for the same 

protein. (Additional diagrams are provided in Appendix III.)  While there is a large degree of 

overlap in pockets, the difference of on average more than 15% of a pocket‘s atoms is alarming.  

 
 

 
Figure 11. Venn diagrams exhibiting atom overlap between pockets defined using protein-ligand 

tessellation.  
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The level of 

uncertainty in 

descriptor values 

caused by this 

difference in a 

pocket‘s 

constitution for 

the same protein 

often leads to 

being unable to determine if two proteins are the same based on their pocket representations in 

multidimensional space.  Figure 12 shows the distributions of distances in TAE/RECON space 

between pockets selected using protein-ligand tessellation.  While distances between 

representations of the same protein are skewed toward zero, nearly 50% of the distances between 

the same protein are larger than the smallest of distances between different proteins. We 

hypothesized that a portion of this difference in pocket definition could be rectified by training 

CCA with connections between all three of a protein‘s pockets and all three ligands rather than a 

single connection between each complex‘s pocket and ligand.  To obtain a better grasp of the 

feasibility of this approach, PCA and CCA were applied to the dataset and the co-localization of 

pockets and ligands of the same protein were visually inspected.  An example of this analysis 

with representatives of acetyl-cholinesterase marked in red is displayed in Figures 13-15.  It was 

visually apparent that while correspondence between pockets and ligands in their respective 

spaces is high after CCA analysis, the multiple representatives for a single protein still have other 

pockets interspersed. Thus, modeling alone was insufficient for dealing with pocket differences.  

 
Figure 12. Histogram of distances between pockets selected with protein-ligand 

tessellation in TAE/RECON space  
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Figure 13. PCA projections of (a) protein pockets and (b) ligands in TAE/RECON space. 

a) 

 

b) 
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Figure 14. CCA projections of (a) protein pockets and (b) ligands in TAE/RECON space when only a single 
connection between complex’s pocket and ligand was modeled. 

a) 

 

b) 
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Figure 15. CCA projections of (a) protein pockets and (b) ligands in TAE/RECON space when connection between 
all three representatives of a protein pocket and all three ligands were modeled. 

a) 

 

b) 
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Protein-ligand tessellation to determine the pocket for each protein was convenient; however, 

some (including me) would claim that use of the crystallized ligand to map the specific atoms of 

a protein pocket might imprint ligand information not inherent to protein onto the defined 

pocket.  Therefore we had great interest in converting to a method of pocket identification that 

was ligand insensitive.   We applied 2 protein-only methods of pocket detection: CastP and 

SCREEN.  However, analysis of the pockets identified with both methods indicated that the 

consistency of pockets identified with these methods was no better than that of pockets identified 

with protein-ligand tessellation.   

Figure 16 displays exemplar Venn diagrams for pockets defined using CastP and SCREEN 

(with additional examples in Appendix III).  It is important to note that for many protein-ligand 

complexes, CastP and SCREEN were unable to identify the pocket of interest. While many more 

methods of pocket identification exist, a broad survey of such methods was outside the scope of 

this study.  To discover the achievability of identifying multiple ligands that bind to a single 

protein, a union of the 3 representative pockets defined using protein-ligand tessellation was 

considered as the ―true‖ pocket that would be defined by an accurate and consistent pocket 

identification scheme. 

 
Figure 16. Example Venn diagram for (a) CastP and (b)SCREEN pockets. 

b) 

 

a) 
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2.3.5.2. Combi-CoLiBRI Modeling 

While temporarily setting aside the issue of pocket consistency, generation of CoLiBRI 

models was realized for the union pockets defined using protein-ligand tessellation.  Models 

were generated with CCA and kCCA modeling methodology using ProFeat
86

 descriptors of 

proteins; TAE/RECON, Feature Pairs, and 3 variants of RDF descriptors for pockets; and 

Dragon with hydrogens, Dragon without hydrogens, MACCS keys, and MOE2D descriptors for 

ligands.  5-fold external validation was used to ensure statistical robustness.  External folds were 

dissolved into DrugBank
87

 rather than WDI to reduce computational cost.  Figure 17 reports the 

calculated predictive capability using PMRR.  PMRR is the average across the 49 proteins of the 

PMR for the ligands of that protein.  Even in the contrived case of ―true‖ pocket definition, 

prediction accuracy was mediocre.  Being that the DrugBank database contains only includes 

roughly 4500 compounds, the retrieval rates were rough on the order of 10% of the database.  

Surprisingly, linear CCA performed better than kCCA on prediction of the external sets which 

directly contradicts the results obtained previously.  In addition, it is unexpected that MOE2D 

descriptors would perform better than dragon descriptors, which are more comprehensive. The 

ranks of ligands that bind to a pocket  (shown in  

Figure 18 for one descriptor type and method ) by applying kCCA to RDF pocket 

descriptors calculated using partial charge and polarizability and MOE2D ligand descriptors 

shows that prediction accuracy for individual proteins covers a braod range.  To extract at least 

one active for 98% of external set proteins at least 250 compounds (around 5% of the database) 

would have to be screened. If retrieval of all three ligands for a protein was desired, for 80% of 

the proteins in the database 500 compounds (roughly 10% of the database) would have to be 

screened.  



 

 

3
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Figure 17. PMRRs for “Combi-CoLiBRI” analysis  
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2.3.5.3. Ligand Consistency 

An additional difficulty 

unconsidered prior to modeling is 

that of ligand consistency.  Figure 

19 displays a PCA projection of 

ligands in Dragon space with those 

of the same protein connected by a 

line.  This plot realized with the 

ADDRAGRA software written in 

our lab shows the variation in ligand 

structure that is inherent in our 

dataset.   
 

Figure 19. ADDAGRA plot of ligands in Dragon space with 
ligands of the same protein connected.  

 
 

Figure 18. Retrieval ranks for ligands when modeled by CCA CoLiBRI using rdf_q_pol and MOE2D descriptors.  
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This variation of ligand structure is likely directly related to the method by which 

representative ligands were chosen in PDBBind.  For each cluster, the complexes in which the 

ligands had the highest, lowest and median activities were chosen.  This means that in several 

cases the difference between the measured binding affinities for the representative ligands of a 

protein can be quite large (average of 2.76 log units, maximum of 8.57 log units).  This 

corresponds well to the large differences in ligand structure for the same protein and may explain 

a portion of the difficulty in prediction.    Figure 20 shows the binding modes and affinities for 

two different ligands of FBKP.  

2.4. Conclusions and Future Work 

During the course of research into the CoLiBRI workflow for virtual screening of large 

compound libraries, I have carried out the following tasks: 

1. Performed external validation of the original CoLiBRI methodology in screening HIV-

protease (Section 2.3.1) 

2. Integrated into the CoLiBRI workflow a novel method for optimizing multiple 

multidimensional spaces (Sections 2.3.2 and 2.3.3) 

3. Assessed the capabilities of two additional techniques for protein pocket designation 

(Sections 2.3.5.1) 

4. Implemented two new methods of protein pocket description (Sections 2.2.3.2 and 

2.2.3.3) 

5. Performed ―Combi-CoLiBRI‖ using available methods of pocket and ligand description 

(Section 2.3.5.2) 
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Figure 20. Binding modes and affinities of 2 ligands of FKBP  
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The CoLiBRI workflow exhibits excellent results when ―re-docking‖ ligands with the protein 

pocket extracted from the same complex.  Additionally, when applied in a situation more akin to 

virtual screening (i.e. the extraction of multiple ligands using a single pocket), CoLiBRI allows 

the elimination of a large portion of the chemical library and does so with a rate of screening 

several orders of magnitude faster than typical structure-based methods.  Pockets in the database 

for which this wasn‘t the case typically had diverse ligands with a broad range of binding 

affinities.  The primary limitation to the use of CoLiBRI in general structure-based studies is that 

the identification of a protein‘s pocket reproducibly across the PDB entries of a single protein 

was unattainable by the tested pocket definition software.  This causes an unacceptable level of 

uncertainty in the description of the protein pocket and subsequently in ligand ranking. For this 

reason, a more extensive analysis of the consistency of pocket prediction should be completed; 

perhaps even the development of a technique for pocket detection that will provide consistently 

defined boundaries should be included.   

There is additional refinement required in the analysis of CoLiBRI as a virtual screening 

technique.  While the retrieval of all three representative ligands for a protein is more similar to 

virtual screening than the identification of just one, a thorough benchmarking of CoLiBRI using 

the benchmark developed in Chapter 2 is required. Also, the variation in prediction accuracy for 

different protein members should be examined in greater detail to determine if there is a rational 

way to form an applicability domain for CoLiBRI models.  Finally, CoLiBRI should be built and  

using a more extensive set of protein crystal structures and known binders.  



 

 

 

Chapter 3: Benchmarking of Virtual Screening 

Techniques 

3.1. Introduction 

Virtual screening methodologies all have unique advantages and disadvantages.  As such, it 

is generally accepted that no method is unilaterally better than every other method of virtual 

screening.  While typically new methods are tested and shown to be useful on a small number of 

well documented sets
88, 89

, this type of investigation provides little statistical validation of the 

usefulness of the tool and no understanding of the proper situation for application of the 

technique.   

While comparison within the fields of structure-based and ligand-based techniques are often 

undertaken
54, 82, 90, 91

, there has only been a minimal amount of study across the two fields.  

Theoretically, if enough active compounds are known for a particular target, ligand-based 

methods should provide better predictions than structure-based methods; however, the amount of 

binding data required to a make the application of a ligand-based technique more advantageous 

is still unknown.  Therefore, a thorough comparison between structure-based and ligand-based 

methods for virtual screening must be carried out on several targets that have a sufficient amount 

of known binding data.   
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Though there are already benchmarks for docking (Directory of Useful Decoys (DUD)
92

) and 

QSAR (Mittal et al.
93

), there is not a benchmark intended to be utilized by both methods.  The 

importance of such a benchmark can be noted by the attempts of some to benchmark ligand-

based tools
94, 95

 with the DUD database even though it was designed so that decoys could easily 

be separated from binders with topological indices. This study‘s intent was to define a set of 

targets with available binding data to be used as a benchmark for virtual screening in the public 

domain.  After generation of this set, preliminary testing of QSAR methods, similarity searching, 

and docking were carried out to demonstrate the utility of such a set. 

3.2. Materials and Methods 

3.2.1. Databases 

The benchmark datasets were drawn from extensive databases containing large amounts of 

biological activity data.  The databases (ChEMBL, WOMBAT, and MDDR) used in this study 

are described infra. 

3.2.1.1. ChEMBL 

The ChEMBL 

database
5
 is a publicly 

available repository of 

―drug-like‖ small 

molecules linked with 

biological assay data.  This 

biological assay data is 
 

     Figure 21. Distribution of ChEMBL targets. 
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extracted from peer reviewed scientific literature and curated by members of EMBL-EBI.  The 

ChEMBL database contains nearly 600K compounds, 450K assays, and 7.5k targets.  The 

distribution of ChEMBL‘s targets over the proteome can be seen in Figure 21. 

3.2.1.2. WOMBAT 

WOMBAT
96

 is a commercial product of Sunset Molecular.  The database is also populated 

with data from scientific 

literature, but the data is 

specifically taken from 

selected articles within 

medicinal chemistry 

journals.  In total, the 

wombat team has 

indexed more than 

15,000 articles and annoted over 300,000 entries of biological activity.  The distribution of 

activities in WOMBAT is shown in Figure 22.  

3.2.1.3. MDDR 

The MDL Drug Data Report
97

 has long been an industry standard database covering patent 

literature and journal submissions.  The database was jointly produced by Symyx and Prous 

Science and is currently being marketed by Accelrys.  The database contains over 150K 

biologically relevant compounds with biological activities classified using the Prous 

classification system.  The compounds are also annotated with trade names, company codes, 

generic names, originating company, and its current phase of development. 

 
Figure 22. Distribution of WOMBAT activities. 
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3.2.2. Dataset Extraction 

Based on preliminary searching of the available data, a subset of biological targets was 

selected to form the benchmark set.  Compounds and their associated activities were compiled to 

create datasets for both modeling and validation from the ChEMBL database with the one 

exception being the Ack1 dataset, which was compiled from 3 patents.  For each target, an 

additional search of WOMBAT and MDDR was completed to extract fully external sets. 

Each compound set was cleaned thoroughly.  All molecules were processed with Pipeline 

Pilot
98

 to remove salts and solvents, normalize protonation states, standardize chiral definitions, 

and aromatize the molecules.   Activities for the ligands of each target were categorized as either 

active or inactive using an upper and lower threshold that provided roughly balanced sets for 

each target and eliminated compounds with uncertain activities. Subsequently, duplicate 

structures were identified and an inspection of the activities of duplicates was carried out.  

Duplicates for which binned activity disagreed were removed while duplicates for which binned 

activity agreed had a single representative retained.  A detailed description of processing of 

ligands for each target is contained in Appendix IV.   

3.2.3. Dataset Splitting and Screening 

To properly assess the effect of modeling set size on modeling statistics and virtual screening 

the data splitting scheme show in Figure 23 was applied for each target.   

In all cases, the dataset of chemicals for a target drawn from ChEMBL was split into 

modeling and validation sets using the 5-fold method.  While the definition of a modeling set is 

unnecessary in the case of docking, defining external sets that are the same across all methods is 
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ideal for comparison purposes.  The external sets were then dissolved into the compendium of 

ligands from other targets to provide a larger number of decoys in our screening sets. 

Subsets were generated from each modeling set to preserve the integrity of the validation 

sets.  For each modeling set, five subsets were selected of size 26, 50, 100, 250, and 500 for 

analysis with QSAR and similarity searching yielding 25 total subsets.  These subsets were 

randomly selected with 

an equal number of 

representatives from 

each class. For some 

datasets, subsets of 

size 250 and 500 were 

omitted due to a lack 

of data.  An additional 

five subsets were 

selected of size 1 and 5 

from each modeling 

set yielding 10 more 

sets for similarity 

searching.   The smaller sets selected for similarity searching were drawn only from the active 

class.  In total, at most 130 ensemble QSAR models were developed (25 subsets * 5 modeling 

sets + 5 modeling sets).  Each model was used to predict the appropriate screening library.  A 

total of 180 similarity searches using probes drawn from the modeling sets were completed on 

the appropriate screening library.  In addition, each screening library was ranked by docking and 

 

 

 

 

 

 

 

 

 

Figure 23. Splitting protocol for generation of modeling, validation, subset, and 
screening databases. 
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by a similarity search with the ligand contained in the PDB entry. Thus at most 320 differently 

ranked screening libraries were generated for each target. 

3.2.4. Docking 

To prepare the protein structures for docking, all the water molecules and ions associated 

with the structure were removed. eHiTS was used to preprocess the protein by extracting the 

ligand from the PDB complex files and generating a native eHiTS file format. A radius of 7.5Ǻ 

to 10Ǻ was used to define the active site and calculate steric grids and feature descriptions. 

The ligand database for docking was prepared using LigPrep Module as implemented in 

Schrodinger 9.2. LigPrep provides an efficient way to prepare all-atom 3D structures, starting 

from 2D or 3D structures. Low energy 3D structures of ligands were generated from canonical 

SMILES strings using OPLS 2005 force field. Calculation of possible states at pH 7±2 resulted 

in generation of the correct ionization state. Specified chiralities were retained from the 

canonical SMILES and the lowest energy conformation of rings was retained for each ligand. 

Hydrogen atoms were added to complete valences as necessary. Ligands just comprising ions or 

molecule fragments having 4 atoms or less were removed. Structures that caused processing 

failures in the energy minimization of the structures were also removed. In the end one unique 

conformation per ligand was retained for docking. 

eHiTS v2009.1 (www.symbiosys.com), an automated docking software, was used for virtual 

screening. The eHiTS software package
99

 is a flexible ligand docking program that utilizes 

exhaustive fragment based search algorithm to dock and then energetically optimizes the 3D 

coordinates of docked poses within the active site of target. One of the critical steps in a 

successful docking approach is to correctly position each ligand in the binding site based on the 

http://www.symbiosys.com/
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defined constraints. This step involves exploration of the configurational and conformational 

space for the interaction between target and ligand. This step attempts to correctly identify the 

most favorable binding mode of the ligand in the target active site.  

The eHiTS docking algorithm docks rigid fragments generated from a ligand independently 

within a binding pocket. The binding pocket is represented using Geometric Shape and Chemical 

Feature graph (GSCF), where nodes of the GSCF graph represent a rigid shape by a simplified 

geometric hull generated from regular polyhedra where each vertex of a polyhedron is encoded 

with its chemical properties. The ligand is broken down into rigid fragments and flexible 

chain/linker atoms/fragments. Each fragment is also represented using a GSCF graph made up of 

regular polyhedra with chemical properties associated with each vertex of the polyhedron. Each 

rigid ligand fragment is docked in each cavity polyhedron during the rigid docking phase by 

matching and exploring each cavity-ligand fragment orientation. Thousands to millions of 

fragment poses are generated within the binding cavity depending on the size and fragmentation 

pattern of original ligand.  

Poses are then selected using a fast graph matching algorithm and rigid fragments are 

reconnected through their flexible linker atoms that comprise the matching pose set. Flexible 

chains are tweaked and optimized such that its end matches the rigid fragment precisely without 

violating any energetic and steric constraints. The final binding poses are refined by a local 

energy minimization in the active site of the receptor, driven by eHiTS scoring function. The 

binding energy of each pose is calculated and reported as eHiTS score.  

The eHiTS scoring function is based on a combination of novel scoring term (local surface 

point contact evaluation) plus a hybrid scoring term based on traditional empirical and 
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knowledge based scoring functions. The interaction score between fragment surface points and 

receptor surface points are computed from the interaction statistics collected separately for 

distinct types of surface point pairs. Surface points are classified into 23 types and interactions 

between ligand and receptor surface points are recorded. The random probability of interaction is 

used to convert to interactions into an energy term using energy scaling factors.  Besides this 

energy term the final scoring also includes terms for steric clash, depth value, conformational 

strain energy of the ligand, entropy, intra-molecular interaction, receptor surface coverage, and 

family coverage. The terms of the scoring function are combined using adjustable weights for 

each protein family.  To train these weights, interaction statistics were collected for all pairs of 

atoms within 5.6 Å of each other for a set of ~1420 high resolution protein-ligand complex. The 

complexes were clustered into 71 clusters or families and family specific weight sets were 

generated. In addition to the family optimized scoring function, eHiTS allows new scoring 

weight sets to be generated by training the scoring function with addition protein-ligand complex 

data or with known active and inactive ligands.  

While the scoring function of eHiTS program can be trained using known actives and 

inactives to bias the function toward finding ligands that are more similar to known actives.  

However, in our benchmarking study we carried out an unbiased docking based on default 

eHiTS parameters.  Compounds were ranked based on the returned eHiTS score. 

3.2.5. Similarity Searching 

Similarity searching is the simplest form of ligand-based virtual screening.  The method 

typically involves generating a set of multidimensional descriptors for both the known ligand(s) 

and the chemical database, then ranking all compounds in the chemical database based on their 

similarity to the ligand.  There are many different types of descriptors that can be applied and 
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several different ways to assess similarity.  In this study, similarity searching was carried out 

using both the ligand contained within the protein-ligand complex obtained from the PDB and 

the actives in the modeling sets defined supra.  Similarity was assessed using the Tanimoto 

coefficient and FCFP4 from Pipeline Pilot.  Compounds were ranked based on their similarity to 

the nearest probe. 

3.2.6. QSAR 

The generation of all QSAR models was accomplished through use of the Chembench web 

portal.  Only random forest modeling was applied as the number of modeling set to be analyzed 

was large. In all cases, the random forest modeling procedure Chembench was applied to Dragon 

descriptors
100

 of chemical structure with the following selections: range scaling of descriptors 

and elimination of descriptors with perfect correlation, 50 random divisions of training/test set 

containing between 20% and 30% of the dataset, and 50 trees generated for each split using 50 

descriptors.  Further discussion of the random forest procedure implemented in Chembench is 

contained in section 5.2.2.  During screening, each compound was scored and ranked using the 

percentage of models within the ensemble that predicted it to be active.  

3.3. Results and Discussion 

3.3.1. Preliminary Error Analysis 

Prior to defining datasets for each target, it was necessary to assess the level of noise that 

appears in the numeric activity values contained in the bioactivity databases.  Since these 

databases are extracted from peer reviewed literature, we expected the data to be of high quality.  

To verify this hypothesis, activity values were extracted for all 22 targets of interest from the 

ChEMBL database.  Of the 43319 entries returned, 6917 were identified as duplicates (the same 
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ChEMBL ID had multiple listed activity values for a target and an activity type).  Figure 24 

contains the histogram of the maximal difference in activity values for each duplicate.  The 

cumulative histogram indicates that the majority (70%) of duplicates have a maximal difference 

between reported activities of less than one log unit.  90% of duplicates have a maximal 

difference of less than two log units.  Based on this information, we decided that the 

inconsistency of reported values within ChEMBL made modeling them problematic.  We 

decided to categorize the continuous values into active and inactive classes.  To reduce the error 

in labeling, the threshold to be considered active was two log units greater than the threshold to 

be considered inactive.    

An interesting side note concerning maximal error measurements is that there are distinctive 

increases in the number of duplicates with errors of three and six in the histogram.  These 

increases are likely due to errors in interpretation of units when data is being extracted from 

literature sources. 

 

Figure 24. Maximal difference in activity reported for duplicates in ChEMBL. 
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3.3.2. Selected Datasets 

In total, datasets were extracted for 22 targets.  These targets cover multiple protein classes whose 
activities can be modulated by small compounds.  This set includes GPCRs, nuclear hormone receptors, 
and several enzyme families such as kinases and proteases.  High resolution protein structures for all 
targets were identified within the PDB and ligands for each target were extracted from the three 
bioactivity databases: ChEMBL, WOMBAT, and MDDR.  Information regarding the data extracted for each 
target is contained in  

Table 1.    

3.3.3. Ranking with Docking 

The ranking of screening sets was completed for all targets with eHiTS, a commonly used 

fast flexible docking solution.  For each of the resultant ordered screening sets two Receiver 

Operating Characteristic (ROC) curves were generated.  The first ROC curve is generated 

considering decoy compounds in the screening set coming from the other targets to be inactives.  

The second is generated considering only the compounds in the screening set belonging to that 

target‘s dataset.  Figure 25 contains examples of the former while Figure 26 contains examples 

of the latter.  All ROC curves are available in Appendix V. 

While docking did an excellent job in selecting true actives from the full screening sets in the 

majority of cases, in some cases it was indistinguishable from random prediction.  These cases 

correspond to the lack of a family based scoring function of certain proteins.  In order for optimal 

performance, eHiTS requires that a family be known for a protein.  This limitation makes 

identification of binders of proteins under-populated in the PDB difficult.  
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Table 1. Summary of results for benchmark dataset generation 

Abbreviation Target PDB ID 
Active 

Threshhold 
(nM) 

Inactive 
Threshold 

(nM) 

# Compounds 
in modeling/ 
validation set 

# Compounds 
in WOMBAT 
external set 

# Compounds 
in MDDR 

external set 

ACK1 
Activated Cdc42-
associated Kinase 

3EQR ≤ 100 ≥ 10000 172 NA NA 

ACHE Acetylcholinesterase 1EVE ≤ 100 ≥ 10000 887 652 860 

AR Androgen Receptor 2AM9 ≤ 100 ≥ 10000 422 258 NA 

B2AR 
Beta-2 Adrenergic 

Receptor 
2RH1 ≤ 100 ≥ 10000 248 137 238 

CA2 
Carbonic Anhydrase 

II 
3K34 ≤ 10 ≥ 1000 1073 778 267 

CDK2 
Cyclin Dependent 

Kinase 2 
2R3I ≤ 100 ≥ 10000 1360 756 NA 

COX2 Cyclooxygenase 2 3PGH ≤ 100 ≥ 10000 1429 811 1168 

DHFR 
Dihydrofolate 

Reductase 
2W3A ≤ 100 ≥ 10000 463 240 250 

ESR1 
Estrogen Receptor 

Alpha 
2OUZ ≤ 10 ≥ 1000 878 799 311 

ESR2 
Estrogen Receptor 

Beta 
2NV7 ≤ 10 ≥ 1000 703 681 NA 

F10 Coagulation Factor X 2XBV ≤ 10 ≥ 1000 999 2050 1648 

GR 
Glucocorticoid 

Receptor 
3K22 ≤ 10 ≥ 1000 385 387 NA 

HIV-Int HIV Integrase 1QS4 ≤ 1000 ≥ 50000 749 954 475 

HIV-Pr HIV Protease 1G35 ≤ 10 ≥ 1000 1526 2691 1140 

HIV-RT 
HIV Reverse 
Transcriptase 

2ZD1, 
3KK1 

≤ 100 ≥ 10000 1133 1411 NA 

PARP1 
Poly [ADP-ribose] 

Polymerase-1 
3GJW ≤ 10 ≥ 1000 299 293 377 

PDE5 
Phosphodiesterase 

5A 
1TBF ≤ 10 ≥ 1000 687 499 660 

PNP 
Purine Nucleoside 

Phosphorylase 
1VHW ≤ 10 ≥ 1000 173 81 82 

PPARG 

Peroxisome 
Proliferator-

Activated Receptor 
Gamma 

3ET3 ≤ 100 ≥ 10000 376 340 NA 

REN Renin 3K1W ≤ 10 ≥ 1000 1235 536 1529 

SRC 
Tyrosine Protein 

Kinase SRC 
3G5D ≤ 100 ≥ 10000 1443 689 NA 

F2 Thrombin 2BVR ≤ 100 ≥ 10000 1150 1933 1373 

 



 

51 

 

The usefulness of ranking when only known active and inactive compounds were considered 

was much lower.  The ability to select true binders from known non-binders using only eHiTS 

scoring appears to be quite limited.  

