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ABSTRACT
Zhaohui Wang

Capacity Investment Strategies under Operational Flexibility.
(Under the direction of Professor Tekin.)

Operational flexibility has been attractive in many industries to hedge against demand un-
certainty and to promote profits by decreasing lost sales, saving on investments and provid-
ing higher quality service. Hence, it is extremely important to develop quantitative models
that will provide insights on how to manage systems with some form of flexibility in their
operations. In this research, we propose to study optimal capacity investment, resource al-
location and pricing decisions of a central decision maker that manages multiple resources
which can be utilized flexibly to satisfy demands from multiple market segments. The main
objectives of the proposed research are 1) to develop quantitative models in order to de-
termine the optimal capacity investment decisions for multiple resources that can be used
flexibly to satisfy stochastic demands from multiple customer segments, 2) to develop easy-
to-implement computational algorithms for computing optimal or near-optimal solutions, 3)

to quantify the benefits of managing multiple resources that can be used flexibly.
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Chapter 1

Introduction

Global competition has forced most manufacturing and service industries to persistently
strive to decrease their operating costs, and still improve efficiency and quality of their
services. Responding economically to the specific needs of customers has become a ma-
jor challenge. Firms are continuously reorganizing themselves and making use of various
strategies to match their resources to varying demands from different market segments.

Operational flexibility has been one strategy that companies use to hedge against de-
mand uncertainty, and to promote profits by decreasing lost sales, saving on investments
and providing higher quality service. Operational flexibility broadly implies various tac-
tics such as use of flexible resources (i.e., plants, machines, workers), product and volume
flexibility, delayed product differentiation, and flexible sourcing, pricing and distribution
of goods and services. In this research, we focus on two aspects of operational flexibility:
Resource flexibility and ex-post pricing (i.e., the ability to set prices after observing the
demand patterns (see, e.g., Van Mieghem and Dada (1999)).

In particular, we study optimal capacity investment, resource allocation/reallocation and
pricing decisions of a firm that manages multiple resources, which can be utilized flexibly
to satisfy demands from multiple market segments. We use the term resource in the broad
sense to mean manufacturing capacity or inventory. We consider there are multiple cus-
tomer classes whose demands are characterized by random market sizes and selling prices.
Furthermore, the firm has the ability to use a particular resource capacity to satisfy demands

from different market segments, other than its own, at the expense of a reallocation cost to



hedge against demand uncertainty. In general, due to the long production lead times and
contractual agreements, the capacity investment decisions for resources must be made long
before the market sizes are known with accuracy. On the other hand, reallocation and pric-
ing decisions can be postponed until more information about the actual market conditions
is obtained.

We focus on the following two-stage problem: In the first stage, the firm makes its
capacity investment decision for multiple resources in the face of uncertain demand so as to
maximize the total expected profit. In the second stage, after the market sizes are realized,
the firm jointly determines its prices and capacity reallocations to maximize the total profit
based on the capacity investment decisions made in the first stage.

We study models that address the strategic capacity investment decisions faced by a
number of industries, such as manufacturing companies that operate reconfigurable plants,
retailers with multiple sales outlets in different geographical locations, etc. For example,
consider a car manufacturing company that sells its vehicles through its dealers which are
geographically distributed within a region. The major source of demand for each dealer
is its local community. The company has to decide how many vehicles from each model
to put in the inventory at each dealer in the beginning of a selling season under demand
uncertainty. The time between two replenishments is usually long (e.g., six months), and
hence, this decision can be treated as a single-period problem. After the company allocates
the vehicles to dealers, the demand becomes observable as the sales are made. It is highly
likely that the actual demand does not match the supply at each dealer. An effective way
to balance demand and supply is to adjust the selling price based on the realized market
potential and reallocate the vehicles among the dealers, if needed. Such an operational
flexibility allows the company to generate more profits by matching supply with demand.

Another example can be a manufacturing company that operates multiple plants which
are reconfigurable to produce a variety of products. The manufacturing capacity that will be
allocated to each product is determined when demand is highly uncertain. This especially

applies to seasonal products. As the beginning of the season approaches, more information



about the demand is collected, and the company makes its pricing decisions and reallocates
manufacturing capacities to different products at a cost, if necessary.

The main objectives of this research are as follows:

e to develop quantitative models in order to determine the optimal capacity investment
decisions for multiple resources that can be used flexibly to satisfy stochastic de-

mands from multiple customer segments;

e to develop easy-to-implement computational algorithms for computing optimal or

near-optimal solutions;

e to quantify the benefits of managing multiple resources that can be used flexibly.

In Chapter 2, we present the literature review. In Chapter 3, we focus on capacity in-
vestment, resource allocation and pricing decisions faced by a central decision maker that
manages two resources which can be used flexibly to satisfy demands from two market
segments. We consider situations where the capacity investment decisions have to be made
in the face of uncertain demand. On the other hand, resource allocation and pricing deci-
sions are made after the uncertainty about demand is resolved. Accordingly, the decision
making process is formulated as a two-stage stochastic programming problem. The second
stage problem determines the optimal resource allocations and selling prices given the re-
alized demands and resource capacities, and the first stage problem seeks for the optimal
capacities given the random demands. We explicitly solve the second stage problem for
the two-resource system, and further investigate the properties of the first stage problem.
We find that depending on the magnitudes of the unit costs of the resources, the optimal
capacity investment strategy takes one of the following three forms: (1) Do not invest in
any of the resources; (2) Invest in one of the resources; (3) Invest in both resources.

In Chapter 4, we allow for multiple (more than two) resources in the system. We inves-
tigate the structural properties of the optimal solution of the second stage problem, and then
provide heuristic methods to solve the second stage problem efficiently. In the numerical
experiments, we first investigate the performance of the heuristics, and then study the im-

pact of the system parameters on the optimal investment strategies. The first stage problem



is solved by Monte Carlo simulation, which requires an efficient, yet accurate, solution of
the stage two problem.

In Chapter 5, we consider two extensions of the multi-resource model. First, we relax
the assumption that each facility has its own market. Next, we consider that resources are
utilized through multiple periods instead of a single period. This multi-period model is more
realistic, however, it has a more complicated structure. Therefore, we focus on studying the
properties and structure of the optimal solution, and searching for efficient computational

algorithms to solve the problem.



Chapter 2

Literature Review

The problem addressed in this dissertation is closely related to two streams of literature. The
first stream of literature focuses on strategic models that address the issue of how to make
investment decisions in environments with a mix of dedicated and flexible resources. The
second stream of literature develops models for inventory procurement decisions in multi-
product inventory systems where one product can be substituted for another. Both streams
of literature investigate the effects of future demand uncertainty on investment/procurement
decisions and quantify the benefits of operational flexibility gained through flexible produc-
tion capacity or inventory substitution.

Operational flexibility has been of interest to many researchers for a long time. De
Groote (1994) proposed a general framework of flexibility which is based on three ele-
ments: the set of technologies whose flexibility is going to be compared, the set of environ-
ments in which those technologies might be operated, and a performance criterion for the
evaluation of different technologies in different environments. Flexibility is considered as
a property of technologies whereas diversity is a property of environments. Flexibility is a
hedge against the diversity of the environment. The formal definition of flexibility is given
in De Groote (1994) as follows: “A particular technology is said to be more flexible than
another if an increase in the diversity of the environment yields a more desirable change in
performance with this particular technology than the change that would be obtained with
the other technology under the same conditions”. This characterization of flexibility yields

three attractive strategic properties, each related to a different optimization problem. First,



while allocating two different environments to two different technologies, the overall per-
formance of the system is improved if the more diverse environment is allocated to the
more flexible technology. Second, while selecting or designing the best technology for a
given environment, an increase in the diversity of the environment makes it more desirable
to select a more flexible technology. Finally, an increase in the flexibility of the technology
makes it more attractive to operate in a more diverse environment. De Toni and Tonchia
(1998) conducted a thorough literature review on manufacturing flexibility and contributes
to the conceptual systemization of the flexibility. In the paper, the authors discussed six
aspects of the flexibility: definition, factors which determine the request for flexibility, clas-
sification, measurement, choices for flexibility and interpretation. Robert and Joseph(1984)
studied the flexibility as an economic concept. The paper formalized the notion of flexibil-
ity in a sequential decision making context, and quantified its value based on the amount of
the available information. Overall, these studies provided general ideas on the concept of
flexibility for a wide range of systems.

The literature on strategic models for systems with a mix of dedicated and flexible re-
source is summarized below: Fine and Freund (1990) considered an investment decision
model for a flexible manufacturing system. They analyzed a multi-product system where
each product can be produced by a dedicated resource and also by a flexible resource shared
by all product types. They developed a discrete stochastic programming model to investi-
gate the necessary and sufficient conditions to invest in flexible capacity, and discussed the
properties of the optimal profit function and optimal capacity levels. They also presented
numerical results to analyze the sensitivity of solutions to the correlation and variability in
demand. For the two-resource case, their numerical results show that when demands for
resources are perfectly positively correlated, it is not optimal to invest in flexible capacity.
Van Mieghem (1998) considered a two-resource firm with the option of investing in ded-
icated and/or flexible resources. Using a multi-dimensional newsvendor model developed
by Harrison and Van Mieghem (1999), the paper presents the conditions for investing in
dedicated and/or flexible capacities. Unlike Fine and Freund (1990), Van Mieghem showed

that under certain conditions, it may be optimal to invest in flexible capacity even when the



demands for resources are perfectly positively correlated. Gupta et. al. (1992) considered
a firm that faces uncertain demands for several product groups and needs to decide how
much of dedicated capacity and how much of flexible capacity to acquire. They particularly
focused on the dependence of investment policy on initial capacities, as most firms facing
the problem are not likely to be entirely new. They showed that if initial capacities are
lower than the levels that would be optimal in absence of initial capacities, the investment
decision is a simple “acquire-up-to” (optimal levels) for each capacity type. On the other
hand, if some initial capacity is “too high”, the optimal additions to others depend on its
value in a non-linear fashion. Netessine et. al. (2002) considered limited flexibility in ser-
vice systems that provide multiple services. Each lower level service can be fulfilled by
higher level of services. An example application is given from car rental industry where,
say, demand for an economy car may be ungraded to a luxury car if there are no economy
cars available. Netessine et. al. (2002) discussed the properties of such systems under the
assumption that service may be upgraded by only one class. They presented an algorithm
to compute the optimal investment levels and discussed the impact of demand correlation to
the optimal capacities. For two customer classes, they showed that as correlation in between
two demand types increases, the flexible capacity will shift to the dedicated capacity. When
there are more than two customer classes, the change of correlation in between two demand
types, besides affecting the investment level of two corresponding capacities (say, A and B)
for these two demand types, also affects the investment level of other capacities indirectly.
As the correlation increases, these changes follow an alternating pattern. It means that if
the investment level of a type of capacity, say C, (neither A nor B) changes, the optimal
investment level of the capacity which can be used to satisfy the demand for capacity C and
the optimal investment level of the capacity which can be substituted by capacity C change
in the opposite direction. All of these papers assume that the prices are fixed, and focus on
determining optimal resource allocations and optimal capacity investment decisions.

There are some recent papers that consider allocation, pricing and capacity investment
decision, simultaneously. Bish and Wang (2004) investigated a model similar to the one in

Van Mieghem (1998). In their model, the resource investment decision is made first un-



der demand uncertainty, and the pricing and capacity allocation decisions are made later
when demands are realized. Their results confirm most of Van Mieghem’s (1998) conclu-
sions. Chod and Rudi (2005) investigated a simpler model, where a single flexible resource
satisfies two distinct demand classes without dedicated resources. They also considered a
different pricing model such that the demand for a resource does not only depend on its
own price but also depends on the price of its alternative. The two key drivers of flexibility
such as demand variability and demand correlation are characterized in the paper. As-
suming normal distribution for demands, when correlation increases, the optimal flexible
capacity increases and the optimal profit decreases. Positive demand correlation remains
undesirable. The benefit of flexibility is most significant when the demand levels are highly
variable and negatively correlated. When demand variability increases, both the optimal
flexible capacity level and the optimal profit increase.

There are also quite a few closely related literature focusing on multi-product inven-
tory systems with substitutions. The earliest work is due to Ignall and Veinott (1969) who
considered the multi-product inventory problem with one-way substitution and zero setup
costs. Bassok et. al. (1999) considered a single period multi-product inventory problem
with full downward substitution, i.e., demand for some product can only be substituted by
the products with higher quality. They formulated the problem as a two-stage profit max-
imization model. At the first stage, given the initial inventories, the problem is to decide
optimal inventory procurement amount before the demand is known. At the second stage,
given the realized demand and the inventory levels, the optimal demand substitution quan-
tities are determined in order to maximize the expected profit. The downward substitution
assumption yields to a simple optimal substitution strategy for the second stage problem,
and the objective function of the first stage problem is concave and submodular. As a result,
they proved that the optimal quantities of resources to purchase at the first stage are non-
increasing in the initial inventory levels, which means that the higher the initial inventory
levels are the lower quantities of resources should be purchased. Rao et. al. (2002) consid-
ered a similar single period multi-product inventory problem which is also formulated as

a two stage problem. Unlike Bassok et. al. (1999), in the first stage, besides determining



the optimal quantity to produce (purchase), decision on which products to produce needs
to be made. In the second stage, they consider a similar substitution structure but relax the
assumption that the unit substitution costs are identical. Moreover, they include the setup
cost of production in their model. They use a network flow approach and use dynamic
programming and simulation based optimization to develop effective heuristics. The paper
provides some insights on issues such as the effect of demand variance and cost parameters
on the optimal number of product types to produce, the amount produced or inventoried,
and the benefits of substitution. Karaesmen and Ryzin (2004) considered an overbooking
problem with multiple reservation and inventory classes, in which the multiple inventory
classes may be used as substitutes to satisfy the demand of a given reservation class. The
problem is similar as the one discussed in Bassok et. al. (1999), but arises in a variety of
revenue management contexts. They modeled this problem as a two-period optimization
problem, and showed that the expected revenue function is submodular in the overbooking
levels. They also proposed a stochastic gradient algorithm to find the joint optimal over-
booking levels. Eppen (1979) developed a single-period, single-product inventory model
with several individual sources of demand. It is a multi-location problem with an opportu-
nity for centralization. The paper shows that under reasonable assumptions, the expected
holding and penalty costs in a decentralized system exceed those in a centralized system.
Analysis of single period two product substitution problems have been extensively stud-
ied. McGillivary and Silver (1978) considered a case where products have identical costs
and there is a fixed probability that a customer demand for a stocked out product can be
substituted by another available product. They showed that when the substitution proba-
bility is close to 1 or the stock level of the substitutable products is high, substantial cost
savings can be obtained. Pasternack and Drezner (1991) considered a similar system where
the substitution probability is one. They compared the optimal stocking levels to the cor-
responding inventory levels without substitution. Gerchak et. al. (1996) considered two
single-period production processes which both involve the production of the products of
two grades, higher and lower. Demand for lower-grade products can be met by high-grade

units. They showed that both expected profit functions are concave and derive the optimal-



ity conditions. Deterministic versions of the substitution problem are studied by Tripathy
et. al. (1999) and Li and Tirupati (1994). Tripathy et. al. (1999) addressed the discrete mul-
tidimensional assortment problem, which seeks the optimal sizes of a product to stock from
among a discrete set of possible ones and determines the optimal stock level. They modeled
the problem as a facility location problem and propose a heuristic procedure to approximate
the optimal solution. Li and Tirupati (1994) considered a multi-period multi-product dy-
namic investment model. Assuming that the demands for different products at different
periods are known, they formulated the problem as a two-stage deterministic programming
problem, and provided a heuristic method, which gives acceptable solutions efficiently.
Similar as Fine and Freund (1990), Van Mieghem (1998) and Bish and Wang (2004),
we investigate the optimal capacity investment strategies for multiple resources. Instead of
studying the problem for small systems (i.e., at most one flexible resource) as in these pa-
pers, we study a general model, which allows any number of resources and a more flexible
reallocation/substitution strategy. Comparing to Bassok et. al. (1999) and Rao et. al. (2002),
which addressed inventory management, under substitution models, our work considers an
arbitrary substitution structure and pricing power, which can better reflect the reality of the
demand-supply markets. Furthermore, Bassok et. al. (1999) and Rao et. al. (2002) studied
the problem from the inventory control perspective, and we focus on capacity investment
strategies and the effect of the variation of the environment on the optimal investment poli-
cies. Since our model addresses more general problems, the results can be applied to more
realistic problems although the analysis is more complicated. In this dissertation, we for-
mulate our models as two-stage stochastic programming problems. With the insights that
we obtain from the analytic results, we develop heuristic methods based on “Marginal Re-
allocation Profit”. The insights from this research enhance the understanding in investment
decisions under operational flexibility (i.e., pricing and reallocation/substitution), and pro-

vide practical tools to solve realistic size problems.
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Chapter 3

Capacity Investment Strategies for
Systems with Two Resources

3.1 Introduction

We study optimal capacity investment, resource allocation and pricing decisions of a firm
that manages multiple resources which can be utilized flexibly to satisfy demands from
multiple market segments. We use the term resource in the broad sense to mean manufac-
turing capacity or inventory. We consider that each resource has its own primary market
characterized by a random market size and a selling price for the products. We assume that
the firm has the monopoly power to set the prices in each market. Furthermore, the firm has
the ability to use a particular resource capacity to satisfy demands from a different market
segment, other than its own, at the expense of a reallocation cost to hedge against demand
uncertainty.

In general, due to the long lead times and contractual agreements, the capacity invest-
ment decisions for resources must be made long before the market sizes are known with
accuracy. On the other hand, reallocation and pricing decisions can be postponed until
more information about the actual market conditions is obtained. The ability to set prices
after observing the demand patterns is termed as ex-post (postponed) pricing in the literature

(see, for example, Van Mieghem and Dada (1999)).



In this research, we investigate models that apply reallocation and ex-post pricing strate-
gies simultaneously in order to find the optimal capacity investment decisions for multiple
resources. In particular, we focus on the following two-stage problem: In the first stage,
the firm makes its capacity investment decision for multiple resources in the face of un-
certain demand. In the second stage, after the market sizes are realized, the firm jointly
determines its prices and capacity reallocations to maximize the total profit based on the
capacity investment decisions made in the first stage.

This model addresses the strategic capacity investment decisions faced by a number of
industries, such as manufacturing companies that operate reconfigurable plants, retailers
with multiple sales outlets in different geographical locations, etc. For example, consider a
car manufacturing company that sells its vehicles through its dealers which are geograph-
ically distributed within a region. The major source of demand for each dealer is its local
community. The company has to decide how many vehicles from each model to put in the
inventory at each dealer in the beginning of a selling season under demand uncertainty. The
time between two replenishments is usually long (i.e., one year), and hence, this decision
can be treated as a single-period problem. After the company allocates the vehicles to deal-
ers, the demand becomes observable as the sales are made. It is highly likely that the actual
demand does not match the supply at each dealer. An effective way to balance demand and
supply is to adjust the selling price based on the realized market potential and reallocate the
vehicles among the dealers if needed. Such an operational flexibility allows the company
to generate more profits by matching supply with demand.

Another example can be a manufacturing company that operates multiple plants which
are reconfigurable to produce a variety of products. As a result of long production lead
times, the manufacturing capacity that will be allocated to each product is determined when
demand is highly uncertain. This especially applies to seasonal products. As the beginning
of the season approaches, more information about the demand is collected, and the company
makes its pricing decisions and reallocates manufacturing capacities to different products

at a cost, if necessary.
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Due to the simplicity the two-resource system, we can obtain some nice results from
analysis which enable us to better understand the model. Therefore, in the rest of this
chapter we focus on the two-resource system. A multi-resource version of the problem will
be addressed in the next chapter.

The remainder of this chapter is organized as follows: In section 3.2, we introduce a
two-stage optimization model to address the two-resource capacity investment problem. In
section 3.3, we solve the stage 2 model for the two-resource system. In section 3.4, we
solve the stage 1 model. Finally, in section 3.5, we study the impact of demand correlation

on the optimal capacity investment decision via a numerical study.

3.2 Model Formulation

We consider a firm that serves two markets where demand for market i is controlled by the

unit selling price p; according to the following linear, downward sloping function

D;=Ti—aip;

where o; > 0 is the slope, and I; is the intercept that denotes the random market size of
demand i, i = 1,2. We assume that I'; is a nonnegative continuous random variable, i =1, 2.
Market i is primarily served by resource Z, but it can also be served by resource j (i # j) ata
nonnegative reallocation (i.e., substitution) cost kj;, i, j = 1,2. We assume that k15 +k»1 > 0
to avoid a trivial case that resource 1 and resource 2 can replace each other with no cost so
that they can aggregated into a single resource. Let c¢; denote the unit cost of investing in
resource j, j = 1,2. The company commits to resource capacities x = (x1,x;) before the
market sizes of demands T = (I'1,I,) are realized, in order to maximize the expected total
profit. Let x; denote the capacity acquired for resource j, j = 1,2. We denote a realization
of T = (I'1,T2) by ¥ = (v1,72). Once the realization 7y of T is observed, the company
makes its pricing and resource allocation decisions so as to maximize its total expected
profit under the resource investment decisions made earlier. Let zj; (i,j = 1,2. i # j)

denote the amount of demand i satisfied by resource j once demand is observed. Then, the

13



model can be formulated as a two-stage optimization problem. Stage 1 problem P; makes
the investment decisions as follows:

Stage 1 (P;):

subject to:

x1, x>0

Y g = . . . —_
E[®*(X, T')] is the expected revenue when the resource capacity vector is x', where

7) is the optimal objective function value of the stage 2 problem P>, which decides

(¥,
the optimal prices and allocates the resources optimally to fulfill the demand based on an

observed demand, d; = Y, —a,pi, i =1,2.

Stage 2 P»:
O (X,Y) = max  pi(y1—oupr)+pa(2 —p2) —kiazia —kaizo1 (3.1)
212, 221, P1, P2
st. Y1—o1p1 <x1—z212+201 (7\,1) 3.2)
Y2 —02pr < x2 4212 — 221 (A2) (3.3)
ZijZO i,j=1,2 and i# j (u,-j) 3.4)
Yi—opi >0 i=1,2 (Bl) 3.5
pi>0 i=1,2 (3.6)

The stage 2 model P, maximizes the profit given the resource investment vector x
and the realized market size vector Y. In P», inequality (3.2) and inequality (3.3) ensure
that the demands from market 1 and market 2 do not exceed the total available capacities for
market 1 and market 2, respectively. Inequalities (3.4),(3.5) and (3.6) are the nonnegativity
constraints on the resource allocations, demands and prices, respectively. The objective
function of P, is concave with respect to p;, and it is linear in z;;, i,j = 1,2 and i # j.
Moreover, all the constraints are linear. Therefore, P> is a concave problem.

‘We would like to note that when kjp = 0 and k> — oo, the above model can be consid-
ered a generalization of the model investigated in Netessine et. al. (2002) with two types of

resources and pricing power. (i.e., the prices are also decision variables.)
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Figure 3.1: An illustration of the 2-resource system

3.3 Optimal Solution of the Stage 2 Model

In this section, we focus on solving P, for the two-resource system. The purpose of studying

the two-resource model is two-fold:
1. To derive the explicit optimal solution of the two-resource model;

2. To obtain insights on the optimal solution of P, for two resources, and use these
insights to develop an efficient numerical algorithm for the general model (i.e., model

with more than two resources).

Let A1, A2, u2, un1, P1, P2 be the Lagrange multipliers corresponding to the constraints
of P, given in (3.2) — (3.5), respectively. Note that we omit the last constraint in P, because
the optimal solution cannot result in p; < 0 since the demand for each resource i, i = 1,2,
is nonnegative. Without loss of generality, we assume k| > k2. Furthermore, in order to
avoid the discussion of trivial cases, we assume x; > 0 and x» > 0.

Since the objective function is concave, the Karush-Kuhn-Tucker (K-K-T) conditions
are necessary and sufficient for the optimal solution. The K-K-T conditions of P, are given

as follows:

o Yitou(A —BF
Y (A7 —B7)

; 2o, Vi=1,2 (3.7)
NN =kj—ul i j=120#] (3.8)
M (—Yit+wp] +xi—2+25) =0 i, j=12i#] (3.9)
B;(vi—aupi) =0 i=1,2 (3.10)
uizi;=0 i, j=1,2andi#j (3.11)
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From (3.8), we have that A5 — A} = kj2 —uj, and A] —Aj = kp; — u},. Summing these two
equalities, we obtain uj, 4 u5, = k12 +kz1 > 0. Therefore, at least one of u}, and u3, should
be positive. From (3.11), we conclude that at least one of z}, and z3; should be equal to
zero in the optimal solution. In addition, we show the following two results regarding the

optimal values of the Lagrange multipliers:
Proposition 1. If Y =0, then B; =0, i =1,2.

Proof: If A} = 0, from (3.7) we have that p] = %_2—2267. Then,

] Yi— o Vit oy
Yi—OCiPiZYi—OCi(lza; )=~ 2l >0
since ¥; > 0 and B > 0. If v; — o;p; =0, we have y; = 0 and B7 = 0. If v; — o;p} > 0, from

(3.10), it follows that B} = 0. Therefore, B7 = 0. W
Proposition 2. If u;; > 0, then B =0fori,j=1,2andi#j.

Proof: If u;; > 0, then zj; = 0 from (3.11). First, assume that A7 = 0, then ; = 0 from
Proposition 1. Second, assume that A’ > 0. Then, from (3.9) and using zj‘j =0

*
Yi_xi_Zji

—Yi+oip; +xi—z;+2;=0=p; = ”
1

Then

Vi —Xi — 7 .
’Yi—OCip;-k :’Yi—OCi(—ﬂ) :xi+zji >0

i

since x; > 0 and zj; > 0. From (3.10), it follows that f; = 0. B

In order to describe the optimal solution, let us divide the demand space into 10 disjoint
sets as follows:

Qo={v1 <2x1, 2 < 2x2}

Q1 ={y1 <2x1,2x2 <72 < 2x2 + k12 }

Q= {2 < 2x2,2x1 <71 < 2x1 +0kar }

Q3 = {y1 > 2x1,72 > 2x2,—ka1 < % - % <ki2}

Q4 = {12 > 2x2 + Caki2, 71 +72 < 2x1 +2x2 + Gikpa }
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Figure 3.2: Optimal solution of the stage 2 problem with two types of resources

2)(2

= {y1 +Y2 > 2x1 +2x2 + Ok, 22 i)

_N—2x Y1~ 2—2x1—2xp—0pkip
o > kg 2 % }

—2xp—002k12 }
(25)

Q6 — g‘_ll < Yz_le

Q7 = {y1 > 2x1 + ka1, Y1 + V2 < 2x1 4+ 2x2 + 0 ko1 }

2)61 s N 2x|

7a2_

{Y] +v > 2x; +2x2+(x1k21, 2X2 o ko }

Yz Y1—2x1—2x;
< 7

_ h2x

Qo=

—0 k1 }

An illustration of the demand space with these 10 disjoint sets is given in Figure 3.2.
Using these sets, we present the following result that characterizes the optimal solution to

the stage 2 model.

Proposition 3. Given realizations Yy, > of random variables I'j, I'; and a resource invest-

ment vector x , the optimal solution of the stage 2 model can be expressed as

Ifye Qo,p} = 2217 pz_zyT%Z 22 =2 = 0.

IfyeQy, p) = 2217 Py = Yz 2., =2, =0.

IfyeQ, pi= Yl Lopy= 272 22y =2 =0

Ifye Qs pi = Yl_x‘, Py = Yzazxz 2, =23, =0.

IfyeQq, pi= 221’ Py = TR, o, = PR, 4, =0,

Ifye Qs, pi = Zocl + Wt 2%)(;11 +2;22) a2k12 )= 2a2 +ntn 2%(;11 +2(2622;La1k127
ZT2 - 2(311%2 (“{2&22/‘2 - ZXI —k 2) Zgl =0.
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—X]—X
If’YEQ6’P1_;{LllaP2:YZ 1 2;ZT2:xl7Z§l:O~

(€%}
Yi+oukag _ Y1—2x1 —0pkyg _
Ifye Qy, p) = —2061 , Py = 205 =5, 71, =0.
YitY2—2x— 2x2+0€2k21 * Y1+Y2—2x1 —2x— 01 ko
Ifye Qg, pj =55+ TR 2= 24, T 20 +2) ’
_ oo (Yi—2x1 2%
=0, = 2(0c1+0c2)( o o ka1).

IfyeQo, pj =122, py =2, 71, =0, 3, = x2.

Proof: Based on the K-K-T conditions given in (3.7) — (3.11), in the optimal solution, we
can have one of the following two cases:

Case 1. uj, > 0 and u3; > 0.

Case 2. uj, > 0 and u3; = 0 or uj, = 0 and u5, > 0.

Below we will investigate these two cases, respectively.

Case 1. uj, > 0 and u3; > 0.

From Proposition 2, it follows that B] = 5 = 0. From (3.11), it follows that z}, = 25, = 0.
Below we will investigate four subcases for a) A\ =A5 =0,b) A] =0and A > 0,c) A} >0

and A; >= 0, and d) A] > 0 and A5 > 0, respectively.

a) When Aj =0and A5 =0, from (3.7),

L i=1,2 (3.12)

From (3.8), uj, = k12 and u3, = ka;.

From (3.9), using zj, =23, =0and A} = A5 =0

Yi —Xi

v

(3.13)

From (3.12) and (3.13),

If v; < 2x; for i = 1,2, K-K-T condition (3.10) is satisfied with p} = 20c and B} =

0,i=1,.2.
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b)

d)

Hence, if y; < 2x; fori = 1,2, and k13, k31 > 0 then

pi: i:1,2andz722231:0.

20

When A} = 0 and A} > 0, from (3.7), pj = JTII and p} = Yz;gjx;.

From (3.9), pj > 1+ and p5 = 22

: « _ WA y-x ax . p—2x0
Using p = T, =" M=o

—2xp

From (3.8), ujy = kiz — A3 = kip — 2522, and w3y = kot +43 = kot + 22

Hence, if y; <2x1, ¥2 > 2x; and kjp > %, K-K-T condition (3.10) is also satisfied

and

2—X2 . _ -0
)y Z12 =221 =

m
pl_zalapz o

: ¥ _ Y—2x
with A5 = TR

The case with A} > 0 and A; = 0 is symmetric with case b. By following the same
steps, it is straightforward to see that if y; > 2x1, ¥» < 2x; and kp; > %, K-K-T
conditions are satisfied with

YZ —X2 *

Y1 % *
=5 Ph="——",22=21=0

*
P 2001 (0.5}

* _ Y1—2x
and A] = e

When A} > 0, and A > 0, from (3.9), pf = %2 i =1,2.

i o

Using (3.7) and (3.9), p; = Yl%,xl _ Yt

From (3.8), uj, = kio — A5+ A} =kip — YZ&—ZZXZ + Yl&—lle, and uy, = ko — A+ A5 =

N2 | w20
ko1 — S5 5

. . . . —2)6 ifzi
Since Af > 0,i=1,2, and ufy, u3; >0, if ¥; > 2x;, i = 1,2, and k;j — P 4 10 >
0,i,j=1,2,i+# j, then pj = Ya;x i=1,2and zf, = 75, = 0 with

N e

i —2x; —2x;
Di ,i=1,2andu;-kj:kij_'YJ J_|_Yt i

o o (04
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Case 2. For this case, we will only consider uj, = 0 and u3; > 0. The case with uj, >0
and w5, = 0 is symmetric, and its proof follows in the same lines.

