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ABSTRACT 

KATHLEEN EVELYN RANDS: Affirming Difference, Generating Problems, and 
Becoming-Democratic in Mathematics Education  

(Under the direction of Lynda Stone) 
 

The purpose of this dissertation is twofold.  First, the dissertation aims to  

critique “images of thought” in mathematics education which have ontological 

underpinnings that maintain oppressive practices and which prevent 

transformation.  The second aim of the dissertation is to launch the 

transformation to a postcritical mathematics education through the creation of 

new concepts and strategies.  Following Deleuze and Guattari’s (1980/1987) 

approach, the dissertation is organized into three “plateaus,” nonlinear writing 

nodes which catalyze movement in thought from taken-for-granted notions to 

new ways of thinking.  The first plateau engages with notions of equity in 

mathematics and moves to the Deleuzian concept of affirming difference.  The 

second plateau enters through notions of “problems” and “problem-solving” and 

moves to a Deleuzian concept of problem-posing.  The third plateau begins with 

notions about democratic mathematics education and moves to the Deleuzian 

concept of becoming-democratic in the mathematics classrooms.  Thinking about 

difference, problems, and democracy differently opens up launching sites for new 

ways of becoming anti-oppressive mathematics educators. 
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Introduction

 Mathematics education is a relatively young field of academic inquiry 

which emerged originally from conversations between cognitive psychologists 

interested in mathematics as a domain of cognition and educators with a special 

interest in mathematics (de Corte, Greer, & Verschaffel, 1996).  Mathematics and 

mathematics education have traditionally been seen as neutral and outside the 

social realm.  For example, Stemhagen (2007) quoted the mathematician 

Bertrand Russell as describing mathematics as a “beautiful world; it. . .is eternal, 

cold and passionless. . . [and has] an immense dignity derived from the fact that 

its world is exempt from change and time” (p. 92).  Stemhagen (2006) has also 

noted that many math teachers see social justice issues as “out of their hands” 

(p. 1), as outside the domain of the mathematics classroom.  However, in the 

past quarter-century, a growing number of mathematics educators have reframed 

mathematics and mathematics education within the social realm. Valero and 

Zevenbergen (2004) have identified two versions of a “social-turn” in 

mathematics education.  The first version turns to social constructivism and 

asserts that mathematical knowledge is socially constituted within the social 

milieu of a classroom culture.  Research and theory in this first version of the 

social turn resonate with the work of Vygotsky and are often referred to 

“sociocultural” perspectives.  The second version of the “social turn” is rooted in 
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sociology and critical theory.  In this case, mathematics education is assumed to 

be a social and political practice, which is “historically constituted in complex 

systems of action and meaning in the intermesh of multiple contexts such as the 

classroom, the school, the community, the nation and even the globalized world” 

(p. 2).  This tradition addresses issues of power and raises questions about  the 

ways in which mathematics can be and has been oppressive.  Gutiérrez (2002) 

defined “dominant” mathematics as “mathematics that reflects the status quo in 

society” (p. 150) and “critical mathematics” as “mathematics that squarely 

acknowledges students are members of a society rife with issues of power and 

domination” (p. 151).  Yet, certain aspects of extant ways of thinking about 

diversity in mathematics education, even in critical approaches, maintain 

ontological underpinnings which block transformations that would escape 

oppressive practices.  The philosophical works of Gilles Deleuze and Félix 

Guattari offer processes and lenses which can be used to locate such blockages 

and open new paths for ways of thinking about difference in mathematics 

education.  According to Deleuze (1968/1994), “the conditions of a true critique 

and a true creation are the same: the destruction of an image of thought which 

presupposes itself and the genesis of the act of thinking in thought itself” (pp. 

136-140).  Thinking differently about difference requires both critique of the 

presuppositions that maintain extant ways of thinking, as well as the creation of 

different ways of thinking.  This dissertation critiques three “images of thought” in 

mathematics education, each captured by a key concept: 1) equity, 2) problem-

solving, and 3) democratic mathematics education.  Through the processes and 
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lenses in the work of Deleuze and Guattari, the dissertation then creates three 

new, transformed concepts: 1) affirming difference, 2) generating problems, and 

3) becoming-democratic in mathematics education.  Collectively, this critique-

creation presses critical mathematics education itself to undergo a process of 

becoming, to become something different-than-it-was—to become postcritical 

mathematics education.  

 Because an important aim of my dissertation is to create new ways of 

thinking in mathematics education, my dissertation differs from most dissertations 

in the field of education and mathematics education in two interrelated ways: 1) 

the lens through which it is focused, and 2) its approach and form.   Because 

these differences might be disorienting to readers expecting a more traditional 

dissertation, I have included this introductory section as a way to orient readers.    

I will begin by introducing the purpose of the dissertation and my research 

questions.  Next, I will trace the context in which Deleuze and Guattari created 

the processes and lenses used in this dissertation.  I will then provide an 

orientation to the ways in which my dissertation differs from most educational 

dissertations. Finally, I will situate the dissertation in the broader context of 

educational scholarship.  

Purpose and Research Questions 

The purpose of this dissertation is twofold.  First, the dissertation aims to  

critique “images of thought” in mathematics education which have ontological 

underpinnings that maintain oppressive practices and which prevent 

transformation.  The second aim of the dissertation is to launch the 
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transformation to a Deleuzoguattarian postcritical mathematics education through 

the creation of new concepts and strategies.  The research questions fall into the 

following three clusters: 

1) What are the current ontological underpinnings of the notion of “equity” in 

mathematics education and in what ways do these ontological 

underpinnngs allow or support oppressive practices?  What alternatives 

does Deleuze’s concept of affirming difference offer? 

2) What are the current ontological underpinnings of the notion of “problems” 

in mathematics education and in what ways do these ontological 

underpinnngs allow or support oppressive practices?  What alternatives 

does Deleuze’s concept of problem offer? 

3) What are the current ontological underpinnings of the notion of 

“democracy” in mathematics education and in what ways do these 

ontological underpinnngs allow or support oppressive practices?  What 

alternatives does Deleuze’s concept of becoming democratic offer? 

Tracing and Mapping 

A commonsensical dissertation would, as the King of Hearts said gravely 

to the White Rabbit in Alice's Adventures in Wonderland, “begin at the beginning, 

and go on until you come to the end: then stop” (Carroll, 1865/2004).1  If, 

however, as Kevin Kumashiro (2004) asserted, “teaching and learning toward 

                                                 

1 In The Logic of Sense, Deleuze (1969/1990) examined  time from a Bergsonian perspective, 
drawing extensively on Lewis Carrol’s books about Alice.  Although Deleuze did not 
specifically refer to this quote, it relates to his notions of time. 
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social justice” entails working “against common sense,” perhaps a 

noncommonsensical dissertation which dwells instead in “the middle” and follows 

“lines of flight” might be useful.   

The concepts of “the middle” and “lines of flight” are just two of the many 

novel or transformed concepts that have emerged in the philosophy of the 

French thinkers Gilles Deleuze and Félix Guattari.  To use the concepts of “the 

middle,” “lines of flight,” or other Deleuzoguattarian concepts, it may help to 

examine the context out of which such concepts surfaced.  This section will trace 

this context.  The distinction between tracing and mapping in the work of Deleuze 

and Guattari is not obvious in the terms themselves, but is crucial to 

understanding their projects as well as this dissertation.  The English term 

“tracing” is a translation of the French word calque.  As a noun, calque means a 

tracing, or more figuratively, a “carbon copy” or a “spitting image.”  It can also 

mean “layer.”  Calque could also be the present tense or subjunctive form of the 

verb calquer, having the sense of “is tracing” or “would be tracing” respectively.  

In the verb form, calque has the sense of tracing a drawing, or more figuratively, 

copying something exactly, or even more loosely, imitating a model of behavior 

(Javamex, 2011). The term “map” is a translation of the French word carte, which 

is often used in the sense of a geographical map.  For Deleuze and Guattari 

(1980/1987), marking the map is laying everything out on the same “plane,” 

where the “plane” is an ever changing multidimensional “flat” space2.  A tracing is 

                                                 

2 Further explanation of Deleuze and Guattari’s use of the term “plane” can be found below, in the 
section entitled “A Different Approach and Form.” 
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an attempt to represent the world as is; marking a map creates something new, 

becomes something different.  Deleuze and Guattari (1980/1987) warned against 

making tracing from a map because in trying to imitate or reproduce the map, 

one arrives at something that was already presupposed from the beginning, 

always resulting in the same “image.”  Deleuze and Guattari (1980/1987) gave 

examples of psychoanalytic interpretations of behavior, in which every story is 

the story of Oedipus, always the same.  Instead, Deleuze and Guattari 

(1980/1987) argued for the reverse process: “Plug the tracings back into the 

map” (p. 14).  A still image—that same old story—is only a starting place, not an 

end in itself.  As Deleuze and Guattari (1980/1987) said, one can “find a foothold 

in formations that Oedipal or paranoid or even worse, rigidified territorialities that 

open the way for other transformational operations” (pp. 14-15).   

Tracing the context in which Deleuze and Guattari wrote might begin with 

examining the term “poststructuralist,” which has often been used to describe the 

thought of a group of French thinkers in the second half of the twentieth century, 

Deleuze and Guattari included. However, determining exactly what is meant by 

the term “poststructuralist” is by no means an easy task.  Defining 

“postructuralism” is difficult for several reasons.  First, as James Marshall (2004) 

has noted, the idea of poststructuralism is obviously etymologically related to the 

term “structuralism;” yet, structuralism does not itself refer to a homogenous 

group of ideas, but rather to the diverse ideas of the linguist Lévi Strauss, Marxist 

Althusser, the early ideas of psychoanalyst Lacan, among others.  Similarly, a 

second reason poststructualism is difficult to define is that the thought of those 
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labeled “poststructuralist” varies so widely that is difficult to give a substantial 

reason for the overarching category.  Mark Poster (1989; quoted in Marshall, 

2004) argued that “poststructuralism” was a term coined by North American 

academics to categorize the diverse thought of French philosophers of a 

particular time period.  The exogenous origin of the term helps to explain the fact 

that some “poststructuralist” philosophers may not have considered themselves 

to be “poststructuralist”(e.g. Foucault, 1977,  1983).3 

Despite these difficulties, the term “poststructuralist” is still useful because 

it ties together thinkers through three connections: 1) time and place, 2) against 

whom they wrote, and 3) centrality of “difference.”  The first connection among 

poststructuralist thinkers is simply time and place:  poststructuralist thought is 

that of prominent French academics writing after 1968.  The year 1968 

specifically is important because of one particular event which had a profound 

effect on these philosophies.  In May of 1968, a student and worker revolution 

swept across France essentially bringing France “to a standstill” (Marshall, 2004).  

President Charles de Gualle ended the revolution through a “skillfully 

orchestrated. . .reassertion of state power” (Marshall, 2004, p. xviii).   This event 

significantly shaped the thinking of poststruturalist philosophers.  In fact, 

poststructuralist thought has even been called “68 philosophy” (Marshall, 2004), 

since poststructuralist thinkers interpreted and responded to these events in 

various ways in their works.  

                                                 

3 This reaction is even more pronounced in response to the term “postmodern.”  See the St. 
Pierre (2000, note 4) for a comparison of these two terms. 
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Like other poststructuralist thinkers, the work of Gilles Deleuze and Félix 

Guattari was affected by the events of May 1968.  Deleuze, whose works prior to 

1968 “read like a Who’s Who of philosophical giants” (Massumi, 1987, p. ix) was 

in the midst of writing his first two major works “in his own voice” (Massumi, 

1987, p. ix), Difference and Repetition (1968/1994) and Logic of Sense 

(1969/1990) at the time of the student and worker revolution.  Shortly after the 

revolution, Deleuze began his collaboration with Félix Guattari.  Guattari was a 

radical psychoanalyst and political activist before and after the revolution. 

Beginning in the mid-1950s he was involved at an experimental psychiatric clinic 

called La Borde, which aimed at abolishing “the hierarchy between doctor and 

patient in favor of an interactive group dynamic that would bring the experiences 

of both to full expression in such a way as to produce a collective critique of the 

power relations in society as a whole” (Massumi, 1987, p. x).  Given his anti-

hierarchical ideas prior to May 1968, it is not surprising that Guattari was involved 

in the movements that grew out of the student and worker revolution.  In 1969 a 

mutual friend, Jean-Pierre Muyard, arranged for a meeting between Guattari and 

Deleuze.  The encounter between Deleuze’s ideas in Difference and Repetition 

and Logic of Sense and Gauttari’s anti-hierarchical ideas about psychiatry 

resulted in three collaboratively written books: Anti-Oedipus (1972/1977) and A 

Thousand Plateaus (1980/1987), which share the subtitle Capitalism and 

Schizophrenia, and What is Philosophy (1991/1994). Anti-Oedipus (Deleuze & 

Guattari, 1972/1977) critiqued both state/party-based versions of Marxism and 

“school-building strains” of psychoanalysis (Massumi, 1987, p. xi).  A Thousand 
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Plateaus (Deleuze & Guattari, 1981/1987) attempted to go beyond mere critique 

to the creative, positive production of the kind of thought proposed in Anti-

Oedipus.  Their third collaborative work, What is Philosophy (1991/1994), laid out 

their view of the project of philosophy as the creation of concepts such as “the 

middle” and “lines of flight.”  The central role played by May 1968 in the 

encounter between Deleuze and Guattari connects their work to the work of 

others who fall into the poststruturalist category. 

Yet time and place are not enough to distinguish poststructuralist thinkers 

from non-poststructuralist thinkers, since there were other French thinkers writing 

in the same time period who are not considered poststructuralist such as Jean 

Paul Sartre, Paul Riceour, and Emmanuel Levinas.  Another distinguishing 

feature that separates poststrucuralist thinkers from those on this list and others 

writing in France after May 1968 is against whom the thinkers wrote.  Rather than 

writing against structuralism, Marshall (2004) suggested that it is more accurate 

to say that poststructuralists were writing against humanism and Marxism 

(although structuralists also critiqued humanism).  Poststructural critiques of 

humanism followed Nietzsche via Heidegger, who observed that while humanism 

“purported to liberate human beings, [it] had. . .only oppressed them (Marshall, 

2004).      Deleuze’s (1962) influential book, Nietzsche and Philosophy, falls 

within this strain of thought, a strain which some commentators consider to be 

poststructuralist (Marshall, 2004).  This line of thought critiques the “promises of 

development, improvement and emancipation” (Marshall, 2004) rooted in the 

conception of humans as individual, autonomous individuals.  Poststructuralists 
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also critiqued Marxism, but this critique was often in some ways a reformulation 

of Marxism rather than a wholesale rejection.  For example, Marshall (2004) 

described Peters’ chapter in the same book as demonstrating that despite 

Lyotard’s break with Marxism, Lyotard maintains certain notions that can be 

considered Marxist.  Similarly, Deleuze and Guattari’s (1972/1977, 1980/1987) 

books Anti-Oedipus and A Thousand Plateaus are critques, but also 

reformulations, of Marxism.   

While the heterogeneity of “poststructuralist” thought makes defining the 

term difficult, this heterogeneity can also be seen as its second key aspect. 

Marshall (2004) forwent “any broad, encompassing definition” of 

poststructuralism because an implicit theme of the book was the diversity among 

poststructuralist thinkers’ ideas.  Rather than similarity, it is difference which ties 

the work of these thinkers together.  The collaboration between Deleuze and 

Guattari epitomizes this connection across difference.  The two men inhabited 

different worlds: Deleuze, the world of a recognized academic; Guattari, the world 

of a militant psychoanalyst and activist.  The distance between their worlds was 

symbolized by the fact that they used the formal French word for “you”, vous, 

with one another throughout their interactions (Dosse, 2007/2010).  Guattari 

described the collaboration between himself and Deleuze as follows: 

This collaboration is not the result of a simple meeting of two 
people. . . .At the outset, it was less a matter of sharing a common 
understanding than sharing the sum of our uncertainties and even a 
certain discomfort or confusion with respect to the way that May 
1968 had turned out. (Lapoujade, 2002/2003, p. 301; quoted in 
Dosse, 2007/2010, p. 8) 
 

It was connecting across difference that allowed Deleuze and Guattari to produce 
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novel concepts that contributed significantly to philosophy.   

The centrality of difference has played an additional role in postructuralist 

thought.  Many poststructuralist thinkers (e.g. Judith Butler, Jacque Derrida, Julia 

Kristeva) have addressed the concept of difference in their work, albeit in fittingly 

different ways.  Following this pattern, Deleuze developed an ontology of 

becoming in which difference played a important role.  The seeds of these ideas 

can be found as early as Deleuze’s (1962/1983) reference to Heraclitus’ doctrine 

of universal flux in Nietzsche and Philosophy.  Heraclitus, Deleuze (1962/1983) 

claimed, “has two thoughts that are like ciphers: according to one there is no 

being, everything is becoming; according to the other, being is the being of 

becoming as such” (p. 23).  Deleuze’s (1968/1994) book Difference and 

Repetition was an elaboration on these two “ciphers” toward an ontology of “an 

affirmation of becoming” (Deleuze, 1962/1983, p. 23) found in the thinking of 

Heraclitus and later Nietzsche. A further influence along these lines was 

“Heidegger’s ontological intuition” (Deleuze, 1968/1994, p. 117) that “difference 

must relate the differing terms to one another. . .[D]ifference must be articulation 

and connection in itself; it must relate different to different without any mediation 

whatsoever” (Deleuze, 1968/1994, p. 117).  Difference and Repetition (Deleuze, 

1968/1994) was in large part a critique of ontologies that conceptualized 

sameness as the basis for existence—that is, ontologies that mediated difference 

through identity, resemblance, analogy, or opposition.  Such ontologies 

conceptualized being as that which remained the same over time; instead, in an 

ontology of difference, being involves becoming different rather than remaining 
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the same.  It is the differences--the changes--that matter, not any sort of essential 

characteristics that remain the same over time.   

Deleuze and Guattari (1980/1987) continued developing this ontology of 

difference or ontology of becoming in A Thousand Plateaus in three 

interconnected ways: 1) in the ideas they expressed, 2) in the approach they took 

to expressing and creating the ideas, and 3) in the arrangement of the book.  In 

addition to introducing numerous new or transformed concepts such as 

assemblages, machines, and the Body without Organs, Deleuze and Guattari 

(1980/1987) also developed and used a new approach to creating such 

concepts. In line with the idea of an ontology of becoming in which what matters 

is difference or change, the approach itself constantly changed throughout A 

Thousand Plateaus.  Such an approach-in-flight is a strategic response to the 

context in which Deleuze and Guattari were writing: if the revolutionary thrusts of 

Marxism can be captured by the State and converted to authoritarian policies and  

if psychoanalysis is just another form of domination in which a doctor assigns 

meaning to a patient’s experience based on predetermined and authoritative 

interpretations, then it seems there is always the potential for revolutionary 

movement to stagnate, to devolve into some form of domination.  An approach-

in-flight never remains the same long enough for this conversion into a dominant 

system of thought to take place.  Like a rabbit that follows a zig-zag line of flight 

from a predator, an approach-in-flight evades “capture” by dominant systems 

(whether the dominant system is the State, dominant forms of psychoanalysis, or 

some other form of domination) through constant change and movement.  In this 
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spirit, Deleuze and Guattari’s approach to critique and creating concepts moved 

through many variations with different names: rhizomatics, stratoanalysis, 

pragmatics, micropolitics, nomadology.  Each variation was a way to explore, 

within a given situation, points of stagnation and points of movement, locations of 

domination or hierarchy and directions in which hierarchies and forms of 

dominations were being dissolved.  The novel concepts and new approach of A 

Thousand Plateaus were supported by its distinct arrangement.  The authors 

composed the book in interconnected “plateaus”; sections of the book were 

“plateaus” instead of a “chapters” (see the “Different Approach and Form” section 

for a more complete explanation of “plateaus”).   Each plateau title combined a 

date with a topic from which to launch a line of flight.   Eschewing a chronological 

approach to time, the sequence of the dates zig-zagged through time, sometimes 

pointing to a single date, sometimes a year, sometimes more than 500 years.  

The topics were as various as linguistics, literature, music, politics, and 

psychoanalysis.  A superficial scanning of these dates and topics gives the 

impression of randomness; however, with more careful engagement, certain 

notions surface and resurface in different forms, connecting back to previous 

ideas, constantly creating new connections among plateaus, on a ”plane of 

consistency of multiplicities” which adds dimensions as it adds nodes of intensity.  

It is as if their thinking refused to compose ideas only along the two dimensions 

of the sheets of paper in the book, but instead sprouted new stems that 

connected nodes along new dimensions.   
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Orientation 

Like Deleuze and Guattari’s (1980/1987) A Thousand Plateaus, but 

specifically in relation to mathematics education, this dissertation develops an 

ontology of becoming through novel or redeployed concepts, a 

Deleuzoguattarian approach, and its arrangement into plateaus.  This section 

provides an orientation to this different lens, approach, and form. 

A Different Lens 

 A first way in which this dissertation differs from most dissertations in the 

field of education relates to the lens used.  While most dissertations involve an 

empirical lens, I used instead a philosophical lens.  To be more specific, the 

philosophical lens I used is an ontological one.  To be more specific still, the 

ontological lens I have used is based in the normative ontology of Gilles Deleuze 

and Félix Guattari. 

Noddings (1998) pointed out that although empirical approaches can show 

whether educational choices result in predicted consequences, “we still need 

philosophical argumentation to persuade others that the consequences we seek 

should be valued” (p. 5).  Certain educational questions, then, cannot be decided 

by empirical methods, but rather require philosophical approaches.  The 

questions in the philosophy of education are “philosophical in that they require 

philosophical methods for their investigation” (Noddings, 1998, p. 4).  Hytten 

(2008) argued that philosophical approaches in education make unique 

contributions because they “involve asking fundamental questions, uncovering 

assumptions, making arguments, and exploring alternatives” (p. 189).  



 

 
 

17 

Philosophical inquiry, according to Hytten (2008), entails “learning to look at 

things from different perspectives, notably, from a distance and from alternative 

angles” (p. 190).  Within the broad project of critical mathematics education, 

looking at things from alternative angles is a part of seeking out and proposing 

alternatives to the status quo.   

The particular philosophical lens used in this dissertation is one that is 

ontological.  Epistemological concerns, that is, questions about knowledge, have 

dominated scholarship in the field of philosophy of education.  Yet, understanding 

this epistemological domination requires ontological inquiry.  Etymologically, 

ontology is the study of �ντος (ontos), “that which is.”  Ontology raises questions 

about what exists, but also about existence itself.  Ontology asks:  How does 

“that which is” exist, and why.  Ontology also asks questions about boundaries 

between those things that exist.  Traditionally ontological questions about 

boundaries have been framed in terms of delineating the boundaries of 

categories.   While ontology asks questions about “what is,” ethics asks 

questions about “what should be.”  Ethical questions relate to values.  Ontology 

asks, “What is being in the world?”; ethics asks “How should we be in the world?”  

Normative ontology adds an ethical dimension to ontology, considering not only 

what is “being,” but also asking questions about how we should “be” in the world.  

The domination of epistemological concerns in educational scholarship indicates 

particular underlying assumptions about both ontology and ethics.  Ontologically, 

it is assumed that knowing is an (or the) essential aspect of being in educational 

situations.  In terms of ethics, it is assumed that what is important or valued in 
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educational situations is knowledge.  Ontological and ethical investigations can 

uncover taken-for-granted assumptions and expand inquiry beyond 

epistemology.  An ontological and ethical lens allows inquiry that fulfills Hytten’s 

(2008) call for posing “fundamental questions, uncovering assumptions, making 

arguments, and exploring alternatives” (p. 189), even about the nature of 

education itself. 

Most specifically, the normative ontological lens used in the dissertation is 

one based in the ontology of Gilles Deleuze and Félix Guattari.  As traced above, 

Deleuze, and later Deleuze and Guattari, developed an ontology of difference, 

one that shifted the focus from “being” to “becoming.”  An ontology of “being” 

searches for what endures, what stays the same over time, the “identity” of a 

thing or person.  In Deleuze and Guattari’s ontology, what matters or “makes a 

difference” is not enduring sameness, but rather difference itself.  Important 

within this ontology are the concepts of difference, problems, and becoming.  

These concepts not only have ontological implications, but also raise ethical 

questions.  Within the context of this dissertation, the concepts raise questions 

about affirming difference, generating problems, and becoming democratic in 

mathematics classrooms. 

A Different Approach and Form 

 The second way in which this dissertation differs from most others 

interconnects with the first way.  In conjunction with a Deleuzian or 

Deleuzoguattarian lens, a Deleuzoguattarian approach offers processes for 

critiquing “images of thought” in mathematics education and creating new ways 
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of thinking.  In combination, these differences in lens and approach have resulted 

in a dissertation whose form is different from most on both the macro level and 

micro level. 

On a macro level, this dissertation has an atypical form.  Most 

dissertations include sections for a literature review, methodology, findings, 

discussion, and conclusion; this dissertation has a Deleuzoguattarian form 

modeled on Deleuze and Guattari’s collaborative work A Thousand Plateaus, the 

work in which they most thoroughly deployed schizoanalysis to move beyond 

mere critique to critique-creation.   Accordingly, the most important sections of 

this dissertation are three “plateaus,” each of which addresses one of the 

research questions.  Rather than a linear sequence, these plateaus formed 

intensive interconnected nodes of thinking.  Deleuze and Guattari (1980/1987) 

took the term “plateau” from Gregory Bateson, who originally used the term in 

reference to sexual practices that maintained and sustained sexual intensity 

rather than culminating in climax.  In the context of philosophy, writing using 

plateaus differs from writing using chapters in that chapters are organized in a 

linear fashion whereas plateaus can be thought of as organized on a plane.   

Instead of a sequence of chapters that build upon one another, “each plateau can 

be read starting anywhere and can be related to any other plateau” (Deleuze & 

Guattari, 1980/1987, p. 22). In this way, a plateau is always “in the middle” 

because it can always be thought of as connected to or between at least two 

other plateaus.  Therefore, where ever one begins in reading or writing plateaus, 

one begins in the middle. The ideal for a book according to Deleuze and Guattari 
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(1980/1987) would be to “lay everything out on a plane. . .on a single page, the 

same sheet” (p. 9).  The interconnectedness of plateaus does not allow them to 

line up into a neat sequence.  Instead, a plane allows plateaus to connect 

through multiple lines in multiple directions in a diagram.  Although Deleuze and 

Guattari (1980/ 1987) use the term “plane” for the backdrop for connections 

between nodes, they clarify that each node actually creates a new dimension, so 

the “plane” does not necessarily have only two dimensions: “We will. . .speak of a 

plane of consistency of multiplicities, even though the dimensions of this ‘plane’ 

increase with the number of connections that are made on it” (p. 9).  Here, 

“multiplicities” is an English translation of the French word multiplicités, which, in 

turn, is a French translation for the German word Mannigfaltigkeiten. To complete 

the circle of translation, Mannigfaltigkeit can be translated into English as 

“manifold” or “manifoldness” as well as via the French as “multiplicity.”  In 

contemporary mathematics, an n-manifold is a space which locally appears to be 

n-dimensional Euclidian space ��, irrespective of its global curvature4. Euclidean 

spaces of any number of dimensions have zero curvature.  One dimensional 

Euclidean space is the “straight” line (called the real line because its points are 

real numbers).  Two-dimensional Euclidean space is the “flat” plane (called the 

real plane because its points are ordered pairs of real numbers).  Three-

                                                 

4 A space is a set organized in a particular way.  For example, a metric space combines a set with 
some sort of notion of distance.  The elements of the set are organized in a way that allows 
one to say how far any two elements are from each other.  The term “n-dimensional” means 
that the space has n dimensions.  The symbol � means the set of real numbers.  An “n-
dimensional Euclidean space �

�,” then, is a space in which the set is the real numbers, which 
are organized along n dimensions such that parallel lines, parallel planes, and their higher-
dimensional equivalents do not intersect.   
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dimensional Euclidean space is a “flat” space of three-dimensions, in the same 

sense.  Euclidean space of any dimension can be called “flat” in this sense.  

People tend to think of a circle as two-dimensional because its points must lie in 

a two-dimensional plane (that is, the circle is embedded in the plane).  However, 

it is a 1-dimensional manifold because when smaller and smaller sections of it 

are taken, the pieces approximate more and more closely a line (one-

dimensional Euclidean space).  Similarly, a sphere is embedded in three-

dimensional Euclidean space, but on a micro-level approximates a plane—it is a 

two-dimensional manifold.  When Deleuze and Guattari (1980/1987) remarked 

that they wanted to lay everything out on a “plane” of consistency of multiplicities, 

the “plane” is like a multidimensional “flat” Euclidean space in which is embedded 

globally curved but locally flat manifolds.  In this Deleuzian multidimensional 

space, the manifolds or multiplicities are “plateaus” which interconnect and link 

with one another.  When Deleuze and Guattari (1980/1987) wrote that “the 

dimensions of this ‘plane’ increase with the number of connections that are made 

on it” (p. 9), they meant that the way in which new manifolds are “glued” or 

attached to the existing manifolds creates a new figure that cannot be embedded 

in the space in which the original manifolds were embedded, but instead must be 

embedded in a space of a higher dimension.  These connections that require the 

embedding space to change dimension, in Deleuzoguattarian terms, are “lines of 

flight.”   

Embarking on “lines of flight” has resulted in a dissertation whose form 

differs from most on a micro-level as well as on a macro-level.  Most dissertations 
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proceed in a linear fashion on a micro-level as well as on a macro-level.  Each 

paragraph typically includes a topic sentence, supporting details, and a 

conclusion sentence.  In contrast, in order to make the multitudinous connections 

between plateaus called for in A Thousand Plateaus, this dissertation moves by 

way of “lines of flight,” lines that can intersect and connect in many ways.   It is 

lines of flight that connect the “everything”—“lived events, historical 

determinations, concepts, individuals, groups, social formations” (p. 9)-- that 

Deleuze and Guattari (1980/ 1987) would like to lay out on a single plane (or 

within an n-dimensional manifold).  Josh Lerner (n.d.) explains the concept of 

“lines of flight” as follows: 

Lines of flight are creative and liberatory escapes from the 
standardization, oppression, and stratification of society. Lines of 
flight, big or small, are available to us at any time and can lead in 
any direction. They are instances of thinking and acting ‘outside of 
the box’, with a greater understanding of what the box is, how it 
works, and how we can break it open and perhaps transform it for 
the better. (para. 1). 
 

The term Deleuze and Guattari (1980/ 1987) used for this “box” is a “stratum.”  

According to Deleuze and Guattari (1980/ 1987), the way to follow a line of flight 

is to “lodge yourself on a stratum, experiment with the opportunities it offers . . 

.find potential movements. . .possible lines of flight, experience them, produce 

flow conjunctions here and there. . . .It is through a meticulous relation with the 

strata that one succeeds in freeing lines of flight. . .” (p. 161). Embarking on lines 

of flight begins by outlining the contours of what has come to be, but it does not 

stop with extant situations.  Instead, lines of flight move from what has come to 

be to creating new ways of being.   
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Each of the plateaus in this dissertation embarks on lines of flight by 

examining a particular image of thought that has come to exist in mathematics 

education, then moves to a new way of being through an encounter with an 

important concept in Deleuze’s and Guattari’s ontology of becoming.  The first 

plateau begins by examining the image of thought about equity in the National 

Council of Teachers of Mathematics’ (2000) Principles and Standards and moves 

to Deleuze’s (1968/ 1994) concept of affirming difference.  The second plateau 

begins by examining the image of thought about problems in the history of 

mathematics education and moves to Deleuze’s (1968/1994) concept of 

problems.  The third plateau begins by examining the image of thought about 

liberal-democratic mathematics education and moves to Deleuze’s (1968/1994) 

concept of becoming and, more specifically, Deleuze and Guattari’s  (1991/1994) 

concept of becoming-democratic.  The reader can begin with any of the three 

plateaus—each serves as a middle from which to begin.  Each plateau can also 

stand on its own, just as a rhizotomous plant can survive if its rhizomes are 

severed from those to which it connects.  However, the concepts in each of the 

plateaus are also intimately interconnected.  The conclusion highlights the 

“stems” that connect across plateaus. 

Situating the Dissertation in the Broader Context o f Educational 

Scholarship 

To date, Deleuzoguattarian perspectives are almost completely absent in 

mathematical education scholarship, with a few notable exceptions.  Rivera 

(1998) used a postructuralist rhizomatic framework in an ethnography with 
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secondary mathematics teachers to explore the meaning of teaching high school 

mathematics in the late nineties and the extent to which pedagogical practices 

subjectified students into ways of thinking about/acting/doing mathematics in 

classrooms.  Fleener (2004) drew on “the decentering process of Deleuzian 

poststructuralism to note the conundrums of mathematics and mathematics 

education in current educational contexts and offer insights into possibilities of 

rethinking our curricular futures” (p. 201).  Building on Roy’s (2003) deployment 

of Deleuze and Guattari’s  concepts of smoothness, multiplicity, in-betweenness, 

becoming, and rhizomes, she interrogated the boundaries and limitations of the 

standard mathematics curriculum.  White-Fredette (2009) referred to Deleuze’s 

assertion that philosophy entails the creation of concepts and interpreted 

teachers’ changing philosophies of mathematics during a mathematics education 

course to indicate that they were beginning to view both mathematics and 

philosophy as becomings rather than something static.   In using a 

Deleuzoguattarian philosophical lens and approach, this dissertation makes a 

significant contribution to this emergent literature. 

More broadly, the dissertation is both a critique and transformation of 

critical mathematics education.  Its purpose is to press critical mathematics 

education to move beyond certain ontological underpinnings that prevent 

transformation and to launch this transformation through the creation of new 

concepts and strategies.  In this way, the dissertation contributes to the body of 

work in critical mathematics education which includes work by authors such as 

Eric Gutstein, Arthur Powell, Marilyn Frankenstein, Olof Steinsthordottir, Bharath 
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Sriraman, Renuka Vithal, Ole Skovsmose, Gelsa Knijnik, among many others.5  

In the move toward postcritical mathematics education, the dissertation also 

contributes to the smaller body of work by mathematics education authors who 

use poststructural lenses.  According to Walshaw (2004), postmodernism and 

mathematics are “two lines of inquiry that have rarely addressed each other” (p. 

1).  Those who have used poststructural lenses in their work include, for 

example, Ernest (2004), Gutiérrez (2008), Mendick (2006), and Walkerdine 

(1989).6 

The questions addressed in this dissertation also relate beyond postcritical 

and critical mathematics education, to fields including reform mathematics 

education, empirical mathematics educational research, multicultural education, 

educational philosophy, and Deleuze studies.  While reform mathematics 

education documents such as the National Council for Teachers of Mathematics’ 

(NCTM) (2000) Principles and Standards for Teaching Mathematics emphasize 

the importance of equity, Gutiérrez (2002) pointed out three obstacles to attaining 

equity: 1) an underlying belief that not all students can learn mathematics, 2) a 

deficit theory that tends to be applied to students who have been marginalized in 

mathematics, and 3) a poorly articulated research agenda around issues of 

equity in mathematics education.  This dissertation addresses the first two 

obstacles by examining the ways in which the ontological underpinnings of extant 

                                                 

5 For more thorough overviews of the state of critical mathematics education, see Alrø, Ravn, & 
Valero (2010), Gutstein (2006), and Tuluk, Bondy, and Adams (2011).   

6 See Walshaw (2004) for a treatment of mathematics and postmodern perspectives. 



 

 
 

26 

ways of thinking about equity, problems, and democracy in mathematics 

classrooms maintain oppressive practices, thereby addressing the third obstacle 

by laying the groundwork for a more nuanced empirical research agenda.   

Beyond mathematics education, the dissertation addresses broader 

issues in multicultural education in pressing for a transformation of critical 

multicultural education to postcritical multicultural education.  A few education 

scholars have used the term “postcritical,” mainly in literacy studies and 

educational research using ethnographic methods.  Iyer (2007) used Deleuze 

and Guattari’s (1980/1987) work along with other works to move from critical 

literacy to postcritical literacy.  Selber (2005) called for a postcritical stance to 

literacy technologies.  Noblit (1999, 2004) critiqued critical ethnography and 

pushed for the move to postcritical ethnography, a call which has been answered 

by numerous researchers in recent years (e.g. Murillo, 1999; Childers, 2011; 

Anders & Lester, 2011).  While postcritical multicultural education in other content 

areas such as social studies, science, writing, art, and others will necessitate that 

educators situate analysis and strategies within the historical moment of those 

disciplines, this dissertation situated within mathematics education can serve as 

one node in an expanding postcritical multicultural education rhizome that allows 

for differences among disciplines and fields.    

This dissertation also contributes to the field of educational philosophy 

through the elaboration of schizoanalysis as a philosophical approach.  

“Analysis” has had many different uses and meanings throughout the history of 

philosophy.  Analysis in Aristotle’s Prior Analytics addressed syllogisms.  
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According to Groarke (2011), for Aristotle, “syllogisms can be construed as a 

vehicle for identifying the deep, immutable natures that make things what they 

are” (“The Syllogism,” para. 5).  Analysis, for Aristotle, meant identifying the role 

which the middle term of various syllogisms played in order to inventory valid 

syllogisms.   Kant (1764/1992) described analysis in the following way:  

the concept of a thing is always given, albeit confusedly or in an 
insufficiently determinate fashion.  The concept has to be analyzed: 
the characteristic marks which have been separated out and the 
concept which has been given have to be compared with each 
other in all kinds of contexts. (p. 276). 
 

