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ABSTRACT

Zhaohui Wang

Capacity Investment Strategies under Operational Flexibility.
(Under the direction of Professor Tekin.)

Operational flexibility has been attractive in many industries to hedge against demand un-

certainty and to promote profits by decreasing lost sales, saving on investments and provid-

ing higher quality service. Hence, it is extremely important to develop quantitative models

that will provide insights on how to manage systems with some form of flexibility in their

operations. In this research, we propose to study optimal capacity investment, resource al-

location and pricing decisions of a central decision maker that manages multiple resources

which can be utilized flexibly to satisfy demands from multiple market segments. The main

objectives of the proposed research are 1) to develop quantitative models in order to de-

termine the optimal capacity investment decisions for multiple resources that can be used

flexibly to satisfy stochastic demands from multiple customer segments, 2) to develop easy-

to-implement computational algorithms for computing optimal or near-optimal solutions, 3)

to quantify the benefits of managing multiple resources that can be used flexibly.
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Chapter 1

Introduction

Global competition has forced most manufacturing and service industries to persistently

strive to decrease their operating costs, and still improve efficiency and quality of their

services. Responding economically to the specific needs of customers has become a ma-

jor challenge. Firms are continuously reorganizing themselves and making use of various

strategies to match their resources to varying demands from different market segments.

Operational flexibility has been one strategy that companies use to hedge against de-

mand uncertainty, and to promote profits by decreasing lost sales, saving on investments

and providing higher quality service. Operational flexibility broadly implies various tac-

tics such as use of flexible resources (i.e., plants, machines, workers), product and volume

flexibility, delayed product differentiation, and flexible sourcing, pricing and distribution

of goods and services. In this research, we focus on two aspects of operational flexibility:

Resource flexibility and ex-post pricing (i.e., the ability to set prices after observing the

demand patterns (see, e.g., Van Mieghem and Dada (1999)).

In particular, we study optimal capacity investment, resource allocation/reallocation and

pricing decisions of a firm that manages multiple resources, which can be utilized flexibly

to satisfy demands from multiple market segments. We use the term resource in the broad

sense to mean manufacturing capacity or inventory. We consider there are multiple cus-

tomer classes whose demands are characterized by random market sizes and selling prices.

Furthermore, the firm has the ability to use a particular resource capacity to satisfy demands

from different market segments, other than its own, at the expense of a reallocation cost to



hedge against demand uncertainty. In general, due to the long production lead times and

contractual agreements, the capacity investment decisions for resources must be made long

before the market sizes are known with accuracy. On the other hand, reallocation and pric-

ing decisions can be postponed until more information about the actual market conditions

is obtained.

We focus on the following two-stage problem: In the first stage, the firm makes its

capacity investment decision for multiple resources in the face of uncertain demand so as to

maximize the total expected profit. In the second stage, after the market sizes are realized,

the firm jointly determines its prices and capacity reallocations to maximize the total profit

based on the capacity investment decisions made in the first stage.

We study models that address the strategic capacity investment decisions faced by a

number of industries, such as manufacturing companies that operate reconfigurable plants,

retailers with multiple sales outlets in different geographical locations, etc. For example,

consider a car manufacturing company that sells its vehicles through its dealers which are

geographically distributed within a region. The major source of demand for each dealer

is its local community. The company has to decide how many vehicles from each model

to put in the inventory at each dealer in the beginning of a selling season under demand

uncertainty. The time between two replenishments is usually long (e.g., six months), and

hence, this decision can be treated as a single-period problem. After the company allocates

the vehicles to dealers, the demand becomes observable as the sales are made. It is highly

likely that the actual demand does not match the supply at each dealer. An effective way

to balance demand and supply is to adjust the selling price based on the realized market

potential and reallocate the vehicles among the dealers, if needed. Such an operational

flexibility allows the company to generate more profits by matching supply with demand.

Another example can be a manufacturing company that operates multiple plants which

are reconfigurable to produce a variety of products. The manufacturing capacity that will be

allocated to each product is determined when demand is highly uncertain. This especially

applies to seasonal products. As the beginning of the season approaches, more information
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about the demand is collected, and the company makes its pricing decisions and reallocates

manufacturing capacities to different products at a cost, if necessary.

The main objectives of this research are as follows:

• to develop quantitative models in order to determine the optimal capacity investment

decisions for multiple resources that can be used flexibly to satisfy stochastic de-

mands from multiple customer segments;

• to develop easy-to-implement computational algorithms for computing optimal or

near-optimal solutions;

• to quantify the benefits of managing multiple resources that can be used flexibly.

In Chapter 2, we present the literature review. In Chapter 3, we focus on capacity in-

vestment, resource allocation and pricing decisions faced by a central decision maker that

manages two resources which can be used flexibly to satisfy demands from two market

segments. We consider situations where the capacity investment decisions have to be made

in the face of uncertain demand. On the other hand, resource allocation and pricing deci-

sions are made after the uncertainty about demand is resolved. Accordingly, the decision

making process is formulated as a two-stage stochastic programming problem. The second

stage problem determines the optimal resource allocations and selling prices given the re-

alized demands and resource capacities, and the first stage problem seeks for the optimal

capacities given the random demands. We explicitly solve the second stage problem for

the two-resource system, and further investigate the properties of the first stage problem.

We find that depending on the magnitudes of the unit costs of the resources, the optimal

capacity investment strategy takes one of the following three forms: (1) Do not invest in

any of the resources; (2) Invest in one of the resources; (3) Invest in both resources.

In Chapter 4, we allow for multiple (more than two) resources in the system. We inves-

tigate the structural properties of the optimal solution of the second stage problem, and then

provide heuristic methods to solve the second stage problem efficiently. In the numerical

experiments, we first investigate the performance of the heuristics, and then study the im-

pact of the system parameters on the optimal investment strategies. The first stage problem

3



is solved by Monte Carlo simulation, which requires an efficient, yet accurate, solution of

the stage two problem.

In Chapter 5, we consider two extensions of the multi-resource model. First, we relax

the assumption that each facility has its own market. Next, we consider that resources are

utilized through multiple periods instead of a single period. This multi-period model is more

realistic, however, it has a more complicated structure. Therefore, we focus on studying the

properties and structure of the optimal solution, and searching for efficient computational

algorithms to solve the problem.
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Chapter 2

Literature Review

The problem addressed in this dissertation is closely related to two streams of literature. The

first stream of literature focuses on strategic models that address the issue of how to make

investment decisions in environments with a mix of dedicated and flexible resources. The

second stream of literature develops models for inventory procurement decisions in multi-

product inventory systems where one product can be substituted for another. Both streams

of literature investigate the effects of future demand uncertainty on investment/procurement

decisions and quantify the benefits of operational flexibility gained through flexible produc-

tion capacity or inventory substitution.

Operational flexibility has been of interest to many researchers for a long time. De

Groote (1994) proposed a general framework of flexibility which is based on three ele-

ments: the set of technologies whose flexibility is going to be compared, the set of environ-

ments in which those technologies might be operated, and a performance criterion for the

evaluation of different technologies in different environments. Flexibility is considered as

a property of technologies whereas diversity is a property of environments. Flexibility is a

hedge against the diversity of the environment. The formal definition of flexibility is given

in De Groote (1994) as follows: “A particular technology is said to be more flexible than

another if an increase in the diversity of the environment yields a more desirable change in

performance with this particular technology than the change that would be obtained with

the other technology under the same conditions”. This characterization of flexibility yields

three attractive strategic properties, each related to a different optimization problem. First,



while allocating two different environments to two different technologies, the overall per-

formance of the system is improved if the more diverse environment is allocated to the

more flexible technology. Second, while selecting or designing the best technology for a

given environment, an increase in the diversity of the environment makes it more desirable

to select a more flexible technology. Finally, an increase in the flexibility of the technology

makes it more attractive to operate in a more diverse environment. De Toni and Tonchia

(1998) conducted a thorough literature review on manufacturing flexibility and contributes

to the conceptual systemization of the flexibility. In the paper, the authors discussed six

aspects of the flexibility: definition, factors which determine the request for flexibility, clas-

sification, measurement, choices for flexibility and interpretation. Robert and Joseph(1984)

studied the flexibility as an economic concept. The paper formalized the notion of flexibil-

ity in a sequential decision making context, and quantified its value based on the amount of

the available information. Overall, these studies provided general ideas on the concept of

flexibility for a wide range of systems.

The literature on strategic models for systems with a mix of dedicated and flexible re-

source is summarized below: Fine and Freund (1990) considered an investment decision

model for a flexible manufacturing system. They analyzed a multi-product system where

each product can be produced by a dedicated resource and also by a flexible resource shared

by all product types. They developed a discrete stochastic programming model to investi-

gate the necessary and sufficient conditions to invest in flexible capacity, and discussed the

properties of the optimal profit function and optimal capacity levels. They also presented

numerical results to analyze the sensitivity of solutions to the correlation and variability in

demand. For the two-resource case, their numerical results show that when demands for

resources are perfectly positively correlated, it is not optimal to invest in flexible capacity.

Van Mieghem (1998) considered a two-resource firm with the option of investing in ded-

icated and/or flexible resources. Using a multi-dimensional newsvendor model developed

by Harrison and Van Mieghem (1999), the paper presents the conditions for investing in

dedicated and/or flexible capacities. Unlike Fine and Freund (1990), Van Mieghem showed

that under certain conditions, it may be optimal to invest in flexible capacity even when the
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demands for resources are perfectly positively correlated. Gupta et. al. (1992) considered

a firm that faces uncertain demands for several product groups and needs to decide how

much of dedicated capacity and how much of flexible capacity to acquire. They particularly

focused on the dependence of investment policy on initial capacities, as most firms facing

the problem are not likely to be entirely new. They showed that if initial capacities are

lower than the levels that would be optimal in absence of initial capacities, the investment

decision is a simple “acquire-up-to” (optimal levels) for each capacity type. On the other

hand, if some initial capacity is “too high”, the optimal additions to others depend on its

value in a non-linear fashion. Netessine et. al. (2002) considered limited flexibility in ser-

vice systems that provide multiple services. Each lower level service can be fulfilled by

higher level of services. An example application is given from car rental industry where,

say, demand for an economy car may be ungraded to a luxury car if there are no economy

cars available. Netessine et. al. (2002) discussed the properties of such systems under the

assumption that service may be upgraded by only one class. They presented an algorithm

to compute the optimal investment levels and discussed the impact of demand correlation to

the optimal capacities. For two customer classes, they showed that as correlation in between

two demand types increases, the flexible capacity will shift to the dedicated capacity. When

there are more than two customer classes, the change of correlation in between two demand

types, besides affecting the investment level of two corresponding capacities (say, A and B)

for these two demand types, also affects the investment level of other capacities indirectly.

As the correlation increases, these changes follow an alternating pattern. It means that if

the investment level of a type of capacity, say C, (neither A nor B) changes, the optimal

investment level of the capacity which can be used to satisfy the demand for capacity C and

the optimal investment level of the capacity which can be substituted by capacity C change

in the opposite direction. All of these papers assume that the prices are fixed, and focus on

determining optimal resource allocations and optimal capacity investment decisions.

There are some recent papers that consider allocation, pricing and capacity investment

decision, simultaneously. Bish and Wang (2004) investigated a model similar to the one in

Van Mieghem (1998). In their model, the resource investment decision is made first un-

7



der demand uncertainty, and the pricing and capacity allocation decisions are made later

when demands are realized. Their results confirm most of Van Mieghem’s (1998) conclu-

sions. Chod and Rudi (2005) investigated a simpler model, where a single flexible resource

satisfies two distinct demand classes without dedicated resources. They also considered a

different pricing model such that the demand for a resource does not only depend on its

own price but also depends on the price of its alternative. The two key drivers of flexibility

such as demand variability and demand correlation are characterized in the paper. As-

suming normal distribution for demands, when correlation increases, the optimal flexible

capacity increases and the optimal profit decreases. Positive demand correlation remains

undesirable. The benefit of flexibility is most significant when the demand levels are highly

variable and negatively correlated. When demand variability increases, both the optimal

flexible capacity level and the optimal profit increase.

There are also quite a few closely related literature focusing on multi-product inven-

tory systems with substitutions. The earliest work is due to Ignall and Veinott (1969) who

considered the multi-product inventory problem with one-way substitution and zero setup

costs. Bassok et. al. (1999) considered a single period multi-product inventory problem

with full downward substitution, i.e., demand for some product can only be substituted by

the products with higher quality. They formulated the problem as a two-stage profit max-

imization model. At the first stage, given the initial inventories, the problem is to decide

optimal inventory procurement amount before the demand is known. At the second stage,

given the realized demand and the inventory levels, the optimal demand substitution quan-

tities are determined in order to maximize the expected profit. The downward substitution

assumption yields to a simple optimal substitution strategy for the second stage problem,

and the objective function of the first stage problem is concave and submodular. As a result,

they proved that the optimal quantities of resources to purchase at the first stage are non-

increasing in the initial inventory levels, which means that the higher the initial inventory

levels are the lower quantities of resources should be purchased. Rao et. al. (2002) consid-

ered a similar single period multi-product inventory problem which is also formulated as

a two stage problem. Unlike Bassok et. al. (1999), in the first stage, besides determining

8



the optimal quantity to produce (purchase), decision on which products to produce needs

to be made. In the second stage, they consider a similar substitution structure but relax the

assumption that the unit substitution costs are identical. Moreover, they include the setup

cost of production in their model. They use a network flow approach and use dynamic

programming and simulation based optimization to develop effective heuristics. The paper

provides some insights on issues such as the effect of demand variance and cost parameters

on the optimal number of product types to produce, the amount produced or inventoried,

and the benefits of substitution. Karaesmen and Ryzin (2004) considered an overbooking

problem with multiple reservation and inventory classes, in which the multiple inventory

classes may be used as substitutes to satisfy the demand of a given reservation class. The

problem is similar as the one discussed in Bassok et. al. (1999), but arises in a variety of

revenue management contexts. They modeled this problem as a two-period optimization

problem, and showed that the expected revenue function is submodular in the overbooking

levels. They also proposed a stochastic gradient algorithm to find the joint optimal over-

booking levels. Eppen (1979) developed a single-period, single-product inventory model

with several individual sources of demand. It is a multi-location problem with an opportu-

nity for centralization. The paper shows that under reasonable assumptions, the expected

holding and penalty costs in a decentralized system exceed those in a centralized system.

Analysis of single period two product substitution problems have been extensively stud-

ied. McGillivary and Silver (1978) considered a case where products have identical costs

and there is a fixed probability that a customer demand for a stocked out product can be

substituted by another available product. They showed that when the substitution proba-

bility is close to 1 or the stock level of the substitutable products is high, substantial cost

savings can be obtained. Pasternack and Drezner (1991) considered a similar system where

the substitution probability is one. They compared the optimal stocking levels to the cor-

responding inventory levels without substitution. Gerchak et. al. (1996) considered two

single-period production processes which both involve the production of the products of

two grades, higher and lower. Demand for lower-grade products can be met by high-grade

units. They showed that both expected profit functions are concave and derive the optimal-
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ity conditions. Deterministic versions of the substitution problem are studied by Tripathy

et. al. (1999) and Li and Tirupati (1994). Tripathy et. al. (1999) addressed the discrete mul-

tidimensional assortment problem, which seeks the optimal sizes of a product to stock from

among a discrete set of possible ones and determines the optimal stock level. They modeled

the problem as a facility location problem and propose a heuristic procedure to approximate

the optimal solution. Li and Tirupati (1994) considered a multi-period multi-product dy-

namic investment model. Assuming that the demands for different products at different

periods are known, they formulated the problem as a two-stage deterministic programming

problem, and provided a heuristic method, which gives acceptable solutions efficiently.

Similar as Fine and Freund (1990), Van Mieghem (1998) and Bish and Wang (2004),

we investigate the optimal capacity investment strategies for multiple resources. Instead of

studying the problem for small systems (i.e., at most one flexible resource) as in these pa-

pers, we study a general model, which allows any number of resources and a more flexible

reallocation/substitution strategy. Comparing to Bassok et. al. (1999) and Rao et. al. (2002),

which addressed inventory management, under substitution models, our work considers an

arbitrary substitution structure and pricing power, which can better reflect the reality of the

demand-supply markets. Furthermore, Bassok et. al. (1999) and Rao et. al. (2002) studied

the problem from the inventory control perspective, and we focus on capacity investment

strategies and the effect of the variation of the environment on the optimal investment poli-

cies. Since our model addresses more general problems, the results can be applied to more

realistic problems although the analysis is more complicated. In this dissertation, we for-

mulate our models as two-stage stochastic programming problems. With the insights that

we obtain from the analytic results, we develop heuristic methods based on “Marginal Re-

allocation Profit”. The insights from this research enhance the understanding in investment

decisions under operational flexibility (i.e., pricing and reallocation/substitution), and pro-

vide practical tools to solve realistic size problems.
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Chapter 3

Capacity Investment Strategies for
Systems with Two Resources

3.1 Introduction

We study optimal capacity investment, resource allocation and pricing decisions of a firm

that manages multiple resources which can be utilized flexibly to satisfy demands from

multiple market segments. We use the term resource in the broad sense to mean manufac-

turing capacity or inventory. We consider that each resource has its own primary market

characterized by a random market size and a selling price for the products. We assume that

the firm has the monopoly power to set the prices in each market. Furthermore, the firm has

the ability to use a particular resource capacity to satisfy demands from a different market

segment, other than its own, at the expense of a reallocation cost to hedge against demand

uncertainty.

In general, due to the long lead times and contractual agreements, the capacity invest-

ment decisions for resources must be made long before the market sizes are known with

accuracy. On the other hand, reallocation and pricing decisions can be postponed until

more information about the actual market conditions is obtained. The ability to set prices

after observing the demand patterns is termed as ex-post (postponed) pricing in the literature

(see, for example, Van Mieghem and Dada (1999)).



In this research, we investigate models that apply reallocation and ex-post pricing strate-

gies simultaneously in order to find the optimal capacity investment decisions for multiple

resources. In particular, we focus on the following two-stage problem: In the first stage,

the firm makes its capacity investment decision for multiple resources in the face of un-

certain demand. In the second stage, after the market sizes are realized, the firm jointly

determines its prices and capacity reallocations to maximize the total profit based on the

capacity investment decisions made in the first stage.

This model addresses the strategic capacity investment decisions faced by a number of

industries, such as manufacturing companies that operate reconfigurable plants, retailers

with multiple sales outlets in different geographical locations, etc. For example, consider a

car manufacturing company that sells its vehicles through its dealers which are geograph-

ically distributed within a region. The major source of demand for each dealer is its local

community. The company has to decide how many vehicles from each model to put in the

inventory at each dealer in the beginning of a selling season under demand uncertainty. The

time between two replenishments is usually long (i.e., one year), and hence, this decision

can be treated as a single-period problem. After the company allocates the vehicles to deal-

ers, the demand becomes observable as the sales are made. It is highly likely that the actual

demand does not match the supply at each dealer. An effective way to balance demand and

supply is to adjust the selling price based on the realized market potential and reallocate the

vehicles among the dealers if needed. Such an operational flexibility allows the company

to generate more profits by matching supply with demand.

Another example can be a manufacturing company that operates multiple plants which

are reconfigurable to produce a variety of products. As a result of long production lead

times, the manufacturing capacity that will be allocated to each product is determined when

demand is highly uncertain. This especially applies to seasonal products. As the beginning

of the season approaches, more information about the demand is collected, and the company

makes its pricing decisions and reallocates manufacturing capacities to different products

at a cost, if necessary.
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Due to the simplicity the two-resource system, we can obtain some nice results from

analysis which enable us to better understand the model. Therefore, in the rest of this

chapter we focus on the two-resource system. A multi-resource version of the problem will

be addressed in the next chapter.

The remainder of this chapter is organized as follows: In section 3.2, we introduce a

two-stage optimization model to address the two-resource capacity investment problem. In

section 3.3, we solve the stage 2 model for the two-resource system. In section 3.4, we

solve the stage 1 model. Finally, in section 3.5, we study the impact of demand correlation

on the optimal capacity investment decision via a numerical study.

3.2 Model Formulation

We consider a firm that serves two markets where demand for market i is controlled by the

unit selling price pi according to the following linear, downward sloping function

Di = Γi−αi pi

where αi > 0 is the slope, and Γi is the intercept that denotes the random market size of

demand i, i = 1,2. We assume that Γi is a nonnegative continuous random variable, i = 1,2.

Market i is primarily served by resource i, but it can also be served by resource j (i 6= j) at a

nonnegative reallocation (i.e., substitution) cost k ji, i, j = 1,2. We assume that k12 +k21 > 0

to avoid a trivial case that resource 1 and resource 2 can replace each other with no cost so

that they can aggregated into a single resource. Let c j denote the unit cost of investing in

resource j, j = 1,2. The company commits to resource capacities −→x = (x1,x2) before the

market sizes of demands
−→
Γ = (Γ1,Γ2) are realized, in order to maximize the expected total

profit. Let x j denote the capacity acquired for resource j, j = 1,2. We denote a realization

of
−→
Γ = (Γ1,Γ2) by −→γ = (γ1,γ2). Once the realization −→γ of

−→
Γ is observed, the company

makes its pricing and resource allocation decisions so as to maximize its total expected

profit under the resource investment decisions made earlier. Let z ji (i, j = 1,2. i 6= j)

denote the amount of demand i satisfied by resource j once demand is observed. Then, the

13



model can be formulated as a two-stage optimization problem. Stage 1 problem P1 makes

the investment decisions as follows:

Stage 1 (P1):

max−→x
Π(−→x ) = E[Φ∗(−→x ,

−→
Γ )]−

2

∑
i=1

cixi

subject to:

x1, x2 ≥ 0

E[Φ∗(−→x ,
−→
Γ )] is the expected revenue when the resource capacity vector is −→x , where

Φ∗(−→x ,−→γ ) is the optimal objective function value of the stage 2 problem P2, which decides

the optimal prices and allocates the resources optimally to fulfill the demand based on an

observed demand, di =−→γi −αi pi, i = 1,2.

Stage 2 P2:

Φ∗(−→x ,−→γ ) = max
z12, z21, p1, p2

p1(γ1−α1 p1)+ p2(γ2−α2 p2)− k12z12− k21z21 (3.1)

s.t. γ1−α1 p1 ≤ x1− z12 + z21 (λ1) (3.2)

γ2−α2 p2 ≤ x2 + z12− z21 (λ2) (3.3)

zi j ≥ 0 i, j = 1,2 and i 6= j (ui j) (3.4)

γi−αi pi ≥ 0 i = 1,2 (βi) (3.5)

pi ≥ 0 i = 1,2 (3.6)

The stage 2 model P2 maximizes the profit given the resource investment vector −→x
and the realized market size vector −→γ . In P2, inequality (3.2) and inequality (3.3) ensure

that the demands from market 1 and market 2 do not exceed the total available capacities for

market 1 and market 2, respectively. Inequalities (3.4),(3.5) and (3.6) are the nonnegativity

constraints on the resource allocations, demands and prices, respectively. The objective

function of P2 is concave with respect to pi, and it is linear in zi j, i, j = 1,2 and i 6= j.

Moreover, all the constraints are linear. Therefore, P2 is a concave problem.

We would like to note that when k12 = 0 and k21 → ∞, the above model can be consid-

ered a generalization of the model investigated in Netessine et. al. (2002) with two types of

resources and pricing power. (i.e., the prices are also decision variables.)
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Figure 3.1: An illustration of the 2-resource system

3.3 Optimal Solution of the Stage 2 Model

In this section, we focus on solving P2 for the two-resource system. The purpose of studying

the two-resource model is two-fold:

1. To derive the explicit optimal solution of the two-resource model;

2. To obtain insights on the optimal solution of P2 for two resources, and use these

insights to develop an efficient numerical algorithm for the general model (i.e., model

with more than two resources).

Let λ1, λ2, u12, u21, β1, β2 be the Lagrange multipliers corresponding to the constraints

of P2 given in (3.2)−(3.5), respectively. Note that we omit the last constraint in P2 because

the optimal solution cannot result in pi < 0 since the demand for each resource i, i = 1,2,

is nonnegative. Without loss of generality, we assume k21 ≥ k12. Furthermore, in order to

avoid the discussion of trivial cases, we assume x1 > 0 and x2 > 0.

Since the objective function is concave, the Karush-Kuhn-Tucker (K-K-T) conditions

are necessary and sufficient for the optimal solution. The K-K-T conditions of P2 are given

as follows:

p∗i =
γi +αi(λ∗i −β∗i )

2αi
∀i = 1,2 (3.7)

λ∗j −λ∗i = ki j−u∗i j i, j = 1,2 i 6= j (3.8)

λ∗i (−γi +αi p∗i + xi− z∗i j + z∗ji) = 0 i, j = 1,2 i 6= j (3.9)

β∗i (γi−αi p∗i ) = 0 i = 1,2 (3.10)

u∗i jz
∗
i j = 0 i, j = 1,2 and i 6= j (3.11)

15



From (3.8), we have that λ∗2−λ∗1 = k12−u∗12 and λ∗1−λ∗2 = k21−u∗21. Summing these two

equalities, we obtain u∗12 +u∗21 = k12 +k21 > 0. Therefore, at least one of u∗12 and u∗21 should

be positive. From (3.11), we conclude that at least one of z∗12 and z∗21 should be equal to

zero in the optimal solution. In addition, we show the following two results regarding the

optimal values of the Lagrange multipliers:

Proposition 1. If λ∗i = 0, then β∗i = 0, i = 1,2.

Proof: If λ∗i = 0, from (3.7) we have that p∗i = γi−αiβ∗i
2αi

. Then,

γi−αi p∗i = γi−αi(
γi−αiβ∗i

2αi
) =

γi +αiβ∗i
2

≥ 0

since γi ≥ 0 and β∗i ≥ 0. If γi−αi p∗i = 0, we have γi = 0 and β∗i = 0. If γi−αi p∗i > 0, from

(3.10), it follows that β∗i = 0. Therefore, β∗i = 0. ¥

Proposition 2. If u∗i j > 0, then β∗i = 0 for i, j = 1,2 and i 6= j.

Proof: If u∗i j > 0, then z∗i j = 0 from (3.11). First, assume that λ∗i = 0, then β∗i = 0 from

Proposition 1. Second, assume that λ∗i > 0. Then, from (3.9) and using z∗i j = 0

−γi +αi p∗i + xi− z∗i j + z∗ji = 0⇒ p∗i =
γi− xi− z∗ji

αi

Then

γi−αi p∗i = γi−αi(
γi− xi− z∗ji

αi
) = xi + z∗ji > 0

since xi > 0 and z∗ji ≥ 0. From (3.10), it follows that β∗i = 0. ¥

In order to describe the optimal solution, let us divide the demand space into 10 disjoint

sets as follows:

Ω0 = {γ1 ≤ 2x1, γ2 ≤ 2x2}
Ω1 = {γ1 ≤ 2x1,2x2 < γ2 ≤ 2x2 +α2k12}
Ω2 = {γ2 ≤ 2x2,2x1 < γ1 ≤ 2x1 +α1k21}
Ω3 = {γ1 > 2x1,γ2 > 2x2,−k21 ≤ γ2−2x2

α2
− γ1−2x1

α1
≤ k12}

Ω4 = {γ2 > 2x2 +α2k12,γ1 + γ2 ≤ 2x1 +2x2 +α2k12}
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Figure 3.2: Optimal solution of the stage 2 problem with two types of resources

Ω5 = {γ1 + γ2 > 2x1 +2x2 +α2k12,
γ2−2x2

α2
− γ1−2x1

α1
> k12,

γ1
α1
≥ γ2−2x1−2x2−α2k12

α2
}

Ω6 = { γ1
α1

< γ2−2x1−2x2−α2k12
α2

}
Ω7 = {γ1 > 2x1 +α2k21,γ1 + γ2 ≤ 2x1 +2x2 +α1k21}
Ω8 = {γ1 + γ2 > 2x1 +2x2 +α1k21,

γ1−2x1
α1

− γ2−2x2
α2

> k21,
γ2
α2
≥ γ1−2x1−2x2−α1k21

α1
}

Ω9 = { γ2
α2

< γ1−2x1−2x1−α1k21
α1

}
An illustration of the demand space with these 10 disjoint sets is given in Figure 3.2.

Using these sets, we present the following result that characterizes the optimal solution to

the stage 2 model.

Proposition 3. Given realizations γ1, γ2 of random variables Γ1, Γ2 and a resource invest-

ment vector −→x , the optimal solution of the stage 2 model can be expressed as

If γ ∈Ω0, p∗1 = γ1
2α1

, p∗2 = γ2
2α2

, z∗12 = z∗21 = 0.

If γ ∈Ω1, p∗1 = γ1
2α1

, p∗2 = γ2−x2
α2

, z∗12 = z∗21 = 0.

If γ ∈Ω2, p∗1 = γ1−x1
α1

, p∗2 = γ2
2α2

, z∗12 = z∗21 = 0.

If γ ∈Ω3, p∗1 = γ1−x1
α1

, p∗2 = γ2−x2
α2

, z∗12 = z∗21 = 0.

If γ ∈Ω4, p∗1 = γ1
2α1

, p∗2 = γ2+α2k12
2α2

, z∗12 = γ2−2x2−α2k12
2 , z∗21 = 0.

If γ ∈Ω5, p∗1 = γ1
2α1

+ γ1+γ2−2x1−2x2−α2k12
2(α1+α2)

, p∗2 = γ2
2α2

+ γ1+γ2−2x1−2x2+α1k12
2(α1+α2)

,

z∗12 = α1α2
2(α1+α2)

( γ2−2x2
α2

− γ1−2x1
α1

− k12), z∗21 = 0.
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If γ ∈Ω6, p∗1 = γ1
α1

, p∗2 = γ2−x1−x2
α2

, z∗12 = x1, z∗21 = 0.

If γ ∈Ω7, p∗1 = γ1+α1k21
2α1

, p∗2 = γ2
2α2

,z∗21 = γ1−2x1−α2k21
2 , z∗12 = 0.

If γ ∈Ω8, p∗1 = γ1
2α1

+ γ1+γ2−2x1−2x2+α2k21
2(α1+α2)

, p∗2 = γ2
2α2

+ γ1+γ2−2x1−2x2−α1k21
2(α1+α2)

,

z∗12 = 0, z∗21 = α1α2
2(α1+α2)

( γ1−2x1
α1

− γ2−2x2
α2

− k21).

If γ ∈Ω9, p∗1 = γ1−x1−x2
α1

, p∗2 = γ2
α2

, z∗12 = 0, z∗21 = x2.

Proof: Based on the K-K-T conditions given in (3.7)− (3.11), in the optimal solution, we

can have one of the following two cases:

Case 1. u∗12 > 0 and u∗21 > 0.

Case 2. u∗12 > 0 and u∗21 = 0 or u∗12 = 0 and u∗21 > 0.

Below we will investigate these two cases, respectively.

Case 1. u∗12 > 0 and u∗21 > 0.

From Proposition 2, it follows that β∗1 = β∗2 = 0. From (3.11), it follows that z∗12 = z∗21 = 0.

Below we will investigate four subcases for a) λ∗1 = λ∗2 = 0, b) λ∗1 = 0 and λ∗2 > 0, c) λ∗1 > 0

and λ∗2 >= 0, and d) λ∗1 > 0 and λ∗2 > 0, respectively.

a) When λ∗1 = 0 and λ∗2 = 0, from (3.7),

p∗i =
γi

2αi
, i = 1,2 (3.12)

From (3.8), u∗12 = k12 and u∗21 = k21.

