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ABSTRACT 

 

Michel A Companion: Assessment of ventral tegmental area-projecting GABAergic 

neurons from the bed nucleus of the stria terminalis in modulating binge-like ethanol 

intake 

(Under the direction of Todd E. Thiele) 

 
Corticotropin-releasing factor (CRF) circuitry is a key component in plasticity 

underlying the transition to ethanol (EtOH) dependence. We have previously shown that 

chemogenetic silencing of CRF neurons stemming from the dorsolateral bed nucleus of the 

stria terminalis (dlBNST) and projecting to the ventral tegmental area (VTA) significantly 

blunts binge-like EtOH consumption. While CRF neurons in the BNST are thought to entail 

primarily a gamma- Aminobutyric acid (GABA) phenotype, glutamatergic neurons within the 

BNST also innervate the VTA and influence consummatory behaviors. Here we combined the 

well- validated Vgat- ires-Cre transgenic mice with chemogenetic tools to extend our 

previous findings and corroborate the contribution of the VTA-projecting dlBNST 

GABAergic circuitry in modulating binge-like EtOH consumption using “drinking-in-the-

dark” (DID) procedures. Mice were given bilateral injection of Gi-coupled chemogenetic viral 

vector (or control virus) into the dlBNST and bilateral cannulae into the VTA. On test day, 

clozapine-n-oxide (CNO; or vehicle) were infused directly into the VTA to silence VTA-

projecting dlBNST neurons and subsequent binge- like EtOH consumption was assessed. We 

then used immunohistochemistry (IHC) to determine the co-expression of CRF and viral 

vector. Our results showed that relative to vehicle treatment or CNO treatment in mice 

expressing the control virus, silencing VTA- projecting dlBNST GABAergic neurons by 

CNO treatment in mice expressing Gi-coupled chemogenetic virus significant reduced binge-
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like EtOH intake. This effect was not seen with sucrose consumption. Our IHC results 

confirm a population of CRF-expressing GABAergic neurons within the dlBNST. This study 

directly establishes that VTA-projecting GABAergic neurons of the dlBNST modulate binge-

like EtOH consumption. 
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CHAPTER 1: ASSESSMENT OF VENTRAL TEGMENTAL AREA-PROJECTING 

GABAERGIC NEURONS FROM THE BED NUCLEUS OF THE STRIA TERMINALIS 

IN MODULATING BINGE-LIKE ETHANOL INTAKE 1 

 
 

Introduction 

 

It has been established that the method and rate of alcohol consumption contributes to the 

susceptibility of transitioning from moderate alcohol (ethanol; EtOH) drinking to the 

development of alcohol dependence (Li et al., 2007). A pattern of short bouts involving 

excessive alcohol consumption, referred to as binge drinking, is a major proponent of this 

transition. According to the National Institute of Alcohol Abuse and Alcoholism (NIAAA), 

binge drinking is consuming enough alcohol to achieve blood concentrations in excess of 80 

mg/dl in a short period of time (NIAAA, 2004). The “Drinking in the dark” (DID) model has 

been shown induce binge-like levels of ethanol intake using a restricted access paradigm in 

C57BL/6J mice (Rhodes et al., 2005; Thiele et al., 2014; Thiele & Navarro, 2014). Utilizing this 

approach to study system neurocircuitry has helped provide insight to the underlying 

mechanisms involved with binge consumption and the transition from moderate alcohol use to 

dependence. 

One neuropeptide system heavily involved in both binge-like EtOH intake and 

dependence-induced drinking is the corticotropin-releasing factor (CRF) system (Lowery & 

Thiele, 2010; Roberto et al., 2010; Lowery-Gionta et al., 2012). 

