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ABSTRACT 
 

Kathleen Rae Nevis: Molecular Characterization of a Replication Licensing 
Checkpoint 

 
(Under the directions of Dr. Marila Cordeiro-Stone and Dr. Jeanette Gowen Cook) 

 
  

Each and every time a cell divides it must replicate millions of bases of DNA.  

In order to carry out this large feat, it initiates replication from thousands of sites 

along the DNA known as origins.  Origins of DNA replication are licensed through 

the assembly of a chromatin-bound pre-replication complex consisting of ORC, 

Cdc6, Cdt1 and the MCM complex.  Multiple regulatory mechanisms block new pre-

replication complex assembly after the G1/S transition to prevent rereplication.  The 

strict inhibition of licensing after the G1/S transition means that all potential origins 

used in S phase must have been licensed in the preceding G1.  Therefore, it would 

seem crucial for the cell to sense whether enough origins have been licensed before 

entering S phase.  This dissertation focuses on investigation of a novel “origin 

licensing checkpoint.”   

It is documented in this study that that depletion of either of two essential 

licensing factors, Cdc6 or Cdt1, in normal human fibroblasts induces a G1 arrest 

accompanied by inhibition of cyclin E/Cdk2 activity and hypophosphorylation of Rb.  

The Cdk2 inhibition is attributed to a reduction in the essential activating 

phosphorylation of T160 and an associated delay in Cdk2 nuclear accumulation.  In 

contrast, licensing inhibition in the HeLa or U2OS cancer cell lines failed to down-
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regulate Cdk2 or Rb phosphorylation, and these cells died by apoptosis.  Co-

depletion of Cdc6 and p53 in normal cells restored Cdk2 activation and Rb 

phosphorylation, permitting them to enter S phase with a reduced rate of replication 

that was accompanied by markers of DNA damage.  These results demonstrate 

dependence on origin licensing for multiple events required for G1 progression, and 

suggests a mechanism to prevent premature S phase entry that functions in normal 

cells.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  iv



 
 
 
 

 
ACKNOWLEDGEMENTS 

 
 I would like to start off by thanking my two advisors, Dr. Marila Cordeiro-Stone 

and Dr. Jeanette Gowen Cook.   I am grateful for having two amazing mentors who 

taught me so much not only about science but about life too.  There enthusiasm for 

teaching and wanting their students to succeed was a major driving force in my 

success.  I would like to thank my committee members: Dr. William Kaufmann, Dr. 

David Kaufman and Dr. Robert Duronio for their scientific discussion and expertise.  

They were very instrumental in my development as a scientist and as a person.   

I would like to acknowledge the past and present members of the Cordeiro-

Stone and Cook Lab’s.  They created the best lab environment that anyone could 

ever ask for.  Thank you to Stephanie Cohen, Bruna Brylawski, and Paul Chastain 

who were always there for amazing scientific discussion and words of 

encouragement.  I want to especially thank Srikripa Chandrasekaran and Karen 

Reidy for making the late nights in the lab so much more fun and for being great 

friends.   

 To all the friends I have made over the past 6 years.  Each and every one of 

them has made an impact in my life and I am grateful for each of them.  In particular, 

I want to thank Seth Maleri, Lea Beauleiu, Elizabeth Dorn, Tim Miller, Paula Miller, 

Cindy Swarts, and Sara Malvar.   They have been there for me during the ups and 

downs of graduate school, and never gave up on me.  They are truly amazing and 

  v



these seven people exemplify what it means to be a friend.  Without them I would 

have never made it through the last 6 years.     

 Finally, to my parent, Richard and Geraldine, I want to thank them for all of 

the love, support and encouragement they have provided for me throughout the last 

6 years.  They have always encouraged me to pursue my goals even if it meant 

being thousands of miles away.  To my brother, Rich, for all the love and support he 

have provided me.  He truly is my other half and I could not imagine a better brother 

in the world!     

 

To All Who Have Touched My Life- Thank You!!! 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  vi



 
 
 
 
 

TABLE OF CONTENTS 
 

LIST OF FIGURES……………………………………...……………………….…………xi 
 

LIST OF ABBREVIATIONS………...……………………………………………….……xiv 
 
CHAPTER 
 

1. INTRODUCTION.………………….……………………………………...1 
 

Biological Significance………..….……………………………………1 
 

 Human Cells in Culture as an Experimental Model 
 System.……………………………………….…………………….…….2 

     
     The Cell Cycle and Maintenance of Genomic Stability…...……...3 

 
   Mechanisms of DNA Replication …………..………………………..7 

   
    Proposed Research: Specific Aims………………………………….8 

 
2. REGULATION OF S PHASE ENTRY AND GENOME 

   DUPLICATION………………….……………………………..……….....9 
 

Pre-Replication Complex.......................….…..……………………..9 
 

    Origin Recognition Complex……………………………...……..9 
  

    Cell Division Cycle 6…………………………………………....13 
  

         Cdc10-dependent transcript 1………………………………....17 
 

    Minichromosome Maintenance Complex………………….....19 
      

    Cell Cycle Events Required for G1 Progression........................21 
 

    Retinoblastoma Protein………………………………………...22 
  

    Cyclin D-Cdk4/6………………………………………….....…..22 
 

    Cyclin E/Cdk2……………………………………………..…….25 

 vii



 
    Activation of Replication Origins………………..…….……..….…26   

 
3. CONSEQUENCES OF INSUFFICIENT ORIGIN  

LICENSING.……………………………………….……..……..…..…...30 
 

Background …………………………………………………………….30 
 

Insufficient Origin Licensing in Yeast...........................................31 
 

Effects of Insufficient Origin Licensing in Higher 
   Eukaryotes………………………………..…………………………..…32 

 
Materials and Methods ...…………………………………………..…35

    
Cell culture and siRNA transfection…….…………………….…35 

 
   Cell synchronization..…………………….………………….…....36 

 
   Immunoblot analysis……………………………….…….….…....36 

 
   Cell cycle and cleaved Caspase-3 analysis…………….…...…37 

 
   Kinase assays ………..……………………………………....…..37 

 
   Results ………………………..….……………………………...….…..39 
 

Cdc6 depletion induces apoptosis in cancer  
cells, but not in normal human fibroblasts.…….…..……..….....39 

 
Cdc6 depletion in normal human fibroblasts  
results in an arrest of cells in the G1 phase .……..….…..…….43 

 

Insufficient origin licensing affects cyclin/Cdk  
expression and activity………..……...……………...…..……….48 

 
Effects of Insufficient Origin Licensing on Cyclin  
D-Cdk4/6 ………………..………………………………………....48 
 

 Effects of Insufficient Origin Licensing on Cyclin  
E/Cdk2……………………………………………..……………….50  

 
Loss of cyclin E/Cdk2 activity is not caused by  
interaction with known cyclin-dependent kinase  
inhibitors (CKIs)…………………...………………..…………..….52    

 

 viii



Insufficient origin licensing inhibits CAK-dependent  
activation of cyclin E/Cdk2………………………………..…..…..57 

 
Two cancer cell lines fail to inhibit Cdk activation in  
response to insufficient origin licensing………………..……..…59 

 
  Discussion….……………..…………..............................................63 

 
4. EVIDENCE FOR A REPLICATION LICENSING 

   CHECKPOINT…………………………………………...……………...67 
 

Background ……………. …….…………………………….………...67 
 

Materials and Methods...………………………………………..……71
    

Cell culture and siRNA transfection………………………….…71 
 

   Cell synchronization..……………….…………………………....71 
 

   Immunoblot analysis……………………………….………….....71 
  

  Results ……………………………………………………………..…...72 
 

The G1 delay in response to insufficient origin  
licensing requires p53 and Chk1.………..…..……………...…...72 

 
Cdc6 depletion does not induce a canonical DNA  
damage response .……….………………………..………..…….80 

 

Co-depletion with p53 or Chk1 rescues the  
 molecular phenotypes associated with insufficient 
origin licensing ……………...……………….…….....………..….82 

 
Bypass of the G1 arrest induces apoptosis in Cdc6- 
depleted cells ………..……………………………………..……...87 

  
Discussion………………….……………………….……………….…92 

 
5. CONCLUSIONS AND PERSPECTIVES……………………………...96 

 
Conclusions…………………….…………………. ……………….....96 

 
  Possible Mechanisms for the Loss of Cdk2 T160  
Phosphorylation……....……………..……………………………..…97

    
Cdk-Activating Kinase………………………………………...…97 

  ix



 
   Phosphatase Activation.………………………………………....97 

 
   Cdk2 Localization…..……………………………….………..…..99 

  
  Possible Explanations for p53 in the Maintenance of the G1 

Arrest………………………………………………………………........101 
 

Other Possible Explanations for the G1 Arrest………………….103 
 

Future Directions………………………….……………………......…105 
 

How is insufficient origin licensing sensed by the  
cell?...................................................................................…..105 

 
What links origin licensing to Cdk2 activation?.....…..……..…107 

 

What prevents the few licensed origins from firing  
when cells are depleted of an origin licensing  
factor?...………………………………………………………..….107 

 
Dissecting the role of Chk1 in the G1 arrest….….…..…….....108 

  
The Checkpoint as a Whole…………….…………………....…....110 

 
    

REFERENCES……………………………………………………………………….....112 

  x 



LIST OF FIGURES 
                                                                                                                                     
CHAPTER 1: INTRODUCTION 
 
 1.1. Schematic Representing the Different Phases of  

        the Cell Cycle …………………………………………………..…..….........4 
 
 1.2. Simplified Schematic of the Various DNA Damage  

        Responses…………………………………………………………….…...…6   
 

  
CHAPTER 2: REGULATION OF S PHASE ENTRY AND GENOME  

 DUPLICATION 
 
 2.1. Assembly of the Pre-Replication Complex…………………………….…10 
 
 2.2. Diagram displaying cell cycle expression of Orc1,  

        Cdc6, and Cdt1 protein………………………………………………....…12 
 

2.3. Cell cycle regulation of Cdc6…………………………………….……......15 
 
2.4. Cell cycle regulation of Cdt1……………………………………….………18 
 
2.5. Inactivation of the Retinoblastoma (Rb) Protein.……………….………..23 

 
2.6. Regulation of Cyclin D ……..……………………………………….....…..24

 
 2.7. Conversion of the pre-replication complex to the  

        replication competent pre-initiation complex...…………………...……..27 
 
  
CHAPTER 3: CONSEQUENCES OF INSUFFICIENT ORIGIN LICENSING 
 
 3.1. Cancer cells, but not normal cells, undergo apoptosis  

        following depletion of Cdc6………..……………………………………....40 
 

3.2. Insufficient origin licensing results in a G1 delay in normal 
        human fibroblasts……………………………….……………….……....…42 

 
 3.3. Serum-stimulated, Cdc6-depleted NHF1 cells delay S  

        phase entry…………………………………………………..……………..44 
 

3.4. G1 arrest is not cell type or Cdc6-specific response …...………….......45 
  
3.5. Depletion of Cdc6 results in loss of Rb phosphorylation…………….....47 
 

  xi



3.6. Depletion of Cdc6 results in loss of cyclin D but not Cdk4  
protein……………………………………………………………………..49 

 
3.7. Loss of cyclin D protein is not due to inhibition of the  
        MAP-kinase pathway……………………………………………………….51 

 
3.8. Reduction in the abundance of Cdc6 results in inhibition  
        of cyclin E-dependent kinase activity……………………………………..53  
 
3.9. Loss of cyclin E/Cdk2 kinase activity is not due to induction  
         or binding of CKI’s…………………………………………………...…….54 

 
3.10. Reduction in Cdc6 abundance results in inhibition of  
          Cdk2-dependent kinase activity….……………………………….……..56 
  
3.11. Insufficient origin licensing results in a defect in Cdk2  
          activation…………………………………………………………...…..…..58  
 
3.12. Depletion of Cdc6 results in defective CAK-dependent  
          functions…………………………………………………………..…….….60 

 
3.13. Cancer cells do not down-regulate the phosphorylation  
           on Cdk2…………………………………………………………….….…..62 

 
 
CHAPTER 4: EVIDNCE FOR A REPLICAITON LICENSING CHECKPOINT  
 
 4.1. Schematic of ATR dependent cell cycle arrest……………………..........70 
 
 4.2. Cdc6 depletion results in a modest increase in p53 levels....……….….73 
 
 4.3. Co-depletion of Cdc6 and p53 abrogates the G1 arrest..……….….…..74 
 
 4.4. Co-depletion of Cdc6 and Chk1 abrogates the G1 arrest…………........76 
 
 4.5. Co-depletion of Cdt1 with p53 or Chk1 abrogates the  

        G1 arrest.…………………………………………………………….………77 
 
 4.6. Co-depletion of Cdc6 with p53 abrogates the G1 delay in  

         synchronized cells………………………………………………….…..….79 
 
 4.7. Co-depletion of ATR appears to abrogate the G1 arrest…………..…...81 
 
 4.8. Cdc6 depletion does not activate a canonical DNA  

        damage response…………………………………………........…..……...83   
 

 xii



4.9. Co-depletion of Cdc6 with p53 or Chk1 rescues Rb and  
         Cdk2 T160 phosphorylation……………………………………..…..…...84 

 
 4.10. Co-depletion of Cdc6 with p53 rescues cyclin E/Cdk2  

           kinase activity........……………………………………………….……...86   
 

4.11. Co-depletion of Cdc6 with p53 displays markers of  
double strand break…………………………………………..…..……...88   

 
4.12. Co-depletion of Cdc6 with Chk1 (but not with p53) results  

in the activation of apoptosis ………………………………..……..…...90 
 

4.13. Schematic illustrating possible mechanisms for  
p53-dependent abrogation of the G1 arrest …………..…..……..…...93 
 

CHAPTER 5: CONCLUSION AND PERSPECTIVES  
 
 5.1. Possible mechanisms for inhibition of cyclin E/Cdk2……………...........98 
 
 5.2. Speculation for the involvement of PP2A in the origin  

        licensing checkpoint...…………………………………………….………100 
 
 5.3. Insufficient origin licensing may lead to re-localization  

        of Cdk2.………………………………………………………………...…..102 
 
 5.4. Diagram displaying the inhibition of cyclin E/Cdk2  

         kinase activity....................................................................................104 
 
 5.5. Origin licensing recruits/releases a protein to/from the  

         chromatin………………………………………………………………....106 
 
 5.6. Model for an origin licensing checkpoint..……………….…………..….111 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

 xiii



LIST OF ABBREVIATIONS 
 
AAA+ - ATPases-Associated with various cellular Activities 
 
AKT - v-akt murine thymoma viral oncogene homolog 1 
 
Ankrd17 – Ankyrin repeat domain 17 
 
APC - Anaphase promoting complex 
 
ARS - Autonomously replicating sequences 
 
ATCC - American Type Culture Collection 
 
ATM - Ataxia telangiectasia mutated 
 
ATP - Adenosine triphosphate 
 
ATR - Ataxia telangiectasia mutated and Rad3 related 
 
BrdU - Bromodeoxyuridine 
 
CAK -  Cdk-activating kinase 
 
Cdc25 - Cell division cycle 25 
 
Cdc45 - Cell division cycle 45 
 
Cdc6 - Cell division Cycle 6 
 
Cdk - Cyclin dependent kinase 
 
Cdc2 - Cell division cyclin 2 
 
Cdt1 - Cdc10 dependent transcript 1 
 
ChIP - Chromatin immunoprecipitation 
 
Chk1 - Checkpoint kinase 1 
 
Chk2 - Checkpoint kinase 2 
 
CHO - Chinese hamster ovary cells 
 
CKI -  Cyclin-dependent kinase inhibitors 
 

 xiv



CTD - C-terminal domain 
 
Cul4 - Cullin 4 
 
DDB1 - DNA damage binding protein 1 
 
DDK - Dbf4-dependent kinase 
 
DMEM - Dulbecco’s Modified Eagle Medium  
 
FBS - Fetal Bovine Serum 
 
GSK-3β - Glycogen synthase kinase 3 beta 
 
HDAC - Histone Deacetylase  
 
HMGA1a - High mobility group AT-hook 1 
 
HPV -  Human Papillomavirus 
 
KAP - Cdk-associated phosphatase 
 
MAPK - Mitogen-activating protein kinase    
 
Mat1 - Menage a trios homolog 1  
 
MCM - Minichromosome maintenance complex 
 
MEM - Modified Eagle Medium 
 
NHF - Normal human fibroblasts  
 
NLS - Nuclear localization signal  
 
ORC - Origin recognition complex 
 
PAGE - Polyacrylamide gel electrophoresis 
 
PCNA - Proliferating cell nuclear antigen 
 
PP2A - Protein phosphatase 2A 
 
preRC - Pre-replication complex 
 
PTEN - Phosphatase and tensin homolog 
 

 xv 



PVDF - Polyvinylidene Fluoride 
 
Rb - Retinoblastoma 
 
Raf - v-raf-1 murine leukemia viral oncogene homolog 1 
 
RNAi - RNA interference 
 
SCF -  Skp, Cullin, F-box containing complex 
 
SDS - Sodium dodecyl sulfate 
 
siRNA - Small interfering RNA 
 
Skp2 - S-phase kinase-associated protein 2 
 
Tlk1 - Tousled-like kinase 1 
 
UV - Ultraviolet radiation 
 

 xvi



 
 
 
 

CHAPTER 1 
 

INTRODUCTION 

 

A.  Biological Significance  

Everyday, thousands of people are diagnosed with cancer, and based on 

rates from 2003-2005, 40.25% of men and women born today will have cancer at 

some point in their lifetime (cancer.gov).  It is estimated that in 2008 there will be 1.4 

million new cases of cancer and a staggering 565,000 deaths (SEER Cancer 

Statistics Review).  With the help of ongoing research, there have been major 

advances in the development of new therapies that are prolonging the quality of life 

for people diagnosed with cancer.  Unfortunately, even with new therapies, cancer 

mortality continues to be the second leading cause of death among all Americans 

(http://www.cdc.gov/nchs/FASTATS/deaths.htm).   

