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ABSTRACT 

Kyle Ann Palmquist: Community assembly and vegetation patterns across space and time in the 

longleaf pine ecosystem 

(Under the direction of Robert K. Peet and Alan S. Weakley) 

 

 Community assembly is the process in which species are filtered into ecological 

communities. Multiple processes, which often operate at different spatial and temporal scales, 

are thought to act synergistically to influence the number and identity of species in local 

communities. Thus, a key challenge in ecology is to identify those processes and determine their 

relative importance. Here, I document vegetation patterns in the longleaf pine ecosystem and 

quantify the relative importance of multiple ecological processes structuring those patterns. 

Chapters 2 and 3 explore how fire frequency, soil properties, and drought have influenced 

species richness and composition patterns across ~ 20 years in longleaf pine plant communities 

located in southeastern North Carolina. This work also informs land management agencies on 

best practices for implementing prescribed fire to maintain plant species richness. Chapter 4 uses 

849 vegetation plots to determine how soil properties, climate, and biogeographic history 

simultaneously shape species richness across the longleaf pine range. This work reflects on 

where species richness is highest and identifies what processes drive differences in species 

richness across latitude. Chapter 5 uses species co-occurrence metrics to quantify the relative 

importance of stochastic processes in assembling longleaf pine plant communities by examining 

whether competition, environmental filtering, and stochastic processes shift in relative 

importance across an environmental gradient. Chapter 6 synthesizes the processes that assembly 
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longleaf pine communities and then extends those findings by drawing parallels to other species-

rich grasslands. Local environmental filtering (e.g., soil properties) emerged as the most 

consistent and important factor structuring both species richness and species composition 

patterns across time and space. However, competition, climate, stochastic processes, fire 

frequency, and biogeographic history explained additional variation in species richness and 

composition unaccounted for by soil properties. As predicted, the relative importance of 

processes changed with spatial scale: environmental filtering became more important at larger 

spatial grains, while competition, stochasticity, and fire frequency became more important as 

spatial grain decreased. Thus, these results suggest vegetation patterns and their drivers are scale-

dependent and community patterns in the longleaf pine ecosystem are shaped concurrently and in 

an often complex fashion by multiple processes.
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CHAPTER 1: INTRODUCTION 

 

 A key challenge for ecologists is to identify which processes act to assemble 

communities to produce the patterns we see at local, regional, and global scales. Community 

assembly is the process in which species are filtered into ecological communities, and can be 

thought of as a number of sieves or filters, allowing certain species through, while excluding 

others (Diamond 1975, Weiher & Keddy 1995). Multiple community assembly processes (e.g., 

biotic interactions, environmental filtering, dispersal, disturbance, evolutionary history), often 

operating at different spatial and temporal scales, are thought to act simultaneously to determine 

both the identity and number of species that get to a site (e.g., diversity and composition; 

Ricklefs 2004, Harrison & Cornell 2008, Chase & Myers 2011, HilleRisLambers et al. 2012). 

Thus, a new goal in community ecology is to determine how the relative importance of multiple 

processes changes across space, time, or across communities structured along gradients (e.g., 

elevation, environmental stress, predator abundance; Leibold & McPeek 2006). 

 In this dissertation, I document vegetation patterns and identify the important processes 

responsible for the assembly of plant communities across space and time in the longleaf pine 

ecosystem. Specifically, I attempt to tease out the relative importance of fire regimes (e.g., 

frequency and timing), local environmental filtering (e.g., soils), regional environmental filtering 

(e.g., climate), biogeographic history reflected by the size of the regional species pool, stochastic 

processes, and competition. For several reasons, the longleaf pine ecosystem is an ideal system 

to explore community assembly. First, many longleaf pine plant communities are species-rich, 
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especially at small spatial scales (52 species in 1 m², representing the highest reported small-

scale species richness in North America), which has resulted in debate amongst botanists and 

plant ecologists about how so many species can coexist together (Walker & Peet 1983, Myers & 

Harms 2011; also see Wilson et al. 2012). Second, this ecosystem is fire-dependent, occurs over 

a broad spatial extent, and is structured along strong regional and local environmental gradients. 

Thus, there is some expectation that multiple processes will be important for structuring plant 

species richness and composition patterns, and that the relative importance of those processes 

may change across space and time. Third, the longleaf pine ecosystem is of great conservation 

concern in the southeastern United States as less than 3% of the original, pre-settlement acreage 

remains, of which very little is high-quality, fire-maintained habitat. In addition, the longleaf 

pine ecosystem is known for its high levels of endemic and rare taxa, including several federally 

endangered and threatened species (Estill & Cruzan 2001, Sorrie & Weakley 2001, Sorrie 

&Weakley 2006, Noss 2013). Thus, a better understanding of what processes influence species 

richness and species composition should help guide restoration and conservation of this 

endangered ecosystem. 

 A second unifying theme across my chapters is the component of scale. Scale is a central, 

key concept that connects research across disciplines in ecology (Levin 1992). Over the last 

several decades, much attention has been focused on the scale-dependence of ecological patterns 

and processes (Shmida & Wilson 1985, Auerbach & Shmida 1987, Palmer & White 1994, 

Rosenzweig 1995, Crawley & Harral 2001, Götzenberger et al. 2012, Peet et al. 2014). More 

recently, time and space have been combined in a single conceptual framework for considering 

the scale-dependence of ecological patterns and processes, (Adler et al. 2003, Adler et al. 2005, 

White et al. 2010, Scheiner et al. 2011), as originally postulated in Preston’s classic work in 
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1960. The relative importance of processes changes somewhat predictably with spatial or 

temporal scale, generally with processes operating at larger temporal and spatial extents 

becoming more important as spatial grain size increases. For instance, biotic interactions and 

demographic stochasticity are thought to act most strongly in structuring communities at small 

spatial scales (Stoll & Weiner 2000, Götzenberger et al. 2012). In contrast, environmental 

filtering (e.g., climate) often becomes more important at large spatial scales, since environmental 

heterogeneity generally increases with spatial scale (Williams 1943, Shmida & Wilson 1985, 

Crawley & Harral 2001, Field et al. 2009). 

 Examining pattern and process across multiple spatial and temporal scales is becoming 

increasingly important in ecology for several reasons. First, studies conducted at multiple scales 

are more effective in elucidating the processes that structure ecological communities. Since, 

ecological processes are scale-dependent, studies that do not examine community patterns at 

certain spatial scales, will be unlikely to find evidence of processes thought to operate primarily 

at those scales. For example, if climate is thought to be important in structuring species 

distributions across a landscape, sampling only a small portion of the landscape might lead to the 

conclusion that climate is not an important filter; rather, the spatial scale of sampling was not 

matched appropriately to the spatial scale at which climate is operating. Second, studies 

conducted at multiple scales that have considerable temporal or spatial breadth allow for testing 

the generality of ecological principles across sets of communities. Rather than simply examining 

ecological patterns in a spatial or temporal snap-shot, studies conducted across large spatial or 

temporal extents can assess whether a process is generally important. My dissertation explores 

the scale-dependence of ecological patterns and processes by examining vegetation patterns 

across spatial grain, spatial extent, and over decadal extents in the longleaf pine ecosystem. 
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Using this approach, I identify which processes act at particular spatial and temporal scales and 

how their relative importance changes with scale. 

Disturbance and local environmental filtering (e.g., soil properties and site conditions) 

have been identified as key drivers of plant community structure, especially in fire-dependent 

grasslands (Walker & Peet 1983, Glitzenstein et al. 2003, Kirkman et al. 2004, Uys et al. 2004, 

Overbeck et al. 2005). Chapter 2 of this dissertation examines how soil properties and fire 

frequency have influenced species richness and beta-diversity (e.g., turnover in community 

composition) over 20 years in longleaf pine plant communities in eastern North Carolina. The 

goals of this work were threefold. First, I was interested in quantifying how dynamic longleaf 

pine plant communities are over decadal temporal extents and how vegetation change may 

proceed differently depending on fire history and environmental context. The magnitude of 

vegetation change is expected to vary across sites that differ in key environmental attributes 

(e.g., N and P availability, soil moisture) because of underlying variation in resource availability 

(Gibson & Hulbert 1987, Gauthier et al. 2010, Amatangelo et al. 2011). Furthermore, the effects 

of fire or other disturbances can change with environmental context (e.g., higher fire frequency 

on nutrient-rich, moist sites that produce more biomass), which has direct consequences for plant 

species richness and composition (Kirkman et al. 2001, Harrison et al. 2003, Collins & Calabrese 

2012, Pausas & Ribeiro 2013). The second goal of this study was to investigate whether 

vegetation patterns and their drivers were scale dependent. To this end, I examine how species 

richness and beta-diversity change with spatial grain from 0.01 m² to 1000 m². Lastly, this work 

informs land managers about best management practices for implementing prescribed fire for 

biodiversity conservation. In general, most land management agencies have increased the 

frequency of fire in longleaf pine habitat in eastern North Carolina over the last 20 years. To 
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understand the outcome of this management decision and to inform land management agencies 

accordingly, I relate prescribed fire frequency to changes in species richness and beta-diversity 

patterns over time. 

 Chapter 3 builds on Chapter 2 and examines how changes in the fire management regime, 

compounded with additional stress from long-term drought have impacted plant species richness 

at a single site, Big Island Savanna, located in the Green Swamp Preserve, North Carolina. 

Chapter 2 revealed species richness at small scales had declined over time in Big Island Savanna. 

Recently, the fire management regime in this site changed from nearly annual fire during at least 

1940-1997 (Kologiski 1977, Rome 1988) to a fire return interval of 2 to 3 years during 1997-

2011. In addition, the southeastern Coastal Plain of the US has been experiencing long-term, 

ongoing drought for the last 25 years. To identify whether reduced fire frequency, long-term 

drought, or some combination of the two is responsible for the loss of biodiversity detected in 

Big Island Savanna, I re-sampled two sets of nested, permanent plots after ~20 and 25 years, 

respectively. Understanding why plant species richness has decreased over time in Big Island 

Savanna is critical for several reasons. First, Big Island Savanna, and more broadly the Green 

Swamp Preserve, is of great conservation importance in the southeastern US as it was never truly 

fire-suppressed in the early and mid-20
th

 century like so many other longleaf pine sites 

(Kologiski 1977, McIver 1981, Rome 1988). Furthermore, the Green Swamp Preserve contains 

some of the best remaining examples of species-rich, mesic longleaf pine savanna on the Atlantic 

Coastal Plain (McIver 1981). Third, this site is famous for its high biodiversity at small spatial 

scales, formerly holding the North American record at 0.25 m² and 1 m² (Walker & Peet 1983). I 

believe this work not only has applications for land managers in the longleaf pine ecosystem, but 

can be generalized to species-rich grasslands elsewhere in the world, which are also sensitive to 
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changes in disturbance regimes and may require frequent disturbance to maintain high plant 

species richness. 

 In addition to local environmental filtering and disturbance, plant community structure at 

the local scale may be driven by processes that operate at larger spatial and temporal extents 

(e.g., climate, evolutionary history; Zobel 1997, Pärtel 2002, Harrison & Cornell 2008). Thus, an 

emerging goal in community ecology is to identify how local, regional, and historical processes 

simultaneously influence community patterns at the local scale (Carr et al. 2009, White & 

Hurlbert 2010, Gazol et al. 2012). In Chapter 4, I explore how processes operating at larger 

spatial and temporal extents (e.g., climate, biogeographic history), in addition to local processes 

(local environmental filtering) concurrently shape plant species richness patterns across the range 

of the longleaf pine ecosystem. The longleaf pine ecosystem is an excellent system in which to 

explore the relative importance of local, regional, and historical processes because it occurs 

across a broad spatial extent and along strong environmental gradients (e.g., climate, soil 

properties). Thus community structure in this ecosystem is likely influenced by multiple 

processes that vary in spatial and temporal breadth. This work builds on Chapter 2 and 3 by 

examining whether local environmental filtering continues to be an important filter across space 

in addition to time, but also expands on that work by examining the effects of climate and 

historical processes on longleaf pine community assembly. Variance partitioning is used to 

identify the unique variation in species richness explained by soil properties, climate, and species 

pool size (a proxy for historical processes). I then examine whether climate and species-pool size 

increase in relative importance as spatial grain changes from 1 m² to 100 m². 

 There is ongoing debate as to whether ecological communities are assembled by 

deterministic, niche-based processes or stochastic processes unrelated to species’ differences 
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(Tilman 1982, van der Maarel & Sykes 1993, Chesson 2000, Hubbell 2001, Silvertown 2004). 

Recently these two competing hypotheses have been merged into a single conceptual framework 

that seeks to identify how the relative importance of deterministic versus stochastic processes 

changes across a set of communities (Tilman et al. 2004, Gravel et al. 2006). Where 

communities fall along the continuum between solely niche-based processes and solely 

stochastic processes depends on multiple factors, including the frequency or intensity of 

disturbance. One approach to quantifying the relative importance of different community 

assembly processes is through species co-occurrence metrics, which reveal whether community 

structure is more aggregated (evidence of environmental filtering), segregated (evidence of 

limiting similarity), or no different than random expectation (evidence of stochastic assembly). 

In Chapter 5, I use two different, yet complementary species-co-occurrence metrics coupled with 

null model analysis to explore where longleaf pine plant communities fall along the continuum 

of deterministic to stochastic assembly. More specifically, I examine how the relative importance 

of environmental filtering, competition, and stochastic processes change across a gradient of 

environmental stress, with spatial grain (0.01 m² to 1000 m²) and with time since fire. 

  Chapter 6 identifies the important community assembly processes and synthesizes their 

synergistic effect on plant species richness and composition patterns in the longleaf pine 

ecosystem over space and time. I then put my findings into context and examine similarities and 

differences between the drivers of vegetation patterns in the longleaf pine ecosystem and other 

species-rich grasslands in the world. In total, this dissertation explores how plant species richness 

and community composition are structured over space and time, how dynamic longleaf pine 

plant communities are over time, and how the relative strength of community assembly processes 

changes across space (e.g., grain and extent) and with environment context.  
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CHAPTER 2: FIRE FREQUENCY AND ENVIRONMENTAL FILTERING DRIVE 

VEGETATION PATTERNS ACROSS TIME AND SPACE IN LONGLEAF PINE 

WOODLANDS 

 

Abstract 

 Disturbance is an important factor that shapes plant community structure in fire-

dependent grasslands, and alteration of disturbance regimes can have large consequences on 

species richness and species composition. However, the response of vegetation to disturbance 

may change with environmental context. I re-sampled 59 permanent vegetation plots in the 

longleaf pine ecosystem twenty years after they were established to determine the magnitude of 

vegetation change at a range of spatial scales (0.01 m² to 1000 m²). I was interested in how 

environmental context and fire frequency concurrently influence vegetation change over time 

and if those relationships change with spatial scale. I quantified the magnitude of vegetation 

change using two different metrics of beta-diversity (beta turnover, the proportion of species 

turning over and Bray-Curtis dissimilarity, an abundance-weighted metric) and by tabulating 

changes in species richness. The magnitude of vegetation change was highly dependent on 

environmental context and fire frequency. Changes in species richness, beta turnover, and Bray-

Curtis dissimilarity were greatest on silty, frequently-burned sites, whereas most sandy, 

infrequently-burned sites remained stable. Furthermore, the amount of change detected was 

scale-dependent. Species richness increased at larger spatial scales over time, but decreased at 

the two smallest spatial scales. In contrast, beta turnover and Bray-Curtis dissimilarity decreased 

with increasing spatial scale, suggesting that there is greater stochasticity at small scales. 
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However, the magnitude of compositional change (e.g., dissimilarity of plots to themselves over 

time) was relatively modest, despite large amounts of beta turnover across time. I attribute this 

initial contradiction to the turnover of infrequent, mobile species amidst a matrix of dominant 

bunchgrasses. Interestingly, and in contrast to other longleaf pine studies, I found environmental 

site conditions to be more important in predicting the magnitude of vegetation change than fire 

frequency. Thus, future work addressing vegetation change in the longleaf pine ecosystem and in 

other species-rich grassland systems should consider not only disturbance, but environmental 

context as well. Since species richness and species turnover patterns were scale-dependent, I 

recommend sampling vegetation across multiple spatial scales to comprehensively quantify 

changes in community structure over time. 

Introduction 

Fire shapes plant community structure in many terrestrial ecosystems (Bond & Keeley 

2005, Bowman et al. 2009, Turner 2010). In fire-dependent systems, particularly grasslands, fire 

often increases species richness through the release of resources, such as nutrients, space, and 

light, while preventing competitive exclusion (Walker & Peet 1983, Glitzenstein et al. 2003, 

Kirkman et al. 2004, Uys et al. 2004, Overbeck et al. 2005, Peet et al. 2014). However, fire 

regimes (including the frequency, intensity, severity, and timing of fire) are changing throughout 

the world (Millennium Ecosystem Assessment 2005, Westerling et al. 2006, Bowman et al. 

2009), with large and lasting consequences for plant species distributions, plant species richness 

patterns, and plant community composition, especially where fire is necessary for the 

maintenance of community structure (Leach & Givnish 1996, Johnstone & Chapin 2003). For 

this reason, increased effort in recent years has been focused on how fire regimes affect 

community structure and dynamics over time (Glitzenstein et al. 2003, Burton et al. 2011). 
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In addition to disturbance regimes, plant communities are structured by both local and 

regional environmental filtering and hence vegetation change over time may be strongly 

dependent on the environmental context in which sites occur. Sites that differ in key 

environmental attributes (e.g., N and P availability, soil moisture) may have different rates of 

change because of underlying variation in resource availability (Gibson & Hulbert 1987, 

Gauthier et al. 2010, Amatangelo et al. 2011). Furthermore, the effects of fire or other 

disturbances can change with environmental context (e.g., increased fire frequency on nutrient-

rich, moist sites that produce more biomass), which has direct consequences for plant species 

richness and composition (Kirkman et al. 2001, Harrison et al. 2003, Collins & Calabrese 2012, 

Pausas & Ribeiro 2013). 

The longleaf pine (Pinus palustris) ecosystem is a fire-dependent woodland ecosystem 

located in the southeastern United States, characterized by an often species-rich herbaceous layer 

dominated by graminoids and forbs. Community structure in this ecosystem is strongly 

influenced by both fire and environmental filtering. Frequent fire (every 1-5 years) is necessary 

for the maintenance of plant species richness, plant species composition, and vegetation structure 

(Walker & Peet 1983, Frost et al. 1986, Kirkman et al. 2004). Without frequent fire, species 

richness declines, woody components increase, and the understory becomes dense and closed 

(Heyward 1939, Frost et al. 1986, Glitzenstein et al. 2003). Several studies have examined how 

fire frequency influences community structure across time and suggest that more frequent fire 

often results in increases in species richness and the abundance of herbaceous species (Lewis & 

Harshbarger 1976, Waldrop et al. 1992, Brockway & Lewis 1997, Glitzenstein et al. 2003). 

In addition to fire frequency, plant species richness and community composition in the 

longleaf pine ecosystem are structured by local and regional environmental filtering (e.g., soil 
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properties and climate; Walker & Peet 1983, Carr et al. 2009, Peet et al. 2014). Several studies 

have shown that soil properties, particularly soil moisture and texture, are the most important 

environmental drivers of plant community structure (Drewa et al. 2002, Glitzenstein et al. 2003, 

Kirkman et al. 2004, Peet 2006, Carr et al. 2009, Peet et al. 2014). Although much work has 

investigated how fire regimes or environmental context influence species richness and 

composition in the longleaf pine ecosystem (Lemon 1949, Lemon 1967, Hartnett 1987, Kirkman 

et al. 2001, Keddy et al. 2006, Hinman & Brewer 2007), no studies have investigated how these 

factors concurrently affect species richness and composition over longer temporal extents. 

Here I assess how prescribed fire frequency and environmental context have impacted 

patterns of plant species richness and community composition over time in longleaf pine 

communities by re-sampling 59 permanent vegetation plots nearly twenty years after they were 

originally installed. I quantified several aspects of community structure over time and across 

multiple spatial scales to pursue three main questions. First, how does the magnitude of change 

in community composition and species richness across time vary with spatial scale? Studies that 

examine how community composition (e.g., species turnover) changes simultaneously in time 

and space are rare (Soininen 2010) and I know of no other studies in the longleaf pine ecosystem 

that have documented how vegetation change proceeds across time at differential spatial grains. 

However, ecologists have developed a strong theoretical framework for understanding species 

richness and turnover in space and time, built from Preston’s classic work of 1960 (Adler & 

Lauenroth 2003, Adler et al. 2005, White et al. 2010, Soininen 2010). Second, do the effects of 

fire and environmental context on the above metrics change with spatial scale? Lastly, are 

species composition and richness responding in similar ways over time to fire frequency and 

environmental context? In addition, I explore whether fire history and the past fire management 
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regime, relative to the current fire regime have influenced plant species richness and composition 

over time. 

Methods 

Study Area 

 This work was conducted on the outer Coastal Plain of North Carolina in the southeastern 

United States (Figure 2.1). Elevation ranges from 0 to 30 meters above sea level, with very little 

topographic relief. However, subtle differences in elevation (0.5 meters or less) have large 

consequences for hydrology, soil properties, and hence vegetation (Rome 1988, Christensen 

2000). The climate is humid sub-tropical, with an average mean annual temperature of 15.5 °C 

and an average annual precipitation of 160 cm, most of which occurs during the growing season 

(Ruffner 1985, State Climate Office of North Carolina). Summer convectional storms not only 

provide heavy rain, but lightning and an ignition source for frequent, low-intensity fires 

(Christensen 2000, Frost 2006). Soils within the region derive from nutrient-poor, 

unconsolidated sediments of alluvial and marine origin. Several soil orders occur within the 

study area and soil texture is extremely important in determining water holding capacity, nutrient 

retention, species richness, and community composition (Peet 2006). 

Sampling Design and Vegetation Data 

 During the summers of 1991-1993, 200 plots were sampled in the longleaf pine 

ecosystem of the North Carolina Coastal Plain using the Carolina Vegetation Survey protocol 

(CVS; Peet et al. 1998). In the summers of 2009 and 2010, I re-located and re-sampled 59 plots 

selected to span the compositional gradient so that vegetation change could be assessed across a 

variety of longleaf community types. To the extent possible, plots re-surveyed were also selected 
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to span a range of fire histories. Plots were not re-sampled if there were signs of human 

disturbance or development. The CVS sampling design consists of 1000 m² plots with several 

smaller sub-plots nested within (0.01 m², 0.1 m², 1 m², 10 m², 100 m², 400 m²). Each CVS plot 

was permanently marked with 10 pieces of steel conduit, which ensured that I re-sampled 

precisely the same physical location. Once a plot was re-located, presence of all vascular plant 

species was recorded at all six spatial scales and each species was assigned a cover class value 

(see Peet et al. 1998). The same sampling methodology was used during both sampling events to 

ensure the data collected were directly comparable. In addition, I attempted to standardize 

sampling effort across the two time periods by discussing effort spent (survey time) with several 

of the original, key participants. 

Environmental and Fire History Data 

 In addition to vegetation data, slope, aspect, and soil samples from the A horizon were 

collected at the time of sampling. Soil samples were then analyzed for texture (sand, silt, clay 

%), nutrients (N, P, Al, B, Ca, Cu, Fe, H, K, Mg, Mn, Na, S, Zn), organic matter, base saturation, 

cation exchange capacity, pH, Ca/Mg ratio, and bulk density by Brookside Laboratories Inc, 

using Mehlich III extraction (Mehlich 1984). Elevation was determined from a digital elevation 

model. 

 Fire history data for all plots through 2008 were obtained from a GIS layer of prescribed 

fire events dating back to 1985, compiled from several land management agencies in 

southeastern North Carolina (Costanza 2010). Additional years of fire history data (2009, 2010) 

were obtained directly from the land management agencies. These data delineate the areas 

burned, but do not quantify the intensity or patchiness of fire within the burned area. Fire 
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frequency (the number of fires), average fire return interval (mean number of years between 

fires), and time since fire (number of years since fire) were determined for all plots. During the 

last 20 years, most land managers on government-owned lands in North Carolina have increased 

the frequency of prescribed burning on longleaf pine tracts. 

 A broad community type was also assigned to each plot, so the magnitude and direction 

of vegetation change could be examined with respect to vegetation types. These groups follow 

Peet (2006), who categorized longleaf pine vegetation into 5 community groups based on soil 

moisture and soil texture: silty woodlands, savannas, flatwoods, subxeric woodlands, and 

sandhills (Figure 2.2). These correspond relatively well to four Groups recognized within the US 

National Vegetation Classification: G009 Dry-Mesic Loamy Longleaf Pine Woodland, G190 

Wet-Mesic Longleaf Pine Woodland, G596 Mesic Flatwoods Longleaf Pine Woodland, and for 

the final two G154 Xeric Longleaf Pine Woodland (http://www.usnvc.org). Silty woodlands and 

savannas occur on fine-textured ultisol soils. These two types are the most species-rich, with 

savannas being slightly wetter (Peet 2006). Flatwoods occur on spodosols with a spodic horizon 

below the surface where fine-textured particles and organic matter accumulates, creating a mesic 

to hydric growing environment, despite a mostly sandy substrate (Soil Survey Staff 2010). 

Subxeric woodlands, also occur on sandy substrates, but are drier than flatwoods and often 

contain dry-site oaks, such as Quercus laevis and Quercus incana. Sandhills occur on the driest, 

sandy sites, have sparse herbaceous layers, oak co-dominance in the over-story, and lower 

species richness. 
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Analysis 

 Prior to analysis, all taxonomic names were standardized across the two sampling periods 

to ensure that changes in nomenclature, taxonomic resolution, and taxonomic understanding of 

the flora across time did not affect the magnitude of vegetation change detected. Unknown or 

ambiguous species were removed from the data set, while several species were lumped into 

larger taxonomic complexes. As the ability to identify grasses in the genera Andropogon, 

Dichanthelium, and Schizachyrium was much more limited during the 1991-1993 sampling, all 

occurrences of these two genera were lumped into Andropogon spp., Dichanthelium spp. and 

Schizachyrium spp. in both data sets (1991-1993 and 2009-2010). 

 Several approaches were used to quantify the magnitude and direction of vegetation 

change over time (Table 2.1). Species richness in 1991-1993 and 2009-2010 and raw species 

turnover (defined here as the number of species lost and gained over time) were calculated across 

multiple spatial scales (0.01, 0.1, 1, 10, 100, 400, and 1000 m²) for each plot. To quantify the 

magnitude of compositional change over time, I used two different metrics of beta-diversity, 

which capture somewhat different aspects of species turnover. The first metric I used was Wilson 

and Shmida’s (1984) beta turnover metric: (βT) = (g + l) / 2α, which sums the number of species 

gained (g) and lost (l) over time (e.g., raw species turnover) and divides by two times the mean 

species richness (α; Wilson & Shmida 1984, see also Ricotta 2002, Ukmar et al. 2007). This 

metric describes how many species have been lost and gained over time and does not consider 

species abundance. The second beta-diversity metric, Bray-Curtis dissimilarity, considers how 

many species are shared across two sites scaled by their abundance (cover class code, see Peet et 

al. 1998). I calculated Bray-Curtis dissimilarity at spatial grains ≥ 100 m², at which I had 

estimates of species abundance. I used the Sørenson dissimilarity metric for spatial grains of 10 
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m² and below because abundance data were not available. Thus, it is not possible to directly 

compare dissimilarity values calculated at larger scales (> 100 m²) to those calculated at smaller 

scales (< 100 m²). However, it is still possible to compare differences between 100 m² and larger 

spatial grains (i.e. 1000 m²), and between 10 m² and smaller spatial grains (i.e. 0.01 m²). The 

dissimilarity of each plot to itself 20 years later was used as a quantitative estimate of the 

magnitude of compositional change over time. 

 To determine if particular groups of taxa were consistently being lost or gained over time, 

I assigned each species to a growth form category (caulescent herb, matrix graminoid, fern, 

geophyte, hemiparasite, insectivore, legume, rosette herb, shrub, single-culm graminoid, 

subshrub, tree, and vine; Table A.1) and then examined how the frequency of each growth form 

changed over time (Table 2.4). These growth form categories are modified from Raunkaier 1983 

(see Table A.1 for full descriptions). I expected fire history over the last 30 years would 

influence the types of species turning over, with addition of woody species and loss of small-

statured herbaceous species (e.g., rosette herbs) on fire-suppressed sites. In addition, I expected 

that certain types of species would inherently turn over more frequently than others due to life 

history characteristics (e.g., annual species, sparse species, species sensitive to changes in soil 

moisture availability). I summarized vegetation change by growth form in two ways. First, I 

calculated the total number of times each growth form was gained and lost over time at both 

1000 and 1 m². I then calculated a ratio that reflects the number of species gained versus lost, by 

dividing the total number of gains for each growth form by the total number of losses. This 

allowed me to examine whether particular growth forms tended to be gained or lost more over 

time, since values > 1 indicate gains exceed losses, while values < 1 indicate losses exceed gains. 

