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ABSTRACT 

Leah Joy Watson: Endo-exocytic Trafficking in Regulation of Cdc42 Polarity 
 (Under the direction of Patrick Brennwald) 

 

The precise subcellular localization of the Rho GTPase Cdc42 is essential for 

its spatial and temporal control of polarized growth and division. In budding yeast, 

the activation and clustering of Cdc42 on the cell surface designates the site of 

emergence for the daughter bud and it is towards this site that the actin cytoskeleton 

and exocytic pathways orient to promote bud formation. In turn, exocytic delivery of 

Cdc42 along actin cables has been suggested as a mechanism to reinforce Cdc42’s 

own polarized localization at the bud tip. Recycling via endocytosis and GDI-

dependent mechanisms are posited to contribute to Cdc42’s polarized localization 

by offsetting lateral membrane diffusion of Cdc42 molecules from the concentrated 

pool. The intimate relationship between Cdc42’s function in cell polarity and the 

maintenance of its own localization by the pathways it regulates has been 

extensively studied, however, the molecular mechanisms involved in the 

determination and maintenance of Cdc42 polarity remain unclear.  

Using a novel in vivo assay developed in the lab, we found that disrupting 

distinct stages of endocytosis severely disrupted the ability of Cdc42 to associate 

with secretory vesicles. This implicates the possible involvement of multiple 

endocytic compartments in the sorting of Cdc42 as well as the enrichment of Cdc42 
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into sites of endocytosis. We also demonstrate that GFP-tagged Cdc42 is highly 

defective in its ability to associate with vesicles. Although GFP-Cdc42 has been a 

valuable tool for understanding mechanisms involved in Cdc42 polarity, our findings 

demonstrate differences in the itineraries of the tagged and untagged Cdc42 

proteins—which were previously assumed to be similar. We also demonstrate that 

the concentration of Cdc42 on vesicles is significantly lower than the concentrated 

pool on the cell surface, which demonstrates that vesicle delivery of Cdc42 is not, 

alone, sufficient to support Cdc42 polarity. This provides the first direct experimental 

support for a negative regulatory role for vesicle transport in Cdc42 polarity. 
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 CHAPTER 1: Introduction and Background 

1.1 Overview 

Cell polarity is defined as the partitioning of cellular materials into spatially 

distinct domains in response to external and/or internal stimuli. Virtually all cells 

polarize at some point during their lifetime. Whether to grow and divide or to perform 

highly specialized cellular functions such as axonal migration or activation of the 

immune response, the process of cell polarization is a critical component of 

eukaryotic cell biology [1-4]. 

Much of the current understanding of polarity and the identification of many 

key regulators can be attributed to studies using the budding yeast Saccharomyces 

cerevisiae. Polarity in budding yeast essentially is compartmentalizing the cell into a 

distinct cell “front” and “back” during either the production of a daughter bud or a 

mating projection. In particular for budding, the proper establishment of a cell “front” 

ensures that only one bud is constructed per cell cycle [2, 5]. Besides the 

pronounced polarization state during most of their life cycle, budding yeast are a 

genetically tractable system with many conserved key components of polarity. As 

such, budding yeast are an excellent model system for dissecting the mechanisms 

underlying cell polarity. 

Among the conserved regulators of polarity, the Rho family of the Ras 

superfamily of GTPases are crucial determinants of the establishment and 

maintenance of the polarized axis in yeast [6-10]. Rho GTPases have an 
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evolutionarily conserved role in defining the cell “front” and “back”. They are 

important for several physiological processes—including axonal migration, 

membrane trafficking, actin organization, and morphogenesis—and pathological 

processes that include metastasis, cell survival and infinite proliferative potential [11, 

12]. The Rho GTPase, Cdc42, is essential for polarity establishment in yeast [9, 10, 

12, 13]. Its local activation at the plasma membrane designates the cell “front” or the 

site where the daughter bud will form [14, 15]. This chapter will discuss the 

establishment of polarity in yeast, the identification and characterization of Cdc42 as 

the “master regulator of polarity”, the link between the localization of Cdc42 and bud 

emergence, and gaps in the current knowledge of Cdc42 polarity wherein my work 

will endeavor to fill. 

1.2 Establishment of cell polarity in budding yeast 

Polarity establishment generally involves 1) a cellular response to 

intrinsic/extrinsic stimuli, 2) determination of a single, defined polarity axis direction 

and 3) construction of the axis via positioning of polarity factors and pathways 

towards a spatial landmark [12]. The commitment to exit isotropic growth and trigger 

asymmetry in yeast results in either the formation of a bud or shmoo/mating 

projection [2, 16]. The polarization “trigger” and polarity axis determinant are 

different for each of these forms of asymmetry. For example, the trigger and 

direction of polarization during mating are both determined by a pheromone 

gradient, whereas, budding is initiated by the cell-cycle program (START) and the 

polarity axis is spatially defined by the general bud site selection machinery [2]. 
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Budding yeast display two spatial patterns for placement of the nascent bud 

and subsequent separation from the mother. The bud of haploid yeast cells forms 

adjacent to the previous division site (axial budding pattern), while the bud forms at 

the polar opposite end of the previous division site (bipolar budding pattern) in 

diploid cells. Axial and bipolar budding patterns are dictated by distinct “landmark” 

proteins which are passed along from mother to nascent bud. Axial budding requires 

the gene products of BUD3, BUD4, AXL1, and AXL2/BUD10, whereas the gene 

products of BUD7, BUD8, BUD9, RAX1, and RAX2 are specific for the bipolar 

budding pattern [13, 15, 17-19]. The gene products of RSR1/BUD1, BUD2, and 

BUD5 comprise a general bud selection machinery that is involved in both axial and 

bipolar budding [13, 15, 17, 20]. After the initiation of the cell-cycle program, the 

procession of polarity establishment follows: 1) the general selection machinery 

(RSR1/BUD2/BUD5) interprets the axial and bipolar signal for bud placement 2) 

transmits these spatial coordinates to the polarity establishment machinery then 3) 

the polarity establishment machinery organizes the actin cytoskeleton and delivery 

of protein and vesicles towards this site on the cell surface to promote bud 

emergence.   

Although the polarity establishment machinery responds to the spatiotemporal 

cues transmitted by the bud site selection machinery to spatially restrict polarity to 

the defined bud site, the bud site selection genes are nonessential. In fact, studies 

utilizing mutants that remove spatial landmarks (i.e. BUD3-4/BUD7-9/AXL1-2/RAX1-

2 gene deletions) or the transmission of the landmark signal (i.e. rsr1) demonstrate 

that polarity can effectively be established along any axis [17, 21]. This suggests that 
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cells are inherently capable of switching from symmetrical to asymmetrical growth—

albeit in a randomized orientation. Further examination of the establishment of 

polarity in yeast led to the characterization of the polarity establishment machinery 

which is comprised of the Cdc42 GTPase and its regulators (i.e. Cdc24, Rga1, 

Rga2, Bem2, and Bem3). The consensus of these studies has led to the 

classification of Cdc42 as the central or “master” regulator of polarity [22], and as 

such, massive efforts remain focused on dissecting its function in polarized growth.  

1.3 Identification and characterization of Cdc42 as the “master regulator of 

polarity” 

The Rho GTPase CDC42 was originally identified from an extensive screen 

for mutants with growth arrest phenotypes resembling previously characterized 

mutations in the gene CDC24 [9, 10, 23, 24]. The cdc42-1 temperature sensitive 

mutant isolated from this screen displayed defects in actin cable distribution despite 

normal isotropic growth at the restrictive temperature of 37oC. This mutant also failed 

to form buds at the restrictive temperature—resulting in cells with a large, round 

morphology similar to the CDC24 mutants [9, 23, 24]. Interestingly, CDC42 and 

CDC24 single null mutants are both inviable in S. cerevisiae and S. pombe [10, 25]. 

CDC42 was later identified in mammals [26] and knockout mice were embryonic 

lethal [27]. Given the previously reported involvement of Cdc24 in polarized growth 

and the similarities between CDC42 and CDC24 mutants, these observations 

provided the first indication of their essential roles in polarized growth and bud 

emergence. 
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The Cdc42 GTPase, like other GTPases, cycles between active, guanine 

triphosphate (GTP)-bound and inactive, guanine diphosphate (GDP)-bound states. 

GTPases are activated by guanine nucleotide exchange factors (GEFs) which 

stimulate the release of GDP and loading of GTP. Follow-up studies to the 

aforementioned screen revealed Cdc24 as the sole GEF for yeast Cdc42 [12, 28]. 

The GTPase activating proteins (GAPs)—Bem2, Bem3, Rga1 and Rga2—inactivate 

Cdc42 by catalyzing its intrinsic ability to hydrolyze GTP [28]. Studies using 

nucleotide-locked forms of Cdc42 reveal the requirement for its GTPase cycle in cell 

viability, the establishment of a single “front” or bud per cell cycle, and its ability to 

localize properly [29-32].  

Rho guanine nucleotide dissociation inhibitors (GDIs) offer yet another layer 

of regulation for Rho GTPases. Rho GDI proteins, so named due to their ability to 

inhibit the dissociation of GDP from the GTPase, also inhibit Rho proteins’ intrinsic 

and GAP-stimulated GTP hydrolysis [15]. A third function of Rho GDIs is to extract 

Rho proteins from membranes into the cytosol [15]. GDI-mediated extraction 

solubilizes Rho proteins by concealing an N-terminal lipid moiety (see Cdc42 

localization and polarity) of the GTPase within the hydrophobic pocket of the GDI 

protein. The sole yeast Rho GDI Rdi1 inhibits nucleotide dissociation and extracts 

GDP-bound Rho proteins from membrane compartments [15, 33]. Despite the 

function of Rdi1 in regulating Rho protein attachment to membranes, RDI1 is 

nonessential. The seemingly lack of a phenotype in an rdi1 strain implies it is not 

essential for Cdc42 or other Rho protein function. This is surprising considering 

membrane attachment is a critical aspect of Rho GTPase function.  However, 
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studies reveal that Rdi1-mediated rapid recycling of Cdc42 from the plasma 

membrane is involved in maintaining the plasma membrane localization of Cdc42. 

Furthermore, the lethality imparted by RDI1 overexpression [34] strongly suggests 

Rdi1 could negatively impact Cdc42 function via unrestricted extraction of the 

GTPase from membranes [35, 36].  