From (3.9), using z∗12 = z∗21 = 0 and λ∗1 = λ∗2 = 0,

p∗i ≥
γi− xi

αi
(3.13)

From (3.12) and (3.13),

p∗i =
γi

2αi
≥ γi− xi

αi
i = 1,2

If γi ≤ 2xi for i = 1,2, K-K-T condition (3.10) is satisfied with p∗i = γi
2αi

and β∗i =

0, i = 1,2.
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Hence, if γi ≤ 2xi for i = 1,2, and k12, k21 ≥ 0 then

p∗i =
γi

2αi
i = 1,2 and z∗12 = z∗21 = 0.

b) When λ∗1 = 0 and λ∗2 > 0, from (3.7), p∗1 = γ1
2α1

and p∗2 = γ2+α2λ∗2
2α2

.

From (3.9), p∗1 ≥ γ1−x1
α1

and p∗2 = γ2−x2
α2

.

Using p∗2 = γ2+α2λ∗2
2α2

= γ2−x2
α2

, λ∗2 = γ2−2x2
α2

.

From (3.8), u∗12 = k12−λ∗2 = k12− γ2−2x2
α2

, and u∗21 = k21 +λ∗2 = k21 + γ2−2x2
α2

.

Hence, if γ1≤ 2x1, γ2≥ 2x2 and k12 > γ2−2x2
α2

, K-K-T condition (3.10) is also satisfied

and

p∗1 =
γ1

2α1
, p∗2 =

γ2− x2

α2
, z∗12 = z∗21 = 0

with λ∗2 = γ2−2x2
α2

.

c) The case with λ∗1 > 0 and λ∗2 = 0 is symmetric with case b. By following the same

steps, it is straightforward to see that if γ1 > 2x1, γ2 ≤ 2x2 and k21 > γ1−2x1
α1

, K-K-T

conditions are satisfied with

p∗1 =
γ1

2α1
, p∗2 =

γ2− x2

α2
, z∗12 = z∗21 = 0

and λ∗1 = γ1−2x1
α1

.

d) When λ∗1 > 0, and λ∗2 > 0, from (3.9), p∗i = γi−xi
αi

, i = 1,2.

Using (3.7) and (3.9), p∗i = γi−xi
αi

= γi+αiλ∗i
2αi

⇒ λ∗i = γi−2xi
αi

i = 1,2.

From (3.8), u∗12 = k12−λ∗2 + λ∗1 = k12− γ2−2x2
α2

+ γ1−2x1
α1

, and u∗21 = k21−λ∗1 + λ∗2 =

k21− γ1−2x1
α1

+ γ2−2x2
α2

.

Since λ∗i > 0, i = 1,2, and u∗12, u∗21 > 0, if γi > 2xi, i = 1,2, and ki j− γ j−2x j
α j

+ γi−2xi
αi

>

0, i, j = 1,2, i 6= j, then p∗i = γi−xi
αi

i = 1,2 and z∗12 = z∗21 = 0 with

p∗i =
γi−2xi

αi
, i = 1,2 and u∗i j = ki j− γ j−2x j

α j
+

γi−2xi

αi
.
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Case 2. For this case, we will only consider u∗12 = 0 and u∗21 > 0. The case with u∗12 > 0

and u∗21 = 0 is symmetric, and its proof follows in the same lines.

When u∗12 = 0 and u∗21 > 0, from (3.11), z∗12 ≥ 0 and z∗21 = 0. From Proposition 2,

β∗2 = 0. From (3.8), λ∗2− λ∗1 = k12− u∗12, and with u∗12 = 0, we have λ∗2 = λ∗1 + k12 and

u∗21 = k21−λ∗1 + λ∗2. Consequently, we consider two subcases with λ∗1 = 0 and λ∗2 = k12,

and λ∗1 > 0 and λ∗2 = λ∗1 + k12 > 0, respectively.

a) When λ∗1 = 0 and λ∗2 = k12, then from (3.7), p∗1 = γ1−α1β∗1
2α1

and p∗2 = γ2+k12α2
2α2

. Then,

γ1−α1 p∗1 = γ1−α1(
γ1−α1β∗1

2α1
) = γ1+α1β∗1

2 > 0. Since γ1 > 0 and β∗1 ≥ 0. From (3.10),

we conclude that β∗1 = 0.

i) If k12 = 0, then λ∗i = β∗i = 0, p∗i = γi
2αi

, i = 1,2 and u∗21 = k21. From (3.9),

−γ1 +α1 p∗1 + x1− z∗12 ≥ 0⇒ z∗12 ≤−
γ1

2
+ x1, and

−γ2 +α2 p∗2 + x2 + z∗12 ≥ 0⇒ z∗12 ≥
γ2

2
− x2.

Hence, γ2
2 −x2 ≤ z∗12 ≤− γ1

2 +x1. Consequently, if k12 = 0 and k21 > 0, γ2 ≥ 2x2

and γ1 + γ2 ≤ 2x1 +2x2, then

p∗i =
γi

2αi
i = 1,2

γ2

2
− x2 ≤ z∗12 ≤−

γ1

2
+ x1 and z∗21 = 0

with λ∗i = β∗i = 0 i = 1,2, and u∗12 = 0 and u∗21 = k21.

ii) If k12 > 0, from (3.9)

−γ1 +α1 p∗1 + x1− z∗12 ≥ 0⇒ z∗12 ≤−
γ1

2
+ x1 (3.14)

−γ2 +α2 p∗2 + x2 + z∗12 = 0⇒ z∗12 =
γ2−α2k12−2x2

2
(3.15)

Combining (3.14) and (3.15), we obtain the condition that

γ1 + γ2 ≤ 2x1 +2x2 +α2k12.
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Hence, if γ2 ≥ α2k12 +2x2 and γ1 + γ2 ≤ 2(x1 +2x2)+ α2k12 all K-K-T condi-

tions are satisfied, and

p∗1 =
γ1

2x1
p∗2 =

γ2 + k12α2

2α2
z∗12 =

γ2−α2k12−2x2

2
z∗21 = 0

with λ∗1 = 0, λ∗2 = k12, β∗1 = β∗2 = u∗12 = 0 and u∗21 = k12 + k21.

Observing subcases i) and ii), we can conclude that the result of i) is the same

as ii) with k12 = 0. As a result, we can use the above result for both cases.

b) When λ∗1 > 0 and λ∗2 = λ∗1 + k12, then since λ∗1, λ∗2 > 0 and z∗21 = 0, from (3.9) we

have

−γ1 +α1 p∗1 + x1− z∗12 = 0⇒ p∗1 =
γ1− x1 + z∗12

α1
(3.16)

−γ2 +α2 p∗2 + x2 + z∗12 = 0⇒ p∗2 =
γ2−2x2− z∗12

α2
(3.17)

We will consider two cases with β∗1 = 0 and β∗1 > 0, respectively.

i) When β∗1 = 0, from (3.7), p∗1 = γ1+α1λ∗1
2α1

and p∗2 = γ2+α2(λ∗1+k12)
2α2

.

Combining these expressions with (3.16 and (3.17), and solving for λ∗1 and z∗12,

we obtain

λ∗1 =
γ1−2x1 + γ2−2x2−α2k12

α1 +α2
> 0

z∗12 =
α2(2x1− γ1)+α1(γ2−2x2)−α1α2k12

2(α1 +α2)
≥ 0

Then, we obtain,

p∗1 =
γ1

2α1
+

γ1 + γ2−2x1−2x2−α2k12

2(α1 +α2)

p∗2 =
γ2

2α2
+

γ1 + γ2−2x1−2x2 +α1k12

2(α1 +α2)

K-K-T condition (3.10) is satisfied if γi−αi p∗i ≥ 0, i = 1,2. Plugging in the

values of p∗1 and p∗2 in this set of inequalities, we observe that they are satisfied
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if
γ1

α1
≥ γ2−2x1−2x2−α2k12

α2
.

As a result, if

γ1 + γ2 > 2x1 +2x2 +α2k12

γ2−2x2

α2
− γ1−2x1

α2
≥ k12

and
γ1

α1
≥ γ2−2x1−2x2−α2k12

α2

then

p∗1 =
γ1

2α1
+

γ1 + γ2−2x1−2x2−α2k12

2(α1 +α2)

p∗2 =
γ2

2α2
+

γ1 + γ2−2x1−2x2 +α1k12

2(α1 +α2)

z∗12 =
α2(2x1− γ1)+α1(γ2−2x2)−α1α2k12

2(α1 +α2)
, z∗21 = 0

with

λ∗1 =
γ1−2x1 + γ2−2x2−α2k12

α1 +α2
, λ∗2 = λ1 + k12

β∗1 = β∗2 = 0, u∗12 = 0, u∗21 = k12 + k21.

ii) When β∗1 > 0, from (3.10), γ1 − α1 p∗1 = 0 ⇒ p∗1 = γ1
α1

. Using p∗1 = γ1
α1

=
γ1−x1+z∗12

α1
⇒ z∗12 = x1.

Then,

p∗2 =
γ2− x2− z∗12

α2
=

γ2− x1− x2

α2
≥ 0 (3.18)

From (3.7),

p∗2 =
γ2 +α2(λ∗1 + k12)

2α2
(3.19)

Using (3.18) and (3.19),

λ∗1 =
γ2−2x2−2x1−α2k12

α2
> 0
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From (3.7), p∗1 = γ1+α1(λ∗1−β1)
2α1

. Using p∗1 = γ1
α1

,

β∗1 =
γ2−2x1−2x2−α2k12

α2
− γ1

α1
> 0.

Consequently, if

γ2−2x1−2x2−α2k12

α2
>

γ2

α2
then p∗1 =

γ1

α1
, p∗2 =

γ2− x1− x2

α2

z∗12 = x1, z∗21 = 0 with

λ∗1 =
γ2−2x1−2x2−α2k12

2α1
, λ∗2 = λ1 + k12

β∗1 =
γ2−2x1−2x2−α2k12

α2
− γ1

α1
, β∗2 = 0

u∗12 = 0, u∗21 = k12 + k21. ¥

Recall that γi denotes the market potential for resource i, and xi is the capacity of re-

source i. We interpret the results of Proposition 3 in terms of the relationship between

demand and supply as follows:

1. In region Ω0, demands for resources 1 and 2 are both less than the available supplies.

The capacity constraints are not binding. In other words, the optimal selling prices are

exactly the optimal solution of optimization problem without the capacity constraints

and there is no reallocation between resources 1 and 2.

2. In region Ω1, the demand for resource 1 is at most equal to the supply. Demand for

resource 2 is a little higher than the supply, but is lower than some level, which makes

it not worth reallocating any capacity from resource 1 to resource 2. Hence, in this

region, there is no reallocation between resources 1 and 2.

3. Region Ω2 is the same as region Ω1 if resources 1 and 2 are interchanged.

4. In region Ω3, demands for both resources are higher than the supply, but are less than

some level, which makes it not worth reallocating any capacity from either resource.
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5. In region Ω4, the demand for resource 1 is at most equal to the supply. Demand

for resource 2 is higher than the supply at a level such that it is worth reallocating

some capacity from resource 1 to demand for resource 2. However, the demand for

resource 2 is still under some level such that the supply from resource 1 is enough to

cover the deficit of supply of resource 2.

6. In region Ω5, the total demand for the two resources is higher than the total available

capacity at a level such that both resources require additional capacity. Furthermore,

the deficit of the supply of resource 2 is larger than that of resource 1 at a level such

that it is worth reallocating part of resource 1 capacity to demand for resource 2 by

sacrificing some demand for resource 1. However, the demand for resource 2 is still

lower than some level such that it is not worth sacrificing all the demand for resource

1.

7. In region Ω6, the total demand for the two resources is higher than the total available

capacity at a level such that both resources require additional capacity. Furthermore,

the deficit of the supply of resource 2 is larger than that of resource 1 at a level such

that it is worth sacrificing all the demand for resource 1.

8. Region Ω7 is the same as Ω4 if resources 1 and 2 are interchanged.

9. Region Ω8 is the same as region Ω5 if resources 1 and 2 are interchanged.

10. Region Ω9 is the same as region Ω6 if resources 1 and 2 are interchanged.

3.4 Optimal Solution of the Stage 1 Model

The stage 1 investment problem is a stochastic, nonlinear optimization problem. In this sec-

tion, we investigate the structure of the optimal solution to the stage 1 problem. Φ∗(−→x ,
−→
Γ )

is the optimal objective of the operational stage problem (P2). Its property directly affects

the investment decision.

Lemma 1. Φ∗(−→x ,
−→
Γ ) is a continuous and differentiable function with respect to −→x .
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Proof: Based on proposition 2, the demand space is divided into 10 disjoint regions. Inside

each region, Φ∗(−→x ,
−→
Γ ) is continuous, and the partial derivative of Φ∗(−→x ,

−→
Γ ) with respect

to xi, i = 1,2, i.e., the shadow price of resource i exists and it is a continuous function.

At the boundary of two adjacent regions, since the concavity of P2, there exists an unique

optimal shadow price of resource i. Therefore, Φ∗(−→x ,
−→
Γ ) is a continuous and differentiable

function with respect to −→x . ¥

Theorem 1. The stage 1 problem is jointly concave in x1 and x2.

Proof: Based on proposition 2, the demand space is decomposed into 10 regions as Ωk, k =

0, ...,9. Let f (γ1,γ2) denote the joint density function of the demand.

Π(−→x ) = E[Φ∗(−→x ,
−→
Γ )]−

2

∑
i=1

cixi

=
9

∑
i=0

∫

Ωi

Φ∗(−→x ,
−→
Γ ) f (γ1,γ2)dγ1dγ2−

2

∑
i=1

cixi

In order to prove the concavity of the stage 1 problem, we will show that the Hessian

matrix of the objective function of stage 1 problem is strictly negative definite. Taking the

derivative of Π(−→x ) with respect to xi, we obtain:

∂Π(−→x )
∂xi

=
9

∑
j=0

∫

Ω j

λi f (γ1,γ2)dγ1dγ2− ci,

where λi = ∂Φ
∂xi

, which is the shadow price of resource i. Based on Proposition 2,

∂Π(−→x )
∂x1

=
∫

Ω2+Ω3

γ1−2x1

α1
f (γ1,γ2)dγ1dγ2

+
∫

Ω5

γ1 + γ2−2x1−2x2−α2k12

α1 +α2
f (γ1,γ2)dγ1dγ2

+
∫

Ω6

γ2−2x1−2x2−α2k12

α2
f (γ1,γ2)dγ1dγ2

+
∫

Ω7

k21 f (γ1,γ2)dγ1dγ2

+
∫

Ω8

γ1 + γ2−2x1−2x2 +α2k21

α1 +α2
f (γ1,γ2)dγ1dγ2

+
∫

Ω9

γ1−2x1−2x2

α1
f (γ1,γ2)dγ1dγ2− c1,
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∂Π(−→x )
∂x2

=
∫

Ω1+Ω3

γ2−2x2

α2
f (γ1,γ2)dγ1dγ2

+
∫

Ω4

k12 f (γ1,γ2)dγ1dγ2

+
∫

Ω5

γ1 + γ2−2x1−2x2 +α1k12

α1 +α2
f (γ1,γ2)dγ1dγ2

+
∫

Ω6

γ2−2x1−2x2

α2
f (γ1,γ2)dγ1dγ2

+
∫

Ω8

γ1 + γ2−2x1−2x2−α1k21

α1 +α2
f (γ1,γ2)dγ1dγ2

+
∫

Ω9

γ1−2x1−2x2−α1k21

α1
f (γ1,γ2)dγ1dγ2− c2.

Note that since Φ∗(−→x ,
−→
Γ ) is continuous on the boundaries, the effects of the change in

xi on the boundaries are cancelled out. When we take the second derivative of Π(−→x ) with

respect to xi, we obtain:

∂2Π(−→x )
∂x2

1
= − 2

α1

∫

Ω2+Ω3+α9

f (γ1,γ2)dγ1dγ2

− 2
α1 +α2

∫

Ω5+Ω8

f (γ1,γ2)dγ1dγ2− 2
α2

∫

Ω6

f (γ1,γ2)dγ1dγ2

∂2Π(−→x )
∂x2

2
= − 2

α2

∫

Ω1+Ω3+α6

f (γ1,γ2)dγ1dγ2

− 2
α1 +α2

∫

Ω5+Ω8

f (γ1,γ2)dγ1dγ2− 2
α2

∫

Ω9

f (γ1,γ1)dγ1dγ2

Taking the cross derivative of Π(−→x ) with respect to x1 and x2, we obtain:

∂2Π(−→x )
∂x1∂x2

=
∂2Π(−→x )
∂x2∂x1

=− 2
α1 +α2

∫

Ω5+Ω8

f (γ1,γ2)dγ1dγ2 < 0. (3.20)

Since

∂2Π(−→x )
∂x2

1
< 0,

∂2Π(−→x )
∂x2

2
< 0,

∂2Π(−→x )
∂x2

1

∂2Π(−→x )
∂x2

2
− (

∂2Π(−→x )
∂x1∂x2

)2 > 0, (3.21)

the Hessian matrix of Π(−→x ) is strictly negative definite. Hence, Π(−→x ) is concave. ¥

Let vi denote the Lagrange multiplier of the nonnegativity constraint of xi, i = 1,2. Using

the fact that Π(−→x ) is concave and the K-K-T conditions for P1, the following proposition

gives the necessary and sufficient conditions for optimal values of x1 and x2.
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Proposition 4. The optimal capacity investment vector−→x ∗ = (x∗1,x
∗
2) satisfies the following

equations:

E




0
Γ2−2x∗2

α2

| Ω1


P(Ω1)+E




Γ1−2x∗1
α1

0
| Ω2


P(Ω2)+E




Γ1−2x∗1
α1

Γ2−2x∗2
α2

| Ω3


P(Ω3)

+ E




0

k12

| Ω4


P(Ω4)+E




Γ1+Γ2−2x∗1−2x∗2−α2k12
α1+α2

Γ1+Γ2−2x∗1−2x∗2+α1k12
α1+α2

| Ω5


P(Ω5)+E




k21

0
| Ω7


P(Ω7)

+ E




Γ2−2x∗1−2x∗2−α2k12
α2

Γ2−2x∗1−2x∗2
α2

| Ω6


P(Ω6)+E




Γ1+Γ2−2x∗1−2x∗2+α2k21
α1+α2

Γ1+Γ2−2x∗1−2x∗2−α1k21
α1+α2

| Ω8


P(Ω8)

+ E




Γ1−2x∗1−2x∗2
α1

Γ1−2x∗1−2x∗2−α1k21
α1

| Ω9


P(Ω9) =




c1− v∗1

c2− v∗2


 (3.22)

x∗i v∗i = 0,v∗i ≥ 0 ∀i = 1,2

Proof: Based on Theorem 1, there exists a unique optimal solution −→x ∗ which satisfies the

K-K-T conditions, i.e., ∂Π(−→x )
∂x1

|x1=x∗1 +v∗1 = 0, ∂Π(−→x )
∂x2

|x2=x∗2 +v∗2 = 0 and x∗i v∗i = 0,v∗i ≥ 0 ∀i =

1,2. In the proof of Theorem 1, we obtain ∂Π(−→x )
∂x1

and ∂Π(−→x )
∂x2

. The result directly follows. ¥

Next, we will investigate the structure of the optimal investment strategy. An optimal

investment strategy should take one of the following forms:

(a) Do not invest at all

(b) Invest in resource 1 only

(c) Invest in resource 2 only

(d) Invest in both resources.

Before we explicitly describe the conditions under which forms (a) - (d) are observed,

we define four threshold values as c1, c1, c2 and c2.

When −→x ∗ = (0,0), equation (3.22) in Proposition 4 reduces to

E(Γ1)
α1

+E(
Γ2

α2
− Γ1

α1
− k12| Ω6)P(Ω6) = c1− v∗1,

E(Γ2)
α2

+E(
Γ1

α1
− Γ2

α2
− k21| Ω9)P(Ω9) = c2− v∗2.
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Let c1 = E(Γ1)
α1

+E(Γ2
α2
− Γ1

α1
−k12| Ω6)P(Ω6) and c2 = E(Γ2)

α2
+E(Γ1

α1
− Γ2

α2
−k21| Ω9)P(Ω9).

If ci > ci, then v∗i > 0, i.e., it is not optimal to invest in resource i, i = 1,2. Note that here

Ω6 and Ω9 are the demand regions when both resource capacities are 0. When~x∗ = (x∗1,0)

with x∗1 > 0, from equation (3.22), we obtain:

c1 =
∫

Ω3+Ω9

γ1−2x∗1
α1

f (γ1,γ2)dγ1dγ2 +
∫

Ω5

γ1 + γ2−2x∗1−α2k12

α1 +α2
f (γ1,γ2)dγ1dγ2

+
∫

Ω6

γ2−2x∗1−α2k12

α2
f (γ1,γ2)dγ1dγ2.

Since x∗2 = 0, regions Ω2, Ω7 and Ω8 are empty. The optimality equation for resource 2

reduces to v∗2 = c2− c2 > 0 where

c2 =
∫

Ω1+Ω3

γ2

α2
f (γ1,γ2)dγ1dγ2 +

∫

Ω4

k12 f (γ1,γ2)dγ1dγ2

+
∫

Ω5

γ1 + γ2−2x∗1 +α1k12

α1 +α2
f (γ1,γ2)dγ1dγ2 +

∫

Ω6

γ2−2x∗1
α2

f (γ1,γ2)dγ1dγ2

+
∫

Ω9

γ1−2x∗1−α1k21

α1
f (γ1,γ2)dγ1dγ2.

When~x∗ = (0,x∗2) with x∗2 > 0, from equation (3.22),

c2 =
∫

Ω3+Ω6

γ2−2x∗2
α2

f (γ1,γ2)dγ1dγ2 +
∫

Ω8

γ1 + γ2−2x∗2−α1k21

α1 +α2
f (γ1,γ2)dγ1dγ2

+
∫

Ω9

γ1−2x∗2−α1k21

α1
f (γ1,γ2)dγ1dγ2.

Since x∗1 = 0, regions Ω1, Ω4 and Ω5 are empty. The optimality equation for resource 1

reduces to v∗1 = c1− c1 > 0 where

c1 =
∫

Ω2+Ω3

γ1

α1
f (γ1,γ2)dγ1dγ2 +

∫

Ω6

γ2−2x∗2−α2k12

α2
f (γ1,γ2)dγ1dγ2

+
∫

Ω7

k21 f (γ1,γ2)dγ1dγ2 +
∫

Ω8

γ1 + γ2−2x∗2 +α2k21

α1 +α2
f (γ1,γ2)dγ1dγ2

+
∫

Ω9

γ1−2x∗2
α1

f (γ1,γ2)dγ1dγ2.

Based on these observations, we can state the following proposition that outlines the struc-

ture of the optimal investment strategy.
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Figure 3.3: Impact of investment costs on the optimal investment strategies

Proposition 5. The optimal investment strategy has one of four distinct forms depending

on the costs of resources c1 and c2:

(a) If c1 > c1 and c2 > c2, it is not optimal to invest in any of the resources.

(b) If c1 < c1 and c2 > c2, it is optimal to invest in resource 1 only.

(c) If c2 < c2 and c1 > c1, it is optimal to invest in resource 2 only.

(d) If c1 < c1 and c2 < c2, it is optimal to invest in both resources.

Proof: The proof of the proposition directly follows from the definitions of c1, c2, c1 and

c2. ¥

Figure 3.3 provides the intuition for the result of Proposition 5. Given the distributions

of the demands and the corresponding α values, c1 and c2 are constants. On the other hand,

c1 and c2 values depend on the values of c1 and c2, which are illustrated by c1 and c2 curves

shown in Figure 3.3. First, observe that if c1 = 0, then c2 < c2, and if c2 = 0, then c1 < c1.
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That is, if c1 = 0, we can invest in resource 1 as much as we want. Therefore,

c2 =
∫

Ω1+Ω3

γ2

α2
f (γ1,γ2)dγ1dγ2 +

∫

Ω4

k12 f (γ1,γ2)dγ1dγ2

+
∫

Ω5

γ1 + γ2−2x∗1 +α1k12

α1 +α2
f (γ1,γ2)dγ1dγ2 +

∫

Ω6

γ2−2x∗1
α2

f (γ1,γ2)dγ1dγ2

+
∫

Ω9

γ1−2x∗1−α1k21

α1
f (γ1,γ2)dγ1dγ2.

=
∫

Ω1+Ω3

γ2

α2
f (γ1,γ2)dγ1dγ2 +

∫

Ω4

k12 f (γ1,γ2)dγ1dγ2.

Note that in demand regions Ω5, Ω6, Ω9, all demand is satisfied since c1 = 0, and the

shadow price of resource 2 is zero. Based on the definition of demand region Ω4, k12 ≤ γ2
α2

.

We have c2 ≤
∫

Ω1+Ω3+Ω4

γ2
α2

f (γ1,γ2)dγ1dγ2 ≤ E(Γ2
α2

) < c2. We can show that if c2 = 0, then

c1 < c1 in a similar way. Furthermore, it is easy to show that if c1 = c1, then c2 = c2, and if

c2 = c2, then c1 = c1.

Based on these observations, Proposition 5 can be explained as follows: The costs of the

resources can be divided into four disjoint sets as R1, R2, R3 and R4. As shown in Figure

3.3, if (c1,c2) is in region R1, R2, R3 and R4, the optimal investment strategy is of form (a)

(b), (c) and (d), respectively. The concavity of the stage 1 problem guarantees that the four

regions in Figure 3.3 are disjoint because if there exists an overlapping area (except for the

boundaries where the solutions are the same) between any two of the regions, there exists

two distinct solutions satisfying the optimality condition given in Proposition 4, which is a

contradiction.

Next proposition will address the sensitivity analysis for P1 and P2. Let Π∗ and Φ∗

denote the optimal objective values of P1 and P2, respectively. We have:

Proposition 6. For i=1,2,

1. Φ∗ decreases in αi.

2. Π∗ decreases in αi and ci.

3. If x∗i > 0, i = 1,2, x∗i decreases in ci, and x∗j , j 6= i increases in ci.
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Remark: αi is the slope of the demand function for market segment i. As αi increases, the

optimal objective function value of P2 decreases. As a result, the optimal objective of P1

decreases as well. ci is the unit cost of resource i. Intuitively, as ci increases, the optimal

objective function value of P1 decreases and the optimal investment level in resource i

decreases.

Proof:

1. In order to conduct the sensitivity analysis of P2 in αi, we consider the optimal so-

lution and optimal objective function value as the functions of αi, i = 1,2. Let

p∗l (αi), z∗l j(αi), l, j = 1,2 be the optimal solution of P2(αi). Let y∗l (αi) = xl +

∑ j 6=l z∗jl(αi)−∑ j 6=l z∗l j(αi) be the optimal total available capacity of resource l after

reallocation.Φ∗(αi) = ∑n
j=1 p∗j(γ j −α j p∗j)−∑l ∑ j 6=l kl jz∗l j. is the optimal objective

function value of P2(αi). Consider that αi decreases to αi− δ, where δ is a small

positive real number. We will show Φ∗(αi− δ) ≥ Φ∗(αi). Let us construct a feasi-

ble solution for P2(αi− δ). Let p∗l (αi− δ) = p∗l (αi), l 6= i, l ∈ {1,2}, z∗l j(αi− δ) =

z∗l j(αi), l, j = 1,2. All decision variables of P2(αi− δ) except p∗i (αi− δ) are named

values. Then we determine the value of p∗i (αi−δ) as follows:

Consider the optimal solution of P2(αi),

(a) If constraint (3.5) is binding for resource i, i.e., γi−αi p∗i (αi) = 0,

let p∗i (αi− δ) = γi
αi−δ . As far as δ is small enough, it can be easily verified the

constructed solution for P2(αi−δ) is feasible and generates the same objective

value as P2(αi). The optimal solution of P2(αi−δ) is at least as large as Φ∗(αi).

Therefore, Φ∗(αi−δ)≥Φ∗(αi) and ∂Φ∗
∂αi

≤ 0.

(b) If constraints (3.5) and (3.2) or (3.3) are not binding for resource i.

p∗i (αi) = γi
2αi

. Let p∗i (αi−δ) = γi
2(αi−δ) . The constructed solution for P2(αi−δ)

is feasible and generates a larger objective value than P2(αi). We have Φ∗(αi−

δ)≥Φ∗(αi) and ∂Φ∗
∂αi

≤ ∂(
γ2
i

4αi
)

∂αi
=− γ2

i
4α2

i
< 0.

(c) If constraint (3.5) is not binding, and constraint (3.2) or (3.3) is binding for re-

source i. Let p∗i (αi−δ) = γi−y∗i
αi−δ . The constructed solution for P2(αi−δ) is fea-
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sible and generates a larger objective value than P2(αi). We have Φ∗(αi−δ)≥
Φ∗(αi) and ∂Φ∗

∂αi
≤ ∂(y∗i

γi−y∗i
αi

)
∂αi

=− (γi−y∗i )y
∗
i

α2
i

< 0 (both y∗i and γi− y∗i are positive).

Therefore Φ∗(αi) is decreases in αi for all i = 1,2.

2. Since Φ∗(αi) is decreases in αi, Π∗ = E[Φ∗(−→x ∗,
−→
Γ )]−∑n

i=1 cix∗i decreases in αi.

∂Π∗
∂ci

=−x∗i , Φ∗ decreases in ci with rate x∗i .

3. When x∗i > 0, i = 1,2, the first order condition ∂Π
∂x1
|x1=x∗1, x2=x∗2 = F1(x∗1,x

∗
2,c1) = 0

and ∂Π
∂x2
|x1=x∗1, x2=x∗2 = F2(x∗1,x

∗
2,c1) = 0 implicitly define x∗1 and x∗2 as a function of c1.

∂F1

∂x∗1

∂x∗1
∂c1

+
∂F1

∂x∗2

∂x∗2
∂c1

+
∂F1

∂c1
= 0 (3.23)

∂F2

∂x∗1

∂x∗1
∂c1

+
∂F2

∂x∗2

∂x∗2
∂c1

+
∂F2

∂c1
= 0 (3.24)

Since ∂F1
∂c1

=−1 and ∂F2
∂c1

= 0, by solving (3.23) and (3.24), we have,

∂x∗1
∂c1

=
∂2Π
∂x2

2

∂2Π
∂x2

1

∂2Π
∂x2

2
− ( ∂2Π

∂x1∂x2
)2

,
∂x∗2
∂c1

=
− ∂2Π

∂x1∂x2

∂2Π
∂x2

1

∂2Π
∂x2

2
− ( ∂2Π

∂x1∂x2
)2

.

Based on (3.20) and (3.21), we have ∂x∗1
∂c1

< 0 and ∂x∗2
∂c1

> 0. Similarly, we can show

that ∂x∗2
∂c2

< 0 and ∂x∗1
∂c2

> 0. ¥

3.5 Numerical Analysis

To carry on the numerical experiments, we use normal distribution with mean µi and stan-

dard deviation σi as the underlying distribution of the market size of the demand for re-

source i. Since we assume the sizes of the market demands are nonnegative, the negative

portion of the underlying normal distribution is truncated when we conduct the numerical

computation. The demands for different resources are correlated. The correlation coeffi-

cient between demand i and demand j is ρi j ∀i 6= j. Let xNR
i denote the optimal capacity

of resource i when there is no reallocation between the resources. E(Φ∗(
−→
Γ ,−→x )) is the ex-
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pected objective function value of P2 given a random market size vector
−→
Γ and a capacity

vector −→x .