3.3.4. Ranking with Similarity Searches 

Similarity searching using Tanimoto score and FCFP-4 fingerprints was completed using 

Pipeline Pilot.    Results were obtained using either the ligand from the PDB entry or the actives 

from a selected modeling set as probes.  ROC curves are provided only for the cases of the PDB 

ligand and full modeling sets. (ROCS using probes extracted from subsets were not generated.)  

Example ROC curves of type I are displayed in Figure 27 and Figure 28 while those of type II 

are shown in Figure 29 and Figure 30. All ROC curves are available in Appendix V. 

3.3.5. Ranking with QSAR models 

The ranking of all screening sets was completed using random forest models developed on 

Chembench.  Models were obtained for all 130 modeling sets (including subsets).   The 

predictive power of all these sets was assessed using their validation sets.  Graphics 

exemplifying the effects of modeling set size on the predictive power of the resultant models are 

shown in Figure 31.  The stability of the resultant models (measured with the standard deviation 

in CCR) is displayed in Figure 32 for select targets.  Appendix VI holds additional examples of 

these plots. 

Examination of Figure 31 confirms that as a modeling set size increases, its predictive power 

increases.  Additionally, Figure 32 shows that generally the stability of a model increased as 

more compounds are modeled.  These results completely agree with what would be expected as 

set sampling increases. 
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Figure 25. Example ROC curves resulting from the docking the full screening library using eHiTS. 
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Figure 26. Example ROC curves resulting from the docking of compounds with known activity using eHiTS. 
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Figure 27. Example ROC curves resulting from searching the full screening library using the PDB ligand and Tanimoto similarity with FCFP-4. 
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Figure 28. Example ROC curves resulting from searching compound with known activity using the PDB ligand and Tanimoto similarity with FCFP-4. 
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Figure 29. Example ROC curves resulting from searching the screening library using the modeling set actives and Tanimoto similarity with FCFP-4. 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

Tr
u

e
 P

o
si

ti
ve

 R
at

e

False Positive Rate

ACK1

Validation set 1

Validation Set 2

Validation Set 3

Validation Set 4

Validation Set 5 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

Tr
u

e
 P

o
si

ti
ve

 R
at

e

False Positive Rate

B2AR

Validation set 1

Validation Set 2

Validation Set 3

Validation Set 4

Validation Set 5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

Tr
u

e
 P

o
si

ti
ve

 R
at

e

False Positive Rate

CDK2

Validation set 1

Validation Set 2

Validation Set 3

Validation Set 4

Validation Set 5 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

Tr
u

e
 P

o
si

ti
ve

 R
at

e

False Positive Rate

DHFR

Validation set 1

Validation Set 2

Validation Set 3

Validation Set 4

Validation Set 5



 

 

 

5
7
 

 

 

Figure 30. Example ROC curves resulting from searching compounds with known activity using the modeling set actives and Tanimoto similarity with FCFP-4. 
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ROC curves were generated only for models developed using the entire modeling set (not 

subsets).  ROC curves for the entire screening set are available in Figure 33 while those for 

compounds with known target activity are displayed in Figure 34.  

QSAR models were able to effectively rank both the screening library and the compounds with 

known activities.  Being that QSAR models are specifically trained to make separations between 

actives and inactives in the modeling set, they can be insensitive when predicting compounds not 

similar to the modeling set; however this is not readily apparent in ROC curves generated when 

using the entire modeling set.  In typical applications of QSAR for virtual screening, a global 

applicability domain filter is used to guarantee that selected compounds are similar to the 

modeling set.  However, an applicability domain filter was not applied in this case as its most 

tradition implementation is a similarity search using all modeling set members as probes.  The 

use of multiple modeling methods in concert to obtain superior predictive power was beyond the 

scope of this study‘s focus of ascertaining the usefulness of the benchmark set.   

3.3.6. Method Comparison 

Being that different virtual screening methods require different inputs, it is hard to compare 

them in an unbiased way.  QSAR modeling using 1000 modeling compounds cannot be fairly 

compared to docking results that rely on single protein structure.  However, there are two fair 

comparisons that can be made.  Similarity searching using the ligand contained within the PDB 

entry as a probe and docking both use only a single protein-ligand complex to rank a chemical 

database.  Also similarity searching using all actives from a modeling set as probes uses the base 

of knowledge as a QSAR model. 
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Figure 31. Prediction accuracy as measured using mean CCR for selected targets. 
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Figure 32. Prediction stability as measured using the standard deviation in validation set CCR for selected targets. 
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Figure 33. Example ROC curves resulting from prediction of the screening library using QSAR models. 
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Figure 34. Example ROC curves resulting from prediction of compounds with known activity using QSAR models. 
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Figure 35 demonstrates that in there is no clear pattern in whether similarity searching or 

docking will provide better ranking of a screening library.  While docking certainly fails in some 

cases, there are also examples of similarity searching proving mediocre in recall of actives.   

When examining the capacity of the two methods to properly classify only compounds with 

known activities, it is apparent (see Figure 36) that often neither method proves successful.   

Figure 37 and Figure 38 display the ROC curves for similarity searching and QSAR 

modeling using each of the modeling sets.  While similarity searching appears to be much better 

at extracting active compounds from a large chemical library, QSAR does a superior job of 

separating the known actives from the known inactives.  This sensitivity of QSAR to fine 

differences in chemical structure while similarity searching provides coarse separation of actives 

from a large set of putative inactives speaks to the complementary of the two methods in virtual 

screening.   

While different methods use different sets of knowledge to rank chemical libraries, all 

methods are united in that their goal is enrichment of known actives in a subset of a database.  

Therefore, it is reasonable to compare all methods and their respective knowledge bases on the 

criteria of enrichment. For each target, enrichments were calculated at 0.5%, 1%, 5%, and 10% 

of the database.  An example of the resulting enrichment comparison is contained in Figure 39.   

Enrichment comparisons for additional targets are available in Appendix VII. 

Based on the generated figures, enrichment appears to usually increase as ligand information 

is added to the model system.  In terms of raw enrichment of active compounds, similarity 

searching appears to be the best method for utilizing this information.   
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Figure 35. Comparison of ROC curves between docking and similarity searching on the full screening library. 
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Figure 36. Comparison of ROC curves between docking and similarity searching on compounds with known activity. 
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 Figure 37. Comparison of ROC Curves from QSAR modeling and similarity searching using full modeling sets on screening library. 
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Figure 38. Comparison of ROC Curves from QSAR modeling and similarity searching using full modeling sets on compounds with known activity. 
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Figure 39. Enrichment on the screening library for DHFR.  
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3.3.7. CCR or Enrichment for Model Characterization 

Questions often arise regarding how to select QSAR models that will yield superior virtual 

screening results.  While our lab primarily relies on CCR as a measurement of a model‘s 

usefulness, for the goal of virtual screening one would expect that metrics more commonly 

applied within the fields such as enrichment would provide a better assessment of a model‘s 

capabilities.  While the experimental design of this study was specifically focused on the 

evaluation of the effect of modeling set size on QSAR in relation to both docking and similarity 

searching, the abundance of derived data allows us to examine the relationship between CCR and 

enrichment.    

Figure 40 contains a scatter plot of CCR vs. enrichment for two selected targets.  Additional 

figures of this type are contained in Appendix VIII.  While the relationship between CCR and 

enrichment does appear to have slight correlation, that correlation appears to be inconsistent and 

in many cases weak.   

3.4. Conclusions and Future Directions 

During the generation and assessment of a benchmark dataset for assessment of virtual 

screening techniques, the following goals have been achieved  

1. Extraction and curation of ligand datasets for 22 targets from three (one public and 

two commercial) bioactivity databases (Section 3.3.2) 

2. Docking of a library of nearly 17,000 compounds to 22 different protein targets 

(Section 3.3.3 

3. Similarity searching using nearly 4000 different probe sets (Section 3.3.4) 
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Figure 40. The lack of correlation between CCR and enrichment. 
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4. Generation of more than 2500 ensemble QSAR models including 22 externally 

validated predictors of biological activity (Section 3.3.5) 

Using the data generated from assessment of the benchmark datasets, we have determined 

that the selected docking and similarity searching protocols perform very poorly in separating 

tested actives from tested inactives.  We have validated the importance of being able to classify a 

target in the family based scoring scheme promoted by eHiTS.  We have determined that in 

terms of ability to identify hits from a chemical library, similarity searching and docking perform 

nearly equivalently. 

While assessing the selected QSAR method, it was apparent that QSAR alone is poor in 

comparison to similarity searching at enriching a large chemical library; however, QSAR models 

significantly outperform docking  and similarity searching in their ability to separate the known 

actives from the known inactives.  The inability of QSAR models to effectively separate the most 

interesting compounds from a chemical database is easily rectified with the use of a global 

applicability domain (an assessment of whether a compound in the chemical library is similar 

enough to members of modeling set to make a prediction).  The results of this study show that 

the use of a global applicability domain as is often done when performing a virtual screen with 

QSAR is vital to achieve optimal selection of hypothetical binders. 

The performance of QSAR models in classification and virtual screening as measured using 

CCR and enrichment respectively often correlate, but are not equivalent.  Optimizing enrichment 

rather than CCR could generate models better suited to virtual screening of large chemical 

libraries. 
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Clearly this study is limited in the number of methods applied to analyze these datasets.  To 

gain a better understanding of the capability of cheminformatics in the task of virtual screening, a 

larger study involving more cheminformatics specialists must be initiated.  By encouraging a 

collaborative study, a better assessment of cheminformatics tools will be obtained since experts 

will use the tools with which they are most familiar and comfortable.  This will lead to 

comparison of tools when applied in the best manner. 

The metrics of virtual screening success should be improved.  Rather than assessing the 

number of compounds returned, a better measure of success is the number of new chemical 

classes identified.  Clustering the dataseta then manually defining the boundaries between the 

different classes of actives could achieve this goal.  Then the recall of active classes could be 

measured when virtually screening the library. 

The above consideration highlights a limitation in our strategy for determining the effects of 

knowledge base size on similarity searching and QSAR.  In realistic applications, the knowledge 

base often contains only a subset of the known active classes for a target whereas with random 

sampling no attempt to control the diversity of modeling set was made.  It is expected that if a 

compound‘s target class were considered when selecting compounds for modeling sets, a more 

distinct drop would be seen in predictive power as modeling set size was decreased.  This 

hypothesis surely bears testing as the usefulness of ligand-based methods should be assessed in 

the most realistic manner so the method comparison can inform application scientists. 

Finally, while sets were generated from both WOMBAT and MDDR, they have not been 

utilized in benchmarking screening tools.  The commercial restrictions on the extracted sets are 
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surely a strike against them, but studies should be completed verifying that virtual screening on 

these sets and the ChEMBL set are similar. 



 

 

 

Chapter 4: Chemical Sensitivity of Cancer Cell Lines  

4.1. Introduction 

Over the past decade there has been increased interest in shifting the treatment of cancer 

from a tissue or organ specific approach to a more personalized approach
43

.  Personalized 

medicine relies on the measurement of biomarkers that indicate how an individual will respond 

to a particular treatment.  However, a comprehensive set of biomarkers is still unavailable.  This 

is disappointing as there has been a decided increase in our capacity for genetic screening. 

 Biomarkers can be defined using a variety of techniques in the fields of genomics, 

proteomics, or metabolomics.  Herein, we focus on the use of gene expression profiles to predict 

the resistance or sensitivity of a cell line to a chemotherapeutic or several chemotherapeutics.  

The NCI-60 dataset provides an excellent resource to mine to identify gene expression 

biomarkers as it provides a measure of drug-induced cytotoxicity for a large number of 

chemicals in a panel of 60 cell lines.  These cell lines also have their gene expressions profiled. 

While many have mined this data to identify biomarkers of resistance, most works focus on 

analysis of single compounds at a time
101

.  At most a small set of compounds are examined
102

.  

This lack of comprehensive analysis of the NCI-60 dataset likely obscures markers that are 

relevant to large set of compounds (i.e. multidrug resistance genes).  Therefore, we have 

completed a study of the entirety of the NCI-60 dataset looking to identify both multidrug 

resistance biomarkers and drug specific resistance biomarkers.   
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4.2. Materials and Methods 

4.2.1. NCI-60 dataset  

The In Vitro Cell Line Screening Project (IVCLSP) has been fully operational since April of 

1990.  This project, tasked with the direct support of the Development Therapeutics Program 

(DTP) anticancer drug discovery effort, is designed to screen up to 3,000 compounds per year for 

growth inhibition of 60 different human tumor cell lines representing a variety of tissue types.  

Portions of the results of this screening are made available to the public.  Our data was taken 

from the following locations: GI50 values were taken from the archive file available from 

http://dtp.nci.nih.gov/docs/cancer/cancer_data.html, chemical data was drawn from both the 

structural file contained within the bioactivity data archive file and the 2D structural file 

available at http://dtp.nci.nih.gov/docs/3d_database/structural_information/structural_data.html, 

and Affymetrix HG-U133(A-B) raw data
103

 were extracted with use of Cellminer
104

. 

4.2.2. Dataset Curation 

Being that the dataset contains chemical, screening, and gene expression data, the first step of 

curation was to ensure consistency of representatives across data types.  When examining the 

chemical and screening data, we determined that 585 identifiers in the screening data had no 

stored chemical data.  Of the 60 cell lines commonly screened in the IVCLSP, only 59 had 

recorded gene expression data.  The 585 identifiers that did not have chemical data and the cell 

line without gene expression data were eliminated from further analysis. 

The chemical structures for the remaining 47039 compounds were then standardized and 

compared using Pipeline Pilot to determine if duplicates were present.  532 duplicate structures 

http://dtp.nci.nih.gov/docs/cancer/cancer_data.html
http://dtp.nci.nih.gov/docs/3d_database/structural_information/structural_data.html
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were identified linked to 1114 nsc_ids.  The screening results for duplicate structures were 

treated as having been submitted with the same identifier (see process of curation infra).   

The screening data provided via download often contained multiple pGI50 values for the 

same identifier-cell line pair.  Additionally, the data was occasionally reported in more than one 

type of unit.  To deal with this multiplicity of values, unless the pGI50 was equal to maximum 

concentration tested, we weighted the pGI50 measurements (in M units) by the number of tests 

from which that measurement was obtained and then averaged them. When the reported pGI50 

was equal to the maximum concentration tested, it was only included in the averaging if it was 

less than minimum pGI50 reported for other instances of the identifier-cell line pair.  While 

inclusion of any data where the reported pGI50 is equal to the maximum concentration tested may 

be considered questionable, elimination of all such instances significantly reduces the amount of 

available data and obscures the chemical sensitivity trends across cell lines.  All data not reported 

in M units was ignored. 

After coalescing duplicative pGI50 values, only the 4614 compounds for which all 59 cell 

lines had pGI50 values were retained.  Additionally, compounds that did not have a difference of 

greater than one order of magnitude between their most active GI50 and their least active GI50 

were removed leaving 3555 compounds.   

In order to apply QSAR techniques, additional curation was required prior to generation of 

chemical descriptors.  As the descriptor techniques being employed were insensitive to chirality, 

all chirality was removed using Pipeline Pilot prior to QSAR modeling and duplicates were again 

analyzed leaving 3524 compounds.  Additionally, the Dragon descriptor generation software was 

unable to process chemicals that contained certain atoms eliminating another 11 compounds. 
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4.2.3. Computation Study Design 

The simultaneous analysis of chemical, bioactivity, and gene expression data is quite 

difficult.  Therefore, we decided to progressively segment the data to analyze individual portions 

at a time.  In short, we hypothesize that the GI50 values contained within our dataset can be 

estimated by adding a wholly chemical component and a wholly cellular component to an 

interaction component as described in Equation 5.   

                (5) 

This description of activity values allows us to eliminate the wholly chemical component by 

normalizing each compound‘s GI50 values using the average and standard deviation in the 

activity of that compound across the cell lines. This normalized GI50 value becomes our measure 

of a cell‘s resistance or sensitivity to the drug (see Equation 6).  

                      (6) 

Our separation of the data into parts leads to a cellular resistance that while certainly a 

function of both cellular composition and chemical structure can be analyzed as a multidrug 

resistance (an estimate of the hardiness of a cell when treated by a spectrum of chemicals) and 

specific cellular resistance (the specific interaction between a cell and chemical that is separate 

from the mechanisms for generic resistance).   

4.2.4. Multidrug Resistance 

Multidrug resistance can be described as the hardiness of a cell line against a broad spectrum 

of chemical stimuli.  The resistance of a cell line to a chemical probe is only apparent in relation 

to the effects of the same stimulus on other cell lines.  This being the case, the pGI50 values 

across the cell lines for each compound were centered and scaled using the mean and standard 
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deviation for that compound as an estimate of each cell line‘s resistance to that compound.  The 

resulting matrix of 59 cell lines with resistance estimates for 3555 compounds was then 

subjected to Singular Value Decomposition (SVD)
105

 to select a single vector that represented 

the general resistance (or multidrug resistance) of the cell lines.   

4.2.5. Gene Identification 

After definition of a response variable (either generic cellular resistance as above or a 

particular compound‘s GI50 spectrum as below), selection of significant genes was carried out 

using Significance Analysis of Microarrays (SAM)
106

.  Specifically, we applied the SAMR 

package available from http://www-stat.stanford.edu/~tibs/SAM/ using 1000 permutations.  The 

delta parameter was altered to obtain an appropriate level of significance based on each case. 

4.2.6. Pathway Analysis 

Analysis of the networks and pathways populated and formed by the identified genes was 

accomplished using Ingenuity Pathways Analysis (Ingenuity® Systems, www.ingenuity.com).  

In our case, a core analysis was conducted using a maximum network size of 35 members. The 

core analysis includes network analysis, functional analysis, and canonical pathway analysis. 

 Network analysis was carried out by first mapping each identifier to its corresponding object 

in Ingenuity's Knowledge Base. These molecules, called Network Eligible molecules, were 

overlaid onto a global molecular network developed from information contained in Ingenuity‘s 

Knowledge Base. Networks of Network Eligible Molecules were then algorithmically generated 

based on their connectivity. 

The Functional Analysis identified the biological functions and/or diseases that were most 

significant to the set of genes. The identified markers associated with biological functions and/or 

http://www-stat.stanford.edu/~tibs/SAM/
http://www.ingenuity.com/
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diseases in Ingenuity‘s Knowledge Base were considered for the analysis. Right-tailed Fisher‘s 

exact test was used to calculate a p-value determining the probability that each biological 

function and/or disease assigned to that data set is due to chance alone. 

Canonical pathways analysis identified the pathways from the Ingenuity Pathways Analysis 

library of canonical pathways that were most represented by the identified genes. The 

significance of the association between the data set and the canonical pathway was measured in 2 

ways: 1) A ratio of the number of molecules from the data set that map to the pathway divided 

by the total number of molecules that map to the canonical pathway is displayed. 2) Fisher‘s 

exact test was used to calculate the probability that the association between the genes in the 

dataset and the canonical pathway is explained by chance alone. 

4.2.7. QSAR modeling of expected/aberrant behavior 

  The apparent of nature of compounds belonging to one of two classes based on the 

hierarchical clustering of correlation value (see Section 4.3.3) was used as a response variable to 

build a QSAR model.  Compounds were loaded into Chembench and standardized.  Five-fold 

external validation was used to ensure model robustness.  The random forest procedure 

implemented in Chembench was applied to Dragon descriptors
100

 of chemical structure with the 

following selections: range scaling of descriptors and elimination of descriptors with perfect 

correlation, 50 random divisions of training/test set containing between 20% and 30% of the 

dataset, and 50 trees generated for each split using 50 descriptors.  Further discussion of the 

random forest procedure implemented in Chembench is contained in section 5.2.2. 
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4.2.8. Nearest Neighbor Analysis 

The aberrant compounds identified via hierarchical clustering were treated to individual 

SAM analysis to identify the genes most significantly related to their pGI50 profile.  For each 

compound, the nearest neighbor compound in FCFP4 space was identified and the overlap of 

significant genes between neighbors was assessed.     

4.3. Results and Discussion 

4.3.1. Gene Expression Markers of Multidrug Resistance 

To visualize the amount of multidrug resistance evident within the cells contained within the 

NCI-60 panel, the centered and scaled pGI50 values indicative of the level of resistance were 

separated into resistant, sensitive, and neutral groupings where any normalized pGI50 < -1 was 

considered resistant, any normalized pGI50 > 1 was considered sensitive, and the remainder were 

considered neutral.  Figure 41 contains a bar graph of the number of chemicals to which a cell 

line was sensitive or resistant.  These results indicate that not only are some cell lines resistant to 

multiple drugs, but some cell lines are sensitive to multiple drugs.  

With the knowledge that a large portion of the measured cellular resistance and sensitivity 

appears to be caused by multidrug effects, we quantized the multidrug resistance of a cell using 

SVD projection of the normalized pGI50 matrix into a single vector.  The application of SAM to 

this quantized multidrug resistance identified 361 genes (121 linked to sensitivity and 240 linked 

to resistance) with less than a 0.1% 90
th

 percentile FDR.  A listing of these hypothetical markers 

of multidrug resistance is contained in Appendix IX. 
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4.3.2. Pathways of Multidrug Resistance 

Following identification with SAM of markers of multidrug resistance, the 361 markers were 

subjected to Ingenuity Pathway Analysis.  When loaded, a total of 11 probe set ids failed to map 

to genes.  The resulting gene list was subjected to IPA core analysis.  This analysis resulted in 

the identification of several protein networks that have a high degree of connection amongst the 

identified markers.  One such network is shown in Figure 42.  Additional networks and table of 

the networks and their linked functions are displayed in Appendix X. 

When examining the network, it is interesting to note that a large number of the markers 

identified have previously been linked to cancer.  c-Myc (MYC) is a transcription factor that has 

been identified in several cases to be linked to cancer and which is currently being investigated 

as a cancer target.  c-Myc has been previously linked to the sensitization of melanoma cells to 

radiotherapy
107

.  DNA Fragmentation Factor Beta (DFFB) is a protein that when activated 

initiates DNA fragmentation and chromosome condensation
108

.  Lowered DFFB expression has  

 

Figure 41. Multidrug resistance profile of cell lines.  
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been linked with Oligodendrogliomas.
109

  Increased expression of alpha-actinins (including 

ACTN1 and ACTN4) has been identified in hepatocellular carcinomas.
110

  Profilin is an actin 

binding protein that has previously been shown to decrease cancer cell motility
111

 and suppress 

tumors.
112

  Ajuba (JUB) is a protein that is known to be essential to enter into mitosis.
113

  It has 

been found to interact with protein 14-3-3σ, a protein commonly silenced in cancers
114

. These 

are just a subset of links that can be made between this network (which contains a large number 

of motility effecting genes) and cancer. 

Additionally, IPA detected both the canonical pathways and cellular functions that were 

highly represented by the hypothetic markers.  These pathways and function are documented in 

Figure 43.  Several of these pathways and functions are linked to cancer.  With respect to 

pathways, the similarity of leukocyte extravasation to tumor cell extravasation has been 

 
Figure 42. Network of identified gene expression markers of multidrug resistance. (Red nodes are resistance 

genes and Green nodes are Sensitizing genes. 
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previously noted and reviewed.
115

  Agrin interaction and neuromuscular signaling have been 

shown to be affected by the mouse tumor suppressor protein Adenomatous Polyposis Coli 

(APC).
116

  Integrin signaling is known to be required for development and metastasis of 

cancer.
117

  With respect to the functions, cellular movement is needed for cancer spread, and 

cellular assembly and organization is required for any proliferating cell line. 

The high degree of linkage between the identified markers, their pathways, and their 

 
Figure 43. (a) Canonical pathways and (b) functions enriched with markers of multidrug resistance 

a) 

 

b) 
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functions and cancer lend credence to the hypothesis that the identified genes are in fact related 

to multidrug resistance.   

4.3.3. Correlation of GI50s and Marker Expression 

Based on our separation of resistance into a multidrug component and a drug specific 

component, we expected that several chemicals contained within the dataset would behave 

differently than projected by multidrug markers. To detect these compounds, we correlated the 

gene expression for the selected multidrug resistance and sensitizing genes to the pGI50 values 

for compounds across the 59 cell lines.  Using these correlation values, the compounds were 

clustered using Partek Genomics Suite‘s
118

 hierarchical clustering with Euclidean distance and 

average linkage. (See Figure 44a.) 

Chemicals are clearly segregated into two clusters: one comprised of 2933 compounds whose 

pGI50 values correlate as expected with the expression of selected generic resistance and 

sensitivity genes and one comprised of 622 compounds whose pGI50 values in general do not 

correlate as expected.  While these two classes were apparent when clustering was done on the 

correlation values, they were not evident when the chemicals were clustered using the 

normalized pGI50 values (Figure 44b) or two sets of chemical descriptors (Figure 44c,d). 

While the two noted classes are the most glaring result of the clustering, the heatmap also 

indicated that there is still variation within the 2933 compounds that generally have expected 

behavior.  These variations could also be related to gene expression effects.  Unfortunately, these 

deviations were not addressed in this study. 
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Figure 44.  Clustering results of the NCI-60 compounds based on (a) correlation of pGI50 values and gene expression 

of multidrug resistance markers, (b) Normalized pGI50 values, (c) MACCS keys, and (d) MOE2D descriptors 
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4.3.4. Prediction of Aberrant Behavior  

While it can be expected that the resistance of a cell line to a chemical can usually be 

understood by an estimate of a cell line‘s generic hardiness, it is not surprising that some 

compounds may have specific interactions that allow them to exhibit cellular growth inhibition 

profiles that are uncommon.  As global similarity in chemical descriptor spaces appeared to be 

insufficient for predicting which compounds would elicit abnormal growth inhibition profiles, 

we built a QSAR to aid in this task.   