 In order to foster the development of better treatments, there must be a 

continued effort toward a better understanding of how cancer develops.  Are there 

cellular mechanisms that can be targeted to make cancer cells susceptible to death?  

If so, researchers must understand how the manipulation of these mechanisms 

would affect both the normal cells and the cancer cells.  The discovery that 

disruption of origin licensing results in cell death in cancer cells but survival of 

normal cells will be the focus of this dissertation.  Specifically, the search for the 

http://www.cdc.gov/nchs/FASTATS/deaths.htm


mechanisms that protect normal cells from cell death under conditions of inefficient 

origin licensing will be discussed. 

 

B.  Human Cells in Culture as an Experimental Model System 

 A number of experimental models systems: yeast, mice, Xenopus, 

Drosophila, and mammalian cells in culture can be utilized to address a variety of 

experimental hypotheses.  The work to be described in this dissertation will utilize 

mammalian cells cultured in vitro under a controlled environment.   There are many 

advantages and reasons why cell cultures are so widely utilized.  First, this model 

allows one to examine a wide range of cell types (normal cells and various types of 

cancer cells) from both animals and humans.  Second, because the cells are grown 

in culture, this allows for relatively short experimental time frames.  Third, it allows 

for easy manipulation of proteins by down-regulation (siRNA) or over-expression 

(plasmid transfection or adeno/retroviral infection).  And finally, all the above 

combined allows one to better study various molecular pathways involved in different 

biological responses.    

 With every model system there are inherent disadvantages and this is no 

exception for mammalian cell culture.  One of the major disadvantages is that it is 

difficult to reproduce with cells in culture the role that the microenvironment may play 

in a cellular response.  Tumors are surrounded by normal cells of various origins and 

these normal cells may secrete factors that retard or accelerate the growth of the 

tumor.  Tumors are also able to secrete various factors, including those that promote 

vascularization from surrounding endothelial cells.  In a cell culture system, the 
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microenvironment that exists in vivo is not replicated, so the way a cell responds to 

certain conditions in vitro may not represent how it would respond in its true 

environment.  Another disadvantage is that many normal cells will undergo 

senescence and therefore can only be passaged in culture for a very short period of 

time.  This disadvantage has become less of an issue with the ability to constitutively 

express telomerase, an enzyme that maintains the length of telomeres and stabilizes 

the ends of chromosomes.  Expression of telomerase in normal cells expands their 

lifespan in culture (17). 

 

C.  The Cell Cycle and Maintenance of Genomic Stability 

 In order to ensure that genetic information is duplicated and properly 

segregated to each daughter, the dividing cell must traverse through four phases of 

the cell cycle (Figure 1.1).  Gap 1 phase, or G1 phase, is the time preceding DNA 

replication where the cell prepares the DNA to undergo DNA replication. The cell 

then enters synthesis phase, or S phase, where the DNA is replicated and an exact 

copy of the genome is generated.  Following S phase, the cell enters Gap 2 phase, 

or G2 phase, during which the cell verifies that the entire genome has been 

replicated and prepares for cell division.  Finally, the cell enters mitosis, or M phase, 

where the cell divides to generate two genetically identical daughter cells. 

As the cell traverses through the cell cycle, it can accumulate various types of 

DNA damage induced by exogenous insults (ultraviolet light, ionizing radiation, and 

alkylating agents), reactive oxygen species formed during cellular metabolism, and 

replication errors.  This damage is detected in the cell by sensory proteins that elicit  
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Figure 1.1:  Schematic Representation of the Different Phases of the Cell 
Cycle. In Gap1 or G1 phase of the cell cycle, the cell prepares the DNA for 
replication. The cell undergoes DNA replication in S phase and completion of 
replication is monitored in G2 phase.  Finally, the cells enter mitosis or M phase 
during which it divides to generate two daughter cells.   
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an intricate signal transduction pathway known as a checkpoint response.  Cell cycle 

checkpoints are signaling pathways that slow or arrest progression through the cell 

cycle, extending the time for the repair of DNA lesions or for the completion of 

preceding cellular events.  These checkpoints are important to the cell’s ability to 

maintain genomic stability. 

There are, in essence, two different types of checkpoints:  DNA damage 

checkpoints and surveillance checkpoints.  The DNA damage checkpoints operate 

by activating specific pathways that depend on the type of damage detected and the 

phase of the cell cycle.  Proteins in the cell known as sensor proteins detect the 

damaged DNA and propagate a signal to activate the downstream protein kinases, 

ATM or ATR.  Activated ATM and ATR, in turn activate downstream kinases Chk2 

and Chk1, respectively (3,96,175).  This cascade of events represents the initial 

steps required for the activation of a checkpoint that ultimately arrests the cell in G1, 

S, or G2 phase of the cell cycle (Figure 1.2).  These arrests allow time to repair the 

damaged DNA before proceeding into the next phase of the cell cycle.   

The most extensively studied of the surveillance checkpoints are the spindle 

checkpoint and the decatenation checkpoint.  Surveillance checkpoints differs from 

the DNA damage checkpoints, in that they are present to safeguard the normal 

transition through the cell cycle and are turned off once specific cellular events are 

completed.  For example, in the spindle checkpoint, the checkpoint is “on” until all 

chromosomes are attached to the mitotic spindle, and it is only then that the 

checkpoint is turned “off” and the cell is allowed to complete mitosis.     
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Figure 1.2:  Simplified schematic of the various DNA damage checkpoints.  In 
response to various forms of damage, ATM and ATR become activated, resulting 
in the downstream activation of two kinases, Chk2 and Chk1.  The initiation of this 
cascade results in the arrest of cells in G1, S, or G2 phase of the cell cycle.   
 

 

 

 

 

 6



D.  Mechanisms of DNA replication 

One of the most important events in the G1 phase of the cell cycle is the 

preparation of the DNA to undergo DNA replication.  In order to replicate the entire 

genome in S phase, the cell initiates DNA replication from thousands of sites along 

the DNA known as replication origins.  Much of our understanding of origins comes 

from studies performed in yeast.   S. cerevisiae have identifiable sequence-specific 

regions known as autonomously replicating sequence (ARS) elements.  These ARS 

elements were identified as origins by insertion of the elements into plasmid DNA 

and demonstrating the initiation of DNA replication from these sites (146).    

In mammalian cells, the identification of origins of replication has been much 

more difficult.  Mammalian origins do not have an accepted consensus sequence 

like that of the ARS sequence in S. cerevisiae, but they do appear to contain 

common features among each other.  They tend to be within AT-rich regions, CpG 

islands, and regions that contain transcriptional control elements (1,18,40,185).  To 

date, only a handful of mammalian origins have been identified.  Due to limitations in 

the resolution of many of the techniques utilized to identify origins of replication, 

there continues to be debate over whether higher eukaryotes initiate replication from 

specific loci or from larger regions known as initiation zones (2,24,197).    

 Replication is initiated only from origins where the prior assembly of a multi-

protein complex, known as the pre-replication complex (preRC), has taken place 

during the G1 phase of the cell cycle.  The preRC is comprised of the Origin 

Recognition Complex (ORC), Cell Division Cycle 6 (Cdc6), Cdc10-dependent 

Transcript 1 (Cdt1), and the Minichromosome Maintenance Complex (MCM).  The 
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concerted actions of the preRC proteins result in the “licensing” of all potential 

origins that could be utilized in S phase.   

 

E.  Proposed Research: Specific Aims  

It has been established by other groups that disruption of different 

components of the preRC results in a G1 arrest in normal cells while initiating a p53-

independent apoptotic response in cancer cells (56,181).  Manipulations that 

specifically kill cancer cells, regardless of their p53 status, but do not jeopardize the 

viability of normal cells would be highly desirable therapeutically.  This project 

tested the hypothesis that normal cells, unlike cancer cells, have the ability to 

sense the insufficient assembly of the pre-replication complex and activate a 

“pre-replicative checkpoint.”  

 My initial proposal was set up to address two different aims based on 

preliminary data that demonstrated differential phenotypes in response to reduction 

of Cdc6 and Cdt1.  These aims were: (1) Determine the upstream molecular 

mechanisms activating the G1 arrest triggered by reduction of Cdc6 

expression and (2) Investigate the phenotype (G2 arrest) associated with 

knockdown of Cdt1 expression.  Much of the work in this dissertation focused on 

Aim 1, which turned out to be a more challenging goal than originally anticipated.   
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CHAPTER 2 
 

REGULATION OF S PHASE ENTRY AND GENOME DUPLICAITON 

 

A.  Pre-Replication Complex  

In order for DNA replication to initiate at origins, a multi-protein complex 

known as the pre-replication complex (preRC) must first be assembled in G1 phase 

of the cell cycle.  The preRC is formed through the concerted actions of the origin 

recognition complex (ORC), Cdc6, Cdt1 and the MCM helicase complex.  Binding of 

ORC to the origins results in the recruitment of both Cdc6 and Cdt1.  Together these 

proteins recruit and load the minichromosome maintenance (MCM) helicase 

complex onto the chromatin (Figure 2.1).  Once the MCM complex is loaded the 

origin is said to be “licensed” for replication initiation.     

Origin Recognition Complex 

The Origin Recognition Complex (ORC) is a heterohexameric ATPase and 

was initially identified in Saccharomyces cerevisiae (13).   The ORC complex 

consists of six Orc subunits (Orc1-6), which are evolutionarily conserved.  The 

binding of ORC to origins of replication initiates a cascade of events that ultimately 

result in the licensing of the origin for DNA replication.   

Much of our understanding of ORC binding to DNA comes from studies 

performed in yeast.  The reason for this is that S. cerevisiae origins contain origin  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1:  Assembly of the Pre-Replication Complex.  The origin recognition 
complex (ORC) binds to the origins and recruits Cdc6 and Cdt1.  This results in 
the recruitment and loading of the minichromosome maintenance (MCM) complex.  
Once MCMs are chromatin bound, the origin is said to be “licensed” for DNA 
replication.   
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specific sequences known as autonomously replicating sequences (ARS element) 

which contain an 11 base pair region that is required for ORC binding (12).  The lack 

of any sequence specific identifier in mammalian cells [reviewed in (38)] makes it 

much more difficult to investigate the requirements for ORC binding and regulation.   

One thing that appears to be common among ORC’s purified from yeast, flies, or 

mammalian cells is that they all exhibit a preference for asymmetrical A:T rich DNA 

(65,102,170,196).   

Recent evidence suggests that co-factors may aid in origin identification in 

higher eukaryotes.  It was demonstrated in mammalian cells that HMGA1a, a 

member of the high-motility group family of proteins, interacts with ORC both in vitro 

and in vivo (193).  The potential significance of this interaction was demonstrated by 

targeting HMGA1a to a site-specific region on a plasmid which resulted in the 

recruitment of ORC and generating an artificial origin of replication (193).  These 

findings lend to the possibility that in mammalian cells ORC requires the guidance of 

additional proteins to mark origins of replication.   

In mammalian cells, ORC 2-6 protein levels as well as chromatin bound levels 

remains constant throughout the cell cycle (137,154).  The one exception to this 

appears to be the Orc1 subunit (Figure 2.2, green line).  There is much debate 

whether Orc1 remains chromatin bound or oscillates throughout the cell cycle.  

These differences appear to be dependent on the cells for which the studies are 

conducted in.  In Chinese hamster ovary (CHO) cells, Orc1 levels remain constant 

throughout the cell cycle while in some cancer cells Orc1 appears to oscillate due to  
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Figure 2.2:  Diagram displaying cell cycle expression of Orc1, Cdc6 and Cdt1 
protein.  The colored lines represent the oscillations of protein expression for Orc1 
(green), Cdc6 (red), and Cdt1 (blue) at various times during of the cell cycle.   
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the polyubiquitination by SCFskp2, and degraded by the 26S proteasome in S phase 

(60,117,134,137).  In addition to these findings, Orc1 was found to be bound to 

chromatin throughout the cell cycle in HeLa cells but was not detected on the 

chromatin outside of G1 in normal fibroblasts, WI38 (133).   

The regulation of ORC is not conserved across species.  In yeast ORC 

remains chromatin bound throughout the cell cycle but is regulated through 

phosphorylation by Cdk1/Clb at different stages of the cell cycle 

(46,59,102,118,122).  In Xenopus ORC is released from chromatin following 

chromatin binding of MCM and activation of Cdk2 (187,201).  And finally, in 

Drosophila there appears to be some level of cell cycle dependent regulation of 

ORC.  Drosophila Orc1 fluctuates throughout the cell cycle, accumulating in late G1 

and S phase then undergoes ubiquitinated and degraded by Fzr (APC) in mitosis 

(8,10). 

ORC belongs to the AAA+ (ATPases-Associated with various cellular 

Activities) family of ATPases and in vitro work in S. cerevisiae demonstrates that 

Orc1 and Orc5 are able to bind ATP but only Orc1 has ATP hydrolysis activity (99).  

Both binding of ATP and ATPase activity of ORC are critical for origin licensing.  

ORC mutants that can not bind ATP, are unable to recruit Cdc6 to the chromatin 

(183).  Mutation of the arginine ring finger residue 267 on Orc4, which is required for 

ATP hydrolysis, is lethal in vivo; in addition, interference of ORC ATP hydrolysis 

prevents subsequent loading of the MCM complex (19).    

Cell Division Cycle 6 
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The cell division cycle 6 (Cdc6) protein is recruited to the chromatin upon 

ORC binding.  Cdc6 was initially identified in a screen of budding yeast mutants that 

were defective in cell division cycle (75), while its role in DNA replication was 

discovered in an analysis of temperature sensitive yeast Cdc6 mutants that arrested 

at the G1-S transition (23).  Cdc6 also belongs to the AAA+ family of ATPases and is 

responsible for a variety of the actions that take place regarding the assembly of the 

preRC.   

In yeast, one of the main functions of Cdc6 ATPase activity is to remove ORC 

from non-origin DNA.  Cdc6 hydrolyzes ORC bound ATP promoting the 

disassociation of both ORC and Cdc6 from the non-origin DNA (140,183).  Cdc6 

ATPase activity has also been shown to be important for stabilization of the 

ORC/Cdc6 complex (183).  Another function of Cdc6 is facilitating the loading of the 

MCM complex onto chromatin.  The exact role Cdc6 plays in the loading of the MCM 

complex is unknown but Cdc6 mutants unable to bind ATP display a defect in the 

ability to load the MCM complex onto chromatin (200) 

Cdc6 expression and regulation is cell cycle dependent.  Cdc6 is an E2F 

regulated gene (155,207) whose expression spikes at the end of mitosis and again 

in late G1. In G1 phase of the cell cycle, Cdc6 protein levels are maintained 

extremely low and accumulate as the cell enters S phase (Figure 2.2, red line).  The 

low levels of Cdc6 in G1 are due to the activity of the anaphase promoting complex 

(APC) (Figure 2.3A).  APCCdh1 is a ubiquitin ligase that is highly active in G1 and 

targets Cdc6 for ubiquitin mediated degradation in G1 phase (164).  This seems 

counter-intuitive since G1 is where preRC assembly occurs, therefore there must be  
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Figure 2.3:  Cell cycle regulation of Cdc6.  (A)  In G1 phase of the cell cycle, 
Cdc6 protein levels are kept low through ubiquitination by APCCdh1 resulting in the 
degradation of Cdc6.   (B)  At the G1/S transition, APCCdh1 becomes 
phosphorylated by cyclin E/Cdk2 promoting its ubiquitin-mediated degradation.  At 
the same time, Cdc6 is stabilized by the phosphorylation carried out by cyclin 
E/Cdk2. 
15



a fine balance between degradation and synthesis of Cdc6 in order for origin 

licensing to take place. 

Once the cell has passed the G1/S transition, activation of the cyclin/Cdk 

kinase results in the accumulation of Cdc6 protein (Figure 2.3B).  Phosphorylation of 

Cdh1 by Cdk inactivates the APCCdh1 complex and therefore can not target Cdc6 for  

degradation (25,125,164).  In addition to the inactivation of the APC complex, Cdc6 

becomes phosphorylated by cyclin E/Cdk2 which stabilizes Cdc6 (50,51) .   

In addition to being regulated by APC and cyclin E/Cdk2, there is some 

evidence that Cdc6 regulation is through nuclear/cytoplasmic localization 

(92,163,174).  However, more recent evidence suggests that the cytoplasmic 

localization of Cdc6 was due to overexpression of Cdc6 and in fact endogenous 

Cdc6 remained in the nucleus and chromatin bound through S phase (6,36,61).  

Even with these more recent findings, the issue of Cdc6 localization in mammalian 

cells is still wildly debated.   

 In addition to its role in origin licensing, Cdc6 has been shown to have other 

functions throughout the cell cycle.  It has been demonstrated that Cdc6 might have 

a role in checkpoint activation, in particular Chk1 activation.   In the Xenopus cell-

free system, extracts treated with aphidicolin in the absence of Cdc6, can not 

phosphorylate Chk1 suggesting that Cdc6 has some role in activating Chk1 in  

response to replication stress (153).  In support of these findings, it has also been 

demonstrated that overexpression of Cdc6 blocks entry into mitosis and treatment of 

a Chk1 inhibitor, UCN-01, abrogates this arrest (30).   
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 Additionally, recent evidence has demonstrated that Cdc6 is required both in 

vitro and in vivo for the reactivation of Cdk2 following S phase checkpoint activation.    

Under these conditions, Cdc6 competes away the Cdk inhibitor, p21, which is bound 

to Cdk2 allowing for the reactivation of the Cdk2 complex and S phase progression 

(94).  

Cdc10 dependent transcript 1 

 The Cdc10 dependent transcript 1 (Cdt1) protein is recruited concurrently with 

Cdc6 upon ORC bounding to potential origins.  Cdt1 was first identified in fission 

yeast as a cell cycle regulated gene through an immunoprecipitation assay that 

demonstrated that the Cdt1 promoter was immunoprecipitated with transcription 

factor Cdc10 (82).    Recruitment of Cdt1 is dependent on ORC, particularly Orc6.  In 

vitro studies in S. cerevisiae, demonstrate that in the absence of Orc6, Cdt1 is not 

recruited to the chromatin (28).  Recruitment of Cdt1 to chromatin is crucial, for its 

required for the loading of the MCM complex.  Loss of Cdt1 does not affect the 

binding of ORC or Cdc6, but prevents the recruitment and loading of the MCM 

complex onto the chromatin (150,168,189). 