When u}, =0 and u3; > 0, from (3.11), zj, > 0 and z}, = 0. From Proposition 2,
B5 = 0. From (3.8), Aj — A} = ki2 — uj,, and with uj, = 0, we have A = A} +kj» and
uy, = ka1 — A} +A;. Consequently, we consider two subcases with Aj = 0 and A5 = k2,

and A] > 0 and A = A} + k12 > 0, respectively.

a) When A} = 0 and A} = ki, then from (3.7), p} = Y‘;g:m and p} = ’%122“2. Then,

Yi—oipi =" —OCI(YIESIIBT) = Ylﬂlem > 0. Since y; > 0 and B} > 0. From (3.10),

we conclude that B7 = 0.

i) Ifkjp=0,thenA; =B =0, p’ = Y j—=1,2and w3, = ka1. From (3.9),

20,0

—Yi+oup]+x1—2], >0=12], < —%+x1, and

—'Yz+062p§+)€2 +ZTz >0= ZTZ > % —X3.
Hence, 2—2 —x<2z], < —77‘ + x1. Consequently, if k1o =0 and k21 > 0, Y2 > 2x»

and 1 +7v2 < 2x1 4 2x3, then

pi= QE_ i=1,2 %—xz <7 < —%—Hcl andz;; =0
1

with A; =B =0i=1,2, and u], = 0 and u3; = k2.

ii) If k12 > 0, from (3.9)

—Yl+0c1p’f+x1—z}k220:>z*1‘2§—%+x1 (3.14)

— Ok — 2x
Ot Ty = 0= g, = 2 e (3.15)

Combining (3.14) and (3.15), we obtain the condition that

Y1+ < 2x1 + 2xp + 0gkgp.
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Hence, if 72 > opkia +2x2 and y; + 72 < 2(x1 + 2xp) + ok all K-K-T condi-

tions are satisfied, and

_m

B Yotk .  Y2—Ogkip—2xp ,
Pi=5 o W=
X1

=0
20, 212 5 221

P> =

with A} =0, A; = ki2, B} =B; = uj, =0and u5, = kin+ko1.
Observing subcases 1) and ii), we can conclude that the result of 1) is the same

as ii) with k1o = 0. As a result, we can use the above result for both cases.

b) When A} > 0 and A = A} + k2, then since A}, A5 > 0 and z3; = 0, from (3.9) we

have
—x1+2}
i +x -z =0 = pj = T2 (3.16)
YZ_ZXZ_ZTZ

% (3.17)

P +0ps+x+2,=0=p; =

We will consider two cases with 37 = 0 and B} > 0, respectively.

i) When B} =0, from (3.7). pj = 351" and pj = BHEEERR)

Combining these expressions with (3.16 and (3.17), and solving for A} and z},,

we obtain
—2x1 +Y2 — 2xp — Oi2k12

"1
Al =
o + 0

>0

0 (2x1 — 1) + 0 (Y2 — 2x2) — 0 k12

>0
2(0(,1 —|—0€2) -

ko
{12~
Then, we obtain,

s_ M 4 Y1 +Y2 —2x1 — 2x2 — Ooky2
2001 2(oy + o)

Y2 + Y1 +Y2 —2x1 — 2x2 + 0 k2

* _
p2= 200 2(o +01)

K-K-T condition (3.10) is satisfied if y; — o;p} > 0, i = 1,2. Plugging in the

values of p] and p3 in this set of inequalities, we observe that they are satisfied
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if

Vi 2= 2x — 2% — Ok
o %) '

As aresult, if
Y1 +7Y2 > 2x1 + 2x + 0okyn

Y2—2x  Y1—2x

> k12
(05} (05}
and
Vi Y2 2x — 2% — Ok
o (%)
then
o= Y1 Y1+7Y2 —2x1 —2xp — 0kp2
! 2001 2(0(,1 —I—O(.z)
« Y2 Y1tV 2x —2x+ ok
D2 = +
200 2(o + o)
. 02x —v)to(2—2x) —aokn
2= y 221=0
2(ay +ap)
with
N —2x1+Y — 2x2 — Ok .
klel 1 T2 2 212’ 2 = M + k2

ol + 0

BT:BSZ(L MTZZ()? u§1:k12+k21-

When BT > 0, from (310), Y1 — OCIPT =0= pi‘ = Zc—ll_ Using pi‘ S I —

a
Y1—X1 ‘l’ZTZ

A L= =
Then,
p;ZYZ—ﬁz—ZfzzYz—zlz—mzo (3.18)
From (3.7),
p§:7/2+0022(;f+k12) (3.19)

Using (3.18) and (3.19),

Y2 — 2x3 — 2x1 — Ooky2

*
7\,1 —
(05]

>0
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From (3.7), p} = o (—py) Using p} = 1

2001 BT

—2x1 —2x7 — Ok
BTZYZ X1 — 2X2 212_£>0.
Olr (04}

Consequently, if

—2x1 —2x0 — 0ok —X]—X
12 1 2 212>£thenpi‘:£, p;ZYz 1—X2
(0.5) (0.5) (04] (0.5)
ZTZZX], ZEIZOWlth
—2x1 — 2x2 — Ok
xf:\(z 1 2 212, A = M+ ko
2001
—2x1 —2xp — Ok
BT:YZ 1 2 212_&7 £ 0

o (04]

* *
ulzzo, Us :k12+k2]. [ |

Recall that y; denotes the market potential for resource 1, and x; is the capacity of re-
source i. We interpret the results of Proposition 3 in terms of the relationship between

demand and supply as follows:

1. Inregion €y, demands for resources 1 and 2 are both less than the available supplies.
The capacity constraints are not binding. In other words, the optimal selling prices are
exactly the optimal solution of optimization problem without the capacity constraints

and there is no reallocation between resources 1 and 2.

2. In region 1, the demand for resource 1 is at most equal to the supply. Demand for
resource 2 is a little higher than the supply, but is lower than some level, which makes
it not worth reallocating any capacity from resource 1 to resource 2. Hence, in this

region, there is no reallocation between resources 1 and 2.
3. Region £, is the same as region € if resources 1 and 2 are interchanged.

4. Inregion Q3, demands for both resources are higher than the supply, but are less than

some level, which makes it not worth reallocating any capacity from either resource.
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5. In region 4, the demand for resource 1 is at most equal to the supply. Demand
for resource 2 is higher than the supply at a level such that it is worth reallocating
some capacity from resource 1 to demand for resource 2. However, the demand for
resource 2 is still under some level such that the supply from resource 1 is enough to

cover the deficit of supply of resource 2.

6. In region Qs, the total demand for the two resources is higher than the total available
capacity at a level such that both resources require additional capacity. Furthermore,
the deficit of the supply of resource 2 is larger than that of resource 1 at a level such
that it is worth reallocating part of resource 1 capacity to demand for resource 2 by
sacrificing some demand for resource 1. However, the demand for resource 2 is still
lower than some level such that it is not worth sacrificing all the demand for resource

1.

7. Inregion Qg, the total demand for the two resources is higher than the total available
capacity at a level such that both resources require additional capacity. Furthermore,
the deficit of the supply of resource 2 is larger than that of resource 1 at a level such

that it is worth sacrificing all the demand for resource 1.
8. Region 7 is the same as €4 if resources 1 and 2 are interchanged.
9. Region Qg is the same as region 5 if resources 1 and 2 are interchanged.

10. Region Qg is the same as region g if resources 1 and 2 are interchanged.

3.4 Optimal Solution of the Stage 1 Model

The stage 1 investment problem is a stochastic, nonlinear optimization problem. In this sec-
—

tion, we investigate the structure of the optimal solution to the stage 1 problem. ®*(%’, ")

is the optimal objective of the operational stage problem (P,). Its property directly affects

the investment decision.

ﬁ
Lemma 1. ®*(X, I') is a continuous and differentiable function with respect to X .
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Proof: Based on proposition 2, the demand space is divided into 10 disjoint regions. Inside
. * _ = . . . . . * _ = .
each region, ®*(x’, ') is continuous, and the partial derivative of ®*('x", I' ) with respect
to x;, i = 1,2, i.e., the shadow price of resource i exists and it is a continuous function.
At the boundary of two adjacent regions, since the concavity of P,, there exists an unique
é
optimal shadow price of resource i. Therefore, ®*(x’, ") is a continuous and differentiable

function with respect to x. I
Theorem 1. The stage 1 problem is jointly concave in x| and x;.

Proof: Based on proposition 2, the demand space is decomposed into 10 regions as Qy, k =

0,...,9. Let f(y1,72) denote the joint density function of the demand.
R 2
(%) = E[@® (%, T)]- Z CiX;

= / @ (%, T)f(n, YZ)dYIdYZ_Zszl
i= 0 i=1

In order to prove the concavity of the stage 1 problem, we will show that the Hessian
matrix of the objective function of stage 1 problem is strictly negative definite. Taking the

derivative of I1(x") with respect to x;, we obtain:

AM(X) ¢
o ,;)/Qj Aif (Y, v2)dndy, — i,

where A; = %, which is the shadow price of resource i. Based on Proposition 2,

(X -2
a( x) _ / n- fv,v2)dyidy:
)C] Q2+Q3

o
Y1+ Y2 —2x1 — 2x3 — Oaky2
n Y2 )dyid
o, oo f(,2)dyidys
—2x1 —2x7 — Ok
+ £ ] 2278 f(yi,p)dyidy,
Qs (05

+ /Q ka1 f(1,Y2)dy1dY2
7

Y1 +Y2 —2x1 — 2xp 4 Ookyg

N )dyid
o, oo fy,v2)dndys

—2x1—2
+ / uf(%ﬂz)d%dﬁ(z—ﬂ,
Qo (053]
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oI (x
x>

~—

—2x
/ 22202 by ) dydys
Q+Q; 02

+ /Q kiaf(Y1,v2)dy1dY2
4
Y1 +Y2 —2x1 — 2x2 + 0 k12

i Y2 )dvyid
o, oo fn,v2)dyidys
—2x1 —2x
+ uf(%ﬁz)d%d\(z
Qs o
Y1+ Y2 —2x1 — 2x3 — O ko
n 12)dyid
o, oo f,v2)dyidys
—2x1 —2x7 — 1k
4o BT eRm OBy y)dyidys —co.
Qo 05]

—
Note that since ®*( X, I' ) is continuous on the boundaries, the effects of the change in

x; on the boundaries are cancelled out. When we take the second derivative of IT(X) with

respect to x;, we obtain:

D
ala]—)E%X) = _0% Qz+93+a9f(Y1,Yz)lede

oo iaz /s25+98 SOnsv)dndy, — 0% /Qﬁf(YhYz)lede
D
81;_)5;) = _0%2 Ql+93+a6f(Y1’YZ>dYIdY2

B (Xliaz /gz5+98f(71772)d71d72_O%/ng(Yl,Yl)lede

Taking the cross derivative of H(?) with respect to x; and x;, we obtain:

MT(X)  PI(X) 2
- == dyidy, < 0.
0x10x7 0x70x] o 4 Ol /Qﬁgsf(%ﬁz) Y1dY2 <
Since
211( % 211( 277/ 27T/ 2=
aH(x)<O,8H(x) Oan<x)an<x)_an<x) o

i VA 2
ax% ax% ’ ax% ax% 0x10x7 )

—
X

(3.20)

(3.21)

the Hessian matrix of IT(X') is strictly negative definite. Hence, IT(X’) is concave. W

Let v; denote the Lagrange multiplier of the nonnegativity constraint of x;,i = 1,2. Using

the fact that IT(X’) is concave and the K-K-T conditions for P, the following proposition

gives the necessary and sufficient conditions for optimal values of x; and x;.
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Proposition 4. The optimal capacity investment vector x * = (x},x3) satisfies the following

equations:
[ 0 I —2x] I —2x]
E Q| PQ)+AE| M Q| P@)+E| M| Q3| P(Q3)
Ih—2x5 0 I'—2x3
L (0.5 (05
[ 0 F1+F2—2x“f—2x§—062k12 k
o 0 21
+ E |.Q.4 P(.Q.4)—|—E .o |Q.5 P(.Q.5>+E |.Q.7 P(Q.7)
k F1+F2—2x1—2x2+061k12 0
| 12 o +0p
[ szZXTfZXEfOszlz 1 F1+F272x’1’72x§+(12k21
E o2 Qs | P(Q6)+E w1 Qs | P(Q
t [r—2x—2x5 | 6 ( 6)+ [+ —2x] =2x5 —a kg | 8 ( 8)
L (05} ] oy +0p
FI_Z;T_ZXE ol — VT
L E K | Qo | P(Q) = (3.22)
F1—2x1—2x2—(x1k21 %
(04] 2 VZ

xvi=0,vi >0 Vi=1,2

Proof: Based on Theorem 1, there exists a unique optimal solution x * which satisfies the

() . OII(T)
K-K-T conditions, i.e., Py |x1:xT+V1—0a s

1,2. In the proof of Theorem 1, we obtain agﬁf)

=g +v3 =0and x}v; =0,v; >0 Vi=

and agif). The result directly follows. l

Next, we will investigate the structure of the optimal investment strategy. An optimal
investment strategy should take one of the following forms:

(a) Do not invest at all

(b) Invest in resource 1 only

(c) Invest in resource 2 only

(d) Invest in both resources.

Before we explicitly describe the conditions under which forms (a) - (d) are observed,

we define four threshold values as ¢y, ¢;, ¢2 and ¢,.

When X" * = (0,0), equation (3.22) in Proposition 4 reduces to

ET) I T .
E(=2 21 k| Q6)P(Q) = €1 —
o + (ocz o 12| Q6)P(Q6) = c1 — 7,
ET) Iy I»
E(-L =22 k1| Qo)P(Q9) = 2 — Vi
o + <061 o 21| Q9)P(Q9) = c2 — v
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Letc, = %Fll) —l—E(g—; — g—; —k12| .Q.6)P(.Q6) and ¢, = ]%1;2) —I—E(g—i — % —k21| Qg)P(Qg).
If ¢; > ¢;, then v] > 0, i.e., it is not optimal to invest in resource i, i = 1,2. Note that here
Q6 and Qg are the demand regions when both resource capacities are 0. When X* = (x7,0)

with x} > 0, from equation (3.22), we obtain:

+72 —2x] — ook
o1 + Ol

— Dyt
g = / n xlf(YuYz)ledvz-i-/ n
Q3+Q9 04 Qs

Y2 — 2x] — Ok12

fy,2)dndy

+

fy,v2)dydys.
Q6 0]

Since x5 = 0, regions Q5, 7 and Qg are empty. The optimality equation for resource 2

reduces to v5 = ¢ — ¢, > 0 where

¢ = / Y—zf(yl,yz)dyldvfr/ kiof (1, v2)dvidy,
Q+Q3 02 Q4

by —2x +ak —2x
[ DRI TR 0 dndys + / L2 ),
Qs o + 0l Q6 o2
— 2 —oqk
[ MESTRE Gy )y,
Q o

When x* = (0,x3) with x5 > 0, from equation (3.22),

+7 —2x5 — ko
o1 + Ol

_2 *
0 = / e xzf(Yh'Yz)d'Yld'YZ“‘ / n f(y,v2)dvidy
Q3+Q¢ Qg

05}

4 Y1 — 2x5 — Ok

fv,v2)dyidys.
Qo ]

Since x] = 0, regions Q1, €4 and Qs are empty. The optimality equation for resource 1

reduces to vi = ¢ —¢; > 0 where

—2x5 — ok
¢ = / ﬂf(\(l,\(z)d“thz-i-/ BRI iy ) dvidy
Q405 0 Qs 0/)
+v —2x5 + ok
+ / kot f (y1,7v2)dyidy. + nTp 2 ' 2 21f(Yl,Y2)dY1dY2
Q7 Qg o + 0

Y1 — 2x§

fy,v2)dyidys.
Qo O

Based on these observations, we can state the following proposition that outlines the struc-

ture of the optimal investment strategy.
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Figure 3.3: Impact of investment costs on the optimal investment strategies

Proposition 5. The optimal investment strategy has one of four distinct forms depending
on the costs of resources ¢; and ¢;:

(a) If c; > €1 and ¢» > ¢, it is not optimal to invest in any of the resources.

(b) If ¢ < ¢; and ¢ > ¢,, it is optimal to invest in resource 1 only.

(c) If ¢c2 < ¢z and ¢1 > ¢y, it 1s optimal to invest in resource 2 only.

(d) If c; < ¢ and ¢ < ¢y, it is optimal to invest in both resources.

Proof: The proof of the proposition directly follows from the definitions of ¢1, ¢2, ¢; and
o N

Figure 3.3 provides the intuition for the result of Proposition 5. Given the distributions
of the demands and the corresponding o values, ¢; and ¢; are constants. On the other hand,
¢ and ¢, values depend on the values of ¢ and ¢, which are illustrated by ¢; and ¢, curves

shown in Figure 3.3. First, observe that if ¢; = 0, then ¢, < ¢2, and if ¢ =0, then ¢; < €.
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That is, if ¢; = 0, we can invest in resource 1 as much as we want. Therefore,

¢ = / Y—Zf(yl,yz)dwder/ kiof (1, v2)dnidy,
Q+Q3 02 Q4

+v —2x7 + ok —2x]
n Y1+"Y2 ! lzf(y1,vz)dY1dY2+/ » Lf(y1,v2)dndy
Qs o + 0 Q 02
—2x7T — ok
+ [ DT Gy p)dyidy.
Qg 091
_ / Y—zf(yl,YZ)lede+/ kiaf (v, v2)dndys.
Q1+Q; 0 Q4

Note that in demand regions Qs, Qg, Qg, all demand is satisfied since ¢y = 0, and the
shadow price of resource 2 is zero. Based on the definition of demand region 4, k12 < &—22.
We have ¢, < fQ]+Q3+Q4 Zt—zzf(yl,yz)dyldyz < E(g—;) < ©. We can show that if ¢, = 0, then
¢y < ¢ 1n a similar way. Furthermore, it is easy to show that if ¢; = ¢y, then ¢, = ¢, and if
¢y =, then ¢y =¢j.

Based on these observations, Proposition 5 can be explained as follows: The costs of the
resources can be divided into four disjoint sets as Ry, R>, R3 and R4. As shown in Figure
3.3,if (c1,¢2) is in region Ry, Ry, R3 and Ry, the optimal investment strategy is of form (a)
(b), (c) and (d), respectively. The concavity of the stage 1 problem guarantees that the four
regions in Figure 3.3 are disjoint because if there exists an overlapping area (except for the
boundaries where the solutions are the same) between any two of the regions, there exists
two distinct solutions satisfying the optimality condition given in Proposition 4, which is a
contradiction.

Next proposition will address the sensitivity analysis for P; and P,. Let IT* and ®*

denote the optimal objective values of P and P, respectively. We have:
Proposition 6. Fori=1,2,

1. ®* decreases in 0,;.

2. IT* decreases in o; and ¢;.

3. If x7 >0, i= 1,2, x] decreases in ¢;, and x;‘., J # i increases in c;.
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Remark: q; is the slope of the demand function for market segment i. As o; increases, the
optimal objective function value of P, decreases. As a result, the optimal objective of P
decreases as well. ¢; is the unit cost of resource i. Intuitively, as ¢; increases, the optimal
objective function value of P decreases and the optimal investment level in resource i
decreases.

Proof:

1. In order to conduct the sensitivity analysis of P, in o;, we consider the optimal so-
lution and optimal objective function value as the functions of o;, i = 1,2. Let
pi(a), zj;(ou), I,j = 1,2 be the optimal solution of P>(0;). Let yj(a;) = x; +
Y41 25(06) — X ;41 27;(04) be the optimal total available capacity of resource ! after
reallocation.®*(o;) = ¥}_; pj(Vj — @jp;) — Xy X j# kijzj;- is the optimal objective
function value of P»(;). Consider that o; decreases to o; — 8, where d is a small
positive real number. We will show ®*(o; — 8) > ®*(o;). Let us construct a feasi-
ble solution for P»(0; —8). Let pj (o — &) = pj (o), [ # i, 1 € {1,2}, zj;(0; —8) =
zj;(0),1, j = 1,2. All decision variables of P>(a; — &) except p; (a; — 8) are named

values. Then we determine the value of p}(o; — ) as follows:

Consider the optimal solution of P (),

(a) If constraint (3.5) is binding for resource i, i.e., ¥; — a;p; (&;) =0,
let pf(o; —9) = % As far as 0 is small enough, it can be easily verified the
constructed solution for P>(o; — ) is feasible and generates the same objective
value as P»(0;). The optimal solution of P (o — ) is at least as large as ®*(q;).
Therefore, ®*(o; — §) > ®*(0;) and %%j <0.

(b) If constraints (3.5) and (3.2) or (3.3) are not binding for resource i.
pi(oy) = 2%1 Let p;(a; —9) = ﬁ The constructed solution for P;(a; — d)
is feasible and generates a larger objective value than P»(a;). We have ®*(o; —

()

§) > @* (o) and 32 < =T <.

i T aai

(c) If constraint (3.5) is not binding, and constraint (3.2) or (3.3) is binding for re-

source i. Let p¥(o; —90) = %. The constructed solution for P»(o; — ) is fea-
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sible and generates a larger objective value than P>(a;). We have ®*(o; — 8) >

2 0EH _ ey
- aO(.,' - (xz

i <0 (both y; and y; — y; are positive).

* 9P*
P*(0y) and §-

l

Therefore ®* () is decreases in o; for all i = 1,2.

é
2. Since ®*(0y) is decreases in a;, IT* = E[®* (X", T')] — Y%, cixf decreases in 0.

* . .
aa% = —x;, ®* decreases in ¢; with rate x;.
1

3. When xf > 0, i = 1,2, the first order condition gTHl|X1=XT, =y = Fi (x,x5,¢1) =0

oIl . . . .
and g | n=x}, n=x; = F2(x],%3,¢ 1) = 0 implicitly define x] and x} as a function of cy.

o k0% o
oxj dcy  dx3dci  dcy

=0 (3.23)

an axi< an ax; an .
ax; 9c1 a_;c;a_cl+a_c1_0 (3.24)

Since ?TF: =—1and 3%2 =0, by solving (3.23) and (3.24), we have,

1 11
oxj o ox; ~ Ixoxn
dey  PUPL _( PO \2 J¢y  SOPI _ &Iy
1 ax% ax% (axlaxz) ! ax% ax% (axlax2)

Based on (3.20) and (3.21), we have g% < 0 and % > 0. Similarly, we can show

ox; oxj
that%<0and%>0. [ |

3.5 Numerical Analysis

To carry on the numerical experiments, we use normal distribution with mean y; and stan-
dard deviation o; as the underlying distribution of the market size of the demand for re-
source i. Since we assume the sizes of the market demands are nonnegative, the negative
portion of the underlying normal distribution is truncated when we conduct the numerical
computation. The demands for different resources are correlated. The correlation coeffi-
cient between demand i and demand j is p;; Vi # j. Let xf.VR denote the optimal capacity

-
of resource i when there is no reallocation between the resources. E(®*(T", X)) is the ex-
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ﬁ
pected objective function value of P, given a random market size vector I" and a capacity
vector x .

We compute the optimal resource capacities by the following algorithm:
1. Letx; =xM Viand [ = 1.

2. Fixing other capacities, compute the capacity of resource / that maximizes the objec-
tive function of Pj, which is given by E(®* (F}, X)) — Y", cix;. The computation of
E(@*(f}, X)) is based on Monte Carlo simulation as explained in detail below. A
new value of x;, x/, which maximizes the objective function of P, is obtained based
on binary search in internal [0, Y7, xK]. Note that the optimal value of x; can not be

larger than Y7 xR,

—_ — — . . .
3. If X — x| < g, return x" as the optimal solution. Otherwise, let / =1+ 1. If [ > n,

[ =1. Go to step 2.

In step 2, E (CID*(F), X)) is obtained by Monte Carlo simulation. We generate M inde-
pendent realizations of the market size F) For each realization i, i=1,2,...,M, and a capacity
vector X', we compute &*(7y, X" )based on Proposition 3. Then, E (d)*(?, X)) is approx-
imated by the average over all realizations, i.e., Y, ®* (Y, %)/M. In order to generate
a realization of the demand vector ?, we first generate a vector ? with size n, where
E(z1) =E(z2) = ... = E(zy) =0, Var(z1) = Var(z2) = ... = Var(z,) = 1 and z1,22,...,2,
are independent. Suppose that ¥ is the covariance matrix for the demands, and £ = ATA
after conducting the Cholesky decomposition where A is an upper triangular matrix. Let i/
denote the mean vector of the market sizes. Then T = o —i—A? is the correlated market
size vector, which has mean ﬁ) and covariance matrix X.

Since Monte Carlo simulation follows square root (of the sample size) convergence, in
our numerical analysis, we choose the sample size 40,000 which gives a standard error of
0.5%.

With this numerical study, we would like to investigate how optimal capacities of the

two resources change with respect to demand correlation.
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Resource ¢ o i ©; ki ki
1 55 1.2 120 40 0 0
2 40 2.0 200 80 5000 O

Table 3.1: Parameter values for the two-resource system

Table 3.1 shows the parameter values that we use. In this study, resource 1 can be used
to satisfy demands from both markets at no cost. On the other hand, k1 = 5000 ensures
that resource 2 can only serve its own market. This is a setting similar to the one given by
Netessine et. al. (2002). The model presented in Netessine et. al. (2002) assumes that the
prices are fixed whereas our model considers a postponed pricing strategy.
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Figure 3.4: Optimal expected profit and resource capacities with respect to p»

The left chart of Figure 3.4 shows the percent increase in the optimal expected profit
obtained by reallocation as compared to the system no reallocation. When the demands
are perfectly negatively correlated, the relative percent increase can be as high as 21%.
As p12 increases, the relative percent increase decreases. When the demands are perfectly
positively correlated, the benefit of reallocation diminishes.

The right chart of Figure 3.4 shows the optimal capacities as a function of the correlation

coefficient between the demands. When the correlation increases from —1 to 1, the optimal
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capacities get closer and closer to the optimal capacities without reallocation. We also note
that when the correlation between the two demands increases, the optimal expected profit
(i.e., optimal objective function value of P;) decreases. These conclusions are the same

with conclusions reported in Netessine et. al. (2002).

3.6 Conclusion

In this chapter, we considered a capacity investment, resource allocation and pricing deci-
sion problem faced by a central decision maker that manages two resources which can be
used flexibly to satisfy demands from two market segments. We formulated it as a two-
stage stochastic programming problem, and explicitly solved the second stage problem.
The analysis of the first stage problem showed that the optimal capacity investment strategy
takes one of the following three forms: (1) Do not invest in any of the resources; (2) Invest

in one of the resources; (3) Invest in both resources.
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Chapter 4

Capacity Investment Strategies for
Systems with Multiple Resources

In the previous chapter, we considered the two-resource model and provided the structural
properties for the optimal capacity investment decision by solving the stage 2 model explic-
itly. In this chapter, we further investigate the multi-resource version ( i.e., systems with
more than two resources) of the model.

This chapter is organized as follows: In section 4.1, we introduce the two-stage opti-
mization model to address the multi-resource capacity investment problem. In section 4.2,
for the multi-resource stage 2 model, we study the structural properties of the optimal solu-
tion, and then present the heuristic methods to solve the problem approximately. In section
4.3, based on the analytical results of the second stage model, we further study the proper-
ties of the optimal solution of the first stage model. Finally, in section 4.4, we present the

numerical experiment results.

4.1 Model Formulation

We use the same notation as the two-resource system except that we consider a firm that
serves n markets instead of just two. p; denotes the unit selling price of resource i, and
D; =T";—a;p; is demand function. I is the intercept that denotes the market size of demand
i, i=1,...,n. We assume that I'; is a nonnegative continuous random variable, i = 1,...,n.

Market i is primarily served by resource Z, but it can also be served by resource j (i # j) ata



nonnegative reallocation (i.e., substitution) cost kj;, i, j = 1,...,n. We assume that k;; +k;; >
0 to avoid a trivial case that resource i and j can replace each other with no cost so that they
can be aggregated into a single resource. Let ¢; denote the unit cost of investing in resource
j, j=1,...,n. The company commits to resource capacities x = (x1,x2,...,x,) long before
nonnegative market sizes of demands T = (I'1,Iy,...,I,) are realized, in order to maximize
the expected total profit. Let x; denote units of capacity invested in resource j, j=1,...,n.
We denote a realization of T = (T'1,Ta,....,T,) by ¥ = (Y1,72, ..., s ). Once the realization
7 of T is observed, the company makes its pricing and resource allocation decisions so as
to maximize its total expected profit under the resource investment decisions made earlier.
Letz;; (i,j=1,...,n. i# j) denote the amount of demand j satisfied by resource i once
demand is observed, and Z = [z; j] is the resource allocation matrix. Then, the model can be
formulated as a two-stage optimization problem. Stage 1 problem P; makes the investment
decisions as follows:
Stage 1 (P;):

n
maxI1(¥') = E[®* (¥, F))] —Y cix;
i=1

X

subject to:

X1y X2, «-oy Xn >0

E[®* (X, ?)] is the expected revenue for a resource capacity vector x , where ®*( %", )
is the optimal objective function value of the stage 2 problem (P,) which decides the opti-
mal prices and allocates the resources optimally to fulfill the demand based on an observed
demand, d; = W —o;pi, i=1,...,n.

Stage 2 (P,):

n

(X, Y) = max Y pi(vi—oup)— Y, Y kjizji (4.1)

Z,p =1 i j#i
st Yi—oipi <xi+ Y zji— Y. Vi (4.2)

J# J#i

zji=0 Vj#i .3)
Yi—aipi >0 Vi (4.4)
pi>0 Vi 4.5)



The stage 2 model (P») maximizes the profit given the resource investment vector x and
the realized market size vector 7 In (P>), inequality (4.2) ensures that the demand from
market i does not exceed the total available capacity. Inequalities (4.3),(4.4) and (4.5) are
the nonnegativity constraints on the resource allocations, demands and prices, respectively.
The objective function of P, is concave with respect to p;, and it is linear in z;;. Moreover,
all the constraints are linear. Therefore, P is a concave problem.

This model is a generalization of the model in Bish and Wang (2003). When n = 3,
ki2,ko1,k13,ko3 — o0 and k31, k3p = 0, resources 1 and 2 do not substitute for other resources
because of the high reallocation cost (e.g., dedicated resources). Resource 3 can substitute
for other resources at zero reallocation cost (e.g., flexible resource). Bish and Wang (2003)
analyzes the two-stage optimization problem under this setting, and studies the impact of

demand correlation on the investment strategy.

4.2 Characterization of the Stage 2 Model

4.2.1 Structural Properties

In section 3.3 of the previous chapter, we obtained the optimal solution to the stage 2 model
with two resources. However, systems with more than two resources are complicated to
analyze in a similar manner, and the optimal solution cannot be easily obtained. Therefore,
in this section, we focus on studying some of the structural properties of the optimal solution
for multi-resource models. Although a closed form solution cannot be obtained, we can
get enough insight to develop efficient algorithms to solve the problem. Furthermore, the
structural properties of the optimal solution of P, are useful in proving the concavity of P;.

First, we provide the following definitions: If a resource is used to fulfill the demands
for other resources, we call it a “supplier”. If demand for a resource is satisfied by other
resources, we call that resource a “consumer”. If in a group of resources, each of the
resources is connected to all the others either being a consumer or a supplier, directly or

through other resources, we call this group a “sharing group”. A resource that is neither
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a consumer nor a supplier is a single element sharing group. In the optimal solution, the
whole set of resources can be divided into several sharing groups.

Let A;, u;j, Bi, i,j =1,2,...,n, i # j be the Lagrange multipliers of (4.2),(4.3), and
(4.4) respectively, and we use p;, i, A, U, B to denote the corresponding optimal values
of the decision variables and the Lagrange multipliers. The optimal solution to P, with

multiple resources (i.e., n > 2) satisfies the following K-K-T conditions:

* Yi }V*_B* .