Second, to examine if particular growth forms were more dynamic over time, irrespective of 
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whether they were lost or gained, I re-calculated Bray-Curtis dissimilarity matrices for each 

growth form at 1000 m² and then calculated a mean dissimilarity value for each growth form 

from plots to themselves over time. 

 To compare dissimilarity values across spatial scales, I used null model analysis. This 

was necessary because I expect beta-diversity to be larger at small scales due to chance; as the 

size of the sample approaches the size of the pool, species composition becomes more similar. I 

first generated 1000 null communities using the swap-method (Gotelli and Entsminger 2003), 

which held row and column totals constant (e.g., species richness per site and species occupancy 

across all sites). I then calculated a dissimilarity matrix on each null community and extracted 

the dissimilarity of plots to themselves over time. To compare results across spatial grain, I 

calculated a standardized effect size (SES) for each scale, 

 

SES= (I obs – I sim)/S sim, 

 

where I obs is the observed mean dissimilarity of all plots to themselves over time, I sim is the 

mean simulated dissimilarity of all plots to themselves over time and, S sim is the standard 

deviation of the simulated indices (Gurevitch et al. 1992; Gotelli and McCabe 2002). SES values 

above 2 indicate dissimilarity values that are greater than expected from random chance, while 

SES values below 2 indicate dissimilarity values that are less than expected from random chance. 

Null model analysis was implemented in R version 2.15.2 using the vegan and bipartite packages 

(R Core Development Team 2012). 

 Linear models were used to quantify species richness, beta turnover, and dissimilarity 

over time and to evaluate how vegetation change varied with environmental context and fire 
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history. Model selection using AIC was utilized to identify which soil (nutrients, texture, organic 

matter, bulk density), site (elevation, slope, aspect), and fire (fire frequency, average fire return 

interval, time since fire) attributes should remain in the model for species richness and beta-

diversity at 100, 400, and 1000 m² (Burnham & Anderson 2002). The influence of soil properties 

on vegetation change could not be examined at spatial scales below 100 m² because soil data 

were unavailable at those scales. Fe, Ca, Mg, and Al in parts per million (ppm) were log-

transformed before analysis due to large data ranges for these variables across plots. Variance 

partitioning analyses were then conducted to determine the unique variance explained by each 

predictor in the best-fit model, along with the shared and unexplained variance in each model 

(Legendre and Legendre 1998). 

 Non-metric multi-dimensional scaling (NMS) ordination was used to examine the 

magnitude and direction of compositional change visually. NMS is considered the most 

appropriate indirect ordination technique for plant community data, as it is suited to non-

normality and preserves dissimilarity values as distances in ordination space (Clarke 1993, 

McCune and Grace 2002). NMS displayed all plots from both sampling events in ordination 

space, and vectors were drawn from each plot during the 1991-1993 sampling to the same plot 

during 2009-2010 (Figure 2.4). Environmental overlays of soil, site, and fire variables were used 

to identify the environmental attributes and disturbance regimes of plots in ordination space. 

These graphics helped illustrate whether sites with certain fire regimes or environmental 

conditions had experienced more or less compositional change than other plots. Additionally, 

NMS ordination was used to examine whether the ordination space during 1991-1993 had 

expanded or contracted over time (Figure 2.5). Contraction in ordination space indicates that 
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plots are becoming more similar to one another in community composition over time. NMS was 

performed in R v.2.15.2 using the labdsv packages (R Core Development Team 2012). 

Results 

Species Richness 

Overall, species richness increased significantly over time at spatial scales from1 m² to 

1000 m², remained constant at 0.1 m² and decreased at the smallest spatial scale examined (0.01 

m², Table 2.1). Silt % and quadratic transformed fire frequency explained the most variation in 

species richness across time at 1000 m² (unique variance explained by silt %: R² = 0.27, p < 

.001; by fire frequency: R² = 0.17, p < .01 for both terms; shared variance = 0.06, Figure 2.3). 

Silt % and quadratic transformed fire frequency were also the most important predictors of 

species richness patterns over time at 400 m² (unique variance explained by silt %: R² = 0.32, p < 

.001; by fire frequency R² = 0.18, p < .01 for both terms) and 100 m² (unique variance explained 

by silt %: R² = 0.25, p < .001; by fire frequency R² = 0.16, p < .01 for both terms). Quadratic 

transformed fire frequency was a better fit to the data than untransformed fire frequency, 

suggesting the most frequently burned places have not gained as many species over time as those 

burned less frequently. This relationship was being driven by a single site, Big Island Savanna in 

the Green Swamp Preserve, which had lost species over time (Figure 2.3). I attribute this species 

loss to reduced fire frequency in recent years, compounded with ongoing, long-term drought (see 

Chapter 3 for further discussion and exploration of this species loss). However, on average, silty 

sites burned more frequently in the last 20 years, relative to the original fire management regime, 

have gained more species over time (Figure 2.3). In contrast to silty, frequently-burned sites, 
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species richness on fire-suppressed sites has decreased over time, while species richness on 

xeric, sandy sites has remained relatively stable over time. 

Species Composition 

Raw species turnover, defined as the number of species lost and gained over time, was 

high, especially at larger spatial scales (mean = 15.7 at 100 m² and mean = 20.4 at 1000 m²; 

Table 2.1). Beta turnover was also high regardless of spatial scale, representing turnover of 

between 16 percent and 77 percent of plant species over time, but was greatest at the smallest 

spatial scales (< 1 m²; Table 2.1). Thus, although there are more species physically coming and 

going over time at larger scales, they make up a smaller portion of the total flora than the amount 

turning over at small scales. Community type was the only significant predictor of beta turnover 

(1000 m²: R² = 0.25, p < 0.01; 400 m²: R² = 0.22, p < 0.01; 100 m²: R² = 0.19, p < 0.01). This is 

in contrast to species richness, where silt percentage was a better predictor than community type. 

Silt percentage and community type are correlated, but not completely redundant, as silt 

percentage is one of two key axes that defines longleaf pine community types (Figure 2.2). 

Therefore, because community type also encompasses a soil moisture gradient, it appears soil 

texture and soil moisture are both important drivers of species turnover, with greater turnover on 

silty, mesic sites (e.g., silty woodlands and savannas, Table 2.2). Fire frequency was not 

significant in explaining variation in beta turnover at any scale. 

 To summarize the types of species turning over across time, I assigned each species to a 

growth form category and calculated a ratio of gains to losses, along with Bray-Curtis 

dissimilarity for each growth from at 1000 m² (see Table 2.3). At 1000 m², the ratio of gained 

versus lost species revealed most growth forms have increased in frequency over time (i.e. gains 
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have exceeded losses, >1; Table 2.3). Notable exceptions include geophytes and hemiparasites, 

which have consistently been lost over time (ratio = 0.4, 0.5, respectively). At 1 m², insectivores 

(ratio = 0.3), along with geophytes (ratio = 0.4) and hemiparasites (ratio = 0.3) have been lost 

preferentially. Many types of species turned over across time, but species turnover (Bray-Curtis 

dissimilarity) was especially high for hemiparasites (0.80; e.g., Seymeria cassioides), geophytes 

(0.70; e.g., Calopogon spp.), single-culm graminoids (0.62; e.g., Dichanthelium spp., Scleria 

spp.), insectivores (0.60; e.g., Drosera capillaris), rosette herbs (0.49; e.g., Eurybia paludosa, 

Liatris spp.), and caulescent herbs (0.48; e.g., Polygala lutea, Symphyotrichum dumosum). 

Relatively small-statured herbaceous species and species sensitive to changes in moisture (e.g., 

insectivores) have been gained and lost most frequently across time. In contrast, ferns, matrix 

graminoids, shrubs, and subshrubs have remained relative stable over time (Table 2.3). 

 Dissimilarity of a plot to itself over time was largely driven by spatial scale, soil 

properties, and fire frequency. As with beta turnover, I expected the mean dissimilarity to 

increase as spatial scale decreased for the reasons described above. To examine whether the 

observed dissimilarity was greater or less than null expectation, I used null model analysis to 

calculate a mean simulated dissimilarity and standard effect size (SES). I found the observed 

dissimilarity was significantly lower than the simulated dissimilarity at larger spatial grains, 

suggesting vegetation is more stable over time at those scales  (Table 2.1). In contrast, vegetation 

change at smaller scales (< 100 m²) was not different than random expectation (SES: -0.84 to 

.07). At small scales there is greater stochasticity with higher rates of local extinction and 

colonization owing to the smaller number of individuals present, leading to greater 

compositional change over time (Glen & Collins 1993). 
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 At 1000 m², the best predictor of dissimilarity over time was community type, with moist, 

silty sites (e.g. savannas) experiencing the greatest compositional change over time (R² = 0.31, p 

< 0.001). Silt % was the best predictor of compositional change at 400 m² (R² = 0.13, p < 0.01), 

while both silt % and quadratic transformed fire frequency were important at 100 m² (unique R² 

for silt % = 0.07, p < 0.01, unique R² for fire = 0.09, p < 0.01). The shared variance explained by 

both silt % and fire frequency was 0.04 at 100 m². Thus, the total explained variance in 

dissimilarity was relatively low. The importance of fire frequency increased as spatial scale 

decreased and fire frequency became slightly more important in explaining compositional 

change than silt % at 100 m². In general, silty, frequently-burned sites have experienced greater 

compositional change over time, in addition to greater changes in species richness and beta 

turnover. 

NMS confirmed that compositional change for most plots has been relatively modest 

across ~20 years. In Figure 2.4, vectors connect the same plot to itself over time, and the length 

and direction of the vectors relates to the magnitude and direction of vegetation change, 

respectively. Only a few plots show substantial change over time; these plots occur on fire-

suppressed sandhills and subxeric woodlands (Figure 2.4). In addition, the vectors are moving in 

multiple directions, indicating that there is no consistency in how plots are changing over time. 

NMS also revealed that there has been slight homogenization of the vegetation, indicated by a 

small constriction in the amount of ordination space occupied by all plots over time (Figure 2.5). 

Thus, plots have become more similar to other plots in their community composition. I attribute 

this to increased burning efforts in the last 20 years by land management agencies within the 

study region, thus shifting the vegetation to more fire-maintained than it had previously been. 
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Discussion 

 I examined how fire frequency and environmental context have influenced vegetation 

structure in longleaf pine communities over ~ 20 years. Vegetation change was dependent on the 

environmental context of the site, fire regime, and the spatial scale of observation. In general, the 

magnitude of vegetation change increased as fire frequency and silt percentage increased. Thus, 

on average, silty, frequently-burned sites have experienced greater changes in species richness, 

beta turnover, and Bray-Curtis dissimilarity than sandy, infertile sites. Environmental context 

was the most important predictor of vegetation change, while fire frequency explained additional 

variation, albeit less. 

 Other studies in frequently-disturbed grasslands have revealed environmental filtering is 

an important factor structuring plant species richness and composition over time. For example, 

Prober et al. (2013) found that rainfall explained 31-60% of the variation in plant species 

richness and plant cover in a grazing experiment in Australian woodlands, while grazing 

frequency explained only 3-8%. This finding is consistent with my work, which suggests local 

environmental parameters (e.g., soil properties) are better predictors of vegetation change over 

time than fire history in longleaf pine woodlands. This in part reflects the fact that environmental 

context can influence fire frequency, intensity, and behavior itself, with generally more fire on 

sites that have greater fuel accumulation. In addition, vegetation change may vary with 

environmental context in longleaf pine woodlands due to colonization and extinction dynamics, 

which are generally greater in silty, wet sites due to increased competition, a larger potential 

species pool, along with more frequent fire. 
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 Vegetation change was also highly dependent on the spatial scale of observation. Species 

richness increased at large spatial scales over time, but declined at the smallest two scales (Table 

2.1). I found the expected pattern of increases in beta species turnover and Bray-Curtis 

dissimilarity as spatial scale decreased. Using null model analysis, I documented that there has 

been significantly less change in dissimilarity over time at larger spatial grains (> 100 m²), while 

dissimilarity at smaller scales is no different than random expectation. This suggests vegetation 

change is more rapid at small spatial grains (10 m² and below) than at larger scales in this 

ecosystem. Over time, several 0.01 and 0.1 m² plots experienced complete replacement of 

species. At small scales, grassland plant communities are more stochastic, with greater amounts 

of local colonization and extinction. Turnover at small scales occurs at a faster rate than turnover 

of entire subpopulations at larger scales (1000 m², Glen & Collins 1993). In addition, 

environmental heterogeneity generally increases with spatial scale, thus environment filters on 

species composition become less important at small spatial scales (Williams 1943, Shmida & 

Wilson 1985, Crawley & Harral 2001, Field et al. 2009). Furthermore, I found that the 

correlation between fire frequency and Bray-Curtis dissimilarity increased as spatial scale 

decreased, suggesting that the influence of fire is strongest at small spatial scales in longleaf pine 

communities. As the number of fire events increases, so does the likelihood of new species 

colonizing through re-emergence from the seed or bud bank or dispersal into the site from 

surrounding areas (Overbeck et al. 2005), which likely contributes to high temporal turnover at 

small scales. Other studies have also suggested that the effects of fire frequency may be strongest 

at small spatial scales (Glitzenstein et al. 2003). My finding of high species turnover at small 

spatial scales is consistent with results from other longleaf pine studies and studies conducted in 
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other species-rich grasslands (Glen & Collins 1993, Herben et al. 1993a, b, van der Maarel & 

Sykes 1993, Sykes et al. 1994, Overbeck et al. 2005). 

 In general, the magnitude of compositional change (e.g., dissimilarity) was fairly modest, 

as indicated by the length of vectors in Figure 2.4, however, beta turnover and changes in species 

richness were substantial. I believe this initial contradiction can be explained by the frequency 

and abundance of species in the community at each time point. Longleaf pine communities are 

comprised of many infrequent, low abundance species (e.g., Asclepias pedicelata) and a small 

number of frequent and abundant species (e.g., Aristida stricta; Figures 6.1, 6.2, see Figure 5 in 

Kirkman et al. 2001, see Figure 4 in Keddy et al. 2006, Clark et al. 2008). Frequent, abundant 

species in this ecosystem are long-lived perennials with substantial belowground storage, 

allowing them to persist for years or even decades in the same location. In contrast, infrequent 

species are typically shorter lived or susceptible to local environmental change (e.g., soil 

moisture, Drosera spp.) or changes in fire frequency (e.g., “fire-followers”, Lemon 1949). Thus, 

community composition has been relatively stable over time because the frequent, abundant 

species stay constant, while there is high turnover of infrequent species, which contribute little to 

the abundance weighted metric of community composition (Glen & Collins 1993, Herben et al. 

1993b, Overbeck et al. 2005). The constancy of some species and high mobility of others over 

time suggests both deterministic and stochastic processes shape longleaf pine plant communities. 

 Since the magnitude of vegetation change varied across spatial scales, sampling at 

multiple spatial scales was crucial for identifying how longleaf pine communities had changed 

over time. If I had only examined richness patterns over time at 1000 m², I would have missed 

the signal of species lost at the two smallest spatial scales. Monitoring at multiple spatial scales 

not only has important implications for understanding ecological pattern and process, but also for 
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informing management agencies about best practices and in general for conservation planning 

(Boyd et al. 2008). This study is unique in that I examined turnover in plant species composition 

simultaneously in space and time. No studies to my knowledge have documented vegetation 

changes over time across multiple spatial grains in the longleaf pine ecosystem. My work and 

this approach helps to reveal the generality of processes structuring community patterns across 

scales in this ecosystem. 

My work helps to inform land managers on the effectiveness of their fire management 

regimes in maintaining plant species richness over time. In most sites, species richness has 

increased over time at most or all spatial scales, likely due to increased fire frequency in the last 

20 years relative to the original fire regime. This recent change to more frequent fire by most 

managers has resulted from a realization that frequent fire is necessary to maintain the ecological 

integrity of longleaf pine communities and increased efforts to get fire on the ground (Costanza 

2010). Thus, land managers that have implemented more frequent fire in the last 20 years 

relative to previous management strategies, have been effective at maintaining plant species 

richness over time. In addition, increased burning efforts in the last 20 years have resulted in 

slight homogenization of the vegetation over time, which I think reflects a state of fire-

maintained vegetation. However, not all land management agencies has increased burning efforts 

in the last 20 years. I documented a decrease in species richness over time at small scales on one 

site, the Green Swamp Preserve. In the last fifteen years, the average fire-return interval changed 

from nearly annual fire for most of the 20
th

 century to fire every two to three years. This change 

in the fire management regime has resulted in greater and more prolonger litter accumulation, 

which compounded with additional stress from long-term drought, is likely responsible for the 
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substantial loss of biodiversity at small spatial scales in the Green Swamp (see Chapter 3 for 

further discussion). 

 This work contributes to a growing pool of knowledge documenting how disturbance 

influences community structure in grassland ecosystems over longer temporal extents 

(Fuhlendorf & Smeins 1997, Glitzenstein et al. 2003, Spasojevic et al. 2010, Collins & Calabrese 

2012), and reveals local environmental filtering is a key process that shapes plant diversity and 

composition over time. Furthermore, the magnitude of vegetation change I detected varied with 

spatial scale, suggesting that both ecological patterns and important processes in the longleaf 

pine ecosystem are scale dependent. I encourage future research to explore how fire regime and 

environmental context concurrently influence community structure over time in other portions of 

the longleaf pine ecosystem and in other fire-dependent grassland systems. 
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Tables 

 

Table 2.1. Changes in species richness and beta-diversity from the 1990s to 2009 across multiple spatial grains in southeastern NC. 

Mean richness is the mean species richness in 2009 at each spatial scale, while Δ richness represents the mean change in richness 

across time. Mean turnover is the mean number of species lost and gained over time, while turnover range is the range of mean 

turnover. Mean β turnover is the mean turnover scaled by two times the mean species richness. Mean obs dissim is the mean Bray-

Curtis or Sørenson dissimilarity of each plot to itself over time, while mean sim Dissim is the mean simulated dissimilarity of each 

plot to itself over time. Standard effect sizes (SES) were calculated using null model analysis to assess whether the observed 

dissimilarities were different than random expectation. This allowed for reflection on whether dissimilarity changed more or less than 

expected by random chance across scales. ** p < 0.001, * p < 0.05. 

 

Area (m²) 
Mean 

Richness 
Δ Richness 

Mean 

Turnover 

Turnover 

Range 

Mean β 

Turnover 

Mean Obs 

Dissim 

Mean Sim 

Dissim 
SES 

1000 59.1          6.3 ** 20.4 ** 0 to 50 0.16 ** 0.21 0.36 -2.13 

400 51.6          5.2 ** 18.5 ** 0 to 47 0.17 ** 0.21 0.38 -2.20 

100 36.3          4.7 ** 15.7 ** 0 to 45  0.20 **  0.25 0.57 -4.24 

10 20.9          2.8 ** 12.4 ** 0 to 45  0.29 ** 0.81 0.84 -0.25 

1 11.9            .9 *   8.9 ** 0 to 37  0.38 ** 0.85 0.84 0.07 

0.1 5.6         -.03  *   5.8 ** 0 to 28   0.51 ** 0.74 0.87 -0.84 

0.01 2.0           -.3 *   3.3 ** 0 to 14   0.77 ** 0.84 0.93 -0.51 

 

 

3
2
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Table 2.2. Mean species richness, raw turnover (mean number of species lost and gained) and 

beta turnover (raw turnover/2*mean species richness) summarized by community type at 100, 

400, and 1000 m² in southeastern NC. Silty, frequently burned community types (savannas, silty 

woodlands) have experienced more turnover than xeric, sandy community types (subxeric 

woodlands, sandhills). 

 

Community Type Area (m²)  Mean Richness Raw Turnover Beta Turnover 

Savanna 1000 88.3 29.57 0.17 

 

400 80.0 28.29 0.18 

  100 58.1 25.18 0.22 

  10 34.8 22.41 0.33 

  1 19.4 16.61 0.43 

  0.1 8.8 11.42 0.66 

  0.01 3.2 6.33 1.24 

Silty Woodland 1000 78.5 28.63 0.18 

  400 68.8 26.05 0.19 

  100 48.3 22.36 0.23 

  10 27.2 17.00 0.31 

  1 15.5 11.37 0.36 

  0.1 7.1 6.95 0.53 

  0.01 2.7 3.96 0.87 

Flatwood 1000 51.7 19.00 0.18 

  400 44.2 16.61 0.18 

  100 30.9 12.50 0.20 

  10 18.7 9.88 0.26 

  1 11.2 8.07 0.36 

  0.1 6.3 5.49 0.44 

  0.01 2.6 3.80 0.92 

Subxeric Woodland 1000 33.0 7.40 0.11 

 

400 30.0 7.20 0.12 

  100 21.1 6.67 0.16 

  10 11.3 5.60 0.26 

  1 6.3 4.09 0.35 

  0.1 3.8 3.26 0.48 

  0.01 1.9 2.55 0.77 

Sandhill 1000 22.8 6.80 0.13 

 

400 18.4 6.00 0.16 

  100 14.3 5.70 0.21 

  10 6.9 4.26 0.32 

  1 3.3 3.50 0.62 

  0.1 2.0 2.80 0.83 

  0.01 1.0 2.00 1.00 
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Table 2.3. Number and types of species gained and lost over time summarized by growth form at 

1 and 1000 m² in southeastern NC. Gained / Lost Ratio is the total number of species in each 

growth form gained over time / the total number of species in each growth form lost over time. 

Ratios of  > 1 indicate gains surpass losses, while ratios of < 1 indicate more species have been 

lost than gained. Dissim at 1000 m² is the mean Bray-Curtis dissimilarity of plots to themselves 

over time for each growth form individually. Most types of species have turned over across time, 

but especially small-statured herbaceous species, such as caulescent herbs, rosette herbs, and 

single-culm graminoids. In addition, there has been high turnover of hemiparasites, geophytes, 

and insectivores. Ferns, subshrubs, and matrix graminoids have been relatively stable over time. 

 

Spatial Grain 1000 m² 1 m² 1000 m² 

Growth form Gained / Lost Ratio Gained / Lost Ratio Dissim 

caulescent herb 1.8 1.1 0.48 

clubmoss 1.7 2.2 0.43 

matrix graminoid 3.3 1.5 0.20 

fern 6.0 1.6 0.19 

geophyte 0.4 0.4 0.70 

hemiparasite 0.5 0.3 0.80 

insectivore 1.6 0.3 0.60 

legume 1.4 1.5 0.46 

rosette herb 2.1 1.2 0.49 

shrub 3.7 1.8 0.35 

single-culm graminoid 1.2 1.1 0.62 

subshrub 1.8 1.3 0.19 

tree 2.3 1.6 0.46 

vine 4.5 4.4 0.51 
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Figures 

 

Figure 2.1. Study area in the outer Coastal Plain of North Carolina showing plot locations of 59 

CVS plots. 
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Figure 2.2. Longleaf pine vegetation partitioned into broad community types based on soil 

moisture and soil silt percentage (Adapted from Peet 2006). Silty woodlands and savannahs are 

the most species-rich and occur on fine-textured ultisol soils with relatively high silt content, 

although savannas are wetter.  Flatwoods contain a spodic horizon below the surface, despite a 

mostly sandy substrate. Subxeric woodlands, also occur on sandy substrates, but are drier than 

flatwoods and often contain dry-site oaks. Sandhills occur on the driest, sandy sites, have sparse 

herbaceous layers, oak co-dominance in the over-story, and very low species richness. 
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Figure 2.3. Change in species richness over time at 1000 m² versus silt percentage and fire 

frequency. In general, silty, frequently burned sites have gained a greater number of species over 

time. However, plots that have experienced the greatest fire frequency have lost species over 

time because of recent changes in the fire management regime on those sites. Here the R² values 

represent the variance explained by each predictor alone without additional predictors in the 

model. 
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Figure 2.4. NMS ordination showing changes in community composition (Bray-Curtis 

dissimilarity) over time for different community types, represented by the length of vectors. 

Vectors connect the same plot over time. Compositional change is modest, expect for two plots 

in the lower left corner. Environmental vectors indicate the directions of increases in organic 

matter (om), silt %, sand %, fire frequency, and pH across compositional space. Compositional 

change over time has been greatest on sites with high sand content and high fire return intervals 

(e.g., infrequently burned sandhills and subxeric woodlands). 
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Figure 2.5. A. NMS ordination highlighting plots by sampling year (1990s, 2009). Lines outline 

the amount of ordination space occupied by plots in each year. The total amount of area occupied 

by plots in 2009 has contracted slightly from 1990. B. The average dissimilarity for each plot to 

all others plots in 1990 vs. the average dissimilarity of each plot to all other plots during 2009. 

The gray line indicates the 1-1 line.  Most plots fall below the 1-1 line, indicating that there has 

been convergence of community composition over time. 
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CHAPTER 3: CHANGES IN PLANT SPECIES RICHNESS FOLLOWING REDUCED 

FIRE FREQUENCY AND DROUGHT IN ONE OF THE MOST SPECIES-RICH 

SAVANNAS IN NORTH AMERICA 

 

Abstract 

 In species-rich grasslands, disturbance and environmental filtering are two key processes 

that shape plant species richness and composition. Alteration of disturbance regimes and 

environmental change can result in significant changes in community structure, often with long-

lasting consequences. Here I address three issues. 1) How have plant species richness and 

frequency changed over two decades in one of the most species-rich savannas in North America? 

2) Is an altered disturbance regime, environmental stress, or both responsible for these changes? 

3) In what ways can the changes observed in this savanna inform management of other species-

rich communities? In 2011-2013, I re-surveyed permanent plots established in the 1980s and 

1990s in a longleaf pine (Pinus palustris) savanna in the Green Swamp Preserve, North Carolina 

to quantify changes in species richness at a range of spatial scales following 15 years of reduced 

fire frequency plus periodic drought. For comparison, I re-sampled other longleaf pine savannas 

in the region that had not experienced reduced fire frequency, but had experienced long-term 

drought. I identified which types of species were lost and gained, and summarized changes in 

species frequency by growth form, plant height, and habitat affinity. I detected substantial 

declines in small-scale species richness and species frequency from the 1980s to 2011, 

representing a loss of 33% to 41% of the flora, depending on the spatial scale. Small herbaceous 

species had become particularly scarce. Additional re-sampling in the wetter years of 2012 and 
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2013 after two consecutive years of annual fire revealed species richness had increased slightly 

from 2011, but was still considerably lower than species richness in the 1980s. Other savannas 

did not exhibit such dramatic declines in species richness. Reduced fire frequency and drought 

appear to have contributed to species loss over time. This work suggests that nearly annual fire is 

necessary for the maintenance of plant species richness in mesic longleaf pine savannas and even 

a modest reduction in fire frequency can have dramatic negative impacts. This study also 

suggests that drought is an important factor structuring grassland ecosystems in the southeastern 

US, despite relatively high regional precipitation. I believe these findings can be generalized to 

other species-rich grasslands in the world, which are also sensitive to changes in disturbance 

regimes and may require frequent disturbance to maintain plant species richness. 

Introduction 

 In species-rich grassland ecosystems, natural disturbance (e.g. fire, grazing) or processes 

that mimic natural disturbance through the removal of aboveground biomass (e.g. mowing) are 

essential for the maintenance of species richness, community structure, and rare species (Collins 

et al. 1998, Glitzenstein et al. 2003, Fidelis 2010, Peet et al. 2014). Frequent disturbance 

generally increases species richness by reducing the abundance of dominant species, increasing 

resource availability in the form of light, space, and nutrients (Kirkman et al. 2004), and 

resulting in a shift from asymmetric competition for light to more symmetric below-ground 

competition (Peet & Christensen 1988, Wilson et al. 2012, Peet et al. 2014). In addition to 

disturbance, grassland community structure is influenced by seasonal, periodic, and multi-year 

drought events (Gibson & Hulbert 1987), which can have prolonged consequences (Haddad et al. 

2002). At local scales, drought can result in declines in plant biomass and species richness, and 
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shifts in community composition (Tilman and Haddi 1992, O’Connor 1995, Haddad et al. 2002, 

Cheng et al. 2011). 

 Many species-rich grassland ecosystems are experiencing anthropogenic alterations of 

disturbance regimes (changes in frequency, timing, intensity, or severity of disturbance) that 

have long-term impacts on ecosystem structure and function. These impacts vary depending on 

the magnitude and direction of alteration, but may result in the loss of species richness and 

changes in community composition and stand structure (Heyward 1939, Belsky 1992, 

Glitzenstein et al. 2003). In addition, changes in disturbance regimes are often compounded with 

habitat destruction, fragmentation, or altered environmental conditions (e.g. nitrogen deposition, 

climate change), resulting in additional pressure on grassland plant communities (Leach & 

Givnish 1996, Stevens et al. 2011, Potts et al. 2012). 