More recently, concept analysis played a strong role in analytic philosophy in the 

twentieth-century.  According to Preston (2006), analytic philosophy has 

undergone numerous phases, beginning with Russell’s and Moore’s turn away 

from British Idealism.  One instantiation of analytic philosophy, logical atomism, 

used the method of ideal language analysis, in which propositions were stated 

using propositional logic notation.  An alternative instantiation, initiated by Moore 

and revived after critiques of logical atomism and its successor logical positivism, 

used ordinary language analysis rather than ideal language analysis as a 

method.  Interestingly, Wittgenstein’s philosophy stimulated both the logical 

positivist movement (through his Tractatus Logico-Philosophicus ) and, after 

radically rethinking his initial work, the turn toward ordinary language analysis.  

According to the later Wittgenstein (1953), “by looking into the workings of our 

language, and that in such a way as to make us recognize its workings. . .the 

problems are solved, not by giving new information, but by arranging what we 

have always known” (p. 109).  Ordinary language, then, serves as the medium 
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through which to clarify existing concepts, which are constituted through our 

everyday use of them.  Educational philosophical studies which make use of 

ordinary language analysis typically address questions such as, “What is 

teaching?  What is learning?  What is equity?”  For example, in my (Rands, 

2003) master’s thesis, I combined empirical qualitative methods with 

philosophical concept analysis to explore the concepts of dependence, 

independence, and interdependence.  The main tools of ordinary language 

analysis, according to Miller (1996), include necessary and sufficient conditions, 

“if-then” conditional thinking, and linking, schematizing, and diagraming concepts.  

The most important way that schizoanalysis differs from these previous 

forms of “analysis” from Aristotle through ordinary language concept analysis is 

that schizoanalysis is not merely the discovery or clarification of already-existing 

concepts, but also the creation of new concepts, which, for Deleuze and Guattari 

(1991/1994) is the purpose of philosophy.  While the form of “analysis” to which 

schizoanalysis most directly responds (as a critique) is “psychoanalysis,” concept 

analysis in the analytic philosophical tradition has the same limitation in Deleuze 

and Guattari’s view—both are attempts to represent or reflect the world as is.  In 

schizoanalysis, the world-as-is is only a beginning point.  Schizoanalysis begins 

by locating structures that maintain the world-as-is, but then uses those sites to 

begin creative experimentation toward something different.  Given the critical 

acknowledgement that many aspects of the world-as-is are oppressive and the 

aim to work toward less oppression, an approach that can break open 

structurations that are oppressive and create something new is much needed.  
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Moreover, schizoanalysis provides a process for locating and breaking open 

ontological underpinnings that have come to be taken as common sense and 

would otherwise be overlooked.  Deleuze and Guattari did not first envision 

schizoanalysis, then apply it to situations.  Instead, they created schizoanalysis 

through “experimentation in contact with the real” (Deleuze & Guattari, 

1980/1987, p. 12).  That is, they created the process simultaneously with creating 

new concepts (Buchanan, 2010).  One of the most challenging aspects of this 

dissertation has been the necessity of creating process and concepts 

simultaneously.  It was not possible, as is expected in writing a dissertation 

proposal, to state clearly in advance the methodology I planned to use.  Instead, 

the process of schizoanalysis emerged in writing the plateaus.  Writing the 

dissertation literally began “in the middle,” with the  “Affirming Difference” plateau, 

which constantly put me in the position of needing to have already explained the 

process I was using, which I necessarily had to explain later, since it was through 

writing that the process was developed.  Deleuze and Guattari (1980/1987) 

wrote,  

The map has to do with performance, whereas the tracing always 
involves an alleged ‘competence.’  Unlike psychoanalysis, 
psychoanalytic competence (which. . .makes infinite, monotonous 
tracings. . .), schizoanalysis rejects any idea of pretraced destiny, 
whatever name is given to it. (p. 13) 
 

Mapping, using schizoanalysis, rendered me “incompetent”, but it was this 

becoming-incompetent that allowed the dissertation to perform, to do 

something—to create something new.  Along with other authors who are finding 

ways to deploy schizoanalysis in educational philosophy (e.g. Evans, Cook, & 
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Griffiths, 2008; Ringrose, 2011), this dissertation contributes to educational 

philosophy through the elaboration of schizoanalytic approaches.   

More broadly, the dissertation is situated in the growing field of Deleuze 

studies in education, which touches not only educational philosophy, but also 

educational qualitative research, literacy studies, teacher education, among other 

subfields of educational scholarship.  A number of influential collections of works 

related to Deleuze and education have been published in recent years.   

Nomadic Education, edited by Inna Semestky in 2008 brought “innovative 

educational theory into constructive dialoguq with the intellectual work of French 

postructuralist philosopher Gilles Deleuze whose conceptualizations strongly 

resonate with contemporary discourse in education” (p. vii).  Contributors 

included, among others, Ronald Bogue, Noel Gough, Kaustuv Roy, and Elizabeth 

St. Pierre.  Diana Masny and David Cole (2009) edited a collection entitled 

Multiple Literacies Theory: A Deleuzian Perspective, which brought Deleuze’s 

concepts to bear on literacy studies. Several special issues of journals have also 

addressed Deleuze studies in education.  A 2004 special issue of Educational 

Philosophy and Theory addressed the theme “Deleuze and Education,” 

overlapping to some extent with Nomadic Education (Semetsky, 2008).  A 2011 

special issue of Policy Futures in Education edited by Inna Semetsky and Diana 

Masny addressed the theme “Deleuze, Pedagogy, and Bildung,”   Several single-

authored books in education have used a Deleuzian perspective. .  Roy (2003) 

wove strands of Deleuze’s philosophy into a case study of teacher induction in an 

urban school.   Semetsky’s  (2006) book Deleuze, Education, and Becoming 
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juxtaposed Deleuze’s ideas with those of John Dewey. Allan (2008) used 

Deleuzian notions to think about “inclusivity” in education.  Olsson (2009) used a 

Deleuzian perspective in early childhood pedagogy.  Wallin (2011) used a 

Deleuze and Guattari’s ideas to think about curriculum through the concept of 

currere.  Although situated within the emergent field of Deleuze studies in 

education, this dissertation differs from other works in the field.  A main way it 

differs is that it addresses mathematics education, which few Deleuzian works 

have.  The dissertation differs from the few other works that have addressed 

mathematics education in its philosophical/ontological approach as well as the 

way in which it takes on a form similar to that of A Thousand Plateaus. In sum, 

the dissertation contributes to the field of mathematics education and more 

directly critical mathematics education as well as multicultural education, 

educational philosophy, and Deleuze studies in education by using a 

Deleuzoguattarian schizoanalytic approach to press critical mathematics 

education to move beyond ontological underpinnings that maintain oppressive 

practices and transform into postcritical mathematics education. 
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Schizoanalysis 

This dissertation enters the encounter between Deleuzian philosophy and 

teaching mathematics for social justice through three rhizomatic nodes or 

plateaus.  The first plateau, “Affirming Diversity,” stages a collision between the 

“equity principle” of the National Council for Teachers of Mathematics (2000) 

Principles and Standards and the Deleuzian (1968/1994) concepts of difference 

and repetition explored in their aptly named book, Difference and Repetition. The 

second plateau, “Generating Problems,” maps shifts in the images of thought 

about problems in the history of mathematics education and how these shifts 

relate to teaching mathematics for social justice.  The final plateau, “Becoming-

Democratic Mathematics Education,” rethinks democratic mathematics education 

through Deleuze’s and Guattari’s ontology of becoming.  The point of entry for 

each of these plateaus is the approach Deleuze and Guattari (1980/1987) 

developed in A Thousand Plateaus for mapping locations of stagnation and 

movement within a terrain.  This approach goes by many names (schizoanalysis, 

rhizomatics, stratoanalysis, nomadology, micropolitics, pragmatics), each of 

which emphasizes a different aspect of the methodology.  I will delineate key 

aspects of the approach with a focus on Deleuze and Guattari's concepts 

rhizome/ rhizomatics, strata/ stratoanalysis, pragmatics, and schizoanalysis.  

 Deleuze and Guattari (1980/1987) called for a rhizomatic approach to 
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writing and thinking in contrast to what they called “arborescent” thought.  

Arborescent thought is based on the image of a tree deeply rooted in one 

location, roots and branches each a series of dichotomous bifurcations 

emanating from a central trunk. This is the archetypal image of the tree of 

knowledge captured in a book, “the classic book, as noble [and] signifying” 

(Deleuze & Guattari, 1980/1987, p. 5).  The task of such a book based in 

arborescent thought is to represent or reflect the world, to describe or trace a 

state of affairs.  This aim is misguided, according to Deleuze (1969/1995) 

because it relies on representation, an attempt to reproduce a static reflection of 

what exists.  What is reproduced through such a process is only the aspects that 

are already taken as common sense forming an image of thought that is stagnant 

and fixed in place. Representation tries to imitate the world, but “mimicry is a very 

bad concept, since it relies on binary logic to describe phenomena of an entirely 

different nature” (Deleuze & Guattari, 1980/1987, p. 11).  Like tree branches and 

roots, arborescent thought bifurcates dichotomously, following the binary logic of 

negation—“this” and “not this”—reducing every-thing to what it-is-and-is-not.  

Negation, this binary logic central to representation, is a mediated version of 

difference, unlike the difference-in-itself that Deleuze argued fuels the existence 

in the world not as static being, but rather as becoming. “The tree and the root 

inspire a sad image of thought that is forever imitating the multiple on the basis of 

a centered or segmented higher unity” (p. 16).  The tree/root image of thought is 

static, an image of thought that has become stagnant and unproductive, locking 

thought into doxa, or commonsensical notions which have come to be taken for 
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granted: 

Such an orientation is a hindrance to philosophy. The supposed 
three levels—a naturally upright thought, an in principle natural 
common sense, and a transcendental model of recognition—can 
constitute only an ideal orthodoxy. Philosophy is left without means 
to realize its project of breaking with doxa. No doubt philosophy 
refuses every particular doxa. (Deleuze, 1968/ 1994, p. 134) 
 

Rhizomatics serve the purpose of breaking out of this stagnant image of thought. 

A rhizome, unlike the thick vertical trunk of a tree, is an underground horizontal 

stem, which in turn sends out roots and above-ground stems, creating a 

decentralized system of new plants expanding in every direction.  No longer 

static, rhizomatic thought engenders movement in thought, constantly creating 

new nodes and once again sprouting in a new direction. “Make rhizomes, not 

roots,” Deleuze and Guattari (1980/1987, p. 25) wrote.   St. Pierre (1997) 

described rhizomatic writing as a form of inquiry “in which I am able to 

deterritorialize spaces in which to travel in the thinking the writing produces” (p. 

408).  Rhizomatic writing enables thinking to change.  The distinction between 

rhizomatic thinking and arborescent thought relate to the two important concepts 

introduced in the introduction: mapping and tracing.  Rhizomatic thinking and 

writing “mapping” rather than merely “tracing” points of stagnation, those which 

have come to be taken for granted.  Mapping goes beyond representing what 

exists to engendering movement in thought, to creating something new through 

experimentation.  A map “fosters connections between fields, the removal of 

blockages. . ., the maximum opening. . .” (p. 12).  This openness allows the 

rhizome, the map, to have multiple entryways and to be maximally connectable: 

“any point of a rhizome can be connected to anything other, and must be” (p. 17).  
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This process of connection, a process of creation, finds and puts pressure on 

points of structuration, locations of stagnation. Deleuze and Guattari (1980/1987) 

called these points of structuration “assemblages” and explained that each point 

or assemblage links two heterogeneous elements.  The first element is linguistic 

(in a broad sense) in nature and taking on a “form of expression.”  The second 

element is material (in a broad sense) in nature and takes on a “form of content.”  

Rhizomatics poses these two questions in relation to whatever field is being 

mapped: “Which forms of content have come to be linked with which forms of 

expression?  How can pressure be applied to this link to open it up, to force it to 

become something other than it is?”   In the case of this dissertation, a rhizomatic 

approach poses these questions in relation to teaching mathematics for social 

justice: “Which forms of content have come to be linked with which forms of 

expression in the field of social justice mathematics education?  How can 

pressure be applied to these links to open them up, to force them to become 

something other than they are?” 

In addition to the image of the rhizome, Deleuze and Guattari's 

(1980/1987) methodology interconnects images of geological strata, 

geographical territories, organization of organs within bodies, linguistic 

pragmatics, and a reworking of psychoanalysis.  As “stratoanalysis,” using a 

geological image, the methodology identifies locations of stratification and 

destratification.   Deleuze and Guattari (1980/1987) explained stratification thus: 

Strata are Layers, Belts.  They consist of giving form to matters, of 
imprisoning intensities or locking singularities into systems of 
resonance and redundancy, of producing upon the body of the 
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earth molecules large and small and organizing them into molar 
aggregates.  Strata are acts of capture. (p. 40) 
 

In stratification, then, a particular organization of reality is created that does not, 

at least for the time being, allow for other organizations of reality.  It “captures” a 

particular formulation, excluding all other possibilities, locking a particular reality 

in place.  Destratification, on the other hand, is the process of unlocking a 

particular organization of reality, of unfixing the current organization, of 

introducing movement into the organization.  This dissertation asks, “What 

stratifications and destratifications have occurred in teaching mathematics for 

social justice?” 

The concept of an assemblage was noted in relation to stratoanalysis. 

This concept links the geological image of strata to linguistic pragmatics through 

the work of the Danish linguist Hjelmslev.7  Hjelmslev (1963/1970) critiqued and 

reformulated Aristotle’s hylomorphism. In Physics (2008 version), Aristotle 

conceptualizes all entities that are susceptible to change (e.g. physical objects) 

as entailing both “matter” (hulê, as in the “hylo” in hylomorphism) and “form” 

(morphê as in the “morph” in hymomorphism) (Shields, 2007; Aristotle, Physics).  

Said another way, that which changes is a compound consisting of substance 

(matter) and form.  Instead of a distinction between form and substance, Deleuze 

and Guattari (1980/1987) read Hjemslev as saying that content and expression 

each have a relation to form, such that that-which-changes entails a form of 

                                                 

77 The term “assemblage” is the term typically used for the Deleuze and Guattari’s (1980/1987) 
French term agencement.  See Phillips (2006) for an exploration of how this came to be the 
case and how this translation choice has shaped the use of Deleuze and Guattari’s concept. 
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content and a form of expression.  In this reformulation, what is distinguished is 

content and expression rather than substance and form since both content and 

expression take on forms and have substance.  Based on this reformulation, 

Deleuze and Guattari (1980/1987) developed the concept of double articulation 

as double, linked processes in the ongoing formation of reality: 

The first articulation concerns content, the second expression.  The 
distinction between the two articulations is not between forms and 
substances but between content and expression, expression 
having just as much substance as content and content just as much 
form as expression. . . .Content and expression are two variables of 
a function of stratification. (p. 44) 
 
Double articulation is the process of constituting a stratum.  The stratum 

consists of both a form of content and a form of expression; these two forms are 

linked, but their elements are not identical: “The important thing is the principle of 

simultaneous unity and variety of the stratum: isomorphism of forms but no 

correspondence; identity of elements or components, but no identity of 

compound substances8” (p. 46).  Deleuze and Guattari (1980/1987) called a 

specific instantiation of a form of content a “machinic assemblage” and a specific 

instantiation of a form of expression an “assemblage of enunciation” (p. 504).  

Neither of these (a machinic assemblage nor an assemblage of enunciation) 

exist on their own, but are two linked sides to a larger assemblage.  Deleuze and 

Guattari (1980/1987) said that every assemblage is “simultaneously and 

inseparably a machinic assemblage and an assemblage of enunciation” (p. 504). 

                                                 

8 In mathematics, an isomorphism does involve correspondence, specifically one-to-one 
correspondence (bijection).  Taken in context, I read Deleuze and Guattari’s statement here to 
mean that the form of content and the form of expression have corresponding structures, 
organization, or relationships among elements although the elements are not identical. 
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Through this double articulation, each assemblage relates a form of content and 

a form of expression in a particular way. An example Deleuze and Guattari 

(1980/1987; also see Deleuze, 1986/1988) noted from Foucault's work 

connected the prison as a form of content with “delinquency” as a form of 

expression: 

Let us follow Foucault in his exemplary analysis, which, though it 
seems not to be, is eminently concerned with linguistics.  Take a 
thing like the prison: the prison is a form, the ‘prison-form’; it is a 
form of content on a stratum and is related to other forms of content 
(school, barracks, hospital, factory).  This thing or form does not 
refer back to the word ‘prison’ but to entirely different words and 
concepts, such as ‘delinquent’ and ‘delinquency,’ which express a 
new way of classifying, stating, translating and even committing 
criminal acts.  ‘Delinquency’ is the form of expression in reciprocal 
presupposition with the form of content ‘prison.’ (p. 66) 
 

In this example, delinquency and the prison are linked in a way that links 

the form of what is being expressed (delinquency) with a material form 

(the prison).  The linking of these two “sides” of an assemblage is “double 

articulation: 

.Moreover, the form of expression is reducible not to words but to a 
set of statements arising in the social field considered as a stratum 
(that is what a regime of signs is).  The form of content is reducible 
not to a thing, but to a complex state of things as a formation of 
power (architecture, regimentation, etc.). . . . .Fitting the two types 
of forms together, segments of content and segments of 
expression, requires a whole double-pincered, or rather, double-
headed, concrete assemblage taking their real distinction into 
account. . . .We are never signifier or signified.  We are stratified. 
(Deleuze & Guattari, 1980/1987, pp. 66-67) 
 
The view of “delinquency” as a form of expression, as an “assemblage of 

enunciation,” is a conceptualization of language that differs from common notions 

of language as consisting of statements made by individuals.  Building on the 
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work of Foucault and Austin, Deleuze and Guattari (1980/1987) stated that “there 

is no individual enunciation.  There is not even a subject of enunciation.  Yet 

relatively few linguists have analyzed the necessarily social character of 

enunciation” (p. 80).  

One theorist who did take the social character of enunciation into account 

was Austin.  In his book How to Do Things with Words, Austin (1962) began by 

distinguishing between two types of statements: constatives, which indicate or 

describe a state of affairs (e.g. “The weather is warm today”), and performatives, 

which perform an action in their statement (e.g. “I swear” is the act of swearing).  

Through an investigation of the characteristics of performatives, Austin finally 

concluded that the constative/ performative distinction is only a special case of a 

more general framework in which all statements are some type of act.  Deleuze 

and Guattari (1980/1987) identify three consequences of Austin’s work:   

1)  It has made it impossible. . .to conceive of speech as the 
communication of information: to order, question, promise, or affirm is 
not to inform someone about a command, doubt, engagement, or 
assertion but to effectuate these specific, immanent, and necessarily 
implicit acts. 

2) It has made it impossible to define semantics, syntactics, or even 
phonematics as scientific zones of language independent of 
pragmatics. . . .pragmatics becomes the presupposition behind all of 
the other dimensions and insinuates itself into everything. 

3) It makes it impossible to maintain the distinction between language 
and speech because speech can no longer be defined simply as the 
extrinsic and individual use of a primary signification, or the variable 
application of a preexisting syntax.  Quite the opposite, the meaning 
and syntax of language can no longer be defined independently of the 
speech acts they presuppose. (pp. 77-78) 
 

Communication of information is not the sole (or even main) function of 

language.  Rather, speaking, like writing, does something.  If the function of 
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language is not so much to inform as to act, to do something, then the form and 

content of language as found in semantics (the study of word- and sentence-level 

meanings), syntactics (the study of sentence-level structure), and phonematics 

(the study of word-level sounds) cannot be separated from pragmatics (the study 

of the use and meaning of language in context).  If language is doing, then the 

ways in which words and sounds function and take on meaning within sentences 

depend on relations among the people who are using the words and sounds.  

The social dimensions of language are not an extra component added onto 

words-as-building-blocks; rather, words always already function within social and 

power relations.  Pragmatics, then, is the presupposition behind all other 

linguistic components.  If pragmatics becomes the presupposition behind all 

other dimensions of language rather than a “trash heap” (Deleuze & Guattari, 

1980/1987, p. 78) into which tangential ideas are thrown, then “stylistics” cannot 

be separated from “linguistics” as has traditionally been done (Deleuze & 

Guattari, 1980/1987, p. 97).  “The reason for this,” wrote Deleuze and Guattari 

(1980/1987) “is  that. . .when one introduces an internal pragmatics into 

language, one is necessarily led to treat nonlinguistic elements such as gestures 

and instruments in the same fashion” (p. 98).  Deleuze (1993/1997) examined 

stylistic choices authors use to indicate character’s intonation.  One option is to 

use dialogic markers such as “she murmured” or “he yelled.”  Alternatively, the 

author can provide a context through characterization, for example, to indicate a 

character’s intonation, or write the speech itself in a way that indicates intonation.  

A different possibility which allows pragmatics as presupposition to erupt and 
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shake open other linguistic components , to press further the idea that  “saying is 

doing” (Deleuze, 1993/1997, p. 107), is to make language stutter rather than 

indicate that a character is stuttering: “This is what happens when the stuttering 

no longer affects preexisting words, but itself introduces the words it affects; 

these words no longer exist independently of the stutter, which selects and links 

them together through itself.  It is no longer the character who stutters in speech; 

it is the writer who becomes a stutterer in language” (p. 107).  Such stylistic 

effects, according to Deleuze (1993/ 1997), put language into a “state of boom, 

close to a crash” (p. 109), and constitute “a cutting edge of deterritorialization of 

language,” a concept which is explained below (Deleuze & Guattari, 1980/1987, 

p. 99) 

Stratification is the creation of a doubly articulated assemblage within a 

stratum; destratification is the breaking up of such an assemblage. Deleuze and 

Guattari (1980/1987) also used the term deterritorialization for destratification 

and reterritorialization for restratification. In a spatial description of assemblages, 

Deleuze and Guattari (1980/1987) said that the machinic assemblage and 

assemblage of enunciation are on a horizontal axis; along the vertical axis, “the 

assemblage has both territorial sides, or reterritorialized sides, which stabilize it, 

and cutting edges of deterritorialization, which carry it away” (p.  88). 

Deterritorialization takes place through the creation of “lines of flight.”  Put 

another way, deterritorialization is “the movement by which ‘one’ leaves the 

territory.  It is the operation of the line of flight” (Deleuze & Guattari, 1980/1987, 

p. 508). 
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If every assemblage is the double articulation of a form of content (a 

machinic assemblage) and a form of expression (a collective assemblage of 

enunciation), and these assemblages undergo the processes of 

deterritorialization and reterritorialization, it is machines that enact these 

movements.  “As a general rule,” wrote Deleuze and Guattari (1980/1987), “a 

machine plugs into the territorial assemblage. . .and opens it to other 

assemblages” (p. 333).  The distinction between an assemblage and a machine 

is that “a machine is like a set of cutting edges that insert themselves into the 

assemblage undergoing deterritorialization” (p. 333).  It is a machine that makes 

new connections among assemblages, or reassembles components of 

deterritorialized assemblages through reterritorialization. 

Stratification, according to Deleuze and Guattari, can also be thought of as 

“the problem of the organism—how to 'make' the body an organism” (p. 41). In 

this case, the organization of organs within the body is what makes the body an 

organism rather than simply a body. Deterritorializing the organism is the process 

of making a “Body without Organs” (BwO). Despite the name, the BwO is a body 

without organization of organs rather than a body without the organs themselves. 

Deleuze and Guattari (1980/1987) posed the following questions: 

What is your body without organs? What are your lines? What map 
are you in the process of making or rearranging? What abstract line 
will you draw, and at what price, for yourself and for others? What 
is your line of flight? What is your BwO, merged with that line. . . 
.Are you deterritorializing? Which lines are you severing, and which 
are you extending or resuming? (p. 203) 
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This dissertation asks, “What organs have been constituted within the body of 

mathematics education?  What are its lines of flight?  Is it deterritorializing?  If so, 

how?  Which lines should we severe, and which should we extend or resume?” 

The Body without Organs as a body whose organs are not organized or 

stratified is a biological image. However, the concept of the Body without Organs 

is also connected to Deleuze and Guattari's critique and reworking of 

psychoanalysis, that is, schizoanalysis. In the concept of the Body without 

Organs, Deleuze and Guattari reapplied a term used by Antonin Artaud 

(1947/1976) to notions from Melanie Klein's psychoanalytic object-relations 

theory (Buchanan, 2010). Deleuze and Guattari (1980/1987) critiqued 

psychoanalysis: “it subjects the unconscious to arborescent structures, 

hierarchical graphs. . .the phallus tree. . . .Psychoanalysis's margin of 

maneuverability is therefore very limited” (p. 17). In contrast, schizoanalysis, they 

argued, “treats the unconscious as an acentered system. . .as a machinic 

network of finite automata (a rhizome). . . .The issue is to produce the 

unconscious and with it new statements, different desires: the rhizome is 

precisely this production of the unconscious” (p. 17-18). Schizoanalysis 

(rhizomatics, stratoanalysis, pragmatics. . .), then, is also an analysis of desire. In 

fact, according to Deleuze and Guattari, “The BwO is desire; it is that which one 

desires and by which one desires” (p. 165).  In investigating the bodies with and 

without organs in mathematics education, this dissertation is also an analysis of 

desire: “What flows of desire circulate in the field of teaching mathematics for 

social justice?  What flows of desire should we open?”  Schizoanalysis is not 
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merely an analysis of current flows of desire, but is a way direct flows of desire in 

new directions.  As Deleuze and Guattari (1980/1987) asserted: 

Schizoanalysis, as the analysis of desire, is immediately practical 
and political, whether it is a question of an individual, group, or 
society. For politics precedes being. . . .Schizoanalysis is like the 
art of the new. Or rather, there is no problem of application: the 
lines it brings out could equally be the lines of a life, a work of 
literature or art, or a society, depending on which system of 
coordinates is chosen.” (203-204). 
 
It is fitting that Deleuze and Guattari’s (1980/1987) methodology is 

multivocal, shifting names and images throughout A Thousand Plateaus.  It is a 

methodology that is constantly deterritorializing and then reterritorializing on a 

new image.  It is a methodology in which what eternally returns is difference9.  It 

is a methodology of becoming10.  It is a methodology that provides an entry point 

into each of the nodes or plateaus of the encounter between Deleuzian 

philosophy and teaching mathematics for social justice.   

                                                 

9 Deleuze’s conceptualization of the eternal return of difference is explained and explored in the 
plateau entitled “Affirming Difference.” 

10 Deleuze’s (and Guattari’s) ontology of becoming is explained and explored in the plateau 
entitled “Becoming-Democratic Mathematics Education.” 



 

 

 

 

 

 

Plateaus 

  



 

 

1. Affirming Difference 

In the National Council for Teachers of Mathematics' Principles and 

Standards for School Mathematics (NCTM, 2000), the “equity principle” stated 

that “excellence in mathematics education requires equity—high expectations 

and strong support for all students” (p. 12).   The Principles and Standards 

strongly emphasized that “mathematics can and must be learned by all students” 

(p. 13).  In fact, within the approximately two pages devoted to the equity 

principle, the phrase “all students” (or a similar phrase) was repeated 20 times.  

Such forceful emphasis raises questions about current notions of equity in 

mathematics education.  Why did NCTM put such strong emphasis on “all 

students”?  How has this come to be?  This plateau stages an encounter 

between this notion of equity and Deleuze’s concept of affirming difference. 

Following Deleuze and Guattari’s call to embark on a line of flight by “lodg[ing] 

yourself on a stratum. . .find potential movements. . .possible lines of flight” (p. 

161), this plateau lodges in a stratum constituted by the notion of equity as found 

in the Principles and Standards of the National Council of Teachers of 

Mathematics (2000).  According to Deleuze and Guattari (1980/1987), it is 

“through meticulous relation with the strata that one succeeds in freeing lines of 

flight” (p. 161).  The equity stratum provides a launching site for freeing lines of 

flight that will lead to Deleuze and Guattari’s (1968/1994) concept of affirming 
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difference. This line of flight moves toward (re)conceptualizing the notion of 

difference through a Deleuzoguattarian lens in a way that moves toward an anti-

oppressive ontology and ethics of mathematics education.   

1.1 The Talent-Competition Machine 

 What is it that the forceful repetition of “all” in the “Equity Principle” pushes 

against and moves toward?  The Principles and Standards themselves pointed 

out an image of thought in mathematics education against which the equity 

principle pushes: “The vision of equity in mathematics education challenges a 

pervasive societal belief in North America that only some students are capable of 

learning mathematics” (p. 12).  This image of thought captured, in the terms 

Deleuze and Guattari use in A Thousand Plateaus, a double articulation 

connecting a form of expression (a collective assemblage of enunciation) with a 

form of content (a machinic assemblage).  In the United States and Britain, the 

form of expression consists of a stratum such as the following, which might be 

called the “talent statum”: mathematician—talent—male—masculine—White—

suburban—affluent/ middle class—English-speaking. . . .  The form of content 

consists of a stratum such as this one: student/teacher interactions—tracking—

scheduling—honors/ advanced placement courses—timed tests—independent 

practice—decontextualized problems—competitions. . . .This stratum might be 

called the “competition stratum.”  These two strata, or sides of a stratum, are 

linked through double articulation to form a talent-competition machine at work in 

a particular image of thought in mathematics education.  Walkerdine (1989) 

examined the gendered aspect of this double articulation in Britain on a 
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micropolitical level.  She found that “girls are never unproblematically allowed to 

enter the categories teachers consistently castigate them for not belonging to: 

they might be admonished for not 'breaking set' or 'having flair,' but in fact 

teachers make it very difficult for them to do so” (p. 49).  In order to be seen as 

talented or “having flair” by teachers, students had to be seen as active and 

willing to break the rules (“breaking set”).  Girls found themselves in a double 

bind: those who “followed the rules,” for example, by showing their work, could 

not be seen as having talent since “having flair” required breaking the rules; on 

the other hand, those girls who did fit the profile of “having flair” by challenging 

the teacher's assertions or skipping steps in their work were “met with resistance” 

from teachers that boys did not typically face.  The micropolitical movements of 

student/teacher interaction within the competition assemblage prevented girls 

from entering into the talent assemblage.   

 On a slightly broader level, school space in the United States often 

becomes stratified in ways that exclude English Language Learners from honors 

and advanced-placement level mathematics classes or instruction through 

scheduling.  According to Walqui (2000),  

Typically what happens is that sheltered courses (which are 
supposed to cover mainstream curricula using texts with special 
pedagogical accommodations for English learners) and subject 
matter courses taught in students' native languages are considered 
watered-down versions of the demanding regular courses.  In 
addition, classes are often offered without the support of 
appropriate materials [and] classes are crowded (for example, a 
class might start with 32 students, but every new immigrant student 
that arrives throughout the year is added to it). (p. 58-59) 

Even students placed in mainstream mathematics courses may not have access 

to honors or advance placement courses if scheduling decisions do not consider 
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scheduling conflicts between ESL language-focused courses and honors/ 

advanced-placement mathematics courses.  Harklau (1994) pointed out that 

those in charge of making course placement decisions for newcomers faced a 

dilemma: 

Because there was no truly appropriate place for [newcomer 
students] in tracked mainstream classes, teachers and counselors 
were faced with a choice between the lesser of two evils in 
placement decisions.  They could, on the one hand, put students in 
low track classes, which were linguistically undemanding, but also 
of poor quality linguistically and academically.  Alternatively, they 
could put students in higher tracks, which provided better learning 
opportunities, but that could also be very arduous for students who 
were still learning the language of instruction.  In either case, their 
decisions necessarily confounded perceptions of students' 
language proficiency and of academic ability. (p. 234) 
 

This course placement process often results in multilingual high school students 

not fulfilling the requirements to apply for college.  For example, it was 

discovered upon examining the transcript of one otherwise strong candidate for 

college, Chuy, that although he had taken eight semesters of math, “none of 

them counted for university admission because all of them were different 

versions of basic, non-college-preparatory math under different names” (Walqui, 

2000, p. 63).  Far from being an exceptional case, Walqui (2000) noted that 

Chuy's experience forms a “pattern common among immigrant students learning 

English in California high schools” (p. 63).  Highlighting the way in which class 

placement links into the competition-assemblage, Rosenbaum (1976) has 

compared the course placement process to a tournament in which “students are 

gradually eliminated from the competition for the highest status placements 

throughout the process of schooling and once eliminated, may not advance” 

(Harklau, 1994, p. 232). 
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 The talent-competition machine linking the talent-stratum and the 

competition-stratum is perhaps best exemplified in the tradition of mathematics 

competitions, the most “prestigious and important” (Kenderov, 2006) of which is 

the International Mathematical Olympiad (IMO), a global competition for high-

school students.  In a milieu influenced by the founding of national mathematical 

societies, the inception of the International Congress of Mathematicians, the 

revival of the Olympic Games, and the spread of regional and national 

mathematics competitions throughout Eastern Europe by the early twentieth 

century, the first IMO took place in Romania in 1956 (Kenderov, 2006).  In 2010, 

the IMO involved 517 competitors from 97 countries (Mathematical Association of 

America, n.d.).  One of the main stated purposes of this type of  competition, as 

stated on the website of the United States of America Mathematical Olympiad, is 

to “indicate the talent of those who may become leaders in the mathematical 

sciences of the next generation” (Mathematical Association of America, para. 1).  

Here the “talent-stratum” and the “competition-stratum” were explicitly linked in a 

talent-competition assemblage.  On the global level of the IMO as on the 

micropolitical level examined by Walkerdine (1989), the “talent-stratum” and 

“competition-stratum” are linked in a way that makes it difficult for girls to enter 

the “talent-stratum”: of the 517 competitors of the 2010 IMO, 470 of them were 

boys and 47 of them were girls.  A full 10 times as many boys as girls “were 

talented enough” to compete.   

 The format of mathematics competitions has become frozen into a 

particular image of mathematics that emphasizes certain terms of the 

competition-assemblage: such competitions consist of timed tests in which 
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students work individually on decontextualized problems.  The contemporary IMO 

competition shows remarkable resemblance in format to its predecessors from 

one hundred years earlier.  Kenderov (2006) described an 1894 competition in 

Hungary which is “widely credited as the forerunner of contemporary 

mathematics. . .competitions for secondary students” (p. 1586).  In this 

competition, secondary students were allotted four hours to solve three problems 

individually, that is, without interaction with other students or teachers.  The set of 

tasks consisted of decontextualized problems designed to require creativity, 

mathematical thinking, and often proofs rather than simple technical skills.  A 

similar structure is in place for the IMO, which takes place over the course of two 

consecutive days.  On each day, four and a half hours are allotted for students to 

solve three problems.  Again, problems are decontextualized and require “a 

significant degree of inventive ingenuity and creativity” (Kenderov, 2006)11.  Like 

its predecessor in 1894, the IMO is “a competition for individuals” (Kenderov, 

2006, p. 1586), although competition among nations is stimulated through 

unofficial rankings of countries based on the number of medals awarded.  This 

format taps into a particular image of thought in mathematics that has been 

constituted as the only image of mathematics (along with the ancillary notion that 

                                                 

11 Hence, in this double articulation of the talent and competition components of the talent-
competition assemblage, only those previously considered “talented” (that is, for example, ten 
times as many boys as girls) are presented with problems requiring “a significant degree of 
inventive ingenuity and creativity” rather than simply technical skills.  Sriraman and 
Steinthorsdottir (2007) argue that the first step toward a synthesis of “equity” and “excellence” 
is to “give equal opportunity” (p. 99) in mathematics education.  Sriraman (2008) actualized 
“giving equal opportunity” in a research study in which both students identified and not 
identified as “gifted” kept math journals in which they attempted to solve a set of challenging, 
non-routine problems. 
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only certain people belong in the image).  An ethnomathematics perspective  

points out the way in which this image of thought of mathematics has come to be 

seen as common sense: 

The discipline known as mathematics is an ethnomathematics that 
originated and developed in Europe, having received some 
contributions from Indian and Islamic civilizations, and that arrived 
at its current form in the 16th and 17th Centuries, from which point it 
began to be carried throughout and imposed upon the rest of the 
world.  Today, this mathematics acquires a character of universality, 
above all due to the predominance of science and modern 
technologies which were developed beginning in the 17th Century 
Europe, and which serve to support current economic theories. 
(D'Ambrosio, 2001, p. 56) 
 

The universalization of this particular image of thought in mathematics connects 

with the way the “story of mathematics” is told: 

The great heroes of mathematics, that is, those who are historically 
pointed to as being responsible for the advancement and 
consolidation of this science, are identified in Ancient Greece, and 
later in the Modern Age, in the countries of central Europe, above 
all England, France, Italy, and Germany.  The names most often 
remembered are Pythagoras, Euclides [sic], Descartes, Galileu 
[sic], Newton, Leibniz, Hilbert, Einstein, and Hawkings.  They are 
ideas and men who originated north of the Mediterranean. 
(D'Ambrosio, 2001, p. 57-58) 
 

D'Ambrosio (2001) noted similar processes in the universalization of “jeans” as a 

form of clothing replacing traditional clothing world-wide and the spread of Coca-

Cola products.  However, he observed, the universalization of this particular 

image of mathematics differs in that 

mathematics has a connotation of infallibility, rigor, and precision 
and of being an essential and powerful instrument of the modern 
world, so that its presence excludes other ways of thinking. (p. 58)  

1.2 Liberal Multicultural Education and the All-Reg ardless Assemblage 

 Given such an efficient and effective machine working on every level from 

the micropolitical to the global in order to link the talent-assemblage and the 
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competition-assemblage in such a way that only certain people can be seen as 

having mathematical talent, as the future “leaders in the mathematical sciences 

of the next generation,” the claim in the Principles and Standards that 

“mathematics can and must be learned by all students” (p. 13) is in fact 

momentous.  The stylistic effect of twenty repetitions of “all” (all—all—all—all—

all—all—all—all—all—all—all—all—all—all—all—all—all—all—all—all), then, 

introduces a stutter into the language of mathematics education, a stutter which 

“carves out a nonpreexistent foreign language within” (Deleuze, 1993/1997, p. 

