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ABSTRACT
William F. Shively: Novel behaviors in fermion systems with point-like Fermi surfaces

and singular interactions
(Under the Direction of D. V. Khveshchenko)

Modern condensed matter physics owes much of its success to Fermi liquid theory. In re-

cent times, however, the study of strongly correlated particle systems is opening up all-new

territory in many-body physics. A peculiar class of such systems, that of nodal fermions, is

characterized by the quasiparticle density of states vanishing at the point-like Fermi surface

and long-range inter-particle interactions surviving unscreened. In the first part, I discuss

fermion pairing in one such system, 2D graphene. By solving the gap equation for the exci-

tonic order parameter, I obtain values of critical interaction strength for a variety of power-law

interactions and densities of states. Furthermore, these results are then used to compute the

respective free energies and analyze possible phase transitions. In the second part, I discuss

the effects of lattice disorder and impurities on the density of states in nodal fermion sys-

tems. These results and predictions will be of interest to a broad range of physical problems

involving nodal fermions, and can be tested in a variety of experimental directions.
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Chapter 1

Introduction

1.1 Fermi liquids and non-Fermi liquid candidates

Over the last fifty years, Fermi liquid theory has served physicists well in describing many

condensed matter systems. It is perhaps surprising how many phenomena can be described

in terms of weakly correlated many-body theory, in which electron-electron interactions are

largely ignored. However, while Fermi liquid theory describes a subset of many-body phe-

nomena quite well, other phenomena fall squarely outside of this region.

In more recent times, one of the prominent directions in modern condensed matter physics

is that of strongly correlated electron theories. Such systems are nonperturbative in na-

ture, and being as such, traditional Fermi liquid techniques break down. One such example

can be found in effectively 2-dimensional (hereafter 2D) monolayers of graphite, or graphene.

Graphene is an example of a degenerate semimetal, the electronic structure of which harbor

regions where the conduction and valence bands meet at a point. In these vicinities the Fermi

surface consists of isolated Fermi points (“nodes”), at which the excitation density of states

(DOS) vanishes and strongly correlated phenomena occur, having dramatic effects on the

electronic properties of the system as a whole.

For years, theorists have made predictions and conjectures about what new physics might

occur in these zones [4, 7, 8, 9, 10, 11, 12, 3, 13]. All sorts of parallels have been made with

other areas of physics: (2+1)-D electrodynamics, chiral field theories, non-BCS kinematics,

to name a few. Furthermore, as advances have been made in fullerenes and carbon nanotubes

[14, 15] – the latter of which can be thought of as a sheet of graphene rolled into a tube – great

interest has grown over the electronic properties of such systems. A fuller understanding of

these properties would not only further our knowledge of fundamental properties of nature,
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Figure 1.1: The low-energy dispersion relations near the Dirac points in the graphene Brillouin
zone. (Reproduced from [1])

but it could also result in unconceived applications in materials science.

Recently, new techniques have been developed for creating very clean samples of just a few

graphitic monolayers (c.f., [16, 17, 18] and references therein, and in the papers that follow).

This has led to an explosion of research, some of the most recent major developments of which

are discussed here. One of the most significant is that this has allowed direct experimental

observations of the quantum Hall effect (QHE) and Berry’s phase in graphite [19, 1, 20].

Although previous studies did observe indications of Landau level (LL) formation, the QHE

was not observed, probably due to the low mobility of carriers in the samples [21, 22, 23].

Kim et al. [1] extracted graphene samples with far higher mobilities (> 104cm2V −1s−1), al-

lowing them to probe deep into the magnetic quantum limit and investigate various transport

phenomena. In so doing, they were able to probe the physics around the Dirac point directly,

controlling the charge density via the gate voltage, Vg.

Although the QHE has been observed in many other materials, in graphene it is distinctly

different, as the quantization condition for the transverse resistance,

R−1
xy = ±gs(n+ 1/2)e2/h,

is shifted by a half-integer and hence is antisymmetric. (Here n is a positive integer, the spin

and sublattice degeneracy gs = 4, h/e2 ≈ 25812.8Ω, h = 2π~, and ± stands for electrons

and holes, respectively.) This half-integer shift is a signature of Dirac particles [24], and is

directly due to pseudo-relativistic LLs [25, 26, 27] and the carriers behaving “relativistically”

with a (fictitious) effective mass mc = EF/v
2
F at the Dirac point. This opens up many in-

teresting issues concerning mesoscopic transport in such systems and could potentially have

applications in carbon-based electric and magnetic field-effect devices [22].
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Figure 1.2: Plateaus in Hall conductivity σxy for the three types of the integer quantum
Hall effect (IQHE) (reproduced from [2]). right to left : conventional IQHE in 2D semicon-
ductor systems; IQHE in bilayer graphene; IQHE for massless Dirac fermions in single-layer
graphene. The plateaus occur at integer multiples of ge2/h, where e2/h is the conductance
quantum and g the system degeneracy. Note the zero-level plateau is missing in the IQHE in
bilayer graphene as it is in the relativistic single-layer IQHE. The Landau levels correspond-
ing to electrons (blue) and holes (orange) are shown. B is the magnetic field and φ0 = h/e
is the flux quantum.

Geim et al. [21] observed the electric field effect – allowing one to control the carrier

concentration in a semiconductor device via an externally applied voltage – in naturally occur-

ring 2D few-layer graphene. Different from multilayer graphene or bulk graphite, “few-layer

graphene” (FLG) refers to devices consisting of as few as just one to three atomic layers,

all of which are observed to behave in a manner essentially identical to a 2D semimetal.

Pushing even further to single- and double-layer graphene, this group later discovered [2]

that double-layer graphene displays an unconventional QHE (see fig.1.2) and Berry’s phase,

due to the massless Dirac fermions characteristic of either single layer coupling together into

a novel kind of massive chiral quasiparticle. Such quasiparticles are similar to those in the

conventional QHE in that they display parabolic dispersion and finite effective mass, but sig-

nificantly different in that they also acquire a Berry’s phase of 2π over cyclotron trajectories.

This remains an open issue to be addressed by theorists.

Most recently, following on the heels of these results, de Heer et al. [28] conducted a

magneto-spectroscopy study of the optical properties of ultrathin epitaxial graphite layers

and directly measured the energy dispersion of electrons in systems consisting of just a single

graphene monolayer or a few weakly coupled layers. As predicted by theory (c.f., [4, 7] and

Ch.2 below), direct evidence was found that the free charge carriers in epitaxial graphite do,

in fact, behave as massless Dirac particles with a “relativistic” (linear) energy Ep = ±c̃|~p|,
with a measured velocity c̃ ≈ (1.03±0.01)×106m/s. Furthermore, they also observed a class

3



of transitions outside of standard 2D electron gas (2DEG) theory, from filled hole states to

empty electron states: particle-antiparticle creation and annihilation events in Dirac formal-

ism. This work marks the first known measurement of Dirac spectra in condensed matter

systems.

Thanks to developments in spintronics, etc., there remains continued interest in the mag-

netic properties of nonmetallic compounds, including pyrolytic graphite and other degenerate

semimetals. Such systems could harbor a latent excitonic instability, from which the com-

pound would undergo a phase transition into a (possibly weak, but robust) ferromagnetic

state [29, 30]. Previously, it was believed that one such degenerate semimetal, the hexa-

borides, could be a candidate for such a ferromagnet [31, 32, 33, 34, 35, 36], but they were

later disqualified [37] on the grounds that the apparent ferromagnetism was actually due to

extrinsic contamination from ferromagnetic compounds containing Fe and Ni, rather than to

the intrinsic electronic qualities of the hexaboride itself. However, reports of weak ferromag-

netism in some graphitic samples [38, 20] are still unexplained, and remain open possibilities.

Degenerate semimetals are an example of a broader class of very different nodal fermion

systems. Other examples include p-wave superfluids (e.g. He3), d-wave superfluids (e.g.

cuprates), and f -wave charge density wave (CDW) insulators (e.g. dichalcogenides). A con-

siderable amount of physical phenomena are universal to all such systems, and symmetries

should be seen in the physics of these otherwise very different physical systems. I’ll return

to this point in chapter five.

New challenges lie ahead for theorists to explain and predict new phenomena, and to do

so will require non-traditional techniques. Up until now, physicists have resorted to various

simplifications or numerical approximations as a way of getting around the nonperturbative

nature of such strongly coupled phenomena. In this work, I attempt to show new analytical

approaches to confronting strongly-correlated physics directly, accommodating nonperturba-

tive phenomena that have been left unaccounted for in the past. I will not simply focus on

one particular system; rather, I will examine a whole host of systems with various DOSs and

effective inter-particle interactions, all related to each other by harboring a formally similar

order parameter relation. After some preliminary background details (chapter two), in chap-

ter three I will focus on pairing interactions between fermions and associated quantum phase

4



transitions. In chapter four, I will explore the effects lattice disorder and impurities can have

on the kinematics of such systems. Finally, in chapter five I will discuss what repercussions

and applications these new results have in a variety of strongly-correlated nodal fermion

systems.
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Chapter 2

Strongly Coupled Phenomena in

Graphene: Beyond Fermi Liquid

Theory

As discussed in the previous chapter, nodal fermion systems are those in which the con-

duction and valence bands touch, causing the DOS for the quasiparticle Fermi surface to

vanish. In this vicinity, long-ranged interactions remain unscreened, whether they be bare

Coulomb interactions or those mediated by soft collective modes proliferating near an emerg-

ing instability. Degenerate semimetals, such as graphite or bismuth, are known to harbor

nodal fermion systems. Illustrating semimetals in general, we will look specifically at planar

graphene [4, 7, 8, 9, 10, 11, 12, 3]. We begin with some basic properties.

2.1 Electronic Structure in Degenerate Semimetals

Planar graphene has a honeycomb lattice structure, as depicted in fig.2.1, consisting of

two interpenetrating triangular sublattices (labeled A and B), with one lattice point of each

type in each Brillouin zone. Quasiparticle excitations have momenta labeled i = 1, 2 with

respect to either sublattice, creating two effective fermion “flavors.” The conduction and

valence bands touch at two inequivalent conical K points located at the corners of the hexag-

onal Brillouin zone, and it is at these nodes that the low-energy quasiparticles excitations

have a linear dispersion relation E
(0)
p = ±vp, the velocity v being proportional to the width

of the electronic π band t ≈ 2.4 eV [4, 7]. In the limit that all lattice strain vanishes, these



Figure 2.1: Planar graphene honeycomb lattice (left) and Brillouin zone (right) (reproduced
from [3] and [4]).

two points are exactly degenerate.

The formal similarity between fermions in lattice gauge theories and the tight-binding

description of electrons in crystals [4, 10] leads to a free-field theory on the graphene lattice.

Thus, we will be confining ourselves to such descriptions of graphene.

In this approximation, we are actually diagonalizing the Hamiltonian

H = γ
∑

〈i,j〉
a+

i aj (2.1)

where the sum is over nearest-neighbors i, j and the operators ai and aj satisfy

{ai, aj} =
{
a+

i , a
+
j

}
= 0

{
ai, a

+
j

}
= δij (2.2)

In the case of graphite, each site of the honeycomb lattice yields one electron to the Fermi

sea.