. = — <+ - 1 2 eee 46
pl zal + 2 Vl 9 ) 7n ( )
kj—kjfzk,-j—u;“j Vj#i (4.7)
A (—Yi+oupi +xi+Y 25— Y.2;) =0 Vi=1,2,..,n (4.8)

A
iz =0 Vj#i (4.9)
Bi(vi—aup;) =0 Vi=1,..,n (4.10)
B; > 0,Af >0,uf; >0 Vi,j (4.11)

Note that we omit the last constraint (4.5) in P, because p; is always nonnegative in an
optimal solution since the demand for resource i is nonnegative.

In the next three propositions, we present several basic properties of the optimal so-
lution. Essentially, these properties are supported by transportation (minimum cost flow)
theorems which can be found in Ahuja et. al. (1993). The minimum cost flow problem
aims to reallocate multiple resources optimally (i.e., minimize the total reallocation cost) to
fulfill the demands for the resources. In the minimum cost flow problem, the demand for
each resource is given, and there is no optimization with respect to the prices which deter-
mines the quantity of the demand. Therefore, the minimum cost flow problem only needs
to decide the optimal reallocation quantities where our model needs to decide the optimal
reallocation quantities and the optimal selling prices simultaneously. However, since our
model has the same reallocation structure as the minimum cost flow problem, the objective
functions and constraints of two models are very similar except that our model includes the
pricing factor, and therefore has a quadratic objective function instead if a linear objective

function. It is not a surprise that the optimal solution of our model has similar properties
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Figure 4.1: Optimal shadow prices of the resources in a sharing group

as those possessed by the optimal solution of the minimum cost flow problem. Theorem
11.1 in Ahuja et. al. (1993) shows the cycle free property of the optimal solution of mini-
mum cost flow problem, and it is related to our Proposition 9. Theorem 11.3 introduces the
minimum cost flow optimality conditions which are related to our Propositions 7 and 8. We

provide the following properties for our model.

Proposition 7. In an optimal solution, if resource i is a consumer of resource j, then 7»?‘ =

kj—i-kj,‘.

Proof: Based on (4.7), in an optimal solution, Vi # j we have
}\«j —7\55 = k,‘j —u;-kj

* * %
7\1—7\7—](]1 Ltjl-.

Summing up these two equations, we obtain u;-kj + u;‘.i = kij+kj;. Since we assume k;; +kj; >
0, at least one of u;; and u7; is positive, i.e., if 7 is a consumer of j, it cannot be a supplier
of j at the same time. Since resource j is a supplier of resource i, zjfi > 0 leads to u;‘.l- =0.
Based on (4.7), uj; = kij+kji = A =LA +k;; W

The above result shows that when resource i is a consumer of j, the difference between
their shadow prices is equal to the unit reallocation cost from j to i, which is an intuitive
result. In a sharing group, every resource (i.e., node) pair is connected through a set of
nodes and arcs. Let S?;’de and Sf‘jr ¢ denote the ordered set of nodes and the ordered set of

arcs through which resource j can be reached from resource i, respectively, where i is the
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starting node and j is the ending node and each node between i and j is visited only once.
For example, in Figure 4.1, resource 2 is a supplier of resources 1 and 3, resource 4 is a
supplier of resource 3, and resource 5 is a supplier of resource 2. Then, starting at node
1 and ending at node 4 , resources 1 and 4 can be connected by S’l"ﬁde ={1,2,3,4} and
STE=1{(2,1),(2,3),(4,3)}. If we know the optimal shadow price of one of the resources,
the optimal shadow prices of the other resources in this group can be obtained sequentially
based on Proposition 7. Referring to Figure 4.1, A5 = A] — ka1, Ay = A] —ko1 + ko3, A =
AN — ko1 +koz — ka3, Ay = A} — ka1 — ks».

Suppose that (f, %) is an arc in Sij¢. We define vy as the coefficient of unit reallocation
cost from resource f to h, where vy, is equal to 1 if the direction of the arc matches the
order of nodes f and & appearing in S;?jo‘le, otherwise, vy, equals to —1. In Figure 4.1, nodes
1 and 4 are connected by S’I‘Zde = {1,2,3,4}. Node 1 appears right in front of node 2, and

the order does not match the direction of the arc connecting 1 and 2 which is (2,1), so

v21 = —1. Hence, the shadow prices of resources in a sharing group satisfy the following
equation:
No=MA+ Y vakp (4.12)
(f.h)esie

for each resource pair i and j in the sharing group. Let S denote an optimal sharing group.

Proposition 8. When § denotes an optimal sharing group, fori,j € S, i # j,

Y venken < kij. (4.13)
(f:h)esgre

Proof: Based on equation (4.12), fori,j € S, i # j,

7\; :7\,?4— Z Vinkpn-
(. h)esee

Based on (4.7), we have

7\.7—7\,? :k,’j—bt;-kj: Z thkfh.
(f-h)esge
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Since u;kj >0,

Y venken < kij. u
(fh)esee

In Figure 4.1, Sﬁ’zde and S{)° are not unique. S’fzde can alternatively be defined as
{1,3,4}, and S{}° can be defined as {(1,3),(4,3)}. The optimal shadow prices of the re-
sources in this sharing group can also be computed by Ay = A} + k3, Ay = A} + ki3 — ka3,

4 = M + ki3 — ka3, A = A} + k13 — ka3 — kso. Hence, there is more than one set of equa-
tions to compute the shadow prices. As shown in Figure 4.1, {(2,1),(2,3),(1,3)} isacycle.

There is a cycle because S’I’Zde and S{° are not unique.
Proposition 9. P, has an optimal solution which is acyclic.

Proof: Suppose that there exists a cycle in the optimal solution of P,. Let M be the total
number of nodes in the cycle, and the set of the ordered nodes is {i},i,...,iyp, 11 }. Let us
use C;, ;, to denote the cycle that starts and ends at node i;. Without loss of generality, we

define the direction of the cycle as i — iy — ... — iyy — i]. From equation (4.12), we have

7\,71 = 7&71 + Z thkfh = Z thkfh =0.
(fh)ECiyiy (f:h)eCiiy

The reallocation amount between two adjacent nodes in a cycle should be positive by
definition. If we send a tiny flow O through the cycle, and the direction of the cycle is
the same as the direction of the arc which connects two adjacent nodes, the reallocation
amount is changed by +9. If the direction of the cycle is different from the direction of
the arc, the reallocation amount of is changed by —3. Considering constraint (4.2) in P,
Y. j+iZj; — Lj#i%; is the total reallocation amount to/from resource i. If i is one of the
resources in {i1,i,...,in }, after sending out the tiny flow 8, ¥.;;25; — ¥j;z/; does not
change because the flow o enters node i, and then goes out to the next node in the cycle.
Since 9 is a tiny amount, it is guaranteed that the reallocation amount between two adjacent

nodes in the cycle is nonnegative after the change. The objective value of P is changed by

( Z thkfh)a
(f:h)€Ciyiy
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On the other hand, we know that Z( FI)EC s, verksn = 0, so the objective value does not
change. Increasing O until the amount allocated through one of the arcs becomes zero, we
eliminate one cycle in the optimal solution. If there are more than one cycle in the optimal
solution, we repeat this process until all the cycles are eliminated to achieve a cycle-free
optimal solution. l

For example, in Figure 4.1, there is a cycle that consists of arcs (2,1),(1,3) and (2,3).
Without loss of generality, if we send a flow, say, through nodes 2, 3 and 1, we can eliminate
arc (2,1) if 23, < zj5 or eliminate arc (1,3) if zj; < z5,. The proof of Proposition 9 tells that,
the optimal solution of P, may include cycles. However, we can always transform it to an
acyclic optimal solution. As a result, an optimal sharing group can always be constructed
as a spanning tree, which defines an unique path from each resource to every other resource
in the optimal sharing group. The optimal solution of P, is composed of a set of sharing
groups that are spanning trees.

In the reminder of this section, we will first investigate the structure of the optimal
solution (i.e., compute the optimal values of the shadow prices and decision variables) for
an optimal sharing group. In the next sections, we will provide procedures to identify the
optimal sharing groups for a given stage 2 problem.

For now, suppose that the optimal spanning tree for a sharing group is given, including
all the information of the arcs (starting node, ending node, and the directions). Let us denote
the set of nodes in the optimal spanning tree by S. The following proposition gives the ex-
pressions of the optimal shadow prices and the optimal selling prices of the resources in an
optimal sharing group. Once one of the shadow prices of the other resources is given, other
shadow prices of the resources in the sharing group can be determined by using equation
(4.12). Let A;,,;, = minjes A}, Let L denote the set of resources for which A =47, j € S.

If |[L| > 1, then we choose an arbitrary resource, say [ € L, as the “base resource”.

Proposition 10. In an optimal sharing group S, for j € §

x>0 «=pi=0 4.14)

J
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= —Ai<0 <:>Bj->0 (4.15)

Proof: Let us first prove (4.14).

1. Suppose that OYL—’]_ -7 >0.

If B7 > 0, based on (4.10), y; —ojp; =0 = pj = Zc_j] Plugging it into equation

(4.6), we have

=N ——=<0

which is a contradiction. Therefore Bj =0.

R
2. Suppose that B = 0. Based on equation (4.6), p} = %’j + . Based on constraint
(4.4) (i.e., v, —o;p; > 0 Vi), we have
Vi (MY A Vi s
0P = Yi— (o + Sy = 2T S g x>,
i iPi =i 1(2051' + ) ) D) 7 = o J =

Next, we prove (4.15) as follows:

Vi * * : * __ Yj A
1. Suppose that Oﬂ_{/‘ — A <0. If B} = 0, based on equation (4.6), p; = 2ch_,« + . Based
on constraint (4.4) (i.e., y; — o;p; > 0 Vi), we have
Yi (ML _¥ o ok

Yji o
Yi —Oipi =i OCZ(ZOQ + 2) 5 7 >0 o 7\7 >0

which is a contradiction. Therefore [3;k > 0.

2. Suppose that B > 0. Based on (4.10), y; —a;p; =0 = pi = ;—’j Plugging it into
equation (4.6), we have
Bj = kj — —£ > 0. Therefore, — —kj <0. 1
o j

Proposition 11. Suppose that / is the “base resource” of an optimal sharing group S. As-

sume that - jegx; > 0.
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1. If ZJGS(Y] — ajZ(fﬁ)eSlaj(C thkfh)+ S ZjeSzxj’ then 7\,7 = 0, and

7\;2 Z thkfh Vj#l. (4.16)
(f-h)Esg

) 1Y) > 0 ¥ fmyespre vinkn,

Y, L(rmesie VK

)
B; =0, p; 20 " 5

b) Otherwise,

Yj
>k>0’ j‘f:—'
Bj Pj o

2. If Y jes (v — ajZ(fﬁ)eS?j(C venkp)t > ¥jes2xj, then A > 0. Let T be the set of

resources j € S with B = 0. In an optimal solution, 7' # .

B Yjer(Yj—ay L(fnesge Vinken) —2Y jesX;

M o >0, (4.17)
l Yjer O
alf jeT,
Bi=0, pt = Yj Aj Z(ﬁh)es;f;c vinkfn
o 20 2 '
b) Otherwise,
>0, pt=—.
BJ pj

Remark: We can see the quantity (y; —o,; Y(fhe sore v #nk )™ as the “effective demand” of
resource j. Indeed, if y; — ; Z(f,h)es;lj"‘ vk <0, % < Z(f,h)es;‘j"‘ Venkgn =N, = A <A
Based on Proposition 10, B7 > 0. When f% > 0, based on (4.10), y; — a;p; = 0, i.e., no
demand for resource ; is satisfied. In other words, When Y; — 0t} 1 s)e sgre v rnkn <0, the
market size of the demand for resource j is so small that no resource in the sharing group
will be assigned to fulfill it ([3;k > 0). Only when ¥; — 04 Y7 n)e sore v rnkn > 0, it is possible
that other resources in the sharing group will be assigned to fulfill the demand for resource j.

Therefore, we call the nonnegative part of ¥; — ;Y. 7 )e sgre v 1k s the “effective demand”.
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When the sum of all “effective demands” of the resources in the sharing group is less than
Y jes 2x;, the capacity constraint of the sharing group is nonbinding, such that A; = 0. When
the sum of all “effective demands” exceeds the available resources, the capacity constraint
of the sharing group is binding, such that, even the smallest shadow price of the resources
is positive.
Proof:

Let us first prove the following equation,

. Vi X mesye vinkrn — 0A
¥i— ;= 5 ) (4.18)

Based on equation (4.12), At = A+ Y ¢ nesare Vinken, V' j # 1. The optimal selling price
§ =M T X(rmesy vinky

of resource j € S is given by equation (4.6) as

L% Mg mesyevkm —B;

- — 4.19
Pi= 2, + > (4.19)
Based on Proposition 10,
ﬁ — 7\,7 — Z thkfh >0 «— Bj =0. (4.20)
&j (f h)ESH
B p— Y k<0 =B >0. (4.21)
&j (fh)esgre

If ZL—’j —M =X fh)esge venken > 0, based on (4.20),

v Mt X(rmespevnken

) Pi= 20, " 2

Therefore,

Vi = O X rmyesgre Vnkpn — 0jA;

Yj— %P = >

On the other hand, if % L Z(f-7h)65?;c- venkpn < 0, based on (4.21), B > 0. Based on
(4.10),

’Yj—Oijj- =0.

46



Therefore,

. Vi X rmespevinkpn — oA
Yji—apj = ( 12, )"

LoIE Y jes(y) — (XjZ(f,h)es;‘;f vinkn) T < ¥jes2x), suppose A > 0. We have, A} = A} +
Y (rnyesue Vinkgpn >0 Vj # 1. When A} > 0, all the shadow prices of the resources in
’ J

the sharing group are positive. The constraints in (4.2) hold as equalities Vj € S, i.e.,

Yi—opi=xj+Y zj— Y zji Vi
iz i

Summing those equations up, we obtain

Y (vi—opj) =Y xi+ ) (Y aj— Y i)

jes JjeS JES i#j i#]

Since we consider the resources in the same sharing group,

Y Qzji—Y zi)=0

JES i#] J#

Therefore,
Y (vj—oipi) =) x;. (4.22)
JjeS JEN

Based on equation (4.22) and (4.18),

Y xj= ) (vj—opj) =),

JjES JjeS jeS

(YJ =0 X(rmyespre vinkn = 0A > !
2

<)

jes

<'Y] — Q.]’Z(fﬂ)eslajrc thkfh) +
) ’

which is a contradiction. Therefore, if ¥ ;cs(y; — 0.; Z(f’h)gsﬁc vk )t < Yjes2xj,

A =0.

When A7 = 0, according to equation (4.12), A* =Y arc Vepken VJj#£ L
1 J (f,/’l)ESlj Shf
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1(a). When A = 0, the optimal selling price of resource j € S is given by equation
(4.6) as
T Y (rmeseevnksn—PBj
Pi= 20, 2

Based on Proposition 10,

Y, L(rmesue venkn

(X'_j_ Zarcv'fhkfhzo <:>I3]_O = pj_2a+ 2
(f7h)€S[j J
1(b).
Yj * * * Yj
o Y vakm<0 —=Bi>0 —vy—ap;=0 = pj=:r.
i (riesg j
Y jes(Y— OCjZ(f,h)eslajrc Vnkgn) T > Y jes 2xj, suppose A} =0 .
Summing up constraints (4.2) Vj € S, we have
Y (vi—ojp) <Y xj (4.23)

jes jes

Based on (4.18),

QZ(Yj—OCij) = Z(Yj—“j Z verken) T < Z2Xj,

= jes (f-h)Esie JES

which is a contradiction. Therefore, if Y ;cs(Y; — 0t X Fhyesye Venkn) T > Y jes 2x;,
A > 0.

Given Y jcs(Yj — O Z(f,h)eS;‘j”' venkn)T > Yjes2x; and A; > 0, let T denote the set

of resources j € S with B; = 0. When A} > 0, equality (4.22) holds., i.e.,

Y xi=) (vi—op))

jes jes
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If j€S\T, B >0=1v;—a;p;=0. Therefore,

Yxi=Y (vi—oyp) =Y (vy-op)) (4.24)

JjeS JjeSs JET

) . M+ mesqre vnkn .
When j €T, B =0, based on (4.19), p; = w - 5 . Using (4.24),

Y=Y

jes JET

(Yj =04 X (fnyesere v nkn — 0€j7»7>
2

— A= Ljer (Y — % Xy mesy Viwkgn) ~2Ljes ). (4.25)
ZjeT o

In order to prove that T # @, we will use contradiction. Suppose that 7 = @, then,
Bj >0, Vj€eS. Based on (4.10), v; —o;pj =0, Vj € S Since Aj > 0, based on
(4.22),

Z Ocjpj ij—()

JES JES

which is a contradiction with assumption that }’ jcgx; > 0.

In Appendix A, we present the procedure to determine 7', given
Yjes(vj— L(fmesmeV pnkn) T > X jes2x;.

2(a). If j € T, B; = 0 by definition of 7. Based on (4.6),

vi M Xirmesye vinksn
+ )
2aj 2

*

p; =

2(b). If j ¢ T, B% >0, and based on (4.10), pi = L. W

j

Once we find the optimal shadow and selling prices, it is straightforward to compute
the reallocation quantities among the resources. As we have defined earlier, L denotes the

set of resources for which A} = A;

mins! € S. In Proposition 12, we will show that, for an

acyclic optimal sharing group, when A; > 0 or A =0 and |L| = 1, the optimal reallocation

quantities (i.e., z/;, i, j = 1,...,n, i # j) can be uniquely determined. However, when A; =0

lj7

and |L| > 1, the optimal reallocation quantities may not be unique. If |L| > 1 and A} =0,
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we choose two resources in set L, say [,/ with 7»71 =0 and 7»72 = 0, which means that the
capacity constraint (4.2) may be nonbinding for i = I}, 1, in an optimal sharing group. When
the capacity constraint (4.2) is nonbinding for i = [1,1, (i.e., there exists extra available
capacity for both resources [ and [3), if we send a tiny flow & from /; to I, through the
arcs which connect /1 and /5, as far as the amount of the flow is small enough, we obtain
a new feasible solution (i.e., new reallocation quantities) and the objective value does not

change (the change on the objective value is 8.1 4)e sure v rnk g Which is equal to 0 because
J 1 2

*

L =N, +Z(fvh)€5§’f?2 venkgn and A = Aj = 0).

The speciality of an acyclic optimal sharing group with Ay = 0 and |L| = 1 is that there
is only one base resource, which means the capacity constraint (4.2) is binding for all
resources in the sharing group except the base resource. On the other hand, when A] = 0
and |L| > 1, there are more than one base resource in the sharing group. Since it is good
enough to find one of the optimal solutions, if we can pick one of the base resources and
make the capacity constraint (4.2) binding for all the other base resources by sending flows
from them to the base resource that we have picked, we can obtain the same optimal solution
in the case with Ay = 0 and |L| = 1. However, when the optimal solution is not unique and
we transform the optimal solution by sending the flows, the following two situations can

arise:

1. One of the arcs which connects two base resources, say /1 and [», is broken, i.e., the
reallocation quantity changes from positive to 0, and the capacity constraints of /;
and /, are still nonbinding. When this happens, the original optimal sharing group is

decomposed into two optimal sharing groups.

2. Capacity constraint of /; becomes binding and none of the arcs which connect /; and

[> is broken.

When A =0 and |L| > 1, if for all pairs of the base resources in set L, none of them can
decompose the original optimal sharing group into two optimal sharing groups by sending
flows between the pair of resources until one of the capacity constraints is binding, we call

the original optimal sharing group an optimal undecomposable sharing group. Therefore,
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the optimal solution of such an undecomposable sharing group can always be transformed
to the case with A} = 0 and |L| = 1, while an optimal decomposable sharing group can be
decomposed into several optimal undecomposable sharing groups.

In an optimal acyclic sharing group S, the arc between node i and j connects two distinct
subsets of nodes. Let us denote the two subsets as S; and S; respectively, where i € S; and
J € S;. Similarly, the set of resources m € S with ;, = 0, say 7, can be separated into two

distinct subsets 7; and T, where T = T; U T;. Let us define functions

UM i)=Y (Ym—0m Y, vakm), HM)=Y 0w, X(M)=Y xn.

meM (f,h)eS%C meM meM

These functions have the following properties that will be used in the proof of Proposi-

tion 12:

1. UM1,i) +U(My,i) = UM UM,,i),
2. H(My)+H(My) = HM;UM>),
3. X(My)+X (M) =X (M; UM,;),

4. UM, i)~ H(M)k; = U(M, ).
Without loss of generality, assume that the direction of the arc is from i to j. z;-kj values,

i, j €S, can be obtained based on the following proposition. Recall that L denotes the set of

resources for which 7»7 =\ 1€S.

‘min’

Proposition 12. In an acyclic optimal sharing group,

1. IfAF >0,

(a) If S; = {i} and B} > O then z;-“j = Xx;.

(b) Otherwise,

Zij 2H(T) (Aj—Ni —kij) (4.26)
where,
5 _UM)=2X(S) 3§ _UT\Tj)=2X(S\S)
" H(T)) o H(T\T))
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2. If A =0and |L| =1,

(a) If S; = {i} and B} > O then z}; = x;.

(b) Otherwise,

1. Ifles;,
N N, H(T\T;
Zi=Mj—ki—k j)% (4.27)
where,
~ ~ U(T\T,j)—2X(S\S;
7\4’: Z thkfh, 7\’]: ( \ Il—]é;\T)( \ l).
(fh)esie '
i Ifl esS;,
Y H(T;
Zij = (7\,] — }\,,' — k,’j)% (428)
where,
~  U(T,i)=2X(Si) =~
hi= ( I;(T-) ( )’ hi= ), vk
! (fhesi
3. If Ay =0, [L| > 1 and the optimal sharing group is undecomposable, the optimal

reallocation quantities may not be unique, and the optimal solution presented in part

2 is one of them.

Remark: By eliminating the arc which connects node i and j, we consider S; and §; as
two separate sharing groups. Then, the shadow prices of resource i and j can be calculated
by the methodology shown in Proposition 11 as 7»,- and A ; within §; and §;, respectively.
A i —Xi — k;;j is the marginal profit of reallocation from i to j when the reallocation quantity
between resource i and j is 0. Proposition 12 tells us, (except the cases that resource i is

the only resource in subset S; and B > 0 where the reallocation between i and j reaches

the upper bound x;,) the reallocation amount between resources i and j is proportional to

Proof:

L. A >0.
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(a)

(b)

Figure 4.2: Reallocation among resource e and other resources

When B > 0, v; — o;p] = 0 from (4.10). Based on Proposition 10, A} > % > 0.
Inequality (4.2) holds as equality for resource i. S; = {i} means that resource i
is only connected to resource j in the sharing group. Therefore, from constraint

(4.2),
Yi—oip; =xi —2;;=0=zj; = x;

Consider an arbitrary node e in the optimal sharing group. Suppose that there
are w ingoing arcs into node e and g outgoing arcs from node e. These ingoing
and outgoing arcs are shown in Figure 4.2. We define the subset §;, to denote
the set of nodes (i.e., the tree originating at node i,) that are connected to node
e through node i, such that there is an ingoing arc from node i, into node e,
where a = 1,2,...,w. Similarly, we define the subset S,, to denote the set of
nodes (i.e., the tree originating at node o,) that are connected to node e through
node o, such that there is an outgoing arc from node e into node o,, where

a=1,2,....q. These subsets are also illustrated in Figure 4.2.

Since A} > A/ > 0, inequality (4.2) holds as equality for resource e, i.e.,

w q
* k
Ye — QePe = Xe + Z Lige — Z Zeo, "
a=1

a=1

Let A= {ala=1,2,...,w} (i.e., the set of the subscripts of the resources from i}

toiy), and Ag = {ala=1,2,...,w, Bi, >0, S;, =i, } (i.e., the set of the subscripts
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of the resources which belong to resource set {iy,i2, ..., i, } and satisfy B;, >0
and S;, =i, witha € {1,2,...,w}).

Based on the definition, if a € Ay, B;, > 0,S;, = i,. Therefore z; , = x;,, and

q
Ye—Oepe=Xe+ Y, Xig+ Y, Ze— Y Zeou- (4.29)
acAy acA\Ag a=1
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When we plug in the z}"j values given in equation (4.26) into the right hand side

of equation (4.29), we obtain:

q
Xe + Z Xi, + Z Z;'kae - Z Z:O,;
a=1

acAy acA\Ag

H(T,)H(T\T,) U(T\T,,e) —2X(S\Si,)

- "”agox’”ae;mo W) HI\T)
U(Ti,,ia) —2X(Si,) ‘ L H(T,,)H(T\T,,) U(Ty,;0a) —2X(S,,)
B7TC S R O V7 o W T
U(T\Tome)_zX(S\Sou) —k
AT &
= xe+a§,0x, +a€§A 2H( ) U(T\T,,e)—2X(S\S;,))H(T;,)
~(U(Tysia) ~ 2X (S, ) H(T\T,,) — H(T, )H(T\ T, Y
9 1
_L; 2H(T) [(U(Toavoa) - ZX(S0a>)H(T \ TOa)
—(U(T\ Toy ) = 2X(S\ S0,)) (H(To,) — H(Ty, JH(T\ Ty, Y,
= st Tt B ol -2
—(U(T;, ¢) —2X(Si,))H(T)]
9 1
= X (U Trd) = XS0 HCT) ~ (U)X (S)H(T, )
e q
— ot ot SO Y Hm) + Y HT,)
acAy acA\Ag a=1
q
Sl T U0~ 2X($5,) + Y (U(Ty,.0) ~2X(S0,)]
acA\Ay a=1
= et Tt S AUV o)
q
ST W)= 2X(53) + L (U(Ty,.0) ~2X(S,,)]
acA\Ay a=1
— O O (U B UL )
3V (UaeaiagTu) U (Ui T ) ) +X(5) (430)

T,,) = T. Then, (4.30) =

a=1

If B7 > 0, then ¥, — o,.p; =0, (UaeA\AoTia) U (Uq

0 =7, — o.p;. Equation (4.29) holds.
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If By = 0. (UgemaoTi) U (Ugey To,) = T\ {e}.

430) = TS (e) - U\ (). 0) +X()
o U(T,e) - 2X(S)
— Jultehe- U2 ey

1 *
= B (Ye — Oty
= Ye— aep:

Equation (4.29) holds.

In an acyclic optimal sharing group , each of the leaves of the spanning tree is
connected to the tree by a single arc. Since equation (4.29) must be satisfied
by every resource in the sharing group and we have shown that the equation
holds by plugging the expression in Proposition 12. Therefore, the expression
given in Proposition 12 is the unique solution for each of the leaves. If we
cut those leaves, new leaves appear and the amount of the flow through the arc
which connects each of the new leaves to the tree can be uniquely determined.
Eventually, all the resources in the sharing group may become the leaves and

the reallocation amounts can be uniquely determined.
2.0 =0, |[L|=1

(a) The proof is the same as 1(a).

(b) We consider the same configuration as shown in Figure 4.2. Here, we suppose
that e # [ (When e = [, the proof is similar). Without loss of generality, assume

that [ € S;;. Inequality (4.2) holds as equality for resource e. Therefore,

q
Ye — UePe = Xe + Z xia+Zile+ Z Z;‘kae_ ZZZOQ- (4.31)
acAy acA\Ap\{1} a=1

Note that since I € S;,, set Ag can not include integer 1. Because if 1 € Ay,
iy =1 = B; >0 = (based on Proposition 10) gc—ee < A; = 0. Since the demand

Ye 1s nonnegative, this results in contradiction.
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We plug the expression of z;; presented in the (4.28) into the right hand side of

equation (4.31) to obtain

q
Xe + Z Xiy T Zije + Z Z;'kae - Z Zzoa
a=1

acAo aeA\A\ {1}

T\E ) U(T\T;,e) —2X(S\S;)
= Xet ), X+ = ( HIT)
acAo i (fh)esiye
H Ea U 7}(17 la B 2X Sia
- (2 )( Y vakgn— ( H)(T- ] (5:) — kige)
acA\Ao\{1} (f,h)esére la
9. H(T,,) U(T,, 04) —2X(S,,)
. Z a ( a a’s __ Z thkfh_ké’()a)
2 H 710(1) (f /’l)GSarC
- x€+ ina_X(S\Sil)+ Z X( ig +ZX Oa
acAo acA\Ap\{1}
1 q
H3WIN\Te) = Y, U(Tye) = Y UTe
acA\Ap\{1} a=1
q
—(H(T\T,) - — ) H( Y. vkp
acA\Ao\{1} a=1 (f.h)esg”

IfB;>0,e¢T.
= (4.32) =0 =", — 0,p;. Equation (4.31) holds.

IfB;=0,ecT.

(432) = S[U({ehe)—H({e}) ), vemkyl

(f h)esarc

| =

= - a)

= Ye— Ocep:

Equation (4.31) holds.

Venk e —kije)

(4.32)

By conducting similar computation procedure (leaves-tree) as shown at the end

of the proof of 1(b) except for resource /, we can uniquely determine the real-

location amounts among the resources.

3.0 =0, |L|> 1,
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If |L| > 1, we pick one of the base resources, denoted by /. Since the optimal sharing
group is undecomposable, by sending the flows among the resources in set L, we are
able to concentrate all the extra available capacity to resource / that we have picked
and the capacity constraint (4.2) is binding for all resources in the sharing group
except resource /. Eventually, we transform the solution to the solution in the case

withA; =0and [L|=1. 1

In order to guarantee the optimality of a sharing group, the z;;’s computed in Proposi-
tion 12 must be nonnegative. If some z;;’s computed in Proposition 12 are negative, the
assumption that a given sharing group is an undecomposable optimal sharing group does
not hold.

The resources in a sharing group give rise to significant profits by balancing the asym-
metry of demand and supply which can compensate the costs incurred as a result of reallo-
cation. If the unit reallocation costs are relatively high, the resources are broken into several
sharing groups.

Let us assume that the optimal solution to P> consists of m sharing groups, and denote
the set of resources in each sharing group by Sy, S, ..., Sy, respectively. As a result, P> can
be divided into m subproblems P, h = 1,2, ...,m. Note that each optimal sharing group can
be decomposable or undecomposable, and it can be cyclic or acyclic because Proposition
13 is only related to the optimal shadow prices which are always unique.

Subproblem (PY):

(X, Y) = max ) pi(yi—oup)— Y. Y iz (4.33)
Zij: P ies), €Sy j#i,JES
stot Yi—oipi <xit+ Y zji— Y.z (4.34)
J#i J#i
;>0 Yj#i, i,j€S) (4.35)
Yi—oipi >0 Vies§, (4.36)
pi>0 Yies), (4.37)
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Let 77[ denote the optimal reallocation matrix for subproblem 4. Let ?;‘l denote the
optimal price vector for subproblem 4. Let Yfl, —);‘l, 7;‘1 denote the vectors and the matrix
for the optimal values of Lagrange multipliers, respectively, for subproblem #.

Consider two subproblems Pé’ "and Pg 2. Let us denote the optimal of solution and the

corresponding optimal Lagrange multipliers for subproblem P," by (Z; , p;, Ay, B}, u7J)

1 1 1 1 1

fori=1,2.

Proposition 13. If S, and S), are combined into a single set of resources, S. = Sp,, + S, .

— =
(7;;,, ?Z s Ay, B 7;‘”) for i = 1,2 are also optimal for S, if and only if

i i i

kj—k,'j S?\,T S?\,}%—f—kﬁ ViEShl,VjEShz

- =
* * Tk
}\’hiu Bhiu uy.

1

Proof: If (72, 7,

1 1

) for i = 1,2 are optimal for S, the Lagrange multipli-
ers Y};i, EZ, and 72‘” for i = 1,2 should satisfy the KKT conditions. It is straightforward to
observe that the KKT conditions given by (4.6) and (4.8) — (4.11) are satisfied. Therefore,
let us consider the KKT condition given by (4.7). If we consider two nodes i, j € Sj, or

i, € Sp,, the KKT condition (4.7) is satisfied. If i € Sj,, and j € S, based on (4.7),
ujj = 7\,;‘ —X; —i—kij >0

A >N —kij
ujj=kji—Ai+i;j>0
=N <A +kji
#kj—k,-jgkjgijrkﬂ VieS,,j€S,
On the other hand, if
A=k <A <A +kji Vi€ Sy, j€ S
If i € Sp,,j € Spyy let zj; = 0,25 = 0, uf; = Ay — N +kij and u?; = kji — A + 1.