We compute the optimal resource capacities by the following algorithm:

1. Let xi = xNR
i ∀i and l = 1.

2. Fixing other capacities, compute the capacity of resource l that maximizes the objec-

tive function of P1, which is given by E(Φ∗(
−→
Γ ,−→x ))−∑n

i=1 cixi. The computation of

E(Φ∗(
−→
Γ ,−→x )) is based on Monte Carlo simulation as explained in detail below. A

new value of xl , xn
e , which maximizes the objective function of P1, is obtained based

on binary search in internal [0,∑n
i=1 xNR

i ]. Note that the optimal value of xl can not be

larger than ∑n
i=1 xNR

i .

3. If |−→x −−→xn | < ε, return
−→
xn as the optimal solution. Otherwise, let l = l + 1. If l > n,

l = 1. Go to step 2.

In step 2, E(Φ∗(
−→
Γ ,−→x )) is obtained by Monte Carlo simulation. We generate M inde-

pendent realizations of the market size
−→
Γ . For each realization i, i=1,2,...,M, and a capacity

vector −→x , we compute Φ∗(−→γ ,−→x )based on Proposition 3. Then, E(Φ∗(
−→
Γ ,−→x )) is approx-

imated by the average over all realizations, i.e., ∑M
i=1 Φ∗(−→γ ,−→x )/M. In order to generate

a realization of the demand vector
−→
Γ , we first generate a vector

−→
Z with size n, where

E(z1) = E(z2) = ... = E(zn) = 0, Var(z1) = Var(z2) = ... = Var(zn) = 1 and z1,z2, ...,zn

are independent. Suppose that Σ is the covariance matrix for the demands, and Σ = AT A

after conducting the Cholesky decomposition where A is an upper triangular matrix. Let−→µ
denote the mean vector of the market sizes. Then

−→
Γ = −→µ + A

−→
Z is the correlated market

size vector, which has mean −→µ and covariance matrix Σ.

Since Monte Carlo simulation follows square root (of the sample size) convergence, in

our numerical analysis, we choose the sample size 40,000 which gives a standard error of

0.5%.

With this numerical study, we would like to investigate how optimal capacities of the

two resources change with respect to demand correlation.
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Resource ci αi µi σi ki1 ki2

1 55 1.2 120 40 0 0
2 40 2.0 200 80 5000 0

Table 3.1: Parameter values for the two-resource system

Table 3.1 shows the parameter values that we use. In this study, resource 1 can be used

to satisfy demands from both markets at no cost. On the other hand, k21 = 5000 ensures

that resource 2 can only serve its own market. This is a setting similar to the one given by

Netessine et. al. (2002). The model presented in Netessine et. al. (2002) assumes that the

prices are fixed whereas our model considers a postponed pricing strategy.
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Figure 3.4: Optimal expected profit and resource capacities with respect to ρ12

The left chart of Figure 3.4 shows the percent increase in the optimal expected profit

obtained by reallocation as compared to the system no reallocation. When the demands

are perfectly negatively correlated, the relative percent increase can be as high as 21%.

As ρ12 increases, the relative percent increase decreases. When the demands are perfectly

positively correlated, the benefit of reallocation diminishes.

The right chart of Figure 3.4 shows the optimal capacities as a function of the correlation

coefficient between the demands. When the correlation increases from −1 to 1, the optimal
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capacities get closer and closer to the optimal capacities without reallocation. We also note

that when the correlation between the two demands increases, the optimal expected profit

(i.e., optimal objective function value of P1) decreases. These conclusions are the same

with conclusions reported in Netessine et. al. (2002).

3.6 Conclusion

In this chapter, we considered a capacity investment, resource allocation and pricing deci-

sion problem faced by a central decision maker that manages two resources which can be

used flexibly to satisfy demands from two market segments. We formulated it as a two-

stage stochastic programming problem, and explicitly solved the second stage problem.

The analysis of the first stage problem showed that the optimal capacity investment strategy

takes one of the following three forms: (1) Do not invest in any of the resources; (2) Invest

in one of the resources; (3) Invest in both resources.
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Chapter 4

Capacity Investment Strategies for
Systems with Multiple Resources

In the previous chapter, we considered the two-resource model and provided the structural

properties for the optimal capacity investment decision by solving the stage 2 model explic-

itly. In this chapter, we further investigate the multi-resource version ( i.e., systems with

more than two resources) of the model.

This chapter is organized as follows: In section 4.1, we introduce the two-stage opti-

mization model to address the multi-resource capacity investment problem. In section 4.2,

for the multi-resource stage 2 model, we study the structural properties of the optimal solu-

tion, and then present the heuristic methods to solve the problem approximately. In section

4.3, based on the analytical results of the second stage model, we further study the proper-

ties of the optimal solution of the first stage model. Finally, in section 4.4, we present the

numerical experiment results.

4.1 Model Formulation

We use the same notation as the two-resource system except that we consider a firm that

serves n markets instead of just two. pi denotes the unit selling price of resource i, and

Di = Γi−αi pi is demand function. Γi is the intercept that denotes the market size of demand

i, i = 1, ...,n. We assume that Γi is a nonnegative continuous random variable, i = 1, ...,n.

Market i is primarily served by resource i, but it can also be served by resource j (i 6= j) at a



nonnegative reallocation (i.e., substitution) cost k ji, i, j = 1, ...,n. We assume that k ji +ki j >

0 to avoid a trivial case that resource i and j can replace each other with no cost so that they

can be aggregated into a single resource. Let c j denote the unit cost of investing in resource

j, j = 1, ...,n. The company commits to resource capacities−→x = (x1,x2, ...,xn) long before

nonnegative market sizes of demands
−→
Γ = (Γ1,Γ2, ...,Γn) are realized, in order to maximize

the expected total profit. Let x j denote units of capacity invested in resource j, j = 1, ...,n.

We denote a realization of
−→
Γ = (Γ1,Γ2, ...,Γn) by −→γ = (γ1,γ2, ...,γn). Once the realization

−→γ of
−→
Γ is observed, the company makes its pricing and resource allocation decisions so as

to maximize its total expected profit under the resource investment decisions made earlier.

Let zi j (i, j = 1, ...,n. i 6= j) denote the amount of demand j satisfied by resource i once

demand is observed, and Z = [zi j] is the resource allocation matrix. Then, the model can be

formulated as a two-stage optimization problem. Stage 1 problem P1 makes the investment

decisions as follows:

Stage 1 (P1):

max−→x
Π(−→x ) = E[Φ∗(−→x ,

−→
Γ )]−

n

∑
i=1

cixi

subject to:

x1, x2, ..., xn ≥ 0

E[Φ∗(−→x ,
−→
Γ )] is the expected revenue for a resource capacity vector−→x , where Φ∗(−→x ,−→γ )

is the optimal objective function value of the stage 2 problem (P2) which decides the opti-

mal prices and allocates the resources optimally to fulfill the demand based on an observed

demand, di =−→γi −αi pi, i = 1, ...,n.

Stage 2 (P2):

Φ∗(−→x ,−→γ ) = max
Z,−→p

n

∑
i=1

pi(γi−αi pi)−∑
i

∑
j 6=i

k jiz ji (4.1)

s.t. γi−αi pi ≤ xi + ∑
j 6=i

z ji−∑
j 6=i

zi j ∀i (4.2)

z ji ≥ 0 ∀ j 6= i (4.3)

γi−αi pi ≥ 0 ∀i (4.4)

pi ≥ 0 ∀i (4.5)
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The stage 2 model (P2) maximizes the profit given the resource investment vector−→x and

the realized market size vector −→γ . In (P2), inequality (4.2) ensures that the demand from

market i does not exceed the total available capacity. Inequalities (4.3),(4.4) and (4.5) are

the nonnegativity constraints on the resource allocations, demands and prices, respectively.

The objective function of P2 is concave with respect to pi, and it is linear in zi j. Moreover,

all the constraints are linear. Therefore, P2 is a concave problem.

This model is a generalization of the model in Bish and Wang (2003). When n = 3,

k12,k21,k13,k23 →∞ and k31,k32 = 0, resources 1 and 2 do not substitute for other resources

because of the high reallocation cost (e.g., dedicated resources). Resource 3 can substitute

for other resources at zero reallocation cost (e.g., flexible resource). Bish and Wang (2003)

analyzes the two-stage optimization problem under this setting, and studies the impact of

demand correlation on the investment strategy.

4.2 Characterization of the Stage 2 Model

4.2.1 Structural Properties

In section 3.3 of the previous chapter, we obtained the optimal solution to the stage 2 model

with two resources. However, systems with more than two resources are complicated to

analyze in a similar manner, and the optimal solution cannot be easily obtained. Therefore,

in this section, we focus on studying some of the structural properties of the optimal solution

for multi-resource models. Although a closed form solution cannot be obtained, we can

get enough insight to develop efficient algorithms to solve the problem. Furthermore, the

structural properties of the optimal solution of P2 are useful in proving the concavity of P1.

First, we provide the following definitions: If a resource is used to fulfill the demands

for other resources, we call it a “supplier”. If demand for a resource is satisfied by other

resources, we call that resource a “consumer”. If in a group of resources, each of the

resources is connected to all the others either being a consumer or a supplier, directly or

through other resources, we call this group a “sharing group”. A resource that is neither
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a consumer nor a supplier is a single element sharing group. In the optimal solution, the

whole set of resources can be divided into several sharing groups.

Let λi, ui j, βi, i, j = 1,2, ...,n, i 6= j be the Lagrange multipliers of (4.2),(4.3), and

(4.4) respectively, and we use p∗i ,z
∗
i j,λ∗i , u∗i j, β∗i to denote the corresponding optimal values

of the decision variables and the Lagrange multipliers. The optimal solution to P2 with

multiple resources (i.e., n > 2) satisfies the following K-K-T conditions:

p∗i =
γi

2αi
+

λ∗i −β∗i
2

∀i = 1,2, ...,n (4.6)

λ∗j −λ∗i = ki j−u∗i j ∀ j 6= i (4.7)

λ∗i (−γi +αi p∗i + xi + ∑
j 6=i

z∗ji−∑
j 6=i

z∗i j) = 0 ∀i = 1,2, ...,n (4.8)

u∗i jz
∗
i j = 0 ∀ j 6= i (4.9)

β∗i (γi−αi p∗i ) = 0 ∀i = 1, ...,n (4.10)

β∗i ≥ 0,λ∗i ≥ 0,u∗i j ≥ 0 ∀i, j (4.11)

Note that we omit the last constraint (4.5) in P2 because pi is always nonnegative in an

optimal solution since the demand for resource i is nonnegative.

In the next three propositions, we present several basic properties of the optimal so-

lution. Essentially, these properties are supported by transportation (minimum cost flow)

theorems which can be found in Ahuja et. al. (1993). The minimum cost flow problem

aims to reallocate multiple resources optimally (i.e., minimize the total reallocation cost) to

fulfill the demands for the resources. In the minimum cost flow problem, the demand for

each resource is given, and there is no optimization with respect to the prices which deter-

mines the quantity of the demand. Therefore, the minimum cost flow problem only needs

to decide the optimal reallocation quantities where our model needs to decide the optimal

reallocation quantities and the optimal selling prices simultaneously. However, since our

model has the same reallocation structure as the minimum cost flow problem, the objective

functions and constraints of two models are very similar except that our model includes the

pricing factor, and therefore has a quadratic objective function instead if a linear objective

function. It is not a surprise that the optimal solution of our model has similar properties
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Figure 4.1: Optimal shadow prices of the resources in a sharing group

as those possessed by the optimal solution of the minimum cost flow problem. Theorem

11.1 in Ahuja et. al. (1993) shows the cycle free property of the optimal solution of mini-

mum cost flow problem, and it is related to our Proposition 9. Theorem 11.3 introduces the

minimum cost flow optimality conditions which are related to our Propositions 7 and 8. We

provide the following properties for our model.

Proposition 7. In an optimal solution, if resource i is a consumer of resource j, then λ∗i =

λ∗j + k ji.

Proof: Based on (4.7), in an optimal solution, ∀i 6= j we have

λ∗j −λ∗i = ki j−u∗i j

λ∗i −λ∗j = k ji−u∗ji.

Summing up these two equations, we obtain u∗i j +u∗ji = ki j +k ji. Since we assume ki j +k ji >

0, at least one of u∗i j and u∗ji is positive, i.e., if i is a consumer of j, it cannot be a supplier

of j at the same time. Since resource j is a supplier of resource i, z∗ji > 0 leads to u∗ji = 0.

Based on (4.7), u∗i j = ki j + k ji ⇒ λ∗i = λ∗j + k ji ¥

The above result shows that when resource i is a consumer of j, the difference between

their shadow prices is equal to the unit reallocation cost from j to i, which is an intuitive

result. In a sharing group, every resource (i.e., node) pair is connected through a set of

nodes and arcs. Let Snode
i j and Sarc

i j denote the ordered set of nodes and the ordered set of

arcs through which resource j can be reached from resource i, respectively, where i is the
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starting node and j is the ending node and each node between i and j is visited only once.

For example, in Figure 4.1, resource 2 is a supplier of resources 1 and 3, resource 4 is a

supplier of resource 3, and resource 5 is a supplier of resource 2. Then, starting at node

1 and ending at node 4 , resources 1 and 4 can be connected by Snode
14 = {1,2,3,4} and

Sarc
14 = {(2,1),(2,3),(4,3)}. If we know the optimal shadow price of one of the resources,

the optimal shadow prices of the other resources in this group can be obtained sequentially

based on Proposition 7. Referring to Figure 4.1, λ∗2 = λ∗1− k21, λ∗3 = λ∗1− k21 + k23, λ∗4 =

λ∗1− k21 + k23− k43, λ∗5 = λ∗1− k21− k52.

Suppose that ( f ,h) is an arc in Sarc
i j . We define v f h as the coefficient of unit reallocation

cost from resource f to h, where v f h is equal to 1 if the direction of the arc matches the

order of nodes f and h appearing in Snode
i j , otherwise, v f h equals to−1. In Figure 4.1, nodes

1 and 4 are connected by Snode
14 = {1,2,3,4}. Node 1 appears right in front of node 2, and

the order does not match the direction of the arc connecting 1 and 2 which is (2,1), so

v21 = −1. Hence, the shadow prices of resources in a sharing group satisfy the following

equation:

λ∗j = λ∗i + ∑
( f ,h)∈Sarc

i j

v f hk f h. (4.12)

for each resource pair i and j in the sharing group. Let S denote an optimal sharing group.

Proposition 8. When S denotes an optimal sharing group, for i, j ∈ S, i 6= j,

∑
( f ,h)∈Sarc

i j

v f hk f h ≤ ki j. (4.13)

Proof: Based on equation (4.12), for i, j ∈ S, i 6= j,

λ∗j = λ∗i + ∑
( f ,h)∈Sarc

i j

v f hk f h.

Based on (4.7), we have

λ∗j −λ∗i = ki j−u∗i j = ∑
( f ,h)∈Sarc

i j

v f hk f h.
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Since u∗i j ≥ 0,

∑
( f ,h)∈Sarc

i j

v f hk f h ≤ ki j. ¥

In Figure 4.1, Snode
14 and Sarc

14 are not unique. Snode
14 can alternatively be defined as

{1,3,4}, and Sarc
14 can be defined as {(1,3),(4,3)}. The optimal shadow prices of the re-

sources in this sharing group can also be computed by λ∗3 = λ∗1 + k13, λ∗2 = λ∗1 + k13− k23,

λ∗4 = λ∗1 + k13− k43, λ∗5 = λ∗1 + k13− k23− k52. Hence, there is more than one set of equa-

tions to compute the shadow prices. As shown in Figure 4.1, {(2,1),(2,3),(1,3)} is a cycle.

There is a cycle because Snode
14 and Sarc

14 are not unique.

Proposition 9. P2 has an optimal solution which is acyclic.

Proof: Suppose that there exists a cycle in the optimal solution of P2. Let M be the total

number of nodes in the cycle, and the set of the ordered nodes is {i1, i2, ..., iM, i1}. Let us

use Ci1,i1 to denote the cycle that starts and ends at node i1. Without loss of generality, we

define the direction of the cycle as i1 → i2 → ...→ iM → i1. From equation (4.12), we have

λ∗i1 = λ∗i1 + ∑
( f ,h)∈Ci1i1

v f hk f h ⇒ ∑
( f ,h)∈Ci1i1

v f hk f h = 0.

The reallocation amount between two adjacent nodes in a cycle should be positive by

definition. If we send a tiny flow δ through the cycle, and the direction of the cycle is

the same as the direction of the arc which connects two adjacent nodes, the reallocation

amount is changed by +δ. If the direction of the cycle is different from the direction of

the arc, the reallocation amount of is changed by −δ. Considering constraint (4.2) in P2,

∑ j 6=i z∗ji −∑ j 6=i z∗i j is the total reallocation amount to/from resource i. If i is one of the

resources in {i1, i2, ..., iM}, after sending out the tiny flow δ, ∑ j 6=i z∗ji −∑ j 6=i z∗i j does not

change because the flow δ enters node i, and then goes out to the next node in the cycle.

Since δ is a tiny amount, it is guaranteed that the reallocation amount between two adjacent

nodes in the cycle is nonnegative after the change. The objective value of P2 is changed by

( ∑
( f ,h)∈Ci1i1

v f hk f h)δ.
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On the other hand, we know that ∑( f ,h)∈Ci1i1
v f hk f h = 0, so the objective value does not

change. Increasing δ until the amount allocated through one of the arcs becomes zero, we

eliminate one cycle in the optimal solution. If there are more than one cycle in the optimal

solution, we repeat this process until all the cycles are eliminated to achieve a cycle-free

optimal solution. ¥

For example, in Figure 4.1, there is a cycle that consists of arcs (2,1),(1,3) and (2,3).

Without loss of generality, if we send a flow, say, through nodes 2, 3 and 1, we can eliminate

arc (2,1) if z∗21 < z∗13 or eliminate arc (1,3) if z∗13 < z∗21. The proof of Proposition 9 tells that,

the optimal solution of P2 may include cycles. However, we can always transform it to an

acyclic optimal solution. As a result, an optimal sharing group can always be constructed

as a spanning tree, which defines an unique path from each resource to every other resource

in the optimal sharing group. The optimal solution of P2 is composed of a set of sharing

groups that are spanning trees.

In the reminder of this section, we will first investigate the structure of the optimal

solution (i.e., compute the optimal values of the shadow prices and decision variables) for

an optimal sharing group. In the next sections, we will provide procedures to identify the

optimal sharing groups for a given stage 2 problem.

For now, suppose that the optimal spanning tree for a sharing group is given, including

all the information of the arcs (starting node, ending node, and the directions). Let us denote

the set of nodes in the optimal spanning tree by S. The following proposition gives the ex-

pressions of the optimal shadow prices and the optimal selling prices of the resources in an

optimal sharing group. Once one of the shadow prices of the other resources is given, other

shadow prices of the resources in the sharing group can be determined by using equation

(4.12). Let λ∗min = min j∈S λ∗j . Let L denote the set of resources for which λ∗j = λ∗min, j ∈ S.

If |L|> 1, then we choose an arbitrary resource, say l ∈ L, as the “base resource”.

Proposition 10. In an optimal sharing group S, for j ∈ S

γ j

α j
−λ∗j ≥ 0 ⇐⇒ β∗j = 0 (4.14)
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γ j

α j
−λ∗j < 0 ⇐⇒ β∗j > 0 (4.15)

Proof: Let us first prove (4.14).

1. Suppose that γ j
α j
−λ∗j ≥ 0.

If β∗j > 0, based on (4.10), γ j −α j p∗j = 0 ⇒ p∗j = γ j
α j

. Plugging it into equation

(4.6), we have

β∗j = λ∗j −
γ j

α j
≤ 0,

which is a contradiction. Therefore β∗j = 0.

2. Suppose that β∗j = 0. Based on equation (4.6), p∗j = γ j
2α j

+
λ∗j
2 . Based on constraint

(4.4) (i.e., γi−αi pi ≥ 0 ∀i), we have

γi−αi pi = γi−αi(
γi

2αi
+

λ∗i
2

) =
γi

2
− αiλ∗i

2
≥ 0⇔ γ j

α j
−λ∗j ≥ 0.

Next, we prove (4.15) as follows:

1. Suppose that γ j
α j
−λ∗j < 0. If β∗j = 0, based on equation (4.6), p∗j = γ j

2α j
+

λ∗j
2 . Based

on constraint (4.4) (i.e., γi−αi pi ≥ 0 ∀i), we have

γi−αi pi = γi−αi(
γi

2αi
+

λ∗i
2

) =
γi

2
− αiλ∗i

2
≥ 0⇔ γ j

α j
−λ∗j ≥ 0

which is a contradiction. Therefore β∗j > 0.

2. Suppose that β∗j > 0. Based on (4.10), γ j−α j p∗j = 0 ⇒ p∗j = γ j
α j

. Plugging it into

equation (4.6), we have

β∗j = λ∗j −
γ j

α j
> 0. Therefore,

γ j

α j
−λ∗j < 0. ¥

Proposition 11. Suppose that l is the “base resource” of an optimal sharing group S. As-

sume that ∑ j∈S x j > 0.
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1. If ∑ j∈S(γ j−α j ∑( f ,h)∈Sarc
l j

v f hk f h)+ ≤ ∑ j∈S 2x j, then λ∗l = 0, and

λ∗j = ∑
( f ,h)∈Sarc

l j

v f hk f h ∀ j 6= l. (4.16)

a) If γ j ≥ α j ∑( f ,h)∈Sarc
l j

v f hk f h,

β∗j = 0, p∗j =
γ j

2α j
+

∑( f ,h)∈Sarc
l j

v f hk f h

2
.

b) Otherwise,

β∗j > 0, p∗j =
γ j

α j
.

2. If ∑ j∈S(γ j − α j ∑( f ,h)∈Sarc
l j

v f hk f h)+ > ∑ j∈S 2x j, then λ∗l > 0. Let T be the set of

resources j ∈ S with β∗j = 0. In an optimal solution, T 6= Ø.

λ∗l =
∑ j∈T (γ j−α j ∑( f ,h)∈Sarc

l j
v f hk f h)−2∑ j∈S x j

∑ j∈T α j
> 0, (4.17)

a) If j ∈ T ,

β∗j = 0, p∗j =
γ j

2α j
+

λ∗l +∑( f ,h)∈Sarc
l j

v f hk f h

2
.

b) Otherwise,

β∗j > 0, p∗j =
γ j

α j
.

Remark: We can see the quantity (γ j−α j ∑( f ,h)∈Sarc
l j

v f hk f h)+ as the “effective demand” of

resource j. Indeed, if γ j−α j ∑( f ,h)∈Sarc
l j

v f hk f h < 0, γ j
α j

< ∑( f ,h)∈Sarc
l j

v f hk f h = λ∗j −λ∗l ≤ λ∗j .

Based on Proposition 10, β∗j > 0. When β∗j > 0, based on (4.10), γ j −α j p∗j = 0, i.e., no

demand for resource j is satisfied. In other words, When γ j−α j ∑( f ,h)∈Sarc
l j

v f hk f h ≤ 0, the

market size of the demand for resource j is so small that no resource in the sharing group

will be assigned to fulfill it (β∗j > 0). Only when γ j−α j ∑( f ,h)∈Sarc
l j

v f hk f h > 0, it is possible

that other resources in the sharing group will be assigned to fulfill the demand for resource j.

Therefore, we call the nonnegative part of γ j−α j ∑( f ,h)∈Sarc
l j

v f hk f h the “effective demand”.
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When the sum of all “effective demands” of the resources in the sharing group is less than

∑ j∈S 2x j, the capacity constraint of the sharing group is nonbinding, such that λ∗l = 0. When

the sum of all “effective demands” exceeds the available resources, the capacity constraint

of the sharing group is binding, such that, even the smallest shadow price of the resources

is positive.

Proof:

Let us first prove the following equation,

γ j−α j p∗j = (
γ j−α j ∑( f ,h)∈Sarc

l j
v f hk f h−α jλ∗l

2
)+. (4.18)

Based on equation (4.12), λ∗j = λ∗l +∑( f ,h)∈Sarc
l j

v f hk f h ∀ j 6= l. The optimal selling price

of resource j ∈ S is given by equation (4.6) as

p∗j =
γ j

2α j
+

λ∗l +∑( f ,h)∈Sarc
l j

v f hk f h−β∗j
2

. (4.19)

Based on Proposition 10,

γ j

α j
−λ∗l − ∑

( f ,h)∈Sarc
l j

v f hk f h ≥ 0 ⇐⇒ β∗j = 0. (4.20)

γ j

α j
−λ∗l − ∑

( f ,h)∈Sarc
l j

v f hk f h < 0 ⇐⇒ β∗j > 0. (4.21)

If γ j
α j
−λ∗l −∑( f ,h)∈Sarc

l j
v f hk f h ≥ 0, based on (4.20),

β∗j = 0 ⇒ p∗j =
γ j

2α j
+

λ∗l +∑( f ,h)∈Sarc
l j

v f hk f h

2
.

Therefore,

γ j−α j p∗j =
γ j−α j ∑( f ,h)∈Sarc

l j
v f hk f h−α jλ∗l

2
.

On the other hand, if γ j
α j
−λ∗l −∑( f ,h)∈Sarc

l j
v f hk f h < 0, based on (4.21), β∗j > 0. Based on

(4.10),

γ j−α j p∗j = 0.
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Therefore,

γ j−α j p∗j = (
γ j−α j ∑( f ,h)∈Sarc

l j
v f hk f h−α jλ∗l

2
)+.

1. If ∑ j∈S(γ j−α j ∑( f ,h)∈Sarc
l j

v f hk f h)+ ≤ ∑ j∈S 2x j, suppose λ∗l > 0. We have, λ∗j = λ∗l +

∑( f ,h)∈Sarc
l j

v f hk f h > 0 ∀ j 6= l. When λ∗l > 0, all the shadow prices of the resources in

the sharing group are positive. The constraints in (4.2) hold as equalities ∀ j ∈ S, i.e.,

γ j−α j p j = x j + ∑
i6= j

zi j−∑
i6= j

z ji ∀ j

Summing those equations up, we obtain

∑
j∈S

(γ j−α j p∗j) = ∑
j∈S

x j + ∑
j∈S

(∑
i 6= j

zi j−∑
i 6= j

z ji).

Since we consider the resources in the same sharing group,

∑
j∈S

(∑
i6= j

zi j−∑
j 6=i

z ji) = 0.

Therefore,

∑
j∈S

(γ j−α j p∗j) = ∑
j∈S

x j. (4.22)

Based on equation (4.22) and (4.18),

∑
j∈S

x j = ∑
j∈S

(γ j−α j p∗j) = ∑
j∈S

(
γ j−α j ∑( f ,h)∈Sarc

l j
v f hk f h−α jλ∗l

2

)+

< ∑
j∈S

(
γ j−α j ∑( f ,h)∈Sarc

l j
v f hk f h

2

)+

,

which is a contradiction. Therefore, if ∑ j∈S(γ j−α j ∑( f ,h)∈Sarc
l j

v f hk f h)+ ≤ ∑ j∈S 2x j,

λ∗l = 0.

When λ∗l = 0, according to equation (4.12), λ∗j = ∑( f ,h)∈Sarc
l j

v f hk f h ∀ j 6= l.
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1(a). When λ∗l = 0, the optimal selling price of resource j ∈ S is given by equation

(4.6) as

p∗j =
γ j

2α j
+

∑( f ,h)∈Sarc
l j

v f hk f h−β∗j
2

Based on Proposition 10,

γ j

α j
− ∑

( f ,h)∈Sarc
l j

v f hk f h ≥ 0 ⇐⇒ β∗j = 0 ⇒ p∗j =
γ j

2α j
+

∑( f ,h)∈Sarc
i j

v f hk f h

2

1(b).

γ j

α j
− ∑

( f ,h)∈Sarc
l j

v f hk f h < 0 ⇐⇒ β∗j > 0 ⇐⇒ γ j−α j p∗j = 0 ⇒ p∗j =
γ j

α j
.

2. If ∑ j∈S(γ j−α j ∑( f ,h)∈Sarc
l j

v f hk f h)+ > ∑ j∈S 2x j, suppose λ∗l = 0 .

Summing up constraints (4.2) ∀ j ∈ S, we have

∑
j∈S

(γ j−α j p j)≤ ∑
j∈S

x j (4.23)

Based on (4.18),

2 ∑
j∈S

(γ j−α j p j) = ∑
j∈S

(γ j−α j ∑
( f ,h)∈Sarc

l j

v f hk f h)+ ≤ ∑
j∈S

2x j,

which is a contradiction. Therefore, if ∑ j∈S(γ j−α j ∑( f ,h)∈Sarc
l j

v f hk f h)+ > ∑ j∈S 2x j,

λ∗l > 0.

Given ∑ j∈S(γ j−α j ∑( f ,h)∈Sarc
l j

v f hk f h)+ > ∑ j∈S 2x j and λ∗l > 0, let T denote the set

of resources j ∈ S with β j = 0. When λ∗l > 0, equality (4.22) holds., i.e.,

∑
j∈S

x j = ∑
j∈S

(γ j−α j p j)
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If j ∈ S\T , β∗j > 0⇒ γ j−α j p j = 0. Therefore,

∑
j∈S

x j = ∑
j∈S

(γ j−α j p j) = ∑
j∈T

(γ j−α j p j) (4.24)

When j ∈ T , β∗j = 0, based on (4.19), p∗j = γ j
2α j

+
λ∗l +∑( f ,h)∈Sarc

l j
v f hk f h

2 . Using (4.24),

∑
j∈S

x j = ∑
j∈T

(
γ j−α j ∑( f ,h)∈Sarc

l j
v f hk f h−α jλ∗l

2

)

=⇒ λ∗l =
∑ j∈T (γ j−α j ∑( f ,h)∈Sarc

l j
v f hk f h)−2∑ j∈S x j

∑ j∈T α j
. (4.25)

In order to prove that T 6= Ø, we will use contradiction. Suppose that T = Ø, then,

β j > 0, ∀ j ∈ S. Based on (4.10), γ j −α j p∗j = 0, ∀ j ∈ S Since λ∗l > 0, based on

(4.22),

∑
j∈S

(γ j−α j p∗j) = ∑
j∈S

x j = 0

which is a contradiction with assumption that ∑ j∈S x j > 0.

In Appendix A, we present the procedure to determine T , given

∑ j∈S(γ j−α j ∑( f ,h)∈Sarc
l j

v f hk f h)+ > ∑ j∈S 2x j.

2(a). If j ∈ T , β∗j = 0 by definition of T . Based on (4.6),

p∗j =
γ j

2α j
+

λ∗l +∑( f ,h)∈Sarc
l j

v f hk f h

2
.

2(b). If j /∈ T , β∗j > 0, and based on (4.10), p∗j = γ j
α j

. ¥

Once we find the optimal shadow and selling prices, it is straightforward to compute

the reallocation quantities among the resources. As we have defined earlier, L denotes the

set of resources for which λ∗l = λ∗min, l ∈ S. In Proposition 12, we will show that, for an

acyclic optimal sharing group, when λ∗l > 0 or λ∗l = 0 and |L|= 1, the optimal reallocation

quantities (i.e., z∗i j, i, j = 1, ...,n, i 6= j) can be uniquely determined. However, when λ∗l = 0

and |L| > 1, the optimal reallocation quantities may not be unique. If |L| > 1 and λ∗l = 0,
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we choose two resources in set L, say l1, l2 with λ∗l1 = 0 and λ∗l2 = 0, which means that the

capacity constraint (4.2) may be nonbinding for i = l1, l2 in an optimal sharing group. When

the capacity constraint (4.2) is nonbinding for i = l1, l2 (i.e., there exists extra available

capacity for both resources l1 and l2), if we send a tiny flow δ from l1 to l2 through the

arcs which connect l1 and l2, as far as the amount of the flow is small enough, we obtain

a new feasible solution (i.e., new reallocation quantities) and the objective value does not

change (the change on the objective value is δ∑( f ,h)∈Sarc
l1l2

v f hk f h which is equal to 0 because

λ∗l2 = λ∗l1 +∑( f ,h)∈Sarc
l1l2

v f hk f h and λ∗l1 = λ∗l2 = 0).