 The pattern of Cdt1 protein expression is the same in S. pombe, Drosophila 

melanogaster, and humans in that the protein levels of Cdt1 are high in G1 but low 

in S and G2 phase (Figure 2.2, blue line).  This is not the case in budding yeast 

where Cdt1 is exported to the cytoplasm but protein levels remain the same 

throughout the cell cycle [reviewed in (58)].    

 Regulation of Cdt1 is cell cycle dependent with multiple mechanisms 

preventing its expression outside of G1 phase of the cell cycle (Figure 2.4).  As cells  
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Figure 2.4:  Cell cycle regulation of Cdt1.  There are three different mechanisms 
of regulation of Cdt1 in S phase of the cell cycle.  First, Cdt1 can be sequestered
and inhibited by the binding of Geminin.  Second, Cdt1 is phosphorylated by cyclin 
A-Cdk1/2 which is required for the ubiquitination by SCFSkp2.  Third, Cdt1 is
targeted for ubiquitination by Cul4DDB1 upon binding of Cdt1 to PCNA.  The
ubiquitination by either SCFSkp2 or Cul4DDB1 results in Cdt1 degradation.   
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enter S phase, Cdt1 is either sequestered or degraded to prevent re-licensing of 

origins.  One mechanism by which Cdt1 is regulated is through its interaction with an 

inhibitor protein, geminin (202).  Geminin is highly expressed in the nucleus in S 

phase and is targeted for APC-mediated degradation at the end of mitosis (131,202).  

The binding of Geminin to Cdt1 inhibits its activity by preventing it from being able to 

bind to Cdc6 and MCM (32).  The importance of the Geminin/Cdt1 interaction in  

preventing origin assembly outside G1 phase has been demonstrated through the 

finding that depletion of geminin results in re-replication and subsequent DNA 

damage (71,135,214).   

Another mechanism by which Cdt1 is regulated is through the 

phosphorylation by cyclin A/Cdk1 or Cdk2.  This phosphorylation results in the 

binding of Cdt1 to the F-box protein Skp2, a component of the SCF ubiquitin ligase 

complex, which results in the degradation of Cdt1 (138,149,186).  In addition to Skp2 

dependent degradation, Cdt1 is also degraded by a Cdk2-independent mechanism.  

During S phase, Cdt1 binds to the ubiquitin ligase Cul4-DDB1 which mediates 

degradation of Cdt1 through its association with PCNA (9,85).  These two 

mechanisms of degradation ensure that Cdt1 degradation is coupled to the initiation 

of DNA synthesis.    

  Minichromosome maintenance complex  

The minichromosome maintenance complex (MCM) is the last of the 

components of the pre-replication complex to be recruited to the chromatin.  The 

MCM proteins (Mcm 2-7) were originally identified in genetic screens of yeast 

mutants defective in plasmid maintenance and cell cycle progression (127,141) and 
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grouped together because of their sequence similarities.  The MCM complex is a six 

subunit complex that is comprised of Mcm2-7 which are transcriptionally regulated 

by E2F with the peak of transcription occurring at the end of mitosis (39,132).    

The MCM complex requires the sequential binding of Cdc6 followed by Cdt1 

in order to be recruited to the chromatin (195), and the combined actions of the 

ORC-Cdc6 ATPase to be loaded (184).  Once bound to ORC, Cdc6, and Cdt1 are 

no longer required for the MCM complex to remain chromatin bound (19,48,53,173). 

In fact, in Xenopus, the affinity of ORC for Cdc6 is significantly reduced, going from 

t1/2 170 min to 15 min, following MCM chromatin loading (76). 

In vitro work with purified MCM from yeast, mouse and Xenopus demonstrate 

that the MCM complex as a whole has very minimal helicase activity but assembly of 

individual subunits (Mcm4-Mcm6-Mcm7) exhibit very strong helicase activity 

(88,110,210).  Once loaded, the helicase activity of the MCM complex is presumably 

responsible for the unwinding of the DNA ahead of the replication fork (105,159).   

 One would assume that since DNA replication in eukaryotes is bi-directional, 

loading of two MCM complexes per origin would be sufficient enough to successfully 

complete DNA replication.  Interestingly, it has been demonstrated in Xenopus, 

yeast, and humans that the MCM complex gets loaded in excess (as much as 20-

fold) at replication origins (48,53,112).   It is unknown if all the MCM complexes are 

activated or what purpose the large number of chromatin bound MCM complexes 

serve since reduction to approximately two MCM per origin presents no problem with 

replication (53,205).   
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Some insight into why so many MCM complexes are loaded onto the 

chromatin has been demonstrated in Xenopus.   Here, the excess MCM complexes 

are required for the activation of “cryptic/dormant” origins under replication stress 

conditions (64,205) and recently, similar findings were demonstrated in mammalian 

cells (86).  These “dormant” origins are origins that appear to only be activated when 

replication forks encounter pauses and are used to ensure timely completion of DNA 

replication [reviewed in (16)]. 

In addition to Mcm2-7, there is emerging evidence for the importance of other 

MCM, such as Mcm8 and Mcm9, in DNA replication.  There is some debate to 

where in the progression of preRC assembly, Mcm8 functions.  It was originally 

established that Mcm8 functioned after preRC assembly because Mcm8 did not 

associate with Mcm2-7 and it was found to bind to chromatin following Mcm2-7 

binding (68).  It has also been shown that it interacts with Orc2 and Cdc6 and 

absence of Mcm8 resulted in reduced loading of Cdc6 onto chromatin (198).  These 

later findings could be explained by the fact that Cdc6 becomes chromatin bound in 

S phase and therefore Mcm8 is required for Cdc6 chromatin binding here and not for 

chromatin binding in preRC formation.   

In regards to Mcm9, only very recent evidence suggests that it has a role in 

preRC assembly and this was through the finding that Mcm9 is required for Cdt1 

recruitment and preRC assembly (121).  More work must be done in regards to both 

Mcm8 and Mcm9 to better understand their exact role in DNA replication.    
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B.  Cell Cycle Events Required for G1 Progression 

Origin licensing is only one of the many events that must take place in G1 

phase of the cell cycle.  A number of other events are required throughout G1 phase 

in order for the cell to proceed successfully through the cell cycle.  These include 

(but not limited to) inactivation of the retinoblastoma protein, activation of the 

cyclin/Cdk complexes, transcriptional up-regulation of essential S phase genes, and 

assembly of the pre-initiation complex.    

Retinoblastoma (Rb) Protein 

 The retinoblastoma (Rb) protein is a tumor suppressor protein that is 

important in controlling cell cycle progression through its interaction with the E2F 

family of transcription factors.  Rb is able to repress gene transcription by E2F 

through recruitment and binding of histone deacetylases (HDACs) and other 

chromatin remodeling factors to E2F bound promoters (Figure  2.5) [reviewed in 

(211)].  In its repressive state, Rb is hypophosphorylated and binds to E2F, 

preventing transcription of key regulators of the G1/S transition (Figure 2.5A).  As 

the cell traverses through G1 phase, Rb becomes phosphorylated by cyclin D-

Cdk4/6 resulting in a conformational change that releases the HDAC from the 

complex (Figure 2.5B).  These initial phosphorylations allow for transcriptional 

upregulation of a minor set of genes, one being cyclin E.  Cyclin E-Cdk2, further 

phosphorylates Rb, releasing it completely from E2F and allowing for the 

transcriptional up regulation of essential cell cycle progression factors (Figure  2.5C) 

[reviewed in (77)].   
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Figure 2.5:  Inactivation of the Retinoblastoma (Rb) protein.  (A)  In the 
hypophosphorylated state, the retinoblastoma protein remains bound to E2F and 
histone deacetylase (HDAC).  (B)  The initial phosphorylation of Rb, carried out by 
cyclin D-Cdk4/6 results in a conformational change and the release of the HDAC. 
This release allows for transcription of a select few genes, one of which is cyclin E. 
(C) Cyclin E/Cdk2 phosphorylates Rb, generating a hyperphosphorylated state, 
which allows for full transcriptional activation of E2F regulated genes.   
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Figure 2.6:  Regulation of cyclin D1. Transcriptional and translational regulation 
of cyclin D.  
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Cyclin D-Cdk4/6 

Cyclin dependent kinase (Cdk) complexes are an integral component of the 

cell’s ability to complete cell division.  As cells exit mitosis and proceed into G1 

phase, cyclin D-Cdk4/6 is the first cyclin-dependent kinase to become activated.   

Mitogenic stimulation in G1 results in cyclin D accumulation (11).  In continuously 

dividing cells, mitogenic stimulation activates Ras, which signals through AKT to 

inhibit GSK-3β, allowing for the accumulation of cyclin D (43).  In addition, growth 

factors regulate cyclin D gene transcription upon re-entry into the cell cycle from 

quiescence, by activation of the Ras-Raf-MAPK pathway (Figure 2.6) (4,109,204).   

Even though there is this mitogenic regulation of cyclin D, unlike what its name 

suggests, cyclin D expression is not cyclic.  Instead, once the cell enters S phase, 

cyclin D is exported from the nucleus until the subsequent G1 phase (66). 

Cyclin D, once abundant enough in G1, associates with its catalytic subunits, 

Cdk4 and Cdk6.  One of the major functions of the activated complex is to 

phosphorylate the retinoblastoma (Rb) protein.  Rb becomes partially 

phosphorylated by cyclin D/Cdk4, which allows for amongst other things, 

transactivation of cyclin E, an E2F target (52,73,145).    The initial phosphorylation of 

Rb by cyclin D-Cdk4/6 does not completely relieve the inhibition on E2F, instead that 

phosphorylation allows for leakiness of the cyclin E promoter allowing for 

accumulation of cyclin E.  Cyclin E then binds its catalytic partner, Cdk2, and 

relieves the remaining inhibitory effects of Rb on E2F.    
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Cyclin E/Cdk2 

In addition to phosphorylating Rb, cyclin E/Cdk2 carries out a number of other 

important events required for G1 progression.  As stated above, upon accumulation 

of cyclin E in mid/late G1 phase, it binds to its catalytic partner, Cdk2.  Cyclin E/Cdk2 

kinase activity requires the activating phosphorylation on threonine 160 (T160) of 

Cdk2.  This activating phosphorylation is carried out by the CDK-activating kinase 

(CAK), which is comprised of Cdk7/ Cyclin H/ Mat1 (182).  Cyclin E/Cdk2 kinase 

activity is very important for progression through G1 and into S, for over-expression 

of cyclin E/Cdk2 in quiescent cells can drive cells into S phase in the absence of any 

detectable E2F (156).  In addition, inhibition of cyclin E/Cdk2 prevents S phase entry 

(157).  Active cyclin E/Cdk2 has also been shown to be involved in activation of 

histone transcription (123,208,213), regulation of centrosome duplication (158,194) 

and promoting and inhibiting licensing and replication.  Cyclin E/Cdk2 

phosphorylation of Cdc6 on S54 promotes preRC assembly and protects it from 

APC/C-dependent proteolysis (125).    In addition, Ankrd17, whose inhibition results 

in loss of chromatin bound Cdc6 and cell cycle progression, is also phosphorylated 

by cyclin E/Cdk2 (41).   This suggests that cyclin E/Cdk2 is an essential component 

that drives cells through the cell cycle.   

Cyclin E binds preferentially to Cdk2 but in the absence of Cdk2, Cdk1 

(although in the normal cycling cell it is not active until late S phase) can substitute 

for Cdk2 to maintain cell cycle progression in mouse fibroblasts (176) and DNA 

replication (5,81).    
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Figure 2.7:  Conversion of the pre-replication complex to the replication 
competent pre-initiation complex.  Upon entry into S phase, the pre-replication 
complex (particularly MCM) is phosphorylated by cyclin E/Cdk2 and Cdk7/Dbf4. 
This results in the recruitment of MCM10, Cdc45 and GINS forming the pre-
initiation complex.   
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C.  Activation of Replication Origins 

Once origins have been licensed, a series of events must ensue that 

activates the helicase activity of the MCM complex allowing for the initiation of DNA 

replication.  Two kinases, cyclin E/Cdk2 and Cdc7/Dbf4, are responsible for 

converting the pre-replication complex in to a pre-initiation complex which initiates 

DNA replication (Figure 2.7).  Cyclin E/Cdk2 is responsible for the initial 

phosphorylations of the MCM complex which in turn help to facilitate the 

phosphorylation of MCM by Cdc7/Dbf4 (128).    

The Cdc7/Dbf4 kinase, also known as Dbf4-dependent kinase (DDK), has 

been shown to have effects on multiple of the MCM subunits.  In S. cerevisiae, 

phosphorylation of Mcm5 by Cdc7/Dbf4 is thought to promote conformation changes  

in Mcm5 that results in a more highly active MCM helicase complex (80).  

Phosphorylation of Mcm2 and Mcm4 in vitro and in vivo has been shown to play a 

critical role in the recruitment of Cdc45 (26,128,142).  In addition to the recruitment 

of Cdc45, the phosphorylation of Mcm4 has been shown to promote a more stable 

MCM-Cdc45 complex.  In the absence of Cdc7/Dbf4, Cdc45 (another essential 

initiation factor) can not bind to origins and replication is inhibited (91,215). 

Association of Cdc45 with origins requires both Cdk and DDK and is recruited 

to early origins in early S phase and late origins in late S phase (7,91,139).  Cdc45 is 

required for the activation of the helicase activity of the Mcm2-7 complex (129) 

because degradation of Cdc45 results in fork stalling which can be overcome with 

the re-expression of Cdc45 (192).   In line with this, it has also been shown in vitro 

that Cdc45 binds with the Mcm7 subunit (103).   
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The Mcm2-7 complex and Cdc45 are maintained on the chromatin through 

their interaction with the GINS complex (63,144).  The GINS complex is a four 

subunit complex (Sld5, Psf1, Psf2, and Psf3) that is required for the initiation of DNA 

replication and replisome progression.  Loss of Cdc45 or any of the four subunits of 

the GINS complex in Drosophila results in an accumulation of cells in G1 and S 

phase (144).   

In addition to the above mentioned proteins, there are other factors that have 

been demonstrated to be important for pre-initiation complex assembly.  Mcm10 is 

thought to be one of the earliest initiation factors to be recruited to the chromatin.  

Mcm10 is not part of the preRC and does not appear to have any role in the origin 

licensing step.  Instead Mcm10 is required for the activation of the licensed origin.  It 

is required for facilitating phosphorylation of Mcm2-7 by Cdc7-Dbf4 (111) and 

recruitment of Cdc45 onto chromatin (89,177,201). 
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CHAPTER 3 
 

CONSEQUENCES OF INSUFFICIENT ORIGIN LICENSING 

 

A.  Background  

It is important that origins of replication are licensed in the G1 phase of the 

cell cycle because multiple levels of regulation prevent origin licensing from 

occurring once the cell has entered S phase (15,45,58,116,131,152,203).  If cells 

enter S phase with an insufficient number of licensed origins, it is possible that 

sparsely distributed replication forks could result in incomplete replication.  

Replication forks encounter natural pause sites [reviewed in (106)] and, under 

normal conditions, these sites may pose few problems to the cell since replication 

forks from a nearby origin could rescue the fork stalled at the pause site.  Prolonged 

stalling at natural pause sites, however, can result in genomic instability (113,169).  

Therefore, under conditions where origins are not sufficiently licensed, forks that stall 

at these pause sites for an extended period of time could become unstable and 

result in double strand breaks ultimately leading to genomic instability.   

Since a cell with partially replicated DNA cannot revert back to G1 to license 

more origins, it would seem essential for the cell to determine if an adequate number 

of origins are licensed before entering S phase.  Some evidence, although indirect, 

indicates that an origin licensing checkpoint exists [reviewed in (108)].   



Under what circumstances could insufficient licensing occur? It is well 

established that environmental stressors and DNA damage result in the degradation 

of key factors involved in origin licensing (14,50,79,84).  Degradation of these 

licensing factors in S phase is important to prevent origins from being re-licensed 

and minimizes the potential for re-replication to occur.  Since the degradation of 

Cdc6 and Cdt1 also occurs in G1 phase, there is a potential for cells upon 

deactivation of a DNA damage signal to enter S phase with an insufficient number of 

licensed origins.   Therefore, an origin licensing checkpoint that delays S phase 

entry until all origins are licensed would ensure complete replication. 

 

B.  Insufficient Origin Licensing in Yeast  

The consequences of insufficient origin licensing have been demonstrated in 

both budding and fission yeast by generation of null mutants of preRC components.  

Orp2/Orc2 (98), Tah11/Cdt1 (42,82), and Cdc6 (166) deletion mutants exhibit loss of 

origin licensing and they enter mitosis in the absence of DNA replication.  These 

mutant cells undergo a reductional anaphase, in which unreplicated chromosomes 

segregate to only one spindle pole, generating non-viable daughter cells.  Inability to 

arrest in G1 upon inadequate origin licensing suggests that a licensing checkpoint 

does not exist in yeast.     

The null mutants mentioned above do not provide information about the 

effects of insufficient origin licensing, because in the absence of Cdc6 for example, 

no origins can be licensed.  However, in strains with compromised Cdc6, 

Tah11/Cdt1, or Mcm2-7 expression or function, plasmids containing a single origin 
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are lost from the population at a higher frequency than in the wild-type controls 

(42,127).  The loss rates of these “minichromosomes” are used as an indicator of 

replication origin activity, which depends on origin licensing.  This elevated 

minichromosome loss can be suppressed by the addition of multiple ARS sequences 

(83), suggesting a competition for licensing factors between the origins in the 

plasmid and the yeast chromosomes.  Together, these observations suggest that 

failure to fire sufficient origins on the endogenous chromosomes may also lead to 

loss of genetic material and this argument supports the hypothesis that origin 

licensing defects through their dysregulation of DNA replication are a potential 

source of genomic instability.   