110) the language of mathematics education, puts the language of mathematics 

education “into a state of boom, close to a crash” (p. 109), creates a line of flight 

away from the smoothly running talent-competition machine.  Yet, if the echoing 

boom of all-all-all forms the cutting edge of deterritorialization, what remains 

stratified within the equity principle?   

The resonating boom of all, while creating a line of flight away from the 

talent-competition machine, remains linked to the key word regardless:  “All 

students, regardless [emphasis added] of their personal characteristics, 

backgrounds, or physical challenges, must have opportunities to study—and 

support to learn—mathematics” (NCTM, 2000, p. 12).  This statement resonates 

closely with liberal multicultural education which, according to Kubota (2004), 

“endorses the idea that all individuals, regardless [emphasis added] of their 

background, can socially and economically succeed as long as they work hard” 

(p. 32).  This “all-regardless-assemblage” constitutes a “formation thrown up by 

the corpus in question,” (Deleuze, 1986/1988, p. 18) by liberal multicultural 
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education infused with the “anonymous murmur” (Deleuze, 1986/ 1988, p. 18)12 

of liberal philosophy13.   The central concept in liberal philosophy is the idea of 

“liberty” or “freedom,” which in liberal theory is accepted as inherently good 

(Gaus & Courtland, 2003).  Because “liberty” is considered inherently good, 

liberal theorists argue that if anyone wants to restrict “liberty” in any way, that 

person must prove that there is a good enough reason for the restriction (the 

Fundamental Liberal Principle) (Gaus, 1996, p. 162-166; Mill, 1859/1991, p. 472).  

One of the main tasks of liberal theory is to conceptualize “liberty” or “freedom.”  

Positive liberty has been conceptualized as “freedom to” do something, e.g. 

freedom to go to school, whereas negative liberty has been conceptualized as 

“freedom from” a constraint, e.g. freedom from being coerced to go to school 

(Berlin, 1969).    The negative concept of liberty implies that people are free if 

they can “pursue their aims not [emphasis added] constrained by others” (Stone, 

personal communication, 2004).  An important idea in liberal thinking is the idea 

that in order to be free, people must be autonomous, meaning that they choose 

their own actions (Gaus & Courtland, 2003).  Inherent in this idea is a focus on 

individuals rather than groups.  “Power is in the hands of individuals” (Stone, 

personal communication, 2004) rather than existing at a group level.  A related 

                                                 

12 In Foucault, Deleuze (1986/1988) reads Foucault’s work as suggesting that knowledge is not 
the domain of an individual knower justified in his or her belief that such-and-such is true (as in 
a liberal conception of knowledge), but rather consists of the anonymous murmur at any given 
time, of “formations thrown up” in the disjunctions between subjects and between objects, of 
the “language [which] coagulates around a corpus only in order to facilitate the distribution or 
dispersion of statements (p. 18). 

13 The following descriptions of liberal philosophy and critical theory, and how they are infused 
into liberal multicultural education and critical multicultural education, respectively, draw on an 
unpublished paper I wrote with Mina Kim and Lei Zhang entitled “A Multicultural Education 
Framework for Providing Equitable Education for English Language Learners.” 
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central concept is that of “individual rights.'  A “right” is something that is due to a 

person by law, tradition, or nature.  An “individual right” is a right belonging to a 

single person.  In order for an individual to be free, according to liberal 

philosophy, his or her individual “rights” must not be infringed upon.  One of the 

government's basic tasks, then, is to protect the individual rights, and thereby the 

freedom, of individuals (Gaus & Courtland, 2003). A main means to do this is 

through democratic representation (Stone, personal communication, 2004).  

Another idea stemming from a focus on the individual is the pluralist idea that any 

society is composed of individuals, each of whom has her or his own “aims, 

interests, and conception of the good” (Sandel, 1982, p. 1-7).  If individual 

freedom is not to be restricted, then people must be free to pursue different goals 

and live different ways without others imposing certain aims and concepts of the 

good upon them (Gaus & Courtland, 2003).  Society, then, “being composed of a 

plurality of persons. . .is best arranged when it is governed by principles that do 

not themselves presuppose any particular conception of the good” (Sandel, 

1982, p. 1-7).  (The exception to this rule in liberal theory, of course, is the 

principle that 'liberty' is itself inherently good).  In summary, liberal philosophy 

attempts to define “liberty” or “freedom” and proposes that “liberty” is inherently 

good, emphasizes the individual over groups, focuses on individual rights, views 

the government's role as protecting individual rights, and supports pluralism.   

 The Liberal Multicultural Education Machine links the ideas of liberal 

philosophy within the context of education to construct the “all-regardless 

assemblage,” asserting that all students, that is, each individual student, 

regardless of his or her background, must be free.  A positive definition of liberty 
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implies that students should be free to take chosen courses of actions regardless 

of their background.  A negative definition of freedom implies that students should 

be free from restrictions on their activities (to the degree possible), regardless of 

their background.  The implication of these applications of positive and negative 

definitions of freedom to multicultural education is that students should be treated 

equally (the same) regardless of their background.  The “all-regardless” 

assemblage, then, in Deleuzian terms, institutes a “generality [which] expresses 

a point of view according to which one term may be exchanged or substituted for 

another” (Deleuze, 1968/1994, p. 2).  Conceptualizing freedom in this way leads 

to “difference-blindness,” or the idea that we should not notice (regard) or care 

about the various ways in which we differ from each other, such as race, culture, 

class, gender, sexuality, or language(s) spoken.  As Kubota (2004) pointed out, 

“A liberal view of multiculturalism often emphasizes common humanity and 

natural equality across racial, cultural, class, and gender differences. . . .In the 

school context, this logic is played out as universal, neutral, and difference-blind 

institutionalism” (p. 32).   

 While liberal multicultural education tends to lead to “difference-blindness,” 

Kubota (2004) pointed out a paradox that emerges when liberal theory is applied 

to multicultural education: “Along with the focus on commonality and universal 

humanity, liberal multiculturalism paradoxically also has a tendency to emphasize 

cultural differences and culturally unique characteristics” (p. 34). This pluralistic 

aspect of liberal multicultural education tends to 

celebrate. . .superficial aspects of culture, such as artifacts, 
festivals, and customs, and they are treated in decontextualized 
and trivialized manners divorced from the everyday life of people 
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and the political struggle to define cultural identity. . . .In focusing on 
only the customs and traditions of different peoples, the culture of 
the Other is often exoticized and reduced to neutral objects for one 
to respect and appreciate.  At the same time, the Other people and 
cultures are essentialized as something homogenous, traditional, 
and authentic. (Kubota, 2004, p. 35)   
 

This pluralist thrust to liberal multicultural education leads to an attempt to 

represent a diversity of cultures in the curriculum.  “Cannot difference,” liberal 

educators ask with Deleuze (1968/1994), “become a harmonious organism and 

relate determination to other determinations within a form—that is to say, within 

the coherent medium of an organic representation” (p. 29)?  If the great “Holidays 

(or historic events) and Heroes” of mathematics have been represented in 

mathematics curricula as those from Ancient Greece and modern Europe 

(D’Ambrosio, 2001) can’t we just toss in a few “Brown Holidays and Heroes” 

(Banks, 1991; Nieto, 1995)?  If mathematics education has overlooked queer 

people and issues, can’t we just “add queers and stir” (Rands, 2009)?  Here it is 

supposed that expanding the boundaries of who is included and represented in 

the curriculum will in itself establish educational freedom through representation.   

Thus, liberal multicultural education succumbs to three of what Deleuze 

(1968/1994) termed the four “shackles” of mediation connected with 

representation: identity, analogy, and resemblance (p. 29).  The pluralist liberal 

idea of “representing a diversity of cultures in the curriculum” conceives of 

cultural difference as categorical or generic difference; one’s cultural identity is 

determined based on inclusion within a particular cultural category.  This 

formulation follows the Aristotelian “method of division” which begins with the 

largest categories and then divides each category into subcategories, eventually 
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leading to a subcategory including a single individual whose identity is the 

summation of predicates “said of” all of the broader categories (Aristotle, 

Metaphysics; Aristotle, Categories).  This process of division, according to 

Deleuze’s reading of Aristotle, relies on judgment (distributing or partitioning 

concepts and establishing a hierarchy of categories and subcategories), which 

ties specific difference to generic difference and identity to analogy:  

Analogy is itself the analogue of identity within judgment.  Analogy 
is the essence of judgment, but the analogy within judgment is the 
analogy of the identity of concepts.  That is why we cannot expect 
that generic or categorical difference, any more than specific 
difference, will deliver us a proper concept of difference.  Whereas 
specific difference is content to inscribe difference in the identity of 
the indeterminate concept in general, generic (distributive and 
hierarchical) difference is content in turn to inscribe difference in the 
quasi-identity of the most general determinable concepts; that is, in 
the analogy within judgment itself.  The entire Aristotelian 
philosophy of difference is contained in this complementary double 
inscription, both grounded in the same postulate and together 
drawing the arbitrary boundaries of the propitious moment14 (1968/ 
1994, 33-34).     
 

While the “large units” or categories are “determined according to relations of 

analogy,” in Deleuze’s reading of Aristotle, “the small units. . .are determined by a 

direct perception of resemblances, which suppose a continuity of sensible 

intuition in the concrete representation” (p. 34).  Hence, the “method of division” 

ties together analogy, resemblance, and identity (and opposition, which will be 

addressed in the context of critical multicultural education shortly) in the name of 

                                                 

14 The original French for “propitious moment” is “l’heureux moment” (1968, p. 51).  Heureux can 
mean “happy,” “fortunate,” “good,” or “excellent.”  Deleuze uses this term throughout 
Difference and Repetition in an ironic way to refer to the moment in Greek philosophy in which 
representational thought emerged.  According to Gasché (2007), “However paradoxical as it 
may sound, for Deleuze, the propitious Greek moment, rather than a suspension, is a triumph 
of doxa” (p. 260). 
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representation. This mediation of difference through representation, according to 

Deleuze, is the “mistake of the philosophy of difference from Aristotle to Hegel via 

Leibniz, [which] lay in confusing the concept of difference with a merely 

conceptual difference, in remaining content to inscribe difference in the concept 

in general” (p. 27).   

In contrast to the “method of division,” Deleuze (1968/1994), drawing on 

Nietzsche’s reworking of the idea of the “eternal return,” argued that “difference in 

itself” is prior to generic and specific difference:  

The eternal return does not appear second or come after, but is 
already present in every metamorphosis, contemporaneous with 
that which it causes to return.  Eternal return relates to a world of 
differences implicated one in the other, to a complicated, properly 
chaotic world without identity. (p. 57) 
 

Putting “difference in itself” first  

can be satisfied only at the price of a more general categorical 
reversal according to which being is said of becoming. . . .That 
identity not be first, that it exist as a principle but as a second 
principle, as a principle become; that it revolve around the Different: 
such would be the nature of a Copernican revolution which opens 
up the possibility of difference having its own concept, rather than 
being maintained under the domination of a concept in general 
already understood as identical. (p. 41) 
 

If it is difference which is first, then, “returning is being, but only the being of 

becoming” (p. 41).  An ontology of difference is an ontology of becoming and an 

ontology of becoming is an ontology of repetition: 

The eternal return does not bring back “the same”, but returning 
constitutes the only Same of that which becomes.  Returning is the 
becoming-identical of becoming itself.  Returning is thus the only 
identity, but identity as a secondary power; the identity of difference, 
the identical which belongs to the different, or turns around the 
different.  Such an identity, produced by difference, is determined 
as ‘repetition’.  Repetition in the eternal return, therefore, consists in 
conceiving the same on the basis of the different. (Deleuze, 
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1968/1994, p. 41) 

Analogy works in another way in liberal multicultural education.  The 

pluralist vision sees each culture as analogous to every other culture. The Liberal 

Multicultural Education Machine with its “all-regardless assemblage” is once 

again at work instituting a “generality” in which “one term [or culture] may be 

exchanged or substituted for another” (Deleuze1968/1994, p. 2).  Here, those 

who subscribe to the liberal multicultural education perspective often fall into the 

trap of believing that if each culture is analogous to all others, then individuals 

from different cultural backgrounds are indeed treated equally, (except, perhaps, 

for certain individual instances of discrimination).  Therefore, the liberal 

multicultural education approach overlooks the “social and economic inequalities 

and institutional racism that actually exist in schools and society” (Kubota, 2004, 

p. 33).  Frankenberg (1993) suggested the concept of “power evasion” to 

describe this tendency to ignore issues related to differences in power among 

groups. 

 “Power evasion” also has another source within the philosophy of 

liberalism.  Liberal theorists view power as being in the hands of individuals 

rather than groups.  In the school setting, this means that individual students, 

teachers, and administrators possess power.  Individual prejudice leads to 

discrimination, which is a misuse of power that restricts the freedom of other 

individuals.  Individual prejudiced teachers and administrators make unfair 

decisions that restrict the freedom of individual students with a particular 

characteristic, e.g. a particular cultural or linguistic background.  According to the 

liberal perspective, the way to combat this problem is to address prejudice at an 
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individual level, or as stated in the Equity Principle of the Principles and 

Standards, “teachers also need to understand and confront their own beliefs and 

biases” (p. 14).  This focus on power only at the level of the individual (along with 

difference-blindness) overlooks issues of power and privilege at the group level.  

Specifically, Kubota (2004) noted that “[l]iberal multiculturalism, influenced by the 

dominant ideology of individualism and liberal humanism, tends to obscure 

issues of power and privilege attached to the white middle class” (p. 35).   When 

the unequal power relations between groups that lead to political, economic, 

educational, and other inequalities in society are ignored, the resulting 

inequalities are perpetuated. 

1.3 Avoiding Difference-Blindness: Critical Multicu ltural Education

 Critical multicultural education, rooted in critical theory, has developed as 

an alternative to the Liberal Multicultural Education Machine which more viably 

addresses issues of privilege and oppression in schools (e.g. Kubota, 2004; 

Frankenstein, 1990; Skovsmose, 1994; Nieto, 1995; Ladson-Billings & Tate, 

1995; Gutstein, 2006). Critical theory began as the “[t]heoretical approach of the 

Frankfurt school of social philosophers,” (Kemerling., 2002, para. 24) a group 

that originated in Germany in the 1930’s and soon moved to Columbia University 

in New York to escape the Nazis (Antonio, 1983; also see Lowenthal, 1981; Jay, 

1973). Although notably marked by heterogeneity (Antonio, 1983; Löwenthal, 

1981; Kellner & Roderick, 1981; Jay, 1973; Leiss, 1974; Buck-Morss, 1977), 

critical theory is consistently “based on meta-assumptions that derive from 

Hegel’s dialectics, modified by Marxist materialist critique (Hegel, 1807/1967; 

Marx, 1844/1964; Schroyer, 1975; Antonio, 1981)” (Antonio, 1983, p.  345). A key 
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idea from the work of Hegel (1807/1967)) and Marx (1867/1976) is the idea that 

history evolves dialectically. The concept of a dialectical process involves a 

progression from a thesis (an idea or event) to an antithesis (a reactionary idea 

or event) and finally to a synthesis (the resolution of the tensions between the 

thesis and antithesis to form a new state). The synthesis then serves as a new 

thesis and the process repeats itself. The three moments of dialectical 

progression (thesis, antithesis, and synthesis) do not necessarily designate 

distinct points in time and can occur simultaneously (Hegel, 1900). As Antonio 

(1983) noted,  

Hegel's philosophy, which stresses immanent principles of 
contradiction, change, and movement, constitutes an alternative to 
the formal and static nature of Kantianism . . . .For Hegel, the 
nature of being is characterized by the subject continuously 
creating, negating, and recreating itself and its object world. . . .In 
Hegel's thought, emancipatory values are given an historical, rather 
than a transcendental, foundation. (p. 343-344)  
 

While Hegel (1900) saw this dialectical process as occurring at the level of the 

mind or “reason,” Marx believed that this dialectical process was rooted in the 

material world, specifically in economic processes. For Marx (1867/1887), the 

moments in the dialectical process were economic classes struggling against one 

another.  In the words of Antonio (1983), “Marxian dialectics is Hegelian thought 

stripped of its phenomenological idiom and re-formulated in a materialist 

framework” (p. 344).  This focus on classes or groups of people rather than 

individuals has continued in critical theory and contrasts with liberal theory’s 

focus on the individual. Critical theory “begins with the institution of the state out 

of which. . .groups. . .acquire power relative to other groups” (Stone, personal 

communication, 2004). This power differential between groups leads to 
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oppression.   Though critical theory is historical, its ultimate aim is not historical 

description, but rather the “location of contradictions and conditions that contain 

emancipatory possibilities” (Antonio, 1983, p. 344).  Critical theorists see this 

struggle against oppression as taking place within a dialectic between structure 

and agency (Stone, 2004; Giroux, 1983). The structure consists of the material 

constraints in the world. Agency is a person’s or group’s capacity to make 

choices in order to act. While critical theorists believe that people have the 

capacity to make choices and to act, they believe that this capacity is limited 

(though also, some believe, enabled) through the existing conditions of the world.   

In other words, “the values that define possible social structures belong to an 

immanent contradiction between ideology and social reality, and any 

consideration of ‘what can be’ is mediated by a detailed analysis of existing 

material, cultural, social, and political constraints”  (Antonio, 1983, p. 344).   

1.4 Critical Multicultural Education: A Way Around the Four Shackles? 

 Does a critical-theory based critical multicultural education circumvent the 

four shackles of mediation identified by Deleuze? Can a focus on privilege and 

oppression at a group level combined with Hegelian and/or Marxian dialectics 

“save difference from its maledictory state” (Deleuze, 1968/1994, p. 29)?  Noblit 

(2004) noted that critics of the way in which critical theory has played out in 

ethnography have found that critical theory has been “in itself a form of 

hegemony—patriarchal, Eurocentric, individualistic, and White” (p. 192; see also, 

e.g., Bennett & LeCompte, 1990; Delamont, 1989; Lather, 1986; Ellsworth, 

1989).  Moreover, critical ethnographers’ response to such criticism has been to 

construct a coherent story based on the parallelist position that each form of 
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domination was equivalent and functioned in basically the same way as did class 

(Morrow & Torres, 1998; Noblit, 2004).  This resulted in “a theory that could never 

be wrong” (Ladwig, 1996, p. 40, as cited in Noblit, 2004); in short, “critical 

ethnography has ironically come to be a form of ideological practice” (Noblit, 

2004, 192; also see Wexler, 1987).  This is an example of the way in which 

desire “is never an undifferentiated instinctual energy” as Deleuze and Guattari 

(1980/1987) explained in A Thousand Plateaus, “but itself results from a highly 

developed, engineered setup rich in interactions: a whole supple segmentarity 

that processes molecular energies and potentially gives desire a fascist 

determination” (p. 215).  Deleuze and Guattari (1980/1987) warned, “Leftist 

organizations will not be the last to secrete microfascisms” (p. 215), for “it’s too 

easy to be an anti-fascist on the molar level, and not even see the fascist inside 

you, the fascist you yourself sustain and nourish and cherish with molecules both 

personal and collective” (p. 215).  A line of flight can be a great site of creation, or 

it can turn into a terrible “line of destruction” (p. 423).  The plan(e) of consistency 

can be one that “constitutes itself, even piece by piece” or it can turn into “a 

plan(e) of organization and domination” (p. 423).  Again, a warning: “there is 

communication between these two lines or two planes. . .each takes nourishment 

from the other, borrows from the other” (p. 423).   

 Critical theory, whether infused within critical ethnography or critical 

multicultural education, tends toward hegemony, ideological practice, even 

(micro)fascism in its maintenance of a reliance on the four shackles of mediation 

connected with representation.  Despite avoiding difference-blindness and power 

evasion through acknowledging privilege and oppression at a collective level, a 
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critical-theory based Critical Multicultural Education Machine maintains the 

Aristotelian “method of division” in which one’s identity is determined based on 

inclusion within a particular class.  Critical theory, then, faces the same 

ontological issues with identity, analogy, and resemblance as the pluralist Liberal 

Multicultural Education Machine.  

1.5 Deleuzian Dialectics: Repetition, not Opposition  

 The fourth shackle, opposition, however, takes on special significance as 

the foundation of Hegelian and Marxian dialectics.  Deleuze (1968/1994) raised 

the question of opposition through the example of size: “The question arises, 

therefore, how far the difference can and must extend—how large?  how 

small?—in order to remain within the limits of the concept” (p. 29).  Aristotle 

(1942) distinguished four types of “opposites”: “correlatives” (e.g. double/ half), 

“contraries” (e.g. bad/ good), “privatives/ positives” (e.g. blindness/ sight), and 

“affirmatives/ negatives” (e.g. he sits/ he does not sit). According to Deleuze’s 

(1968/1994) reading of Aristotle, the “most perfect, the most complete” form of 

opposition of these four is contrariety, which “alone expresses the capacity of the 

subject to bear opposites while remaining substantially the same” (p. 30), that is, 

within a category or “genus.”  “In short,” Deleuze read Aristotle as concluding, 

“contrariety in the genus is perfect and maximal difference, and contrariety in the 

genus is specific difference” (p. 31).  In Aristotle’s conceptualization of difference, 

specific difference, that is, difference at the level of “species,” is an intermediate 

between generic difference (difference at the level of the genus) and individual 
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difference15.  Deleuze noted that “difference” above and below specific difference 

“tends to become simply otherness” (p. 30), that is, generic difference is too large 

of a difference and individual difference is too small of a difference to constitute 

“opposites.” However, Deleuze contested Aristotle’s conception of specific 

differences as the perfect form of difference: “It is. . .evident that specific 

difference is the greatest only in an entirely relative sense.  Absolutely speaking, 

contradiction is greater than contrariety—and above all, generic difference is 

greater than specific” (p. 31).  It is Hegel who saw contradiction as a perfect form 

of opposition, yet, as Deleuze noted, “It seems that, according to Hegel, 

‘contradiction’ poses very few problems.  It serves a quite different purpose: 

contradiction resolves itself and, in resolving itself, resolves difference by relating 

it to a ground.  Difference is the only problem” (p. 44).   Deleuze, (via Nietzsche 

and Kierkegaard) objected to Hegel in that “he does not go beyond false 

movement—in other words, the abstract logical movement of ‘mediation’” (p. 8).  

Deleuze along with Nietzsche and Kierkegaard 

want to put metaphysics in motion, in action.  They want to make it 
act, and make it carry out immediate acts.  It is not enough, 
therefore, for them to propose a new representation of movement; 
representation is already mediation.  Rather, it is a question of 
producing within the work a movement capable of affecting the 
mind outside of all representation; it is a question of making 
movement itself work, without interposition, of substituting direct 
signs for mediate representation. (p. 8) 
 

Unmediated movement, Deleuze concludes, is “not opposition. . .but repetition” 

(p. 10). Hence, the heart of a Deleuzian dialectic consists of the positivities of 

                                                 

15 The field of biology later adopted the terms “genus” and “species,” but this biology-specific 
connotation is lacking in Aristotle’s work and Deleuze’s reading of Aristotle.   
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difference and repetition rather than negation in the form of opposition or 

contradiction. 

1.6 Rhythmic Repetition and Affirming Difference 

 In fact, it is repetition that has moved critical theory beyond its Frankfurt 

School conceptualization.  The insertion of “race” into critical theory to form 

Critical Race Theory (CRT) is not merely the parallelist move Morrow and Torres 

(1998) described.   Rather what has returned in CRT is not the same old critical 

theory with race tossed in for good measure, but rather something different.  A 

critique of “private property” returns as something different in the context of the 

United States, in which the legal system was based on the idea that those of 

European ancestry had the right to enslave those of African ancestry as property 

(e.g. Ladson-Billings & Tate, 1995; Delgado & Stefanic, 2001; Leonard, 2008).  

Difference returns again and again in TribalCrit’s emphasis on colonization 

(Brayboy, 2005) and LatCrit’s emphasis on language, immigration, and ethnicity 

(e.g. Solórzano & Bernal, 2001).  In this rhythmic repetition (Deleuze, 

1968/1994), “there is no representative concept” (p. 20).  Although “Critical” 

seems to constitute a “Same” that returns, that is, the “identity of the nominal 

concept which explains the repetition of a word” (p. 21), this cadence-repetition 

(Deleuze, 1968/1994, p. 21) is “only the outward appearance or the abstract 

effect of the rhythmic repetition” (p. 21).  Repetition of the same “appears only in 

the sense that another repetition is disguised within it, constituting it and 

constituting itself in disguising itself” (p. 21), that is, the rhythmic repetition of the 

different.  In this proliferation of simulacra, the simulacrum “is the instance which 

includes a difference within itself” (p. 69).  Unlike Plato’s simulacra as imperfect 
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copies of a perfect original, for Deleuze, “There is no first term which is repeated. 

. . .Simulacra are the letter of repetition itself.  Difference is included in repetition 

by way of disguise. . . .” (p. 17). Peeling off the disguise, the mask, does not 

reveal an identity of what/who is beneath, but instead links disguise with 

disguise, mask with mask, simulacrum with simulacrum in assemblage: 

“Repetition is truly that which disguises itself in constituting itself, that which 

constitutes itself only by disguising itself.  It is not underneath the masks, but is 

formed from one mask to another. . .The masks do not hide anything except 

other masks” (p. 17).  This movement from Critical Theory to Critical Race 

Theory to TribalCrit and LatCrit, then, is not a matter of “dissolving tensions in the 

identical” (p. 50) in a Hegelian/ Marxian dialectic.  It is not a matter of negation, 

for “negation, like the ripples in pond, is the effect of an affirmation which is too 

strong or too different” (p. 54).  Just as identity comes second, as an effect of 

difference and the cadence repetition of the Same is only an envelope produced 

by the rhythmic repetition of the different, negation is secondary in a Deleuzian 

dialectic, an effect of an affirmation of difference.  It is through affirmation of 

difference that unmediated movement makes metaphysics take action.  It is 

affirmation of difference which sets revolution in motion, as “revolution never 

proceeds by way of the negative” (p. 208).  It is through affirmation of difference 

that practical struggle stirs, as “practical struggle never proceeds by way of the 

negative but by way of difference and its power of affirmation” (p. 208).  While the 

“sociopolitical context of [liberal and critical] multicultural education” calls for 

“affirming diversity” (Nieto, 1992) and, as stated in the “Equity Principle,”  

“accommodating differences” (NCTM, 2000), for Deleuze, it is “affirming 
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difference” that must and does occur prior to either of these.  Deleuze says that 

“difference is not diversity.  Diversity is given, but difference is that by which the 

given is given, that by which the given is given as diverse” (p. 222).  

Reassembling multicultural education in a way that moves beyond the Liberal 

Multicultural Education Machine and the Critical Multicultural Education Machine 

entails affirming difference, for “history progresses not by negation and the 

negation of negation, but by. . .affirming differences” (p. 268).  But, Deleuze 

followed these seemingly utopian words with this warning: “It is no less bloody 

and cruel as a result” (p. 268).  Affirming difference requires a bigger boom and a 

louder crash than the Equity Principle stutter of all-all-all or a critical theory-based 

version of critical multicultural education.  There is hope in the question, what is it 

that multicultural education is becoming, can become?  Some of the aspects 

Kubota (2004) describes as part of critical multicultural education return a 

different rhythm than that of a critical-theory-based critical multicultural education 

and acknowledge that the cadence repetition of culture is only an envelope of the 

rhythmic repetition of a cultural becoming.  Kubota (2004) called for a 

problematization of difference.  This entails a rejection of a view that difference is 

neutral and stable.  Instead, she argued for an exploration of “why inequality 

among different groups exists and how various kinds of difference are produced, 

legitimated, or eliminated within unequal relations of power” (p. 38).  Further, 

Kubota (2004) critiqued a view of culture as homogenous, traditional, and static 

and instead calls for a view of culture as “diverse, dynamic, and. . .discursively 

constructed” (p. 38).  In other (Deleuzian) words, through ongoing rhythmic 

repetition, cultures are in the process of becoming.  Finally, Kubota (2004) called 
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into question the representations of cultures: “images of a certain culture or 

language are neither neutral nor objective, rather, they are discursively 

constructed” (p. 38).  Following Noblit’s use of the term “postcritical” in 

“postcritical ethnography,” which “directly challenges the epistemology of critical 

ethnography” (Noblit, 2004; Adkins & Gunzenhauser, 1999) and instead 

understands knowledge as “the product of a moment of mutual construction that 

at once converges divergent perspectives and preserves the divergence” (Adkins 

& Gunzenhauser, 1999, p. 71, as cited in Noblit, 2004, p. 194), this reassembled 

multicultural education might be called “postcritical multicultural education.”  

Kumashiro (2002, 2004) has conceptualized “anti-oppressive education” along 

similar lines.  Postcritical multicultural education or anti-oppressive education 

views all knowledge as necessarily partial including its own constructed 

knowledge.  Hence, Kumashiro (2004) wrote, “the field of anti-oppressive 

education refuses to say that it has found the ‘best’ approach or even an 

unproblematic approach to teaching toward social justice” (p. xxvi).  Kumashiro 

(2002) conceptualized oppression in terms of repetition: “oppression itself can be 

seen as repetition, throughout many levels of society, of harmful citational 

practices” (p. 51). For Kumashiro (2002), drawing on Butler (1990), unlike for 

Deleuze, “repetition” was conceptualized by default as repetition of the same: 

“oppression is produced by discourse, and in particular, is produced when certain 

discourses (especially ways of thinking that privilege certain identities and 

marginalize others) are cited over and over” (Kumashiro, 2002, p. 50).  Butler 

(1990) identified transformative possibilities in the failure to repeat: “The 

possibilities of gender transformation are to be found precisely in the arbitrary 
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relation between. . .acts, in the possibility of a failure to repeat” (p. 179).  Here, 

the failure to repeat is transformative because it is a failure to repeat the same 

gender performance. In the same sentence, however, Butler identifies another 

source of transformation in repeating differently, through “parodic repetition that 

exposes the phantasmatic effect of abiding identity as a politically tenuous 

construction” (p. 179).  Later, Butler reformulated repetition as necessary: “To 

enter into the repetitive practices. . .of signification is not a choice, for the ‘I’ that 

might enter is always already inside. . . .The task is not whether to repeat, but 

how to repeat, or, indeed, to repeat, and, through a radical proliferation of 

gender, to displace the very gender on which we might construct a politics” (p. 

189).  Parodic repetition, repetition which has the effect of displacing, in 

Deleuzian terms, is rhythmic repetition, in which what returns is difference.  

Failure to repeat the same is to refuse the envelopment of rhythmic repetition 

within a particular cadence.  Kumishiro (2002), although conceptualizing 

repetition as repetition of the same, saw transformative possibilities in linking 

repetition to “supplementation” (p. 52):  “Of course, the meaning and effects of 

stereotypes do change in different contexts and over time. . . .What is helpful in 

this discussion is another poststructural concept: supplementation, which means 

to cite, but also add something new in the process” (p. 52).  The way in which 

Kumashiro’s (2002) and Butler’s (1990) conceptions of repetition differed from 

that of Deleuze (1968/1994) was that Butler and Kumashiro conceptualize the 

repetition of the same as a primary basis upon which to make changes whereas 
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Deleuze saw repetition of the same as secondary, arising out of rhythmic 

repetition of the different16. It is because repetition necessarily returns the 

different that affirming difference is a necessary condition of being, that being is 

becoming.   

In addition to maintaining a reflexive critique of anti-oppressive education, 

the acknowledgement that knowledge is partial is central to anti-oppressive 

education in another way.  Kumashiro (2004) argued that all knowledge is 

necessarily partial and that often it is partial in ways that reinforce oppression.  

Moreover, challenging oppression is not simply a matter of filling in gaps in 

knowledge, of “raising awareness of the more progressive perspectives on the 

world” (p. 25).  The issue is not just that we do not know enough, but “also that 

we often do not want to know more about oppression” (p. 25).  Kumashiro (2004) 

argued that “it is not our lack of knowledge, but our resistance to knowledge and 

our desire for ignorance that often prevent us from changing the oppressive 

status quo” (p. 25).  Similarly, Deleuze (1968/1994) wrote,  

Questions and problems are not speculative acts, and as such 
completely provisional and indicative of the momentary ignorance 
of an empirical subject.  On the contrary, they are the living acts of 
the unconscious, investing special objectivities and destined to 
survive the provisional and partial state characteristic of answers 
and solutions.  The questions or sources of problems correspond to 

                                                 

16 Butler (2004) writes in response to Braidotti’s (1995) critique of Gender Trouble, “Although 
Braidotti. . .claim[s] that I reject Deleuze, she needs to know that every year I receive several 
essays and comments from people who insist that I am Deleuzian.  I think this may be a 
terrible thought for her. . . .Like her, I am in favor of a deinstitutionalized philosophy (a 
‘minority’ philosophy), and. . .I am also looking for the new, for possibilities that emerge from 
failed dialectics and that exceed the dialectic itself. . . .One reason I have opposed Deleuze is 
that I find no registration of the negative in his work, and I feared that he was proposing a 
manic defense against negativity” (p. 198). 
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the displacement of the virtual object which causes the series to 
develop. (p. 106) 
 

Affirming difference, then, rather than the simplistic utopian notion of “celebrating 

differences,” requires “learning through crisis” (Kumashiro, 2004, p. 27), learning 

through the crisis instigated in the return of difference.  That is, as Deleuze 

(1968/1994) concluded, “Learning takes place not in the relation between a 

representation and an action (reproduction of the Same) but in the relation 

between a sign and a response (encounter with the Other)” (p. 22).  Such an 

encounter interrupts presuppositions of the form “Everybody knows. . .” (Deleuze, 

1968/ 1994, p. 129), that is, reconceptualized “givens” as “takens” (Semetsky, 

2006, p.  82) and worked against common sense (Deleuze, 1968/1994; 

Kumashiro, 2004).  For, as Kumashiro (2004) points out, what comes to be seen 

as common sense “may be comforting for its familiarity and for providing a sense 

of normalcy, [but] it is also quite oppressive” (p. xxiii).  “Many people,” Deleuze 

(1968/1994) argued, “have an interest in saying that everybody knows ‘this’, that 

everybody recognizes this, or that nobody can deny it” (p. 131).  Converting 

“givens” to “takens” requires someone, “if only one—with the necessary modesty 

not managing to know what everybody knows, and modestly denying what 

everybody is supposed to recognize” (Deleuze, 1968/1994, p. 130).  This one 

person, who neither allows her- or himself to be represented, nor wishes to 

represent anything (Deleuze, 1968/1994), introduces a crisis into a “dogmatic, 

orthodox or moral” image of thought.  Working toward social justice entails 

working against common sense.  A postcritical multicultural mathematics 

education, an anti-oppressive mathematics education, requires working against 
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the commonsensical hum of the Talent-Competition Machine (“Everybody knows 

only masculine White middle-class English-speaking boys have ‘flair’ and will 

inherit the world of mathematics”), the All-Regardless assemblage of the Liberal 

Multicultural Education Machine (“Everybody knows that if we just celebrate our 

differences, all of us will succeed regardless of our backgrounds and the material 

conditions of the world”), and the Contradiction-Dialectic assemblage of the 

Critical Multicultural Machine (“Everybody knows differences can be resolved 

through contradiction”).  “Common sense,” Kumashiro (2004) asserted, “is not 

what should shape educational reform or curriculum design; it is what needs to 

be examined and challenged” (p. xxiv).  Yet, if the forgoing is taken as the 

answer, as a solution to the problem of equity in mathematics education, then we 

have missed the point: 

The anti-oppressive teacher. . .is something we strive for and 
transitionally become in our practices but never fully are.  And the 
moment that we fix our identities and begin repeating only certain 
practices and knowledge and relations that we believe are anti-
oppressive, we stop doing the necessary work of problematizing 
how any approach to teaching is partial. (Kumashiro, 2004, p. 15) 

Rather than landing squarely in the midst of an answer, that is, moving from the 

“hypothetical to the apodictic” (Deleuze, 1968/1994, p. 197), we move from the 

“problematical to the question” (Deleuze, 1968/1994, p. 197).  As it turns out, 

affirming difference entails generating problems. 

  



 

 

 

2. Generating Problems

 What is it that, as Deleuze (1968/1994) asked in Difference and 

Repetition, “Everybody knows, no one can deny” (p. 129-130) about 

mathematical problems in math class17? What has become fixed as strata, the 

organization of organs within the body of mathematics education?  Where have 

there been movements of destratification; what lines of flight have escaped?  

What lines of flight might we select to press further?  Importantly, how do we 

speed along these lines of flight without “throw[ing] the strata into demented or 

suicidal collapse” (p. 161)? 

2.1 The Problems-Practice Assemblage 

 Everybody knows that math class is about solving problems.  In fact, 

Stanic and Kilpatrick (1988) claim that “problems in the [mathematics] curriculum 

go back as far as the ancient Egyptians, Chinese, and Greeks” (p. 1).  Everybody 

recognizes this math classroom: “The teacher [stands] at the blackboard and 

demonstrate[s] for students the proper procedure to reach a correct solution.  

This [is]. . .followed with practice problems for students to complete at their seats, 

                                                 

17 Some of the ideas in this plateau were presented in a paper entitled “Transdisciplinary 
Encounters: Deleuzian Philosophy and Mathematics Education” at the 3rd Annual Deleuze 
Studies Conference: Connect, Continue, Create, July 12-14, 2010. 
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without discourse with fellow classmates” (McVarish, 2008, 4).  This basic math 

lesson format became common sense in the United States and Europe by the 

end of the 19th century18.  The preface of an arithmetic textbook from 1895 

entices prospective readers and educators with the following claim: “The number 

of examples provided for practice and drill is unusually large. . . .There appears 

to be a demand for an abundance of such material, which this book aims to 

satisfy” (Seaver & Walton, 1895, p. 3).  D’Ambrosio (2003) notes that “educators 

in the mid- to late 1800s believed that effective teaching involved showing 

students mathematical procedures, followed by students’ application (i.e. use of 

the procedure to solve word problems) and practice of those procedures” (p. 37).  