Using the notation presented in [10], we can think of the wavefunctions as being composed

of two identical orbitals φ• and φ◦, localized around the locations of each of the two atoms

in the primitive cell. Constructing the eigenstate

|Ψ〉 =
∑

i◦
c◦e

ik·ria+
i |0〉 +

∑

i•
c•e

ik·ria+
i |0〉 , (2.3)

if we act with the Hamiltonian (2.1)

H |Ψ〉 = γ
∑

〈i,j〉
a+

i aj

∑

i•
c•e

ik·ria+
i |0〉 + γ

∑

〈i,j〉
a+

i aj

∑

i◦
c◦e

ik·rja+
i |0〉

= γ
∑

j

eik·uj

∑

i•
c◦e

ik·ria+
i |0〉 + γ

∑

j

eik·vj

∑

i◦
c•e

ik·ria+
i |0〉 . (2.4)

7



Here, {uj} is a triad of vectors pointing in the direction of the nearest neighbors of a • point,

{vj} the triad made of their respective opposites, and

β =

∫

d2rφ̄•(r)Hφ•(r) =

∫

d2rφ̄◦(r − d)Hφ◦(r − d) (2.5)

γ =

∫

d2rφ̄•(r)Hφ◦(r − d) =

∫

d2rφ̄◦(r − d)Hφ•(r − d − vi). (2.6)

Thus, if c• and c◦ are solutions to the eigenvalue problem



0 γ

∑

j e
ik·uj

γ
∑

j e
ik·vj 0








c•

c◦



 = Ek




c•

c◦



 , (2.7)

the eigenstate (2.3) is an eigenvector of H, and

Ek = (c̄•, c̄◦)




β γ

∑

j e
iak·uj

γ
∑

j e
iak·vj β








c•

c◦



 . (2.8)

The solution to the eigenvalue equation is

Ek = ±γ

√

1 + 4 cos2

√
3

2
kx + 4 cos

√
3

2
ky cos

3

2
ky (2.9)

The reciprocal lattice vectors are given by

K1 =
2π√

3
ex +

2π

3
ey K2 =

4π

3
ey. (2.10)

The primitive cell of the reciprocal lattice (a hexagon), which consists of only the points that

reach the Fermi level, are the six vertices

kx = ± 4π
3
√

3
ky = 0

kx = ± 2π
3
√

3
ky = ±2π

3
.

(2.11)

Because of the symmetry of the lattice, only two of these points are independent, hence we

have our two K Fermi points.

Taking the continuum limit in order to study low energy excitations,

k =
4π

3
√

3
ex + δk (2.12)

and

H ≡




0 γ

∑

j e
iak·uj

γ
∑

j e
iak·vj 0



 ≈ −3

2
γa




0 δx + iδky

δx − iδky 0



+ O
(
(a δk)2

)

(2.13)
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Näıvely scaling,

lim
a→0

H/a = −3

2
γσT · δk (2.14)

which is the Dirac operator in 2D. Hence, the quasiparticle excitations behave as pseudo-

relativistic Dirac particles, with a linear dispersion Ep = ±vFp, where the speed of light c

has been replaced by the Fermi velocity vF ≈ 2 × 106m/s.

2.2 Hamiltonian

We can formulate the quasiparticle excitations in terms of the Bloch states on the two

sublattices by writing them as a pair of two-component Weyl matrices (one for each “flavor”),

ψiσ, where σ is a spin index. We can further combine this pair together into one four-

component Dirac spinor Ψσ = (ψ1σ, ψ2σ) [39], and treat the number of species N as an

adjustable parameter. (In the physical case, N = 2.) Then the free quasiparticle Hamiltonian

can be written as

H0 = ivF

N∑

σ=1

∫

r

Ψ̄σ [γ̂1∇x + γ̂2∇y] Ψσ (2.15)

The Coulomb interaction contribution can be written as

HC =
vF

4π

N∑

σ,β=1

∫

r

∫

r′
Ψ̄σ (r′) Ψσ (r′)

g

|r − r′|Ψ̄β (r) Ψβ (r) (2.16)

where Ψ̄σ = Ψ†
σγ̂0 and the reducible representation of the 4×4 γ-matrices is written in terms

of the Pauli matrices τi as γ̂0,1,2 = (τ3, iτ2,−iτ1) ⊗ τ3. (See also App.A.)

In the particle-hole representation, the inverse fermion Green function reads

Ĝ−1(ω,p) = ω − µ− τ̂3ξp + τ̂1∆p (2.17)

where τ̂i is the triplet of the Pauli matrices acting in the particle-hole space, µ is the chemical

potential, and ∆p is the anticipated p-dependent gap function. The gap function describes

the spatially uniform pairing in the particle-hole (“Peierls”) channel caused by a long-ranged

generalized repulsive potential. For the Coulomb interaction above, this is given in terms of

the Fourier transform

U (0)(q) = g0/q. (2.18)

We can further generalize this to account for a general effective long-range (Coulomb-like)

interaction by writing

U (0)(q) = g0/q
ηα (2.19)

9



where α and η are real adjustable parameters, η being determined by the generalized disper-

sion relation ξp ∝ pη. We may generalize the power-law density of states (DOS) ν(ǫ) ∝ ǫβ,

where β is a real adjustable parameter, related to η and the effective dimension of the the

system via β = D/ν − 1 [40]. This will be discussed more in chapter three. 1

When the nodal fermion polarization Π(ω,q) is taken into account in the above long-range

interaction (2.19), the renormalized effective interaction is

U(ω,q) =
g0

qηα + gΠ(ω,q)
(2.20)

Letting Λ be the span of the Brillouin zone, for low momenta p ≪ Λ and even lower

frequencies (ω/qη → 0 and q → 0), the one-loop polarization behaves as Π(0,q) ∝ qD−η.

This implies that, under the condition α ≤ β, the effective interaction (2.20) retains its

bare form. It will be adjusted by a finite renormalization of the coupling constant g0 →
g0 [1 + g0Π(0,q)/qηα]−1

∣
∣
q→0

and an additional frequency dependence at the limit α = β, but

these effects are of lesser degree. However, if α > β, the overscreened effective interaction

(2.20) takes on a universal form governed by the fermion polarization, thus giving rise to

behavior that is qualitatively similar to that occurring on the line α = β.

2.3 Schwinger-Dyson, Gap Equation

The gap equation is given by the τ̂1-component of the Schwinger-Dyson equation for the

above fermion quasiparticle propagator (2.17):

G−1(ωm, ~p) = G−1
0 (ωm, ~p) − T

∞∑

n=−∞

∫
d2k

(2π)2
γ0G(ωn, ~k)γ

0U(~p− ~k) (2.21)

Wave function renormalization is a next-to-leading order effect in the 1/Nf expansion, thus

we can neglect it [41]. Also, since we are dealing with a nonrelativistic model, we can as-

sume that the retardation effects of the gauge field are negligible (“instantaneous exchange

approximation”).

1We could seek a more general spatially-variable solution, which would then lead to inves-
tigating possible Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) states, in which the order parame-
ter demonstrates periodic spatial variations. However, preliminary results suggest that such
states may only provide alternatives to the uniform ground state in the vicinity of µ ≈ µc,
opening the possibility of a sequence (at least, two) transitions that might occur in this region.
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Thus, we arrive at the gap equation

∆(p) =
∑

q,∓
U (0,p − q)

(∓) ∆(q)

2Eq

θ (µ∓ Eq) (2.22)

where Eq =
√
χ2

q + ∆2
q is the quasiparticle energy, and the sum is taken over all the

occupied states in both the valence (Ω = −Eq) and conduction (Ω = Eq) bands. The oc-

cupation factor θ(µ ∓ Eq) sets a lower limit of momentum integration. For any α > 0, a

nontrivial momentum dependence of the integral kernel in eq.(2.22) rules out the possibility

of the standard BCS solution ∆q = const.

Solving the gap equation for arbitrary p, µ would reveal the dynamics and phases for these

nodal systems. However, solutions for arbitrary α, β are nearly impossible to obtain directly.

That said, we may overcome these difficulties if we instead employ an approximate analytical

technique, the “bifurcation approximation”. It is that to which we now turn.

11



Chapter 3

Excitonic Pairing in Nodal Fermionic

Systems

3.1 The Bifurcation Approximation

It is conceivable that in graphene such a scenario as a novel form of excitonic instabil-

ity could arise, resulting from the opening of a gap in the quasi-2D electronic spectrum.

Moreover, such an instability would manifest itself through the onset of an insulating charge

density wave (CDW) [39].

Such a transition is interaction driven. Previous investigations [42, 43] focused chiefly

on short-ranged Hubbard-like intersite and nearest-neighbor repulsive interactions, ignoring

longer-ranged interactions that can be present in poorly screened semimetals. On the other

hand, others [11, 9, 12] focused specifically on the long-ranged Coulomb interactions and

their renormalization, and concluded that, because the renormalized coupling monotonously

decreases for low energies, it therefore could not cause an instability in the gapless paramag-

netic ground state of graphite. However, in trying to explain the experimentally observed

linear energy dependence of the quasiparticle damping [44, 45], their estimated bare coupling

constant (g ≥ 10) is too large and calls their results into question.

As a different approach, Khveshchenko [39] proposed investigating the nature of the

ground state and quasiparticle spectrum by employing a nonperturbative method in solving a

nonlinear equation for the electron Green function. One may approach this numerically (c.f.,

Khveshchenko and Leal [46]) or analytically, via some approximation (c.f., Khveshchenko and



Shively [40]). It is the latter method we take up here.

The quasiparticles themselves are confined to the 2D plane, whereas the Coulomb inter-

action between them is described by 3D gauge fields allowed to propagate into the 3D bulk.

The dynamical gap for T = 0 and µ = 0, with a linear density of states (DOS) (ν(ǫ) ∝ ǫ)

and energy dispersion (ξp ∝ p), and bare interaction U (0)(~q) = λ/q can be written as

∆p = λ

∫

dq
q∆qK (p, q)

√

q2 + (∆q/vF )2
(3.1)

where the (approximate) expression for the kernel

K (p, q) =
θ (p− q)

p
+
θ (q − p)

q
, (3.2)

and the coupling

λ =
e2

2 (ǫ0vF + πe2Nf/4)
. (3.3)

As discussed in the previous chapter, we can generalize the above technique to account for

arbitrary energy dispersions (parameterized by η), DOS (β), and effective long-ranged inter-

actions (α and η). ((3.1) above corresponds to α = β = η = 1.) Solving such a self-consistent

equation for general α and β is daunting, if not entirely impossible. However, a technique

proposed by Miransky et al. [41] allows us to circumnavigate this difficulty by turning the

above integral equation into a differential equation, provided that our momenta ∆ ≪ p ∼ Λ.

This technique was used for specific α, β values in previous papers (c.f. eq.(8) of [39] and

p.(3) of [46]). Here, we utilize a differential equation for arbitrary α, β [40] (see App.B.2 for

details).