 

1This chapter is under review as an article in the journal European Journal of Neuroscience. The original citation is 

as follows: Companion, M.A. & Thiele, T.E. under review. Assessment of ventral tegmental area-projecting 

GABAergic neurons from the bed nucleus of the stria terminalis in modulating binge-like ethanol intake. European 

Journal of Neuroscience. 
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Previous work has shown that CRF protein levels within the ventral tegmental area 

(VTA) become elevated after exposure to binge-like EtOH consumption (Lowery-Gionta et al., 

2012). More recently, our laboratory has discovered that the inhibition of CRF axonal 

projections stemming from the dorsal lateral BNST (dlBNST) and innervating the VTA leads to 

a decrease in binge-like EtOH consumption in transgenic CRF-ires-Cre mice on a C57BL/6J 

background (Rinker et al., 2017). These CRF projection neurons have been shown to exert a 

GABAergic phenotype (Dabrowska et al., 2013). Consistently, GABA-A receptor inhibition in 

the posterior VTA has been shown to reduce binge-like EtOH consumption in C57BL/6J mice 

(Melón & Boehm, 2011). However, there are also other populations of neurons in the BNST that 

innervate the VTA, such as glutamatergic neurons, that have also been shown to be involved in 

consummatory behaviors (Kudo et al., 2012; Jennings et al., 2013; Stamatakis et al., 2014). The 

established co-expression of GABA and CRF in dlBNST neurons suggest that our previous 

results involved GABAergic neurons, though the direct assessment of VTA-projecting 

GABAergic neurons of the dlBNST in the modulating of binge-like EtOH has not been directly 

tested. 

The goal of the present study was to confirm that our previous study, using CRF-ires-Cre 

mice, likely involved a GABAergic neuronal population housing this CRF peptide. To this end 

we used well-established transgenic mice in which Cre was linked to the vesticular GABA 

transporter, VGAT (the Vgat-ires-Cre line, (Vong et al., 2011)) in combination with Cre- 

dependent adeno-associated viral vectors (AAVs) that were infused into the dlBNST of Vgat- 

ires-Cre mice. This chemogenetic technology that we employed has been referred to as Designer 

Receptors Exclusively Activated by Designer Drugs (DREADD) and acts by producing G- 

coupled protein receptors, reactive to naturally inert ligands, such as Clozapine-n-oxide (CNO) 

(Rogan & Roth, 2011; Roth, 2016). In addition to bilateral infusion of Cre-dependent Gi/o 
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DREADD (or control virus lacking the DREADD construct) into the dlBNST, Vgat-ires-cre 

mice were simultaneously given bilateral cannulae aimed at the VTA. By infusing CNO 

specifically into the VTA we were able to specifically inhibit VTA-projecting GABAergic 

neurons arising from the dlBNST area where the virus was injected. We then applied 

immunohistochemistry (IHC) to assess co-expression of CRF with our DREADD virus in 

dlBNST neurons. 

Materials and Methods 

 

Experiments were conducted in accordance with the NIH Guide for the Care and Use of 

Laboratory Animals. All procedures were reviewed and approved by the Institutional Animal 

Care and Use Committee (IACUC) of the University of North Carolina at Chapel Hill. 

Animals. This study used both male and female vGat-ires-Cre mice (determined Cre+ by 

standard PCR genotyping) backcrossed with the C57BL/6J (Jackson Laboratories, Bar Harbor, 

MA, USA), which have previously been shown to consume high binge-like levels of EtOH in a 

restricted consumption model (Crabbe et al., 2011). Mice were at least 60 days of age before the 

beginning of this study. Animals were individually housed in a ventilated cage system on a 12- 

hour reversed light/dark cycle with ad libitum access to Prolab® RMH 3000 (Purina labDiet®; 

St. Louis, MO) and water during the duration of the experiment; except for during EtOH access 

periods (Marshall et al., 2015). A total of N=44 mice were used in this study with individual 

group n’s listed in figures. All mice within the sucrose portion of the experiment overlap with a 

portion from the EtOH trials. A separate group of n=6 animals, half male and half female, were 

used in order to quantify overlap of CRF+ and DREADD-expressing neurons within the dlBNST 

region of viral injection. 