 

C.  Effects of Insufficient Origin Licensing in Higher Eukaryotes 

Budding and fission yeast are useful models to investigate the mechanisms of 

replication initiation, but these experimental systems do not completely recapitulate 

DNA replication in higher eukaryotes.  The advent of RNAi technology allowed 

investigators to probe the consequences of origin licensing inhibition in human cells.  

Cultured human cells transfected with siRNA to deplete essential licensing factors 

are not the equivalent of a null allele, but more closely resemble hypomorphic 

mutants.  In this regard, siRNA-treated cultures are predicted to represent more 

closely those physiological circumstances where origin licensing is still incomplete, 

either due to early G1 status or to DNA damage-dependent degradation of Cdc6 and 

Cdt1. 
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The outcome of depleting essential origin licensing components, such as 

Ccd6, Orc2 or Mcm5, depends on whether the cells are normal or transformed.  All 

cancer cell lines tested thus far die by apoptosis, whereas normal cells survive and 

arrest in an apparent G1 state with 2N DNA content (56,124).  Furthermore, 

overproduction of Geminin to block Cdt1 function has a similar differential effect on 

cancer cells compared to normal cells (181).  These findings raised two possibilities: 

1) robust intra-S checkpoint pathways in the normal cells trigger an arrest so early in 

S phase that they only appear to be in G1 based on flow cytometric profiles, or 2) 

normal cells have an active origin licensing checkpoint that arrests them before the 

G1/S transition, and this checkpoint is deficient in cancer cells.  In the latter 

scenario, the attempted S phase by the cancer cells ultimately results in catastrophic 

DNA damage, which then triggers the observed apoptosis.   

Given the potential danger of entering S phase before licensing is complete, it 

would be advantageous for cells to delay entry into S phase until at least a minimum 

number of origins have been licensed.  As mentioned previously, the existence of 

such a “licensing checkpoint” was first hypothesized from the observation that 

licensing inhibition in normal cells induced an apparent G1 arrest, but tumor-derived 

cells activated a robust apoptotic response (56,124,181).  Presumably, genetic 

alterations in cancer cells can inactivate a regulatory link between origin licensing 

and S phase entry that protects normal cells from attempting an S phase that is 

doomed to fail.  However, the mechanisms that prevent S phase entry in normal 

cells with insufficiently licensed origins have not been determined.  
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The focus of the work presented in this dissertation has been on dissecting 

some of the molecular networks involved in a potential “licensing checkpoint”.  In this 

chapter, evidence is provided for a link between replication licensing in G1 and 

cyclin/Cdk activation in normal cells.  Results demonstrate that insufficient licensing 

results in a loss of cyclin/Cdk activity, loss of Rb phosphorylation, and accumulation 

of cells in G1.   
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Materials and Methods 

Cell culture and siRNA transfection  

Normal human foreskin fibroblasts immortalized with human telomerase 

(NHF1-hTert and NHF10-hTert) (78) and non-immortalized WI-38 lung fibroblasts 

obtained from (ATCC) were cultured in minimum Eagle’s medium (MEM, Gibco) 

containing 10% fetal bovine serum (Sigma), 1X non-essential amino acids (Gibco) 

and 2 mM L-glutamine (Sigma).  Cancer cell lines (HeLa and U2OS) were cultured 

in Dulbecco’s modified Eagle’s medium (DMEM, Gibco) containing 10% fetal bovine 

serum (Sigma) and 2 mM L-glutamine (Sigma).  All cultures were maintained in a 

humidified incubator at 37 ºC and 5% CO2.   

Log phase normal fibroblasts were plated at a density of 5 x 105 per 10-cm 

dish 24 h prior to transfection.  SiRNA oligonucleotides were synthesized by 

Invitrogen (GFP control, 5’-GGCUACGUCCAGGAGCGCACCTT-3’; Cdc6 siRNA-

2144, 5’-UCUAGCCAAUGUGCUUGCAAGUGUA-3’; Cdc6 siRNA-2534, 5’-

CACCAUGCUCAGCCAUUAAGGUAUU-3’; Cdt1 siRNA, 5’-CCUACGUCAAG 

CUGGACAATT -3’; Orc2 siRNA, 5’- GAGCUAAACUGGAUCAGCAAACUUU-3’).  

Transfections were performed with a total of 100 nM siRNA duplex using 

Dharmafect 1 reagent (Dharmacon), according to manufacturer’s guidelines.  In the 

case of Cdc6 siRNA transfection, 50 nM of 2534 and 50 nM of 2144 were used.  

Twenty-four hours after siRNA transfection, cells were re-plated and cultures were 

typically incubated for an additional 48 h.  Due to the stability of Orc2 protein, 

efficient depletion was achieved by using the following protocol.  Log phase normal 

fibroblasts were seeded at 80% confluence in 6-cm dishes and transfected with 100 
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nM Orc2 or GFP control siRNA the following day.  Cells were incubated for 24 h, and 

then split into 10-cm dishes and transfected again 24 h later.  Cells were collected 

48 h after the second siRNA transfection.   

Cell synchronization  

Asynchronously growing fibroblasts were plated at a density of 5 x 105 cells 

per 10-cm dish and siRNA transfected 24 h later, as described above.  Twelve hours 

after siRNA transfection, transfection solution was removed and replaced with 

medium containing 0.1% FBS.  Cells were stimulated 72 h after transfection by the 

addition of 10% FBS and collected at the indicated times. 

Immunoblot analysis 

Total cell lysates were prepared by resuspending pellets in lysis buffer 

containing 0.1% Triton X-100, 0.1 mM 4-(2-aminoethyl) benzenesulfonyl fluoride 

hydrochloride (AEBSF), 1 mM orthovanadate, 1 mM β-glycerolphosphate, 5 µg/ml 

phosvitin, 1 µg/ml leupeptin, 1 µg/ml aprotinin, and 1 µg/ml pepstatin (Sigma) in 

phosphate-buffered saline (PBS); protein concentrations were determined by the 

Bradford assay (Bio-Rad).  Chromatin fractions were prepared as described in (33).  

Samples containing equal amounts of protein were combined with Laemmli sample 

buffer (10% glycerol, 0.05 M Tris (pH 6.8), 0.1% bromophenol blue, 1% SDS) 

containing 10% beta-mercaptoethanol and boiled.  Samples were separated by 

SDS-PAGE and transferred to PVDF membranes (Millipore) which were probed with 

appropriate antibodies to detect the following proteins:  Cdc6 (sc-9964), cyclin H (sc-

609), Mat1 (sc-13142), and cdk2 (M2) from Santa Cruz Biotechnology; phospho-Rb 

(S807/811), phospho-Cdc2/Cdk2 (Y15), and phosho-Cdk2 (T160) from Cell 
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Signaling Technologies; MCM2 (BM-28), ORC2, Cdc25A, and Rb from BD 

Pharmingen, phospho-RNA Pol II (S5) from Covance; tubulin (DM1A) from Sigma; 

and Cdk2, p27, p21 (Ab-10), Cdk7 (MO-1.1), and cyclin E (HE12) from Neomarkers.  

Antibodies detecting p27 and cyclin E were generous gifts from Dr. Yue Xiong 

(University of North Carolina at Chapel Hill).  Anti-Cdt1 antiserum has been 

described (32).    

Cell Cycle and Cleaved Caspase-3 Analysis  

Cells to be analyzed by flow cytometry were labeled with 10 µM BrdU for 1 h 

prior to trypsinization and ethanol fixation.  Nuclei were stained with fluorescein 

isothiocyanate (FITC)-labeled anti-BrdU antibody (BD Biosciences) and 

counterstained with propidium iodide.  Nuclei were analyzed using the CyAn 

software (DakoCytomation), and cell cycle distributions were determined using 

Summit v4.3 software (DakoCytomation).  The fraction of apoptotic cells was 

determined using an active caspase-3 antibody kit (BD Pharmingen), according to 

the manufacturer’s guidelines.   

Kinase assays 

Cells were lysed for 30 min at 4° C in RIPA (50 mM Tris-HCL, pH 8.0, 200 

mM NaCl, 0.5% NP-40, 1 mM dithiothreitol, 50 µg/ml of AEBSF, 10 µg/ml aprotinin, 

20 mM NaF, 0.1 mM sodium orthovanadate).  Lysates were clarified and subjected 

to immunoprecipitation with anti-cyclin E antiserum and protein A-agarose for a total 

of 3 h.  Beads were washed twice with wash buffer A (20 mM Tris-HCL, pH 8.0, 250 

mM NaCl, 1 mM EDTA, 0.5% NP-40), twice in buffer B (buffer A but containing 100 

mM NaCl), and then once in kinase buffer (50 mM Tris-HCL, pH 7.5, 10 mM MgCl2, 
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and 1 mM DTT).  Kinase reactions were carried out in 25 µl kinase buffer containing 

5 µg of histone H1 (Sigma), 1 µM ATP, and 5 µCi 32P-γATP (Perkin Elmer) and 

incubated at 30°C for 30 min.  Reactions were stopped with Laemmli sample buffer, 

boiled and separated on 10% SDS-PAGE.  Gels were washed 3 times by soaking 

them for 15 min each in buffer C (20 mM Tris base, 200 mM glycine, 0.1% SDS, 

10% glycerol, 1% sodium pyrophosphate), dried and autoradiographed.  Relative 

phosphorylation of histone H1 was determined using the ImageJ program (Rasband, 

W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, 

http://rsb.info.nih.gov/ij/, 1997-2006). 
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Results 

Cdc6 depletion induces apoptosis in cancer cells, but not in normal human 

fibroblasts. 

We investigated the relationship between origin licensing and S phase entry 

in two well-characterized cancer cell lines, HeLa and U2OS, and a cell line derived 

from diploid fibroblasts immortalized by constitutive telomerase expression, NHF1-

hTert (hereafter abbreviated as NHF1) (78).  We disrupted origin licensing by 

transfecting these cells with siRNA targeting the essential licensing factor Cdc6, 

which resulted in substantial depletion of Cdc6 protein to levels nearly undetectable 

by immunoblotting (Figure 3.1A).  We observed morphological changes associated 

with cytotoxicity and a substantial number of detached cells in the cancer cell 

cultures, but not in those from normal fibroblasts, following transfection with Cdc6 

siRNA and comparing to transfection with control siRNA targeting GFP.  Flow 

cytometric analysis of DNA content detected a substantial increase in the fraction of 

cells with sub-G1 DNA content in the Cdc6-siRNA treated HeLa (7% to 16%) and 

U2OS (12% to 28%) cells, but not in NHF1 (1.1% to 1.2%) (Figure 3.1B).  To verify 

that the sub-G1 population of cells represented those undergoing apoptosis, we 

examined the activation of caspase-3.  As expected, Cdc6 siRNA-treated HeLa and 

U2OS cells displayed activation of cleaved caspase-3, confirming that the sub-G1 

population represented cells undergoing apoptosis (Figure 3.1C).   

It had been previously observed that a variety of cancer cells, but not normal 

cells, also initiate apoptosis after depletion of Mcm2 or Cdc6, or through over-

expression of the Cdt1 inhibitor geminin (56,181).  Consistent with previous  
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Figure 3.1:  Cancer cells, but not normal cells, undergo apoptosis following 
depletion of Cdc6.   (A) HeLa, U2OS and NHF1-hTert (NHF1) cells were 
transfected with a total of 100 nM of control siRNA (targeting GFP) or Cdc6 siRNA, 
incubated for 72 h (NHF1) or 96 h (HeLa and U2OS).  Cells were collected and 
subjected to immunoblot analysis of Cdc6 and tubulin.  (B)  A portion of the cells 
from A were analyzed by flow cytometry with propidium iodide for DNA content. 
(C)  HeLa, U2OS, and NHF1 were transfected as in A, collected and stained for 
cleaved caspase-3 according to the manufacturer’s protocol.  
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observations, Cdc6-depleted NHF1 showed no evidence of cleaved caspase-3, 

unlike the HeLa and U2OS cells (Figure 3.1C).  We noted that the population of cells 

with S phase DNA content was markedly reduced in Cdc6-depleted NHF1 cells, but 

not in the Cdc6-depleted HeLa or U2OS cells (Fig 3.1B).  This observation 

suggested that Cdc6-depleted normal cells undergo a cell cycle arrest (or long delay 

in G1) prior to S phase entry, and we sought to determine the mechanisms 

underlying this response.  

NHF1 cells were transfected with control (targeting GFP), Cdc6, or Cdt1 

siRNA; 48 and 72 h after transfection, they were pulse-labeled for 1 h with BrdU and 

analyzed by flow cytometry.  Depletion of Cdc6 and Cdt1 protein was detected as 

early as 48 h after transfection (Figure 3.2A).  Given that Cdc6 and Cdt1 are 

essential DNA replication factors, it was not surprising that Cdc6 and Cdt1 depletion 

resulted in a marked decrease in the number of S phase cells (Figure  3.2B) and a 

concomitant increase in the number of G1 cells (not shown) 72h after transfection.  

(The ~10% of cells incorporating BrdU after Cdc6 and Cdt1 siRNA transfection 

presumably represents cells with residual Cdc6 and Cdt1 protein).  In addition, we 

noted the loss of detectable Cdc6 in the Cdt1 siRNA treated cells.  Levels of Cdc6 

protein are very low in G1 therefore the most likely explanation for the loss of Cdc6 

is that Cdt1 depleted cells are arrested in G1.   

We confirmed the licensing defect caused by Cdc6 depletion in NHF1 cells by 

monitoring the chromatin association of an MCM subunit, Mcm2, after using an 

established chromatin fractionation protocol (33,136).  As expected, Cdc6 depletion  
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Figure 3.2:  Insufficient origin licensing results in a G1 delay in normal 
human fibroblasts. NHF1 cells were transfected with a total of 100 nM of control 
(targeting GFP), Cdc6, or Cdt1 siRNA, incubated for 48 or 72 h, and then labeled 
with BrdU for 1 h prior to collection.   A portion of the cells were subject to 
immunoblot analysis (A) and the remaining sample was analyzed by flow 
cytometry with anti-BrdU antibody to detect DNA synthesis and with propidium 
iodide for DNA content (B). The histogram shows the percentage of BrdU-positive, 
S phase cells at 48 and 72 h after transfection with the indicated siRNAs.  (C) 
Whole cell extracts and chromatin-bound fractions from cells treated as in A were 
evaluated for Mcm2, Cdc6, Orc2, and tubulin by immunoblotting.   
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resulted in the reduction of chromatin-bound Mcm2, demonstrating a deficiency in 

origin licensing (Figure 3.2C). 

 

Cdc6 depletion in normal human fibroblasts results in an arrest of cells in the G1 

phase.   

The loss of S phase cells after Cdc6-depletion could have been due to effects 

on the G1 to S phase transition, or it could have been due to secondary effects that 

occurred after entry into S phase.  To distinguish between these possibilities, we 

synchronized siRNA-transfected cells by serum starvation/re-stimulation, and 

analyzed origin licensing and progression into S phase.  Cdc6 protein was 

undetectable in serum-starved cells (t=0 h), but serum stimulation induced Cdc6 

protein and its chromatin association beginning at 6 h after serum addition (Figure 

3.3A).  By 10 h, the increase in Cdc6 protein levels was accompanied by elevated 

Mcm2 chromatin association.  As expected, cells depleted of Cdc6 were deficient in 

MCM chromatin loading (Figure 3.3A, right panel).  Cells depleted of Cdc6 and re-

stimulated to enter the cell cycle spent more time in G1 than control cells and 

delayed S phase entry by four hours, as determined by BrdU incorporation (Figure 

3.3B).   

The defect in G1 progression could have been a consequence specific only to 

loss of Cdc6 protein, or it could have been due to the licensing defect caused by loss 

of Cdc6 function.  To distinguish between these possibilities, we depleted NHF1 

cells of Cdt1 or Orc2.  Cdt1 and Orc2 depletion also caused a reduction in the  
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Figure 3.3:  Serum-stimulated, Cdc6-depleted NHF1 cells delay S phase
entry.  (A)  NHF1 cells were transfected with 100 nM control siRNA or Cdc6 
siRNA, incubated for 12 h, the medium was changed to medium containing 0.5% 
FBS and incubated an additional 60h.  Cells were re-stimulated into the cell cycle 
by addition of 10% FBS, and labeled for 1 h prior to collections at 0, 6, 10, and 14 
h. Whole cell extracts and chromatin-bound extracts were processed for 
immunoblot analysis of MCM and Cdc6.  A non-specific band serves as the 
loading control. (B) A portion of the cells transfected in A were analyzed by flow 
cytometry.  Bar graph represents the percentage of BrdU positive cells in three
independent experiments.  
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Figure 3.4:  G1 arrest is not cell type or a Cdc6-specific response.  (A) NHF1 
cells were transfected with Cdt1 siRNA as in Figure 3.2.  NHF1 cells were 
transfected with 100 nM siRNA targeting Orc2, split 24 h later, transfected a
second time with 100 nM 24 h later, then collected 48 h after final transfection. A 
portion of the cells were subject to immunoblot analysis (left panel) the remaining
sample was analyzed by flow cytometry (left panel) with anti-BrdU antibody to 
detect DNA synthesis and with propidium iodide for DNA content. The percentage 
of BrdU-positive, S phase cells profiles were graphed.  (B)  WI-38 and NHF10 cells 
were transfected with 100 nM control and Cdc6 siRNA, labeled, collected and
processed as in Figure 3.2.     
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number of BrdU positive cells (Figure 3.4A, bar graph) with no signs of apoptosis 

(data not shown).  In addition, the effects of Cdc6 depletion were not cell line specific 

because other normal cell lines, NHF10 and WI-38, behaved identically to the NHF1 

cells (Figure 3.4B).  Taken together, these data suggest that defects in origin 

licensing during G1 profoundly delay the G1 to S phase transition in normal cells. 