In the “bifurcation approximation”, we are at p≫ ∆/vF , in which region the pairing dynam-

ics dominate. Thus, we can drop the (∆q/vF )2 term in the denominator, as it only contributes

to an infrared cutoff, and instead introduce (∆0/vF )2 as a lower limit in the integral. Thus,

we arrive with a simplified gap equation

∆p = λ

(∫ p

∆0/vF

dq

p
∆q +

∫ Λ

p

dq

q
∆q

)

(3.4)

where Λ is an ultraviolet cutoff. We can extend this analysis beyond [41] by now allowing for

an arbitrary DOS and an effective Coulomb interaction

∆ (p) = λh0

∫ p

0

kβdk
∆k

√

k2 + ∆2
k

(
1

pα

)

+ λh0

∫ Λ

p

kβdk
Λk

√

k2 + ∆2
k

(
1

kα

)

(3.5)

which is equivalent to the differential equation (see App.B.2)

d2∆(ǫ)

dǫ2
+
α+ 1

ǫ

d∆(ǫ)

dǫ
+ g

α∆(ǫ)

ǫ2+α−β
= 0 (3.6)
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where g = g0/[2
D−1πD/2Γ(D/2)], subject to the infrared and ultraviolet boundary conditions,

respectively,
d∆(ǫ)

dǫ

∣
∣
∣
∣
ǫ=max[∆,µ]

= 0 (3.7)

and

∆(ǫ) +
ǫ

α

d∆(ǫ)

dǫ

∣
∣
∣
∣
ǫ=Λ

= 0 (3.8)

where J (∆) is the source function. This yields the solution

∆(ǫ) = ∆

(
∆

ǫ

)γ(ǫ)
sin [Φ(ǫ) + δ]

sin δ
(3.9)

where the prefactor is chosen to satisfy the natural normalization condition ∆(ǫ)|ǫ=∆ = ∆,

and the phase of the trigonometric function is given by the expression

Φ(ǫ) =

√

αgǫ2r − κ (ǫ)

4

[

1 −
(

∆
ǫ

)r

r

]

(3.10)

where r = (β − α)/2 and the phase shift

δ =







tan−1
[√

4αg∆2r − κ(∆)/α
]

, ∆ > [κ(∆)/4αg]1/2r

δ = 0 , otherwise
, (3.11)

is determined by the infrared (IR) boundary condition. The slowly varying functions γ(ǫ)

and κ(ǫ) are, asymptotically,

γ(∆) = α/2, γ(Λ) = (α+ β)/4 (3.12)

and

κ(∆) = α2 − (α− β)2, κ(Λ) = α2 − 1

4
(α− β)2. (3.13)

The ultraviolet (UV) boundary condition fixes the maximum (zero-momentum) gap in terms

of the dimensionless coupling g̃ and upper cutoff Λ:

tan [Φ(Λ)] +
4

3α− β

αg̃ − κ(Λ(∆/Λ)r)/4
√

αg̃ − κ(Λ)/4
= 0, (3.14)

where g̃ = gΛ2r. In the general case α < β, the UV boundary condition (3.14) yields

∆ ∼ Λ (g̃ − g̃c)
1/r (3.15)

for couplings greater than the critical value

g̃c ≈
1

16α

[
(α+ β)2 + π2(β − α)2

]
(3.16)
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Figure 3.1: Approximate solution to the p-dependent gap equation, ∆(p) vs. p in units of ∆0

for ∆ ≥ µ (blue) (eq.3.9) and for ∆ < µ (red) (eq.3.17). Note that, although the presence
of a chemical potential µ suppresses the magnitude of the dynamical gap for lower p-values,
the behavior for large p≫ max[∆, µ] is essentially the same for both.

Technically, the bifurcation approximation is only applicable at relatively high energies

and momenta, ∆ ≪ ǫ, as noted above. However, as we shall soon see, comparison between

the original gap equation (2.22) and this much simpler linearized equation (3.6) shows that

this approximate solution actually holds all the way to energies ǫ ∼ ∆.

We may now introduce a finite chemical potential µ, which, depending on the sign, rep-

resents a finite density of either particles or holes. As noted earlier, µ provides a cutoff for

the momentum integration in the gap equation (2.22), which translates as a point ǫ ≤ µ at

which the solution to the gap equation ∆(ǫ) levels off and becomes energy-independent.

Hence, for ∆ < µ, we impose the normalization condition ∆(ǫ)|ǫ=µ = ∆, thereby arriving

at the approximate formula for the counterpart of (3.9)

∆(ǫ) = ∆
(µ

ǫ

)γ(ǫ) sin [Φ(ǫ) + δ]

sin [Φ(µ) + δ]
. (3.17)

Meanwhile, for ∆ > µ, the original solution for µ = 0 (3.9) remains essentially untouched.

In particular, in the marginal case along the line of scale-invariant (or, conformally in-

variant) scenarios in which α = β, the general solution to the gap equation for µ < ∆ (3.9)

becomes for g > gc = α/4

∆(ǫ) = ∆

(
∆

ǫ

)α/2 sin
[√

αg − α2/4 ln(ǫ/∆) + δ
]

sin δ
, (3.18)
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Figure 3.2: Free energy for α = β = 0 as a function of chemical potential µ (in units of ∆0):
0 (black), 0.5 (green), 1/

√
2 (red), and 1 (blue).

where δ = tan−1
√

4(g/α) − 1. Likewise, for ∆ < µ,

∆(ǫ) = ∆
(µ

ǫ

)α/2 sin(
√

αg − α2/4 ln ǫ/∆ + δ)

sin(
√

αg − α2/4 lnµ/∆ + δ)
. (3.19)

We will use (3.9) and (3.19) throughout the subsequent sections to compute the free energy

F (∆, µ) and explore the quantum phase transitions where we see the opening of the gap.

3.2 Quantum Phase Transitions

The conventional method to exploring quantum phase transitions is the Luttinger-Ward

approach (see [47, 48, 49, 50] for a very detailed analysis of non-BCS superconducting pairing

employing such a technique). However, in the cases we are considering here, application of

the Luttinger-Ward or similar methods lead to a badly divergent momentum double integral
∑

p,q ∆pU
−1(0,p − q)∆q whose kernel is given by the (generally, highly non-local) inverse

operator U−1(0,p). Also, if we are to be able to distinguish global minima from all other ex-

trema (as discussed in the previous section), we would have to compute the F (∆, µ) functional

for all ∆, whereas previous analyses simply concerned themselves with computing F (∆0, µ),

i.e., at the global minimum ∆0 (“condensation energy”)[47, 48, 49]. Alternatively, we will

employ a technique utilized in the case of highly oriented pyrolytic graphite by Miransky et

al. (see Ref.[41] and references therein). In this, we will make use of the source function (see

App.B.3 for details)

J(∆) =

(

∆(ǫ) +
ǫ

α

d∆(ǫ)

dǫ

)∣
∣
∣
∣
ǫ=Λ

(3.20)
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Figure 3.3: Free energy for α = 0, β = 1 as a function of chemical potential µ (in units of
∆0): 0 (black), 0.9 (green), 1 (red), and 1.1 (blue).

and the order parameter

σ(∆) = Tr[τ̂1

∫
dω

2π

∑

q

Ĝ(ω,q)] = − ǫα+1

αg0

d∆(ǫ)

dǫ

∣
∣
∣
∣
ǫ=Λ

(3.21)

which together will determine the (regularized) effective potential

F (∆, µ) =

∫ ∆

0

d∆′dσ(∆′)

d∆′ J(∆′) + F (0, µ). (3.22)

The integration constant F (0, µ) is to be found from the equation for the density of excess

particles

−∂F (∆, µ)

∂µ
= n(µ) =

∑

p,∓
θ(µ∓ Ep). (3.23)

We now turn to specific examples.

3.2.1 α = β = 0: BCS

We start with the standard BCS pairing between fermions, characterized by a short-

ranged potential and a finite DOS.

In this case, for µ < ∆ the gap equation (2.22) yields the standard result ∆(ǫ) = ∆0 =

Λe−1/g. From this, the free energy

F>(∆, µ) =
g∆2

4g0

(
1

g
− 1

2
− ln

Λ

∆

)

, (3.24)
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Figure 3.4: Free energy for α = β = 1 as a function of chemical potential µ (in units of ∆0):
0 (black), 0.4 (green), 0.6 (red), and 0.8 (blue).

whereas for ∆ < µ we obtain

F<(∆, µ) =
g∆2

4g0

(

1

g
− 1

2
− ln

Λ

µ+
√

µ2 − ∆2

)

− g

2g0

µ
√

µ2 − ∆2, (3.25)

the last term being proportional to the particle density n = 1
2

√

µ2 − ∆2. Plotting F (∆) vs.

∆ for various values of µ (fig.3.2), we see that, as µ approaches the critical µc = 1/
√

2, a

secondary “dip” develops at ∆ = 0 but the global minimum remains at ∆ = ∆0.

Finally, at µ = µc = (1/
√

2)∆0, there is a degeneracy in ground states, and as µ increases

further past µc, the global minimum jumps discontinuously to ∆ = 0 – suggesting a first-

order phase transition – and the order parameter vanishes. This is consistent with the known

superconducting BCS transition in the presence of an external magnetic field.

3.2.2 α = 0, β = 1: short-ranged potential and a linear density of

states ν(ǫ) ∝ ǫ

As another example, we can also consider the limiting case (α → 0) in which we have

a short-range potential but now have a linear DOS – indicative of Dirac particles – thus

stepping outside of the Fermi-liquid realm. Because α = 0, we find that the gap function

takes on a particularly simple form: ∆(ǫ) → ∆0 = g−1
c − g−1 for µ < ∆. In this case, the free

energy

F (∆, µ) =







g
2g0

∆2
(

1
3
∆ − 1

2
∆0

)
, µ < ∆

g
2g0

(
−1

6
µ3 + 1

2
µ∆2 − 1

2
∆0∆

2
)
, ∆ < µ

(3.26)
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Figure 3.5: Free energy for α = 1/2, β = 1 as a function of chemical potential µ (in units of
∆0): 0 (black), 0.5 (green), 0.7 (red), and 0.8 (blue).

where, in the latter scenario the free energy incorporates an excess electron density n(µ) =

1
2
(µ2 − ∆2).

The minimum of the free energy exists for all g > gc = 1/Λ. In contrast to the BCS

scenario, note from Fig.3.3 that F (∆) becomes independent of ∆(ǫ) right at µc = ∆0, which

suggests that we may have a continuous phase transition. However, it is possible that if

fluctuations about the mean-field solution were taken into account, the transition would be

of first order, albeit weakly.