Drug. Ethanol (20% v/v) solutions were prepared from 95% ethyl alcohol stock (Deacon 

Laboratories Inc, Prussia, PA, USA) and diluted with tap water. Sucrose (3% w/v) solutions were 
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prepared with D-sucrose (Thermo Fisher Scientific, Waltham, MA, USA) dissolved in tap water. 

CNO (supplied by the NIDA Drug Supply Program) was dissolved in DMSO (1% v/v final 

concentration) and then diluted with 0.9% saline with a final concentration of 3mM. Vehicle 

consisted of the same solution used to dissolve the CNO compound. Microinjections of CNO and 

vehicle were infused over the course of one minute (0.3μl/min) and injectors remained in the 

same place for at least one-minute post-infusion for diffusion of the drug and to help minimize 

back flow as the injectors are being removed. This injection volume and rate has been 

consistently used in site-directed injection methods within similar experiments (Rinker et al., 

2017). 

Surgical Procedures. Surgery methods were similar to those in our previous study with 

CRF+ neurons within the BNST (Rinker et al., 2017). Briefly, mice were anesthetized with a 1.5 

g/kg dose of ketamine/xylazine cocktail (100 and 10 mg/kg, respectively) before beginning 

surgery procedures. Mice were then randomly assigned to receive bilateral 0.5µl/side injections 

of either a Cre-dependent Gi/o-coupled DREADD (AAV8-hSyn-DIO-hM4d-mCherry) or a Cre- 

dependent control virus (AAV8-hSyn-DIO-mCherry) (Addgene.org, Cambridge, MA, USA) in 

the dlBNST (with respect to bregma; AP: +0.30 mm, ML: ±1.10 mm, DV: -4.35 mm) at a rate of 

0.1µl/min The injectors remained in place for at least 10-15 minutes following injections in an 

effort to minimize backflow of the virus through the syringe tract. Simultaneously, bilateral 

cannulae (Plastics One, Anaheim, CA, USA) were implanted into the VTA (with respect to 

bregma; AP: -3.1 mm, ML: ±0.5 mm, DV: -4.5 mm) of all animals with the assistance of Lecia 

Angle Two Stereotax (Lecia Biosystems, Buffalo Grove, IL, USA). Mice then remained in 

homecage for at least 5-6 weeks in order to let the virus incorporate into the GABAergic neurons 

and terminals before beginning the behavioral drinking portions of the experiment. 
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Drinking-in-the-dark Procedures. A 4-day ON/3-day OFF DID protocol was used to 

model binge-like EtOH consumption in mice. Water bottles were removed and replaced with 

bottles containing 20% EtOH (v/v) for 2-hours approximately 3-hours into the dark cycle. Day 4 

was considered a test day where animals were microinjected with either 900 pmol/side CNO or 

vehicle, using a Latin Square design, 30 minutes before a 2-hour EtOH drinking session where 

drinking was recorded every hour. Animals then went through a 3-day abstinence with only 

water ad lib. The full 7-days is considered a cycle of the DID exposure. 

Animals went through two cycles of the DID procedure with EtOH and, after a week of 

additional abstinence, two additional cycles of DID were conducted with a 3% sucrose (w/v) 

solution replacing the EtOH solution. Tail blood samples were taken at the end of the test day 

during both cycles of EtOH exposure in order to analyze the blood ethanol concentration (BEC) 

for each animal. BECs were used to determine whether or not the animal was consuming EtOH 

in a binge-like pattern (at least 80 mg/dl) during the test day. 

Tissue Preparation and IHC Procedures. Animals were sacrificed by a 

ketamine/xylazine cocktail, at a 10:1 ratio as before, before transcardial perfusion with PBS at a 

rate of 2.5 mL/min for 4 minutes followed by a 4% paraformaldehyde solution at a rate of 2.5 

mL/min for 7 minutes; sufficient to flush and fix brain tissue. Brains were extracted and allowed 

to set in the 4% paraformaldehyde solution in order to further fix the tissue for 48-hours before 

being transferred to PBS until tissue processing. Fixed brain tissue was cut into 40 micron slices 

using a Leica VT1000 S Vibratome (Lecia Biosystems, Buffalo Grove, IL, USA) and stored in 

cryopreserve solution. Using every fourth slice of tissue, IHC procedures were conducted in 

order to label CRF protein within the BNST. 