In the hierarchal order of polarity, the regulation of Cdc42 activity and 

membrane attachment by its GEF, GAPs and GDI are integral components of 

polarity establishment following selection of the site of bud emergence. The bud site 

selection machinery transmits the spatial coordinates of the designated bud site 

directly to the Cdc42 GTPase and its GEF Cdc24. This ultimately results in the 

recruitment and clustering of activated Cdc42 to this site on the cell surface. The 

subsequent orientation of the actin cytoskeleton and vesicle trafficking pathways 

towards this site begins the construction of the daughter bud (Figure 1.1). Membrane 

trafficking and Rdi1-mediated recycling of Cdc42 to this site are considered parallel 

mechanisms for maintaining Cdc42 at the bud site to continue membrane expansion 

during bud formation (see Cdc42 localization and polarity). Although the defined bud 

site—as selected by the landmark proteins—biases the location of Cdc42 clustering, 

the removal of spatial cues merely randomizes the site of bud placement rather than 

prevents bud emergence altogether [14, 15]. This ability of yeast cells to break 

symmetry de novo was found to be entirely dependent on the localization of Cdc42. 

Thus, the polarized localization of Cdc42, not upstream factors, is necessary and 

sufficient for determining the site of bud emergence.  
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1.4 Cdc42 localization and polarity 

Wu et al. [37] demonstrated that the distinct localizations of Cdc42 and 

another Rho protein, Rho3, are integrated into their function such that their 

localizations reflect the stages at which each GTPase regulates polarized growth. As 

the determinant of bud emergence and formation, Cdc42 localizes as a concentrated 

cap on the plasma membrane at the presumptive bud site of unbudded cells and the 

bud tip of small budded cells. Cdc42 disperses around the cell periphery as the bud 

enlarges, only to re-cluster at the mother-bud neck prior to its regulation of 

cytokinesis (Figure 1.2) [12, 37]. Prenylation of the carboxyl-terminal CAAX moiety 

(A is aliphatic amino acid; X is any amino acid) of Cdc42 is required for its peripheral 

attachment to membranes. The 188Cys residue in the CAAX domain is prenylated via 

the addition of a C20 geranylgeranyl isoprene group and mutational analysis of this 

domain revealed the requirement of prenylation for Cdc42 activity and function [31].  

The Rho3 GTPase, on the other hand, is prenylated by the addition of a C15 

farnesyl isoprene group to its CAAX motif, but the palmitoylation of an N-terminal 

cysteine is important for determining its distinct localization pattern [37]. Rho3 

localizes to the mother cell periphery in unbudded and small budded cells. Its 

localization is constrained to the bud periphery during bud enlargement—reflecting 

its regulatory role in the later stages of bud growth (Figure 1.2) [37]. As the distinct 

localizations of Rho proteins likely affects their capacity to engage different effector 

pathways in a spatiotemporal manner, understanding the mechanism(s) by which 

Rho proteins localize and maintain localization is key to understanding their control 

of polarized growth. 
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The isotropic-asymmetric switch in Cdc42 plasma membrane localization is 

thought to involve two distinct positive feedback loops: the adaptor-based signaling 

and the actomyosin-based transport systems. Both systems are thought to generate 

and maintain robust Cdc42 polarity by amplifying a spontaneously occurring cluster 

of GTP-Cdc42 on the cell surface [38-41]. For example, active Cdc42 binds to a 

signaling complex consisting of the adaptor, scaffold protein Bem1 (Bud EMergence 

1), the GEF Cdc24 and a p21-activated kinase (PAK)-family kinase.  As a result of 

its interaction with the GEF-Bem1-PAK complex, neighboring GDP-bound Cdc42 

molecules become activated and thus ensues the perpetual recruitment of GEF-

Bem1-PAK complexes and local activation of Cdc42 at the presumptive bud site.  

In the case of actomyosin-based transport, a stochastically-generated cluster 

of active Cdc42 orients actin cable nucleation via localized formin activation [42, 43].  

Actin cables serve as tracks for myosin-mediated transport of Cdc42-laden post-

Golgi vesicles. The delivery and fusion of secretory vesicles carrying Cdc42 with the 

active pool at the plasma membrane reinforces further local activation of GDP-

Cdc42 on the cell surface and drives membrane expansion. 

Previous studies using fluorescence recovery after photobleaching (FRAP) 

revealed the rapid cycling of GFP-Cdc42 between the plasma membrane and 

internal membrane compartments [30, 44]. These data indicate that the pool of 

activated Cdc42—or the Cdc42 polarity cap—is dynamically maintained [30, 44, 45]. 

Indeed, lateral diffusion of Cdc42 within the lipid bilayer can easily dilute the 

concentration of the polarity cap if the positive feedback systems described above 

are not counteracted. Two mechanisms to circumvent lateral diffusion via continuous 
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cap-cytosol exchange have been proposed. First, endocytic recycling of Cdc42 from 

the plasma membrane polarity cap counterbalances its delivery on post-Golgi 

secretory vesicles. Irazoqui et al. found that the partial depolymerization of F-actin 

structures using Latrunculin B (Lat B) results in the dispersal of Cdc42 from the 

plasma membrane polarity cap [45]. Furthermore, disruption of endocytosis, not 

RDI1, prevented Lat B-induced Cdc42 dispersal. Co-fractionation studies reveal the 

association of Cdc42 with both classes of secretory vesicles, Bgl2 and invertase, of 

which invertase-containing vesicles are known to initially sort through endosomes 

before entering another round of exocytosis [46]. Second, Rdi1 binds to and extracts 

prenylated GDP-Cdc42 from membrane compartments into the cytosol. Deletion of 

RDI1 significantly depletes the cell of cytosolic Cdc42 [47], whereas, overexpression 

of RDI1 dramatically increases the levels of cytosolic Cdc42 resulting in cell lethality 

[48].  

1.5 Gaps in current understanding 

Notwithstanding the breadth of research dedicated to elucidating mechanisms 

involved in Cdc42 polarization, gaps in our current understanding still remain. In the 

actin-based transport model, it is the delivery and fusion of secretory vesicles 

carrying Cdc42 with the plasma membrane polarity cap that is thought to maintain 

Cdc42’s polarized localization [49]. However, a major criticism of this model is that 

Cdc42 must diffuse relatively slowly within the plasma membrane bilayer and be 

concentrated on vesicles in amounts that either compare to or exceed the polarity 

cap in order for membrane trafficking to sustain polarity (Figure 1.3) [50]. Given the 

fraction of native, untagged Cdc42 associated with vesicles compared to the polarity 
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cap is unknown, assessing the contribution of membrane trafficking has been 

challenging. Although recycling of Cdc42 by Rdi1 and endocytosis are presumably 

partially redundant pathways, neither endocytic uptake of GDP-Cdc42 nor the 

accessibility of the vesicular pool of Cdc42 for Rdi1 extraction have been 

demonstrated. Furthermore, the difference between bulk and selective incorporation 

of Cdc42 into the endocytic pathway is still unclear. In light of these and other key 

concerns, the direct assessment of the contribution of membrane trafficking pathway 

to Cdc42 polarity will aid in further understanding Cdc42’s control of polarized 

growth.   
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1.6 Figures 

 
Figure 1.1 Hierarchal model for polarity establishment in budding and mating 
cells. Polarization trigger and axis determinant (fuchsia): spatial landmark proteins 
or pheromone signals are interpreted and conveyed to the Cdc42 GTPase module 
(green). Recruitment of polarity establishment machinery: the Cdc42 GEF, Cdc24 
activates Cdc42 leading to the generation and maintenance of a pool of GTP-Cdc42 
on the cell surface (green). Construction of polarized axis: active Cdc42 engages 
downstream direct and indirect effectors to coordinate the organization of septins 
(blue), actin cytoskeleton (red) and membrane trafficking (yellow) during bud or 
shmoo (mating projection) formation.  
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Figure 1.2 Rho GTPase localization and polarized growth. The re-localization of 
Cdc42 and Rho3 throughout the cell cycle reflects the stages at which they control 
polarized growth. The organization of the actin cytoskeleton and membrane 
expansion (via polarized exocytic transport) are targeted by Cdc42 towards the bud 
tip during bud formation and growth and redirected towards the mother-bud neck 
prior to cell separation (Cdc42’s function in septin and actin organization). Rho3 
localizes around the mother cell periphery in unbudded cells and, to some extent, 
becomes restricted to the bud periphery as the bud enlarges (reflecting Rho3’s 
function in the later stages of bud growth). Adapted from [14, 15, 51, 52]. 
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Figure 1.3 Schematic representation of potential outcomes of the delivery of 
post-Golgi secretory vesicles (A) sufficiently and (B) insufficiently loaded with 
Cdc42. Abbreviations: plasma membrane (PM); Trans Golgi Network (TGN); post-
Golgi secretory vesicle (PGV); endocytic vesicle (EV); endosomal compartment 
(EC). Membrane compartments (gray); Cdc42 molecules (green).  
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CHAPTER 2: Quantitative Analysis of Membrane Trafficking in Regulation of 

Cdc42 Polarity1 

2.1 Overview 

Vesicle delivery of Cdc42 has been proposed as an important mechanism for 

generating and maintaining Cdc42 polarity at the plasma membrane. This 

mechanism requires the density of Cdc42 on secretory vesicles to be equal to or 

higher than the plasma membrane polarity cap. Using a novel method to estimate 

Cdc42 levels on post-Golgi secretory vesicles in intact yeast cells, we: 1) determined 

that endocytosis plays an important role in Cdc42’s association with secretory 

vesicles 2) found that a GFP-tag placed on the N-terminus of Cdc42 negatively 

impacts this vesicle association and 3) quantified the surface densities of Cdc42 on 

post-Golgi vesicles which revealed that the vesicle density of Cdc42 is three times 

more dilute than that at the polarity cap. This work suggests that the immediate 

consequence of secretory vesicle fusion with the plasma membrane polarity cap is 

to dilute the local Cdc42 surface density. This provides strong support for the model 

in which vesicle trafficking acts to negatively regulate Cdc42 polarity on the cell 

surface while also providing a means to recycle Cdc42 between the cell surface and 

internal membrane locations. 

                                            
1 Reproduced with permission from: Watson, L.J., Rossi, G., and Brennwald, P. (2014). Quantitative 

Analysis of Membrane Trafficking in Regulation of Cdc42 Polarity. Traffic. DOI: 10.1111/tra.12211 
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2.2 Introduction 

Growth along a defined axis is important for many biological processes.  The 

subcellular localizations of key regulators and effectors of polarity are intricately 

linked with their control of the establishment and maintenance of the polarized axis 

[14, 37, 49, 53]. In budding yeast, the switch from isotropic to asymmetric growth is 

preceded by the accumulation of activated (GTP)-Cdc42—a conserved Rho 

GTPase—at the presumptive bud site [12, 15]. The Cdc42 polarity cap is required to 

orient the actin and secretory pathways toward the nascent bud site and Cdc42 

polarization is necessary and sufficient for determining the site of bud emergence 

[14, 49]. 