 Longleaf pine (Pinus palustris) savannas are fire-dependent, species-rich grasslands 

located in the southeastern US, currently influenced by multiple stressors (e.g. fire suppression, 

drought, habitat destruction, and habitat fragmentation). Habitat conversion and long-term fire 

suppression have collectively reduced the longleaf pine ecosystem to only 2-3% of its acreage at 

the time of European settlement (Outcalt & Sheffield 1996, Frost 2006). Plant species richness 

within the herbaceous layer can be exceptionally high, and at small scales represents the highest 

values ever recorded in North America (52 species in 1 m², Walker & Peet 1983, Peet et al. 

2012, Peet et al. 2014) and approaches world-record levels (Wilson et al. 2012). Fire is an 

important factor responsible for the maintenance of species richness within longleaf pine 

savannas, and is essential for the survival of small-statured species within the dense grass matrix 

(Walker & Peet 1983, Glitzenstein et al. 2003, Kirkman et al. 2004). Drought events occur 

periodically in longleaf pine savannas, most often in early spring (March-May, Noss 2013), 
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though little research has investigated how drought influences species richness in these systems 

(but see Myers & Harms 2011), despite recognition of the importance of drought in other 

grassland ecosystems (Cleland et al. 2013). In addition to periodic water stress, the southeastern 

Coastal Plain of the US in which these systems are embedded has been experiencing ongoing, 

long-term drought over the last 25 years (Figure 3.1). I believe that both periodic and multi-year 

drought events may be underappreciated, yet important drivers of community structure in 

longleaf pine savannas. 

 I used a unique, long-term, multi-scale data set from Big Island Savanna of the Green 

Swamp Preserve, NC to explore how drought and fire regime have shaped plant species richness 

over time. Big Island Savanna has been considered one of the most species-rich and high-quality 

longleaf pine savannas on the Coastal Plain of the southeastern US (McIver 1981, Frost et al. 

1986). This site is the source of the North American records of 42 species in 0.25 m² and 52 

species in 1 m² (see Peet et al. 2012, 2014), values which rival those reported for other species-

rich grasslands throughout the world (Kull & Zobel 1991, Cantero et al. 1999, Klimes et al. 

2001, Dengler et al. 2009, 2012, Wilson et al. 2012). The existence of long-term plot records that 

span multiple spatial scales presents a unique opportunity to document changes in richness and 

composition. Big Island Savanna experienced a planned shift in its fire management regime from 

nearly annual fire from at least 1940 to 1997 (Kologiski 1977, Rome 1988) to a fire-return 

interval of 2 to 3 years during 1997-2011. Although fire frequency has changed only modestly, 

this shift may have had significant impacts on species richness as Big Island Savanna had for 

decades before experienced a constant fire management regime. 

 To explore the impact of reduced fire frequency and drought on plant species richness in 

Big Island Savanna, I re-sampled two sets of permanent vegetation plots established over 25 and 
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20 years ago. For comparative purposes and to explore the impact of drought on other longleaf 

pine savannas, I also re-sampled plots on other species-rich longleaf pine savannas in the region 

that had not experienced reduced fire frequency. Specifically, I asked: 

1. Have species richness and species frequency in Big Island Savanna changed in 

response to reduced fire frequency and drought? 

2. What is the relative importance of reduced fire frequency versus drought in driving 

changes in species richness and frequency in Big Island Savanna? 

3. In what ways can the changes observed in this savanna inform management of other 

species-rich grasslands? 

 It is critical that I assess how changes in long-standing fire regimes, compounded with 

additional stress from drought have influenced plant species richness in this savanna, which, 

unlike most other longleaf pine sites, did not experience post-colonial fire-suppression. From a 

conservation perspective, Big Island Savanna is irreplaceable within the greater landscape. 

Moreover, this work has implications not only for fire managers in the longleaf pine ecosystem, 

but for managers and researchers who study other chronically disturbed, species-rich grassland 

ecosystems. 

Methods 

Study Area 

 The Green Swamp Preserve is located in Brunswick County, in the southeastern corner of 

the North Carolina Coastal Plain (34° 5' N, 78° 18' W) and covers approximately 6,700 hectares. 

The majority of the site consists of shrub-dominated ombrotrophic peatland (pocosin), within 
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which occur scattered islands of savanna on mineral soil (Kologiski 1977). Elevation ranges 

from 12 to 25 m above sea level, with very little topographic relief. However, small differences 

in elevation (> 0.2 meter) have major consequences for hydrology, soil properties, and hence 

vegetation (Rome 1988, Christensen 2000). The climate is humid sub-tropical, with an average 

mean annual temperature of 15.5 °C and an average annual precipitation of 160 cm, most of 

which occurs during the growing season (Ruffner 1985, State Climate Office of North Carolina). 

Droughts occur periodically in the region (mostly during the months of March-May) and result in 

at least temporary loss or dormancy of species dependent on moist soils (Kologiski 1977, 

Christensen 1981). Savanna soils in the Green Swamp are typically Leon series, which are 

derived from acidic, fine-textured, nutrient-poor, marine sediments. They are generally poorly 

drained, with the water table within 25 cm of the soil surface for 1 to 4 months of the year 

(Kologiski 1977). 

 This study focused primarily on a single, 30 ha savanna in the Green Swamp: Big Island 

Savanna. During the 18
th

-19
th

 centuries, Big Island Savanna likely burned almost annually due to 

the flatness of the landscape, the great size of the fire compartment, and the flammability of the 

vegetation (Frost 2006). Written records indicate annual, late-winter fire was implemented in Big 

Island Savanna for much of the 20
th

 century, from at least and likely prior to 1940 through 1997 

(Kologiski 1977, Rome 1988). Thereafter, the fire management regime shifted to a mix of 

growing-season and dormant-season fires with a return interval of 2 to 3 years. Thus, over the 15 

years prior to this study, fire-frequency was lower than had been the case with the traditional 

management strategy. This shift reflected an effort by managers to return to what has recently 

been perceived as a more “natural” fire regime with somewhat less frequent fires timed later in 

the growing season when natural ignition is more likely (Frost et al. 1986, Huffman 2006). 
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 I also examined long-term changes in species richness and composition on other sites 

besides Big Island Savanna, including other savannas in the Green Swamp Preserve, Holly 

Shelter Game Lands, Croatan National Forest, and Camp Lejeune Marine Corp Base, to 

determine how long-term drought has impacted savanna vegetation on similar sites in the region 

(Figure 3.2). All of these sites have experienced long-term drought, but not reduced fire 

frequency. However, some sites have likely experienced somewhat more frequent fire over the 

last 20 years relative to the original fire management regime (e.g. Camp Lejeune, Croatan 

National Forest), although long-term fire history data for these sites are lacking. In contrast, fire 

frequency has remained relatively constant over time on other sites (other savannas in the Green 

Swamp Preserve, Holly Shelter Game Lands). Here, I focus on comparing changes in species 

richness and frequency patterns in Big Island Savanna to other environmentally similar sites that 

have experienced drought but not changes in fire frequency (other savannas in the Green Swamp 

and Holly Shelter Game Lands). I more thoroughly explore patterns of species richness and 

composition over time with relation to fire frequency and environmental context on these 

comparison sites in another study (Palmquist 2014, Chapter 2). 

Sampling Design 

 Two different sampling protocols were used to examine changes in species richness and 

composition over time in Big Island Savanna, which reflect the designs of the two separate 

studies that I re-sampled. The first study (study 1; see Sykes at al. 1994) was based on plots 

established and surveyed annually during June of 1985-1989, with a sixth sample in 1994. In 

June 2011, I re-sampled six of the original 2.5 m² plots (see Sykes et al. 1994 for details of plot 

configuration), each of which contained 10 0.25 m² subplots. Three of the six plots were control 

plots and 3 had received sugar additions twice a year to reduce nutrient availability during 1985-
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1989. The sugar additions had no noticeable impact. Each plot was permanently marked in 1985 

with steel conduit and each 0.25 m² subplot was delineated with steel nails, which ensured I 

sampled the same physical location over time. Within each subplot, vascular plant species 

presence was recorded in five permanent 0.01 m² and five permanent 0.001 m² plots. This 

resulted in 300 observations of 0.001 m
2
, 300 observations of 0.01 m

2
, 60 observations of 0.25 

m
2
, 12 observations of 1 m

2
, and 6 observations of 2.5 m

2
. For consistency, plots were re-

sampled in June, 4 to 5 months after fire during all sampling years. These data are archived in 

Dryad. 

 The second study (study 2) was conducted in Big Island Savanna in June of 1993 by the 

Carolina Vegetation Survey (CVS) using the protocol described by Peet et al. (1998, 2012). In 

June 2011, 4 CVS plots were re-located and re-sampled. CVS plots are 1000 m² (20 x 50m) with 

smaller sub-plots nested within. Similar to study 1, each CVS plot was permanently marked with 

10 pieces of steel conduit. Once the plot was re-located, presence of all vascular plant species 

was recorded at seven spatial scales in permanent subplots (0.01 m², 0.1 m², 1 m², 10 m², 100 m², 

400 m², 1000 m²; see Peet et al. 1998, 2012 for details of plot layout). All plots in Big Island 

Savanna were located approximately 50 to 300 m from one another. In addition, 22 1000 m² 

CVS plots established during 1991-1993 on other sites with similar soils and species 

composition were re-sampled in 2009-2010 (study 3). All 26 CVS plots are archived in VegBank 

(http://vegbank.org/cite/VB.ds.199852.Palmquist2014GreenSwamp). 

Analysis 

 Prior to analysis, all taxonomic names were standardized across the sampling years to 

ensure that changes in nomenclature, taxonomic resolution, and taxonomic understanding of the 
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flora across time were not affecting the number or identity of species detected. Species richness 

was calculated at each spatial scale for all three data sets (study 1: 0.001 m², 0.01 m², 0.25 m², 1 

m², 2.5 m², study 2 and study 3: 0.01 m², 0.1 m², 1 m², 10 m², 100 m², 400 m², 1000 m²). I used 

the same analytical methods for all three data sets, but analyzed them separately. Linear models 

and linear mixed effects models were used to detect significant changes in species richness at 

each spatial scale in 2011 relative to richness at each spatial scale during 1985-1994. Random 

intercepts models, a type of mixed effects model, were used to examine richness at all spatial 

scales, except the full plot size as multiple estimates of richness for these scales were drawn from 

the same plot. This modeling approach accounted for spatial auto-correlation caused by the 

nested nature of the data (Zuur et al. 2009). In each random intercept model, species richness in 

the 1980s was regressed against species richness in 2011-2013 using an offset function. The 

unique plot identifier for each subplot was set as a random effect, to account for spatial 

autocorrelation between subplots in the same plot. Linear models were used to examine changes 

in richness over time for the full plot (2.5 m² and 1000 m², respectively, for study 1 and studies 2 

and 3). All statistical analyses were performed in R v.2.15.2 using the nlme package (R Core 

Development Team 2012). Results reported for Big Island Savanna at 2.5 m² and below were 

calculated from study 1, whereas results reported at scales > 2.5 m² were from study 2. 

 To quantify drought over the long-term and to identify individual drought years, I 

obtained monthly Palmer Drought Severity Index (PDSI) and monthly Palmer Z Index (PZI) data 

for 1970-2013 from the Southeastern Coastal Plain of North Carolina (National Climatic Data 

Center 2013). PDSI quantifies the duration and strength of long-term drought, whereas PZI is 

more sensitive to short-term pulses of water and reflects whether moisture conditions deviate 

from normal (short-term drought). I identified the sampling years of 1985, 1986, and 2011 as 
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significant drought years (Figure 3.1). To determine if changes in richness across time were due 

to individual drought years, I examined whether there were significant differences between 

richness values in drought and non-drought years. I also explored whether species richness 

values from 2011 were lower than richness in early drought years, which would suggest that 

other factors (e.g. reduced fire frequency) had influenced species richness over time. 

 In addition to examining changes in species richness, I investigated which species were 

lost and gained over time by tabulating the total number of times a species occurred at each 

spatial scale in every year. I summarized this information as both the mean number of species 

and as the percentage of subplots occupied by each species in each year. I compared the identity 

and frequency of species lost in earlier drought years to those lost in 2011. I expected 

insectivores in particular to decrease over time in response to drought, as they have been shown 

to be particularly sensitive to drought in other longleaf pine studies (e.g. Folkerts 1982) and 

became substantially less abundant during the drought years of 1985 and 1986 in my data set. I 

also expected ‘wet’ and ‘mesic’ species to be lost to a greater extent if drought alone was 

responsible for changes in species richness and identity, as ‘dry’ species could likely tolerate and 

survive drought (see Debinski et al. 2013). In addition, I expected shrubs, trees, and vines to 

increase over time in abundance and frequency in response to reduced fire frequency and rosette 

herbs, geophytes, and other small herbaceous species to decrease, as these groups have 

previously been shown to be sensitive to fire suppression (Glitzenstein et al. 2003, Glitzenstein et 

al. 2012). To identify which types of species became more or less frequent over time and 

whether those changes were related to drought or reduced fire frequency, I classified species in 

three ways. First I assigned species to one of twelve mutually exclusive growth-form categories 

(caulescent herb, matrix graminoid, fern, geophyte, hemiparasite, insectivore, legume, rosette 
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herb, shrub, single-culm graminoid, subshrub, tree, and vine, see Table B.1 for growth form 

definitions) and then examined how the frequency of each growth form changed over time. 

Second, I categorized species according to their maximum height (short = most plant growth 

below 4dm, tall = most plant growth above 4dm) to examine whether short-statured species were 

preferentially lost over time, suggestive of competitive exclusion caused by reduced fire 

frequency. Third, to determine whether species with environmental optima in mesic or wet 

environments were preferentially lost relative to species with optima in dry environments, I 

assigned species to a categorical habitat optimum (dry, mesic, wet) based on Weakley (2012) and 

my own knowledge of the 96 species in the data set. 

 To further disentangle the impacts of drought and reduced fire frequency on changes in 

species richness and frequency over time, I used two approaches. First, I quantified changes in 

richness over time at other sites on the Southeastern Coastal Plain in North Carolina that have 

also recently experienced long-term drought. These sites are similar to Big Island Savanna in that 

they occur on Ultisol soils and have similar hydrologic and soil properties, but differ in that they 

have not experienced reduced fire frequency in the last 20 years. In contrast to Big Island 

Savanna, they have generally been burned consistently or somewhat more frequently (every 2-4 

years) over the last 20 years relative to the previous fire management regime. If changes in 

species richness over time in other sites were similar to those in Big Island Savanna that would 

suggest long-term drought had strong effects on species richness in the region. Second, I re-

sampled all plots in Big Island Savanna again in 2012 and 2013, which were wetter years than 

2011 (Figure 3.1). In addition, annual fire was returned to Big Island Savanna in 2011-2013, 

specifically to facilitate this study. Thus, the re-sampling events in 2012 and 2013 allowed me to 
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assess the extent of species richness recovery, if any, after consecutive years of fire and greater 

water availability. 

Results 

Species Richness and Frequency Patterns over Time 

 At all spatial scales species richness in Big Island Savanna was lower in 2011 compared 

to all other sampling years, and significantly lower for small spatial scales (≤ 2.5 m²; Figure 3.3, 

Table 3.1). These declines at small scales are exceptional and represent a loss of between 32.7% 

and 40.8% of the flora, depending on the spatial scale in question (Table 3.1). In contrast to 

small scales, richness at larger spatial scales (≥ 10 m²) declined less substantially over time, 

representing losses of 1.2 to 14.7% of plant species (Table 3.1). 

 In 2011, most species had become less frequent in subplots in Big Island Savanna, though 

these declines were most extreme at ≤ 1 m² (Tables B.1, B.2, B.3). In particular, small-statured, 

herbaceous species exhibited the greatest decrease: insectivores (1.2 of 11.5 species lost on 

average at 0.25 m²), single-culm graminoids (2.3 of 11.5 species lost on average), rosette herbs 

(4.3 of 11.5 species lost on average), and caulescent herbs (1.8 of 11.5 species lost on average; 

Tables 3.2, B.2). Geophytes, matrix graminoids, and hemiparasites also decreased in frequency 

in 2011 relative to earlier years, but less substantially (0.6, 0.8, and 0.2 species lost on average; 

Tables 3.2, B.2). Legumes and shrubs increased slightly in 2011, while tree species remained 

constant in frequency (Tables 3.2, B.1, B.2, B.3). However, Pinus palustris seedlings shifted 

from occupying 21.7% of 0.25 m² subplots in 1985 to 3.3% of subplots in 2011 (Table B.2). 

Both short (< 4dm) and tall (> 4dm) plant species became less frequent in 2011, but short plants 

became particularly scarce (8.6 short species lost on average versus 3.5 tall species lost on 
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average; Table 3.2). In contrast to expectation, species with their habitat optimum in wet 

environments decreased very little over time, whereas species with their habitat optimum in 

mesic and dry habitats became substantially less frequent (9.3 and 1.6 species lost, respectively; 

Table 3.2). 

Species Richness and Frequency in Drought vs. Non-drought Years 

 To determine whether the loss of species across time was due to the 2011 drought, I 

compared patterns of species richness and frequency from 2011 to the earlier drought years of 

1985 and 1986. Mean species richness was substantially lower in 2011 than in either 1985 or 

1986 at small scales, 0.01 m² (5.1 versus 10), 1 m² (26.4 versus 40.8), and 2.5 m² (33.6 versus 

47.2; Figures 2, 3). In fact, mean richness at small scales during 1985 and 1986 was more similar 

to richness in non-drought years (1987, 1988, 1989, 1994), than richness in 2011 (Figures 2, 3). 

The percent of subplots occupied by most species in 2011 was considerably lower than earlier 

drought years, especially for rosette herbs and single-culm graminoids (Tables 3.2, B.1, B.2, 

B.3). Species lost during the droughts of 1985 and 1986 spanned several growth form categories 

and included both tall shrub species (e.g. Ilex glabra, Morella carolinensis), and smaller statured 

herbaceous species (e.g. Viola primulifolia, Polygala lutea). Insectivores decreased dramatically 

during both the 2011 and 1985-1986 droughts, suggesting these species are more sensitive to 

short-term changes in moisture availability than other species in longleaf pine savannas. 

 Disentangling the Effects of Long-term Drought and Reduced Fire Frequency 

 To parse the relative effects of long-term drought and reduced fire frequency, I compared 

changes in species richness over time at other sites in the Southeastern Coastal Plain of North 

Carolina to the patterns I observed in Big Island Savanna. Species richness did not decrease at 
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most spatial scales in environmentally similar sites that also experienced long-term drought 

(Table 3.3); in fact many sites gained species. Increases in species richness were generally 

greater on sites that had experienced slightly more frequent fire over the last 20 years relative to 

the original fire management regime (Camp Lejeune Marine Corp Base, Croatan National 

Forest; Table 3.3). However, species richness also increased or remained constant at most spatial 

scales on sites with consistent fire frequency (other savannas in the Green Swamp Preserve, 

Holly Shelter Game Lands; Table 3.3). When species loss was detected on other sites, the 

magnitude of loss was substantially less than that detected at Big Island (-4.76 species lost at 

0.01 m² in Big Island Savanna, versus -1.08 in Holly Shelter; Table 3.3). 

 I re-sampled subplots in Big Island Savanna in 2012 to determine whether species 

richness had recovered with two consecutive years of fire and somewhat wetter conditions 

(Figure 3.1). Richness in 2012 increased significantly relative to 2011 at all spatial scales except 

the smallest, which remained stable (Table 3.1). In addition, most species became more frequent 

in subplots in 2012, especially insectivores and single-culm graminoids, which increased by 

15.4% and 8.8%, respectively at 0.25 m² (Tables 3.2, B.2). Very few species decreased in 

frequency between 2011 and 2012, except one species of club moss (Lycopodiella appressa, 

18.3% decrease at 0.25 m²), one single-culm graminoid (Scleria minor, 8.3% decrease at 0.25 

m²), and one rosette herb (Aletris farinosa, 6.7% decrease at 0.25 m²; Table B.2). Although 

species richness rebounded some in 2012, the increase at small spatial scales (2.5 m² and below) 

was not nearly great enough for recovery to 1985-1994 levels (i.e. species loss from 1994 to 

2011 substantially exceeded species gain from 2011 to 2012; Table 3.2). 

 I observed that 2013 was a significantly wetter year than either 2011 or 2012 (Figure 

3.1). In response to higher water availability and continued annual fire, species richness 



59 

increased from 2012 to 2013 at most spatial scales, although only slightly and often not 

significantly (Table 3.1). At the smallest spatial scale (0.001 m²), more species were gained from 

2012-2013 than from 2011-2012, however at all other spatial scales the increase in species 

richness from 2012-2013 was substantially less than from 2011-2012 (Table 3.1, Figures 2, 3), 

which is surprising considering how much wetter 2013 was than 2012. Figure 3.4 shows that 

species richness patterns across years do not perfectly mirror changes in PZI over time. This is 

particularly noticeable for 2012-2013 when PZI increased dramatically, but richness did not. In 

contrast, richness increased substantially more from 2011-2012 despite only small increases in 

PZI, suggesting that species richness patterns are not solely being shaped by soil water 

availability and that species recovery is likely to be a slow process. Alternatively, it is possible 

that there is a time lag and species richness has yet to recover due to the wetter years of 2012 and 

2013. A time lag may become apparent with continued monitoring of these permanent plots, if 

increased fire frequency is maintained. Most species increased slightly in frequency or remained 

constant from 2012 to 2013. However, insectivores and single-culm graminoids both increased 

dramatically (Tables 3.2, B.1, B.2, B.3). Despite some recovery of species richness in 2012 and 

2013, species richness at small spatial scales is still far below the levels documented in the 

1980s. 

Discussion 

 The 2011 sampling event revealed large declines in species richness and species 

frequency in Big Island Savanna at small spatial scales (≤ 2.5 m², formerly 53 species in 2.5 m² 

and now 34 species, and formerly 42 in 1 m² and now 26, see Figure 3.3). Species loss was 

ubiquitous across most groups and extremely high for the small statured, herbaceous species that 
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constitute the bulk of plant species richness at this site. Despite modest recovery in 2012 and 

2013, small-scale species richness remains far below the levels documented in 1985-1994. 

 This data suggests that both reduced fire frequency and drought have contributed to 

species loss in Big Island Savanna, perhaps in a complex and interactive manner. Determination 

of the degree to which reduced fire frequency versus long-term drought is responsible for this 

loss will only be fully clarified with continued monitoring of these plots and future experiments 

manipulating fire frequency. However, several lines of evidence suggest reduced fire frequency 

during the last 15 years is the primary factor driving species richness declines in Big Island 

Savanna. First, the declines in species richness and frequency in response to drought in 1985-

1986 were substantially smaller than during the drought year of 2011, which suggests an 

additional factor, such as reduced fire frequency is responsible. Although individual drought 

events may result in small reductions in species abundance, short-term drought is unlikely to 

result in local extinction of species or large shifts in community composition (Grime et al. 2008). 

Second, the frequency of species that have a habitat optimum in wet environments has remained 

constant over time, which is contrary to my expectation that ‘wet’ species would be most 

sensitive to drought and would be lost preferentially if drought were the major factor influencing 

species richness patterns. This pattern is most likely a consequence of the ‘wet’ species being 

almost exclusively in the ‘tall’ group, reflecting the taller and lusher growth on wet sites. Third, 

reduced fire frequency in longleaf pine savannas and other fire-dependent grasslands results in 

the loss of small-statured species, which are competitively excluded as the abundance of woody 

species, ferns, and large grasses increases post-fire (Leach and Givnish 1996, Glitzenstein et al. 

2003, Overbeck et al. 2005). The documented loss in 2011 of mostly small herbaceous species 

with dry to mesic habitat affinity is indicative of fire suppression. Finally, several species that are 
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known to be weak competitors, and/or highly dependent on fire (i.e. “fire-followers”, Lemon 

1949) decreased over time in Big Island Savanna (e.g. Agalinis aphylla, Aletris farinosa, Aristida 

virgata, Calopogon spp., Cleistesiopsis divaricata, Dichanthelium strigosum, Drosera capillaris, 

Lycopodiella appressa, Pinguicula spp., Xyris ambigua, Lemon 1949, Wilson & Keddy 1986, 

Gaudet & Keddy 1995, Brewer 1999 a, b, Keddy et al. 2006). 

 Further evidence suggests reduced fire frequency rather than drought is the primary cause 

of species loss. For example, other, environmentally similar sites within the region have 

experienced little if any species loss, despite having also been subjected to long-term drought. In 

fact, species richness at these sites has on average increased at most spatial scales, both on sites 

with somewhat increased fire frequency and those with consistent fire frequency (Table 3.3). 

Additionally, two consecutive years of fire at Big Island Savanna resulted in some recovery of 

species richness in 2012. Since 2012 was only slightly wetter than 2011, I attribute the increase 

in species richness in 2012 largely to two consecutive years of fire. However, long-term drought 

has likely contributed to species loss in Big Island Savanna and may explain why a few other 

sites in southeastern North Carolina have lost species at small spatial scales, albeit much less so 

than has been the case for Big Island Savanna (Table 3.3). 

 Species losses of the magnitude I observed at Big Island Savanna in response to alteration 

of disturbance regimes, compounded with additional stressors (e.g. drought, habitat 

fragmentation), have been reported in other species-rich grassland systems (Leach and Givnish 

1996, Glitzenstein et al. 2012). Some work suggests that species richness may be slow to recover 

after stressful events, such as drought or fire suppression, due to a loss of local propagule 

sources, changes in the local environment or shifts in vegetation structure in which often woody, 

competitively superior species prevent the re-colonization of herbaceous species (Tilman and 
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Haddi 1992). Recovery following stressful events may be especially challenging in fragmented 

grasslands, such as Big Island Savanna, which is embedded within a matrix of ombrotrophic 

peatland, dominated by evergreen woody plants. For these reasons, species richness at small 

spatial scales on Big Island Savanna may take a significant amount of time to recover, especially 

in the presence of ongoing drought, and likely will not recover with continued reduced fire 

frequency. 

 The temporal and spatial breadth of this study was crucial for detecting changes in 

species richness in Big Island Savanna. Grasslands are structured by multiple processes that vary 

over space and time (e.g., fire, grazing, drought, see Collins and Smith 2006), and for this reason 

it is essential to quantify plant species richness patterns across multiple spatial and temporal 

scales. For example, previous work has suggested that fire frequency has the largest impact on 

species richness at small spatial scales (Glitzenstein et al. 2003, Collins & Smith 2006, Bowles & 

Jones 2013). Here, I document a scale-dependent response to changes in fire frequency and 

drought over time. Some combination of drought and reduced fire frequency have reduced the 

population sizes of most species in Big Island Savanna, resulting in reduced species packing at 

small spatial scales as there are now fewer individuals of each species present. If a nearly annual 

fire regime is not reinstated in Big Island Savanna, population sizes are likely to continue to 

decline, which may result in local extinction and declines in species richness at larger spatial 

scales, especially for already infrequent and rare species. This hypothesis of species loss trickling 

upward to larger spatial scales with continued fire suppression has been suggested previously in 

another longleaf pine study examining species richness patterns over time in relation to fire 

frequency (Glitzenstein et al. 2012). Had I examined species richness patterns only at 1000 m² in 

Big Island Savanna, I would have concluded that species richness had remained relatively stable 
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over time and that changes in the fire management regime and/or long-term drought had not 

affected vegetation patterns in this savanna (Table 3.1). Hence, monitoring at multiple spatial 

and temporal scales is critical for understanding patterns, identifying processes that drive those 

patterns, and informing conservation and land management agencies about best management 

practices. 

 One important finding from this study is that small changes in fire management regimes 

can have large and long-lasting consequences for plant species richness in longleaf pine 

savannas. This work suggests that very frequent to annual fire is probably necessary to maintain 

small-scale biodiversity and species packing in the most species-rich, moist savannas, especially 

in the face of additional environmental stress. I believe this work can be generalized to other 

species-rich grasslands that experience chronic or continuous disturbance (e.g. alvar grasslands 

in northern Europe, oligotrophic mowed meadows of eastern Europe, cerrado in Brazil, Themeda 

triandra grasslands in Australia, and mountain grasslands of central Argentina, Wilson et al. 

2012). Some evidence from other species-rich systems also suggests that slight changes in 

disturbance regimes can have large impacts on plant biodiversity (Morgan 1999, Overbeck et al. 

2005). In addition, this research indicates that land managers should proceed cautiously when 

making changes to long-standing management regimes, despite how well intentioned such 

changes might be, and assess impacts immediately after their implementation. Future work in 

other species-rich grasslands should both explore whether chronic and nearly continuous 

disturbance is necessary to maintain species richness and how slight alternation of disturbance 

regimes can affect plant species richness over time. 