The imbalance in the dataset provided a significant complication to the modeling.  To 

address this imbalance, three methods for down-sampling the overrepresented class patterned 

after those used in a recent unpublished study of anti-malarial compounds were applied: random 

selection of five folds of the overrepresented class, selection of compounds from the 

overrepresented class most similar to underrepresented class, and selection of two neighbors 

from the overrepresented class for each member of the underrepresented class.  These down 

sampling techniques were applied after five-fold extraction of validation sets to ensure 

accuracies would be comparable.   

 Since we were applying Random Forests, our QSAR modeling was consensus in nature.  

This being the case, each compound was predicted with a numeric value between 0.0 and 1.0 

with 0.0 representing high consensus that a compound was normal, 1.0 representing high 

consensus that a compound was aberrant, and 0.5 indicating that there was no consensus amongst 

models.  While typically a threshold at 0.5 is used to separate active and inactive predictions, 

there are times where compounds with numeric values near 0.5 are thrown out.  To define the 

level of agreement required, an agreement threshold was defined such that if the agreement 

threshold were 0.1, only compounds with numeric values above 0.6 would be considered 

a) 
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aberrant while compounds with numeric value below 0.4 would be considered normal.  

Compounds with predicted numeric value between 0.4 and 0.6 are eliminated.   

 Figure 45 presents the prediction accuracy in terms of CCR and the coverage when 

predicting the validation sets as a function of the agreement threshold.  As expected the 

prediction accuracy increases as the compounds with lower levels of consensus are removed.  No 

method of down-sampling appears to be definitively superior to another.  Additionally, only a 

small number of the compounds (roughly 10%) can be accurately identified as being aberrant 

using only information from their chemical structure.  This is understandable considering there 

are likely a large number of ways for a compound to elicit a resistance profile that cannot be 

predicted based on the selected markers of multidrug resistance.  As such, it is likely that the 622 

 

Figure 45. Validation set prediction accuracy and coverage for QSAR prediction of aberrant compounds. 
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compounds identified as having aberrant behavior in this study only sparsely populate the 

pathways that modulate resistance in a chemical specific manner. 

4.3.5. Genetic Markers of Aberrant Compounds   

As the causes of compound specific resistance remain unknown, SAM analysis was applied 

to the resistance profile of each compound in the aberrant set.  Genes with less than a 1% median 

FDR were identified as potential biomarkers for a chemical‘s specific resistance profile.  While 

no genes were found for nearly half of the chemicals at this cutoff, 58000 gene-compound pairs 

were identified.  The amount of overlap of genes between chemicals was measured.  Figure 46 

shows the distribution of overlap in gene expression markers for chemicals.   

Figure 46 clearly shows that very little overlap occurs between potential biomarkers of 

specific chemical resistance within the aberrant set and this plot omits the nearly 130 thousand 

 

Figure 46. Infrequency of overlap in resistance genes of aberrant compounds. 
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pairs for which there were zero gene overlaps.  To determine if chemical similarity would be 

capable of predicting which chemicals would overlap in the resistance genes, we plotted for the 

three nearest 

neighbors of 

each compound 

the Tanimoto 

similarity of 

compound 

pairs in FCFP-

4 space against 

the count of 

their 

overlapping resistance genes.  This plot (displayed in Figure 47) clearly shows that the 

correlation between similarity and overlap is very weak.  

4.4. Conclusions and Future Directions 

During analysis of the NCI-60 dataset to identify gene expression markers of resistance, 

multiple tasks were completed. 

1. An unbiased method was defined for quantifying the multidrug resistance potential of 

a cell line. (Section 4.3.1) 

2. SAM was used to identify 361 genes whose expression appears linked to multidrug 

resistance (Section 4.3.1) 

 
Figure 47. Scatterplot of the number of overlapping genes vs the chemical similarity for 

pairs of neighbor compounds 
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3.  These potential biomarkers were analyzed for their biological significance and 

connections to one another thereby implicating several functions in the conference of 

resistance. (Section 4.3.2) 

4. Compounds having drastically different responses than expected based on expression 

of multidrug resistance markers were identified. (Section 4.3.3) 

5. QSAR analysis was completed indicating that only a small portion of aberrantly 

behaving compounds can be predicted based on structure. (Section 4.3.4) 

6. 58000 chemical-genes resistances were hypothesized. (Section 4.3.5) 

These results provide the basis for a great deal of experimental validation.  In addition to 

experimental validation of the hypothetical genes that were identified in this study, there are 

computational studies that could be carried out to refine the selection of markers.  In particular, 

the treatment of genes as individual entities during identification of markers ignored knowledge 

of how the genes work as a network.  While the identified genes appear to be highly connected in 

networks, by quantifying the differences in these networks between cells rather than the 

expression of individual genes, greater insight may be possible.  Instead of selecting genes that 

appear linked to resistance phenomenon and building the networks with these blocks, it would be 

more logical to directly link alterations in networks to resistance.  Difficulties in appropriately 

quantifying the fluctuations in a network prevented us from carrying out this study. 

Ability to predict compounds for which there would be specific resistance effects eluded us 

for a large portion of our dataset.  This appears to be a limitation in either the dataset or in the 

methods applied to it.  It may be that a local approach to modeling of this data would lead to 

more predictive models since we consider the causes of specific chemical resistance to be very 
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local in nature.  Inclusion of compounds eliminated because they were not tested against every 

cell line could expand the dataset and increase understanding of different resistance profiles. 



 

 

 

Chapter 5: Chembench 

5.1. Introduction 

Thanks in large part to publicly funded efforts, there has been an accumulation of bioactivity 

data in the public domain. The size and complexity of databases containing this data rivals that 

of the large biological datasets that established the need for bioinformatics. However, the rapidly 

growing data about interactions of small-molecule probes with biological systems remain largely 

underexplored because of the absence of appropriate public domain tools for their analysis. This 

is particularly distressful given the significance of chemical biology for understanding the 

functions of living organisms. 

Within the last decade, cheminformatics has emerged as a burgeoning discipline combining 

computational, statistical, and informational methodologies with some of the key concepts in 

chemistry and biology.
119-121

 We describe modern cheminformatics broadly as a chemocentric 

scientific discipline encompassing the creation, retrieval, management, visualization, modeling, 

discovery, and dissemination of chemical knowledge.  Cheminformatics plays a critical role in 

understanding the fundamental problem of structure-property relationships and therefore applies 

to almost any area of chemical and biological research.  Similar to the role that bioinformatics 

has played in transforming modern biomedical research, cheminformatics is poised to 

revolutionize all areas of research in chemical genomics and drug discovery.  
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While cheminformatics 

has been recognized as a 

distinct, impactful scientific 

discipline, there is a painful 

absence of cheminformatics 

tools in the public domain.  

While some advancement 

was stimulated by the NIH 

cheminformatics planning 

grants awarded to six 

research groups nationally in 

2006, the majority of 

attainable cheminformatics 

tools (see Table 2) can 

perform only rudimentary 

functions; even the most 

advanced of the accessible 

tools lack thorough 

validation protocols, are 

poorly integrated with each 

other, or require specialized 

knowledge to apply them.  Therefore, we chose to develop Chembench, a web portal providing 

access to several techniques used within the field of cheminformatics.  

Table 2. Limited cheminformatics resources available online or for 
download (mostly free to academia) 

Repository Website Cheminformatics Capabilities 

RECCR http://reccr.chem.rpi.edu  

Multiple Modeling Methods 

Descriptor Generation (paid) 

PowerMV 
http://nisla05.niss.org/Po

werMV/  

Multiple Modeling Methods 

Descriptor Generation 

Calculation of Drug-like 

Properties 

Cheminfor-

matics.org 

http://www.cheminform

atics.org/  

Similarity Search 

Diversity Estimation 

Molinspira-

tion 

http://molinspiration.co

m/  

Calculation of Drug-like 

Properties 

Prediction of Drug Class 

Indiana 
http://sites.google.com/si

te/davidjwild/home  

Similarity Search/ 

Data Extraction 

PubChem 
http://pubchem.ncbi.nlm

.nih.gov/  

Heatmap Generation  

Similarity Search/Clustering 

ChemSpider 
http://www.chemspider.

com/  

Prediction  of Properties 

(ACD/Labs) Similarity Search 

VCCLab http://www.vcclab.org/  

Prediction of a Property 

Descriptor Calculation 

Multiple Modeling Methods 

Laboratoire 

d'Infochimie 

http://infochim.u-

strasbg.fr/recherche/Do

wnload/Download.php  

Fragment Generation 

MLR modeling 

Prediction of Biological Activity 

SEA http://sea.bkslab.org/  Prediction of Biological Activity 

Mold2 

http://www.fda.gov/Scie

nceResearch/Bioinforma

ticsTools/Mold2/default.

htm  

Descriptor Generation 

Chemistry 

Developmen

t Kit (CDK) 

http://sourceforge.net/ap

ps/mediawiki/cdk/index.

php?title=Main_Page  

Descriptor Generation 

Multiple Modeling Methods 

QSAR appli- 

cation 

Toolbox 

http://www.oecd.org/doc

ument/23/0,3343,en_264

9_34379_33957015_1_1

_1_1,00.html  

Prediction of Biological Activity 

Similarity Search 

Data-Gap Filling 

Chemaxon 
http://www.chemaxon.c

om/free-software/  

Calculation of Drug-like 

Properties 

Similarity Searching (Free) 

Clustering (paid) 

Pipeline 

Pilot 

Student 

http://accelrys.com/solut

ions/industry/academic/s

tudent-edition.html  

Calculation of Drug-like 

Properties 

Clustering 

Fingerprint Generation 

Multiple Modeling Methods 
 

http://reccr.chem.rpi.edu/
http://nisla05.niss.org/PowerMV/
http://nisla05.niss.org/PowerMV/
http://www.cheminformatics.org/
http://www.cheminformatics.org/
http://molinspiration.com/
http://molinspiration.com/
http://sites.google.com/site/davidjwild/home
http://sites.google.com/site/davidjwild/home
http://pubchem.ncbi.nlm.nih.gov/
http://pubchem.ncbi.nlm.nih.gov/
http://www.chemspider.com/
http://www.chemspider.com/
http://www.vcclab.org/
http://infochim.u-strasbg.fr/recherche/Download/Download.php
http://infochim.u-strasbg.fr/recherche/Download/Download.php
http://infochim.u-strasbg.fr/recherche/Download/Download.php
http://sea.bkslab.org/
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm
http://sourceforge.net/apps/mediawiki/cdk/index.php?title=Main_Page
http://sourceforge.net/apps/mediawiki/cdk/index.php?title=Main_Page
http://sourceforge.net/apps/mediawiki/cdk/index.php?title=Main_Page
http://www.oecd.org/document/23/0,3343,en_2649_34379_33957015_1_1_1_1,00.html
http://www.oecd.org/document/23/0,3343,en_2649_34379_33957015_1_1_1_1,00.html
http://www.oecd.org/document/23/0,3343,en_2649_34379_33957015_1_1_1_1,00.html
http://www.oecd.org/document/23/0,3343,en_2649_34379_33957015_1_1_1_1,00.html
http://www.chemaxon.com/free-software/
http://www.chemaxon.com/free-software/
http://accelrys.com/solutions/industry/academic/student-edition.html
http://accelrys.com/solutions/industry/academic/student-edition.html
http://accelrys.com/solutions/industry/academic/student-edition.html
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5.2. Materials and Methods 

5.2.1. Chembench Architecture 

The Chembench 

system is quite 

complicated.  Figure 48 

contains a simplified 

representation of the 

Chembench system 

detailing general 

structure and 

component interaction.  

A brief summary 

follows.  

The front end is comprised primarily of JavaServer Pages (JSPs) with the occasional 

inclusion of an embedded java applet.  Information displayed by the JSPs typically is provided 

via session variables set by the stateful java classes.    User-provided input is processed via 

servlets and passed to stateful java classes when an action within the JSP is executed. 

Stateful java classes hold all the data with which a user interacts.  The majority of logic 

within Chembench is carried out within this part of the system.  Contained within is the job 

queuing system. 

Accessory classes manage the mundane tasks of the Chembench system.  The classes control 

all global constant definition, I/O operations, and error logging.  

 
Figure 48. Overview of Chembench architecture. 
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Workflows are a set of java functions that interface between the Chembench system and 

external programs.    Several external programs are needed to properly carry out 

cheminformatics analysis.  The workflows portion of code also contains standalone functions 

that carry out necessary functions of cheminformatics analysis that are not handled by external 

programs such as data format transformation. 

External programs perform the primary actions of cheminformatics analysis of data. Many of 

these programs are commercial and provided through the generous support of software 

contributors.  External software generates chemical images, calculates descriptors, splits datasets, 

and develops models.   

Information about the users, datasets, models, predictors, predictions, and tasks are all stored 

within a MySQL database.  Stateful java classes access this database is accessed through 

Hibernate.   

5.2.2. Integrated Methods 

A large number of external programs have been integrated into the Chembench system.  This 

allows users to perform a series of cheminformatics analyses.  The general workflow of data 

analysis implemented within the system can be seen in Figure 49 taken from Tropsha‘s recent 

review of QSAR best practices. 
84

   

The key steps of the QSAR modeling process are outlined in Figure 49.  In Chembench, we 

have integrated software to standardize structures, split datasets, calculate descriptors, perform y-

randomization, build models, and enforce applicability domains.  Generally, these tasks are 

implemented in a modular manner, allowing users to mix and match techniques in each category 

with members of other categories.  As such, Chembench users can undertake a large number of 
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varying QSAR analyses, and variables in the process can be analyzed individually for their effect 

on modeling accuracy. Below is described in more detail the techniques that have been 

integrated into the system. 

5.2.2.1. Structure Curation 

The importance of structure curation and harmonization has been recently documented
122

.  

The accuracy of chemical structure representation may have a profound effect on the outcome of 

cheminformatics studies.  Therefore, we have devised a standardized chemical data curation 

strategy that should be followed at the onset of any molecular modeling investigation.    Figure 

50 illustrates major steps of this strategy enabled by several publicly available and free-for–

academic-use tools. The simple, but important, steps for cleaning chemical records in a database 

include the removal of a fraction of the data that cannot be appropriately handled by 

 

 
Figure 49. Flow of data in QSAR analysis as implemented in Chembench (taken from Tropsha

45
) 



 

97 

 

 

Figure 50. General dataset curation workflow. 

conventional 

cheminformatics techniques, 

e.g., inorganic and 

organometallic compounds, 

counterions, salts and 

mixtures; structure validation; 

ring aromatization; 

normalization of specific 

chemotypes; curation of 

tautomeric forms; and the deletion of duplicates.  It is also critical to visualize and manually 

inspect at least a fraction of chemical data that go into model development.   

The current version of Chembench does not have a fully integrated data curation procedure; 

however, portions have been integrated.  The Standardizer component from ChemAxon‘s 

Suite
123

 of cheminformatics products is used to perform normalization of chemical structures 

upon user request.  Structures can then be manually inspected once a dataset is uploaded. 

5.2.2.2. Data Splitting and Validation 

As detailed in the dataflow overview in Figure 49, the Chembench website relies on the three 

way split of datasets into training, test, and external sets.  Training sets are used for model 

generation.  Test sets are used for model analysis and selection.  External sets are used to 

validate the predictive power of the ensemble models.   

Currently, there are two methods of dataset splitting available in Chembench.  The most 

intuitive is the random split technique that randomly divides the dataset into two subsets whose 
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proportions are determined by the user.  This random split technique can be tempered by use of 

activity binning to ensure that both subsets have similar activity profiles.   

The second technique is that of Sphere Exclusion
83

 originated in our lab.  This algorithm 

considers each compound as a point in the multidimensional descriptor space. The procedure 

starts with the calculation of the distance matrix D between representative points in the 

descriptor space.  Let Dmin and Dmax be the minimum and maximum elements of D, respectively.  

N sphere radii are defined by the following formulas,  Rmin=R1=Dmin, Rmax=RN=Dmax/4, Ri=R1+(i-

1)*(RN-R1)/(N-1), where i=2,…,N-1.  Each sphere radius corresponds to one division of the set 

in training and test set.  A sphere-exclusion algorithm consists of the following steps.   

1. Select randomly a compound.    

2. Include it in the training set.   

3. Construct a sphere around this compound.   

4. Select compounds from this sphere and include them alternatively into test and 

training sets.   

5. Exclude all compounds from within this sphere for further consideration.   

6. If no more compounds left, stop.  Otherwise let m be the number of spheres 

constructed and n be the number of remaining compounds. Let dij (i=1,…,m; 

j=1,…,n) be the distances between the remaining compounds and sphere centers. 

Select a compound corresponding to a user defined rule. 

To properly assess the robustness of generated models, models are also always generated for 

y-randomized data.  Statistics of y-randomized models can then be directly compared to those 

generated on the true data and the significance of generated models can be determined. 
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5.2.2.3. Descriptor Generation 

The generation of Combi-QSAR models requires the calculation of multiple descriptor 

types in addition to multiple modeling methods.  Chembench provides the methods of descriptor 

generation detailed below.  After generation, the descriptors can be normalized either by range-

scaling (so that their values are distributed within the interval 0-1) or auto-scaling (subtraction of 

the mean and then division by the standard deviation).  Additionally highly correlated descriptors 

can be removed. 

DRAGON Descriptors. The DragonX software
124

 is used to calculate all 2D Dragon 

descriptors. These included topological descriptors, constitutional descriptors, walk and path 

counts, connectivity indices, information indices, 2D autocorrelations, edge adjacency indices, 

Burden eigenvalues, topological charge indices, eigenvalue-based indices, functional group 

counts, atom-centered fragments and molecular properties. DragonX can calculate descriptors for 

either hydrogen depleted or hydrogen containing representations of a compound. 

MolconnZ Descriptors. The MolconnZ software
125

 available from EduSoft affords the 

computation of a wide range of topological indices of molecular structure. These indices include, 

but are not limited to, the following descriptors: valence, path, cluster, path/cluster and chain 

molecular connectivity indices
126-128

, kappa molecular shape indices
129, 130

, topological
131

 and 

electrotopological state indices
132-135

, differential connectivity indices
126, 136

, graph‘s radius and 

diameter
137

, Wiener
138

 and Platt
139

 indices, Shannon 
140

 and Bonchev-Trinajstić
141

 information 

indices, counts of different vertices, counts of paths and edges between different types of vertices 

(http://www.edusoft-lc.com/molconn/manuals/400).  
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MOE2D Descriptors. MOE software
142

 is used to generate MOE2D descriptors. These 

included physical properties, subdivided surface areas, atom and bond counts, Kier and Hall 

connectivity
126-128

 and kappa shape indices
130, 143

, adjacency and distance matrix descriptors
138, 

144-146
, pharmacophore feature descriptors, and partial charge descriptors

147
.  

MACCS keys.  MOE software
148

 is used to generate MACCS keys.  MACCS keys consist of 

a set of 166 chemical rules commonly associated with biological activity.  This fingerprint was 

first developed by MDL.   

5.2.2.4. Model Development 

Three methods of model generation are currently available in Chembench.  Of these three 

techniques, one has been fully developed and its effectiveness has been validated in our lab.  

Two of these techniques are modifications upon techniques developed elsewhere and modified to 

enable integration into the Chembench system. 

Variable Selected kNN.  The first method implemented in Chembench was the variable 

selected kNN procedure first introduced in the field of cheminformatics in 2000 .
149

  This method 

has been applied in many situations to develop predictive models. 

The first version of kNN implemented in the system employed the leave-one-out (LOO) 

cross-validation (CV) procedure and a simulated-annealing algorithm
150, 151

 to optimize variable 

selection. The procedure starts with the random selection of a predefined number of descriptors 

from all descriptors. If the number of nearest neighbors k is higher than one, the estimated 

activities ŷi of compounds excluded by the LOO procedure are calculated using the following 

formula: 
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where yj is the activity of the j-th compound. Weights wij are defined as: 
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and dij is Euclidean distances between compound i and its j-th nearest neighbor. However, if 

the number of nearest neighbors k is equal to one, then the estimated activity ŷi of the compound 

will be equal to the activity of this one nearest neighbor. 

For classification kNN, the predicted iŷ  values (see Equation 7) are rounded to the closest 

whole numbers (which are, in fact, the class numbers), and the prediction accuracy (correct 

classification rate, CCRtrain) is calculated as follows: 

total

corr

total

corr

N

N

N

N
CCR

2

2

1

15.0      (9) 

where 
corr

jN and 
total

jN are the number of correctly classified and total number of compounds 

of class j (j=1, 2). Then, a predefined small number of descriptors are randomly replaced by 

other descriptors from the original pool, and the new value of CCRtrain is obtained. If CCRtrain 

(new) > CCRtrain (old), the new set of descriptors is accepted. If CCRtrain (new) ≤ CCRtrain (old), 

the new set of descriptors is accepted with probability p = exp (CCR (new) - CCR (old))/T, or 

rejected with probability (1-p), where T is a simulated annealing (SA) ―temperature‖ parameter. 
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During this process, T is decreasing until a predefined threshold. Thus, the optimal (highest) 

CCRtrain is achieved. For the prediction, the final set of selected descriptors is used, and Equation 

7 and 8 are applied to predict activities of compounds of the test sets. Then the activities are 

rounded to the closest whole numbers, and the correct classification rate for the test set is 

calculated using Equation 9. 

For continuous kNN, this procedure is maintained, but the optimization function is changed 

from CCR to q
2
.  q

2
 is calculated according to Equation 10.   

     (10) 

In addition to the simulated annealing procedure for variable selected, we have recently 

added the genetic algorithm (GA)
152

 method of optimization.  Rather than starting with a single 

randomly selected set of descriptors, the genetic algorithm is initiated with a population of 

different randomly selected descriptors.  Similar to SA, the fitness of member of the population 

is calculated using Equation 9 or 10 for classification or continuous modeling respectively based 

on predicted values determined using a LOO-CV procedure and Equations 7 and 8.  A second 

generation of the population is spawned through breeding (crossover) of parents selected based 

on their fitness.  Generation will continue to be spawned until a predefined number of 

generations have been created or none of the members of the population have become more fit in 

a set number of generations.   

Support Vector Machine. A common learning technique applied in the field of data 

classification is that of Support Vector Machines (SVM).  SVM was developed by Vapnik
153

 as a 

general data modeling methodology where both the training set error and the model complexity 

are incorporated into a special loss function that is minimized during model development.  SVM 
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has been extended to afford the development of SVM regression models for datasets with 

continuous activities.  It has been used in several QSAR applications.
154, 155

 

To provide access to SVM learning, we have integrated the LIBSVM package
156

 in 

Chembench.  LIBSVM provides several SVM variants including traditional SVM (C-SVC), 

Regression SVM (epsilon-SVR), and nu-SVM implementation for both classification and 

regression.  LIBSVM also provides several kernels for transformation of the descriptor space.  

Our own grid modeling technique was implemented on top of LIBSVM to generate ensembles of 

SVM models. 

Random Forest.  Random forest is a technique developed by Breiman
157

 that builds series of 

decision trees based on a dataset and then uses them as an ensemble predictor.  Typically, the 

optimal decision tree is generated for a randomly selected subset of a dataset and a randomly 

select subset of descriptors.  This typical implementation of random forests is unfortunately not 

modular as it requires a specific implementation of dataset splitting.  Therefore, a variant of 

random forests with alterations to internal training and test set selection was done to maintain the 

modular nature of modeling within Chembench so splitting techniques can be altered without 

variation of learning methods.   

The modified random forest procedure in Chembench is quite similar to the traditional 

application of random forest but varies in the way that modeling set selection is done.  Rather 

than a new training set being selected for each new tree grown, a manageable number of internal 

training sets are defined and then multiple trees (a grove) grown for each of these sets.  

Additionally, these sets are selected without replacement.  The generation of groves is done 

using the randomForest package for R available from http://stat-

http://stat-www.berkeley.edu/users/breiman/RandomForests
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www.berkeley.edu/users/breiman/RandomForests. The original implementation of random 

forests can be mimicked by performing a large number of data splits and generating only a single 

tree for each split. 

5.3. Results and Discussion 

The Chembench web portal was officially released to the public in April of 2010 at 

http://chembench.mml.unc.edu.  Users upon entering the site can choose to either register or to 

use the system as a guest.  Guest users have all the capabilities of registered users, but their data 

objects are subject to periodic deletion and their data is accessible by any other guest user.   

The capabilities of the website consist of functions organized around 3 key components of 

the QSAR workflow: Datasets, Modeling, and Prediction.  These three components become the 

objects generated within the portal upon use of three tabs containing forms controlling their 

generation.  An additional tab (My Bench) allows management and further analysis of these 

three types of objects.  

5.3.1. Datasets 

Datasets are generally the entrance point for users to a cheminformatics analysis.  A dataset 

is required for a user to develop a model or make predictions (though the inclusion of public 

datasets and models allows Chembench users to bypass this step).   

5.3.1.1. Dataset Creation 

The Chembench interface for dataset uploading allows many options for users inputting their 

data.  The primary option is the type of dataset a user would like to upload.  Users can choose to 

upload modeling and prediction sets either with or without pre-calculated descriptors.  Modeling 

sets require the inclusion of an activity value for each compound, allowing the generation of 

http://chembench.mml.unc.edu/
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models.  Users are required to designate whether activity values are continuous or categorical in 

nature. Prediction sets can consist of purely structural data meant to be annotated by previously 

generated predictors.  The inclusion of pre-calculated descriptors allows users to compare their 

own descriptor generation packages to those integrated in the Chembench framework.  If for 

confidentiality reason, a user wishes to use the site without uploading chemical structures, they 

can upload a set with no structure file, but pre-calculated descriptors.  However, this precludes 

the use of the integrated descriptor generation techniques and the use of the system for 

commercial calculations is prohibited.  Upload format standards are defined in the help 

documentation. 