We were not satisfied with BrdU labeling as the only measure of cell cycle 

progression in licensing-defective cells.  Because origin licensing is a prerequisite for 

origin firing and DNA synthesis, failure to incorporate BrdU could be due to an active 

cell cycle response or it could be simply a consequence of the inhibition of DNA 

synthesis due to the depletion of an essential DNA replication factor. To address this 

question, we examined the phosphorylation status of the retinoblastoma protein 

(Rb), which is required for the G1/S transition but precedes origin firing.  We 

examined the phosphorylation state of Rb by SDS-PAGE mobility and with a 

phosphospecific antibody.  In comparison to control cells, Cdc6 depletion displayed 

an increase in the gel mobility of total Rb protein, indicating a generally 

hypophosphorylated state (Figure 3.5A).  In addition, examination of Rb using a 

phosphospecific antibody demonstrated a decrease in the specific phosphorylation 

of Rb at serines 807 and 811 (Figure 3.5B).  In its active unphosphorylated state, Rb 

inhibits cell cycle progression by binding to the transcription factor E2F, which is 

involved in the transcriptional activation of genes required for DNA replication.  

Therefore, we reasoned that changes in Rb phosphorylation status might be due to 

defects in the kinases that are responsible for the phosphorylation of this protein.   
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Figure 3.5:  Depletion of Cdc6 results in loss of Rb phosphorylation. Whole 
cell extracts from NHF1 cells transfected with control or Cdc6 siRNA were probed 
with antibodies to (A) total Rb or (B) with a phosphospecific antibody that 
recognizes Rb phosphorylated at S807 and S811.  
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Insufficient origin licensing affects cyclin/Cdk expression and activity.   

As the cells traverse through G1, Rb becomes partially phosphorylated by cyclin D-

Cdk4/6, which amongst other things, allows for the transactivation of cyclin E, an 

E2F target (52,73,145).  Cyclin E/Cdk2 relieves the remaining inhibitory effects of Rb 

on E2F and also phosphorylates E2F, which allows for cyclin E to stimulate its own 

transcription (143). Therefore, we examined the effects of Cdc6 depletion on both 

cyclin D-Cdk4/6 and cyclin E-Cdk2 status.   

 

Effects of Insufficient Origin Licensing on Cyclin D-Cdk4/6  

We examined whether deficiencies in origin licensing had any effect on cyclin 

D levels.  There are three isoforms of cyclin D (D1, D2, and D3), and their 

expression is cell-type specific.  Depletion of Cdc6 in NHF1 resulted in a decrease in 

the levels of cyclin D1 and cyclin D3 protein (Figure 3.6A, left panel).  WI-38 cells 

depleted of Cdc6 also displayed decreased levels of cyclin D3 (Figure 3.6A, right 

panel).  Loss of cyclin D did not have any impact on the protein level of one of its 

catalytic partners, Cdk4 (Figure 3.6B).  These findings suggested an overall 

deregulation of cyclin D in the presence of insufficient origin licensing.      

As previously discussed (Chapter 2), cyclin D is regulated on multiple levels, 

one of which is transcriptional activation by growth factors; the other is post-

translational modifications that result in its degradation (Fig 2.3).  Growth factors 

stimulate a MAP kinase pathway, ultimately activating ERK1 and ERK2, which then 

results in the transcriptional control of cyclin D.  If reduction of Cdc6 interferes with  
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Figure 3.6:  Depletion of Cdc6 results in loss of cyclin D but not Cdk4 
protein. Whole cell extracts from NHF1 and WI-38 cells were transfected with 
control or Cdc6 siRNA and probed with antibodies to (A) cyclin D1, cyclin D3, 
Cdc6 and tubulin or (B) Cdk4 and Cdc6. A non-specific band serves as a loading 
control.    
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the activation of the MAP kinase pathway, this would result in down-regulation of 

cyclin D message and a subsequent loss of protein.  No differences in the levels of 

phospho-ERK were detected when Cdc6-depleted cells were compared to the 

control cells (Figure 3.7).  Another possible explanation for the loss of cyclin D 

protein is post-transcriptional regulation.  In this case, Ras activates Akt to inhibit 

GSK-3β, allowing for the accumulation of cyclin D protein (see Fig 2.3).  If this 

pathway were involved in regulating cyclin D levels, then defects would be apparent 

by the loss of phosphorylated Akt and up-regulation of PTEN, an inhibitor of this 

pathway.  However, upon Cdc6 depletion there were no changes in PTEN levels or 

in the levels of p-AKT when compared to control cells (Figure 3.7).  These results 

suggest a much more complex regulation of cyclin D protein.   

Recent evidence supports our findings that insufficient origin licensing results 

in down-regulation of cyclin D levels.  The cause of this down-regulation was shown 

to be caused by reduction of cyclin D1 mRNA that was attributed to a decrease in 

RNA Pol II on the cyclin D1 promoter (119).  Surprisingly, this group demonstrated 

that over-expression of cyclin D in origin licensing deficient cells did not allow cells to 

enter S phase, suggesting there may be multiple mechanisms to safeguard entry of 

cells into S phase in the presence of insufficient licensed origins.  Therefore, we 

examined the other kinase required for G1/S phase progression, cyclin E/Cdk2.   

 

Effects of Insufficient Origin Licensing on Cyclin E/Cdk2 

Cyclin E/Cdk2 is the major kinase responsible for stimulating S phase entry. 

(Cdk1 can substitute as a partner for cyclin E, but only in the absence of Cdk2)  
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Figure 3.7:  Loss of cyclin D protein is not due to inhibition of the MAP-
kinase pathways.  Whole cell extracts from NHF1 were transfected with control or 
Cdc6 siRNA and probed with antibodies to p-ERK 1/2, PTEN, p-AKT, Cdc6 and 
tubulin.   
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(81,176).  We compared histone H1 kinase activity in cyclin E immunoprecipitates 

from lysates of control and Cdc6-depleted cells.  By this measurement, Cdc6 

depletion caused on average a 2.5-fold reduction in cyclin E-associated kinase 

activity (Figure 3.8A).  We further examined the cyclin E-associated kinase activity in 

siRNA transfected NHF1 cells synchronously progressing through G1.  Cdc6-

depleted cells contained substantially less cyclin E-associated kinase activity 

compared to control cells, and this difference was detectable by 6 h after serum 

stimulation (Figure  3.8B), well before the G1/S transition is observed in the control 

cells (at approximately 10 h) (Figure  3.3B, bar graph).   

 

Loss of cyclin E/Cdk2 activity is not caused by interaction with known cyclin-

dependent kinase inhibitors (CKIs).   

Cyclin E/Cdk2 activity is controlled by a number of mechanisms, and we 

sought to determine which of these might be responsible for the reduced cyclin E-

dependent activity in Cdc6-depleted cells.  First we examined total cyclin E levels 

and found that Cdc6 depletion did not alter the levels of cyclin E compared to control 

(Figure  3.9A), suggesting that loss of cyclin E/Cdk2 kinase activity was not caused 

by loss of cyclin E protein.  Cyclin E/Cdk2 kinase activity is blocked when bound to 

cyclin-dependent kinase inhibitors (CKI).  In extracts from Cdc6-depleted cells we 

observed no up-regulation of either p21 or p27 CKI proteins (Figure 3.9B), nor did 

we observe any changes in p21 or p27 binding to the cyclin E/Cdk2 complex (Figure 

3.9C; no differences in the ratio of p21 to cyclin E after immunoprecipitation with 

cyclin E antibodies).  A previous study used immortalized cells to investigate the  
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Figure 3.8:  Reduction in the abundance of Cdc6 results in inhibition of cyclin
E-dependent kinase activity.  (A)  Extracts of NHF1 cells transfected with control
or Cdc6 siRNA were subjected to immunoprecipitation with normal rabbit serum or 
with anti-cyclin E antibody.  The precipitates were divided and analyzed by 
immunocomplex kinase assay with purified histone H1 and [γ-32P] ATP, followed
by SDS-PAGE (top row) or analyzed for cyclin E protein by immunoblotting (bottom 
row). The bar graph reports cyclin E-associated H1-kinase activity in cells depleted 
of Cdc6 relative to the control in three independent experiments. (B) Extracts from
transfected and serum-stimulated NHF1 cells (refer to Figure 3.3 for protocol) were
subjected to cyclin E kinase assay as in A.  
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Figure 3.9:  Loss of cyclin E/Cdk2 kinase activity is not due to induction or 
binding of CKI’s.  Whole cell extracts from NHF1 cells transfected with control or 
Cdc6 siRNA were probed with antibodies to recognize the following endogenous 
proteins: (A) cyclin E, Cdc6, and tubulin; and (B) p21, p27, phospho-Cdk (Y15),
Cdc6, and tubulin.  (C) Extracts of siRNA-transfected NHF1 cells were subjected to 
immunoprecipitation with normal rabbit serum [control extract (-)] or with anti-cyclin 
E antibody (+).  Inputs (5% of whole cell extracts) and immunoprecipitates were 
analyzed for p21 and cyclin E protein by immunoblotting. (D) Whole cell extracts
from NHF1 cells transfected with control or Orc2 siRNA were probed with 
antibodies to detect p21, Orc2 and tubulin.  (E) Whole cell extracts from NHF1 cells 
transfected with control or Cdc6 siRNA were probed with antibodies for Cdc25A,
Cdc6, and tubulin. 
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effects of Orc2 depletion, which also blocks origin licensing, on Cdk2 activity and 

concluded that licensing inhibition induced p21 and p27 accumulation (124).  We 

performed similar experiments in NHF1 cells and did not detect any increase in p21 

protein levels, despite effective depletion of Orc2 (Figure 3.9D).  These differing 

results could be attributed to cell type variations, for Machida et al. examined the 

effects of Orc2 depletion in MCF10A cells.  Therefore, the reduced cyclin E-

associated kinase activity in Cdc6-depleted NHF1 cells was not due to any of the 

most commonly studied mechanisms of inhibition of this cell cycle regulator.   

Cyclin E/Cdk2 is also regulated by two inhibitory phosphorylations on Cdk2 at 

threonine 14 (T14) and tyrosine 15 (Y15), and retention of phosphorylation at these 

sites blocks S phase entry (35,55,126). We probed lysates of siRNA-transfected 

cells with an antibody that recognizes both Cdk1 and Cdk2 phosphorylated at Y15.  

We found no increase in the level of this inhibitory phosphorylation in Cdc6-depleted 

cells compared to control cells (Figure 3.9B), nor did we detect changes in 

abundance of the Cdc25A phosphatase responsible for activating Cdk2 (Figure 

3.9E).   

It has been suggested that in the absence of an active cyclin E/Cdk2 complex 

that cyclin A can bind with Cdk2 and carry out the functions of cyclin E/Cdk2.  To 

address whether Cdk2 was functioning in conjunction with cyclin A, we examined the 

histone H1 kinase activity in Cdk2 immunoprecipitates in the same manner as 

mentioned above.  Cdk2 immunoprecipitates from Cdc6-depleted cells showed an 

even greater reduction in kinase activity (Figure 3.10A) with no increases in p21 or 

p27 bound to the kinase (Figure 3.10B).  These findings demonstrate that there is an  
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Figure 3.10:  Reduction in Cdc6 abundance results in inhibition of Cdk2-
dependent kinase activity.  (A) Extracts of NHF1 cells transfected with control or 
Cdc6 siRNA for 48 h were subjected to immunoprecipitation with normal rabbit 
serum or with anti-Cdk2 antibody.  The precipitates were divided and analyzed by 
immunocomplex kinase assay with purified histone H1 and [γ-32P] ATP, followed 
by SDS-PAGE (top row) or analyzed for Cdk2 protein by immunoblotting (bottom 
row). The bar graph reports cyclin E-associated H1-kinase activity in cells depleted 
of Cdc6 relative to the control in three independent experiments. (B) Extracts of 
NHF1 cells transfected with control or Cdc6 siRNA for 48 h were subjected to 
immunoprecipitation with anti-Cdk2 antibody.  Immunoprecipitates were subjected 
to immunoblot analysis for p21, p27, cyclin E, and Cdk2.   
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inherent loss of Cdk2 kinase activity that is not dependent on cyclin E or cyclin A and 

is not the result of CKI binding.  

 

Insufficient origin licensing inhibits CAK-dependent activation of cyclin E/Cdk2.   

In human cells, the activating phosphorylation of all Cdks is primarily 

attributed to Cdk activating kinase (CAK), a heterotrimeric complex of Cdk7, cyclin 

H, and Mat1 (182).  We examined the status of the activating phosphorylation on 

T160 Cdk2 in Cdc6-depleted cells and found that insufficient origin licensing resulted 

in the loss of T160 phosphorylation on Cdk2 (Figure  3.11A).  We observed similar 

results upon Cdc6 depletion in WI-38 (Figure 3.11B) and upon depletion of Cdt1 in 

NHF1 cells (Figure 3.11C).  We wondered if the loss in T160 phosphorylation could 

explain the loss of cyclin E/Cdk2 activity, so we decided to examine whether pre-

incubation with purified CAK would have any effect on the activity of Cdk2 in the 

Cdc6-depleted cells.  Cdk2 immunoprecipitates from lysates of control and Cdc6-

depleted cells were incubated with or without purified CAK for 30 minutes.  

Immunoprecipitates were washed and histone H1 kinase activity of Cdk2 was 

determined.  As expected, in the absence of CAK, Cdc6-depleted NHF1 displayed a 

dramatic reduction in the activity of Cdk2 (Figure 3.11D, left panel) with no changes 

in Cdk2 protein levels (Figure 3.11E).  Pre-incubation of Cdk2 immunoprecipitates 

with purified CAK partially restored Cdk2 activity (Figure 3.11D, right panel).  These 

findings suggest that cyclin E/Cdk2 in immunoprecipitates of Cdc6-depleted cells 

can be activated by CAK, further demonstrating that the inhibition of the kinase  
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Figure 3.11:  Insufficient origin licensing results in a defect in Cdk2 
activation. Whole cell extracts from (A) NHF1 or (B) WI-38 cells transfected with
control or Cdc6 siRNA were probed with antibodies to recognize the following 
endogenous proteins: phospho-Cdk2 (T160), Cdk2, and Cdc6.  A non-specific 
band served as a loading control.  (C)  NHF1 cells were transfected with control or 
Cdt1 siRNA and their extracts immunoblotted for the indicated proteins.  (D) 
Extracts of NHF1 cells transfected with control or Cdc6 siRNA for 48 h were 
subjected to immunoprecipitation with normal rabbit serum or with anti-Cdk2 
antibody.  Immunoprecipitates were divided, and pre-incubated for 30 min at room
temperature with or without purified CAK.  Immunoprecipitates were washed once, 
then analyzed by immunocomplex kinase assay with purified histone H1 and [γ-
32P] ATP, followed by SDS-PAGE (top row).  Coomassie stain of the gel prior to 
drying serves as a loading control.  (E)  Extracts from D were subject to immnoblot
analysis for Cdk2.  Non-specific band serves as a loading control.   
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activity is not due to unidentified inhibitor(s), but most likely to the loss of 

phosphorylation on Cdk2 T160.  

Next we investigated the status of CAK activity in the cultured fibroblasts.  In 

addition to activation of Cdk2, CAK is also responsible for phosphorylation of serine 

5 in the RNA Pol II C-terminal domain, CTD (57,74,93,178).  We reasoned that if 

CAK activity were low in Cdc6-depleted cells, then phosphorylation of the RNA Pol II 

CTD would be reduced also.  Indeed, Cdc6-depleted cells reproducibly display a 

reduction in CTD phosphorylation on S5 (Fig 3.12A).  We next examined whether 

any of the components of the CAK complex were deregulated.  In spite of seeing 

loss of CTD phosphorylation and Cdk2 T160 phosphorylation in Cdc6-depleted cells, 

there were no changes in the protein levels of Cdk7, cyclin H or Mat1 (Figure  

3.12B); or in the in vitro kinase activity of CAK (Figure  3.12C).  These findings 

suggest that the loss of T160 phosphorylation in Cdk2 is more complicated than the 

simple loss of CAK kinase activity.       

 

Two cancer cell lines fail to inhibit Cdk activation in response to insufficient origin 

licensing.    

Previous reports that virtually all transformed cell lines die by apoptosis when 

origin licensing is blocked suggested that these cells might be unable to induce the 

same G1 arrest described in the preceding sections.  We demonstrated above that 

both HeLa cells and U2OS cells showed clear evidence of apoptosis after 

transfection with siRNA targeting Cdc6 (Figure 3.1A and B).  To determine if these 

cells were capable of down-regulating both Rb phosphorylation and Cdk2 T160  
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Figure 3.12: Depletion of Cdc6 results in defective CAK-dependent functions.  
Whole cell extracts from NHF1 cells transfected with control or Cdc6 siRNA were 
probed with antibodies to recognize the following endogenous proteins: (A) 
phospho-RNA Pol II (S5, CTD), Cdc6 and tubulin; and (B) cyclin H, Cdk7, Mat1, 
and Cdc6; a non-specific band serves as a loading control. (C) Extracts from 
transfected and serum-stimulated NHF1 cells (refer to Figure 3.3 for protocol) were 
subjected to cyclin H kinase assay as in Figure 3.8A.  
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phosphorylation, we probed for these markers by immunoblotting.  Despite effective 

Cdc6 depletion, neither HeLa nor U2OS cells showed the same loss of Rb and Cdk2 

phosphorylation that we observed in the non-transformed NHF1 or WI-38 cells 

(Figure 3.13A and B).  These findings suggest that cancer cells may undergo 

apoptosis as a result of an inability to down-regulate the activating phosphorylation 

of Cdk2, thus allowing cells to enter a doomed S phase.     
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Figure 3.13:  Cancer cells do not down-regulate the phosphorylation on 
Cdk2. (A) HeLa and (B) U2OS cells were transfected with control or Cdc6 siRNA,
incubated 96 h, and whole cell extracts subjected to immunoblot analysis with
antibodies to detect phospho-Cdk2 (T160), phospho-Rb (S807 and S811), Cdc6 
and tubulin.  
62



Discussion  

In this chapter, we demonstrate that insufficient origin licensing activates a G1 

delay and we provide mechanistic links connecting this response to the inhibition of 

cyclin E/Cdk2.  We show evidence that the G1 delay is not simply due to loss of 

essential DNA replication factors, but instead it constitutes an active response to 

insufficient origin licensing.  Similar Cdk2 down-regulation was observed in both 

Cdt1-depleted cells, which express Cdc6, and in Cdc6-depleted cells, which express 

Cdt1.  The disruption common to both Cdc6 and Cdt1 depletion is the failure to fully 

load MCM complexes at origins, indicating that it is origin licensing itself that is 

required for Cdk2 activation.   