Generation and maintenance of robust Cdc42 polarity promotes membrane 

expansion during bud formation. Studies reveal that Cdc42 is dynamically 

maintained at the polarity cap through its continuous cycling between the polarity 

cap and internal pools [30, 44, 45].  Two major mechanisms for recycling Cdc42 

have been described. In one mechanism, GDP-Cdc42 is rapidly recycled by the sole 

yeast Rho GDP dissociation inhibitor, Rdi1. In the other proposed mechanism, 

actomyosin-based exocytic delivery of Cdc42 is coupled to a slower endocytic 

retrieval pathway. Both mechanisms presumably circumvent the lateral membrane 

diffusion of Cdc42 by coupling Cdc42 delivery to a localized GEF-mediated positive 

feedback system [45, 46, 54-56]. Although endogenous Cdc42 has been shown to 

associate with secretory vesicles [46, 57, 58], a recent report using mathematical 

modeling challenges a possible role for membrane trafficking in polarizing Cdc42 

[50].  Common methods for estimating the vesicle-bound pool of Cdc42 either 
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subject cells to lysis conditions or require fluorescently tagged protein—both of 

which may impede direct quantitative assessment of the membrane association of 

the native protein.    

In this study, we make use of a novel assay to quantitatively assess the 

contribution of the recycling pathways to the polarity of endogenous Cdc42 and 

obtain estimations of the relative and absolute concentrations of Cdc42 on post-

Golgi vesicles and the plasma membrane polarity cap.  While our results implicate 

endocytic and exocytic trafficking in recycling of Cdc42, they also demonstrate that 

the density of Cdc42 protein on exocytic vesicles is significantly lower than at the 

plasma membrane polarity cap. We discuss the implications of these findings on 

current models for Cdc42 polarization. 

2.3 Results 

2.3.1 A quantitative assay for Cdc42-vesicle association 

Previous work utilizing thin section electron microscopy demonstrated that 

GAL-induced overexpression of either of two Sec4 effector proteins, Sec15 or Sro7, 

results in the formation of a large, homogeneous cluster of tightly, compacted 80-

100 nm post-Golgi secretory vesicles within the cytosol [59-61].  We made use of 

this observation to establish a novel in vivo assay for quantitatively examining the 

association of Cdc42 with post-Golgi vesicles as a complement to earlier studies that 

used subcellular fractionation and other biochemical methods for vesicle purification 

[46, 57, 58].  As observed previously, GAL-induced overexpression of either Sec15 

or Sro7 results in a marked change in the localization of Sec4 from sites of polarized 

growth to a large cytoplasmic patch within the cell which corresponds to a cluster of 
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post-Golgi vesicles observed by thin section electron microscopy [59-61] (Figure 

2.1A). Consistent with results from biochemical studies, double-labeled 

immunofluorescence staining with antibodies directed at Cdc42 and Sec4 revealed a 

striking re-localization of Cdc42 from the bud-tip to the Sec4-positive vesicle clusters 

in response to the Sec15 or Sro7 induction (Figure 2.1A).  In both Sec15- and Sro7-

induced cells we find that all the cytoplasmic clusters that are positive for Cdc42 are 

also positive for Sec4 and that greater than 70% of Sec4-positive clusters were 

positive for Cdc42 (Figure 2.1B).  This is the similar to the level of co-localization 

observed at the plasma membrane polarity cap in uninduced cells (GAL-vector, 

Figure 2.1B).  

As a first step in the quantification of Cdc42 levels found on specific 

membrane compartments, we measured the ratio of Cdc42 fluorescence associated 

with Sec4-positive vesicle clusters or the plasma membrane polarity cap to an 

equivalent-sized region in the cytoplasm. The relative Cdc42 fluorescence 

associated with vesicle clusters was greater than (GAL-SEC15) or similar to (GAL-

SRO7) that seen for the polarity cap observed in control (GAL-vector) cells (Figure 

2.1C).   Therefore, Cdc42 appears to be present on post-Golgi vesicles at levels 

comparable to the plasma membrane polarity cap. However to properly address the 

question posed by the trafficking model concerning the relative concentration of 

Cdc42 on vesicles compared to the plasma membrane polarity cap, it was important 

to also take into careful consideration the membrane surface areas contributing to 

each of these fluorescence measurements (see section on quantification of Cdc42 

densities below).  
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2.3.2 Endocytosis is required for Cdc42 post-Golgi vesicle association 

Recycling of Cdc42 to and from the plasma membrane polarity cap is thought 

to be critical to its ability to act in cell polarization.  Two mechanisms for Cdc42 

recycling have been proposed.  One mechanism involves the Rho GDI protein which 

selectively extracts the GDP-bound form of geranylgeranylated Cdc42 from the 

plasma membrane by providing a pocket for the hydrophobic prenyl group—similar 

to the role for Rab GDI in Rab GTPase recycling [62].  The second mechanism 

involves endocytic recycling of Cdc42 from the plasma membrane in a pathway that 

may function in parallel to its recycling by Rho GDI [44, 45, 63].   We made use of 

the vesicle clustering assay described above to examine the requirement of GDI or 

endocytosis in the association of Cdc42 with post-Golgi vesicles.  To examine the 

endocytic requirement, we disrupted endocytosis using a deletion in END4 (also 

known as SLA2) which regulates the interaction between endocytic vesicles and the 

actin cytoskeleton during vesicle internalization [64]. As expected (Figure 2.2A), 

Cdc42 localization at the plasma membrane polarity cap is stable in cells lacking 

RDI1 or END4 [44-47]. However, induction of vesicle clusters in an end4 

background resulted in >60% reduction in the relative concentration of Cdc42 

associated with vesicle clusters in Sro7- or Sec15-overexpressing cells (Figure 2.2B, 

C, E and F). Examination of the penetrance of this phenotype demonstrated that 

greater than 70% of cells exhibited a dramatic reduction (by more than 50%) in the 

levels of Cdc42 present in the Sec4-positive vesicle clusters (Figure 2.2D, G). 

Disruption of RDI1 function did not negatively affect cluster association of Cdc42 in 

either Sro7- or Sec15-overexpressing cells (Figure 2.2B through G). Indeed, rdi1 
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cells had increased levels of Cdc42 associated with vesicles—which is consistent 

with the documented depletion of cytosolic Cdc42 in rdi1 cells [44, 46, 47]. 

Therefore, while endocytosis is important for Cdc42 association with post-Golgi 

vesicles, Rho GDI is completely dispensable for this association.   

We next examined the association of Cdc42 with vesicle clusters in mutants 

known to have defects at distinct points in endocytic trafficking from the plasma 

membrane to endosomes and the Trans Golgi Network (TGN).  Sla1, like End4, 

functions at the plasma membrane during endocytic vesicle formation, while Tlg2 

and Pep12 are important for transport between the early endosome to the TGN and 

between the late endosome (or PreVacuolar Compartment) and the TGN, 

respectively [65].  We found that defects in any of these gene products results in a 

significant and highly penetrant defect in Cdc42 association with vesicle clusters, 

suggesting that Cdc42 recycling onto post-Golgi vesicles is likely to involve 

trafficking through multiple endocytic compartments (Figure 2.3A, B).   

Cdc42 has previously been shown to associate with post-Golgi vesicles that 

accumulate in response to a sec6-4 mutation when analyzed by differential 

centrifugation [57]. To examine the role of endocytic and GDI-mediated recycling on 

the association of Cdc42 with post-Golgi vesicles by differential centrifugation, we 

constructed double mutants of rdi1 or several endocytic mutants with sec6-4. In 

response to a sec6-4 mutation, cells shifted to 37oC accumulate post-Golgi secretory 

vesicles which pellet selectively at 100,000 x g (P100). This effect is observed by a 

large increase in the levels of Sec4 in the P100 fraction in a sec6-4 strain compared 

to control wild-type cells. Consistent with previous reports [46, 57], an increase in 
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Cdc42 association with the P100 fraction also occurs in response to the secretory 

vesicle accumulation (Figure 2.3C, D). We also observed that when rdi1, sec6-4 

cells were examined, elevated levels of Cdc42 were maintained in the P100 fraction.  

In contrast, the P100 fraction of pep12, sec6-4 mutants—despite having normal 

accumulation of Sec4—was depleted of Cdc42 compared to sec6-4 cells (Figure 

2.3C, D). The accumulation of secretory vesicles in the end4, sec6-4 double 

mutant was problematic and, unfortunately, this mutant could not be utilized for 

analysis by fractionation.  Nonetheless, the results of fractionation clearly confirm 

both a role for endocytic recycling and the lack of a requirement for GDI function in 

the association of Cdc42 with exocytic vesicles.  

2.3.3 GFP-Cdc42 shows impaired association with post-Golgi vesicles 

Previous work from our lab has demonstrated an important role for the N-

terminus of Rho family GTPases in determining their patterns of subcellular 

localization [37].  Perhaps not surprisingly, several groups have demonstrated 

significant growth defects associated with N-terminal GFP-tagged forms of Cdc42 

expressed as the sole source of Cdc42 in the cell [55, 66, 67].   Since the work 

described above relied exclusively on untagged Cdc42 expressed from its 

endogenous chromosomal locus, we examined the effect of a GFP-tagged form of 

Cdc42 on its association with post-Golgi vesicles in our vesicle clustering assay.  We 

generated strains containing GAL-SEC15 with either GFP-tagged or untagged 

CDC42 expressed behind their native promoter on a CEN/LEU2 plasmid as the sole 

source of CDC42.  Expression from the CEN plasmids results in a slight, but 

equivalent, increase in overall Cdc42 levels (Figure 2.S1D).  Although both 
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constructs show normal growth and polarization at 25oC (Figure 2.4A, B), the GFP-

tagged form of Cdc42 resulted in lethality at 37oC as previously reported (Figure 

2.S1A, 2.4D) [55, 66, 67].  When induced with galactose, we saw the expected 

staining of untagged Cdc42 on the large cytoplasmic puncta co-stained by Sec4.  

However, the strain containing the GFP-tagged form of Cdc42 demonstrated very 

weak staining of these puncta that was only slightly above the levels of the 

surrounding cytoplasm (Figure 2.4A, C).  These data indicate that the presence of a 

GFP tag on the N-terminus of Cdc42 results in a dramatic loss of post-Golgi vesicle 

association in this assay.   