 Both periodic and multi-year drought events are important factors that shape species 

richness and community composition patterns in the longleaf pine ecosystem and potentially 
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increase the risk of biodiversity loss with altered disturbance regime. Drought events have been 

recognized as important processes in many other grassland ecosystems (e.g. Tilman and Haddi 

1992, Knapp et al. 2002, 2006, Anderson 2008, Evans et al. 2011, Cherwin and Knapp 2012). 

The severity and intensity of drought events in the southeastern US have increased in the last 25 

years and are predicted to continue increasing with ongoing climate change (Klos et al. 2009). 

Thus, future research should explore further the relative and interactive contributions of drought 

and fire to changes in community structure and composition in the longleaf pine ecosystem as 

such knowledge will be critical for protecting these species-rich and threatened communities. 

 Although longleaf pine savannas, among many other grassland ecosystems, are 

dominated by long-lived perennial species, species richness and frequency in these ecosystems 

are surprisingly sensitive, both spatially and temporally, to environmental changes, alteration of 

disturbance regimes, and stochastic events (Sykes et al. 1994, Collins & Smith 2006). An 

unusually long history of detailed vegetation sampling at multiple scales in Big Island Savanna 

has enabled me to document complex changes in species richness in response to drought and 

reduced fire frequency. Additional studies in the longleaf pine ecosystem and other grass-

dominated ecosystems are needed to more fully disentangle the complex and interactive effects 

of environmental change and altered disturbance regimes on spatial and temporal patterns of 

species richness. Moreover, understanding these complex relationships will be necessary to 

provide critical guidance to land managers responsible for conserving important biodiversity 

sites. 
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Tables 

 

Table 3.1. Average number of species lost and gained over time at each spatial scale in Big Island Savanna from 1985 to 2013. ∆ 

Richness 1985-1989 represents the mean change in species richness across scales between sequential observations in the original 

sampling. ∆ Richness 1994-2011 is the change in species richness from 1994 to 2011, while ∆ Richness 2011-2012 and ∆ Richness 

2012-2013 are the change in species richness from 2011 to 2012 and from 2012 to 2013, respectively. Double asterisks indicate p < 

0.0001, single asterisks indicate p < 0.05, and single dots indicate p < 0.10. % Change is the percentage of species lost or gained over 

time relative to mean species richness. 

   ∆ Richness % Change   ∆ Richness % Change   ∆ Richness % Change   ∆ Richness % Change  

Area 

(m²) 1985-1994 1985-1994 1994-2011 1994-2011 2011-2012 2011-2012 2012-2013 2012-2013 

1000 -- -- -1   -1.2 5.8   6.7 1.5   1.7 

400 -- -- -4.3   -5.6 7.5 * 9.4 0.5   0.6 

100 -- -- -2.2   -3.9 7.4 ** 12.1 0.9   1.4 

10 -- -- -5.3 • -14.7 7.6 ** 19.8 -0.01   0.2 

2.5 3.33 6.7 -16.3 ** -32.7 6.3 * 15.8 3.8 * 8.7 

1 1.25 3.0 -15.5 ** -37 5.7 ** 17.6 2.2   6.3 

0.25 1.02 3.5 -11.5 ** -40.8 3.8 ** 18.6 2.1 ** 9.1 

0.1 -- -- -5 * -40.5 2.5 ** 25.5 0.4   3.9 

0.01 0.36 3.3 -4.8 ** -48.1 1.6 ** 23.3 0.71 ** 9.6 

0.001 -0.33 -10.7 -1 ** -38.3 -0.03   0 0.24 * 13.6 

 

6
5
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Table 3.2. Mean number of species of different growth form, plant height (short < 4dm, tall > 

4dm), and habitat affinity in 0.25 m² subplots in Big Island Savanna. Mean number of species in 

subplots is summarized for 1985-1994, for the drought years in the 1985-1994 interval (1985, 

1986), non-drought years during 1985-1994, and 2011-2013. Small statured herbaceous species 

(e.g. rosette herbs, geophytes, caulescent herbs) have decreased in frequency from 1985-1994 to 

2011-2013, while shrubs and vines have increased, suggestive of competitive exclusion caused 

by fire suppression. 

  1985-1994 1985-1994 1985-1994 2011 2012 2013 

Growth form Mean 

Drought 

year 

Non-drought 

year Mean Mean Mean 

matrix graminoid 4.9 4.9 4.9 4.1 4.4 4.3 

insectivore 2.3 2.0 2.4 1.1 1.4 2.2 

single-culm graminoid 5.7 5.5 5.8 3.4 4.8 5.7 

rosette herb 8.9 8.5 9.1 4.6 5.1 5.5 

hemiparasite 1.4 1.3 1.4 1.2 1.4 1.4 

clubmoss 1.0 1.0 1.0 1.0 1.0 1.0 

subshrub 1.4 1.4 1.4 1.3 1.4 1.3 

caulescent herb 3.5 3.4 3.5 1.7 1.9 2.3 

geophyte 1.6 1.6 1.6 1.0 1.2 1.3 

shrub 1.1 1.1 1.0 1.6 1.4 1.4 

tree 1.0 1.0 1.0 1.0 1.0 1.1 

legume 1.0 0.0 1.0 1.3 1.2 1.3 

vine 0.0 0.0 0.0 0.0 1.0 1.0 

Plant height 1985-1994 

Drought 

year 

Non-drought 

year 2011 2012 2013 

short 15.5 15.0 15.7 6.9 9.7 12.0 

tall 13.4 12.9 13.7 9.9 10.9 10.7 

Habitat optimum 1985-1994 

Drought 

year 

Non-drought 

year 2011 2012 2013 

mesic 17.9 17.3 18.2 8.6 11.0 12.9 

dry 8.4 8.1 8.6 6.0 6.7 6.3 

wet 2.6 2.4 2.7 2.5 3.0 3.4 
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Table 3.3. Mean change in richness (∆ richness) at three spatial scales from 1993 to 2009 for 

Ultisol savannas in the southeastern Coastal Plain of NC. Negative values indicate sites that have 

lost species over time, while positive values indicate sites that have gained species. Species 

richness has increased on Croatan National Forest and Camp LeJeune Marine Corp Base, 

perhaps owing to somewhat more frequent fire in the last 20 years relative to the original fire 

management regime. Species richness has remained constant or increased at all but the smallest 

spatial scale on other savannas in the Green Swamp Preserve and on Holly Shelter Game Lands, 

which have experienced constant fire frequency over the last several decades. Other 

environmentally similar sites experiencing long-term drought have not lost as many species as 

Big Island Savanna, suggesting long-term drought is not the primary driver of species loss in Big 

Island Savanna. 

Site 

∆ Richness .01 

m² ∆ Richness 1 m² 

∆ Richness 10 

m² 

Green Swamp- Big Island -4.8 -15.8 -5.1 

Green Swamp- Other Savannas -0.8 0.3 3.1 

Camp LeJeune Marine Corp 

Base -0.2 3.5 5.8 

Croatan National Forest 1.3 6.3 9.1 

Holly Shelter Game Lands -1.1 1.0 3.4 
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Figures 

Figure 3.1. Mean annual Palmer Drought Severity Index (PDSI) and mean annual Palmer Z 

Index (PZI) from 1970-2013 for the southeastern Coastal Plain of North Carolina. PDSI and PZI 

values below 0 indicate drought years, whereas values above zero indicate non-drought years. 

PDSI quantifies long-term drought conditions, while PZI reflects short-term changes in water 

availability. The number of drought events has increased since 1980, as indicated by the black 

linear best-fit lines and a larger proportion of years below the dotted line. 
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Figure 3.2. Plot locations in southeastern North Carolina, USA. Red x-marks indicate 8 plots 

located in the Green Swamp Preserve, which includes 4 plots in Big Island Savanna and 4 plots 

in other savannas. Black circles indicate 14 plots located in other environmentally similar sites. 
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Figure 3.3. Mean species richness at each spatial scale in Big Island Savanna during 1985-1989, 

1994, and 2011-2013. Richness has decreased significantly from 1994 to 2011 at all scales below 

2.5 m². Although, I plot the linear trajectory between 1989 to 1994 and 1994 to 2011 (denoted 

with a dashed line), the variation in species richness within these intervals is unknown. 
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Figure 3.4. Comparison of the variation in mean species richness at 1 m² and mean annual 

Palmer Z Index (PZI) between 1985 and 2013. Prescribed fire events are denoted with black 

boxes. The trajectory of richness in the intervals 1989-1994 and 1994-2011 is indicated with a 

dashed line as within-interval variation in richness is unknown. 
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CHAPTER 4: SPECIES RICHNESS PATTERNS ARE SHAPED BY LOCAL, 

REGIONAL, AND HISTORICAL PROCESSES ACROSS SPACE IN THE LONGLEAF 

PINE ECOSYSTEM 

 

Abstract 

 Traditionally, ecologists have focused on understanding how local processes shape 

community structure, but have now begun to explore the influence of regional, evolutionary, and 

historical processes on local communities as well. Here, I examined whether multiple processes 

operating at different spatial and temporal extents (soil, climate, species pool size) 

simultaneously influence plant species richness patterns in the longleaf pine ecosystem 

Specifically, I ask, how does plant species richness change across the spatial extent of this 

ecosystem? Which processes are most important in structuring those patterns? How does the 

relative importance of these processes change across ecoregions and with grain size? I assembled 

vegetation and soil data for 849 100 m² plots from high-quality, fire-maintained longleaf pine 

sites located in the southeastern US and calculated species richness at 1 m² and 100 m². I used 

principle components analysis to extract the main axes of variation across the soil data. Climate 

data were obtained from the WorldClim Global Climate Database. Species pools were built using 

a two-step approach that accounted for dispersal limitation and environmental tolerance. Model 

selection using AIC and variance partitioning was used to quantify the unique variance in species 

richness explained by each predictor, along with the shared and unexplained variance. Soil 

properties collectively were the most important driver of species richness, regardless of spatial 

grain or ecoregion. Climate explained additional variation in species richness, although 
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substantially less. Surprisingly, I found that species pool size only explained variation in species 

richness at 1 m². These patterns remained consistent across ecoregions, yet climate and species 

pool size became better predictors of species richness in more southern ecoregions. These results 

suggest that plant species richness in the longleaf pine ecosystem is structured by multiple 

processes that act simultaneously. The identity and relative importance of local, regional, and 

historical processes change across extent and grain size in this ecosystem, indicating that the 

important ecological processes that structure species richness patterns are scale-dependent. 

Introduction 

 Community assembly is the process by which species are filtered into ecological 

communities, and can be thought of as a series of sieves, each allowing certain species through 

while excluding others to ultimately determine both the number and identity of species that get to 

and become established at a  site (e.g., species diversity and composition; Diamond 1975). 

Multiple ecological processes, which often operate at different spatial and temporal scales, can 

influence community patterns simultaneously (Auerbach & Shmida 1987, Crawley & Harral 

2001, Ricklefs 2004); thus a key challenge for ecologists has been to identify which processes 

act to produce the patterns we see at different scales of observation. Most studies have focused 

on documenting ecological patterns at local scales (e.g., within a single community or small set 

of communities) and have suggested local, deterministic processes (e.g., environmental filtering, 

biotic interactions) are the key processes that shape community structure (Whittaker 1965, 

MacArthur & Levins 1967, Tilman 1982). More recently, ecologists have recognized that 

regional, evolutionary, and historical processes influence species diversity and composition 

patterns as well (Zobel 1997, Pärtel 2002, Harrison & Cornell 2008) and have begun to consider 
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how local, regional, and global processes simultaneously influence community structure (Carr et 

al. 2009, White & Hurlbert 2010, Gazol et al. 2012). 

 Identifying the important local, regional, and historical processes that drive community 

patterns remains challenging for several reasons. First, these processes often operate at different 

spatial and temporal scales, and so the processes deemed “important” depend on the spatial or 

temporal scale of the study (Siefert et al. 2012). Second, patterns and processes that operate at 

large spatial and temporal scales are hard to measure within the typical timeframe of most 

ecological studies, although studies at these scales have become more feasible recently due to a 

growing number of large, publicly available databases (e.g., Dengler et al. 2011, Kattge et al. 

2011, Peet et al. 2012a). Furthermore, evolutionary and historical controls on species richness 

are still hard to quantify. One approach to circumvent this challenge is to use the size of regional 

species pools as a proxy for the strength of evolutionary and biogeographic processes (Ricklefs 

& Schluter 1993, Pärtel 2002), as they may reflect evolutionary rates, evolutionary time, and/or 

biogeographic history (e.g., evolutionary or refugial centers). 

 I use a large vegetation data set to identify the important local, regional, and historical 

processes structuring species richness patterns in longleaf pine plant communities. The longleaf 

pine ecosystem is located in the southeastern US and is characterized by a graminoid-dominated 

herbaceous layer and an open over-story of Pinus palustris. The high level of species richness 

(up to 52 species in 1 m², the record values for North America; Peet et al. 2014), endemism 

(Sorrie & Weakley 2006, Noss 2013), and wide-scale destruction of longleaf pine acreage (< 3% 

remains; Frost 2006) make the longleaf pine ecosystem a conservation priority in the United 

States. Plant species richness in the longleaf pine ecosystem has been observed to increase with 

decreasing latitude (Peet et al. 2014), which I hypothesize is due to differences in climate and 
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biogeographic history. At lower latitudes, there is less seasonality in temperature, a longer 

growing season, and higher annual precipitation (Hijmans et al. 2005); thus, more favorable 

climatic conditions may be one explanation for higher plant species richness at lower latitudes. 

An alternative explanation is that biogeographic history over the last 30,000 years has shaped the 

size of species pools differentially across the range of the longleaf pine ecosystem, which has 

important consequences for the number of species that can filter down to local sites. In 

particular, during the last glacial maxima (~18,000 years ago) species differentially persisted in 

the south and likely on the now submerged portion of the Coastal Plain (Delcourt & Delcourt 

1981). Since most refugial areas were likely located in the southern portion of this ecosystem, 

species richness may be higher at the southern end of this ecosystem due to larger species pools 

maintained by the presence of refugial centers. Since these patterns and mechanisms have not 

been explored quantitatively, my first goal was to explore patterns of plant species richness 

across a large spatial extent of this ecosystem. An understanding of where biodiversity is highest 

in the longleaf pine ecosystem should help inform conservation planning and guide restoration 

efforts in the future. 

 Several studies conducted in single sites or in small geographic areas have suggested that 

species richness in longleaf pine plant communities is influenced by multiple ecological 

processes (e.g., soil properties and fire regimes; Glitzenstein et al. 2003, Kirkman et al. 2004). 

However, few studies have explored which processes act across multiple sites and/or across 

broad geographic extents (but see Carr et al. 2009, Peet et al. 2014). Hence, the second goal was 

to determine the important local, regional, and historical processes structuring plant species 

richness across a large portion of the longleaf pine ecosystem. Specifically, I focus on local 

environmental filtering (soil and site properties), regional environmental filtering (climate), and 
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biogeographic history (size of the regional species pool). Although soil properties, climate, and 

the species pool may simultaneously influence species richness patterns, I predict soil properties 

will explain the most variation in species richness because soil texture, nutrients, and moisture 

have been identified as key factors that shape community structure in other longleaf pine studies 

(Peet 2006, Carr et al. 2009, Peet et al. 2014). 

 My final aim is to determine how the relative strength of processes changed across the 

geographic extent of the study area (North Carolina to Florida) and across grain (i.e. plot sizes of 

1 and 100 m²). Although I expected local environmental filtering would consistently be most 

important, I hypothesized that the relative importance of regional and historical processes would 

increase as spatial grain increased. Local processes (e.g., local environmental filtering), are often 

more important in structuring community patterns at very small spatial scales, whereas larger-

scale processes generally increase in importance as spatial grain increases (Auerbach & Shmida 

1987). Consequently, I expected that the signal of regional and historical processes would 

increase from 1 m² to 100 m². In addition, I explore whether local, regional, and historical 

processes change in relative importance across the spatial extent of this ecosystem by re-running 

analyses across the four Nature Conservancy (TNC) ecoregions in the southeastern US (i.e. Mid-

Atlantic Coastal Plain, South Atlantic Coastal Plain, East Gulf Coastal Plain, Florida Peninsula; 

The Nature Conservancy et al. 2009). 

Methods 

Study Area 

 This project was conducted in longleaf pine plant communities across a large portion of 

the southeastern Coastal Plain from North Carolina south into peninsular Florida and west to the 
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Alabama border (Figure 4.1). The study area spans four major TNC ecoregions, listed here from 

north to south: Mid-Atlantic Coastal Plain, South Atlantic Coastal Plain, East Gulf Coastal Plain, 

and Florida Peninsula (The Nature Conservancy et al. 2009). I used these ecoregions to bin the 

data to examine how species richness patterns and the processes structuring those patterns 

change with spatial extent. The climate is humid-sub tropical with high precipitation, most of 

which occurs during the growing season (April-September). Annual precipitation increases with 

decreases in latitude and with proximity to the coast, while mean annual temperature generally 

increases southward (Hijmans et al. 2005). Soils within the study area are diverse, with five soil 

orders represented, but are generally sandy and nutrient poor (Christensen 2000). 

 Vegetation History 

 Since the beginning of the Pleistocene (2.5 mya), the southeastern US has been shaped by 

repeated glaciation and thaw events, despite never actually having been glaciated. Prior to and 

during the last glacial maxima 18,000 years ago, most species associated with the longleaf pine 

ecosystem likely migrated southward in response to cooling climate and remained in refugial 

areas in the south, along with additional refugial centers likely on the Cape Fear Arch in North 

Carolina, and on the now submerged continental shelf (Watts 1980, Delcourt & Delcourt 1981, 

Peet 1993, Christensen 2000). During this period, there was a temperature gradient across the 

southeastern US and the vegetation likely responded with more displacement of species in 

northern latitudes (Watts 1980, Jackson et al 2000 Figure 7). Although the available pollen and 

macrofossil data are limited, the data suggest that peninsular Florida was dominated by stands of 

Pinus, Quercus, and non-arboreal taxa, and that warm-temperate conifers (e.g. Pinus palustris) 

were restricted to Florida and perhaps the Gulf Coast (Jackson et al. 2000). Thereafter, as climate 

warmed ~10,000 years ago, some species likely migrated north and eastward out of refugial 
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areas, resulting in perhaps less recovery of species further north. Thus, biogeographic history in 

the last 30,000 years may have shaped the size of the species pool across the longleaf pine 

differentially due to the location of refugial centers (e.g., larger species pools in the south). 

Vegetation and Environmental Data 

 From 1988 through 2013, the Carolina Vegetation Survey (CVS) sampled over 8000 

plots across the southeastern United States (Peet et al. 2012b). The CVS sampling protocol 

consists of 1000 m² plots with multiple smaller sub-plots nested within (see Peet et al. 1998). 

Presence of all vascular plant species is recorded at multiple spatial scales within each plot (0.01 

m², 0.1 m², 1 m², 10 m², 100 m², 1000 m²). I compiled CVS vegetation data for all longleaf and 

slash pine (Pinus elliottii) plots in North Carolina, South Carolina, Georgia, and Florida, 

resulting in a final data set of 849 plots of at least 100 m² plots (Figure 4.1). To examine how 

species richness patterns change with spatial grain in this system, I calculated mean species 

richness at 1 and 100 m² for all plots. 

 In addition to vegetation data, environmental data were collected at the time of sampling 

and included slope, aspect, and soil samples from the A and B horizons. Soil samples were 

analyzed for texture (sand, silt, clay %), nutrients (N, P, Al, B, Ca, Cu, Fe, H, K, Mg, Mn, Na, S, 

Zn), organic matter, base saturation, cation exchange capacity, pH, Ca/Mg ratio, and bulk density 

by Brookside Laboratories Inc. using Mehlich III extraction (Mehlich 1984). Elevation was 

determined from a digital elevation model. Several variables were log-transformed (Al, Ca, Cu, 

Fe, K, S, P, Mn, Zn, Mg, elevation, organic matter, cation exchange capacity, and Ca/Mg ratio), 

square-root transformed (silt %, sand %) or cubed (bulk density, sand %) prior to analysis to 

normalize the data. To quantify differences in soil properties across sites and to extract the major 
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axes of variation across the soil data, I used principal components analysis (PCA). I first 

conducted PCA on all plots; the first three axes explained 99.7% of the variation in the data and 

corresponded to axes of soil texture (PCA1), soil base cations (PCA2), and soil moisture 

(PCA3), respectively. I interpreted PCA3 as an axis of soil moisture, as organic matter, sulfur, 

and nitrogen load on this axis. Higher soil organic matter (and hence higher S and N) are 

expected in soils that have higher soil moisture due to the buildup of carbon in anaerobic 

conditions. To explore how the relative importance of soil properties changed across ecoregions, 

I re-ran PCA within each ecoregion. 

 Climatic data were obtained for each plot from the WorldClim Global Climate Database 

from grids with a 30 second spatial resolution (0.93 x 0.93 = 0.86 km
2 
at the equator). These 

layers were created by interpolation of climate data from pre-existing databases and weather 

stations with data from at least 10 years (Hijmans et al. 2005). Multiple temperature and 

precipitation parameters, including annual, monthly, and quarterly averages were extracted for 

each plot (see Hijmans et al. 2005) by intersecting the plot location and the grid in R v.2.15.2 

using the raster package (R Core Development Team, 2012). 

Building Regional Species Pools 

 I built regional species pools across the range of the data set to serve as proxies for 

biogeographic and historical processes. Here, I define the species pool as the group of species 

from the regional flora from which local communities are assembled (Pärtel et al. 1996, Zobel 

1997). My working definition of a species pool includes both species that can disperse to a site 

and tolerate the environmental conditions of that site. I built 20 different species pools across the 

range of the data using a two-step approach that accounts for both dispersal limitation and 
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environmental tolerance. First, I assigned all plots to one of four ecoregions in the southeastern 

US: Mid-Atlantic CP, South Atlantic CP, East Gulf CP or Florida Peninsula (The Nature 

Conservancy et al. 2009). I then summarized species occurrences in plots to create a species list 

for each ecoregion, which was a good first approximation of the species associated with the 

longleaf pine ecosystem in each ecoregion. This initial data set contained 1657 taxa. However, 

while the plot data captured most species in each ecoregion they occur in, within any given 

ecoregion, a number of species were missed by plots. I filled in these missing holes for species in 

the plot data set using distributional data from the USDA Plants Database (USDA 2013) and 

Weakley 2012. In addition, many longleaf pine associated species are rare or narrowly 

distributed and were not captured in plots or initially included in the species pools. To overcome 

this, I augmented the species list for each ecoregion generated from the plot data with additional 

taxa (N = 123) obtained from a list of longleaf-associated species of the southeastern US (Sorrie 

& Weakley 2006, Weakley 2012, Weakley unpublished data). 

 Second, a broad community type was assigned to each plot, based on a pre-existing 

vegetation classification of longleaf pine communities (Peet 2006). Peet (2006) identified five 

broad longleaf pine community types based largely on soil moisture and soil texture: xeric sand 

barrens and sandy uplands (sandhills), subxeric sandy uplands (subxeric woodlands), flatwoods 

(flatwoods), silty uplands (silty woodlands), and savannas (savannas, see Figure 4.2 in Peet 

2006). I summarized species occurrences in plots to create a species list for each broad 

community type, filled in geographic gaps in the data as above, and added additional species as 

described above. I then used these lists to create a unique regional species pool for each of the 20 

ecoregion-community type combinations (e.g., Mid-Atlantic CP sandhills; Table 4.1).  
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Analysis 

 Multiple regression and model selection using AIC (Burnham & Anderson 2002) were 

implemented to determine the best-fit model for explaining variation in species richness across 

space. For soil properties I explored whether individual soil variables that are known to be 

important (e.g., silt %) or the PCA axes scores were better predictors of species richness. After 

model selection, I used variance partitioning to quantify the unique variance in species richness 

explained by soil properties collectively, climate, and species pool size, along with the shared 

variance explained by one or more predictors and the unexplained variance. I ran all analyses at 

both 1 m² and 100 m² to examine how patterns and the processes structuring those patterns 

changed with spatial grain. To determine how the relative strength of processes changed across 

spatial extent, I fit separate multiple regression models for each of the four ecoregions in the 

southeastern US. In total, I fit ten regression models, two for all plots at 1 m² and 100 m² and 

eight for the four ecoregions at 1 m² and 100 m². 

Results 

 Species richness at 100 m² and 1 m² increased with decreasing latitude, albeit weakly 

(100 m² R² = 0.06, p < .001, 1 m² R ²= 0.02, p < .001), suggesting communities in the southern 

portion of the longleaf pine range are on average slightly more species rich. This relationship 

held when constraining environmental context, as most broad community types in the East Gulf 

CP were more species rich than their counterparts in the Mid-Atlantic CP (Figure 4.2). Species 

pool size was greatest in the East Gulf CP and South Atlantic CP, regardless of community type 

(Table 4.1). Although species richness and species pool size increased with deceasing latitude to 
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the FL panhandle, species richness and species pool size decreased thereafter into the Florida 

peninsula (100 m² R² without peninsular FL plots = 0.08; Figure 4.2).  

 The explained variances I report are the unique variance components of each predictor in 

the final models. The best fit model for all plots at 100 m² contained all three soil PCA axes (soil 

texture, soil base cations, and soil moisture), annual precipitation, and temperature in the wettest 

quarter (Table 4.2). However, soil properties collectively explained considerably more unique 

variance in richness than climate (soil R² = 0.35, climate R² = 0.08; Figure 4.3). Sites with 

greater soil nutrient availability, higher soil moisture, and warm and wet climates had greater 

species richness. Species pool size was not a significant predictor in the model at 100 m² (p = 

.48). At 1 m², the same predictors explained differences in species richness across space, in 

addition to species pool size (R² = 0.01). The relative importance of soil properties versus 

climate was consistent at 1 m², with soil properties explaining more variation in species richness 

than climate (soil R² = 0.19, climate R² = 0.02; Figure 4.3). Interestingly, different soil attributes 

became more important predictors of species richness as spatial grain changed from 100 to 1 m²: 

soil base cations were the most significant predictor of species richness at 100 m², whereas soil 

texture was more important at 1 m² (Table 4.2). As predicted, I detected a slight increase in the 

amount of variance explained by climate as spatial grain increased from 1 to 100 m² (Figure 4.3).  

 To explore how the relative importance of local, regional, and historical processes change 

across space in this system, I re-ran the above analyses across the four ecoregions in the 

southeastern US using separate PCA analyses for each ecoregion. In the Mid-Atlantic Coastal 

Plain, at both 100 m² and 1 m², the best-fit model contained all three soil PCA axes and 

temperature seasonality (Table 4.2). Soil properties emerged again as the most important 

predictor of species richness (100 m² R² = 0.38, 1 m² R² = 0.32), whereas climate explained 
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significantly less (100 m² R² = 0.03, 1 m² R² = 0.04; Figure 4.4). In addition, species-pool size 

explained additional variance in richness, but only at 1 m² (R² = 0.03). In the South Atlantic 

Coastal Plain, the best fit model at 100 and 1 m² contained the first two soil PCA axes (soil 

texture and soil base cations; 100 m² R² = 0.27, 1 m² R² = 0.26), along with precipitation in the 

driest month (100 m² R² = .04; 1 m² R² = .03). As was the case with the Mid-Atlantic Coastal 

Plain, the size of the species pool explained additional variation in species richness at 1 m² (R² = 

0.03; Figure 4.4), but not at 100 m².  

 In the East Gulf Coastal Plain, soil base cations (PCA2), precipitation in the warmest 

quarter, and temperature in the warmest quarter were the best predictors of richness at 1 m² and 

100 m². Similar to other ecoregions, soil properties explained more variation in richness (100 m² 

R² = 0.25, 1 m² R² = 0.24) than climate (100 m² R² = 0.15, 1 m² R² = 0.10). Species pool size 

again only explained variation in species richness at 1 m² (R² = 0.10; Figure 4.4). In the East 

Gulf Coastal Plain, climate and species pool size explained a greater proportion of variance in 

richness compared to other ecoregions (Figure 4.4). In the Florida Peninsula, soil base cations 

(PCA2) and soil moisture (PCA3), along with precipitation in the coldest quarter and 

temperature in the warmest quarter, explained most of the variation in species richness at 1 m² 

and 100 m². Soil properties again explained more variance in species richness than climate at 

both spatial grains (soil 100 m² R² = 0.24, soil 1 m² R² = 0.14; climate 100 m² R² = 0.07, climate 

1 m² R² = 0.25). In contrast to all other ecoregions, climate was a better predictor of species 

richness at 1 m² than soil properties in the Florida Peninsula. In addition, species richness in the 

Florida peninsula was explained by different aspects of soil properties as spatial grain changed 

from 100 to 1 m²; soil base cations were more important at 100 m², whereas soil moisture was 
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more important at 1 m² (Table 4.2). Species pool size did not explain differences in species 

richness in the Florida Peninsula at either 1 m² or 100 m². 