We also observed loss of cyclin D1 and D3 protein in Cdc6-depleted cells (Fig 

3.6) which is consistent with what has been observed by others (120).  Loss of cyclin 

D protein cannot fully explain the G1 arrest as over-expression of cyclin D in cells 

depleted of Mcm7 was not enough to allow cells to enter S phase (120).  Given our 

evidence for Cdk2 inhibition, the findings of Liu at al. (2009) are not surprising.  

Over-expression of cyclin E can drive quiescent cells into S phase but over-

expression of cyclin D cannot (115).  This suggests that there may be multiple 

mechanisms to prevent S phase entry upon insufficient origin licensing.   

The low activity of cyclin E/Cdk2 in Cdc6-depleted fibroblasts could be 

explained by the failure to phosphorylate Cdk2 on T160 (Figure 3.11) since no other 

major Cdk regulatory mechanisms (e.g., inhibition by p21 or p27) were perturbed in 

these cells (Figure 3.9).  This activating phosphorylation is mediated by Cdk-

activating kinase (CAK), and we find that phosphorylation of the other major CAK 
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substrate, RNA Pol II was similarly reduced (Figure 3.12).  We were also able to 

demonstrate that pre-incubation with purified CAK can partially rescue the Cdk2 

kinase activity in vitro (Figure  3.11).  Studies of the regulation of CAK-dependent 

Cdk activation are limited, so the finding that this event is responsive to licensing 

inhibition represents a novel aspect of Cdk control.  Expression of CAK subunits was 

not inhibited in licensing-deficient cells (Figure  3.12B), and our preliminary 

evaluation of CAK activity in vitro revealed no biochemical defects in kinase specific 

activity using the CTD of RNA Pol II or Cdk2 as a substrate (Figure  3.12C).      

In actively cycling cells (as opposed to cells re-entering the cycle from G0), 

MCM complexes can be detected on chromatin as early as telophase and persist 

throughout G1(47).  If Cdk activation is dependent on a minimum amount of 

licensing, as our data indicate, then that minimum level of licensing may be reached 

very early in G1.  Under such circumstances, Cdk activation would normally be quite 

rapid, and only when licensing is strongly delayed is the dependence of Cdk 

activation on licensing revealed.  Since Cdk activity inhibits origin licensing through 

inactivation of individual preRC components, it is important to maintain a window of 

low Cdk activity in these early G1 phases to allow sufficient licensing before S phase 

begins (45,54).  Coordinating Cdk activation with replication licensing would ensure 

that this window of opportunity is maintained. 

Recent evidence from budding yeast suggests that even in cells with standard 

G1 phases, competence to assemble preRCs must be actively maintained 

throughout G1.  Depletion of yeast Orc6 after MCM complexes are loaded results in 

decay of MCM chromatin association over time (180).  This finding may be 
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particularly relevant in G1 cells exposed to any of a variety of stresses or genotoxic 

insults.  Ionizing radiation, ultraviolet light, and chemical modification of DNA bases 

induce the ubiquitination and degradation of Cdt1 and Cdc6 (14,70,79,84,151), as 

well as phosphorylation of MCM and ORC subunits (34,209).  Moreover, hypertonic 

stress in G1 prevents MCM loading (87).  Once the inhibition of MCM loading is 

removed (i.e., DNA is repaired, adaptation to the stress has been induced, etc.) cells 

should still ensure that origins are licensed before proceeding into S phase.  

Previous studies had noted that cancer cell lines die by apoptosis when 

licensing is inhibited whereas normal cells arrest in G1, and we have recapitulated 

those observations here using HeLa and U2OS cells.  We have further extended 

these findings to demonstrate that these cancer cell lines fail to induce the same 

down regulation of Cdk2 phosphorylation on T160 or the same hypophosphorylation 

of Rb.  We note that a majority of cancer cells have lesions in both the p53 and Rb 

pathways; in the case of HeLa cells these disruptions include expression of the HPV 

E6 and E7 proteins, and in U2OS cells it is overexpression of the p53 ubiquitin 

ligase, Mdm2 (107) and loss of the p16 Cdk4 inhibitor (37).  The dependence of 

Cdk2 phosphorylation on origin licensing during G1 might have not been previously 

observed in HeLa cells (and presumably in most cancer cell lines) due to the wide 

variations in expression and regulation of preRC components.  It may be that 

coordination of Cdk2 activation and origin licensing can only occur in cells with 

normal, rather than hyperactivated Cdks and low levels of E2F-regulated gene 

products, rather than the overproduced levels associated with oncogenic 

transformation. 
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It has long been appreciated that Cdk activity regulates preRC assembly 

positively by promoting transcription of genes for preRC proteins and negatively by 

phosphorylating preRC components themselves.  In this study we provide evidence 

that preRC assembly itself regulates Cdk activation.  Important questions remain as 

to the molecular nature of the interactions between origin licensing components, 

CAK, and Cdk2.  Among the possibilities for future testing are recruitment of Cdk2 to 

chromatin by licensed origins to promote nuclear retention and/or recruitment of both 

Cdk2 and CAK to loaded MCM complexes to facilitate their interaction.  The fact that 

many preRC components are substrates of Cdks plus an intriguing report that Mcm7 

associates with the Mat1 subunit of CAK support the idea that Cdk2 and CAK could 

associate with chromatin-bound MCM complexes (199).  The ultimate outcome of 

these investigations will define how origin licensing in G1 is ensured before S phase 

entry. 
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CHAPTER 4 
 

EVIDENCE FOR A REPLICAITON LICENSING CHECKPOINT 

 

Background  

Cell cycle checkpoints are pathways that slow or arrest progression through 

the cell cycle in response to a variety of insults or until important cellular events are 

complete.  The most common and best understood of these checkpoints are the 

DNA damage checkpoints.  These are activated in response to various forms of 

DNA damage, from double strand breaks to bulky adducts on the DNA.  In addition 

to the DNA damage checkpoints there are also surveillance checkpoints which 

include the decatenation checkpoint and the spindle checkpoint.  Surveillance 

checkpoints are not activated in response to damage but instead by the incompletion 

of a cellular process.  For example, the spindle checkpoint initiates a “wait” signal 

that inhibits the anaphase promoting complex (APC/C) until all chromosomes attach 

to the microtubules and align at the metaphase plate (171,172).  Once all sister 

chromatin-microtubule-kinetochore attachments have been made the checkpoint is 

turned off and APC is activated [reviewed in (95)].  Another cellular event that would 

be important to monitor, so as to preserve the faithful duplication of the genome, is 

the licensing of an adequate number of origins of replication before cells commit to 

the S phase of the cell cycle.  



In order to define a cell cycle delay as a checkpoint as opposed to 

interference of a metabolic process, one must be able to abrogate the response by 

genetic manipulation (160).  For example, in response to ultraviolet light, the cell 

activates an intra-S checkpoint, inhibiting fork progression and preventing new origin 

firing (27).  If this delay in S phase is the result of a checkpoint then abrogation 

should be accomplished by depletion of an essential factor within the pathway.  And 

this was exactly what has been demonstrated, removing Chk1 or ATR using siRNA 

(of which both are required) attenuates the checkpoint response in response to UV 

(179).  Therefore, in order to demonstrate that depletion of Cdc6 or Cdt1 results in 

the activation of a checkpoint, regulators must be identified by demonstrating that 

upon their physical or functional removal the original response is abrogated (i.e. cell 

cycle progression resumes without the correction of the activating event).   

It was demonstrated in Chapter 3 that depletion of Cdc6 or Cdt1 resulted in 

the loss of Rb phosphorylation, cyclin E/Cdk2 kinase activity and a G1 delay.  A 

variety of proteins that are involved in already characterized checkpoints have been 

shown to regulate one of the above mentioned events.  Activation of p53 by serine 

15 phosphorylation results in the stabilization and accumulation of p53 and the 

transcriptional up-regulation of p21 (191).  Additionally, p21, a cyclin-dependent 

kinase inhibitor, binds to and inactivates the cyclin E/Cdk2 complex, preventing 

hyperphosphorylation of Rb and causing cells to arrest in the G1 phase of the cell 

cycle (147).   

The involvement of Chk1 in DNA damage responses and in fork stabilization 

during unperturbed DNA replication has been demonstrated (31,161,162).  In 
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addition to p53, Chk1 also phosphorylates Cdc25-A, -B, and -C; and along with other 

post-translational modifications, signals for the degradation of the Cdc25 family of 

proteins (49).  The Cdc25 family of phosphatases are required to remove the 

inhibitory phosphorylation on Cdc2 (same as Cdk1) and Cdk2.  Through the 

combined actions of a Chk1-mediated, p53-dependent up-regulation of p21 and 

inactivation of Cdc2 and Cdk2, cells are unable to enter S phase or start mitosis 

(Figure 4.1).  

Though it is unlikely that these exact pathways are the mechanisms for 

inhibition of Cdk2 in response to insufficient origin licensing (refer to Chapter 3 

Figure 3.9B- no up-regulation of p21, and Figure 3.9E- no changes in Cdc25), there 

is evidence connecting p53 and Chk1 to Cdk2 activity.  For instance, inhibition of 

Chk1 kinase activity or depletion of Chk1 via siRNA in an unperturbed cell cycle 

increases Cdk2 activity, resulting in an increase in origin firing (188).  Though the 

exact mechanism of how Chk1 alters Cdk2 activity in an unperturbed cell cycle is not 

known, it establishes a connection between the two kinases.   
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Figure 4.1:  Schematic of ATR dependent cell cycle arrests.  In response to 
various forms of DNA damage, ATR becomes activated, which in turn activates 
Chk1 through phosphorylations on S317 and S345.  The activation of Chk1 can 
halt cells in both the G1/S and the G2/M transitions through activation of p53 and 
inhibition of Cdc25.  These effects result in upregulation of p21 or accumulation of 
the inhibitory phosphorylation on Cdk, respectively.  Both of these events result in 
the inhibition of cyclin/Cdk complexes halting cells in their current phase of the cell 
cycle.  
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Materials and Methods 

Cell culture and siRNA transfection  

Cells were cultured and maintained as stated in Chapter 3 with the following 

modifications.  NFH1 cells were treated with 2 mM hydroxyurea for 24 h and 

collected to serve as a positive control for activation of the DNA damage response 

markers.  SiRNA oligonucleotides were synthesized by Invitrogen (p53 siRNA, 5’-

AAGGAA GACUCCAGUGGUAAU-3’; Chk1 siRNA, 5’- GCGUGCCGUAGACUGU 

CCA-3’; and ATR siRNA 5’-AACCUCCGUGAUGUUGCUUGA-3’).  Transfections 

were performed with a total of 100 nM siRNA duplex using Dharmafect 1 reagent 

(Dharmacon), according to manufacturer’s guidelines.  In the dual knockdowns, p53 

siRNA was transfected 24 h after Cdc6 siRNA, while Chk1 and ATR siRNA were 

transfected simultaneously with Cdc6 siRNA.  Cells were then examined 72 h after 

initial transfection.  When evaluating the co-depleted cells for activation of caspase-3 

cleavage, NHF1 cells were examined 96 h after the initial transfection.  

Cell synchronization  

 Serum starvation and re-stimulation protocols were performed as described in 

Chapter 3, with simultaneous transfection of Cdc6 and p53 siRNA.    

Immunoblot analysis 

Whole cell extracts were processed as described in Chapter 3 and 

immunoblot analysis was performed using these additional antibodies: p53 (sc-126), 

ATR, and Chk1 from Santa Cruz Biotechnology and phospho-Chk1 (S345), 

phospho-Chk2 (Th68), and phosph-p53 (S15) from Cell Signaling Technologies 
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Results 

The G1 delay in response to insufficient origin licensing requires p53 and Chk1.   

The differential response of non-transformed and transformed cells to 

licensing inhibition suggested that a commonly mutated pathway in cancer cells is 

involved in coordinating origin licensing with cyclin E/Cdk2 activation.  The p53 

tumor suppressor pathway is deregulated in the vast majority of human cancers, and 

p53 is capable of inducing a G1 arrest in response to a variety of perturbations.  We 

have consistently observed a modest increase in p53 protein levels in Cdc6-

depleted cells compared to control cells (Figure 4.2). For these reasons, we 

considered p53 a candidate for participation in the cell cycle effects of origin 

licensing inhibition.  To determine if p53 status affects the ability of NHF1 cells to 

remain in G1 when origin licensing is inhibited, we performed co-depletion 

experiments.  As observed before, transfection with Cdc6 siRNA alone reduced the 

number of S phase cells (Figure 4.3A, siCdc6).  Depletion of p53 alone had little 

effect on the cell cycle profile of normal cells under these conditions (Figure 4.3A, si-

p53).  However, co-depletion of p53 24 h after transfection with Cdc6 siRNA 

completely prevented the cell cycle effects of Cdc6 depletion, fully restoring the 

number of S phase cells to control levels (Figure  4.3A, siCdc6/p53).  Notably, the 

low intensity of the BrdU staining in the co-depleted cells (note the y-axis) suggested 

that even though the co-depleted cells entered S phase, replication was still very 

inefficient.  Depletion of p53 did not rescue Cdc6 expression (Figure 4.3B), which 

likely accounts for the inefficient DNA synthesis.   
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Figure 4.2:  Cdc6 depletion results in a modest increase in p53 levels. Whole 
cell extracts from NHF1 cells transfected with control or Cdc6 siRNA were probed 
with antibodies to p53, Cdc6 and tubulin.  
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Figure 4.3:  Co-depletion of Cdc6 and p53 abrogates the G1 arrest.  NHF1 
cells were transfected with a total of 100 nM of control (targeting GFP) or Cdc6 
siRNA, and 24 h later transfected with p53 siRNA.  Cells were incubated for a total 
of 72 h, and then labeled with BrdU for 1 h prior to collection.  (A) A portion of the 
cells were analyzed by flow cytometry with anti-BrdU antibody to detect DNA 
synthesis and with propidium iodide for DNA content and (B) the remaining sample 
was subjected to immunoblot analysis for p53, Cdc6 and tubulin.  
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The requirement for p53 implicated components of the DNA damage 

checkpoint pathway in the G1 arrest induced by licensing inhibition.  We thus 

examined cells co-depleted for Cdc6 and upstream signaling components of the 

DNA damage response.  Co-depletion of Chk1 completely reversed the arrest, just 

as effectively as p53 co-depletion (Figure 4.4A, siCdc6/Chk1).  Depletion of Chk1 

alone had a mild effect on the number of S phase cells (11.8% compared to 16.3% 

in the control), but reduced the amount of BrdU incorporation per cell in keeping with 

a role for Chk1 in replication fork progression (27,161,162).  On the other hand, co-

depletion with Chk1 restored the number of S phase cells from a low of 4.3% in the 

population transfected with Cdc6 siRNA alone to 14% in Chk1 and Cdc6 co-depleted 

cells.  Despite the fact that Chk1 is required for the arrest in G1 of Cdc6-depleted 

cells, we have frequently noted that Cdc6-depleted cells have reduced levels of 

Chk1 compared to control cells (Figure 4.4B) possibly due to Rb-mediated 

repression of the CHK1 promoter (67).   

 Virtually identical results were obtained when p53 or Chk1 was co-depleted 

with Cdt1 (Figure 4.5A and 4.5B, respectively), indicating that p53 and Chk1 are 

required for the cell cycle effects of the licensing defect (i.e. loss of Cdc6 and Cdt1 

functions) rather than the loss of Cdc6 or Cdt1 protein.  Cdc6 and Cdt1 are essential 

replication factors, so we attribute the replication in cells co-depleted of p53 and 

Cdc6, p53 and Cdt1, Chk1 and Cdc6, or Chk1 and Cdt1 to the very low levels of 

origin licensing promoted by the scant Cdc6 or Cdt1 protein in these experiments.  

Importantly, the rescue of the S phase population when p53 or Chk1 was co- 
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Figure 4.4:  Co-depletion of Cdc6 and Chk1 abrogates the G1 arrest. NHF1 
cells were transfected with a total of 100 nM of control (targeting GFP) or Cdc6 
siRNA together with 100 nM of Chk1 siRNA.  Cells were incubated for a total of 72 
h, and then labeled with BrdU for 1 h prior to collection.  (A) A portion of the cells 
were analyzed by flow cytometry with anti-BrdU antibody to detect DNA synthesis 
and with propidium iodide for DNA content (and (B) the remaining sample was 
subject to immunoblot analysis for Chk1, Cdc6 and tubulin.  
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Figure 4.5:  Co-depletion of Cdt1 with p53 or Chk1 abrogates the G1 arrest. 
(A) NHF1 cells were transfected with control (targeting GFP), Cdt1, or p53 siRNA 
and processed as in Figure 4.3.  (B)  NHF1 cells were transfected with control, 
Cdt1 or Chk1 siRNA and processed as in Figure 4.4.  
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depleted implies that in the cells transfected with just Cdc6 or Cdt1 siRNA, there 

were a small number of licensed origins present, but these origins did not fire.   

We also performed the p53 co-depletion experiments in synchronized cells 

following the same procedure as in Figure 3.3.  Cdc6 expression was undetectable 

in quiescent cells but was induced in control cells by serum stimulation, and p53 

depletion did not affect either of these events (Figure 4.6A).  Consistent with the 

result in log phase cells (Figure 4.2), Cdc6-depleted cells exhibited a slight induction 

of p53 even in quiescent cells (Figure 4.6A).  As expected, Cdc6-depleted NHF1 

cells markedly delayed entry into S phase compared to control cells (Figure 4.6B, 

gray and green bars).  NHF1 cells depleted of p53 alone, had only a slight S phase 

entry delay when compared to control (Figure 4.6B, yellow bar), but more 

importantly, cells co-depleted of Cdc6 and p53 entered S phase in similar numbers 

as control and p53-depleted cells (Figure 4.6B, orange bar).  