Tissue slices were exposed to the primary Anti-CRF Rabbit antibody (Abcam Inc., 

Cambridge, MA, USA; ab8901) at a 1:250 concentration in the blocking solution for 48 to 72 
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hours after an antigen retrieval at 65°C for 30 minutes in Antigen Retrieval Citra 1X Buffer to 

facilitate a more substantial binding potential (Garcia-Moreno et al., 2010; Cuevas Guaman et 

al., 2014). This concentration was determined by running a pilot concentration dilution 

experiment with tissue used in a previous study to determine proper primary concentration and 

antigen retrieval protocol. We then used a solution containing the secondary fluorescent antibody 

Donkey Anti-Rabbit Alexa Flour 488 (Abcam Inc., Cambridge, MA, USA) at a 1:1000 

concentration in order to attach a green label to the primary antibody for visualization. These 

rinses made sure that all excess antibodies are rinsed away for maximum qualification of labeled 

neurons. 

Tissue was then mounted onto glass slides and Vectashield Hard Set Medium containing 

DAPI (Vector Laboratories, Burlingame, CA, USA) was used to mount the coverslips over the 

tissue. This allowed for easy visualization of cell bodies that are co-expressing both the mCherry 

virus tag and the green-fluorescing CRF antibody tag. A Leica DM6000 FS was used to visualize 

DREADD virus and neuronal body fluorescence. A Zeiss LSM 800 confocal microscope (Zeiss, 

United States of America) was used to image tissue and allow 3D and z-stack imaging in order to 

fully determine whether co-localization is present within the BNST GABAergic projection 

neuron population as well as visualize terminals. Images were then analyzed in order to quantify 

the overall percentage of CRF+ cells overlapped with the overall DREADD+ neurons within the 

dlBNST. This was done using the cell counting function within ImageJ (Madison, WI, USA). 

Statistical Analysis. Ethanol consumption and BECs achieved during DID procedures at 

the 2-hr time-point data were analyzed using a repeated-measures MANOVA with factors of 

treatment and treatment order to ensure there were no drug carryover or order effects. Separate 

hour time points used Bonferroni corrected paired and unpaired t-tests in order to uncover 

significant effects 
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Results 

 

Anterograde Tracing of fibers Reveals VTA-projecting GABAergic Pathway Stemming 

from the dlBNST. Visualization of AAV8-hSyn-DIO-hM4d-mCherry terminals within the VTA 

of VGat-ires-Cre mouse line confirmed an anterograde, GABAergic projection from the original 

injection site of the dlBNST after 6 weeks of incubation (Fig. 1A, mCherry+ neurons in the 

dlBNST; Fig. 1B, mCherry+ terminals is the VTA). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Tracing of GABAergic neuron terminals from the dlBNST to the VTA within the VGat-ires-Cre 

mouse line. A) Visualization of mCherry-tagged DREADD viral transfection within the dlBNST at 5x 

magnification (Scale bar = 500µm) and visualization of DREADD-expressing cell bodies at 40x 

magnification (Scale bar = 75µm). B) Innvervation of the VTA by dlBNST GABAergic fibers at 5x 

magnification (Scale bar = 500µm) and visualization of terminal fiber at 64x magnification (Scale bar = 

10µm). 
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Inhibition of GABAergic VTA-projecting dlBNST Neurons Reduces Binge-like Ethanol 

Consumption. Fig. 2 show data from the dlBNST → VTA silencing study during binge-like 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: Silencing of VTA-projecting dlBNST GABAergic neurons reduces binge drinking during the 

first hour. 