As mentioned above, Slaughter et al. [44] have proposed two parallel 

mechanisms for recycling of Cdc42: 1) Rdi1-mediated membrane extraction and re-

delivery through the cytosol and 2) endocytic uptake and redelivery on exocytic 

vesicles.  A clear prediction of this model is that loss of the sole Rho GDI in yeast 

should demonstrate synthetic growth defects when combined with a form of Cdc42, 

in this case GFP-Cdc42, which disrupts its association with exocytic vesicles.  We 

therefore utilized a plasmid shuffle assay to examine the effect of an rdi1 on the 

ability of GFP-Cdc42 to function as the sole source of Cdc42 in the cell.  Previous 

reports have demonstrated that GFP-Cdc42 is unable to support growth at high 

temperatures [55, 66, 67].   We find that the temperature-sensitive nature of GFP-

Cdc42 is accentuated by the presence of rdi1. In particular, the synthetic effect of 

the GFP tag and loss of Rho GDI is most apparent at 34.5oC, a temperature at 

which GFP-Cdc42 is viable with RDI1 (Figure 2.4D).  While this synthetic sickness at 

34.5oC is consistent with the parallel functions for endocytosis and RDI1, the viability 
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at ambient temperatures and the sustained polarized localization also suggests that 

there may be a third mechanism for recycling Cdc42 that is independent of both 

RDI1 and endocytic/exocytic recycling.   

2.3.4 Quantification of Cdc42 density on vesicles and the plasma membrane 

polarity cap 

While previous studies using subcellular fractionation as well as the 

immunofluorescence studies described above have established that Cdc42 is 

associated with post-Golgi vesicles in significant amounts, the precise density of 

Cdc42 molecules on the surface of these vesicles has not been determined.  The 

vesicle clustering procedure described above presented a unique opportunity to 

address this question in vivo, without the numerous difficulties—such as degradation 

and membrane disassociation—that are often associated with biochemical 

fractionation.  Therefore, we set out to determine the absolute density of Cdc42 

molecules on both post-Golgi vesicles (within the clusters) as well as at the plasma 

membrane polarity cap.  This required having reliable estimates of: 1) the total 

number of molecules of Cdc42 in the cell 2) the membrane surface area associated 

with the vesicle clusters or the plasma membrane polarity cap and 3) the fractional 

amount of Cdc42 associated with each of these two regions. 

Surprisingly, we were unable to find a direct estimate of Cdc42 copies per cell 

in whole proteome-tagging studies [68] or other published work.  We therefore 

generated our own estimate by a ratio-metric comparison of GFP fluorescence of a 

yeast strain containing GFP-Cdc42 on a CEN plasmid with a reference strain 

containing a GFP-tagged form of the kinetochore protein Cse4—of which the copy 
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number per sister kinetochore cluster is well established [69-71].  To compare the 

relative fluorescence levels of GFP-Cdc42 in the total cell and Cse4-GFP in the 

sister kinetochore clusters, the two strains were mixed and imaged by fluorescence 

microscopy (Figure 2.5A).   With each sister kinetochore containing 80 copies of 

Cse4, the resulting comparison yielded an estimate of roughly 27,400 copies of 

GFP-Cdc42 per cell.  We then compared the amount of plasmid-derived GFP-Cdc42 

to that of endogenous Cdc42 in wild type cells by quantitative Western blot analysis 

(Figure 2.5B).  From this analysis we estimate that wild type cells contain 

approximately 6,800 copies of Cdc42 per cell. 

Since the growth conditions for the vesicle clustering assays differed from the 

above conditions, we compared the effects of carbon source and vesicle clustering 

on Cdc42 amounts per cell.  While we found there was little effect of carbon source 

(glucose vs. raffinose; data not shown) on the levels of Cdc42, there was a 

significant (>50%) increase in Cdc42 amounts in strains when vesicle clusters were 

induced (Figure 2.5C).  This is presumably due to the enlargement of cells and the 

inhibition of cell division during vesicle cluster formation.  Based on this comparison, 

we estimate approximately 10,400 copies of Cdc42 per cell following the 8 hour 

galactose induction of Sec15—identical to the conditions used for fluorescence 

imaging.   

We next utilized morphometric analysis of thin-section electron micrographs 

to determine the packing density of post-Golgi vesicles associated with GAL-SEC15 

and GAL-SRO7 induced vesicle clusters used for fluorescence imaging (Figure 

2.5E, F). This analysis demonstrated that the vesicle clusters contained 
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approximately 35.5 ± 3.9 post-Golgi vesicles (90nm average diameter) per square 

micron for each thin section.  Thus, the 0.718 micron diameter regions of interest 

(ROI) used for fluorescence imaging (0.2µm thick optical sections) of clusters 

corresponded to approximately 71 vesicles or a total vesicle membrane surface area 

of 0.723 square microns per ROI.  Fluorescence microscopy was used to determine 

the fractional amount of Cdc42 (% of total) associated with each ROI.  Considering 

the total copy number of Cdc42 in the cell, our assessment yielded ~187 copies of 

Cdc42 in the vesicle cluster ROI.  This corresponds to approximately 6.5 copies of 

Cdc42 per vesicle or a density of ~260 copies of Cdc42 per square micron of vesicle 

surface (Figure 2.5E, G). 

 To assess Cdc42 surface density at the plasma membrane polarity cap, we 

imaged cells using the same growth conditions as above but without Sec15 

induction (GAL-vector).  This imaging revealed a fractional fluorescence of 

approximately 93 copies of Cdc42 per ROI.   Since thin section electron micrographs 

of small budded yeast show an average of 1.3 ± 0.23 secretory vesicle in close 

proximity to the bud tip per section (per bud) or approximately 2.6 vesicles per 0.2 

micron optical section, it was important to account for this contribution in our 

estimates.  To accomplish this we subtracted the contribution of the 2.6 docked 

vesicles (~17 copies of Cdc42) from the total Cdc42 present in the ROI (93 copies) 

and divided the remaining amount (76 copies) by the plasma membrane surface 

area present in the ROI (0.094 µm2).  As shown in Figure 2.5G, this equates to a 

plasma membrane cap density of 810 copies of Cdc42 per square micron which is 

nearly three times the density of Cdc42 on the vesicle membrane (260 copies/µm2).  
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To corroborate our findings described above, we also generated an estimate 

of the Cdc42 copy number by quantitative immunoblot analysis using an alternative 

reference standard, Sec1—a protein which the total copies per cell (determined by 

immunoblot) has previously been determined [68].  We generated a strain in which 

Sec1-GFP was integrated at the SEC1 chromosomal locus such that it is expressed 

behind the native promoter and is the sole source Sec1 in the cell (see materials 

methods). Whole cell lysates of Sec1-GFP and GFP-Cdc42 expressing cells 

alongside an isogenic control strain were prepared, loaded by equivalent cell 

number and analyzed by Western blotting (Figure 2.5D). We applied the reported 

total copies of Sec1 (639 copies/cell) to the ratio of total GFP-Cdc42:Sec1-GFP and 

found the total copies of GFP-Cdc42 to be roughly 21,500. Using this copy number 

and the aforementioned comparative analyses of native Cdc42 protein levels under 

various conditions (see Figures 2.5B, C), we estimate ~5,400 copies of Cdc42 in 

polarized (uninduced) cells and ~8,200 copies of Cdc42 in cluster-forming (induced) 

cells. The compilation of the described data using both reference standards is 

reported in Figure 2.5G. Similar to our results using the Cse4 standard, we found the 

plasma membrane cap density of 636 Cdc42 copies per square micron to also be 

roughly three times the vesicle membrane density (204 copies/µm2). Together these 

data suggest the immediate effect of post-Golgi vesicle fusion with the Cdc42 

polarity cap would be to dilute rather than concentrate Cdc42 at the site of fusion.  

The implications of this surprising finding are discussed below. 
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2.4 Discussion  

Delivery of Cdc42 by vesicle-mediated exocytic transport has been proposed 

to be an important mechanism by which Cdc42 polarity on the plasma membrane is 

both generated and maintained [57, 72].  In these models, Cdc42 associated with 

post-Golgi vesicles is delivered along actin cables to sites of polarized growth. The 

subsequent fusion of Cdc42-laden vesicles with the plasma membrane at these sites 

would promote Cdc42 polar cap formation.  This would lead to a positive feedback 

loop by reinforcing the organization of actin cables oriented toward such sites, which 

in turn would bring more vesicles to this site [49, 57].   Another positive feedback 

loop could result from Cdc42’s direct activation of the Exocyst tethering complex to 

promote its own polarization by increasing the rates of vesicle docking and fusion at 

specific sites of the plasma membrane –in a manner that is independent of actin [72, 

73].  A critical assumption in both of these models is that the surface density of 

Cdc42 on post-Golgi vesicles must exceed the surface density at the plasma 

membrane polarity cap for polarity to be generated and/or maintained [50]. 

Mathematical modeling studies by Savage et al. [74], examined the theoretical effect 

of exocytic fusion of vesicles depleted of Cdc42 on the plasma membrane polarity 

cap.  In their model such a situation perturbed local polarity in a manner that could 

be overcome in the presence of an active GDI recycling mechanism. The 

experimental data presented here demonstrate that such an effect is more than 

theoretical since the surface density we observe for Cdc42 on post Golgi vesicles is, 

in fact, roughly 3-fold more dilute than the density of Cdc42 we observe at the 

plasma membrane polarity cap.  This indicates that the immediate effect of exocytic 
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vesicle fusion is to dilute the Cdc42 present at this site on the plasma membrane 

rather than to concentrate it, which is inconsistent with the actin-mediated positive 

feedback model [44, 57].  

Since both the actin cytoskeleton and the vesicle docking/fusion apparatus 

are thought to direct traffic to sites on the plasma membrane with the most 

concentrated Cdc42, the local effect of exocytic transport would be to antagonize or 

destabilize Cdc42 polarization on the plasma membrane [56, 75].  Local negative 

regulation may play an important role in building spatial flexibility into this system.  

This is similar to a model recently proposed by Dyer et al. [76] in which dilution of the 

scaffolding protein Bem1 by vesicle fusion would lead to wandering of the polarity 

cap.  Our data suggest that in addition to dilution of polarity factors such as Bem1, 

vesicle fusion would result in dilution of Cdc42 itself which would contribute directly 

to the destabilizing effect of exocytic transport on polarity. 

If the immediate effect of exocytic traffic is to antagonize Cdc42 polarity on 

the plasma membrane, then why is Cdc42 associated with post-Golgi vesicles at all?   

While the work presented here does not directly address this important question, we 

can speculate on possible roles for exocytic delivery of Cdc42.  First, exocytic 

delivery may represent a mechanism for recycling Cdc42 that has been removed by 

endocytosis [44, 45, 63].   Such a delivery system would fit with the notion that 

trafficking acts as a parallel pathway to the Rho GDI recycling mechanism as 

proposed by Slaughter et al. [44].  All of our data is in complete agreement with such 

a recycling function for vesicular Cdc42.  Another function for this recycling 

mechanism is that having significant levels of Cdc42 on the vesicles helps to buffer 
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the negative regulatory effects of exocytic transport on Cdc42 polarity a possibility 

explored through modeling in the Savage et al. study [74]. 