3.2.3 α = β = 1: long-ranged interactions and linear density of

states ν(ǫ) ∝ ǫ

While our previous two examples provide some specific (limiting) examples, our main

motivation is in long-ranged, i.e., unscreened, Coulomb interactions. Having a linear density

of states, as before, ξp ∝ p ⇒ ν(ǫ) ∝ ǫ ⇒ β = 1, we now also have unscreened Coulomb

interactions U (0)(q) = g/q ⇒ α = 1. In contrast to the two previous examples, the gap is

now non-trivial, and which also has the aforementioned momentum scale-invariance. The

solution to the gap equation (3.18) (see App.C.1 for details)

∆(p) =
∆

sin
√

4g − 1

√

∆

p
sin
[√

g − 1/4 ln
p

∆
+
√

4g − 1
]

(3.27)

for µ ≤ ∆, and

∆(p, µ) =
∆

sin
[√

g − 1/4 ln µ
∆

+
√

4g − 1
]

√
µ

p
sin
[√

g − 1/4 ln
p

∆
+
√

4g − 1
]

(3.28)
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for µ > ∆, which is the same as that obtained by Refs [39, 46, 41, 51]. In this case, the UV

boundary condition (3.14) yields

∆ = Λ exp

(

− 2π − 4δ
√

4α(g − gc)

)

. (3.29)

From that, the free energy for ∆ < µ

F (∆, µ) =
g

2g0

[

I<(∆, µ) − I<(∆0, µ) − 1

2

∫ µ

∆

dω(ω2 − ∆2)

]

(3.30)

where

I<(∆, µ) = µ

∫ µ

0

dωω
ln (∆0/ω)[5 − ln (∆0/ω)]

(2 + lnµ/ω)2
(3.31)

whereas for ∆ > µ

F>(∆, µ) =
g

2g0

[I>(∆, µ) − I>(µ, µ) + I<(µ, µ) − I<(∆0, µ)] (3.32)

where

I>(∆, µ) = −2

3
∆3 − 2∆3 ln

∆0

∆
+

∆3

2
ln2 ∆0

∆
. (3.33)

There are several phenomena to make note of here. First: from Fig.3.4, we see that there

is a local maximum at ∆ = ∆0e
−14/3 for µ = 0, which gradually moves to the right as µ

increases. Second: there is global maximum located at ∆0, which first moves down slightly

as µ increases, but otherwise stays close to its initial position up to µc ≈ 0.6∆0. Third, note

that the free energy’s behavior as µ→ µc suggests a first order phase transition.

These results vary markedly from conclusions reached previously by other groups [52,

53, 54, 41, 51]. In Refs[52, 53, 54], it was conjectured that for µ = 0, the corresponding

transition is of infinite order. Also, Refs[41, 51] found a very different value for the critical

chemical potential, µc = ∆0/
√

2. However, this result arises because the authors in [41, 51]

introduced the chemical potential as a lower limit in the integration over ξp rather than Ep,

which becomes inaccurate for µ ∼ ∆0.

Moving to more general dispersion relations parameterized by µ but maintaining a linear

DOS, we find that the critical chemical potential µc = −0.04η2 + 0.22η+ 0.21 for α = β = 1.

(See App.C.1.2 for details.)
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Figure 3.6: Free energy for α = 2/3, β = 1, and η = 1 as a function of chemical potential µ
(in units of ∆0): 0 (black), 1/2 (green), 0.69 (red), and 0.8 (blue).
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Figure 3.7: Exponent ν in the maximum gap ∆0 ∝ (g̃− g̃c)
ν as a function of β−α (blue) vs.

the expected exponent 1/(β − α) (red).
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Figure 3.8: Critical coupling g̃c as a function of β − α.
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Figure 3.9: Critical value of the chemical potential µc (in units of ∆0) as a function of β−α.

3.2.4 α = 1/2, β = 1

As a last example, we move away from the conformally (scale) invariant line α = β

and into the lower wedge α < β. Although we pick α = 1/2, all of the results will apply

for all 1/3 < α < 1. (β = 1, as we are continuing to consider Dirac-like particles with

linear DOS and energy dispersion.) Physically, α = 1/2 corresponds to the scenario of

Coulomb interacting electrons in an infinite stack of graphene layers, with an interaction

U (0)(q) = g0/
√
q. A subtlety is that now we are dealing with a non-conformally invariant

system; therefore the coupling g will be momentum-dependent and the free energy will become

g-dependent [4, 7, 8, 9, 10, 11, 12, 3, 39, 55, 46]. For details, see App.C.2.

Note that, essentially, the free energy behaves much the same as in the conformally

invariant case α = β, indicating a first-order phase transition at µc ≈ 0.7∆0. Fitting the plot

of µc vs. η, we find that µc = −0.03η2 + 0.201η + 0.2375.

As mentioned, a similar phenomenon happens for all β/3 < α < β. As an example,

consider α = 2/3, β = 1. (See App.C.3 for details.) In this case, the free energy functional

for various µ is given in fig.3.6. (The detail at ∆ ∼ 0.6 is a mathematical artifact.) Here, too,

we see a very similar quantum phase transition, also indicative of being first-order, occurring

at µ = µc ≈ 0.69∆0.

3.3 Critical Phenomena

In all of the above analysis, it was never assumed that the maximum gap ∆0 ∼ Λ (g̃ − g̃c)
2

β−α ,

as expected. In these actual worked-out examples, does this power-law relation hold true?
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To find out, we fit a curve to the calculated ∆0 ∝ (g̃ − g̃c)
ν for each different α, β scenario

and compare the power-law exponent. The fitted curve yields a power-law relation that is

very close to the expected curve 1/(β − α) (fig.3.7).

Likewise, we can examine the power-law relationship of the critical coupling gc itself on

β − α. From the above values of gc and β − α, we find a fitting function gc ∼ 1.81(β − α)2 −
0.415(β − α) + 0.25, the plot of which we see in fig.3.8. This result does reflect what we

expect to see, eq.(3.16), above.

If we try repeating the procedure for µc vs. β − α, we find a fitting function µc ∼
−1.512(β − α)2 + 1.11(β − α) + 0.488, the plot of which we see in fig.3.9. Such results are

less conclusive.

3.4 Phase Transitions and Strongly Correlated Systems

Systems with shorter-ranged interactions (lower values of α) and/or stronger DOS sup-

pression (higher values of β) bear a stronger propensity towards excitonic pairing. Further-

more, the excitonic order emerges at sufficiently strong repulsive couplings and survives up

to a finite critical doping by excess carriers.

The above results for the BCS transition are also consistent in describing the onset of an

excitonic instability in the case of Fermi liquids with screened repulsive interactions. How-

ever, a more accurate picture of such, in which case the transition is driven by a variable

density in which the number of carriers is not fixed, would indicate a second -order transition

instead of first.

An important lesson of this analysis is that it is not adequate to evaluate F (∆, µ) only at

its extrema. If we had done so above, we might not have been able to distinguish local from

global extrema, or even worse yet, from maxima. Due to previous work by [29, 30], there

has been great confusion over results purporting to show that a nontrivial solution exists

for µ > ∆0/2, which was later used to suggest that an excitonic state exists in hexaborides

[31, 32, 33, 34, 35, 36] – something which is considered to be unlikely in hexaborides from an

experimental point of view [37]. However, from our own analysis in fig.3.2, we see that the

claimed point was a local maximum, not a minimum, and furthermore that such a transition

cannot take place for this range of µ, consistent with experimental findings.

23



In the long-ranged Dirac case, α = β = 1, the UV boundary condition (3.29) is reminis-

cent of the Kosterlitz-Thouless (KT) transition inXY -symmetrical 2D systems. Furthermore,

similar behavior has been found in the context of 3D relativistic chiral symmetry breaking,

in which case this transition signaled the onset of a conformally invariant critical regime

[52, 53, 54]. Given that the above results have appeared in non-relativistic systems, and

instead appear to arise from momentum scale-invariance, suggest that (3.29) does not arise

from the Lorentz-invariance of such systems, but instead from the scale invariance of the

underlying “radial” gap equation.

Future experimental work will be needed to determine the status of the quantum phase

transitions presented here, particularly in comparison to alternate predictions, such as the

Stoner instability resulting in a fully polarized ferromagnetic state, or the development of

c-axis antiferromagnetism [56, 57, 58, 59, 60].

There remains a great need for comprehensive analysis of non-BCS pairing scenarios with

long-range interactions in nonmetallic systems. In particular, the customary practice for

analyzing such systems has been to replace the unscreened Coulomb interaction with the

Hubbard-like onsite repulsion – the only apparent motivation for which being greater ease in

numerical simulations. How accurate such a practice is in accurately describing the physics

of nonmetallic systems is not clear. However, our observed differences in the behavior at zero

and finite α should serve as a warning against replacing genuinely long-ranged interactions

with short-ranged ones.

24



Chapter 4

Disorder in Nodal Fermion Systems

So far, we have been focusing on relatively strong effects of Coulomb correlations. More

subtle effects may exist which may not be strong enough to develop a spectral gap, but are

nonetheless significant enough to cause noticeable experimental effects. Such effects may not

be revealed in two-particle response functions, such as longitudinal and Hall DC conduc-

tivities. As measurements on conventional 2D electron gases (2DEG) suggest, two-particle

response functions are only weakly affected by correlations due to the particle-particle in-

teractions because of cancellations between the self-energies and vertex corrections, which

themselves can be formidable. Thus, we seek possible reflections of interacting Dirac parti-

cles in single-particle probes [56]. In particular, we focus on the so-called “zero-bias” anomaly

[61, 62].

The zero-bias anomaly refers to a phenomenon universal to both metals and semiconduc-

tors in any dimension, in which electron-electron interactions in the presence of disorder result

in a negative correction to the local tunneling density of electron states, which is singular at

the Fermi energy. This leads to a suppression of the tunneling single-particle DOS at the

Fermi surface, reflected in the conductance of a point tunnel contact [63]. This anomaly was

first discussed in terms of short-ranged diffusive systems by Altshuler and Aronov [64, 65],

later extended to long-ranged Coulomb interactions [66]. More recently, this analysis has

been extended to 2D electron layers at ballistic energies (ǫ > 1/τ , where τ is the relaxation

time) [67, 68, 69].

In previous discussions in the context of tunneling measurements, others have primarily

focused on strong disorder [70, 71, 72]. In so doing, however, observed effects are not universal

and are more likely to reflect on the impurity potential of the system in question than on the



Coulomb correlations themselves. Such studies find the near-impurity DOS to be very similar

to that obtained in the case of a d-wave superconductor, in which the Coulomb interactions

are completely screened by the condensate [73].

To avoid this pitfall, we consider particularly weak disorder – close to the clean limit.

By varying the coupling strength of the Coulomb interaction, the quasiparticle width γ, and

the biasing voltage V , we should be able to see more clearly what effects there may be on

interacting Dirac particles.

Dirac physics is best revealed in the ballistic regime, whereas the diffusive regime renders

results deceptively similar to that of conventional 2DEG [56]. This phenomenon is evident not

only in theory, but also experimentally as well. The electric field effect in few-layer graphite

[21] is observed at which the electronic transport is ballistic at submicrometer distances.

Recall from chapter 2 the Hamiltonian

H = ivF

∑

α=1,2

∫

r

Ψ†
α [τ̂x∇x + (−1)α τ̂y∇y] Ψα

+
vF

4π

∑

α,β=1,2

∫

r

∫

r′
Ψ†

α (r′) Ψα (r′)
g

|r − r′|Ψ
†
β (r) Ψβ (r) (4.1)

where, as before, the bare coupling constant g0 = 2πe2/ǫ0vF ≈ 2 − 3 and vF is the Fermi

velocity.

The pseudospinor wavefunctions Ψα are composed of spin-1/2 electron wavefunctions on

the A and B sublattices of the bipartite hexagonal lattice of graphene. The triplet of Pauli

matrices τ̂i acts in the space of the Ψα. We are now no longer assuming the instantaneous

exchange approximation as we did in deriving the gap equation in previous chapters.