B 1]
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— —
—x% * * Tk
ph," }\'hi7 Bhi’ uh.

1

. . H
Plugging the solution (Z

i ) for i = 1,2 with the z;s and u;}s

defined above for the pairs of resources which belongs to two subsets into the combined
problem, it is straightforward to observe that the KKT conditions given by (4.6) — (4.11)
are satisfied. Therefore, ( Z Zﬂ P hs A }kli’ B heo U Zl) fori=1,2. are also optimal for S..

Proposition 13 gives us a more clear picture of the optimal solution. In the optimal
solution, the set of resources is decomposed into several sharing groups. Each sharing group
can be described by the results in Proposition 11 and 12. The resources in different sharing
groups satisfy the condition presented in Propositions 13, i.e., relatively high reallocation

cost prevent the resources in different sharing groups from merging into a single sharing

group.

4.2.2 An Exact Procedure for Solving P,

Based on previous results, in this section, we propose a procedure to solve the problem
based on partitioning the demand space. The idea is to list all possible forms of the optimal
solution, and determine the corresponding valid regions in the demand space. Although this
procedure solves P, optimally, it works for problems that are small in size (e.g., problems
with 3-4 resources). In the next section, we will present two heuristic procedures that can be
used to solve realistic size problems. The exact method based on partitioning the demand
space is summarized as follows where each step of the procedure is explained for a system

with three resources.

1. List all the possible sharing groups. For example, the three-resource model has fol-

lowing combinations: {(1),(2),(3)}, {(1,2),(3)},{(1),(2,3)}, {(1,3),(2)}, {(1,2,3)}.

The numbers in () are the indexes of resources in the same sharing group.

2. For the group which has more than one resource, list all the possible combinations of
reallocation. For example, the group {(1,2,3)} has three resources. Let — and «
denote the direction of reallocation. The cycle-free combinations include {(1 — 2 —

L{1—=2-3)}L{(1<2—-3)},{1<2<3)}L{(1=-3—=2)},{(1—-3<2)},
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{(1+—=3—=2)}, {(1 —3+«2)}. According to Proposition 8, inequality (4.13) must

be satisfied by every pair of the resources in the combinations.

3. Each group may work in capacity constraint binding or nonbinding status. Each
resource i may have a positive B; or B; = 0. Thus, corresponding combinations are
generated. For example, group {(1 — 2 — 3)} has the following combinations:

(a) Capacity constraint binding, §; =0, 2 =0, 3 =0.

(b) Capacity constraint binding, B; =0, B, =0, B3 > 0.

(c) Capacity constraint binding, 1 =0, 2 > 0, B3 =0.

(d) Capacity constraint binding, B; =0, B, > 0, B3 > 0.

(e) Capacity constraint binding, B; > 0, > =0, B3 =0.

(f) Capacity constraint binding, B; > 0, 2 =0, B3 > 0.

(g) Capacity constraint binding, B; > 0, B, > 0, B3 = 0.

(h) Capacity constraint binding, ; > 0, B> > 0, B3 > 0.

(i) Capacity constraint nonbinding, B; =0, B> =0, B3 =0.
(j) Capacity constraint nonbinding, B; =0, B, =0, B3 > 0.
(k) Capacity constraint nonbinding, B; =0, B> > 0, B3 = 0.
(I) Capacity constraint nonbinding, B; =0, B2 > 0, B3 > 0.
(m) Capacity constraint nonbinding, B; > 0, B, =0, B3 = 0.
(n) Capacity constraint nonbinding, B; > 0, > =0, B3 > 0.
(o) Capacity constraint nonbinding, 3; > 0, B, > 0, B3 =0.
(p) Capacity constraint nonbinding, B; > 0, B, > 0, B3 > 0.

4. Apply the result of Proposition 11 to find the expressions of the optimal shadow
prices and selling prices, then further obtain the optimal reallocation quantities by

Proposition 12. The resources must satisfy the corresponding inequalities given in

Propositions 10 and 11. The amounts of reallocations must be nonnegative.
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5. The resources in different sharing groups must satisfy the inequalities given in Propo-
sition 13. (If one or more of the inequalities are not satisfied, the corresponding

grouping can not be optimal.)

6. Summarizing the inequalities obtained in steps 2, 4 and 5 for each combination
(which represents each possible combination of steps 1, 2 and 3) gives rise to a re-
gion of the demand space in which the combination is optimal. For example, that
{(1),(3 — 2)} with B; =0, B, =0, B3 = 0, the capacity constraint of group (1)
is binding and the capacity constraint of group (3 — 2) is nonbinding is one of the

combinations.

The algorithm above solves P> by obtaining all the valid regions of the optimal solu-
tion. However, as the dimension of the problem increases, the number of regions increases
exponentially. Therefore, this procedure is good for problems with small dimension. For
moderate or large dimensional problems, it is necessary to seek other methods which solves
the problem efficiently.

In the remainder of this section, we focus on a special case which allows us decom-
pose P, into smaller independent subproblems. As a result, the above procedure, based
on partitioning the demand space, may be applied to each subproblem. The structure of
P> is complicated because of the reallocation imposed by flexibility. If we add more con-
straints to the model in a way that the reallocation will be less flexible, the problem can be
decomposed into small subproblems as explained below.

Let k;j +kj; > k; Vi, j,I. This inequality indicates that the minimum unit reallocation
cost between resource i and [/ can be obtained by reallocating one unit resource from i to
[ directly. We will call this inequality as the “triangle assumption”. This is a reasonable
assumption in many cases. For example, consider that the reallocation cost is the trans-
portation cost between two locations. Suppose that there are three locations, A, B and C.
Generally, the transportation cost between A and C can be assumed to be less than or equal
to the sum of transportation costs from city A to B and from B to C. Under the “triangle

assumption”, we have the following result:
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Figure 4.3: Pure consumer or supplier

Proposition 14. If k;; +kj; > k;; Vi, j,I, P, has an optimal solution such that each resource

is either a pure supplier or a pure consumer in an optimal solution.

Proof: Suppose P, has an optimal solution in which resource j is a supplier of / and a
consumer of i as shown is Figure 4.3. Consider i is a supplier of / with z;; = 0. Let A denote
the optimal objective value of P, excluding the reallocation cost among resources i, j and /.
Then, the optimal objective value is A +z];k;; +z}‘~lk i+ ki I kij+kj > ki, if we send a

flow & < min(z;;,z;;) with the direction as shown in Figure 4.3, the objective value becomes

A+ (77— d)kij+ (Zj; — 8)kji + (2 + d)ku

il
= A+Z?jkij+zjlkjl+Z3kil+6(k,'1 —kij—k; )

< A+zkij+ 2k + zikin

which is a contradiction with the assumption of the optimality. Therefore, k;; +kj; > k;; can
not be true. So, only when k;; +kj; = kj;, resource j can be a supplier and a consumer at
the same time. Without loss of generality, suppose that z;; < Zj‘l' If we send a flow 6 = af
with the direction as shown in Figure 4.3, each resource becomes either a pure supplier or

a pure consumer. That is, resources i and j are suppliers, and resource [ is a consumer. ll

Proposition 15. If ki; +kj; >k Vi, j,l i# j#1 andif for j € S, (L25)* — (2 )+ <

Qj
kji, resource j cannot be a supplier of resource i in an optimal solution.
Remark: Proposition 15 provides a necessary condition to check if some resource could
be a supplier or consumer of another resource in the optimal solution.
Proof: Suppose that in an optimal solution, resource j is a supplier of resource i. Resource

. . . —2x\ 4 - .
J must be a pure supplier and resource i must be a pure consumer. (%)+ is the optimal
J
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shadow price of j (i.e., kj.) when it is neither a supplier nor a consumer. When resource
Jj is a pure supplier, then the shadow price of j must be greater than (Y’&i)Jr Similarly,
J

as a pure consumer, the shadow price A of i must be less than (1%2;q>+ That is, A} <

(B2 *, A7 > (UG=4)T. Then

* * Vi — ’Yj—2Xj
A=A <( (

+
o o ) I

where the second inequality follows from the assumption of the proposition. This result
is in contradiction based on Proposition 7. Therefore, resource j cannot be a supplier of
resource 7 in an optimal solution. ll

When the dimension of the problem, n, increases, the number of partitions explodes.
The procedure to solve P, by partitioning the demand space becomes computationally in-
feasible. The assumption k;; +kj; > k;; gives the solution of P, a nicer structure, and enable
us to decompose the problem into several subproblems. The algorithm to decompose the
problem into subproblems is given as follows:

Decomposition under the “triangle assumption”
1. Define S ={1,2,...,n}.
2. Leti=0.

3. If §=0, set i* =i and stop the algorithm. Otherwise, let i := i+ 1 and define G; = 0.
Choose a resource j € S, update S to S\ {;j}, G; to G;U{j} and mark resource j as

not visited.

4. If all the resources in G; are visited, go to step 3. Otherwise, choose a resource j € G;
which is not visited. Let §; be the set of resources that can be suppliers or consumers

of resource j. Update S as S\ S; and update G; as G;USS.

5. Mark resource j as visited and go to step 4.

When the algorithm stops, i* is the smallest number of optimal sharing groups in P». The
sets G1,Go, ..., G+ are mutually exclusive. P> can be solved separately for each of these sets

as i* distinct subproblems.
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4.2.3 Heuristic Algorithms for Solving P,

The procedure presented in the previous section is inefficient even when the problem can be
decomposed into subproblems under the “triangle” assumption. In this section, we propose
two heuristic algorithms in order to solve P, (i.e., the second stage problem) approximately.
Both algorithms follow the same procedure: Beginning with a feasible solution (i.e., the so-
lution with no reallocation among the resources), we iteratively choose a pair of resources
which may generate significant profit with reallocation between them. The process contin-
ues until there does not exist any pair of resources that can generate profit by reallocating.
Both algorithms try to take the advantage of reallocation as much as possible to approach
the optimum. The difference between the two heuristics is the reallocation strategies among
the resources. Numerical results show that both algorithms provide very good approxima-
tions to the optimal solution. Let us denote the marginal reallocation profit between two
resources i and j, i, j=1,2,...,n, as MRP;;. Since marginal reallocation profit (MRP)
plays the key role in both algorithms, we call them MRP algorithms. The inputs of the
MRP algorithms include market potential vector Y = {Y,72, ...,Y}, demand function co-
efficient vector o = {o,00,...,04}, unit reallocation cost matrix K and the initial resource

. —
capacity vector x

= {x1,x2,...,x, }. In the algorithms, since we keep updating the reallo-
cation amount among the resources, the available capacity at each resource is changing
accordingly. We use vector y = {y1,y2,...,y,} to denote the actual available capacity vec-
tor, i.e., yi = x; + Y j4iZji — L j+i%j, Vi- Z denotes the reallocation amount matrix. The
. . . . . H . .

outputs include the approximate optimal selling price vector p*, the approximate optimal
reallocation amount matrix Z* and the approximate optimal objective value o+,

MRP Algorithm 1

Let € denote a small positive real number, which is used to control the accuracy of the

algorithm, and d denote the step length of each reallocation.

1. Start with a solution without reallocation among the resources. Set 7 =X, z =

0,i,j=1,2,..n
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2. Compute the marginal reallocation profit from resource i to resource j, denoted by

MRP;;, for all i # j as follows:

(a) If ;i = 0, MRP; = [(Ug2)* — (A5 — k] 1 (i > 0).

(2%
(b) If 2j; > 0, MRP; = —[(120)* — (UZ20) " — )] (vi > 0).

3. Choose the pair of the resources, say i*, j*, with the largest MRP.

4. (a) If MRP; j» < €, compute the output as follows:

zij = zijy Lj=12,...,n

~k Yi Yi_zyi + .

pl 2al+< 20(., ) 7l b 7n

R n n

O = Y pr(vi—oup))+ )Y kijZ
i=1 i=1 jAi

Return the output and stop the algorithm.

(b) Otherwise, go to the next step.

5. Reallocate a small amount of capacity 6 from i* to j* and update y; and y;+ with

yir — 8, yj« + 8, respectively.

(a) If the reallocation is a forward reallocation (z+;+ = 0), update z;« j+ with z; j 4- 0.

(b) If the reallocation is a backward reallocation (zj+; > 0), update z;+ with zj;x —

d.

Then, go to step 2.

For a single-resource system with input v;, y;, o;, the optimal solution can be easily ob-

tained as follows:

Yi —2yi Yi Y2y
— T opf = +.

When there is more than one resource in the system, and we send one unit of capacity from

resource i (y; > 0, i.e., resource i is available) to j, the increase in profit of resource j is
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oy . .. N, Ny . .
(%)*, the decrease in profit of resource i is (%T?”)+, and the reallocation cost is k;;.
] i

Therefore, the profit that can be obtained from the reallocation is

Yi =2y, i —2yi
(g (i

—kij. 4.38
o o / ( )

Step 2 calculates the marginal reallocation profit of each pair of the resources. Consider

two resources i and j. If there is no reallocation from j to i and resource i is available

Yi—2yi

(yi > 0), the marginal reallocation profit is (Y’;L—jzy’)Jr - (%%

)" —kij, and we call it “for-
ward” marginal reallocation profit. On the other hand, if there is reallocation from j to i

and resource i is available, sending back one unit capacity from i to j will generate profit

y~_2 . . Dvy:
( jocjy]>+ _ (Yz Otiyl

)" +kji, and we call this case “backward” reallocation.

In step 5, we reallocate a small amount & from resource i* to resource j*. After the
reallocation, y;+ is updated by y;» — 6 and y;« is updated by y+ + 6. Therefore, the marginal
reallocation profit from i* to j*, ((X%I’:_ZS)+ — (’%ﬁﬁ — kixj) 1 (yi- — 8 > 0),
decreases at each iteration. Note that here we only discuss forward reallocation. The back-
ward reallocation is similar. By iterating the steps of the algorithm, eventually the largest

marginal reallocation profit becomes less than or equal to €. Since we define MRP;« j« as the

’Y**Zy Pk ik -2 P 1
product of (- o Eyt+ (X ai*y )" —kjj and 1 (y; > 0), when MRP; j» < € and € is small
enough, it means that either no profit can be obtained by reallocating resource between any
pair of resources or there is no available resource capacity.

In step 4, when the algorithm stops, since the available capacity of resource i is y;, based

on the result of the single-resource system, we have

x l Yi — 2)’1 +

Next, we will show the following: (1) The algorithm presented above converges for
€ > 0; (2) When the algorithm stops, a feasible solution is obtained and no profit can be
obtained by further reallocation between any pair of resources; (3) Under some conditions,

the output of the algorithm is the optimal solution.
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Let y%, 2 j and MRP{J- denote the available capacity of resource i, reallocation amount
from resource i to resource j, and marginal reallocation profit from resource i to resource
j, respectively, just before the " iteration of the algorithm for i, j = 1,2,...,n, i # j, t =
1,2,.... Let i and j; denote the indexes of the resources which have the largest marginal
reallocation profit just before the " iteration. Also, let A/, = (%)*, m=1,2,...n.

In order to guarantee the convergence of the algorithm, we need to define an appropriate

step length 8. Let oy, = min{oy|i = 1,2,...,n} and §= %. The following proposition

tth

shows that when the step length is less than 3, after the 1" iteration, the marginal reallocation

profit between i; and j; decreases but always keeps nonnegative.

Proposition 16. If < §, for iterations r = 1,2, ..., MRIDl%j7 > MRP.! > 0.

I Jt

Proof:
For any iteration ¢, MRPI.} PR Otherwise, the algorithm would have stopped. When

the reallocation is a forward reallocation,

_ —+ t +
Y — 2y —28 Yir — 2y +28
MRP:;:’J_; _ J 20(]; _ ZTZZ — kl*];* ﬂ(ylt* -0 > 0)
Jt I
- + : +
Vi =2 Yi — 2
< 2(xj* 20%‘? i Jt ( (ylt > )) it
_ + t +
Vi — 2 — 28 Yip —2Y5 +28
MRPD = # — o — ki | Ly —8>0)
Jt I
v vt \ T v\ T
- Vi =2y (Y 2y;s ke — 5 8 1(y; —8>0)
= 2a; 20 ey oy
[ 26

v
)
|

If § < §, MRP! > 0.

When the reallocation is a backward reallocation, the proof is similar. Il

Proposition 17. If 0 < 8 and % is an integer for i = 1,2,...,n, the output of each iteration
of the MRP algorithm 1 is a feasible solution of P, and MRP algorithm 1 will stop after a

finite number of iterations.
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Proof: First, we will show that when % is an integer for i = 1,2,...,n, the output of each
iteration generated by the MRP algorithm 1 is a feasible solution. Recall that y; = x; 4
Y j+iZji — X j£iZij, Vi- The constraints of P, include: (1) v —op; <y; Vi; (2) z;; > 0V #£ 1,
B)vi—a;p; > 0Vi; (4) p; > 0Vi. First, note that no matter how many reallocations have
been conducted, % is integral for i = 1,2, ...,n because in each iteration of MRP algorithm
1, y; will be updated with y; + 8 or y; — & and the initial value of y; is x;. Since % is an
integer, when y; > 0, y; — 8 > 0. Since each reallocation in MRP algorithm 1 happens only
when there is available capacity at the supplier resource, i.e., y; > 0, after each iteration,
yi > 0,Vi. Similarly, in each iteration of MRP algorithm 1, z;; will be updated as z;; + 6

or z;; — 0, and the initial value of z;; is 0, hence % is integral. Based on the algorithm, z;;

decreases only when z;; > 0. Since %’ is integral, after each iteration, z;; > 0. Since the

MRP algorithm 1 defines

i i — 2y

= 0,i=12,...,n.
i Z(Xi Z(Xi ) L y ey ey

Nonnegativity constraint of the selling prices is satisfied. Since

(v — 2y )t
Yi—(xiﬁ?:% (%2 yi) >0,

The third constraint of P, is satisfied. We show that the first constraint of P; is satisfied by

considering the following two cases:
1. If’Yi —Zyi Z 0, Yi — ()Clﬁ\;jF =Y.
2. If’Yi—Zyi <0, ’Y,'—O(.l'[/)\?< = % <Yyi.

Since all constraints of P, are satisfied by the output of each iteration, the output of each
iteration of the algorithm is a feasible solution.

Next, we will prove the algorithm will stop after finite step iterations by contradiction.
Obviously, the optimal objective value of P, is finite. Therefore, the objective value of a
feasible solution is finite. Suppose the algorithm will never stop, i.e., MRPI.’: e t=

1,2,.... Suppose the objective value of P> obtained from MRP algorithm 1 just before the
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1" iteration is ®,. After the " iteration, the marginal reallocation profit between resource
if and resource j; changes from MRPZ% i to MRPZZ;I, and the increase of the objective value
t tJt
is the integral of the marginal reallocation profit between resource i; and resource j;. Let 0

denote the additional reallocation amount between i and resource j; during the t"* iteration,

and M (0) denote the corresponding marginal reallocation profit function of 6. We have,
)
CD[+] —(I)t — / M(e)de,
0

and M(0) = MRPl.’;kj;(, M(d) = MRPZ?;*l Here we only discuss the forward reallocation.
Based on the definition of the forward marginal reallocation profit,

Vii —2j; _29>+ —( i
Qjr O

M(6) = ((

Actually, if it is a backward reallocation,

Vi — 20 — 29)+ _ i 2y;; +28
ojr iy

M(8) = (( )" ki) 1 (v —0>0).

Only the sign and the quantity of the unit reallocation cost are different, and the proof is
similar. M(0) is a decreasing function of 6, and when 6 = 3, M(0) reaches the minimum,

MRPZ?;?1 Based on Proposition 16, when § < 8, MRP'"! > 0. Since M () > MRPZ’;;?1 > 0,

ifj
y-*ny-*fZG -
we have ——— > 0 and 1l (y;s —6 > 0) = 1. Furthermore,
Jt
M(G) Z 'YJ;k —zyjt* —26 o (er* _zyi? )+ o @ _ki*j*
o oL+ oL+ e
Jt 1y It
Therefore,
1 1
M(8) > (MRP. .. —20 *
(6) 2 (MRPL ; ~20(; -+ )

1

) S 1
B, — D, = / M(0)d6 > / (MRP. . —20(— +
0 0 T ; i

i O('Jz

))Tde

+a;*)<0

A
If MRP.. . — 2§

1
o
if
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8 1 1 (MRP. .)? g2
[oaret o Lo Lyprae= TR L E
0 O Qs 4(07,? + a_it,ﬁ) 4(%* + q—ﬁ)
1 1
If MRP, ;. —28(5i- +5) 0,
3 1 1 OMRP.. ..  §¢
MRP. .. — 20 tdg > — S
y (MRPL =200, ()0 = =
Therefore,
2
€ o¢
®pyy— P >min{— 1
it Jt
After the " iteration,
g2 de

@, 1 > Dy +rmin{ ——— —}
4ar +ar) 2

1

If the algorithm does not converge, ;1 will approach to +oo as ¢ goes to oo. It is a contra-

diction.

Algorithm 2 uses a different reallocation strategy which converges to a feasible solution

at a faster rate.

MRP Algorithm 2

Let € be a small positive real number.

1.

Start with a solution without reallocation among the resources. y = x, z; i=0,i,j=

1,2,...,n.

Compute the marginal reallocation profit from resource i to resource j, denoted by

MRP;;, for all i # j as follows:

o

(a) If ;i = 0, MRP; = [(Ug2)* — (S5 — k] 1 (i > 0).

(b) If 2jy > 0. MR = —[((52) " = (Mg ) " —kj)] (3 > 0).

o o;

. Choose the pair of the resources, say i, j*, with the largest marginal reallocation

profit.
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4. If MRP; j- < €, compute the output as follows:

Zij = zijy Lj=12,...n
~ Yi Yi_zyi T+ o,

. = _— :1 2 cee .
pl zal+( 2&[ ) Y l Vb 7n
R n n
T = Y pr(vi—ouph)+ Y. Y kijZ;

i=1 i=1 j#i
Return the output and stop the algorithm. Otherwise, go to the next step.

5. Reallocate from resource i* to resource j* based on the following:

Let A j« denote the adjustment of the reallocation amount from i* to j*.

(a) Iij*i* =0.

Ao o GO Vi =2 Ve =2y o
i*j 2(0(,[.* +(xj*) o o i*j

Y~*—2y ok — O ik Kok
ii. Else, Ajjr = ~ s

(b) If zjijx > 0.

. Yi* —2yl~* +2 min(yi* 7Zj*i*) + "{j* —Zyj*—Zmin(yi* 7Zj*i*) +
1. If(( o ) —( oy ) —kj*l'*) <0,

Ap jo = min(y;, 2j4j+).
ii. Else

: Y% =2y 52y

B. Else if Yix —}-'YJ* — 2)’1‘* —2yj* — ai*kj*i* > (),

2o ) o 0+ I
_ 'Yi* —2yl* —(Xl'* kj* *
C. Else, Ay jo = — 520 Ol

Update y;+, yj+ and z; j« with yj» — A jx, y j« + Ay = and z;+ j» + A+ j» respectively, and
go to step 2.
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All the steps of the MRP algorithm 2 are the same as the MRP algorithm 1 except for
step 5. In step 5, MRP algorithm 2 uses the solution of the 2-resource problem studied in
chapter 2 to determine the reallocation from resource i* to resource j* determined in step 3
of the algorithm. The idea is to make the maximum amount of reallocation from resource
i* to resource j* based on the analysis in Proposition 3. The decisions made in step 5 of the

algorithm can be explained as follows:

(a) When zj++ = 0, there is a forward reallocation profit from i* to j*. Based on the
results of the two-resource system (see Figure 3.2), no reallocation can generate profit
in regions Qq, Q1, Q, and Q3. Therefore, we just need to examine the three possible
regions 4, Q5 and Qg (or Q7, Qg and Qg ) because we know that there is reallocation
profit from i* to j*. Based on Proposition 3,

i If

Yir =2y =2y Vi
(X,]* (Xi*

_kl*j* 2 0,

resources i* and j* fit in region Qg. As a supplier, resource i* sends all available
capacity y;+ to resource j*. After this reallocation, no further reallocation can

be made from i* to j*.

i If

Vi — 2y —2y5¢ Yir
O jix Oy

resources i* and j* fit in region Qs. After reallocating

from i* to j*, no profit can be generated by further reallocation between i* to j*.

. : e Y2y Ok
iii Otherwise, resource i* and j* fitin region Q4. After reallocating 2= L

from i* to j*, no profit can be generated by further reallocation between i* to j*.
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(b) When zj+;+ > 0, there is a positive backward reallocation profit from i* to j* because
MRP;: j» > € > 0. Recall that we define the backward reallocation follows: If there
is reallocation from j* to i*, i.e., zj+; > 0, and resource i* is available, sending back
one unit capacity from i* to j*, ie., yx =y — 1, yj» =y + 1 and g = zjojx — 1,

will generate profit (

e — 2y % e — DV s . « 0s
Yy I+ (X D)+ 4 k-, and we call this case “backward
J

ai*
reallocation and the generated profit as “backward reallocation profit”. Since the
reallocation amount from j* to i* is z;+;+ and the available capacity of i* is y;, at most

min{z;«+,y;+ } can be send back from i* to j*.

i If after the reallocation with amount of min{z+,y;} from i* to j* MRP; is

still positive, i.e.,

_((Yi* — 2y +2min(y;, zj¢i+) ) (Yj* —2yj« —2min(y;«,zx+) X

—kj+) >0
Olj= O+ J l) ’

we send min{z+,y;+ } from i* to j* as the adjustment.

11 Otherwise,

- ’Y'*72j A . . .
A. If % — % —kj+ <0, after reallocating y;+ from i* to j*, the back-
i j
. Yi ¥ *2)’1‘* =2y . . .
ward reallocation profit becomes — (- — —-—— — kj=;») which is still

J

positive but resource i* has 0 capacity. Therefore, in this case we send y;

from i* to j* as the adjustment.
B. Else if yj» +7vj» — 2y;» — 2y — Ok j+;» > 0, after reallocating

OOy Yjr =2y Yir — 2y

A'* O
t 2(0(,'* + O(,j*) O j Ol
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from i* to j*, the backward reallocation profit becomes

] ) OCI-*OLJ-* ’Yj* —2yj* ’Y-**Zy-* .
’Yl* _zyl* + ((Xi*+00j*)( OCj* - O l +k]*l*) +

—(

o
.\ Yir — 2y — (a?jféj*) (Z*.aiyj* _ Yi*;jyi* +kjrir) )+ ke
i
N (Oci*:L—Ocj*)(Yi* +jr = 2y =2y gk )T
R R T e Ve SR M
= 0.

O(‘i*a‘j* ('Yj* 72)7]*

Therefore we send ot ay

- Yi*&fyi* + kj++) from resource i* to
resource j* to eliminate the backward reallocation profit.
C. Else, after reallocating

’Yi* — 2})1* — a‘i* k]*l*

Ai*j* = — 7

from i* to j*, the backward reallocation profit becomes

O+

+ "

)" ki

= 0.

Proposition 18. MRP algorithm 2 will stop after a finite number of iterations, and the

output of MRP algorithm 2 is a feasible solution of P.

Proof: In each iteration of the MRP algorithm 2, the capacity of the supplier and the re-
allocation quantity between the supplier and consumer are kept nonnegative. Therefore,
yi >0,Viand z;; >0, Vi, j, i+# j. Based on the definition of the p¥, z;;", we obtain a fea-
sible solution at each iteration. The optimal objective value of P, is finite. If the algorithm
will never stop, MRPI.’;FJ.[* >e¢€, t=1,2,.... In each iteration, the increase of the objective

function value is the integral of the marginal reallocation profit between resource i/ and
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resource j;, and is positive. If the algorithm does not stop, the objective value of P> will
go to infinity which is a contradiction. Therefore, MRP algorithm 2 will stop after a finite

number of iterations. H

4.2.4 Discussion on the Complexity of the Heuristics

1. MRP algorithm 1 requires O(n?) computations to find the pair of resources which
have the largest marginal reallocation profit in each iteration. There are O(n) arcs
will be involved in the computation and it takes at most O(M) steps to decrease the
reallocation profit associated with each arc to 0, where M = MRPl-ﬁ j* 1s the maximum
marginal reallocation profit before the 1% reallocation. Therefore, the number of

iterations is O(nM). The complexity of algorithm 1 is O(n*M)

2. MRP algorithm 2 is similar as algorithm 1 except that it takes O(InM) steps to de-
crease the reallocation profit associated with each arc to 0 because the step length of
each reallocation is proportional to M. Therefore, the number of iterations of algo-
rithm 2 is O(nIlnM). The complexity of algorithm 2 is O(n®InM). Therefore, it is

much faster algorithm than algorithm 1.

Further investigation about the performance of the algorithms will be presented in Section

3.5.

4.2.5 I-MRP Algorithm

In this section, we propose an extension for the MRP algorithms. This extension may
further improve the accuracy of the MRP algorithms. Therefore, we call it as I-MRP (i.e.,
“I”” stands for “improvement”).

Before we introduce the I-MRP algorithm, let us give the following definitions: We
define a set of resources as S, if y; = 0 for all i € S,.,, when the MRP algorithms stop,
and all the resources in set S, are connected to each other directly or indirectly through
other resources in the set. We call S,,,, a zero-capacity set. If 35 ¢ S_.,, and j is directly

connected to one of the resources in S,.,,, we call j a leaf of S,,,. As shown in Figure
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Figure 4.4: Zero-capacity set and its leaves

4.4, the resources in the dashed rectangle, iy, i», i3 and iy form a zero-capacity set S,c,,
and y; =0, m=1,2,....,4.,, and {j,|m = 1,2,...,8} is the set of the leaves of S, and
Vju >0, m=1,2,...,8.

MRP algorithms 1 and 2 will stop when there is no reallocation profit between any
pair of resources or the remaining capacity of the supplier is zero. However, we may still
obtain an increase in the profit by conducting reallocation between the resources through
the resources which have zero remaining capacity after the algorithm stops. For example,
when MRP algorithms stop, suppose y; = 0 and resource i is the supplier of resource j and
[, such that

kj—kj—ki_i>k7—k§‘—kil > 0.

The MRP algorithms stop because y; = 0. Hence,
MRP; = (X —Af —kij) 1 (3 >0) =0

MRP; = (M —AF — k) 1 (y; > 0) = 0.

On the other hand, the marginal reallocation profit from / to j through i is 1}‘ —Xf —kij—
(?\,;‘ —Xf —ki7). Therefore, the performance of the algorithms can be improved by conducting
the reallocation. I-MRP algorithm aims to identify the zero-capacity sets and extract the

profit associated with them. We state the [-MRP algorithm as follows:
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1. Run MRP algorithm 1 (2) until it stops. Let € denote the same small number used in

MRP algorithm 1 (2).

2. Starting from the output of the MRP algorithm 1 (2), find all the zero-capacity sets,
denoted by Szerm =1,2,...,m. Let flag:= 0. If m < 1, go to step 4. Otherwise, let

ji=1.
3. Choose zero-capacity set Sgem, and find the leaves of Sg;m.

(a) 1. If the total number of the leaves of Sge,o is less than 2, let j:= j+ 1.
A. If j=m+1, go to step 4.
B. Otherwise go to step 3.
ii. Otherwise, choose a pair of the leaves of Sgem.

(b) Suppose the chosen pair of resources are g and /. Identify Sglrc which is the set

of arcs that connects resources g and /.