In the “math classrooms of the past” as described by O’Connell (2007), “problem 

solving was an add-on” (p. 1).  Solving problems was “what we did at the end of 

a chapter that had focused primarily on computations” (p. 1).  This image of 

thought in mathematics education captures a problems-practice assemblage.  In 

this assemblage, “problems” are the form of content or machinic assemblage 

doubly articulated with “practice” as the form of expression or the collective 

assemblage of enunciation.  Within this assemblage, problems are seen by both 

teachers and students as completely separate from the rest of the mathematics 

curriculum. 

 How does this problems-practice assemblage function in mathematics 

                                                 

18 This “traditional” mathematics lesson format that came to be taken as common sense in the 
U.S. and Europe contrasts with the “traditional” problem-centered mathematics lesson format 
that has been seen as common sense in Japan (e.g. Shimizu, 1999; Becker et al., 1990; 
Stigler, Fernandez, & Yoshida, 1996; Stigler et al., 1999). 
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classrooms?  Lester and Garofalo (1982) examined the ways in which third- and 

fifth-grade students whose teachers followed the common sense lesson format 

described above approached the following problem: 

Tom and Sue visited a farm and noticed there were chickens and 
pigs.  Tom said, ‘There are 18 animals.’  Sue said, ‘Yes, and they 
have 52 legs in all.’  How many of each kind of animal were there? 
 

Lester and Garofalo (1982) found that third-graders typically added 18 and 52 

because “it asks ‘how many in all’’ (Lester, 1985, p. 41) and fifth-graders typically 

divided 52 by 18 because “the key words are ‘how many of each’” (Lester, 1985, 

p. 41).  Lester (1985) identified a number of principles which seem to guide how 

students’ ensconced in the problems-practice assemblage approach problems, 

two of which are most notable: 1) “All mathematical problems can be solved by 

direct application of one or more arithmetical operations”, and 2) “Which 

operations to use is determined by the key words in the problem (these key 

words usually appear in the last sentence or question” (p. 42).  Some students 

apply these guidelines even in “absurd” problems such as the following: “There 

are 26 sheep and 10 goats in a ship.  How old is the captain?”  Some students 

add the number of sheep and the number of goats and conclude that the captain 

is 36 years old (Vershaffel & De Corte, 1997; quoted in Cai, 2003, p. 248).  Even 

more telling is the fact that the percentage of students who approached the 

problem in this way rose from 10 percent in Kindergarten to 60 percent in third 

and fourth grade (Vershaffel & De Corte, 1997; Cai, 2003).  Boaler (2000) has 

shown that students learn unintended lessons when they participate in the well-

ingrained lesson format that accompanies the problems-practice assemblage.  
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Students learn that the problems at the end of the lesson will require them to use 

the procedure that was presented during the beginning portion of the lesson or 

has been a recent focus in the curriculum, eliminating the need to actually think 

through or comprehend the information in the problem situation.  In Lester’s 

(1982) study, third-graders added the numbers partly because addition was a 

main operation in the third grade curriculum; fifth-graders divided because 

division was a main operation in the fifth-grade curriculum.  Boaler (2000) found 

that the way students approach problems depends on the context in which they 

encounter the problem; students approach problems presented in math class 

very differently from the way in which they approach them outside of school.  In 

school, students use “cue-based” (Schoenfeld, 1987; Boaler, 2000) behaviors in 

order to make choices of mathematical methods.  According to Boaler (2000),  

The students became proficient at finding and interpreting different 
cues within their mathematics textbooks; these cues helped them to 
proceed through exercises.  Such cue-based practices were 
specific to the mathematics classroom, yet they were, in many 
ways, the antithesis of mathematical thought. (p. 114) 

Such “cue-based” behaviors proved to be very effective in response to the 

problems-practice assemblage captured in the common sense lesson format.  

However, students did not even attempt to use the same behaviors in non-school 

situations: 

Using school mathematics. . .meant employing the classroom 
practices that had structured their learning.  Thus, students 
reported that they did not even attempt to make use of school-
learned methods in the real world, not because of the form or 
structure of the mathematical problems they encountered but 
because the environments of the classroom and their everyday 
lives were too disparate.  The students believed that adopting 
classroom practices in the real world was inappropriate, so they did 
not attempt to draw upon school mathematics. (p. 115) 
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 Boaler (2000) suggests that a perspective that takes this observation into 

account, that is, a situated perspective, shifts the “locus of blame and 

responsibility in mathematics classrooms away from students” and focuses it 

instead on “the environments educators provide for students and the practices 

they encourage” (p. 118).  Deleuze and Guattari (1980/1987) describe a similar 

scenario in developing their concept of the order word: 

When the schoolmistress instructs her students on a rule of 
grammar or arithmetic, she is not informing them, any more than 
she is informing herself when she questions a student.  She does 
not so much instruct as ‘insign,’ give orders or commands.  A 
teacher’s commands are not external or additional to what he or 
she teaches us. . . .The compulsory education machine does not 
communicate information; it imposes upon the child semiotic 
coordinates possessing all of the dual foundations of grammar. . . 
.The elementary unit of language—the statement—is the order-
word. (p. 76). 
 

Within the problems-practice assemblage, students learn to expect and obey 

certain cues embedded in the context of school mathematics; as Deleuze and 

Guattari (1980/1987) explain, “a pragmatics (semiotic or political)” defines “the 

effectuation of the conditions of possibility” (p. 85).  In this case, the pragmatic 

landscape of the mathematics classroom shapes the conditions of possibility for 

approaching problems.  Hence, in Lester and Garofalo’s (1982) study, “even 

when [students] were made aware that their answers were incorrect, they were 

unable to devise an alternative procedure for attacking the problem” (Lester, 

1985, p. 42) and the students in Boaler’s (2000) study saw neither using “school 

math” outside of school or “real-world math” inside of school as possibilities.  The 

knowledge of school mathematics within the problems-practice assemblage, 

then, limits rather than enhances students’ ability to respond to problems in any 
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meaningful or useful way except in the circumscribed context of practicing school 

math in school.  Schizoanalysis raises the following question: Within the body of 

mathematics education, what organs of desire form within this problems-practice 

assemblage?  Despite the ostensible objectives of providing opportunities for 

students to apply knowledge and practice skills in response to problems, it is 

evident that the flows of desire within math classrooms stratified by the problems-

practice assemblage coalesce into nodes of obedience and powerlessness.  

Boaler (2000) suggests that situated perspectives that take into consideration 

(and transform) the pragmatic landscape of mathematics classrooms may be 

helpful in order “to move mathematics away from the discriminatory practices that 

produce more failures than successes toward something considerably more 

equitable and supportive of social justice” (p. 118). 

2.2 The Pólya Machine 

 According to Deleuze and Guattari (1980/1987), an assemblage “has both 

territorial sides, or reterritorialized sides, which stabilize it, and cutting edges of 

deterritorialization, which carry it away” (p. 88).  What are the cutting edges of 

deterritorialization along the boundary of the problems-practice assemblage?  

What machine chews at the borders and makes new connections, unfixing the 

image of thought?  This machine might be called the Pólya Machine.  In his 1945 

book How to Solve It, Pólya described the heuristic processes which established 

mathematical problem-solvers used in approaching nonroutine problems (those 

in which a solution method is not initially obvious).  In this way, Pólya made the 

problem solving process a topic to examine in itself rather than an “add-on”  or 
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merely a means for practice and application.  As Kirschner and Whitson (2000) 

point out, “what was so powerful about Polya’s [sic] exposition was his 

understanding of heuristics as methods in motion” (p. 382).  In the two decades 

after How to Solve It was published, the line of flight opened by the Pólya 

Machine destratefied the image of thought in mathematics education in the 

United States when the National Council of Teachers of Mathematics (NCTM) 

(1980) in An Agenda for Action said that “problem solving must be the focus of 

school mathematics” (p. 1).  The Agenda went further than simply arguing that 

problem solving is an important aspect of mathematics to stating that “the 

mathematics curriculum should be organized around problem solving” 

(Recommended Action 1.1.).  In an even stronger statement, NCTM (1989) 

stated in the Curriculum and Evaluation Standards:  

Mathematical problem solving, in its broadest sense is nearly 
synonymous with doing mathematics. . . . .Problem solving is much 
more than applying specific techniques to the solution of classes of 
word problems.  It is a process by which the fabric of mathematics. 
. .is both constructed and reinforced. (p. 137)   
 

Far from being merely supplemental tasks added on to the end of a lesson or 

unit, this statement places problems at the center of mathematics education.  A 

decade later in the Principles and Standards, NCTM (2000) asserted that 

“problem-solving is an integral part of all mathematics learning, and it should not 

be an isolated part of the mathematics program” (p. 52).  In contrast to the “cue-

based” approach students in Boaler’s (2000) study took to problems, the 

Principles and Standards (NCTM, 2000) state that “by learning problem solving in 

mathematics, students should acquire ways of thinking, habits of persistence and 
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curiosity, and confidence in unfamiliar situations that will serve them well outside 

the mathematics classroom” (p. 52).  Just as problems should not be separated 

from the rest of the curriculum, school mathematics and mathematics outside of 

school should not be such disparate contexts that students cannot conceive of 

using similar strategies in both settings.  Finally, the Principles and Standards 

place problem solving at the heart of mathematics education as both goal and 

vehicle: “Problem-solving is not only a goal of learning mathematics but also a 

major means of doing so” (p. 52).   

 As the problems-practice assemblage was deterritorialized, problems 

shifted from the end of the lesson to the beginning.  As O’Connell (2007) 

explains, “problem-centered instruction uses problems to launch math lessons” 

(p. 3).  It is through solving problems that students develop understanding of 

mathematical concepts.  Lambdin (2003) describes this process in the following 

way: 

One can think about a model of learning mathematics in which 
understanding is represented by an increasingly connected and 
complex web of mathematical knowledge. . . .Learning through 
problem solving develops understanding.  Students’ mental webs of 
ideas grow more complex and more robust when the students solve 
problems that force them to think deeply and to connect, extend, 
and elaborate on their prior knowledge. (p. 7; also see Brownell, 
1947; Hiebert & Carpenter, 1992; Van de Walle, 2001).  
 

Frontloading lessons with problems shifts the responsibility for thinking deeply 

about mathematics from teachers-as-presenters to students-as-problem-solvers.   

Within an assemblage, the form of content and form of expression are 

always linked; if a line of flight opens in one, the other is affected as well 

(Deleuze & Guattari, 1980/1987).  The line of flight that shifts problems (as a 
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form of content) to the center of mathematics education also exerts force on the 

form of “practice” (as a form of expression) in the problems-practice assemblage.  

Van de Walle (2003) argues that within problem-based mathematics education, 

the meaning of “practice” needs to be reconsidered: “If we begin to think of 

practice as returning regularly to the same basic ideas but through new problem-

based experiences, we begin to open up opportunities for all children in our 

classrooms” (p. 75).  Van de Walle (2003) gives an example of what this new 

form of practice might look like and the way it may open up opportunities for 

students who develop conceptual understandings at different rates.  In Van de 

Walle’s (2003) example, students encounter the idea of equivalent fractions, that 

“the same quantity can be represented by different fractions” through a task in 

which they “use fraction pieces to find names for [a particular] region” (p. 75-76).  

Students are asked to find as many names as possible.  A number of other tasks 

provide additional “practice” with the idea of equivalence: “This same concept 

should also be approached with counters. . ., with paper folding, with symbolic 

tasks, and with variations on each of these” (p. 76).  Van de Walle anticipates 

that some students will continue to engage with the basic idea of equivalence on 

a concrete level, while others will begin to take note of patterns in conventional 

numeric representations that move beyond concrete representations.  Van de 

Walle (2003) points out that focusing on a procedural skill or rule too quickly after 

beginning conceptual exploration results in poor conceptual understanding, and 

that this danger is even greater for students who continue to engage with the 

concept at a more basic or concrete level for a longer period of time.   
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Similarly, in investigating mathematics teaching in three cities in China 

(Hong Kong, Macau, and Shanghai), Huang, Mok, and Leung (2006; also see 

Huang, 2002; Huang & Leung, 2004) develop a similar theoretical framework for 

conceptualizing two different forms of practice: explicit variation and implicit 

variation.  They distinguish between these two forms of varying problems in the 

mathematics classroom in the following way: 

If the changes from the prototype of problems in which the learnt 
knowledge can be applied directly by learners to their variations are 
identified visually and concretely such as variations in number, 
positions of figures, etc., and the conditions for applying the 
relevant knowledge are still explicit and direct, then this kind of 
variation is still explicit.  On the other hand, if the changes from the 
origins to their variations have to be discerned by abstract or logical 
analysis by learners such as variations in parameters, subtle 
changes or omissions [of] certain conditions, or changes of 
contexts, or reckoning on certain strategies etc., so that the 
conditions or strategies for applying relevant knowledge are implicit 
and not obvious, then this kind of variation is characterized as 
implicit. (p. 265). 
 

Huang, Mok, and Leung (2006) examined how teachers in each of the three 

cities used explicit and implicit variation in problems posed to students involving 

the method of elimination for solving simultaneous linear equations.  Explicit 

variation involved using the method of elimination with systems of equations all of 

which retained the form “ax + by = c” whereas “the equations with the implicit 

variation need a transformation which requires a deeper understanding of the 

meaning of unknowns in equations” (p. 266).  In the highest level of implicit 

variation, students needed to redefine an abstract expression with new 

unknowns in order to transform the equations into the form “ax + by = c” before 

using the method of elimination.  For example, in the equation “1/a + 2/b = -2,” 
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students needed to first redefine 1/a as one unknown and 1/b as another 

unknown.  The authors conclude that explicit variation is designed for mastering 

basic skills whereas implicit variation is designed for “enhancing the integration of 

knowledge and developing advanced thinking” (p. 271).  Restructuring “practice” 

through implicit variation into a form that is problem-based and concept-focused 

may open up opportunities for students at different current levels of 

understanding of a concept to expand their “complex web of mathematical 

knowledge” (Lambdin, 2003, p. 7) rather than encouraging students to approach 

problems based on the guidelines Lester (1985) identified and come to absurd 

“solutions” as in the ship captain problem.  In Deleuzian (1968/1994) terms, it is 

encountering difference through repetition with variation that forces one to think 

and results in learning. 

 The Pólya Machine reorganized the image of thought in mathematics 

education to place problem-solving as methods in motion at the center.  It also 

created openings for teachers and students to approach the problem of problems 

in new ways.  However, the flows created by this deterritorialization have often 

been blocked and restratified as textbooks have converted Pólya’s heuristics 

from “methods in motion” (Kirschner & Whitson, 2000) into new procedures to be 

taught (Roy, 2003).   In the words of Kirschner and Whitson (2000), “heuristics 

were subverted from problem-solving process into curricular commodity” (p. 382).  

In this reterritorialization, problem solving has itself become the skill to be 

presented and then practiced.  One example is Herr and Johnson’s (2001) 

Problem solving strategies: Crossing the river with dogs and other mathematical 
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adventures, a book on problem solving for high school students. Once again 

separating problem solving from the rest of the curriculum, the publisher’s 

website states, “In content-crowded mathematics classes, few students get the 

practice necessary to fully develop problem-solving skills” (Key Curriculum Press, 

2010, “overview,” para. 2).  Despite the claim to emphasize that “any problem 

can be solved in many ways” (Key Curriculum Press, 2010, “in-depth,” para. 1), 

the book follows the familiar presentation-then-practice sequence of the 

problems-practice assemblage in which “each chapter covers a single strategy” 

so that “students are given time to practice” (Key Curriculum Press, 2010, “in-

depth,” para. 2).  For example, the first chapter entitled  “Draw a Diagram” 

provides an overview of the utility of drawing a diagram in solving problems and 

presents a number of problems in which the students are instructed to draw a 

diagram.  Here, the textbook authors have transformed “drawing a diagram” into 

another procedure to be practiced.  Pólya’s method in motion has been absorbed 

and stratified back into the original problems-practice assemblage.  When 

problem solving heuristics are absorbed into the problems-practice assemblage 

as in the “Draw a Diagram” chapter, students are once again encouraged to rely 

on “cue-based” approaches as described by Boaler (2000).  From simply reading 

the title of the chapter, students know that for each problem, the “answer” is to 

draw a diagram, removing the need to consider alternative ways to approach the 

situation19.   As Kirschner and Whitson (2000) observe, “textbooks are designed 

                                                 

19 This example raises the following question: Is assigning problems sufficient in order to guide 
students to become capable problem solvers or is something further needed?  O’Connell 
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to systematically instruct Polya’s heuristic methods, using problems specially 

contrived to illustrate each one” (p. 382).  Examples of the reterritorialization of 

Pólya’s heuristics into the problems-practice assemblage are not limited to 

student textbooks, but can be found in textbooks for prospective teachers as 

well.  For example, A Problem-Solving Approach to Mathematics for Elementary 

School Teachers (Billstein et al., 2007) provides an introductory chapter 

matching Kirschner and Whitson’s description, providing an overview of Pólya’s 

method and heuristics with accompanying example problems, plus a set of 

practice problems at the end of the chapter.  Adding an additional layer to the 

commodification of Pólya’s work, the chapter includes four “sample school book 

pages” from elementary school textbooks following the same pattern of fixing 

Pólya’s “methods in motion” into the presentation of a procedure to be practiced.  

One of the sample pages, for example, lists three steps to follow in order to use 

the strategy “solve a simpler problem” (Scott Foresman-Addison Wesley, Grade 

5, 2005, p. 352; reproduced in Billstein et al., 2007, p. 9). 

2.3 Problem-Posing Lines of Flight 

 The Pólya Machine problematized the “problems” side of problem solving; 

yet the “solving” side remained untouched.  The Pólya Machine left intact 

problem solving as the center of the image of thought in mathematics education.  
                                                                                                                                                 

(2007) argues that “assigning problems is not teaching problem solving” (p. 3).  However, 
rather than following a line of reterritorialization back into the problems-practice assemblage, 
O’Connell (2007) argues that “when we teach problem solving strategies, we are not implying 
a drill-and-practice approach to learning about these skills” (p. 3-4).  Rather, “the teaching of 
problem solving involves a variety of approaches so that students can see ideas modeled, 
experience situations, discuss insights and observations, and process learning through talking 
and writing. . . .Teaching problem-solving strategies is not about telling students which 
strategies to use” (pp. 3-4).    



 

89 

Everybody still knows that math class is about solving problems.  Both the 

reterritorialized problems-practice assemblage evident in many textbooks and the 

line of flight that has centered problems and begun to shift the meaning of 

“practice” remain within the same “problem-solving stratum.”  What are the 

cutting edges of deterritorialization along the edges of this problems-practice-

assemblage-in-motion, the lines of flight moving away from the “problem-solving” 

stratum?  What machine gnaws at the borders and makes new connections, 

unfixing this image of thought?  The concept of “problem-posing” creates new 

lines of flight by deterritoralizing the “solving” side of the problem solving.  Rather 

than a single line of flight, two separate “problem-posing” lines of flight can be 

followed in the recent history of mathematics education.  Along the first problem-

posing line of flight moves what might be called the Freire Machine; along the 

second problem-posing line of flight moves the Brown-and-Walter Machine. 

Brown (2001) acknowledges the historical juxtaposition of these two lines of flight 

along with distinguishing their respective emphases:  

Though [Marion Walter and] I first developed [our] thinking about 
problem posing in the late 1960s—at about the same time that 
Paulo Freire chose it as a central concept in his educational reform 
for the oppressed—[our] agenda was more set on ways of 
motivating students to do mathematical inquiry and less politically 
rooted than Freire’s program. (p. xiv) 
 

Freire, whose ideas were later taken up by mathematics educators in the United 

States and elsewhere, developed his ideas about problem-posing in the context 

of teaching literacy with peasants in Brazil; Brown and Walter developed their 

ideas about problem-posing in the context of team-teaching courses at the 

Harvard Graduate School of Education in Massachusetts. Despite these vastly 
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different contexts, both lines of flight question where and how problems originate, 

and who can pose problems, questions which resonate with Deleuze’s 

(1968/1994) critique in Difference and Repetition: 

We are led to believe that problems are given ready-made, and that 
they disappear in the responses or the solution. . . .We are led to 
believe that the activity of thinking, along with truth and falsehood in 
relation to that activity, begins only with the search for solutions, 
that both of these concern only solutions. . . .According to this 
infantile prejudice, the master sets a problem, our task is to solve it. 
It is also a social prejudice with the visible interest of maintaining us 
in an infantile state, which calls upon us to solve problems that 
come from elsewhere, consoling or distracting us by telling us that 
we have won simply by being able to respond: the problem as 
obstacle and the respondent as Hercules.  (p. 158) 
 

Within the traditional problems-practice assemblage, the pragmatic landscape of 

mathematics classrooms directs the flow of desire into nodes of obedience and 

powerlessness, as indicated by the cue-based approach to problems taken by 

students in Lester’s (1982, 1985) studies and Boaler’s (2000) study.  The line of 

flight that deterritorialized the problems-practice assemblage, set problems as 

the center of mathematics education, and began to change the meaning of 

“practice” to a more problem-based and concept-oriented perspective also 

shifted the teacher’s role from procedure-presenter to problem-poser.  Yet, the 

pragmatic landscape and the flows of desire have not changed as much as it 

might seem.  The teacher is still “the master” who sets before the students 

problems which come from elsewhere, praising students for the “Herculean” feat 

of “simply being able to respond” (Deleuze, 1968/1994, p. 158).  The problem-

posing lines of flight deterritorialize this dogmatic image of thought about the 

origins of problems. 
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 In Pedagogy of the Oppressed, Freire (1970/ 2000) developed the idea of 

“problem-posing” pedagogy in contrast to what he called the  “banking concept of 

education” (p. 72), in which education “becomes an act of depositing in which the 

students are the depositories and the teacher is the depositor” (p. 72).  In this 

model of education, it is the teacher’s role to “regulate the way the world ‘enters 

into’ the students” (p. 76).  As in the problems-practice assemblage, teachers in 

the banking model present information and students are expected to “ ‘receive’ 

the world as passive entities” (p. 76).  Freire (1970/ 2000) conceptualizes the 

teacher-student relationship inherent in the banking model of education as a 

Hegelian/ Marxist dialectical contradiction that must be resolved through 

dialogue: “The practice of problem-posing education entails at the outset that the 

teacher-student contradiction. . .be resolved.  Dialogical relations—indispensible 

to the cognitive actors to cooperate in perceiving the same cognizable object—

are otherwise impossible” (pp. 79-80).  According to Freire (1970/2000), the 

process of dialogue can dissolve teachers as teachers-of-the-students and 

students as students-of-the-teacher leaving instead a more equal relationship 

between teacher-student and students-teachers.  The task of the teacher-

student, then, is to pose problems with students-teachers.  For Freire 

(1970/2000), this process begins before teacher-students and students-teachers 

first meet: “The dialogical character of education as freedom does not begin 

when the teacher-student meets with the students-teachers in a pedagogical 

situation, but rather when the former first asks herself or himself what she or he 

will dialogue with the latter about” (p. 93).  Making decisions about the content of 
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dialogue consists of “organized, systematized, and developed ‘re-presentation’ to 

individuals of the things about which they want to know more” (p. 93).  Through 

listening to students-teachers, teacher-students identify generative themes and 

codify these themes into representations that then become the object of 

continued dialogue between teacher-students and students-teachers.  Hence, 

“the thematics which have come from the people return to them—not as contents 

to be deposited, but as problems to be solved” (p. 123).  For Freire (1970/2000), 

problems originate neither solely from teachers nor solely from students, but 

rather in the dialogical relationship between the two, and the process of posing 

and grappling with such problems transforms the relationship itself. 

 Although Freire originally developed the idea of problem-posing pedagogy 

in the context of literacy education, a number of mathematics educators have 

applied the ideas to mathematics education (e.g. Gerdes, 1975, 1982; 

Frankenstein, 1987, 1990, 1995, 2005; Frankenstein & Powell, 1994; 

Skovsmose, 1994; Lesser & Blake, 2007; Mellin-Olson, 1986; Ferreira, 1990; 

Gutstein, 2006).  One of the most extensive frameworks in mathematics 

education based on Freire’s ideas is Gutstein’s (2006) book, Reading and writing 

the world with mathematics: Toward a pedagogy for social justice.  For Gutstein 

(2006), problem-posing pedagogy in mathematics education requires a 

“reconceptualization of the purpose of mathematics education. . .one that 

includes envisioning mathematical literacy as critical literacy for the purpose of 

transforming society, in its entirety, from the bottom up toward equity and justice, 

for all students whether from dominant or oppressed groups” (p. 11).  Gutstein 
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(2006) sees mathematics and mathematics education as vehicles through which 

society can be transformed.  This reconceptualization of the purpose of 

mathematics education goes further than simply establishing equity within math 

classrooms.  Gutstein (2006) argues that the “goal of increasing equity within 

mathematics education does not explicitly position teachers and students as 

having transformative power to rectify fundamental structural inequalities” (p. 13).  

What is needed, according to Gutstein (2006), is a pedagogy that allows students 

not only to “read the word,” but also to “read the world” with mathematics. Freire 

(Freire & Macedo, 1987) linked the concept of textual literacy, or “reading the 

word,” with the broader goal of learning to “read the world,” or coming to 

understand the social, political, cultural, and historical conditions of one’s life.   

Bringing this idea into mathematics education, Gutstein (2003) conceptualizes 

reading the world with mathematics as using 

mathematics to understand relations of power, resource inequities, 
and disparate opportunities between different social groups to 
understand explicit discrimination based on race, class, gender, 
language, and other differences.  Further, it means to dissect and 
deconstruct media and other forms of representation.  It means to 
use mathematics to examine these various phenomena both in 
one’s immediate life and in the broader social world and to identify 
relationships and make connections between them. (p. 45) 
 

In addition to reading the world, problem-posing pedagogy in mathematics 

education entails writing the world with mathematics.  Gutstein (2006) states that 

“writing the world with mathematics means using mathematics to change the 

world” (p. 27).  Gutstein (2006) read and wrote the world with middle school 

students, most of whom identified as Mexican or Mexican American, in the 

Chicago area through “real-world projects and related conversations” (p. 41).  An 
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example of one of the projects with a seventh-grade class was entitled “Mortgage 

loans—Is racism a factor?”  In deciding on the content of dialogue, Gutstein 

(2006) chose this topic because “the issue of home ownership was real for my 

students” (p. 60).  Gutstein (2006) introduced the project by “discussing whose 

families owned homes (often in extended family relationships) and whose 

families wanted to (everyone else)” (p. 60).  In the discussion, many students 

talked about the challenges their families had faced in securing mortgages.  The 

codification of the theme that Gutstein (2006) used was an article in the Chicago 

Tribune that presented data on mortgage rejection rates for people of different 

races in the local area and nationally.  Following Freire’s (1970/ 2000) guideline 

that the “thematic nucleus [of the codification] should be neither overly explicit 

nor overly enigmatic” (p. 114), this article presented contrasting claims about 

whether the data indicated institutional racism and “the article was confusing, 

with many numbers and multiple comparisons, and introduced a disparity ratio, 

the ratio of the rejection rates for different races” (p. 57).  The disparity ratio was 

a complex representation of the data in that it was a ratio between percentages, 

and therefore, a ratio of ratios.  Gutstein (2006) posed the following problem to 

students based on the codification: 

Write a good essay answering the following question (you must  
use data from the article or the quote above [included in original 
project] to make your argument): Is racism a factor in getting 
mortgages in the Chicago area? (p. 57) 
 

Throughout the three weeks in which the class engaged with this project, the 

class had discussions “in which we mathematically dissected the issues” (p. 60).  

Gutstein (2006) continually pushed students to justify their arguments using 
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mathematics, questioned their assumptions, and required them to rewrite their 

essays.  Gutstein (2006) asserts that these practices “created conditions for 

students to grapple genuinely for understanding” (p. 61).  In this process, 

although more time would have allowed for developing a deeper understanding 

of the historical context of the issues, Gutstein (2006) observed growth in both 

students’ understanding of mathematics and their “collective sense of justice” (p. 

61). In this project, the problem of institutional racism in mortgage rates 

originated through the dialogic relationship between Gustein and the students, 

following Freire’s conceptualization of problem-posing pedagogy. 

 While the Freire-Machine originated in the context of literacy education 

and then was brought into mathematics education, the second problem-posing 

line of flight originated within mathematics education itself.  Like the Freirean 

problem-posing line of flight, this line of flight also raises questions about the 

origin of problems and who should be involved in posing problems.  In their book 

The Art of Problem Posing, Brown and Walter (1983) begin with a statement 

similar to Deleuze’s critique: 

Where do problems come from, and what do we do with them once 
we have them? The impression we get in much of schooling is that 
they come from textbooks or from teachers, and that the obvious 
task of the student is to solve them. (p. 1) 
 

This verbal laying out of common sense is followed by this almost-Deleuzian 

diagram (p. 1): 
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The diagram captures the problem-solving stratum in the image of thought of 

mathematics education.  In this image, problems are given by authority (usually 

the teacher or textbook) to students, whose (Herculean) task is to solve it.   

Brown (2001) identifies a tendency among mathematics teachers to 

“reduce ‘problem’ to ‘problem solving’” (p. 15).  He describes an activity he used 

in a class with a group of experienced mathematics educators.  Previously, when 

giving a talk to a different group of mathematics educators, he had begun by 

asking members of the audience to respond to a question printed at the top of a 

sheet of paper.  Audience members each received one of the following 

questions: 1) What are some good reasons for including problems in the school 

curriculum, or 2) What are some good reasons for including problem solving in 

the school curriculum.  The only difference between the two questions is that one 

says “problems” while the other says “problem solving.”  After the talk, Brown 

recorded the answers to the two questions in lists without reference to the 

questions themselves and asked the class of experienced math teachers to try to 

determine the questions that had generated the two sets of responses.  The 

suggested questions for both sets of responses were essentially identical, both 

phrased in terms of problem solving, despite the fact that one of the original 

questions did not mention solving or solutions in the least.  The problem-solving 

stratum in the image of thought in mathematics education is so ingrained that 

“problem” is automatically interpreted as “problem-solving.”  When Brown and 

Walter team taught graduate level courses on problem solving and problem 
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posing, they also noticed that when presented with a situation or an artifact, 

especially in an academic setting, people often assume that the situation or 

artifact itself presents a particular problem to be solved. For example, Brown and 

Walter (1983/2005) begin the second chapter of The Art of Problem Posing by 

asking the reader to consider x2 + y2 = z2. When presented with this statement 

almost everyone begins to list number triples such as 3,4,5  and 5,12,13, or 

possibly 2, 3, √13 and  i, 1, 0. Brown and Walter (1983/ 2005) point out, however, 

that “x2 + y2 = z2” is not in itself a question at all. If anything, it begs you to ask a 

question or to pose a problem rather than answer a question” (p. 13). The 

authors point out that typically the only questions students are encouraged to ask 

in math class are whether or not they have correctly understood the concepts or 

procedures the teacher has presented. This practice maintains the “infantile 

prejudice,” as Deleuze and Guattari (1968/1994) call it, that problems come from 

elsewhere and students are empowered simply by responding.  

To break out of this practice, Brown and Walter (1983/ 2005) suggest two 

phases of a problem posing process, first, an “accepting” phase and, second, 

what they call the “what-if-not” strategy. The accepting phase opens new 

alternatives despite the acceptance of “the given” of the situation or artifact. 

Questions that might be posed related to x2 + y2 = z2 after beginning a table of 

number triples include, “Can you get a triple for any value of x you choose?” and 

“For a fixed x, are y and z always unique?” In each of these questions, the 

equation is taken as given, but the “problem” is no longer assumed to be simply 

finding number triples that make the statement true in Euclidean space.  The 
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second phase moves outside of “the given” of the situation or artifact. Using the 

“what-if-not strategy” begins with identifying attributes of the situation or artifact, 

followed by considering cases in which those attributes do not hold. x2 + y2 = z2, 

some examples of attributes people have identified include, “The statement is a 

theorem,” “The variables are related by an equal sign,” and “There are three 

exponents all of which are the same” (p. 36). The second step entails asking, 

“What if not” in relation to each attribute, for example, “What if the variables were 

not related by an equal sign?20” This opens up alternatives to consider such as 

“x2 + y2 <z2” or “x2 + y2 and z2 are relatively prime” (p. 50). New questions can 

then be posed related to these new alternatives.  For example, if “=” is replaced 

by “<,” some of the questions that could be posed include the following: 

• Does x2 + y2 = z2have any geometrical significance? 

• For what numbers is the inequality true? 

• How many instances are there for which x2 + y2  differs from z2 by a 

particular constant? 

• What is the graph of the inequality? (rephrased from Brown & 

Walter, 1983/ 2005, p. 51) 

                                                 

20 In considering triangles, this is basically the question Bolyai, Lobachevsky, and Gauss finally 
posed after at least a thousand years of attempts to prove Euclid’s fifth postulate, which is 
equivalent to the “Pythagorean Theorem.” Finally considering the possibility that the Euclid’s 
fifth postulate about parallel lines (and thus the “Pythagorean Theorem” might not hold under 
all conditions lead to the discovery/ invention of non-Euclidean geometry (Grattan-Guiness, 
2005).  It is also important to note that the name “Pythagorean Theorem” follows the 
eurocentric policy of attributing findings to Greek mathematicians when others such as the 
Egyptians and Chinese had already discovered the relationship (Joseph, 1997). 
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 The “what if not” strategy does not have to begin with a theorem or an equation; 

other starting points suggested by Brown and Walter (1983/ 2005) include a “real 

life” situation, a geometric figure such as a picture of an isosceles triangle, a 

concrete material such as a geoboard, a sequence such as the Fibonacci 

sequence, a construction such as a regular hexagon construction using a 

straightedge and compass, a net for a cubical box, and a set such as the set of 

prime numbers.  The process also does not have to end with posing new 

questions; after brainstorming questions, students can choose a question to 

further and investigate.  During further investigations, often more new questions 

arise, which can then be investigated.  This process of “cycling,” argue Brown 

and Walter (1983/2005), is a “process of varying one attribute followed by varying 

another [which] suggests a systematic technique we could employ for 

brainstorming new problems” (p. 60).   

2.4 Problem-Posing and “The Real World” 

Both problem-posing lines of flight deterritorialize the “solving” side of 

problem solving and critique the idea that teachers and textbooks should be the 

source of problems with which students engage.  In different ways, these lines of 

flight opened up by the Freire Machine and the Brown-and-Walter machine also 

deterritorialize the idea of real-world applications of math in mathematics 

education.  In Gutstein’s (2006) Freirean work with middle school students in 

Chicago, the problem-posing projects and related conversations comprised about 

15% to 20% of students’ time in class; the rest of the time (80% to 85%) of the 

time, Gutstein used a reform-based curriculum called Mathematics in Context 
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(MiC).  Gutstein (2006) notes that reform curriculum such as the Mathematics in 

Context curriculum “are often situated in generic real-world settings about daily 

life, such as shopping, traveling, working, and building” (p. 31).  Gutstein (2006) 

found that the stories in the Mathematics in Context curriculum were rarely 

relevant to the students in his classes.  When Gustein (2006) surveyed 79 

students across three classes using the curriculum at his school, about half of the 

students said they liked the stories, but only 17 out of 79 said that they could 

relate to the stories.  When Gutstein (2006) discussed the relevance of the 

stories with students in class, students responded by explaining that the 

characters in the stories “do things we don’t do,” “they don’t deal with things most 

people do,” and “it’s not us” (p. 105).  Some of the examples students gave 

included “we don’t go on canoe trips,” “they have a friend who went to England 

for a piano recital,” and “We don’t have family and friends in Africa, we don’t go in 

hot air balloons. . .we don’t go downtown and count cars” (p. 105).  These 

responses raise the question, “mathematics in whose context?” (p. 105).  

Gutstein identified three types of real-world contexts that might be used in 

curricula: 1) nonrelevant ones such as those used in the Mathematics in Context 

curriculum, 2) relevant ones unrelated to social justice, such as finding distances 

between school and home, and 3) political ones involving social justice such as 

the projects Gutstein (2006) designed based on issues in his students’ lives.  

Freiren problem-posing pedagogy with its goal of social transformation requires 

the inclusion of the third type of real-world context.  Gutstein (2006) writes, “The 

change in orientation I seek is not just that students believe mathematics is 
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utilitarian, but that they also view it as a tool with which to read the world” (p. 31).  

Therefore, a curriculum that uses nonrelevant or apolitical relevant contexts does 

not “by itself. . .prepare students to read or write their worlds with mathematics” 

since such a curriculum “does not challenge students to analyze injustice or see 

themselves as social change agents” (p. 104).  It is problem-posing pedagogies 

which use the third type of real-world context that are “inherently dangerous to 

the status quo because they prepare students to ask fundamental questions 

stemming from the concrete analysis of their lives and begin to ‘unveil reality’” (p. 

31).  It seems that some “real-world” contexts are “more real” than others.  While 

the first two types of “real-world” contexts may exist in the world, only the third 

has the capacity to enable students to “unveil reality.”  Here “reality” signifies 

something more or other than simply that which exists. 