The (retarded) Coulomb interaction

UR (ω,q) =
(g0/q)

1 + (g0/q) ΠR (ω,q)
. (4.2)

The combined effect of this and disorder interactions on the fermionic propagator is encoded

in the self-energy and polarization.

The quasiparticle propagator in the presence of disorder is

ĜR
α (ω,p)−1 = (ω + µ) 1̂ − vF [σ̂xpx + (−1)α σ̂ypy] + Σ̂R (ω,p) (4.3)
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where the fermion self-energy

Σ̂R (ω,p) =

∫
dω

(2π)

∑

q

[

ImUA (ω,q) ĜR (ǫ+ ω,p + q) coth
ω

2T

−UA (ω,q) ImĜR (ǫ+ ω,p + q) tanh
ǫ+ ω

2T

]

Γ (ω,q) , (4.4)

Π is the polarization operator, and Γ the vertex correction.

The polarization at T = 0 and no disorder is given by the purely imaginary (ReΠ = 0 for

T = 0)

Π(ω,q) =
q2

√

q2 − (ω + iγ)2 − γ

whereas in the presence of disorder, q, ω < γ,

Π(ω,q) = ν
Dq2

Dq2 − iω

where D =
v2

F

2γ
and vF is the Fermi velocity. If T 6= 0,

ImΠ (ω, q) =
ω

T

q2

√

q2 − ω2
O (ω − q) (4.5)

ReΠ (ω, q) ∼= T ln 2 + O
(
q2ω2/T

)
(4.6)

The coupling in the interaction is not constant, but varies in strength with the frequency ω.

The subsequent renormalization group (RG) equation [10, 11, 12, 3, 9, 13]:

dg (ω)

d ln (Λ/ω)
= − 1

8π
g2(ω) (4.7)

the approximate solution of which being

g(ω) ≈ g0/[1 + (g0/8π) ln(Λ/ω)] (4.8)

where Λ is an upper cutoff of order the electronic bandwidth. The RG flow terminates below

the energy scale ∼ max[T, µ, γ] [56].

4.1 Density of States

We may now calculate the DOS for variable g0, γ, T,D and ǫ. The DOS for the non-

interacting system at the Fermi energy is given by the bare loop

ν0 = − 1

π
ImTr

∑

p

ĜR
0 (0,p) ≈ max

[
γ

2πv2
F

ln
Λ

γ
,

4µ

v2
Fπ

]

, (4.9)
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where ĜR
0 (0,p) is the bare propagator, which includes impurity-induced broadening but not

inelastic scattering. As we include interactions, the first interaction corrections to the bulk

DOS are

δν(ǫ) =
1

π

∑

p

ImTr
[

ĜR
0 (0,p)

]2

Σ̃(ǫ,p) ∝







−gǫ ln Λ
ǫ
, ǫ, T > γ

− ν0

σ0
ln γ

ǫ
ln γ̃

ǫ
, ǫ, T < γ

(4.10)

where γ̃ = γσ4
0g

4
γ. In the ballistic regime, this will include an additional logarithmic factor

due to a kinematic “light-cone” singularity.

Given the strength of the bare Coulomb interaction, it is conceivable that higher order

corrections to the DOS may be quite significant in modifying the behavior of Dirac fermions

systems. Thus, we turn to nonperturbative techniques to probe further.

4.2 The “tunneling action” approach

Applying the methods of [74, 61, 62, 75, 76] to graphene [56], we obtain a tunneling DOS

ν (ǫ) ≈ − 1

π
ImTr

∫ ∞

−∞
dtĜR

0 (0, t) e−S(t)+iǫt. (4.11)

In this, the disorder-averaged Green function for the Dirac fermions GR
0 (0, t) ∝ e−γt

t2
includes

the disorder-induced self-energy but not the Coulomb interactions between the Dirac fermi-

ons. These are incorporated into (4.11) through the imaginary part of the action (the real

portion will only contribute to the overall renormalization).

S (t) =

∫ Λ

0

dω

4π

∑

q

ImU (ω,q) coth
ω

2T

∫ t

0

dt1

∫ t

0

dt2e
−iω(t1−t2)

〈
eiq(r(t1)−r(t2))

〉
(4.12)

where S (t) is the action for moving a charge in the target substrate as a new electron tunnels

in. This describes, for example, the spreading of excess charge due to tunneling from a STM

tip into a graphene sample [56, 69].

Extending to experimental measurements, we may calculate the DOS in terms of the con-

ductance, G (V ). The conductance, which is measured by tunneling from one substance to

another, is given by

G (V ) =
dI

dV
(4.13)

where the current I (V ) is measured by the convolution

∝ d

dV

∫ V

0

ν0 (ǫ) ν (V − ǫ) dǫ, (4.14)
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Figure 4.1: G(V ) vs. V : g0 = 1/100 (red), g0 = 1/10 (green), g0 = 1 (blue), g0 = 3 (cyan),
g0 = 10 (magenta), g0 = 100 (yellow), g0 = 1000 ∼ ∞ (black).

ν0 (ǫ) being the DOS for the first substance and ν (ǫ) is that of the second. Thus, the

conductance is given in terms of the Fourier transform of the Green’s functions G0 (0, t) and

G (0, t)

G (V ) ∝ d

dV

∫ ∞

0

GR (0, t)GR
0 (0, t) eiV tdt (4.15)

The Green’s function GR
0 (0, t) ∼ 1/t, and that of the linear Dirac fermions is the same as

that given previously. Putting all of this together, we may write

G (V ) ∝ Im i

∫ ∞

0

dt

t2
eiV te−S(t). (4.16)

In the large bias regime, we may ignore γ entirely, and (4.12) becomes

S(t) ≈







g2
0

(4π)2
ln(Λt), g0 ≪ 1

1
π2 ln(Λt) ln

[
8πe

ln(Λt)

]

, g0 ≫ 1
(4.17)

for weak and strong couplings, respectively [56].

In general,

S(V > T, γ) =

∫ Λ

1/t

dω

ω2

∫

d2q
g2

ω

√

ω2 − q2

(ω2 − q2) + g2
ωq

2

=

∫ Λ

1/t

dω

ω
g2

ω

∫ 1

0

dx

√
1 − x

1 − x+ g2
ωx

(4.18)

where the coupling

gω =
g0

1 + g0

4
ln Λ

ω

. (4.19)
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Figure 4.2: ln [G(V )] vs. lnV : The couplings with their respective (approximate) anomalous
exponents are g0 = 1/100 (red), η ≈ 0; g0 = 1/10 (green), η ≈ 0; g0 = 1 (blue), η ≪ 0.5;
g0 = 3 (cyan), η ≈ 0.05; g0 = 10 (magenta), η ≈ 0.24; g0 = 100 (yellow), η ≈ 0.25;
g0 = 1000 ∼ ∞ (black), η ≈ 0.3.

From (4.16), we obtain the conductance G(V ) for various bare couplings g0 (see fig.4.1)

– see App.D for details. The conductance curves G(V ) for various couplings g0 is given in

fig.4.1.

To more clearly see the power-law relation ofG(V ) on V , we generate a log-log plot of these

results (fig.4.2). From fig.4.2, we see that G(V ) evolves from being a purely algebraic function

of V at small couplings (g0 < 1) to a more complicated relation, G(V ) ∝ V 1+η at moderate to

large g0, the power-law given by the slope. The anomalous exponent η, which characterizes

the zero-bias anomaly, increases monotonically. It has been predicted [56] that η = g2
0/(4π)2

for weak coupling, whereas asymptotically for large couplings, η = (1/π2) ln 8πe ≈ 0.43.

From these explicit calculations, what we see reflects this trend quite well.

For weak coupling, we find that the Fourier transform is very close to a power law relation.

G (V ) ∼ V · e−S(t∼1/V ) (4.20)

∼ V 1+η = V (1 + η lnV + ...) (4.21)

in which the last term contains a logarithmic correction seen in the correction to the DOS

ν (ǫ) = ǫ+ g2ǫ ln ǫ+ ... (4.22)

What we obtain is quite similar to the experimental results obtained by West et al. [77] in

2-D lateral tunnel junctions and biases −7.2 ≤ V ≤ 7.2. Our results also agree well with the
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experimental findings by Kim et al. [18] in graphitic samples of varying thickness. Currently,

this is still a work in progress, to be published at a later time. It would be interesting to

extend the above analysis to samples of varying thickness as well, to explore the transition

from bulk to effectively planar systems.
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Chapter 5

Applications and Repercussions

In concluding this thesis, we now turn to repercussions on other physically different nodal

fermion systems. As mentioned in chapter 1, there exist other systems that also contain Fermi

points. Despite being of very different physical origin from graphene, universal symmetries

due to their formal similarities may allow us to make significant conclusions concerning these

other systems as well.

5.1 Spontaneous Chiral Symmetry Breaking

In recent years, many condensed matter theorists have come to portray certain phase

transitions in some systems as examples of spontaneous chiral symmetry breaking (CSB),

long explored in the context of high energy particle physics. I point out the formal relation of

these scenarios to those that I have discussed above to demonstrate how the quantum phase

transitions explored above carry over to these systems as well. To introduce this topic, we

take a step back and discuss CSB in the context of layered graphite [39, 55].

Again, we return to the Hamiltonian from previous chapters, written in terms of four-

component Dirac spinors:

H0 = ivF

N∑

σ=1

∫

r

Ψ̄σ [γ̂1∇x + γ̂2∇y] Ψσ (5.1)

HC =
vF

4π

N∑

σ,β=1

∫

r

∫

r′
Ψ̄σ (r′) Ψσ (r′)

g

|r − r′|Ψ̄β (r) Ψβ (r) (5.2)

The Dirac spinors Ψσ = (ψ1σ, ψ2σ) can be used to form chiral fermions ΨL,Rσ = 1
2
(1 ± γ̂5) Ψσ,

where γ̂5 = 1 ⊗ τ2 anticommutes with all γ̂µ and τi denote Pauli matrices.



Figure 5.1: d-wave Brillouin zone, with nodes [5].

Although the Coulomb interaction term HC violates Lorentz invariance, it does remain in-

variant under U(2N) rotations of the 2N -component vector (ΨLσ,ΨRσ). (The free particle

portion H0 is invariant under both Lorentz transformations and U(2N) rotations.) This chi-

ral invariance of the complete Hamiltonian allows for the possibility of spontaneous chiral

symmetry breaking, manifested in the appearance of a fermion mass (corresponding to an

order parameter), breaking this continuous chiral symmetry U(2N) → U(N) ⊗ U(N). (See

App.A.) (2+1)-D CSB can be formulated in terms of two distinct interactions: interactions

with a bosonic scalar (Higgs-Yukawa) and interactions with a gauge field (QED3).