LA (T 2y, ) — (Yg*zygﬁ — X(rmesae vnkn > € there is positive real-

Qg

location profit from g to / through Sg/°. Let z’”’” = min{zz|(f,h) €

Sg*> ven=—1} and S = min{yy, Z; miny,

2y;—28 + Yo—2yo+20
o I (Y- (g

- fhyesaeV fnkpn >0, Ay = 8.

—2y;—28 —2y,+28
° If(Yl éi )—i—_(Yg é’; )+

=X (rnyeseue v ukn <0,
— 2y —2y
O If (Yli;_l[)g)%» Yg Z(f h)GS“rL thkfh > O Agl —yg

O Else If v + Y, — 2y — 2y — 0y ) fh)esye Venkgn >0,

Oy Y=2\+ _ (Ye=eN+ ‘
Agl ~ 2(0t0y) (( oy ) ( Og ) Z(_ﬂh)esgln thkfh).
Yi—2y—0u Xy, nesue venkpen
O Else Ay = 5

Update y, and y; with y, — Ag; and y; + A, respectively. For each

(f, ) S S;llrc’ if Vn = 1, update Zfh with Zfh -I—Agl. If Vn = —1, update

zpp With z, — Agy. Let flag= 1 and go to step 3(b)(iii).

-2 2y
B. If (Ygagyg)+ _ (Yz al)1)+

= X(f.h)e sare v rnkrn > €, there is positive real-
location profit from / to g through Sj7¢. Let z””” = min{zs|(f,h) €

S;’;‘, v, =—1} and o= min{yy, z””" .
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—2y,—28 —2y;4+28
° If(Yg é’j )—i—_(Yl éi )+

— X foh)esgre Vinkn >0, Ag = .

—2y,—28 —2y,+28
o If (Yg+§)+ - (A=) - X (r.myesevnksn <0,

2y, 2
O If (220 é‘z -4 — X(rmesye venkn = 0, Ag = yi.

O Else If Vi —|—'Yg — 2}’1 — 2yg — O Z(f.,h)ES;gC thkfh >0,
_ o0 Ye—2y )
Aig = gty (g )T = Cg) " = Eirmesye vonksn)-

Yo—2Yg—0tg X( £, nyesare Vinkn
O Else Ajy = 5 =

Update y, and y; with y, + Ay and y; — A, respectively. For each
(f,h) € Sl“éfc, if v, = 1, update zg;, with zg, + Ay,. If vy, = —1, update
zpp With zp, — Ajg. Let flag= 1 and go to step 3(b)(iii).

ii. If no reallocation profit exists between g and /. Go to step 3(b)(iii).

ii1. Choose another pair of the leaves of Sgem and go to step 3(b). If all the
pairs of leaves of Sg;m have been visited, let j:= j+ 1. If j =m+ 1, stop.

Otherwise go to step 3.

4. If flag= 1, go to step 1 (Note that the first step of MRP algorithm 1 (2) needs to be

skipped when we revisit the step 1). Otherwise, stop.

The idea the I-MRP algorithm is to explore the profit associated with the zero-capacity
sets which may not be captured by the MRP 1 (2) algorithm. In the algorithm, “flag” is
the variable to flag the improvement. If there happens any reallocation related to the zero-
capacity sets, “flag” will be set as 1 and the MRP 1 (2) needs to be revisited because the
resource capacities have been changed so that the MRP 1(2) algorithm may generate more
profit. The step 3(b)(i) is similar as the step 5 of MRP algorithm 2 which is explained
in detail. The only difference is that in step 3(b)(i), the supplier and the consumer are
connected by multiple arcs (no loop). Therefore, we need to consider updating each arc in
the set. By similar argument presented in the proof of Proposition 18, the convergence of

I-MRP algorithm is guaranteed.
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4.2.6 Comparison of Heuristic Algorithms with Interior Point Meth-

ods

Interior point methods represent a significant development in the theory and practice of
linear and nonlinear programming. The idea of interior point method is to find an optimal
solution by moving in the interior of the feasible set. In each step of an implementation
of the interior point method, the algorithm solves a system of multiple linear equations to
obtain the Newton direction which is the most computationally intensive step of an interior
point method. The algorithm stops when the duality gap (the difference in objective values
between the primal solution and the dual solution) is less than a given positive small value €.
Then, a near-optimal (€e—optimal) solution is obtained. MRP and I-MRP algorithms apply
a similar idea. The advantage of MRP and I-MRP is that they provide explicit and simple
ways to obtain the moving direction of the solution. There are n” +n decision variables
in the model where n is the total number of resources. Based on the special structure of
the model, MRP algorithms 1 and 2 find an appropriate moving direction within O(n?)
operations, where the interior point method needs to solve a linear system with n”> +n
equations and n® + n unknown variables. Therefore, MRP algorithms (used in conjunction
with [-MRP) are much more efficient. On the other hand, interior point methods can always

obtain an near-optimal solution with higher computational complexity.

4.3 Optimal Solution of the Stage 1 Model

The stage 1 investment problem is a stochastic, nonlinear optimization problem. In this sec-
ﬁ

tion, we investigate the structure of the optimal solution to the stage 1 problem. ®* (%', ')

is the optimal objective function value of the operational stage problem (P,). Its property

directly affects the investment decision.
Lemma 2. ®* (X', I') is a continuous and differentiable function with respect to X .
Proof: The demand space is divided into multiple disjoint regions based on the forms

of the optimal solution. According to Proposition 11, inside each region, @*(7,?) is
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continuous, and the partial derivative of ®*(X, F)) with respect to x;,i = 1,2, ...,n, i.e., the
shadow price of resource i exists and it is a continuous function. At the boundary of two
adjacent regions, since the concavity of P,, there exists an unique optimal shadow price of
resource i. Therefore, ®* (X, ?) is a continuous and differentiable function with respect to

—
x.

Theorem 2. The stage 1 problem is jointly concave with respect to x .

Proof: Observe that function ®( %, 7) is jointly concave in 7 and X because 7 and X
determine a quadratic program with concave objective function and linear constraints. The
expectation of a concave function, e.g., E[®* (X, ?)] is concave in ¥ and hence I1(X') is
concave as it is sum of concave and linear functions. ll

According to the concavity of I1(x’) and the K-K-T condition of Py, the shadow price

vector A* of the optimal capacity investment X satisfies, Vi = 1,...,n
Y E(\MIQ)P(Q)) = ci—vi (4.39)
J

XV = 0.

If there is a positive investment in resource i, the expected shadow price of resource i
should equal to its unit resource cost ¢; when the investment strategy is optimal. On the
other hand, if x; decreases to 0, E(A}) reaches the maximum and if the maximum value is
less than ¢; then v; > 0 indicating that it is not optimal to invest in resource i.

. e * * E(T; i
Proposition 19. When x7 > 0, E(D;) = E(I'; — oy p}) > % — g

Proof:
E(D;) = E(I'i — a;p}) is the expected demand satisfied from market segment i when the
optimal price is p;. Based on (4.6) and (4.39), when x} > 0

ET:)  cay N oE(B;) > ET:)  coy

2 2 2 2 2 .

E(D;) =

@ — C’TO" is the expected amount of satisfied type i demand if there is no substitution

allowed in the model. So, we can expect a higher demand satisfaction with the substitution.
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Let IT* and ®* denote the optimal objective values of P; and P», respectively. We have
Proposition 20. (Sensitivity analysis for P; and P,) For all i=1,2,...,n,

1. ®* decreases in 0;.

2. IT* decreases in o; and c;.

3. If x; >O0foralli=1,2,...,n, xj decreases in c;.
Remark: q; is the slope of the demand function for market segment i. As ; increases, the
optimal objective function value of P, decreases. As a result, the optimal objective of P
decreases as well. ¢; is the unit cost of resource i. Intuitively, as ¢; increases, the optimal
objective function value of P decreases and the optimal investment level in resource i
decreases.

Proof:

1. In order to conduct the sensitivity analysis of P, in o;, we consider the optimal so-
lution and optimal objective function value as functions of o;, i = 1,2,....,n. Let
pi(oi), zj;(), I,j =1,2,...,n be the optimal solution of P>(a;). Let yj(o) =
X1+ X j125 () — X j212;(0) be the optimal total available capacity of resource !/
after reallocation. @ (o) = Yj_; pj(V; — &jp}) — ¥y Lz kijzj;- is the optimal ob-
jective function value of P»(o;). Consider that o; decreases to o; — 8, where d is a
small positive real number. We will show ®*(o; —3) > ®*(a;). Let us construct
a feasible solution for P>(o; —8). Let pj(o; —0) = pj(oy), [ #i, 1 € {1,2,...,n},
zjj(0 = 8) = zj;(),l,j = 1,2,...,n. All decision variables of P»(a; —8) except

pi (o — ) are named values. Then we determine the value of p?(o; —d) as follows:

Consider the optimal solution of P (),

(a) If constraint (4.4) is binding for resource i, i.e., ¥; — a;p; (o;) =0,
let pi(o; —9) = % As far as d is small enough, it can be easily verified the
constructed solution for P>(a; — d) is feasible and generates the same objective

value as P»(0;). The optimal solution of P (o; — ) is at least as large as ®*(q;).

Therefore, ®*(o; — 8) > ®*(0y;) and %%j <0.
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(b) If both constraints (4.4) and (4.2) are not binding for resource i.

1

pi(o) = 2%[ Let pf(o; —9) = 2(a—) The constructed solution for P>(o; — d)

is feasible and generates a larger objective value than P»(a;). We have ®* (o —

* (7L
8) > @ (o) and 22 < Yam) _ g

a0 407

(c) If constraint (4.4) is not binding, and constraint (4.2) is binding for resource i.
Let pf(o; —0) = Y’ . The constructed solution for P»(o; — d) is feasible and

generates a larger obJectwe value than P»(o;). We have ®*(a; — ) > ®* (o)

B N
and %2, = o 3oy ) = —(%a;z')y’ < 0 (both y; and y; — y; are positive).

i

Therefore ®*(a;) is decreases in o; forall i =1,2,...,n

H
2. Since ®*(0y;) is decreases in a;, IT* = E[®* (X", T')] — Y%, cix} decreases in 0.
aarcl = —x;, ®* decreases in ¢; with rate x;.

3. Whenxj >0, i =1,2,...,n, the first order condition

M=t vy vy = Fi(X],25, 0 x5,€1) =0, i = 1,2, n implicitly define
X], X5,..., X, as a function of cy.
oF| oxi OF) ox} oF, oxt OF)
[l Bl B et o et ) (4.40)
oxj dc1 - 0x3 dcy ox}dc;  dcy
oF; ox* OF; ox} oF; ox* OF;
it 2 (P T =230 (4.41)

a—flka—cl—*—axzaCl—F---—Fa—xZa—Cl—i—a—q

Let define the Hessian matrix of the objective function of stage 1 problem I1(x"*) as

Q. Since §L = —1and §% =0, i=2,3,...,n, by solving (4.40) and (4.41), we have,

ox} 8x2 ax;; 1
) —11,0,...,0107 .
8c1 ac1 8c1 [ ’ ]Q
. —sy O] .. ox* .
Due to the concavity of IT( x™), aor < 0. Similarly, we can show 5= < 0 for i =

2,3,...,nH.
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4.4 Numerical Experiments

In this section, we first investigate the performance of the heuristics in solving the stage
2 problem by comparing their performance to the optimal for a wide range of parameter
settings. Second, we provide a solution procedure for the stage 1 problem based on Monte
Carlo simulation. Finally, we investigate the impact of various system parameters such as
the slope of the demand function, unit investment cost, mean and variance of the demand,
and the demand correlation on the optimal objective function value and the solution of the
stage 1 problem.

To carry on the numerical experiments, we assume that the market size for resource
i, I';, follows a normal distribution with mean y; and standard deviation 6;, i = 1,...,n. The
demands for different resources may be correlated. The correlation coefficient between

market size i and jis p;j, Vi# j.

4.4.1 Performance of the Heuristics

We first evaluate the performances of MRP;, MRP,, and I-MRP heuristics to solve the
stage 2 problem only. In Section 4.2.3, MRP algorithm 1 and MRP algorithm 2 use a fixed

small number &, as the error tolerance, i.e., when the MRP; j» < €, the algorithms stop. In

current objective function value

7 as the

our implementation of the algorithms, we use € =

stopping criterion, where M is a large positive number. We choose appropriate value M so
that the results of the heuristics are accurate enough, and they are also efficient. Based on
extensive numerical experiments, we found that M = 1000072 is a good choice. In order
to evaluate the performances of the three heuristics, i.e., MRP, MRP; and I-MRP, to solve

P>, we considered a wide range of parameter settings as follows:

1) Setn=3, 6, 12.

2) Form the reallocation cost matrix by generating the reallocation costs based on k;; ~

Uniform (0,100) i, j=1,...,n, i # j.
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3) Form the capacity vector by generating each resource capacity based on x; ~ Uniform

(0,C) where C=50,100.
4) Form the slope vector by generating each slope based on o; ~ Uniform(0,S), S=1,10.

5) Form the mean demand vector by generating each mean demand based on y; ~ Uni-

form(0,M), M=50,500.

6) Form the standard deviation vector by generating each standard deviation 6; ~ Uni-

form(0,50).

7) Form the correlation coefficient matrix in three forms as follows:

(a) Generate p;; ~ Uniform (0,1) (All demands are positively correlated).
(b) Generate p;; ~ Uniform (-1,0) (All demands are negatively correlated).

(c) Generate p;; ~ Uniform (0,1) (Demands can be negatively or positively corre-

lated).

As a result, we used three variables for the number of resources (i.e., n=3, 6, 12), two
sets of resource capacity levels (i.e., ¢=50, 100), two sets for the demand slope vector
(i.e., S=1, 10), two sets for mean demand values (i.e., M=50, 500), and three sets for the
demand correlation coefficient matrix, resulting in a total of 72 scenarios. For each of the
72 scenarios given above, we generated 100 data sets randomly, which resulted in 7,200
experiments. We evaluated the optimal profit and profits of the heuristics for all 7,200
cases. We used CPLEX to compute the optimal profit for the stage 2 problem, and used a
code written in C++ to compute the profits for the heuristics. Tables 4.1 and 4.2 present
the results. In Tables 4.1 and 4.2, the first five columns indicate the number of facilities,
the upper bound for the slope of the demand functions, the upper bound for the resource
capacities, the upper bound for the mean demands, and the form of the demand correlations,
respectively.

In the fifth column of Tables 4.1 and 4.2, +, -, and +/- indicate that all demands are

positively correlated, all demands are negatively correlated, and demands can be negatively
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or positively correlated, respectively. In Tables 4.1 and 4.2, column 6 to column 11 give the
maximum and average percent errors of the MRP;, MRP, and I-MRP heuristics from the
optimal, respectively.

We observe that overall performance of the algorithms is good. Most of the time, the
average percent errors of MRP; and MRP; are below 3% .The average percent errors of
I-MRP are less than 1.2%. On the other hand, when the demand is much larger than the
resource capacity, the performances of MRP; and MRP; may be bad. As shown in Table
4.2, whenn =12, § =10, C =50, M = 500, the demand is about ten times larger than the
capacity, and the maximum percent error can be as large as 29%. As we discussed in Section
4.2.5, the appearance of “zero-capacity” sets can make the performances of the MRP; and
MRP; algorithms bad. When the demand is much larger than the resource capacity, there
is better chance that the optimal solution contains “zero-capacity” sets. I-MRP algorithm
addresses this issue and can improve the performance. As shown in the Table 4.2, for the
case withn =12, § =10, C =50 and M = 500, the maximum percent error drops to 5.59%

from 29% when I-MRP is used, and the average percent error drops from 6.71% to 1.16%.
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MRP, MRP, I-MRP
S C M | cor €max €ave €max Cave €max €ave
1 |50 |50 | + |212% | 0.05% | 0.00% | 0.00% | 0.00% | 0.00%
1 50 | 50 | +/- | 0.67% | 0.01% | 0.66% | 0.00% | 0.60% | 0.00%
1 50 | 50 - 19.2% | 0.30% | 18.9% | 0.28% | 0.00% | 0.00%
1
1
1

100 | 50 | + | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
100 | 50 | +/- | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
100 | 50 - 11.23% | 0.01% | 1.14% | 0.01% | 0.00% | 0.00%
10| 50 | 50 | + | 0.06% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
10| 50 | 50 | +/- | 0.04% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
10 | 50 | 50 - 10.25% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
10 | 100 | 50 | + | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
10 | 100 | 50 | +/- | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
10 | 100 | 50 - 10.09% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
50 [ 500 | + | 852% | 0.39% | 8.44% | 0.43% | 3.59% | 0.09%
50 [ 500 | +/- | 845% | 0.39% | 8.40% | 0.33% | 2.68% | 0.06%
50 (500 | - | 7.69% | 0.38% | 7.17% | 0.40% | 4.61% | 0.14%
100 | 500 | + | 10.2% | 0.37% | 10.1% | 0.23% | 1.33% | 0.03%
100 | 500 | +/- | 9.30% | 0.37% | 9.94% | 0.24% | 1.48% | 0.04%
100 | 500 | - | 8.36% | 0.38% | 8.31% | 0.26% | 2.36% | 0.07%
10| 50 | 500 | + | 169% | 0.50% | 16.9% | 0.50% | 0.63% | 0.00%
10 | 50 | 500 | +/- | 17.3% | 0.5% | 17.2% | 0.50% | 0.58% | 0.00%
10| 50 | 500 | - |192% | 0.6% | 19.1% | 0.6% | 0.65% | 0.01%
10 | 100 | 500 | + | 18.4% | 0.39% | 18.4% | 0.36% | 0.48% | 0.00%
10 | 100 | 500 | +/- | 18.4% | 0.38% | 18.4% | 0.34% | 0.51% | 0.01%
10 | 100 | 500 | - [ 19.3% | 0.45% | 19.5% | 0.44% | 0.53% | 0.01%
1 |50 |50 | + |481% | 0.11% | 3.27% | 0.00% | 0.32% | 0.00%
1 | 50 | 50 | +/- | 880% | 0.13% | 9.07% | 0.15% | 1.69% | 0.02%
1 |50 | 50 - 1 4.92% | 0.07% | 4.90% | 0.07% | 0.74% | 0.00%
1

1

1

100 | 50 | + | 0.7% | 0.01% | 0.00% | 0.00% | 0.00% | 0.00%
100 | 50 | +/- | 3.24% | 0.04% | 1.84% | 0.02% | 0.00% | 0.00%
100 | 50 - 1039% | 0.00% | 0.38% | 0.00% | 0.00% | 0.00%
10 50 | 50 | + | 0.07% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
10| 50 | 50 | +/- | 14.0% | 0.14% | 14.0% | 0.14% | 0.00% | 0.00%
10 | 50 | 50 - | 3.89% | 0.05% | 3.76% | 0.05% | 0.00% | 0.00%
10 | 100 | 50 | + | 0.02% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
10 | 100 | 50 | +/- | 1.18% | 0.01% | 1.16% | 0.01% | 0.00% | 0.00%
10 | 100 | 50 - | 5.37% | 0.05% | 5.29% | 0.05% | 0.00% | 0.00%
1 |50 [500 | + |929% | 1.00% | 9.23% | 1.00% | 1.73% | 0.18%
1 | 50 [ 500 | +/- | 7.89% | 1.09% | 5.77% | 1.13% | 2.33% | 0.24%
1 |50 [500| - |10.5% | 1.19% | 10.5% | 1.22% | 2.16% | 0.27%
1 | 100 | 500 | + | 7.44% | 0.80% | 7.43% | 0.75% | 2.09% | 0.19%
1

1

100 | 500 | +/- | 5.94% | 0.89% | 5.69% | 0.78% | 4.69% | 0.23%
100 | 500 | - | 6.49% | 0.87% | 6.47% | 0.74% | 1.73% | 0.20%
10 | 50 | 500 | + | 16.0% | 2.25% | 16.4% | 2.24% | 5.03% | 0.40%
10 | 50 | 500 | +/- | 16.8% | 2.83% | 16.7% | 2.78% | 9.28% | 0.40%
10 | 50 | 500 | - |[233% | 2.92% | 23.3% | 2.94% | 9.29% | 0.38%
10 | 100 | 500 | + | 8.51% | 1.02% | 7.99% | 0.89% | 3.62% | 0.17%
10 | 100 | 500 | +/- | 12.1% | 0.95% | 11.1% | 0.93% | 3.59% | 0.23%
10 | 100 | 500 | - | 16.77% | 1.12% | 16.5% | 1.05% | 7.04% | 0.24%

DN DN DN DN NN NN NN\ OO\ W] W] W] W] W] W] W] W] W W W W W W W W W W W W w w s

Table 4.1: Performance of MRP algorithm 1, MRP algorithm 2 and I-MRP algorithm
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MRP, MRP, I-MRP

n S C M | cor €max €ave €max €ave €max €ave

1211 | 50 | 50 | + | 5.68% | 0.32% | 5.66% | 0.24% | 1.90% | 0.02%
12 ] 1 50 | 50 | +/- | 551% | 0.26% | 5.14% | 0.18% | 0.04% | 0.00%
12 11 50 | 50 - 13.35% | 0.21% | 3.33% | 0.16% | 0.00% | 0.00%
121 1 | 100 | 50 + [ 439% | 0.07% | 4.38% | 0.07% | 0.14% | 0.00%
121 1 | 100 | 50 | +/- | 2.50% | 0.03% | 1.87% | 0.02% | 0.04% | 0.00%
121 1 | 100 | 50 - | 1.80% | 0.03% | 0.44% | 0.005% | 0.00% | 0.00%

12110 50 | 50 | + | 19.2% | 0.35% | 19.1% | 0.35% | 0.29% | 0.00%
12 110 | 50 | 50 | 4+/- | 9.59% | 0.11% | 9.54% | 0.11% | 2.79% | 0.03%
12 110| 50 | 50 | - | 132% | 0.33% | 6.64% | 0.14% | 0.00% | 0.00%
12 110 | 100 | 50 | + | 12.5% | 0.13% | 124% | 0.13% | 0.00% | 0.00%
12 110 | 100 | 50 | 4/- | 0.11% | 0.00% | 0.11% | 0.00% | 0.00% | 0.00%
12 {10 {100 | 50 | - | 0.11% | 0.00% | 0.11% | 0.00% | 0.00% | 0.00%

12 50 [ 500 | + | 6.68% | 1.37% | 6.19% | 1.37% | 2.43% | 0.37%
12 50 [ 500 | +/- | 5.80% | 1.74% | 5.76% | 1.70% | 1.91% | 0.40%
12 50 | 500 | - | 7.34% | 1.89% | 8.09% | 1.89% | 2.53% | 0.40%

12 100 | 500 | +/- | 3.68% | 0.84% | 4.06% | 0.72% | 1.07% | 0.13%
12 100 | 500 | - | 4.36% | 0.79% | 4.23% | 0.71% | 1.09% | 0.12%
12 110 | 50 | 500 | + |27.0% | 5.31% | 27.0% | 5.20% | 5.70% | 1.13%
12 110 | 50 | 500 | +/- | 282% | 6.0% | 282% | 6.0% | 5.75% | 1.05%
12110 | 50 | 500 | - |29.1% | 6.43% | 29.1% | 6.71% | 5.59% | 1.16%
12 | 10 | 100 | 500 | + | 12.5% | 2.55% | 11.1% | 2.27% | 3.31% | 0.46%
12 | 10 | 100 | 500 | +/- | 12.3% | 2.59% | 12.2% | 2.42% | 5.82% | 0.38%
12 | 10 | 100 | 500 | - | 12.3% | 2.35% | 11.5% | 2.23% | 5.82% | 0.39%

1
1
1
12| 1 | 100 | 500 | + | 4.29% | 0.89% | 44% | 0.08% | 1.95% | 0.23%
1
1

Table 4.2: Continue: Performance of MRP algorithm 1, MRP algorithm 2 and I-MRP
algorithm
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Since the results presented in Tables 4.1 and 4.2 show that MRP, and I-MRP algorithms
are consistently better than MRP;, we conduct more experiments to further investigate the

performances of MRP, and I-MRP algorithms with the following parameter settings:

1) Set n=4, n=10, n=16.

2) Form the reallocation cost matrix by generating the reallocation costs based on k;; ~

Uniform (0,200) i, j=1,...,n, i # j.
3) Form the capacity vector by generating each resource capacity as follows:
X1) xi=[20%u;| i=1,...,n.
Xo) xi = [50%pu;|i=1,...,n.
X3) x; = |20%y;| fori=1,...,n/2 and x; = |50%y;| fori=n/2+1,...,n.
4) Form the slope vector by generating each slope based on o; ~ Uniform(0,S), S=1,10.

5) Form the mean demand vector by generating each mean demand based on y; ~ Uni-

form(100,M), M=500,1000.
6) Form the standard deviation vector as follows:
Vi) 6i=10%u;i=1,...,n.

Vz) O, = 30%/1,' = 1,...,71.

V3) 6; = 10%y; fori=1,...,n/2 and 6; = 30%y; fori =n/2+1,...,n.

7) Form the correlation coefficient matrix in three forms as follows:

(a) Generate p;; ~ Uniform (0,1) (All demands are positively correlated).
(b) Generate p;; ~ Uniform (-1,0) (All demands are negatively correlated).

(c) Generate p;; ~ Uniform (-1,1) (Demands can be negatively or positively corre-

lated).
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Based on this experimental setup, we have a total of 576 different scenarios. We repli-
cate each scenario with different random number seeds 2000 times, which results in a total
of 1,152,000 experiments. In Tables 4.3 to 4.14, the first three columns present the values
for the standard deviation of market size vector, resource capacity vector and the demand
correlation matrix, respectively. Columns 4 to 6 present the total time required to run 2000
replication, average percent error from the optimal, and the maximum percent error from
the optimal over 2000 replications for MRP,, respectively. Columns 7 to 9 present the
same quantities for I-MRP, respectively. Column 10 presents the time in seconds required

to solve the stage 2 problem optimally by CPLEX for 2000 replications.

90



MRP, I-MRP Opt
c | x p | time (sec) Cave Cmax time (sec) Cave Cmax time (sec)
ilXg| + 0 0.236% | 5.493% 0 0.067% | 3.194% 16
VilXy| - 0 0.234% | 5.499% 0 0.071% | 3.186% 16
Vil Xy | +- 1 0.237% | 5.516% 0 0.068% | 3.195% 16
Vi|lXp| + 0 0.001% | 0.154% 0 0.000% | 0.016% 16
Vil Xp | - 0 0.001% | 0.154% 0 0.000% | 0.020% 16
Vi | Xp | +- 0 0.001% | 0.129% 0 0.000% | 0.020% 16
Vil X3 | + 0 0.093% | 7.704% 0 0.017% | 2.984% 16
Vil Xz | - 0 0.089% | 7.796% 1 0.015% | 3.031% 15
Vil X5 | +- 1 0.092% | 7.743% 0 0.016% | 3.011% 16
Vil Xs| + 0 0.086% | 6.293% 0 0.011% | 1.377% 16
Vil Xq| - 1 0.088% | 6.532% 0 0.012% | 1.374% 15
Vi | X4 | +- 1 0.087% | 6.306% 0 0.012% | 1.381% 16
Vo |l X1 | + 0 0.260% | 13.251% 0 0.065% | 5.033% 16
WX | - 0 0.262% | 14.043% 0 0.068% | 4.727% 16
Vo | Xq | +/- 0 0.263% | 13.746% 0 0.068% | 5.346% 16
o | Xp | + 0 0.009% | 2.834% 0 0.002% | 0.663% 16
o | Xp | - 0 0.010% | 2.924% 0 0.002% | 0.292% 16
Vo | Xp | +/- 0 0.010% | 2.875% 0 0.002% | 0.517% 16
Vol X3 | + 0 0.096% | 8.325% 1 0.025% | 4.160% 15
Vo | X3 | - 1 0.101% | 8.325% 0 0.023% | 4.160% 16
Vo | X3 | +/- 0 0.097% | 8.325% 0 0.025% | 4.160% 16
Vo | Xy | + 1 0.109% | 11.432% 0 0.016% | 1.220% 15
Vo | X4 | - 1 0.119% | 12.340% 0 0.017% | 1.713% 16
Vo | X4 | +- 0 0.111% | 11.941% 1 0.016% | 1.194% 15
Vi | Xy | + 0 0.259% | 12.384% 1 0.065% | 3.172% 15
Vi | Xi | - 1 0.256% | 13.106% 0 0.066% | 3.186% 16
Vi | Xq | +- 0 0.261% | 12.835% 0 0.065% | 3.251% 16
Vi | Xo | + 0 0.004% | 0.776% 0 0.001% | 0.066% 16
Vil Xp | - 0 0.004% | 0.838% 0 0.001% | 0.174% 16
Vi | Xp | +- 0 0.004% | 0.762% 0 0.001% | 0.083% 16
Vi | X3 | + 1 0.094% | 9.591% 0 0.021% | 2.769% 16
Vi | X3 | - 0 0.096% | 9.354% 0 0.021% | 2.812% 16
Vi | X3 | +/- 1 0.098% | 9.448% 0 0.023% | 3.038% 16
Vi | X4 | + 0 0.103% | 9.833% 0 0.012% | 1.345% 16
Vi | X4 | - 0 0.108% | 10.701% 1 0.013% | 1.281% 15
Vi | X4 | +- 1 0.104% | 10.373% 0 0.014% | 1.327% 16

Table 4.3: Performance of MRP algorithm 2 and I-MRP algorithm. n =4, ao.=1, M = 500
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MRP, I-MRP Opt
c | X p | time (sec) Cave Cmax time (sec) Cave Cmax time (sec)
Vil Xi| + 0 0.187% | 4.854% 0 0.057% | 1.617% 16
ilXq| - 0 0.186% | 4.852% 0 0.057% | 1.597% 16
Vi | X1 | +- 0 0.188% | 4.854% 0 0.057% | 1.608% 16
VilXo| + 0 0.002% | 0.125% 0 0.001% | 0.032% 16
VilXe| - 0 0.002% | 0.130% 0 0.001% | 0.056% 16
Vi | Xy | +- 0 0.002% | 0.123% 1 0.001% | 0.228% 15
Vil X3 | + 1 0.089% | 4.357% 0 0.027% | 1.636% 16
Vil Xz | - 0 0.086% | 4.392% 1 0.025% | 1.656% 16
Vi | Xz | +- 0 0.090% | 4.373% 0 0.027% | 1.643% 16
Vil Xs| + 1 0.084% | 5.123% 0 0.023% | 1.356% 15
Vil Xy | - 1 0.086% | 5.184% 0 0.023% | 1.351% 16
Vi | Xy | +- 0 0.084% | 5.116% 0 0.022% | 1.359% 16
Vo | X1 | + 0 0.186% | 8.607% 0 0.050% | 2.587% 16
o | X1 | - 0 0.194% | 8.770% 0 0.053% | 2.433% 16
Vo | X1 | +- 0 0.193% | 8.786% 1 0.051% | 2.744% 16
Vo | Xo | + 0 0.015% | 1.742% 0 0.005% | 0.376% 16
Vo | Xo | - 0 0.015% | 1.339% 0 0.004% | 0.277% 16
Vo | Xp | +/- 1 0.014% | 1.880% 0 0.004% | 0.277% 16
Vo | X3 | + 1 0.098% | 5.720% 0 0.028% | 1.993% 18
Vo | X3 | - 1 0.099% | 5.713% 0 0.028% | 1.994% 26
Vo | X3 | +/- 0 0.102% | 5.717% 0 0.028% | 2.138% 20
Vo | X4 | + 0 0.107% | 7.508% 1 0.025% | 1.134% 15
Vo |l X4 | - 1 0.111% | 7.762% 0 0.025% | 1.141% 16
Vo | Xy | +- 0 0.109% | 7.702% 0 0.026% | 1.053% 16
Vil X1 | + 0 0.190% | 8.085% 0 0.053% | 1.632% 16
Vsl Xi | - 0 0.188% | 8.214% 0 0.051% | 1.609% 17
Vi | Xi | +- 0 0.190% | 8.188% 0 0.054% | 1.806% 16
Vi| Xo | + 0 0.008% | 0.907% 0 0.003% | 0.288% 16
Vil Xo | - 0 0.008% | 0.924% 1 0.003% | 0.207% 15
Vi | Xp | +- 0 0.008% | 0.910% 1 0.003% | 0.212% 16
Vil X3 | + 0 0.096% | 5.806% 0 0.030% | 2.351% 16
Vs | X3 | - 1 0.099% | 5.792% 0 0.031% | 2.370% 16
Vi | X3 | +- 0 0.096% | 5.806% 1 0.031% | 2.490% 16
Va | Xy | + 0 0.094% | 6.969% 0 0.023% | 0.995% 16
Va | Xa| - 0 0.098% | 7.135% 1 0.023% | 0.973% 16
Vi | Xy | +/- 0 0.096% | 7.093% 0 0.023% | 1.251% 16