Importantly, the ability of Cdc6- and Cdt1-depleted cells to enter S phase 

when co-depleted for p53 or Chk1 demonstrates that the reduction of Cdc6 does not 

render cells incapable of S phase entry.  The suppression of the G1 arrest by p53 or 

Chk1 reduction strongly implies that normal cells with low levels of Cdc6 or Cdt1 do 

not enter S phase with a small number of licensed origins because they are 

restrained by Chk1 and p53. 

Finally, the requirement of p53 and Chk1 in the G1 arrest implied that ATR 

may be important for the G1 arrest also.  Co-depletion experiments with  
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Figure 4.6:  Co-depletion of Cdc6 with p53 abrogates the G1 delay in 
synchronized cells.  (A) NHF1 cells were transfected with 100 nM control siRNA, 
Cdc6 siRNA, p53 siRNA, or both, incubated for 12 h, the medium was changed to 
medium containing 0.5% FBS and incubated an additional 60 h.  Cells were re-
stimulated into the cell cycle by addition of 10% FBS, and labeled for 1 h prior to 
collections at 0, 6, 10, and 14 h and Whole cell extracts were analyzed by 
immunoblot analysis for p53, Cdc6, and Orc2. (B)  A portion of the sample from A 
was analyzed by flow cytometry.  Bar graphs represent the percentage of BrdU 
positive cells (S phase cells) in three independent experiments.   
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simultaneous transfection of ATR and Cdc6 siRNA were performed.  Depletion of 

ATR in NHF1 did not appear to have any cell cycle effect for the percentage of cells 

in S phase was similar to control cells (Figure 4.7, charcoal bar).  Co-depletion of 

Cdc6 and ATR reversed the G1 arrest (Figure 4.7, purple bar).  Although these 

findings are interesting and exciting, they represent the results of a single 

experiment and their validation awaits further experimental verification.   

 

Cdc6 depletion does not induce a canonical DNA damage response.   

The involvement of p53 and Chk1 in the G1 arrest of Cdc6-depleted cells 

raised the possibility that licensing inhibition generates DNA damage, which then 

activates Chk1 and p53.  In response to various forms of DNA damage, including 

replication stress, the ATR kinase phosphorylates and activates Chk1 to induce 

Cdc25A degradation, which results in the accumulation of Y15 phosphorylated Cdk2 

and Cdk1 (126).  In addition, p53 is phosphorylated and stabilized to promote the 

transcriptional upregulation of p21 (Figure 4.1) (3,96,175).  However, several 

observations suggested that the DNA damage checkpoint was not strongly activated 

by Cdc6 depletion.  Cdc6 siRNA transfection was associated with modest 

accumulation of p53 (Figures 4.3B, 4.5A, 4.6A, 4.9, 4.10B) but more importantly, this 

small change was not followed by induction of p21 (Figures 3.9B and 4.10B).  

Moreover, Cdc6 depletion did not lead to increased Y15 Cdk phosphorylation 

(Figure 3.9B).  Even so, we sought to thoroughly assess the status of the DNA 

damage pathway in Cdc6 depleted cells.   

 

 80



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7:  Co-depletion of ATR appears to abrogate the G1 arrest.  NHF1 
cells were transfected with a total of 100 nM of control (targeting GFP), Cdc6, 
ATR, or both siRNA.  Cells were incubated for a total of 72 h, and then labeled 
with BrdU for 1 h prior to collection.  A portion of the cells were analyzed by flow 
cytometry with anti-BrdU antibody to detect DNA synthesis and with propidium 
iodide for DNA content and the remaining sample was subjected to immunoblot 
analysis for ATR and Cdc6.  Bar graph represents only one experiment.  
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We probed Cdc6-depleted cell extracts with antibodies to the phosphorylated and 

activated forms of the DNA damage checkpoint proteins; Chk1, Chk2, and p53. As a 

positive control for activation of the DNA damage checkpoint we treated NHF1 cells 

with hydroxyurea (HU) for 24 h.  Although phosphorylation of Chk1, Chk2, and p53 

were readily detectable in HU-treated cells (Figure 4.8, lane 1), we observed no 

induction of these events in Cdc6-depleted cells (Figure 4.8, compare lanes 2 and 

3).  We further evaluated cells from 24 h to 72 h after transfection with Cdc6 siRNA 

to determine if a transient increase in DNA damage checkpoint signaling could be 

detected, but we found no such evidence (data not shown).  We thus concluded that 

the roles of p53 and Chk1 in the G1 arrest induced by Cdc6 depletion are distinct 

from their roles in the DNA damage response. 

 

Co-depletion with p53 or Chk1 rescues the molecular phenotypes associated with 

insufficient origin licensing. 

The observation that p53 and Chk1 are required for the G1 delay in licensing-

deficient cells, coupled with our earlier demonstration that Cdc6 depletion led to both 

reduced phosphorylation of Rb and loss of cyclinE/Cdk2 activity, prompted us to test 

whether co-depletion of Cdc6 with p53 or Chk1 similarly suppressed these molecular 

phenotypes.  We probed lysates of cells transfected with siRNAs targeting Cdc6, 

p53, or Chk1 either singly or in combination for phosphorylation of Rb and Cdk2 

(T160).  As we had observed before, Cdc6-depleted cells had substantially 

diminished phosphorylation of Rb and Cdk2 T160 (Figure 4.9).  Strikingly, co-

depletion of p53 with Cdc6, or Chk1 with Cdc6, largely restored Rb and Cdk2 (T160)  
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Figure 4.8:  Cdc6 depletion does not activate a canonical DNA damage 
response.  Whole cell extracts from NHF1 cells transfected with control or Cdc6 
siRNA were probed with antibodies to phospho-p53 (S15), phospho-Chk2 (T68), 
phospho-Chk1 (S317), Cdc6 and tubulin. 
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Figure 4.9:  Co-depletion of Cdc6 with p53 or Chk1 rescues Rb and Cdk2 
T160 phosphorylation.  Whole cell extracts from NHF1 cells transfected with 
control, Cdc6, p53 or Chk1 siRNA were probed with antibodies to phospho-Cdk2 
(T160), phospho-Rb (S807/811), p53, Chk1, and Cdc6.  A non-specific band 
serves as a loading control.  
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phosphorylation (Figure 4.9), in keeping with the near complete rescue of the S 

phase population (Figure 4.3A and 4.4A, respectively).   

Next, we examined whether co-depletion altered the kinase activity of Cdk2.  

We measured the histone H1 kinase activity in cyclin E immunoprecipitates from 

lysates of p53 and Cdc6-deficient cells.  Cdc6 depletion caused an approximate 5-

fold reduction in cyclin E-associated kinase activity (Figure 4.10A, green bar).  In 

contrast, co-depletion of Cdc6 and p53 maintained cyclin E kinase activity at a level 

similar to that measured in the control cells (Figure 4.10A, red bar).  Thus, p53 is 

required not only for the cell cycle effects of licensing inhibition, but also for the 

effects of licensing inhibition on Rb phosphorylation and presumably Cdk2 

activation.   

In the course of these experiments, we further noted that the cyclin E-

associated kinase activity in cells transfected with just the p53 siRNA was almost 2-

fold higher than the kinase activity in control cells (Figure 4.10A).  We considered 

the possibility that a general increase in Cdk activity could account for suppression 

of the effects of licensing inhibition.  The p53 tumor suppressor is required not only 

for induced expression of the p21 Cdk inhibitor but also basal expression of p21 in 

unperturbed cells.  We reasoned that loss of p21 expression in p53-depleted cells 

could at least partially explain the requirement for p53 in the cell cycle delay 

imposed by licensing inhibition.  Indeed, when lysates of cells treated with Cdc6 or 

p53 siRNA were probed for endogenous p21, it was clear that depletion of p53 

resulted in marked loss of p21 protein (Figure 4.10B).  We cannot, however, attribute  
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Figure 4.10:  Co-depletion of Cdc6 with p53 rescues cyclin E/Cdk2 kinase 
activity.  (A) Extracts of NHF1 cells transfected with control, Cdc6 or p53 siRNA 
were subjected to immunoprecipitation with normal rabbit serum or with anti-cyclin 
E antibody and analyzed by immunocomplex kinase assay with purified histone H1 
and [γ-32P] ATP. (B) A portion of the same extracts were analyzed for cyclin E, 
p53, p21, Cdc6 and tubulin protein by immunoblotting.  
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all of the effects of p53 in licensing-deficient cells to expression of p21.  We 

reasoned that if the role of p53 in the G1 arrest were partially through p21, then 

depletion of p21 should also suppress the cell cycle arrest induced by Cdc6 

depletion.  Experiments utilizing p21 siRNA did not demonstrate any abrogation of 

the G1 arrest induced by Cdc6 depletion and a p21 -/- fibroblast cell line arrested in 

G1 similarly to the wild-type fibroblasts when Cdc6 expression was knocked down 

(data not shown).  These observations suggest that additional p53 target genes 

might also be required for the cell cycle effects of Cdc6 depletion, or p53 may play a 

non-transcriptional role in this system that has yet to be discovered.   

 

Bypass of the G1 arrest induces apoptosis in Cdc6-depleted cells.  

At the outset of these experiments, we hypothesized that S phase entry with 

insufficient numbers of licensed origins would be detrimental to genome stability.  

Replication forks from sparsely distributed active origins might not be able to merge 

and ultimately may collapse and generate double-strand breaks.  One prediction of 

this hypothesis is that both cancer cells with documented lesions in the p53 pathway 

and normal cells transfected with p53 siRNA would accumulate double-strand 

breaks when origin licensing is inhibited and cells still enter S phase.  In support of 

this model, we observed that Cdc6 depletion in  U2OS cells (which overproduce the 

p53 ubiquitin ligase, Mdm2) or HeLa cells (which express the p53 ubiquitin ligase 

adaptor E6) had elevated levels of phosphorylated Chk2, a marker of double-strand 

breaks (Figure 4.11A).  Importantly, these cells also failed to down-regulate Cdk2 

(T160) or Rb phosphorylation (Figure 3.11), suggesting that they were incapable of  
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Figure 4.11:  Co-depletion of Cdc6 with p53 display markers of double strand 
breaks.  (A)  Whole cell extracts from U2OS and HeLa cells transfected with 
control or Cdc6 siRNA were probed for antibodies to phospho-Chk2 (T68), Cdc6, 
and tubulin.  (B) Whole cell extracts from NHF1 cells were transfected with control, 
Cdc6, or p53 siRNA and probed with antibodies to phospho-Chk2 (T68), Cdc6, and 
tubulin.  
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mounting the same cell cycle response to origin licensing inhibition that the normal 

cells did.    

To determine if DNA damage was also generated in the licensing-deficient 

normal cells forced into S phase by p53 depletion, we probed lysates of these cells 

for phosphorylated Chk2.  Strikingly, phospho-Chk2 was specifically elevated in p53- 

and Cdc6-depleted cells, compared to control cells, whereas neither Cdc6 depletion 

nor p53 depletion alone induced Chk2 phosphorylation (Figure 4.11B).  These 

findings suggest that p53 is required to prevent licensing deficient cells from entering 

a doomed S phase.     

In Chk1-depleted NHF1 cells we noted the appearance of a small population 

of cells with an S phase DNA content but little to no BrdU incorporation (Figure 4.4, 

siCdc6/Chk1).  We termed this population of cells the “collapsed S phase” 

population.  Co-depletion of Chk1 with Cdc6 greatly enhanced the number of 

collapsed S phase cells in both NHF1 and WI38 cells (Figure 4.12A).  One 

explanation for this enhancement would be inappropriate firing of widely spaced 

origins, thus creating a greater need for the function of Chk1 at replication forks over 

great distances or over long periods of time.  Chk1 has important roles in 

unperturbed DNA replication that include regulation of replication fork movement and 

replication fork stability (27,130,148,162).  In the absence of Chk1, these forks 

frequently collapse leaving cells trapped in S phase. 

If indeed the depletion of Cdc6 and Chk1 increased the likelihood that 

replication forks collapse, then we expected to find evidence of double-strand breaks  
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Figure 4.12:  Co-depletion of Cdc6 with Chk1 (but not with p53) results in the 
activation of apoptosis.  (A) The percentage of S phase cells not incorporating 
BrdU (“collapsed”) was determined in NHF1 and WI-38 cells transfected with 
control, Cdc6, or Chk1 siRNA according to the legend to Figure 4.4. (A) Whole cell 
extracts from NHF1 cells transfected with control, Cdc6, or Chk1 siRNA and 
incubated for 96 h were probed with antibodies to phospho-p53 (S15), phospho-
Chk2 (T68), Chk1, and Cdc6.  A non-specific band serves as loading control. (C) 
NHF1 cells were transfected with control, Cdc6, Chkt1, or p53 siRNA as in Figures 
4.3 and 4.4 but analyzed 96 h after transfection.  Cells were collected and stained 
for cleaved caspase-3 according to the manufacturer’s protocol.  
 

 90



in the co-depleted cells.  We probed extracts of NHF1 cells treated with Cdc6 and 

Chk1 siRNA either alone or in combination for phosphorylation of Chk2 at T68 and 

phosphorylation of p53 at S15.  Both of these phosphorylations are mediated by the 

ATM kinase in response to double strand breaks (104,165,175).  Neither Cdc6 nor 

Chk1 depletion alone were sufficient to induce detectable Chk2 or p53 

phosphorylation (Figure 4.12B).  In contrast, co-depletion of Cdc6 and Chk1 induced 

detectable phosphorylation of both p53 and Chk2 (Figure 4.12B).  Moreover, by 96 h 

post-transfection significant numbers of cells depleted of both Cdc6 and Chk1 had 

committed to apoptosis as evidenced by the appearance of cleaved caspase-3 

(Figure 4.12C).   
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Discussion 

In this study we demonstrated that Chk1 and p53 are required for cell cycle 

arrest in cells with insufficient origin licensing through down regulation of both Rb 

and Cdk2 T160 phosphorylation.  Despite the fact that both Chk1 and p53 are 

required for the arrest, we find that Cdc6-depleted cells have not activated the 

canonical DNA damage checkpoint since neither upstream markers 

(phosphorylation of Chk1 and Chk2) nor downstream targets (p53, p21, Cdc25A, 

Cdk Y15 phosphorylation) are altered by Cdc6 depletion.  Our conclusion then is 

that the roles of Chk1 and p53 in blocking S phase entry are different from their 

functions in the DNA damage response.   

We showed that in the cells co-depleted of Cdc6 and p53 the measured cyclin 

E/Cdk2 kinase activity was at control levels (Figure 4.10A).  One possible 

explanation for this observation is that reduction of p53 alone increases the basal 

activity of cyclin E/Cdk2 and when cells are co-depleted of Cdc6 the attendant 

reduction in kinase activity brings it to the level of control cells (Figure 4.13).  On the 

other hand, if this was the entire contribution of p53 in modulating the G1 arrest, 

than co-depletion of p53 would not be expected to rescue Rb and Cdk2 T160 

phosphorylation (Figure 4.9).   

Importantly, we have demonstrated a strong correlation between the ability of 

Cdc6 and Cdt1-depleted cells to enforce a G1 arrest with their ability to avoid a fatal 

S phase.  Co-depletion of Chk1 and Cdc6, or Chk1 and Cdt1, abrogated the G1 

arrest, sending cells into S phase without the resources to completely replicate their 

DNA.  Ultimately, these cells accumulated markers of double strand breaks and died  
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Figure 4.13:  Schematic illustrating possible mechanisms for p53-dependent 
abrogation of the G1 arrest.  Normal cells going through late G1 phase of the cell 
cycle maintain a steady level of cyclin E/Cdk2 kinase activity to carry out G1/S 
functions (solid red bar).  Upon insufficient origin licensing brought about by Cdc6 
depletion, cyclin E/Cdk2 kinase activity is inhibited preventing S phase entry 
(dashed red line).  Depletion of p53 alone, elevates the cyclin E/Cdk2 kinase 
activity almost 2-fold over control cells (solid blue bar), and upon insufficient origin 
licensing in the Cdc6/p53 co-depleted cells the kinase activity is only inhibited 
down to the level in control cells, still allowing for entry into S phase (dashed blue 
line).  
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by apoptosis.  Co-depletion of p53 had the same effect on the G1 arrest but did not 

lead to a robust apoptotic response, in all likelihood due to a specific requirement for 

p53 in apoptosis.  In HeLa cells, which are sensitive to apoptosis induced by 

depletion of Cdc6 alone, we also observed markers of double strand breaks even 

without Chk1 depletion.  One explanation for this result is that HeLa cells have a 

disruption in the normal function of Chk1 that disconnects replication licensing from 

S phase entry.  The nature of this difference is not yet clear, but could provide an 

opportunity for therapeutic intervention in the treatment of at least some cancers.  