5.1.1 Effective Higgs-Yukawa Interactions in Condensed Matter

Systems

In terms of Higgs-Yukawa (HY) interactions, CSB is brought about through interactions

with some HY bosonic mode, which couples to the Dirac fermions via the mass operator
∑

σ Ψ̄σΨσ. This transition occurs for all N , where N equals the number of fermion species,

as long as the HY coupling gHY ≥ gc. In such a scenario, the Dirac fermions couple to a real

boson field φ, itself governed by a generic φ4 theory [78]:

Lφ =
1

2

[
1

c2
(∂0φ)2 − (∇φ)2 −m2φ2

]

− λ

24
φ4. (5.3)

φ corresponds to the imaginary part of the total gap function.

This was invoked in suggesting the possibility of a second pairing transition in planar

d-wave superconductors, d→ s∗ + id or d→ dx2−y2 + idxy, at a quantum-critical point lying
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Figure 5.2: f -wave Brillouin zone [6]. Dashed lines correspond to nodal lines associated with
Q1, filled circles correspond to Dirac points, empty circles to saddle points, and the thick line
corresponds to the proposed CDW gap.

inside the superconducting phase [79, 79, 78], where here φ corresponds to the fluctuations

of the secondary pairing order parameter (either is or idxy). Another example is that of

a proposed f -wave charge density wave (CDW) gap (∆CDW (k)) in dichalcogenides [6], in

which case the Dirac quasiparticles couple to a scalar field, φ, here corresponding to acoustic

phonons, and the HY coupling constant gHY a piezoelectric coupling. In both of these cases,

the dynamical gap undergoes a phase transition driven by HY interactions, and this gap

corresponds to our (2.22) above, in which αHY = 0, βHY = 1.

5.1.2 Effective QED3 in Condensed Matter Systems

A different way CSB may occur is when a repulsive Lorentz-invariant vector-like coupling

drives Dirac fermions to undergo the symmetry-breaking transition, which, conversely, can

occur for any strength of coupling g, but only if the number of fermion species N < Nc. This

happens via the current operator
∑

σ Ψ̄σγ̂σΨσ. Such a transition is believed to occur at the

strong-coupling IR fixed point in (2 + 1)-D QED3, at which Nc ≤ 3/2 at zero temperature

[54].

This CSB mechanism has been invoked to explore several formally similar, but otherwise

physically different, systems. CSB in relativistic QED3 theory has been adapted to describe

phase transitions in underdoped cuprates, such as an antiferromagnetism to spin liquid phase

and pseudogap to spin density wave [80, 81, 5, 82, 83].2 The order parameter in each conforms

directly to the framework of (2.22), corresponding to the scenario αQED = βQED = 1.

2The pseudogap regime [84] refers to the phase in which the system first displays supercon-
ducting precursors in an underdoped regime, whereas the actual superconducting transition
occurs at smaller temperatures [85].
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5.2 Pairing Instability in d-wave Superconductors

In both high-Tc cuprates and heavy fermion materials – both 2D fermionic systems – as

one approaches the antiferromagnetic instability, the softening of spin fluctuations causes the

d-wave pairing amplitude to increase (c.f., [86, 87]), while at the same time, strong spin-

mediated interactions destroy fermionic coherence [88, 89, 90], preventing Cooper pairing

from taking place. Competition between these two factors yields a pairing instability at a

critical temperature, which may signal the onset of a pseudogap regime [85]. This pairing

problem is distinctly different from BCS pairing.

In approaching this situation, Chubukov et al. solved three coupled Eliashberg (integral)

equations for the fermionic self-energy Σn, the anomalous vertex Φk(ω), and the susceptibility

χq [85, 91, 92]. The energy-dependent (but not p-dependent) gap equation is solved in terms

of these three to reveal

∆(ω) ∝ EF√
ω

cos

[

β ln
ω

EF

+ φ

]

. (5.4)

This solution, consistent with photoemission data [93, 94], agrees remarkably well with (3.18)

above, in the particular conformally-invariant case α = β = 1/2. Furthermore, we were able

to reach essentially the same conclusions with far greater ease, without having to resort to

solving a system of integral equations.

5.3 Color Superconductivity

I mention here briefly yet another system that falls under the umbrella of this research:

that of color superconductivity in QCD4. Such a case corresponds to the integral kernel in

(2.22) behaving as U (p− q) ∝ ln |p − q|. I leave for future research additional explorations

for where this may lead.

———————————————————-

Future directions in which these analyses may be taken include generalizing to account for

the transition between bulk and effectively 2D system, which is of great value to both theory
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and application. Also, in chapter three we concerned ourselves entirely with singlet pairing

between particles. It would be very interesting to extend the bifurcation approximation to

account for triplet pairing.

In conclusion, the results here should be of use to a wide range of areas in condensed

matter and field theory physics, particularly those involving nodal fermions. I hope that the

observations here and results still developing may help elucidate many unsolved mysteries in

such strongly coupled many-body phenomena.
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Appendix A

Algebraic details

The following summarizes several sections from Miransky [41].

In our system, the four-component fermions live on a plane, carrying the flavor index i =

1, 2, ..., Nf . The Lagrangian density for the quasiparticles is

L = vF Ψ̄ (t, ~r)

[
iγ0 (∂t + iµ)

vF

− iγ1∂x − iγ2∂y

]

Ψ (t, ~r) (A.1)

where Ψ (t, ~r) is a four-component spinor, and Ψ̄ (t, ~r) = Ψ† (t, ~r) γ0. The three 4 × 4 γ

matrices can be defined as

γ0 =




σ3 0

0 −σ3



 , γ1 =




iσ1 0

0 −iσ1



 , γ2 =




iσ2 0

0 −iσ2



 . (A.2)

In 2 + 1-dimensions, the two sets of matrices (σ3, iσ1, iσ2) and (−σ3,−iσ1,−iσ2) make in-

equivalent representations of the Clifford (Dirac) algebra,

γµγν + γνγµ = 2gµν (A.3)

where µ, ν = 0, 1, 2 and gµ,ν =diag(1,−1,−1).

There are two matrices that anticommute with γ0, γ1, and γ2:

γ3 = i




0 1

1 0



 , γ5 = i




0 1

−1 0



 . (A.4)

Therefore, for each four-component spinor, there is a global U(2) symmetry with the gener-

ators

I,
1

i
γ3, γ5,

1

2

[
γ3, γ5

]
. (A.5)

If we ignore relativistic corrections of order (vF/c)
2, the brane action of the interacting

quasiparticles is

S ≈
∫

dtd2~rL(t, ~r) − 1

2

∫

dt

∫

dt′
∫

d2~r

∫

d2~r′Ψ̄ (t, ~r) γ0Ψ (t, ~r)

×U0 (t− t′, |~r − ~r′|) Ψ̄ (t′, ~r′) γ0Ψ (t′, ~r′) . (A.6)
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Since there are Nf fermion flavors, the full symmetry of the action (A.6) is U(2Nf ) with the

generators
λα

2
,
λα

2i
γ3,

λα

2
γ5,

λα

2

1

2

[
γ3, γ5

]
(A.7)

where λα/2 with α = 0, 1, ..., N2
f − 1 are N2

f generators of U(Nf ).

Adding a mass (gap) term ∆0ψ̄ψ into action (A.6) spontaneously breaks U(2Nf ) → U(Nf )×
U(Nf ), with the generators

λα

2
,
λα

2

1

2

[
γ3, γ5

]
(A.8)

α = 0, 1, ..., N2
f − 1. Hence, the dynamical generation of the fermion gap leads to this

spontaneous breakdown in the symmetry of the (2 + 1)-D fermions.

38



Appendix B

The Bifurcation Approximation

B.1 Field Theory

We begin with the theory developed in detail in Refs[51, 95, 41]. We start with a general

field theory with a spontaneously broken symmetry due to a local composite order parameter
〈
0
∣
∣ψ̄ψ

∣
∣ 0
〉
6= 0. Here ψ is the Dirac spinor of the quasiparticle field and ψ̄ is the (Dirac)

conjugate spinor.[51]

We introduce the generating functional W (J) for the Green functions of the corresponding

composite field through the path integral:

eiW (J) =

∫

DψDψ̄ exp

{

i

∫

d3x
[
Lqp(x) − J(x)ψ̄(x)ψ(x)

]
}

. (B.1)

Here J(x) is the source for composite field and Lqp(x) is the Lagrangian density of quasipar-

ticles in the model at hand.

The effective action for the field σ(x) ≡
〈
0
∣
∣ψ̄ψ

∣
∣ 0
〉

is given by the Legendre transform

Γ(σ) = W (J) −
∫

d3xJ(x)σ(x) (B.2)

where W (J) is the generating functional and J(x) is the external source. We can express

J(x) in the integrand in terms of σ(x) by inverting the relation

δW

δJ(x)
= σ(x). (B.3)

The effective action Γ(σ) describe the low-energy dynamics of the systems we are considering.

Expanding this in powers of space-time derivatives of the field σ,

Γ(σ) =

∫

d3x

[

−V (σ) +
1

2
Zµν(σ)∂µσ∂νσ + ...

]

(B.4)

where V (σ) is the effective potential, and the “...” denote higher derivative terms and Nambu-

Goldstone boson contributions. Taking eqs (B.2) and (B.3) together, we derive

δΓ

δσ(x)
= −J(x). (B.5)
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As can be seen, in the limit J(x) → 0, this equation becomes an equation of motion for σ(x).

Furthermore, if J(x) and σ(x) are nonzero but constant in space-time, dV/dσ = 0, and we

can write the effective potential

V (σ) = −w(J) + Jσ =

∫ σ

dσJ(σ) (B.6)

where w(J) ≡ W (J)/V2+1, V2+1 being the space-time volume, and here J plays the role of

∆0, the bare gap.

The external source Jψ̄ψ enters the action as a quasiparticle bare mass term, and thus in

the case of J 6= 0 (in which we have a gap) the effective potential

∆(p) − J = λ

∫

k dk
∆(k)U(p, k)

√

k2 + (∆(k)/vF )2

λ =
e2

2 (ǫ0vF + πe2Nf/4)
(B.7)

where U(p, k) is the quasiparticle interaction.

B.2 Integral equations → Differential Equations

Expanding on the technique presented above and in [41], we generalize to an arbitrary

DOS and effective Coulomb interaction.

We start with the gap equation (see eqs.(2.22) and (3.1)):

∆(p) ∝
∫ Λ

0

kβdk
∆(k)

√

k2 + ∆2(k)

(
1

pα

)

(B.8)

We first note that at large momenta, ∆ ≪ p ∼ Λ, the kernel (interaction) U(~p − ~k) in the

above integral equation can be replaced by either U(~p) or U(~k), depending on the relative

magnitude of ~p and ~k. Then, we make a change of variable from the momentum ~p to energy

ǫ = Ep (via the energy dispersion) and split the integral into two portions:

∆p = λh0

∫ p

0

kβdk
∆k

√

k2 + ∆2
k

(
1

pα

)

︸ ︷︷ ︸

∆<(p)

+λh0

∫ Λ

p

kβdk
∆k

√

k2 + ∆2
k

(
1

kα

)

︸ ︷︷ ︸

∆>(p)

. (B.9)

Hence,

∆ (p) = ∆< (p) + ∆> (p) (B.10)

and thus,

∆′
< (p) = −λh0p

β−α ∆p
√
p2 + ∆2

p
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In the large momentum limit p≫ ∆ we may ignore ∆ in the denominator, making this

= −λh0
∆p

p1+α−β
. (B.11)

Likewise,

∆′
< (p) = λh0

( −α
pα+1

)∫ p

0

dk
kβ∆k

√

k2 + ∆2
k

+ λh0
pβ∆p

√
p2 + ∆2

p

1

pα

→ λh0
−α
pα+1

∫ p

0

dk
kβ∆k

√

k2 + ∆2
k

+ λh0
∆p

p1+α−β

⇒ ∆′
< =

−α
p

∆< (p) + λh0
∆p

p1+α−β
(B.12)

so

∆′ = ∆′
< + ∆′

> =

(−α
p

)

∆< (p) . (B.13)

Thus,

∆′′ =
+α

p2
∆< (p) − α

p
∆′

< (p) (B.14)

=
α

p2
∆< (p) − α

p

(−α
p

)

∆< (p) − λh0α
∆p

p1+α−β

=
α (α+ 1)

p2
∆< − λh0α

∆

p2+α−β
.