Discussion 

 I detected a weak latitudinal trend in species richness at both 1 m² and 100 m², with 

higher species richness in the South Atlantic and East Gulf Coastal Plain. Species richness 

increased in nutrient-rich, moist sites, with warm, wet climates, both within ecoregions and 

across ecoregions. Species pool size was highest in the East Gulf Coastal Plain and in sites with 

great nutrient and water availability (e.g. savannas and silty woodlands; Table 4.1). Soil 

properties consistently explained more variation in species richness than climate, regardless of 

ecoregion or spatial grain. Furthermore, species pool size was only a significant predictor at 1 m² 

in contrast to my expectation that species pool size would become a slightly more important 

filter on species richness at larger spatial grains. 

 Carr et al. (2009) found that soil properties, climate, and space explained similar 

proportions of variance in species composition in Florida longleaf pine communities (using a 

subset of the data used in this study). Soil properties explained most of the variation in 

community composition (48%), followed by climate (9%), and pure spatial factors (9%). My 

work is analogous to theirs and suggests that vegetation patterns in the longleaf pine ecosystem 

are shaped by multiple processes, but primarily by soil properties. In a study that investigated the 

relationship between soil properties and species richness, Peet et al. (2014) also found that 

species richness patterns in longleaf pine communities are structured by the same three axes that 

emerged from this analysis: soil moisture, soil texture, and soil nutrients. 
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 I found that the relative importance of processes structuring species richness patterns 

changed with grain size. As predicted, the amount of variance explained by climate increased 

slightly as spatial grain increased, suggesting processes operating at larger spatial and temporal 

scales become slightly more important filters on species richness at larger scales. In addition, 

species richness was predicted by different attributes of soil properties as spatial grain changed: 

soil texture consistently became more important as spatial grain changed from 100 m² to 1 m². 

 The relative importance and identity of processes structuring species richness patterns 

also changed across ecoregions. The amount of variance in species richness explained by species 

pool size increased with decreases in latitude, with the exception of peninsular Florida (Figure 

4.4). This suggests biogeographic history and the location of refugial centers may have direct 

effects on species pool size and hence the number of species that can filter down to local 

communities. Although soil properties were consistently the best predictors of species richness, 

species richness was explained by different components or axes of soil properties across space. 

In general, soil base cation availability explained the most variation in species richness in 

southern longleaf pine communities, particularly in Florida, whereas soil texture was the most 

important predictor of species richness in the Mid-Atlantic Coastal Plain. Soil texture became 

less important in the East Gulf Coastal Plain and peninsular Florida, presumably because soils 

are very sandy and homogenous throughout. Species richness increased on sites with greater silt 

%, soil moisture, and base cations, suggesting greater resource availability (nutrients, moisture), 

allowing more species to coexist. Unsurprisingly, base cations and topographically-influenced 

soil moisture, which are known to be key predictors of species richness and composition in 

Florida (Carr et al. 2009), emerged as important predictors of species richness in the East Gulf 

Coastal Plain. Lastly, the important climatic variables structuring species richness also changed 
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across space: temperature seasonality was more important in northern latitudes, whereas the 

quantity of resources (i.e. precipitation in mm) explained more variation in species richness at 

the southern end of this ecosystem. 

 Contrary to expectation, species pool size was not a good predictor of species richness at 

larger spatial grains (i.e. 100 m²) and only a weak predictor at 1 m². There are two possible 

explanations for this finding. First, my methodology for building species pools may not have 

been effective at approximating the actual number of species that can filter down to local 

communities. Although I believe the methodology for building species pools was effective at 

excluding species based on their environmental tolerance, it is possible that the geographic 

extents of the species pools (i.e. ecoregions) were too large to accurately reflect the dispersal 

ability of all species in the data set. Second, it is possible that species pool size is not an 

important determinant of species richness patterns in this system, or at least not as important as 

other community assembly processes. Similar to my findings, Carr et al. (2009) found that pure 

spatial processes explained considerably less variation in species composition in longleaf pine 

plant communities than soil properties or climate. Future research should explore the role of 

species pool size in shaping species richness in longleaf pine plant communities, especially when 

high-resolution range maps become available for the thousands of plant species found in this 

ecosystem. 

 In addition to soil properties, climate, and species pool size, other factors influence 

species richness patterns in the longleaf pine ecosystem, most notably fire regime and land-use 

history (Kirkman et al. 2001, Glitzenstein et al. 2003, Kirkman et al. 2004). I was unable to 

quantify differences in land-use history or fire regimes across the broad geographic extent of the 

data; however, most plots were located in sites with evidence of recent fire and lack of human 
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disturbance. Thus, the sites examined in this study represented the highest-quality, fire-

maintained longleaf pine parcels that remain. Still, it is likely that differences in fire frequency 

and land-use history have influenced the species richness patterns I report here, in addition to soil 

properties, climate, and biogeographic history. Although I explain a significant portion of 

variance in species richness, especially at northern latitudes (Figure 4.4), a substantial amount of 

variance in species richness remains unexplained, suggesting these and other factors (e.g., 

environmental heterogeneity) may be influencing species richness patterns. 

 This work suggests that local and regional processes shape species richness patterns in 

the longleaf pine ecosystem simultaneously and contributes to a growing body of literature 

indicating community structure at local scales can be structured by processes that operate at 

much larger spatial and temporal scales (Carr et al. 2009, White & Hurlbert 2010). Furthermore, 

this work contributes to an overall understanding of the determinants and spatial patterns of 

species richness in longleaf pine plant communities, by documenting changes in the relative 

importance and identity of processes structuring richness across both grain and extent. 
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Tables 

Table 4.1. Species pool size for each ecoregion (Florida Peninsula, East Gulf CP, South Atlantic CP, Mid-Atlantic CP; ordered from 

south to north), community type (savanna, flatwood, silty woodland, subxeric woodland, sandhill; order from mesic to xeric), and 

ecoregion-community type combination. Species pool size generally increases as latitude decreases, but drops in the Florida peninsula. 

Species pool size increases from sandy, xeric community types (e.g., sandhills) to silty, mesic types (e.g., savannas). 

Community Type Florida Peninsula 
East Gulf 

CP 

South Atlantic 

CP 
Mid-Atlantic CP 

Total Unique 

Species 

Savanna 870 1120 1102 1007 1259 

Flatwood 893 1083 1081 962 1221 

Silty Woodland NA 940 954 898 1039 

Subxeric Woodland 740 891 902 778 1006 

Sandhill 686 814 815 679 941 

Total Unique 

Species 
1106 1390 1364 1179 1657 
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Table 4.2. Predictors at 1 and 100 m² that explained the most variation in species richness across all plots and each of the four 

ecoregions in the southeastern US. Significant predictors are indicated with asterisks. Three asterisks indicate soil and climate 

predictors that explained the most variation in species richness in each model, while one asterisk indicates other significant predictors 

in the model. 

  

Soil 

Texture 

Soil Base 

Cations 

Soil 

Moisture 

Annual 

Precip 

Precip in 

Driest 

Month 

Precip in 

Warmest 

Quarter 

Precip in 

Coldest 

Quarter 

Temp in 

Wettest 

Quarter 

Temp in 

Warmest 

Quarter 

Temp 

Season 

Species 

Pool Size 

  

Extent 

All regions * *** * *       *       

Mid-Atlantic CP *** * *             *   

South Atlantic CP * ***     *             

East Gulf CP   *       *      ***      

Florida Peninsula   *** *       ***   *     

                        

1 m²                       

All regions *** * * ***       *     * 

Mid-Atlantic CP *** * *             * * 

South Atlantic CP * ***     *           * 

East Gulf CP   *       *     ***   * 

Florida Peninsula   *** *       ***   *     
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Figures 

Figure 4.1. Southeastern Coastal Plain of the US showing locations of 849 plots and the four 

major ecoregions in the study area: Mid-Atlantic Coastal Plain, South Atlantic Coastal Plain, 

East Gulf Coastal Plain, and Florida Peninsula.

   



96 

Figure 4.2. Average richness at 100m² for each ecoregion and community type. Community-type 

panels are ordered from dry, species-poor communities (sandhills) to mesic, species-rich 

communities (savannas). Ecoregions are aligned from north to south. Species richness increases 

generally with latitude and peaks in the Florida panhandle for most community types. The gray 

bars indicate the 95% confidence intervals. 
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Figure 4.3. Variance partitioning results for richness at 1 m² and 100 m² for all plots. Pie charts 

show the unique proportion of variance explained by local predictors (soil properties), regional 

predictors (climate), along with shared variance explained collectively by all soil and climate 

parameters, and unexplained variance. 

 
 

  



98 

Figure 4.4. Variance partitioning results for richness at 1m² and 100 m² for the four longleaf pine 

ecoregions. Pie charts show the proportion of variance explained by local predictors (soils), 

regional predictors (climate), along with shared variance explained by multiple predictors, and 

unexplained variance for each ecoregion (Mid-Atlantic CP, South Atlantic CP, East Gulf CP, 

Florida Peninsula). Pie charts outlined in black respond to variance partitioning results at 100 m², 

while pie charts outlines in white correspond to 1 m². 
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CHAPTER 5: FIRE FREQUENCY AND SPATIAL SCALE MEDIATE THE STRENGTH 

OF DETERMINISTIC AND STOCHASTIC PROCESSES IN LONGLEAF PINE 

WOODLANDS 

Abstract 

 There is ongoing debate on whether ecological communities are assembled by 

deterministic, niche-based processes or stochastic processes unrelated to species’ differences. 

These two competing hypotheses have been merged into a single conceptual framework that 

seeks to identify how the relative importance of deterministic versus stochastic processes 

changes across a set of communities. Where communities fall along the continuum between 

solely niche-based processes and solely stochastic processes depends on multiple factors, such as 

the frequency or intensity of disturbance. One method for quantifying the relative importance of 

stochastic versus niche assembly is through use of species co-occurrence metrics that reveal 

whether community structure is more aggregated (species co-occur more frequently than 

expected by chance, evidence of environmental filtering), segregated (species co-occur less 

frequently than expected by chance, evidence of limiting similarity), or no different (evidence of 

stochastic assembly) than random expectation. Here, I use two different, yet complementary 

species co-occurrence metrics coupled with null model analysis to explore where longleaf pine 

plant communities fall along the continuum of deterministic to stochastic assembly. More 

specifically, I examine how the relative importance of environmental filtering, competition, and 

stochastic processes change across a gradient of environmental stress, with time since 

disturbance, and with spatial grain. Mean C-scores and mean modified Raup-Crick dissimilarity 
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metrics were calculated for five broad community types, three disturbance categories, and 15 

community-disturbance categories to examine how disturbance, environmental context, and 

spatial scale change the relative importance of community assembly processes. I found that C-

scores and mean modified Raup-Crick dissimilarity metrics changed consistently with time since 

fire and spatial grain, with sites becoming more dissimilar (e.g., segregated) in species co-

occurrence as time since fire increased and spatial grain decreased. However, I did not detect 

large changes in the relative importance of community assembly processes along the 

environment gradient, except at the smallest spatial grain and in sites with less recent fire. These 

results suggest that the relative importance and identity of community assembly processes 

depends on the spatial scale of observation, and thus it is critical that studies using species co-

occurrence data to identify ecological processes be conducted across a range of spatial scales. 

This work also indicates that longleaf pine plant communities are shaped by both deterministic 

and stochastic processes, and that disturbance changes where communities fall along the 

deterministic-stochastic continuum. 

Introduction 

 Explanations for community assembly and species coexistence have been divided into 

two distinct theoretical models: deterministic niche-based assembly and stochastic assembly 

unrelated to species’ differences. Deterministic models argue that species are assembled into 

communities through niche processes such as biotic interactions and environmental filtering 

(Tilman 1982, Chesson 2000, Chase & Leibold 2003, Silvertown 2004). Within this framework, 

species have distinct niches and species that have similar ecological roles are not able to co-exist 

(e.g., limiting similarity; MacArthur & Levins 1967). In contrast, stochastic assembly models 

postulate that species are ecologically equivalent and communities are assembled through 
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colonization, speciation, and extinction events (MacArthur & Wilson 1967, van der Maarel & 

Sykes 1993, Hubbell 1997, Bell 2000, Hubbell 2001). 

 These two competing hypotheses have been integrated into a single conceptual model 

that seeks to explore how the relative importance of deterministic and stochastic processes 

change across a set of ecological communities (Tilman 2004, Gravel et al. 2006, Adler et al. 

2007). These approaches recognize that both niche-based and stochastic processes may be 

important drivers of community assembly and many natural communities lie along a continuum 

bounded at each end by these two conceptual models (Bell 2005, Leibold & McPeek 2006, 

Chase & Myers 2011). Thus, rather than identify whether communities are better fit by a neutral 

or niche-based model, the challenge in community ecology is to quantify the relative importance 

of stochastic and deterministic processes across communities (Leibold & McPeek 2006). 

 Multiple factors can influence the strength of stochastic versus niche assembly processes, 

including but not limited to dispersal limitation, habitat configuration, and the frequency and 

intensity of disturbance events (Chase 2007, Chase et al. 2009). For example, the stress-gradient 

hypothesis (SGH; Bertness & Callaway 1994, Callaway et. al 2002, Maestre et al. 2009) predicts 

that in harsh environments with high stress (e.g., deserts, alpine habitat), the relative importance 

of facilitation will increase, relative to other ecological processes. Hence, in stressful 

environments, deterministic processes such as facilitation, competition for limiting resources or 

strong environmental filtering may be more important in shaping community structure than 

stochastic processes. In contrast, disturbance (sensu Pickett & White 1985) resets the community 

and increases the frequency of stochastic colonization and extinction events, thereby increasing 

the relative importance of stochastic processes in assembling communities (Sanders et al. 2003, 

2007, Myers & Harms 2009). 
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 Species co-occurrence metrics, coupled with null model analysis, have the potential to 

reveal whether communities are structured primarily by deterministic or stochastic processes. If 

limiting similarity processes are important, communities should contain fewer species 

combinations than expected at random as species with identical niches and ecological strategies 

are unlikely to coexist (Tilman 1982, Chesson 2000, but see Scheffer & van Nes 2006). If 

environmental filtering is more important in assembling communities, particular pairs of species 

should co-occur more often relative to null expectation (e.g., species aggregation), as 

environment filters will assemble species with similar traits (Cornwell et al. 2006). In contrast, 

patterns of co-occurrence that do not differ from null expectation (i.e., species do not occur 

systematically with other taxa) are suggestive of stochastic community assembly (Zalewski & 

Ulrich 2006, Zillio & Condit 2007). 

 . The longleaf pine ecosystem is an ideal system to explore general predictions of how the 

relative importance of deterministic and stochastic processes change across communities for 

three reasons. First, longleaf pine woodlands are famous for their high plant species richness, 

particularly at small scales (52 species in 1 m²; Walker & Peet 1983) and thus present an 

interesting case study for exploring species co-existence mechanisms. Second, longleaf pine 

plant communities occur across strong environmental gradients (Peet 2006), reflecting 

differences in soil moisture and soil nutrients, which could have direct implications for the 

strength of environmental filtering and competition in communities structured on this gradient. 

In addition, the longleaf pine ecosystem is fire-dependent and prescribed fire is applied every 1 

to 5 years to mimic natural fire regimes. Historically, sites with higher soil moisture, nutrients, 

and biomass production would burn more frequently than dry, nutrient-poor sites that do not 

generate enough fuel to carry fire on a regular basis. Thus, the relative importance of fire 
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frequency, environmental filtering, and competition likely change across the range of  longleaf 

pine plant communities, with important consequences for where communities fall on the 

stochastic-deterministic continuum. Here, I use species co-occurrence patterns and null model 

analysis to examine how the relative importance of community assembly processes in longleaf 

pine plant communities change along a gradient of environment stress. Specifically, I ask: 

1. Where do longleaf pine communities fall along the continuum between deterministic and 

stochastic assembly processes?  What is the relative importance of stochastic events, local 

environmental filtering, and competition in structuring longleaf pine communities? 

2. How does the relative importance of stochastic and deterministic processes vary with spatial 

grain and with time since disturbance? 

 Although I predict that both stochastic and deterministic processes are important for 

structuring longleaf pine plant communities, the relative strength of those processes likely varies 

with environmental context and fire history. More specifically, I predict that environmental 

filtering will be more important in xeric sites, where species physiological tolerances and strong 

environmental filters limit the identity and number of plant species (Bowles & Jones 2013). In 

contrast, I hypothesize that stochastic and/or limiting similarity processes will be most evident in 

wet and mesic sites that experience frequent fire (i.e., the benign end of the gradient). The 

relative importance of stochastic processes may increase with increasing fire frequency, as 

assembly processes are “restarted” following disturbance and the composition of species 

assemblages will largely be driven by patterns of colonization and extinction (Sanders et al. 

2003, 2007). However, competition for resources may be higher at those same sites due to the 

presence of several dominant bunchgrasses (e.g., Aristida stricta, Sporobolus pinetorum). I 
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explored these alternative hypotheses by examining species-occurrence patterns across three 

time-since-fire categories: immediately after fire (six months), 1 to 3 years after fire, and greater 

than 3 years after fire. I expected to see the signature of stochastic processes immediately 

following fire, but also predicted that as plants become established, competitive interactions 

should become more important . A similar prediction was made by Chase (2007), who suggested 

that in benign environments, stochastic assembly should be relatively more important than in 

harsh environments where deterministic processes such as environmental filtering predominate. 

 The final issue I explore is the extent to which deterministic and stochastic processes 

change in relative importance with changes in the spatial grain of sampling. The scale 

dependence of ecological processes is a well established concept in ecology (Auerbach & 

Shmida 1987, Levin 1992, Crawley & Harral 2001). Previous work has shown that biotic 

interactions act most strongly in structuring communities at small spatial grains (Stoll & Weiner 

2000, Götzenberger et al. 2012). However, demographic stochasticity is also expected to be 

higher at small spatial grains. Thus, I predict that both competition and stochastic processes will 

become more important as spatial grain decreases, regardless of environmental context. In 

contrast, I expected that environmental filtering would be more important at large spatial grains 

since environmental heterogeneity generally increases with spatial scale (Williams 1943, Shmida 

& Wilson 1985, Crawley & Harral 2001, Field et al. 2009). Thus, I expected to see a shift from 

environmental filtering to competition and/or stochastic assembly as spatial grain decreased. 

 

 

 



108 

Methods 

Study Area 

 This work was conducted using data from the outer Coastal Plain of North Carolina in the 

southeastern United States (using the same data set as used in Chapter 2; see Figure 2.1). 

Elevation ranges from 0 to 30 m above sea level, with very little topographic relief.  However, 

subtle differences in elevation (0.5 m or less) have large consequences for hydrology, soil 

properties, and hence vegetation (Rome 1988, Christensen 2000).  The climate is humid sub-

tropical, with an average mean annual temperature of 15.5 °C and an average annual 

precipitation of 160 cm, most of which occurs during the growing season (Ruffner 1985, State 

Climate Office of North Carolina). Summer convectional storms not only provide heavy rain, but 

also lightning which is an ignition source for frequent, low-intensity fires (Christensen 2000). 

Soils within the region are predominantly derived from nutrient poor, unconsolidated sediments 

of alluvial and marine origin. Several soil orders occur within the study area and soil texture is 

extremely important in determining water holding capacity, nutrient retention, species richness, 

and community composition (Peet 2006). 

Vegetation Data 

 In 2009, I re-sampled 59 1000 m² nested vegetation plots using the Carolina Vegetation 

Survey (CVS) protocol (Peet et al. 1998; Peet et al. 2012). I recorded presence-absence for all 

vascular plant species rooted in the plot at a range of spatial scales (0.01 m², 0.1 m², 1 m², 10 m², 

100 m², and 1000 m²; see Peet et al. 1998). Nomenclature follows Weakley 2012. After 

sampling, I assigned each plot to one of five broad community types from a pre-existing 

classification (Peet 2006) to assess how species co-occurrence metrics change across the 
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environmental gradient in the system. Peet (2006) categorized longleaf pine vegetation into 5 

community groups based on soil moisture and soil texture: silty woodlands, savannas, flatwoods, 

subxeric woodlands, and sandhills. Silty woodlands and savannas occur on fine-textured ultisol 

soils, but savannas are slightly wetter (Peet 2006). Flatwoods occur on spodosols with a mesic to 

hydric growing environment, despite a mostly sandy substrate (Soil Survey Staff 2010). Subxeric 

woodlands also occur on sandy substrates, but are drier than flatwoods. Sandhills occur on the 

driest, sandy sites, have sparse herbaceous layers, and very low nutrient availability. 

 In 2010, I re-sampled 30 of the 59 CVS plots described above a second time. Plots were 

selected for re-sampling to span the environmental gradient and to capture variation in the 

number of years since a plot was last burned (time since fire). Typically plots were re-sampled in 

2010 in two special cases: 1) if a plot had not experienced fire for greater than 2 years and then 

was reburned in 2010, or 2) if a plot had burned in 2009. Vegetation data for 2009 and 2010 

were pooled to examine how time since fire influenced the relative importance of stochastic 

versus deterministic processes across the range of community types. 

Fire History Data 

 Fire history data for all plots through 2008 were obtained from a GIS layer of prescribed 

fire events dating back to 1985, compiled from several land management agencies in 

southeastern North Carolina (Costanza 2010). Additional years of fire history data (2009, 2010) 

were obtained directly from the land management agencies. These data delineate the area burned, 

but do not quantify the intensity or patchiness of fire within the burned area. Time since fire 

(number of years since fire) was determined for all plots in both 2009 and 2010. 
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 To examine how the relative importance of competition and stochastic processes changed 

with time since fire, I classified each plot into one of three time-since-fire categories: < 1 year 

since fire, 1 to 3 years since fire, and > 3 years since fire. I then created a community type  time-

since-fire category for each plot (e.g., flatwood, 1- 3 years since fire), which reflected both 

environmental context and fire history for each plot sampled in 2009 and 2010. 

Analysis 

 Prior to analysis, all taxonomic names were standardized to ensure that differences in 

taxonomic resolution did not influence the species co-occurrence metrics. Specifically, all 

species varieties were lumped to the species level, all hybrid species were removed, and all 

genus-level taxa were removed when there were other taxa in that genus identified to species. I 

then compiled 5 presence-absence matrices for the five broad community types, 3 matrices for 

the three time-since-fire categories, and 15 separate matrices for each community type time-

since-fire category. For each matrix, I calculated two complementary species co-occurrence 

metrics to quantify whether community structure was segregated, aggregated, or random. 

 First, I calculated a C-score between all species pairs (Stone & Roberts 1990, see also 

Gotelli 2000, Gotelli & McCabe 2002), 

 

Cij = (Ri –S) (Rj – S),  

 

where for the species pair Cij, Ri is the row total for species I, Rj is the row total for species J, and 

S is the total number of sites that contain both species I and J. C-scores were calculated on 

presence-absence data. I then calculated a mean C-score value for each matrix to assess whether 
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community structure of each broad community type, time since fire category, and community 

type-time since fire category were aggregated, segregated, or no different than null expectation. 

C-scores have been used extensively in community ecology  as a measure of co-occurrence 

(Sanders et al. 2003, 2007, Pitzalis et al. 2010, Ulrich et al. 2010, Götzenberger et al. 2012) and 

have performed better than alternative metrics (Gotelli 2000, Gotelli & McCabe 2002). Larger 

C-scores are indicative of species segregation due to limiting similarity processes, while smaller 

C-scores are indicative of species aggregation due to environmental filtering. C-scores that do 

not deviate from random expectation are suggestive of stochastic processes. To assess whether 

observed species co-occurrence patterns differed from null expectation, I used a null model 

approach. First, I randomized each presence-absence matrix 1000 times using the swap-method 

(Gotelli & Entsminger 2003), which held row and column totals constant (e.g., species richness 

per site and species occupancy across all sites) and then calculated C-scores over 1000 

permutations. Then I compared the frequency distribution of the simulated metrics to the 

observed values and calculated tail probabilities (one-tailed test) that indicate the likelihood of 

getting the observed metric compared to random expectation (Gotelli 2000). To compare results 

across broad community types and time since fire categories, I calculated a standardized effect 

size (SES) for each matrix, 

 

SES = I obs – I sim / S sim,  

 

where I obs  is the observed mean C-score, I sim is the mean simulated C-score and, S sim is the 

standard deviation of the simulated indices (Gurevitch et al. 1992, Gotelli & McCabe 2002). SES 

values above 2 reflect species segregation indicative of limiting similarity processes, whereas 
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values below 2 reflect species aggregation, indicative of environmental filtering. Calculation of 

C-scores and the corresponding null model analysis was implemented in R version 2.15.2 using 

the vegan and bipartite packages (R Core Development Team 2012). 

 Second, I calculated a modified Raup–Crick dissimilarity matrix (βrc), which is a re-

scaled probability metric ranging from -1 to 1 that indicates whether two communities share 

more species (less dissimilar) or fewer species (more dissimilar) than expected by random 

chance (Raup & Crick 1979, Vellend et al. 2007, Chase et al. 2011 a, b). A mean Raup-Crick 

dissimilarity matrix was calculated for each broad community type, time-since-fire category, and 

community type time-since-fire category. To quantify whether the observed dissimilarity values 

were more or less dissimilar than random expectation, 1000 null Raup-Crick dissimilarity 

matrices were generated by randomly sampling from the species pool, while holding species 

richness and species occupancy constant. Then, the difference between the observed dissimilarity 

matrix and the simulated matrices was calculated as an index of deviation (see Chase et al. 2011 

b). Mean βrc values were calculated at multiple spatial scales (0.01 m², 0.1 m², 1 m², 10 m², 100 

m², 1000 m²) to determine how the relative strength of stochastic and deterministic processes 

changed with spatial grain. If environmental filtering is acting, sites with similar environmental 

conditions should be more similar relative to null expectation (approaching -1), while sites where 

competition is more important should be less similar than random expectation (approaching 1). If 

stochastic processes are important, communities should not differ from random expectation 

(approaching 0). This approach is complementary, but slightly distinct from other co-occurrence 

metrics (e.g., C-scores) because it considers pair wise community comparisons in contrast to 

most co-occurrence metrics, which are summarized over species pairs (Chase et al. 2011b). 

Thus, interpretation of SES values differs between these two metrics with strong effects reflected 
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by C-scores SES with absolute values > 2. In contrast, modified Raup-Crick values are based on 

quantiles, thus strong effects are reflected by absolute values of 0.95 or greater. 

 This null model approach (and hence the simulated values) is sensitive to the size of the 

regional species pool (Chase et al. 2011 b). The species pool contains all taxa detected in plots in 

both 2009 and 2010. I chose to use the same species pool for all broad community types and 

time-since-fire categories because sites are in relatively close proximity to one another and there 

are many shared species across community types. In addition, I had no reason to suspect that the 

species pool would differ significantly for sites with different time since last fire. Furthermore, if 

I had used different sized species pools, the simulated matrices may have changed across 

community types and time-since-fire categories due to those differences, resulting in incorrect 

inference of community assembly processes. 

Results 

 I calculated C-scores and modified Raup-Crick dissimilarity metrics to examine whether 

species co-occurrence values were aggregated (suggestive of environmental filtering), segregated 

(suggestive of competition), or random (suggestive of stochastic processes). Mean C-scores 

calculated at 1000 m² for each broad community type were not different from random 

expectation (p > 0.2), except for the subxeric woodland community type, which was more 

aggregated than expectation, suggestive of environmental filtering (p = - 0.039, SES = -2.229; 

Figure 5.3, Table C.1). In contrast to C-scores, the mean βrc at 1000 m² for most broad 

community types in the year 2009 was negative, although most values fell within the 25
th

 and 

75
th

 percentiles suggesting species co-occurrence patterns in longleaf pine plant communities are 

not much different than random expectation (Figure 5.1). This was contrary to expectation, since 

I predicted that the relative importance of environmental filtering would be higher in the most 
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stressful community types (e.g., sandhills, subxeric woodlands) and Brc and SES values would 

become more negative as environmental stress increased. In fact, I found that the mean βrc for 

sandhills was closer to zero relative to all other types, suggesting that stochastic processes or 

multiple processes acting in opposite directions are structuring sandhill plant communities. As 

spatial scale decreased, the mean βrc became consistently less negative for each community type, 

which indicates species co-occurrence in most community types became more similar to random 

expectation (Figure 5.1). However, the power of this metric to detect non-random patterns 

decreases when species richness is very low (Chase et al. 2011b). As spatial scale decreased, 

mean βrc values changed from negative to approximately 0 for subxeric woodlands and 

flatwoods. In sandhills, silty woodlands, and savannas, which are the driest and wettest types, 

respectively, mean βrc values changed from negative to slightly positive (Figure 5.1). In contrast, 

C-scores did not consistently become closer to zero as spatial scale decreased, except at the 

smallest spatial scale (0.01 m², Figure 5.3). Most C-score SES values were not significantly 

different than random expectation across scales, except for the sandy community types (sandhills 

at 0.1 to 100 m², subxeric woodlands at 100 to 1000 m², flatwoods at 0.1 and 10 m²), which were 

consistently more segregated than random expectation, perhaps taken as evidence of competition 

for limited resources in those types. 