A) Diagram of bilateral viral placements within the dlBNST. B) Represetative figure of AAV8-hSyn- 

DIO-hM4d- mCherry expression and gradiated spread in VGat-ires-Cre neurons of the dlBNST. C) 

Diagram of bilateral cannula placements within the VTA. D) Cannulae placements within the VTA for 

individual subjects. Due to the cannula being placed within a pedestal only one hemisphere is shown for 

placements since each subject was consistant on both hemispheres. Missed placements were excluded 

from analysis. E) Following site-directed microinjections of vehicle (1% DMSO v/v final concentration 

diluted in 0.9% saline) there were no differences in 20% ethanol consumption (mean g/kg + SEM) 

between the control (mCheery) viral vector and hM4D-Gi viral groups; however, following site-directed 

microinfusions of CNO (same as vehicle with final concentration of 3mM CNO) mice treated with 

dlBNST hM4D-Gi virus drank significantly less ethanol than mice treated with the control (mCherry) 

virus (p=0.0079). F) There was a similar CNO-induced reduction of binge-like ethanol intake in hM4D- 

Gi treated mice during the first hour of ethanol consumption, but not during the second hour of ethanol 

consumption (G). 

ethanol consumption. Fig. 2A shows a schematic representation of the viral-vector injection sites 
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in the dlBNST, Fig. 2B depicts the average spread of the DREADD construct in the dlBNST in 

VGat-ires-Cre mice given dlBNST injection of Cre-dependent viral vector, verifying the 

expression of viral vector that was confined to the dlBNST. Critically, previous work has 

functionally validated the hM4D-Gi DREADD when traduced into the dlBNST by showing that 

CNO application significantly blunted neuronal activity in in vGat-ires-cre mice (Mazzone et al., 

2018). Fig. 2C shows a schematic representation of the cannula placement in the VTA while Fig. 

2D shows a schematic depicting the termination sites of cannulae implanted into the VTA of 

individual subjects. There were 6 animals removed from analysis due to incorrect placement of 

cannula. A repeated-measures (RM) MANOVA with within groups factors (hour and drug) and 

between groups factors (virus and sex) performed on total ethanol consumption indicated a main 

effect of hour [F(1,34)=23.982, p<0.001] and interaction of drug x virus [F(1,34)=5.883, 

p=0.021] and drug x sex [F(1,34)=13.866, p=0.001; male CNO = 1.72 + 0.10, male vehicle = 

1.53 + 0.13, female CNO = 1.36 + 0.11, female vehicle = 1.86 + 0.15]. The drug x sex 

interaction reflected the tendency for male mice to drink more ethanol when treated with CNO, 

while the female mice tended to drink more ethanol when treated with vehicle. A further analysis 

drug x virus interaction using the planned-comparison Bonferroni’s correction t-test (with 

significance set at p<0.008) revealed a significant difference between the AAV8-hSyn-DIO- 

hM4d-mCherry virus and the AAV8-hSyn-DIO-mCherry virus groups that were treated with 

CNO [p=0.0079]. There were no differences between virus conditions in mice treated with 

vehicle (Fig. 2E). Similarly, a significant difference emerged between the AAV8-hSyn-DIO- 

hM4d-mCherry virus and the AAV8-hSyn-DIO-mCherry virus groups that were treated with 

CNO at the 1-hoour consumption measure [p=0.003], with no differences between virus 

conditions in mice treated with vehicle (Fig. 2F). There were no group differences when the 2nd 

hour of consumption were analyzed (Fig. 2G). Finally, analysis of BEC data failed to reveal 
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significant effects (control virus-vehicle, 110±13.84 mg/dl; control virus-CNO, 131.5±13.66 dl; 

hM4d virus-vehicle, 109.4±15.61 dl; hM4d virus-CNO, 112.4±17.51dl). 