Our finding that Chk1 is required for Cdk inactivation in Cdc6-depleted cells 

suggests a possible role for Chk1 in G1.  As stated in the introduction, Chk1 

depletion was shown to increase the kinase activity of Cdk2 in S phase.  It is 

possible that this same mechanism holds true for G1 phase.  To date, the only 

confirmed substrates of Chk1 are p53, Cdc25 isoforms, and Tlk1 (tousled-like kinase 

1).  In Cdc6-depleted cells we find no evidence for p53 phosphorylation that would 

lead to stabilization or p21 induction.  Additionally, Cdc25 is not phosphorylated 

since Cdc25A is not degraded in Cdc6-depleted cells, nor is the target of Cdc25 

isoforms, Y15-phosphorylated Cdk, increased.  The Tlk1 kinase is only 

phosphorylated in S phase where it activates the Asf1 chromatin assembly factor 

(69), making it unlikely that Tlk1 is a critical substrate for the G1 arrest imposed by 

Cdc6 depletion.  Although we cannot rule out the possibility that Chk1-dependent 

p53 and Cdc25 phosphorylations are extremely transient or below the level of 

detection in Cdc6-depleted cells, we consider it more likely that Chk1 has a unique 

substrate or interaction partner that connects licensing to Cdk activation.  The 
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requirement for p53 in preventing Cdk2 activation and maintaining the G1 arrest, 

even when Chk1 is present, suggests that the target of Chk1 may be an interaction 

with (or phosphorylation of) p53 that is distinct from the relationship of Chk1 and p53 

in the DNA damage response.  In that regard, this novel requirement for Chk1 in an 

early G1 arrest adds to the growing list of Chk1 functions that includes replication 

fork progression, fork stability, and coordinating mitotic entry with S phase 

completion. 
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Chapter 5 
 

Conclusions and Perspectives 

 

A.  Conclusions  

 The work presented in this dissertation provides evidence for a novel DNA 

replication licensing checkpoint that protects cells from entry into S phase with 

insufficient licensed origins.  Prior to the work presented here, other groups had 

shown that reduction of various preRC components (Orc2, Mcm7, and over-

expression of Geminin) resulted in a G1 delay in normal cells while apoptosis was 

activated in a variety of cancer cells (56,124,181).  The present study contributes to 

our understanding of particular events that are required to maintain normal cells 

arrested in G1 until an optimal number of licensed origins are reached.   

 We demonstrated that the G1 arrest in response to insufficient origin licensing 

in normal human fibroblasts (NHF1, NHF10, and WI38) is characterized by loss of 

Rb phosphorylation and loss of cyclin E/Cdk2 kinase activity.  The loss of cyclin 

E/Cdk2 kinase activity is most likely attributed to loss of Cdk2 T160 phosphorylation.  

In addition, we find that both p53 and Chk1 are required to maintain the G1 arrest 

and reducing the abundance of one or the other protein rescues the phosphorylation 

of both Rb and Cdk2 T160.   

 

 



B. Possible Mechanisms for the Loss of Cdk2 T160 Phosphorylation 

Cdk-Activating Kinase (CAK) 

Little is known about the mechanisms that regulate the activity of Cdk2 

through phosphorylation of the T160 residue.  Phosphorylation of this site appears to 

be regulated only in cells coming out of quiescence (114), with very little being 

known about its regulation throughout the cell cycle.  The Cdk-activating kinase, or 

CAK complex, is the only known kinase responsible for the activating 

phosphorylation on the T160 residue of Cdk2 (182).  Inhibition of CAK could explain 

the defect in Cdk2 T160 phosphorylation.  As shown in Figure 3.12, we observe no 

changes in Cdk7, cyclin H or Mat1 protein levels or in CAK activity in Cdc6-depleted 

fibroblasts.  This suggests that, at least in vitro, there is no defect in CAK kinase 

activity.  However, this does not discount the possibility that there is a defect in CAK 

in vivo.   It is possible that an additional factor is bound to CAK preventing it from 

being able to bind to cyclin E/Cdk2 and therefore preventing the activation of Cdk2.   

Phosphatase Activation 

Another possible explanation for the loss in Cdk2 T160 phosphorylation that 

has yet to be explored is the activation of a phosphatase (Figure 5.1).  The potential 

role of phosphatases in G1 progression and Cdk2 activation should be considered.  

KAP, or the Cdk-associated protein phosphatase, has been identified as the enzyme 

that dephosphorylates T160 of Cdk2 (72).  Most KAP studies have examined its role 

in regulating the cyclin A-Cdk2 interaction.  It has been shown that KAP prefers to 

dephosphorylate monomeric Cdk2, which prevents cyclin A binding and indirectly 

promotes degradation of cyclin A (167).  The lack of evidence for a similar activity on  
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Figure 5.1:  Possible Mechanisms for Inhibition of Cyclin E/Cdk2.  Insufficient 
origin licensing (A) inhibits CAK preventing Cdk2 T160 phosphorylation, (B) 
activates Cdk-activating phosphatase (KAP) dephosphorylating Cdk2 T160, or (C) 
inhibits protein phosphatase 2A (PP2A) which is required to dephosphorylate a 
substrate required for the phosphorylation of Cdk2 T160.   
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cyclin E-Cdk2 could suggest that KAP is only active in S phase.  If KAP (or another 

phosphatase) functioned in the same manner with cyclin E-Cdk2, one would expect  

to see loss of cyclin E protein, which is not observed in response to insufficient origin 

licensing.   

Alternatively, it is possible that the activity of a phosphatase is an indirect 

requirement for the phosphorylation on T160 of Cdk2.  For example, inhibition of 

protein phosphatase 2A (PP2A) has been shown to inhibit the activation of Cdk2, 

Cdk4 and Cdk6, and the phosphorylation of Rb (206).  This suggests that PP2A 

might remove an inhibitory phosphorylation on a yet unidentified protein (i.e. a 

kinase or a required cofactor), thus allowing for the activation of Cdk2.  Recent 

evidence in Xenopus demonstrated that dephosphorylation by PP2A of a unknown 

soluble substrate was required for the loading of Cdc45 onto the chromatin (29).  

This brings together an interesting model for the involvement of PP2A in origin 

licensing (Figure 5.2).  As mentioned in Chapter 2, loading of Cdc45 onto chromatin 

requires the phosphorylation of MCM by cyclin E/Cdk2 and Cdc7/Dbf4.  Both the 

loading of Cdc45 and activation of cyclin E/Cdk2 require the dephosphorylation by 

PP2A of a yet to be identified substrate in order for these events to occur.  The 

identity of this substrate is unknown at this time, but it could hold the key to 

understanding how a deficit in Cdk2 T160 phosphorylation would be linked to 

insufficient origin licensing and would prevent cells from entering S phase.   

Cdk2 Localization 

 It has been demonstrated that when changes in Cdk activating 

phosphorylation are observed, they are often accompanied by changes in Cdk2  
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Figure 5.2:  Speculation for the involvement of PP2A in Origin Licensing 
Checkpoint. Loading of Cdc45 onto chromatin requires the phosphorylation of 
MCM by cyclin E/Cdk2 and Cdc7/Dbf4.  Both the loading of Cdc45 and activation 
of cyclin E/Cdk2 require the dephosphorylation by PP2A of a yet to be identified 
substrate in order for these events to occur.  The identity of this substrate is 
unknown at this time, but it could hold the key to understanding how a deficit in 
Cdk2 T160 phosphorylation would be linked to insufficient origin licensing and 
would prevent cells from entering S phase.  
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localization.  In quiescent fibroblasts, Cdk2 resides primarily in the cytoplasm, but 

late in G1 it translocates to the nucleus by a mechanism that is still poorly 

understood (20-22,44,97).    Since all subunits of CAK are constitutively expressed 

in the nucleus (190), the increase in Cdk2 phosphorylation on T160 in late G1 has 

been attributed at least in part to its relocalization.  We have analyzed nuclear and 

cytosolic extracts from serum-stimulated Cdc6-depleted cells and observed a loss of 

Cdk2 in the nuclear fraction (Figure 5.3A).  Although this is an intriguing finding, 

there are some concerns about the loss of Cdk2 in the nucleus as being the 

explanation for loss of the phosphorylation of Cdk2 on residue T160.  First, in the 

synchronized experiments where we observed loss of Cdk2 protein in the nucleus, 

we also observed an overall loss of total Cdk2 protein in the whole cell extract 

(Figure 5.3B).  This is not consistent with what is observed in the log phase cells, 

where loss of phosphorylation on residue T160 is decreased but no changes in total 

Cdk2 are observed (Figure 3.11).   Further examination of Cdk2 localization in the 

log phase experiments would give further validity to the synchronized experiments.  

Second, generation of a cell line stably expressing Cdk2 fused to a constitutive 

nuclear localization signal (Cdk2-NLS) did not abrogate the G1 delay in response to 

Cdc6 depletion (Figure 5.3C).      

   

C.  Possible Explanations for p53 in the Maintenance of the G1 Arrest 

 We demonstrated that p53 is required to maintain the G1 arrest in response 

to insufficient origin licensing.  We consistently observed a modest induction of p53 

upon insufficient origin licensing, but did not observe any up-regulation of p21 or  
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Figure 5.3:  Insufficient origin licensing may lead to re-localization of Cdk2.  
(A)  NHF1 cells were transfected with 100 nM control siRNA or Cdc6, incubated 
for 12 h, the medium was changed to medium containing 0.5% FBS and incubated 
an additional 60 h.  Cells were re-stimulated into the cell cycle by addition of 10% 
FBS, and collectioned at 0, 6, 10, and 14 h.  Cells were fractionated by hypotonic 
lysis into cytosolic and nuclear fractions and subject to immunoblot analysis.  (B)  
Whole extracts treated as in A, were subject to immunoblot analysis.  (C).  NHF1-
pLXSN cells and NHF1-pLXSN-Cdk2NLS cells were transfected with 100 nM 
control or Cdc6 siRNA and incubated 72 h. BrdU incorporation was evaluated by 
flow cytometry.   

 

 

 102



activation of markers of DNA damage, such as p53 phosphorylation at S15 or S20.  

The modest induction of p53 raises the possibility that it has become more 

stabilized, possibly through phosphorylation on residues that have yet to be 

investigated.  P53 is phosphorylated on a number of sites (S6, S9, S33, S37, S46, 

S315, and S392); so, it is possible that one of these phosphorylations may play a 

role in maintaining the G1 arrest.  Of these, the most interesting is the 

phosphorylation of p53 at S33.  In vitro work has demonstrated that the 

phosphorylation on S33 is carried out by the CAK complex (100) and provides a 

possible link between p53 and cyclin E/Cdk2 activation.   

 Another alternative, but less exciting explanation would be an indirect role for 

p53 in the G1 arrest.  We cannot rule out the possibility that the only role for p53 is in 

regulating the basal levels of cyclin E/Cdk2 kinase activity.  We observed in both 

control and Cdc6-depleted cells a small amount of p21 bound to cyclin E/Cdk2 

complexes.  This amount of p21 may serve as a check and balance to maintain the 

correct level of kinase activity.  Therefore, depletion of p53 results in loss of p21 

expression, which leads to an increase in cyclin E/Cdk2 activity.       

 

D.  Other Possible Explanations for the G1 Arrest 

 We cannot ignore the possibility that there are other mechanisms responsible 

for inhibiting cyclin E/Cdk2 kinase activity besides the loss of Cdk2 T160 

phosphorylation.  We demonstrated that depletion of p53 elevates the Cdk2 kinase 

activity two-fold over control.  When we then co-depleted Cdc6 and p53, cells 

recovered the T160 phosphorylation and entered S phase, but we still observed an  
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Figure 5.4:  Diagram displaying the inhibition of cyclin E/Cdk2 kinase activity.  
Activity of cyclin E/Cdk2 kinase is strongly inhibited in extracts from cells 
transfected with Cdc6 siRNA.  Depletion of p53 elevates the kinase activity of 
cyclin E/Cdk2 almost 2-fold over control cells.  Co-depletion of Cdc6 and p53, 
abrogates the G1 arrest and cyclin E/Cdk2 kinase activity returns to control levels.  
However, Cdc6 depletion in cells also depleted of p53 still inhibit activity (arrows).    
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inhibition of cyclin E/Cdk2 kinase activity relative to the matched control, i.e. 

depletion of p53 only (Figure  5.4).  This would suggest that there are additional  

mechanisms involved in inhibiting cyclin E/Cdk2 activity.   

 

E.  Future Directions  

 The work presented here only began to address what is occurring in response 

to insufficient origin licensing.  There are many aspects of this pathway that still need 

to be investigated.  Questions that need further investigation are: (1) how is 

insufficient origin licensing determined by the cell, (2) what are the mechanisms 

linking loss of MCM loading with inhibition of Cdk2 activation, and (3) what is 

preventing the few licensed origins from firing?  

 

How is insufficient origin licensing sensed by the cell? 

How is the cell able to know whether or not an appropriate number of origins 

have been licensed to complete S phase?  Does origin licensing (loading of the 

MCM complex) recruit/release factors to/from the chromatin?  One possibility is that 

mammalian origins are marked by “indicator” proteins that upon origin licensing are 

released from the chromatin.  Once the level of these indicators reaches a certain 

threshold, that is a signal to the cell that enough origins have been licensed and is 

safe to proceed into S phase (Figure 5.5A).  A reciprocal model is another 

possibility.  In this case, loading of the MCM complex onto chromatin recruits the  
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Figure 5.5:  Origin Licensing recruits/releases a protein to/from the 
chromatin.  (A) In this model, in the presence of origin licensing (green triangles) 
the indicator protein (blue circles) is released from the chromatin (left side) while it 
remains chromatin bound when insufficient origin licensing occurs (red triangles-
right side).  (B)  In this model, origin licensing recruits the indicator protein to the 
chromatin; insufficient licensing results in low chromatin bound levels of the 
indicator protein. 
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“indicator” protein and it is the loss of the soluble fraction or gain of the chromatin 

fraction that signals to the cell to proceed into S phase (Figure  5.5B).   

 

What links origin licensing to Cdk2 activation? 

We demonstrate that in the absence of origin licensing Cdk2 does not 

become activated.  Is it possible that chromatin serves as a platform for Cdk2 and  

CAK to encounter one another and this is facilitated by MCM loading?  It has been 

shown that Cdk2 localization to chromatin is dependent on origin licensing (62) but it 

is not known whether this chromatin association occurs at origins in G1.  To 

investigate this question one could perform chromatin immunoprecipitation (ChIP) 

using Cdk2 or CAK and examine origin occupancy at known origins such as c-myc 

and lamin B2.  This technique would allow for the examination of Cdk2 and CAK at 

origins and determine if defects in origin licensing alter this interaction.   

 

What is preventing the few licensed origins from firing when cells are depleted of an 

origin licensing factor? 

 The use of siRNA results in significant reduction of the target protein but not 

complete loss of the protein.  The small amount of protein that is still present in the 

cell, allows for a small number of origins to be licensed.  What is preventing these 

origins from firing?  This dissertation has focused primarily on the events that occur 

at the origin, i.e. origin licensing.  In order to determine what is preventing these few 

licensed origins from firing, examination of the pre-initiation complex might be 

insightful.  It may be that p53 is functioning not in signaling to the cell that there are 
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an insufficient number of licensed origins, but instead at the pre-initiation complex 

preventing the origin from firing.  Or it may simply be that the few minimally licensed 

origins do not fire because Cdk2 activity is low.   

 

Dissecting the role of Chk1 in maintaining the G1 arrest 

We can only speculate what role Chk1 has in the G1 arrest at this point.  

There is some concern that the cells co-depleted with Chk1 siRNA are not actually 

displaying an abrogation of the G1 arrest, but instead a compounding phenotype 

due to Chk1 role in S phase.  The argument can be made that since cells 

transfected with Chk1 siRNA alone display problems with S phase progression, it is 

possible that upon co-depletion of Chk1 and Cdc6 the cells transit through the cell 

cycle too slowly to exhibit a G1 arrest.   

One approach to addressing this concern would be the use of Chk1 kinase 

inhibitors, SB218078 and Gö6976.  Both of these compounds are indolocarbazoles 

and have been found to have better selectivity and lower toxicity than the commonly 

used Chk1 kinase inhibitor, UCN-01 (90,101,212).  To date we have been 

unsuccessful in using these two Chk1 inhibitors in experiments with log phase cells.  

One possibility would be to utilize the Chk1 inhibitors in cells that have been 

synchronized by the serum starvation/re-stimulation protocol.  This would shorten 

the time the cells are exposed to the inhibitor, since control cells enter S phase 

within 10-14 h after re-stimulation.  Evaluation of the rate of entry into S phase of 

Cdc6-depleted cells treated with either of the inhibitors would provide further 

evidence for the involvement of Chk1 in the G1 arrest.       
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Establishing that in fact Chk1 is involved in the G1 arrest would be a novel 

and exciting finding since there is very limited evidence of involvement of Chk1 in 

G1.  Determining whether the kinase activity of Chk1 or the presence of Chk1 

protein itself is required would help validate the role of Chk1 in G1 phase.  In 

response to most forms of DNA damage, Chk1 becomes activated by 

phosphorylation on serine residues 317 and 345, but in the case of insufficient origin 

licensing we do not observe phosphorylation on either residue.  It is possible that 

there are other sites on Chk1 that activate its kinase activity.  Measuring the kinase 

activity of Chk1 would give us insight into whether there is an additional residue on 

Chk1 that is being modified to activate its kinase activity.   

We could also utilize a kinase dead version of Chk1 to determine if it is the 

presence of the protein that is required and not necessarily the kinase activity of 

Chk1.  There have been some technical difficulties with the kinase-dead and wild-

type Chk1 adenovirus, in that over-expression of wild-type Chk1 in cells coming out 

of quiescence interferes with control cells entering S phase.  These are preliminary 

results and further optimization would be needed to determine if this is an 

appropriate approach.     

In addition to examining the kinase activity of Chk1, it would also be 

interesting to examine the status of cyclin E/Cdk2 kinase activity in the Chk1 co-

depleted cells.  Does depletion of Chk1 result in increased activity of cyclin E/Cdk2, 

as has been demonstrated by others (188)?  
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F.  The Checkpoint as a Whole    

 With the elucidation of the mechanisms of this checkpoint still in its infancy we 

can only speculate what is happening.  The model that makes most sense with the 

data presented here is that, similar to the spindle checkpoint, the origin licensing 

checkpoint is always on and, upon sufficient origin licensing, gets turned off (Figure 

5.6).  In this model, as cells enter G1 phase cyclin E/Cdk2 remains inhibited and p53 

is involved in inhibiting origins from firing as they are being licensed.  Once sufficient 

origin licensing has been achieved, cyclin E/Cdk2 becomes active and p53 is no 

longer needed to inhibit origin licensing.    
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Figure 5.6:  Model for an Origin Licensing Checkpoint.  In this model, the 
cell enters S phase and cyclin E/Cdk2 kinase activity remains inactivated and 
p53 is involved in preventing firing from origins that have been licensed.  Once 
adequate numbers of origins are licensed, cyclin E/Cdk2 becomes activated 
and p53 is no longer needed to inhibit origin firing.    
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