A recent study examined the apparent surface densities of GFP-Cdc42 within 

the cell by fluorescence correlative spectroscopy [77]. In this paper, Slaughter et al. 

concluded that the surface density of GFP-Cdc42 on vesicles (49 molecules/µm2) 

was similar to that on the plasma membrane (46 molecules/µm2). The remarkably 

low absolute density reported at the polarity cap was particularly surprising given 

that such a density would involve a polarity cap (0.1µm2) with only 4.3 GFP-Cdc42 

molecules out of roughly 12,000 molecules per cell (based on a conservative 

estimate of the GFP-Cdc42/native Cdc42 expression levels for the GFP-Cdc42 

constructs used) or less than 0.04% of the total cellular GFP-Cdc42. In contrast, our 

estimates of native Cdc42 densities on post-Golgi vesicles are almost 5-fold higher 

(260 molecules/µm2 or 6.5 copies per vesicle) than Slaughter et al. (2013) and our 

estimates of densities on the plasma membrane (810 molecules/µm2) are 15-fold 

higher. For comparison, our results indicate that a polarity cap (0.1µm2) contains 76 

molecules of native Cdc42 or roughly 1.1% of the total cellular Cdc42.  Given the low 

densities of GFP-Cdc42 and the inferred low plasma membrane polarity reported by 

Slaughter et al. (2013) it is difficult to reconcile their findings with our work except to 

note that widely different approaches were used to estimate densities. 

We also demonstrate that GFP-Cdc42 is defective in its association with post-

Golgi vesicles compared to its untagged counterpart. Before the work presented in 

this paper, common methods were limited in the ability to quantitatively examine the 

amounts of the native, untagged Cdc42 protein associated with post-Golgi vesicles. 
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Thus, the inability to gather information on the native protein may have introduced 

gaps in our understanding that were not previously apparent. Both our data and 

Slaughter et al. [44] support the notion that Rdi1 and vesicle traffic act as parallel 

routes for Cdc42 cycling to and from the plasma membrane, which is somewhat 

surprising given the apparent recycling defect of GFP-Cdc42 compared to the 

untagged form [55, 66, 67]. Furthermore, it is interesting that GFP-Cdc42 supports 

growth of rdi1 cdc42 cells at temperatures below 30oC (Figure 2.4D). This may 

indicate the existence of an additional or third recycling pathway that allows 

prenylated Cdc42 to be recycled between internal membranes and the plasma 

membrane polarity cap. Altogether, the data presented in this paper supports the 

importance of continued studies of the native protein alongside tagged forms of 

Cdc42 to improving our understanding of cell polarity. 

2.5 Materials and Methods 

Yeast strains, reagents and media 

Yeast strains used and generated for this study are listed in Supplemental 

Table S1. Standard protocols for media, growth and genetic manipulations were 

used. Growth media used in this study includes: YPD (1% bacto-yeast extract, 2% 

bacto-peptone, 2% dextrose), S minimal (0.67% yeast nitrogen base without amino 

acids and 2% dextrose), and dropout media (0.67% yeast nitrogen base without 

amino acids, synthetic complete amino acid supplement minus appropriate amino 

acid(s)and 2% dextrose). Media components were obtained from US Biological 

(Swampscott, MA), Fisher Scientific (Pittsburgh, PA) and BD Biosciences (San Jose, 

CA). Galactose inductions involved growth in rich or minimal media with 3% 
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raffinose followed by 8-10 hour inductions with 1% galactose (US Biological, 

Swampscott, MA). Deletion mutants were generated by PCR amplification of either a 

KanMX or NatMX cassette using oligos designed against the –MX cassette and 

flanking DNA sequences of respective genes (e.g. END4, PEP12, etc.). The 

genomic DNA used as PCR template was extracted from deletion strains—

developed by the Saccharomyces Genome Deletion Project— using standard 

protocol for genomic DNA extraction [78]. Yeast transformations of the –MX cassette 

into GAL-vector, -SRO7 and –SEC15 strains were performed using lithium acetate 

method [79]. G418 sulfate was obtained from US Biological. clonNAT 

(nourseothricin) was obtained from WERNER BioAgents (Jena, Germany). 

YIpLac211-GFP-linker-CDC42 plasmid was received as a gift from the Lew 

laboratory (Duke University, Durham, NC). GFP-linker-CDC42 (behind CDC42 

promoter) was subcloned into a LEU2, CEN vector (pRS315) and introduced into 

wild-type and the CDC42-plasmid shuffle strain. Zymolyase 100T, ampicillin, Hepes 

(free acid), and 5-fluoroorotic acid (5-FOA) were obtained from US Biological 

(Swampscott, MA). Sorbitol, β-mercaptoethanol, phenol, sodium azide, sodium 

fluoride, dithiothreitol (DTT), were obtained from Sigma Aldrich (St. Louis, MO). 

Chloroform, Terrific Broth, and dextrose were from Fisher Scientific (Pittsburgh, PA). 

Subcellular fractionation 

Wild-type and sec6-4ts- cells with or without PEP12 or RDI1 disruptions were 

grown in rich (YPD) media overnight at 25oC to mid-log phase and shifted to 37oC 

for 2hr to accumulate secretory vesicles. Approximately 200 OD599 units of cells 

were harvested and washed with 10ml of (10 mM Tris pH 7.5; 20mM NaN3; 20mM 
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NaF) buffer. Cells were spheroplasted in 7.2ml of (100 mM Tris pH 7.5; 10 mM 

NaN3; 1.2 M Sorbitol; 21 mM β-mercaptoethanol; 0.05mg/ml Zymolyase 100T) buffer 

for 30 min at 37oC and lysed in 6ml of ice-cold (10 mM triethanolamine, pH 7.2; 0.8M 

sorbitol; protease inhibitor cocktail: 2 µg/ml each of leupeptin, aprotinin, antipain; 20 

µM pepstatin A; 2 mM 4-(2-aminoethyl)benzenesulfonyl fluoride) buffer. Lysed cells 

were centrifuged, cold at 450 x g for 4 min to remove unbroken cells. Cleared 

lysates were centrifuged in a Sorvall centrifuge (30,000 x g for 15 min at 4oC) to 

separate pellet and supernatant fractions. Supernatants were then centrifuged at 

100,000 x g for 1hr at 4oC. Pellets were resuspended in lysis buffer at volumes equal 

to the supernatant fractions. Equal volumes of supernatant, pellet and total lysate 

fractions were boiled in SDS sample buffer and separated on a 12.5% SDS-

polyacrylamide gel. Western blotting was performed using polyclonal α-Sso1/2 

(1:2000), polyclonal α-Sec4 (1:1000) or monoclonal α-Cdc42 (1:200) antibodies. 

Quantitative Western analysis was performed with the Odyssey Infrared Imaging 

System (LI-COR Biosciences, Lincoln NE). 

Plasmid shuffle assay 

To determine whether GFP-CDC42 can complement cdc42∆ in GDI-depleted 

cells, CDC42 (CEN, HIS) or GFP-linker-CDC42 (CEN, HIS) were transformed into 

CDC42 plasmid shuffle strains that were either wild-type or disrupted for RDI1. 

Deletion of RDI1 was accomplished by homologous recombination as described for 

the endocytic deletion mutants. After selection on sc-his plates, the original CDC42 

plasmid (CEN, URA) was evicted by growth on 5-FOA. Temperature sensitivity was 

evaluated at temperatures ranging from 14οC to 37.5οC. Images of higher 
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temperatures shown in Figure 2.4 represent phenotypic separation between the 

RDI1 and rdi1 strains.  

Immunofluorescence and fluorescence microscopy 

Cells were grown to mid-log phase in 2% glucose media and shifted into 3% 

raffinose for 2/+ doublings. GAL-SRO7 and -SEC15 were induced by adding 1% 

galactose for 8-10 hours. Cells were fixed and processed for immunofluorescent 

staining as described previously [72, 80]. Double-labeled immunofluorescent 

staining of the plasma membrane polarity cap and post-Golgi vesicles was 

performed using ammonium sulfate precipitated, monoclonal mouse α-Sec4 (1:200) 

and affinity-purified, polyclonal rabbit α-Cdc42 (1:75) antibodies. For background 

correction, control staining was performed using rabbit and mouse IgG antibodies 

that lacked reactivity to any yeast protein. Secondary antibodies were Rhodamine 

Red-X-conjugated AffiniPure Goat Anti-Mouse IgG and Fluorescein Isothiocyanate 

(FITC)-conjugated AffiniPure Goat Anti-Rabbit IgG (Jackson ImmunoResearch 

Laboratories Inc., West Grove, PA), respectively. Secondary antibodies were used 

at 1:100-1:200 dilution. Single-plane immunofluorescent, GFP-fluorescent, and 

differential interference contrast (DIC) images were acquired using Nikon model 

E600 and 2D-deconvolved using MetaMorph software (Molecular Devices). Figures 

were prepared from deconvolved images using Adobe Photoshop and Illustrator 

(CS5.1). 

Quantitative analysis of polarized and vesicle clustering cells 

ImageJ [81] was used to conduct quantitative analysis of single plane, 2D-

deconvolved images. Cdc42 fluorescence intensity (a.u.) was measured using 
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regions of interest (ROIs) drawn within the centroid, or peak intensity, of either the 

plasma membrane polarity cap or the post-Golgi vesicle cluster and throughout the 

cytoplasm of the respective cell. Increases in fluorescence intensities of Cdc42 

associated with the polarity cap versus the cluster relative to the cytoplasm were 

calculated in Microsoft Excel. Data was presented as either 1) relative fluorescence: 

the ratio of the average fluorescence intensities of the Cdc42-positive compartment 

relative to the cytosol, 2) relative association: the Cdc42 compartment:cytosol ratio 

expressed as percent association relative to 100% wild-type, 3) phenotype 

penetrance: box and whisker plot of the Cdc42 compartment:cytosol ratio. Figures 

were prepared using Adobe Photoshop and Illustrator (CS5.1). 

Ratio-metric analysis of GFP-Cdc42 using the Cse4 reference standard 

Cells expressing either GFP-Cdc42 or Cse4-GFP were cultured at 25oC in 

minimal media to mid-log phase. Equivalent OD599 of both strains were mixed and 

spread onto standard, uncoated microscope slides. Images were acquired as 

400ms/frame, 24-frame Z-series, with 0.2µm step-size using an Olympus IX81 

microscope. Additionally, cells were imaged using differential interference contrast 

alongside fluorescence acquisition to delineate cells. Image 3D deconvolution was 

performed using MetaMorph software (version 7.7.10.0; Molecular Devices) and 

sum-intensity projections and measurements using ImageJ [81]. Integrated 

fluorescence intensity and background correction for Cse4-GFP was obtained as 

described in Lawrimore et al. [71]. ROIs were drawn around the periphery of 

incipient and small-budded cells to obtain the total cellular integrated fluorescence 

intensity for GFP-Cdc42. Background corrections were obtained from whole cell 
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ROIs of controls cells that were imaged in mixture with GFP-Cdc42 expressing cells. 