Inhibition of GABAergic VTA-projecting dlBNST Neurons does not Influence Sucrose 

Consumption. Fig. 3 show data from the dlBNST → VTA silencing study during binge-like 

sucrose consumption. A repeated-measures (RM) MANOVA with within groups factors (hour 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and drug) and between groups factors (virus and sex) performed on 2-hour sucrose consumption 

data failed to produce any main effects or interaction effects (Fig. 3A). Further, there were no 

significant differences during the 1st (Fig. 3B) or 2nd (Fig. 3C) hours of sucrose consumption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Silencing of VTA-projecting dlBNST GABAergic neurons had no significant effect on binge 

drinking of 3% sucrose. A) There was no significant reduction of 3% sucrose drinking within any of the 4 

groups during the total 2-hour binge test. B) There was no significant effect of virus or drug treatment on 

sucrose drinking during the first hour of sucrose drinking. C) There was also no reduction of sucrose 

drinking during the second hour of sucrose consumption. 
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Co-localization of CRF immunoreactivity with Cre-dependent DREADD in in the dlBNST 

of VGat-ires-Cre mice. Fig. 4 shows confocal imaging of AAV8-hSyn-DIO-hM4d-mCherry 

(red) with anti-CRF in Alexaflour-488 (green) and cell nuclei DAPI staining (blue) at 20x (Fig. 

4A) and 63x (Fig. 4B) magnification. A qualitative assessment of the co-expression suggests that 

most, if not all, of the AAV8-hSyn-DIO-hM4d-mCherry+ neurons also expressed CRF 

immunoreactivity, consistent with the observation that 98% of GABAergic neurons in the 

dlBNST entail a CRF phenotype (Nguyen et al., 2016). 

 

Discussion 

Here we show that silencing VTA-projecting GABAergic dlBNST neurons significantly reduced 

binge-like EtOH intake, particularly during the first hour of the 2-hour EtOH consumption test. 

Importantly, CNO did not alter binge-like ethanol intake relative to vehicle treatment in mice 

expressing the control viral vector, ruling out potential off-target effects of CNO with respect to 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: CRF IHC co-localization with Cre-dependent AAV8-hSyn-DIO-hM4d-mCherry in VGat-ires-Cre 

mice. 

A) Confocal imaging of AAV8-hSyn-DIO-hM4d-mCherry viral vector (red) with anti-CRF in Alexaflour- 

488 (green) and cell nuclei DAPI staining (blue) at 20x magnification. White arrows emphasize co- 

localized neurons (scale bar = 50µm). B) Confocal, z-stacked 3D reconstructed of co-localization of 

AAV8-hSyn-DIO-hM4d- mCherry virus (red) with CRF (green) and DAPI (blue) at 63x magnification. 

White arrows emphasize co-localized neurons (scale bar = 10µm). 
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ethanol intake. There was also no effect of virus or drug on sucrose drinking using the DID 

paradigm, suggesting that the effect of silencing VTA-projecting GABAergic dlBNST neurons 

was specific to EtOH consumption and did not influence the consumption of another salient, 

natural reinforcer. The IHC and confocal microscopy revealed GABAergic neurons that also co- 

localized with the CRF peptide, reaffirming our previous findings showing blunted binge-like 

ethanol intake with silencing of VTA-projection dlBNST neurons expressing CRF (Rinker et al., 

2017). When taken together, our results demonstrate that dlBNST GABAergic/CRF+ circuitry 

projecting to the VTA may be the population that is causing this in the modulation of binge-like 

EtOH drinking. 

We have previously shown that silencing VTA-projecting CRF+ neurons within the dlBNST 

significantly blunted binge-like EtOH intake (Rinker et al., 2017). A recent study found that 

while CRF+ neurons in the BNST co-express both glutamate and GABA, within the dlBNST, 

about 98% of CRF+ neurons are GABAergic (Nguyen et al., 2016). Together, these findings 

suggest that our previous study using CRF-ires-Cre mice may have stemmed from the silencing 

of a GABAergic population of neurons within the dlBNST. The observation by Nguyen et al. 