 When uploading the dataset, users are expected to define an external set.  This external 

set will be extracted from the uploaded set by random selection.  For users that have already 

defined an external set outside the Chembench site, input of a list of identifiers is provided to 

ensure comparability of Chembench results to those of nonintegrated methods. 

 Once a dataset is named and the form is submitted, a series of data checks are done to 

ensure that formatting of the uploaded data files is correct.  Additionally, identifiers are checked 

for uniqueness and are matched across all uploaded files to verify their capability to be used as a 

key.  Once data compatibility with the Chembench system has been validated, the dataset is 

created; the external set is defined; descriptors are calculated; and 2D chemical images are 

generated. 
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5.3.1.2. Dataset Inspection 

Once a dataset has been created in Chembench, it can be accessed via the My Bench page.  

Also, it will be populated in lists of datasets on the Modeling and Prediction pages where 

relevant.   

Selection of a dataset on the My Bench page will allow user to inspect several aspects of 

their dataset.  All compounds are contained in a table so users can manually ascertain the 

correctness of interpretation of their upload structures.  The selected external set can be viewed.  

A histogram of the activity values uploaded for the dataset is provided.  A heatmap of 

Mahalanobis distance or Tanimoto similarity between compounds in MACCS key space is 

available.  Finally, any warnings or errors in descriptor generation are provided to the user for 

consideration prior to modeling. 

5.3.2. Modeling 

The modeling step is considered the primary contribution of Chembench to the public.  

Modeling is complex and option rich.  It depends on the consistency and accuracy of the 

uploaded dataset and is required for identification of compounds of interest from chemical 

library.  To better distinguish the difference between individual models generated and the 

ensemble models (i.e. the consensus of individual models), with in Chembench the latter is 

referred to as a ―predictor‖. 

5.3.2.1. Model Generation   

The initiation of model generation depends on the selection of a dataset.  Modeling datasets 

are segregated into two groups, continuous sets and category sets, because the applicability of 

modeling techniques and parameters of the modeling techniques are dependent on that 
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designation.  All datasets available for modeling are provided in a drop-down list for selection 

with user uploaded datasets being listed first.   

Once a user has selected a dataset, they can choose the descriptor type that they would like to 

use for model generation.   Descriptor types for which at least one compound in the dataset could 

not be generated are grayed out and not selectable.  If a user desires to apply a grayed out 

descriptor type, they must address the issues identified in the ―Descriptor Warnings‖ section 

when they view that dataset.  The descriptors selected for model development can be additionally 

processed by eliminating highly correlated descriptors and by normalizing descriptors using 

either range-scaling or autoscaling. 

The internal splitting of the dataset can be accomplished using either random splitting or 

sphere exclusion.  Both methods allow the user to specify the number of splits to generate and 

the approximate size of the test sets.  Additional parameters of the sphere exclusion method are 

made available to users on its tab. 

The modeling method section of the page allows users to select from the currently supported 

methods of model generation.  Each method has its own tab which when selected provides access 

to the many parameters necessary to control the model development algorithm.  Default values 

for all these parameters are provided based on the modeling experience of the site developers and 

parameter limitations are enforced to prevent improper parameter inputs.   

5.3.2.2. Predictor Review 

Once a predictor name is defined and the job is submitted, it will be sent to the queue and 

modeled will be completed either locally or on the emerald computing cluster depending on the 

modeling type.  Job progress can be tracked on the My Bench page.  Upon job completion, it can 
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be accessed through the My Bench page and users will be notified via email (if requested on 

submission).  It will also be made available to that user as a predictor on the Prediction page. 

Accessing a predictor from My Bench allows users to see several aspects of the modeling 

results.  Of most interest is the prediction accuracy of the predictor on the external set.  A table is 

provided containing the predicted value, actual value, residual, and number of models applicable 

for each compound of the external set.  A summary of this information is contained either in a 

confusion matrix for categorical modeling or a plot of predicted vs. actual values for continuous 

modeling.  The correct statistic (either CCR or R
2
) is calculated to provide a quantitative 

assessment of the predictor‘s accuracy.  In addition to external results, internal modeling 

information is recorded in the models or trees tab.  Herein, the statistics of the individual models 

that compose the ensemble are provided.  Also, the results of model generation using Y-

randomized activities are provided so the user can validate that the models generated using the 

correct data are significantly better than those using y-randomized activities.  Finally, the model 

generation parameters are displayed to remind the user of the protocol applied.  

5.3.3. Prediction 

While modeling is the expertise of the authors of the Chembench web portal, the most 

publicly beneficial portion of the site may be the Prediction tab.  Here, users can quickly and 

easily identify compounds that are expected to have properties of interest.   

Prediction is a two-step process.  First a user must select the predictors they would like to 

use.  These predictors are separated into private (the predictors that user has generated) and 

public (the predictors provided by the authors).  Public predictors are categorized by the type of 

activity (specific target interaction, toxicity, or ADME related properties) that they predict. 
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Multiple predictors can be selected for a single prediction allowing users the ability to see a 

spectrum of predicted activities if they desire.  Once a user has selected the predictor(s) that they 

wish to apply, they then are given the opportunity to predict either a previously uploaded dataset 

or a single compound defined by a SMILES string or drawn in MarvinSketch applet. All 

prediction jobs are submitted to the queue and can be accessed on completion from the My 

Bench page.  Prediction results are paginated and can be sorted on any of the predicted values.   

5.3.4. Additional Features 

The Chembench web portal has several components and aspects that are vital for its function 

but not directly related to cheminformatics analysis of data.   

One of the most important aspects of the website is that it is user specific.  User sessions are 

created upon login.  All objects within Chembench are linked to a user.  This allows the website 

to protect the private data of individual users.  It also enables the customization of interfaces for 

users depending on their level of expertise.  Several parameters available for tuning of model 

building are only of interest to experts in the field of cheminformatics.  Display of these 

parameters can be turned on and off under a user‘s profile.  The amount of public data a user 

wishes to access can also be modified.  Also, the definition of users allows the ability to provide 

special access to data for some.  In particular, the ability to download descriptors can be enabled 

for users with the appropriate software licenses.  The user system also provides interface for 

administrative actions within Chembench.  Users defined as administrators can view and control 

many aspects of the system including canceling of other user‘s jobs.  However, the most 

important aspect of the user oriented aspect of Chembench is that it allows users to submit jobs 

and easily retrieve them at a later time. 
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The queue component of the system enables the efficient use of computational power.  

Chembench is hosted on an 8 processor system managed by ITS research computing at UNC.  It 

is linked to the Emerald computing cluster, which has more than 800 processors.  While the 

available computing power is large, shorter jobs are much more efficiently handled by the local 

system whereas larger jobs typically are better treated on the cluster.  As such, the queue in 

Chembench has been designed to handle different types of jobs in different ways.  It has also 

been structured to allow the easy addition of other computational resources. The design of the 

queue provides users with fast and efficient generation of their models and prevents jobs from 

overrunning the host server and causing portal usability issues.   

The most important piece of the Chembench portal is that it has developed a user base.  

There are now over 200 registered users of the Chembench site and frequently multiple users are 

logged on at once.  In total the site has run over 9000 jobs and provided nearly 11.5 years of 

compute time to the public. 

5.3.5. Public Datasets and Models 

Chembench was originally intended as a way to provide access to the results of work within 

the Tropsha lab to the public.  As such, the site is populated with many datasets generated or 

used within our lab as well as several validated and published predictors.  Table 3 and Table 4 

list the datasets and predictors currently available via Chembench.   

The lack of availability of the datasets and predictors generated as part of the development of 

a benchmark for virtual screening detailed in Chapter 3 is an omission caused by the fact that we 

are in the process of upgrading the site to handle datasets with multifold external sets.  As such, 

these datasets and predictors will be available shortly.  Also, the addition of the random forest 
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and SVM modeling algorithms to the site has been recent.  Several predictors reliant on these 

methods are currently waiting reformatting for input into the Chembench framework. 

5.4. Conclusions and Future Directions 

We have completed the following key steps in the generation of web portal to allow the 

application of cheminformatics techniques by worldwide users.   

1. Integration of cheminformatics software for structure standardization, descriptor 

generation, model development, and prediction (Sections 5.3.1-5.3.3) 

2. Development of a queuing system to manage cluster and local job (Section 5.3.4) 

3. Creation of an easy-to-use interface allowing experts and non-experts in 

cheminformatics access to needed tools (Section 5.3.4) 

4. Publication through the portal of more than 50 datasets and 7 validated predictors 

(Section 5.3.5) 

Table 3. Selected datasets made available through Chembench 

Dataset Name 
Number of 

Compounds 
Reference Description 

HDAC_59 59 

J Chem Inf Model. 

2009 Feb;49(2):461-

76. 

A set of 59 hdac inhibitors used to generate models as 

discussed in the above referenced article. 

Ames_Mutagenicity 6542 Pending 
A set of 6452 compounds with a binary assessment of 

the mutagenic liability. 

T.Pyriformis_Mod 983 
http://dx.doi.org/10.1

021/ci700443v 

The set of 983 compound with measured values of 

toxicity against T.Pyriformis used for modeling in the 

above reference. 

T.Pyriformis_Ext2 110 
http://dx.doi.org/10.1

021/ci700443v 

The set of 110 compounds with measured values of 

toxicity against T.Pyriformis used as a second validation 

set in the above reference. 

Drugbank 4494 
http://www.drugbank

.ca 

A set of 4494 compounds retrived from Drugbank after 

standardization, cleaning, and de-duplication. 

P-Glycoprotein 195 
http://dx.doi.org/10.1

021/ci0504317 

A set of 195 substrate/non-substrates for P-Glycoprotein 

used as a modeling set in the linked reference. 
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This site provides access to methods commonly used in the field of cheminformatics through 

a simple user interface that can be tailored to allow more advanced usage.  Additionally, the site 

contains several predictors of biological properties that could be used by non-experts in the field 

of cheminformatics to assess compounds of interest prior to synthesis or experimental testing.    

Table 4. Predictors made available through Chembench 

Predictor Name 
Modeling 

Method 

Descriptor 

Type 
Predictor Class Description 

48_ 

ANTICONV 
KNN 

MOLCONN

Z 
DrugDiscovery 

This predictor is a regeneration of the SA-kNN models 

developed by M Shen; et al in 

http://dx.doi.org/10.1021/jm030584q.  These models 

built using 48 Functionalized Amino Acids (FAAs) 

predict the log(ED50 Âµmol/kg) of chemicals in the 

mice Maximal Electroshock Seizure (MES) test. 

T.Pyriformis KNN 
MOLCONN

Z 
Toxicity 

This predictor contains the kNN-MolconnZ models 

generated by H Zhu; et al in 

http://dx.doi.org/10.1021/ci700443v.  These models 

built using 983 compounds (644 training/339 external 

test) predict aquatic toxicity (pIGC50) against 

Tetrahymena Pyriformis. 

P-Glycoprotein 

_DragonkNN 
KNN DRAGONH ADME 

This predictor is the regeneration of models developed 

by P de Cerqueira Lima; et al in 

http://dx.doi.org/10.1021/ci0504317 using DRAGON 

descriptors with SA-kNN .  These binary models built 

using 195 compounds predict whether a compound will 

be a substrate for P-Glycoprotein (1) or will be a non-

substrate (0).  

Blood_Brain_Bar

rier_MZkNN 
KNN 

MOLCONN

Z 
ADME 

This predictor contains the  kNN-MolconnZ models 

generated by L Zhang; et al in 

http://dx.doi.org/10.1007/s11095-008-9609-0.  These 

models built using 159 compounds (144 training/15 

external test) predict the log(BB) in rats. . 

Anti-

Malarial_Dragon

kNN 

KNN DRAGONH DrugDiscovery 

This predictor is a collection of models generated in the 

Tropsha lab on a set of 3133 compounds screened for 

their antimalarial activities in St. Jude Children's 

Research Hospital. These binary models predict 

whether a compound will inhibit growth of the P. 

falciparum 3D7 strain (1) or not (0). 

5HT2B_Binder_

DragonkNN 
KNN DRAGONH Toxicity 

This predictor contains models generated using Dragon 

and kNN by R Hajjo; etal in 

http://dx.doi.org/10.1021/jm100600y.  These models 

built and validated using 304 compounds with 

binder/non-binder classification defined based on 

functional assays. 

RAT-ACUTE-

LD50_DragonkN

N 

KNN DRAGONH Toxicity 

This predictor contains models generated using Dragon 

and kNN by H Zhu; etal in 

http://dx.doi.org/10.1021/tx900189p.  These models 

built and validated using 3472 compounds predict 

Acute Toxicity (pLD50(mol/kg)) in Rats. 
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The creation of Chembench was completed in a multidisciplinary team headed by Dr. Diane 

Pozefsky.  The writing of the software was primarily completed by hiring of developers with a 

computer science background.  As the scientific lead on the team my primary contribution was in 

communication of the workflows used by cheminformaticians, training developers in 

cheminformatics software, and definition of user interface requirements.  In addition, I wrote the 

original version of the underlying MySQL database and was tasked with collection of public 

datasets and predictors.    

Development of the site is an ongoing project.  There are additional methods and techniques 

to be added to the site, in particular the integration of molecular descriptors that are not bound by 

license.  While we are grateful to software contributors for providing their tools for descriptor 

use within the site, allowing users to download descriptors would increase the usefulness of the 

web portal within the cheminformatics community. 

The integration of the website with repositories for biological data is undergoing 

development.  Creation of web service protocols allowing efficient transfer of data between 

ChemSpider and Chembench has been completed, but integration of the protocols into the user 

interface is still ongoing.  Completion of integration with ChemSpider will provide a proof of 

concept to aid the integration of Chembench with PubChem and other public databasing efforts.   
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Appendix I: Amino Acid to Feature Transformations 

Contained in this appendix is a table of the transformations used to generate features from 

amino acids.  For each amino acid fragment, the atoms selected as part of the binding pocket 

were transformed to features.  Seeing as some features contain more than one atom from an 

amino acid, as long as a portion of the atoms of that feature were contained in the defined pocket, 

the feature was included.  The location of the feature was calculated as the average of the atomic 

coordinates of atoms defined as being a part of the binding pocket which comprise that feature. 

Feature 

ID 
Residue 

Pharmacophore 

Feature 
Atom 1 Atom 2 Atom 3 Atom 4 Atom 5 Atom 6 

1 GLU - CD OE1 OE2 
   

2 ALA A OXT 
     

3 ALA H CB 
     

4 ALA D N 
     

5 ALA A O 
     

6 ARG A OXT 
     

7 ASN A OXT 
     

8 ARG H CB CG 
    

9 ASP A OXT 
     

10 CYS A OXT 
     

11 ARG + CZ NE NH1 NH2 
  

12 ARG D N 
     

13 ARG D NE 
     

14 ARG D NH1 
     

15 ARG D NH2 
     

16 ARG A O 
     

17 GLN A OXT 
     

18 HIS A OXT 
     

19 ASN H CB 
     

20 LYS A OXT 
     

21 ASN D N 
     

22 ASN A ND2 
     

23 ASN A O 
     

24 ASN A OD1 
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Feature 

ID 
Residue 

Pharmacophore 

Feature 
Atom 1 Atom 2 Atom 3 Atom 4 Atom 5 Atom 6 

25 MET A OXT 
     

26 PRO A OXT 
     

27 ASP H CB 
     

28 ASP - CG OD1 OD2 
   

29 ASP D N 
     

30 ASP A O 
     

31 ASP A OD1 
     

32 ASP A OD2 
     

33 SER A OXT 
     

34 TRP A OXT 
     

35 CYS H CB 
     

36 CYS D N 
     

37 CYS A O 
     

38 CYS A SG 
     

39 TYR A OXT 
     

40 ALA - C O OXT 
   

41 GLN H CB CG 
    

42 ARG - C O OXT 
   

43 ASN - C O OXT 
   

44 GLN D N 
     

45 GLN A NE2 
     

46 GLN A O 
     

47 GLN A OE1 
     

48 ASP - C O OXT 
   

49 CYS - C O OXT 
   

50 GLU H CB CG 
    

51 GLN - C O OXT 
   

52 GLU - C O OXT 
   

53 GLU D N 
     

54 GLU A O 
     

55 GLU A OE1 
     

56 GLU A OE2 
     

57 GLU A OXT 
     

58 GLY - C O OXT 
   

59 HIS - C O OXT 
   

60 GLY D N 
     

61 GLY A O 
     

62 GLY A OXT 
     

63 ILE - C O OXT 
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Feature 

ID 
Residue 

Pharmacophore 

Feature 
Atom 1 Atom 2 Atom 3 Atom 4 Atom 5 Atom 6 

64 LEU - C O OXT 
   

65 HIS H CB 
     

66 LYS - C O OXT 
   

67 MET - C O OXT 
   

68 HIS R CG CD2 NE2 CE1 ND1 
 

69 HIS D N 
     

70 HIS + ND1 
     

71 HIS + NE2 
     

72 HIS A O 
     

73 PHE - C O OXT 
   

74 PRO - C O OXT 
   

75 ILE H CB CG1 CD1 CG2 
  

76 SER - C O OXT 
   

77 THR - C O OXT 
   

78 TRP - C O OXT 
   

79 ILE D N 
     

80 ILE A O 
     

81 ILE A OXT 
     

82 TYR - C O OXT 
   

83 VAL - C O OXT 
   

84 LEU H CB CG CD1 CD2 
  

85 ASN D ND2 
     

86 ASN D OD1 
     

87 CYS D SG 
     

88 LEU D N 
     

89 LEU A O 
     

90 LEU A OXT 
     

91 GLN D NE2 
     

92 GLN D OE1 
     

93 LYS H CB CG CD 
   

94 HIS D ND1 
     

95 HIS D NE2 
     

96 LYS D NZ 
     

97 LYS D N 
     

98 LYS + NZ 
     

99 LYS A O 
     

100 SER D OG 
     

101 THR D OG1 
     

102 MET H CB CG 
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Feature 

ID 
Residue 

Pharmacophore 

Feature 
Atom 1 Atom 2 Atom 3 Atom 4 Atom 5 Atom 6 

103 MET H CE SD 
    

104 TYR D OH 
     

105 MET D N 
     

106 MET A O 
     

107 PHE H CB 
     

108 PHE H CG CD1 CE1 CZ CDE2 CD2 

109 PHE R CG CD1 CE1 CZ CE2 CD2 

110 PHE D N 
     

111 PHE A O 
     

112 PHE A OXT 
     

113 PRO H CB CG 
    

114 PRO A O 
     

115 SER D N 
     

116 SER A O 
     

117 SER A OG 
     

118 THR H CG2 
     

119 THR D N 
     

120 THR A O 
     

121 THR A OG1 
     

122 THR A OXT 
     

123 TRP H CB CG 
    

124 TRP R CG CD1 NE1 CE2 CD2 
 

125 TRP R CD2 CE2 CZ2 CH2 CZ3 CE3 

126 TRP H CD2 CE2 CZ2 CH2 CZ3 CE3 

127 TRP D N 
     

128 TRP D NE1 
     

129 TRP A O 
     

130 TYR H CB 
     

131 TYR R CG CD1 CE1 CE2 CD2 CZ 

132 TYR H CG CD1 CE1 CE2 CD2 
 

133 TYR D N 
     

134 TYR A O 
     

135 TYR A OH 
     

136 VAL H CB CG1 CG2 
   

137 VAL D N 
     

138 VAL A O 
     

139 VAL A OXT 
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Appendix II: Selected Clusters from the PDBBind Core 

Set 

Contained in this appendix is the list of PDBBind cluseters defined as containing a single 

protein using the criteria described in Section 2.3.5.  These proteins formed the dataset for a 

more accurate test of CoLiBRI‘s virtual screening capabilities. 

CLUSTER_ID PDB_ID NAME 

1 
1ps3 
3d4z 

2f7o 

ALPHA-MANNOSIDASE II 

2 

1amw 

1bgq 

2iwx 

HEAT SHOCK PROTEIN 90 
HEAT SHOCK PROTEIN 82 

5 

3cj2 

1nhu 
2d3u 

RNA-DEPENDENT RNA POLYMERASE 

7 

1ajp 

1ai5 
1ajq 

PENICILLIN AMIDOHYDROLASE 

8 
1gpk 
1h23 

1e66 

ACETYLCHOLINESTERASE 

9 

2rkm 

1b9j 

1b7h 

OLIGO-PEPTIDE BINDING PROTEIN 

10 

2qv4 

1u33 
1xd1 

ALPHA-AMYLASE 

11 
1uwt 
2ceq 

2cer 

BETA-GALACTOSIDASE 

12 
2qwb 
2qwd 

2qwe 

NEURAMINIDASE 

13 

2j77 

2j78 

2cet 

BETA-GLUCOSIDASE A 

14 

3ccw 

3cdb 

3cd5 

3-HYDROXY-3-METHYLGLUTARYL-COENZYME A 

REDUCTASE 

15 
3bra 
3ckp 

2g94 

BETA-SECRETASE 1 

16 

2qfu 

1x8r 

2pq9 

3-PHOSPHOSHIKIMATE 1-
CARBOXYVINYLTRANSFERASE 

18 

1n2v 

1k4g 

1s39 

QUEUINE TRNA-RIBOSYLTRANSFERASE 
TRNA GUANINE TRANSGLYCOSYLASE 

19 

1kv1 

2bak 
3e93 

MITOGEN-ACTIVATED PROTEIN KINASE P38  

MITOGEN-ACTIVATED PROTEIN KINASE 14 
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CLUSTER_ID PDB_ID NAME 

20 

2hu6 

3f19 
3f17 

MACROPHAGE METALLOELASTASE (MMP-12) 

21 
1ndw 
1ndy 

1ndz 

ADENOSINE DEAMINASE 

22 

1m2q 

1zoe 

2pvk 

CASEIN KINASE II 

24 

2v00 

5er2 

4er2 

ENDOTHIAPEPSIN 

25 

2qbp 

1nl9 
2azr 

PROTEIN-TYROSINE PHOSPHATASE 

PROTEIN-TYROSINE PHOSPHATASE 1B 

26 

2wec 

1bxq 

1bxo 

PENICILLOPEPSIN 

27 

2brb 

2c3j 

1nvq 

SERINE/THREONINE-PROTEIN KINASE CHK1 

28 

4tln 

1tmn 
4tmn 

THERMOLYSIN 

31 
2exm 
1b38 

1pxo 

CELL DIVISION PROTEIN KINASE 2 

33 
1qi0 
1w3k 

1w3l 

ENDOGLUCANASE B 

ENDOGLUCANASE 5A 

34 

1bcu 

1c1v 

1sl3 

THROMBIN 

37 

1jqd 

1jqe 
2aou 

HISTAMINE N-METHYLTRANSFERASE 

38 
1y1z 
1pb8 

1pbq 

N-METHYL-D-ASPARTATE RECEPTOR SUBUNIT 1 

39 

2obf 

1hnn 

2g71 

PHENYLETHANOLAMINE N-
METHYLTRANSFERASE 

41 

1p1q 

1syh 

1ftm 

GLUTAMATE RECEPTOR 2 

43 

1fcx 

1fd0 
1fcz 

RETINOIC ACID RECEPTOR GAMMA-1 

44 
1f4e 
1f4f 

1f4g 

THYMIDYLATE SYNTHASE 

45 

1yc1 

3ekr 

2uwd 

HEAT SHOCK PROTEIN HSP90-ALPHA 

46 

2osf 

2pow 
1if7 

CARBONIC ANHYDRASE II 

47 

2bok 

1mq6 
1nfy 

COAGULATION FACTOR X 

COAGULATION FACTOR XA 

48 
2usn 
2d1o 

1hfs 

STROMELYSIN-1 
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CLUSTER_ID PDB_ID NAME 

49 

2flr 

2b7d 
2bz6 

COAGULATION FACTOR VII 

COAGULATION FACTOR VIIA 

50 
1loq 
1lol 

1x1z 

OROTIDINE 5'-MONOPHOSPHATE 

DECARBOXYLASE 

52 

1uto 

1g3e 

1o3f 

TRYPSINOGEN 
TRYPSIN BETA 

53 

1jys 

1nc1 

1y6q 

MTA/SAH NUCLEOSIDASE 

54 

1bma 

1ela 
1elb 

ELASTASE 

55 

1pr5 

1a69 

1k9s 

PURINE NUCLEOSIDE PHOSPHORYLASE 

56 

3pce 

3pcn 

3pcj 

PROTOCATECHUATE 3 

57 

2pgz 

3c84 
2bys 

ACETYLCHOLINE-BINDING PROTEIN 

61 
6std 
2std 

3std 

SCYTALONE DEHYDRATASE 

62 
1jaq 
1zs0 

1zvx 

NEUTROPHIL COLLAGENASE (MMP-8) 

64 

2g8r 

1o0h 

1u1b 

RIBONUCLEASE PANCREATIC 

65 

1sv3 

1jq8 
2arm 

PHOSPHOLIPASE A2 

68 
1d7j 
1fki 

1fkb 

FK506 BINDING PROTEIN (FKBP) 
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Appendix III: Venn Diagrams of Pocket Overlap 

Contained in this appendix is the compendium of venn diagrams (as exemplified in Figure 11 

and 16) generated while assessing the consistency of pockets defined for different protein-ligand 

complexes of the same protein.  The figures are separated based on the technique used to identify 

the pocket.  There are 49 diagrams for protein-ligand tessellated pockets, 11 for CastP pockets, 

and 24 for SCREEN.  The reduced number of examples for the two latter methods is due to those 

methods not identifying the binding pocket for at least one of the protein-ligand complexes for a 

protein.  Overall the venn diagrams display that pocket detection with these methods is 

inadequate for consistent identification of the same protein pocket for the multiple 

representatives of a protein. 
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Appendix IV: Virtual Screening Dataset Selection Details 

Contained in this appendix is the detailed descriptions of how datasets were extracted, 

curated, and categorized for the ChEMBL and WOMBAT databases.  These descriptions are 

organized by target with ChEMBL extraction being discussed as the modeling/validation set and 

WOMBAT as the external set. 