 Mean C-scores at 1000 m² for each time-since-fire category were at least marginally 

different than simulated C-scores (p < 0.08), indicating non-random patterns of species co-

occurrence. I detected a substantial increase in the deviation between observed C-scores and 

simulated C-scores as time since fire increased (SES for < 1 year since fire = 3.858, SES for > 3 

years since fire = 7.988, p < 0.001; Table C.1). Thus, sites that have not experienced fire in three 

years or more have fewer shared species pairs than sites that have burned more recently. This 
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pattern was not as strong as spatial grain decreased; C-score SES were almost identical for plots 

that had not experienced fire in three or more years and for plots that had experienced fire in the 

last year (Figure 5.3). I also detected an increasing trend of mean βrc values with increases in 

time since fire. At each spatial scale, mean βrc values were consistently less negative as time 

since fire increased, suggesting sites that have experienced fire more recently are less dissimilar 

(more shared species) than null expectation, whereas sites that have not burned in several years 

are either as dissimilar or more dissimilar than random expectation (Figure 5.1). 

 To examine how time since fire influenced species co-occurrence patterns along the 

environmental gradient, I calculated mean βrc values and C-scores for each community type 

time-since-fire category at 1 m² and 1000 m². Time since fire had large impacts on the deviation 

between observed and expected dissimilarity values within community types. As time since fire 

increased, mean βrc values increased for almost all community types at both 1 m² and 1000 m², 

suggesting that species co-occurrence patterns are more dissimilar than random expectation  

(Figure 5.2). The one exception was sandhill community types where sites that have gone longer 

without fire were actually closer to 0 than sites that had been burned more frequently (Figure 

5.2). In addition, mean βrc values consistently became less negative as spatial scale decreased 

from 1000 to 1 m² for most community time-since-fire categories, but particularly for plots 1 to 3 

years post-fire and for the wettest, more productive sites (e.g., savannas; Figure 5.2). For all 

community types except silty woodlands and savannas, C-score SES values at 1 m² and 1000 m² 

were consistently higher and species co-occurrence more segregated as time since fire increased 

(Figure 5.4). 

 Although C-scores and βrc values have both been used to examine species co-occurrence 

patterns, they differ in that the C-score is a pairwise species metric, whereas βrc is a pairwise 
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community metric. I found that the two metrics captured unique information in species co-

occurrence patterns (Figure 5.5). Although, the same general conclusions were reached using 

either metric, C-scores tended to be more positive, suggesting species aggregation, than βrc 

values. The differences between C-scores and βrc values were greater at larger spatial grains 

(1000 m²). 

Discussion 

 I found that species co-occurrence patterns changed consistently with time since fire and 

spatial scale, with sites becoming more dissimilar (e.g., segregated) in species co-occurrence as 

time since fire increased and spatial scale decreased. However, I did not detect large changes in 

the relative importance of community assembly processes across broad community types except 

at the smallest spatial scale and when considering time since fire. Contrary to expectation, most 

community types had random species co-occurrence patterns, suggesting that perhaps both 

environmental filtering and limiting similarity processes influence community structure along the 

entire environmental gradient. 

 Along the environmental gradient and across broad community types, I expected to see a 

shift from environmental filtering in harsh sites (e.g., sandhills, subxeric woodlands) to 

competition or stochastic assembly in more benign environments (silty woodlands, savannas). In 

contrast to expectation, mean βrc values for each broad community type revealed that species co-

occurrence patterns were not different than null expectation at most spatial scales (Figure 5.1). 

Thus, I did not detect a shift from environmental filtering to either competition or stochastic 

assembly along the environmental gradient, as predicted. Although mean βrc values were not 

significantly different from random expectation, most values tended to be negative, possibly 

suggesting environmental filtering was occuring along the entire environmental gradient. 
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However, there was no evidence of competition increasing in relative importance at the benign 

end of the stress gradient. There are several possible explanations for why species co-occurrence 

patterns were consistently negative, regardless of position along the environmental gradient. 

First, plots used in this study occur in relatively close proximity and hence have similar 

precipitation and temperature regimes, which may have resulted in species aggregation, despite 

differences in soil properties across sites. Second, although soil moisture, soil texture, and soil 

nutrient status vary across broad community types (Peet 2006), soils in this ecosystem are 

ancient, highly weathered and generally low in nutrients, particularly in P. Thus, low soil 

resource availability could be acting as an environmental filter in all sites, despite differences in 

soil properties across sites. Furthermore, although I predicted environmental filtering would be 

strongest in xeric sites, hydric sites place a different, yet perhaps equal amount of stress on plant 

species due to soil saturation and continued inundation (Jackson et al. 2008). However, 

interpretation of environmental filtering along the entire gradient needs to be done with caution, 

as the trends in mean βrc values were weak. 

 As predicted, the relative importance of community assembly processes increased with 

changes in time since fire and spatial scale. Both C-scores and mean βrc values were more 

segregated (e.g., dissimilar) within a given position on the environmental gradient as time since 

fire increased (Table C.1, Figure 5.2, Figure 5.4). This suggests that competition becomes 

relatively more important in sites without recent disturbance, particularly at the wet end of the 

gradient (e.g., silty woodlands and savannas) where several strong competitors can limit the 

establishment and persistence of small-statured species in the absence of frequent fire (Heyward 

1939, Frost et al. 1986, Bowles & Jones 2013). Thus, the data suggest that the relative 

importance of environmental filtering and competition change depending on the frequency of 



118 

disturbance. Similarly, Pitzalis et al. 2010 documented a shift from segregation in unburned 

arthropod communities to aggregation/randomness in arthropod communities after fire. Two 

other studies conducted in species-rich grasslands also detected higher species segregation in 

sites that had less frequent disturbance, presumably due to higher plant biomass and competitive 

exclusion by a few, large-statured competitive species (Reitalu et al. 2005, Mason et al. 2011). 

 I also detected changes in the relative importance of community assembly processes with 

spatial scale. Mean values consistently became less negative as spatial scale decreased across all 

community types and time since fire categories (Figure 5.1, Figure 5.3). This suggests a shift 

from environmental filtering at larger spatial scales to competition and/or stochastic assembly at 

smaller spatial scales. Whether stochastic assembly or competition increased in relative 

importance at small spatial scales depended on environmental context. For community types in 

the intermediate part of the environmental gradient (e.g., subxeric woodlands, flatwoods), mean 

βrc values changed from negative to approximately 0, as spatial scale decreased, suggesting a 

shift from environmental filtering to stochastic assembly. In contrast, sandhills, silty woodlands, 

and savannas, which are the driest and wettest types, respectively, changed from negative to 

slightly positive, suggesting that competitive processes become more important filters on 

community structure as spatial grain decreases, especially at the wet end of the environmental 

gradient (Figure 5.1). This suggests that competition is acting at both the harsh end of the 

environmental gradient where there is competition for limiting resources and at the benign end of 

the gradient where the presence of a few competitive dominants results in competitive exclusion. 

The change in species co-occurrence patterns across scales was particularly notable for savannas 

where plots went from being aggregated to random/slightly segregated (Figure 5.1). 
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 Species co-occurrence patterns also changed with respect to spatial scale across sites with 

different fire history. Except for the smallest spatial scale (0.01 m²), mean βrc values were 

consistently negative in both the < 1 year and 1 to 3 years-since-fire categories, suggestive of 

environmental filtering. However, the mean βrc values were consistently less negative in plots 

that had not experienced fire for at least 3 years, perhaps due to the increased importance of 

competition. 

 Several studies have suggested that the relative importance of stochastic processes 

increases in benign environments with higher productivity (Chase 2010), or in frequently-

disturbed sites (Sanders et al. 2003, Pitzalis et al. 2010, Santoro et al. 2012). I did not detect 

shifts from strong environmental filtering in harsh environments (e.g., sandhills) to stochastic 

processes in benign, frequently disturbed environments (e.g., savannas) at any spatial scale in the 

data (Figure 5.1). Although, mean βrc values were no different than random expectation at the 

smallest spatial scales in savannas, species co-occurrence patterns were also close to 0 for 

community types in harsh environments. Thus, stochastic processes did not generally increase in 

relative importance as environmental harshness decreased. However, as previously mentioned, 

the relative importance of stochastic processes did increase as spatial scale decreased across most 

communities and time since fire categories. 

 This study is unique is that it is the first to use two different, yet complementary species 

co-occurrence metrics simultaneously to examine the relative importance of community 

assembly processes along an environmental gradient. Although I reached the same general 

conclusions from each metric individually, unique and slightly different information resulted 

from the use of each metric, especially at larger spatial scales (e.g, 1000 m²). In particular, βrc 
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values became closer to zero as spatial grain decreased, whereas C-scores did not, except at the 

smallest spatial grain (0.01 m²). 

 One limitation of this study is that inference of community assembly processes from 

patterns of species co-occurrence can be challenging. Although, I assume that species 

aggregation indicates environmental filtering, this pattern can also result from other processes, 

such as facilitation (Götzenberger et al. 2012). In addition, species segregation may result from 

limiting similarity processes, such as competition, but also from habitat heterogeneity (Williams 

1943, Reitalu et al. 2005). Furthermore, mean species co-occurrence patterns that do not differ 

significantly from random expectation could result from stochastic processes or from 

competition and environmental filtering acting in synergy. Future experimental studies are 

needed in this ecosystem to confirm that the interpretations of species aggregation and 

segregation are accurate. 

 This work adds to a growing pool of studies that suggest the relative importance and 

identity of community assembly processes depends on the spatial scale of observation (Weiher & 

Keddy 1995, Reitalu et al. 2005). The important assembly processes structuring communities 

typically change across spatial scales. Consequently future analyses of species co-occurrence 

patterns should be conducted across a range of spatial scales to ensure correct inference of 

process. This work also suggests that multiple processes, both deterministic and stochastic, shape 

longleaf pine plant communities and that disturbance changes the relative importance of those 

processes along a gradient of environmental stress.
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Figures 

Figure 5.1.a. Mean modified Raup-Crick dissimilarity metric at 0.01 m² to 1000 m² highlighted 

by community type in 2009 (sandhill, subxeric woodland, flatwood, silty woodland, savanna). b. 

Mean modified Raup-Crick dissimilarity metric at 0.01 m² to 1000 m² for each time since fire 

category in 2009 and 2010. Values approaching 1 indicated species segregation (e.g., 

competition), values approaching -1 indicate species aggregation (e.g., environmental filtering), 

while values close to 0 are suggestive of stochastic assembly. 
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Figure 5.2. a. Mean modified Raup-Crick dissimilarity metric at 1000 m² for each time since fire 

category (< 1 year, 1 to 3 years, > 3 years, highlighted by community type (sandhill, subxeric 

woodland, flatwood, silty woodland, savanna). b. Mean modified Raup-Crick dissimilarity 

metric at 1 m² for each time since fire category, highlighted by each community type. Values 

approaching 1 indicated species segregation (e.g., competition), values approaching -1 indicate 

species aggregation (e.g., environmental filtering), while values close to 0 are suggestive of 

stochastic assembly. 
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Figure 5.3.a. Mean C-score at 0.01 m² to 1000 m² highlighted by broad community type in 2009 

(sandhill, subxeric woodland, flatwood, silty woodland, savanna). b. Mean C-score metric at 

0.01 m² to 1000 m² for each time since fire category in 2009 and 2010. Values exceeding 2 

indicated species segregation (e.g., competition), values below -2 indicate species aggregation 

(e.g., environmental filtering), while values close to 0 are suggestive of stochastic assembly. 
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Figure 5.4. a. Mean C-score at 1000 m² for each time since fire category (< 1 year, 1 to 3 years, > 

3 years) , highlighted by broad community type (sandhill, subxeric woodland, flatwood, silty 

woodland, savanna). b. for each time since fire category, highlighted by broad community type. 

Values exceeding 2 indicated species segregation (e.g., competition), values below -2 indicate 

species aggregation (e.g., environmental filtering), while values close to 0 are suggestive of 

stochastic assembly. 
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Figure 5.5. Mean C-score versus mean βrc  at 1000 m² for each time since fire category (< 1 year, 

1 to 3 years, > 3 years). 
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CHAPTER 6: CONCLUSIONS AND SYNTHESIS 

 

 This dissertation explores plant species richness and composition patterns in the longleaf 

pine ecosystem across ~ 20 years, across the spatial extent of this system, and across spatial 

grain. In addition, a key goal of this work is to identify the community assembly processes that 

act to determine local community structure and examine how their relative importance changes 

with spatial scale and along the environmental gradient in this system. My work suggests that 

vegetation patterns in longleaf pine plant communities are driven by multiple ecological 

processes that vary in importance with the spatial and temporal extent at which they act. I 

identified local environmental filtering (e.g., soil properties) as a key driver of plant species 

richness and composition patterns. However, other community assembly processes explain 

additional variation in richness and composition unaccounted for by local environmental filtering 

(albeit less), including competition, climate, biogeography history, fire frequency, drought, and 

stochastic processes. This work also suggests ecological patterns and processes are scale-

dependent, as the relative importance of environmental filtering, competition, fire frequency, 

biogeographic history, and stochastic processes change from small scales (≤ 1 m²) to larger 

scales (≥ 100 m²). I expand on these generalizations below and put them into context by 

synthesizing work from other species-rich grasslands in the world. 

 In this dissertation, local environmental filtering emerged as the most important process 

driving species richness and composition. In particular, soil resource availability (i.e. nutrients, 

moisture) explains most of the variation in vegetation patterns across space (Chapter 4 and across 

~ 20 years in a smaller region of the longleaf pine range (eastern North Carolina, Chapter 2). Soil 
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texture, particularly silt %, emerged as the best soil predictor of species richness and composition 

patterns in the longleaf pine ecosystem of North Carolina (Chapter 2, Chapter 4), while base 

cation availability (e.g calcium) and topographically influenced soil moisture were observed to 

be more important in southern latitudes (Chapter 4). These findings are consistent with other 

studies of longleaf pine vegetation that have identified soil properties as key drivers of species 

richness and species composition patterns (e.g., Peet 2006, Carr et al. 2009, Peet et al. 2014). 

Interestingly, this work suggests that environmental context is a better predictor of the magnitude 

of vegetation change across 20 years than is fire frequency (Chapter 2). This is, in part, 

surprising, because fire frequency has previously been shown to drive patterns of species 

richness and composition over longer temporal extents (Lewis and Harshbarger 1976, Waldrop 

et al. 1992, Brockway and Lewis 1997, Glitzenstein et al. 2003, Glitzenstein et al. 2012). 

However, these earlier studies were confined to single sites that did not span the environmental 

gradient, which perhaps accounts for the discrepancy between my findings and theirs. In 

addition, environmental context influences fire frequency and fire behavior, with more intense 

and frequent fire on moist sites that generate more fuel. Thus, environmental context captures 

some information about fire behavior and frequency and perhaps explains, in part, why soil 

properties were a better predictor of vegetation change than fire frequency. 

 Two important filters on plant community structure that emerged in this dissertation were 

soil properties and drought. Although there is a gradient in soil resource availability in the 

longleaf pine ecosystem, most sites are relatively nutrient poor, especially in phosphorus. Low 

nutrient availability (namely P and N) have been attributed to the maintenance of plant 

biodiversity in other species-rich grasslands in the world. For example, in two separate 

fertilization experiments in European calcareous grasslands, fertilized sites had 30 to 50% fewer 
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species relative to controls (Kull & Zobel 1991, Willems et al. 1993). In addition, drought and 

water limitation have been identified as additional filters on grassland community structure. 

Water limitation, in part, helps maintains the extent of grasslands worldwide by limiting woody 

plant encroachment (Higgins et al. 2000, Bond 2008, Staver et al. 2011). In addition, periodic 

and annual drought events reduce biomass of the dominant, competitive species and result in 

temporary declines in species richness (Tilman & Haddi 1992, O’Connor 1995, Rosén 1995, 

Haddad et al. 2002, Cheng et al. 2011). However, drought also creates space for new species to 

colonize and may contribute over the long-term to the maintenance of species richness. Chapter 

3 revealed that both periodic drought events and long-term drought are important factors that 

shape vegetation structure in longleaf pine savannas, despite relatively high annual precipitation. 

This study is one of the first to identify drought as an important filter in the longleaf pine 

ecosystem and I believe drought has been generally underappreciated in the southeastern US, 

despite its recognition as an important process in other grasslands ecosystems (Tilman and Haddi 

1992, Knapp et al. 2002, Knapp et al. 2006, Anderson 2008). Future studies of how drought 

shapes plant biodiversity and composition in the longleaf pine ecosystem will become even more 

critical with ongoing climate change, which is predicted to increase the seasonality of 

precipitation and drought events across the southeastern United States (Klos et al. 2009). 

 Current fire frequency and fire history emerged as critical drivers of species richness and 

composition patterns in longleaf pine plant communities, especially at small spatial scales. Fire 

frequency was the second most important predictor of changes in species richness and 

composition over time in Chapter 2 with greater change on sites that had burned more frequently. 

Each fire event presents an opportunity for new species to emerge out of the seed or bud bank or 

colonize from adjacent areas; thus, an increased frequency of fire events may drive colonization 
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and extinction dynamics (Overbeck et al. 2005). However, frequent fire can also act as a 

stabilizing force. In Chapter 2, although there was more species turnover on sites with greater 

fire frequency, the overall magnitude of compositional change was relatively modest across all 

sites. It appears that the stability of plant composition over time is due to increased efforts by 

land managers to restore fire to longleaf pine communities over the last 20 years, which has 

resulted in a slight amount of convergence to fire-maintained vegetation (Figure 2.4). Frequent, 

low intensity disturbance is one explanation for the stability and maintenance of species richness 

in other species-rich grasslands (Kull & Zobel 1991, Leach and Givnish 1996, Bowles & Jones 

2013). Kull & Zobel (1991) found that species density and richness declined in European 

calcareous grasslands with less frequent or intense mowing. Although plant species richness 

generally went up over time in most sites, I detected significant declines at small spatial scales in 

Big Island Savanna, likely driven primarily by reduced fire frequency. This work is significant 

because it indicates that only modest changes in the fire management regime (annual fire to fire 

every two to three years) may result in significant  loss of biodiversity and suggests that nearly 

annual fire may be necessary for the maintenance of species richness in mesic longleaf pine 

savannas. 

 Processes that operate at larger spatial and temporal extents may also act as filters on 

local community structure. In Chapter 4, I explored whether climate and species pool size, a 

proxy for biogeographic history, explained variation in species richness across the longleaf pine 

range, in addition to local environmental filtering. Although, soil properties consistently 

explained more variation in species richness, climate and species pool size explained additional 

variation, albeit a relatively small fraction. The variance explained by soils, climate, and species 

pool size almost perfectly maps on to the findings of Carr et al. (2009), who explored similar 
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questions using plant species composition in Florida. In contrast to these findings, the relative 

importance of species pool size has been identified as a more important predictor of local 

richness in other ecosystems, including species-rich grasslands (Pärtel et al. 1996, Zobel 1997, 

Pärtel & Zobel 1999, Milbauer & Leach 2007). 

 My work suggests that longleaf pine plant communities are dynamic over both space and 

time, which is consistent with findings from  other species-rich grasslands in the world (Herben 

1993a, b, van der Maarel & Sykes 1993, Sykes et al. 1994). I detected relatively high rates of 

turnover across ~ 20 years, especially in silty, frequently-burned sites. At the wet, silty end of the 

environmental gradient (e.g., savannas), the dynamics of longleaf pine plant communities seem 

to fit well with the carousel model proposed for species-rich grasslands in Europe (van der 

Maarel & Sykes 1993, Sykes et al. 1994). The carousel model considers species to be 

ecologically equivalent (i.e., to have the same niche) and hypothesizes that species are riding on 

a carousel and given enough time, each species will colonize a given habitat patch. In savannas, 

many species appear to be ecologically equivalent and come and go over time in response to 

short-term changes in water availability, fire, and perhaps competition. To examine whether 

annual turnover was high in longleaf pine plant communities, I re-sampled 30 of the original 59 

plots described in Chapter 2 and 5, in 2010. I detected considerable turnover over the course of a 

year, especially compared to the amount of turnover across ~ 20 year (Figure 6.4). Other studies 

in the longleaf pine ecosystem have also suggested that stochastic colonization and extinction are 

important drivers of plant species richness and composition (Myers & Harm 2009, Myers and 

Harm 2011). Furthermore, most of the species turning over across time were low in abundance. 

Future work should explore whether stochastic colonization and extinction events from a large 
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species pool of equivalent species helps to maintain the high species richness found in longleaf 

pine savannas. 

 Most plant species in the longleaf pine ecosystem occur infrequently in the landscape 

(Figure 6.1, Figure 6.2). The core-satellite species model categorizes species into two types: core 

species, which are frequent and abundance, and satellite species, which occur infrequently and in 

low abundance (Hanski 1982). Several studies have explored core-satellite species patterns in the 

longleaf pine ecosystem and found no evidence for a dichotomy between frequent, abundant 

species and infrequent, low-abundance species (Kirkman et al. 2001, Keddy et al. 2006, Clark et 

al. 2008), in contrast to other grassland ecosystems (e.g., tallgrass prairie, Collins & Glen 1990, 

Collins & Glen 1991; alvar grasslands, Pärtel et al. 2001). To follow up on this work, I explored 

core-satellite species patterns using two different data sets that vary in spatial extent: 59 plots 

from eastern North Carolina (Chapter 2, Chapter 5) and 849 plots spanning a large portion of the 

longleaf range (Chapter 4). I summarized species frequency patterns as the number of plots each 

species occurred in, and also examined the mean abundance of those species. Previous work, 

along with my analysis of core-satellite species patterns (Figure 6.1, Figure 6.2), shows that most 

species in the longleaf pine ecosystem are infrequent in the landscape (2.7% of species occur in 

≥ 75% of plots, 75.15% of species occur in ≤ 25% of plots from eastern North Carolina. In fact, 

there appear to be very few “core” species in the longleaf pine ecosystem; the bulk of 

biodiversity in local sites is made up of satellite species (Figure 6.3). I suggest that the high 

spatial and temporal turnover in this ecosystem creates a large species pool that can filter down 

into local communities. In addition, the low abundance of most species in this system may 

contribute to the high species packing and species richness at small spatial scales for which this 

ecosystem is famous for (Walker & Peet 1983). 
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 In this dissertation, I consistently detected the scale-dependence of both ecological 

patterns and their underlying processes. In Chapter 2, I found that the correlation between fire 

frequency and compositional change because more important as spatial scale decreased, 

consistent with the findings and suggestions of Glitzenstein et al. (2003). In addition, Chapter 2 

suggested that dissimilarity over time at small scales was higher than at larger spatial scales, 

possibly because there is greater stochasticity at small spatial scales. I followed up on this in 

Chapter 5 by using species co-occurrence metrics to examine how the relative importance of 

deterministic and stochastic processes changes with spatial grain. Species co-occurrence patterns 

shifted from negative at larger grain sizes to more positive as grain size decreased. This suggests 

a shift in processes  with a decrease in spatial scale. Thus, the spatial scale at which a study is 

conducted has important implications for the patterns detected and the inference of process from 

those patterns. 

 I echo other authors (e.g., Dengler et al. 2009, Wheeler et al. 2011) and argue that to 

understand vegetation patterns and identify the community assembly processes structuring those 

patterns, sampling must be conducted across a range of spatial scales. For example, the nested 

nature of sampling in Chapter 2 and 3 revealed declines in plant species richness in Big Island 

Savanna at small scales, but not at larger scales. Had I simply generated a species list for each 

plot across time at 100 m², I would have concluded that biodiversity had remained stable over 

time in Big Island Savanna. Thus, the multi-scale sampling allowed me to detect the loss of 

biodiversity at small scales, investigate what might be driving that loss, and communicate those 

findings directing to land managers implementing prescribed fire. In addition, the scale at which 

communities are sampled must match the goals of the project and the spatial or temporal extent 

of the processes being detected. 
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 This dissertation identifies several ecological processes that act synergistically to 

structure vegetation patterns in the longleaf ecosystem. In addition, it explores the spatial and 

temporal patterns of plant species richness and species composition. My work here contributes to 

a growing pool of literature suggesting that multiple processes, which operate at different spatial 

and temporal extents, can shape ecological patterns in local communities. In addition, those 

processes are scale dependent and their relative importance in assembling communities changes 

with spatial and temporal scale. 
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Figures 

Figure 6.1. A. Frequency of plant species in 1000 m² plots in eastern North Carolina (Chapter 2, 

5). B. The frequency of plant species in 1000 m² across the southeastern US (Chapter 4). Most 

species are infrequent and occur in fewer than 10% of sites. More notably, there is no second 

mode, suggesting the absence of “core” species (i.e. species that are frequent and abundant) in 

the longleaf pine ecosystem. This pattern remains constant when constraining environmental 

context and looking with each broad longleaf pine community type as well. 
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Figure 6.2. A. Number of plots occupied by each species versus abundance for that species (log 

mean cover %). Points represent each species in the data set (326) from eastern NC (Chapter 2, 

Chapter 5). B. Number of plots occupied by each species versus abundance across the longleaf 

range (Chapter 4). Species in the upper right corner of the graph are considered “core”, as they 

are abundant and occur frequently in plots. Species in the lower left corner are satellite species, 

which are infrequent and low in abundance. There are very few core species in longleaf pine 

communities. 
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Figure 6.3. Number of satellite species versus species richness at 1000 m² for the 59 plots located 

in eastern North Carolina. Here, satellite species are species which occur in 25% or less of plots 

and have low abundance when they occur. Satellite species number and species richness are 

strongly correlated, suggesting most species in plots in longleaf pine plant communities are 

satellite species. 
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Figure 6.4. Mean species turnover (defined here as the number of species gained and lost across 

time) from 1990 to 2009 and from 2009 to 2010 for 30 plots in eastern North Carolina. The 

magnitude of species turning over on an annual basis is considerable, especially compared to the 

magnitude across ~20 years. 
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APPENDIX A.  GROWTH FORM ASSIGNMENTS FOR CHAPTER 2 SPECIES 

Table A.1. Growth form assignments to all 398 taxa in the data set for Chapter 2. Composite and 

standardized taxonomic names are not shown here. 

Taxon Growth Form 

Acer rubrum tree 

Agalinis aphylla hemiparasite 

Agalinis fasciculata hemiparasite 

Agalinis linifolia hemiparasite 

Agalinis obtusifolia hemiparasite 

Agalinis purpurea hemiparasite 

Agalinis setacea hemiparasite 

Agalinis virgata hemiparasite 

Aletris [farinosa + lutea] rosette herb 

Amorpha confusa legume 

Amorpha herbacea legume 

Amphicarpum amphicarpon single-culm graminoid 

Andropogon capillipes matrix graminoid 

Andropogon elliottii matrix graminoid 

Andropogon glaucopsis matrix graminoid 

Andropogon glomeratus var. glomeratus matrix graminoid 

Andropogon glomeratus var. hirsutior matrix graminoid 

Andropogon mohrii matrix graminoid 

Andropogon ternarius matrix graminoid 

Andropogon virginicus var. virginicus matrix graminoid 

Antennaria [parlinii + plantaginifolia] rosette herb 

Anthenantia rufa single-culm graminoid 

Anthenantia villosa single-culm graminoid 

Aristida purpurascens single-culm graminoid 

Aristida stricta matrix graminoid 

Aristida virgata single-culm graminoid 

Arnica acaulis rosette herb 

Aronia arbutifolia shrub 

Arundinaria tecta shrub 

Asclepias amplexicaulis caulescent herb 

Asclepias humistrata caulescent herb 

Asclepias longifolia caulescent herb 

Asclepias pedicellata caulescent herb 

Balduina uniflora rosette herb 

Bartonia virginica caulescent herb 

Bigelowia nudata var. nudata rosette herb 

Bulbostylis [ciliatifolia + coarctata] single-culm graminoid 
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Table A.1 (cont). Growth form assignments to all 398 taxa in the data set for Chapter 2. 

Composite and standardized taxonomic names are not shown here. 