The second problem-posing line of flight sets the meaning of “reality” in 

motion as well.  In Reconstructing school mathematics: Problems with problems 

and the real world, Brown (2001) observes that typically what is meant by 

“application of mathematics to the real world” is that “mathematical models are 

created that can be used to explain and predict solutions to real-world problems” 

(p. 139).  A clear implication of this formulation is that mathematics is not a part 

of the “real-world,” but rather something separate and in some way unreal: “The 

justification for using real-world problems is frequently made on the grounds that 

they provide motivation for mathematical inquiry that might otherwise be 

considered as isolated from experiences in the world” (p. 139).  Brown (2001) 

also notes that in this way of thinking about real-world applications, “what we 
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seek is some sort of correspondence between elements of the real world and 

associated mathematical operations.  The scheme suggests that we both begin 

and end with some ‘real-world’ phenomenon and that we invoke the use of 

mathematics along the way” (p. 140).  Here, the idea is that the world “is always 

a bit ‘messier’ than the mathematics that models it” and therefore “we need to 

figure out what is ‘relevant’ and what is ‘noise’” (p. 141).  Once “noisy” elements 

are identified, they can be put out of mind.  As an example, Brown (2001) cites 

this problem form the NCTM’s (1989) Curriculum and Evaluation Standards for 

School Mathematics: 

Suppose Anne tells you that under her old method of shooting free 
throws in basketball, her average was 60%.  Using a new method 
of shooting, she scored 9 out of her first 10 throws.  Should she 
conclude that her new method really is better than her old method? 
(p. 172; cited in Brown, 2001, p. 8) 
 

In responding to this problem, some of the information that is irrelevant in 

designing a mathematical model includes the type of sport Anne is playing (she 

may as well be shooting on the goal in soccer), that the person’s name is Anne (it 

may as well be Kim or Peter), and that the person is a girl (the model would 

remain the same for a boy).  Brown (2001) contrasts this ‘”real-world” problem 

with another: 

A close relative of yours has been hit by an automobile.  He has 
been unconscious for one month.  The doctors have told you that 
unless he is operated upon, he will live but will most likely be 
comatose for the rest of his life.  They can perform an operation 
which, if successful, would restore his consciousness.  They have 
performed ten such operations in the past and have been 
successful in only two cases.  In the other eight, the patient died 
within a week.  What counsel would you give the doctors? (p. 142) 
 

While both problems deal with probability and involve a need to come to a 
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conclusion, the second problem includes an ethical dimension not present in the 

first; important considerations in the second problem involve not only those 

related to probability, but also what counts as a life worth living.  Brown (2001) 

argues, however, that “it is not only that the issue we confront is an ethical one. . 

. .More generally, in order to make sense out of a real-world problem, 

mathematical consideration is one important dimension, but it is part of a larger 

cloth” (p. 142).  In the second problem, “we cannot come to an intelligent 

conclusion about what to do if we whittle away at the ‘irrelevancies’ as we did in 

the example with Anne” (p. 143).  In fact, rather than less information, Brown 

(2001) argues, we would probably want to seek out more information about the 

comatose relative.  As in the case of using the what-if-not strategy, encountering 

this second problem generates new questions.   

 The problem of the comatose relative also raises questions about the way 

in which mathematics relates to the “real-world.” Brown (2001) suggests moving 

to a view of this relationship that does not conceptualize “mathematics” and “the 

real-world” as two mutually exclusive fields: “A substantially different point of view 

is revealed as soon as we begin to relinquish a hold on mathematics that is 

rooted in a desire to see the field as totally different from other experiences in the 

world. . .” (p. 145).  In considering ways of thinking, experiencing, and feeling that 

mathematics may share with other ways of experiencing the world, Brown (2001) 

concludes that  

There is a sense in which mathematical thinking connects 
mathematical ideas in a metaphorical way to those that everyone 
experiences in the context of daily living.  It is not the pale coin of 
applying mathematics to the real world.  Such a view assumes that 
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the real world and mathematical thinking are in fact separate 
entities and that there is an occasional opportunity to seek their 
linkage.  What I have in mind is that mathematical language offers 
metaphors for understanding the most fundamental qualities of 
human existence. . . .Thus we arrive at an even more robust view 
of what it might mean to apply mathematics to the real world.  It is 
already ‘in’ the real world, and it is only by making believe that it is 
severed from the world that we arrive at some artificial notion of 
‘application.’  (p. 152-153) 

Brown (2001) tells a personal anecdote of the way in which he used a metaphor 

in approaching a mathematical problem.  He began listing multiplication facts 

beginning with 1X3 and then adding 1 to each factor in each subsequent fact (i.e. 

2X4, 3X5, 4X6. . .).  As he began looking for patterns in the list of facts, he says, 

“I saw them not as what they actually were but rather as what they seemed to be 

trying to become.  With just a small amount of squinting, these numbers were all 

almost something else—the furthermore they all missed being that something 

else by the same amount” (p. 149).  He discovered that each product was almost 

a perfect square, but missed by one unit.  Using the metaphor of “numbers 

‘striving’ to become a square” allowed Brown (2001) to further investigate this 

pattern.  Brown (2001) claims that although metaphor “is a concept we normally 

associate with poetry or other forms of literature in the ‘real world’. . . metaphor is 

so deeply implicated in all our thinking that we engage in variations of 

metaphorical thinking, even when we are not aware that we are doing so” (p. 

148).  Brown (2001) quotes Keyser (1916) in identifying other mathematical 

metaphors that we use to understand reality:  

The mathematical concept of constant and variable are represented 
familiarly in life by the notions of fixedness and change. . . .What is 
known in mathematics under the name of limit is everywhere 
present in life in the guise of some ideal, some excellence high-
dwelling among the rocks. . . .The supreme concept of functionality 
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finds its correlate in life in the all-pervasive sense of 
interdependence of mutual determination among the elements of 
the world. . . . (Keyser, 1916, p. 78; quoted in Brown, 2001, p. 153) 
 

The “real-world,” then, or at least our experience of it, is always already 

mathematical.  From this perspective, the drastic separation of school 

math and real-world math which occurred in Boaler’s (2001) study takes 

on an uncanny irony.  “Real-world” problems tacked onto the end of a 

mathematics unit are supposed to motivate students and help them apply 

math to their lives outside of school when the flows of desire throughout 

the entire unit up to that point have been forcing an artificial separation of 

these two “worlds.”  Simply relinquishing “a hold on mathematics that is 

rooted in a desire to see the field as totally different from other 

experiences in the world” (Brown, 2001, p. 145), may allow the “real-

world” to come rushing into the mathematics classroom.   

2.5 Problem Posing and the Logic of Sense 

 Both problem-posing lines of flight, though originating in different 

contexts, deterritorialize not only the “solving” side of problem-solving, but 

also cut deep lines of deterritorialization into common sense notions of 

“the real world” and how it relates to mathematics.  Both Gutstein (2006) 

and Brown (2001) call for “real-world” contexts that involve an ethical 

dimension.  Both conceputalize “real” as something more than or other 

than simply that-which-exists.  Brown (2001) claims that literary characters 

and works of art that are “more real than others” are not those who 

actually existed, but rather those who “are more vivid, concentrated, 
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focused, delineated, integrated, inwardly beautiful” (p. 190).   

In thinking about how this relates to mathematics, Brown (2001) says 

If we can speak of what is ‘real’ in a more vibrant sense than what 
‘exists’ or what we can ‘touch’ and ‘see,’ then we not only legitimize 
more interesting connections between mathematics and the real 
world. . ., but we also suppress the need to seek real-world 
connections as a salve against an otherwise ‘unreal’ world of 
mathematics. (p. 191) 
 

Problem-posing in mathematics education ultimately requires a 

reconceptualization of our relationship with mathematics.  As Deleuze 

(1969/1990) writes in The Logic of Sense, 

The relation between mathematics and man [sic] may thus be 
conceived in a new way: the question is not that of quantifying or 
measuring human properties, but rather, on the one hand, that of 
problematizing human events, and, on the other, developing as 
various human events the conditions of the problem.  (p. 55) 
 

Pressing further the problem-posing line of flight which deterritorilizes the 

“solving” side of problem solving, Deleuze (1969/1990) argues that we need to 

think differently about the relationship between problems and solutions.  He sees 

problems and solutions as different in kind: 

We must then break with the long habit of thought which forces us 
to consider the problematic as a subjective category of our 
knowledge or as an empirical moment which would indicate only 
the imperfection of our method and the unhappy necessity for us 
not to know ahead of time—a necessity which would disappear as 
we acquire knowledge. Even if the problem is concealed by its 
solution, it subsists nonetheless in the Idea which relates it to its 
conditions and organizes the genesis of the solutions. Without this 
Idea, the solutions would have no sense.” (p. 54) 

 
Problems and solutions are different in kind and also exist at different levels.  

Typically, people think of “truth” and “falsehood” as pertaining to solutions or 

propositions.  For example, most people would agree that x = 9 is a solution to x 
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+ 2 =11 because substituting 9 for x makes the statement true.  While “true” and 

“false” are the logical values pertaining to such propositions, Deleuze (1969/ 

1990) argues that the relation between the proposition and these logical values 

could not exist without a separate dimension that provides the form of possibility 

of the proposition or solution.  In the example above, letting x = 4 resulting in the 

statement, 4 + 2 = 11, would be a false, yet interpretable or sensible, solution.  It 

“makes sense,” it is just wrong21.  On the other hand, x = bird  is an absurd 

response to  “x + 2 = 4” because only numbers, not animals, conform to the form 

of possible solutions.  “Bird” makes no sense as a solution.  In The Logic of 

Sense, Deleuze (1969/ 1990) examines this notion of sense.  He begins with 

three commonly agreed upon “distinct relations within the proposition” (p. 12).  

The first relation is denotation or indication, which is the relation between the 

proposition and an external state of affairs.  According to Deleuze (1969/ 1990), 

“denotation functions through the association of the words themselves with 

particular images which ought to ‘represent’ the state of affairs” (p. 12).  In the 

denotation relation, the logical value “true” “signifies that a denotation is 

effectively filled by the state of affairs” whereas “ ‘false’ signifies that the 

denotation is not filled” (p. 13). The second relation of the proposition is 

                                                 

21 The statement 4 + 2 = 11 is just wrong, that is, as long as one of the conditions of the problem 
is that we are considering the decimal number system.  If we change this condition so that we 
are considering a base 5  number system, then the statement 4 + 2 = 11 is true, and 4 is 
indeed a solution for x + 2 = 11.  This example illustrates the way in which “every solution 
presupposes a problem--in other words, the constitution of a unitary and systematic field 
which orientates and subsumes the researches or investigations in such a manner that the 
answers, in turn, form precisely the cases of solution” (Deleuze, 1968/1994, p. 168).  Deleuze 
(1968/ 1994),  therefore, concludes that “a solution always has the truth it deserves according 
to the problem to which it is a response” (p. 159). 
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“manifestation,” and is “presented as a statement of desires and beliefs which 

correspond to the proposition” (p. 13).  Manifestation is what makes a state of 

affairs personal; it constitutes “the domain of the personal, which functions as the 

principle of all possible denotation” (p. 13).  Deleuze (1969/1990) suggests that 

“from denotation to manifestation, a displacement of logical values occurs. . .[so 

that they are] no longer the true and the false but veracity and illusion” (p. 15).  

The third relation is that of “signification.”  The relation of signification moves 

beyond the particular of denotation and the personal of manifestation to a 

“relation of the word to universal or general concepts” (p. 14).  The logical value 

of signification is “no longer the truth. . .but rather the conditions of truth, the 

aggregate of conditions under which the proposition ‘would be’ true” (p. 14).  

Signification as the condition of truth is “not opposed to the false, but to the 

absurd” (pp. 14-15).  Thus, the question “There are 26 sheep and 10 goats in a 

ship. How old is the captain?” is absurd rather than false, since the conditions of 

the proposition do not provide conditions of truth.  Students who give the answer 

of “36” fail to recognize that the conditions of truth are missing from the 

proposition.  Yet even absurdities have sense: “the propositions which designate 

contradictory objects themselves have a sense. . .the two notions of absurdity 

and nonsense must not be confused” (Deleuze, 1968/1990).  According to 

Deleuze (1968/ 1990), impossible objects such as “square circles, matter without 

extension” may be absurd but are not nonsense; they are objects “outside of 

being, but they have a precise and distinct position within this outside: they are of 

‘extra-being’—pure, ideational events, unable to be realized in a state of affairs” 
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(p. 35).  Deleuze (1968/ 1990; 1969/ 1995) therefore suggests that the three 

dimensions of denotation/ indication, manifestation, and signification are not 

sufficient; a fourth dimension, that of sense itself, is needed:  

Indeed, we must distinguish sense and signification in the following 
manner: signification refers only to concepts and the manner in 
which they relate to the objects conditioned by a given field of 
representation; whereas sense is like the Idea which is developed 
in the sub-representative determinations.  It is not surprising that it 
should be easier to say what sense is not than to say what it is.  In 
effect, we can never formulate simultaneously both a proposition 
and its sense; we can never say what is the sense of what we say. 
(Deleuze, 1969/1995, p. 155) 
 

When Gutstein (2006) and Brown (2001) followed the problem-posing line of 

flight to the notion that “the real” is something more than or other than simply 

that-which-exists, what they have arrived at is “sense.”  It is the dimension of 

sense that allows problem-posing pedagogies using Gutstein’s (2006) third type 

of real-world context to “prepare students to ask fundamental questions 

stemming from the concrete analysis of their lives and begin to ‘unveil reality” (p. 

31). It is the dimension of sense that leads this line of flight to a “profound link. . 

.[to] ethics” (Deleuze, 1968/1990, p. 31).  It is sense or the sensible that Brown 

(2001) alludes to when he calls us to “speak of what is ‘real’ in a more vibrant 

sense than what ‘exists’ or what we can ‘touch’ and ‘see’” allowing us to 

“suppress the need to seek real-world connections as a salve against an 

otherwise ‘unreal’ world of mathematics” (p. 191). This characteristic that can 

only be sensed is in fact the object of Deleuze’s (1969/1995) fundamental 

encounter: “Something in the world forces us to think.  This something is an 

object not of recognition but of a fundamental encounter. . . .its primary 
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characteristic is that it can only be sensed” (p. 139).  This object of the encounter 

“is not a quality but a sign.  It is not a sensible being but the being of the sensible.  

It is not the given, but that by which the given is given” (p. 140); that is, the object 

of the encounter is difference (p. 222).  Encountering difference, that which can 

only be sensed, “moves the soul, ‘perplexes’ it—in other words, forces it to pose 

a problem” (p. 140).   

2.6 Deleuzian Problem-Posing: Generating Problems 

Since problem posing is an encounter with difference, and “difference-in-

itself” is the center of a Deleuzian dialectic, “Problems are always dialectical: the 

dialectic has no other sense, nor do problems have any other sense” (Deleuze, 

169/1995, p. 164).  Hence, mathematical problems are actually dialectical 

problems.  “What is mathematical” says Deleuze (1969/1995), “are the solutions” 

as well as “the expression of problems relative to the field of their solvability 

which they define, and define by virtue of their very dialectical order” (p. 179).  

Mathematical problems, then, always participate “in a dialectic which points 

beyond [them]—in other words, in meta-mathematical and extra-propositional 

power” (p. 164).   

While Deleuze (1969/1995) emphasizes that problems are always 

dialectical, a Hegelian/ Marxist dialectic based on contradiction overlooks 

“difference-in-itself” and misinterprets the encounter with the being of the 

sensible: 

Whenever the dialectic ‘forgets’ its intimate relation with Ideas in the 
form of problems, whenever it is content to trace problems from 
propositions, it loses its true power and falls under the sway of the 



 

111 

negative, necessarily substituting for the ideal objecticity of the 
problematic a simple confrontation between opposing, contrary or 
contradictory, propositions.  This long perversion begins with the 
dialectic itself, and attains its extreme form in Hegelianism. (p. 164)  
 

A Deleuzian problem-posing pedagogy rejects a Hegelian dialectic that views 

difference as the only problem, one that can be resolved through contradiction in 

favor of one that affirms difference, an anti-oppressive problem-posing pedagogy 

that involves learning through the crisis instigated by the return of difference 

(Kumashiro, 2004), as described in the “Affirming Difference” plateau.  It is only 

this form of problem posing that brings real movement to thought, and for this 

movement to occur, a distinction between knowledge and learning is required.  In 

order to deterritorialize the dogmatic image of thought which has “from Plato to 

the post-Kantians” defined “the movement of thought as a certain type of 

passage from the hypothetical to the apodictic” (p. 196), which “maximally 

betrays and distorts this movement” (p. 197), we must instead conceptualize the 

movement of thought as going “from the problematical to the question” (p. 197).  

This distinction is crucial because “the assimilation of the problem and the 

hypothesis is already a betrayal of the problem or Idea, involving illegitimate 

reduction of the latter to propositions of consciousness and to representations of 

knowledge” (p. 197).  While knowledge refers to “only the generality of concepts 

or the calm possession of a rule enabling solutions” (p. 164), problem posing as 

an encounter with “difference in itself” enables the “subjective acts carried out 

when one is confronted with the objecticity of a problem (Idea),” that is, the 

“process of learning” (p. 164).  Learning, then, necessitates problem posing, and 

problem posing is the multivocity of being, the affirmation of difference, the 
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eternal return of difference in repetition, the movement from the problematical to 

the question.  “What are. . .these questions which are the beginning of the 

world?” asks Deleuze (1969/1995). His answer, fittingly, ends in a question: “The 

fact is that every thing has its beginning in a question, but one cannot say that 

the question itself begins.  Might the question. . .have no other origin than 

repetition?”  

 We return to Huang, Mok, and Leung’s (2006) chapter about explicit and 

implicit variation, whose title, “Repetition or variation: Practicing in the 

mathematics classrooms of China” resonates with the title of Deleuze’s 

(1969/1995) book Difference and Repetition.  Deleuze’s (1969/1995) distinction 

between cadence repetition (repetition of the Same) and rhythmic repetition 

(repetition of difference) as explored in the “Affirming Difference” plateau can 

further  the exploration of this resonance.  Explicit variation is cadence repetition 

in that students encounter problems of the same form and repeat the same 

procedure as was presented by the teacher.  Implicit variation, on the other hand, 

is like rhythmic repetition, repetition with a difference.  However, when the source 

of implicit variation remains solely the teacher, it remains within the problem-

solving stratum rather than following a problem-posing line of flight.  Implicit 

variation in a problem-posing pedagogy must originate in the encounter between 

teachers and students.  Brown and Walter’s (1983/ 2005) “what if not” strategy 

locates the process of implicit variation in the encounter between teachers and 

students, as teachers and students generate questions and problems from a 

given situation or artifact.  Gutstein’s (2006) projects were problems that 
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stemmed from conversations between himself and the students, problems that 

required not only transformation of the mathematics they had been learning, but 

transformation of their social consciousness as well.   

Deleuzian problem-posing, however, presses the problem-posing line of 

flight yet further than either the Freire Machine or the Brown-and-Walter Machine.  

Freire’s (1970/2003) process of praxis combines “reflection and action upon the 

world in order to transform it” (p. 51).  This takes place through codifications 

which serve as representations of generative themes which are given back to the 

people as problems to solve (p. 123).  Through reflection and action centered on 

the representation, teacher-students and students-teachers can overcome false 

consciousness.  A Deleuzian problem-posing pedagogy, one that affirms 

difference, must break out of the four shackles of that mediate difference through 

representation: identity, analogy, opposition, and resemblance.  For Deleuze, all 

“consciousness,” which remains shackled,  is false; it is problems that escape 

this false consciousness by affirming “difference-in-itself,” and allow true 

movement of thought which deterritorializes the dogmatic image of thought, 

thought stratified by common sense.  Deleuze (1969/1995) writes,  

While it is the nature of consciousness to be false, problems by 
their nature escape consciousness.  The natural object of social 
consciousness or common sense with regard to the recognition of 
value is the fetish.  Social problems can be grasped only by means 
of a ‘rectification’ which occurs when the faculty of sociability is 
raised to its transcendent exercise and breaks the unity of fetishistic 
common sense.  The transcendent object of the faculty of sociability 
is revolution.  In this sense, revolution is the social power of 
difference, the paradox of society. (p. 208) 
 

While Freire (1970/2000) wrote that “the important thing is to detect the starting 
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point at which the people visualize ‘the given’” (p. 107), Deleuzian problem 

posing is an encounter not with “the given,” which is diversity, but with that-by-

which-the-given-is-given, that is, difference (Deleuze, 1969/1995, p. 222).  This 

requires that the encounter take place not only at the level of denotation/ 

indication, but at the level of sense, at the level of problems themselves, rather 

than following the “natural illusion (which involves tracing problems from 

propositions)” (p. 159).   This is why a Deleuzian problem -posing pedagogy, as a 

part of postcritical multicultural education or anti-oppressive education 

(Kumashiro, 2004), is  

a disarming process that allows students to escape the uncritical, 
complacent repetition of their prior knowledge and actions.  
Learning is a disorienting process that raises questions about what 
was already learned and what has yet to be learned.  Learning 
involves looking beyond what students already know, what teachers 
already know, and what we both are only now coming to know, not 
by rejecting such knowledge, but by treating it paradoxically, that is, 
by learning what matters in society. . .while asking why it matters 
(and how it can reinforce and challenge an oppressive status quo). 
(Kumashiro, 2004, p. 30) 
 

That is why a Deleuzian problem-posing pedagogy involves teaching and 

learning against common sense (Kumashiro, 2004).  For Deleuze (1968/1994),  

To learn is to enter into the universal of the relations which 
constitutes the Idea. . .To learn to swim is to conjugate the 
distinctive points of our bodies with the singular points of the 
objective Idea in order to form a problematic field.  This conjugation 
determines for us a threshold of consciousness at which our real 
acts are adjusted to our perceptions of the real relations, thereby 
providing a solution to the problem” (p. 165) 
 

Yet, the problem does not disappear in the solution, but returns in the process of 

moving “from the problematical to the question,” which is itself repetition, the 

eternal return of difference.  The “generating” in the title of this plateau, then is 
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both adjective and verb: problem posing is the process of generating problems, 

yet the problems themselves are genetic or generating.  Problem posing—that is, 

learning--is becoming. 

  



 

 

3. Becoming-Democratic Mathematics Education 

 On June 1, 2009, the National Governor’s Association and the Council of 

Chief State School Officers in the United States announced that 49 states and 

territories had joined the Common Core Standards Initiative (National Governors’ 

Association & the Council of Chief State School Officers, n.d.).  One year later, 

standards for English Language Arts and Mathematics were released (Common 

Core State Standards Initiative, n.d.a, n.d.b.).  By June of 2011, 44 states and 

territories had formally adopted the standards (Common Core State Standards 

Initiative, n.d.c).  The mathematics standards describe in detail over the course of 

about 90 pages what students in Kindergarten through high school should learn.  

However, why students should learn this content and these skills is answered in 

a single statement repeated in various forms many times throughout the auxiliary 

documents: “The standards developed . . . must ensure all American students 

are prepared for the global economic workplace” (National Governors’ 

Association & the Council of Chief State School Officers, n.d., p. 1).  In other 

words, the purpose of schooling is to prepare students to be workers under 

global capitalism.   

 The brief, singular, and repeated purpose of mathematics education, 

stated without elaboration or further discussion, serves as the stratum from which 

to embark on a line of flight in this plateau.  This line of flight entails a reworking 



 

117 

 

of previous Marxist-influenced ideas through Deleuzoguattarian concepts such 

as the apparatus of capture, the subject of enunciation and the subject of the 

statement, machinic enslavement and social subjection.  Pressing the line of 

flight further, through Deleuze and Guattari’s ontology of becoming, creates the 

concept of becoming-democratic mathematics education. 

3.1 Marxist-Influenced Analyses of Schooling: Two C onflicting Impulses in 

“Liberal-Democratic” Society 

Although the United States is often described as a “liberal-democratic 

society,” as if “liberal-democratic” were one homogenous attribute, Marxist-

influenced educational theorists22 have noted that “liberal-democratic” actually 

captures two conflicting impulses.  The first impulse is the liberal economic 

impulse towards the capitalist market.  The second impulse is the democratic 

impulse toward egalitarian democratic politics.  For Ryoo and McLaren (2010), 

the United States “is not, and never has been, a democracy” (p. 100), since 

democracy is impossible under the contemporary capitalist system.  “Capitalism,” 

they argued, “through systematic exploitation of human labor power, spawns 

asymmetrical systems of power and privilege that deny people true direct, 

participatory or ‘protagonistic’ democracy and opportunity to unite against 

conditions of oppression” (p. 101).   Ryoo and McLaren (2010) contrasted the 

current conditions of the United States--such as the simultaneous exploitation of 

                                                 

22 A thorough summary of the works of “Marxist-influenced educational theorists” is beyond the 
scope of this section.  The works addressed here were chosen because the ideas they include 
can provide a starting point for a Deleuzoguattarian reformulation.  For further investigation 
see Price (1986), Small (2005), Allman (2010), and Anyon (2011).   



 

118 

 

immigrants in factories and farms and denial of health care and severe poverty 

among many people of color, despite being one of the highest level of national 

wealth--with the democratic ideal of a “government in which the supreme power 

is vested in the people and exercised by them directly or indirectly. . . .[and] the 

absence of hereditary or arbitrary class distinctions or privileges” (p. 101).  Yet, it 

is in schools, Ryoo and McLaren (2010) observed, that “learning to believe in the 

ideals of democracy, while living amidst the anti-democratic ideals of capitalism” 

begins (p. 102). 

 Bowles and Gintis (1976) examined the ways in which this tension 

between the liberal-economic and democratic impulses plays out in schools in 

ways that reproduce social and economic inequities.  Bowles and Gintis (1976) 

described the system in place in the United States as one consisting of a formally 

totalitarian economic system embedded in a formally democratic political system: 

The U.S. economy is a formally totalitarian system in which the 
actions of the vast majority (workers) are controlled by a small 
minority (owners and managers).  Yet this totalitarian system is 
embedded in a formally democratic political system which promotes 
the norms—if not the practice—of equality, justice, and reciprocity. 
(p. 54) 
 

The authors further delineated the ways in which the U.S. educational system 

reproduces the social and economic inequities in place in the broader society 

through a structural correspondence between schooling social relations and 

those of production.  According the authors, the organization of social relations 

within schools replicates the hierarchical division of labor outside of schools.  

Schools prepare students to take their place in the social and economic hierarchy 

outside schools not only by “Inur[ing] the student to the discipline of the 
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workplace, but [also by developing] the types of personal demeanor, modes of 

self-presentation, self-image, and social class identifications which are the crucial 

ingredients of job adequacy” (p. 131).  The hierarchical relations among 

administrators, teachers, and students replicate the hierarchical relations of the 

workplace.  Just as workers experience alienation from their labor power as it is 

separated from them in the form of commodities,  

alienated labor is reflected in the student’s lack of control over his 
or her education, the alienation of the student from the curriculum 
content, and the motivation of school work through a system of 
grades and other external rewards rather than the student’s 
integration with either the process (learning) or the outcome 
(knowledge) of the educational ‘production process’  (p. 131).   
 

Bowles and Gintis (1976) also noted differences in socialization corresponding to 

different “heights” on the educational ladder.  For example, secondary schools 

closely channel and monitor the activities of students whereas community 

colleges provide somewhat less supervision and more independence.  At the top 

of the hierarchy, elite four-year colleges “emphasize social relationships 

conformable with the higher levels of the production hierarchy” (p. 131).  Since 

access to secondary schools, community colleges, and elite four-year colleges 

differs along class-lines, those from different class backgrounds tend to be 

“trained” for different sorts of jobs.  In Brewster’s translation of Althusser 

(1970/1971), this process is described as schools “ejecting” masses of students 

at different points along the educational pathway, each mass having been 

provided with an ideology to match the role it is to fulfill in society23.  Anyon 

                                                 

23 Althusser’s original phrasing was a bit less dramatic:  “une énorme masse d'enfants tombe 
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(1980; 1981) further investigated this phenomenon and found that students with 

different class backgrounds experience different schooling even at the same 

educational level.  For example, the schooling of working-class elementary 

students, middle-class students, affluent professional class students, and 

executive elite students differs from one another.  She found this to be true even 

when state standards and adopted curricular materials were the same.  The ways 

in which teachers used the curricular materials and the parts they selected to 

include and exclude differed to such an extent that a different “dominant theme” 

emerged from each of the social class categories (Anyon, 1981).  The dominant 

theme in working-class schools was resistance.  Knowledge was seen as 

consisting of fragmented facts and rule-governed behaviors.  Students resisted 

the irrelevance and meaninglessness of this form of knowledge; teachers 

responded to student resistance by concluding that students did not care about 

anything.  In the middle class school, the dominant theme was possibility.  

School knowledge was seen as a source of real value when accumulated in large 

quantities.   In the affluent professional school, Anyon (1981) described the 

dominant theme as extreme narcissism or extreme individualism.  Across all 

content areas, students were encouraged to learn through discovery and be 

creative.  Finally, the dominant theme in the executive elite school was 

excellence.  Knowledge was seen as understanding the internal structure of 

disciplines and concepts.  Teachers strove to teach more content and more 

                                                                                                                                                 

‘dans la production’” A more literal translation would be, “a large mass of children fall into the 
production [process].”  
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difficult content to students. Students experienced a great deal of pressure to 

excel and outperform others in order to get into the “best” schools.  The schools 

in Anyon’s (1981) study served to reproduce the inequitable hierarchical social 

and economic structure outside of schools in just the way Bowles and Gintis 

(1976) suggested. 

Building on the work of Bowles and Gintis (1976), Labaree (1997) also 

noted the two conflicting impulses in U.S. “liberal-democratic society”: 

Unfettered economic freedom leads to a highly unequal distribution 
of wealth and power, which in turn undercuts the possibility for 
democratic control; but at the same time, restricting such economic 
freedom in the name of equality infringes on individual liberty, 
without which democracy can turn into the dictatorship of the 
majority. (p. 41) 
 

The tension between these two conflicting impulses was evident in the tension 

between Thomas Jefferson’s political idealism and Alexander Hamilton’s 

economic realism (Labaree, 1997).  Within the context of this tension, three goals 

or functions for schools have developed: 1) democratic equality, 2) social 

efficiency, and 3) social mobility.  Labaree (1997) argued that the amount of 

emphasis on each of the three goals has shifted over the course of the history of 

U.S. schooling.   Proponents of the democratic equality goal argue that a 

democratic society necessitates an education system that prepares all children to 

become competent and responsible citizens.  Since each citizen theoretically has 

an equal voice in the collective decisions of the society, it is in everyone’s best 

interest that all citizens gain the knowledge necessary to make informed 

decisions.  Moreover, political equality can be undermined under conditions of 

too much social inequity.  Therefore, the purpose of schools is to promote 
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effective citizenship and social equality.  The second goal is that of social 

efficiency.  Proponents of this perspective argue that the economic well-being of 

society requires that schools effectively and efficiently prepare children for the 

existing economic roles in society.  Such preparation will ensure that society will 

benefit from a productive workforce.  From the perspective of the social mobility 

goal, the purpose of schools is to provide individual students with a competitive 

advantage in the race for desirable economic and social positions in society.  

Labaree (1997) asserted that each of these goals comes from the perspective of 

a different social role.  Democratic equality is the perspective of the citizen; social 

efficiency is the perspective of the taxpayer and employer; social mobility is the 

perspective of the individual educational consumer.  Democratic equality 

expresses the politics of citizenship; social efficiency expresses the politics of 

human capital; social mobility expresses the politics of individual opportunity.  

 Labaree (1997) suggested that all three of these goals have shaped U.S. 

schools, but that the relative emphasis on each of the three goals has shifted 

over time. The goal of democratic equality has entailed a focus on citizenship 

training, equal treatment, and equal access.   The strongest motivation behind 

the common school movement was the goal of training students for citizenship.  

The liberal arts tradition was also intended to allow students to gain a broad 

understanding of many disciplines which they could then bring to bear on societal 

decisions.  Citizenship training as a way to preserve the U.S. as a republic has 

continued throughout the history of U.S. schooling.  Equal treatment and equal 

access have also been seen as necessary for the preservation of the republic.  
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The common school movement entailed “universal enrollment, uniform 

curriculum, and a shared educational experience for all students” (Labaree, 

1997, p. 45).  The establishment of comprehensive high schools, school 

desegregation, movements for bilingual education have all focused on providing 

more equitable access to a broader range of students. 

The goal of social efficiency, Labaree (1997) claimed, was operationalized 

through vocationalism and educational stratification. Vocationalism was a push 

for schools to shift their curricula from a focus on traditional academic subjects to 

a focus on training students for particular occupational roles.  According to 

Labaree (1997), vocationalism had a much stronger impact on schooling than 

simply the establishment of vocational schools, which were always in the minority 

of schools.  Labaree (1997) argued that vocationalism led to a philosophical shift 

in the general aims of education around the turn of the twentieth century as 

captured in the following quote: “For a long time all boys were trained to be 

President. . .Now we are training them to get jobs” (Lynd & Lynd, 1929, p. 194; 

quoted in Labaree, 1997, p. 47).  In addition to vocationalism, educational 

stratification served the goal of social efficiency.  According to Labaree (1997),  

One form [this stratification] has taken is in the emerging hierarchy 
of educational levels, leading from elementary school to high school 
to college and then graduate school.  The upward expansion of 
enrollment in this hierarchy over time, while increasing the average 
years of schooling for the population as a whole, has also provided 
access to higher levels of education at which individuals can be 
distinguished from the herd, with the key division being between 
those who persist in education and those who drop out at an earlier 
level. . . .[F]rom the perspective of social efficiency, the vertical 
distribution of educational attainment is quite desirable, since it 
reflects the vertical structure of the job market and therefore helps 
allocate individuals to particular locations in the workforce, as 
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students move horizontally from a given level in the educational 
hierarchy to a corresponding level in the occupational hierarchy. (p. 
49) 
 

The patterns identified by Bowles and Gintis (1976) and Anyon (1980; 1981) 

demonstrate the way schools have been set up to be “a mechanism for adapting 

students to the requirements of a hierarchical social structure and the demands 

of the occupational marketplace” (Labaree, 1997, p. 46). 

 Although all three goals have threaded their way through the history of 

U.S. schooling, Labaree (1997) argued that the goal of social mobility has 

become the dominant goal in schools.  Like social efficiency, social mobility 

relates to the role of a stratified educational system to prepare students for the 

stratified economic and social structure in society.  However, these two goals 

view these stratified systems from different vantage points. As representatives of 

the social efficiency goal, the taxpayer and employer view the structure from the 

top; as representative of the social mobility goal, the consumer views the 

structure from the bottom, with the goal being to climb as far toward the top as 

possible.  A particular student’s pathway through the structure and the degree to 

which the student’s landing spot in the system is desirable economically and 

socially is irrelevant to the taxpayer and employer, as long as all students are 

well-prepared for the position they ultimately fill.  In contrast, the landing spot in 

the system matters very much to the student as consumer.  The consumer’s goal 

is to accumulate more and better educational commodities to gain a competitive 

advantage over others and ultimately “win” by acquiring a desirable job.  Rather 

than desiring equal opportunity, consumers want schools to provide them with 
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more opportunity than others.  Therefore, the social mobility goal reinforces the 

inequitable, stratified educational system described by Bowles and Gintis (1976) 

and Anyon (1980; 1981).  According to Labaree (1997), consumers demand a 

graded hierarchy, “which requires students to climb upward through a sequence 

of grade levels and graded institutions and to face an increasing risk of 

elimination. . . .[A]s students move into an atmosphere that is increasingly 

rarefied. . .the chance for gaining competitive advantage grows correspondingly 

stronger” (p. 52).  As it turns out, the employer and the consumer demand an 

educational system with similar characteristics.  In addition to a graded hierarchy, 

both demand qualitative differences between institutions at each level (e.g. some 

schools are considered better than others), and a stratified structure of 

opportunities within each institution (e.g. tracking in high school, leveled reading 

groups, etc.).  These distinctions at each level would have little meaning without 

corresponding signaling systems that communicate the distinctions among 

consumers (students) to employers.  Such signaling systems take the form of 

program labels (e.g. “Advanced Placement” courses, gifted and talented 

program, “sheltered” mathematics, magnet programs), standardized testing, 

differentiated diplomas, college rankings, and the use of grade point averages.  

Because of the way social efficiency and social mobility hook the consumer along 

with the employer into the a stratified educational system, consumers protest as 

loudly (or even more so) when educators “propose the elimination of some form 

of within-school distinction or another, such as by promoting multi-ability reading 

groups, ending curriculum tracking, or dropping the gifted and talented program 
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(Cusick, 1992; Wells & Sema, 1996)” (Labaree, 1997, p. 53).   

 The Common Core Mathematics Standards documents in their brief, 

singular, and repeated stated purpose--“The standards developed . . . must 

ensure all American students are prepared for the global economic workplace” 

(National Governors’ Association & the Council of Chief State School Officers, 

n.d., p. 1).--directly invoke the social efficiency goal.  The purpose of 

mathematics education, from this view, is to prepare students to be workers.  It 

seems at first glance, especially with the heavy emphasis on the word “all,” that 

the purpose of the Common Core Standards also encompasses the democratic 

equality goal.  However, given the reproductive model suggested by Bowles and 

Gintis (1976) and elaborated upon by Labaree (1997), preparing “all” American 

students for the global workforce does not necessarily entail preparing all 

students for equally desirable locations in the economic and social hierarchy.  In 

fact, as Labaree (1997) pointed out, “the notion of educational equality is at best 

irrelevant to the expansion of GNP, and it is counterproductive in a capitalist 

economy, where the pursuit of competitive advantage is the driving force behind 

economic behavior” (p. 48).  The emphasis on “all” is a linguistic allusion to the 

democratic equality goal while taking on a distinct form of expression  within 

global capitalism: efficiently preparing all students for the global workforce must 

entail differentially preparing students to take social and economic positions in an 

inequitable, stratified, hierarchical system.  The complementary top and bottom 

views of this system from the perspective of the taxpayer/ employer (in the name 

of social efficiency) and consumer (in the name of social mobility) ensure 
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consumer “buy-in” as well, since the social mobility goal holds out hope for 

consumers that they may be able to accumulate enough educational 

commodities (credentials) in order to land in a favorable position within the 

collective “all.”  To facilitate communication between consumers and employers 

about who has indeed won the race to accumulate educational credentials, the 

Common Core Standards for Mathematics embeds a signaling system in which a 

“+” indicates “additional mathematics that students should learn in order to take 

advanced courses” (Common Core State StandardsInitiative, n.d.b, p. 57). 