Total copies of GFP-Cdc42 in the cell were calculated by: (average GFP-Cdc42 

fluorescence intensity ÷ average Cse4-GFP fluorescence intensity) x 80 Cse4-GFP 

copies/cell (yielded ~27,400 copies/cell). Approximately 40 cells for each strain were 

measured.  

Comparative analysis of Cdc42 protein 

To compare the amounts of endogenous Cdc42 to the plasmid-derived 

tagged and untagged forms, quantitative Western analysis was performed using the 

Odyssey Infrared Imaging System (LI-COR Biosciences, Lincoln NE). Strains were 

grown overnight (25oC) in minimal media to mid-log phase. Cells were then 

transferred to rich media for 2 doublings prior to harvesting 7 OD599 units for glass 

bead lysis. An aliquot of each of these cultures were diluted to 0.2-0.4 OD599 units 

and counted using a hemocytometer. Cells were then subjected to glass bead lysis 

and lysates boiled in SDS sample buffer. Lysates were normalized based on 

equivalent cell number, separated on an 11.5% polyacrylamide gel and analyzed by 

quantitative western blotting. The ratio of protein amounts of GFP-tagged to 

endogenous Cdc42 were applied to the total cellular copies of GFP-Cdc42 to 

determine the total cellular copies of the native, untagged protein (yielded ~6,800 

copies/cell).  

Quantitative Western blotting was also used to compare Cdc42 amounts in 

wild-type and vesicle clustering strains. Cells were cultured using the same growth 

conditions as for fluorescence imaging and loaded on a polyacrylamide gel based on 
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equivalent cell number. The ratio of protein amounts of wild-type and vesicle 

clustering strains yielded ~10,400 copies of Cdc42 in GAL-SEC15 induced cells.  

Ratio-metric analysis of GFP-Cdc42 using the Sec1 reference standard 

To generate the reference standard strain, an EcoR1 linearized plasmid 

(pB1114) containing a N-terminal deletion of SEC1 tagged with GFP was integrated 

into wild-type cells at the SEC1 locus using standard yeast transformation method 

[79]. The resulting strain expresses SEC1-GFP as the sole copy in the cell. Cells 

expressing either GFP-Cdc42 or Sec1-GFP, as the sole source, were cultured and 

prepared for quantitative Western blotting as described for comparative analysis of 

Cdc42 protein (above). Western blotting was performed using monoclonal mouse α-

GFP from Roche Diagnostics (Indianapolis, IN), polyclonal rabbit α-Adh1 (1:2000), 

or affinity purified polyclonal α-Exo70 (1:100) antibodies. The total copies of Sec1 

per cell [68] was applied to the ratio of GFP-Cdc42:Sec1-GFP to obtain total cellular 

copies of GFP-Cdc42 (~21,500 copies/cell). The comparative analysis of plasmid-

borne to native Cdc42, induced to uninduced cells was applied to determine the total 

native Cdc42 copies per cell in uninduced and induced cells, ~5,400 and 8,200 

respectively.  

Quantification of Cdc42 vesicle and polarity cap surface densities 

GAL-induced vesicle clustering strains and the vector control strain were 

cultured and processed for immunofluorescence as previously described. Image 

acquisition for fixed samples was as follows: 800ms/frame, 14 to 18-frame Z-series, 

with 0.2µm step-size using an Olympus IX81 microscope. Image 3D deconvolution, 

sum-intensity projections and ROI measurements were performed to obtain the 
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integrated fluorescence of the entire cell (as described for GFP-Cdc42). Also from 

these deconvolved z-series, ROI scans for the polarity cap and vesicle cluster were 

performed on the z-plane with the peak Cdc42 integrated fluorescence signal.  ROI 

diameters used for polarity cap (0.47µm) and vesicle cluster (0.72µm) were chosen 

based on size that consistently fit regions with homogeneous staining. The fractional 

amount of the total integrated fluorescence intensity for the polarity cap and cluster 

was determined and converted to copies per ROI using this work’s estimates of the 

total copies of the native protein per cell. Approximately 50 cells per strain were 

used for this analysis.  

Morphometric analysis of thin-section micrographs was performed to obtain 

surface densities of the polarity cap and vesicle cluster. Vesicle cluster analysis: 

vesicles were counted in six regions of known size in several thin-section 

micrographs yielding an average cluster packing density of 35.5 ± 3.9 vesicles/µm2. 

A 0.2µm-thick z-plane can accommodate two vesicles with a 90nm diameter. With 

this two-vesicle maximum per optical section and an ROI area of 0.407µm2, we 

estimate that each ROI used for immunofluorescence contains an average of 71 

vesicles/ROI and a total vesicle membrane surface area of 0.72µm2. Polarity cap 

analysis: small-budded wild-type cells from six independent EM fields were 

examined for the absence/presence of vesicles within the bud that were either 

associated with or adjacent to the plasma membrane. This analysis yielded an 

average of 1.3 ± 0.23 vesicles/µm2 per thin-section or 2.6 vesicles/µm2 per IF optical 

section. The resulting surface density was subtracted from the final polarity cap 
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density and the average copies per ROI, surface area and density for the polarity 

cap are reported alongside those for the vesicle cluster in Figure 2.5. 
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2.6 Figures  

 

Figure 2.1 An in vivo assay demonstrates the association of Cdc42 with post-
Golgi vesicles. A) Cdc42 localizes to Sec4+ post-Golgi vesicle clusters following 
GAL-overexpression of Sro7 and Sec15. Induced and uninduced cells were 
subjected to fixation and double-label immunofluorescence using monoclonal α-
mouse Sec4 (red) and polyclonal α-rabbit Cdc42 (green) antibodies. Single-plane, 
2D deconvolved images are shown. Cdc42/Sec4 co-staining for the plasma 
membrane polarity cap and post-Golgi vesicle clusters is denoted by arrowheads. 
Scale bar = 2µm. B & C) Quantitative analyses of Cdc42 association with Sec4+ 
compartments. B) Approximately 40 cells were selected based on Sec4+ staining 
and scored for Cdc42 co-localization. The bar graph compares the percentage of 
puncta showing co-localization in polarized and cluster-forming cells. Error bars 
represent standard deviation. C) The average ratio of Cdc42 at the polarity cap or 
vesicle clusters over the cytoplasm was measured (see Materials and Methods) in 
cells acquired from three independent experiments (approx. 140 cells). Error bars 
represent the standard deviation. Two-tailed Student t test was performed 
comparing vesicle clusters to the polarity cap (vector control). p=0.022 
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Figure 2.2 Endocytosis, but not Rho GDI, is required for Cdc42 association 
with post-Golgi vesicles. A) Cdc42 associates with the plasma membrane polarity 
cap in RDI1- and END4 (SLA2)-depleted cells. Deletions in RDI1 and END4 were 
introduced into the GAL-SRO7 vesicle clustering strain (see Materials and Methods). 
Cells were grown in raffinose media (25oC) and subjected to IF as in Figure 2.1. The 
percent association of Cdc42 at the plasma membrane polarity cap in uninduced 



40 
 

wild-type, rdi1 and end4 cells were compared. Single-cell images represent the 
mean relative association; approx. 40 cells were scored; error bars represent the 
standard deviation. Two-tailed Student t test was performed to compare mutants to 
WT. B-G) Endocytic block impedes Cdc42 vesicle association. B & E) Galactose 

induction of vesicle clusters and IF staining was performed on wild-type, rdi1, and 

end4 cells as described in Figure 2.1. Vesicle clusters are denoted by arrowheads. 
Scale bar = 2µm. C & F) Quantitative representation of the association of Cdc42 
with Sro7- and Sec15-induced vesicle clusters (B & E respectively). The average 
Cdc42 fluorescence intensity was measured in cells randomly selected for Sec4+ 
vesicle clusters. Approximately 100 cells for each strain were scored. Error bars 
represent standard deviation. Data were normalized to percent association relative 
to 100% associated wild-type. Two-tailed Student t test was used to compare 
mutants to wild-type. D & G) Penetrance of end4∆ phenotype is shown as a box-
and-whisker plot. The box represents the interquartile range (IQR) of the average 
relative Cdc42 fluorescence intensity. The line and whiskers denote the median and 
minimum/maximum, respectively. 
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Figure 2.3 Endosomal sorting mutants show defects in Cdc42 recycling onto 
post-Golgi vesicles. A & B) Deletions in general endocytic regulators were 
introduced into the GAL-SRO7 and –SEC15 strains (see Materials and Methods). 
Cells were induced, fixed and subjected to IF as in Figure 2.2. Effect on Cdc42 
vesicle cluster association is denoted by arrowheads. Data is presented as percent 
association relative to wild-type. Approximately 40 cells per strain were scored. 
Student t test was performed on all endocytic mutants compared to wild-type: A & 
B): all comparisons yielded p<0.0001. Scale bar = 2µm. C & D) Cdc42 associates 
with sec6-4 derived post-Golgi vesicles in an endocytic-dependent, RDI1-
independent manner. PEP12 and RDI1 disruptions were introduced into the late-
secretory mutant sec6-4 and an isogenic wild-type strain. Strains were grown in rich 
media overnight at 25oC to mid-log phase and shifted to 37oC for 2h to accumulate 
secretory vesicles. Cells were lysed and differential centrifugation was performed. 
Samples of low- and high-speed supernatants (S30 and S100) and pellets (P30 and 
P100) fractions were subjected to SDS-PAGE and Western analyses using 
antibodies against Sec4 and Cdc42 (see Materials and Methods). Percentages of 
total protein are shown under each blot. 
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Figure 2.4 GFP-tagged Cdc42 has impaired ability to associate with post-Golgi 
vesicles and exhibits synthetic growth defects with rdi1∆. A) GFP-Cdc42 does 
not accumulate under conditions that form Sec4+ post-Golgi vesicle clusters. 
Vesicles clusters were induced in cells that complement a cdc42∆ with either 
untagged or GFP-tagged CDC42 expressed behind the CDC42 promoter on a 
LEU2/CEN plasmid. Cdc42 vesicle and PM association was visualized by double-
labeled IF of Sec4 and Cdc42. Live cell imaging of GFP-Cdc42 was performed 
before and after GAL-induction. B & C) Quantitative analysis of average relative 
GFP-Cdc42 fluorescence intensity at the PM (B, live-cell versus IF) and the cluster 
(C, IF only). Polarity cap (B): n = 25. Vesicle cluster (C): n = 50. Data comparing 
GFP-Cdc42 expressing cells to untagged Cdc42 (CEN) was analyzed by Student t 
test. (B) Comparison of Live, GFP-Cdc42 to native Cdc42 by IF: p=0.0235 Scale bar 
= 4µm D) GFP-CDC42 is synthetically sick with rdi1∆.  Untagged or GFP-tagged 
CDC42 were introduced into CDC42-plasmid shuffle strains that contained either 
RDI1 or rdi1∆. After selection on 5-FOA, growth on YPD was assessed at 25οC, 
34.5οC, 35.5οC and 37.5οC. 
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Figure 2.5 Quantitative analysis of Cdc42 density on post-Golgi vesicles and 
the plasma membrane polarity cap. A) Fluorescence signal differences in GFP-
Cdc42 and the reference standard, Cse4-GFP. Micrographs shown are sum-
intensity projections from 24 deconvolved z-planes (bottom) and the reference 
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differential interference contrast (top). Scale bar = 2µm. B) Whole cell lysate 
comparison of cells expressing GFP-Cdc42 (CEN) or the chromosomal (untagged) 
Cdc42 in rich media. Protein samples were normalized by cell equivalents as 
described in Materials and Methods. Antibodies against Exo70 and Adh1 were used 
as loading controls. Quantification of the relative Cdc42 protein levels in GFP-Cdc42 
expressing cells compared to cells expressing chromosomal Cdc42—when 
normalized by equivalent cell number. C) Whole celll lysate comparison of Cdc42 
protein levels in vector, GAL-Sro7 and Sec15 after 8h induction in 1% galactose. 
Protein samples were loaded in duplicate based on equivalent cellular number. 
Exo70 was used as a loading control. Student t test was performed to compare 
relative Cdc42 amounts in clustering (GAL-Sro7 or –Sec15) versus non-clustering 
wild-type cells (vector). D) Whole cell lysate comparison of GFP-tagged Cdc42 
(CEN) and Sec1-GFP (INT) in rich media. Protein samples were loaded in triplicate 
based on equivalent cell number. Western blotting was performed using monoclonal 
α-GFP and polyclonal α-Exo70 and α-Adh1 antibodies. Quantification of amounts of 
GFP-tagged protein relative to Sec1-GFP are shown. E) Schematic representation 
of measured surface densities associated with the polarity cap and vesicle cluster. 
F) Representative thin-section electron micrograph of vesicle cluster packing 
density. The thickness of each optical sections is 60nm. Scale bar = 2µm. G) Table 
of Cdc42 density estimates in polarity cap and vesicle cluster using Cse4 or Sec1 
reference standards.
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2.7 Supplementary Information 