Substituting in our above result for ∆′, we get

=
α (α+ 1)

p2

(−p
α

)

∆′ − λh0α

p2+α−β
∆.

Hence,

∆′′ +
α+ 1

p
∆′ +

λh0α

p2+α−β
∆ = 0 (B.15)

which is eq.(3.6) above.

B.3 Free Energy

In light of the above differential equation, we also take into account the infrared boundary

condition

p2∆′(p)
∣
∣
p=∆/vF

= 0, (B.16)

the ultraviolet boundary condition

J = (∆(p) + p∆′(p))|p=Λ , (B.17)
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and the relation for the composite field

σ(∆) = −
〈
ψ̄ψ
〉

= − Nf

πλvF

p2∆′(p)

∣
∣
∣
∣
p=Λ

. (B.18)

From these and (B.6), we rewrite the effective potential dependent on ∆, and thus determine

the free energy

F (∆) = V (σ(∆)) =

∫ ∆

d∆′dσ(∆)

d∆
J(∆). (B.19)

We will use these methods extensively in subsequent analysis to determine the nature of

quantum phase transitions in nodal fermion systems.
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Appendix C

Quantum Phase Transitions of the

Free Energy

C.1 Example: α = β = 1

As a detailed example of a conformally (scale) invariant non-BCS system, consider the

scenario α = β = 1 (i.e., having a DOS ν(ǫ) ∝ ǫ, and long-ranged (bare) interaction potential

U (0)(q) = g0/q).

C.1.1 η = 1

We begin with the case of a linear dispersion ξp ∝ p. The solution to the gap equation

(3.6) is given by

∆p =







∆
sin δ

√
∆
p

sin
[√

g − 1/4 ln p
∆

+ δ
]

, µ ≤ ∆

∆

sin
h√

g−1/4 ln µ
∆

+δ
i√µ

p
sin
[√

g − 1/4 ln p
∆

+ δ
]

, µ > ∆
(C.1)

where the phase δ is to be fixed by the IR boundary condition. Focusing on the µ ≤ ∆, the

IR boundary condition

d∆(ǫ)

dǫ

∣
∣
∣
∣
ǫ=∆

= 0

⇒ δ =
√

4g − 1. (C.2)

The UV boundary condition fixes the UV cutoff, Λ ∼ span of the Brillouin zone, in terms of

∆,

∆(ǫ) + ǫ
d∆(ǫ)

dǫ

∣
∣
∣
∣
ǫ=Λ

= 0

⇒ Λ = ∆0 exp
π − 2δ
√

g − 1/4
. (C.3)
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Thus, the current

J(∆) = ∆(ǫ) + ǫ
d∆(ǫ)

dǫ

∣
∣
∣
∣
p=Λ

= − ∆

2
√

4g − 1

√

∆

Λ

[
√

4g − 1 cos

(√
4g − 1

2
ln

∆0

∆
−
√

4g − 1

)

+ sin

(√
4g − 1

2
ln

∆0

∆
−
√

4g − 1

)]

, (C.4)

which, as g → gc = 1/4 and writing Λ in terms of ∆0 in the oscillating term,

J(∆) ≈ −∆

4

√

∆

Λ
ln

∆0

∆
. (C.5)

Likewise, for µ > ∆, given that the relations for the IR and UV boundary conditions are the

same as for µ < ∆,

J(∆, µ) =
−∆

2 sin
[√

4g−1
2

ln µ
∆

+
√

4g − 1
]

√
µ

Λ

[
√

4g − 1 cos

(√
4g − 1

2
ln

∆0

∆
−
√

4g − 1

)

+ sin

(√
4g − 1

2
ln

∆0

∆
−
√

4g − 1

)]

which, again as g → gc

J(∆) ≈ − ∆

2 ln µ
∆

+ 4

√
µ

Λ
ln

∆0

∆
. (C.6)

The order parameter for µ < ∆

σ(∆) = −ǫ
α+1

αg0

d∆(ǫ)

dǫ

∣
∣
∣
∣
ǫ=Λ

=
∆
√

∆Λ

2 sin
√

4g − 1

[

sin

(√
4g − 1

2
ln

Λ

∆
+
√

4g − 1

)

−
√

4g − 1 cos

(√
4g − 1

2
ln

Λ

∆
+
√

4g − 1

)]

,

(C.7)

and

dσ

d∆
=

√
∆Λ

sin
√

4g − 1

[
√

4g − 1 cos

(√
4g − 1

2
ln

∆0

∆
−
√

4g − 1

)

+(g − 1) sin

(√
4g − 1

2
ln

∆0

∆
−
√

4g − 1

)]

(C.8)

g→gc≈
√

∆Λ

(
7

4
− 3

8
ln

∆0

∆

)

(C.9)

whereas for µ > ∆,
dσ(∆, µ)

d∆
≈

√
µΛ

2 ln µ
∆

+ 4

(

ln
∆0

∆
− 5

)

. (C.10)
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Thus, the free energy

F (∆, µ) =

∫ ∆

0

d∆′ dσ

d∆′J(∆′) + F (0, µ)

=

∫ µ

0

d∆′dσ(∆′, µ)

d∆′ J(∆′, µ) +

∫ ∆

µ

d∆′dσ(∆′)

d∆′ J(∆′) + F (0, µ)

=

∫ µ

0

d∆′ ∆′µ

4
(
ln µ

∆′ + 2
)2 ln

∆0

∆′

(

ln
∆0

∆′ − 5

)

−
∫ ∆

µ

d∆′ (∆
′)2

4
ln

∆0

∆′

(
7

4
− 3

8
ln

∆0

∆′

)

+ F (0, µ). (C.11)

(C.12)

Noting that the integration constant

∂F (∆, µ)

∂µ
= −n(µ) =

∑

~p,∓
θ(µ∓ Ep),

where n(µ) is the density of excess particles, the free energy functional

F (∆, µ) =
g

2g0

[

I<(∆, µ) − I<(∆0, µ) − 1

2

∫ µ

∆

dω(ω2 − ∆2)

]

(C.13)

where

I<(∆, µ) = µ

∫ µ

0

dωω
ln (∆0/ω)[5 − ln (∆0/ω)]

(2 + lnµ/ω)2
, (C.14)

whereas for ∆ > µ we have

F>(∆, µ) =
g

2g0

[I>(∆, µ) − I>(µ, µ) + I<(µ, µ) − I<(∆0, µ)] (C.15)

where

I>(∆, µ) = −2

3
∆3 − 2∆3 ln

∆0

∆
+

∆3

2
ln2 ∆0

∆
(C.16)

which is the result cited in chapter 2.

Explicitly,

g

2g0

I< =
µ

8

{

∆2 + 74e4µ2Ei
[

−2 ln
µ

∆
− 4
]

+ 40e4µ2 lnµ Ei
[

−2 ln
µ

∆
− 4
]

+4e4µ2 ln2 µ Ei
[

−2 ln
µ

∆
− 4
]

+
2∆2

(
14 + 9 lnµ+ ln2 µ

)

2 + ln µ
∆

}

(C.17)

where Ei(z) is the exponential integral function

Ei(z) =

∫ ∞

z

e−t

t
dt.

Plotting F (∆) vs. ∆ for several values of µ, we see in fig.3.4 that µc ≈ 0.6.
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Figure C.1: Free energy for α = β = 1, and η = 1/2 as a function of chemical potential µ (in
units of ∆0): 0 (black), 0.25 (green), 0.31 (red), and 0.4 (blue).
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Figure C.2: Free energy for α = β = 1, and η = 3/2 as a function of chemical potential µ (in
units of ∆0): 0 (black), 0.35 (green), 0.45 (red), and 0.5 (blue).

C.1.2 General η

As mentioned before, the above results correspond to the parameter η such that ξp ∝ pη=1.

We can account for more general energy dispersion by allowing η to vary, holding β constant.

After repeating the above analysis, we find the following free energy phase transitions:

For η = 1/2, we see from the free energy plot (fig.C.1) that the critical chemical potential

µc ≈ 0.31. Likewise, for η = 3/2, µc ≈ 0.45 (fig.C.2), and for η = 2, µc ≈ 0.49 (fig.C.3).

Fitting the plot of µc vs. η, we find that µc = −0.04η2 + 0.22η + 0.21 for α = β = 1.
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Figure C.3: Free energy for α = β = 1, and η = 2 as a function of chemical potential µ (in
units of ∆0): 0 (black), 0.4 (green), 0.49 (red), and 0.6 (blue).

C.2 Example: α = 1/2, β = 1

As an example of a more general α < β system, consider the scenario α = 1/2, β = 1,

which still corresponds to a linear DOS (ν(ǫ) ∝ ǫ) and energy dispersion (ξp ∝ p, η = 1),

but now with an interaction U (0)(q) = g0/
√
q.

The general solution to the gap equation becomes

∆p =

√

9 + 32g
√

∆

4

√

2g
√

∆
∆

(
∆

p

)3/8

sin

{
1

2

√

2g
√
p− 3

[

1 − (∆/p)1/4
]

+ arctan

[
4

3

√

2g
√

∆

]}

(C.18)

for µ ≤ ∆, and

∆p =
∆

sin

[

1
2

√
2g
√
µ− 3

[

1 − (∆/µ)1/4
]

+ arctan

[

4
3

√

2g
√

∆

]]

×
(
µ

p

)3/8

sin

{
1

2

√

2g
√
p− 3

[

1 − (∆/p)1/4
]

+ arctan

[
4

3

√

2g
√

∆

]}

(C.19)

for ∆ < µ, where

δ ≈







arctan 4
√

2g
3

= arctan
4
q

2g̃
√

∆/Λ

3
, ∆ ∼ 1 ≫ 0

0 , ∆ ≪ 1
(C.20)

is the solution to the IR boundary condition, and g̃ is the dimensionless coupling constant.
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A subtlety is that now we are dealing with a non-conformally invariant system. Con-

formal invariance implies that the coupling g is dimensionless, and thus J(∆) and σ(∆) are

independent of g. On the other hand, in the case of α < β, g is now p-dependent, or rather,

in the bifurcation approximation (p → Λ), is in units of Λα−β. Hence, g cannot be elimi-

nated from J(∆) or σ(∆). Thus, we must rewrite the coupling as a dimensionless quantity,

g̃ = gΛβ−α.