The speciality of an acyclic optimal sharing group with λ∗l = 0 and |L|= 1 is that there

is only one base resource, which means the capacity constraint (4.2) is binding for all

resources in the sharing group except the base resource. On the other hand, when λ∗l = 0

and |L| > 1, there are more than one base resource in the sharing group. Since it is good

enough to find one of the optimal solutions, if we can pick one of the base resources and

make the capacity constraint (4.2) binding for all the other base resources by sending flows

from them to the base resource that we have picked, we can obtain the same optimal solution

in the case with λ∗l = 0 and |L|= 1. However, when the optimal solution is not unique and

we transform the optimal solution by sending the flows, the following two situations can

arise:

1. One of the arcs which connects two base resources, say l1 and l2, is broken, i.e., the

reallocation quantity changes from positive to 0, and the capacity constraints of l1

and l2 are still nonbinding. When this happens, the original optimal sharing group is

decomposed into two optimal sharing groups.

2. Capacity constraint of l1 becomes binding and none of the arcs which connect l1 and

l2 is broken.

When λ∗l = 0 and |L|> 1, if for all pairs of the base resources in set L, none of them can

decompose the original optimal sharing group into two optimal sharing groups by sending

flows between the pair of resources until one of the capacity constraints is binding, we call

the original optimal sharing group an optimal undecomposable sharing group. Therefore,

50



the optimal solution of such an undecomposable sharing group can always be transformed

to the case with λ∗l = 0 and |L| = 1, while an optimal decomposable sharing group can be

decomposed into several optimal undecomposable sharing groups.

In an optimal acyclic sharing group S, the arc between node i and j connects two distinct

subsets of nodes. Let us denote the two subsets as Si and S j respectively, where i ∈ Si and

j ∈ S j. Similarly, the set of resources m ∈ S with β∗m = 0, say T , can be separated into two

distinct subsets Ti and Tj, where T = Ti∪Tj. Let us define functions

U(M, i) = ∑
m∈M

(γm−αm ∑
( f ,h)∈Sarc

im

v f hk f h), H(M) = ∑
m∈M

αm, X(M) = ∑
m∈M

xm.

These functions have the following properties that will be used in the proof of Proposi-

tion 12:

1. U(M1, i)+U(M2, i) = U(M1∪M2, i),

2. H(M1)+H(M2) = H(M1∪M2),

3. X(M1)+X(M2) = X(M1∪M2),

4. U(M, i)−H(M)k ji = U(M, j).

Without loss of generality, assume that the direction of the arc is from i to j. z∗i j values,

i, j ∈ S, can be obtained based on the following proposition. Recall that L denotes the set of

resources for which λ∗l = λ∗min, l ∈ S.

Proposition 12. In an acyclic optimal sharing group,

1. If λ∗l > 0,

(a) If Si = {i} and β∗i > 0 then z∗i j = xi.

(b) Otherwise,

z∗i j =
H(Ti)H(T \Ti)

2H(T )
(̃λ j− λ̃i− ki j) (4.26)

where,

λ̃i =
U(Ti, i)−2X(Si)

H(Ti)
, λ̃ j =

U(T \Ti, j)−2X(S\Si)
H(T \Ti)
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2. If λ∗l = 0 and |L|= 1,

(a) If Si = {i} and β∗i > 0 then z∗i j = xi.

(b) Otherwise,

i. If l ∈ Si,

z∗i j = (̃λ j− λ̃i− ki j)
H(T \Ti)

2
(4.27)

where,

λ̃i = ∑
( f ,h)∈Sarc

li

v f hk f h, λ̃ j =
U(T \Ti, j)−2X(S\Si)

H(T \Ti)
.

ii. If l ∈ S j,

z∗i j = (̃λ j− λ̃i− ki j)
H(Ti)

2
(4.28)

where,

λ̃i =
U(Ti, i)−2X(Si)

H(Ti)
, λ̃ j = ∑

( f ,h)∈Sarc
l j

v f hk f h.

3. If λ∗l = 0, |L| > 1 and the optimal sharing group is undecomposable, the optimal

reallocation quantities may not be unique, and the optimal solution presented in part

2 is one of them.

Remark: By eliminating the arc which connects node i and j, we consider Si and S j as

two separate sharing groups. Then, the shadow prices of resource i and j can be calculated

by the methodology shown in Proposition 11 as λ̃i and λ̃ j within Si and S j, respectively.

λ̃ j− λ̃i− ki j is the marginal profit of reallocation from i to j when the reallocation quantity

between resource i and j is 0. Proposition 12 tells us, (except the cases that resource i is

the only resource in subset Si and β∗i > 0 where the reallocation between i and j reaches

the upper bound xi,) the reallocation amount between resources i and j is proportional to

λ̃ j− λ̃i− ki j.

Proof:

1. λ∗l > 0.
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Figure 4.2: Reallocation among resource e and other resources

(a) When β∗i > 0, γi−αi p∗i = 0 from (4.10). Based on Proposition 10, λ∗i > γi
αi
≥ 0.

Inequality (4.2) holds as equality for resource i. Si = {i} means that resource i

is only connected to resource j in the sharing group. Therefore, from constraint

(4.2),
γi−αi p∗i = xi− z∗i j = 0⇒ z∗i j = xi

(b) Consider an arbitrary node e in the optimal sharing group. Suppose that there

are w ingoing arcs into node e and q outgoing arcs from node e. These ingoing

and outgoing arcs are shown in Figure 4.2. We define the subset Sia to denote

the set of nodes (i.e., the tree originating at node ia) that are connected to node

e through node ia such that there is an ingoing arc from node ia into node e,

where a = 1,2, ...,w. Similarly, we define the subset Soa to denote the set of

nodes (i.e., the tree originating at node oa) that are connected to node e through

node oa such that there is an outgoing arc from node e into node oa, where

a = 1,2, ...,q. These subsets are also illustrated in Figure 4.2.

Since λ∗e ≥ λ∗l > 0, inequality (4.2) holds as equality for resource e, i.e.,

γe−αe pe = xe +
w

∑
a=1

z∗iae−
q

∑
a=1

z∗eoa
.

Let A = {a|a = 1,2, ...,w} (i.e., the set of the subscripts of the resources from i1

to iw), and A0 = {a|a = 1,2, ...,w, βia > 0, Sia = ia} (i.e., the set of the subscripts
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of the resources which belong to resource set {i1, i2, ..., iw} and satisfy βia > 0

and Sia = ia with a ∈ {1,2, ...,w}).

Based on the definition, if a ∈ A0, βia > 0,Sia = ia. Therefore ziae = xia , and

γe−αe pe = xe + ∑
a∈A0

xia + ∑
a∈A\A0

z∗iae−
q

∑
a=1

z∗eoa
. (4.29)
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When we plug in the z∗i j values given in equation (4.26) into the right hand side

of equation (4.29), we obtain:

xe + ∑
a∈A0

xia + ∑
a∈A\A0

z∗iae−
q

∑
a=1

z∗eoa

= xe + ∑
a∈A0

xia + ∑
a∈A\A0

H(Tia)H(T \Tia)
2H(T )

(
U(T \Tia,e)−2X(S\Sia)

H(T \Tia)

−U(Tia, ia)−2X(Sia)
H(Tia)

− kiae)−
q

∑
a=1

H(Toa)H(T \Toa)
2H(T )

(
U(Toa,oa)−2X(Soa)

H(Toa)

−U(T \Toa,e)−2X(S\Soa)
H(T \Toa)

− keoa)

= xe + ∑
a∈A0

xia + ∑
a∈A\A0

1
2H(T )

[(U(T \Tia,e)−2X(S\Sia))H(Tia)

−(U(Tia, ia)−2X(Sia))H(T \Tia)−H(Tia)H(T \Tia)kiae]

−
q

∑
a=1

1
2H(T )

[(U(Toa ,oa)−2X(Soa))H(T \Toa)

−(U(T \Toa,e)−2X(S\Soa))(H(Toa)−H(Toa)H(T \Toa)keoa]

= xe + ∑
a∈A0

xia + ∑
a∈A\A0

1
2H(T )

[(U(T,e)−2X(S))H(Tia)

−(U(Tia,e)−2X(Sia))H(T )]

−
q

∑
a=1

1
2H(T )

[(U(Toa ,e)−2X(Soa))H(T )− (U(T,e)−2X(S))H(Toa)]

= xe + ∑
a∈A0

xia +
U(T,e)−2X(S)

2H(T )
[ ∑
a∈A\A0

H(Tia)+
q

∑
a=1

H(Toa)]

−1
2
[ ∑
a∈A\A0

(U(Tia,e)−2X(Sia))+
q

∑
a=1

(U(Toa ,e)−2X(Soa))]

= xe + ∑
a∈A0

xia +
U(T,e)−2X(S)

2H(T )
H((∪a∈A\A0Tia)∪ (∪q

a=1Toa))

−1
2
[ ∑
a∈A\A0

(U(Tia,e)−2X(Sia))+
q

∑
a=1

(U(Toa ,e)−2X(Soa))]

=
U(T,e)−2X(S)

2H(T )
H((∪a∈A\A0Tia)∪ (∪q

a=1Toa))

−1
2

U((∪a∈A\A0Tia)∪ (∪q
a=1Toa),e)+X(S) (4.30)

If β∗e > 0, then γe−αe p∗e = 0, (∪a∈A\A0Tia)∪ (∪q
a=1Toa) = T. Then, (4.30) =

0 = γe−αe p∗e . Equation (4.29) holds.
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If β∗e = 0, (∪a∈A\A0Tia)∪ (∪q
a=1Toa) = T \{e}.

(4.30) =
U(T,e)−2X(S)

2H(T )
H(T \{e})− 1

2
U(T \{e},e)+X(S)

=
1
2

U({e},e)−U(T,e)−2X(S)
2H(T )

H({e})

=
1
2
(γe−αeλ∗e)

= γe−αe p∗e

Equation (4.29) holds.

In an acyclic optimal sharing group , each of the leaves of the spanning tree is

connected to the tree by a single arc. Since equation (4.29) must be satisfied

by every resource in the sharing group and we have shown that the equation

holds by plugging the expression in Proposition 12. Therefore, the expression

given in Proposition 12 is the unique solution for each of the leaves. If we

cut those leaves, new leaves appear and the amount of the flow through the arc

which connects each of the new leaves to the tree can be uniquely determined.

Eventually, all the resources in the sharing group may become the leaves and

the reallocation amounts can be uniquely determined.

2. λ∗l = 0, |L|= 1

(a) The proof is the same as 1(a).

(b) We consider the same configuration as shown in Figure 4.2. Here, we suppose

that e 6= l (When e = l, the proof is similar). Without loss of generality, assume

that l ∈ Si1. Inequality (4.2) holds as equality for resource e. Therefore,

γe−αe pe = xe + ∑
a∈A0

xia + zi1e + ∑
a∈A\A0\{1}

z∗iae−
q

∑
a=1

z∗eoa
. (4.31)

Note that since l ∈ Si1 , set A0 can not include integer 1. Because if 1 ∈ A0,

i1 = l ⇒ β∗l > 0 ⇒ (based on Proposition 10) γe
αe

< λ∗l = 0. Since the demand

γe is nonnegative, this results in contradiction.
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We plug the expression of zi j presented in the (4.28) into the right hand side of

equation (4.31) to obtain

xe + ∑
a∈A0

xia + zi1e + ∑
a∈A\A0\{1}

z∗iae−
q

∑
a=1

z∗eoa

= xe + ∑
a∈A0

xia +
H(T \Ti1)

2
(
U(T \Ti1,e)−2X(S\Si1)

H(T \Ti1)
− ∑

( f ,h)∈Sarc
li1

v f hk f h− ki1e)

+ ∑
a∈A\A0\{1}

H(Tia)
2

( ∑
( f ,h)∈Sarc

le

v f hk f h−U(Tia , ia)−2X(Sia)
H(Tia)

− kiae)

−
q

∑
a=1

H(Toa)
2

(
U(Toa,oa)−2X(Soa)

H(Toa)
− ∑

( f ,h)∈Sarc
le

v f hk f h− keoa)

= xe + ∑
a∈A0

xia −X(S\Si1)+ ∑
a∈A\A0\{1}

X(Sia)+
q

∑
a=1

X(Soa)

+
1
2
(U(T \Ti1 ,e)− ∑

a∈A\A0\{1}
U(Tia,e)−

q

∑
a=1

U(Toa,e))

−(H(T \Ti1)− ∑
a∈A\A0\{1}

H(Tia)−
q

∑
a=1

H(Toa)) ∑
( f ,h)∈Sarc

le

v f hk f h (4.32)

If β∗e > 0, e /∈ T.

⇒ (4.32) = 0 = γe−αe p∗e . Equation (4.31) holds.

If β∗e = 0, e ∈ T.

(4.32) =
1
2
[U({e},e)−H({e}) ∑

( f ,h)∈Sarc
le

v f hk f h]

=
1
2
(γe−αeλ∗e)

= γe−αe p∗e

Equation (4.31) holds.

By conducting similar computation procedure (leaves-tree) as shown at the end

of the proof of 1(b) except for resource l, we can uniquely determine the real-

location amounts among the resources.

3. λ∗l = 0, |L|> 1,
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If |L|> 1, we pick one of the base resources, denoted by l. Since the optimal sharing

group is undecomposable, by sending the flows among the resources in set L, we are

able to concentrate all the extra available capacity to resource l that we have picked

and the capacity constraint (4.2) is binding for all resources in the sharing group

except resource l. Eventually, we transform the solution to the solution in the case

with λ∗l = 0 and |L|= 1. ¥

In order to guarantee the optimality of a sharing group, the zi j’s computed in Proposi-

tion 12 must be nonnegative. If some zi j’s computed in Proposition 12 are negative, the

assumption that a given sharing group is an undecomposable optimal sharing group does

not hold.

The resources in a sharing group give rise to significant profits by balancing the asym-

metry of demand and supply which can compensate the costs incurred as a result of reallo-

cation. If the unit reallocation costs are relatively high, the resources are broken into several

sharing groups.

Let us assume that the optimal solution to P2 consists of m sharing groups, and denote

the set of resources in each sharing group by S1, S2, ..., Sm, respectively. As a result, P2 can

be divided into m subproblems Ph
2 , h = 1,2, ...,m. Note that each optimal sharing group can

be decomposable or undecomposable, and it can be cyclic or acyclic because Proposition

13 is only related to the optimal shadow prices which are always unique.

Subproblem (Ph
2 ):

Φ∗(−→x ,−→γ ) = max
zi j,
−→p ∑

i∈Sh

pi(γi−αi pi)− ∑
i∈Sh

∑
j 6=i, j∈Sh

ki jzi j (4.33)

s.t. : γi−αi pi ≤ xi + ∑
j 6=i

z ji−∑
j 6=i

zi j (4.34)

zi j ≥ 0 ∀ j 6= i, i, j ∈ Sh (4.35)

γi−αi pi ≥ 0 ∀i ∈ Sh (4.36)

pi ≥ 0 ∀i ∈ Sh (4.37)
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Let
−→
Z ∗

h denote the optimal reallocation matrix for subproblem h. Let −→p ∗h denote the

optimal price vector for subproblem h. Let
−→
λ ∗

h,
−→
β ∗

h,
−→u ∗

h denote the vectors and the matrix

for the optimal values of Lagrange multipliers, respectively, for subproblem h.

Consider two subproblems Ph1
2 and Ph2

2 . Let us denote the optimal of solution and the

corresponding optimal Lagrange multipliers for subproblem Phi
2 by (

−→
Z ∗

hi
, −→p ∗hi

,
−→
λ ∗

hi
,
−→
β ∗

hi
, −→u ∗

hi
)

for i = 1,2.

Proposition 13. If Sh1 and Sh2 are combined into a single set of resources, Sc = Sh1 + Sh2 .

(
−→
Z ∗

hi
, −→p ∗hi

,
−→
λ ∗

hi
,
−→
β ∗

hi
, −→u ∗

hi
) for i = 1,2 are also optimal for Sc if and only if

λ∗j − ki j ≤ λ∗i ≤ λ∗j + k ji ∀i ∈ Sh1,∀ j ∈ Sh2

Proof: If (
−→
Z ∗

hi
, −→p ∗hi

,
−→
λ ∗

hi
,
−→
β ∗

hi
, −→u ∗

hi
) for i = 1,2 are optimal for Sc, the Lagrange multipli-

ers
−→
λ ∗

hi
,
−→
β ∗

hi
and−→u ∗

hi
for i = 1,2 should satisfy the KKT conditions. It is straightforward to

observe that the KKT conditions given by (4.6) and (4.8)− (4.11) are satisfied. Therefore,

let us consider the KKT condition given by (4.7). If we consider two nodes i, j ∈ Sh1 or

i, j ∈ Sh2 , the KKT condition (4.7) is satisfied. If i ∈ Sh1 and j ∈ Sh2 , based on (4.7),

ui j = λ∗i −λ∗j + ki j ≥ 0

λ∗i ≥ λ∗j − ki j

u ji = k ji−λi +λ j ≥ 0

⇒ λ∗i ≤ λ∗j + k ji

⇒ λ∗j − ki j ≤ λ∗i ≤ λ∗j + k ji ∀i ∈ St1, j ∈ St2

On the other hand, if

λ∗j − ki j ≤ λ∗i ≤ λ∗j + k ji ∀i ∈ Sh1 , j ∈ Sh2

If i ∈ Sh1, j ∈ Sh2 , let z∗i j = 0,z∗ji = 0, u∗i j = λ∗i −λ∗j + ki j and u∗ji = k ji−λ∗i +λ∗j .
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Plugging the solution (
−→
Z ∗

hi
, −→p ∗hi

,
−→
λ ∗

hi
,
−→
β ∗

hi
, −→u ∗

hi
) for i = 1,2 with the z∗i js and u∗i js

defined above for the pairs of resources which belongs to two subsets into the combined

problem, it is straightforward to observe that the KKT conditions given by (4.6)− (4.11)

are satisfied. Therefore, (
−→
Z ∗

hi
, −→p ∗hi

,
−→
λ ∗

hi
,
−→
β ∗

hi
, −→u ∗

hi
) for i = 1,2. are also optimal for Sc. ¥

Proposition 13 gives us a more clear picture of the optimal solution. In the optimal

solution, the set of resources is decomposed into several sharing groups. Each sharing group

can be described by the results in Proposition 11 and 12. The resources in different sharing

groups satisfy the condition presented in Propositions 13, i.e., relatively high reallocation

cost prevent the resources in different sharing groups from merging into a single sharing

group.

4.2.2 An Exact Procedure for Solving P2

Based on previous results, in this section, we propose a procedure to solve the problem

based on partitioning the demand space. The idea is to list all possible forms of the optimal

solution, and determine the corresponding valid regions in the demand space. Although this

procedure solves P2 optimally, it works for problems that are small in size (e.g., problems

with 3-4 resources). In the next section, we will present two heuristic procedures that can be

used to solve realistic size problems. The exact method based on partitioning the demand

space is summarized as follows where each step of the procedure is explained for a system

with three resources.

1. List all the possible sharing groups. For example, the three-resource model has fol-

lowing combinations: {(1),(2),(3)}, {(1,2),(3)}, {(1),(2,3)}, {(1,3),(2)}, {(1,2,3)}.

The numbers in () are the indexes of resources in the same sharing group.

2. For the group which has more than one resource, list all the possible combinations of

reallocation. For example, the group {(1,2,3)} has three resources. Let → and ←
denote the direction of reallocation. The cycle-free combinations include {(1→ 2→
3)}, {(1→ 2← 3)}, {(1← 2→ 3)}, {(1← 2← 3)}, {(1→ 3→ 2)}, {(1→ 3← 2)},

60



{(1← 3→ 2)}, {(1← 3← 2)}. According to Proposition 8, inequality (4.13) must

be satisfied by every pair of the resources in the combinations.

3. Each group may work in capacity constraint binding or nonbinding status. Each

resource i may have a positive βi or βi = 0. Thus, corresponding combinations are

generated. For example, group {(1→ 2→ 3)} has the following combinations:

(a) Capacity constraint binding, β1 = 0, β2 = 0, β3 = 0.

(b) Capacity constraint binding, β1 = 0, β2 = 0, β3 > 0.

(c) Capacity constraint binding, β1 = 0, β2 > 0, β3 = 0.

(d) Capacity constraint binding, β1 = 0, β2 > 0, β3 > 0.

(e) Capacity constraint binding, β1 > 0, β2 = 0, β3 = 0.

(f) Capacity constraint binding, β1 > 0, β2 = 0, β3 > 0.

(g) Capacity constraint binding, β1 > 0, β2 > 0, β3 = 0.

(h) Capacity constraint binding, β1 > 0, β2 > 0, β3 > 0.

(i) Capacity constraint nonbinding, β1 = 0, β2 = 0, β3 = 0.

(j) Capacity constraint nonbinding, β1 = 0, β2 = 0, β3 > 0.

(k) Capacity constraint nonbinding, β1 = 0, β2 > 0, β3 = 0.

(l) Capacity constraint nonbinding, β1 = 0, β2 > 0, β3 > 0.

(m) Capacity constraint nonbinding, β1 > 0, β2 = 0, β3 = 0.

(n) Capacity constraint nonbinding, β1 > 0, β2 = 0, β3 > 0.

(o) Capacity constraint nonbinding, β1 > 0, β2 > 0, β3 = 0.

(p) Capacity constraint nonbinding, β1 > 0, β2 > 0, β3 > 0.

4. Apply the result of Proposition 11 to find the expressions of the optimal shadow

prices and selling prices, then further obtain the optimal reallocation quantities by

Proposition 12. The resources must satisfy the corresponding inequalities given in

Propositions 10 and 11. The amounts of reallocations must be nonnegative.
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5. The resources in different sharing groups must satisfy the inequalities given in Propo-

sition 13. (If one or more of the inequalities are not satisfied, the corresponding

grouping can not be optimal.)

6. Summarizing the inequalities obtained in steps 2, 4 and 5 for each combination

(which represents each possible combination of steps 1, 2 and 3) gives rise to a re-

gion of the demand space in which the combination is optimal. For example, that

{(1),(3 → 2)} with β1 = 0, β2 = 0, β3 = 0, the capacity constraint of group (1)

is binding and the capacity constraint of group (3 → 2) is nonbinding is one of the

combinations.

The algorithm above solves P2 by obtaining all the valid regions of the optimal solu-

tion. However, as the dimension of the problem increases, the number of regions increases

exponentially. Therefore, this procedure is good for problems with small dimension. For

moderate or large dimensional problems, it is necessary to seek other methods which solves

the problem efficiently.

In the remainder of this section, we focus on a special case which allows us decom-

pose P2 into smaller independent subproblems. As a result, the above procedure, based

on partitioning the demand space, may be applied to each subproblem. The structure of

P2 is complicated because of the reallocation imposed by flexibility. If we add more con-

straints to the model in a way that the reallocation will be less flexible, the problem can be

decomposed into small subproblems as explained below.

Let ki j + k jl ≥ kil ∀i, j, l. This inequality indicates that the minimum unit reallocation

cost between resource i and l can be obtained by reallocating one unit resource from i to

l directly. We will call this inequality as the “triangle assumption”. This is a reasonable

assumption in many cases. For example, consider that the reallocation cost is the trans-

portation cost between two locations. Suppose that there are three locations, A, B and C.

Generally, the transportation cost between A and C can be assumed to be less than or equal

to the sum of transportation costs from city A to B and from B to C. Under the “triangle

assumption”, we have the following result:
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Figure 4.3: Pure consumer or supplier

Proposition 14. If ki j + k jl ≥ kil ∀i, j, l, P2 has an optimal solution such that each resource

is either a pure supplier or a pure consumer in an optimal solution.

Proof: Suppose P2 has an optimal solution in which resource j is a supplier of l and a

consumer of i as shown is Figure 4.3. Consider i is a supplier of l with zil = 0. Let A denote

the optimal objective value of P2 excluding the reallocation cost among resources i, j and l.

Then, the optimal objective value is A+ z∗i jki j + z∗jlk jl + z∗ilkil . If ki j + k jl > kil , if we send a

flow δ≤min(zi j,z jl) with the direction as shown in Figure 4.3, the objective value becomes

A+(z∗i j−δ)ki j +(z∗jl−δ)k jl +(z∗il +δ)kil

= A+ z∗i jki j + z∗jlk jl + z∗ilkil +δ(kil− ki j− k jl)

< A+ z∗i jki j + z∗jlk jl + z∗ilkil.

which is a contradiction with the assumption of the optimality. Therefore, ki j +k jl > kil can

not be true. So, only when ki j + k jl = kil , resource j can be a supplier and a consumer at

the same time. Without loss of generality, suppose that z∗i j ≤ z∗jl . If we send a flow δ = z∗i j

with the direction as shown in Figure 4.3, each resource becomes either a pure supplier or

a pure consumer. That is, resources i and j are suppliers, and resource l is a consumer. ¥

Proposition 15. If ki j +k jl ≥ kil ∀i, j, l i 6= j 6= l, and if for j ∈ S, ( γi−2xi
αi

)+− ( γ j−2x j
α j

)+ <

k ji, resource j cannot be a supplier of resource i in an optimal solution.

Remark: Proposition 15 provides a necessary condition to check if some resource could

be a supplier or consumer of another resource in the optimal solution.

Proof: Suppose that in an optimal solution, resource j is a supplier of resource i. Resource

j must be a pure supplier and resource i must be a pure consumer. ( γ j−2x j
α j

)+ is the optimal
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shadow price of j (i.e., λ∗j) when it is neither a supplier nor a consumer. When resource

j is a pure supplier, then the shadow price of j must be greater than ( γ j−2x j
α j

)+. Similarly,

as a pure consumer, the shadow price λ∗i of i must be less than ( γi−2xi
αi

)+. That is, λ∗i <

( γi−2xi
αi

)+, λ∗j > ( γ j−2x j
α j

)+. Then

λ∗i −λ∗j < (
γi−2xi

αi
)+− (

γ j−2x j

α j
)+ < k ji,

where the second inequality follows from the assumption of the proposition. This result

is in contradiction based on Proposition 7. Therefore, resource j cannot be a supplier of

resource i in an optimal solution. ¥

When the dimension of the problem, n, increases, the number of partitions explodes.

The procedure to solve P2 by partitioning the demand space becomes computationally in-

feasible. The assumption ki j +k jl > kil gives the solution of P2 a nicer structure, and enable

us to decompose the problem into several subproblems. The algorithm to decompose the

problem into subproblems is given as follows:

Decomposition under the “triangle assumption”

1. Define S = {1,2, ...,n}.

2. Let i = 0.

3. If S = /0, set i∗ = i and stop the algorithm. Otherwise, let i := i+1 and define Gi = /0.

Choose a resource j ∈ S, update S to S \ { j}, Gi to Gi∪{ j} and mark resource j as

not visited.

4. If all the resources in Gi are visited, go to step 3. Otherwise, choose a resource j ∈Gi

which is not visited. Let S j be the set of resources that can be suppliers or consumers

of resource j. Update S as S\S j and update Gi as Gi∪S j.

5. Mark resource j as visited and go to step 4.

When the algorithm stops, i∗ is the smallest number of optimal sharing groups in P2. The

sets G1,G2, ...,Gi∗ are mutually exclusive. P2 can be solved separately for each of these sets

as i∗ distinct subproblems.
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4.2.3 Heuristic Algorithms for Solving P2

The procedure presented in the previous section is inefficient even when the problem can be

decomposed into subproblems under the “triangle” assumption. In this section, we propose

two heuristic algorithms in order to solve P2 (i.e., the second stage problem) approximately.

Both algorithms follow the same procedure: Beginning with a feasible solution (i.e., the so-

lution with no reallocation among the resources), we iteratively choose a pair of resources

which may generate significant profit with reallocation between them. The process contin-

ues until there does not exist any pair of resources that can generate profit by reallocating.

Both algorithms try to take the advantage of reallocation as much as possible to approach

the optimum. The difference between the two heuristics is the reallocation strategies among

the resources. Numerical results show that both algorithms provide very good approxima-

tions to the optimal solution. Let us denote the marginal reallocation profit between two

resources i and j, i, j = 1,2, ...,n, as MRPi j. Since marginal reallocation profit (MRP)

plays the key role in both algorithms, we call them MRP algorithms. The inputs of the

MRP algorithms include market potential vector −→γ = {γ1,γ2, ...,γn}, demand function co-

efficient vector−→α = {α1,α2, ...,αn}, unit reallocation cost matrix K and the initial resource

capacity vector −→x = {x1,x2, ...,xn}. In the algorithms, since we keep updating the reallo-

cation amount among the resources, the available capacity at each resource is changing

accordingly. We use vector −→y = {y1,y2, ...,yn} to denote the actual available capacity vec-

tor, i.e., yi = xi + ∑ j 6=i z ji −∑ j 6=i zi j,∀i. Z denotes the reallocation amount matrix. The

outputs include the approximate optimal selling price vector
−→̂
p∗, the approximate optimal

reallocation amount matrix Ẑ∗ and the approximate optimal objective value Φ̂∗.

MRP Algorithm 1

Let ε denote a small positive real number, which is used to control the accuracy of the

algorithm, and δ denote the step length of each reallocation.

1. Start with a solution without reallocation among the resources. Set −→y = −→x , zi j =

0, i, j = 1,2, ...,n.
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2. Compute the marginal reallocation profit from resource i to resource j, denoted by

MRPi j, for all i 6= j as follows:

(a) If z ji = 0, MRPi j = [( γ j−2y j
α j

)+− ( γi−2yi
αi

)+− ki j]11(yi > 0).

(b) If z ji > 0, MRPi j =−[(( γi−2yi
αi

)+− ( γ j−2y j
α j

)+− k ji)]11(yi > 0).

3. Choose the pair of the resources, say i∗, j∗, with the largest MRP.

4. (a) If MRPi∗ j∗ ≤ ε, compute the output as follows:

ẑ∗i j = zi j, i, j = 1,2, ...,n

p̂∗i =
γi

2αi
+(

γi−2yi

2αi
)+, i = 1,2, ...,n.

Φ̂∗ =
n

∑
i=1

p̂∗i (γi−αi p̂∗i )+
n

∑
i=1

∑
j 6=i

ki j ẑ∗i j

Return the output and stop the algorithm.

(b) Otherwise, go to the next step.

5. Reallocate a small amount of capacity δ from i∗ to j∗ and update yi∗ and y j∗ with

yi∗−δ, y j∗ +δ, respectively.

(a) If the reallocation is a forward reallocation (z j∗i∗ = 0), update zi∗ j∗ with zi∗ j∗ +δ.

(b) If the reallocation is a backward reallocation (z j∗i∗ > 0), update z j∗i∗ with z j∗i∗−
δ.

Then, go to step 2.

For a single-resource system with input γi,yi,αi, the optimal solution can be easily ob-

tained as follows:

λ∗i = (
γi−2yi

αi
)+, p∗i =

γi

2αi
+(

γi−2yi

2αi
)+.