1. Figure 2.S1 

2. Table 2.S1 

 

Figure 2.S1 Comparisons of strains containing untagged and GFP-tagged 
Cdc42. A) Expression of GFP-CDC42 results in temperature sensitivity at 37oC. 
Plasmid-borne (CEN) GFP-tagged and untagged CDC42 were introduced as the 
only source in the cell (see Experimental Procedures). These strains confirmed 
reported effects on growth at 37oC [55, 66, 67]. Four independent transformants for 
each strain were picked and transferred to minimal media at permissive (25oC) and 
non-permissive (37oC) temperatures. B) Effects of plasmid-borne (CEN) CDC42 
on OD599 equivalents. Cells with either native, untagged or GFP-tagged CDC42 as 
the sole copy of Cdc42 were grown in either 2% glucose or 3% raffinose media to 
mid-log phase (2/+ doublings) at 25oC. The same number of OD599 were 
harvested, diluted to 0.2-0.7 OD599 and counted using a hemocytometer. Bar 
graphs show the average number of cells per OD599 Unit for each strain grown in 
both carbon sources. Error bars represent the standard deviation. Data were 
analyzed by two-tailed Student t test as compared to their respective wild-type 

control: all comparisons to wild-type yielded p<0.0001. C) Cells expressing 
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plasmid-derived CDC42 show an increased cell diameter. Cells were grown as 
described in (B) and single plane, differential interference contrast (DIC) images 
were acquired using a Nikon model E600 microscope. Diameters of the mothers of 
budded cells were measured using ImageJ [81]. The average mother diameters of 
cells grown in glucose and raffinose are shown. Error bars represent the standard 
deviation; data were analyzed by two-tailed Student t test as compared to their 
respective wild-type control: all comparisons to control yielded p<0.01. D) Whole 
cell lysate comparison of native, untagged and GFP-tagged Cdc42 in 3% raffinose 
(minimal media). Left blot: samples were prepared and normalized to cell 
equivalents (as in Figure 2.5B). Right blot: samples were normalized by cell 
material (α-Exo70). Protein loading was monitored using α-Exo70 and α-Adh1 
antibodies.



47 
 

Table 2.S1: Yeast strains used in this study 

Strain MAT Genotype Reference 

BY1807 a cdc42∆::HIS3; pRS316-CDC42; ura3-52; leu2-3,112 
PB 

Collection 

BY2368 α 
GAL+; LEU2::GAL-SRO7; ura3-52; leu2-3, 112; his3-
∆200 

[60] 

BY2369 α 
GAL+; LEU2::GAL-SEC15; ura3-52; leu2-3, 112; 
his3-∆200 

[60] 

BY2375 α 
GAL+; LEU2::GAL-vector; ura3-52; leu2-3, 112; his3-
∆200 

[60] 

BY2478 a ura3-52; leu2-3, 112 
PB 

Collection 

BY2479 α rdi1∆::KANr; ura3-52; leu2-3, 112 
PB 

Collection 

BY2480 a sec6-4ts-; ura3-52; leu2-3, 112 
PB 

Collection 

BY2481 a sec6-4ts-; rdi1∆::KANr; ura3-52; leu2-3, 112 
PB 

Collection 

BY2666 α 
GAL+; LEU2::GAL-SRO7; rdi1∆::NATr; ura3-52; 
leu2-3, 112; his3-∆200 

This study 

BY2667 α 
GAL+; LEU2::GAL-SEC15; rdi1∆::NATr; ura3-52; 
leu2-3, 112; his3-∆200 

This study 

BY2668 α 
GAL+; LEU2::GAL-vector; rdi1∆::NATr; ura3-52; 
leu2-3, 112; his3-∆200 

This study 

BY2669 α 
GAL+; LEU2::GAL-SRO7; sla2∆::KANr; ura3-52; 
leu2-3, 112; his3-∆200 

This study 

BY2670 α 
GAL+; LEU2::GAL-SEC15; sla2∆::KANr; ura3-52; 
leu2-3, 112; his3-∆200 

This study 

BY2671 α 
GAL+; LEU2::GAL-vector; sla2∆::KANr; ura3-52; 
leu2-3, 112; his3-∆200 

This study 

BY2685 α 
GAL+; LEU2::GAL-SRO7; pep12∆::KANr; ura3-52; 
leu2-3, 112; his3-∆200 

This study 

BY2686 α 
GAL+; LEU2::GAL-SEC15; pep12∆::KANr; ura3-52; 
leu2-3, 112; his3-∆200 

This study 
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BY2687 α 
GAL+; LEU2::GAL-vector; pep12∆::KANr; ura3-52; 
leu2-3, 112; his3-∆200 

This study 

BY2688 a pep12∆::KANr; ura3-52; leu2-3, 112 This study 

BY2689 a sec6-4ts-; pep12∆::KANr; ura3-52; leu2-3, 112 This study 

BY2707 α 
GAL+; LEU2::GAL-SRO7; tlg2∆::KANr; ura3-52; 
leu2-3, 112; his3-∆200 

This study 

BY2708 α 
GAL+; LEU2::GAL-SEC15; tlg2∆::KANr; ura3-52; 
leu2-3, 112; his3-∆200 

This study 

BY2709 α 
GAL+; LEU2::GAL-vector; tlg2∆::KANr; ura3-52; 
leu2-3, 112; his3-∆200 

This study 

BY2710 α 
GAL+; LEU2::GAL-SRO7; sla1∆::KANr; ura3-52; 
leu2-3, 112; his3-∆200 

This study 

BY2711 α 
GAL+; LEU2::GAL-SEC15; sla1∆::KANr; ura3-52; 
leu2-3, 112; his3-∆200 

This study 

BY2712 α 
GAL+; LEU2::GAL-vector; sla1∆::KANr; ura3-52; 
leu2-3, 112; his3-∆200 

This study 

BY2719 α 
GAL+; LEU2::GAL-SRO7; end3∆::KANr; ura3-52; 
leu2-3, 112; his3-∆200 

This study 

BY2720 α 
GAL+; LEU2::GAL-SEC15; end3∆::KANr; ura3-52; 
leu2-3, 112; his3-∆200 

This study 

BY2721 α 
GAL+; LEU2::GAL-vector; end3∆::KANr; ura3-52; 
leu2-3, 112; his3-∆200 

This study 

BY3036 a cdc42∆::HIS3; pRS315-CDC42; URA3::GAL-SEC15 This study 

BY3037 a 
cdc42∆::HIS3; pRS315-GFP-CDC42; URA3::GAL-
SEC15 

This study 

BY3050 a 
cdc42∆::HIS3; pRS316-CDC42; rdi1∆::KANr; leu2-
3,112 

This study 

BY3152 α GAL+; SEC1-GFP::URA3; ura3-52; his3-∆200 This study 

KBY2012 a 
cse4::HYG; pkk1; SPC29-CFP-KAN; trp1-63; leu2-1; 
ura3-52; his3-∆200; lys2-801 

[82] 
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CHAPTER 3: Concluding Remarks and Future Studies 

Maintenance of the polarized distribution of Cdc42 on the cell surface is 

dynamically achieved through the constant exchange of Cdc42 molecules between 

the polarity cap and internal pools [30, 44, 45]. Both the targeted delivery of proteins 

and lipids to the bud tip via exocytic transport and the diffusion of Cdc42 molecules 

away from the polarity cap can threaten the stability of the polarity cap. Recycling of 

Cdc42 from the plasma membrane presumably stabilizes the polarity cap by 

circumventing lateral membrane diffusion. Endocytic uptake and GDI-mediated 

retrieval of Cdc42 from the plasma membrane are considered parallel mechanisms 

for maintaining Cdc42’s localization in this manner. Irazoqui et al. [45] demonstrated 

that endocytic recycling of Cdc42 counterbalances the targeted exocytic delivery of 

Cdc42-laden vesicles to the polarity cap suggesting that membrane trafficking 

serves to maintain the polarized localization of Cdc42. However, the feasibility of this 

concept of endo-exocytic trafficking of Cdc42 as a polarizing event is still quite 

controversial as it requires vesicles to deliver a significant amount of Cdc42 relative 

to the site on the plasma membrane to which the vesicles will ultimately fuse (Figure 

1.3). As the amounts of native, untagged Cdc42 on vesicles compared to the polarity 

cap has yet to be determined, direct assessment of the vesicular contribution to 

Cdc42 polarity has been challenging. Therefore, the objective of my thesis has been 

to address this and other concerns of the role of endo-exocytic trafficking in 

maintaining the polarized localization of Cdc42. 
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First, using a novel phenotype that results in the accumulation of a pure 

population of Golgi-derived vesicles in the cytosol, we directly showed the 

enrichment of Cdc42 on secretory vesicles in vivo—which is consistent with previous 

biochemical studies conducted by other labs [46, 57, 58]. We also showed that 

deletions in genes that regulate distinct stages in the endocytic pathway disrupted 

the vesicle association of Cdc42, whereas loss of Rdi1 activity had no such effect in 

either the in vivo assay or biochemical fractionation assay (Figure 2.2 and 2.3). 