The UV boundary condition yields

∆0 ≈ 17Λ (g − gc)
4 (C.21)

and the current for µ < ∆

J(∆) =

√

18 + 64g
√

∆

32

√

g
√

∆
∆

(
∆

Λ

)3/8

×










32g

√
Λ − 3 (∆/Λ)

1/4

√

32g
√

Λ − 3



 cos





√

32g
√

Λ − 3

2

(

1 −
(

∆

Λ

)1/4
)

+ arctan





√

32g
√

∆

3









+ sin





√

32g
√

Λ − 3

2

(

1 −
(

∆

Λ

)1/4
)

+ arctan





√

32g
√

∆

3















where the simplification

csc



arctan

√

32g
√

∆

3



 =

√

9 + 32g
√

∆
√

32g
√

∆
(C.22)

specifically in the case of α = 1/2, µ = 0.

For ∆ < µ

J(∆) =
∆

4

(µ

Λ

)3/8

csc





√
32g

√
µ − 3

2

(

1 −
(

∆

µ

)1/4
)

+ arctan





√

32g
√

∆

3









×










32g

√
Λ − 3 (∆/Λ)

1/4

√

32g
√

Λ − 3



 cos





√

32g
√

Λ − 3

2

(

1 −
(

∆

Λ

)1/4
)

+ arctan





√

32g
√

∆

3









+sin





√

32g
√

Λ − 3

2

(

1 −
(

∆

Λ

)1/4
)

+ arctan





√

32g
√

∆

3















Note that we are not able to simplify these further (i.e., the oscillating terms) as we had in

the conformally invariant case.
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Similarly the order parameter for µ < ∆

σ(∆) = −

√

18 + 64g
√

∆

32

√

g
√

∆
∆
√

Λ

(
∆

Λ

)3/8

×










32g

√
Λ − 3 (∆/Λ)

1/4

√

32g
√

Λ − 3



 cos





√

32g
√

Λ − 3

2

(

1 −
(

∆

Λ

)1/4
)

+ arctan





√

32g
√

∆

3









−3 sin





√

32g
√

Λ − 3

2

(

1 −
(

∆

Λ

)1/4
)

+ arctan





√

32g
√

∆

3















whereas for ∆ < µ

σ(∆) =
∆
√

Λ

4

(µ

Λ

)3/8

csc





√
32g

√
µ − 3

2

(

1 −
(

∆

µ

)1/4
)

+ arctan





√

32g
√

∆

3









×






3 sin





√

32g
√

Λ − 3

2

(

1 −
(

∆

Λ

)1/4
)

+ arctan





√

32g
√

∆

3









−




32g

√
Λ − 3 (∆/Λ)

1/4

√

32g
√

Λ − 3



 cos





√

32g
√

Λ − 3

2

(

1 −
(

∆

Λ

)1/4
)

+ arctan





√

32g
√

∆

3














.

The UV boundary condition imposes that ∆0 ≈ 17Λ(g̃ − g̃c)
4 where g̃c ≈ 0.495687.

We focus on each value of the chemical potential, µ, at a time. Expanding around the

maximum gap ∆ = 1 in the slowly varying decaying (oscillating) terms in the current J(∆)

and derivative of the order parameter, dσ/d∆ – but, importantly, keeping the prefactor in

its original form – we find the free energy for µ ≤ ∆

F (∆) ≈
√

6.4
√

∆
[

1.776 × 10−15 + 1.421 × 10−14
√

∆ − 1.776 × 10−14∆

+1.066 × 10−14∆3/2 − 0.07466 × ∆2

+4.441 × 10−16∆5/2 + 0.07421∆3 − 0.02070∆4

+6.939 × 10−18∆−9/2 + 0.002844∆5
]

(C.23)

and, as an example for µ > ∆, here µ = 1/2, we find

F (∆, µ = 1/2) ≈ 0.002670
[

602.5
√

∆ − 214.2∆ + 101.6∆3/2 − 137.5∆2

+78.21∆5/2 + 34.18∆3 − 20.83∆7/2 − 19.17∆4

+12.11∆9/2 + 7.916∆5 − 5.117∆11/2 − 1.523∆6

+∆13/2 − 847.2 ln
(√

∆ + 1.406
)]

(C.24)
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Figure C.4: Free energy for α = 1/2, β = 1, and η = 2 as a function of chemical potential µ
(in units of ∆0): 0 (black), 0.4 (green), 0.52 (red), and 0.6 (blue).
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Figure C.5: Free energy for α = 1/2, β = 1, and η = 1/2 as a function of chemical potential
µ (in units of ∆0): 0 (black), 0.3 (green), 0.33 (red), and 0.4 (blue).

We see from the plots for the free energy, F (∆, µ), for various values of µ (fig.3.5) that

µc ≈ 0.665.

C.2.1 General η

As in the α = β = 1 case, we can generalize to a more general energy dispersion here as

well. For η = 2, we see from the free energy plot (fig.C.4) that the critical chemical poten-

tial µc ≈ 0.52. Likewise, for η = 1/2, µc ≈ 0.33 (fig.C.5), and for η = 3/2, µc ≈ 0.47 (fig.C.6).
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Figure C.6: Free energy for α = 1/2, β = 1, and η = 3/2 as a function of chemical potential
µ (in units of ∆0): 0 (black), 0.3 (green), 0.475 (red), and 0.6 (blue).

Fitting the plot of µc vs. η, we find that µc = −0.03η2+0.201η+0.2375 for α = 1/2, β = 1.

C.3 Example: α = 2/3, β = 1

For another β/3 < α < β case, we find similar phenomena here as in the α = 1/2, β = 1

scenario. In the case of α = 2/3, β = 1, the gap for ∆ ≥ µ is

∆p = ∆

√
4

24g∆1/3 − 3
+ 1

(
∆

p

)5/12

× sin







√

2gp1/3

3
− 5

48

[

1 − (∆/p)1/6
]

1/6
+ arctan

[√

24g∆1/3 − 3

2

]





(C.25)

whereas for ∆ < µ

∆p = ∆

(
µ

p

)5/12 sin

{√
2gp1/3

3
− 5

48

[1−(∆/p)1/6]
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2

]}

sin
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3
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48

[1−(∆/µ)1/6]
1/6
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2

]} (C.26)

where the phase

δ =







arctan

[√
24g∆1/3−3

2

]

, ∆ ≥
(

1
8g

)3

or g ≥ 1
8∆1/3

0, ∆ <
(

1
8g

)3

or g < 1
8∆1/3

(C.27)

satisfies the IR boundary condition. Likewise, the UV boundary condition imposes that

∆0 ≈ 44Λ(g̃ − g̃c)
6 where g̃c ≈ 0.3131. For µ ≤ ∆, the current
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J(∆) =
∆
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whereas for 0.0637 < ∆ < µ,

J(∆) =
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and for ∆ < 0.0637 < µ (where δ = 0),

J(∆) =

√
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.

Likewise, the order parameter for µ ≤ ∆

σ(∆) = ∆17/12Λ1/4
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,

for ∆ < µ
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and for ∆ < 0.0637 < µ

σ(∆) =
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.

Repeating the same procedure as in the α = 1/2 scenario, we pick specific values of the

chemical potential µ and expand the decaying portion of each of these the integrands around

the maximum gap ∆ = 1. Then, integrating, we obtain the free energy behavior as a function

of µ and ∆.

From the plot of F (∆, µ) for various µ we find that µc ≈ 0.69 (see fig.3.6). (The detail for

∆/∆0 ∼ 0.06 is a non-physical mathematical artifact due to the IR boundary condition, and

should be ignored.) In general, the behavior of the free energy here is essentially the same as

in α = 1/2, β = 1.
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Appendix D

Conductance under Disorder

We assume the ballistic regime, i.e., V ≫ T, γ.

Beginning with eq.(4.18),

S(V > T, γ) =

∫ Λ

1/t

dω

ω2

∫

d2q
g2

ω

√

ω2 − q2

(ω2 − q2) + g2
ωq

2
=

∫ Λ

1/t

dω

ω
g2

ω

∫ 1

0

dx

√
1 − x

1 − x+ g2
ωx

(D.1)

where the coupling

gω =
g0

1 + g0

4
ln Λ

ω

, g0 = e2/vF ≈ 2 − 3. (D.2)

This last term

S(t, g0) =
1

4π

∫ 1

1/t

∫ 1

0

√
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16
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1

ω
dxdω (D.3)

whose solution,

S(t, g0) = 2
8π + g0 ln t

√

[2π(4 − g0) + g0 ln t] [2π(4 + g0) + g0 ln t]

× arctan

[√

[2π(4 − g0) + g0 ln t] [2π(4 + g0) + g0 ln t]

2πg0

]

. (D.4)

To proceed further, we may approximate the above formula based upon the magnitude of the

bare g0. For both g0 ≪ 1 and g0 ∼ 1 , we may approximate the above action by expanding

the action around ln t ≈ 0. For example,

S(t, g0 = 3) ≈ 8 arctan
(√

7/3
)

√
7

+

(

9

7π
− 27 arctan
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7/3
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√
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S(t, g0 = 1) ≈ 8 arctan
√

15√
15

+

(

1

15π
− arctan

√
15

15π
√

15

)

ln t (D.6)

S(t, g0 = 1/10) ≈ 3.09255 + 0.000191373 ln t. (D.7)

Strictly speaking, the conductance (4.16) is, essentially,

G (V ) ∝
∫ ∞

1

dt

t2
cos(V t)e−S(t) (D.8)

However, due to divergences, it is necessary to first compute

dG

dV
∝
∫ ∞

1

dt

t
sin(V t)e−S(t) (D.9)
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where t runs from 1 to infinity in units of 1/Λ, where Λ is the maximum span of the Brillouin

zone.

For g0 ≫ 1, we may follow the same procedure, expanding the action around ln t ≈ 2.

For g0 = 1, the explicit solution

G(V ) = −e−
8 arctan
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where 1F2 (a; b; z) is a hypergeometric function.
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Appendix E

Feynman parameters

For two operators [96]
1

AB
=

∫ 1

0

dx

[(1 − x)A+ xB]2
(E.1)

Three...
1

ABC
= 2

∫ 1

0

dx

∫ x

0

dy[Ay +B(x− y) + C(1 − x)]−3 (E.2)

In general, for two distinct operators [97],

1

AαBβ
=

Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0

dx
xα−1(1 − x)β−1

[Ax+B(1 − x)]α+β
, (α, β > 0) (E.3)

1

A1A2...An

= Γ(n)

∫ 1

0

dx1

∫ x1

0

dx2...

∫ xn−2

0

dxn−1

×[A1(1 − x1) + A2(x1 − x2) + ...+ Anxn−1]
−n (E.4)

1

Aα1

1 A
α2

2 ...A
αn
n

=
Γ(α1 + ...+ αn)

Γ(α1)...Γ(αn)

∫ 1

0

dx1

∫ x1

0

dx2...

∫ xn−2

0
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× (1 − x1)
α1−1(x1 − x2)
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[A1(1 − x1) + A2(x1 − x2) + ...+ Anxn−1]−(α1+...+αn)
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