When there is more than one resource in the system, and we send one unit of capacity from

resource i (yi > 0, i.e., resource i is available) to j, the increase in profit of resource j is
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( γ j−2y j
α j

)+, the decrease in profit of resource i is ( γi−2yi
αi

)+, and the reallocation cost is ki j.

Therefore, the profit that can be obtained from the reallocation is

(
γ j−2y j

α j
)+− (

γi−2yi

αi
)+− ki j. (4.38)

Step 2 calculates the marginal reallocation profit of each pair of the resources. Consider

two resources i and j. If there is no reallocation from j to i and resource i is available

(yi > 0), the marginal reallocation profit is ( γ j−2y j
α j

)+− ( γi−2yi
αi

)+− ki j, and we call it “for-

ward” marginal reallocation profit. On the other hand, if there is reallocation from j to i

and resource i is available, sending back one unit capacity from i to j will generate profit

( γ j−2y j
α j

)+− ( γi−2yi
αi

)+ + k ji, and we call this case “backward” reallocation.

In step 5, we reallocate a small amount δ from resource i∗ to resource j∗. After the

reallocation, yi∗ is updated by yi∗−δ and y j∗ is updated by y j∗ +δ. Therefore, the marginal

reallocation profit from i∗ to j∗, (( γ j∗−2y j∗−2δ
α j∗

)+ − ( γi∗−2yi∗+2δ
αi∗

)+ − ki∗ j∗)11(yi∗ − δ > 0),

decreases at each iteration. Note that here we only discuss forward reallocation. The back-

ward reallocation is similar. By iterating the steps of the algorithm, eventually the largest

marginal reallocation profit becomes less than or equal to ε. Since we define MRPi∗ j∗ as the

product of ( γ j∗−2y j∗
α j∗

)+− ( γi∗−2yi∗
αi∗

)+−ki∗ j∗ and 11(yi∗ > 0), when MRPi∗ j∗ ≤ ε and ε is small

enough, it means that either no profit can be obtained by reallocating resource between any

pair of resources or there is no available resource capacity.

In step 4, when the algorithm stops, since the available capacity of resource i is yi, based

on the result of the single-resource system, we have

p∗i =
γi

2αi
+(

γi−2yi

2αi
)+.

Next, we will show the following: (1) The algorithm presented above converges for

ε > 0; (2) When the algorithm stops, a feasible solution is obtained and no profit can be

obtained by further reallocation between any pair of resources; (3) Under some conditions,

the output of the algorithm is the optimal solution.
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Let yt
i, zt

i j and MRPt
i j denote the available capacity of resource i, reallocation amount

from resource i to resource j, and marginal reallocation profit from resource i to resource

j, respectively, just before the tth iteration of the algorithm for i, j = 1,2, ...,n, i 6= j, t =

1,2, ... . Let i∗t and j∗t denote the indexes of the resources which have the largest marginal

reallocation profit just before the tth iteration. Also, let λt
m = ( γm−2yt

m
αm

)+, m = 1,2, ...,n.

In order to guarantee the convergence of the algorithm, we need to define an appropriate

step length δ. Let αmin = min{αi|i = 1,2, ...,n} and δ = εαmin
2 . The following proposition

shows that when the step length is less than δ, after the tth iteration, the marginal reallocation

profit between i∗t and j∗t decreases but always keeps nonnegative.

Proposition 16. If δ≤ δ, for iterations t = 1,2, ..., MRPt
i∗t j∗t

> MRPt+1
i∗t j∗t

≥ 0.

Proof:

For any iteration t, MRPt
i∗t j∗t

> ε. Otherwise, the algorithm would have stopped. When

the reallocation is a forward reallocation,

MRPt+1
i∗t j∗t

=

[(
γ j∗t −2yt

j∗t
−2δ

2α j∗t

)+

−
(

γi∗t −2yt
i∗t

+2δ
2αi∗t

)+

− ki∗t j∗t

]
11(yi∗t −δ > 0)

<

[(
γ j∗t −2yt

j∗t
2α j∗t

)+

−
(

γi∗t −2yt
i∗t

2αi∗t

)+

− ki∗t j∗t

]
(11(yi∗t > 0)) = MRPt

i∗t j∗t

MRPt+1
i∗t j∗t

=

[(
γ j∗t −2yt

j∗t
−2δ

2α j∗t

)+

−
(

γi∗t −2yt
i∗t

+2δ
2αi∗t

)+

− ki∗t j∗t

]
11(yi∗t −δ > 0)

≥
[(

γ j∗t −2yt
j∗t

2α j∗t

)+

−
(

γi∗t −2yt
i∗t

2αi∗t

)+

− ki∗t j∗t −
δ

αi∗t
− δ

α j∗t

]
11(yi∗t −δ > 0)

≥
[

ε− 2δ
αmin

]
11(yi∗t −δ > 0) =

[
2

αmin
(δ−δ)

]
11(yi∗t −δ > 0)

If δ≤ δ, MRPt+1
i∗t j∗t

≥ 0.

When the reallocation is a backward reallocation, the proof is similar. ¥

Proposition 17. If δ < δ and xi
δ is an integer for i = 1,2, ...,n, the output of each iteration

of the MRP algorithm 1 is a feasible solution of P2 and MRP algorithm 1 will stop after a

finite number of iterations.
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Proof: First, we will show that when xi
δ is an integer for i = 1,2, ...,n, the output of each

iteration generated by the MRP algorithm 1 is a feasible solution. Recall that yi = xi +

∑ j 6=i z ji−∑ j 6=i zi j,∀i. The constraints of P2 include: (1) γi−αi pi ≤ yi ∀i; (2) z ji ≥ 0 ∀ j 6= i;

(3) γi−αi pi ≥ 0 ∀i; (4) pi ≥ 0 ∀i. First, note that no matter how many reallocations have

been conducted, yi
δ is integral for i = 1,2, ...,n because in each iteration of MRP algorithm

1, yi will be updated with yi + δ or yi− δ and the initial value of yi is xi. Since yi
δ is an

integer, when yi > 0, yi−δ≥ 0. Since each reallocation in MRP algorithm 1 happens only

when there is available capacity at the supplier resource, i.e., yi > 0, after each iteration,

yi ≥ 0,∀i. Similarly, in each iteration of MRP algorithm 1, zi j will be updated as zi j + δ

or zi j− δ, and the initial value of zi j is 0, hence zi j
δ is integral. Based on the algorithm, zi j

decreases only when zi j > 0. Since zi j
δ is integral, after each iteration, zi j ≥ 0. Since the

MRP algorithm 1 defines

p̂∗i =
γi

2αi
+(

γi−2yi

2αi
)+ ≥ 0, i = 1,2, ...,n.

Nonnegativity constraint of the selling prices is satisfied. Since

γi−αi p̂∗i =
γi− (γi−2yi)+

2
≥ 0,

The third constraint of P2 is satisfied. We show that the first constraint of P2 is satisfied by

considering the following two cases:

1. If γi−2yi ≥ 0, γi−αi p̂∗i = yi.

2. If γi−2yi < 0, γi−αi p̂∗i = γi
2 < yi.

Since all constraints of P2 are satisfied by the output of each iteration, the output of each

iteration of the algorithm is a feasible solution.

Next, we will prove the algorithm will stop after finite step iterations by contradiction.

Obviously, the optimal objective value of P2 is finite. Therefore, the objective value of a

feasible solution is finite. Suppose the algorithm will never stop, i.e., MRPt
i∗t j∗t

> ε, t =

1,2, .... Suppose the objective value of P2 obtained from MRP algorithm 1 just before the
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tth iteration is Φt . After the tth iteration, the marginal reallocation profit between resource

i∗t and resource j∗t changes from MRPt
i∗t j∗t

to MRPt+1
i∗t j∗t

, and the increase of the objective value

is the integral of the marginal reallocation profit between resource i∗t and resource j∗t . Let θ

denote the additional reallocation amount between i∗t and resource j∗t during the tth iteration,

and M(θ) denote the corresponding marginal reallocation profit function of θ. We have,

Φt+1−Φt =
∫ δ

0
M(θ)dθ,

and M(0) = MRPt
i∗t j∗t

, M(δ) = MRPt+1
i∗t j∗t

. Here we only discuss the forward reallocation.

Based on the definition of the forward marginal reallocation profit,

M(θ) = ((
γ j∗t −2y j∗t −2θ

α j∗t
)+− (

γi∗t −2yi∗t +2θ
αi∗t

)+− ki∗t j∗t )11(yi∗t −θ > 0).

Actually, if it is a backward reallocation,

M(θ) = ((
γ j∗t −2y j∗t −2θ

α j∗t
)+− (

γi∗t −2yi∗t +2θ
αi∗t

)+ + k j∗t i∗t )11(yi∗t −θ > 0).

Only the sign and the quantity of the unit reallocation cost are different, and the proof is

similar. M(θ) is a decreasing function of θ, and when θ = δ, M(θ) reaches the minimum,

MRPt+1
i∗t j∗t

. Based on Proposition 16, when δ < δ, MRPt+1
i∗t j∗t

> 0. Since M(θ) > MRPt+1
i∗t j∗t

> 0,

we have
γ j∗t −2y j∗t −2θ

α j∗t
> 0 and 11(yi∗t −θ > 0) = 1. Furthermore,

M(θ)≥ γ j∗t −2y j∗t −2θ
α j∗t

− (
γi∗t −2yi∗t

αi∗t
)+− 2θ

αi∗t
− ki∗t j∗t .

Therefore,

M(θ)≥ (MRPt
i∗t j∗t −2θ(

1
αi∗t

+
1

α j∗t
))+.

Φt+1−Φt =
∫ δ

0
M(θ)dθ≥

∫ δ

0
(MRPt

i∗t j∗t −2θ(
1

αi∗t
+

1
α j∗t

))+dθ

If MRPt
i∗t j∗t
−2δ( 1

αi∗t
+ 1

α j∗t
) < 0
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∫ δ

0
(MRPt

i∗t j∗t −2θ(
1

αi∗t
+

1
α j∗t

))+dθ =
(MRPt

i∗t j∗t
)2

4( 1
αi∗t

+ 1
α j∗t

)
>

ε2

4( 1
αi∗t

+ 1
α j∗t

)
.

If MRPt
i∗t j∗t
−2δ( 1

αi∗t
+ 1

α j∗t
)≥ 0,

∫ δ

0
(MRPt

i∗t j∗t −2θ(
1

αi∗
+

1
α j∗

))+dθ≥
δMRPt

i∗t j∗t
2

>
δε
2

.

Therefore,

Φt+1−Φt > min{ ε2

4( 1
αi∗t

+ 1
α j∗t

)
,
δε
2
}.

After the tth iteration,

Φt+1 > Φ1 + t min{ ε2

4( 1
αi∗

+ 1
α j∗

)
,
δε
2
}

If the algorithm does not converge, Φt+1 will approach to +∞ as t goes to ∞. It is a contra-

diction.

¥

Algorithm 2 uses a different reallocation strategy which converges to a feasible solution

at a faster rate.

MRP Algorithm 2

Let ε be a small positive real number.

1. Start with a solution without reallocation among the resources. −→y =−→x , zi j = 0, i, j =

1,2, ...,n.

2. Compute the marginal reallocation profit from resource i to resource j, denoted by

MRPi j, for all i 6= j as follows:

(a) If z ji = 0, MRPi j = [( γ j−2y j
α j

)+− ( γi−2yi
αi

)+− ki j]11(yi > 0).

(b) If z ji > 0, MRPi j =−[(( γi−2yi
αi

)+− ( γ j−2y j
α j

)+− k ji)]11(yi > 0).

3. Choose the pair of the resources, say i∗, j∗, with the largest marginal reallocation

profit.
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4. If MRPi∗ j∗ ≤ ε, compute the output as follows:

ẑ∗i j = zi j, i, j = 1,2, ...,n

p̂∗i =
γi

2αi
+(

γi−2yi

2αi
)+, i = 1,2, ...,n.

T̂ ∗ =
n

∑
i=1

p̂∗i (γi−αi p̂∗i )+
n

∑
i=1

∑
j 6=i

ki j ẑ∗i j

Return the output and stop the algorithm. Otherwise, go to the next step.

5. Reallocate from resource i∗ to resource j∗ based on the following:

Let ∆i∗ j∗ denote the adjustment of the reallocation amount from i∗ to j∗.

(a) If z j∗i∗ = 0.

i. If
γ j∗−2yi∗−2y j∗

α j∗
− γi∗

αi∗
− ki∗ j∗ ≥ 0, ∆i∗ j∗ = yi∗ .

ii. Else If γi∗ + γ j∗−2yi∗−2y j∗−α j∗ki∗ j∗ ≥ 0,

∆i∗ j∗ =
αi∗α j∗

2(αi∗ +α j∗)

(
γ j∗−2y j∗

α j∗
− γi∗−2yi∗

αi∗
− ki∗ j∗

)

iii. Else, ∆i∗ j∗ = γ j∗−2y j∗−α j∗ki∗ j∗
2

(b) If z j∗i∗ > 0.

i. If (( γi∗−2yi∗+2min(yi∗ ,z j∗i∗)
αi∗

)+− ( γ j∗−2y j∗−2min(yi∗ ,z j∗i∗)
α j∗

)+− k j∗i∗) < 0,

∆i∗ j∗ = min(yi∗,z j∗i∗).

ii. Else

A. If γi∗
αi∗
− γ j∗−2y j∗−2yi∗

α j∗
− k j∗i∗ < 0, ∆i∗ j∗ = yi∗ .

B. Else if γi∗ + γ j∗−2yi∗−2y j∗−αi∗k j∗i∗ ≥ 0,

∆i∗ j∗ =
αi∗α j∗

2(αi∗ +α j∗)
(
γ j∗−2y j∗

α j∗
− γi∗−2yi∗

αi∗
+ k j∗i∗).

C. Else, ∆i∗ j∗ =− γi∗−2yi∗−αi∗k j∗i∗
2 .

Update yi∗ , y j∗ and zi∗ j∗ with yi∗−∆i∗ j∗ , y j∗ +∆i∗ j∗ and zi∗ j∗ +∆i∗ j∗ respectively, and

go to step 2.
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All the steps of the MRP algorithm 2 are the same as the MRP algorithm 1 except for

step 5. In step 5, MRP algorithm 2 uses the solution of the 2-resource problem studied in

chapter 2 to determine the reallocation from resource i∗ to resource j∗ determined in step 3

of the algorithm. The idea is to make the maximum amount of reallocation from resource

i∗ to resource j∗ based on the analysis in Proposition 3. The decisions made in step 5 of the

algorithm can be explained as follows:

(a) When z j∗i∗ = 0, there is a forward reallocation profit from i∗ to j∗. Based on the

results of the two-resource system (see Figure 3.2), no reallocation can generate profit

in regions Ω0, Ω1, Ω2 and Ω3. Therefore, we just need to examine the three possible

regions Ω4, Ω5 and Ω6 (or Ω7, Ω8 and Ω9 ) because we know that there is reallocation

profit from i∗ to j∗. Based on Proposition 3,

i If
γ j∗−2yi∗−2y j∗

α j∗
− γi∗

αi∗
− ki∗ j∗ ≥ 0,

resources i∗ and j∗ fit in region Ω6. As a supplier, resource i∗ sends all available

capacity yi∗ to resource j∗. After this reallocation, no further reallocation can

be made from i∗ to j∗.

ii If

γ j∗−2yi∗−2y j∗

α j∗
− γi∗

αi∗
− ki∗ j∗ < 0, γi∗ + γ j∗−2yi∗−2y j∗−α j∗ki∗ j∗ ≥ 0,

resources i∗ and j∗ fit in region Ω5. After reallocating

αi∗α j∗

2(αi∗ +α j∗)
(
γ j∗−2y j∗

α j∗
− γi∗−2yi∗

αi∗
− ki∗ j∗)

from i∗ to j∗, no profit can be generated by further reallocation between i∗ to j∗.

iii Otherwise, resource i∗ and j∗ fit in region Ω4. After reallocating
γ j∗−2y j∗−α j∗ki∗ j∗

2

from i∗ to j∗, no profit can be generated by further reallocation between i∗ to j∗.
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(b) When z j∗i∗ > 0, there is a positive backward reallocation profit from i∗ to j∗ because

MRPi∗ j∗ > ε > 0. Recall that we define the backward reallocation follows: If there

is reallocation from j∗ to i∗, i.e., z j∗i∗ > 0, and resource i∗ is available, sending back

one unit capacity from i∗ to j∗, i.e., yi∗ = yi∗ − 1, y j∗ = y j∗ + 1 and z j∗i∗ = z j∗i∗ − 1,

will generate profit ( γ j∗−2y j∗
α j∗

)+−( γi∗−2yi∗
αi∗

)+ +k j∗i∗ , and we call this case “backward”

reallocation and the generated profit as “backward reallocation profit”. Since the

reallocation amount from j∗ to i∗ is z j∗i∗ and the available capacity of i∗ is yi∗ , at most

min{z j∗i∗,yi∗} can be send back from i∗ to j∗.

i If after the reallocation with amount of min{z j∗i∗,yi∗} from i∗ to j∗ MRPi∗ j∗ is

still positive, i.e.,

−((
γi∗−2yi∗ +2min(yi∗,z j∗i∗)

αi∗
)+−(

γ j∗−2y j∗−2min(yi∗,z j∗i∗)
α j∗

)+−k j∗i∗)> 0,

we send min{z j∗i∗,yi∗} from i∗ to j∗ as the adjustment.

ii Otherwise,

A. If γi∗
αi∗
− γ j∗−2y j∗−2yi∗

α j∗
−k j∗i∗ < 0, after reallocating yi∗ from i∗ to j∗, the back-

ward reallocation profit becomes −( γi∗
αi∗
− γ j∗−2y j∗−2yi∗

α j∗
− k j∗i∗) which is still

positive but resource i∗ has 0 capacity. Therefore, in this case we send yi∗

from i∗ to j∗ as the adjustment.

B. Else if γi∗ + γ j∗−2yi∗−2y j∗−αi∗k j∗i∗ ≥ 0, after reallocating

∆i∗ j∗ =
αi∗α j∗

2(αi∗ +α j∗)
(
γ j∗−2y j∗

α j∗
− γi∗−2yi∗

αi∗
+ k j∗i∗)
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from i∗ to j∗, the backward reallocation profit becomes

−(
γi∗−2yi∗ +

αi∗α j∗
(αi∗+α j∗)

( γ j∗−2y j∗
α j∗

− γi∗−2yi∗
αi∗

+ k j∗i∗)

αi∗
)+

+ (
γ j∗−2y j∗− αi∗α j∗

(αi∗+α j∗)
( γ j∗−2y j∗

α j∗
− γi∗−2yi∗

αi∗
+ k j∗i∗)

α j∗
)+ + k j∗i∗

=
−1

(αi∗ +α j∗)
(γi∗ + γ j∗−2yi∗−2y j∗ +α j∗k j∗i∗)+

+
1

(αi∗ +α j∗)
(γi∗ + γ j∗−2yi∗−2y j∗−αi∗k j∗i∗)+ + k j∗i∗

= 0.

Therefore we send
αi∗α j∗

2(αi∗+α j∗)
( γ j∗−2y j∗

α j∗
− γi∗−2yi∗

αi∗
+ k j∗i∗) from resource i∗ to

resource j∗ to eliminate the backward reallocation profit.

C. Else, after reallocating

∆i∗ j∗ =−γi∗−2yi∗−αi∗k j∗i∗

2

from i∗ to j∗, the backward reallocation profit becomes

−(
γi∗−2yi∗− (γi∗−2yi∗−αi∗k j∗i∗)

αi∗
)+

+ (
γ j∗−2y j∗ +(γi∗−2yi∗−αi∗k j∗i∗)

α j∗
)+ + k j∗i∗

= 0.

Proposition 18. MRP algorithm 2 will stop after a finite number of iterations, and the

output of MRP algorithm 2 is a feasible solution of P2.

Proof: In each iteration of the MRP algorithm 2, the capacity of the supplier and the re-

allocation quantity between the supplier and consumer are kept nonnegative. Therefore,

yi ≥ 0,∀i and zi j ≥ 0, ∀i, j, i 6= j. Based on the definition of the p̂∗i , ẑi j
∗, we obtain a fea-

sible solution at each iteration. The optimal objective value of P2 is finite. If the algorithm

will never stop, MRPt
i∗t j∗t

> ε, t = 1,2, .... In each iteration, the increase of the objective

function value is the integral of the marginal reallocation profit between resource i∗t and
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resource j∗t , and is positive. If the algorithm does not stop, the objective value of P2 will

go to infinity which is a contradiction. Therefore, MRP algorithm 2 will stop after a finite

number of iterations. ¥

4.2.4 Discussion on the Complexity of the Heuristics

1. MRP algorithm 1 requires O(n2) computations to find the pair of resources which

have the largest marginal reallocation profit in each iteration. There are O(n) arcs

will be involved in the computation and it takes at most O(M) steps to decrease the

reallocation profit associated with each arc to 0, where M = MRP1
i∗ j∗ is the maximum

marginal reallocation profit before the 1st reallocation. Therefore, the number of

iterations is O(nM). The complexity of algorithm 1 is O(n3M)

2. MRP algorithm 2 is similar as algorithm 1 except that it takes O(lnM) steps to de-

crease the reallocation profit associated with each arc to 0 because the step length of

each reallocation is proportional to M. Therefore, the number of iterations of algo-

rithm 2 is O(n lnM). The complexity of algorithm 2 is O(n3 lnM). Therefore, it is

much faster algorithm than algorithm 1.

Further investigation about the performance of the algorithms will be presented in Section

3.5.

4.2.5 I-MRP Algorithm

In this section, we propose an extension for the MRP algorithms. This extension may

further improve the accuracy of the MRP algorithms. Therefore, we call it as I-MRP (i.e.,

“I” stands for “improvement”).

Before we introduce the I-MRP algorithm, let us give the following definitions: We

define a set of resources as Szero if yi = 0 for all i ∈ Szero when the MRP algorithms stop,

and all the resources in set Szero are connected to each other directly or indirectly through

other resources in the set. We call Szero a zero-capacity set. If ∃ j /∈ Szero and j is directly

connected to one of the resources in Szero, we call j a leaf of Szero. As shown in Figure
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Figure 4.4: Zero-capacity set and its leaves

4.4, the resources in the dashed rectangle, i1, i2, i3 and i4 form a zero-capacity set Szero

and yim = 0, m = 1,2, ...,4., and { jm|m = 1,2, ...,8} is the set of the leaves of Szero and

y jm > 0, m = 1,2, ...,8.

MRP algorithms 1 and 2 will stop when there is no reallocation profit between any

pair of resources or the remaining capacity of the supplier is zero. However, we may still

obtain an increase in the profit by conducting reallocation between the resources through

the resources which have zero remaining capacity after the algorithm stops. For example,

when MRP algorithms stop, suppose yi = 0 and resource i is the supplier of resource j and

l, such that

λ̂∗j − λ̂∗i − ki j > λ̂∗l − λ̂∗i − kil > 0.

The MRP algorithms stop because yi = 0. Hence,

MRPi j = (̂λ∗j − λ̂∗i − ki j)11(yi > 0) = 0

MRPil = (̂λ∗l − λ̂∗i − kil)11(yi > 0) = 0.

On the other hand, the marginal reallocation profit from l to j through i is λ̂∗j − λ̂∗i − ki j−
(̂λ∗l − λ̂∗i −kil). Therefore, the performance of the algorithms can be improved by conducting

the reallocation. I-MRP algorithm aims to identify the zero-capacity sets and extract the

profit associated with them. We state the I-MRP algorithm as follows:
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1. Run MRP algorithm 1 (2) until it stops. Let ε denote the same small number used in

MRP algorithm 1 (2).

2. Starting from the output of the MRP algorithm 1 (2), find all the zero-capacity sets,

denoted by Si
zero, i = 1,2, ...,m. Let flag:= 0. If m < 1, go to step 4. Otherwise, let

j := 1.

3. Choose zero-capacity set S j
zero, and find the leaves of S j

zero.

(a) i. If the total number of the leaves of S j
zero is less than 2, let j := j +1.

A. If j = m+1, go to step 4.

B. Otherwise go to step 3.

ii. Otherwise, choose a pair of the leaves of S j
zero.

(b) Suppose the chosen pair of resources are g and l. Identify Sarc
gl which is the set

of arcs that connects resources g and l.

i. A. If ( γl−2yl
αl

)+− ( γg−2yg
αg

)+−∑( f ,h)∈Sarc
gl

v f hk f h > ε, there is positive real-

location profit from g to l through Sarc
gl . Let zmin

gl = min{z f h|( f ,h) ∈
Sarc

gl , v f h =−1} and δ̄ = min{yg, zmin
gl }.

• If ( γl−2yl−2δ̄
αl

)+− ( γg−2yg+2δ̄
αg

)+−∑( f ,h)∈Sarc
gl

v f hk f h ≥ 0, ∆gl = δ̄.

• If ( γl−2yl−2δ̄
αl

)+− ( γg−2yg+2δ̄
αg

)+−∑( f ,h)∈Sarc
gl

v f hk f h < 0,

2 If ( γl−2yl−2yg
αl

)+− γg
αg
−∑( f ,h)∈Sarc

gl
v f hk f h ≥ 0, ∆gl = yg.

2 Else If γl + γg−2yl−2yg−αl ∑( f ,h)∈Sarc
gl

v f hk f h > 0,

∆gl = αgαl
2(αg+αl)

(( γl−2yl
αl

)+− ( γg−2yg
αg

)+−∑( f ,h)∈Sarc
gl

v f hk f h).

2 Else ∆gl =
γl−2yl−αl ∑( f ,h)∈Sarc

gl
v f hk f h

2

Update yg and yl with yg − ∆gl and yl + ∆gl , respectively. For each

( f ,h) ∈ Sarc
gl , if v f h = 1, update z f h with z f h +∆gl . If v f h =−1, update

z f h with z f h−∆gl . Let flag= 1 and go to step 3(b)(iii).

B. If ( γg−2yg
αg

)+− ( γl−2yl
αl

)+−∑( f ,h)∈Sarc
lg

v f hk f h > ε, there is positive real-

location profit from l to g through Sarc
lg . Let zmin

lg = min{z f h|( f ,h) ∈
Sarc

lg , v f h =−1} and δ̄ = min{yl, zmin
lg }.
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• If ( γg−2yg−2δ̄
αg

)+− ( γl−2yl+2δ̄
αl

)+−∑( f ,h)∈Sarc
lg

v f hk f h ≥ 0, ∆lg = δ̄.

• If ( γg−2yg−2δ̄
αg

)+− ( γl−2yl+2δ̄
αl

)+−∑( f ,h)∈Sarc
lg

v f hk f h < 0,

2 If ( γg−2yg−2yl
αg

)+− γl
αl
−∑( f ,h)∈Sarc

lg
v f hk f h ≥ 0, ∆lg = yl.

2 Else If γl + γg−2yl−2yg−αg ∑( f ,h)∈Sarc
lg

v f hk f h > 0,

∆lg = αgαl
2(αg+αl)

(( γg−2yg
αg

)+− ( γl−2yl
αl

)+−∑( f ,h)∈Sarc
lg

v f hk f h).

2 Else ∆lg =
γg−2yg−αg ∑( f ,h)∈Sarc

lg
v f hk f h

2

Update yg and yl with yg + ∆gl and yl − ∆gl , respectively. For each

( f ,h) ∈ Sarc
lg , if v f h = 1, update z f h with z f h +∆lg. If v f h =−1, update

z f h with z f h−∆lg. Let flag= 1 and go to step 3(b)(iii).

ii. If no reallocation profit exists between g and l. Go to step 3(b)(iii).

iii. Choose another pair of the leaves of S j
zero and go to step 3(b). If all the

pairs of leaves of S j
zero have been visited, let j := j +1. If j = m+1, stop.

Otherwise go to step 3.

4. If flag= 1, go to step 1 (Note that the first step of MRP algorithm 1 (2) needs to be

skipped when we revisit the step 1). Otherwise, stop.

The idea the I-MRP algorithm is to explore the profit associated with the zero-capacity

sets which may not be captured by the MRP 1 (2) algorithm. In the algorithm, “flag” is

the variable to flag the improvement. If there happens any reallocation related to the zero-

capacity sets, “flag” will be set as 1 and the MRP 1 (2) needs to be revisited because the

resource capacities have been changed so that the MRP 1(2) algorithm may generate more

profit. The step 3(b)(i) is similar as the step 5 of MRP algorithm 2 which is explained

in detail. The only difference is that in step 3(b)(i), the supplier and the consumer are

connected by multiple arcs (no loop). Therefore, we need to consider updating each arc in

the set. By similar argument presented in the proof of Proposition 18, the convergence of

I-MRP algorithm is guaranteed.
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4.2.6 Comparison of Heuristic Algorithms with Interior Point Meth-

ods

Interior point methods represent a significant development in the theory and practice of

linear and nonlinear programming. The idea of interior point method is to find an optimal

solution by moving in the interior of the feasible set. In each step of an implementation

of the interior point method, the algorithm solves a system of multiple linear equations to

obtain the Newton direction which is the most computationally intensive step of an interior

point method. The algorithm stops when the duality gap (the difference in objective values

between the primal solution and the dual solution) is less than a given positive small value ε.

Then, a near-optimal (ε−optimal) solution is obtained. MRP and I-MRP algorithms apply

a similar idea. The advantage of MRP and I-MRP is that they provide explicit and simple

ways to obtain the moving direction of the solution. There are n2 + n decision variables

in the model where n is the total number of resources. Based on the special structure of

the model, MRP algorithms 1 and 2 find an appropriate moving direction within O(n2)

operations, where the interior point method needs to solve a linear system with n2 + n

equations and n2 +n unknown variables. Therefore, MRP algorithms (used in conjunction

with I-MRP) are much more efficient. On the other hand, interior point methods can always

obtain an near-optimal solution with higher computational complexity.

4.3 Optimal Solution of the Stage 1 Model

The stage 1 investment problem is a stochastic, nonlinear optimization problem. In this sec-

tion, we investigate the structure of the optimal solution to the stage 1 problem. Φ∗(−→x ,
−→
Γ )

is the optimal objective function value of the operational stage problem (P2). Its property

directly affects the investment decision.

Lemma 2. Φ∗(−→x ,
−→
Γ ) is a continuous and differentiable function with respect to −→x .

Proof: The demand space is divided into multiple disjoint regions based on the forms

of the optimal solution. According to Proposition 11, inside each region, Φ∗(−→x ,
−→
Γ ) is
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continuous, and the partial derivative of Φ∗(−→x ,
−→
Γ ) with respect to xi, i = 1,2, ...,n, i.e., the

shadow price of resource i exists and it is a continuous function. At the boundary of two

adjacent regions, since the concavity of P2, there exists an unique optimal shadow price of

resource i. Therefore, Φ∗(−→x ,
−→
Γ ) is a continuous and differentiable function with respect to

−→x . ¥

Theorem 2. The stage 1 problem is jointly concave with respect to −→x .

Proof: Observe that function Φ(−→x ,−→γ ) is jointly concave in −→γ and −→x because −→γ and −→x
determine a quadratic program with concave objective function and linear constraints. The

expectation of a concave function, e.g., E[Φ∗(−→x ,
−→
Γ )] is concave in −→x and hence Π(−→x ) is

concave as it is sum of concave and linear functions. ¥

According to the concavity of Π(−→x ) and the K-K-T condition of P1, the shadow price

vector λ∗ of the optimal capacity investment −→x satisfies, ∀i = 1, ...,n

∑
j

E(λ∗i |Ω j)P(Ω j) = ci− vi (4.39)

xivi = 0.