Removal of Cdc42 from the plasma membrane via endocytic recycling conceivably 

serves two functions. Firstly, given the potential for proteins that are peripherally 

associated with the plasma membrane to diffuse within the inner leaflet, endocytic 

uptake can serve to remove diffusing Cdc42 molecules from the plasma membrane. 

Additionally, the delivery and fusion of Cdc42-loaded exocytic vesicles with the 

polarity cap can potentially cause Cdc42 molecules to disperse around the plasma 

membrane depending on the vesicle concentration of Cdc42 (Figure 1.3) [50]. As 

endocytic patches are known to concentrate at sites adjacent to the polarity cap [83, 

84], endocytic patches are perfectly positioned to counteract diffusion caused by 

vesicle fusion at or near the polarity cap. Secondly, like the role of endocytosis in the 

polarization of the v-SNARE Snc1 [85], endocytic recycling could serve to reload 

Cdc42 onto outward-bound secretory vesicles [45, 46]. As the association of Cdc42 

with post-Golgi vesicles was largely dependent on its internalization and recycling 

via the endocytic pathway, not GDI-retrieval, our findings were consistent with these 

two roles of endocytosis in Cdc42 recycling. This differs from the plasma membrane 

polarity cap where both Rdi1 and membrane trafficking are considered to function in 
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parallel to regulate Cdc42’s localization. Therefore, our findings also distinguished 

the requirements for vesicle recruitment from that involved in Cdc42’s recruitment to 

the polarity cap. 

Second, we provided the first direct estimation of the molecular distribution of 

native Cdc42 on post-Golgi vesicles compared to the polarity cap. Previous analyses 

of the contribution of membrane trafficking to Cdc42 polarity have involved 

mathematical modeling or fluorescence correlative spectroscopy of GFP-tagged 

Cdc42 [50, 77]. However, direct validation (or invalidation) of membrane trafficking 

as a polarizing agent required having precise estimations of the concentration of 

native Cdc42 on post-Golgi vesicles and the plasma membrane polarity cap. Using 

two independent methods, we found that while the amounts of native Cdc42 on 

vesicles is substantial in comparison to the surrounding cytosol, the concentration of 

Cdc42 at the polarity cap exceeded the vesicular concentration by threefold. Recent 

mathematical modeling studies suggests that fusion of secretory vesicles with the 

plasma membrane could result in dispersal of the polarity cap [50]. We 

demonstrated that the concentration of Cdc42 on post-Golgi vesicles is not sufficient 

to reinforce the polarized localization of Cdc42, and thus we provided the first 

experimental evidence for a negative role for membrane trafficking on Cdc42 

polarity. 

Third, we demonstrated that the addition of a GFP-tag to the N-terminus of 

Cdc42 impairs its ability to associate with post-Golgi vesicles. The importance of the 

C-terminus to Rho protein function and localization has been well documented [29, 

31, 35, 53]. However, earlier work from our lab implicated the N-terminus in the 
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proper localization and function of Cdc42 and another Rho GTPase Rho3. 

Exchanging the N-termini of these two proteins resulted in loss of Rho3 localization 

and function, while the chimeric Cdc42 protein adopted a “Rho3-like” localization 

and ability to function as the sole source of Rho3 in the cell. The impaired 

association of the N-terminally tagged GFP-Cdc42 with post-Golgi vesicles 

presented in this thesis further demonstrated the significance of the extreme N-

terminus in Cdc42’s localization. GFP-tagged forms of CDC42 have been shown to 

have a growth defect at higher temperatures when serving as the only copy of 

CDC42 in the cell (Figure S2.1) [55, 66, 67]. We found that the additional loss of 

RDI1 function further diminishes the ability of GFP-CDC42 to function as the sole 

source of CDC42 in the cell, which suggests GFP-Cdc42 has a recycling defect. 

While the worsening of the temperature sensitivity of GFP-CDC42 in RDI1-depleted 

cells was consistent with the parallel function of endocytosis and Rdi1, the ability of 

GFP-CDC42 to support growth at ambient temperatures suggested the possibility of 

a third independent mechanism for recycling Cdc42 from the polarity cap. 

Altogether, these findings suggested that although studies using GFP-Cdc42 have 

contributed extensively to our understanding the polarization of Cdc42, tagging 

Cdc42 at the N-terminus could obscure the detection of additional mechanisms 

involved in Cdc42’s localization and its function in polarized growth. 

Although the work described herein is in agreement with the proposed parallel 

function of membrane trafficking and GDI-mediated retrieval in recycling Cdc42 from 

the plasma membrane polarity cap, the dilute molecular distribution of Cdc42 on 

vesicles compared to the polarity cap suggests membrane trafficking serves to 
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antagonize rather than promote Cdc42 polarity (Figure 3.1). The antagonistic effect 

is consistent with the role of negative feedback systems in supporting spatial and 

temporal flexibility in responses to external/internal stimuli—such as that proposed 

for patch wandering during chemical gradient detection or in patch competition 

during the establishment of a single cell “front” [67, 76]. However, the direct 

trafficking of Cdc42-laden vesicles to the polarity cap—which is the site on the cell 

surface with the most concentrated Cdc42 distribution—could promote septin ring 

formation which in turn would serve as a barrier to restrict Cdc42 molecules to the 

polarity cap thereby preventing lateral membrane diffusion of Cdc42 [75]. 

3.1 Future Studies 

The work presented in this thesis has provided several insights into the role of 

membrane trafficking in Cdc42 polarity. However, several unanswered questions 

remain. We found that Cdc42’s association with post-Golgi secretory vesicles 

heavily depended on a functional endocytic pathway. Selective endocytic uptake of 

cell surface proteins has been shown to be involved in the stabilization of plasma 

membrane localization [85-89]. This may involve clathrin-mediated enrichment of cell 

surface proteins at sites of endocytosis followed by trafficking through endosomal 

and Golgi compartments to be redelivered to the plasma membrane as post-Golgi 

vesicle cargo [85]. As the disruption of endocytic genes known to regulate 

internalization (i.e. END4 and SLA1) severely disrupted the ability of Cdc42 to 

localize to post-Golgi vesicles (Figure 2.3), our data is consistent with the possibility 

of the recruitment and enrichment of Cdc42 at sites of endocytosis and begs an 

important question as to the existence of a specific clathrin adaptor for Cdc42 
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uptake. There are many functional redundancies within the yeast genome that could 

obscure the identification of such an adaptor. Therefore, the identification of a 

Cdc42-specific adaptor may require large screens of potential candidates and/or the 

development of high-throughput assays. 

Exchanging the N-terminal sequences of Rho3 and Cdc42 was previously 

shown by our lab to cause Cdc42 to adopt a dispersed “Rho3-like” localization 

pattern and function [37]. Work in this thesis revealed a significant reduction in 

Cdc42’s ability to be recycled onto post-Golgi secretory vesicles when a GFP-tag 

was placed on its N-terminus (Figure 2.4). Together with the requirement for 

endocytic recycling in Cdc42’s association with secretory vesicles, these 

observations evoke the possibility of a recycling element within the N-terminus of 

Cdc42 and the importance of this region in Cdc42’s recruitment to sites of 

endocytosis prior to internalization. The endocytic uptake of the alpha receptor Ste2 

depends on the Sla1/End4/End3 pathway and an internalization signal located within 

its cytoplasmic tail [64, 90, 91]. The involvement of the Sla1/End4/End3 pathway in 

Cdc42’s recycling onto secretory vesicles suggests the possibility of an 

internalization signal. However, as the N-terminus contains both GTP-binding and 

effector-binding domains, it is also possible that this region could facilitate 

internalization through protein-protein interactions (i.e. through an adaptor or effector 

molecule). As Cdc42 is not known to possess a clear internalization signal and its 

internalization has yet to be shown to require any protein-protein interaction, the 

mechanism(s) involved in the recruitment and enrichment of Cdc42 to sites of 

endocytosis remains undefined. Therefore, future studies should focus on further 
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characterizing the N-terminus and/or other regions of Cdc42 for the possible 

involvement in the endocytic uptake of Cdc42. 

We also found that although the concentration of Cdc42 on post-Golgi 

vesicles was insufficient to independently maintain Cdc42’s polarized localization, 

the concentration on vesicles was still quite significant (Figure 2.5). Why load 

secretory vesicles with any amount of Cdc42 at all? A simple answer would be that 

fusion of “naked” vesicles would cause the polarity cap to rapidly disperse and 

overall polarity to collapse. However, as Cdc42 is known to manage polarity 

pathways independent from one another to coordinate cell polarity [92-94], having 

significant concentrations of Cdc42 on vesicles compared to the surrounding cytosol 

could play a role in Cdc42’s specific regulation of polarized exocytosis—maybe 

through its recruitment of Exocyst subunits to vesicles or the plasma membrane. 

While this is highly speculative, future studies should be directed towards 

understanding how different levels of Cdc42 on vesicles could affect the proper 

localization of its effectors. 

One function of GDI is to extract GDP-Cdc42 from membranes [15, 33]. The 

data presented in this thesis supports the idea that GDI-mediated retrieval and 

endocytic uptake of Cdc42 act in parallel to recycle Cdc42 from the plasma 

membrane polarity cap. However, it has yet to be determined whether endocytic 

recycling truly acts in parallel to selectively recycle inactive, GDP-Cdc42 from the 

plasma membrane. Future studies focused on these and other questions will 

significantly contribute to the elucidation of the precise role for membrane trafficking 

in Cdc42 polarity.  
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Figure 3.1 Schematic representation of the consequence of exocytic delivery 
on Cdc42 polarity. Endocytic uptake of Cdc42 from the concentrated polarity cap 
serves to recycle Cdc42 onto post-Golgi secretory vesicles for redelivery to the 
plasma membrane polarity cap. However, because the concentration of Cdc42 on 
post-Golgi vesicles is significantly lower than the polarity cap, the immediate effect of 
delivery and fusion of post-Golgi vesicles is to dilute the polarity cap. 
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