Table 4.4: Performance of MRP algorithm 2 and I-MRP algorithm. n =4, av.=1, M = 1000
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MRP, I-MRP Opt
c | x p | time (sec) Cave Cmax time (sec) Cave Cmax time (sec)
VilXi| + 0 0.164% | 13.798% 1 0.019% | 3.752% 16
il x| - 0 0.168% | 13.845% 0 0.021% | 3.754% 16
Vil Xy | +- 0 0.163% | 13.807% 0 0.020% | 3.812% 16
Vi|lXp| + 0 0.000% | 0.012% 0 0.000% | 0.012% 16
Vil Xp | - 0 0.000% | 0.012% 0 0.000% | 0.012% 16
Vi | Xp | +- 1 0.000% | 0.011% 0 0.000% | 0.011% 16
Vil X3 | + 0 0.062% | 13.303% 0 0.005% | 2.479% 16
Vil Xz | - 0 0.062% | 13.362% 0 0.005% | 2.588% 16
Vi | X3 | +- 0 0.062% | 13.315% 0 0.006% | 2.456% 16
Vil Xs| + 1 0.054% | 11.389% 0 0.003% | 1.729% 16
Vil Xq| - 0 0.052% | 11.409% 0 0.003% | 1.816% 16
Vi | X4 | +- 0 0.053% | 11.540% 0 0.003% | 1.756% 17
o | Xy | + 0 0.235% | 13.512% 0 0.031% | 3.294% 16
WX | - 0 0.237% | 15.376% 0 0.030% | 3.398% 16
Vo | Xq | +/- 1 0.238% | 13.506% 0 0.031% | 3.552% 16
o | Xp | + 0 0.003% | 1.180% 0 0.000% | 0.044% 16
o | Xp | - 0 0.003% | 1.308% 0 0.000% | 0.208% 16
Vo | Xp | +/- 0 0.003% | 1.204% 0 0.000% | 0.088% 17
Vo | X3 | + 0 0.078% | 11.873% 0 0.006% | 2.622% 16
Vo | X3 | - 0 0.081% | 11.873% 0 0.005% | 1.858% 16
Vo | X3 | +/- 1 0.077% | 11.873% 0 0.005% | 2.662% 16
Vo | X4 | + 0 0.086% | 14.707% 0 0.004% | 2.933% 16
Vo | X4 | - 0 0.089% | 14.450% 0 0.006% | 3.790% 16
Vo | X4 | +/- 0 0.088% | 14.168% 1 0.004% | 3.009% 16
Vi | Xy | + 0 0.203% | 13.799% 0 0.024% | 3.342% 16
Vi | Xi | - 0 0.206% | 13.846% 0 0.024% | 3.573% 16
Vi | Xp | +- 0 0.203% | 13.809% 0 0.024% | 3.569% 16
Vil X | + 0 0.001% | 0.649% 0 0.000% | 0.022% 16
Vil Xp | - 0 0.001% | 0.735% 0 0.000% | 0.022% 16
Vi | Xp | +- 0 0.001% | 0.755% 1 0.000% | 0.023% 15
Vi | X3 | + 1 0.064% | 13.306% 0 0.006% | 3.608% 16
Vi | X3 | - 0 0.064% | 13.365% 0 0.006% | 2.533% 16
Vi | X3 | +/- 0 0.064% | 13.318% 0 0.006% | 3.584% 16
Vi | X4 | + 1 0.086% | 15.740% 0 0.002% | 0.777% 16
Vi | X4 | - 0 0.087% | 15.609% 0 0.002% | 0.980% 16
Vi | X4 | +/- 0 0.087% | 15.593% 0 0.001% | 0.738% 17

Table 4.5: Performance of MRP algorithm 2 and I-MRP algorithm. n =4, o= 10, M = 500
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MRP, I-MRP Opt
c | x p | time (sec) Cave Cmax time (sec) Cave Cmax time (sec)
VilXg| + 0 0.201% | 8.159% 0 0.039% | 2.592% 16
VilXy| - 0 0.198% | 8.234% 0 0.038% | 3.013% 16
Vil Xy | +- 0 0.200% | 8.174% 1 0.039% | 2.748% 16
VilXo| + 0 0.000% | 0.086% 0 0.000% | 0.021% 16
Vil X | - 0 0.000% | 0.098% 0 0.000% | 0.018% 16
Vi | Xp | +- 0 0.000% | 0.088% 0 0.000% | 0.023% 17
Vil X3 | + 0 0.078% | 7.979% 0 0.006% | 2.498% 16
Vil Xz | - 0 0.078% | 7.872% 0 0.006% | 2.472% 16
Vi | X3 | +- 1 0.078% | 7.818% 0 0.006% | 2.495% 16
Vil X4 | + 0 0.078% | 9.034% 0 0.004% | 0.874% 16
Vil Xq| - 0 0.075% | 8.981% 0 0.004% | 0.861% 16
Vil Xy | +- 0 0.078% | 8.923% 0 0.004% | 0.866% 16
Vo |l X1 | + 1 0.277% | 12.018% 0 0.052% | 5.334% 16
Wil X | - 0 0.276% | 12.678% 0 0.048% | 4.746% 16
Vo | Xq | +- 0 0.273% | 12.038% 0 0.053% | 4.956% 16
o | Xp | + 0 0.005% | 1.319% 0 0.001% | 0.206% 16
o | Xp | - 0 0.006% | 1.441% 0 0.001% | 0.131% 17
Vo | Xp | +/- 0 0.006% | 1.342% 0 0.001% | 0.184% 16
Vo | X3 | + 0 0.102% | 13.269% 0 0.009% | 3.167% 16
Vo | X3 | - 0 0.105% | 13.890% 1 0.010% | 3.320% 16
Vo | X3 | +/- 0 0.104% | 13.477% 0 0.010% | 3.182% 16
Vo | X4 | + 0 0.099% | 11.156% 0 0.010% | 2.011% 16
Vo | X4 | - 1 0.102% | 11.527% 0 0.010% | 2.941% 16
Vo | X4 | +/- 0 0.107% | 11.320% 0 0.011% | 2.349% 16
Vi | Xq | + 0 0.237% | 10.826% 0 0.051% | 4.488% 16
Vi | Xi| - 1 0.238% | 10.613% 0 0.043% | 2.796% 16
Vi | Xq | +- 0 0.244% | 10.826% 0 0.051% | 4.313% 16
Vi | Xo | + 0 0.003% | 1.328% 0 0.000% | 0.072% 17
Vil Xy | - 0 0.003% | 1.278% 0 0.000% | 0.093% 16
Vi | Xp | +- 0 0.003% | 1.269% 0 0.000% | 0.065% 16
Va | X5 | + 1 0.087% | 11.731% 0 0.008% | 2.431% 16
Vi | X3 | - 0 0.087% | 11.125% 0 0.008% | 2.160% 16
Vi | X3 | +/- 0 0.086% | 11.304% 0 0.008% | 2.409% 16
Vi | X4 | + 0 0.095% | 11.625% 0 0.007% | 1.292% 16
Vi | X4 | - 0 0.095% | 11.603% 0 0.007% | 1.356% 17
Vi | Xy | +/- 0 0.099% | 11.596% 0 0.007% | 1.312% 16

Table 4.6: Performance of MRP algorithm 2 and I-MRP algorithm. n =4, a0 =10, M =
1000
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MRP, I-MRP Opt
c | X p | time (sec) Cave Cmax time (sec) Cave Cmax time (sec)
VilXq| + 1 0.580% | 3.102% 1 0.241% | 1.801% 19
VilXi| - 2 0.582% | 3.125% 1 0.243% | 1.770% 19
Vil Xi | +- 1 0.582% | 3.151% 1 0.240% | 1.812% 19
Vil Xp | + 0 0.007% | 0.231% 1 0.004% | 0.072% 18
VilXp | - 1 0.007% | 0.239% 0 0.004% | 0.069% 19
Vi | Xy | +/- 1 0.007% | 0.236% 0 0.004% | 0.069% 19
Vil X3 | + 2 0.196% | 2.665% 2 0.087% | 0.984% 19
Vil Xz | - 2 0.194% | 2.687% 2 0.086% | 0.978% 19
Vi | X3 | +/- 2 0.195% | 2.658% 2 0.087% | 0.981% 22
Vil Xy | + 2 0.207% | 2.359% 2 0.090% | 1.462% 20
Vil Xg| - 2 0.208% | 2.421% 2 0.090% | 1.527% 19
Vi | X4 | +/- 3 0.206% | 2.367% 1 0.090% | 1.458% 21
o | X9 | + 1 0.685% | 5.521% 2 0.259% | 1.764% 22
o | X9 | - 2 0.695% | 5.150% 1 0.268% | 2.255% 19
Vo | Xy | +/- 1 0.689% | 5.725% 2 0.263% | 2.357% 19
Vo | Xo | + 1 0.043% | 1.154% 1 0.020% | 0.323% 19
Vo | Xp | - 1 0.042% | 1.185% 1 0.019% | 0.287% 19
Vo | Xy | +/- 1 0.043% | 1.162% 1 0.020% | 0.357% 18
Vo | X3 | + 3 0.261% | 5.747% 2 0.106% | 2.054% 19
Vo | X5 | - 3 0.265% | 5.859% 1 0.109% | 1.821% 19
Vo | X3 | +/- 3 0.262% | 5.814% 2 0.111% | 2.173% 18
Vo | X4 | + 3 0.266% | 3.268% 1 0.109% | 1.461% 19
Vo | X4 | - 3 0.265% | 3.344% 2 0.109% | 1.742% 19
Vo | X4 | +/- 2 0.270% | 3.726% 2 0.109% | 1.141% 19
Vs | Xy | + 1 0.637% | 4.738% 1 0.247% | 1.955% 19
Vi | Xy | - 2 0.638% | 4.484% 1 0.254% | 1.949% 19
Vi | Xq | +/- 1 0.638% | 3.741% 1 0.247% | 1.963% 19
Vi | Xp | + 1 0.025% | 0.784% 1 0.012% | 0.174% 19
Vil Xo | - 1 0.025% | 0.403% 1 0.012% | 0.165% 19
Vi | Xy | +/- 1 0.025% | 0.381% 0 0.012% | 0.164% 19
Vi | X3 | + 3 0.226% | 5.993% 2 0.098% | 1.045% 19
Vi | X3 | - 3 0.227% | 5.052% 2 0.097% | 1.097% 19
Vi | X3 | +/- 3 0.229% | 6.038% 1 0.100% | 1.083% 19
Vi | X4 | + 3 0.233% | 2.809% 1 0.096% | 1.149% 19
Vi | X4 | - 3 0.232% | 2.825% 2 0.096% | 1.072% 19
Vi | X4 | +/- 2 0.233% | 2.849% 2 0.096% | 1.149% 19

Table 4.7: Performance of MRP algorithm 2 and I-MRP algorithm. n =10, o =1, M = 500
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MRP, I-MRP Opt
c | X p | time (sec) Cave Cmax time (sec) Cave Cmax time (sec)
VilXq| + 1 0.485% | 2.574% 0 0.196% | 1.294% 19
VilXi| - 1 0.490% | 2.610% 1 0.200% | 1.367% 19
Vil Xi | +- 1 0.489% | 2.583% 0 0.198% | 1.319% 19
Vil Xy | + 1 0.020% | 0.261% 0 0.015% | 0.128% 19
Vil Xp | - 0 0.021% | 0.283% 1 0.015% | 0.125% 19
Vi | Xy | +/- 0 0.021% | 0.284% 1 0.015% | 0.126% 19
Vil X3 | + 1 0.276% | 1.725% 1 0.133% | 0.825% 19
Vil X3 | - 1 0.278% | 1.771% 1 0.136% | 0.754% 19
Vi | X3 | +/- 1 0.277% | 1.853% 1 0.134% | 0.799% 19
Vil X4 | + 1 0.288% | 1.780% 1 0.140% | 0.985% 19
Vi | X4 | - 2 0.288% | 1.804% 1 0.139% | 1.023% 19
Vil Xy | +- 1 0.288% | 1.748% 1 0.139% | 0.972% 19
o | X3 | + 1 0.559% | 3.538% 1 0.220% | 1.761% 19
o | X9 | - 1 0.564% | 3.022% 1 0.226% | 1.520% 19
Vo | Xy | +/- 1 0.563% | 3.572% 0 0.224% | 1.814% 20
Vo | Xp | + 0 0.079% | 0.861% 1 0.044% | 0.437% 19
Vo | Xp | - 0 0.082% | 0.888% 1 0.045% | 0.461% 19
Vo | Xy | +/- 1 0.080% | 0.926% 1 0.044% | 0.430% 19
Vo | X3 | + 1 0.342% | 3.034% 1 0.154% | 1.286% 19
Vo | X5 | - 1 0.349% | 3.187% 1 0.153% | 1.181% 19
Vo | X3 | +/- 2 0.345% | 3.088% 1 0.155% | 1.197% 19
Vo |l Xa | + 1 0.348% | 2.124% 1 0.150% | 1.253% 19
Vo | X4 | - 1 0.358% | 2.162% 1 0.153% | 1.303% 19
Vo | X4 | +/- 2 0.350% | 2.135% 1 0.152% | 1.241% 19
Vi | Xy | + 0 0.523% | 3.050% 1 0.209% | 1.717% 19
Vs | Xy | - 1 0.528% | 3.043% 1 0.211% | 1.710% 19
Vs | Xq | +/- 1 0.522% | 3.045% 1 0.211% | 1.780% 19
Vi | Xp | + 1 0.054% | 0.540% 0 0.033% | 0.431% 20
Vil Xo | - 0 0.055% | 0.585% 1 0.033% | 0.448% 19
Vi | Xy | +/- 1 0.054% | 0.554% 0 0.032% | 0.428% 20
Vil X3 | + 1 0.321% | 3.077% 1 0.144% | 1.060% 19
Vi | X3 | - 2 0.322% | 3.108% 0 0.143% | 0.892% 20
Vi | X3 | +/- 1 0.323% | 3.088% 1 0.146% | 1.062% 20
Vs | X4 | + 1 0.306% | 1.797% 1 0.147% | 1.159% 19
Vi | X4 | - 1 0.311% | 1.944% 1 0.148% | 1.312% 19
Vs | X4 | +/- 2 0.305% | 1.768% 1 0.148% | 1.154% 19

Table 4.8: Performance of MRP algorithm 2 and I-MRP algorithm. n =10, oo =1, M =
1000
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MRP, I-MRP Opt
c | x p | time (sec) Cave Cmax time (sec) Cave Cmax time (sec)
VilXg| + 1 0.581% | 7.520% 0 0.148% | 2.728% 19
il x| - 1 0.584% | 7.515% 1 0.150% | 2.689% 19
Vil Xy | +- 1 0.581% | 7.536% 1 0.150% | 2.725% 19
VilXo| + 0 0.001% | 0.772% 0 0.001% | 0.118% 19
Vil X | - 0 0.001% | 0.827% 1 0.001% | 0.061% 19
Vi | Xp | +- 0 0.001% | 0.815% 1 0.001% | 0.121% 18
Vil X3 | + 2 0.163% | 9.544% 0 0.021% | 1.464% 20
Vil Xz | - 1 0.164% | 9.510% 1 0.021% | 1.499% 18
Vi | X3 | +- 2 0.164% | 9.456% 0 0.021% | 1.511% 19
Vil Xy | + 1 0.169% | 9.700% 1 0.022% | 1.791% 19
Vil X4 | - 1 0.172% | 9.885% 1 0.022% | 1.841% 19
Vil Xy | +- 1 0.170% | 9.620% 1 0.022% | 1.835% 19
Vo |l X1 | + 1 0.816% | 11.401% 1 0.206% | 4.895% 19
Wil X | - 1 0.835% | 11.586% 0 0.207% | 4.931% 19
Vo | Xq | +- 1 0.823% | 11.880% 1 0.206% | 3.556% 19
o | Xp | + 1 0.014% | 3.705% 0 0.003% | 0.404% 19
o | Xp | - 1 0.015% | 3.849% 0 0.003% | 0.508% 19
Vo | Xp | +/- 1 0.014% | 3.810% 5 0.003% | 0.460% 19
Vo | X3 | + 1 0.273% | 16.624% 1 0.048% | 3.988% 19
V| Xs| - 2 0.278% | 17.007% 0 0.045% | 4.149% 19
Vo | X3 | +/- 1 0.275% | 16.835% 1 0.047% | 4.082% 19
Vo | X4 | + 1 0.247% | 11.876% 1 0.040% | 3.927% 19
Vo | X4 | - 1 0.258% | 12.083% 1 0.041% | 4.258% 19
Vo | X4 | +/- 1 0.249% | 11.720% 1 0.040% | 4.024% 19
Vi | Xq | + 1 0.699% | 10.446% 1 0.168% | 4.417% 19
Vi | Xi| - 1 0.707% | 10.814% 1 0.170% | 4.404% 20
Vi | Xq | +- 1 0.703% | 10.907% 0 0.171% | 4.360% 19
Vi | Xo | + 0 0.006% | 0.758% 1 0.002% | 0.084% 19
Vil Xy | - 0 0.006% | 0.826% 0 0.002% | 0.069% 19
Vi | Xp | +- 1 0.006% | 0.797% 0 0.002% | 0.072% 18
Vi | X3 | + 1 0.186% | 13.269% 1 0.028% | 1.714% 19
Vi | X3 | - 9 0.188% | 13.239% 8 0.029% | 1.979% 19
Vi | X3 | +/- 2 0.187% | 13.163% 0 0.029% | 1.858% 19
Va | X4 | + 1 0.221% | 12.382% 1 0.032% | 3.095% 19
Vi | X4 | - 1 0.227% | 12.602% 2 0.031% | 3.065% 19
Vi | X4 | +- 2 0.223% | 12.576% 0 0.032% | 3.232% 19

Table 4.9: Performance of MRP algorithm 2 and I-MRP algorithm. n = 10, o« = 10, M =
500

97



MRP, I-MRP Opt
c | x p | time (sec) Cave Cmax time (sec) Cave Cmax time (sec)
VilXg| + 1 0.675% | 6.698% 0 0.251% | 3.274% 20
il x| - 1 0.680% | 6.852% 1 0.252% | 3.181% 19
Vil Xy | +- 0 0.676% | 6.670% 1 0.251% | 3.295% 19
VilXo| + 1 0.004% | 0.583% 0 0.003% | 0.110% 19
Vil X | - 0 0.004% | 0.619% 1 0.003% | 0.098% 19
Vi | Xp | +- 1 0.004% | 0.605% 0 0.003% | 0.114% 19
VilXs | + 1 0.221% | 6.591% 1 0.067% | 3.251% 19
Vil Xz | - 1 0.220% | 6.693% 1 0.065% | 3.413% 18
Vi | X3 | +- 1 0.221% | 6.694% 1 0.065% | 3.282% 19
Vil X4 | + 1 0.236% | 8.183% 1 0.068% | 1.282% 19
Vil X4 | - 1 0.240% | 8.222% 1 0.068% | 1.238% 20
Vil Xy | +- 1 0.236% | 8.173% 1 0.068% | 1.287% 19
Vo |l X1 | + 1 0.913% | 9.047% 1 0.308% | 3.338% 19
Wil X | - 1 0.941% | 8.998% 0 0.314% | 3.379% 19
Vo | Xq | +- 1 0.918% | 9.807% 1 0.311% | 3.414% 22
o | Xp | + 0 0.036% | 2.274% 1 0.017% | 0.343% 21
o | Xp | - 0 0.035% | 2.357% 1 0.016% | 0.355% 19
Vo | Xp | +/- 1 0.036% | 2.328% 0 0.016% | 0.370% 27
Vo | X3 | + 2 0.337% | 16.701% 1 0.098% | 3.360% 19
V| Xs| - 1 0.345% | 17.187% 1 0.098% | 3.699% 19
Vo | X3 | +/- 1 0.342% | 16.983% 1 0.100% | 3.563% 19
Vo | X4 | + 1 0.327% | 8.023% 1 0.096% | 1.692% 19
Vo | X4 | - 1 0.335% | 8.042% 2 0.099% | 2.055% 24
Vo | X4 | +/- 1 0.330% | 7.950% 1 0.100% | 1.713% 21
Vi | Xq | + 1 0.793% | 8.796% 1 0.272% | 3.078% 26
Vi | Xi| - 0 0.805% | 8.784% 1 0.275% | 3.059% 20
Vi | Xq | +- 1 0.794% | 8.799% 1 0.271% | 3.079% 18
Vi | Xo | + 1 0.018% | 0.605% 0 0.010% | 0.279% 20
Vil Xy | - 1 0.018% | 0.867% 0 0.009% | 0.255% 21
Vi | Xp | +- 1 0.018% | 0.788% 0 0.009% | 0.283% 19
Vi | X3 | + 2 0.260% | 13.199% 0 0.079% | 2.262% 19
Vi | X3 | - 1 0.260% | 13.343% 1 0.079% | 2.209% 19
Vi | X3 | +/- 1 0.258% | 13.259% 1 0.077% | 2.249% 19
Vi | X4 | + 1 0.288% | 7.925% 1 0.081% | 2.133% 18
Vi | X4 | - 1 0.291% | 7.960% 1 0.081% | 2.510% 19
Vi | Xy | +/- 1 0.289% | 7.971% 1 0.081% | 2.214% 18

Table 4.10: Performance of MRP algorithm 2 and I-MRP algorithm. n = 10, oo = 10, M =
1000
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MRP, I-MRP Opt
c | x p | time (sec) Cave Cmax time (sec) Cave Cmax time (sec)
VilXq| + 3 0.649% | 3.050% 2 0.294% | 1.062% 22
VilXq| - 2 0.655% | 3.101% 3 0.292% | 1.063% 21
Vil Xi | +- 3 0.651% | 3.056% 2 0.296% | 1.134% 25
Vil Xy | + 1 0.016% | 0.111% 1 0.011% | 0.069% 22
VilXp| - 2 0.016% | 0.117% 1 0.012% | 0.068% 23
Vi | X | +- 2 0.016% | 0.112% 1 0.012% | 0.065% 23
Vil X3 | + 2 0.281% | 1.722% 3 0.148% | 0.800% 23
Vil X3 | - 2 0.285% | 1.976% 3 0.149% | 0.803% 23
Vi | X3 | +/- 2 0.282% | 1.812% 3 0.148% | 0.800% 24
Vi| X4 | + 2 0.277% | 2.675% 3 0.148% | 0.782% 23
Vil Xg| - 2 0.279% | 2.777% 3 0.147% | 0.814% 23
Vi | Xy | +- 2 0.277% | 2.636% 3 0.148% | 0.775% 23
Vo X1 | + 2 0.780% | 3.219% 2 0.339% | 1.607% 26
Vo | X9 | - 4 0.789% | 3.186% 3 0.343% | 1.623% 33
Vo | Xy | +/- 3 0.788% | 3.062% 2 0.343% | 1.798% 24
Vo | Xp | + 2 0.076% | 0.695% 2 0.041% | 0.268% 23
Vo | Xp | - 3 0.078% | 0.615% 2 0.042% | 0.321% 23
Vo | Xy | +/- 3 0.077% | 0.581% 2 0.041% | 0.302% 24
Vo | X3 | + 3 0.356% | 2.986% 5 0.178% | 1.071% 23
Vo | X3 | - 3 0.363% | 3.087% 3 0.178% | 0.941% 23
Vo | X3 | +/- 3 0.355% | 3.010% 3 0.179% | 1.075% 23
Vo | X4 | + 3 0.361% | 3.592% 3 0.173% | 0.958% 24
Vo | X4 | - 3 0.366% | 3.961% 3 0.176% | 1.023% 24
Vo | X4 | +/- 3 0.364% | 3.578% 3 0.174% | 1.013% 23
Vs | Xy | + 3 0.736% | 3.986% 3 0.315% | 1.320% 23
Vs | Xg | - 3 0.739% | 3.975% 2 0.318% | 1.650% 24
Vi | Xy | +/- 3 0.741% | 3.989% 2 0.314% | 1.608% 24
Vil Xo | + 2 0.048% | 0.489% 2 0.028% | 0.261% 23
Vil Xo | - 2 0.049% | 0.512% 1 0.029% | 0.240% 24
Vi | Xy | +/- 2 0.049% | 0.487% 2 0.028% | 0.251% 24
Vi | X3 | + 2 0.330% | 2.161% 3 0.166% | 0.936% 24
Vi | X3 | - 2 0.332% | 2.331% 4 0.166% | 0.795% 23
Vi | X3 | +/- 2 0.330% | 2.303% 3 0.167% | 0.790% 23
Vi | X4 | + 2 0.311% | 2.597% 3 0.161% | 0.935% 24
Vi | X4 | - 2 0.312% | 2.891% 3 0.162% | 0.913% 24
Vs | X4 | +/- 2 0.312% | 2.627% 3 0.162% | 0.974% 24

Table 4.11: Performance of MRP algorithm 2 and I-MRP algorithm. n =16, o =1, M =
500
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MRP, I-MRP Opt
c | x p | time (sec) Cave Cmax time (sec) Cave Cmax time (sec)
VilXq| + 2 0.550% | 2.059% 2 0.236% | 0.876% 24
VilXq| - 2 0.548% | 2.356% 2 0.236% | 0.875% 24
Vil Xi | +- 1 0.549% | 1.744% 2 0.236% | 1.004% 24
Vil Xy | + 1 0.041% | 0.178% 1 0.035% | 0.160% 24
VilXp | - 1 0.043% | 0.175% 0 0.036% | 0.147% 24
Vil Xy | +- 1 0.042% | 0.172% 1 0.035% | 0.158% 23
Vil X3 | + 2 0.339% | 1.519% 2 0.175% | 0.586% 24
Vil X3 | - 3 0.337% | 1.439% 2 0.177% | 0.622% 23
Vi | X3 | +/- 3 0.337% | 1.531% 2 0.176% | 0.615% 23
Vi| X4 | + 3 0.338% | 1.838% 2 0.176% | 0.582% 24
Vi | X4 | - 2 0.337% | 1.854% 2 0.178% | 0.776% 24
Vi | Xy | +- 2 0.338% | 1.826% 2 0.177% | 0.611% 24
o | X3 | + 2 0.633% | 3.019% 2 0.268% | 1.423% 23
Vo | X9 | - 3 0.639% | 2.781% 1 0.270% | 1.326% 24
Vo | Xy | +/- 2 0.637% | 2.743% 2 0.269% | 1.449% 24
Vo | X | + 2 0.131% | 0.671% 2 0.089% | 0.477% 23
Vo | Xp | - 2 0.137% | 0.679% 1 0.095% | 0.460% 24
Vo | Xy | +/- 2 0.134% | 0.666% 1 0.092% | 0.422% 24
Vo | X3 | + 3 0.409% | 1.833% 2 0.197% | 1.128% 23
Vo | X3 | - 3 0.409% | 1.898% 2 0.198% | 1.316% 23
Vo | X3 | +/- 3 0.409% | 1.842% 2 0.198% | 0.870% 24
Vo | X4 | + 3 0.405% | 2.175% 2 0.192% | 0.771% 23
Vo | X4 | - 3 0.408% | 2.217% 2 0.193% | 1.134% 24
Vo | X4 | +/- 2 0.405% | 2.082% 2 0.192% | 0.844% 24
Vs | Xy | + 2 0.590% | 2.387% 2 0.256% | 1.054% 24
Vs | Xg | - 2 0.596% | 2.352% 2 0.257% | 1.074% 24
Vi | Xy | +/- 2 0.595% | 2.395% 2 0.255% | 1.111% 24
Vil Xo | + 1 0.093% | 0.666% 1 0.068% | 0.355% 24
Vil Xo | - 1 0.096% | 0.629% 2 0.071% | 0.361% 24
Vi | Xy | +/- 1 0.095% | 0.625% 1 0.069% | 0.358% 24
Vi | X3 | + 2 0.395% | 1.626% 3 0.188% | 0.931% 23
Vi | X3 | - 3 0.395% | 1.681% 2 0.189% | 0.893% 23
Vi | X3 | +/- 3 0.394% | 1.739% 2 0.188% | 0.738% 24
Vi | X4 | + 2 0.360% | 1.549% 2 0.186% | 0.801% 23
Vi | X4 | - 3 0.362% | 1.753% 2 0.188% | 0.801% 23
Vs | X4 | +/- 3 0.362% | 1.671% 2 0.188% | 0.844% 24