If there is a positive investment in resource i, the expected shadow price of resource i

should equal to its unit resource cost ci when the investment strategy is optimal. On the

other hand, if xi decreases to 0, E(λ∗i ) reaches the maximum and if the maximum value is

less than ci then vi > 0 indicating that it is not optimal to invest in resource i.

Proposition 19. When x∗i > 0, E(Di) = E(Γi−αi p∗i )≥ E(Γi)
2 − ciαi

2

Proof:

E(Di) = E(Γi−αi p∗i ) is the expected demand satisfied from market segment i when the

optimal price is p∗i . Based on (4.6) and (4.39), when x∗i > 0

E(Di) =
E(Γi)

2
− ciαi

2
+

αiE(β∗i )
2

≥ E(Γi)
2

− ciαi

2
¥

E(Γi)
2 − ciαi

2 is the expected amount of satisfied type i demand if there is no substitution

allowed in the model. So, we can expect a higher demand satisfaction with the substitution.
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Let Π∗ and Φ∗ denote the optimal objective values of P1 and P2, respectively. We have

Proposition 20. (Sensitivity analysis for P1 and P2) For all i=1,2,...,n,

1. Φ∗ decreases in αi.

2. Π∗ decreases in αi and ci.

3. If x∗i > 0 for all i = 1,2, ...,n, x∗i decreases in ci.

Remark: αi is the slope of the demand function for market segment i. As αi increases, the

optimal objective function value of P2 decreases. As a result, the optimal objective of P1

decreases as well. ci is the unit cost of resource i. Intuitively, as ci increases, the optimal

objective function value of P1 decreases and the optimal investment level in resource i

decreases.

Proof:

1. In order to conduct the sensitivity analysis of P2 in αi, we consider the optimal so-

lution and optimal objective function value as functions of αi, i = 1,2, ...,n. Let

p∗l (αi), z∗l j(αi), l, j = 1,2, ...,n be the optimal solution of P2(αi). Let y∗l (αi) =

xl + ∑ j 6=l z∗jl(αi)−∑ j 6=l z∗l j(αi) be the optimal total available capacity of resource l

after reallocation. Φ∗(αi) = ∑n
j=1 p∗j(γ j −α j p∗j)−∑l ∑ j 6=l kl jz∗l j. is the optimal ob-

jective function value of P2(αi). Consider that αi decreases to αi− δ, where δ is a

small positive real number. We will show Φ∗(αi− δ) ≥ Φ∗(αi). Let us construct

a feasible solution for P2(αi− δ). Let p∗l (αi− δ) = p∗l (αi), l 6= i, l ∈ {1,2, ...,n},

z∗l j(αi − δ) = z∗l j(αi), l, j = 1,2, ...,n. All decision variables of P2(αi − δ) except

p∗i (αi−δ) are named values. Then we determine the value of p∗i (αi−δ) as follows:

Consider the optimal solution of P2(αi),

(a) If constraint (4.4) is binding for resource i, i.e., γi−αi p∗i (αi) = 0,

let p∗i (αi− δ) = γi
αi−δ . As far as δ is small enough, it can be easily verified the

constructed solution for P2(αi−δ) is feasible and generates the same objective

value as P2(αi). The optimal solution of P2(αi−δ) is at least as large as Φ∗(αi).

Therefore, Φ∗(αi−δ)≥Φ∗(αi) and ∂Φ∗
∂αi

≤ 0.
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(b) If both constraints (4.4) and (4.2) are not binding for resource i.

p∗i (αi) = γi
2αi

. Let p∗i (αi−δ) = γi
2(αi−δ) . The constructed solution for P2(αi−δ)

is feasible and generates a larger objective value than P2(αi). We have Φ∗(αi−

δ)≥Φ∗(αi) and ∂Φ∗
∂αi

≤ ∂(
γ2
i

4αi
)

∂αi
=− γ2

i
4α2

i
< 0.

(c) If constraint (4.4) is not binding, and constraint (4.2) is binding for resource i.

Let p∗i (αi− δ) = γi−y∗i
αi−δ . The constructed solution for P2(αi− δ) is feasible and

generates a larger objective value than P2(αi). We have Φ∗(αi− δ) ≥ Φ∗(αi)

and ∂Φ∗
∂αi

≤ ∂(y∗i
γi−y∗i

αi
)

∂αi
=− (γi−y∗i )y

∗
i

α2
i

< 0 (both y∗i and γi− y∗i are positive).

Therefore Φ∗(αi) is decreases in αi for all i = 1,2, ...,n.

2. Since Φ∗(αi) is decreases in αi, Π∗ = E[Φ∗(−→x ∗,
−→
Γ )]−∑n

i=1 cix∗i decreases in αi.

∂Π∗
∂ci

=−x∗i , Φ∗ decreases in ci with rate x∗i .

3. When x∗i > 0, i = 1,2, ...,n, the first order condition

∂Π
∂xi
|x1=x∗1, x2=x∗2,..., xn=x∗n = Fi(x∗1,x

∗
2, ...,x

∗
n,c1) = 0, i = 1,2, ...,n implicitly define

x∗1, x∗2, ..., x∗n as a function of c1.

∂F1

∂x∗1

∂x∗1
∂c1

+
∂F1

∂x∗2

∂x∗2
∂c1

+ ...+
∂F1

∂x∗n

∂x∗n
∂c1

+
∂F1

∂c1
= 0 (4.40)

∂Fi

∂x∗1

∂x∗1
∂c1

+
∂Fi

∂x∗2

∂x∗2
∂c1

+ ...+
∂Fi

∂x∗n

∂x∗n
∂c1

+
∂Fi

∂c1
= 0 i = 2,3, ...,n (4.41)

Let define the Hessian matrix of the objective function of stage 1 problem Π(−→x ∗) as

Q. Since ∂F1
∂c1

=−1 and ∂Fi
∂c1

= 0, i = 2,3, ...,n, by solving (4.40) and (4.41), we have,

[
∂x∗1
∂c1

,
∂x∗2
∂c1

, ..., ,
∂x∗n
∂c1

]
= [1,0, ...,0]Q−1.

Due to the concavity of Π(−→x ∗), ∂x∗1
∂c1

< 0. Similarly, we can show ∂x∗i
∂ci

< 0 for i =

2,3, ...,n ¥ .
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4.4 Numerical Experiments

In this section, we first investigate the performance of the heuristics in solving the stage

2 problem by comparing their performance to the optimal for a wide range of parameter

settings. Second, we provide a solution procedure for the stage 1 problem based on Monte

Carlo simulation. Finally, we investigate the impact of various system parameters such as

the slope of the demand function, unit investment cost, mean and variance of the demand,

and the demand correlation on the optimal objective function value and the solution of the

stage 1 problem.

To carry on the numerical experiments, we assume that the market size for resource

i, Γi, follows a normal distribution with mean µi and standard deviation σi, i = 1, ...,n. The

demands for different resources may be correlated. The correlation coefficient between

market size i and j is ρi j, ∀i 6= j.

4.4.1 Performance of the Heuristics

We first evaluate the performances of MRP1, MRP2, and I-MRP heuristics to solve the

stage 2 problem only. In Section 4.2.3, MRP algorithm 1 and MRP algorithm 2 use a fixed

small number ε, as the error tolerance, i.e., when the MRPi∗ j∗ < ε, the algorithms stop. In

our implementation of the algorithms, we use ε = current objective function value
M as the

stopping criterion, where M is a large positive number. We choose appropriate value M so

that the results of the heuristics are accurate enough, and they are also efficient. Based on

extensive numerical experiments, we found that M = 10000n2 is a good choice. In order

to evaluate the performances of the three heuristics, i.e., MRP1, MRP2 and I-MRP, to solve

P2, we considered a wide range of parameter settings as follows:

1) Set n=3, 6, 12.

2) Form the reallocation cost matrix by generating the reallocation costs based on ki j ∼
Uniform (0,100) i, j = 1, ...,n, i 6= j.
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3) Form the capacity vector by generating each resource capacity based on xi ∼Uniform

(0,C) where C=50,100.

4) Form the slope vector by generating each slope based on αi ∼ Uniform(0,S), S=1,10.

5) Form the mean demand vector by generating each mean demand based on µi ∼ Uni-

form(0,M), M=50,500.

6) Form the standard deviation vector by generating each standard deviation σi ∼ Uni-

form(0,50).

7) Form the correlation coefficient matrix in three forms as follows:

(a) Generate ρi j ∼ Uniform (0,1) (All demands are positively correlated).

(b) Generate ρi j ∼ Uniform (-1,0) (All demands are negatively correlated).

(c) Generate ρi j ∼ Uniform (0,1) (Demands can be negatively or positively corre-

lated).

As a result, we used three variables for the number of resources (i.e., n=3, 6, 12), two

sets of resource capacity levels (i.e., c=50, 100), two sets for the demand slope vector

(i.e., S=1, 10), two sets for mean demand values (i.e., M=50, 500), and three sets for the

demand correlation coefficient matrix, resulting in a total of 72 scenarios. For each of the

72 scenarios given above, we generated 100 data sets randomly, which resulted in 7,200

experiments. We evaluated the optimal profit and profits of the heuristics for all 7,200

cases. We used CPLEX to compute the optimal profit for the stage 2 problem, and used a

code written in C++ to compute the profits for the heuristics. Tables 4.1 and 4.2 present

the results. In Tables 4.1 and 4.2, the first five columns indicate the number of facilities,

the upper bound for the slope of the demand functions, the upper bound for the resource

capacities, the upper bound for the mean demands, and the form of the demand correlations,

respectively.

In the fifth column of Tables 4.1 and 4.2, +, -, and +/- indicate that all demands are

positively correlated, all demands are negatively correlated, and demands can be negatively
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or positively correlated, respectively. In Tables 4.1 and 4.2, column 6 to column 11 give the

maximum and average percent errors of the MRP1, MRP2 and I-MRP heuristics from the

optimal, respectively.

We observe that overall performance of the algorithms is good. Most of the time, the

average percent errors of MRP1 and MRP2 are below 3% .The average percent errors of

I-MRP are less than 1.2%. On the other hand, when the demand is much larger than the

resource capacity, the performances of MRP1 and MRP2 may be bad. As shown in Table

4.2, when n = 12, S = 10, C = 50, M = 500, the demand is about ten times larger than the

capacity, and the maximum percent error can be as large as 29%. As we discussed in Section

4.2.5, the appearance of “zero-capacity” sets can make the performances of the MRP1 and

MRP2 algorithms bad. When the demand is much larger than the resource capacity, there

is better chance that the optimal solution contains “zero-capacity” sets. I-MRP algorithm

addresses this issue and can improve the performance. As shown in the Table 4.2, for the

case with n = 12, S = 10, C = 50 and M = 500, the maximum percent error drops to 5.59%

from 29% when I-MRP is used, and the average percent error drops from 6.71% to 1.16%.
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MRP1 MRP2 I-MRP
n S C M cor emax eave emax eave emax eave

3 1 50 50 + 2.12% 0.05% 0.00% 0.00% 0.00% 0.00%
3 1 50 50 +/- 0.67% 0.01% 0.66% 0.00% 0.60% 0.00%
3 1 50 50 - 19.2% 0.30% 18.9% 0.28% 0.00% 0.00%
3 1 100 50 + 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
3 1 100 50 +/- 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
3 1 100 50 - 1.23% 0.01% 1.14% 0.01% 0.00% 0.00%
3 10 50 50 + 0.06% 0.00% 0.00% 0.00% 0.00% 0.00%
3 10 50 50 +/- 0.04% 0.00% 0.00% 0.00% 0.00% 0.00%
3 10 50 50 - 0.25% 0.00% 0.00% 0.00% 0.00% 0.00%
3 10 100 50 + 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
3 10 100 50 +/- 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
3 10 100 50 - 0.09% 0.00% 0.00% 0.00% 0.00% 0.00%
3 1 50 500 + 8.52% 0.39% 8.44% 0.43% 3.59% 0.09%
3 1 50 500 +/- 8.45% 0.39% 8.40% 0.33% 2.68% 0.06%
3 1 50 500 - 7.69% 0.38% 7.17% 0.40% 4.61% 0.14%
3 1 100 500 + 10.2% 0.37% 10.1% 0.23% 1.33% 0.03%
3 1 100 500 +/- 9.30% 0.37% 9.94% 0.24% 1.48% 0.04%
3 1 100 500 - 8.36% 0.38% 8.31% 0.26% 2.36% 0.07%
3 10 50 500 + 16.9% 0.50% 16.9% 0.50% 0.63% 0.00%
3 10 50 500 +/- 17.3% 0.5% 17.2% 0.50% 0.58% 0.00%
3 10 50 500 - 19.2% 0.6% 19.1% 0.6% 0.65% 0.01%
3 10 100 500 + 18.4% 0.39% 18.4% 0.36% 0.48% 0.00%
3 10 100 500 +/- 18.4% 0.38% 18.4% 0.34% 0.51% 0.01%
3 10 100 500 - 19.3% 0.45% 19.5% 0.44% 0.53% 0.01%
6 1 50 50 + 4.81% 0.11% 3.27% 0.00% 0.32% 0.00%
6 1 50 50 +/- 8.80% 0.13% 9.07% 0.15% 1.69% 0.02%
6 1 50 50 - 4.92% 0.07% 4.90% 0.07% 0.74% 0.00%
6 1 100 50 + 0.7% 0.01% 0.00% 0.00% 0.00% 0.00%
6 1 100 50 +/- 3.24% 0.04% 1.84% 0.02% 0.00% 0.00%
6 1 100 50 - 0.39% 0.00% 0.38% 0.00% 0.00% 0.00%
6 10 50 50 + 0.07% 0.00% 0.00% 0.00% 0.00% 0.00%
6 10 50 50 +/- 14.0% 0.14% 14.0% 0.14% 0.00% 0.00%
6 10 50 50 - 3.89% 0.05% 3.76% 0.05% 0.00% 0.00%
6 10 100 50 + 0.02% 0.00% 0.00% 0.00% 0.00% 0.00%
6 10 100 50 +/- 1.18% 0.01% 1.16% 0.01% 0.00% 0.00%
6 10 100 50 - 5.37% 0.05% 5.29% 0.05% 0.00% 0.00%
6 1 50 500 + 9.29% 1.00% 9.23% 1.00% 1.73% 0.18%
6 1 50 500 +/- 7.89% 1.09% 5.77% 1.13% 2.33% 0.24%
6 1 50 500 - 10.5% 1.19% 10.5% 1.22% 2.16% 0.27%
6 1 100 500 + 7.44% 0.80% 7.43% 0.75% 2.09% 0.19%
6 1 100 500 +/- 5.94% 0.89% 5.69% 0.78% 4.69% 0.23%
6 1 100 500 - 6.49% 0.87% 6.47% 0.74% 1.73% 0.20%
6 10 50 500 + 16.0% 2.25% 16.4% 2.24% 5.03% 0.40%
6 10 50 500 +/- 16.8% 2.83% 16.7% 2.78% 9.28% 0.40%
6 10 50 500 - 23.3% 2.92% 23.3% 2.94% 9.29% 0.38%
6 10 100 500 + 8.51% 1.02% 7.99% 0.89% 3.62% 0.17%
6 10 100 500 +/- 12.1% 0.95% 11.1% 0.93% 3.59% 0.23%
6 10 100 500 - 16.7% 1.12% 16.5% 1.05% 7.04% 0.24%

Table 4.1: Performance of MRP algorithm 1, MRP algorithm 2 and I-MRP algorithm
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MRP1 MRP2 I-MRP
n S C M cor emax eave emax eave emax eave

12 1 50 50 + 5.68% 0.32% 5.66% 0.24% 1.90% 0.02%
12 1 50 50 +/- 5.51% 0.26% 5.14% 0.18% 0.04% 0.00%
12 1 50 50 - 3.35% 0.21% 3.33% 0.16% 0.00% 0.00%
12 1 100 50 + 4.39% 0.07% 4.38% 0.07% 0.14% 0.00%
12 1 100 50 +/- 2.50% 0.03% 1.87% 0.02% 0.04% 0.00%
12 1 100 50 - 1.80% 0.03% 0.44% 0.005% 0.00% 0.00%
12 10 50 50 + 19.2% 0.35% 19.1% 0.35% 0.29% 0.00%
12 10 50 50 +/- 9.59% 0.11% 9.54% 0.11% 2.79% 0.03%
12 10 50 50 - 13.2% 0.33% 6.64% 0.14% 0.00% 0.00%
12 10 100 50 + 12.5% 0.13% 12.4% 0.13% 0.00% 0.00%
12 10 100 50 +/- 0.11% 0.00% 0.11% 0.00% 0.00% 0.00%
12 10 100 50 - 0.11% 0.00% 0.11% 0.00% 0.00% 0.00%
12 1 50 500 + 6.68% 1.37% 6.19% 1.37% 2.43% 0.37%
12 1 50 500 +/- 5.80% 1.74% 5.76% 1.70% 1.91% 0.40%
12 1 50 500 - 7.34% 1.89% 8.09% 1.89% 2.53% 0.40%
12 1 100 500 + 4.29% 0.89% 4.4% 0.08% 1.95% 0.23%
12 1 100 500 +/- 3.68% 0.84% 4.06% 0.72% 1.07% 0.13%
12 1 100 500 - 4.36% 0.79% 4.23% 0.71% 1.09% 0.12%
12 10 50 500 + 27.0% 5.31% 27.0% 5.20% 5.70% 1.13%
12 10 50 500 +/- 28.2% 6.0% 28.2% 6.0% 5.75% 1.05%
12 10 50 500 - 29.1% 6.43% 29.1% 6.71% 5.59% 1.16%
12 10 100 500 + 12.5% 2.55% 11.1% 2.27% 3.31% 0.46%
12 10 100 500 +/- 12.3% 2.59% 12.2% 2.42% 5.82% 0.38%
12 10 100 500 - 12.3% 2.35% 11.5% 2.23% 5.82% 0.39%

Table 4.2: Continue: Performance of MRP algorithm 1, MRP algorithm 2 and I-MRP
algorithm
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Since the results presented in Tables 4.1 and 4.2 show that MRP2 and I-MRP algorithms

are consistently better than MRP1, we conduct more experiments to further investigate the

performances of MRP2 and I-MRP algorithms with the following parameter settings:

1) Set n=4, n=10, n=16.

2) Form the reallocation cost matrix by generating the reallocation costs based on ki j ∼
Uniform (0,200) i, j = 1, ...,n, i 6= j.

3) Form the capacity vector by generating each resource capacity as follows:

X1) xi = b20%µic i = 1, ...,n.

X2) xi = b50%µic i = 1, ...,n.

X3) xi = b20%µic for i = 1, ...,n/2 and xi = b50%µic for i = n/2+1, ...,n.

4) Form the slope vector by generating each slope based on αi ∼ Uniform(0,S), S=1,10.

5) Form the mean demand vector by generating each mean demand based on µi ∼ Uni-

form(100,M), M=500,1000.

6) Form the standard deviation vector as follows:

V1) σi = 10%µi i = 1, ...,n.

V2) σi = 30%µi i = 1, ...,n.

V3) σi = 10%µi for i = 1, ...,n/2 and σi = 30%µi for i = n/2+1, ...,n.

7) Form the correlation coefficient matrix in three forms as follows:

(a) Generate ρi j ∼ Uniform (0,1) (All demands are positively correlated).

(b) Generate ρi j ∼ Uniform (-1,0) (All demands are negatively correlated).

(c) Generate ρi j ∼ Uniform (-1,1) (Demands can be negatively or positively corre-

lated).
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Based on this experimental setup, we have a total of 576 different scenarios. We repli-

cate each scenario with different random number seeds 2000 times, which results in a total

of 1,152,000 experiments. In Tables 4.3 to 4.14, the first three columns present the values

for the standard deviation of market size vector, resource capacity vector and the demand

correlation matrix, respectively. Columns 4 to 6 present the total time required to run 2000

replication, average percent error from the optimal, and the maximum percent error from

the optimal over 2000 replications for MRP2, respectively. Columns 7 to 9 present the

same quantities for I-MRP, respectively. Column 10 presents the time in seconds required

to solve the stage 2 problem optimally by CPLEX for 2000 replications.
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MRP2 I-MRP Opt
σ x ρ time (sec) eave emax time (sec) eave emax time (sec)
V1 X1 + 0 0.236% 5.493% 0 0.067% 3.194% 16
V1 X1 - 0 0.234% 5.499% 0 0.071% 3.186% 16
V1 X1 +/- 1 0.237% 5.516% 0 0.068% 3.195% 16
V1 X2 + 0 0.001% 0.154% 0 0.000% 0.016% 16
V1 X2 - 0 0.001% 0.154% 0 0.000% 0.020% 16
V1 X2 +/- 0 0.001% 0.129% 0 0.000% 0.020% 16
V1 X3 + 0 0.093% 7.704% 0 0.017% 2.984% 16
V1 X3 - 0 0.089% 7.796% 1 0.015% 3.031% 15
V1 X3 +/- 1 0.092% 7.743% 0 0.016% 3.011% 16
V1 X4 + 0 0.086% 6.293% 0 0.011% 1.377% 16
V1 X4 - 1 0.088% 6.532% 0 0.012% 1.374% 15
V1 X4 +/- 1 0.087% 6.306% 0 0.012% 1.381% 16
V2 X1 + 0 0.260% 13.251% 0 0.065% 5.033% 16
V2 X1 - 0 0.262% 14.043% 0 0.068% 4.727% 16
V2 X1 +/- 0 0.263% 13.746% 0 0.068% 5.346% 16
V2 X2 + 0 0.009% 2.834% 0 0.002% 0.663% 16
V2 X2 - 0 0.010% 2.924% 0 0.002% 0.292% 16
V2 X2 +/- 0 0.010% 2.875% 0 0.002% 0.517% 16
V2 X3 + 0 0.096% 8.325% 1 0.025% 4.160% 15
V2 X3 - 1 0.101% 8.325% 0 0.023% 4.160% 16
V2 X3 +/- 0 0.097% 8.325% 0 0.025% 4.160% 16
V2 X4 + 1 0.109% 11.432% 0 0.016% 1.220% 15
V2 X4 - 1 0.119% 12.340% 0 0.017% 1.713% 16
V2 X4 +/- 0 0.111% 11.941% 1 0.016% 1.194% 15
V3 X1 + 0 0.259% 12.384% 1 0.065% 3.172% 15
V3 X1 - 1 0.256% 13.106% 0 0.066% 3.186% 16
V3 X1 +/- 0 0.261% 12.835% 0 0.065% 3.251% 16
V3 X2 + 0 0.004% 0.776% 0 0.001% 0.066% 16
V3 X2 - 0 0.004% 0.838% 0 0.001% 0.174% 16
V3 X2 +/- 0 0.004% 0.762% 0 0.001% 0.083% 16
V3 X3 + 1 0.094% 9.591% 0 0.021% 2.769% 16
V3 X3 - 0 0.096% 9.354% 0 0.021% 2.812% 16
V3 X3 +/- 1 0.098% 9.448% 0 0.023% 3.038% 16
V3 X4 + 0 0.103% 9.833% 0 0.012% 1.345% 16
V3 X4 - 0 0.108% 10.701% 1 0.013% 1.281% 15
V3 X4 +/- 1 0.104% 10.373% 0 0.014% 1.327% 16

Table 4.3: Performance of MRP algorithm 2 and I-MRP algorithm. n = 4, α = 1, M = 500
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MRP2 I-MRP Opt
σ x ρ time (sec) eave emax time (sec) eave emax time (sec)
V1 X1 + 0 0.187% 4.854% 0 0.057% 1.617% 16
V1 X1 - 0 0.186% 4.852% 0 0.057% 1.597% 16
V1 X1 +/- 0 0.188% 4.854% 0 0.057% 1.608% 16
V1 X2 + 0 0.002% 0.125% 0 0.001% 0.032% 16
V1 X2 - 0 0.002% 0.130% 0 0.001% 0.056% 16
V1 X2 +/- 0 0.002% 0.123% 1 0.001% 0.228% 15
V1 X3 + 1 0.089% 4.357% 0 0.027% 1.636% 16
V1 X3 - 0 0.086% 4.392% 1 0.025% 1.656% 16
V1 X3 +/- 0 0.090% 4.373% 0 0.027% 1.643% 16
V1 X4 + 1 0.084% 5.123% 0 0.023% 1.356% 15
V1 X4 - 1 0.086% 5.184% 0 0.023% 1.351% 16
V1 X4 +/- 0 0.084% 5.116% 0 0.022% 1.359% 16
V2 X1 + 0 0.186% 8.607% 0 0.050% 2.587% 16
V2 X1 - 0 0.194% 8.770% 0 0.053% 2.433% 16
V2 X1 +/- 0 0.193% 8.786% 1 0.051% 2.744% 16
V2 X2 + 0 0.015% 1.742% 0 0.005% 0.376% 16
V2 X2 - 0 0.015% 1.339% 0 0.004% 0.277% 16
V2 X2 +/- 1 0.014% 1.880% 0 0.004% 0.277% 16
V2 X3 + 1 0.098% 5.720% 0 0.028% 1.993% 18
V2 X3 - 1 0.099% 5.713% 0 0.028% 1.994% 26
V2 X3 +/- 0 0.102% 5.717% 0 0.028% 2.138% 20
V2 X4 + 0 0.107% 7.508% 1 0.025% 1.134% 15
V2 X4 - 1 0.111% 7.762% 0 0.025% 1.141% 16
V2 X4 +/- 0 0.109% 7.702% 0 0.026% 1.053% 16
V3 X1 + 0 0.190% 8.085% 0 0.053% 1.632% 16
V3 X1 - 0 0.188% 8.214% 0 0.051% 1.609% 17
V3 X1 +/- 0 0.190% 8.188% 0 0.054% 1.806% 16
V3 X2 + 0 0.008% 0.907% 0 0.003% 0.288% 16
V3 X2 - 0 0.008% 0.924% 1 0.003% 0.207% 15
V3 X2 +/- 0 0.008% 0.910% 1 0.003% 0.212% 16
V3 X3 + 0 0.096% 5.806% 0 0.030% 2.351% 16
V3 X3 - 1 0.099% 5.792% 0 0.031% 2.370% 16
V3 X3 +/- 0 0.096% 5.806% 1 0.031% 2.490% 16
V3 X4 + 0 0.094% 6.969% 0 0.023% 0.995% 16
V3 X4 - 0 0.098% 7.135% 1 0.023% 0.973% 16
V3 X4 +/- 0 0.096% 7.093% 0 0.023% 1.251% 16

Table 4.4: Performance of MRP algorithm 2 and I-MRP algorithm. n = 4, α = 1, M = 1000
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MRP2 I-MRP Opt
σ x ρ time (sec) eave emax time (sec) eave emax time (sec)
V1 X1 + 0 0.164% 13.798% 1 0.019% 3.752% 16
V1 X1 - 0 0.168% 13.845% 0 0.021% 3.754% 16
V1 X1 +/- 0 0.163% 13.807% 0 0.020% 3.812% 16
V1 X2 + 0 0.000% 0.012% 0 0.000% 0.012% 16
V1 X2 - 0 0.000% 0.012% 0 0.000% 0.012% 16
V1 X2 +/- 1 0.000% 0.011% 0 0.000% 0.011% 16
V1 X3 + 0 0.062% 13.303% 0 0.005% 2.479% 16
V1 X3 - 0 0.062% 13.362% 0 0.005% 2.588% 16
V1 X3 +/- 0 0.062% 13.315% 0 0.006% 2.456% 16
V1 X4 + 1 0.054% 11.389% 0 0.003% 1.729% 16
V1 X4 - 0 0.052% 11.409% 0 0.003% 1.816% 16
V1 X4 +/- 0 0.053% 11.540% 0 0.003% 1.756% 17
V2 X1 + 0 0.235% 13.512% 0 0.031% 3.294% 16
V2 X1 - 0 0.237% 15.376% 0 0.030% 3.398% 16
V2 X1 +/- 1 0.238% 13.506% 0 0.031% 3.552% 16
V2 X2 + 0 0.003% 1.180% 0 0.000% 0.044% 16
V2 X2 - 0 0.003% 1.308% 0 0.000% 0.208% 16
V2 X2 +/- 0 0.003% 1.204% 0 0.000% 0.088% 17
V2 X3 + 0 0.078% 11.873% 0 0.006% 2.622% 16
V2 X3 - 0 0.081% 11.873% 0 0.005% 1.858% 16
V2 X3 +/- 1 0.077% 11.873% 0 0.005% 2.662% 16
V2 X4 + 0 0.086% 14.707% 0 0.004% 2.933% 16
V2 X4 - 0 0.089% 14.450% 0 0.006% 3.790% 16
V2 X4 +/- 0 0.088% 14.168% 1 0.004% 3.009% 16
V3 X1 + 0 0.203% 13.799% 0 0.024% 3.342% 16
V3 X1 - 0 0.206% 13.846% 0 0.024% 3.573% 16
V3 X1 +/- 0 0.203% 13.809% 0 0.024% 3.569% 16
V3 X2 + 0 0.001% 0.649% 0 0.000% 0.022% 16
V3 X2 - 0 0.001% 0.735% 0 0.000% 0.022% 16
V3 X2 +/- 0 0.001% 0.755% 1 0.000% 0.023% 15
V3 X3 + 1 0.064% 13.306% 0 0.006% 3.608% 16
V3 X3 - 0 0.064% 13.365% 0 0.006% 2.533% 16
V3 X3 +/- 0 0.064% 13.318% 0 0.006% 3.584% 16
V3 X4 + 1 0.086% 15.740% 0 0.002% 0.777% 16
V3 X4 - 0 0.087% 15.609% 0 0.002% 0.980% 16
V3 X4 +/- 0 0.087% 15.593% 0 0.001% 0.738% 17

Table 4.5: Performance of MRP algorithm 2 and I-MRP algorithm. n = 4, α = 10, M = 500
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σ x ρ time (sec) eave emax time (sec) eave emax time (sec)
V1 X1 + 0 0.201% 8.159% 0 0.039% 2.592% 16
V1 X1 - 0 0.198% 8.234% 0 0.038% 3.013% 16
V1 X1 +/- 0 0.200% 8.174% 1 0.039% 2.748% 16
V1 X2 + 0 0.000% 0.086% 0 0.000% 0.021% 16
V1 X2 - 0 0.000% 0.098% 0 0.000% 0.018% 16
V1 X2 +/- 0 0.000% 0.088% 0 0.000% 0.023% 17
V1 X3 + 0 0.078% 7.979% 0 0.006% 2.498% 16
V1 X3 - 0 0.078% 7.872% 0 0.006% 2.472% 16
V1 X3 +/- 1 0.078% 7.818% 0 0.006% 2.495% 16
V1 X4 + 0 0.078% 9.034% 0 0.004% 0.874% 16
V1 X4 - 0 0.075% 8.981% 0 0.004% 0.861% 16
V1 X4 +/- 0 0.078% 8.923% 0 0.004% 0.866% 16
V2 X1 + 1 0.277% 12.018% 0 0.052% 5.334% 16
V2 X1 - 0 0.276% 12.678% 0 0.048% 4.746% 16
V2 X1 +/- 0 0.273% 12.038% 0 0.053% 4.956% 16
V2 X2 + 0 0.005% 1.319% 0 0.001% 0.206% 16
V2 X2 - 0 0.006% 1.441% 0 0.001% 0.131% 17
V2 X2 +/- 0 0.006% 1.342% 0 0.001% 0.184% 16
V2 X3 + 0 0.102% 13.269% 0 0.009% 3.167% 16
V2 X3 - 0 0.105% 13.890% 1 0.010% 3.320% 16
V2 X3 +/- 0 0.104% 13.477% 0 0.010% 3.182% 16
V2 X4 + 0 0.099% 11.156% 0 0.010% 2.011% 16
V2 X4 - 1 0.102% 11.527% 0 0.010% 2.941% 16
V2 X4 +/- 0 0.107% 11.320% 0 0.011% 2.349% 16
V3 X1 + 0 0.237% 10.826% 0 0.051% 4.488% 16
V3 X1 - 1 0.238% 10.613% 0 0.043% 2.796% 16
V3 X1 +/- 0 0.244% 10.826% 0 0.051% 4.313% 16
V3 X2 + 0 0.003% 1.328% 0 0.000% 0.072% 17
V3 X2 - 0 0.003% 1.278% 0 0.000% 0.093% 16
V3 X2 +/- 0 0.003% 1.269% 0 0.000% 0.065% 16
V3 X3 + 1 0.087% 11.731% 0 0.008% 2.431% 16
V3 X3 - 0 0.087% 11.125% 0 0.008% 2.160% 16
V3 X3 +/- 0 0.086% 11.304% 0 0.008% 2.409% 16
V3 X4 + 0 0.095% 11.625% 0 0.007% 1.292% 16
V3 X4 - 0 0.095% 11.603% 0 0.007% 1.356% 17
V3 X4 +/- 0 0.099% 11.596% 0 0.007% 1.312% 16