ACHE (Acetylcholinesterase) 

Modeling/Validation Set 

All activities with a standard_type of IC50 were extracted from ChEMBLdb using assay_ids 

that corresponded to tid 93.  These activities were then filtered into active and inactive classes 

using thresholds of <= 100nM and >=10000nM respectively yielding 445 active molregnos and 

472 inactive molregnos.  A total of 8 molregnos occurred in both the active and inactive classes.  

These were excluded from the set leaving 901 (437 active and 464 inactive) molregnos.  For 

each of these molregnos, the compound‘s smiles were extracted from ChEMBLdb.  After 

removing salts, standardizing charges, and normalizing stereo information, 13 compounds were 

found to occur more than once in the dataset.  Activities were analyzed for each of these 

compounds.  All duplicates were found to fall in the same activity class, so one example was 

retained while the others were deleted.  This resulted in a final dataset of 887 compounds (424 

active and 463 inactive).   

When preparing the dataset for QSAR modeling, chirality of compounds was removed.  This 

caused the identification of several more ―duplicates‖.  When the activity class of each 

representative of these ―duplicates‖ was investigated, one replicate was kept for each duplicate 
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where the activity classes were in agreement (removed 22 structures) and no duplicates were 

found where the activity classes were in disagreement.    

External Set 

From WOMBAT, all activities with an act_type of IC50 and Ki were extracted using 

target_fullname AChE.  The activities were filtered using Pipeline Pilot. For each of the MIREG, 

the compound‘s smiles were extracted from WOMBAT. 29 of the MIREG could not be 

converted from SMILES. The remaining compounds were separated into active and inactive 

classes using thresholds of <= 100nM and >=10000nM respectively yielding 405 active MIREG 

and 344 inactive MIREG. After removing salts, standardizing charges, and normalizing stereo 

information, 84 active and 6 inactive compounds were found to occur more than once in the 

dataset. Activities were analyzed for each of these compounds.  All duplicates were found to fall 

in the same activity class, so one example was retained while the others were deleted.  This 

resulted in a final dataset of 659 compounds (321 active and 338 inactive). No MIREG occurred 

in both the active and inactive classes.  7 compounds overlap with ChEMBL, leaving a final 

dataset of 652 compounds (321 active and 331 inactive). 

 

ACK1 (Activated Cdc42-associated Kinase) 

Modeling/Validation Set 

The Ack1 dataset was curated from patented data from Amgen (US patent 2006- 0040965, 

US patent US 2007 - 0072851), OSI Pharmaceuticals (US patent 2009 - 0286768) and other 

sources published in literature.  In total, 487 activities were collected.  These were separated into 

active and inactive classes using thresholds of <= 100nM and >=10000nM respectively yielding 
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124 actives and 68 inactives. After removing salts, standardizing charges, and normalizing stereo 

information,  16 active and 4 inactive compounds were found to occur more than once in the 

dataset. Activities were analyzed for each of these compounds.  All duplicates were found to fall 

in the same activity class, so one example was retained while the others were deleted.  This 

resulted in a final dataset of 172 compounds (108 active and 64 inactive). 

External Set 

A lack of known ligands for this protein prevented the generation of additional external sets. 

 

AR (Androgen Receptor) 

Modeling/Validation Set 

All activities with a standard_type of IC50 were extracted from ChEMBLdb using assay_ids 

that corresponded to tid 56.  These activities were then filtered into active and inactive classes 

using thresholds of <= 100nM and >=10000nM respectively yielding 305 active molregnos and 

149 inactive molregnos.  A total of 16 molregnos occurred in both the active and inactive classes.  

These were excluded from the set leaving 422 (289 active and 133 inactive) molregnos.  For 

each of these molregnos, the compound‘s smiles were extracted from ChEMBLdb.  After 

removing salts, standardizing charges, and normalizing stereo information, no compounds were 

found to occur more than once in the dataset.  Therefore the final dataset consists of 422 

compounds (289 active and 133 inactive).   

When preparing the dataset for QSAR modeling, chirality of compounds was removed.  This 

caused the identification of several more ―duplicates‖.  When the activity class of each 
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representative of these ―duplicates‖ was investigated, one replicate was kept for each duplicate 

where the activity classes were in agreement (removed 19 structures) and all replicates were 

removed for duplicates where the activity classes were in disagreement (removed 9 structures).  

External Set 

From WOMBAT, all activities with an act_type of IC50 and Ki were extracted using 

target_fullname AR.  The activities were filtered using Pipeline Pilot. For each of the MIREG, 

the compound‘s smiles were extracted from WOMBAT.  MIREG were separated into active and 

inactive classes using thresholds of <= 100nM and >=10000nM respectively yielding 449 active 

MIREG and 68 inactive MIREG. After removing salts, standardizing charges, and normalizing 

stereo information, 161 active and 7 inactive compounds were found to occur more than once in 

the dataset. Activities were analyzed for each of these compounds.  All duplicates were found to 

fall in the same activity class, so one example was retained while the others were deleted.  This 

resulted in a dataset of 349 compounds (288 active and 61 inactive).  A total of 80 MIREG 

occurred in both the active and inactive classes leaving a final dataset of 269 compounds (248 

active and 21 inactive). 11 compounds overlap with ChEMBL, leaving a final dataset of 258 

compounds (237 active and 21 inactive). 

 

B2AR (Beta-2 Adrenergic Receptor) 

Modeling/Validation Set 

All activities with a standard_type of IC50 or Ki were extracted from ChEMBLdb using 

assay_ids that corresponded to tid 43.  These activities were then filtered into active and inactive 

classes using thresholds of <= 100nM and >=10000nM respectively yielding 94 active 
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molregnos and 157 inactive molregnos.  No molregnos occurred in both the active and inactive 

classes.  For each molregno, the compound‘s smiles were extracted from ChEMBLdb.  After 

removing salts, standardizing charges, and normalizing stereo information, 3 compounds were 

found to occur more than once in the dataset.  Activities were analyzed for each of these 

compounds.  All duplicates were found to fall in the same activity class, so one example was 

retained while the others were deleted.  This resulted in a final dataset of 248 compounds (94 

active and 154 inactive).   

When preparing the dataset for QSAR modeling, chirality of compounds was removed.  This 

caused the identification of several more ―duplicates‖.  When the activity class of each 

representative of these ―duplicates‖ was investigated, one replicate was kept for each duplicate 

where the activity classes were in agreement (removed 10 structures) and all replicates were 

removed for duplicates where the activity classes were in disagreement (removed 3 structures).  

External Set 

From WOMBAT, all activities with an act_type of IC50, pKi and Ki were extracted using 

target_fullname ‗beta2 adrenergic‘.  The activities were filtered using Pipeline Pilot. For each of 

the MIREG, the compound‘s smiles were extracted from WOMBAT. Compounds were 

separated into active and inactive classes using thresholds of <= 100nM and >=10000nM 

respectively yielding 60 active MIREG and 88 inactive MIREG. After removing salts, 

standardizing charges, and normalizing stereo information, 9 active and 2 inactive compounds 

were found to occur more than once in the dataset. Activities were analyzed for each of these 

compounds.  All duplicates were found to fall in the same activity class, so one example was 

retained while the others were deleted.  This resulted in a final dataset of 137 compounds (51 

active and 86 inactive). No MIREG occurred in both the active and inactive classes.   
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CA2 (Carbonic Anhydrase II) 

Modeling/Validation Set 

All activities with a standard_type of Ki were extracted from ChEMBLdb using assay_ids 

that corresponded to tid 15.  These activities were then filtered into active and inactive classes 

using thresholds of <= 10nM and >=1000nM respectively yielding 726 active molregnos and 382 

inactive molregnos.  A total of 15 molregnos occurred in both the active and inactive classes.  

These were excluded from the set leaving 1078 (711 active and 367 inactive) molregnos.  For 

each of these molregnos, the compound‘s smiles were extracted from ChEMBLdb.  After 

removing salts, standardizing charges, and normalizing stereo information, 5 compounds were 

found to occur more than once in the dataset.  Activities were analyzed for each of these 

compounds.  All duplicates were found to fall in the same activity class, so one example was 

retained while the others were deleted.  This resulted in a final dataset of 1073 compounds (709 

active and 364 inactive).   

When preparing the dataset for QSAR modeling, chirality of compounds was removed.  This 

caused the identification of several more ―duplicates‖.  When the activity class of each 

representative of these ―duplicates‖ was investigated, one replicate was kept for each duplicate 

where the activity classes were in agreement (removed 43 structures) and all replicates were 

removed for duplicates where the activity classes were in disagreement (removed 2 structures). 

Errors in descriptor calculation identified compounds with carboranes as problematic and 12 

compounds were removed. 
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External Set 

From WOMBAT, all activities with an act_type of IC50 and Ki were extracted using 

target_fullname ‗CA-II‘.  The activities were filtered using Pipeline Pilot. For each of the 

MIREG, the compound‘s smiles were extracted from WOMBAT.  16 of the MIREG could not 

be converted from SMILES. The remaining MIREG were separated into active and inactive 

classes using thresholds of <= 10nM and >=1000nM respectively yielding 953 active MIREG 

and 251 inactive MIREG. After removing salts, standardizing charges, and normalizing stereo 

information, 270 active and 61 inactive compounds were found to occur more than once in the 

dataset. Activities were analyzed for each of these compounds.  All duplicates were found to fall 

in the same activity class, so one example was retained while the others were deleted.  This 

resulted in a dataset of 873 compounds (683 active and 190 inactive).  A total of 30 MIREG 

occurred in both the active and inactive classes leaving a final dataset of 843 compounds (668 

active and 175 inactive). 65 compounds overlap with ChEMBL, leaving a final dataset of 778 

compounds (662 active and 116 inactive). 

CDK2 (Cyclin Dependent Kinase 2) 

Modeling/Validation Set 

All activities with a standard_type of IC50 were extracted from ChEMBLdb using assay_ids 

that corresponded to tid 11678.  These activities were then filtered into active and inactive 

classes using thresholds of <= 100nM and >=10000nM respectively yielding 739 active 

molregnos and 633 inactive molregnos.  A total of 6 molregnos occurred in both the active and 

inactive classes.  These were excluded from the set leaving  1360 (733 active and 627 inactive) 

molregnos.  For each of these molregnos, the compound‘s smiles were extracted from 

ChEMBLdb.  After removing salts, standardizing charges, and normalizing stereo information, 
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no compounds were found to occur more than once in the dataset.  Therefore the final dataset 

consists of 1360 compounds (733 active and 627 inactive).   

When preparing the dataset for QSAR modeling, chirality of compounds was removed.  This 

caused the identification of several more ―duplicates‖.  When the activity class of each 

representative of these ―duplicates‖ was investigated, one replicate was kept for each duplicate 

where the activity classes were in agreement (removed 21 structures) and all replicates were 

removed for duplicates where the activity classes were in disagreement (removed 2 structures).  

External Set 

From WOMBAT, all activities with an act_type of IC50 and Ki were extracted using 

target_fullname ‗CDK2‘.  The activities were filtered using Pipeline Pilot. For each of the 

MIREG, the compound‘s smiles were extracted from WOMBAT.  MIREG were separated into 

active and inactive classes using thresholds of <= 100nM and >=10000nM respectively yielding 

501 active MIREG and 289 inactive MIREG. After removing salts, standardizing charges, and 

normalizing stereo information, 20 active and 6 inactive compounds were found to occur more 

than once in the dataset. Activities were analyzed for each of these compounds.  All duplicates 

were found to fall in the same activity class, so one example was retained while the others were 

deleted.  This resulted in a dataset of 758 compounds (481 active and 277 inactive).  A total of 2 

MIREG occurred in both the active and inactive classes leaving a final dataset of 756 compounds 

(480 active and 276 inactive). 
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COX2 (Cyclooxygenase-2) 

Modeling/Validation Set 

All activities with a standard_type of IC50 were extracted from ChEMBLdb using assay_ids 

that corresponded to tid 126.  These activities were then filtered into active and inactive classes 

using thresholds of <= 100nM and >=10000nM respectively yielding 699 active molregnos and 

759 inactive molregnos.  A total of 14 molregnos occurred in both the active and inactive classes.  

These were excluded from the set leaving 1430 (685 active and 745 inactive) molregnos.  For 

each of these molregnos, the compound‘s smiles were extracted from ChEMBLdb.  After 

removing salts, standardizing charges, and normalizing stereo information, 1 compound was 

found to occur more than once in the dataset.  Activities were analyzed for each of this 

compound.  The duplicates were found to fall in the same activity class, so one example was 

retained while the other was deleted.  This resulted in a final dataset of 1429 compounds (685 

active and 744 inactive).   

When preparing the dataset for QSAR modeling, chirality of compounds was removed.  This 

caused the identification of several more ―duplicates‖.  When the activity class of each 

representative of these ―duplicates‖ was investigated, one replicate was kept for each duplicate 

where the activity classes were in agreement (removed 9 structures) and all replicates were 

removed for duplicates where the activity classes were in disagreement (removed 2 structures).  

External Set 

From WOMBAT, all activities with an act_type of IC50 and Ki were extracted using 

target_fullname ‗COX-2‘.  The activities were filtered using Pipeline Pilot. For each of the 

MIREG, the compound‘s smiles were extracted from WOMBAT.  MIREG were separated into 
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active and inactive classes using thresholds of <= 100nM and >=10000nM respectively yielding 

514 active MIREG and 406 inactive MIREG. After removing salts, standardizing charges, and 

normalizing stereo information, 84 active and 19 inactive compounds were found to occur more 

than once in the dataset. Activities were analyzed for each of these compounds.  All duplicates 

were found to fall in the same activity class, so one example was retained while the others were 

deleted.  This resulted in a dataset of 817 compounds (430 active and 387 inactive).  A total of 6 

MIREG occurred in both the active and inactive classes leaving a final dataset of 811 compounds 

(427 active and 384 inactive).  

DHFR (Dihydrofolate Reductase) 

Modeling/Validation Set 

All activities with a standard_type of IC50 were extracted from ChEMBLdb using assay_ids 

that corresponded to tid 6.  These activities were then filtered into active and inactive classes 

using thresholds of <= 100nM and >=10000nM respectively yielding 232 active molregnos and 

251 inactive molregnos.  A total of 10 molregnos occurred in both the active and inactive classes.  

These were excluded from the set leaving 463 (222 active and 241 inactive) molregnos.  For 

each of these molregnos, the compound‘s smiles were extracted from ChEMBLdb.  After 

removing salts, standardizing charges, and normalizing stereo information, no compounds were 

found to occur more than once in the dataset.  Therefore the final dataset consists of 463 

compounds (222 active and 241 inactive).   

When preparing the dataset for QSAR modeling, chirality of compounds was removed.  This 

caused the identification of several more ―duplicates‖.  When the activity class of each 

representative of these ―duplicates‖ was investigated, one replicate was kept for each duplicate 
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where the activity classes were in agreement (removed 4 structures) and no duplicates were 

found where the activity classes were in disagreement.  

External Set 

From WOMBAT, all activities with an act_type of IC50 and Ki were extracted using 

target_fullname ‗DHFR‘.  The activities were filtered using Pipeline Pilot. For each of the 

MIREG, the compound‘s smiles were extracted from WOMBAT.  MIREG were separated into 

active and inactive classes using thresholds of <= 10nM and >=1000nM respectively yielding 93 

active MIREG and 210 inactive MIREG. After removing salts, standardizing charges, and 

normalizing stereo information, 29 active and 30 inactive compounds were found to occur more 

than once in the dataset. Activities were analyzed for each of these compounds.  All duplicates 

were found to fall in the same activity class, so one example was retained while the others were 

deleted.  This resulted in a dataset of 244 compounds (64 active and 180 inactive).  A total of 2 

MIREG occurred in both the active and inactive classes leaving a final dataset of 240 compounds 

(62 active and 178 inactive).  

ESR1 (Estrogen Receptor Alpha) 

Modeling/Validation Set 

All activities with a standard_type of IC50 were extracted from ChEMBLdb using assay_ids 

that corresponded to tid 19.  These activities were then filtered into active and inactive classes 

using thresholds of <= 10nM and >=1000nM respectively yielding 316 active molregnos and 571 

inactive molregnos.  A total of 3 molregnos occurred in both the active and inactive classes.  

These were excluded from the set leaving 881 (313 active and 568 inactive) molregnos.  For 

each of these molregnos, the compound‘s smiles were extracted from ChEMBLdb.  After 
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removing salts, standardizing charges, and normalizing stereo information, 2 compounds were 

found to occur more than once in the dataset.  Activities were analyzed for each of these 

compounds.  All duplicates were found to fall in the same activity class, so one example was 

retained while the others were deleted.  This resulted in a final dataset of 878 compounds (312 

active and 566 inactive).   

When preparing the dataset for QSAR modeling, chirality of compounds was removed.  This 

caused the identification of several more ―duplicates‖.  When the activity class of each 

representative of these ―duplicates‖ was investigated, one replicate was kept for each duplicate 

where the activity classes were in agreement (removed 50 structures) and no duplicates were 

found where the activity classes were in disagreement.   Errors in descriptor calculation 

identified compounds with carboranes as problematic and 6 compounds were removed. 

External Set 

From WOMBAT, all activities with an act_type of IC50 and Ki were extracted using 

target_fullname ‗ERalpha‘.  The activities were filtered using Pipeline Pilot. For each of the 

MIREG, the compound‘s smiles were extracted from WOMBAT.  MIREG were separated into 

active and inactive classes using thresholds of <= 100nM and >=10000nM respectively yielding 

972 active MIREG and 176 inactive MIREG. After removing salts, standardizing charges, and 

normalizing stereo information, 335 active and 3 inactive compounds were found to occur more 

than once in the dataset. Activities were analyzed for each of these compounds.  All duplicates 

were found to fall in the same activity class, so one example was retained while the others were 

deleted.  This resulted in a dataset of 810 compounds (637 active and 173 inactive).  A total of 8 

MIREG occurred in both the active and inactive classes leaving a final dataset of 802 compounds 
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(633 active and 169 inactive). 3 compounds overlap with ChEMBL, leaving a final dataset of 

799 compounds (633 active and 166 inactive). 

ESR2 (Estrogen Receptor Beta) 

Modeling/Validation Set 

All activities with a standard_type of IC50 were extracted from ChEMBLdb using assay_ids 

that corresponded to tid 174.  These activities were then filtered into active and inactive classes 

using thresholds of <= 10nM and >=1000nM respectively yielding 356 active molregnos and 352 

inactive molregnos.  A total of 2 molregnos occurred in both the active and inactive classes.  

These were excluded from the set leaving 704 (354 active and 350 inactive) molregnos.  For 

each of these molregnos, the compound‘s smiles were extracted from ChEMBLdb.  After 

removing salts, standardizing charges, and normalizing stereo information, 1 compound was 

found to occur more than once in the dataset.  Activities were analyzed for this compound.  The 

duplicates were found to fall in the same activity class, so one example was retained while the 

other was deleted.  This resulted in a final dataset of 703 compounds (353 active and 350 

inactive).   

When preparing the dataset for QSAR modeling, chirality of compounds was removed.  This 

caused the identification of several more ―duplicates‖.  When the activity class of each 

representative of these ―duplicates‖ was investigated, one replicate was kept for each duplicate 

where the activity classes were in agreement (removed 32 structures) and all replicates were 

removed for duplicates where the activity classes were in disagreement (removed 9 structures). 
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External Set 

From WOMBAT, all activities with an act_type of IC50 and Ki were extracted using 

target_fullname ‗ERbeta‘.  The activities were filtered using Pipeline Pilot. For each of the 

MIREG, the compound‘s smiles were extracted from WOMBAT.  MIREG were separated into 

active and inactive classes using thresholds of <= 10nM and >=1000nM respectively yielding 

338 active MIREG and 335 inactive MIREG. After removing salts, standardizing charges, and 

normalizing stereo information, 70 active and 16 inactive compounds were found to occur more 

than once in the dataset. Activities were analyzed for each of these compounds.  All duplicates 

were found to fall in the same activity class, so one example was retained while the others were 

deleted.  This resulted in a dataset of 587 compounds (268 active and 319 inactive).  A total of 2 

MIREG occurred in both the active and inactive classes leaving a final dataset of 583 compounds 

(266 active and 317 inactive). 4 compounds overlap with ChEMBL, leaving a final dataset of 

579 compounds (266 active and 313 inactive). 

F10 (Coagulation Factor X) 

Modeling/Validation Set 

All activities with a standard_type of IC50 were extracted from ChEMBLdb using assay_ids 

that corresponded to tid 194.  These activities were then filtered into active and inactive classes 

using thresholds of <= 10nM and >=1000nM respectively yielding 510 active molregnos and 494 

inactive molregnos.  A total of 2 molregnos occurred in both the active and inactive classes.  

These were excluded from the set leaving 1000 (508 active and 492 inactive) molregnos.  For 

each of these molregnos, the compound‘s smiles were extracted from ChEMBLdb.  After 

removing salts, standardizing charges, and normalizing stereo information, 1 compound was 

found to occur more than once in the dataset.  Activities were analyzed for this compound.  The 
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duplicates were found to fall in the same activity class, so one example was retained while the 

other was deleted.  This resulted in a final dataset of 999 compounds (508 active and 491 

inactive).   

When preparing the dataset for QSAR modeling, chirality of compounds was removed.  This 

caused the identification of several more ―duplicates‖.  When the activity class of each 

representative of these ―duplicates‖ was investigated, one replicate was kept for each duplicate 

where the activity classes were in agreement (removed 32 structures) and all replicates were 

removed for duplicates where the activity classes were in disagreement (removed 2 structures). 

External Set 

From WOMBAT, all activities with an act_type of IC50 and Ki were extracted using 

target_fullname ‗%fXa%‘.  The activities were filtered using Pipeline Pilot. For each of the 

MIREG, the compound‘s smiles were extracted from WOMBAT.  5 of the MIREG could not be 

converted from SMILES. The remaining MIREG were separated into active and inactive classes 

using thresholds of <= 100nM and >=10000nM respectively yielding 1870 active MIREG and 

445 inactive MIREG. After removing salts, standardizing charges, and normalizing stereo 

information, 236 active and 15 inactive compounds were found to occur more than once in the 

dataset. Activities were analyzed for each of these compounds.  All duplicates were found to fall 

in the same activity class, so one example was retained while the others were deleted.  This 

resulted in a dataset of 2064 compounds (1634 active and 430 inactive).  A total of 14 MIREG 

occurred in both the active and inactive classes leaving a final dataset of 2050 compounds (1627 

active and 423 inactive). 
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GR (Glucocorticoid Receptor) 

Modeling/Validation Set 

All activities with a standard_type of IC50 were extracted from ChEMBLdb using assay_ids 

that corresponded to tid 25.  These activities were then filtered into active and inactive classes 

using thresholds of <= 10nM and >=1000nM respectively yielding 210 active molregnos and 206 

inactive molregnos.  A total of 15 molregnos occurred in both the active and inactive classes.  

These were excluded from the set leaving 386 (195 active and 191 inactive) molregnos.  For 

each of these molregnos, the compound‘s smiles were extracted from ChEMBLdb.  After 

removing salts, standardizing charges, and normalizing stereo information, 1 compound was 

found to occur more than once in the dataset.  Activities were analyzed for this compound.  The 

duplicates were found to fall in the same activity class, so one example was retained while the 

other was deleted.  This resulted in a final dataset of 385 compounds (194 active and 191 

inactive).   

When preparing the dataset for QSAR modeling, chirality of compounds was removed.  This 

caused the identification of several more ―duplicates‖.  When the activity class of each 

representative of these ―duplicates‖ was investigated, one replicate was kept for each duplicate 

where the activity classes were in agreement (removed 9 structures) and all replicates were 

removed for duplicates where the activity classes were in disagreement (removed 3 structures). 

External Set 

From WOMBAT, all activities with an act_type of IC50 and Ki were extracted using 

target_fullname ‗%Glucocorticoid receptor%‘.  The activities were filtered using Pipeline Pilot. 

For each of the MIREG, the compound‘s smiles were extracted from WOMBAT.  MIREG were 
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separated into active and inactive classes using thresholds of <= 100nM and >=10000nM 

respectively yielding 677 active MIREG and 30 inactive MIREG. After removing salts, 

standardizing charges, and normalizing stereo information, 295 active and 3 inactive compounds 

were found to occur more than once in the dataset. Activities were analyzed for each of these 

compounds.  All duplicates were found to fall in the same activity class, so one example was 

retained while the others were deleted.  This resulted in a dataset of 409 compounds (382 active 

and 27 inactive).  A total of 18 MIREG occurred in both the active and inactive classes leaving a 

final dataset of 391 compounds (611 active and 71 inactive). 4 compounds overlap with ChemBl, 

leaving a final dataset of 387 compounds (370 active and 17 inactive). 

HIV-Int (HIV Integrase) 

Modeling/Validation Set 

All activities with a standard_type of IC50 were extracted from ChEMBLdb using assay_ids 

that corresponded to tid 12456.  These activities were then filtered into active and inactive 

classes using thresholds of <= 1000nM and >=50000nM respectively yielding 213 active 

molregnos and 567 inactive molregnos.  A total of 15 molregnos occurred in both the active and 

inactive classes.  These were excluded from the set leaving 750 (198 active and 552 inactive) 

molregnos.  For each of these molregnos, the compound‘s smiles were extracted from 

ChEMBLdb.  After removing salts, standardizing charges, and normalizing stereo information, 1 

compound was found to occur more than once in the dataset.  Activities were analyzed for this 

compound.  The duplicates were found to fall in the same activity class, so one example was 

retained while the other was deleted.  This resulted in a final dataset of 749 compounds (197 

active and 552 inactive).   
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When preparing the dataset for QSAR modeling, chirality of compounds was removed.  This 

caused the identification of several more ―duplicates‖.  When the activity class of each 

representative of these ―duplicates‖ was investigated, one replicate was kept for each duplicate 

where the activity classes were in agreement (removed 10 structures) and no duplicates were 

found where the activity classes were in disagreement. Errors in descriptor calculation identified 

compounds with carboranes as problematic and 1 compound was removed. 