Taxon Growth Form 

Bulbostylis capillaris single-culm graminoid 

Calamagrostis cinnoides single-culm graminoid 

Calamovilfa brevipilis single-culm graminoid 

Callicarpa americana shrub 

Calopogon barbatus geophyte 

Calopogon pallidus geophyte 

Calopogon tuberosus var. tuberosus geophyte 

Carex striata var. brevis matrix graminoid 

Carphephorus bellidifolius rosette herb 

Carphephorus odoratissimus var. 

odoratissimus rosette herb 

Carphephorus paniculatus rosette herb 

Carphephorus tomentosus rosette herb 

Carya alba tree 

Centella erecta rosette herb 

Chamaecrista [nictitans + fasciculata] caulescent herb 

Chamaecyparis thyoides tree 

Chamaesyce sp. caulescent herb 

Chaptalia tomentosa rosette herb 

Chasmanthium laxum single-culm graminoid 

Chrysopsis gossypina rosette herb 

Chrysopsis mariana rosette herb 

Cirsium horridulum rosette herb 

Cirsium lecontei rosette herb 

Cirsium repandum rosette herb 

Cirsium virginianum rosette herb 

Cleistesiopsis divaricata geophyte 

Clethra alnifolia shrub 

Cnidoscolus stimulosus caulescent herb 

Commelina erecta caulescent herb 

Coreopsis falcata rosette herb 

Coreopsis linifolia rosette herb 

Cornus florida tree 

Cornus stricta shrub 

Crataegus aprica tree 

Crocanthemum carolinianum rosette herb 

Crotalaria purshii legume 

Ctenium aromaticum matrix graminoid 

Cuscuta sp. vine 
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Table A.1 (cont). Growth form assignments to all 398 taxa in the data set for Chapter 2. 

Composite and standardized taxonomic names are not shown here. 

Taxon Growth Form 

Cuthbertia graminea rosette herb 

Cyperus grayi single-culm graminoid 

Cyperus retrorsus single-culm graminoid 

Cyrilla racemiflora tree 

Danthonia sericea matrix graminoid 

Desmodium [obtusum + tortuosum] legume 

Desmodium [tenuifolium + strictum] legume 

Desmodium ciliare legume 

Desmodium lineatum legume 

Desmodium marilandicum legume 

Desmodium obtusum legume 

Desmodium paniculatum legume 

Desmodium perplexum legume 

Desmodium rotundifolium legume 

Desmodium tenuifolium legume 

Dichanthelium aciculare single-culm graminoid 

Dichanthelium angustifolium single-culm graminoid 

Dichanthelium arenicoloides single-culm graminoid 

Dichanthelium commutatum var. ashei single-culm graminoid 

Dichanthelium consanguineum single-culm graminoid 

Dichanthelium ensifolium single-culm graminoid 

Dichanthelium leucothrix single-culm graminoid 

Dichanthelium longiligulatum single-culm graminoid 

Dichanthelium mattamuskeetense single-culm graminoid 

Dichanthelium ovale var. addisonii single-culm graminoid 

Dichanthelium ovale var. ovale single-culm graminoid 

Dichanthelium portoricense ssp. patulum single-culm graminoid 

Dichanthelium portoricense ssp. portoricense single-culm graminoid 

Dichanthelium strigosum var. glabrescens single-culm graminoid 

Dichanthelium strigosum var. leucoblepharis single-culm graminoid 

Dichanthelium strigosum var. strigosum single-culm graminoid 

Dichanthelium tenue single-culm graminoid 

Dichanthelium villosissimum var. 

villosissimum single-culm graminoid 

Diodia virginiana caulescent herb 

Dionaea muscipula insectivore 

Dioscorea villosa vine 

Diospyros virginiana tree 

Drosera brevifolia insectivore 
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Table A.1 (cont). Growth form assignments to all 398 taxa in the data set for Chapter 2. 

Composite and standardized taxonomic names are not shown here. 

Taxon Growth Form 

Drosera capillaris insectivore 

Elephantopus nudatus rosette herb 

Epigaea repens subshrub 

Erechtites hieracifolia var. hieracifolia rosette herb 

Erigeron strigosus var. strigosus rosette herb 

Erigeron vernus rosette herb 

Eriocaulon compressum rosette herb 

Eryngium integrifolium rosette herb 

Eubotrys racemosa shrub 

Eupatorium [mohrii + recurvans] caulescent herb 

Eupatorium album caulescent herb 

Eupatorium capillifolium caulescent herb 

Eupatorium leucolepis caulescent herb 

Eupatorium linearifolium caulescent herb 

Eupatorium mohrii caulescent herb 

Eupatorium pilosum caulescent herb 

Eupatorium rotundifolium caulescent herb 

Euphorbia curtisii caulescent herb 

Euphorbia ipecacuanhae caulescent herb 

Euphorbia pubentissima caulescent herb 

Eurybia compacta rosette herb 

Eurybia paludosa rosette herb 

Euthamia caroliniana caulescent herb 

Fimbristylis annua single-culm graminoid 

Fimbristylis puberula var. puberula single-culm graminoid 

Galactia [regularis + volubilis var. volubilis] legume 

Galactia erecta legume 

Galactia volubilis var. volubilis legume 

Galium pilosum caulescent herb 

Gamochaeta purpurea rosette herb 

Gaultheria procumbens subshrub 

Gaylussacia dumosa subshrub 

Gaylussacia frondosa shrub 

Gelsemium sempervirens vine 

Gentiana autumnalis caulescent herb 

Gymnopogon ambiguus single-culm graminoid 

Gymnopogon brevifolius single-culm graminoid 

Helianthus angustifolius rosette herb 
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Table A.1 (cont). Growth form assignments to all 398 taxa in the data set for Chapter 2. 

Composite and standardized taxonomic names are not shown here. 

Taxon Growth Form 

Helianthus atrorubens rosette herb 

Helianthus heterophyllus rosette herb 

Hieracium gronovii rosette herb 

Hieracium marianum rosette herb 

Hypericum cistifolium caulescent herb 

Hypericum crux-andreae caulescent herb 

Hypericum hypericoides caulescent herb 

Hypericum setosum caulescent herb 

Hypericum tenuifolium caulescent herb 

Hypoxis [hirsuta + wrightii] single-culm graminoid 

Hypoxis juncea single-culm graminoid 

Hypoxis sessilis single-culm graminoid 

Hypoxis wrightii single-culm graminoid 

Ilex coriacea tree 

Ilex glabra shrub 

Ilex myrtifolia shrub 

Ilex opaca var. opaca tree 

Ionactis linariifolia caulescent herb 

Iris verna var. verna rosette herb 

Juncus biflorus single-culm graminoid 

Juncus canadensis single-culm graminoid 

Juncus scirpoides single-culm graminoid 

Lachnanthes caroliniana rosette herb 

Lachnocaulon anceps rosette herb 

Lactuca sp. rosette herb 

Lechea minor caulescent herb 

Lechea pulchella var. ramosissima caulescent herb 

Lechea torreyi var. congesta caulescent herb 

Lespedeza angustifolia legume 

Lespedeza capitata legume 

Lespedeza cuneata legume 

Lespedeza hirta var. curtissii legume 

Lespedeza hirta var. hirta legume 

Lespedeza virginica legume 

Liatris [pilosa + virgata] rosette herb 

Liatris pilosa rosette herb 

Liatris spicata rosette herb 

Lilium catesbaei geophyte 
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Table A.1 (cont). Growth form assignments to all 398 taxa in the data set for Chapter 2. 

Composite and standardized taxonomic names are not shown here. 

Taxon Growth Form 

Linum floridanum caulescent herb 

Linum striatum caulescent herb 

Liquidambar styraciflua tree 

Lobelia nuttallii caulescent herb 

Ludwigia virgata caulescent herb 

Lycopodiella alopecuroides clubmoss 

Lycopodiella appressa clubmoss 

Lyonia ligustrina var. foliosiflora shrub 

Lyonia lucida shrub 

Lyonia mariana shrub 

Lysimachia asperulifolia caulescent herb 

Lysimachia loomisii caulescent herb 

Magnolia virginiana tree 

Marshallia graminifolia rosette herb 

Minuartia caroliniana caulescent herb 

Monotropa uniflora caulescent herb 

Morella caroliniensis shrub 

Morella cerifera shrub 

Morella pumila shrub 

Muhlenbergia expansa matrix graminoid 

Nyssa sylvatica tree 

Opuntia humifusa cactus 

Orbexilum pedunculatum var. psoralioides caulescent herb 

Osmanthus americanus tree 

Osmunda cinnamomea var. cinnamomea fern 

Oxalis dillenii caulescent herb 

Oxypolis denticulata caulescent herb 

Panicum anceps var. rhizomatum single-culm graminoid 

Panicum virgatum single-culm graminoid 

Parthenium integrifolium rosette herb 

Parthenocissus quinquefolia vine 

Paspalum praecox single-culm graminoid 

Paspalum setaceum var. ciliatifolium single-culm graminoid 

Persea palustris tree 

Phoradendron serotinum ssp. serotinum subshrub 

Pinguicula caerulea insectivore 

Pinguicula lutea insectivore 

Pinguicula pumila insectivore 
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Table A.1 (cont). Growth form assignments to all 398 taxa in the data set for Chapter 2. 

Composite and standardized taxonomic names are not shown here. 

Taxon Growth Form 

Pinus palustris tree 

Pinus serotina tree 

Pinus taeda tree 

Pityopsis graminifolia caulescent herb 

Platanthera ciliaris geophyte 

Platanthera cristata geophyte 

Pleea tenuifolia rosette herb 

Pluchea foetida var. foetida caulescent herb 

Pogonia ophioglossoides geophyte 

Polygala brevifolia caulescent herb 

Polygala cruciata caulescent herb 

Polygala hookeri caulescent herb 

Polygala lutea caulescent herb 

Polygala ramosa caulescent herb 

Polygonella polygama subshrub 

Prenanthes autumnalis rosette herb 

Prunus caroliniana tree 

Prunus serotina tree 

Pseudolycopodiella caroliniana clubmoss 

Pteridium aquilinum var. pseudocaudatum fern 

Pterocaulon pycnostachyum caulescent herb 

Pycnanthemum flexuosum caulescent herb 

Pyxidanthera barbulata caulescent herb 

Quercus falcata tree 

Quercus geminata tree 

Quercus hemisphaerica tree 

Quercus incana tree 

Quercus incana x marilandica tree 

Quercus laevis tree 

Quercus laevis x marilandica tree 

Quercus margaretta tree 

Quercus marilandica var. marilandica tree 

Quercus nigra tree 

Quercus phellos tree 

Quercus stellata tree 

Quercus velutina tree 

Quercus virginiana tree 

Quercus xashei tree 
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Table A.1 (cont). Growth form assignments to all 398 taxa in the data set for Chapter 2. 

Composite and standardized taxonomic names are not shown here. 

Taxon Growth Form 

Quercus xblufftonensis tree 

Quercus xincomita tree 

Quercus xsubintegra tree 

Rhexia [nashii + mariana var. mariana] caulescent herb 

Rhexia alifanus caulescent herb 

Rhexia lutea caulescent herb 

Rhexia mariana var. mariana caulescent herb 

Rhexia petiolata caulescent herb 

Rhododendron atlanticum shrub 

Rhus copallinum shrub 

Rhynchosia reniformis legume 

Rhynchosia tomentosa var. tomentosa legume 

Rhynchospora baldwinii single-culm graminoid 

Rhynchospora breviseta single-culm graminoid 

Rhynchospora chapmanii single-culm graminoid 

Rhynchospora ciliaris single-culm graminoid 

Rhynchospora fascicularis var. fascicularis single-culm graminoid 

Rhynchospora filifolia single-culm graminoid 

Rhynchospora glomerata single-culm graminoid 

Rhynchospora harveyi single-culm graminoid 

Rhynchospora inexpansa single-culm graminoid 

Rhynchospora latifolia single-culm graminoid 

Rhynchospora plumosa single-culm graminoid 

Rhynchospora rariflora single-culm graminoid 

Rhynchospora wrightiana single-culm graminoid 

Robinia nana shrub 

Rubus [enslenii + flagellaris] subshrub 

Rubus cuneifolius subshrub 

Rubus trivialis subshrub 

Sabatia difformis caulescent herb 

Saccharum sp. matrix graminoid 

Sarracenia flava insectivore 

Sarracenia purpurea var. venosa insectivore 

Sarracenia rubra insectivore 

Sassafras albidum tree 

Schizachyrium scoparium matrix graminoid 

Scleria ciliata var. ciliata single-culm graminoid 

Scleria ciliata var. glabra single-culm graminoid 
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Table A.1 (cont). Growth form assignments to all 398 taxa in the data set for Chapter 2. 

Composite and standardized taxonomic names are not shown here. 

Taxon Growth Form 

Scleria elliottii single-culm graminoid 

Scleria minor single-culm graminoid 

Scleria nitida single-culm graminoid 

Scleria pauciflora var. caroliniana single-culm graminoid 

Scleria pauciflora var. pauciflora single-culm graminoid 

Scleria triglomerata single-culm graminoid 

Scutellaria integrifolia caulescent herb 

Selaginella acanthonota caulescent herb 

Sericocarpus asteroides rosette herb 

Sericocarpus linifolius rosette herb 

Sericocarpus tortifolius rosette herb 

Seymeria cassioides hemiparasite 

Silphium compositum rosette herb 

Sisyrinchium capillare rosette herb 

Smilax auriculata vine 

Smilax bona-nox vine 

Smilax glauca vine 

Smilax laurifolia vine 

Smilax rotundifolia vine 

Solidago arguta rosette herb 

Solidago gracillima rosette herb 

Solidago odora var. odora rosette herb 

Solidago pulchra rosette herb 

Solidago stricta rosette herb 

Sophronanthe pilosa caulescent herb 

Sorghastrum nutans matrix graminoid 

Spiranthes [praecox + sylvatica] geophyte 

Spiranthes lacera var. gracilis geophyte 

Spiranthes praecox geophyte 

Spiranthes vernalis geophyte 

Sporobolus pinetorum matrix graminoid 

Stenanthium densum rosette herb 

Stipulicida setacea var. setacea caulescent herb 

Stylisma patens ssp. angustifolia caulescent herb 

Stylisma patens ssp. patens caulescent herb 

Stylosanthes biflora legume 

Symphyotrichum concolor var. concolor caulescent herb 

Symphyotrichum dumosum var. dumosum caulescent herb 
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Table A.1 (cont). Growth form assignments to all 398 taxa in the data set for Chapter 2. 

Composite and standardized taxonomic names are not shown here. 

Taxon Growth Form 

Symphyotrichum walteri caulescent herb 

Symplocos tinctoria tree 

Tephrosia florida legume 

Tephrosia hispidula legume 

Tephrosia spicata legume 

Tephrosia virginiana legume 

Tillandsia usneoides caulescent herb 

Toxicodendron pubescens vine 

Toxicodendron radicans var. radicans vine 

Tragia urens caulescent herb 

Triantha racemosa rosette herb 

Triplasis purpurea var. purpurea single-culm graminoid 

Utricularia subulata insectivore 

Vaccinium arboreum shrub 

Vaccinium crassifolium subshrub 

Vaccinium formosum shrub 

Vaccinium fuscatum shrub 

Vaccinium stamineum shrub 

Vaccinium tenellum subshrub 

Vernonia acaulis rosette herb 

Viburnum nudum shrub 

Viola primulifolia rosette herb 

Viola septemloba rosette herb 

Vitis rotundifolia var. rotundifolia vine 

Woodwardia areolata fern 

Woodwardia virginica fern 

Xyris ambigua rosette herb 

Xyris baldwiniana rosette herb 

Xyris caroliniana rosette herb 

Xyris platylepis rosette herb 

Yucca filamentosa subshrub 

Zenobia pulverulenta shrub 

Zigadenus glaberrimus rosette herb 

 

________________ 

¹ Growth form classifications modified and expanded from Raunkaier 1937. Club mosses are 

spore-bearing vascular plants. Caulescent herbs are hemicryptophytes with a leafy stem. 

Geophytes are plants with subterranean organs, from which stems emerge. Insectivores are 
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hemicryptophytes that obtain additional N and P from insects. Legumes are nitrogen-fixing 

hemicryptophytes. Matrix graminoids are hemicryptophytes with many flowering culms and a 

bunch-grass habit. In contrast, single-culm graminoids have a single flowering culm. Rosette 

herbs are hemicryptophytes with leaves restricted to a basal rosette and a stem that only supports 

flowers. Trees are phanerophytes with a main stem, while -shrubs are phanerophytes with 

multiple stems. Subshrubs are chamaephytes, whose shoots are produced very close to the 

ground. Vines are trailing chamaephytes. 
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APPENDIX B. PERCENTAGE OF SUBPLOTS OCCUPIED BY SPECIES FROM 1985-2013 

Table B.1. Percentage of 0.01 m² subplots occupied by all species from 1985-2013. 

Species Growth Form Habitat Height 1985 1986 1987 1988 1989 1994 2011 2012 2013 

Eupatorium leucolepis caulescent herb mesic tall 8.0 7.7 7.7 8.3 6.3 8.3 6.7 5.0 6.7 

Eupatorium rotundifolium caulescent herb dry tall 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Euphorbia curtisii caulescent herb dry short 17.3 19.0 20.7 19.0 10.3 22.7 15.3 18.0 19.7 

Lactuca sp. caulescent herb dry tall 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 

Linum sp. caulescent herb mesic short 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 

Lobelia nuttalli caulescent herb mesic tall 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.7 1.7 

Ludwigia virgata caulescent herb wet tall 0.0 0.0 0.0 0.0 0.3 0.7 0.3 0.3 0.3 

Oxypolis ternata caulescent herb wet tall 2.3 1.0 3.3 2.3 0.0 1.7 0.3 1.3 0.7 

Pityopsis graminifolia caulescent herb dry short 17.3 22.0 22.7 23.3 19.0 21.0 0.7 2.3 4.0 

Polygala hookeri caulescent herb mesic short 43.7 41.7 35.0 36.7 36.0 16.3 0.0 0.3 0.3 

Polygala lutea caulescent herb mesic short 7.0 1.7 7.7 8.7 12.0 9.7 0.3 0.3 5.3 

Pteridium aquilinum caulescent herb dry tall 0.0 0.0 0.0 0.0 0.3 4.0 7.0 8.0 7.7 

Rhexia alifanus caulescent herb dry tall 23.3 23.3 24.0 23.7 20.0 18.0 10.0 10.0 7.7 

Rhexia lutea caulescent herb mesic tall 0.3 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 

Rhexia petiolata caulescent herb wet tall 2.7 7.0 8.0 6.7 7.3 9.7 1.0 2.7 2.0 

Sabatia difformis caulescent herb wet tall 0.0 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.7 

Sabatia gentianoides caulescent herb wet tall 0.0 1.0 1.3 0.7 0.0 1.0 0.0 0.0 0.7 

Symphyotrichum dumosum caulescent herb dry tall 7.0 9.0 8.3 8.0 7.7 6.0 0.7 1.3 2.0 

Lycopodiella alopecuroides clubmoss mesic short 0.0 0.0 0.0 0.0 0.0 0.7 0.0 4.0 3.7 

Lycopodiella appressa clubmoss mesic short 24.0 16.3 21.3 21.7 23.7 8.0 11.3 3.3 5.0 

Calopogon pallidus geophyte mesic short 14.3 26.7 32.3 31.7 28.0 19.3 1.0 0.3 0.7 

Calopogon tuberosus geophyte mesic short 0.7 0.7 1.0 0.3 0.0 0.7 0.0 0.0 0.0 

Cleistesiopsis divaricata geophyte mesic short 1.7 4.7 8.0 5.3 1.3 3.7 0.0 2.3 1.7 

Lilium catesbaei geophyte mesic short 3.0 1.7 0.7 0.7 0.0 1.7 0.0 2.0 1.0 

Platanthera sp. geophyte mesic tall 9.0 9.7 10.0 10.7 8.3 5.0 0.0 3.7 2.3 

Pogonia ophioglossoides geophyte mesic short 0.3 0.3 1.7 3.0 2.3 0.3 0.0 0.0 0.7 

Spiranthes sp. geophyte mesic tall 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Agalinis aphylla hemiparasite mesic tall 3.0 3.3 3.3 3.7 3.7 1.7 2.0 1.3 0.7 

1
5

8
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Table B.1 (cont). Percentage of 0.01 m² subplots occupied by all species from 1985-2013. 

Species Growth Form Habitat Height 1985 1986 1987 1988 1989 1994 2011 2012 2013 

Agalinis obtusifolia hemiparasite dry tall 2.3 17.0 37.0 49.7 36.3 20.0 6.0 19.0 32.0 

Seymeria cassioides hemiparasite dry tall 9.7 10.0 6.7 3.7 12.7 13.3 36.3 34.7 8.7 

Dionaea muscipula insectivore mesic short 67.0 68.3 68.0 69.7 70.7 36.0 30.7 47.7 44.7 

Drosera capillaris insectivore mesic short 36.3 15.0 56.7 68.3 55.0 14.0 4.3 12.7 40.7 

Pinguicula sp. insectivore mesic short 20.3 17.0 19.7 27.0 28.7 13.0 0.0 4.3 10.7 

Utricularia subulata insectivore wet short 0.0 0.7 12.3 5.3 4.7 0.0 0.0 0.0 0.3 

Desmodium lineatum legume dry short 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 

Desmodium tenuifolium legume mesic tall 0.0 0.0 1.7 1.3 1.7 1.3 1.0 1.3 1.0 

Tephrosia hispidula legume dry short 0.0 0.0 0.0 0.3 0.0 2.7 3.0 2.3 3.7 

Andropogon sp. matrix graminoid dry tall 54.0 61.0 66.7 68.7 65.3 66.3 62.0 66.7 69.7 

Andropogon sp. 2 matrix graminoid dry tall 26.7 28.7 27.0 26.3 21.0 26.7 0.7 0.0 0.0 

Aristida stricta matrix graminoid dry tall 43.3 46.0 44.7 44.7 41.7 46.7 31.7 39.3 37.3 

Carex striata var. brevis matrix graminoid wet tall 0.0 0.0 0.0 0.0 0.0 0.0 4.3 4.3 3.3 

Ctenium aromaticum matrix graminoid mesic tall 22.3 22.0 24.0 25.0 24.7 27.3 17.0 20.7 21.3 

Muhlenbergia expansa matrix graminoid mesic tall 41.7 42.7 44.0 47.0 44.3 47.7 40.3 39.3 37.7 

Sporobolus pinetorum matrix graminoid mesic tall 50.0 55.3 54.3 56.0 57.7 59.3 66.3 53.3 54.0 

Aletris farinosa rosette herb mesic short 9.3 9.7 10.3 10.0 8.7 6.3 2.7 1.3 1.0 

Bigelowia nudata rosette herb dry short 71.3 76.0 77.7 79.0 76.3 67.7 23.3 24.3 23.3 

Carphephorus paniculatus rosette herb dry tall 3.3 4.0 3.3 4.0 4.3 5.0 4.3 5.0 3.7 

Carphephorus tomentosus rosette herb dry tall 16.3 20.3 26.7 25.3 25.7 25.0 5.3 6.0 6.3 

Chaptalia tomentosa rosette herb mesic short 0.0 0.0 0.0 0.7 0.3 0.3 0.0 0.0 0.0 

Coreopsis linifolia rosette herb mesic short 90.7 90.0 95.0 93.3 93.7 94.3 13.0 20.3 23.3 

Erigeron vernus rosette herb mesic short 7.7 8.3 8.7 8.7 6.7 8.7 7.0 9.3 5.7 

Eryngium integrifolium rosette herb mesic short 19.0 18.0 16.7 16.3 14.7 10.0 0.7 4.3 7.7 

Eurybia paludosa rosette herb mesic tall 12.0 11.3 15.0 18.0 16.7 19.3 25.0 28.3 27.0 

Helianthus angustifolius rosette herb mesic tall 2.0 0.3 2.0 1.7 3.0 3.7 0.7 1.0 1.0 

Helianthus heterophyllus rosette herb mesic tall 15.0 17.3 20.7 19.0 16.0 13.0 6.7 7.3 7.7 

Lachnanthes caroliniana rosette herb wet tall 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 

Lachnocaulon anceps rosette herb wet short 13.3 13.3 14.0 13.0 12.7 12.3 9.7 11.7 12.7 
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Table B.1 (cont). Percentage of 0.01 m² subplots occupied by all species from 1985-2013. 

Species Growth Form Habitat Height 1985 1986 1987 1988 1989 1994 2011 2012 2013 

Liatris [pilosa + virgata] rosette herb dry tall 0.7 0.0 0.0 0.7 0.3 1.0 1.0 1.3 0.0 

Marshallia graminifolia rosette herb mesic short 10.0 6.3 9.3 11.7 10.3 7.0 2.7 1.3 4.3 

Sisyrinchium capillare rosette herb mesic short 18.7 26.7 27.7 35.0 35.7 37.0 5.0 9.0 4.7 

Sisyrinchium sp. rosette herb mesic short 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Solidago [stricta + pulchra] rosette herb mesic tall 23.7 24.0 24.0 26.7 24.0 25.7 18.7 18.0 17.7 

Solidago sp. rosette herb mesic short 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Triantha racemosa rosette herb mesic short 28.3 32.7 34.7 38.7 37.0 33.7 15.7 15.7 18.3 

Viola primulifolia rosette herb mesic short 12.0 18.3 15.3 18.3 18.3 9.7 4.3 6.0 7.3 

Viola septemloba rosette herb mesic short 0.0 0.0 1.3 0.7 0.7 1.0 0.0 0.0 1.3 

Xyris ambigua rosette herb wet tall 16.3 16.7 17.0 17.0 17.0 16.0 6.3 4.3 6.3 

Xyris caroliniana rosette herb dry tall 12.0 20.3 17.3 18.7 22.7 23.0 8.0 11.0 7.7 

Aronia arbutifolia shrub wet tall 3.7 4.7 5.3 6.0 4.3 3.7 8.3 8.3 9.3 

Arundinaria tecta shrub wet tall 2.0 2.0 2.0 1.7 1.0 0.7 0.0 0.0 0.0 

Gaylussacia frondosa shrub dry tall 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.3 

Ilex glabra shrub wet tall 0.7 0.7 1.3 2.0 0.0 2.0 0.0 0.3 1.7 

Lyonia mariana shrub dry tall 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 

Morella carolinensis shrub wet tall 0.3 0.3 1.0 0.3 0.0 0.0 5.3 5.3 6.0 

Aristida virgata single culm graminoid mesic tall 8.0 12.0 9.7 10.3 5.3 12.0 0.0 1.0 0.0 

Dichanthelium ensifolium single culm graminoid mesic tall 79.0 83.7 85.3 85.3 85.0 76.7 72.0 81.7 86.0 

Dichanthelium strigosum single culm graminoid mesic tall 13.0 15.3 13.0 13.7 12.3 11.7 0.3 0.3 0.7 

Fimbristylis sp. single culm graminoid wet tall 0.0 0.7 2.0 1.7 2.7 3.3 0.7 2.0 2.0 

Gymnopogon brevifolius single culm graminoid dry tall 0.0 2.0 2.0 2.0 2.0 2.7 0.0 0.7 0.7 

Hypoxis micrantha single culm graminoid mesic short 7.0 15.7 15.3 18.7 26.3 22.0 12.3 18.7 28.0 

Rhynchospora baldwinii single culm graminoid mesic tall 4.7 4.0 2.3 3.3 3.0 3.7 1.3 0.7 2.3 

Rhynchospora breviseta single culm graminoid wet short 83.0 94.0 94.3 94.3 96.0 80.3 52.7 66.0 73.3 

Rhynchospora chapmanii single culm graminoid mesic short 51.0 66.0 77.3 82.7 83.0 67.7 34.3 68.3 72.7 

Rhynchospora ciliaris single culm graminoid mesic short 31.0 32.3 31.0 34.7 33.0 24.7 0.3 10.0 20.0 

Scleria minor single culm graminoid wet tall 0.0 0.0 2.7 1.0 1.7 1.0 4.0 0.0 4.0 

Scleria pauciflora single culm graminoid mesic short 52.0 53.3 56.0 56.3 55.7 50.7 15.3 22.7 34.0 
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Table B.1 (cont). Percentage of 0.01 m² subplots occupied by all species from 1985-2013. 

Species Growth Form Habitat Height 1985 1986 1987 1988 1989 1994 2011 2012 2013 

Scleria reticularis single culm graminoid mesic tall 3.7 2.0 1.3 3.3 3.7 2.7 0.0 0.0 0.0 

Gaylussacia dumosa subshrub dry short 11.0 11.7 13.0 15.0 14.0 14.7 5.3 4.0 4.3 

Hypericum crux-andreae subshrub mesic tall 3.7 4.3 3.3 3.7 2.0 5.3 1.0 2.0 0.7 

Vaccinium crassifolium subshrub dry short 14.7 11.3 11.3 18.3 12.7 12.3 5.3 5.3 5.0 

Vaccinium tenellum subshrub dry short 0.0 0.0 0.0 0.0 0.0 0.0 5.3 5.3 6.0 

Acer rubrum tree wet tall 0.0 0.0 0.0 0.7 0.0 0.0 1.0 0.3 1.0 

Persea palustris tree wet tall 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.3 

Pinus palustris tree dry tall 5.7 4.0 2.3 2.0 1.7 0.3 0.7 0.7 0.7 

Pinus taeda tree dry tall 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 

Smilax laurifolia vine wet tall 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 2.0 
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Table B.2. Percentage of 0.25 m² subplots occupied by all species from 1985-2013. 