Table 4.12: Performance of MRP algorithm 2 and I-MRP algorithm. n =16, a =1, M =
1000
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MRP, I-MRP Opt
c | x p | time (sec) Cave Cmax time (sec) Cave Cmax time (sec)
VilXi| + 2 0.690% | 7.302% 2 0.254% | 2.510% 24
VilXi| - 3 0.692% | 7.308% 2 0.252% | 2.527% 23
Vi | Xy | +- 3 0.691% | 7.304% 2 0.254% | 2.525% 24
Vi| X | + 1 0.003% | 0.112% 0 0.002% | 0.032% 24
Vi|Xo | - 1 0.003% | 0.116% 1 0.002% | 0.034% 23
Vi | Xo | +- 1 0.003% | 0.123% 1 0.002% | 0.032% 23
Vi| X3 | + 3 0.215% | 3.861% 3 0.054% | 1.944% 24
Vi| X3 | - 3 0.216% | 4.119% 3 0.054% | 1.942% 24
Vi | Xz | +- 4 0.215% | 3.924% 2 0.054% | 1.942% 24
Vi | Xa| + 3 0.222% | 4.878% 3 0.053% | 1.663% 24
Vi | X4 | - 3 0.221% | 4.893% 3 0.052% | 1.670% 24
Vi | Xa | +- 4 0.223% | 4.926% 3 0.052% | 1.642% 24
Vo | X1 | + 3 0.968% | 8.062% 3 0.332% | 3.614% 24
Vo | X1 | - 4 0.989% | 8.429% 2 0.340% | 3.743% 24
Vo | Xy | +- 3 0.978% | 8.191% 3 0.335% | 3.516% 24
Vo | Xo | + 1 0.027% | 1.394% 2 0.010% | 0.728% 24
Vo | Xo | - 2 0.027% | 1.515% 1 0.010% | 0.686% 24
Vo | Xo | +/- 2 0.028% | 1.427% 1 0.010% | 0.703% 24
Vo | X3 | + 3 0.305% | 5.824% 3 0.079% | 2.533% 24
Vo | X3 | - 5 0.305% | 6.676% 3 0.079% | 2.542% 24
Vo | X3 | +- 3 0.307% | 5.805% 3 0.080% | 2.591% 24
Vo | Xa | + 3 0.327% | 6.809% 3 0.077% | 2.622% 24
Vo | X4 | - 3 0.329% | 8.030% 3 0.078% | 2.507% 24
Vo | Xy | +/- 3 0.327% | 6.908% 3 0.078% | 2.642% 24
Vil X)| + 3 0.838% | 7.925% 2 0.292% | 3.918% 24
Vil X)| - 3 0.841% | 7.970% 2 0.298% | 4.047% 24
Vi | Xy | +- 3 0.838% | 7.946% 2 0.296% | 3.907% 24
Vi Xo | + 1 0.014% | 1.411% 1 0.006% | 0.184% 24
Vi | Xo | - 1 0.014% | 1.498% 1 0.005% | 0.174% 24
Vi | Xo | +- 1 0.015% | 1.439% 1 0.006% | 0.181% 24
Vi| X3 | + 3 0.248% | 4.533% 4 0.066% | 2.199% 24
Vi| X3 | - 4 0.249% | 4.561% 3 0.065% | 2.175% 24
Vi | X3 | +- 4 0.248% | 4.599% 2 0.066% | 2.175% 24
Vi | Xg | + 3 0.291% | 5.891% 3 0.063% | 3.438% 24
Vi | X4 | - 4 0.294% | 6.133% 2 0.063% | 3.569% 24
Vi | Xy | +/- 4 0.291% | 5.855% 2 0.064% | 3.421% 27
Table 4.13: Performance of MRP algorithm 2 and I-MRP algorithm. n = 16, oo = 10, M =
500
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MRP, I-MRP Opt
c | x p | time (sec) Cave Cmax time (sec) Cave Cmax time (sec)
VilXi| + 2 0.848% | 6.140% 1 0.391% | 2.636% 25
VilXi| - 2 0.848% | 6.096% 1 0.392% | 2.377% 24
Vi | Xy | +- 2 0.851% | 6.122% 1 0.391% | 2.172% 24
VilXa| + 1 0.011% | 0.128% 1 0.009% | 0.104% 23
Vi | X2 | - 1 0.012% | 0.172% 1 0.010% | 0.083% 24
Vi | Xo | +- 0 0.012% | 0.131% 0 0.009% | 0.093% 24
Vi| X3 | + 2 0.352% | 3.715% 2 0.158% | 1.773% 23
Vi| X3 | - 3 0.354% | 3.911% 2 0.158% | 1.749% 23
Vi | Xz | +- 2 0.352% | 3.622% 2 0.158% | 1.775% 24
Vi | Xa| + 2 0.355% | 4.389% 2 0.158% | 1.142% 24
Vi | X4 | - 2 0.356% | 4.638% 2 0.158% | 1.226% 24
Vi | Xa | +- 2 0.355% | 4.411% 2 0.157% | 1.110% 23
Vo | Xy | + 3 1.126% | 6.478% 1 0.488% | 3.429% 24
Vo | X1 | - 2 1.138% | 6.365% 2 0.492% | 3.681% 23
Vo | X1 | +- 2 1.134% | 6.466% 2 0.489% | 3.389% 24
Vo | Xo | + 1 0.080% | 0.882% 1 0.047% | 0.715% 24
Vo | Xo | - 1 0.082% | 0.992% 1 0.048% | 0.647% 23
Vo | Xo | +/- 2 0.080% | 0.942% 1 0.048% | 0.711% 23
Vo | X3 | + 3 0.487% | 5.408% 2 0.213% | 2.235% 23
Vo | X3 | - 3 0.488% | 5.516% 2 0.210% | 2.328% 24
Vo | X3 | +- 2 0.490% | 5.620% 2 0.213% | 2.235% 24
Vo | Xa | + 2 0.501% | 6.480% 2 0.206% | 2.216% 24
Vo | Xa | - 3 0.507% | 7.391% 2 0.205% | 2.099% 23
Vo | X4 | +- 3 0.504% | 6.535% 2 0.206% | 2.198% 23
Vil X | + 2 0.985% | 5.891% 2 0.445% | 3.905% 24
Vil X)| - 2 0.995% | 5.852% 1 0.445% | 3.451% 24
Vi | Xy | +- 2 0.986% | 5.844% 1 0.447% | 3.539% 24
Vi Xo | + 1 0.045% | 0.908% 1 0.030% | 0.453% 23
Vi | Xo | - 1 0.046% | 0.969% 1 0.030% | 0.466% 23
Vi | Xo | +- 1 0.046% | 0.924% 1 0.030% | 0.445% 24
Vi| X3 | + 2 0.428% | 3.933% 2 0.191% | 1.646% 24
Vi| X3 | - 2 0.430% | 4.106% 2 0.190% | 1.666% 24
Vi | X3 | +- 2 0.428% | 3.922% 2 0.190% | 1.660% 24
Vi | Xg | + 2 0.433% | 5.262% 2 0.178% | 2.195% 24
Vi | X4 | - 2 0.438% | 5.823% 2 0.176% | 2.081% 23
Vi | Xy | +/- 3 0.434% | 5.222% 2 0.178% | 2.138% 23

Table 4.14: Performance of MRP algorithm 2 and I-MRP algorithm. n = 16, oo = 10, M =
1000
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As shown in Tables 4.3 to 4.14, MRP, and I-MRP algorithm perform very well in
terms of accuracy and efficiency. Algorithm I-MRP performs better than MRP, in accuracy,
and the speed of algorithm I-MRP is almost as fast as MRP,. Therefore, we use I-MRP
algorithm to solve stage 2 problems when we investigate the stage 1 problem using the

following parameter settings.

1) Set n=4.

2) Form the reallocation cost matrix by generating the reallocation costs based on k;; ~

Uniform (0,200) i, j=1,...,n, i # j.

3) Form the unit cost of resource based on ¢;/C ~ Uniform(0.4,0.6), C = 1000, 1500. i =

1,...,n.

4) Form the slope vector by generating each slope based on a; ~ Uniform(0.5,0.7),

i=1,...,n

5) Form the mean demand vector by generating each mean demand based on y; ~ Uni-

form(600,1000).

6) Form the standard deviation vector as follows:

(a) O; = 10%/1,' i= 1,...,l’l.

(b) 6;=30%u;i=1,...,n.

7) Form the correlation coefficient matrix in three forms as follows:

(a) Generate p;; ~ Uniform (0,1) (All demands are positively correlated).
(b) Generate p;; ~ Uniform (-1,0) (All demands are negatively correlated).

(¢) Generate p;; ~ Uniform (-1,1) (Demands can be negatively or positively corre-

lated).

Based on this experimental setup, we have a total of 12 different scenarios. We replicate

each scenario with different random number seeds 10 times, which results in a total of
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120 experiments. In Tables 4.15 to 4.26 show the optimal resource capacities and optimal
expected objective values. The results show that there can be significant gap between the
optimal expected objective value with reallocation and the one without reallocation, and,
(1) The larger the unit resource cost the larger the gap; (2) The larger the standard deviation
of demand the larger the gap; (3) The smaller the correlation between demands the larger

the gap.

XIIVA* ngA* x13\/A* XQVA* OijA* x>1k x; X; xz Obj* diff

166.1 | 343.9 | 178.2 | 194.7 | 320103 | 0.0 | 360.4 | 543.4 | 0.0 | 336030 | 4.98%
268.2 | 273.2 | 255.3 | 295.2 | 515006 | 0.0 | 275.5 | 450.6 | 365.5 | 522863 | 1.53%
205.2 | 289.7 | 343.1 | 158.8 | 452592 | 0.0 0.0 | 343.3 | 661.7 | 467165 | 3.22%
307.4 | 245.8 | 162.4 | 200.7 | 342646 | 304.1 | 242.8 | 158.7 | 209.3 | 345108 | 0.72%
183.0 | 390.1 | 236.7 | 205.7 | 504302 | 0.0 | 886.8 | 0.0 | 190.4 | 559055 | 10.86%
325.7 | 168.6 | 276.0 | 285.2 | 481432 | 823.7 | 0.0 0.0 | 250.8 | 496212 | 3.07%
248.7 | 266.6 | 244.3 | 181.3 | 397333 | 0.0 | 7649 | 0.0 | 184.7 | 413913 | 4.17%
304.0 | 342.1 | 134.4 | 322.4 | 584091 | 291.4 | 310.8 | 164.0 | 333.1 | 587056 | 0.51%
292.2 | 248.4 | 199.5 | 199.5 | 409181 | 288.9 | 461.1 | 0.0 | 209.8 | 427285 | 4.42%
247.9 | 322.5 | 234.1 | 307.0 | 544665 | 0.0 0.0 | 569.5 | 580.5 | 584456 | 7.31%

Table 4.15: Optimal solution of P; with 6 =0.1uy, p =—1, C = 1000

xll\/A* xIZVA* x13\/A* XQ]A* OijA* XT X; X; xz Ob]* diff

166.1 | 343.9 | 178.2 | 194.7 | 320103 | 0.0 | 357.5 | 5459 | 0.0 | 335915 | 4.94%
268.2 | 273.2 | 255.3 | 295.2 | 515006 | 0.0 | 274.6 | 453.3 | 363.9 | 522744 | 1.50%
205.2 | 289.7 | 343.1 | 158.8 | 452592 | 0.0 0.0 | 343.5 | 660.9 | 467290 | 3.25%
307.4 | 245.8 | 162.4 | 200.7 | 342646 | 304.1 | 242.4 | 159.0 | 209.3 | 345102 | 0.72%
183.0 | 390.1 | 236.7 | 205.7 | 504302 | 0.0 | 886.6 | 0.0 | 189.0 | 558506 | 10.75%
325.7 | 168.6 | 276.0 | 285.2 | 481432 | 8229 | 0.0 0.0 | 251.6 | 496132 | 3.05%
248.7 | 266.6 | 244.3 | 181.3 | 397333 | 0.0 | 765.9 | 0.0 | 184.0 | 414058 | 4.21%
304.0 | 342.1 | 1344 | 322.4 | 584091 | 292.8 | 315.5 | 158.9 | 333.0 | 586842 | 0.47%
2922 | 248.4 | 199.5 | 199.5 | 409181 | 288.9 | 460.8 | 0.0 | 210.0 | 427265 | 4.42%
2479 | 322.5 | 234.1 | 307.0 | 544665 | 0.0 0.0 | 568.9 | 581.1 | 584768 | 7.36%

Table 4.16: Optimal solution of P; with 6 = 0.1y, p =0, C = 1000

4.4.2 Impact of System Parameters on the Stage 1 Model

In this section, we provide an algorithm to solve the stage 1 problem, and investigate the im-
pact of various system parameters such as the slope of the demand function, unit investment
cost, mean, variance and correlation of the random market sizes on the optimal expected

profit and the optimal resource capacity levels.
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xll\lA* xlz\lA* x13VA>s< XQVA* OijA* xT x; x; xz Ob]* diff

166.1 | 343.9 | 178.2 | 194.7 | 320103 | 0.0 | 358.0 | 546.2 | 0.0 | 335712 | 4.88%
268.2 | 273.2 | 255.3 | 295.2 | 515006 | 0.0 | 274.4 | 459.0 | 358.8 | 522386 | 1.43%
205.2 | 289.7 | 343.1 | 158.8 | 452592 | 0.0 0.0 | 343.7 | 660.1 | 467087 | 3.20%
307.4 | 245.8 | 162.4 | 200.7 | 342646 | 304.9 | 241.1 | 159.0 | 210.1 | 344888 | 0.65%
183.0 | 390.1 | 236.7 | 205.7 | 504302 | 0.0 | 885.8 | 0.0 | 191.0 | 558137 | 10.68%
325.7 | 168.6 | 276.0 | 285.2 | 481432 | 822.2 | 0.0 0.0 | 252.4 | 496102 | 3.05%
248.7 | 266.6 | 244.3 | 181.3 | 397333 | 0.0 | 7655 | 0.0 | 184.5 | 413414 | 4.05%
304.0 | 342.1 | 134.4 | 322.4 | 584091 | 293.6 | 317.6 | 157.3 | 332.4 | 586598 | 0.43%
292.2 | 248.4 | 199.5 | 199.5 | 409181 | 288.7 | 461.3 | 0.0 | 209.8 | 427187 | 4.40%
2479 | 322.5 | 234.1 | 307.0 | 544665 | 0.0 0.0 | 568.9 | 581.4 | 584473 | 7.31%

Table 4.17: Optimal solution of P; withc =0.1u, p =1, C = 1000

xllVA* xlz\/A* x13\/A* )CQVA* OijA* XT x; x; xz Ob]* diff

98.8 | 265.6 | 108.1 | 103.2 | 150733 | 0.0 | 277.0 | 339.1 | 0.0 | 168228 | 11.61%
196.5 | 210.9 | 199.2 | 222.3 | 297818 | 0.0 | 210.0 | 219.3 | 410.6 | 311464 | 4.58%
129.1 | 226.8 | 274.8 | 83.1 | 255053 | 0.0 0.0 |276.5 | 458.2 | 275217 | 7.91%
2134 | 157.6 | 71.8 | 128.6 | 140753 | 211.3 | 161.8 | 60.8 | 135.8 | 143399 | 1.88%
103.7 | 336.7 | 143.3 | 123.4 | 293655 | 0.0 | 7363 | 0.0 | 59.4 | 355412 | 21.03%
257.0 | 65.7 | 204.5 | 216.8 | 262973 | 820.1 | 0.0 0.0 0.0 | 301543 | 14.67%
178.5 | 203.4 | 161.9 | 113.2 | 199108 | 0.0 | 568.1 | 0.0 | 114.8 | 223782 | 12.39%
218.3 | 281.4 | 50.0 | 256.5 | 351071 | 201.4 | 257.6 | 74.7 | 271.2 | 354189 | 0.89%
238.7 | 190.6 | 126.7 | 135.9 | 233460 | 235.1 | 346.6 | 0.0 | 142.5 | 252407 | 8.12%
157.9 | 250.4 | 179.0 | 239.4 | 308023 | 0.0 0.0 |454.1 | 437.0 | 356673 | 15.79%

Table 4.18: Optimal solution of P; withc =0.1u, p =—1, C = 1500

Let va R denote the optimal capacity of resource i when there is no reallocation between
H
the resources. E(®*(T", X)) is the expected objective function value of P, given a random
. e . —
market size vector I' and a capacity vector x'.

We compute the optimal resource capacities by the following algorithm:

(1) Letx; =xMViand I = 1.

(2) Fixing other capacities, compute the capacity of resource / that maximizes the objec-
. . . . . = _ .

tive function of Py, which is given by E(®*(T", X)) — Y™, cix;. The computation of

E(CID*(I_“), X)) is based on Monte Carlo simulation as explained in detail below. A

new value of x;, x}', which maximizes the objective function of Py, is obtained based

on binary search in interval [0, Y7, x}'K]. Note that the optimal value of x; can not be

larger than Y/, xR,
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xll\lA* xlz\lA* x13VA>s< XQVA* OijA* xT x; x; xz Ob]* diff

98.8 | 265.6 | 108.1 | 103.2 | 150733 | 0.0 | 274.1 | 342.1 | 0.0 | 168062 | 11.50%
196.5 | 210.9 | 199.2 | 222.3 | 297818 | 0.0 | 209.0 | 218.2 | 412.4 | 311349 | 4.54%
129.1 | 226.8 | 274.8 | 83.1 | 255053 | 0.0 0.0 | 275.8 | 458.9 | 275354 | 7.96%
2134 | 157.6 | 71.8 | 128.6 | 140753 | 208.6 | 162.8 | 62.2 | 135.6 | 143360 | 1.85%
103.7 | 336.7 | 143.3 | 123.4 | 293655 | 0.0 | 7472 | 0.0 | 42.6 | 355012 | 20.89%
257.0 | 65.7 | 204.5 | 216.8 | 262973 | 820.9 | 0.0 0.0 0.0 | 301427 | 14.62%
178.5 | 203.4 | 161.9 | 113.2 | 199108 | 0.0 | 567.9 | 0.0 | 114.5 | 223927 | 12.47%
218.3 | 281.4 | 50.0 | 256.5 | 351071 | 203.2 | 260.4 | 70.5 | 271.1 | 353876 | 0.80%
238.7 | 190.6 | 126.7 | 135.9 | 233460 | 235.2 | 346.5 | 0.0 | 142.6 | 252384 | 8.11%
157.9 | 250.4 | 179.0 | 239.4 | 308023 | 0.0 0.0 | 452.8 | 438.1 | 356955 | 15.89%

Table 4.19: Optimal solution of P; withc =0.1u, p =0, C = 1500

xll\lA* xlz\lA* x13\/A* xit\/A* OijA* xT x; x; xz Ob]* diff

98.8 | 265.6 | 108.1 | 103.2 | 150733 | 0.0 | 274.0 | 341.3 | 0.0 | 167853 | 11.36%
196.5 | 210.9 | 199.2 | 222.3 | 297818 | 0.0 | 210.0 | 217.0 | 412.7 | 310955 | 4.41%
129.1 | 226.8 | 274.8 | 83.1 | 255053 | 0.0 0.0 | 275.8 | 459.4 | 275137 | 7.87%
213.4 | 157.6 | 71.8 | 128.6 | 140753 | 210.0 | 161.2 | 62.0 | 136.5 | 143129 | 1.69%
103.7 | 336.7 | 143.3 | 123.4 | 293655 | 0.0 | 781.1 | 0.0 1.2 | 354829 | 20.83%
257.0 | 65.7 | 204.5 | 216.8 | 262973 | 820.1 | 0.0 0.0 0.0 | 301378 | 14.60%
178.5 | 203.4 | 161.9 | 113.2 | 199108 | 0.0 | 5689 | 0.0 | 114.8 | 223260 | 12.13%
218.3 | 281.4 | 50.0 | 256.5 | 351071 | 205.3 | 258.4 | 72.3 | 268.4 | 353620 | 0.73%
238.7 | 190.6 | 126.7 | 135.9 | 233460 | 234.8 | 346.6 | 0.0 | 142.8 | 252287 | 8.06%
157.9 | 250.4 | 179.0 | 239.4 | 308023 | 0.0 0.0 |452.6 | 438.4 | 356627 | 15.78%

Table 4.20: Optimal solution of P; withc =0.1u, p =1, C = 1500

ﬁ ﬁ ﬁ . . . . . .
(3) If | X — x"| < &, return x" as the optimal solution. Otherwise, leti =i+ 1. If i > n,

i = 1. Go to step (2).

In step 2, E (CID*(F), X)) is obtained by Monte Carlo simulation. We generate M inde-
pendent realizations of the market size T'. For each realization i ,i=1,2,...,M, and a capac-
ity vector X', we compute ®*( 7Y, X’) based on I-MRP algorithm. Then, E ((I)*(?, X)) is
approximated by the average over all realizations, i.e., Y2, ®*(y,x")/M. In order to gen-
erate a realization of the demand vector ?, we first generate a vector ? with size n, where
E(z1) =E(z2) = ... = E(zy) =0, Var(z1) = Var(z2) = ... = Var(z,) = 1 and z1,22,...,2,
are independent. Suppose that ¥ is the covariance matrix for the demands, and £ = ATA
after conducting the Cholesky decomposition where A is an upper triangular matrix. Let
7 denote the mean vector for the market sizes of the demands. Then T = o +A7 is the
correlated market size vector, which has mean ﬁ) and covariance matrix X. We use 40,000

replications to compute E (dD*(F), X')). All of our standard errors are within 0.5%.
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xll\lA* xlz\lA* x13VA>s< XQVA* OijA* xT x; x; xz Ob]* diff

167.1 | 344.6 | 182.8 | 196.9 | 321338 | 3.3 | 397.3 | 487.1 | 0.0 | 360452 | 12.17%
285.7 | 279.8 | 256.6 | 303.9 | 521933 | 0.0 | 280.7 | 335.9 | 474.7 | 576006 | 10.36%
206.2 | 310.2 | 343.3 | 159.8 | 459156 | 74.1 0.0 |354.2 | 570.7 | 502630 | 9.47%
315.8 | 253.2 | 163.2 | 201.0 | 345660 | 297.8 | 231.8 | 146.7 | 237.9 | 377722 | 9.28%
186.1 | 401.2 | 239.2 | 211.0 | 509033 | 0.0 | 8789 | 0.0 | 161.6 | 607819 | 19.41%
326.4 | 169.1 | 276.6 | 290.3 | 482801 | 926.3 | 0.0 0.0 | 124.4 | 515519 | 6.78%
267.6 | 289.1 | 245.8 | 181.8 | 408188 | 0.0 | 751.7 | 0.0 | 199.2 | 478063 | 17.12%
306.3 | 344.8 | 140.6 | 327.5 | 587396 | 262.1 | 212.3 | 246.5 | 380.1 | 624860 | 6.38%
292.3 | 249.8 | 214.5 | 202.6 | 412129 | 277.3 | 433.0 | 0.0 | 250.9 | 455890 | 10.62%
250.4 | 328.5 | 234.6 | 321.0 | 550399 | 0.0 0.0 | 579.1 | 569.1 | 625793 | 13.70%

Table 4.21: Optimal solution of P; with 6 =0.3u, p =—1, C = 1000

xllVA* xlz\/A* x13\/A* )CQVA* OijA* XT x; x; xz Ob]* diff

167.1 | 344.6 | 182.8 | 196.9 | 321338 | 0.0 |391.3 | 5122 | 0.0 | 358624 | 11.60%
285.7 | 279.8 | 256.6 | 303.9 | 521933 | 0.0 | 284.5 | 346.1 | 463.1 | 573594 | 9.90%
206.2 | 310.2 | 343.3 | 159.8 | 459156 | 40.0 | 0.0 | 350.9 | 611.5 | 503989 | 9.76%
315.8 | 253.2 | 163.2 | 201.0 | 345660 | 294.4 | 235.8 | 148.9 | 237.3 | 377110 | 9.10%
186.1 | 401.2 | 239.2 | 211.0 | 509033 | 0.0 | 899.5| 0.0 | 167.2 | 603250 | 18.51%
326.4 | 169.1 | 276.6 | 290.3 | 482801 | 877.4 | 0.0 0.0 | 183.3 | 514082 | 6.48%
267.6 | 289.1 | 245.8 | 181.8 | 408188 | 0.0 | 758.0 | 0.0 | 196.9 | 478664 | 17.27%
306.3 | 344.8 | 140.6 | 327.5 | 587396 | 258.2 | 260.8 | 219.0 | 368.8 | 620784 | 5.68%
292.3 | 249.8 | 214.5 | 202.6 | 412129 | 277.7 | 432.4 | 0.0 | 251.4 | 455911 | 10.62%
250.4 | 328.5 | 234.6 | 321.0 | 550399 | 0.0 0.0 | 582.8 | 568.5 | 626724 | 13.87%

Table 4.22: Optimal solution of P; with 6 = 0.3y, p =0, C = 1000

First, we consider a simple system setting to investigate the sensitivity of the optimal

expected profit and the optimal capacity levels with respect to various system parameters.

We consider a system with 3-resources. Our main goal is to investigate the impact of flex-

ibility on the performance of the system. To this end, we choose the unit reallocation

costs as kii = 0, = 1,2,3, k12 = k13 = k21 = k23 = 10,000, and k3j = 0, j: 1,2,3. Since

k12, k13, ko1 and ko3 are very large numbers (in comparison to other reallocation costs),

resources 1 and 2 behave as dedicated resources serving their own markets. Since k3; and

k3o are O, resource 3 serves the demand for resources 1 and 2 with no reallocation cost.

Therefore, it behaves as the flexible resource. We assign u3 = 0 and 63 = 0 so that there is

no demand for resource 3. This setting was analyzed analytically by Bish and Wang (2003).

Here, our goal is to investigate it further numerically.

The values for the remaining parameters are given in Table 4.27.
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xll\lA* xlz\lA* x13VA>s< XQVA* OijA* xT x; x; xz Ob]* diff

166.2 | 344.0 | 181.0 | 195.6 | 319841 | 0.0 | 399.2 | 496.6 | 0.0 | 355173 | 11.05%
283.2 | 277.8 | 255.5 | 301.6 | 518791 | 0.0 | 281.3 | 354.7 | 455.3 | 566832 | 9.26%
205.2 | 307.7 | 342.8 | 158.8 | 456955 | 424 | 0.0 | 351.5 | 605.3 | 500239 | 9.47%
313.1 | 250.8 | 162.1 | 200.6 | 344237 | 297.8 | 228.9 | 146.5 | 240.1 | 373978 | 8.64%
184.3 | 399.6 | 237.1 | 209.0 | 506096 | 0.0 |9144 | 0.0 | 147.9 | 596211 | 17.81%
325.9 | 168.6 | 276.1 | 288.9 | 480699 | 928.1 | 0.0 0.0 | 136.0 | 511277 | 6.36%
265.1 | 286.6 | 244.6 | 181.4 | 405908 | 0.0 | 7532 | 0.0 | 200.0 | 472138 | 16.32%
304.8 | 343.5 | 138.7 | 326.0 | 584318 | 263.6 | 241.2 | 234.0 | 364.3 | 614906 | 5.23%
291.9 | 248.7 | 212.2 | 200.9 | 410891 | 276.5 | 433.5 | 0.0 | 249.5 | 453618 | 10.40%
248.9 | 327.0 | 234.2 | 318.6 | 546651 | 0.0 0.0 | 580.2 | 568.6 | 619484 | 13.32%

Table 4.23: Optimal solution of P; with 6 =0.3u, p =1, C = 1000

xllVA* xlz\/A* x13\/A* )CQVA* OijA* XT x; x; xz Ob]* diff

99.1 | 265.9 | 108.1 | 103.5 | 150443 | 0.0 | 309.7 | 308.7 | 0.0 | 190754 | 26.79%
201.2 | 211.9 | 199.3 | 224.1 | 298183 | 0.0 | 203.5 | 260.7 | 376.7 | 361539 | 21.25%
128.7 | 233.5 | 274.7 | 83.2 | 256642 | 0.0 0.0 |291.2 | 446.2 | 308937 | 20.38%
214.4 | 158.1 | 71.6 | 128.5 | 140995 | 210.6 | 177.4 | 28.0 | 160.5 | 175318 | 24.34%
103.5 | 339.5 | 143.4 | 123.5 | 293993 | 0.0 | 799.7 | 0.0 0.0 | 406822 | 38.38%
256.4 | 65.7 | 204.3 | 217.2 | 262048 | 817.3 | 0.0 0.0 0.0 | 320351 | 22.25%
183.8 | 211.1 | 162.2 | 113.0 | 201910 | 0.0 | 568.8 | 0.0 | 123.5 | 285686 | 41.49%
218.4 | 281.4 | 50.5 | 256.8 | 350453 | 147.7 | 231.0 | 125.6 | 318.5 | 387779 | 10.65%
238.4 | 190.5 | 130.8 | 135.8 | 233514 | 223.1 | 3343 | 0.0 | 170.0 | 279995 | 19.91%
157.4 | 251.2 | 178.9 | 242.8 | 307885 | 0.0 0.0 |475.6 | 414.6 | 395400 | 28.42%

Table 4.24: Optimal solution of P; with 6 =0.3u, p =—1, C = 1500

Impact of o;: We have already shown that the optimal objective values of P; and P> de-
crease in o;, i =1,2,...,n. Through numerical analysis, we further investigate the impact
of o; on optimal objective value of P and the optimal investment level.

Figure 4.5 shows that the optimal objective of P; decreases from 5500 to about 800 as
o increases from 0.5 to 4.

Figure 4.6 illustrates how the optimal resource capacities change in o;. The optimal
capacity of resource 1 ( the solid curve) decreases as o increases from 0.5 to 1.75, and the
curve is approximately a straight line with a negative slope. When a1 > 0.75, the optimal
capacity of resource 1 is zero. Intuitively, as o; increases, the selling price of resource 1 at
market 1 has to be decreased to keep up the sales amount. Therefore, resource 1 becomes
less profitable. As a result, the investment in resource 1 decreases. When the value of o
exceeds some threshold, it is not optimal to invest in resource 1. When o < 1.75, the

optimal capacities for resources 2 and 3 do not change significantly. The reason is that the
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xll\lA* xlz\lA* x13VA>s< XQVA* OijA* xT x; x; xz Ob]* diff

99.1 | 265.9 | 108.1 | 103.5 | 150443 | 0.0 | 306.9 | 309.3 | 0.0 | 188516 | 25.31%
201.2 | 211.9 | 199.3 | 224.1 | 298183 | 0.0 | 203.2 | 255.8 | 382.0 | 359043 | 20.41%
128.7 | 233.5 | 274.7 | 83.2 | 256642 | 0.0 0.0 | 287.3 | 452.6 | 310141 | 20.85%
214.4 | 158.1 | 71.6 | 128.5 | 140995 | 205.0 | 176.9 | 31.0 | 162.5 | 174670 | 23.88%
103.5 | 339.5 | 143.4 | 123.5 | 293993 | 0.0 | 804.1 | 0.0 0.0 | 401455 | 36.55%
256.4 | 65.7 | 204.3 | 217.2 | 262048 | 818.3 | 0.0 0.0 0.0 | 318539 | 21.56%
183.8 | 211.1 | 162.2 | 113.0 | 201910 | 0.0 | 569.0 | 0.0 | 122.2 | 286280 | 41.79%
218.4 | 281.4 | 50.5 | 256.8 | 350453 | 155.4 | 227.8 | 117.5 | 321.7 | 383473 | 9.42%
238.4 | 190.5 | 130.8 | 135.8 | 233514 | 223.5 | 333.5 | 0.0 | 170.1 | 279937 | 19.88%
157.4 | 251.2 | 178.9 | 242.8 | 307885 | 0.0 0.0 | 474.0 | 417.6 | 396238 | 28.70%

Table 4.25: Optimal solution of P; with 6 =0.3u, p =0, C = 1500

xll\lA* xlz\lA* x13\/A* xit\/A* OijA* xT x; x; xz Ob]* diff

99.1 | 2659 | 108.1 | 103.5 | 150443 | 0.0 | 304.7 | 314.0 | 0.0 | 186684 | 24.09%
201.2 | 211.9 | 199.3 | 224.1 | 298183 | 0.0 | 205.5 | 261.1 | 373.8 | 354436 | 18.87%
128.7 | 233.5 | 274.7 | 83.2 | 256642 | 0.0 0.0 | 292.1 | 443.6 | 308228 | 20.10%
214.4 | 158.1 | 71.6 | 128.5 | 140995 | 210.1 | 173.0 | 28.4 | 163.5 | 172308 | 22.21%
103.5 | 339.5 | 143.4 | 123.5 | 293993 | 0.0 | 805.8 | 0.0 0.0 | 396256 | 34.78%
256.4 | 65.7 | 204.3 | 217.2 | 262048 | 815.6 | 0.0 0.0 0.0 | 317642 | 21.22%
183.8 | 211.1 | 162.2 | 113.0 | 201910 | 0.0 | 562.7 | 0.0 | 125.4 | 280797 | 39.07%
218.4 | 281.4 | 50.5 | 256.8 | 350453 | 155.8 | 228.2 | 121.1 | 315.6 | 380369 | 8.54%
238.4 | 190.5 | 130.8 | 135.8 | 233514 | 222.4 | 3339 | 0.0 | 170.9 | 278355 | 19.20%
157.4 | 251.2 | 178.9 | 242.8 | 307885 | 0.0 0.0 |471.2|419.2 | 391964 | 27.31%

Table 4.26: Optimal solution of P; withc =0.3u, p=1, C = 1500

impact of the change of o is absorbed by the change in the optimal capacity of resource
1, which is most directly related. When oy > 1.75, the optimal capacity of resource 1 is
always zero. Optimal capacity of resource 3 (dotted curve) decreases significantly in o.
As o increases, demand from market 1 becomes less profitable, and less capacity is needed
from the flexible resource 3, which is used to cover the demand from market 1. Since the
optimal capacity of flexible resource 3 decreases, the optimal capacity of resource 2 (dashed
curve) increases.
Impact of ¢;: We have already shown that the optimal objective function values of P; and
P> decrease in c;, and the optimal capacity of resource i decreases inc¢;, i =1,2,...,n.
Figure 4.7 shows that the optimal expected profit is a convex nonincreasing function
of c¢1. Figure 4.8 shows that the optimal capacity of resource 1 (solid curve) decreases
as c¢; increases. When the unit cost of resource 1 is low, the investment level in resource

1 is high. As ¢ increases, the investment level in resource 1 decreases rapidly, and the
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Resource ¢; o U O
1 55 121 120 50
2 60 1.6 165 80
3 65 1.5 0 0

Table 4.27: Parameter values for the three-resource system

Optimal objective value change in a\lpha1
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Optimal objective value
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1000

o0

Figure 4.5: Sensitivity of the optimal expected profit with respect to 0/

optimal capacity of flexible resource 3 (dotted curve) increases. In the mean time, the
optimal capacity of resource 2 (dashed curve) decreases as the optimal capacity of resource
3 increases. When ¢ exceeds some threshold, it is not optimal to invest in resource 1. All
the demand for market 1 is satisfied by resource 3, and further increasing c¢; does not affect
the optimal expected profit and the optimal resource capacities anymore.