External Set 

From WOMBAT, all activities with an act_type of IC50 and Ki were extracted using 

target_fullname ‗%HIV%‘ and ‗%IN%‘.  The activities were filtered using Pipeline Pilot. For 

each of the MIREG, the compound‘s smiles were extracted from WOMBAT.  MIREG were 

separated into active and inactive classes using thresholds of <= 100nM and >=10000nM 

respectively yielding 150 active MIREG and 1631 inactive MIREG. After removing salts, 

standardizing charges, and normalizing stereo information, 35 active and 766 inactive 

compounds were found to occur more than once in the dataset. Activities were analyzed for each 

of these compounds.  All duplicates were found to fall in the same activity class, so one example 

was retained while the others were deleted.  This resulted in a dataset of 980 compounds (115 

active and 865 inactive).  A total of 14 MIREG occurred in both the active and inactive classes 

leaving a final dataset of 966 compounds (108 active and 858 inactive). 12 compounds overlap 

with ChemBl, leaving a final dataset of 954 compounds (108 active and 846 inactive). 



 

163 

 

HIV-Pr (HIV Protease) 

Modeling/Validation Set 

All activities with a standard_type of IC50 were extracted from ChEMBLdb using assay_ids 

that corresponded to tid 191.  These activities were then filtered into active and inactive classes 

using thresholds of <= 10nM and >=1000nM respectively yielding 912 active molregnos and 633 

inactive molregnos.  A total of 9 molregnos occurred in both the active and inactive classes.  

These were excluded from the set leaving 1527 (903 active and 624 inactive) molregnos.  For 

each of these molregnos, the compound‘s smiles were extracted from ChEMBLdb.  After 

removing salts, standardizing charges, and normalizing stereo information, 1 compound was 

found to occur more than once in the dataset.  Activities were analyzed for this compound.  The 

duplicates were found to fall in the same activity class, so one example was retained while the 

other was deleted.  This resulted in a final dataset of 1526 compounds (903 active and 623 

inactive).   

When preparing the dataset for QSAR modeling, chirality of compounds was removed.  This 

caused the identification of several more ―duplicates‖.  When the activity class of each 

representative of these ―duplicates‖ was investigated, one replicate was kept for each duplicate 

where the activity classes were in agreement (removed 116 structures) and all replicates were 

removed for duplicates where the activity classes were in disagreement (removed 20 structures). 

External Set 

From WOMBAT, all activities with an act_type of IC50 and Ki were extracted using 

target_fullname ‗%HIV%‘ and ‗%P%‘.  The activities were filtered using Pipeline Pilot. For 

each of the MIREG, the compound‘s smiles were extracted from WOMBAT.  4 of the MIREG 
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could not be converted from SMILES. The remaining MIREG were separated into active and 

inactive classes using thresholds of <= 100nM and >=10000nM respectively yielding 3519 

active MIREG and 330 inactive MIREG. After removing salts, standardizing charges, and 

normalizing stereo information, 1113 active and 32 inactive compounds were found to occur 

more than once in the dataset. Activities were analyzed for each of these compounds.  All 

duplicates were found to fall in the same activity class, so one example was retained while the 

others were deleted.  This resulted in a dataset of 2704 compounds (2406 active and 298 

inactive).  A total of 10 MIREG occurred in both the active and inactive classes leaving a final 

dataset of 2694 compounds (2401 active and 293 inactive). 3 compounds overlap with ChemBl, 

leaving a final dataset of 2691 compounds (2400 active and 291 inactive). 

HIV-RT (HIV Reverse Transcriptase) 

Modeling/Validation Set 

All activities with a standard_type of IC50 were extracted from ChEMBLdb using assay_ids 

that corresponded to tid 228.  These activities were then filtered into active and inactive classes 

using thresholds of <= 100nM and >=10000nM respectively yielding 513 active molregnos and 

664 inactive molregnos.  A total of 21 molregnos occurred in both the active and inactive classes.  

These were excluded from the set leaving 1135 (492 active and 643 inactive) molregnos.  For 

each of these molregnos, the compound‘s smiles were extracted from ChEMBLdb.  After 

removing salts, standardizing charges, and normalizing stereo information, 1 compound was 

found to occur more than once in the dataset.  Activities were analyzed for this compound.  The 

duplicates were found to fall in opposing activity classes, so both deleted.  This resulted in a final 

dataset of 1133 compounds (491 active and 642 inactive).   
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When preparing the dataset for QSAR modeling, chirality of compounds was removed.  This 

caused the identification of several more ―duplicates‖.  When the activity class of each 

representative of these ―duplicates‖ was investigated, one replicate was kept for each duplicate 

where the activity classes were in agreement (removed 32 structures) and all replicates were 

removed for duplicates where the activity classes were in disagreement (removed 5 structures). 

Errors in descriptor calculation identified compounds with carboranes as problematic and 1 

compound was removed. 

External Set 

From WOMBAT, all activities with an act_type of IC50 and Ki were extracted using 

target_fullname ‗%HIV%‘ and ‗%RT%‘.  The activities were filtered using Pipeline Pilot. For 

each of the MIREG, the compound‘s smiles were extracted from WOMBAT.  20 of the MIREG 

could not be converted from SMILES. The remaining MIREG were separated into active and 

inactive classes using thresholds of <= 100nM and >=10000nM respectively yielding 1381 

active MIREG and 1053 inactive MIREG. After removing salts, standardizing charges, and 

normalizing stereo information, 629 active and 273 inactive compounds were found to occur 

more than once in the dataset. Activities were analyzed for each of these compounds.  All 

duplicates were found to fall in the same activity class, so one example was retained while the 

others were deleted.  This resulted in a dataset of 1532 compounds (752 active and 780 inactive).  

A total of 120 MIREG occurred in both the active and inactive classes leaving a final dataset of 

1412 compounds (692 active and 720 inactive). 1 compound overlaps with ChemBl, leaving a 

final dataset of 1411 compounds (692 active and 719 inactive). 
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PARP1 (Poly [ADP-ribose] Polymerase-1) 

Modeling/Validation Set 

All activities with a standard_type of IC50 were extracted from ChEMBLdb using assay_ids 

that corresponded to tid 11663.  These activities were then filtered into active and inactive 

classes using thresholds of <= 10nM and >=1000nM respectively yielding 176 active molregnos 

and 123 inactive molregnos.  No molregnos occurred in both the active and inactive classes and 

after removing salts, standardizing charges, and normalizing stereo information, no compounds 

were found to occur more than once in the dataset.  Therefore the final dataset consists of 299 

compounds (176 active and 123 inactive).   

When preparing the dataset for QSAR modeling, chirality of compounds was removed.  This 

caused the identification of several more ―duplicates‖.  When the activity class of each 

representative of these ―duplicates‖ was investigated, one replicate was kept for each duplicate 

where the activity classes were in agreement (removed 6 structures) and no duplicates were 

found where the activity classes were in disagreement.  

External Set 

From WOMBAT, all activities with an act_type of IC50 and Ki were extracted using 

target_fullname ‗%PARP1%‘.  The activities were filtered using Pipeline Pilot. For each of the 

MIREG, the compound‘s smiles were extracted from WOMBAT.  MIREG were separated into 

active and inactive classes using thresholds of <= 100nM and >=10000nM respectively yielding 

252 active MIREG and 48 inactive MIREG. After removing salts, standardizing charges, and 

normalizing stereo information, 4 active and 1 inactive compounds were found to occur more 

than once in the dataset. Activities were analyzed for each of these compounds.  All duplicates 
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were found to fall in the same activity class, so one example was retained while the others were 

deleted.  This resulted in a dataset of 295 compounds (248 active and 47 inactive).  A total of 2 

MIREG occurred in both the active and inactive classes leaving a final dataset of 293 compounds 

(247 active and 46 inactive).  

PDE5 (Phosphodiesterase 5A) 

Modeling/Validation Set 

All activities with a standard_type of IC50 were extracted from ChEMBLdb using assay_ids 

that corresponded to tid 3.  These activities were then filtered into active and inactive classes 

using thresholds of <= 10nM and >=1000nM respectively yielding 327 active molregnos and 363 

inactive molregnos.  No molregnos occurred in both the active and inactive classes.   For each 

molregno, the compound‘s smiles were extracted from ChEMBLdb.  After removing salts, 

standardizing charges, and normalizing stereo information, 3 compounds were found to occur 

more than once in the dataset.  Activities were analyzed for each of these compounds.  All 

duplicates were found to fall in the same activity class, so one example was retained while the 

others were deleted.  This resulted in a final dataset of 687 compounds (324 active and 363 

inactive). 

When preparing the dataset for QSAR modeling, chirality of compounds was removed.  This 

caused the identification of several more ―duplicates‖.  When the activity class of each 

representative of these ―duplicates‖ was investigated, one replicate was kept for each duplicate 

where the activity classes were in agreement (removed 5 structures) and no duplicates were 

found where the activity classes were in disagreement.  



 

168 

 

External Set 

From WOMBAT, all activities with an act_type of IC50 and Ki were extracted using 

target_fullname ‗%PDE5%‘.  The activities were filtered using Pipeline Pilot. For each of the 

MIREG, the compound‘s smiles were extracted from WOMBAT.  MIREG were separated into 

active and inactive classes using thresholds of <= 100nM and >=10000nM respectively yielding 

470 active MIREG and 72 inactive MIREG. After removing salts, standardizing charges, and 

normalizing stereo information, 42 active and 1 inactive compounds were found to occur more 

than once in the dataset. Activities were analyzed for each of these compounds.  All duplicates 

were found to fall in the same activity class, so one example was retained while the others were 

deleted.  This resulted in a final dataset of 499 compounds (428 active and 71 inactive).   

 

PNP (Purine Nucleoside Phosphorylase) 

Modeling/Validation Set 

All activities with a standard_type of IC50 or Ki were extracted from ChEMBLdb using 

assay_ids that corresponded to tid 12690.  These activities were then filtered into active and 

inactive classes using thresholds of <= 10nM and >=1000nM respectively yielding 89 active 

molregnos and 86 inactive molregnos.  A total of 1 molregno occurred in both the active and 

inactive classes.  This was excluded from the set leaving 173 (88 active and 85 inactive) 

molregnos.  For each of these molregnos, the compound‘s smiles were extracted from 

ChEMBLdb.  After removing salts, standardizing charges, and normalizing stereo information, 

no compounds were found to occur more than once in the dataset.  Therefore the final dataset 

consists of 173 compounds (88 active and 85 inactive).   
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When preparing the dataset for QSAR modeling, chirality of compounds was removed.  This 

caused the identification of several more ―duplicates‖.  When the activity class of each 

representative of these ―duplicates‖ was investigated, one replicate was kept for each duplicate 

where the activity classes were in agreement (removed 14 structures) and no duplicates were 

found where the activity classes were in disagreement.  

External Set 

From WOMBAT all activities with an act_type of IC50 and Ki were extracted using 

target_fullname ‗%PNP%‘.  The activities were filtered using Pipeline Pilot. For each of the 

MIREG, the compound‘s smiles were extracted from WOMBAT.  MIREG were separated into 

active and inactive classes using thresholds of <= 100nM and >=10000nM respectively yielding 

57 active MIREG and 40 inactive MIREG. After removing salts, standardizing charges, and 

normalizing stereo information, 15 active and 1 inactive compounds were found to occur more 

than once in the dataset. Activities were analyzed for each of these compounds.  All duplicates 

were found to fall in the same activity class, so one example was retained while the others were 

deleted.  This resulted in a final dataset of 81 compounds (42 active and 39 inactive).     

PPARG (Peroxisome Proliferator-Activated Receptor Gamma) 

Modeling/Validation Set 

All activities with a standard_type of IC50 were extracted from ChEMBLdb using assay_ids 

that corresponded to tid 133.  These activities were then filtered into active and inactive classes 

using thresholds of <= 100nM and >=10000nM respectively yielding 250 active molregnos and 

131 inactive molregnos.  A total of 1 molregno occurred in both the active and inactive classes.  

This was excluded from the set leaving 379 (249 active and 130 inactive) molregnos.  For each 
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of these molregnos, the compound‘s smiles were extracted from ChEMBLdb.  After removing 

salts, standardizing charges, and normalizing stereo information, 3 compounds were found to 

occur more than once in the dataset.  Activities were analyzed for each of these compounds.  All 

duplicates were found to fall in the same activity class, so one example was retained while the 

others were deleted.  This resulted in a final dataset of 376 compounds (246 active and 130 

inactive). 

When preparing the dataset for QSAR modeling, chirality of compounds was removed.  This 

caused the identification of several more ―duplicates‖.  When the activity class of each 

representative of these ―duplicates‖ was investigated, one replicate was kept for each duplicate 

where the activity classes were in agreement (removed 20 structures) and all replicates were 

removed for duplicates where the activity classes were in disagreement (removed 5 structures). 

External Set 

From WOMBAT, all activities with an act_type of IC50 and Ki were extracted from using 

swissp_id ‗%PARG%‘.  The activities were filtered using Pipeline Pilot. For each of the 

MIREG, the compound‘s smiles were extracted from WOMBAT.  MIREG were separated into 

active and inactive classes using thresholds of <= 100nM and >=10000nM respectively yielding 

224 active MIREG and 155 inactive MIREG. After removing salts, standardizing charges, and 

normalizing stereo information, 29 active and 8 inactive compounds were found to occur more 

than once in the dataset. Activities were analyzed for each of these compounds.  All duplicates 

were found to fall in the same activity class, so one example was retained while the others were 

deleted.  This resulted in a dataset of 342 compounds (195 active and 147 inactive).  A total of 2 

MIREG occurred in both the active and inactive classes leaving a final dataset of 340 compounds 

(194 active and 146 inactive).  
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REN (Renin) 

Modeling/Validation Set 

All activities with a standard_type of IC50 were extracted from ChEMBLdb using assay_ids 

that corresponded to tid 11225.  These activities were then filtered into active and inactive 

classes using thresholds of <= 10nM and >=1000nM respectively yielding 801 active molregnos 

and 468 inactive molregnos.  A total of 16 molregnos occurred in both the active and inactive 

classes.  These were excluded from the set leaving 1237 (785 active and 452 inactive) 

molregnos.  For each of these molregnos, the compound‘s smiles were extracted from 

ChEMBLdb.  After removing salts, standardizing charges, and normalizing stereo information, 2 

compounds were found to occur more than once in the dataset.  Activities were analyzed for each 

of these compounds.  All duplicates were found to fall in the same activity class, so one example 

was retained while the others were deleted.  This resulted in a final dataset of 1235 compounds 

(783 active and 452 inactive). 

When preparing the dataset for QSAR modeling, chirality of compounds was removed.  This 

caused the identification of several more ―duplicates‖.  When the activity class of each 

representative of these ―duplicates‖ was investigated, one replicate was kept for each duplicate 

where the activity classes were in agreement (removed 69 structures) and all replicates were 

removed for duplicates where the activity classes were in disagreement (removed 11 structures). 

External Set 

From WOMBAT, all activities with an act_type of IC50 and Ki were extracted using 

target_fullname ‗%renin%‘.  The activities were filtered using Pipeline Pilot. For each of the 

MIREG, the compound‘s smiles were extracted from WOMBAT.  17 of the MIREG could not 
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be converted from SMILES. The remaining MIREG were separated into active and inactive 

classes using thresholds of <= 100nM and >=10000nM respectively yielding 676 active MIREG 

and 52 inactive MIREG. After removing salts, standardizing charges, and normalizing stereo 

information, 174 active and 3 inactive compounds were found to occur more than once in the 

dataset. Activities were analyzed for each of these compounds.  All duplicates were found to fall 

in the same activity class, so one example was retained while the others were deleted.  This 

resulted in a dataset of 551 compounds (502 active and 49 inactive).  A total of 6 MIREG 

occurred in both the active and inactive classes leaving a final dataset of 545 compounds (499 

active and 46 inactive). 9 compounds overlap with ChemBl, leaving a final dataset of 536 

compounds (498 active and 38 inactive). 

SRC (Tyrosine Protein Kinase SRC) 

Modeling/Validation Set 

All activities with a standard_type of IC50 were extracted from ChEMBLdb using assay_ids 

that corresponded to tid 10434.  These activities were then filtered into active and inactive 

classes using thresholds of <= 100 and >=10000 respectively yielding 632 active molregnos and 

831 inactive molregnos.  A total of 8 molregnos occurred in both the active and inactive classes.  

These were excluded from the modeling set leaving 1447 (624 active and 823 inactive) 

molregnos.  For each of these molregnos, the compounds smiles were extracted from 

ChEMBLdb.  After removing salts, standardizing charges, and normalizing stereo information, 4 

compounds were found to occur more than once in the dataset.  For each of these compounds 

activities were analyzed.  All duplicates were found to fall in the same activity class, so one 

example was retained while the others were deleted.  This resulted in a final dataset of 1443 (623 

active and 820 inactive).   
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When preparing the dataset for QSAR modeling, chirality of compounds was removed.  This 

caused the identification of several more ―duplicates‖.  When the activity class of each 

representative of these ―duplicates‖ was investigated, one replicate was kept for each duplicate 

where the activity classes were in agreement (removed 16 structures) and no duplicates were 

found where the activity classes were in disagreement.  

External Set 

From WOMBAT, all activities with an act_type of IC50 and Ki were extracted using 

target_fullname ‗%SRC%‘.  The activities were filtered using Pipeline Pilot. For each of the 

MIREG, the compound‘s smiles were extracted from WOMBAT.  MIREG were separated into 

active and inactive classes using thresholds of <= 100nM and >=10000nM respectively yielding 

402 active MIREG and 383 inactive MIREG. After removing salts, standardizing charges, and 

normalizing stereo information, 56 active and 32 inactive compounds were found to occur more 

than once in the dataset. Activities were analyzed for each of these compounds.  All duplicates 

were found to fall in the same activity class, so one example was retained while the others were 

deleted.  This resulted in a dataset of 697 compounds (346 active and 351 inactive).  A total of 4 

MIREG occurred in both the active and inactive classes leaving a final dataset of 693 compounds 

(344 active and 349 inactive). 4 compounds overlap with ChemBl, leaving a final dataset of 689 

compounds (344 active and 345 inactive). 

F2 (Thrombin) 

Modeling/Validation Set 

All activities with a standard_type of IC50 were extracted from ChEMBLdb using assay_ids 

that corresponded to tid 11.  These activities were then filtered into active and inactive classes 
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using thresholds of <= 100nM and >=10000nM respectively yielding 373 active molregnos and 

787 inactive molregnos.  A total of 1 molregno occurred in both the active and inactive classes.  

This was excluded from the set leaving 1158 (372 active and 786 inactive) molregnos.  For each 

of these molregnos, the compound‘s smiles were extracted from ChEMBLdb.  After removing 

salts, standardizing charges, and normalizing stereo information, 8 compounds were found to 

occur more than once in the dataset.  For each of these compounds activities were analyzed.  All 

duplicates were found to fall in the same activity class, so one example was retained while the 

others were deleted.  This resulted in a final dataset of 1150 (368 active and 782 inactive).   

External Set 

From WOMBAT, all activities with an act_type of IC50 and Ki were extracted using 

target_fullname ‗%factor II%‘.  The activities were filtered using Pipeline Pilot. For each of the 

MIREG, the compound‘s smiles were extracted from WOMBAT.  1 of the MIREG was not able 

to be converted from SMILES. The remaining MIREG were separated into active and inactive 

classes using thresholds of <= 100nM and >=10000nM respectively yielding 1194 active 

MIREG and 973 inactive MIREG. After removing salts, standardizing charges, and normalizing 

stereo information, 162 active and 63 inactive compounds were found to occur more than once in 

the dataset. Activities were analyzed for each of these compounds.  All duplicates were found to 

fall in the same activity class, so one example was retained while the others were deleted.  This 

resulted in a dataset of 1942 compounds (1032 active and 910 inactive).  A total of 2 MIREG 

occurred in both the active and inactive classes leaving a final dataset of 1940 compounds (1031 

active and 909 inactive). 7 compounds overlap with ChemBl, leaving a final dataset of 1933 

compounds (1028 active and 905 inactive). 
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Appendix V: ROC Curves from Benchmark Screening 

Contained within this appendix are the ROC curves generated when applying different 

methods to rank the screening sets.  The ROC curves are organized by both the applied method 

and by whether the ROC curve was generated considering the whole screening set or just the 

compounds with tested activity for the target of interest.  More detailed discussion of the results 

are contained in each subsection of this appendix. 

Docking 

Docking with eHiTS proves to be fairly useful when applied to virtual screening of the full 

screening library.  However, this is only the case when eHiTS was able to identify the protein 

family and use a family scoring function.  In the absence of a family scoring function (see 

B2AR, HIV-Int, PARP1, PDE5, REN, and PNP), the ranking of compounds is little better than 

random.  The same trend can be seen when looking at the ROC curves for compounds with 

known activity.  Generally, curves are poor when a family scoring function is unavailable.  

Additionally, docking accuracy is generally lower when looking at only the known compounds 

indicating that docking performs a better coarse refinement than a fine refinement of a compound 

library.    
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Full Screening Sets 
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Compounds with Known Activity 
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Similarity Searching 

ROC curves were generated for similarity search when done by two different probe sets, the 

ligand contained within the PDB entry that was used for docking and the full modeling set.  

When using only the pdb ligand as a probe, the accuracy of ranking is very uncertain.  

Occasionally the ranking is excellent as in the cases of B2AR, ESR2, and DHFR.  However, it is 

just as frequently terrible as in the cases of GR, HIV-Int, and PNP.  This is mirrored in the 

tanking of compounds with known activities, but accuracy is always lower than that obtained on 

the entire dataset.  Using the entire modeling set as probes, similarity searching provides nearly 

excellent ranking of the full database for every target.  Its ranking of compounds with known 

activity is not quite as good, but is still very acceptable.  
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Full Screening Sets-PDB ligand 
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Compounds with Known Activities – PDB Ligand 
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QSAR 

QSAR modeling yielded excellent results when ranking the entire screening library; 

however, these results were often slightly less exciting than those obtained with similarity 

searching.  On the other hand, the results of ranking compounds with known activities is often as 

good or better than the ranking of the entire library and usually provides better ranking than 

similarity searching with the same dataset.  
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Compounds with Known Activities 
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Appendix VI: QSAR Validation Set Statistics 

Contained within this appendix are the plots demonstrating how QSAR statistics are effected 

by the size of the modeling set used to build the QSAR models.  The average predictive accuracy 

of models increases or stays constant as the modeling set size increases.  Generally, the stability 

(i.e. the inverse of the variation in predictive power for multiple samples of the same size) also 

increases as the modeling set size increases.  These results corroborate the expected results that 

more compounds lead to more predictive models.  
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Predictive Power (Mean CCR) 
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Model Stability (Stdev CCR) 
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Appendix VII: Enrichment Plots 

Contained within this appendix are the summary plots of enrichment at different cutoffs in 

the screening library.  Easily compared in these plots are the different methodologies and the 

effects of the amount of available data on ability to enrich highly ranked compounds.  It is clear 

that using more ligand data provides better enrichment with docking generally yielding 

enrichments that are significantly less than the best enrichments obtained by ligand-based 

methods.  In every case, similarity searching yielded enrichments much better than QSAR for the 

same level of input.
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Appendix VIII: CCR vs. Enrichment Plots 

Contained within this appendix are plots allow comparison of enrichment and CCR.  

Typically CCR is statistic used to determine the usefulness of a model; however, these figure 

seem to indicate that if the goal is to identify models that will provide superior enrichment in 

virtual screening applications, optimizing CCR may provide little benefit.  Generally, enrichment 

correlates only weakly with CCR.  
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Appendix IX: Gene Expression Markers for Multidrug 

Resistance 

Contained within this appendix are the hypothetical multidrug biomarkers identified in 

Section 4.3.1.  These biomarkers await experimental validation. 