3.2 A Deleuzoguattarian Perspective on the Two Impul ses: Capitalism and 

the State 

 Deleuze (1995) explained that “Félix Guattari and I have remained 

Marxists, in our two different ways, perhaps, but both of us.  You see, political 

philosophy must turn on the analysis of capitalism and the ways it has 

developed” (p. 171).  However, Deleuze approached Marx’s work as he did the 

work of all previous theorists: as a starting place from which to develop concepts. 

Deleuze’s work, while remaining profoundly Marxist, was also a critique and 

reformulation of Marx’s ideas.  One point of agreement between Marx 

(1867/1976) and Deleuze and Guattari (1980/1987; Deleuze, 1968/1994) was the 

centrality of the “economic instance” (also see Althusser, 1965/1969, 1970/1971; 

Althusser & Balibar, 1966/1970; Holland, 2009).  However, Deleuze and Marx 

differed on the conceptual formulation of “the economic.”  Marx viewed the 

economic instance as a fundamental contradiction between social classes.  

Deleuze (1968/1994), on the other hand, formulated the economic as “never 
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given properly speaking, but rather designating a differential virtuality to be 

interpreted, always covered over by its forms of actualization; a theme or 

‘problematic’ always covered over by its cases of solution” (p. 186).  The 

economic, then, is the presupposition underlying any actual solution in the form 

of social relations.  For Deleuze, problems are always virtual; solutions are 

always actual.  Hence, Deleuze (1968/1994) stated that “The problems of 

society, as they are determined in the infrastructure in the form of so-called 

‘abstract’ labor, receive their solution from the process of actualization or 

differenciation (the concrete division of labor)” (p. 207).  While what Marx was 

fascinated by the way in which capitalism entailed the socialization of production 

relations and the development of human productive forces, it was the process of 

differenciation that most fascinated Deleuze (Holland, 2009).  As a “difference-

engine” (Holland, 2009), capitalism accelerates other  already existing processes 

of differenciation such as organic differenciation in biological evolution and 

linguistic differenciation in the proliferation of discourses and sign systems.  

Deleuze’s ontology is one in which difference-in-itself, rather than contradiction, 

is primary.  Accordingly, in contrast to more Hegelian dialectical readings of Marx,  

Deleuze (1968/1994) read Marx’s Capital as indicating that “the category of 

differenciation (the differenciation at the heart of a social multiplicity: the division 

of labor) is substituted for the Hegelian concepts of opposition, contradiction and 

alienation” (p. 207).  As a difference-engine, capitalism is an extremely creative, 

but also dangerous process—a major force of deterritorialization in the 

contemporary world.  Capitalism is both innovative and destructive (Glezos, 
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2010).  Thus, like Bowles and Gintis (1976) and Labaree (1997), Deleuze and 

Guattari (1980/1987) view capitalism (or “liberal economics”) as one of the major 

forces at work in shaping contemporary society, not only in the U.S., but 

throughout the world.  For Labaree (1997), the force opposed to the liberal 

economic impulse is the democratic impulse; a Deleuzoguattarian perspective 

rejects the Hegelian dialectics inherent in a formulation of these two forces as 

contradictory and is therefore more complicated. Rather than characterizing 

capitalism as a force opposing the democratic impulse, Deleuze and Guattari 

(1980/1987) said that capitalism has become an “axiomatic24” (p. 436).  In 

mathematics, an axiom is a proposition that is assumed to be true.  Undefined 

terms are words and expressions that are taken as accepted without definition.  

Axioms and undefined terms serve as building blocks for building mathematical 

systems or theories.  An axiomatic system can be built by using logic, undefined 

terms, and the original axioms to reason that additional propositions (theorems) 

must be true.  The axioms in an axiomatic system are independent if one does 

not logically follow from another or a combination other axioms.  (If a proposition 

does follow from other axioms, then it is a theorem rather than an axiom.)  An 

axiomatic system is consistent if it is impossible to derive a contradiction (that is, 

to derive both a statement and its negation) from its axioms.  Axiomatizing a 

mathematical domain involves beginning with a small number of axioms, 

                                                 

24 In mathematics “axiomatic” is typically used as an adjective, as in the terms axiomatic system, 
axiomatic geometry, and axiomatic method.  Deleuze and Guattari (1980/1987) use 
“axiomatic” as a noun, possibly as a shortened form of the phrase“axiomatic system.”  I follow 
their usage when discussing capitalism, but follow the more typical usage when discussing 
axiomatic systems in mathematics. 
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systematically deriving logically consistent theorems from the axioms, and 

demonstrating that the axioms are consistent and independent of one another.  

There are usually multiple ways to axiomatize a given mathematical domain.  A 

model of an axiomatic system is a set of objects in a particular configuration 

which interprets the meanings of the undefined terms of the system such that all 

of the axioms of the system are true in the configuration.  Two models of an 

axiomatic system are isomorphic if there is a one-to-one correspondence 

between the elements of the first model and the elements in the second model 

such that the relations among elements are preserved.  The concept of an 

axiomatic system was useful for Deleuze and Guattari for two reasons.  The first 

reason was that an axiomatic system is “actualized” in a model of the axiomatic 

system in the same way that a virtual problem is actualized in the particular 

economic solutions enacted in societies.  For Deleuze and Guattari (1980/1987), 

the historical emergence of capitalism was not predetermined; rather, it was a 

historical accident.  The authors claimed that it would have been possible for 

capitalism to emerge at a different time or place, or not emerge at all.  However, 

once capitalism did emerge, a “new threshold of deterritorialization” was 

surpassed and history became universal--there was no going back.  At that point, 

the rules and properties of capitalism became “given,” became “axioms” that 

regulated the “models of realization” of social relations worldwide.  The second 

reason Deleuze and Guattari (1980/1987) found the conceptual combination of 

an axiomatic (system) and models of “realization” (models of the axiomatic 

system) useful was that it allowed them to examine the ways in which different 
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economic “solutions” relate to one another and to capitalism. A model of an 

axiomatic system is an instantiation that preserves relationships among 

elements. Deleuze and Guattari (1980/1987) claimed that all modern states—

democratic, totalitarian, liberal, and tyrannical alike—are isomorphic in relation to 

the capitalist axiomatic. “Even the so-called social States are isomorphic,” the 

authors argued, “to the extent that there is only one world market, the capitalist 

one25” (p. 455).   No State, no matter what political form or manner of social 

relations it adopts, is outside of the capitalist axiomatic.  While it would be easy to 

conclude that this totalizing capitalist axiomatic must have a global homogenizing 

effect, Deleuze and Guattari (1980/1987) warned that such a conclusion would 

be mistaken.   On the contrary, the isomorphic relationship among models 

“allows, and even incites, a great heterogeneity among States (democratic, 

totalitarian, and especially, ‘socialist’ States are not facades)” (Deleuze & 

Guattari, 1980/1987, p. 436).  Moreover, the worldwide capitalist axiomatic 

requires a “certain peripheral polymorphy.” (p. 437).  On the national scale, the 

flows of capital in a capital system result in an inequitable distribution of wealth 

and inequitable social relations; the same phenomenon occurs on the global 

                                                 

25 In using the term “isomorphic,” Deleuze and Guattari (1980/1987) emphasized that all States of 
varying forms have a similar relationship to capitalism, and in this way are interchangeable. 
However, they did not establish that relations among elements within the different state forms 
correspond to relations among elements in another model, which would be necessary for their 
use of “isomorphic” to be “literal” as they claim (p. 465 ).  Instead, configurations of elements 
within different states—e.g. the particular ways in which political systems are configured, the 
ways in which various processes function—do not have one-to-one correspondence, which is 
why the collection of models is heterogenous.  When discussing “models of realization” of the 
capitalist axiomatic system , I follow Deleuze and Guattari’s usage of “isomorphic” to indicate 
that the all of the models are in some ways interchangeable in their relationship with global 
capitalism. 
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scale under the global capitalist axiomatic.  Inequitable economic and social 

relations develop not only among individuals but also among States on a 

worldwide scale.  Under the capitalist axiomatic, the “developed” world needs a 

“developing world.” 

 The point of agreement, then, among Marx, Bowles and Gintis, Labaree, 

and Deleuze and Guattari is that capitalism is a powerful force that shapes social 

relations. While the capitalist (liberal economic) impulse and the democratic 

impulse are conflicting or opposing forces for Labaree (1997), the second force 

for Deleuze and Guattari (1980/1987), following Althusser, is the State apparatus.  

The State’s relation to capitalism is not simply an opposing force; instead, 

Deleuze and Guattari (1980/1987) reformulated Marx’s concept of the 

(repressive) State apparatus via Althusser’s(1970/1971) concept of ideological 

State apparatuses into “State apparatuses of capture.”  For Deleuze and Guattari 

(1980/1987), the State-form was both necessary for the emergence of capitalism 

and also serves to capture what is deterritorialized through capitalism.  In the 

emergence of capitalism, both towns and the State played a role.  However, it 

was “through the State-form and not the town-form that capitalism triumphed; this 

occurred when the Western States became models of realization for an axiomatic 

of decoded flows, and in that way resubjugated the towns” (p. 434).  The towns 

did not create capitalism—instead they anticipated it and warded it off at the 

same time.  This complex relationship between towns and States allows towns to 

develop which no longer had connection to their own land, but functioned to 

assure trade between States.  With this assurance of trade, the State gives 
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capitalism its modes of realization; through a reciprocal relationship, “what is thus 

realized is an independent, worldwide axiomatic that is like a single City, 

megapolis, or ‘megamachine’ of which the States are parts, or neighborhoods” 

(Deleuze & Guattari, 1980/1987, p. 435).  The megamachine coordinates many 

different types of machinic processes (e.g. polarization of urban societies, 

anticipation-prevention of hunter-gatherer societies; capture by State 

apparatuses) which correspond to different forms of social relations; Deleuze and 

Guattari (1980/1987) defined social formations by these machinic processes 

rather than by modes of production because the modes of production depend on 

the machinic processes.  The imperial State proceeded by two apparatuses of 

capture—tribute/ taxation and ground rent; capitalism added a third—capital 

(Deleuze & Guattari, 1980/1987; Holland, 2009).  Capture is “the machinic 

process whereby a direct comparison (of land, labor, or goods) enables a 

monopolistic appropriation (of rent, profit, or tribute), the first moment 

presupposing an established stock constituted by the second moment” (Holland, 

2009, p. 156).  In ordering the two moments in this way, Deleuze and Guattari 

(1980/1987) reverse the direction of the process put forth by Marx: Marx argued 

that surplus arises from production; Deleuze and Guattari (1980/1987; see also 

Holland, 2009) suggested that production arises from surplus.  In the imperial 

State it is the despot, who is “at once eminent landowner, entrepreneur of large-

scale projects, and master of taxes and prices,” who sits at the point of 

convergence between all three forms of capture.  Deleuze and Guattari 

(1980/1987), drawing on Nietzsche, viewed debt rather than production to be 
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primary in social formations.  The social formation of the imperial state is 

organized around infinite debt owed to the despot (Deleuze & Guattari, 

1980/1987; Holland, 2009).   This formulation “presupposes nothing ‘private’” (p. 

448), as all forms of capture flow to the despot, the “sole and transcendent 

public-property owner” (p. 428).  However, even as the despot captures the 

various forms of surplus, flows also escape along new lines of flight.  Large scale 

public works create independent labor which escapes from the despot’s control; 

taxation creates new forms of commerce and banking; adjacent to public 

property, private property “is constituted on the margins” (p. 449).  In 

contemporary society this line of flight has accelerated to the point to which  

“capitalism forms a general axiomatic of decoded flows” (p. 453), all of the States 

are coordinated in one global “megamachine,”  and the functions of the public 

and private spheres has shifted.  The public sphere “no longer characterizes the 

objective nature of property but is instead the shared means for a now private 

appropriation; this yields the public-private mixes constitutive of the modern 

world” (p. 451).  This new social formation still entails an infinite debt, but now the 

infinite debt is owed to capital itself.   

Deleuze and Guattari (1980/1987), following Mumford (1966), defined a 

machine as “a combination of resistant parts, each specialized in function, 

operating under human control to transmit motion or perform work” (p. 457).  This 

definition allows for a broader conception of machines than is typically 

considered in contemporary society.  Machines are not limited to motorized or 

electronic machines, but also include any combination of “parts” that fit the above 
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definition.  The ways in which humans are caught up in interactions with 

motorized and electronic machines as well as serving themselves as parts of 

more machines more broadly defined results in two processes: machinic 

enslavement and social subjection.  According to Deleuze and Guattari 

(1980/1987), “there is [machinic] enslavement when human beings themselves 

are constituent pieces of a machine that they compose among themselves and 

with other things (animals, tools), under the control and direction of a higher 

unity” (pp. 456-457).  In the imperial state, people served as “pieces of a 

machine” that allowed the despot to profit, for example, from large-scale public 

works.   Within industrial capitalism, workers were no longer enslaved by the 

machine, but instead “subjected to” the machine.  With global capitalism,  

Capital acts as the point of subjectification that constitutes all 
human beings as subjects; but some, the ‘capitalists,’ are subjects 
of enunciation that form the private subjectivity of capital, while 
others, the ‘proletarians’, are subjects of the statement, subjected 
to the technical machines in which constant capital is effectuated. 
(p. 457) 
 

The distinction between the two types of subjects—subject of enunciation and 

subject of the statement—is crucial in Deleuze and Guattari’s philosophy.  It is 

characteristic of their philosophy to ignore taken-for-granted boundaries and to 

make connections among different aspects of existence that are not typically 

thought of as connected, such as connections between linguistics and political 

and social philosophy.  Deleuze and Guattari (1975/1986) first developed the 

distinction between the two types of subjects in Kafka: A Minor Literature, in 

examining letters Kafka had written to others in his life.  Deleuze and Guattari 

(1975/1986) posed the question: 
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But how do the letters function?  Without a doubt, because of their 
genre, they maintain the duality of the two subjects: for the 
moment, let us distinguish a subject of enunciation as the form of 
expression that writes the letter, and a subject of the statement that 
is the form of content that the letter is speaking about (even if I 
speak about me). (p. 30) 
 

Take, for example, a letter in which the author writes, “I am planning a trip this 

coming month.”  The subject of the written sentence is “I,” the author of the letter.  

The letter-writer and the subject of the statement in the letter are one and the 

same.  In contrast, the author of the letter might write, “You will surely enjoy our 

upcoming trip.”  Grammatically, the subject of the sentence or statement written 

in the letter is “you,” the addressee.  However, the addressee is not actually 

expressing or enunciating anything; it is the author of the letter who is expressing 

something about the addressee.  The two subjects differ in relation to control of 

the expression.  Within global capitalism, everyone “becomes a subject” or is 

constituted as an individual in relation to capitalism.  However, the meaning of 

“being a subject” within the capitalist system is different depending on the 

person’s location within the system.  “Capitalists’” location provides them control 

over expression within the system, to be “subjects of enunciation.”  The location 

of “proletarians,” on the other hand, subjects them to the system as “subjects of 

the statement.”   

While industrial capitalism induced a shift from machinic enslavement to 

social subjection, contemporary capitalism has maintained social subjection and 

reinstated a new form of machinic enslavement: “The axiomatic itself, of which 

the States are models of realization, restores or reinvents, in new and now 

technical forms, an entire system of machinic enslavement” (Deleuze & Guattari, 
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1980/1987, p. 458).  This new form of machinic enslavement is catalyzed by 

cybernetic and informational machines.  The relation between humans and 

machines has transformed from usage or action to one based on communication, 

with a crucial effect on surplus value: 

In the organic composition of capital, variable capital defines a 
regime of subjection of the worker (human surplus value), the 
principal framework of which is the business or factory.  But with 
automation comes a progressive increase in the proportion of 
constant capital; we see a new kind of enslavement: at the same 
time the work regime changes, surplus value becomes machinic, 
and the framework expands to all of society. (p. 458) 
 

Hence, in contemporary global capitalism, the processes of both machinic 

enslavement and social subjection operate, often simultaneously.  Deleuze and 

Guattari (1980/1987) illustrated this point with the example of television.  On the 

one hand, TV viewers are subjected to TV insofar as they watch or consume it.  

TV viewing is an excellent example of the processes of social subjection because 

it illustrates a situation in which “the subject of the statement. . .more or less 

mistakes itself for a subject of enunciation (‘you, dear television views, who make 

TV what it is is. . .’)” (p. 458).  The process of subjectification leaves the 

impression that TV viewers create and produce the content of what they view, 

that they “have some say” in the matter.  However, subjectification in global 

capitalism constitutes subjects as ‘capitalists’ (subjects of enunciation) or 

‘proletarians’ (subjects of the statement).  In the case of television, TV viewers 

have the impression that they are “producing” TV programs when, in fact, they 

are not.  On the other hand, TV viewers become enslaved by television “insofar 

as the television viewers are no longer consumers or users, nor even subjects 
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who supposedly ‘make’ it, but intrinsic component pieces, ‘input’ and ‘output,’ 

feedback or recurrences that are no longer connected to the machine in such a 

way as to produce or use it” (p. 458).  Holland (2009) gives a second example of 

the combination of machinic enslavement and social subjection: commercial or 

political marketing campaigns.  Consumers and voters are subjected to opinion 

polls in which they are asked to give their opinions of products or candidates.  

Once again, subjects of the statement are mistaken for subjects of enunciation.  

Opinion polls give the impression that consumers and voters are agents, when in 

fact, their “voices” are simply being used by marketers and candidates.  Machinic 

enslavement is exemplified by the use of galvanic skin response or pupil dilation 

to extract consumers’ and voters’ ‘opinions’ biologically.  Here, consumers and 

voters become merely suppliers of inputs and outputs. 

Building on Foucault’s (1978) analysis of power, Deleuze and Guattari 

(1980/1987) distinguished three forms of power: sovereign, disciplinary, and 

control (Holland, 2009).  The sovereign power of the despot consists of the right 

to tax and to take life.  As capitalism emerged, a new form of power developed—

disciplinary power.  This new form of power involved the disciplining of life in 

order to maximize productivity and reproductivity.  It involved subjectification in 

ways that constituted certain types of individuals.  Factories allowed the capture 

of profit; other institutions supported this capture by producing subjects prepared 

for their roles as workers and consumers.  The most recent type of power—

control—corresponds to contemporary capitalism, and involves the complete 

subsumption of society by capital.  Capital has come to completely saturate 
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social life, accelerating processes of deterritorialization and reterritorialization.  

As the dominant form of power has shifted from fairly fixed models of discipline to 

a form that consists of continual modulation, the constant pressure of 

deterritorialization and reterritorialization necessitates constant fluctuations of 

standards of value as a way to ward off overproduction and the falling or 

stagnating of profit rates.    Holland (2009) summarized these processes as 

follows: 

All activity is now merely a moment in the circulation of capital; 
profit can be captured anywhere and everywhere, not just in the 
factory.  Furthermore, the turnover rate of capital (in its increasingly 
frenetic drive to forestall the falling rate of profit) increases 
dramatically, becoming so rapid that disciplinary institutions cannot 
possibly keep pace.  Control power operates not by fixed models of 
discipline, but via continual modulation.  The values of currencies, 
labor-power, fashion styles, brands, musical trends, and so on are 
allowed to float, because the computer-powered cybernetic 
apparatus of capture is fast enough to appropriate surplus value 
without fixed values. (p. 159). 
 

The two major forces in contemporary society are the State and the capitalist 

axiomatic.  These two forces interact in a complex way.  Contemporary capitalism 

has become a totalizing global force that has in some ways exceeded the State.  

Yet, the role of States has shifted to organizing the flow of capital on a global 

scale.  In this role, the State is still an apparatus of capture operating through 

social subjection and machinic enslavement, which form its two poles.  Like 

Labaree (1997), Deleuze and Guattari view capitalism or the “liberal economic” 

impulse as one major force in contemporary society.  The democratic impulse, 

however, is more difficult to categorize within Deleuze and Guattari’s (1980/1987) 

conceptual landscape.  The democratic State is one “model of realization” among 
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many isomorphic models within the global capitalist axiomatic.  The combination 

of “isomorphy” and “heterogeneity” means that very different State-forms all 

coordinate in the megamachine corresponding to the global capitalist axiomatic.  

As one model of realization “isomorphic” to others, the democratic State-form 

involves both poles of the State, that is, processes of machinic enslavement and 

social subjection, which allow the democratic State to function as an apparatus of 

capture.  However, the particular ways in which these processes function may 

differ from the way they function under a different State-form.   

3.3 Rethinking the Three Goals of Education and the  Purpose of 

Mathematics Education 

 Deleuze and Guattari’s reformulation of Marx’s ideas provides a rich 

conceptual landscape for rethinking the three goals of education and the purpose 

of mathematics education as stated in the Common Core Standards for 

Mathematics and auxiliary documents.  Like all other aspects of contemporary 

social life, mathematics education takes place within the interaction between the 

global capitalist axiomatic and machinic processes such as the apparatus of 

capture enacted by the State-form.  From this view, Labaree’s (1997) three goals 

can be seen as two assemblages. The first assemblage connects the goals of 

social efficiency and social mobility.  It was clear from Labaree’s (1997) 

description of the social efficiency goal and the social mobility goal that both 

goals connect to a stratified educational system that serves to reproduce the 

inequities in the stratified economic and social structure outside of schools.  In 

Deleuzoguattarian terms, these linked goals constitute a single assemblage.   
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Every assemblage contains both an assemblage of enunciation, which is the 

linguistic aspect of the assemblage or the form of expression, and a machinic 

assemblage, which is the material aspect of the assemblage or the form of 

content.  In this case, the assemblage of enunciation consists of the goals 

themselves.  The machinic assemblage consists of the stratified educational 

system (including the hierarchy of grade levels, differential prestige of schools, 

college rankings, grade point averages, honors and Advanced Placement 

classes, etc.).  When this machinic assemblage is viewed from the top from the 

perspective of the taxpayer and employer, the assemblage of enunciation sounds 

something like the following: “Schools exist to prepare workers for their positions 

within the stratified economic and social structure.”  From the bottom of the 

machinic assemblage, from the perspective of the consumer, this same 

assemblage of enunciation sounds something like the following: “Schools exist to 

prepare (me) as a worker for my (hopefully more socially and economically 

desirable) position (than others’) in the stratified economic social structure.”  In 

an assemblage of enunciation, Deleuze and Guattari (1980/1987) distinguish 

between the subject of enunciation and the subject of the statement.  Given the 

capitalist axiomatic, “capital acts as the point of subjectification that constitutes all 

human beings as subjects” (Deleuze & Guattari, 1980/1987, p.457).  However, 

some people (the “capitalists”) are constituted as “subjects of enunciation” while 

others (the “proletarians”) are constituted as “subjects of the statement.”  Within 

this social efficiency-mobility assemblage, it is those who express the goal of 

social efficiency, the taxpayer and employer, who are subjects of enunciation and 
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who will ultimately profit through the apparatus of capture.  Like the TV viewers in 

the Deleuze and Guattari’s (1980/1987) example, those who “express” the social 

mobility goal (the consumers) mistake themselves for subjects of enunciation 

when, in fact, they are merely subjects of the statement.  Holland’s (2009) 

example of opinion polling provides an even closer parallel.  Voters have the 

mistaken sense of being subjects whose expressed opinions create the political 

system through opinion polls, when in fact they are subjected to the opinion polls 

by a political system in which they have very little “say.”  As consumers of 

educational commodities, parents and students have the same sort of mistaken 

sense that they are creating the educational system through their opinions, that 

their voice “counts,” when in reality they are subjected to an inequitable stratified 

education system that functions to reproduce a similarly inequitable stratified 

economic and social structure.   

 The remaining goal, democratic equality, forms the second assemblage.  

Once again, since capitalism has become axiomatic, capital acts as the point of 

subjectification.  In this case, what comes to the fore is the interaction between 

the deterritorializing tendency of the capitalist market and the reterritorializing 

tendency of the democratic State as one model of realization of the capitalist 

axiomatic.  As Holland (2009) stated, “state reterritorialization produces citizen-

subjects through the process of social subjection” (p. 158).  Social subjection 

involves a subject of enunciation and a subject of the statement.  The capitalist 

axiomatic has become the dominant apparatus of capture, with the various State-

forms, such as the democratic State, serving to coordinate decoded flows in 
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order to maximize the capture of profit for the capitalist axiomatic.  In other 

words, as Holland (2009) stated, “capitalist profit has superseded ground rent 

and despotic tribute as the dominant apparatus of capture, with the state serving 

as point of subjectification and compensatory reterritorialization for the superior 

deterritorializing power of capitalist axiomatization” (p. 158).  Once again, we 

have a case of a mistaken subject.  The citizen who seems to be the subject of 

enunciation expressing a call for democratic equality turns out be subjected to 

capital to the same extent as the educational consumer.  The effect on the 

democratic equality assemblage is to redirect statements that allude to 

democratic equality into the service of social efficiency.  This is evident in the 

Common Core Standards’ apparent allusion to democratic equality in its 

emphasis on “all” in its call to “ensure all American students are prepared for the 

global economic workplace” (National Governors’ Association  & the Council of 

Chief State School Officers, n.d., p. 1).  Given the inequitable stratification of the 

global economic workplace for which all students are being prepared, “preparing 

all students” entails reproducing the inequitable stratification within schools and 

classrooms.  While the democratic State continues to “produce citizen-subjects 

through the process of social subjection” (Holland 2009, p. 158), it turns out that 

citizens are subjects of the statement, subjected to capital, produced for the 

purpose of maximizing the capture of profit for the capital axiomatic.  Efficiently 

preparing all students for the global workforce must entail differentially preparing 

students to take social and economic positions in an inequitable, stratified, 

hierarchical system.  The complementary top and bottom expressions of this 
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system from the perspective of the taxpayer/ employer (in the name of social 

efficiency) and consumer (in the name of social mobility) ensure consumer “buy-

in” as well, since the social mobility goal holds out hope for consumers that they 

may be able to accumulate enough educational commodities (credentials) in to 

land in a favorable position within the collective “all.”  Capital has come to be the 

singular subject of enunciation in schooling, coordinating various subjects of the 

statement (consumer, citizen) in order to maximize profit26.  In actuality, both the 

social efficiency-mobility assemblage and the democratic equality assemblage 

doubly articulate the very same assemblage of enunciation and machinic 

assemblage—that is, both link capital as subject of enunciation with the stratified 

educational system as its machinic assemblage.  In the process, students are 

subjected to capital in ways that hook them into the system by encouraging them 

to mistake themselves for subjects of enunciation instead of subjects of the 

statement. 

3.4 The State of Democracy in Mathematics Classroom s 

 Stemhagen and Smith (2008) summarized the state of democracy in 

                                                 

26 This is true in educational research as well.  St. Pierre (2004) described the way in which a new 
governmental institution, Institute for Educational Sciences was “rapidly putting into place a 
structure that attempts, in every respect, to discipline and control the field of educational 
research. . . .This domination begins with training researchers and extends to the 
dissemination of research findings [through certain databases] to those whom. . .the new 
Director of IES refers to as our ‘customers’—practitioners, school superintendents, and 
legislators” (p. 285).  St. Pierre (2004) used Deleuze and Guattari’s concept of “state science” 
to examine the way in which a certain image of thought about educational research is “turning 
education into a business” (Deleuze 1990/1995, p. 182).  In other words, the capitalist 
axiomatic serves as a point of subjectification for educational researchers as well.  
Educational researchers can become “subjects of the statement.”  The subject of enunciation 
of educational research under State science is capital.   
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mathematics classrooms as follows: “While the impact of democratic education 

proponents on American schooling can be debated, it is interesting to note that 

any influence the movement has had on schooling in general has been even less 

evident within the realm of mathematics education” (p. 25).  Nevertheless, 

Mukhopadhyay (2009) examined three forms of democratic education in 

mathematics classrooms: competitive, participatory, and discourse democracy.  

Which form is enacted in classrooms impacts the extent to which mathematics 

education functions as an “allocation machine” serving to reproduce inequitable 

conditions in the classroom and society.  

3.4.1 Competitive Democracy   

Mukhopadhyay (2009) argued that characteristics of competitive democracies 

map directly on to the value systems in current U.S. mathematics classrooms.   

Competitive democracy invokes the social efficiency-mobility assemblage of 

enunciation through the discourse of meritocracy.  Mukhopadhyay (2009) posited 

that a student’s success and position of power within a competitive democracy 

comes from the student’s ability to quickly access information.  In such 

classrooms, according to Mukhopadhyay (2009), mathematics is typically 

presented as a collection of facts and procedures—that is, the form the 

mathematics classroom takes on is the problems-practice assemblage (see the 

“Generating Problems” plateau).  Mathematics knowledge is conceived of as the 

ability to memorize the facts and procedures and access this information in order 

to apply it to solve problems.  Mukhopadhyay (2009) claimed that this formulation 

of democracy impacts students differentially, empowering some and 
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marginalizing others.  Within this context, the problems-practice assemblage 

becomes an allocation machine, enacting differential social subjection for 

different students.  Those who are able to quickly access information (memorized 

facts and procedures) are constituted as “good math students” and those who do 

not access such information as quickly are constituted as “bad math students.”  

This is an example of disciplinary power, in which the process of subjectification 

produces different types of individuals.  Mukhopadhyay (2009) included excerpts 

from a transcript of an interview with two students that demonstrated the way in 

which competitive democratic politics enact such differential subjectification.  One 

student, Raoul, was constituted as a student who was “bad at math” while 

another student, Aaron, was constituted as a student who was “good at math.”    

Both Raoul and Aaron said that math was “hard” because students were 

expected to “memorize answers to equations.”  While both found memorization to 

be the most challenging aspect of math class, Aaron added, “but I memorize 

things quicker than other people. . .usually.”  In a later interview the students 

discussed the form math lessons typically took in their classroom.  Aaron 

explained that the teacher typically “gives us the easy problems and then the 

harder ones. . .and that’s when he goes harder and harder” (Mukhopadhyay, 

2009, p. 46).  Raoul responded, “That’s why I don’t have friends. . . .they all ask 

for harder problems” (Mukhopadhyay, 2009, p. 46).   With the repetition of daily 

lessons, certain children were repeatedly “ejected” (to use the term used in 

Brewster’s translation of Althusser, 1970/1971) prematurely, before getting to the 

“hard” problems, a process that reproduced the process described by Bowles 
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and Gintis (1976) and Labaree (1997) on a much smaller timescale.   

The trend in assessment to establish yearly standardized testing 

reinforces the value placed on information accessing speed.  Gulliksen (1950) 

distinguished between “speed tests” and “power tests.”  A speed test consists of 

items that students would be able to answer easily and correctly without a time 

limit.  However, a time limit is imposed and students are evaluated based on the 

number of items correctly completed.  On a power test, on the other hand, 

students are not constrained by time; the test is assumed to evaluate students’ 

full “power” to perform.  Lu and Sireci (2007) pointed out that standardized tests 

are rarely “pure power tests” because they typically involve a time limit, partly for 

practical reasons.  Also, researchers have found that when tests have generous 

time limits, many examinees have extra time, which can have a “troubling” effect 

on students who are still working.  (p. 29; College Entrance Examination Board, 

1984).  In practice, most standardized tests include a mixture of “speed” and 

“power” components (Lu & Sireci, 2007; Rindler, 1979), a mixture that is likely to 

differentially affect students like Raoul and Aaron in ways that amplify the 

reproduction of the stratified schooling and social/ economic systems.   

A second assessment trend is likely to differentially affect students like 

Raoul and Aaron: the push for value-added assessment systems.  This trend 

illustrates the way in which the subsumption of society to capital reconnects the 

linguistic aspect of the democratic equality assemblage to the machinic 

assemblages associated with the social efficiency-mobility assemblage, 

interlinking the goals of democratic equality, social efficiency, and social mobility 
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in a way that prepares “all” students for  the inequitable economic/ social system 

in place .  Sanders (2000) began by invoking the social efficiency assemblage of 

enunciation as a justification for developing value-added assessment systems 

such as the Tennessee Value Added Assessment System (TVAAS) and the 

Education Value-Added Assessment System (EVAAS): 

Huge sums of money have been delivered to the educational 
community by federal, state and local governments and private 
philanthropic foundations to support numerous initiatives and 
programs whose purpose was to improve student academic 
achievement.  The results from these investments have been mixed 
at best.  (p. 330) 
 

Here, the taxpayer and employer are represented by “federal, state and local 

governments and private philanthropic foundations.”  The taxpayer and employer 

have invested “huge sums of money” in students via teachers, whose “variability 

in. . .effectiveness is huge” (p. 335).  The economic return on these investments 

in students is mediated by the teacher.  Hence, according to Sanders (2000), it is 

crucial to reduce “the likelihood that students will be assigned to relatively 

ineffective teachers” (p. 335).  Implicit in this justification of value-added 

assessment is the assumption that academic achievement as measured by 

standardized tests will ensure employers that  “by selecting candidates with the 

best credentials. . .they are obtaining employees who have acquired the highest 

level of productive skills” (Labaree, 1997, p. 54; Berg, 1971).  Value-added 

assessment is a refinement of the standards movement, which Sanders (2000) 

notes is the result of the same sorts of demands from taxpayers and employers 

(those “outside the traditional educational community” (p. 330)).  Before value-

added assessment, Sanders (2000) argued, the standards movement was 
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operationalized as a  

step approach to curricula . . .[and] a testing regime that purport[ed] 
to measure the percentage of students within grades who are at 
master, proficient, basic, non-mastery (or whatever language is 
dangled beside the test results).  Inevitably when the results of 
these tests [were] presented, it [became] obvious that differences in 
results among schools and districts [were] strongly related to socio-
economic measure of the demographics of the student population 
of a school or district” (p. 330). 
 

 If a typical standards-based assessment system is analogous to a staircase, 

Sanders (2000) suggested that the analogue of a value-added assessment 

system is a ramp: “if the desire is for each student to move up the same ramp. . 

.and if it is further recognized that all students will not be at the same place at the 

same time in the same grade,  then many problems in assessment and 

measurement can be mitigated” (p. 331). According to Sanders (2000), this form 

of accountability “will hold people accountable for things over which they have 

control, rather than for things they do not.  For instance, teachers in the fall have 

no control over the achievement level of their incoming students” (p. 331).    

Although the justification for value-added assessment models is based on the 

social efficiency assemblage of enunciation, Sanders (2000) alludes to the 

democratic equality assemblage of enunciation by claiming that such a system is 

more equitable than the typical staircase model.  In the previous model, 

according to Sanders (2000), “Especially in inner city schools, too often it is 

observed that the previously lower scoring students are being given the 

opportunity to make progress, but within the same school the earlier higher 

achieving students are being held to the same pace and place as their lower 

achieving peers” (p. 337).  On the other hand, Sanders (2000) claimed, armed 
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with data about students’ predicted growth, teachers can ensure equal growth for 

all.  Sanders (2000) concluded: “[N]ow we are using data more responsibly. . . 

.With this tool, we can build the education of the future—individualized, equitable, 

and full of promise for all our kids” (p. 338).  However, given the current 

inequitable and hierarchical economic and social structure that Sanders (2000) 

himself pointed out in critiquing the staircase model of assessment, an “equal 

growth for all” approach maintains this same hierarchical structure. If students 

start at different locations on the ramp, then move up the ramp at an equal rate of 

growth, then although all students have progressed up the ramp, they have 

maintained the exact same relative location in reference to one another as was in 

place at the beginning of the ramp.  Schools that promise “equal growth for all” 

have unlinked the democratic equality assemblage of enunciation from its 

corresponding material instantiations, and instead, linked it to the machinic 

assemblage which reproduces the existing hierarchical and inequitable economic 

and social structure.  From the consumer standpoint, “equal growth for all” is 

alluring only for those beginning toward the top of the pyramid.  However, just as 

the consumer in the social mobility assemblage views “equal opportunity” as the 

possibility of “more opportunity for me than for others,” the consumer can also 

view the promise of “equal growth for all” as the possibility of “a higher rate of 

growth for me than for others.”  In the push for value-added assessment, the 

subsumption of society by capital (Deleuze & Guattari,1972/1977; Holland, 1999, 

2009) has linked all three goals (democratic equality, social efficiency, social 

mobility) together as Borromean rings.  The taxpayer and employer are assured 
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of students who will have grown just enough to be well prepared for the 

pyramidal job structure.  The consumer looks to the possibility of “more growth 

for me.” And the linguistic allusion to democratic equality quells the citizen’s 

queasy sense that schools are not performing their role as “the great equalizer” 

(Cremin, 1951).  Meanwhile, schools embody Freire’s “banking” concept of 

education: students become variable-rate time deposits.  The teacher scrambles 

to deposit as much knowledge as possible into each student, students clamber to 

get a good bargain on the best credentials, all for the purpose of producing 

surplus value for future employers in an attempt to repay their infinite debt to 

capital.  The experience of this time in schools--what actually transpires, whether 

students and teachers are happy, whether students grow in their capacity to care 

for one another, whether the experience of schooling counts as living in the eyes 

of students—does not matter except to the extent that it adds value for future 

employers.  After all, as Sanders (2000) asserts, “What is important is NOT the 

achievement level of third-graders, for instance. . . .What is most important is the 

achievement level of 11th and 12th graders” (p. 337).  When the state of 

democracy in schools is an embodiment of the values of competitive democracy, 

what matters is what students can exchange to employers went they, as variable-

rate time deposits, mature.  As time-deposits, students have come to be 

information processing component in the broader capital-producing 

“megamachine.”   They compose themselves with other information processing 

components—for example, electronic devices.  Interestingly, over the last several 

years as I supervised student teachers in a number of school districts , I noticed 
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that the schools have acquired “mobile computer labs” in the form of carts with a 

class set of computers.  The only function I have witnessed for these computers 

is for students to take practice tests in preparation for the End-of-Grade 

standardized test.  This case is an example of machinic enslavement, which 

Deleuze and Guattari (1980/1987) described as follows:  “In machinic 

enslavement, there is nothing but transformations and exchanges of information, 

some of which are mechanical, others human” (p. 458).  The flow of information 

between students and laptops have become an assemblage in students are 

“intrinsic component pieces, ‘input’ and ‘output,’ feedback or recurrences that are 

no longer connected to the machine in such a way as to produce or use it” (p. 