Table 4.6: Performance of MRP algorithm 2 and I-MRP algorithm. n = 4, α = 10, M =
1000
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σ x ρ time (sec) eave emax time (sec) eave emax time (sec)
V1 X1 + 1 0.580% 3.102% 1 0.241% 1.801% 19
V1 X1 - 2 0.582% 3.125% 1 0.243% 1.770% 19
V1 X1 +/- 1 0.582% 3.151% 1 0.240% 1.812% 19
V1 X2 + 0 0.007% 0.231% 1 0.004% 0.072% 18
V1 X2 - 1 0.007% 0.239% 0 0.004% 0.069% 19
V1 X2 +/- 1 0.007% 0.236% 0 0.004% 0.069% 19
V1 X3 + 2 0.196% 2.665% 2 0.087% 0.984% 19
V1 X3 - 2 0.194% 2.687% 2 0.086% 0.978% 19
V1 X3 +/- 2 0.195% 2.658% 2 0.087% 0.981% 22
V1 X4 + 2 0.207% 2.359% 2 0.090% 1.462% 20
V1 X4 - 2 0.208% 2.421% 2 0.090% 1.527% 19
V1 X4 +/- 3 0.206% 2.367% 1 0.090% 1.458% 21
V2 X1 + 1 0.685% 5.521% 2 0.259% 1.764% 22
V2 X1 - 2 0.695% 5.150% 1 0.268% 2.255% 19
V2 X1 +/- 1 0.689% 5.725% 2 0.263% 2.357% 19
V2 X2 + 1 0.043% 1.154% 1 0.020% 0.323% 19
V2 X2 - 1 0.042% 1.185% 1 0.019% 0.287% 19
V2 X2 +/- 1 0.043% 1.162% 1 0.020% 0.357% 18
V2 X3 + 3 0.261% 5.747% 2 0.106% 2.054% 19
V2 X3 - 3 0.265% 5.859% 1 0.109% 1.821% 19
V2 X3 +/- 3 0.262% 5.814% 2 0.111% 2.173% 18
V2 X4 + 3 0.266% 3.268% 1 0.109% 1.461% 19
V2 X4 - 3 0.265% 3.344% 2 0.109% 1.742% 19
V2 X4 +/- 2 0.270% 3.726% 2 0.109% 1.141% 19
V3 X1 + 1 0.637% 4.738% 1 0.247% 1.955% 19
V3 X1 - 2 0.638% 4.484% 1 0.254% 1.949% 19
V3 X1 +/- 1 0.638% 3.741% 1 0.247% 1.963% 19
V3 X2 + 1 0.025% 0.784% 1 0.012% 0.174% 19
V3 X2 - 1 0.025% 0.403% 1 0.012% 0.165% 19
V3 X2 +/- 1 0.025% 0.381% 0 0.012% 0.164% 19
V3 X3 + 3 0.226% 5.993% 2 0.098% 1.045% 19
V3 X3 - 3 0.227% 5.052% 2 0.097% 1.097% 19
V3 X3 +/- 3 0.229% 6.038% 1 0.100% 1.083% 19
V3 X4 + 3 0.233% 2.809% 1 0.096% 1.149% 19
V3 X4 - 3 0.232% 2.825% 2 0.096% 1.072% 19
V3 X4 +/- 2 0.233% 2.849% 2 0.096% 1.149% 19

Table 4.7: Performance of MRP algorithm 2 and I-MRP algorithm. n = 10, α = 1, M = 500
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σ x ρ time (sec) eave emax time (sec) eave emax time (sec)
V1 X1 + 1 0.485% 2.574% 0 0.196% 1.294% 19
V1 X1 - 1 0.490% 2.610% 1 0.200% 1.367% 19
V1 X1 +/- 1 0.489% 2.583% 0 0.198% 1.319% 19
V1 X2 + 1 0.020% 0.261% 0 0.015% 0.128% 19
V1 X2 - 0 0.021% 0.283% 1 0.015% 0.125% 19
V1 X2 +/- 0 0.021% 0.284% 1 0.015% 0.126% 19
V1 X3 + 1 0.276% 1.725% 1 0.133% 0.825% 19
V1 X3 - 1 0.278% 1.771% 1 0.136% 0.754% 19
V1 X3 +/- 1 0.277% 1.853% 1 0.134% 0.799% 19
V1 X4 + 1 0.288% 1.780% 1 0.140% 0.985% 19
V1 X4 - 2 0.288% 1.804% 1 0.139% 1.023% 19
V1 X4 +/- 1 0.288% 1.748% 1 0.139% 0.972% 19
V2 X1 + 1 0.559% 3.538% 1 0.220% 1.761% 19
V2 X1 - 1 0.564% 3.022% 1 0.226% 1.520% 19
V2 X1 +/- 1 0.563% 3.572% 0 0.224% 1.814% 20
V2 X2 + 0 0.079% 0.861% 1 0.044% 0.437% 19
V2 X2 - 0 0.082% 0.888% 1 0.045% 0.461% 19
V2 X2 +/- 1 0.080% 0.926% 1 0.044% 0.430% 19
V2 X3 + 1 0.342% 3.034% 1 0.154% 1.286% 19
V2 X3 - 1 0.349% 3.187% 1 0.153% 1.181% 19
V2 X3 +/- 2 0.345% 3.088% 1 0.155% 1.197% 19
V2 X4 + 1 0.348% 2.124% 1 0.150% 1.253% 19
V2 X4 - 1 0.358% 2.162% 1 0.153% 1.303% 19
V2 X4 +/- 2 0.350% 2.135% 1 0.152% 1.241% 19
V3 X1 + 0 0.523% 3.050% 1 0.209% 1.717% 19
V3 X1 - 1 0.528% 3.043% 1 0.211% 1.710% 19
V3 X1 +/- 1 0.522% 3.045% 1 0.211% 1.780% 19
V3 X2 + 1 0.054% 0.540% 0 0.033% 0.431% 20
V3 X2 - 0 0.055% 0.585% 1 0.033% 0.448% 19
V3 X2 +/- 1 0.054% 0.554% 0 0.032% 0.428% 20
V3 X3 + 1 0.321% 3.077% 1 0.144% 1.060% 19
V3 X3 - 2 0.322% 3.108% 0 0.143% 0.892% 20
V3 X3 +/- 1 0.323% 3.088% 1 0.146% 1.062% 20
V3 X4 + 1 0.306% 1.797% 1 0.147% 1.159% 19
V3 X4 - 1 0.311% 1.944% 1 0.148% 1.312% 19
V3 X4 +/- 2 0.305% 1.768% 1 0.148% 1.154% 19

Table 4.8: Performance of MRP algorithm 2 and I-MRP algorithm. n = 10, α = 1, M =
1000
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σ x ρ time (sec) eave emax time (sec) eave emax time (sec)
V1 X1 + 1 0.581% 7.520% 0 0.148% 2.728% 19
V1 X1 - 1 0.584% 7.515% 1 0.150% 2.689% 19
V1 X1 +/- 1 0.581% 7.536% 1 0.150% 2.725% 19
V1 X2 + 0 0.001% 0.772% 0 0.001% 0.118% 19
V1 X2 - 0 0.001% 0.827% 1 0.001% 0.061% 19
V1 X2 +/- 0 0.001% 0.815% 1 0.001% 0.121% 18
V1 X3 + 2 0.163% 9.544% 0 0.021% 1.464% 20
V1 X3 - 1 0.164% 9.510% 1 0.021% 1.499% 18
V1 X3 +/- 2 0.164% 9.456% 0 0.021% 1.511% 19
V1 X4 + 1 0.169% 9.700% 1 0.022% 1.791% 19
V1 X4 - 1 0.172% 9.885% 1 0.022% 1.841% 19
V1 X4 +/- 1 0.170% 9.620% 1 0.022% 1.835% 19
V2 X1 + 1 0.816% 11.401% 1 0.206% 4.895% 19
V2 X1 - 1 0.835% 11.586% 0 0.207% 4.931% 19
V2 X1 +/- 1 0.823% 11.880% 1 0.206% 3.556% 19
V2 X2 + 1 0.014% 3.705% 0 0.003% 0.404% 19
V2 X2 - 1 0.015% 3.849% 0 0.003% 0.508% 19
V2 X2 +/- 1 0.014% 3.810% 5 0.003% 0.460% 19
V2 X3 + 1 0.273% 16.624% 1 0.048% 3.988% 19
V2 X3 - 2 0.278% 17.007% 0 0.045% 4.149% 19
V2 X3 +/- 1 0.275% 16.835% 1 0.047% 4.082% 19
V2 X4 + 1 0.247% 11.876% 1 0.040% 3.927% 19
V2 X4 - 1 0.258% 12.083% 1 0.041% 4.258% 19
V2 X4 +/- 1 0.249% 11.720% 1 0.040% 4.024% 19
V3 X1 + 1 0.699% 10.446% 1 0.168% 4.417% 19
V3 X1 - 1 0.707% 10.814% 1 0.170% 4.404% 20
V3 X1 +/- 1 0.703% 10.907% 0 0.171% 4.360% 19
V3 X2 + 0 0.006% 0.758% 1 0.002% 0.084% 19
V3 X2 - 0 0.006% 0.826% 0 0.002% 0.069% 19
V3 X2 +/- 1 0.006% 0.797% 0 0.002% 0.072% 18
V3 X3 + 1 0.186% 13.269% 1 0.028% 1.714% 19
V3 X3 - 9 0.188% 13.239% 8 0.029% 1.979% 19
V3 X3 +/- 2 0.187% 13.163% 0 0.029% 1.858% 19
V3 X4 + 1 0.221% 12.382% 1 0.032% 3.095% 19
V3 X4 - 1 0.227% 12.602% 2 0.031% 3.065% 19
V3 X4 +/- 2 0.223% 12.576% 0 0.032% 3.232% 19

Table 4.9: Performance of MRP algorithm 2 and I-MRP algorithm. n = 10, α = 10, M =
500
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σ x ρ time (sec) eave emax time (sec) eave emax time (sec)
V1 X1 + 1 0.675% 6.698% 0 0.251% 3.274% 20
V1 X1 - 1 0.680% 6.852% 1 0.252% 3.181% 19
V1 X1 +/- 0 0.676% 6.670% 1 0.251% 3.295% 19
V1 X2 + 1 0.004% 0.583% 0 0.003% 0.110% 19
V1 X2 - 0 0.004% 0.619% 1 0.003% 0.098% 19
V1 X2 +/- 1 0.004% 0.605% 0 0.003% 0.114% 19
V1 X3 + 1 0.221% 6.591% 1 0.067% 3.251% 19
V1 X3 - 1 0.220% 6.693% 1 0.065% 3.413% 18
V1 X3 +/- 1 0.221% 6.694% 1 0.065% 3.282% 19
V1 X4 + 1 0.236% 8.183% 1 0.068% 1.282% 19
V1 X4 - 1 0.240% 8.222% 1 0.068% 1.238% 20
V1 X4 +/- 1 0.236% 8.173% 1 0.068% 1.287% 19
V2 X1 + 1 0.913% 9.047% 1 0.308% 3.338% 19
V2 X1 - 1 0.941% 8.998% 0 0.314% 3.379% 19
V2 X1 +/- 1 0.918% 9.807% 1 0.311% 3.414% 22
V2 X2 + 0 0.036% 2.274% 1 0.017% 0.343% 21
V2 X2 - 0 0.035% 2.357% 1 0.016% 0.355% 19
V2 X2 +/- 1 0.036% 2.328% 0 0.016% 0.370% 27
V2 X3 + 2 0.337% 16.701% 1 0.098% 3.360% 19
V2 X3 - 1 0.345% 17.187% 1 0.098% 3.699% 19
V2 X3 +/- 1 0.342% 16.983% 1 0.100% 3.563% 19
V2 X4 + 1 0.327% 8.023% 1 0.096% 1.692% 19
V2 X4 - 1 0.335% 8.042% 2 0.099% 2.055% 24
V2 X4 +/- 1 0.330% 7.950% 1 0.100% 1.713% 21
V3 X1 + 1 0.793% 8.796% 1 0.272% 3.078% 26
V3 X1 - 0 0.805% 8.784% 1 0.275% 3.059% 20
V3 X1 +/- 1 0.794% 8.799% 1 0.271% 3.079% 18
V3 X2 + 1 0.018% 0.605% 0 0.010% 0.279% 20
V3 X2 - 1 0.018% 0.867% 0 0.009% 0.255% 21
V3 X2 +/- 1 0.018% 0.788% 0 0.009% 0.283% 19
V3 X3 + 2 0.260% 13.199% 0 0.079% 2.262% 19
V3 X3 - 1 0.260% 13.343% 1 0.079% 2.209% 19
V3 X3 +/- 1 0.258% 13.259% 1 0.077% 2.249% 19
V3 X4 + 1 0.288% 7.925% 1 0.081% 2.133% 18
V3 X4 - 1 0.291% 7.960% 1 0.081% 2.510% 19
V3 X4 +/- 1 0.289% 7.971% 1 0.081% 2.214% 18

Table 4.10: Performance of MRP algorithm 2 and I-MRP algorithm. n = 10, α = 10, M =
1000
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σ x ρ time (sec) eave emax time (sec) eave emax time (sec)
V1 X1 + 3 0.649% 3.050% 2 0.294% 1.062% 22
V1 X1 - 2 0.655% 3.101% 3 0.292% 1.063% 21
V1 X1 +/- 3 0.651% 3.056% 2 0.296% 1.134% 25
V1 X2 + 1 0.016% 0.111% 1 0.011% 0.069% 22
V1 X2 - 2 0.016% 0.117% 1 0.012% 0.068% 23
V1 X2 +/- 2 0.016% 0.112% 1 0.012% 0.065% 23
V1 X3 + 2 0.281% 1.722% 3 0.148% 0.800% 23
V1 X3 - 2 0.285% 1.976% 3 0.149% 0.803% 23
V1 X3 +/- 2 0.282% 1.812% 3 0.148% 0.800% 24
V1 X4 + 2 0.277% 2.675% 3 0.148% 0.782% 23
V1 X4 - 2 0.279% 2.777% 3 0.147% 0.814% 23
V1 X4 +/- 2 0.277% 2.636% 3 0.148% 0.775% 23
V2 X1 + 2 0.780% 3.219% 2 0.339% 1.607% 26
V2 X1 - 4 0.789% 3.186% 3 0.343% 1.623% 33
V2 X1 +/- 3 0.788% 3.062% 2 0.343% 1.798% 24
V2 X2 + 2 0.076% 0.695% 2 0.041% 0.268% 23
V2 X2 - 3 0.078% 0.615% 2 0.042% 0.321% 23
V2 X2 +/- 3 0.077% 0.581% 2 0.041% 0.302% 24
V2 X3 + 3 0.356% 2.986% 5 0.178% 1.071% 23
V2 X3 - 3 0.363% 3.087% 3 0.178% 0.941% 23
V2 X3 +/- 3 0.355% 3.010% 3 0.179% 1.075% 23
V2 X4 + 3 0.361% 3.592% 3 0.173% 0.958% 24
V2 X4 - 3 0.366% 3.961% 3 0.176% 1.023% 24
V2 X4 +/- 3 0.364% 3.578% 3 0.174% 1.013% 23
V3 X1 + 3 0.736% 3.986% 3 0.315% 1.320% 23
V3 X1 - 3 0.739% 3.975% 2 0.318% 1.650% 24
V3 X1 +/- 3 0.741% 3.989% 2 0.314% 1.608% 24
V3 X2 + 2 0.048% 0.489% 2 0.028% 0.261% 23
V3 X2 - 2 0.049% 0.512% 1 0.029% 0.240% 24
V3 X2 +/- 2 0.049% 0.487% 2 0.028% 0.251% 24
V3 X3 + 2 0.330% 2.161% 3 0.166% 0.936% 24
V3 X3 - 2 0.332% 2.331% 4 0.166% 0.795% 23
V3 X3 +/- 2 0.330% 2.303% 3 0.167% 0.790% 23
V3 X4 + 2 0.311% 2.597% 3 0.161% 0.935% 24
V3 X4 - 2 0.312% 2.891% 3 0.162% 0.913% 24
V3 X4 +/- 2 0.312% 2.627% 3 0.162% 0.974% 24

Table 4.11: Performance of MRP algorithm 2 and I-MRP algorithm. n = 16, α = 1, M =
500
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σ x ρ time (sec) eave emax time (sec) eave emax time (sec)
V1 X1 + 2 0.550% 2.059% 2 0.236% 0.876% 24
V1 X1 - 2 0.548% 2.356% 2 0.236% 0.875% 24
V1 X1 +/- 1 0.549% 1.744% 2 0.236% 1.004% 24
V1 X2 + 1 0.041% 0.178% 1 0.035% 0.160% 24
V1 X2 - 1 0.043% 0.175% 0 0.036% 0.147% 24
V1 X2 +/- 1 0.042% 0.172% 1 0.035% 0.158% 23
V1 X3 + 2 0.339% 1.519% 2 0.175% 0.586% 24
V1 X3 - 3 0.337% 1.439% 2 0.177% 0.622% 23
V1 X3 +/- 3 0.337% 1.531% 2 0.176% 0.615% 23
V1 X4 + 3 0.338% 1.838% 2 0.176% 0.582% 24
V1 X4 - 2 0.337% 1.854% 2 0.178% 0.776% 24
V1 X4 +/- 2 0.338% 1.826% 2 0.177% 0.611% 24
V2 X1 + 2 0.633% 3.019% 2 0.268% 1.423% 23
V2 X1 - 3 0.639% 2.781% 1 0.270% 1.326% 24
V2 X1 +/- 2 0.637% 2.743% 2 0.269% 1.449% 24
V2 X2 + 2 0.131% 0.671% 2 0.089% 0.477% 23
V2 X2 - 2 0.137% 0.679% 1 0.095% 0.460% 24
V2 X2 +/- 2 0.134% 0.666% 1 0.092% 0.422% 24
V2 X3 + 3 0.409% 1.833% 2 0.197% 1.128% 23
V2 X3 - 3 0.409% 1.898% 2 0.198% 1.316% 23
V2 X3 +/- 3 0.409% 1.842% 2 0.198% 0.870% 24
V2 X4 + 3 0.405% 2.175% 2 0.192% 0.771% 23
V2 X4 - 3 0.408% 2.217% 2 0.193% 1.134% 24
V2 X4 +/- 2 0.405% 2.082% 2 0.192% 0.844% 24
V3 X1 + 2 0.590% 2.387% 2 0.256% 1.054% 24
V3 X1 - 2 0.596% 2.352% 2 0.257% 1.074% 24
V3 X1 +/- 2 0.595% 2.395% 2 0.255% 1.111% 24
V3 X2 + 1 0.093% 0.666% 1 0.068% 0.355% 24
V3 X2 - 1 0.096% 0.629% 2 0.071% 0.361% 24
V3 X2 +/- 1 0.095% 0.625% 1 0.069% 0.358% 24
V3 X3 + 2 0.395% 1.626% 3 0.188% 0.931% 23
V3 X3 - 3 0.395% 1.681% 2 0.189% 0.893% 23
V3 X3 +/- 3 0.394% 1.739% 2 0.188% 0.738% 24
V3 X4 + 2 0.360% 1.549% 2 0.186% 0.801% 23
V3 X4 - 3 0.362% 1.753% 2 0.188% 0.801% 23
V3 X4 +/- 3 0.362% 1.671% 2 0.188% 0.844% 24

Table 4.12: Performance of MRP algorithm 2 and I-MRP algorithm. n = 16, α = 1, M =
1000
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σ x ρ time (sec) eave emax time (sec) eave emax time (sec)
V1 X1 + 2 0.690% 7.302% 2 0.254% 2.510% 24
V1 X1 - 3 0.692% 7.308% 2 0.252% 2.527% 23
V1 X1 +/- 3 0.691% 7.304% 2 0.254% 2.525% 24
V1 X2 + 1 0.003% 0.112% 0 0.002% 0.032% 24
V1 X2 - 1 0.003% 0.116% 1 0.002% 0.034% 23
V1 X2 +/- 1 0.003% 0.123% 1 0.002% 0.032% 23
V1 X3 + 3 0.215% 3.861% 3 0.054% 1.944% 24
V1 X3 - 3 0.216% 4.119% 3 0.054% 1.942% 24
V1 X3 +/- 4 0.215% 3.924% 2 0.054% 1.942% 24
V1 X4 + 3 0.222% 4.878% 3 0.053% 1.663% 24
V1 X4 - 3 0.221% 4.893% 3 0.052% 1.670% 24
V1 X4 +/- 4 0.223% 4.926% 3 0.052% 1.642% 24
V2 X1 + 3 0.968% 8.062% 3 0.332% 3.614% 24
V2 X1 - 4 0.989% 8.429% 2 0.340% 3.743% 24
V2 X1 +/- 3 0.978% 8.191% 3 0.335% 3.516% 24
V2 X2 + 1 0.027% 1.394% 2 0.010% 0.728% 24
V2 X2 - 2 0.027% 1.515% 1 0.010% 0.686% 24
V2 X2 +/- 2 0.028% 1.427% 1 0.010% 0.703% 24
V2 X3 + 3 0.305% 5.824% 3 0.079% 2.533% 24
V2 X3 - 5 0.305% 6.676% 3 0.079% 2.542% 24
V2 X3 +/- 3 0.307% 5.805% 3 0.080% 2.591% 24
V2 X4 + 3 0.327% 6.809% 3 0.077% 2.622% 24
V2 X4 - 3 0.329% 8.030% 3 0.078% 2.507% 24
V2 X4 +/- 3 0.327% 6.908% 3 0.078% 2.642% 24
V3 X1 + 3 0.838% 7.925% 2 0.292% 3.918% 24
V3 X1 - 3 0.841% 7.970% 2 0.298% 4.047% 24
V3 X1 +/- 3 0.838% 7.946% 2 0.296% 3.907% 24
V3 X2 + 1 0.014% 1.411% 1 0.006% 0.184% 24
V3 X2 - 1 0.014% 1.498% 1 0.005% 0.174% 24
V3 X2 +/- 1 0.015% 1.439% 1 0.006% 0.181% 24
V3 X3 + 3 0.248% 4.533% 4 0.066% 2.199% 24
V3 X3 - 4 0.249% 4.561% 3 0.065% 2.175% 24
V3 X3 +/- 4 0.248% 4.599% 2 0.066% 2.175% 24
V3 X4 + 3 0.291% 5.891% 3 0.063% 3.438% 24
V3 X4 - 4 0.294% 6.133% 2 0.063% 3.569% 24
V3 X4 +/- 4 0.291% 5.855% 2 0.064% 3.421% 27

Table 4.13: Performance of MRP algorithm 2 and I-MRP algorithm. n = 16, α = 10, M =
500
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MRP2 I-MRP Opt
σ x ρ time (sec) eave emax time (sec) eave emax time (sec)
V1 X1 + 2 0.848% 6.140% 1 0.391% 2.636% 25
V1 X1 - 2 0.848% 6.096% 1 0.392% 2.377% 24
V1 X1 +/- 2 0.851% 6.122% 1 0.391% 2.172% 24
V1 X2 + 1 0.011% 0.128% 1 0.009% 0.104% 23
V1 X2 - 1 0.012% 0.172% 1 0.010% 0.083% 24
V1 X2 +/- 0 0.012% 0.131% 0 0.009% 0.093% 24
V1 X3 + 2 0.352% 3.715% 2 0.158% 1.773% 23
V1 X3 - 3 0.354% 3.911% 2 0.158% 1.749% 23
V1 X3 +/- 2 0.352% 3.622% 2 0.158% 1.775% 24
V1 X4 + 2 0.355% 4.389% 2 0.158% 1.142% 24
V1 X4 - 2 0.356% 4.638% 2 0.158% 1.226% 24
V1 X4 +/- 2 0.355% 4.411% 2 0.157% 1.110% 23
V2 X1 + 3 1.126% 6.478% 1 0.488% 3.429% 24
V2 X1 - 2 1.138% 6.365% 2 0.492% 3.681% 23
V2 X1 +/- 2 1.134% 6.466% 2 0.489% 3.389% 24
V2 X2 + 1 0.080% 0.882% 1 0.047% 0.715% 24
V2 X2 - 1 0.082% 0.992% 1 0.048% 0.647% 23
V2 X2 +/- 2 0.080% 0.942% 1 0.048% 0.711% 23
V2 X3 + 3 0.487% 5.408% 2 0.213% 2.235% 23
V2 X3 - 3 0.488% 5.516% 2 0.210% 2.328% 24
V2 X3 +/- 2 0.490% 5.620% 2 0.213% 2.235% 24
V2 X4 + 2 0.501% 6.480% 2 0.206% 2.216% 24
V2 X4 - 3 0.507% 7.391% 2 0.205% 2.099% 23
V2 X4 +/- 3 0.504% 6.535% 2 0.206% 2.198% 23
V3 X1 + 2 0.985% 5.891% 2 0.445% 3.905% 24
V3 X1 - 2 0.995% 5.852% 1 0.445% 3.451% 24
V3 X1 +/- 2 0.986% 5.844% 1 0.447% 3.539% 24
V3 X2 + 1 0.045% 0.908% 1 0.030% 0.453% 23
V3 X2 - 1 0.046% 0.969% 1 0.030% 0.466% 23
V3 X2 +/- 1 0.046% 0.924% 1 0.030% 0.445% 24
V3 X3 + 2 0.428% 3.933% 2 0.191% 1.646% 24
V3 X3 - 2 0.430% 4.106% 2 0.190% 1.666% 24
V3 X3 +/- 2 0.428% 3.922% 2 0.190% 1.660% 24
V3 X4 + 2 0.433% 5.262% 2 0.178% 2.195% 24
V3 X4 - 2 0.438% 5.823% 2 0.176% 2.081% 23
V3 X4 +/- 3 0.434% 5.222% 2 0.178% 2.138% 23

Table 4.14: Performance of MRP algorithm 2 and I-MRP algorithm. n = 16, α = 10, M =
1000
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As shown in Tables 4.3 to 4.14, MRP2 and I-MRP algorithm perform very well in

terms of accuracy and efficiency. Algorithm I-MRP performs better than MRP2 in accuracy,

and the speed of algorithm I-MRP is almost as fast as MRP2. Therefore, we use I-MRP

algorithm to solve stage 2 problems when we investigate the stage 1 problem using the

following parameter settings.

1) Set n=4.

2) Form the reallocation cost matrix by generating the reallocation costs based on ki j ∼
Uniform (0,200) i, j = 1, ...,n, i 6= j.

3) Form the unit cost of resource based on ci/C∼Uniform(0.4,0.6), C = 1000, 1500. i =

1, ...,n.

4) Form the slope vector by generating each slope based on αi ∼ Uniform(0.5,0.7),

i = 1, ...,n.

5) Form the mean demand vector by generating each mean demand based on µi ∼ Uni-

form(600,1000).

6) Form the standard deviation vector as follows:

(a) σi = 10%µi i = 1, ...,n.

(b) σi = 30%µi i = 1, ...,n.

7) Form the correlation coefficient matrix in three forms as follows:

(a) Generate ρi j ∼ Uniform (0,1) (All demands are positively correlated).

(b) Generate ρi j ∼ Uniform (-1,0) (All demands are negatively correlated).

(c) Generate ρi j ∼ Uniform (-1,1) (Demands can be negatively or positively corre-

lated).