Impact of y;: Figure 4.9 shows that the optimal expected profit increases from more than
800 to about 8000 as u; increases from 0 to 250.

Figure 4.10 illustrates how the optimal resource capacities change in ;. The optimal
capacity of resource 1 (solid curve) is zero when y; is less than some threshold. Intuitively,
when g is small, the demand for resource 1 can be covered by the flexible resource 3, and it
does not worth to invest in dedicated capacity of resource 1. As u; increases, the expected
profit increases with the increased demand in market 1. As a result, the investment in
resource 3 (dotted curve) increases. In the mean time, the optimal capacity of resource 2
(dashed curve) decreases. When the value of u; exceeds some threshold, it is optimal to

invest in dedicated but cheaper capacity of resource 1. As u; increases, the optimal capacity
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Figure 4.6: Sensitivity of the optimal resource capacities with respect to o
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Figure 4.7: Sensitivity of the optimal expected profit with respect to ¢y

of resource 1 increases, and the curve is approximately a straight line with a positive slope.

On the other hand, the optimal capacities for resources 2 and 3 remain constant because the
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Figure 4.9: Sensitivity of the optimal expected profit with respect to uy

impact of the change in u; is completely absorbed by the change in the optimal capacity of

resource 1.
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Figure 4.11: Sensitivity of the optimal expected profit with respect to 6

Impact of 6;: Figure 4.11 presents the optimal expected profit as a function of the standard

deviation of demand for resource 1. Keeping other parameters fixed, when the standard
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deviation of the demand for resource 1 increases from 10 to 100, the optimal expected

profit increases.
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Figure 4.12: Sensitivity of the optimal resource capacities with respect to G

As shown by the solid curve in Figure 4.12, the optimal capacity of resource 1 first
decreases, and then increases with respect to 1. The optimal capacity of flexible resource
3 (dotted curve) increases as O increases. Intuitively, the increase in demand variability
requests more flexibility in the system, and the investment level in the flexible resource
increases. In the mean time, the optimal capacity of resource 2 (dashed curve) decreases.
Impact of correlation: We vary the correlation in between markets 1 and 2 (i.e., p12) and
observe how the optimal expected profit and the optimal resource capacities change. As
p12 increases, the expected profit decreases. Figure 4.13 illustrates the optimal resource
capacities as a function of the correlation coefficient between demands 1 and 2. As the
correlation increases, from -1 to 1, the optimal capacity of flexible resource 3 decreases.
The optimal capacities of resources 1 and 2 increase. As p1» increases, the diversity of the
environment decreases. As a result, the investment in flexible resource 3 decreases and the

investment in the dedicated resources increases.
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Figure 4.13: Sensitivity of the optimal resource capacities with respect to py2

Next, we further investigate the impact of the correlation for different systems. We

consider a 3-resource system with the following base values for the parameters:

1. oy :(12:(13:().4.

2. ¢1 =cy =c3=900.

3. wy = up = p3 = 500.

4. 0] =0 =03 = 100.

5. kip = k13 =50, kp1 = kp3 = 60,k31 = k3p = 70.

Figure 4.14 shows the optimal expected profit as a function of py3 when pjo =p13 =0.5.
Note that since the correlation matrix needs to be positive definite, po3 takes values from
-0.5 to 1 as shown in Figure 4.14. The straight line in Figure 4.14 represents the optimal
expected profit when there is no reallocation in the system. Keeping other parameters fixed,
when the correlation between demands 2 and 3 increases from -1 to 1, the optimal profit

decreases. The decrease of the optimal expected profit can be explained by the decrease of
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Figure 4.14: Optimal expected profit as a function of po3 when pjp =p13 =0.5
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Figure 4.15: Optimal resource capacities as a function of pp3 when pj2 = p13 =0.5

the diversity of the system which makes the reallocation less profitable. We also observe

that the reallocation has the most benefit when the market sizes are negatively correlated.
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Figure 4.15 illustrates how the optimal resource capacities change in p,3. The straight line
in Figure 4.15 represents the optimal resource capacities when there is no reallocation in
the system. The optimal capacity of resource 1 first increases, and then decreases as po3
increases from -0.5 to 1, while the optimal capacity of resource 2 keeps decreasing and the

optimal capacity of resource 3 first decrease then increases.
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Figure 4.16: Optimal expected profit as a function of pp3 when p12 =p13 = —0.5

Figure 4.16 shows the optimal expected profit as a function of py3 when p12 = p13 =
—0.5. Keeping other parameters fixed, when the correlation between demands 2 and 3
increases from -0.5 to 1, the optimal expected decreases. Figure 4.17 illustrates how the
optimal resource capacities change in pp3. The optimal capacity of resource 1 decreases.
The optimal capacity of resource 2 first decreases, and then increases. The optimal capacity
of resource 3 keeps increasing.

Figure 4.18 shows the optimal expected profit as a function of p3 when pjp = 0.5,
and p13 = —0.5. Keeping other parameters fixed, when the correlation between demands
2 and 3 increases from -1 to 0.5, the optimal profit decreases. Figure 4.19 illustrates how
the optimal resource capacities change in p23. The optimal capacities of resource 1 and 2

decrease. The optimal capacity of resource 3 first decreases, and then increases.
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Figure 4.18: Optimal expected profit as a function of pp3 when p12 = 0.5, pj3 = —0.5
4.5 Conclusion

We investigated the optimal capacity investment strategies under operational flexibility in

this chapter. In our model, investment decision in multiple resources is made before the de-
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mand is known in accuracy. Then, the resource capacities are allocated and priced to satisfy
the realized demand. We formulated this problem as a two-stage stochastic programming
model. We characterized the structural properties of the stage 2 problem, and showed that
it can be solved by using a partitioning method when the size of problem is small. For the
larger size problems, we proposed three heuristics to solve it efficiently. Based on the re-
sults of the stage 2 problem, we also showed some useful properties of the optimal solution.
The numerical results indicated that a significant increase in expected profit can be obtained
when the reallocation is allowed in the system. The reallocation is more desirable when the

diversity of the system is high.
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Chapter 5

Extensions to the Multi-Resource Model

In this chapter, we consider two extensions of the multi-resource model discussed in Chap-
ter 4. In section 5.1, we relax the assumption that each facility has its own market, and
investigate a model in which ¢ facilities are used to satisfy demands from m demand mar-
kets where m # . We discuss how this model can be transformed to the model studied in
Chapter 4. In section 5.2, we consider a multi-resource and multi-period model. In this
model, the second stage problem has multiple periods during which resource capacities are

utilized flexibly to meet random demands from multiple market segments.

5.1 Asymmetric Resource-Market Segment Models

5.1.1 Model Formulation

In this section, we consider a different capacity investment problem which can be easily
formulated in a different way from (P;, P>). However, after conducting appropriate transi-
tion, the formulation of the new model can be transformed to (P, P>) which is relatively
easy to analyze.

We consider a firm that manages the capacity investment decisions of g resources in
order to satisfy random demands from m different market segments. An illustration of
the system is given in Figure 5.1. Here, different market segments may correspond to

the customer groups who are willing to pay different prices for the same product or they



Figure 5.1: An illustration of the resource allocation model

may correspond to the markets for different products. In addition, a resource represents a
flexible manufacturing facility or an inventory stock-point for a product at a given location.
We assume that the potential market size of demand for market segment i is a nonnegative
random variable I';, i = 1,...,m, and each unit is sold at a price p; in market i. Random
market demand D; for resource i can be controlled by the selling price p; according to
linear function

D, =T;—o;p;

where «; is the slope of the demand-curve and I is the intercept. We assume that o; > 0
Vi. When a demand from market segment i is satisfied by using a unit of resource j, a
nonnegative unit production/procurement fee of wj; is incurred, i =1,2,....m, j=1,2,...,q.
Each unit of resource j costs cj, j=1,2,...,q.

The capacity investment decision for the g resources is made long before the market po-
tential demand for each resource is realized. The term “capacity investment” decision either
corresponds to the quantity of inventory to purchase or the production quantity that should
be set at the beginning of a period. Once the market size of demand ? = (I'1,I,....,.I'y)
is observed, the optimal operation strategy is conducted accordingly, i.e., setting the opti-
mal prices p = (p1,p2,..., pm) for each market segment and allocating resource capacities
optimally to satisfy the demands from m market segments. We denote a realization of
T = (T'1,T2,....,T) by ¥ = (Y1,Y2, ., Ym). The objective is to find the optimal initial ca-
pacities of resources y = (y1,y2, ...,Y¢) in order to maximize the expected profit. Let b;

denote the amount of resource j allocated to satisfy demand from market segment i and B

121



denote the allocation amount matrix (i.e., [b;;]) i=1,2,...,mand j=1,2,...,q. Then, the
model can be formulated as a two-stage optimization problem. Stage 1 problem Pz makes
the investment decisions as follows:

Stage 1 (P3):

ma[E[" (7, )] - i""y"]

subject to:

Y1y Y25 oy Y =0

E[®* (Y, F))] is the expected revenue for a resource capacity vector y, where ®* (3, Y)
is the optimal expected profit of the stage 2 problem (Py), which decides the optimal prices
and allocates the resource capacities optimally to fulfill the demand based on an observed

market potential vector 7

Stage 2 (Py):
BN m m q
(Y, ¥) = max Y pi(yi—oup)— Y, Y wiibji (5.1)
B.p =1 i=1j=1
q
st Yi—oupi=Y bji i=12,..m (5.2)
j=1
Y bii<y; j=12,...4 (5.3)
i=1
bii>0 j=12,..q,i=12,...,m (5.4)
pi=>0 i=1,...m (5.5)

The stage 2 model (P;) maximizes the profit given the resource capacities y and the
realized market sizes 7y . In (P4), constraint (5.2) ensures that the satisfied demand is equal
to the total capacity allocated to the market. Constraint (5.3) ensures that the total amount
of resource j allocated to the market segments does not exceed the total available capacity
¥j, j=1,...,q. Constraints (5.4) and (5.5) are the nonnegativity constraints on the resource

capacity allocations and prices, respectively. P4 is a concave problem.
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Figure 5.2: Transformation from P4 to P,

5.1.2 Transformation of the Model

In this section, we transform the stage 2 model presented above (i.e., Ps) to the stage 2
model discussed in Chapter 4 (i.e., P»).

Let us set n = m+ ¢, and define a vector X = (x1,X,...,X,), where x; = 0 when
1 <i<mand x; =y;—,, when m+ 1 <i <n. The demand vector is expanded as 7 =
(Y1, Y25 oy Yoms Yim+15 Ym+25 -+, Yn)» Where y; = 0 when i > m+ 1. The unit reallocation cost
between i and j is defined fori, j =1,2,...,n as

wii ifm+1<j<n1<i<m;
kji =
o else.

Figure 5.2 illustrates the transformation. Using parameters (¥ , 7, kji, i,j=1,2,...,n)
and decision variables (zj;,i = 1,2,...,n,j=1,2,...,nand p;, i = 1,2,...,n) as the input of
P, let zj‘-l.,i =1,2,...,n,j=1,2,..,nand p;, i = 1,2,...,n be the corresponding optimal
solution. The following proposition shows that solving P, with the transformed input pa-

rameters, we obtain the optimal solution to Pj.

*

Proposition 21. (p;, i=1,2,...,m, Zpi=12,..m j=m+ l,m+2,...,n) is an optimal

solution of Py.
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Proof: Based on the definition of kj;, we have z;fl. >0ifm+1<j<n1<i<m, and

*

Zj

. = 0 otherwise.

0 ifl1<i<m
Since x; = and y; = 0 when i > m 4 1, based on constraint
G ifm+1<i<n.

(4.2), we have
n
Yi—oipi < Y, zi if1<i<m

Jj=m+1

0<y —

m
zij, pi =0 ifm+1<i<n
j=1

As aresult, P, can be written as follows:

m n m
X, Y) = max Y pi(vi—oip)— Y. Y wiz;i
Z,p i Jj=m+1i=1

n
st Yi—oupi < Z Zji i=1,2,....m
j=m+1

m
ZZjigyj j=m+1m+2,...n

i=1

’Yl‘—OCipiZO i=1,2,....m

2ji>0 j=m+1lm+2,.ni=12,...m

piZO i= 1,...,]’1

Note that the above model is the same as P; except that the first constraint is an in-
equality instead of an equality. However, a solution satisfying v; — o;p; < Z?:m L1Zjil =
1,2,...,m can not be an optimal solution of the above model because decreasing Z;?:m 1%ji
results in a new feasible solution, which has a larger profit. Therefore, the optimal solution
of P, must satisfy y; — o;p; = Z?:mHZjhi = 1,2,...,m. Consequently, p¥, i =1,2,...,m,
obtained from solving the above model is also the optimal selling price of resource i of Py

andb%_,, ,=Z; whenm+1<j<nl1<i<m B

To conclude, the optimal solution of P4 can always be obtained by transforming the

input parameters and solving P».
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5.1.3 Heuristic Procedure for Solving the Stage 2 Model

In this section, we discuss the implementation of the I-MRP heuristic developed in Chapter
4 for solving P4. As illustrated in Figure 5.2 and discussed in section 5.1.2, P4 can be

transformed into P, with the following properties:
1. Resource i, 1 <i < m, can only be a consumer and has zero initial capacity.
2. Resource i, m+ 1 <i < m+ ¢, can only be a supplier.

3. If there exist zero-capacity sets when the algorithm stops, the number of the resources
in each zero-capacity set is equal to 1 because the suppliers are not connected (i.e.,

unit reallocation cost from one supplier to the other is infinity).

As a result of the transformation, both MRP; and MRP; algorithms can be used for
solving P». Due to the above special properties, the I-MRP algorithm can be simplified as

follows:
1. If m < 2, stop the algorithm.

2. Starting from the output of the MRP(MRP»), find all the zero-capacity sets, denoted

by Séem, i=1,2,....a. If a < 1, stop the algorithm. Otherwise, let j := 1.

3. If j =a+1, stop the algorithm. Otherwise, choose zero-capacity set Sgem, where

S2ero| = 1 and denote the only resource in %, as jero-

4. Calculate the marginal reallocation profit from gto [, forall 1 < g<m, 1 <[ <

m, g # [ as follows:

ero Y — 2y Yo — 2y
MRP;; =[(—)t = (E—E) ke —k

(X[ (X‘g jZErol] ll(yg > O)H(ijemg > 0)

5. Choose the pair of resources, say g*,[*, with the largest marginal reallocation profit.

6. If MRPé{'ijl" < g, let j:= j+1 and return to step 3. Otherwise, let Ag+;+ denote the
adjustment of the reallocation amount from g* to [* through j..,, and conduct the

reallocation as follows:
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Y —2yp —2min(ygs,7

* * ’Y**Zy *+2miny*7z-*
(a) If ( o Jzero8 ))—|— _ ( 8 g ( g )

./zerog*
(Xg*

)t +kj Kj.ero

l>05

zero
Ag*l* = mln(yg* ’ Z]?emg* ) ‘

(b) Else

. ’Yl**z}‘l* 72yg* ’Yg*
L If T +kaemg —k

Oy (X«g

1> 0, Ageps = Ygr.

Jzero

ii. Else if 'Yg* +'Yl* — 2yg* — 2)’1* — (X,g* (kaer(ig — kaeml) > 0,

Ogs Ol Y —2y1+ Y+ — 2ygr
2(ougs + 0y oL+ Olg*

Ag*l* = + kaerog - kaerol) :

i, Else, Agsye = — 20 =0 Bl

7. Update yg*, Yi*, Zj;erog* and Zj;erol* with yg* — Ag*l*’ Vi* -+ Ag*l*’ ijkemg* — Ag*l* and

Zjr, . 1* T Agri+, respectively. Go to step 4.

If I-MRP algorithm finds at least one profitable reallocation, MRP;(MRP;) should be
run again. I-MRP and MRP;(MRP;) algorithm are run consecutively in this manner until
no improvement is obtained in the profit. This process will converge to a feasible solution

as shown in Proposition 18.

5.2 Multi-period Pricing Models

In this section, we consider a similar capacity investment problem as in Chapter 4 except
that in this case the second stage problem has multiple periods during which resources are

utilized flexibly to meet random demands from multiple market segments.

5.2.1 Model Formulation

Suppose that, in the second stage, the resources will be sold in 7" periods, and the demands
in all periods y}, yiz, e yl-T, Vi can be observed or predicted precisely before the operational
decisions are made. MPy, the first stage problem, determines the optimal capacities to

maximize the expected profit given the random demands for 7" periods.
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Stage 1 (MP):

subject to:

~1 =2

(%, ¥, Y?%,...,¥T) is the optimal objective value of the stage 2 problem (MP,)
which allocates the resource capacities and decides the optimal prices of each period op-
timally to fulfill the demand based on the observed market sizes 71 , 72, oy Y. Market
demand d! for resource i at the t'" period can be controlled by the selling price P! according
to linear function d} =¥, — o} p} where o is the slope of the demand-curve and 7} is the
intercept. We assume that o > 0 Vi,z.

Stage 2 (MP;):

n T
¢*(?77) = max ZZP Otpl ZZkUZU (5.6)
Z,p i=li=1 i j#i
T
s.t. Z(Y olp <x,+2z,, ZZU i=1,..n (5.7)
=1 J#I J#
7ij=>0 i=1,..,n, j=1,..,n, j#i (5.8)
Y—oipt>0 i=1,. t=1,..,T. (5.9)
pi>0 i=1,..n,t=1,..T (5.10)

In (MP,), constraint (5.7) ensures that the sum of the demands during the T periods for
resource i does not exceed the total available capacity.

M P has similar properties to P;, where M P, has a more complicated structure than P5.
Therefore, we focus on analyzing the properties of M P, and provide an efficient heuristic

method to solve it.
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5.2.2 Properties of M P,

Similar to P>, MP, is a concave problem. Let A;, u;j, B,

i=12,...,n, j#i, t=
l,...,T be the Lagrange multipliers of (5.7),(5.8), and (5.9) respectively, and we use
p,- e i 7»* u; ], Bﬁ* to denote the corresponding optimal values of the decision variables and

the Lagrange multipliers. The optimal solution satisfies the following K-K-T conditions:

Y, l3’* :

e _

; 206’ —l— Vi, Vt (5.11)

7»~—7\f: ,-j—u;‘j V];ﬁl (5-12)
T

A ( Z (=Y +oip") +xi+ ) 25— Y 5;) =0 Vi (5.13)
i=1 i

B (Y. — o pt*) =0 Vi, Vvt (5.15)

Bi >0,A >0,u;; >0 Vi,j (5.16)

Note that we omit the last constraint (5.10) in MP, because p; is always nonnegative
in an optimal solution since the demand for resource i is nonnegative. Based on the K-K-T

conditions, Lemma 7 still holds.

Proposition 22. In an optimal solution of MP,, let y; = x;+ ¥ j;Zj; — X j4i 2 -
L Iy =0, p =% vr.
2. Ify: > Z’ ly,pl =

T
3. If0<yr < Z’:T‘Y?, let us order the periods based on the values of %, t=1,...,T from

the largest to the smallest, and obtain a set of indices {t1,%,...,t7}, i.e.,

An unique integer d which satisfies 1 < d < T can be found, and

tl d t'
2% 2;”—] ifl=1,2,....d;
Iy i
pil — [ll Z/ 1%
% ifl=d+1,...,T.
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Proof:
In an optimal solution, all decision variables and Lagrange multipliers are nonnegative.
We first show that

A — B > 0Vi,t (5.17)

If Ay —Bi* <0, Bi* > 0. Based on (5.15), pi* = %, and based on condition (5.11),

— B = ’ > 0, which is a contradiction.
1. If y; = 0, based on constraints (5.7) and (5.9), p?* = %, Vt.

2. Suppose y; > Lot ly I 3, pit #£ m, Based on condition (5.11), A} # Bi*. Based on
(5.17), @ > 0= A > 0. When A} > 0, based on condition (5.13),

T
Z ol pi*) =yt (5.18)

Let us plug (5.11) into (5.18). We have, Y7 | V. —2y* = YT | o (Af — B*). Since
T
yi > Z’:TIN/’ Zthl o (AF —B*) < 0. Based on (5.17), Af = 0. It is a contradiction.

Therefore, p?* ﬁ,, Vt. Note that in this case A} =

T
3. If0<yr < E:Tﬂ; First, we show that 3¢, Bi* = 0. If B}* > 0, Vr, based on (5.15) and
(5.17), we have p _ and A; > 0. Based on (5.13), y; =0, which is a contradiction.

ata

Now we show, for the ordered indexes {t1,1,,...,t7 }, we have

(@) if B/ =0,/ =0, j=1,2,...,1

(b) if B > 0,7 >0, j=1+1,142,..,T.
' * i
When B!* = 0, based on (5.11), p* = % + %’ Since Y} — o' p{" > 0, &; < %
If Bi’* >0, je{l1,2,....[ — 1}, based on (5.15), we have pz Z: and based on

i

(5.11),
tA
* Y'] Ljx ’%l
7\‘1' = j_‘_B/ > (x_ltl’

i i

which is a contradiction. Therefore, B? =0, j=1,2,...,1
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When [37* > 0, if EIB?* =0, je{l+1,1+2,...,T}, we have Bf’* = 0 because [ < J,

which is a contradiction. Therefore, Bf’ S 0, j=1+1,1+2,....T.

Let d be an positive integer number which satisfies B = 0 if [ < d and 7" > 0 if
j>d. If d =T, there does not exist any integer 1 </ < T satisfies B? > 0. Since
we have shown 3¢, Bi* =0, so, d > 1.

Next, we show that A7 > 0. If A; = 0, based on (5.17), Bi* = 0, Vr. Based on (5.11),

.
J
i
-
20,

. T
we have p? * = and based on (5.7), Z,:Tﬂl <y;}. Thisis a contradiction. Therefore,

A > 0.

Since A} > 0, based on (5.13),

=
I
071~

(¥ — o pi")

ﬂ
Il
—

T
1t 1t
(v —o/pi) + . Z v/ —op/)

I
™=

Jj=1 j=d+1
d Ij Ljn x
_ Z<Yi - iki).
=
We have
d 1j *
2 YooY — 2y
(A d tj 9
Yoo
and )
13 d J *
1oyd oy oy
Ny %ﬁ-f%ﬁ%lﬂzhzm¢
pi = r,i L% u
is ifl=d+1,..,T.
o

Note the procedure to find the value of d is similar to the procedure to determine set 7
presented in Appendix A.

Proposition 22 demonstrates how the optimal selling prices are related to the optimal
reallocation amounts in the optimal solution of MP». If we can find the optimal reallocation

amounts, then the solution of M P, is achieved.
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5.2.3 Heuristic for Solving M P,

In this section, we propose a heuristic algorithm to solve MP,. The idea is the same as the
heuristics developed in Chapter 4, i.e., make the reallocation if there is positive reallocation
profit until we cannot find any profitable reallocation. The heuristic algorithm is given as
follows:

Algorithm 3:

Let € be a small positive real number.

1. Start with a solution without reallocation among the resources. y = x, Zij =
0,i,j = 1,2,...,n. Order the periods based on the values of %, t=1,...,T from

the largest to the smallest for every resource i,i = 1,2,...,n, and obtain n sets of

indices {r{,},...,t5}, i.e.,

2. Compute the marginal profit of resource i as follows:

T .
(a) Ify; > Z’:zl L=
T
(0) 1£0 < y; < Z5% letd = 1.

1. Ifd=T or _
i d 1 ' t
d<t and ﬁ > Zj:lyi —.2yl > Yidﬂ

y d 6Tt
@, Yio1Q, Q,;

bl

d t.;;z :
let A, = Z’:L,y’ Record d and go to step 3.

I
d o)
Li1

ii. Otherwise, letd =d + 1 and go to step 2(b)(i).

* 'Yﬁl
(c) If y; =0, let A; = .

&;

3. Compute the reallocation profit from resource i to resource j, denoted by MRP;;, for

all i # j as follows:
(a) IfZﬁ =0, MRP,‘]' = [Kj-?ui—kij]]l(yi > 0).
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(b) If zj; > 0, MRP;; = — [k — Xj — k;ji] 1 (y; > 0).

4. Choose the pair of the resources, say i*, j*, with the largest marginal reallocation

profit.

5. If MRP; j« < €, stop. Compute the output as follows:

(a) /ZTJ :Zija la]: 172,...711
b i Iy =05 =2 vi.
T
ii. Ify; > % P = % vr.

T
iii. £ 0 < yr < Z5lh,

.
v T -2

~pk 2(1? 227:10(? lfl: 1727-.-7d;
i - l‘l
i ifl=d+1,..,T.
o

© T*=Yr X P (i — oupt*) + X0y X jsikif)
Otherwise, go to the next step.

6. Reallocate the resource from i* to j* based on the following (binary search):

Let A;«j« denote the adjustment of the reallocation amount from i* to j*.

(a) If zj+ = 0, and after reallocating amount of y; from i* to j*, MRP; j» > 0,
let Ajj« = y;. Otherwise, search and obtain A j« € (0,y;<), which makes
MRP;: j- = 0 after reallocating A j from i* to j*.

(b) If zj++ >0,

i. If after reallocating min(y;+,zj++) from i* to j*, MRPyj» > 0, let Ay j« =
min(y;, zjx+).
ii. Else if after reallocating max(y;+,z;++) from i* to j*, MRPyj» > 0, let
A j = max (e, 2j++ ).
iii. Else, search and obtain A j« € (0,y;<), which makes MRP; j» = O after re-

allocating A+ j+ from i* to j*.
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Update y;+, y;« and z;+j+ with y« — Ay« j+, yj« + Aj j« and z;+ j« + A+ j» respectively, and

go to step 2.

Step 1 of the above algorithm orders the periods for each resource. In step 2, marginal
shadow prices are computed based on Proposition 22. In step 3, we choose the pair of
resources i and j* which have the maximum marginal reallocation profit. Step 4 stops
the algorithm if the approximated optimal solution is obtained. In step 5, we calculate the
amount of the adjustment of reallocation between the pair of the resources to eliminate
the reallocation profit between them by binary search. The complexity of the algorithm is
O(nT1n’>M).

Similar to MRP; and MRP; algorithms discussed in Chapter 4, this algorithm converges
to an feasible solution. The proof is the same as the proof for MRP; given in Proposition

17.

5.3 Conclusion and Future work

In this chapter, we investigated two extensions of the multi-resource model discussed in
Chapter 4. The first model contains ¢ facilities which are used to satisfy demands from m
demand markets where m £ g. We show that this model can be transformed to the model
studied in chapter 4 and solved by similar MRP;, MRP; and I-MRP heuristics. Next, we
considered a multi-resource and multi-period model. We presented the properties of the
stage 2 problem of this model, and proposed a heuristic method to solve it.

A more realistic version of this multi-period problem is that, at the beginning of the
second stage, only the demand of the first period can be observed precisely. The pric-
ing and reallocation decisions need to be made based on the partial information. As time
goes on, the demand information of other periods becomes observable and the decisions on
pricing and reallocation are made accordingly. This decision process involves dynamic pro-
gramming and huge computational complexity. Finding an appropriate model and heuristic

methods to solve the problem efficiently remains as a future research question.
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Appendix A

Lemma 3. Ifa,b,c,d are real numbers satisfying

c>0.d>0 %452
c — d
then
ayathb b
¢ c+d — d
Proof:
c>0,d>0
:>229 <= ad > bc
c  d

Procedure to determine set 7

When

Z(Yj—“j Z venkgn) T > Zij, A > 0.

jes (fh)esgre =N

Let us order resources based on the values of % —X(f.h)e sgreV nksn, J €S from the
largest to the smallest, and obtain a set of indices c(i) € S, i.e., resource c(i) has the ith

position in the ordered sequence. If 3i € § with Bc(i) = 0, according to (4.14),

Ye(1) Z Ye(2)
— = Venken —h > — Y vakpm—N
(xc(l) (f /’l) Sarc (xc(Z) (f7 ) Sarc

> .2 Ye(Q) — Z thkfh—klzo

Yeli)  (rmyesye

= Bc( Bc = B c(i— 1):0
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Let d denote the position of the last resource i with $; = 0 in the sequence c¢(1),¢(2),...,c(ny),
ie., Pe1) = PBe2) = -+ = Be(a) = 0, and Be(ay 1) = Be(ar2) = --Beny) > 0.

Then T # @ and Bc(l) =

Now, we discuss the following two cases: d = ng and 1 < d < ng.

If d = ng, it means T = S, and

Yjes(¥j — O Xirmesue Vinksn) =2 X jesX;

A=
ZjeS o

According to (4.14),

. Yjes(¥j = 0 iy mesge vinksn) =2LjesXj  Ye(ny)

< - Z Vrnken
YjcsO; Ce(ng)  (f,n)esure

le(ng)

must be satisfied.

If 1 <d < nj,
Zjl 1 (Ye(j) = Oy X fhesye, Vinkpn) —2Y jesX;
= 4 (5.19)
L1 e
and
Ye(d ) L1 (Yej) = %) Eipmpesys, Vinkn) =2 Ljes %)
— Z thkfh < yi
Gel@+1) (£ V€St Zj:l e
Ye(a)
< — Z Vrnken (5.20)

Ce(d)  (fn)e eswe,
must be satisfied.
The value of d can be determined by increasing d from 1 to n; until (5.20) is satisfied.
Now, we show that d can be found in this way and it is unique. In equation (5.19), let us

increase d from 1 to n,. At some point, A; becomes positive because

Y (vi—o; Y vekeg)T > Y 2x;.

jes (f.h)esire JES
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If at this point,

Ye(d
L Ca) Y, vk,

OLc(d+1) (f /’l)GSaer+l)

then we stop increasing d. Otherwise we increase d until

A > M — Z thkfh.
Qe (d+1) (f.h)es? Cd+l)
If
M < Zc(dﬂ) - Y vk,
cld+1) (£, h) €Sy a1

even when d is increased to n; — 1, then B; =0 Vj € S. This follows from Lemma (3),

which implies that if

L0 (i) — %) Eirmesr, Vonken) = 2LjesXi i)

— < —=— Z Venken
L o) Ce(ns)  (f.nyesire

le(ng)

then

Y (Ye(j) — ey X Fesge v rnkpn) —2Y jesX; Ye(ny)

7 <—==— Y vpkp
Ll O(j) Ce(ns)  (rm)e S
Consider the case that d is increased until
A > M — Vinkn-

ac(d+]) (f h)es?:cd+l)

Since

Ye
<~ Y, vk,

Ye@)  (r.nyesere,

condition (5.20) is satisfied, and the value of d is computed. Moreover d is unique, because

if we continue increasing d to d + 1, since

L1 (Ye() = () K mesy, Vinksn) = 2Ejes; _ Yetary)

- X vk,

d
Zj:l e( ) Qe(d-+1) (F)ES e asn)
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according to Lemma (3), we have

d+1
Lit1 (Ye(j) = Ote() Ermesie, Vinkn) =2EjesXi gy
Iil g, - - d o vk
Lj=1 () ) (fmes,

Hence, condition (5.20) cannot be satisfied. By this argument, we can show that condition
(5.20) cannot be satisfied by increasing d after the first point which satisfies condition

(5.20).
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