458).  One might protest that students are, in fact, using the computer as a way 

to gain feedback on their progress in mathematics.  However, as Deleuze 

(1968/1994) said of our image of thought about problems in general (and as 

previously noted in the discussion of the problems-practice assemblage), “the 

master sets a problem, our task is to solve it.  It is a. . .social prejudice with the 

visible interest of maintaining us in an infantile state, which calls upon us to solve 

problems that come from elsewhere”  (p. 158)  Such a ritual involves “telling us 

that we have won simply by being able to respond: the problem as obstacle and 

the respondant as Hercules” (p. 158).  Students’ visible anomie during the 

repetition of this ritual hints that they recognize that outputting prefabricated 

answers to prefabricated “problems” on a laptop is not a Herculean act, that they 

are “producing” nothing for their own use, merely biding their time until “maturity.”   
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3.4.2 Participatory Democracy 

 The second form of democracy in mathematics classrooms 

Mukhopadhyay (2009) addressed was participatory democracy.  In the 

participatory form of democracy, value is attached to participation rather than the 

ability to quickly access information (Hagen, 1992; Mukhopadhyay, 2009). In the 

participatory approach, the inequitable distribution of resources that arise in the 

competitive version of democracy under the banner of meritocracy is viewed as 

unjust. Instead, it is assumed that fair representation necessitates political 

participation.  Mukhopadhayay (2009), following Hagen (1992), noted that 

democratic participation has often been operationalized through a distributive 

justice perspective resulting in a narrow focus on voting.   Young (2000) has 

conceptualized this model of democracy as the “aggregative model.”  In the 

aggregative model, democracy is considered to be a process of “aggregating” the 

preferences of citizens in order to make decisions.   In the classroom, a similar 

phenomenon can be an emphasis on taking turns.  One example comes from 

research in two fourth-grade science classrooms; it is possible the same 

phenomenon occurs during math class. Carlone, Haun-Frank, and Webb (2011) 

examined two fourth-grade science classrooms, both of which implemented 

Reform Based Science following generally accepted instructional processes.  

The researchers were surprised to find that although students in the two classes 

performed similarly on achievement measures and expressed positive attitudes 

about learning science, in one of the classrooms (Mrs. Sparrow’s class) a group 

of African American and Latina girls in one of the classrooms expressed outright 
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disaffiliation with the constituted meanings of “smart science person.”  After 2 

years of iterative analysis, the researchers were able to come to the 

interpretation that a key reason for the students’ disaffiliation was the way in 

which the notion of “sharing scientific ideas” was constituted differently in the two 

classrooms.  In Mrs. Sparrow’s class, the form for “sharing scientific ideas” 

consisted of turn-taking. Both the teacher and students emphasized taking turns.  

In one 27 minute transcript, students mentioned individually trying out their ideas 

40 times, using phrases such as “mine,” “can I try,” “my turn,” etc.  Scientific 

investigation came to mean trying out one’s own ideas.  Although students were 

working in small groups, each student l “owned” his or her individual ideas.  The 

investigations became an arena in which students competed to occupy the 

scientific space through their individual intellectual property.  Often, the bids for 

the floor by the African American and Latina girls were rebuked or ignored.  

According to Carlone et al. (2011), “the meaning of ‘science person’ (i.e. 

someone who is assertive in trying out their own ideas with tools) was not equally 

accessible to all students; not everyone got a fair opportunity to be scientific” (p. 

459).  Participatory democracy is an attempt to shift the classroom dynamics 

embedded in competitive democratic classrooms to more equitable ones through 

a focus on participation.  However, a simplistic conception of participation as 

casting votes or taking turns fails to unlink the Borromean rings tying democratic 

equality to social efficiency and social mobility in a way that creates an allocation 

machine which reproduces the stratified educational and social/ economic 

structures in place.    
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3.4.3 Discourse Democracy 

The third form of classroom democracy Mukhopadhyay (2009) addressed 

was dialogue or discourse democracy.  Young (2000) called this form of 

democracy the “deliberative model27.”  According to Mukhopadhyay (2009), “the 

core value of this form of democracy is embedded in the idea that citizens must 

have an opportunity to participate in dialogue with each other about issues” (p. 

47).  In the classroom, this means that teachers and students attend not only to 

frequency or amount of participation, but also to the characteristics of the 

students’ discourse as well as the power relations connected with discourse 

patterns.   Civil and Planas (2004) distinguished among three perspectives on 

“participation.”  From the psychological or individual perspective, participation 

involves an individual’s actions and statements.  From a social perspective, 

                                                 

27 Theoretical distinctions could be made between discourse democracy, dialogue democracy, 
and deliberative democracy based on the lineages they “cite.”  The term “dialogue” has 
associations with Freire’s work.  In common usage, “dialogue” is similar to conversation; 
Freire’s version of “dialogue” goes beyond mere conversation and involves shifts in power 
dynamics.  The term “deliberative” was used by Young (2000) in contrast with the “aggregative 
model” mentioned previously in connection with Mukhopadhyay’s (2009) “participatory” 
democracy.  The term “deliberative” implies that participants are not simply discussing issues, 
but carefully considering different options.  Young (2000) argued that “reasonableness” should 
be a criterion for evaluating options put forth.  While authors addressing deliberative or 
dialogue democracy often also address discourse, I am unaware of sources that use the term 
“discourse democracy.”  I use it here to “cite” the literature in mathematics education related to 
discourse.  Ryve (2011) analyzed 108 international mathematics education articles that 
addressed discourse in mathematics education.  He identified three topic areas related to 
discourse: 1) discourse as social interaction, 2) minds, selves and sense making,  and 3) 
cultural and social relations focusing on macro processes of social and institutional actions.  I 
use the term “discourse democracy” in association with all three of these senses.  Specifically, 
the form of democracy following from connections between research on participation, 
dialogue, and democracy in mathematics education connects interaction among students with 
social norms and sociocultural norms.  This form of democracy emphasizes understanding 
mathematics through discourse in addition to making decisions.  A detailed elaboration of the 
concept of “discourse democracy” in mathematics education is beyond the scope of this 
dissertation, and is left for future scholarship.   
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participation is socialization into mathematical practices.  Civil and Planas (2004) 

adopted a third perspective more in line with discourse democracy:  the 

sociocultural perspective participation centers the notion of participation on “the 

use of discourse and some of its contents (norms, values, valorizations) as 

crucial mediating tools in order to interpret the mathematical learner in context” 

(p. 7).  This perspective provides insight into why distributive approaches to 

participation do not jam the inequitable allocation machine found in competitive 

and participatory democratic classrooms.  Civil and Planas (2004) investigated 

the role of social and organizational structures in shaping participation in two 

distant settings (Tucson, Arizona in the United States and Barcelona, Spain).   

The authors found that acquiring concepts and skills is not enough for allow 

students to become “mathematical learners;” rather, students’  “active 

participation in the reconstruction of a specific discourse” is necessary (Civil & 

Planas, 2004, p. 7).  In a fifth-grade classroom in Tucson, two groups of students 

found fewer barriers to their active participation in mathematical discussions.  

First, students in the class were generally more likely to listen to students whose 

achievements in sports established their popularity.  Secondly, students who 

were in the Gifted and Talented Education (GATE) program dominated 

discussions that directly focused on mathematics.  Civil and Planas (2004) 

observed that  not all GATE students were well liked, but when they spoke, 

students tended to side with them” (p. 8).  Moreover, students were aware of the 

way racial, ethnic, and economic privilege correlated with access to the GATE 

program.  One White girl who was in the GATE program noted, “GATE tends to 
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be upper class white people, I’ve noticed, it’s kind of a corrupt system” (p. 9).  

Similar phenomena occurred in Barcelona.  In this case, immigrant students who 

were learning the dominant languages (Catalan or Spanish) or whose behavior 

was not considered acceptable, irrespective of cognitive factors or mathematical 

achievement, were placed in a “special needs” mathematical classroom four out 

of five days a week.   On the fifth day, students joined a mainstream class.  Both 

“mainstream” and “special needs” students viewed a passive role as appropriate 

for the “special needs” students on the fifth day.  Students classified as “special 

needs” a passive role  “so as not to confuse the other students. . .or because the 

co-operative model did not match their reality outside school. . .or because they 

[did] not feel ready yet for the mainstream group” (p. 109).  The “mainstream 

students” viewed the discourse practices of the “special needs” students as 

inappropriate and as demonstrating deficiencies in mathematical understanding.  

The students considered “special needs” students often incorporated 

connections to their personal lives as they discussed mathematics.  Carmen, a 

“mainstream student,” interpreted this discourse practice to indicate that “they 

want the teachers to teach easier mathematics, but mathematics is very difficult, 

you cannot always find out what everything means” (p. 11).  Ironically, the 

“special needs” students meaning-making was cast as a deficit while the 

acceptance of meaninglessness was valorized.  In both settings—Tucson and 

Barcelona—social and organizational aspects of schooling and society made 

“active participation” easier for some students than others.  One organizational 

feature that had this effect in both settings was the decision to offer different 
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programs for different students in the name of “meeting the needs of all 

students.”  Civil and Planas (2004) noted that “the effectiveness of schooling 

seems to be associated with the classification of students into certain groups, 

and the mathematical discourses seem to be developed depending on this 

classification” and that “the fact is that in both cases the students who seem most 

negatively affected by these decisions are usually members of certain ethnic and 

language groups and are economically underprivileged” (p. 12).  A discourse 

democracy perspective requires teachers and students to “anticipate barriers to 

classroom discourse, such as traditional value systems that students bring with 

them and a conscious commitment by the classroom teacher to develop a shared 

value system with students with an emphasis on discourse (Mukhopadhyay, 

2009, p. 49).   

In Carlone et al.’s (2011) study, the teacher in the second classroom, Mrs. 

Wolfe, seemed to have viewed classroom participation from the perspective of 

discourse democracy.   She explicitly excluded turn taking in her definition of 

what it meant to “do science”: “We don’t do ‘turns’ in science. . .I don’t want them 

taking turns.  I don’t want them trying ideas by themselves. . . .[W]hen you’re 

working together, you need to be able to tell me what question you’re thinking 

about, what you’re doing, and why you’re doing it” (p. 470).  In this classroom, 

the meaning of participation was constituted as trying out one another’s ideas 

together rather than taking turns.  The different meanings of “sharing” in the two 

classrooms resulted in different conceptions of what it meant to be a “science 

person.”  In Mrs. Sparrow’s class, a “science person” was someone who had all 
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of the answers; in Mrs. Wolfe’s classroom, a “science person” was someone who 

asked questions, had good reasons, paid attention to the task at hand and 

others’ comments, and always thought about different experiments to do 

(Carlone et al., 2011, p. 478).  Establishing norms for discourse with students 

which allow all students to identify rather than disidentify with content areas is 

one step toward shifting the inequitable machinic assemblages currently in place 

to more ones more in line with the democratic equality goal of schooling.  In the 

mathematics classroom, these norms entail both social norms and 

sociomathematical norms (Yackel & Cobb, 1996; Cobb et al., 2001).  Social 

norms are general expectations whereas sociomathematical norms pertain 

specifically to the discipline of mathematics.  For example, the expectations to 

“take turns” or “listen to your partner” are social norms.  Taken-for shared 

understandings of what counts as an acceptable mathematical explanation or 

justification (e.g. whether personal connections can be included), a sophisticated 

mathematical solution, or a mathematical solution that is different from those 

already shared are sociomathematical norms (Cobb et al., 2001).  Negotiating 

and establishing a new version of “normal” discourse patterns sets the scene for 

“becoming-democratic” mathematical education. 

3.5 Deleuze and Guattari, Democracy, and Becoming28 

Deleuze and Guattari have been considered both opponents (Mengue, 

                                                 

28 I presented some of the ideas in this section in a paper entitled “Becoming-Democractic 
Pedagogies: A Deleuzoguattarian Perpective on Democracy in the Classroom” at the 
Southeast Philosophy of Education Society Conference, September 25-26, 2009. 
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2003) and proponents (Patton, 2005) of democracy.  Philippe Mengue (2003) 

has argued that Deleuze and Guattari are hostile toward democracy. Mengue 

suggested that three of Deleuze and Guattari's values contributed to a hostile 

attitude toward democracy: immanance, the minor or minority, and becoming. 

First, Mengue argued that Deleuze and Guattari opposed democracy because 

they valued immanence over transcendence. Democracy is based on notions of 

human rights. Human rights function as eternal and abstract, and are therefore 

transcendent rather than immanent. Mengue (2003) suggested that Deleuze and 

Guattari considered the transcendental quality of notions of human rights 

inherent in democracies to stop creative movement. Second, Mengue (2003) 

argued that Deleuze and Guattari were hostile to democracy because they 

defined democracy as the reign of public opinion or consensus. There is no 

public opinion today other than a fabrication of the media, which allows the state 

to serve as an instrument of domination and normalization. This state-invested 

fabricated public opinion opposes the power of minorities, who are by their nature 

inventive. Only what is “minor” or “minority” is creative. Therefore, for Mengue's 

(2003) Deleuze and Guattari, not only is democracy itself not new, but it also 

flattens and breaks down novelty. Finally, Mengue (2003) argued that Deleuze 

and Guattari were hostile to democracy because they valued becoming. 

According to Deleuze and Guattari,(1980/1987)  there is no “becoming-majority,” 

but only “becoming-minority.” While the minor and minorities are creative, the 

majority is a stoppage, an obstacle to becoming. Since democracies are in 

principle the rule of the majority, they are obstacles to becoming, to creativity, to 
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novelty. Based on this analysis, Mengue (2003) concluded that Deleuze and 

Guattari' ideas actually renew the ancient Platonic idea of an intellectual 

aristocracy of philosophers in which the only worthwhile communication is from 

one thinker to another or one elite to another in the eviction of the vulgar, 

multitude, plebe, demos, and dialectic. 

Paul Patton (2005) has contested this reading of Deleuze and Guattari’s 

work. Patton (2005) gave broad and narrow definitions of democracy. In the 

broad sense, democracy refers to  

an association of equals in which there is neither justification for the 
exclusion of individuals or groups from the widest possible system 
of basic civil and political liberties, nor any justification for the 
arbitrary exclusion of particular individuals or groups from the 
benefits of social and political cooperation.  (p. 53) 

In a narrower sense, democracy refers to “a form of government in which the 

governed exercise control over governments and their policies, typically through 

regular and fair elections” (p. 53). Patton argued that although Deleuze is  

not a theorist of democracy in the narrow sense of the term. . .it 
does not follow. . .that Deleuze is hostile to democratic 
governments, or that his political philosophy implies a rejection of 
democracy in either the broad or narrow sense. In fact there is no 
shortage of evidence to suggest that, in his political practice as well 
as in his theoretical views, he is committed to democracy in both 
senses of the term (p. 54) 
 

Patton notes that Deleuze and Guattari's work focuses on micropolitics rather 

than addressing the “standard problems of liberal political philosophy, such as 

the elaboration of principles of justice or freedom or the definition of democracy” 

(p. 50). Patton points out that Deleuze and Guattari's “neglect of the public 

sphere” does not, in itself, indicate a hostility toward democracy: “incompleteness 

is not antipathy and there is no reason to suppose that Deleuzian theory 
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proposes an alternative rather than a supplement to democratic political theory” 

(p. 55). Patton concludes that “Deleuze and Guattari's micropolitical theory. . 

.supplements liberal democratic conceptions of decision-making and challenges 

these to take into account such micropolitical processes” (p. 56).   

In contrast to Mengue’s view of Deleuze and Guattari as hostile to 

democracy and Patton’s view of their philosophy of democracy as incomplete or 

supplementary to a liberal conception of democracy, I would contend that 

Deleuze and Guattari offer a reconceptualization of democracy.   Deleuze and 

Guattari are indeed critical of democratic states. A consideration of the double 

meaning of state, or in French, état in relation to Deleuzoguatarian works is 

illuminative. A state or état is both a “territorial or political unit” and a “way or form 

of being.”  Deleuze and Guattari’s work was a critique of “state” in both of these 

senses.  As we have seen, Deleuze and Guattari (1980/1987) conceptualized 

States as models of realization in the capital axiomatic which function to 

“capture” decoded flows in a way that leads maximizes profit and maintains 

inequitable distributions of wealth within nation-states as well as among nation-

states on a global scale.  “The State,” Deleuze and Guattari (19801987) wrote, 

“is assuredly not a locus of liberty” (p. 460).  This political philosophical critique of 

States is interconnected with an ontological critique of stasis or “being” in favor of 

an ontology of becoming.  This philosophical connection between politics and 

ontology is evident in Deleuze and Guattari’s (1980/1987) conceptualization of 

“majority” and “becoming-minoritarian”: “When we say majority, we are referring 

not to a greater relative quantity but to the determination of a state or standard in 
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relation to which larger quantities, as well as the smallest, can be said to be 

minoritarian” (1980/1987, p. 291). A majority (no matter what size) is invested in 

an ontology of being, in maintaining its dominant standards or norms. Becoming-

minoritarian, on the other hand, is invested in process (1980/1987, p. 291) rather 

than stasis. This is why, as Mengue(2003)  pointed out, Deleuze and Guattari 

(1980/1987) argued that majorities are stoppages since they are invested in 

stasis, while becoming-minority is a creative process, a process of invention, a 

stimulus for novelty. Liberal democratic states, as Tocqueville (1835/2007) 

observed, are majoritarian, and as such, are invested in stasis, in maintaining 

dominant standards or norms. Deleuze and Guattari (1991/1994) wrote, 

“Democracies are majorities, but a becoming is by its nature that which always 

eludes the majority” (p. 108). Instead of supporting liberal democratic states as 

Patton suggested, Deleuze and Guattari (1991/1994) call for a “becoming-

democratic that is not the same as rights-based States” (p. 113; translation 

modified). “Becoming-democratic” can elude the majority and allow for a creative 

“resistance to the present” (p. 108). “Becoming-democratic,” then, is not a 

hostility toward democracy nor a supplement to liberal democratic states, but 

rather a reconceptualization of democracy.  

In A Thousand Plateaus, Deleuze and Guattari (1980/1987) discussed 

many different “becomings”: becoming-molecular, becoming-woman, becoming-

animal, becoming-minoritarian, becoming-imperceptible. They clarified,  

Becoming is not to imitate or identify with something or someone. 
Nor is it to proportion formal relations. Neither of these two figures 
of analogy is applicable to becoming: neither the imitation of the 
subject nor the proportionality of a form.  
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This is why the actualization of the capital axiomatic in the models of realization 

(e.g. States) is not “becoming.”  An axiomatic system consists of formal relations 

which are interpreted in a model of the system.  In Deleuze and Guattari’s 

(1980/1987) conception, the capitalist axiomatic is “actualized” in a model but 

does not “become” the model.  Deleuze and Guattari (1980/1987) elaborated on 

the process of becoming as follows:  

Starting from the forms one has, the subject one is, the organs one 
has, or the functions one fulfills, becoming is to extract particles 
between which one establishes the relations of movement and rest, 
speed and slowness that are closest to what one is becoming, and 
through which one becomes. This is the sense in which becoming 
is the process of desire (p. 272). 
 

Becoming is a process different from the process of imitating.  Imitation is a form 

of representation.  When one imitates someone or something, he or she tries to 

act the same as that which he or she imitates.  Imitation is based on 

resemblance.  Becoming relates to difference-in-itself.  Deleuze and Guattari 

(1980/1987) gave this example of becoming-animal:  

Do not imitate a dog, but make your organism enter into 
composition with something else in such a way that the particles 
emitted from the aggregate thus composed will be canine as a 
function of the relation of movement and rest, or of molecular 
proximity, into which they enter. Clearly, this something else can be 
quite varied, and be more or less directly related to the animal in 
question: it can be the animal's natural food (dirt and worm), or its 
exterior relations with other animals (you can become-dog with 
cats, or become-monkey with a horse), or an apparatus or 
prosthesis to which a person subjects the animal (muzzle and 
reindeer, etc), or something that does not even have a localizable 
relation to the animal in question. For this last case.. .[a particular 
person] bases his attempt to become-dog on the idea of tying 
shoes to his hands using his mouth-muzzle (p. 274). 
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Becoming-dog is not the same as acting like or looking like a dog.  In fact, 

becoming-dog in Deleuze and Guattari’s sense is not the same as becoming a 

dog.  Deleuze and Guattari (1980/1987) redefined two concepts from chemistry 

to distinguish between two levels of organization, the molecular and the molar: 

“You become animal only molecularly. You do not become a barking molar dog, 

but by barking, if it is done with enough feeling, with enough necessity and 

composition, you emit a molecular dog” (p. 275). In chemistry, a molecule 

consists of two or more atoms held together in a particular way (that is, through 

covalent bonds).  In working with chemical reactions, it is often necessary to 

know how much of each reactant is involved.  However, molecules are so small 

that they are difficult to count.  Instead of counting molecules, chemists (and 

others using chemistry) often measure the amount of substances using a more 

manageable unit of measurement called a “mole,” which relates the measured 

mass of the substance to the number of atoms or molecules contained within that 

mass.   Molar is the adjectival form of “mole.” For Deleuze and Guattari 

(1980/1987), a “molar dog” is what we typically think of when we think of a dog—

the whole schnauzer or Dalmatian or Chihuahua.  People do not typically think of 

a dog as an aggregate of atoms or molecules.  Imitation entails watching the 

whole-dog-as-single-entity and attempting to resemble that entity.  Becoming-

dog, in contrast, entails relating to “dog” not as a single entity, but as a 

multiplicity, an aggregate of molecules composed into “dog.”  Similarly,  

there is a becoming-woman, a becoming-child, that do not 
resemble the woman or the child as clearly distinct molar entities. . . 
.What we term a molar entity is, for example, the woman as defined 
by her form, endowed with organs and functions and assigned as a 
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subject. Becoming-woman is not imitating this entity or even 
transforming oneself into it. . .not imitating or assuming the female 
form, but emitting particles that enter the relation of movement and 
rest, or the zone of proximity, of a microfemininity, in other words, 
that produce in us a molecular woman, create the molecular 
woman (p. 275). 

Becoming-democratic in a Deleuzoguattarian sense, then, does not mean 

imitating “molar” democratic States, nor does it mean coming to identify oneself 

as a “democratic citizen.” Becoming-democratic in classrooms does not entail 

setting up student government and holding elections for student body president 

or class representative. It does not mean choosing what to serve at the next 

special event by taking a vote and serving what the majority of the students 

choose. It does not mean reading the U.S. Constitution and having class 

discussions about why democracy is a wonderful form of government. Instead, 

becoming-democratic entails “starting from the forms one has, the subject one is, 

the organs one has, or the functions one fulfills” (p. 272) and then extracting 

“particles between which one establishes the relations of movement and rest, 

speed and slowness that are closest to” the democratic (p. 272). It means setting 

up democratic relations on a molecular level rather than on a molar level. It 

means finding the speeds and slownesses of democracy and finding ways to 

move in democratic ways. It means making the organism of the class enter into 

“composition with something else in such a way that the particles emitted from 

the aggregate thus composed” will be democratic. 

3.6 Becoming-Democratic Mathematics Education 

 All three forms of democracy in the mathematics classroom described by 

Mukhopadhyay (2009) can be seen as “states” of classroom democracy or 
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democratic classroom States in that they are intended to exist in the form of 

stasis.  Each one entails its own expectations, social norms, sociomathematical 

norms—ways of being (not becoming) in the classroom that repeat like a 

cadence day-in and day-out.  This is not to say that each of these states/States is 

equally desirable.  Certainly, establishing social norms in which students work 

together collaboratively and listen to one another is preferable to establishing 

norms in which students just taking turns or, worse yet, make fun of each other.  

Attention sociomathematical norms for what counts as an acceptable justification, 

what it means to “do math,” and what constitutes a sophisticated strategy is 

certainly important.  As Deleuze and Guattari (1980/1987) stated, “it would be 

absurd to think that. . .all States are equivalent and homogenous” (p. 466).   

A discourse democratic approach involving negotiating and establishing a new 

version of what “normal” discourse looks and sounds like can set the scene for 

“becoming-democratic” mathematical education.   

However, none of these forms of “establishing” certain “states” in the 

classroom involve becoming.  One might ask: If establishing discourse 

democracy in the mathematics classroom results in students working 

collaboratively, following the social and sociomathematical norms we desire for 

them to follow, and developing understandings of mathematical concepts and the 

ability to flexibly solve mathematical problems29—all on a day-in day-out basis—

why should we worry about whether or not this counts as “becoming-

                                                 

29 The claim that establishing discourse democracy in the mathematics classroom does in fact 
have all of these effects would need further investigation.   
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democratic”?  There are two reasons something beyond a state/State of 

discourse democracy is needed.  First, the democratic state/State of the 

classroom is situated within the larger context of a global capitalist axiomatic as 

exemplified by the singular social efficiency goal for mathematics education 

stated in the Common Core Standards documents.  Even if discourse democracy 

is established in a mathematics classroom, the democratic state/State of the 

classroom still serves as an apparatus of capture whose purpose is the ultimate 

capture of capital for future employers; the school is still a site of machinic 

enslavement through assessment systems designed to measure the amount of 

“capital” which has been deposited into them as time-deposits (although the 

experience of serving as a time-deposit may have been more pleasureable); the 

school is still a site of social subjection in which students are subjects of the 

statement expressed by capital.  Molecular movements, becomings, are 

necessary because “molecular movements do not complement but rather thwart 

and break through the great worldwide organization” (p. 216).  It is through lines 

of flight, becomings, molecular movements that allow escape from totalization.    

The second reason becoming-democratic is necessary is that the 

state/State “itself has always been in a relation with an outside and is 

inconceivable independent of that relationship” (Deleuze & Guattari, 1980/1987, 

p. 360).  Further, the “law of the State is . . .the law. . .of interior and exterior” (p. 

360).  The establishment of social and sociomathemtatical norms, even “good” 

ones, always creates an inside and an outside and, at the same time, through 

subjectification, Insiders and Outsiders.  Biesta (2010) noted two assumptions 
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present in discussions of deliberative (discourse) democracy.  The first 

assumption is that democracy can become a “normal” situation.  The question 

then becomes a practical one: “How can we make our democratic practices even 

more inclusive. . .and how can we include even more people into the sphere of 

democratic deliberation” (p. 118).  The assumption is that if we continue to 

increase the bounds of our inclusivity, we will eventually reach a state/State in 

which democracy is “normal.”  In this case, the inside has expanded so much 

that there is no longer an outside; hence, there are no longer any Outsiders.  The 

second assumption is that inclusion is a process by which Insiders make room on 

the inside and bring the Outsiders inside—that inclusion is “a process that 

happens ‘from the inside out’” (p. 119).  In this case, only those already 

considered “democratic” can bring Outsiders inside.  In terms of social 

subjection, Insiders are subjects of enunciation and Outsiders are subjects of the 

statement—it is the insiders who get to express whether or not the Outsiders are 

‘democratic’ enough to enter the inside and determine the terms on which they 

can do so.     

Following Rancière (1999), Biesta (2010) suggested that rather than 

“normal,” perhaps democracy is something that is sporadic.  Rancière (1999) 

defined democratic politics as something that “happens” from time to time against 

a background of a police order.  This differs from the typical conception of politics 

as continuous relating to ongoing actions of representatives in government.  

According to  Rancière (1999),  “the distribution of places and roles that defines a 

police regime stems as much from the assumed spontaneity of social relations of 
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social relations as from the rigidity of state functions” (p. 29; quoted in Biesta, 

2010, p. 120).  The police regime is all-inclusive in the sense that everyone has a 

position within it, albeit not equally desirable positions.   Rancière (1999) 

conceptualized politics as “the disruption of the police order in the name of 

equality” (Biesta, 2010).  Rancière (1991) reserved the term politics for specific 

actions that directly break with “the tangible configuration whereby parties and 

parts or lack of them are defined by a presupposition that, by definition, has no 

place in that configuration” (pp. 30-31).  The act of disrupting the police order in 

this way also creates new political identities for those who have crossed the line 

to the inside.  The process of inclusion, in this case, comes from the Outsiders 

rather than by invitation from the Insiders.  Democracy-as-disruption, or 

“democratization,” Beista (2010) argued, provides a different type of inclusion—

‘”the inclusion of what cannot be known to be excluded in terms of the existing 

order” (p. 125).  In Deleuzoguattarian terms, this process is the process of 

deterritorialization.  The Outsiders create a line of flight that escapes from the 

police state.  The cutting edge of deterritorialization enacts shifts in the 

configuration of the previous assemblage.   

 Becoming-democratic is deterritorialization. It molecularizes the aggregate 

(the math class, in the case of mathematics education) in order to change its 

nature.  The outside or the Outsiders suddenly include itself/ themselves.  

Becoming-democratic is a molecular rather than molar process.  Deleuze and 

Guattari (1980/1987) distinguished two types of multiplicities: mass multiplicities, 

which are molar multiplicities, and pack multiplicities, which are molecular 
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multiplicities.  The characteristics of mass multiplicities include “large quantity, 

divisibility and equality of the members, concentration, sociability of the 

aggregate as a whole, one-way hierarchy, organization of territoriality or 

territorialization, and emission of signs” (p. 33).  These are the characteristics of 

democratic states/States.  The democracy of the democratic state/State is 

proceeds by “rule of the masses.”  In the mathematics classroom, the democratic 

state/State can take on any of the forms described by Mukhopadhyay (2009), 

although the mass multiplicity characteristics take on different senses.  In both 

the competitive and participatory democratic state/State, the notion of 

meritocracy assumes formal equality among members in the form of imagined 

equal opportunity.  Everyone has his or her chance, yet the chances serve to 

divide students into concentrated categories of “good students” and “bad 

students.”  Sociability in the competitive democratic state/State consists of 

relations in which individuals accumulate or aggregate individual knowledge, 

which they “own” through turn taking or vote casting.  One-way hierarchy installs 

the teacher as authority dealing out chances, ensuring everyone has a turn, and 

regulating the accumulation of individual knowledge.  Mathematical knowledge is 

territory to conquer, a mountainous territory with uncanny semblance to a 

pyramid.  Everyone gets a chance, but some will fall (or be knocked) off earlier 

than others.  Ultimately, the goal is the emission of signs: pass-fail; Level I-II-III-

IV; A-B-C-D-F; “gifted”-“at grade level”-“special needs.”   Competitive and 

participatory democracy maintain the stasis of the pyramid. 

  The discourse democratic state/State, although preferable to the 
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competitive and participatory forms, has the same characteristics but organized 

in a different way.  Instead of equal opportunity, members are now equal in that 

they formally have an equal voice.  The concentration of authority is no longer in 

the teacher, but the majority.  Sociability of the aggregate consists of relations in 

which majority knowledge is determined through deliberation and regulated by 

social and sociomathematical norms.  The emission of signs takes on a more 

qualitative and nuanced nature: good explanation, stronger justification, more 

efficient strategy.  Discourse democracy maintains the stasis of normal 

discourse.   

 Becoming-democratic disrupts stasis.  Whereas the democratic 

state/State proceeds by “rule of the masses,” becoming-democratic proceeds by 

the molecular un-ruling of the pack.  Deleuze and Guattari (19801987) wrote, 

“Among the characteristics of the pack are small or restricted numbers, 

dispersion, nondecomposable variable distances, qualitative metamorphoses, 

inequalities as remainders or crossings, impossibility of a fixed totalization or 

hierarchization, and projection of particles” (p. 33).  The pack enters from the 

outside, dispersing among lines of flight through the territory, disrupting the state 

of the State.  The pack does not arrive with proof of invitation, but rather includes 

itself on its own terms.  The pack does not demand equal rights, does not enter a 

bid to be considered exchangeable.  Instead, the pack affirms difference by 

entering on its own terms.  The pack does not demand an equal opportunity to 

climb and fall from the pyramid, but instead deterritorializes it so that it undergoes 

a qualitative metamorphosis, changing its shape all together.  Nor does the pack 
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demand an equal voice in the normal discourse, but instead introduces a 

question into the discourse that de-normalizes it.   

 Deleuze and Guattari (1980/1987) emphasized that the “pack” nor the 

“mass” ever exist in pure form in actual situations.  As a form of 

deterritorialization, becoming-democratic taken to its abstract limit would result in 

annihilation.  On the other hand, there is no way to perpetually be in the state of 

democracy because difference eternally returns.  Irrespective of whoever and 

whatever is brought into the “inside,” a new outside will come into being simply 

because things, people, situations change.   

 Scholarship about mathematics education is rarely addressed almost 

exclusively to educators and rarely addressed to students.  Yet, the concept of 

becoming-democratic involves a disruption from the “outside,” in which the 

excluded include themselves on their own terms.  Assuming the teacher is on the 

inside (which may not always be the case), and becoming-democratic comes 

from the outside, what role can teachers play?  It is useful to return to Deleuze 

and Guattari’s (1980/1987) “directions” for how to embark on a line of flight: 

“lodge yourself on a stratum, experiment with the opportunities it offers . . .find 

potential movements. . .possible lines of flight, experience them, produce flow 

conjunctions here and there. . . .It is through a meticulous relation with the strata 

that one succeeds in freeing lines of flight. . .” (p. 161).  Teachers cannot embark 

on lines of flight alone.  However, teachers can provide “launching sites” from 

which students might embark on lines of flight, and some states/States of 

democracy make it easier to provide launching sites than others.  While 
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discourse democracy involves establishing social norms and sociomathematical 

norms, teachers can leave cracks in the all of this “establishing” which allow for 

the process of becoming democratic. 

3.7 Becoming-Democratic Through Mathematical Inqu[e e]ry 

 In my previous work, I (Rands, 2009) used queer theory to develop the 

concept of mathematical inqu[ee]ry. Mathematical inqu[ee]ry illustrates 

becoming-democratic mathematics education in two ways.  First, the creation of 

the concept of mathematical inqu[ee]ry is an example of becoming-democratic 

scholarship in education.  Second, mathematical inqu[ee]ry can be used in 

mathematics classrooms to provide launching sites from which students can 

embark on lines of flight. 

 Mathematical inqu[ee]ry un-rules two states in educational scholarship by 

entering two domains without invitation.  On the one hand, I found that some 

subjects were more “queerable” than others.  While numerous educational 

scholars have explored ways to “queer” reading, writing, science, social studies, 

and music, math has remained the subject that “dare not speak its name.”  

Perhaps most illustrative is the journal article title, “Reading, Writing, and Rita 

Mae Brown” (Boutillier, 1994), in which an author’s name replaced “’rithmetic” in 

the “three R’s” of elementary education.  On the other hand, mathematics 

educators have overwhelmingly excluded “queer” in mathematics education 

scholarship. Hence, mathematics is a line of flight into queer scholarship and 

“queer” is a line of flight into mathematics education. 
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 Mathematical inqu[ee]ry is one of two possible approaches to combining 

“queer” and mathematics education.  The two approaches follow two different 

meanings for “queer.”  One way the term “queer” is used  as an umbrella term for 

“lesbian, gay, bisexual, transgender. . .”  (LGBT) This use is founded on the 

notion of identity as fixed and part of an essential self.  Here, queer is defined in 

opposition to “straight.”  The second use of “queer” is in the sense of queer 

theory.  In this sense, identity is viewed as unfixed, contingent, and discursively 

produced.  Here, queer is not opposed to “straight,” but rather against normalcy 

or normativity.  An approach to queering mathematics education based on the 

first sense involves finding ways to include LGBT people and issues in 

mathematics class.  I called this approach, “Add-Queers-and-Stir” mathematics 

education.  An approach to queering mathematics education through queer 

theory involves following Nelson’s (1999) call to move from inclusion to inquiry.  

Mathematical inqu[ee]ry involves questioning what comes to be taken-for-granted 

in mathematics education: tasks, strategies, ways of thinking and doing 

mathematics, the way mathematics is used to interpret the world.  I gave several 

examples for each of the approaches.  In geometry, for example, a teacher 

taking the “Add-Queers-and-Stir” approach might have students explore the 

relation between perimeter and area of equilateral triangles in conjunction with 

learning about the history and symbolism of the pink triangle.  A mathematical 

inqu[ee]ry approach to geometry might involve questioning the ways in which 

manipulative sets and other curriculum materials normalize certain shapes (e.g. 

regular polygons over irregular) and the way that influences the way we think and 
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interact with geometrical shapes as well as how certain “shapes” of families are 

normalized in our society.  Mathematical inqu[ee]ries such as this can provide a 

launching site for students to embark on lines of flight.  Students may 

deterritorialize stagnant images of thought about geometry and families.  They 

may also create new (at least new to them) geometrical shapes or new ways to 

classify shapes as well as create new ways of thinking about family. 
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Conclusion

 This dissertation has attempted through mapping to “lay everything out on 

a single plane.”  In doing so, each plateau lodged itself on a stratum, and through 

engagement with the current assemblages on the stratum, moved to something 

new.  A reader already familiar with Deleuzian and Deleuzoguattarian concepts--

such as assemblages, strata, lines of flight, subjects of enunciation, subjects of 

the statement, deterritorialization, the capitalist axiomatic, rhizomes—could read 

the plateaus in any order.  Each plateau is a “middle” and is between each of the 

others.  Yet, each plateau sends out rhizomatic stems that connect to each of the 

others plateaus. The conclusion highlights two types of rhizomatic 

interconnections across plateaus: 1) connections among assemblages across 

plateaus, and 2) lines of flight that provide possibilities for cracking open the 

strata.  Throughout the conclusion, parenthetical numbers refer to sections in the 

plateaus.  For example, “(1.5)” refers to the fifth section in the first plateau, or the 

section entitled “Deleuzian Dialectics: Repetition, not Opposition.”  Parenthetical 

numbering is intended to allow the reader to revisit the plateaus to follow the 

rhizomatic stems connecting the plateaus. 