Probe Name 
Gene 
Array 

Gene Name Gene Symbol RefSeq Protein ID 

222608_s_at B anillin, actin binding protein ANLN NP_061155 

222433_at B 
enabled homolog 

(Drosophila) 
ENAH 

NP_001008493  
 NP_060682 

222449_at B 
prostate transmembrane 

protein, androgen induced 1 
PMEPA1 

NP_064567  
 NP_954638  
 NP_954639  
 NP_954640 

222810_s_at B RAS protein activator like 2 RASAL2 
NP_004832  
 NP_733793 

222834_s_at B 
guanine nucleotide binding 
protein (G protein), gamma 

12 
GNG12 NP_061329 

222692_s_at B 
fibronectin type III domain 

containing 3B 
FNDC3B 

NP_001128567  
 NP_073600 

223019_at B 
family with sequence 

similarity 129, member B 
FAM129B 

NP_001030611  
 NP_073744 

223279_s_at B 
uveal autoantigen with 
coiled-coil domains and 

ankyrin repeats 
UACA 

NP_001008225  
 NP_060473 

223303_at B 
fermitin family homolog 3 

(Drosophila) 
FERMT3 

NP_113659  
 NP_848537 

223315_at B netrin 4 NTN4 NP_067052 

223322_at B 
Ras association (RalGDS/AF-6) 

domain family member 5 
RASSF5 

NP_872604  
 NP_872605  
 NP_872606 

223639_s_at B 
zinc ribbon domain containing 

1 
ZNRD1 

NP_055411  
 NP_740753 

223640_at B 
hematopoietic cell signal 

transducer 
HCST 

NP_001007470  
 NP_055081 

224352_s_at B cofilin 2 (muscle) CFL2 
NP_068733  
 NP_619579 
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Probe Name 
Gene 
Array 

Gene Name Gene Symbol RefSeq Protein ID 

224450_s_at B RIO kinase 1 (yeast) RIOK1 
NP_113668  
 NP_694550 

224407_s_at B 
serine/threonine protein 

kinase MST4 
RP6-213H19.1 

NP_001035917  
 NP_001035918  

 NP_057626 

224791_at B 
ArfGAP with SH3 domain, 

ankyrin repeat and PH 
domain 1 

ASAP1 NP_060952 

224583_at B 
coactosin-like 1 
(Dictyostelium) 

COTL1 NP_066972 

224663_s_at B cofilin 2 (muscle) CFL2 
NP_068733  
 NP_619579 

224895_at B 
Yes-associated protein 1, 

65kDa 
YAP1 

NP_001123617  
 NP_006097 

224911_s_at B 
discoidin, CUB and LCCL 

domain containing 2 
DCBLD2 NP_563615 

224917_at B microRNA 21 MIR21 --- 

224955_at B 
TEA domain family member 1 

(SV40 transcriptional 
enhancer factor) 

TEAD1 NP_068780 

224983_at B 
scavenger receptor class B, 

member 2 
SCARB2 NP_005497 

224811_at B --- --- --- 

224840_at B FK506 binding protein 5 FKBP5 

NP_001139247  
 NP_001139248  
 NP_001139249  

 NP_004108 

224856_at B FK506 binding protein 5 FKBP5 

NP_001139247  
 NP_001139248  
 NP_001139249  

 NP_004108 

224996_at B aspartate beta-hydroxylase ASPH 

NP_004309  
 NP_064549  
 NP_115855  
 NP_115856  
 NP_115857 

224999_at B --- --- --- 

225080_at B myosin IC MYO1C 
NP_001074248  
 NP_001074419  

 NP_203693 

225091_at B 
zinc finger, CCHC domain 

containing 3 
ZCCHC3 NP_149080 
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Probe Name 
Gene 
Array 

Gene Name Gene Symbol RefSeq Protein ID 

225272_at B 
spermidine/spermine N1-
acetyltransferase family 

member 2 
SAT2 NP_597998 

225502_at B dedicator of cytokinesis 8 DOCK8 NP_982272 

226425_at B 
CAP-GLY domain containing 

linker protein family, member 
4 

CLIP4 NP_078968 

227344_at B 
IKAROS family zinc finger 1 

(Ikaros) 
IKZF1 NP_006051 

227346_at B 
IKAROS family zinc finger 1 

(Ikaros) 
IKZF1 NP_006051 

226934_at B 
cleavage and polyadenylation 

specific factor 6, 68kDa 
CPSF6 NP_008938 

225701_at B AT-hook transcription factor AKNA NP_110394 

226659_at B 
differentially expressed in 
FDCP 6 homolog (mouse) 

DEF6 NP_071330 

226215_s_at B 
lysine (K)-specific 
demethylase 2B 

KDM2B 
NP_001005366  

 NP_115979 

226219_at B 
Rho GTPase activating protein 

30 
ARHGAP30 

NP_001020769  
 NP_859071 

226680_at B 
IKAROS family zinc finger 5 

(Pegasus) 
IKZF5 NP_071911 

225802_at B 
topoisomerase (DNA) I, 

mitochondrial 
TOP1MT NP_443195 

225806_at B 
jub, ajuba homolog (Xenopus 

laevis) 
JUB 

NP_116265  
 NP_932352 

226245_at B 
potassium channel 

tetramerisation domain 
containing 1 

KCTD1 
NP_001129677  
 NP_001136202  

 NP_945342 

225842_at B 
pleckstrin homology-like 

domain, family A, member 1 
PHLDA1 NP_031376 

226282_at B --- --- --- 

227213_at B 
adenosine deaminase, tRNA-
specific 2, TAD2 homolog (S. 

cerevisiae) 
ADAT2 NP_872309 

226366_at B 
SNF2 histone linker PHD RING 

helicase 
SHPRH 

NP_001036148  
 NP_775105 

227272_at B 
chromosome 15 open reading 

frame 52 
C15orf52 NP_997263 

225962_at B zinc and ring finger 1 ZNRF1 NP_115644 

227811_at B 
FYVE, RhoGEF and PH domain 

containing 3 
FGD3 

NP_001077005  
 NP_149077 

228297_at B --- --- --- 
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Probe Name 
Gene 
Array 

Gene Name Gene Symbol RefSeq Protein ID 

228824_s_at B prostaglandin reductase 1 PTGR1 
NP_001139580  
 NP_001139581  

 NP_036344 
227473_at B --- --- --- 

227484_at B 
SLIT-ROBO Rho GTPase 

activating protein 1 
SRGAP1 NP_065813 

227514_at B 
inositol 1,4,5-triphosphate 

receptor interacting protein-
like 2 

ITPRIPL2 NP_001030013 

227998_at B 
S100 calcium binding protein 

A16 
S100A16 NP_525127 

228009_x_at B 
zinc ribbon domain containing 

1 
ZNRD1 

NP_055411  
 NP_740753 

228496_s_at B 
Cysteine rich transmembrane 
BMP regulator 1 (chordin-like) 

CRIM1 NP_057525 

227556_at B 

non-metastatic cells 7, 
protein expressed in 

(nucleoside-diphosphate 
kinase) 

NME7 
NP_037462  
 NP_932076 

227628_at B 
glutathione peroxidase 8 

(putative) 
GPX8 NP_001008398 

228121_at B 
transforming growth factor, 

beta 2 
TGFB2 

NP_001129071  
 NP_003229 

227792_at B 
inositol 1,4,5-triphosphate 

receptor interacting protein-
like 2 

ITPRIPL2 NP_001030013 

227799_at B myosin IG MYO1G NP_149043 

229670_at B --- --- --- 

229686_at B 
purinergic receptor P2Y, G-

protein coupled, 8 
P2RY8 NP_835230 

230175_s_at B --- --- --- 

230805_at B --- --- --- 

230836_at B 
ST8 alpha-N-acetyl-

neuraminide alpha-2,8-
sialyltransferase 4 

ST8SIA4 
NP_005659  
 NP_778222 

229538_s_at B 
IQ motif containing GTPase 

activating protein 3 
IQGAP3 NP_839943 

232541_at B --- --- --- 

232843_s_at B dedicator of cytokinesis 8 DOCK8 NP_982272 

231897_at B prostaglandin reductase 1 PTGR1 
NP_001139580  
 NP_001139581  

 NP_036344 

232994_s_at B 
Rho-guanine nucleotide 

exchange factor 
RGNEF NP_001073948 
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Probe Name 
Gene 
Array 

Gene Name Gene Symbol RefSeq Protein ID 

235020_at B 

TAF4b RNA polymerase II, 
TATA box binding protein 
(TBP)-associated factor, 

105kDa 

TAF4B NP_005631 

235072_s_at B --- --- --- 

234339_s_at B 
glioma tumor suppressor 
candidate region gene 2 

GLTSCR2 NP_056525 

233496_s_at B cofilin 2 (muscle) CFL2 
NP_068733  
 NP_619579 

236565_s_at B 
La ribonucleoprotein domain 

family, member 6 
LARP6 

NP_060827  
 NP_932062 

236198_at B --- --- --- 

239294_at B --- --- --- 

242520_s_at B 
chromosome 1 open reading 

frame 228 
C1orf228 NP_001139108 

242521_at B --- --- --- 

241879_at B --- --- --- 

244533_at B --- --- --- 

200601_at A actinin, alpha 4 ACTN4 NP_004915 

200782_at A annexin A5 ANXA5 NP_001145 

200787_s_at A 
phosphoprotein enriched in 

astrocytes 15 
PEA15 NP_003759 

200788_s_at A 
phosphoprotein enriched in 

astrocytes 15 
PEA15 NP_003759 

243601_at B 
hypothetical protein 

LOC285957 
LOC285957 --- 

244654_at B myosin IG MYO1G NP_149043 

200859_x_at A filamin A, alpha FLNA 
NP_001104026  

 NP_001447 

200872_at A 
S100 calcium binding protein 

A10 
S100A10 NP_002957 

201681_s_at A 
discs, large homolog 5 

(Drosophila) 
DLG5 NP_004738 

202133_at A 
WW domain containing 
transcription regulator 1 

WWTR1 NP_056287 

201021_s_at A 
destrin (actin depolymerizing 

factor) 
DSTN 

NP_001011546  
 NP_006861 

201022_s_at A 
destrin (actin depolymerizing 

factor) 
DSTN 

NP_001011546  
 NP_006861 

201289_at A 
cysteine-rich, angiogenic 

inducer, 61 
CYR61 NP_001545 

202431_s_at A 
v-myc myelocytomatosis viral 

oncogene homolog (avian) 
MYC NP_002458 



 

254 

 

Probe Name 
Gene 
Array 

Gene Name Gene Symbol RefSeq Protein ID 

200885_at A 
ras homolog gene family, 

member C 
RHOC 

NP_001036143  
 NP_001036144  

 NP_786886 
202458_at A protease, serine, 23 PRSS23 NP_009104 

202052_s_at A retinoic acid induced 14 RAI14 

NP_001138992  
 NP_001138993  
 NP_001138994  
 NP_001138995  
 NP_001138997  

 NP_056392 

202470_s_at A 
cleavage and polyadenylation 

specific factor 6, 68kDa 
CPSF6 NP_008938 

201215_at A plastin 3 (T isoform) PLS3 
NP_001129497  

 NP_005023 

201220_x_at A C-terminal binding protein 2 CTBP2 
NP_001077383  

 NP_001320  
 NP_073713 

201445_at A calponin 3, acidic CNN3 NP_001830 

202071_at A syndecan 4 SDC4 NP_002990 

201462_at A secernin 1 SCRN1 

NP_001138985  
 NP_001138986  
 NP_001138987  

 NP_055581 

201467_s_at A 
NAD(P)H dehydrogenase, 

quinone 1 
NQO1 

NP_000894  
 NP_001020604  
 NP_001020605 

201468_s_at A 
NAD(P)H dehydrogenase, 

quinone 1 
NQO1 

NP_000894  
 NP_001020604  
 NP_001020605 

201471_s_at A sequestosome 1 SQSTM1 
NP_001135770  
 NP_001135771  

 NP_003891 

201059_at A cortactin CTTN 
NP_005222  
 NP_612632 

200636_s_at A 
protein tyrosine phosphatase, 

receptor type, F 
PTPRF 

NP_002831  
 NP_569707 

200660_at A 
S100 calcium binding protein 

A11 
S100A11 NP_005611 

201073_s_at A 

SWI/SNF related, matrix 
associated, actin dependent 

regulator of chromatin, 
subfamily c, member 1 

SMARCC1 NP_003065 
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Probe Name 
Gene 
Array 

Gene Name Gene Symbol RefSeq Protein ID 

201087_at A paxillin PXN 
NP_001074324  

 NP_002850  
 NP_079433 

201505_at A laminin, beta 1 LAMB1 NP_002282 

201939_at A polo-like kinase 2 (Drosophila) PLK2 NP_006613 

200698_at A 
KDEL (Lys-Asp-Glu-Leu) 
endoplasmic reticulum 

protein retention receptor 2 
KDELR2 

NP_001094073  
 NP_006845 

201969_at A 
nuclear autoantigenic sperm 

protein (histone-binding) 
NASP 

NP_002473  
 NP_689511  
 NP_751896 

200663_at A CD63 molecule CD63 
NP_001035123  

 NP_001771 

200673_at A 
lysosomal protein 

transmembrane 4 alpha 
LAPTM4A NP_055528 

201125_s_at A integrin, beta 5 ITGB5 NP_002204 

201585_s_at A 

splicing factor 
proline/glutamine-rich 

(polypyrimidine tract binding 
protein associated) 

SFPQ NP_005057 

201976_s_at A myosin X MYO10 NP_036466 

201983_s_at A 

epidermal growth factor 
receptor (erythroblastic 
leukemia viral (v-erb-b) 

oncogene homolog, avian) 

EGFR 

NP_005219  
 NP_958439  
 NP_958440  
 NP_958441 

201984_s_at A 

epidermal growth factor 
receptor (erythroblastic 
leukemia viral (v-erb-b) 

oncogene homolog, avian) 

EGFR 

NP_005219  
 NP_958439  
 NP_958440  
 NP_958441 

201995_at A exostoses (multiple) 1 EXT1 NP_000118 

201590_x_at A annexin A2 ANXA2 

NP_001002857  
 NP_001002858  
 NP_001129487  

 NP_004030 

202011_at A 
tight junction protein 1 (zona 

occludens 1) 
TJP1 

NP_003248  
 NP_783297 

201172_x_at A 
ATPase, H+ transporting, 

lysosomal 9kDa, V0 subunit 
e1 

ATP6V0E1 NP_003936 

201360_at A cystatin C CST3 NP_000090 

201798_s_at A myoferlin MYOF 
NP_038479  
 NP_579899 

200770_s_at A 
laminin, gamma 1 (formerly 

LAMB2) 
LAMC1 NP_002284 
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Probe Name 
Gene 
Array 

Gene Name Gene Symbol RefSeq Protein ID 

200771_at A 
laminin, gamma 1 (formerly 

LAMB2) 
LAMC1 NP_002284 

200931_s_at A vinculin VCL 
NP_003364  
 NP_054706 

201373_at A 
plectin 1, intermediate 

filament binding protein 
500kDa 

PLEC1 

NP_000436  
 NP_958780  
 NP_958781  
 NP_958782  
 NP_958783  
 NP_958784  
 NP_958785  
 NP_958786 

202237_at A 
nicotinamide N-

methyltransferase 
NNMT NP_006160 

202238_s_at A 
nicotinamide N-

methyltransferase 
NNMT NP_006160 

202252_at A 
RAB13, member RAS 

oncogene family 
RAB13 NP_002861 

200998_s_at A 
cytoskeleton-associated 

protein 4 
CKAP4 NP_006816 

200999_s_at A 
cytoskeleton-associated 

protein 4 
CKAP4 NP_006816 

201242_s_at A 
ATPase, Na+/K+ transporting, 

beta 1 polypeptide 
ATP1B1 

NP_001001787  
 NP_001668 

201243_s_at A 
ATPase, Na+/K+ transporting, 

beta 1 polypeptide 
ATP1B1 

NP_001001787  
 NP_001668 

201251_at A pyruvate kinase, muscle PKM2 
NP_002645  
 NP_872270  
 NP_872271 

202551_s_at A 
cysteine rich transmembrane 
BMP regulator 1 (chordin-like) 

CRIM1 NP_057525 

202552_s_at A 
cysteine rich transmembrane 
BMP regulator 1 (chordin-like) 

CRIM1 NP_057525 

203705_s_at A 
frizzled homolog 7 

(Drosophila) 
FZD7 NP_003498 

203706_s_at A 
frizzled homolog 7 

(Drosophila) 
FZD7 NP_003498 

204992_s_at A profilin 2 PFN2 
NP_002619  
 NP_444252 

205417_s_at A 
dystroglycan 1 (dystrophin-
associated glycoprotein 1) 

DAG1 NP_004384 

203323_at A caveolin 2 CAV2 
NP_001224  
 NP_937855 

203324_s_at A caveolin 2 CAV2 
NP_001224  
 NP_937855 



 

257 

 

Probe Name 
Gene 
Array 

Gene Name Gene Symbol RefSeq Protein ID 

204116_at A 
interleukin 2 receptor, 

gamma (severe combined 
immunodeficiency) 

IL2RG NP_000197 

204560_at A FK506 binding protein 5 FKBP5 

NP_001139247  
 NP_001139248  
 NP_001139249  

 NP_004108 

202733_at A 
prolyl 4-hydroxylase, alpha 

polypeptide II 
P4HA2 

NP_001017973  
 NP_001017974  
 NP_001136070  
 NP_001136071  

 NP_004190 
202756_s_at A glypican 1 GPC1 NP_002072 

202822_at A 
LIM domain containing 
preferred translocation 

partner in lipoma 
LPP NP_005569 

203262_s_at A 
family with sequence 

similarity 50, member A 
FAM50A NP_004690 

204489_s_at A 
CD44 molecule (Indian blood 

group) 
CD44 

NP_000601  
 NP_001001389  
 NP_001001390  
 NP_001001391  
 NP_001001392 

202377_at A --- --- --- 

202381_at A 
ADAM metallopeptidase 

domain 9 (meltrin gamma) 
ADAM9 

NP_001005845  
 NP_003807 

203411_s_at A lamin A/C LMNA 
NP_005563  
 NP_733821  
 NP_733822 

203416_at A CD53 molecule CD53 
NP_000551  

 NP_001035122 

204490_s_at A 
CD44 molecule (Indian blood 

group) 
CD44 

NP_000601  
 NP_001001389  
 NP_001001390  
 NP_001001391  
 NP_001001392 

203002_at A angiomotin like 2 AMOTL2 NP_057285 

202587_s_at A adenylate kinase 1 AK1 NP_000467 

203038_at A 
protein tyrosine phosphatase, 

receptor type, K 
PTPRK 

NP_001129120  
 NP_002835 

204066_s_at A 
ArfGAP with GTPase domain, 

ankyrin repeat and PH 
domain 1 

AGAP1 
NP_001032208  

 NP_055729 
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203065_s_at A 
caveolin 1, caveolae protein, 

22kDa 
CAV1 NP_001744 

203499_at A EPH receptor A2 EPHA2 NP_004422 

203510_at A 
met proto-oncogene 

(hepatocyte growth factor 
receptor) 

MET 
NP_000236  

 NP_001120972 

204513_s_at A engulfment and cell motility 1 ELMO1 
NP_001034548  

 NP_055615  
 NP_569709 

202598_at A 
S100 calcium binding protein 

A13 
S100A13 

NP_001019381  
 NP_001019382  
 NP_001019383  
 NP_001019384  

 NP_005970 

202609_at A 
epidermal growth factor 

receptor pathway substrate 8 
EPS8 NP_004438 

204517_at A 
peptidylprolyl isomerase C 

(cyclophilin C) 
PPIC NP_000934 

204951_at A 
ras homolog gene family, 

member H 
RHOH NP_004301 

204960_at A 
protein tyrosine phosphatase, 

receptor type, C-associated 
protein 

PTPRCAP NP_005599 

202949_s_at A four and a half LIM domains 2 FHL2 

NP_001034581  
 NP_001441  
 NP_963849  
 NP_963851 

202957_at A 
hematopoietic cell-specific 

Lyn substrate 1 
HCLS1 NP_005326 

204657_s_at A 
Src homology 2 domain 

containing adaptor protein B 
SHB NP_003019 

204411_at A kinesin family member 21B KIF21B NP_060066 

204425_at A 
Rho GTPase activating protein 

4 
ARHGAP4 NP_001657 

206752_s_at A 
DNA fragmentation factor, 
40kDa, beta polypeptide 

(caspase-activated DNase) 
DFFB NP_004393 

204852_s_at A 
protein tyrosine phosphatase, 

non-receptor type 7 
PTPN7 

NP_002823  
 NP_542155 

205213_at A 
ArfGAP with coiled-coil, 
ankyrin repeat and PH 

domains 1 
ACAP1 NP_055531 

204220_at A 
glia maturation factor, 

gamma 
GMFG NP_004868 
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204237_at A 
GULP, engulfment adaptor 
PTB domain containing 1 

GULP1 NP_057399 

204341_at A tripartite motif-containing 16 TRIM16 NP_006461 

204248_at A 
guanine nucleotide binding 

protein (G protein), alpha 11 
(Gq class) 

GNA11 NP_002058 

203965_at A 
ubiquitin specific peptidase 

20 
USP20 

NP_001008563  
 NP_001103773  

 NP_006667 

205038_at A 
IKAROS family zinc finger 1 

(Ikaros) 
IKZF1 NP_006051 

204688_at A sarcoglycan, epsilon SGCE 
NP_001092870  
 NP_001092871  

 NP_003910 

204798_at A 
v-myb myeloblastosis viral 
oncogene homolog (avian) 

MYB 

NP_001123644  
 NP_001123645  
 NP_001155128  
 NP_001155129  
 NP_001155130  
 NP_001155131  
 NP_001155132  

 NP_005366 

204152_s_at A 
MFNG O-fucosylpeptide 3-

beta-N-
acetylglucosaminyltransferase 

MFNG NP_002396 

204153_s_at A 
MFNG O-fucosylpeptide 3-

beta-N-
acetylglucosaminyltransferase 

MFNG NP_002396 

203760_s_at A Src-like-adaptor SLA 
NP_001039021  
 NP_001039022  

 NP_006739 

203761_at A Src-like-adaptor SLA 
NP_001039021  
 NP_001039022  

 NP_006739 

205266_at A 
leukemia inhibitory factor 
(cholinergic differentiation 

factor) 
LIF NP_002300 

205269_at A 
lymphocyte cytosolic protein 

2 (SH2 domain containing 
leukocyte protein of 76kDa) 

LCP2 NP_005556 

205270_s_at A 
lymphocyte cytosolic protein 

2 (SH2 domain containing 
leukocyte protein of 76kDa) 

LCP2 NP_005556 

203910_at A 
Rho GTPase activating protein 

29 
ARHGAP29 NP_004806 
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204306_s_at A 
CD151 molecule (Raph blood 

group) 
CD151 

NP_001034579  
 NP_004348  
 NP_620598  
 NP_620599 

206414_s_at A 
ArfGAP with SH3 domain, 

ankyrin repeat and PH 
domain 2 

ASAP2 
NP_001128663  

 NP_003878 

206660_at A 
immunoglobulin lambda-like 

polypeptide 1 
IGLL1 

NP_064455  
 NP_690594 

208862_s_at A 
catenin (cadherin-associated 

protein), delta 1 
CTNND1 

NP_001078927  
 NP_001078928  
 NP_001078929  
 NP_001078930  
 NP_001078931  
 NP_001078932  
 NP_001078933  
 NP_001078934  
 NP_001078935  
 NP_001078936  
 NP_001078937  
 NP_001078938  

 NP_001322 

205739_x_at A zinc finger protein 107 ZNF107 
NP_001013768  

 NP_057304 

207238_s_at A 
protein tyrosine phosphatase, 

receptor type, C 
PTPRC 

NP_002829  
 NP_563578  
 NP_563579  
 NP_563580 

205884_at A 
integrin, alpha 4 (antigen 
CD49D, alpha 4 subunit of 

VLA-4 receptor) 
ITGA4 NP_000876 

205885_s_at A 
integrin, alpha 4 (antigen 
CD49D, alpha 4 subunit of 

VLA-4 receptor) 
ITGA4 NP_000876 

205573_s_at A sorting nexin 7 SNX7 
NP_057060  
 NP_689424 

206116_s_at A tropomyosin 1 (alpha) TPM1 

NP_000357  
 NP_001018004  
 NP_001018005  
 NP_001018006  
 NP_001018007  
 NP_001018008  
 NP_001018020 

208816_x_at A annexin A2 pseudogene 2 ANXA2P2 --- 
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208820_at A 
PTK2 protein tyrosine kinase 

2 
PTK2 

NP_005598  
 NP_722560 

206039_at A 
RAB33A, member RAS 

oncogene family 
RAB33A NP_004785 

209263_x_at A tetraspanin 4 TSPAN4 

NP_001020405  
 NP_001020406  
 NP_001020407  
 NP_001020408  
 NP_001020409  
 NP_001020410  

 NP_003262 

209264_s_at A tetraspanin 4 TSPAN4 

NP_001020405  
 NP_001020406  
 NP_001020407  
 NP_001020408  
 NP_001020409  
 NP_001020410  

 NP_003262 

207522_s_at A 
ATPase, Ca++ transporting, 

ubiquitous 
ATP2A3 

NP_005164  
 NP_777613  
 NP_777614  
 NP_777615  
 NP_777616  
 NP_777617  
 NP_777618 

209734_at A NCK-associated protein 1-like NCKAP1L NP_005328 

208540_x_at A 
S100 calcium binding protein 

A11 
S100A11 NP_005611 

209289_at A nuclear factor I/B NFIB NP_005587 

209290_s_at A nuclear factor I/B NFIB NP_005587 

208770_s_at A 
eukaryotic translation 

initiation factor 4E binding 
protein 2 

EIF4EBP2 NP_004087 

207525_s_at A 
GIPC PDZ domain containing 

family, member 1 
GIPC1 

NP_005707  
 NP_974196  
 NP_974197  
 NP_974198  
 NP_974199  
 NP_974223 

208056_s_at A 
core-binding factor, runt 
domain, alpha subunit 2; 

translocated to, 3 
CBFA2T3 

NP_005178  
 NP_787127 

207738_s_at A NCK-associated protein 1 NCKAP1 
NP_038464  
 NP_995314 
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208456_s_at A 
related RAS viral (r-ras) 
oncogene homolog 2 

RRAS2 
NP_001096139  

 NP_036382 

208683_at A calpain 2, (m/II) large subunit CAPN2 
NP_001139540  

 NP_001739 

207957_s_at A protein kinase C, beta PRKCB 
NP_002729  
 NP_997700 

208885_at A 
lymphocyte cytosolic protein 

1 (L-plastin) 
LCP1 NP_002289 

208898_at A 
ATPase, H+ transporting, 

lysosomal 34kDa, V1 subunit 
D 

ATP6V1D NP_057078 

207467_x_at A calpastatin CAST 

NP_001035905  
 NP_001035906  
 NP_001035907  
 NP_001035908  
 NP_001035909  
 NP_001035910  
 NP_001035911  

 NP_001741  
 NP_775083  
 NP_775084  
 NP_775086 

208908_s_at A calpastatin CAST 

NP_001035905  
 NP_001035906  
 NP_001035907  
 NP_001035908  
 NP_001035909  
 NP_001035910  
 NP_001035911  

 NP_001741  
 NP_775083  
 NP_775084  
 NP_775086 

209684_at A Ras and Rab interactor 2 RIN2 NP_061866 

209685_s_at A protein kinase C, beta PRKCB 
NP_002729  
 NP_997700 

208711_s_at A cyclin D1 CCND1 NP_444284 

208712_at A cyclin D1 CCND1 NP_444284 

208613_s_at A filamin B, beta FLNB 

NP_001157789  
 NP_001157790  
 NP_001157791  

 NP_001448 

208206_s_at A 
RAS guanyl releasing protein 

2 (calcium and DAG-
regulated) 