Species Growth Form Habitat Height 1985 1986 1987 1988 1989 1994 2011 2012 2013 

Eupatorium leucolepis caulescent herb mesic tall 23.3 26.7 25.0 28.3 23.3 31.7 23.3 21.7 26.7 

Eupatorium rotundifolium caulescent herb dry tall 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Euphorbia curtisii caulescent herb dry short 58.3 68.3 71.7 68.3 36.7 71.7 56.7 60.0 61.7 

Lactuca sp. caulescent herb dry tall 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 

Linum sp. caulescent herb mesic short 0.0 0.0 0.0 0.0 0.0 0.0 1.7 0.0 0.0 

Lobelia nuttalli caulescent herb mesic tall 0.0 0.0 0.0 0.0 0.0 0.0 3.3 3.3 6.7 

Ludwigia virgata caulescent herb wet tall 0.0 0.0 0.0 0.0 0.0 1.7 1.7 1.7 1.7 

Oxypolis ternata caulescent herb wet tall 6.7 3.3 10.0 6.7 0.0 5.0 1.7 5.0 3.3 

Pityopsis graminifolia caulescent herb dry short 40.0 45.0 41.7 43.3 33.3 43.3 3.3 10.0 15.0 

Polygala hookeri caulescent herb mesic short 95.0 81.7 86.7 85.0 73.3 51.7 0.0 1.7 1.7 

Polygala lutea caulescent herb mesic short 20.0 6.7 20.0 26.7 35.0 28.3 1.7 1.7 18.3 

Pteridium aquilinum caulescent herb dry tall 0.0 0.0 0.0 0.0 0.0 15.0 15.0 16.7 16.7 

Rhexia alifanus caulescent herb dry tall 66.7 61.7 68.3 70.0 60.0 55.0 40.0 40.0 31.7 

Rhexia lutea caulescent herb mesic tall 1.7 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 

Rhexia petiolata caulescent herb wet tall 6.7 18.3 16.7 18.3 18.3 18.3 1.7 6.7 6.7 

Sabatia difformis caulescent herb wet tall 0.0 0.0 0.0 0.0 0.0 6.7 0.0 0.0 3.3 

Sabatia gentianoides caulescent herb wet tall 0.0 3.3 3.3 1.7 0.0 3.3 0.0 0.0 1.7 

Symphyotrichum dumosum caulescent herb dry tall 21.7 23.3 18.3 18.3 18.3 18.3 3.3 5.0 8.3 

Lycopodiella alopecuroides clubmoss mesic short 0.0 0.0 0.0 0.0 0.0 1.7 0.0 8.3 8.3 

Lycopodiella appressa clubmoss mesic short 56.7 40.0 48.3 45.0 41.7 20.0 28.3 10.0 11.7 

Calopogon pallidus geophyte mesic short 36.7 61.7 66.7 61.7 48.3 46.7 3.3 1.7 1.7 

Calopogon tuberosus geophyte mesic short 1.7 3.3 5.0 1.7 0.0 1.7 0.0 0.0 0.0 

Cleistesiopsis divaricata geophyte mesic short 8.3 15.0 26.7 21.7 5.0 13.3 0.0 10.0 6.7 

Lilium catesbaei geophyte mesic short 10.0 5.0 1.7 1.7 0.0 5.0 0.0 6.7 5.0 

Platanthera sp. geophyte mesic tall 40.0 41.7 43.3 45.0 35.0 20.0 0.0 11.7 10.0 

Pogonia ophioglossoides geophyte mesic short 1.7 1.7 5.0 6.7 1.7 1.7 0.0 0.0 1.7 

Spiranthes sp. geophyte mesic tall 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Agalinis aphylla hemiparasite mesic tall 11.7 10.0 10.0 10.0 8.3 5.0 5.0 3.3 1.7 

Agalinis obtusifolia hemiparasite dry tall 8.3 48.3 65.0 75.0 63.3 51.7 16.7 46.7 70.0 
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Table B.2 (cont). Percentage of 0.25 m² subplots occupied by all species from 1985-2013. 

Species Growth Form Habitat Height 1985 1986 1987 1988 1989 1994 2011 2012 2013 

Seymeria cassioides hemiparasite dry tall 33.3 33.3 21.7 13.3 38.3 43.3 90.0 85.0 28.3 

Dionaea muscipula insectivore mesic short 98.3 96.7 95.0 96.7 96.7 76.7 60.0 85.0 86.7 

Drosera capillaris insectivore mesic short 80.0 30.0 90.0 96.7 83.3 33.3 11.7 35.0 91.7 

Pinguicula sp. insectivore mesic short 51.7 45.0 50.0 63.3 63.3 45.0 0.0 13.3 41.7 

Utricularia subulata insectivore wet short 0.0 1.7 26.7 13.3 11.7 0.0 0.0 0.0 1.7 

Desmodium lineatum legume dry short 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 

Desmodium tenuifolium legume mesic tall 0.0 0.0 5.0 5.0 5.0 5.0 3.3 3.3 3.3 

Tephrosia hispidula legume dry short 0.0 0.0 0.0 1.7 0.0 10.0 10.0 8.3 13.3 

Andropogon sp. matrix graminoid dry tall 88.3 93.3 95.0 91.7 96.7 98.3 91.7 95.0 93.3 

Andropogon sp. 2 matrix graminoid dry tall 68.3 73.3 65.0 70.0 53.3 65.0 1.7 0.0 0.0 

Aristida stricta matrix graminoid dry tall 85.0 88.3 83.3 83.3 73.3 88.3 66.7 83.3 76.7 

Carex striata var. brevis matrix graminoid wet tall 0.0 0.0 0.0 0.0 0.0 0.0 15.0 16.7 13.3 

Ctenium aromaticum matrix graminoid mesic tall 50.0 53.3 60.0 60.0 53.3 65.0 45.0 60.0 63.3 

Muhlenbergia expansa matrix graminoid mesic tall 93.3 95.0 95.0 95.0 93.3 96.7 91.7 91.7 83.3 

Sporobolus pinetorum matrix graminoid mesic tall 90.0 93.3 98.3 95.0 88.3 100.0 98.3 96.7 96.7 

Aletris farinosa rosette herb mesic short 31.7 35.0 35.0 35.0 30.0 20.0 11.7 5.0 5.0 

Bigelowia nudata rosette herb dry short 100.0 100.0 100.0 100.0 96.7 100.0 73.3 76.7 81.7 

Carphephorus paniculatus rosette herb dry tall 13.3 15.0 13.3 16.7 18.3 20.0 16.7 18.3 16.7 

Carphephorus tomentosus rosette herb dry tall 46.7 65.0 66.7 61.7 68.3 70.0 20.0 23.3 25.0 

Chaptalia tomentosa rosette herb mesic short 0.0 0.0 0.0 1.7 0.0 1.7 0.0 0.0 0.0 

Coreopsis linifolia rosette herb mesic short 98.3 100.0 100.0 100.0 100.0 100.0 35.0 40.0 48.3 

Erigeron vernus rosette herb mesic short 26.7 25.0 30.0 26.7 23.3 30.0 25.0 28.3 18.3 

Eryngium integrifolium rosette herb mesic short 48.3 50.0 45.0 41.7 41.7 33.3 1.7 15.0 28.3 

Eurybia paludosa rosette herb mesic tall 31.7 25.0 38.3 41.7 41.7 43.3 55.0 55.0 53.3 

Helianthus angustifolius rosette herb mesic tall 8.3 1.7 6.7 5.0 6.7 10.0 3.3 5.0 5.0 

Helianthus heterophyllus rosette herb mesic tall 45.0 50.0 56.7 58.3 46.7 45.0 16.7 16.7 18.3 

Lachnanthes caroliniana rosette herb wet tall 0.0 0.0 0.0 0.0 0.0 0.0 1.7 0.0 0.0 

Lachnocaulon anceps rosette herb wet short 36.7 35.0 36.7 33.3 30.0 35.0 30.0 41.7 40.0 

Liatris [pilosa + virgata] rosette herb dry tall 1.7 0.0 0.0 1.7 1.7 3.3 5.0 3.3 0.0 
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Table B.2 (cont). Percentage of 0.25 m² subplots occupied by all species from 1985-2013. 

Species Growth Form Habitat Height 1985 1986 1987 1988 1989 1994 2011 2012 2013 

Marshallia graminifolia rosette herb mesic short 36.7 25.0 31.7 41.7 31.7 28.3 6.7 5.0 13.3 

Sisyrinchium capillare rosette herb mesic short 48.3 70.0 73.3 80.0 75.0 78.3 16.7 26.7 20.0 

Sisyrinchium sp. rosette herb mesic short 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Solidago [stricta + pulchra] rosette herb mesic tall 43.3 48.3 45.0 51.7 43.3 45.0 35.0 36.7 35.0 

Solidago sp. rosette herb mesic short 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Triantha racemosa rosette herb mesic short 61.7 68.3 71.7 81.7 76.7 66.7 40.0 38.3 46.7 

Viola primulifolia rosette herb mesic short 35.0 46.7 41.7 45.0 48.3 26.7 11.7 21.7 30.0 

Viola septemloba rosette herb mesic short 0.0 0.0 5.0 3.3 1.7 3.3 0.0 0.0 5.0 

Xyris ambigua rosette herb wet tall 58.3 61.7 61.7 61.7 61.7 58.3 23.3 18.3 28.3 

Xyris caroliniana rosette herb dry tall 36.7 58.3 48.3 56.7 71.7 73.3 31.7 38.3 26.7 

Aronia arbutifolia shrub wet tall 10.0 11.7 13.3 13.3 11.7 10.0 25.0 26.7 25.0 

Arundinaria tecta shrub wet tall 10.0 10.0 10.0 8.3 5.0 3.3 0.0 0.0 0.0 

Gaylussacia frondosa shrub dry tall 0.0 0.0 0.0 0.0 0.0 0.0 1.7 1.7 1.7 

Ilex glabra shrub wet tall 3.3 3.3 5.0 6.7 0.0 6.7 0.0 1.7 8.3 

Lyonia mariana shrub dry tall 0.0 0.0 0.0 0.0 0.0 0.0 1.7 0.0 0.0 

Morella carolinensis shrub wet tall 1.7 1.7 5.0 1.7 0.0 0.0 18.3 20.0 23.3 

Aristida virgata single culm graminoid mesic tall 20.0 28.3 26.7 26.7 16.7 31.7 0.0 3.3 0.0 

Dichanthelium ensifolium single culm graminoid mesic tall 100.0 100.0 98.3 100.0 98.3 98.3 93.3 96.7 98.3 

Dichanthelium strigosum single culm graminoid mesic tall 36.7 41.7 33.3 38.3 33.3 35.0 1.7 1.7 3.3 

Fimbristylis sp. single culm graminoid wet tall 0.0 1.7 6.7 6.7 10.0 11.7 1.7 6.7 6.7 

Gymnopogon brevifolius single culm graminoid dry tall 0.0 6.7 8.3 8.3 10.0 11.7 0.0 3.3 3.3 

Hypoxis micrantha single culm graminoid mesic short 20.0 43.3 40.0 50.0 58.3 48.3 31.7 43.3 61.7 

Rhynchospora baldwinii single culm graminoid mesic tall 18.3 15.0 10.0 11.7 11.7 15.0 3.3 1.7 6.7 

Rhynchospora breviseta single culm graminoid wet short 100.0 100.0 100.0 100.0 100.0 100.0 86.7 90.0 85.0 

Rhynchospora chapmanii single culm graminoid mesic short 93.3 100.0 98.3 100.0 98.3 91.7 50.0 98.3 95.0 

Rhynchospora ciliaris single culm graminoid mesic short 60.0 56.7 58.3 63.3 56.7 55.0 1.7 31.7 55.0 

Scleria minor single culm graminoid wet tall 0.0 0.0 8.3 3.3 6.7 3.3 8.3 0.0 10.0 

Scleria pauciflora single culm graminoid mesic short 71.7 75.0 76.7 80.0 78.3 76.7 40.0 56.7 76.7 

Scleria reticularis single culm graminoid mesic tall 11.7 5.0 5.0 8.3 5.0 6.7 0.0 0.0 0.0 

1
6

4
 



165 

Table B.2 (cont). Percentage of 0.25 m² subplots occupied by all species from 1985-2013. 

Species Growth Form Habitat Height 1985 1986 1987 1988 1989 1994 2011 2012 2013 

Gaylussacia dumosa subshrub dry short 28.3 28.3 30.0 31.7 26.7 30.0 11.7 10.0 13.3 

Hypericum crux-andreae subshrub mesic tall 13.3 16.7 11.7 10.0 6.7 18.3 1.7 6.7 1.7 

Vaccinium crassifolium subshrub dry short 40.0 33.3 31.7 48.3 35.0 38.3 20.0 21.7 21.7 

Vaccinium tenellum subshrub dry short 0.0 0.0 0.0 0.0 0.0 0.0 15.0 16.7 18.3 

Acer rubrum tree wet tall 0.0 0.0 0.0 3.3 0.0 0.0 5.0 1.7 5.0 

Persea palustris tree wet tall 0.0 0.0 0.0 0.0 0.0 0.0 1.7 1.7 1.7 

Pinus palustris tree dry tall 21.7 15.0 10.0 10.0 8.3 1.7 3.3 3.3 3.3 

Pinus taeda tree dry tall 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 3.3 

Smilax laurifolia vine wet tall 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3 10.0 
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Table B.3. Percentage of 1 m² subplots occupied by all species from 1985-2013. 

Species Growth Form Habitat Height 1985 1986 1987 1988 1989 1994 2011 2012 2013 

Eupatorium leucolepis caulescent herb mesic tall 66.7 50.0 50.0 58.3 50.0 58.3 58.3 66.7 58.3 

Eupatorium rotundifolium caulescent herb dry tall 16.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Euphorbia curtisii caulescent herb dry short 83.3 83.3 83.3 83.3 66.7 83.3 83.3 83.3 83.3 

Lactuca sp. caulescent herb dry tall 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.3 

Linum sp. caulescent herb mesic short 0.0 0.0 0.0 0.0 0.0 0.0 8.3 0.0 0.0 

Lobelia nuttalli caulescent herb mesic tall 0.0 0.0 0.0 0.0 0.0 0.0 16.7 8.3 25.0 

Ludwigia virgata caulescent herb wet tall 0.0 0.0 0.0 0.0 8.3 8.3 8.3 8.3 8.3 

Oxypolis ternata caulescent herb wet tall 25.0 8.3 25.0 16.7 0.0 8.3 0.0 25.0 8.3 

Pityopsis graminifolia caulescent herb dry short 66.7 66.7 66.7 75.0 66.7 66.7 16.7 25.0 50.0 

Polygala hookeri caulescent herb mesic short 100.0 100.0 100.0 100.0 100.0 91.7 0.0 8.3 0.0 

Polygala lutea caulescent herb mesic short 50.0 16.7 41.7 75.0 83.3 58.3 8.3 0.0 41.7 

Pteridium aquilinum caulescent herb dry tall 0.0 0.0 0.0 0.0 0.0 16.7 16.7 16.7 25.0 

Rhexia alifanus caulescent herb dry tall 100.0 91.7 100.0 100.0 100.0 91.7 75.0 75.0 66.7 

Rhexia lutea caulescent herb mesic tall 8.3 0.0 0.0 8.3 0.0 0.0 0.0 0.0 0.0 

Rhexia petiolata caulescent herb wet tall 16.7 33.3 25.0 25.0 25.0 25.0 8.3 16.7 16.7 

Sabatia difformis caulescent herb wet tall 0.0 0.0 0.0 0.0 0.0 8.3 0.0 0.0 8.3 

Sabatia gentianoides caulescent herb wet tall 0.0 16.7 16.7 8.3 0.0 8.3 0.0 0.0 8.3 

Symphyotrichum dumosum caulescent herb dry tall 33.3 50.0 50.0 41.7 41.7 41.7 8.3 25.0 25.0 

Lycopodiella alopecuroides clubmoss mesic short 0.0 0.0 0.0 0.0 0.0 8.3 0.0 16.7 16.7 

Lycopodiella appressa clubmoss mesic short 83.3 66.7 58.3 58.3 58.3 33.3 33.3 33.3 33.3 

Calopogon pallidus geophyte mesic short 75.0 83.3 83.3 83.3 83.3 66.7 16.7 8.3 8.3 

Calopogon tuberosus geophyte mesic short 0.0 16.7 25.0 8.3 0.0 8.3 0.0 0.0 0.0 

Cleistesiopsis divaricata geophyte mesic short 25.0 33.3 41.7 41.7 16.7 25.0 0.0 33.3 8.3 

Lilium catesbaei geophyte mesic short 41.7 16.7 8.3 8.3 0.0 16.7 0.0 16.7 25.0 

Platanthera sp. geophyte mesic tall 83.3 75.0 91.7 83.3 83.3 75.0 0.0 41.7 41.7 

Pogonia ophioglossoides geophyte mesic short 8.3 8.3 8.3 16.7 16.7 8.3 0.0 0.0 8.3 

Spiranthes sp. geophyte mesic tall 0.0 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Agalinis aphylla hemiparasite mesic tall 50.0 41.7 33.3 41.7 33.3 16.7 25.0 16.7 0.0 

Agalinis obtusifolia hemiparasite dry tall 16.7 66.7 91.7 100.0 100.0 75.0 33.3 66.7 83.3 
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Table B.3 (cont). Percentage of 1 m² subplots occupied by all species from 1985-2013. 

Species Growth Form Habitat Height 1985 1986 1987 1988 1989 1994 2011 2012 2013 

Seymeria cassioides hemiparasite dry tall 66.7 66.7 33.3 66.7 83.3 91.7 100.0 100.0 50.0 

Dionaea muscipula insectivore mesic short 100.0 100.0 100.0 100.0 100.0 100.0 83.3 91.7 91.7 

Drosera capillaris insectivore mesic short 100.0 50.0 100.0 100.0 100.0 66.7 25.0 75.0 100.0 

Pinguicula sp. insectivore mesic short 83.3 83.3 91.7 91.7 91.7 66.7 0.0 25.0 75.0 

Utricularia subulata insectivore wet short 0.0 8.3 41.7 25.0 25.0 8.3 0.0 0.0 0.0 

Desmodium lineatum legume dry short 0.0 0.0 0.0 0.0 8.3 0.0 0.0 0.0 0.0 

Desmodium tenuifolium legume mesic tall 0.0 0.0 16.7 16.7 25.0 8.3 8.3 16.7 8.3 

Tephrosia hispidula legume dry short 0.0 0.0 0.0 8.3 0.0 33.3 25.0 25.0 25.0 

Andropogon sp. matrix graminoid dry tall 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Andropogon sp. 2 matrix graminoid dry tall 100.0 100.0 91.7 83.3 83.3 91.7 8.3 0.0 0.0 

Aristida stricta matrix graminoid dry tall 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Carex striata var. brevis matrix graminoid wet tall 0.0 0.0 0.0 0.0 0.0 0.0 25.0 33.3 25.0 

Ctenium aromaticum matrix graminoid mesic tall 66.7 66.7 75.0 66.7 66.7 66.7 66.7 66.7 66.7 

Muhlenbergia expansa matrix graminoid mesic tall 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 91.7 

Sporobolus pinetorum matrix graminoid mesic tall 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Aletris farinosa rosette herb mesic short 50.0 66.7 66.7 75.0 75.0 41.7 16.7 16.7 16.7 

Bigelowia nudata rosette herb dry short 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Carphephorus paniculatus rosette herb dry tall 25.0 33.3 33.3 33.3 33.3 33.3 41.7 41.7 41.7 

Carphephorus tomentosus rosette herb dry tall 83.3 100.0 100.0 100.0 91.7 91.7 41.7 50.0 50.0 

Chaptalia tomentosa rosette herb mesic short 0.0 0.0 0.0 8.3 8.3 8.3 0.0 0.0 0.0 

Coreopsis linifolia rosette herb mesic short 100.0 100.0 100.0 100.0 100.0 100.0 50.0 58.3 66.7 

Erigeron vernus rosette herb mesic short 66.7 66.7 66.7 58.3 58.3 66.7 50.0 58.3 50.0 

Eryngium integrifolium rosette herb mesic short 50.0 58.3 50.0 50.0 58.3 58.3 8.3 33.3 58.3 

Eurybia paludosa rosette herb mesic tall 58.3 58.3 50.0 58.3 58.3 58.3 58.3 75.0 66.7 

Helianthus angustifolius rosette herb mesic tall 33.3 8.3 8.3 8.3 8.3 8.3 8.3 16.7 8.3 

Helianthus heterophyllus rosette herb mesic tall 75.0 75.0 83.3 91.7 75.0 83.3 50.0 41.7 50.0 

Lachnanthes caroliniana rosette herb wet tall 0.0 0.0 0.0 0.0 0.0 0.0 8.3 0.0 0.0 

Lachnocaulon anceps rosette herb wet short 66.7 58.3 50.0 50.0 50.0 58.3 50.0 66.7 66.7 

Liatris [pilosa + virgata] rosette herb dry tall 8.3 0.0 0.0 8.3 8.3 8.3 16.7 8.3 0.0 
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Table B.3 (cont). Percentage of 1 m² subplots occupied by all species from 1985-2013. 

Species Growth Form Habitat Height 1985 1986 1987 1988 1989 1994 2011 2012 2013 

Marshallia graminifolia rosette herb mesic short 75.0 58.3 83.3 75.0 66.7 66.7 33.3 25.0 41.7 

Sisyrinchium capillare rosette herb mesic short 75.0 91.7 100.0 100.0 100.0 100.0 58.3 66.7 50.0 

Sisyrinchium sp. rosette herb mesic short 0.0 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Solidago [stricta + pulchra] rosette herb mesic tall 58.3 58.3 66.7 58.3 58.3 66.7 50.0 58.3 50.0 

Solidago sp. rosette herb mesic short 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Triantha racemosa rosette herb mesic short 100.0 100.0 100.0 100.0 100.0 91.7 50.0 75.0 66.7 

Viola primulifolia rosette herb mesic short 66.7 66.7 66.7 83.3 66.7 66.7 16.7 41.7 66.7 

Viola septemloba rosette herb mesic short 0.0 0.0 16.7 16.7 0.0 8.3 0.0 0.0 8.3 

Xyris ambigua rosette herb wet tall 83.3 83.3 91.7 83.3 83.3 83.3 50.0 50.0 66.7 

Xyris caroliniana rosette herb dry tall 75.0 100.0 91.7 91.7 100.0 100.0 58.3 91.7 50.0 

Aronia arbutifolia shrub wet tall 16.7 16.7 33.3 33.3 16.7 16.7 33.3 41.7 33.3 

Arundinaria tecta shrub wet tall 25.0 25.0 25.0 16.7 16.7 16.7 0.0 0.0 0.0 

Gaylussacia frondosa shrub dry tall 0.0 0.0 0.0 0.0 0.0 0.0 8.3 8.3 8.3 

Ilex glabra shrub wet tall 16.7 8.3 25.0 16.7 0.0 16.7 0.0 0.0 25.0 

Lyonia mariana shrub dry tall 0.0 0.0 0.0 0.0 0.0 0.0 8.3 0.0 0.0 

Morella carolinensis shrub wet tall 8.3 8.3 16.7 8.3 0.0 0.0 33.3 41.7 41.7 

Aristida virgata single culm graminoid mesic tall 50.0 75.0 50.0 41.7 58.3 83.3 0.0 16.7 0.0 

Dichanthelium ensifolium single culm graminoid mesic tall 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Dichanthelium strigosum single culm graminoid mesic tall 58.3 66.7 58.3 66.7 58.3 58.3 8.3 8.3 16.7 

Fimbristylis sp. single culm graminoid wet tall 0.0 8.3 25.0 25.0 33.3 41.7 8.3 33.3 25.0 

Gymnopogon brevifolius single culm graminoid dry tall 0.0 16.7 25.0 33.3 33.3 33.3 0.0 16.7 16.7 

Hypoxis micrantha single culm graminoid mesic short 50.0 75.0 75.0 75.0 91.7 75.0 66.7 75.0 83.3 

Rhynchospora baldwinii single culm graminoid mesic tall 41.7 41.7 33.3 25.0 33.3 50.0 8.3 0.0 16.7 

Rhynchospora breviseta single culm graminoid wet short 100.0 100.0 100.0 100.0 100.0 100.0 91.7 100.0 100.0 

Rhynchospora chapmanii single culm graminoid mesic short 100.0 100.0 100.0 100.0 100.0 100.0 58.3 100.0 100.0 

Rhynchospora ciliaris single culm graminoid mesic short 66.7 66.7 58.3 66.7 75.0 75.0 8.3 66.7 83.3 

Scleria minor single culm graminoid wet tall 0.0 0.0 8.3 8.3 8.3 8.3 16.7 0.0 16.7 

Scleria pauciflora single culm graminoid mesic short 91.7 91.7 91.7 91.7 100.0 91.7 75.0 83.3 100.0 
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Table B.3 (cont). Percentage of 1 m² subplots occupied by all species from 1985-2013. 

Species Growth Form Habitat Height 1985 1986 1987 1988 1989 1994 2011 2012 2013 

Scleria reticularis single culm graminoid mesic tall 16.7 8.3 8.3 33.3 25.0 33.3 0.0 0.0 0.0 

Gaylussacia dumosa subshrub dry short 33.3 33.3 41.7 50.0 41.7 33.3 16.7 16.7 25.0 

Hypericum crux-andreae subshrub mesic tall 41.7 58.3 41.7 41.7 25.0 50.0 0.0 25.0 8.3 

Vaccinium crassifolium subshrub dry short 66.7 50.0 41.7 91.7 50.0 58.3 41.7 50.0 50.0 

Vaccinium tenellum subshrub dry short 0.0 0.0 0.0 0.0 0.0 0.0 16.7 16.7 25.0 

Acer rubrum tree wet tall 0.0 0.0 0.0 16.7 0.0 0.0 25.0 0.0 16.7 

Persea palustris tree wet tall 0.0 0.0 0.0 0.0 0.0 0.0 8.3 8.3 8.3 

Pinus palustris tree dry tall 58.3 41.7 25.0 33.3 25.0 16.7 8.3 8.3 8.3 

Pinus taeda tree dry tall 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 

Smilax laurifolia vine wet tall 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 33.3 
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APPENDIX C. OBSERVED AND SIMULATED C-SCORES FOR CHAPTER 5 

Table C.1. Observed and simulated C-score values for each broad community type (sandhill, 

subxeric woodland, flatwood, silty woodland, savanna) and time since fire category (< 1 year, 1 

to 3 years, > 3 years). P-values indicate whether the observed value is significantly different 

from random expectation (simulated C-scores).  SES values above 0 indicate species segregation 

(e.g., limiting similarity), while values below 0 indicate species aggregation (e.g., environmental 

filtering). 

 

  Obs C-score Sim C-score p-value SES 

Community type   

 

    

   Sandhill 0.393 0.387 0.285 1.036 

   Subxeric Woodland 0.372 0.360    0.039 * 2.229 

   Flatwood 0.537 0.542 0.207 -1.254 

   Silty Woodland 0.498 0.497 0.660 0.304 

   Savanna 0.240 0.237 0.353 0.925 

          

Time since fire         

   <1 year 0.582 0.571    0.001 * 3.858 

   1 to 3 years 0.586 0.581    0.081 * 1.856 

   >3 years 0.578 0.546    0.001 * 7.988 

          

Community type - Time since 

fire   

 

    

   Sandhill <1 year 0.188 0.189 0.754 -0.540 

   Sandhill 1 to 3 years 0.100 0.100 1.000 0.219 

   Sandhill >3 years 0.199 0.118    0.001 * 5.732 

   Subxeric Woodland <1 year 0.136 0.138 0.523 -0.577 

   Subxeric Woodland 1 to 3 

years 0.283 0.268     0.019 * 2.740 

   Subxeric Woodland >3 years 0.291 0.276     0.009 * 3.395 

   Flatwood <1 year 0.441 0.435 0.133 1.559 

   Flatwood 1 to 3 years 0.484 0.484 0.862 0.148 

   Flatwood >3 years 0.395 0.369     0.001 * 6.270 

   Silty Woodland <1 year 0.463 0.457 0.121 1.718 

   Silty Woodland 1 to 3 years 0.438 0.434 0.205 1.096 

   Silty Woodland >3 years 0.252 0.252 0.748 -0.698 

   Savanna <1 year 0.115 0.115 0.976 -0.153 

   Savanna 1 to 3 years 0.194 0.192 0.285 0.999 

   Savanna >3 years 0.112 0.114     0.071 * -1.415 

 

 