Strata in Mathematics Education 

The first type of connections across plateaus link assemblages embedded 
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in each stratum of each plateau to other assemblages embedded in strata in the 

other plateaus.  Such linkages form larger strata stretching across plateaus.  

Strata, as Deleuze and Guattari (1980/1987) can remind us, “consist of giving 

form to matters, of imprisoning intensities or locking singularities into systems of 

resonance and redundancy” (p. 40).  When read in juxtaposition, the plateaus 

encompass numerous resonances or redundancies that can be described as 

“acts of capture” forming three large strata.  The first large stratum connects the 

talent-competition assemblage from the first plateau, the problems-practice 

assemblage from the second plateau, and the competitive democratic state/State 

of the third plateau.  The second stratum connects the all-regardless assemblage 

from the first plateau, the problem-solving assemblage from the second plateau, 

and the participatory democratic state/State from the third plateau.  The third 

stratum connects the contradiction-dialectic assemblage from the first plateau, 

the problem-posing lines of flight from the second plateau, and the discourse 

democratic state/State from the third plateau.  The three purposes of education 

that form Borromean rings in the third plateau interconnect in more complicated 

ways across the three plateaus. 

Mathematics Education Stratum I 

 Schizoanalysis of the concept of equity captured in NCTM’s (2000) equity 

principle of the Principles and Standards for Teaching Mathematics found that the 

concept of equity pushes against the pervasive belief in North America that 

mathematical talent is a scarce commodity possessed by only a limited number 

of individuals.  The machine that produces the desire to maintain this belief is the 
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talent-competition machine, which works to doubly articulate a form of expression 

(mathematician—talent—male—masculine—White—suburban—affluent/ middle 

class—English-speaking. . . ) with a form of content (student/teacher 

interactions—tracking—scheduling—honors/ advanced placement courses—

timed tests—independent practice—decontextualized problems—competitions. . 

.) to form a talent-competition assemblage, which works to include certain people 

and exclude others in those who can be seen as having mathematical talent 

(1.1).  The meritocracy machine functions to maintain a competitive democratic 

state/State in mathematics classrooms, in which student success and position of 

power comes from the student’s ability to quickly access information (3.4.1).  The 

competitive democratic state/State invokes the meritocracy machine, which links 

the social efficiency assemblage of enunciation and the social mobility 

assemblage of enunciation into one single assemblage of enunciation with 

capital as the site of subjectification  This single assemblage of enunciation is 

linked to the machinic assemblage of  the stratified educational system (including 

the hierarchy of grade levels, differential prestige of schools, college rankings, 

grade point averages, honors and Advanced Placement classes, etc.) (3.3). At 

the level of the mathematics classroom, the problems-practice assemblage 

functions to maintain the state/State of competitive democracy.  In the problems-

practice assemblage, the teacher presents new concepts or procedures, 

demonstrates how to use them, and then assigns “problems” for students to use 

to “practice” what they have just been shown (2.1).  This problems-practice 

assemblage easily plugs into the competitive democratic state/State: student 
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success and power come from being able to quickly access and use concept or 

procedure that was just presented (3.4.1).  The problems-practice assemblage 

becomes an allocation machine (3.4.1).  Moreover, the talent-competition 

assemblage differentially allows students to be seen as talented if they not only 

access the procedures or concepts quickly, but also “break the rules.”  In other 

words, based on the flows of power in the mathematics classroom, certain 

students (those who are male, White, English-speaking. . .) may be seen as 

especially talented if they skip steps or refuse to “show their work” whereas this 

may not be the case for students not already included in the talent stratum (1.1).  

Ultimately these flows of power coalesce into credentials (grades, class/ track 

placements, degrees, etc.) which serve as signaling systems that communicate 

distinctions among consumers (students) to employers about which match 

applicants to match with which existing jobs (3.1).  Despite the micropolitical 

flows of power that maintain stratification, the linking of the social efficiency 

assemblage of enunciation and the social mobility assemblage of enunciation 

into one single assemblage hooks employers and consumers (students) into this 

one pyramidal machinic assemblage.  From the perspective of the taxpayer and 

employer, the assemblage of enunciation sounds something like, “Schools exist 

to prepare workers for their positions within the stratified economic and social 

structure”.  From the perspective of the consumer (student), the assemblage of 

enunciation sounds something like, “Schools exist to prepare (me) as a worker 

for my (hopefully more socially and economically desirable) position (than 

others’) in the stratified economic social structure.”  The combined social 
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efficiency-mobility assemblage of enunciation socially subjects both 

taxpayers/employers and consumers/students at the point of the capital 

axiomatic; however, taxpayers/employers are subjects of enunciation while 

consumers/students are subjects of the statement.  The social mobility version of 

the assemblage of enunciation holds out hope to consumers/students that if they 

accumulate enough credentials, they may be matched to more desirable social 

and economic positions.  Micropolitical flows of power captured in the talent-

competition assemblage (1.1) and through the problems-practice assemblage 

(2.1) enacted in competitive democratic states/States (3.4) create “striated” 

spaces in mathematics classrooms and broader mathematical education 

contexts (e.g. school-wide math program) which differentially distribute “talent” 

along lines of inclusion and exclusion.  Striated spaces are the organized spaces 

under the State as an apparatus of capture (Deleuze & Guattari, 1980/1987)—in 

this case, the competitive democratic state/State. 

Mathematics Education Stratum II 

 The second large stratum that crosses all three plateaus links the all-

regardless assemblage from the first plateau, the problem-solving assemblage of 

the second plateau, and the participatory democratic state/State of the third 

plateau.  The Liberal Multicultural Education machine deterritorializes the talent-

competition assemblage by challenging the idea that talent is a scarce 

commodity which only a few students can possess.  As the talent-competition 

assemblage is deterritorialized, the Liberal Multicultural Education machine 

reterritorilizes on the all-regardless assemblage, as seen in the stylistic repetition 
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of the word “all” twenty times in the equity principle of NCTM’s (2000) Principles 

and Standards.  The all-regardless assemblage captures the idea that all 

students regardless of their (racial, gender, economic, sexual. . .) backgrounds or 

identities can successfully learn mathematics.  Liberal multicultural education is 

rooted in liberal theory, which attempts to define “liberty” or “freedom” and 

proposes that “liberty” is inherently good, emphasizes the individual over groups, 

focuses on individual rights, views the government’s role as protecting individual 

rights, and supports pluralism.  The combining of positive and negative 

conceptions of freedom to construct the all-regardless assemblage implies that 

all students should be treated equally (the same) regardless of their background.  

In Deleuzian (1968/1994) terms, the all-regardless assemblage institutes a 

“generality [which] expresses a point of view according to which one term may be 

exchanged or substituted for another,” (p. 2) which, in the context of mathematics 

education, leads to “difference blindness”—the idea that we should not notice or 

care about the various ways in which we differ from one another.  The Liberal 

Multicultural Education machine addresses difference by attempting to erase it 

(1.2). The Liberal Multicultural Education Machine’s reliance on identity, analogy, 

and resemblance prevent the affirmation of difference, instead both erasing 

difference through difference-blindness and glorifying a superficial version of 

diversity through a pluralistic fetish that turns cultural differences into static 

objects.  In mathematics classrooms, this attempt to institute a generality in 

which one term may be exchanged or substituted for another plays out in the 

development of a participatory democratic state/State, in which each person 



 

184 

supposedly has one “vote” or everyone gets his or her “turn” (3.4).  The emphasis 

on individuals over groups in liberal theory and liberal multicultural education 

leads to an individualistic view of participation with an emphasis on each 

individual’s actions and statements.  The move from competitive democracy to 

participatory democracy links with the deterritorialization of the problems-practice 

assemblage and reterritorialization onto the problem-solving assemblage.  In a 

competitive democratic state/State, the teacher presents and demonstrates 

procedures or concepts, which students then “practice” in the following 

“problems.”  A new focus on student participation and each student having a 

voice shifts the teacher’s role to problem-presenter and students’ role to problem-

solver.  The problems-practice assemblage deterritorializes and a new problem-

solving assemblage is constituted (2.2).  Yet, this focus on individual participation 

in participatory democratic states/States fails, as Carlone et al. (2011) found in 

science classrooms, to escape the talent-competition assemblage.  Under this 

individualistic participatory democratic state/State, students compete to have “my 

turn” or share “my idea” (3.4).  Although students may be working with partners 

or in groups to solve problems for which procedures have not been 

demonstrated, each individual “owns” his or her individual ideas.  The classroom 

becomes an arena in which students compete to occupy the classroom space 

through their individual intellectual property.  Micropolitical flows of power 

regulate whose bids for the floor are acknowledged and the same lines of 

inclusion and exclusion which striate the talent-competition assemblage (1.1) 

continue to striate the space of the mathematics classroom.  The simplistic 
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conception of participation as casting votes or taking turns fails to unlock the 

Borromean rings linking democratic equality, social efficiency, and social mobility.     

The Liberal Multicultural Education Machine is at work deploying the All-

Regardless-Assemblage (1.2) to connect the democratic equality goal to the 

pyramidal machinic assemblage in place in schools and the social and economic 

structure under the capitalist axiomatic (3.3), as exemplified in the “equal growth 

for all” idea of value-added assessment (3.4). 

Mathematics Education Stratum III  

 The third large stratum that stretches across all three plateaus links the 

contradiction-dialectic assemblage of the first plateau, the problem-posing lines 

of flight of the second plateau, and the discourse democratic state/State of the 

third plateau.  Critical multicultural education, rooted in critical theory, addresses 

the difference-blindness and power evasion of liberal multicultural education 

through a focus on classes or groups rather than individuals.  Power is seen not 

as in the hands of individuals who may or may not be biased, but rather as a 

dialectical relation between groups or classes, leading to the privileging of certain 

groups and the oppression of other groups.  Furthermore, the struggle against 

oppression takes place within a dialectic between structure and agency—

individuals and groups have the capacity to act in the world, but the material 

conditions of the world constrain the capacity to act (1.3).   Yet, critical-theory 

based critical multicultural education does not circumvent the four shackles of 

mediation—identity, analogy, resemblance, and opposition.  Despite avoiding 
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difference-blindness and power-evasion through an acknowledgement of 

privilege/oppression at a group level, critical-theory based multicultural education 

maintains the Aristotelian “method of division” in which one’s identity is 

determined based on the inclusion with a particular class or group.  Identify, 

analogy, and resemblance still form the ontological underpinnings of critical 

multicultural education.  The fourth shackle of mediation, opposition, takes on 

special significance as the foundation of Hegelian and Marxian dialectics.  Unlike 

Aristotle who saw specific (difference at the level of “species”) as the perfect form 

of difference, in Hegelian and Marxist dialectics, contradiction (difference at the 

level of “genus”) is seen as the perfect form of difference.  However, 

contradiction, in Hegelian and Marxist dialectics, posed few problems, but 

instead resolves itself and thereby resolves difference by relating it to a ground.  

In this way, difference is still assumed to be something to be resolved through 

contradiction, a new version of difference erasure (1.4).  In the discourse 

democratic state/State in mathematics classrooms, this resolving of differences 

takes place through deliberation and dialogue.  Unlike in  a participatory 

democratic state/State in which teachers and students mainly attended to the 

frequency or amount of participation and ensured that each person got his or her 

“turn,:” in a discourse democratic state/State, teachers and students also attend 

to the characteristics of students’ discourse as well as the power relations 

connected with discourse patterns.  Rather than an individualistic view of 

participation, the perspective on participation in a discourse democratic 

state/State is a sociocultural perspective centered on interconnections between 
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discourse and sociomathematical norms.  Moreover, in a discourse democratic 

state/State, teachers and students acknowledge the ways in which organizational 

aspects of schooling and society make active participation easier for some 

students than others (3.4.3).  Addressing the micropolitical flows of power within 

the mathematics classroom as well as the ways in which these flows continue 

outside of the classroom engenders the deterritorialization of the solving side of 

the problem-solving assemblage and launches problem posing lines of flight.  

Freirian mathematical problem-posing pedagogy involves resolving the 

contradiction between teachers and students to create teachers-students and 

students-teachers who read the world with mathematics in order to transform 

society.  Brown-and-Walter problem posing similarly resolves the contradiction 

between teachers and students by repositioning students, not only teachers, as 

posers of mathematical problems (2.3).  Brown and Walter’s version of problem 

posing less directed toward transforming the world outside of the classroom, 

although Brown urges mathematics educators to view mathematical 

considerations as only one important dimension of real-world problems, which 

often are more fundamentally ethical problems (2.4).  This move to problem-

posing  and the acknowledgement that mathematical problems are really ethical 

or political problems resonates with Deleuze’s (1968/1994) assertion that 

“problems are always dialectical. . . .What is mathematical. . .are the solutions” 

(p. 179).  However, Deleuzian dialectics reject opposition as the basis of the 

dialectical and instead move to repetition.  The heart of a Deleuzian dialectic 

consists of the positivities of difference and repetition rather than negation in the 
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form of opposition or contradiction.  Rather than ignoring difference altogether 

through the difference-blindness of liberal multicultural education or assuming 

that differences can be resolved through Hegelian or Marxist contradiction, 

Deleuzian dialectics affirm difference (1.5).  Affirming difference requires a form 

of generative form of problem-posing that allows the eternal return of difference 

in implicit variation arising from encounters between teachers and students (2.6).  

The discourse democratic state/State can lay the groundwork for such 

encounters (3.4.3), but since its purpose is to mediate and resolve differences, it 

does not go far enough to engender Deleuzian problem-posing.  The discourse 

democratic state/State, as a state/State, still serves as an apparatus of capture.  

Lines of inclusion and exclusion are still determined from the inside.  Affirming 

difference, Deleuzian problem-posing, becoming-democratic in the mathematics 

classroom, all require encountering unmediated difference from the Outside (1.6, 

2.6, 3.6).   

Lines of Flight in Postcritical Mathematics Educati on 

Interwoven throughout the plateaus are strategies for embarking on lines 

of flight, providing possible ways of cracking open the strata to allow encounters 

with unmediated difference, to generate learning.  As a “normative” ontology, 

Deleuze and Guattari’s ontology of becoming is a call for transformative action.  

This section revisits the interwoven strategies and examines some nascent ideas 

for ways to use them in mathematics education. 
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Cultural becoming (1.6) 

 Often mathematics educators take a multicultural approach by 

incorporating mathematics games from around the world or from historical 

cultures of the past.  These often become static images of how people of “other” 

cultures use or have used mathematics.  In contrast, Kubota (2004) called for a 

view of culture as “diverse, dynamic, and. . .discursively constructed” (p. 38).  

Through ongoing rhythmic repetition, cultures are in the process of becoming.  

This is true also of mathematics as a cultural practice.  Cultural becoming in 

mathematics class entails using a dynamic ethnomathematics approach that 

acknowledges that  

identities are not homogeneous and eternal, but rather correspond 
to an area of tension between permanence and alteration, where--
within given contexts--room is left for psycho-social growth 
processes.  A similar dynamic interpretation of culture fully links up 
with D'Ambrosio's plea for educational reform: “More attention 
should be paid to students and teachers as human beings, and we 
have to realize that mathematics--the same is true with respect to 
other disciplines--are epistemological systems in their socio-cultural 
and historical perspective and not finished and static entities of 
results and rules" (D'Ambrosio, 1990, p. 374). (François & 
Kerkhove, 2010, p. 127). 
 

Cultural becoming in mathematics education also involves recognizing 

that mathematics is always already cultural—not just when examining the 

way mathematics is used in cultures other than one’s own.  Cultural 

becoming in mathematics education means addressing the becoming-

cultural of one’s own mathematical practices.  “Becoming-cultural” is not 

intended to imply that one’s own mathematical practices were at one time 

not cultural and are now becoming so; instead, “becoming-cultural” is an 
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eternally returning event, the being-cultural as the cultural “being of 

becoming as such” (Deleuze, 1962/1983, p. 23).  One’s mathematical 

practices are always already cultural; becoming-cultural in mathematics 

classes involves asking, “How do my mathematical practices function as 

cultural practices?  What are my mathematical practices doing culturally?” 

Question how differences are produced, legitimated,  eliminated (1.6) 

 Problematize difference.  Do not allow the “problem” of difference to be 

resolved through mediation, deliberation, erasure.  Explore “why inequality 

among different groups exists and how various kinds of difference are produced, 

legitimated, or eliminated within unequal relations of power” (Kubota, 2004, p. 

38).  In mathematics classes, this means acknowledging and addressing the 

micropolitical flows of power and desire in the classroom and the ways in which 

they connect outside of the classroom.  It means examining interactions in the 

mathematics classroom and asking questions such as the following: “Have we 

established a competitive democratic state/State?  A participatory democratic 

state/State?  Are we caught up in the problems-practice assemblage?  The 

problem-solving assemblage?  In what ways do our interactions plug into the 

allocation machine?  What micropoltical flows of power and desire are taking 

place?  How do these connect with power dynamics outside of the classroom?”   

Parodic repetition (displace) (1.6) 

Parodic repetition—repetition which has the effect of displacing--in 

Deleuzian terms is rhythmic repetition, in which what returns is difference.  
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Failure to repeat the same is to refuse the envelopment of rhythmic repetition 

within a particular cadence.  According to Butler (1990), parodic repetition 

“exposes the phantasmatic effect of abiding identity as a politically tenuous 

construction” (p. 179).  How might parodic repetition serve as a strategy to 

displace the identity of “math person” as currently constituted in a particular 

classroom context?  James Williams’s (2011) performance during the North 

Carolina Council of Teachers of Mathematics Leadership Seminar, in my 

reading, incorporated parodic repetition of the problems-practice assemblage to 

displace the identity of “good mathematics teacher.”  Without prelude, he began 

a “lesson” on the “FOIL method30” as if the attendees of the leadership seminar 

(math teachers, math coaches, math teacher educators) were middle school 

students.  The jarring familiarity of the steps of the lesson (following the 

problems-practice assemblage) and the false earnestness in his tone of voice 

displaced the familiar image of “what math teachers do” to reveal the way this 

image of teaching functioned to prevent learning.  Might mathematics teachers 

be able to have a similar effect through parodic repetition of the “good student” 

who always has the correct answer first?  Might such a performance displace the 

identity of “good math student” in a way that opens up other ways of being—or 

becoming—a “good math student”?  Could parodic repetition be used in this way 

                                                 

30 In teaching students about the distributive property of multiplication over addition, many 
teachers teach students to use the mnemonic device “FOIL.”  Consider an expression of the 
form (a + b)(c + d).  The letters in FOIL stand for First, Outside, Inside, Last, where a and c are 
the “first” terms, a and d are the “outside” terms, b and c are the “inside” terms, and b and d 
are the “last” terms.  As a mnemonic device, FOIL is intended to help students remember that 
(a + b)(c + d) = ac + ad + bc + bd.  Often this mnemonic device is taught as a method in place 
of a conceptual understanding of the distributive property of multiplication over addition.   
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without harming certain groups of students? 

Refuse to be represented/ to represent (1.6) 

 This strategy might involve refusing to represent the “token” person in a 

particular category, refusing to speak “as” a woman/person of color/transgender 

mathematician or math teacher or “good math student.”   It might mean 

challenging the contexts used in a program such as Mathematics in Context 

(MiC), stating, “That’s not my context.”  A teacher might also use this strategy by 

refusing to be the one to represent the students in the class in problems or 

contexts—and instead allowing the contexts and problems to come from the 

students. 

Refuse to know what “everybody” knows” (1.6) 

 “Many people,” Deleuze (1968/1994) argued, “have an interest in saying 

that everybody knows ‘this’, that everybody recognizes this, or that nobody can 

deny it” (p. 131).  Converting “givens” to “takens” requires someone, “if only 

one—with the necessary modesty not managing to know what everybody knows, 

and modestly denying what everybody is supposed to recognize” (Deleuze, 

1968/1994, p. 130).  This strategy might involve refusing the knowledge that 

“boys are just better at math than girls,” or “you shouldn’t see race,” or “math is 

neutral and universal.”  It might mean refusing the familiar problems-practice 

assemblage or the refusal to know that mathematics problems come from 

teachers and textbooks.  It might mean refusing to know that “math is hard.” 
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Question cultural representations (1.6) 

 Call into question the representations of cultures: “images of a certain 

culture or language are neither neutral nor objective, rather, they are discursively 

constructed” (Kubota, 2004, p. 38). Question the representations of cultures in 

mathematics textbooks, curricula, and other mathematics resources.  Question 

“math manipulatives” as cultural objects.  Math manipulatives such as pattern 

blocks, snap cubes, and algebra tiles are often seen as neutral, non-cultural 

objects; yet, these objects have been created within cultural contexts for 

particular cultural purposes.  What do snap cubes say about mathematics as a 

cultural practice in schools?  What assumptions about how mathematics 

functions as a cultural practice are captured in base-ten blocks? 

Learn through crisis (1.6) 

Affirming difference requires learning through the crisis (Kumashiro, 2004, 

p. 27) instigated in the return of difference.  That is, as Deleuze (1968/1994) 

concluded, “Learning takes place not in the relation between a representation 

and an action (reproduction of the Same) but in the relation between a sign and a 

response (encounter with the Other)” (p. 22).  Learning through crisis involves 

acknowledging and addressing desire, and working through the realization that 

what we desire can be productive in oppressive ways.  Mazzei (2011) examined 

the ways in which White women pre-service teachers’ desire to “carry on as 

before” (p.660),  that is, to maintain White privilege, produced a “desiring silence” 

(p.660 ) which continued to “perpetuate a racially inhabited silence that limits, if 
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not negates, an open dialogue regarding race and culture” (p. 661).  Recently I 

witnessed the force with which desiring silences can operate.  At a local teacher 

education conference, I attended a session led by a man who taught multicultural 

education courses for pre-service teachers.  He explained that he had taught the 

course many times and had found that students were reluctant to talk about 

issues of power.  He shared his new theoretical framework for teaching 

multicultural education courses which was designed to make the courses more 

comfortable for students by avoiding overtly political issues.  In this case, 

students’ desiring silences won out, maintaining a “safe” space in which privilege 

could be maintained (and hence, oppression perpetuated).   

Mazzei (2011) encourages teacher educators not to overlook or ignore 

desiring silences, but instead to engage them: 

what is possible is that as teacher educators, we provide 
opportunities that encourage a continual search for the potential 
movements of deterritorialization or possible lines of flight that may, 
over time, produce not a desiring silence, but the production of a 
desiring pedagogy.  If, as teacher educators, we fail to recognize 
how desire functions with white preservice teachers by failing to 
attend to a desiring silence, then students can resist and reassert 
their power.  If, on the other hand, we engage the silence, connect 
our desires with those of our students, then students may still 
resist, but they may also begin to destratify in ways that produce 
the possibility of deterritorialization, the possibility of a desiring 
pedagogy. (pp. 666-667)   

 
Another example of the production of a desiring-silence became evident in a 

discussion I had with a group of fourth- and fifth-grade students from a variety of 

schools in central North Carolina.  In discussing teachers’ responses to the use 

of the term “gay” in schools, it became evident that in response to “gay” being 

used as an insult or in the phrase “that’s so gay,” many teachers were simply 
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telling students not to use the word gay.  While teachers’ responses may have 

functioned to deter homophobic bullying, the responses also functioned to 

produce a desiring-silence about gay lives altogether, which maintained straight 

privilege in schools (and its correlate, lgbt oppression).  Desiring-pedagogy 

required a pragmatics that engaged this silence and examined how language 

and silence were functioning to keep “gay” on the outside of schools.   

 The rhetoric of mathematics and mathematics education as neutral is one 

way that desiring silences are produced in mathematics education.  Math is often 

the content area to which teachers allude as an example of when and why not to 

use social justice-focused teaching.  Many times, I have heard current and future 

teachers say something like the following in response to the idea of teaching for 

social justice: “I’m not going to just stop in the middle of my math lesson to talk 

about racism [or sexism or heterosexism. . .]”  The emphasis and tone embedded 

in the statements take on the ring of what “everybody knows,” of common sense: 

everyone knows that math has nothing to do with social justice; it is just common 

sense that a teacher would have to stop the lesson in order to completely change 

the subject to social justice.  Desiring math functions here as desiring silence 

about social justice.  As Mazzei (2011) pointed out, engaging silence requires 

desire to desire its own transformation.  Teaching math for social justice 

perspectives engage this silence by changing the image of thought that produces 

“math” and “social justice” as mutually exclusive concepts and instead produce a 

new concept in which desiring math and desiring social justice recombine into a 

new assemblage.  Desiring-pedagogy (Mazzei, 2011) involves learning through 
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the crisis (Kumashiro, 2004) of transforming desire. 

“Conjugate” (2.6) 

The problems-practice assemblage assumes that students learn math 

through imitation, by replicating procedures that resemble those the teacher just 

demonstrated.  Learning, Deleuze (1968/1994) claimed, is not imitation.  Instead, 

it is conjugation: 

To learn is to enter into the universal of the relations which 
constitutes the Idea. . .To learn to swim is to conjugate the 
distinctive points of our bodies with the singular points of the 
objective Idea in order to form a problematic field.  This conjugation 
determines for us a threshold of consciousness at which our real 
acts are adjusted to our perceptions of the real relations, thereby 
providing a solution to the problem.” (p. 165) 

 In the problem-solving assemblage in which problems are placed at the 

center of instruction, students are no longer simply imitating the teacher by 

“applying” a demonstrated procedure to “exercises”; instead students must 

respond the a problem for which an obvious solution is not available. Yet, most 

problem solving in problem-centered classrooms still is not  “conjugation” 

because the problems still come from the elsewhere (i.e., from the teacher) and 

are given to the students as “ready-made” problems.  In Deleuzian problem-

posing pedagogy, teachers and students encounter one another within a 

dialectical problematic field in which the political and ethical are not considered 

irrelevant aspects to be crossed out and ignored.  We can replace “swim” with 

“math” in the quote above:  

To learn math is to conjugate the distinctive points of our bodies 
with the objective Idea in order to form a problematic field.  This 
conjugation determines for us a threshold of consciousness at 
which our real acts are adjusted to our perceptions of the real 
relations, thereby providing a solution to the problem. 
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Conjugation—learning--is the actualization of a virtual Idea through action in the 

world.   Protevi (2010) gave an example of how such actualization occurs 

according to a Deleuzian perspective.  He examined the way in which the Idea of 

“football games” is actualized under different conditions leading to variations or 

multiple solutions to the problematic field containing the elements of players, a 

playing field, and a ball: 

What is the Idea that conditioned the genesis of American football?  
Well, it would be a multiplicity of differential elements, differential 
relations, and singularities. . . .But American football is only one 
actualization of this Idea.  Changes in the elements, relations, and 
singularities will change the game.  Forbid the forward pass and 
blocking and you have rugby. . . .Make it a completely savage 
festival and you have either Gaelic or Australian rules football.  
Restrict the handling of the ball to the goalkeeper, change the 
shape of the goal and the field, install a penalty around the goal 
and you have association football or soccer. (p. 42) 

 
What this actualization is not, Protevi (2010) pointed out, is recognition of the 

“essence” of football: “It’s important to see first of all that we have not established 

a finite set of necessary and sufficient conditions for membership in a class” 

(p.43). Instead, “we have gone from an actualization to its conditions of genesis 

in a multiplicity (‘vice-diction’), and then experimented with the singularities of the 

Idea” (p. 43).  An actual problem, one that is not a “nonproblem” with an obvious 

solution, is one whose solutions relate at the level of the “being of the sensible” 

(the level of sense), not just the level of signification (the level of representation).   

Treat knowledge paradoxically (2.6) 

Deleuzian problem -posing pedagogy, as a form of anti-oppressive 

education (Kumashiro, 2004), is  
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a disarming process that allows students to escape the uncritical, 
complacent repetition of their prior knowledge and actions.  
Learning is a disorienting process that raises questions about what 
was already learned and what has yet to be learned.  Learning 
involves looking beyond what students already know, what teachers 
already know, and what we both are only now coming to know, not 
by rejecting such knowledge, but by treating it paradoxically, that is, 
by learning what matters in society. . .while asking why it matters 
(and how it can reinforce and challenge an oppressive status quo). 
(Kumashiro, 2004, p. 30) 

Paradox, for Deleuze, is what “both bring[s] language and the world together and 

keep[s] them separate” (May, 2005, p. 107).  It is paradox that enables linguistic 

meaning to be produced.  Paradox is the nexus of sense and the non-sense that 

allows sense to exist. Encounters with generating problems that require 

“conjugation”—that is learning—produce knowledge through actualization of 

solutions.  Yet the solutions to dialectical problems do not erase the problems, 

but move to questions (Deleuze, 1968/1994).  Generating problems are 

generative of questions.    As teachers and students construct mathematical 

knowledge, what images of thought about mathematics are coalescing?  What 

actions and ways of being and becoming do these images of thought about 

mathematics enable and preclude?  How do certain assemblages in the images 

of thought function to direct flows of desire within our mathematics classrooms?   

Disrupt the state/State (3.6) 

Deleuze and Guattari are critical of states, both in the sense of stasis and 

in the sense of political States. As we have seen, Deleuze and Guattari 

(1980/1987) conceptualized States as models of realization in the capital 

axiomatic which function to “capture” decoded flows in a way that maximizes 
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profit and maintains inequitable distributions of wealth.  “The State,” Deleuze and 

Guattari (19801987) wrote, “is assuredly not a locus of liberty” (p. 460).  This 

political philosophical critique of States is interconnected with an ontological 

critique of stasis or “being” in favor of an ontology of becoming. 

Disrupting the state/State in mathematics classrooms stimulates the 

creation of new political identities for those who have crossed the line to the 

inside.  In the process of disrupting the state/State, those on the Outside include 

themselves rather than being included by those on the Inside.  In 

Deleuzoguattarian terms, this process is the process of deterritorialization.  The 

Outsiders create a line of flight that escapes from what Rancière (1999) called 

the police state.  The cutting edge of deterritorialization enacts shifts in the 

configuration of the previous assemblage.  Gutiérrez (2002) has pointed out that 

although “[m]ost researchers and educators have moved beyond thinking that it 

is mainly the fault of students themselves, their families, or their cultures as to 

why they do not perform well in mathematics” (p. 147), it is still the case that 

“proponents of equity issues tend to frame their arguments in ways that suggest 

that benefits move from mathematics to persons and not the other way around” 

(p. 147). This subtle deficit perspective frames inclusion as a process of invitation 

from those on the Inside: “Hey, you there31, on the Outside!  Come on in and 

bask in the wonders of mathematics as we see it!  We will fill you with 

                                                 

31 In Althusser’s (1970/1971) explanation of the notion of interpellation, he used the example of 
the “most commonplace everyday police. . .hailing, ‘Hey, you there.’”  Althusser (1970/1971) 
suggested “that ideology ‘acts’ or ‘functions’ in such a way that it ‘recruits’ subjects among the 
individuals. . .or ‘transforms’ the subjects into subjects” (p. 86). 
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mathematical knowledge (like a time deposit)!”   The Inside forms a body with 

organs which desires stasis.  It is assumed that the Outsiders will change, not the 

Inside.  Outsiders are invited to take their place on the Inside according to the 

regulations set forth by those policing the Inside.  On the other hand, disrupting 

the state/State requires that the Inside become a body without organs (BwO)—

stasis cannot be maintained.  Following Gutiérrez’s point, when the state/State is 

disrupted, benefits flow in the other direction, from person (Outsiders) to 

mathematics.  It is mathematics which changes, which is enriched by the 

uninvited arrival of Outsiders.  In studying the “popularization of mathematics” in 

New Zealand, Knight (1990) found that invitational inclusion that maintained 

stasis did not result in mathematics becoming more “popular” among Maori 

people: 

The aim of the popularization of mathematics is to influence the 
perception which people have of the subject. . . .Blanket attempts at 
popularization based on the perceptions which mathematicians 
have of their subject are unlikely to succeed. . .Maori people have 
been culturally alienated from mathematics and. . .attempts to 
overcome this must go beyond the superficial introduction of 
elements of Maori culture into traditional presentation of 
mathematics.  Initiatives, by the Maori themselves, firmly based on 
their own cultures have much more potential. (p. 136) 
 

Knight (1990) found that non-Maori teachers’ attempts to take a Maori 

perspective (taha Maori) to teaching mathematics promoted cultural awareness 

among non-Maori students, but were often rejected by Maori students, some of 

whom “regard[ed] the approach as positively dangerous since it salves the 

conscience of the pakeha  [non-Maori] without confronting real issues” (pp. 140-

141).  Maori initiatives, on the other hand, were based on the “fundamental 



 

201 

principle. . .that instead of starting with the mathematics and introducing a Maori 

perspective, [one] must begin with Maori culture and introduce a mathematical 

perspective” (p. 140).  In this case, it is mathematics that must change rather 

than Maori people; indeed, Knight (1990) found that this approach that allowed 

mathematics to be accepted as  “Maori knowledge” transformed mathematics by 

“blur[ing] the boundaries between subject areas [in ways] very much in line with 

traditional Maori ways of learning” (p. 142).  While Knight (1990) emphasized the 

importance of non-Maori mathematicians staying in a supporting rather than 

dominant role, the focus of Knight’s (1990) article remained on finding a way to 

“popularize” mathematics among Maori people without directly addressing the 

way in which a Maori approach enriched the field of mathematics. 

Allow pack infiltration/ Provide launching sites fo r lines of flight (3.6) 

It is the pack that disrupts the state/State.  Deleuze and Guattari 

(19801987) wrote, “Among the characteristics of the pack are small or restricted 

numbers, dispersion, nondecomposable variable distances, qualitative 

metamorphoses, inequalities as remainders or crossings, impossibility of a fixed 

totalization or hierarchization, and projection of particles” (p. 33).  The pack 

enters from the outside, dispersing along lines of flight through the territory, 

disrupting the state of the State.  The pack does not arrive with proof of invitation, 

but rather includes itself on its own terms.  The pack does not demand equal 

rights, does not enter a bid to be considered exchangeable.  Instead, the pack 

affirms difference by entering on its own terms.  The concept of becoming-

democratic involves a disruption from the “outside,” in which the excluded include 
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themselves on their own terms.  When the teacher is on the Inside, he or she 

cannot disrupt the state/State.  However, the teacher can allow pack infiltration.  

Deleuze and Guattari’s (1980/1987) “directions” for how to embark on a line of 

flight were as follows : “lodge yourself on a stratum, experiment with the 

opportunities it offers . . .find potential movements. . .possible lines of flight, 

experience them, produce flow conjunctions here and there. . . .It is through a 

meticulous relation with the strata that one succeeds in freeing lines of flight. . .” 

(p. 161).  Teachers cannot embark on lines of flight alone.  Yet, teachers can 

provide “launching sites” from which students might embark on lines of flight, and 

some states/States of democracy make it easier to provide launching sites than 

others.  Teachers can “establish” deliberative or discourse democracies while 

also leaving or opening cracks in the established state/State.  Gutstein’s projects 

are an example of ways of opening cracks in the established state/State in the 

mathematics classroom and beyond the classroom.  The projects provided 

launching sites for lines of flight that could transform stasis by using real-world 

contexts which were “inherently dangerous to the status quo because they 

prepare students to ask fundamental questions stemming from the concrete 

analysis of their lives and begin to ‘unveil reality’” (p. 31).   

Inqu[ee]r mathematically (3.7) 

Another way to provide launching sites for embarking on lines of flight is 

through mathematical inqu[ee]ry (Rands, 2009).  An “Add-Queers-and-Stir” 

approach includes lgbt people and themes to mathematics projects and problems 

while maintaining the state/State of the mathematics classroom.  This approach 
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attempts to “represent” lgbt people in the mathematics curriculum, falling into the 

trap of Deleuze’s (1968/1994) four shackles of mediation.  Mathematical 

Inqu[ee]ry, on the other hand, allows pack infiltration, provides launching sites for 

lines of flight, has the potential to transform the classroom into a Body without 

Organs and prompt transformation.  Mathematical Inqu[ee]ry treats mathematical 

knowledge paradoxically by raising questions about the nature of that emerging 

knowledge.  Mathematical inqu[ee]ry means “questioning the tasks, the 

strategies, the very ways of thinking and doing mathematics, as well as the way 

mathematics is used to interpret and act in the world” (Rands, 2009, p. 186). 

Mathematical inqu[ee]ry entails “interrogating the ‘regimes of the normal’ 

(Warner, 1993)” in mathematics and mathematics education.  When the queer 

enters mathematics education without regard to invitation, mathematics and 

mathematics education must undergo transformation.   Gutiérrez (2008, 2011) 

used Anzaldúa’s (1987, 2002) term “Nepantla” to describe a “liminal space where 

multiple realities are viewed” (p. 24).  In Nepantla, “new forbidden knowledges 

develop that disrupt previous categories” (p. 24).  Mathematical Inqu[ee]ry has 

the potential to transform that state/State of the mathematic classroom into a 

smooth Nepantla space .  If Gutiérrez (2002) is correct that benefits flow from 

people to mathematics, the problem of queering mathematics and mathematics 

education generates the questions: What benefits will flow from queer people to 

mathematics?  How will queering mathematics and mathematics education 

enrich these fields?  What transformations will occur?  The liminal space of 

Nepantla has the potential to provide a space in which “desire desire[s] its own 
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transformation” (Mazzei, 2011, p. 668), a place of affirming difference, generating 

problems, and becoming-democratic mathematics education. 
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