RASGRP2 
NP_001092140  
 NP_001092141  

 NP_722541 
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208636_at A actinin, alpha 1 ACTN1 
NP_001093  

 NP_001123476  
 NP_001123477 

208637_x_at A actinin, alpha 1 ACTN1 
NP_001093  

 NP_001123476  
 NP_001123477 

212185_x_at A metallothionein 2A MT2A NP_005944 

209386_at A 
transmembrane 4 L six family 

member 1 
TM4SF1 NP_055035 

209834_at A 
carbohydrate (chondroitin 6) 

sulfotransferase 3 
CHST3 NP_004264 

209835_x_at A 
CD44 molecule (Indian blood 

group) 
CD44 

NP_000601  
 NP_001001389  
 NP_001001390  
 NP_001001391  
 NP_001001392 

209154_at A 
Tax1 (human T-cell leukemia 
virus type I) binding protein 3 

TAX1BP3 NP_055419 

208949_s_at A 
lectin, galactoside-binding, 

soluble, 3 
LGALS3 NP_002297 

208951_at A 
aldehyde dehydrogenase 7 

family, member A1 
ALDH7A1 NP_001173 

209488_s_at A 
RNA binding protein with 

multiple splicing 
RBPMS 

NP_001008710  
 NP_001008711  
 NP_001008712  

 NP_006858 

212195_at A 
interleukin 6 signal 

transducer (gp130, oncostatin 
M receptor) 

IL6ST 
NP_002175  
 NP_786943 

209083_at A 
coronin, actin binding protein, 

1A 
CORO1A NP_009005 

209879_at A selectin P ligand SELPLG NP_002997 

210519_s_at A 
NAD(P)H dehydrogenase, 

quinone 1 
NQO1 

NP_000894  
 NP_001020604  
 NP_001020605 

209108_at A tetraspanin 6 TSPAN6 NP_003261 

209213_at A carbonyl reductase 1 CBR1 NP_001748 

209432_s_at A 
cAMP responsive element 

binding protein 3 
CREB3 NP_006359 

210427_x_at A annexin A2 ANXA2 

NP_001002857  
 NP_001002858  
 NP_001129487  

 NP_004030 
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209135_at A aspartate beta-hydroxylase ASPH 

NP_004309  
 NP_064549  
 NP_115855  
 NP_115856  
 NP_115857 

212169_at A 
FK506 binding protein 9, 63 

kDa 
FKBP9 NP_009201 

210038_at A protein kinase C, theta PRKCQ NP_006248 

210039_s_at A protein kinase C, theta PRKCQ NP_006248 

212061_at A U2-associated SR140 protein SR140 NP_001073884 

211160_x_at A actinin, alpha 1 ACTN1 
NP_001093  

 NP_001123476  
 NP_001123477 

210876_at A annexin A2 pseudogene 1 ANXA2P1 --- 

213539_at A 
CD3d molecule, delta (CD3-

TCR complex) 
CD3D 

NP_000723  
 NP_001035741 

211986_at A AHNAK nucleoprotein AHNAK 
NP_001611  
 NP_076965 

212086_x_at A lamin A/C LMNA 
NP_005563  
 NP_733821  
 NP_733822 

212089_at A lamin A/C LMNA 
NP_005563  
 NP_733821  
 NP_733822 

212097_at A 
caveolin 1, caveolae protein, 

22kDa 
CAV1 NP_001744 

212104_s_at A RNA binding motif protein 9 RBM9 

NP_001026865  
 NP_001076045  
 NP_001076046  
 NP_001076047  
 NP_001076048  

 NP_055124 

210986_s_at A tropomyosin 1 (alpha) TPM1 

NP_000357  
 NP_001018004  
 NP_001018005  
 NP_001018006  
 NP_001018007  
 NP_001018008  
 NP_001018020 
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210987_x_at A tropomyosin 1 (alpha) TPM1 

NP_000357  
 NP_001018004  
 NP_001018005  
 NP_001018006  
 NP_001018007  
 NP_001018008  
 NP_001018020 

210896_s_at A aspartate beta-hydroxylase ASPH 

NP_004309  
 NP_064549  
 NP_115855  
 NP_115856  
 NP_115857 

212014_x_at A 
CD44 molecule (Indian blood 

group) 
CD44 

NP_000601  
 NP_001001389  
 NP_001001390  
 NP_001001391  
 NP_001001392 

210835_s_at A C-terminal binding protein 2 CTBP2 
NP_001077383  

 NP_001320  
 NP_073713 

213036_x_at A 
ATPase, Ca++ transporting, 

ubiquitous 
ATP2A3 

NP_005164  
 NP_777613  
 NP_777614  
 NP_777615  
 NP_777616  
 NP_777617  
 NP_777618 

211919_s_at A 
chemokine (C-X-C motif) 

receptor 4 
CXCR4 

NP_001008540  
 NP_003458 

211938_at A 
eukaryotic translation 

initiation factor 4B 
EIF4B NP_001408 

213944_x_at A 
guanine nucleotide binding 

protein (G protein), alpha 11 
(Gq class) 

GNA11 NP_002058 

212587_s_at A 
protein tyrosine phosphatase, 

receptor type, C 
PTPRC 

NP_002829  
 NP_563578  
 NP_563579  
 NP_563580 

212588_at A 
protein tyrosine phosphatase, 

receptor type, C 
PTPRC 

NP_002829  
 NP_563578  
 NP_563579  
 NP_563580 

212589_at A 
related RAS viral (r-ras) 
oncogene homolog 2 

RRAS2 
NP_001096139  

 NP_036382 
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212590_at A 
related RAS viral (r-ras) 
oncogene homolog 2 

RRAS2 
NP_001096139  

 NP_036382 

210644_s_at A 
leukocyte-associated 

immunoglobulin-like receptor 
1 

LAIR1 
NP_002278  
 NP_068352 

211240_x_at A 
catenin (cadherin-associated 

protein), delta 1 
CTNND1 

NP_001078927  
 NP_001078928  
 NP_001078929  
 NP_001078930  
 NP_001078931  
 NP_001078932  
 NP_001078933  
 NP_001078934  
 NP_001078935  
 NP_001078936  
 NP_001078937  
 NP_001078938  

 NP_001322 
211651_s_at A laminin, beta 1 LAMB1 NP_002282 

213503_x_at A annexin A2 ANXA2 

NP_001002857  
 NP_001002858  
 NP_001129487  

 NP_004030 

211864_s_at A myoferlin MYOF 
NP_038479  
 NP_579899 

211945_s_at A 

integrin, beta 1 (fibronectin 
receptor, beta polypeptide, 

antigen CD29 includes MDF2, 
MSK12) 

ITGB1 

NP_002202  
 NP_389647  
 NP_391987  
 NP_391988  
 NP_391989  
 NP_596867 

212294_at A 
guanine nucleotide binding 
protein (G protein), gamma 

12 
GNG12 NP_061329 

212724_at A Rho family GTPase 3 RND3 NP_005159 

213746_s_at A filamin A, alpha FLNA 
NP_001104026  

 NP_001447 
212285_s_at A agrin AGRN NP_940978 

212413_at A septin 6 6-Sep 

NP_055944  
 NP_665798  
 NP_665799  
 NP_665801 

212738_at A 
Rho GTPase activating protein 

19 
ARHGAP19 NP_116289 
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212973_at A 
ribose 5-phosphate isomerase 

A 
RPIA NP_653164 

213666_at A septin 6 6-Sep 

NP_055944  
 NP_665798  
 NP_665799  
 NP_665801 

213766_x_at A 
guanine nucleotide binding 

protein (G protein), alpha 11 
(Gq class) 

GNA11 NP_002058 

212415_at A septin 6 6-Sep 

NP_055944  
 NP_665798  
 NP_665799  
 NP_665801 

212420_at A 
E74-like factor 1 (ets domain 

transcription factor) 
ELF1 

NP_001138825  
 NP_758961 

213888_s_at A TRAF3 interacting protein 3 TRAF3IP3 NP_079504 

212658_at A 
lipoma HMGIC fusion partner-

like 2 
LHFPL2 NP_005770 

212662_at A poliovirus receptor PVR 

NP_001129240  
 NP_001129241  
 NP_001129242  

 NP_006496 

212765_at A 
calmodulin regulated 

spectrin-associated protein 1-
like 1 

CAMSAP1L1 NP_982284 

212873_at A 
histocompatibility (minor) 

HA-1 
HMHA1 NP_036424 

212885_at A 
M-phase phosphoprotein 10 

(U3 small nucleolar 
ribonucleoprotein) 

MPHOSPH10 NP_005782 

212992_at A AHNAK nucleoprotein 2 AHNAK2 NP_612429 

213358_at A KIAA0802 KIAA0802 NP_056025 

213455_at A 
family with sequence 

similarity 114, member A1 
FAM114A1 NP_612398 

213901_x_at A RNA binding motif protein 9 RBM9 

NP_001026865  
 NP_001076045  
 NP_001076046  
 NP_001076047  
 NP_001076048  

 NP_055124 

213915_at A 
natural killer cell group 7 

sequence 
NKG7 NP_005592 

213160_at A dedicator of cytokinesis 2 DOCK2 NP_004937 

213029_at A nuclear factor I/B NFIB NP_005587 
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214752_x_at A filamin A, alpha FLNA 
NP_001104026  

 NP_001447 

212698_s_at A septin 10 10-Sep 
NP_653311  
 NP_848699 

212364_at A myosin IB MYO1B 
NP_001123630  
 NP_001155291  

 NP_036355 

212254_s_at A dystonin DST 

NP_001138241  
 NP_001138242  
 NP_001138243  

 NP_001714  
 NP_056363  
 NP_065121  
 NP_899236 

212919_at A 
DCP2 decapping enzyme 
homolog (S. cerevisiae) 

DCP2 NP_689837 

212825_at A 
PAX interacting (with 

transcription-activation 
domain) protein 1 

PAXIP1 NP_031375 

217028_at A 
chemokine (C-X-C motif) 

receptor 4 
CXCR4 

NP_001008540  
 NP_003458 

215464_s_at A 
Tax1 (human T-cell leukemia 
virus type I) binding protein 3 

TAX1BP3 NP_055419 

215016_x_at A dystonin DST 

NP_001138241  
 NP_001138242  
 NP_001138243  

 NP_001714  
 NP_056363  
 NP_065121  
 NP_899236 

214039_s_at A 
lysosomal protein 

transmembrane 4 beta 
LAPTM4B NP_060877 

215091_s_at A 
general transcription factor 

IIIA 
GTF3A NP_002088 

217419_x_at A agrin AGRN NP_940978 

214882_s_at A 
splicing factor, 

arginine/serine-rich 2 
SFRS2 NP_003007 

214679_x_at A 
guanine nucleotide binding 

protein (G protein), alpha 11 
(Gq class) 

GNA11 NP_002058 

217892_s_at A 
LIM domain and actin binding 

1 
LIMA1 

NP_001107018  
 NP_001107019  

 NP_057441 
216264_s_at A laminin, beta 2 (laminin S) LAMB2 NP_002283 
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Gene Name Gene Symbol RefSeq Protein ID 

218733_at A 
male-specific lethal 2 
homolog (Drosophila) 

MSL2 
NP_001138889  

 NP_060603 

218738_s_at A ring finger protein 138 RNF138 
NP_057355  
 NP_937761 

216215_s_at A RNA binding motif protein 9 RBM9 

NP_001026865  
 NP_001076045  
 NP_001076046  
 NP_001076047  
 NP_001076048  

 NP_055124 
219191_s_at A bridging integrator 2 BIN2 NP_057377 

216226_at A 

TAF4b RNA polymerase II, 
TATA box binding protein 
(TBP)-associated factor, 

105kDa 

TAF4B NP_005631 

217849_s_at A 
CDC42 binding protein kinase 

beta (DMPK-like) 
CDC42BPB NP_006026 

218870_at A 
Rho GTPase activating protein 

15 
ARHGAP15 NP_060930 

218418_s_at A 
KN motif and ankyrin repeat 

domains 2 
KANK2 

NP_001129663  
 NP_056308 

218656_s_at A lipoma HMGIC fusion partner LHFP NP_005771 

221059_s_at A 
coactosin-like 1 
(Dictyostelium) 

COTL1 NP_066972 

217996_at A 
pleckstrin homology-like 

domain, family A, member 1 
PHLDA1 NP_031376 

218793_s_at A 
sex comb on midleg-like 1 

(Drosophila) 
SCML1 

NP_001032624  
 NP_001032625  
 NP_001032629  

 NP_006737 

218028_at A 
elongation of very long chain 

fatty acids (FEN1/Elo2, 
SUR4/Elo3, yeast)-like 1 

ELOVL1 NP_073732 

218368_s_at A 
tumor necrosis factor 
receptor superfamily, 

member 12A 
TNFRSF12A NP_057723 

218581_at A 
abhydrolase domain 

containing 4 
ABHD4 NP_071343 

218168_s_at A 
chaperone, ABC1 activity of 

bc1 complex homolog (S. 
pombe) 

CABC1 NP_064632 

220704_at A 
IKAROS family zinc finger 1 

(Ikaros) 
IKZF1 NP_006051 
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Probe Name 
Gene 
Array 

Gene Name Gene Symbol RefSeq Protein ID 

220865_s_at A 
prenyl (decaprenyl) 

diphosphate synthase, 
subunit 1 

PDSS1 NP_055132 

219944_at A 
CAP-GLY domain containing 

linker protein family, member 
4 

CLIP4 NP_078968 

221007_s_at A FIP1 like 1 (S. cerevisiae) FIP1L1 
NP_001128409  
 NP_001128410  

 NP_112179 

219862_s_at A 
nuclear prelamin A 
recognition factor 

NARF 

NP_001033707  
 NP_001077077  

 NP_036468  
 NP_114174 

220330_s_at A 
SAM domain, SH3 domain 

and nuclear localization 
signals 1 

SAMSN1 NP_071419 

221676_s_at A 
coronin, actin binding protein, 

1C 
CORO1C NP_055140 

35974_at A 
lymphoid-restricted 
membrane protein 

LRMP NP_006143 

40562_at A 
guanine nucleotide binding 

protein (G protein), alpha 11 
(Gq class) 

GNA11 NP_002058 

221293_s_at A 
differentially expressed in 
FDCP 6 homolog (mouse) 

DEF6 NP_071330 

222258_s_at A SH3-domain binding protein 4 SH3BP4 NP_055336 

221606_s_at A 
nucleosomal binding protein 

1 
NSBP1 NP_110390 

222154_s_at A 
spermatogenesis associated, 

serine-rich 2-like 
SPATS2L 

NP_001093892  
 NP_001093893  
 NP_001093894  

 NP_056350 

564_at A 
guanine nucleotide binding 

protein (G protein), alpha 11 
(Gq class) 

GNA11 NP_002058 

57163_at A 
elongation of very long chain 

fatty acids (FEN1/Elo2, 
SUR4/Elo3, yeast)-like 1 

ELOVL1 NP_073732 
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Appendix X: Networks of Gene Expression Markers 

Listed below are the networks identified by ingenuity pathway analysis of hypothetical 

biomarkers of multidrug resistance.  For each network, a figure elucidating the connectivity of 

the network‘s proteins is provided. 

ID Molecules in Network Score 
Focus 

Molecules 
Top Functions 

1 

ACAP1, AGRN, Akt, ANXA2, ASAP1, ASAP2, 
Calmodulin, CaMKII, CAPN2, CAST, CAV1, CAV2, 
CKAP4, Collagen Alpha1, DAG1, Dynamin, Ecm, 

Filamin, FLNB, LAIR1, Lamin b, LMNA, NARF, PEA15, 
PLEC, PTK2, PTPRF, PXN, RGNEF, SH3BP4, 

sphingomyelinase, TEAD1, Tgf beta, WWTR1, YAP1 

43 25 

Cellular Assembly 
and Organization, 
Cellular Function 
and Maintenance, 
Cellular Movement 

2 

AMOTL2, CPSF6, Creb, CRIM1, EGFR, EIF4EBP2, 
ELF1, EPHA2, ERK, FKBP5, FKBP9, FSH, FZD7, 
GTF3A, Hsp90, LAMB2, LDL, Lh, MIR21 (includes 

EG:406991), MPHOSPH10, MST4, NFIB, 
oxidoreductase, P4HA2, peptidylprolyl isomerase, Pi3-
kinase, PKM2, PPIC, PTPRK, RAB13, RASAL2, SFPQ, 

TJP1, VCL, Vegf 

43 25 

Cell-To-Cell 
Signaling and 

Interaction, 
Cellular Assembly 
and Organization, 
Nervous System 
Development and 

Function 

3 

Actin, Actin-Actn-Ptk2-Pxn-Vcl, ACTN1, ACTN4, Alpha 
actin, Alpha Actinin, Alpha catenin, Arp2/3, Bcl9-

Cbp/p300-Ctnnb1-Lef/Tcf, CFL2, Cofilin, DFFB, DSTN, 
ENAH, EPS8, Erm, F Actin, G-Actin, GIPC1, GPC1, 

IQGAP3, JUB, LIMA1, MYC, MYO1B, MYO1C, 
NCKAP1, PFN2, PLS3, Profilin, Rock, S100A11, 

SR140, TPM1, Vla-4 

34 21 

Cellular Assembly 
and Organization, 
Cell Morphology, 

Cellular 
Compromise 

4 

ALDH7A1, CD3, CD3D, CORO1A, CREB3, Gap, 
HCLS1, IGLL1, IKZF1, IKZF5, IL2RG, LCP2, Mek, Nfat 

(family), NFkB (complex), PLK2, Ptk, PTPRC, 
PTPRCAP, PVR, Rap1, Ras, RASGRP2, RASSF5, 
RHOH, RIN2, RRAS2, SDC4, Sfk, SHB, SLA, Sos, 

TCR, TNFRSF12A, VAV 

34 23 

Hematological 
System 

Development and 
Function, Tissue 

Morphology, 
Cellular 

Development 

5 

AHNAK, Alpha tubulin, ANXA5, ARHGAP29, CBR1, 
CD44, Collagen type I, Collagen type IV, CTNND1, 
CTTN, CXCR4, CYR61, DCBLD2, DOCK2, ELMO1, 
Fgf, hCG, MAP2K1/2, MET, Mmp, P38 MAPK, Pak, 
PAXIP1, Pdgf, PDGF BB, PHLDA1, PLC gamma, 

PP2A, PTPN7, Rac, RND3, S100A10, SELPLG, Shc, 
TM4SF1 

32 20 

Cellular 
Movement, 

Cancer, 
Cardiovascular 

System 
Development and 

Function 

6 

AHNAK, ALOX5, AMOTL2, ARHGAP19, ATXN2, 
CHI3L1, CHST3, CNN3, CORO1C, COTL1, CYFIP1, 

CYFIP2 (includes EG:26999), DAZAP2 (includes 
EG:9802), FAM50A, FNDC3B, FXR2, GAS7, KDELR2, 

KIAA0182, KIAA1217, LCP1, MYOF, NCKAP1, 
NCKAP1L, NNMT, PDLIM4, QKI, RBM9, RBPMS, 

RERE, RHOXF2, RPIA, SF1, STK16, TGFB1 

28 18 

Lipid Metabolism, 
Small Molecule 
Biochemistry, 

Cellular Assembly 
and Organization 
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ID Molecules in Network Score 
Focus 

Molecules 
Top Functions 

7 

AHNAK, AK1, AKNA, ATP6V0E1, BTG3, CCDC80, 
CD40LG, CDCA7L, CDKN2A, CHEMOKINE, CSF1, 
ELOVL1, ERBB2, FAM129B, GULP1, HRAS, IL1A, 

ITGB1, JAM2, KANK2, LAMB1, LRMP, LXN, MFNG, 
MGAT5, MIR124, MYO10, MYO1G, NPNT, P4HA2, 

PMEPA1, PTRF, RIN2, S100A13, SLC29A1 

28 18 

Cell Cycle, 
Cellular Growth 

and Proliferation, 
Cell-To-Cell 

Signaling and 
Interaction 

8 

ADAM9, Calpain, Caveolin, CD53, CD63, CD151, 
Collagen(s), ERK1/2, FERMT3, FHL2, Fibrinogen, 

Focal adhesion kinase, Integrin, Integrin alpha 3 beta 1, 
Integrin alpha 6 beta 1, Integrin alpha V beta 3, 

Integrinα, Integrinβ, ITGA4, ITGB1, ITGB5, LAMB1, 
LAMC1, Laminin, Laminin1, Laminin2, LPP, 

Metalloprotease, MYO10, NTN4, SHPRH, Talin, 
TSPAN, TSPAN4, TSPAN6 

26 17 

Nervous System 
Development and 
Function, Tissue 

Development, 
Cell-To-Cell 

Signaling and 
Interaction 

9 

amino acids, ANLN, ARHGAP4, ARHGAP8, 
ARHGAP15, CAMSAP1L1, CDC42, CDC42BPA, 

CDC42BPB, DCP2, DEF6, DST, E2F1, EZR, FGD1, 
FGD3, FGD1/3, FIP1L1, GMFG, GNG12, GSK3B, 

HDAC4, MIR1, MIRLET7A1, MYO18A, RAC1, RHOA, 
RNF138, RNPS1, RUVBL2, SEPT6, SFRS2, 

TRAF3IP3, YWHAZ, ZCCHC3 

25 17 

Cellular Assembly 
and Organization, 
Cell Morphology, 

Cell Signaling 

10 

Ap1, ATP2A3, Caspase, CCND1, CTBP2, Cyclin A, 
Cyclin E, E2f, EIF4B, Estrogen Receptor, FLNA, Growth 
hormone, Gsk3, HCST, Hsp70, Ifn gamma, IL1, IL6ST, 
Insulin, Interferon alpha, JAK, Jnk, LGALS3, LIF, MT2A, 

MYB (includes EG:4602), NASP, NQO1, p85 (pik3r), 
PI3K, PI3K p85, PRKCQ, SMARCC1, STAT, STAT5a/b 

22 15 

Cellular 
Development, 

Cellular Growth 
and Proliferation, 
Cell Morphology 

11 

ANKS1B, beta-estradiol, CXCR7, DLG4, DLGAP4, 
EIF3D, FLT4, FN1, GLUL, GRB2, HTRA1, KIF21B, 
KRT17, LHFPL2, LIMA1, LMO7, MATN2, MIR23B 

(includes EG:407011), MSL2, MYO1B, PKM2, PRSS23, 
RAI14, RAPSN, RPS13, SCRN1, SHANK3, SLC25A3, 
SLC25A12, SMAD7, SNX7, TAF4B, UACA, ZNF107, 

ZNRF1 

20 14 

Cellular Assembly 
and Organization, 

Embryonic 
Development, 

Organ 
Development 

12 

BRF1, C16ORF53, CABC1, CLTCL1, CTNNB1, 
CTNNβ-TCF/LEF, DLG5, GART, GAS1, GLTSCR2, 
HNF4A, IFNA2, IPO13, KCTD1, KDM2B, KIF20A, 

LAPTM4A, LAPTM4B, NBR1, NFE2L3, NFYB, NME3, 
NME7, NOSIP, PERP, PRRG2, RFC3, RIOK1, RPL41, 

SAMSN1, SAT2, SGCE, TAX1BP3, TP53, ZNRD1 

18 14 
Cell Cycle, Gene 

Expression, 
Cancer 

13 

ABHD4, AGAP1, ASPH, ATP6V1D, ATP6V1E1, CD48, 
CDH13, CHP, DEFB103A, FABP7, Focal adhesion 
kinase, FUCA1, GNA11, HIF1A, HTRA1, HTT, IL13, 
LDHA, LONP1, MTSS1, NFkB (complex), oleic acid, 
P4HA1, PKM2, PRDX3, RAB33A, RTN3, SCARB2, 
SEPT9, SLC25A3, SLC25A11, SLC2A4, SRGAP1, 

ST8SIA4, USP20 

13 11 

Energy 
Production, 
Molecular 

Transport, Nucleic 
Acid Metabolism 

14 

2' 5' oas, Androgen-AR, ARHGAP24, ARHGAP26, 
ATP1B1, Bcl10-Card10-Malt1, CACNB2, CBFA2T3, 
Ck2, CST3, EXT1, Histone h3, Histone h4, IgG, IKK 

(complex), IL12 (complex), Immunoglobulin, 
MAP1LC3A, Mapk, MHC Class II (complex), MYO9B, 
NGF, PARP10, Pka, Pkc(s), PRKCB, Ras homolog, 

RHOC, RHPN1, RNA polymerase II, SPATS2L, 
SQSTM1, TGFB2, TRIM16, Ubiquitin 

12 10 

Cardiac 
Necrosis/Cell 

Death, Cell Death, 
Cellular Assembly 
and Organization 
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Network 1: 
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Network 2 (as seen in the body): 
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Network 3: 
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Network 4: 
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Network 5: 
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Network 6:  
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Network 7:  

 
 

  



 

281 

 

Network 8:  
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Network 9: 

 
 

  



 

283 

 

Network 10: 
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Network 11:  
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Network 12: 
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Network 13: 
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Network 14: 
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