(2016) that a population of BNST glutamatergic neurons also co-express a CRF+ phenotype, and 

research showing that a population of BNST glutamatergic neurons innervates the VTA and have 

effects on consummatory behavior (Jennings et al., 2013) together highlight the importance of 

future research to investigate the role of VTA-projecting glutamatergic BNST neurons in the 

modulating of binge-like ethanol intake. However, given that 98% of CRF+ neurons in the 

dlBNST are co-expressed with a GABAergic phenotype, the contributions of a VTA-projecting 

glutamatergic dlBNST circuit in modulating binge-like ethanol intake seems minimal. 

Recent evidence has suggested that CNO may back-metabolize to clozapine, which is a 

psychoactive drug that may act as a potential confound to chemogenetic studies (MacLaren et al., 
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2016). However, there are two observations within our study that placate this concern: First, 

CNO had no effect, relative to vehicle treatment, in mice that expressed the control viral vector. 

Second, there was no effect of CNO on sucrose consumption in either the AAV8-hSyn-DIO- 

hM4d-mCherry or control virus groups. Together, these observations rule out the likely 

possibility that off-target effects from the use of CNO influenced binge-like ethanol intake. 

There is also the concern that CNO may be flowing outside of the VTA region and possibly 

effecting other possible projections from the BNST where the viral vector was injected. While 

the only way to be sure that this could not be happening would be to use a tagged CNO in order 

to visualize the area of effect, previous studies using this exact injection volume and rate have 

had a fairly accurate diffusion of drug. 

Interestingly, Rinker et al. (2017) found that site-directed infusion of a CRF-1 receptor (CRF1R) 

antagonist into the VTA blunted binge-like ethanol consumption, but that while using 

simultaneous infusion of CRF1R and CRF2R antagonists the paradigm failed to alter intake. 

Thus, intact CRF2R signaling in the VTA is necessary for CRF1R antagonism to blunt binge- 

like ethanol intake. Rinker et al. presented a theoretical model whereby GABAergic transmission 

from VTA-projecting dlBNST neurons promotes binge-like ethanol intake, and that GABAergic 

signaling from these neurons is facilitated or inhibited by CRF1R or CRF2R, respectively. 

Further, they postulate that blockade of CRF1R “unmasks” the ability of CRF2R to blunt 

GABAergic signaling, resulting in reduced binge intake. Blockade of both receptors 

simultaneous negates this effect, leaving GABAergic signaling unregulated which is consistent 

with the observed unaltered binge-like drinking when both CRF receptor antagonist are infused 

into the VTA. The present results provide additional support for this theoretical model by 

directly demonstrating the central role of GABAergic signaling in this circuit in the modulating 

of binge-like ethanol intake. This pharmacology along with pharmacological studies showing 
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GABA-A receptor inhibition in the posterior VTA reduced binge-like EtOH consumption in 

C57BL/6J mice (Melón & Boehm, 2011) implies and importance in focusing on this co-release 

of CRF and GABA in order to fully understand their interaction within the VTA, and particularly 

this dlBNST innervation within this region. This is an significant future direction for our work 

with this circuit. 

In summary, we show that inhibition of a VTA-projecting GABAergic circuit stemming fromthe 

dlBNST reduces binge-like ethanol drinking, suggesting that this circuit plays a critical role in 

modulating binge-like EtOH consumption. This effect was specific to EtOH consumption, as 

silencing this circuit had no impact on the consumption of the natural reinforcer, sucrose. We 

also show that the GABAergic population under investigation within the dlBNST co-expresses 

CRF. Overall, this study and Rinker et al. (2017) emphasize the importance of VTA-projecting 

GABAergic/CRF+ neurons from the dlBNST in the early stages of binge-like EtOH intake. 

Neuroadaptations in this circuit may be an important component of increased voluntary 

consumption of ethanol stemming from repeated bouts of binge drinking (Cox et al., 2013), thus 

further characterization of this neurocircuitry may provide valuable insight into the mechanisms 

underlying the development of alcohol use disorders. 
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