Based on this experimental setup, we have a total of 12 different scenarios. We replicate

each scenario with different random number seeds 10 times, which results in a total of
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120 experiments. In Tables 4.15 to 4.26 show the optimal resource capacities and optimal

expected objective values. The results show that there can be significant gap between the

optimal expected objective value with reallocation and the one without reallocation, and,

(1) The larger the unit resource cost the larger the gap; (2) The larger the standard deviation

of demand the larger the gap; (3) The smaller the correlation between demands the larger

the gap.

xNA∗
1 xNA∗

2 xNA∗
3 xNA∗

4 ob jNA∗ x∗1 x∗2 x∗3 x∗4 ob j∗ diff
166.1 343.9 178.2 194.7 320103 0.0 360.4 543.4 0.0 336030 4.98%
268.2 273.2 255.3 295.2 515006 0.0 275.5 450.6 365.5 522863 1.53%
205.2 289.7 343.1 158.8 452592 0.0 0.0 343.3 661.7 467165 3.22%
307.4 245.8 162.4 200.7 342646 304.1 242.8 158.7 209.3 345108 0.72%
183.0 390.1 236.7 205.7 504302 0.0 886.8 0.0 190.4 559055 10.86%
325.7 168.6 276.0 285.2 481432 823.7 0.0 0.0 250.8 496212 3.07%
248.7 266.6 244.3 181.3 397333 0.0 764.9 0.0 184.7 413913 4.17%
304.0 342.1 134.4 322.4 584091 291.4 310.8 164.0 333.1 587056 0.51%
292.2 248.4 199.5 199.5 409181 288.9 461.1 0.0 209.8 427285 4.42%
247.9 322.5 234.1 307.0 544665 0.0 0.0 569.5 580.5 584456 7.31%

Table 4.15: Optimal solution of P1 with σ = 0.1µ, ρ =−1, C = 1000

xNA∗
1 xNA∗

2 xNA∗
3 xNA∗

4 ob jNA∗ x∗1 x∗2 x∗3 x∗4 ob j∗ diff
166.1 343.9 178.2 194.7 320103 0.0 357.5 545.9 0.0 335915 4.94%
268.2 273.2 255.3 295.2 515006 0.0 274.6 453.3 363.9 522744 1.50%
205.2 289.7 343.1 158.8 452592 0.0 0.0 343.5 660.9 467290 3.25%
307.4 245.8 162.4 200.7 342646 304.1 242.4 159.0 209.3 345102 0.72%
183.0 390.1 236.7 205.7 504302 0.0 886.6 0.0 189.0 558506 10.75%
325.7 168.6 276.0 285.2 481432 822.9 0.0 0.0 251.6 496132 3.05%
248.7 266.6 244.3 181.3 397333 0.0 765.9 0.0 184.0 414058 4.21%
304.0 342.1 134.4 322.4 584091 292.8 315.5 158.9 333.0 586842 0.47%
292.2 248.4 199.5 199.5 409181 288.9 460.8 0.0 210.0 427265 4.42%
247.9 322.5 234.1 307.0 544665 0.0 0.0 568.9 581.1 584768 7.36%

Table 4.16: Optimal solution of P1 with σ = 0.1µ, ρ = 0, C = 1000

4.4.2 Impact of System Parameters on the Stage 1 Model

In this section, we provide an algorithm to solve the stage 1 problem, and investigate the im-

pact of various system parameters such as the slope of the demand function, unit investment

cost, mean, variance and correlation of the random market sizes on the optimal expected

profit and the optimal resource capacity levels.
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xNA∗
1 xNA∗

2 xNA∗
3 xNA∗

4 ob jNA∗ x∗1 x∗2 x∗3 x∗4 ob j∗ diff
166.1 343.9 178.2 194.7 320103 0.0 358.0 546.2 0.0 335712 4.88%
268.2 273.2 255.3 295.2 515006 0.0 274.4 459.0 358.8 522386 1.43%
205.2 289.7 343.1 158.8 452592 0.0 0.0 343.7 660.1 467087 3.20%
307.4 245.8 162.4 200.7 342646 304.9 241.1 159.0 210.1 344888 0.65%
183.0 390.1 236.7 205.7 504302 0.0 885.8 0.0 191.0 558137 10.68%
325.7 168.6 276.0 285.2 481432 822.2 0.0 0.0 252.4 496102 3.05%
248.7 266.6 244.3 181.3 397333 0.0 765.5 0.0 184.5 413414 4.05%
304.0 342.1 134.4 322.4 584091 293.6 317.6 157.3 332.4 586598 0.43%
292.2 248.4 199.5 199.5 409181 288.7 461.3 0.0 209.8 427187 4.40%
247.9 322.5 234.1 307.0 544665 0.0 0.0 568.9 581.4 584473 7.31%

Table 4.17: Optimal solution of P1 with σ = 0.1µ, ρ = 1, C = 1000

xNA∗
1 xNA∗

2 xNA∗
3 xNA∗

4 ob jNA∗ x∗1 x∗2 x∗3 x∗4 ob j∗ diff
98.8 265.6 108.1 103.2 150733 0.0 277.0 339.1 0.0 168228 11.61%
196.5 210.9 199.2 222.3 297818 0.0 210.0 219.3 410.6 311464 4.58%
129.1 226.8 274.8 83.1 255053 0.0 0.0 276.5 458.2 275217 7.91%
213.4 157.6 71.8 128.6 140753 211.3 161.8 60.8 135.8 143399 1.88%
103.7 336.7 143.3 123.4 293655 0.0 736.3 0.0 59.4 355412 21.03%
257.0 65.7 204.5 216.8 262973 820.1 0.0 0.0 0.0 301543 14.67%
178.5 203.4 161.9 113.2 199108 0.0 568.1 0.0 114.8 223782 12.39%
218.3 281.4 50.0 256.5 351071 201.4 257.6 74.7 271.2 354189 0.89%
238.7 190.6 126.7 135.9 233460 235.1 346.6 0.0 142.5 252407 8.12%
157.9 250.4 179.0 239.4 308023 0.0 0.0 454.1 437.0 356673 15.79%

Table 4.18: Optimal solution of P1 with σ = 0.1µ, ρ =−1, C = 1500

Let xNR
i denote the optimal capacity of resource i when there is no reallocation between

the resources. E(Φ∗(
−→
Γ ,−→x )) is the expected objective function value of P2 given a random

market size vector
−→
Γ and a capacity vector −→x .

We compute the optimal resource capacities by the following algorithm:

(1) Let xi = xNR
i ∀i and l = 1.

(2) Fixing other capacities, compute the capacity of resource l that maximizes the objec-

tive function of P1, which is given by E(Φ∗(
−→
Γ ,−→x ))−∑n

i=1 cixi. The computation of

E(Φ∗(
−→
Γ ,−→x )) is based on Monte Carlo simulation as explained in detail below. A

new value of xi, xn
i , which maximizes the objective function of P1, is obtained based

on binary search in interval [0,∑n
i=1 xNR

i ]. Note that the optimal value of xi can not be

larger than ∑n
i=1 xNR

i .
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xNA∗
1 xNA∗

2 xNA∗
3 xNA∗

4 ob jNA∗ x∗1 x∗2 x∗3 x∗4 ob j∗ diff
98.8 265.6 108.1 103.2 150733 0.0 274.1 342.1 0.0 168062 11.50%
196.5 210.9 199.2 222.3 297818 0.0 209.0 218.2 412.4 311349 4.54%
129.1 226.8 274.8 83.1 255053 0.0 0.0 275.8 458.9 275354 7.96%
213.4 157.6 71.8 128.6 140753 208.6 162.8 62.2 135.6 143360 1.85%
103.7 336.7 143.3 123.4 293655 0.0 747.2 0.0 42.6 355012 20.89%
257.0 65.7 204.5 216.8 262973 820.9 0.0 0.0 0.0 301427 14.62%
178.5 203.4 161.9 113.2 199108 0.0 567.9 0.0 114.5 223927 12.47%
218.3 281.4 50.0 256.5 351071 203.2 260.4 70.5 271.1 353876 0.80%
238.7 190.6 126.7 135.9 233460 235.2 346.5 0.0 142.6 252384 8.11%
157.9 250.4 179.0 239.4 308023 0.0 0.0 452.8 438.1 356955 15.89%

Table 4.19: Optimal solution of P1 with σ = 0.1µ, ρ = 0, C = 1500

xNA∗
1 xNA∗

2 xNA∗
3 xNA∗

4 ob jNA∗ x∗1 x∗2 x∗3 x∗4 ob j∗ diff
98.8 265.6 108.1 103.2 150733 0.0 274.0 341.3 0.0 167853 11.36%
196.5 210.9 199.2 222.3 297818 0.0 210.0 217.0 412.7 310955 4.41%
129.1 226.8 274.8 83.1 255053 0.0 0.0 275.8 459.4 275137 7.87%
213.4 157.6 71.8 128.6 140753 210.0 161.2 62.0 136.5 143129 1.69%
103.7 336.7 143.3 123.4 293655 0.0 781.1 0.0 1.2 354829 20.83%
257.0 65.7 204.5 216.8 262973 820.1 0.0 0.0 0.0 301378 14.60%
178.5 203.4 161.9 113.2 199108 0.0 568.9 0.0 114.8 223260 12.13%
218.3 281.4 50.0 256.5 351071 205.3 258.4 72.3 268.4 353620 0.73%
238.7 190.6 126.7 135.9 233460 234.8 346.6 0.0 142.8 252287 8.06%
157.9 250.4 179.0 239.4 308023 0.0 0.0 452.6 438.4 356627 15.78%

Table 4.20: Optimal solution of P1 with σ = 0.1µ, ρ = 1, C = 1500

(3) If |−→x −−→xn | < ε, return
−→
xn as the optimal solution. Otherwise, let i = i + 1. If i > n,

i = 1. Go to step (2).

In step 2, E(Φ∗(
−→
Γ ,−→x )) is obtained by Monte Carlo simulation. We generate M inde-

pendent realizations of the market size
−→
Γ . For each realization i, i = 1,2, ...,M, and a capac-

ity vector −→x , we compute Φ∗(−→γ ,−→x ) based on I-MRP algorithm. Then, E(Φ∗(
−→
Γ ,−→x )) is

approximated by the average over all realizations, i.e., ∑M
i=1 Φ∗(−→γ ,−→x )/M. In order to gen-

erate a realization of the demand vector
−→
Γ , we first generate a vector

−→
Z with size n, where

E(z1) = E(z2) = ... = E(zn) = 0, Var(z1) = Var(z2) = ... = Var(zn) = 1 and z1,z2, ...,zn

are independent. Suppose that Σ is the covariance matrix for the demands, and Σ = AT A

after conducting the Cholesky decomposition where A is an upper triangular matrix. Let

−→µ denote the mean vector for the market sizes of the demands. Then
−→
Γ =−→µ +A

−→
Z is the

correlated market size vector, which has mean −→µ and covariance matrix Σ. We use 40,000

replications to compute E(Φ∗(
−→
Γ ,−→x )). All of our standard errors are within 0.5%.
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xNA∗
1 xNA∗

2 xNA∗
3 xNA∗

4 ob jNA∗ x∗1 x∗2 x∗3 x∗4 ob j∗ diff
167.1 344.6 182.8 196.9 321338 3.3 397.3 487.1 0.0 360452 12.17%
285.7 279.8 256.6 303.9 521933 0.0 280.7 335.9 474.7 576006 10.36%
206.2 310.2 343.3 159.8 459156 74.1 0.0 354.2 570.7 502630 9.47%
315.8 253.2 163.2 201.0 345660 297.8 231.8 146.7 237.9 377722 9.28%
186.1 401.2 239.2 211.0 509033 0.0 878.9 0.0 161.6 607819 19.41%
326.4 169.1 276.6 290.3 482801 926.3 0.0 0.0 124.4 515519 6.78%
267.6 289.1 245.8 181.8 408188 0.0 751.7 0.0 199.2 478063 17.12%
306.3 344.8 140.6 327.5 587396 262.1 212.3 246.5 380.1 624860 6.38%
292.3 249.8 214.5 202.6 412129 277.3 433.0 0.0 250.9 455890 10.62%
250.4 328.5 234.6 321.0 550399 0.0 0.0 579.1 569.1 625793 13.70%

Table 4.21: Optimal solution of P1 with σ = 0.3µ, ρ =−1, C = 1000

xNA∗
1 xNA∗

2 xNA∗
3 xNA∗

4 ob jNA∗ x∗1 x∗2 x∗3 x∗4 ob j∗ diff
167.1 344.6 182.8 196.9 321338 0.0 391.3 512.2 0.0 358624 11.60%
285.7 279.8 256.6 303.9 521933 0.0 284.5 346.1 463.1 573594 9.90%
206.2 310.2 343.3 159.8 459156 40.0 0.0 350.9 611.5 503989 9.76%
315.8 253.2 163.2 201.0 345660 294.4 235.8 148.9 237.3 377110 9.10%
186.1 401.2 239.2 211.0 509033 0.0 899.5 0.0 167.2 603250 18.51%
326.4 169.1 276.6 290.3 482801 877.4 0.0 0.0 183.3 514082 6.48%
267.6 289.1 245.8 181.8 408188 0.0 758.0 0.0 196.9 478664 17.27%
306.3 344.8 140.6 327.5 587396 258.2 260.8 219.0 368.8 620784 5.68%
292.3 249.8 214.5 202.6 412129 277.7 432.4 0.0 251.4 455911 10.62%
250.4 328.5 234.6 321.0 550399 0.0 0.0 582.8 568.5 626724 13.87%

Table 4.22: Optimal solution of P1 with σ = 0.3µ, ρ = 0, C = 1000

First, we consider a simple system setting to investigate the sensitivity of the optimal

expected profit and the optimal capacity levels with respect to various system parameters.

We consider a system with 3-resources. Our main goal is to investigate the impact of flex-

ibility on the performance of the system. To this end, we choose the unit reallocation

costs as kii = 0, i = 1,2,3, k12 = k13 = k21 = k23 = 10,000, and k3 j = 0, j = 1,2,3. Since

k12, k13, k21 and k23 are very large numbers (in comparison to other reallocation costs),

resources 1 and 2 behave as dedicated resources serving their own markets. Since k31 and

k32 are 0, resource 3 serves the demand for resources 1 and 2 with no reallocation cost.

Therefore, it behaves as the flexible resource. We assign µ3 = 0 and σ3 = 0 so that there is

no demand for resource 3. This setting was analyzed analytically by Bish and Wang (2003).

Here, our goal is to investigate it further numerically.

The values for the remaining parameters are given in Table 4.27.
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xNA∗
1 xNA∗

2 xNA∗
3 xNA∗

4 ob jNA∗ x∗1 x∗2 x∗3 x∗4 ob j∗ diff
166.2 344.0 181.0 195.6 319841 0.0 399.2 496.6 0.0 355173 11.05%
283.2 277.8 255.5 301.6 518791 0.0 281.3 354.7 455.3 566832 9.26%
205.2 307.7 342.8 158.8 456955 42.4 0.0 351.5 605.3 500239 9.47%
313.1 250.8 162.1 200.6 344237 297.8 228.9 146.5 240.1 373978 8.64%
184.3 399.6 237.1 209.0 506096 0.0 914.4 0.0 147.9 596211 17.81%
325.9 168.6 276.1 288.9 480699 928.1 0.0 0.0 136.0 511277 6.36%
265.1 286.6 244.6 181.4 405908 0.0 753.2 0.0 200.0 472138 16.32%
304.8 343.5 138.7 326.0 584318 263.6 241.2 234.0 364.3 614906 5.23%
291.9 248.7 212.2 200.9 410891 276.5 433.5 0.0 249.5 453618 10.40%
248.9 327.0 234.2 318.6 546651 0.0 0.0 580.2 568.6 619484 13.32%

Table 4.23: Optimal solution of P1 with σ = 0.3µ, ρ = 1, C = 1000

xNA∗
1 xNA∗

2 xNA∗
3 xNA∗

4 ob jNA∗ x∗1 x∗2 x∗3 x∗4 ob j∗ diff
99.1 265.9 108.1 103.5 150443 0.0 309.7 308.7 0.0 190754 26.79%
201.2 211.9 199.3 224.1 298183 0.0 203.5 260.7 376.7 361539 21.25%
128.7 233.5 274.7 83.2 256642 0.0 0.0 291.2 446.2 308937 20.38%
214.4 158.1 71.6 128.5 140995 210.6 177.4 28.0 160.5 175318 24.34%
103.5 339.5 143.4 123.5 293993 0.0 799.7 0.0 0.0 406822 38.38%
256.4 65.7 204.3 217.2 262048 817.3 0.0 0.0 0.0 320351 22.25%
183.8 211.1 162.2 113.0 201910 0.0 568.8 0.0 123.5 285686 41.49%
218.4 281.4 50.5 256.8 350453 147.7 231.0 125.6 318.5 387779 10.65%
238.4 190.5 130.8 135.8 233514 223.1 334.3 0.0 170.0 279995 19.91%
157.4 251.2 178.9 242.8 307885 0.0 0.0 475.6 414.6 395400 28.42%

Table 4.24: Optimal solution of P1 with σ = 0.3µ, ρ =−1, C = 1500

Impact of αi: We have already shown that the optimal objective values of P1 and P2 de-

crease in αi, i = 1,2, ...,n. Through numerical analysis, we further investigate the impact

of αi on optimal objective value of P1 and the optimal investment level.

Figure 4.5 shows that the optimal objective of P1 decreases from 5500 to about 800 as

α1 increases from 0.5 to 4.

Figure 4.6 illustrates how the optimal resource capacities change in α1. The optimal

capacity of resource 1 ( the solid curve) decreases as α1 increases from 0.5 to 1.75, and the

curve is approximately a straight line with a negative slope. When α1 > 0.75, the optimal

capacity of resource 1 is zero. Intuitively, as α1 increases, the selling price of resource 1 at

market 1 has to be decreased to keep up the sales amount. Therefore, resource 1 becomes

less profitable. As a result, the investment in resource 1 decreases. When the value of α1

exceeds some threshold, it is not optimal to invest in resource 1. When α1 ≤ 1.75, the

optimal capacities for resources 2 and 3 do not change significantly. The reason is that the
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xNA∗
1 xNA∗

2 xNA∗
3 xNA∗

4 ob jNA∗ x∗1 x∗2 x∗3 x∗4 ob j∗ diff
99.1 265.9 108.1 103.5 150443 0.0 306.9 309.3 0.0 188516 25.31%
201.2 211.9 199.3 224.1 298183 0.0 203.2 255.8 382.0 359043 20.41%
128.7 233.5 274.7 83.2 256642 0.0 0.0 287.3 452.6 310141 20.85%
214.4 158.1 71.6 128.5 140995 205.0 176.9 31.0 162.5 174670 23.88%
103.5 339.5 143.4 123.5 293993 0.0 804.1 0.0 0.0 401455 36.55%
256.4 65.7 204.3 217.2 262048 818.3 0.0 0.0 0.0 318539 21.56%
183.8 211.1 162.2 113.0 201910 0.0 569.0 0.0 122.2 286280 41.79%
218.4 281.4 50.5 256.8 350453 155.4 227.8 117.5 321.7 383473 9.42%
238.4 190.5 130.8 135.8 233514 223.5 333.5 0.0 170.1 279937 19.88%
157.4 251.2 178.9 242.8 307885 0.0 0.0 474.0 417.6 396238 28.70%

Table 4.25: Optimal solution of P1 with σ = 0.3µ, ρ = 0, C = 1500

xNA∗
1 xNA∗

2 xNA∗
3 xNA∗

4 ob jNA∗ x∗1 x∗2 x∗3 x∗4 ob j∗ diff
99.1 265.9 108.1 103.5 150443 0.0 304.7 314.0 0.0 186684 24.09%
201.2 211.9 199.3 224.1 298183 0.0 205.5 261.1 373.8 354436 18.87%
128.7 233.5 274.7 83.2 256642 0.0 0.0 292.1 443.6 308228 20.10%
214.4 158.1 71.6 128.5 140995 210.1 173.0 28.4 163.5 172308 22.21%
103.5 339.5 143.4 123.5 293993 0.0 805.8 0.0 0.0 396256 34.78%
256.4 65.7 204.3 217.2 262048 815.6 0.0 0.0 0.0 317642 21.22%
183.8 211.1 162.2 113.0 201910 0.0 562.7 0.0 125.4 280797 39.07%
218.4 281.4 50.5 256.8 350453 155.8 228.2 121.1 315.6 380369 8.54%
238.4 190.5 130.8 135.8 233514 222.4 333.9 0.0 170.9 278355 19.20%
157.4 251.2 178.9 242.8 307885 0.0 0.0 471.2 419.2 391964 27.31%

Table 4.26: Optimal solution of P1 with σ = 0.3µ, ρ = 1, C = 1500

impact of the change of α1 is absorbed by the change in the optimal capacity of resource

1, which is most directly related. When α1 > 1.75, the optimal capacity of resource 1 is

always zero. Optimal capacity of resource 3 (dotted curve) decreases significantly in α1.

As α1 increases, demand from market 1 becomes less profitable, and less capacity is needed

from the flexible resource 3, which is used to cover the demand from market 1. Since the

optimal capacity of flexible resource 3 decreases, the optimal capacity of resource 2 (dashed

curve) increases.

Impact of ci: We have already shown that the optimal objective function values of P1 and

P2 decrease in ci, and the optimal capacity of resource i decreases in ci, i = 1,2, ...,n.

Figure 4.7 shows that the optimal expected profit is a convex nonincreasing function

of c1. Figure 4.8 shows that the optimal capacity of resource 1 (solid curve) decreases

as c1 increases. When the unit cost of resource 1 is low, the investment level in resource

1 is high. As c1 increases, the investment level in resource 1 decreases rapidly, and the
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Resource ci αi µi σi

1 55 1.21 120 50
2 60 1.6 165 80
3 65 1.5 0 0

Table 4.27: Parameter values for the three-resource system
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Figure 4.5: Sensitivity of the optimal expected profit with respect to α1

optimal capacity of flexible resource 3 (dotted curve) increases. In the mean time, the

optimal capacity of resource 2 (dashed curve) decreases as the optimal capacity of resource

3 increases. When c1 exceeds some threshold, it is not optimal to invest in resource 1. All

the demand for market 1 is satisfied by resource 3, and further increasing c1 does not affect

the optimal expected profit and the optimal resource capacities anymore.

Impact of µi: Figure 4.9 shows that the optimal expected profit increases from more than

800 to about 8000 as µ1 increases from 0 to 250.

Figure 4.10 illustrates how the optimal resource capacities change in µ1. The optimal

capacity of resource 1 (solid curve) is zero when µ1 is less than some threshold. Intuitively,

when µ1 is small, the demand for resource 1 can be covered by the flexible resource 3, and it

does not worth to invest in dedicated capacity of resource 1. As µ1 increases, the expected

profit increases with the increased demand in market 1. As a result, the investment in

resource 3 (dotted curve) increases. In the mean time, the optimal capacity of resource 2

(dashed curve) decreases. When the value of µ1 exceeds some threshold, it is optimal to

invest in dedicated but cheaper capacity of resource 1. As µ1 increases, the optimal capacity
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Figure 4.6: Sensitivity of the optimal resource capacities with respect to α1
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Figure 4.7: Sensitivity of the optimal expected profit with respect to c1

of resource 1 increases, and the curve is approximately a straight line with a positive slope.

On the other hand, the optimal capacities for resources 2 and 3 remain constant because the
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Figure 4.8: Sensitivity of the optimal resource capacities with respect to c1
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Figure 4.9: Sensitivity of the optimal expected profit with respect to µ1

impact of the change in µ1 is completely absorbed by the change in the optimal capacity of

resource 1.
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Figure 4.10: Sensitivity of the optimal resource capacities with respect to µ1
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Figure 4.11: Sensitivity of the optimal expected profit with respect to σ1

Impact of σi: Figure 4.11 presents the optimal expected profit as a function of the standard

deviation of demand for resource 1. Keeping other parameters fixed, when the standard
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deviation of the demand for resource 1 increases from 10 to 100, the optimal expected

profit increases.
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Figure 4.12: Sensitivity of the optimal resource capacities with respect to σ1

As shown by the solid curve in Figure 4.12, the optimal capacity of resource 1 first

decreases, and then increases with respect to σ1. The optimal capacity of flexible resource

3 (dotted curve) increases as σ1 increases. Intuitively, the increase in demand variability

requests more flexibility in the system, and the investment level in the flexible resource

increases. In the mean time, the optimal capacity of resource 2 (dashed curve) decreases.

Impact of correlation: We vary the correlation in between markets 1 and 2 (i.e., ρ12) and

observe how the optimal expected profit and the optimal resource capacities change. As

ρ12 increases, the expected profit decreases. Figure 4.13 illustrates the optimal resource

capacities as a function of the correlation coefficient between demands 1 and 2. As the

correlation increases, from -1 to 1, the optimal capacity of flexible resource 3 decreases.

The optimal capacities of resources 1 and 2 increase. As ρ12 increases, the diversity of the

environment decreases. As a result, the investment in flexible resource 3 decreases and the

investment in the dedicated resources increases.
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Figure 4.13: Sensitivity of the optimal resource capacities with respect to ρ12

Next, we further investigate the impact of the correlation for different systems. We

consider a 3-resource system with the following base values for the parameters:

1. α1 = α2 = α3 = 0.4.

2. c1 = c2 = c3 = 900.

3. µ1 = µ2 = µ3 = 500.

4. σ1 = σ2 = σ3 = 100.

5. k12 = k13 = 50, k21 = k23 = 60,k31 = k32 = 70.

Figure 4.14 shows the optimal expected profit as a function of ρ23 when ρ12 = ρ13 = 0.5.

Note that since the correlation matrix needs to be positive definite, ρ23 takes values from

-0.5 to 1 as shown in Figure 4.14. The straight line in Figure 4.14 represents the optimal

expected profit when there is no reallocation in the system. Keeping other parameters fixed,

when the correlation between demands 2 and 3 increases from -1 to 1, the optimal profit

decreases. The decrease of the optimal expected profit can be explained by the decrease of
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Figure 4.14: Optimal expected profit as a function of ρ23 when ρ12 = ρ13 = 0.5
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Figure 4.15: Optimal resource capacities as a function of ρ23 when ρ12 = ρ13 = 0.5

the diversity of the system which makes the reallocation less profitable. We also observe

that the reallocation has the most benefit when the market sizes are negatively correlated.
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Figure 4.15 illustrates how the optimal resource capacities change in ρ23. The straight line

in Figure 4.15 represents the optimal resource capacities when there is no reallocation in

the system. The optimal capacity of resource 1 first increases, and then decreases as ρ23

increases from -0.5 to 1, while the optimal capacity of resource 2 keeps decreasing and the

optimal capacity of resource 3 first decrease then increases.
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Figure 4.16: Optimal expected profit as a function of ρ23 when ρ12 = ρ13 =−0.5

Figure 4.16 shows the optimal expected profit as a function of ρ23 when ρ12 = ρ13 =

−0.5. Keeping other parameters fixed, when the correlation between demands 2 and 3

increases from -0.5 to 1, the optimal expected decreases. Figure 4.17 illustrates how the

optimal resource capacities change in ρ23. The optimal capacity of resource 1 decreases.

The optimal capacity of resource 2 first decreases, and then increases. The optimal capacity

of resource 3 keeps increasing.

Figure 4.18 shows the optimal expected profit as a function of ρ23 when ρ12 = 0.5,

and ρ13 = −0.5. Keeping other parameters fixed, when the correlation between demands

2 and 3 increases from -1 to 0.5, the optimal profit decreases. Figure 4.19 illustrates how

the optimal resource capacities change in ρ23. The optimal capacities of resource 1 and 2

decrease. The optimal capacity of resource 3 first decreases, and then increases.
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Figure 4.17: Optimal resource capacities as a function of ρ23 when ρ12 = ρ13 =−0.5
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Figure 4.18: Optimal expected profit as a function of ρ23 when ρ12 = 0.5, ρ13 =−0.5

4.5 Conclusion

We investigated the optimal capacity investment strategies under operational flexibility in

this chapter. In our model, investment decision in multiple resources is made before the de-
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Figure 4.19: Optimal resource capacities as a function of ρ23 when ρ12 = 0.5, ρ13 =−0.5

mand is known in accuracy. Then, the resource capacities are allocated and priced to satisfy

the realized demand. We formulated this problem as a two-stage stochastic programming

model. We characterized the structural properties of the stage 2 problem, and showed that

it can be solved by using a partitioning method when the size of problem is small. For the

larger size problems, we proposed three heuristics to solve it efficiently. Based on the re-

sults of the stage 2 problem, we also showed some useful properties of the optimal solution.

The numerical results indicated that a significant increase in expected profit can be obtained

when the reallocation is allowed in the system. The reallocation is more desirable when the

diversity of the system is high.
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Chapter 5

Extensions to the Multi-Resource Model

In this chapter, we consider two extensions of the multi-resource model discussed in Chap-

ter 4. In section 5.1, we relax the assumption that each facility has its own market, and

investigate a model in which q facilities are used to satisfy demands from m demand mar-

kets where m 6= q. We discuss how this model can be transformed to the model studied in

Chapter 4. In section 5.2, we consider a multi-resource and multi-period model. In this

model, the second stage problem has multiple periods during which resource capacities are

utilized flexibly to meet random demands from multiple market segments.

5.1 Asymmetric Resource-Market Segment Models

5.1.1 Model Formulation

In this section, we consider a different capacity investment problem which can be easily

formulated in a different way from (P1, P2). However, after conducting appropriate transi-

tion, the formulation of the new model can be transformed to (P1, P2) which is relatively

easy to analyze.

We consider a firm that manages the capacity investment decisions of q resources in

order to satisfy random demands from m different market segments. An illustration of

the system is given in Figure 5.1. Here, different market segments may correspond to

the customer groups who are willing to pay different prices for the same product or they
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Figure 5.1: An illustration of the resource allocation model

may correspond to the markets for different products. In addition, a resource represents a

flexible manufacturing facility or an inventory stock-point for a product at a given location.

We assume that the potential market size of demand for market segment i is a nonnegative

random variable Γi, i = 1, ...,m, and each unit is sold at a price pi in market i. Random

market demand Di for resource i can be controlled by the selling price pi according to

linear function

Di = Γi−αi pi

where αi is the slope of the demand-curve and Γi is the intercept. We assume that αi > 0

∀i. When a demand from market segment i is satisfied by using a unit of resource j, a

nonnegative unit production/procurement fee of w ji is incurred, i = 1,2, ...,m, j = 1,2, ...,q.

Each unit of resource j costs c j, j = 1,2, ...,q.

The capacity investment decision for the q resources is made long before the market po-

tential demand for each resource is realized. The term “capacity investment” decision either

corresponds to the quantity of inventory to purchase or the production quantity that should

be set at the beginning of a period. Once the market size of demand
−→
Γ = (Γ1,Γ2, ...,Γm)

is observed, the optimal operation strategy is conducted accordingly, i.e., setting the opti-

mal prices −→p = (p1, p2, ..., pm) for each market segment and allocating resource capacities

optimally to satisfy the demands from m market segments. We denote a realization of
−→
Γ = (Γ1,Γ2, ...,Γm) by −→γ = (γ1,γ2, ...,γm). The objective is to find the optimal initial ca-

pacities of resources −→y = (y1,y2, ...,yq) in order to maximize the expected profit. Let b ji

denote the amount of resource j allocated to satisfy demand from market segment i and B
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denote the allocation amount matrix (i.e., [b ji]) i = 1,2, . . . ,m and j = 1,2, . . . ,q. Then, the

model can be formulated as a two-stage optimization problem. Stage 1 problem P3 makes

the investment decisions as follows:

Stage 1 (P3):

max−→y
[E[Φ∗(−→y ,

−→
Γ )]−

q

∑
i=1

ciyi]

subject to:

y1, y2, ..., yq ≥ 0

E[Φ∗(−→y ,
−→
Γ )] is the expected revenue for a resource capacity vector−→y , where Φ∗(−→y ,−→γ )

is the optimal expected profit of the stage 2 problem (P4), which decides the optimal prices

and allocates the resource capacities optimally to fulfill the demand based on an observed

market potential vector −→γ .

Stage 2 (P4):

Φ∗(−→y ,−→γ ) = max
B,−→p

m

∑
i=1

pi(γi−αi pi)−
m

∑
i=1

q

∑
j=1

w jib ji (5.1)

s.t. γi−αi pi =
q

∑
j=1

b ji i = 1,2, ...,m (5.2)

m

∑
i=1

b ji ≤ y j j = 1,2, ...,q (5.3)

b ji ≥ 0 j = 1,2, ...q, i = 1,2, ...,m (5.4)

pi ≥ 0 i = 1, ...,m (5.5)

The stage 2 model (P4) maximizes the profit given the resource capacities −→y and the

realized market sizes −→γ . In (P4), constraint (5.2) ensures that the satisfied demand is equal

to the total capacity allocated to the market. Constraint (5.3) ensures that the total amount

of resource j allocated to the market segments does not exceed the total available capacity

y j, j = 1, ...,q. Constraints (5.4) and (5.5) are the nonnegativity constraints on the resource

capacity allocations and prices, respectively. P4 is a concave problem.
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Figure 5.2: Transformation from P4 to P2

5.1.2 Transformation of the Model

In this section, we transform the stage 2 model presented above (i.e., P4) to the stage 2

model discussed in Chapter 4 (i.e., P2).

Let us set n = m + q, and define a vector −→x = (x1,x2, ...,xn), where xi = 0 when

1 ≤ i ≤ m and xi = yi−m when m + 1 ≤ i ≤ n. The demand vector is expanded as −→γ =

(γ1,γ2, ...,γm,γm+1,γm+2, ...,γn), where γi = 0 when i ≥ m + 1. The unit reallocation cost

between i and j is defined for i, j = 1,2, ...,n as

k ji =





w ji if m+1≤ j ≤ n,1≤ i≤ m;

∞ else.

Figure 5.2 illustrates the transformation. Using parameters (−→x , −→γ , k ji, i, j = 1,2, ...,n)

and decision variables (z ji, i = 1,2, ...,n, j = 1,2, ...,n and pi, i = 1,2, ...,n) as the input of

P2, let z∗ji, i = 1,2, ...,n, j = 1,2, ...,n and p∗i , i = 1,2, ...,n be the corresponding optimal

solution. The following proposition shows that solving P2 with the transformed input pa-

rameters, we obtain the optimal solution to P4.

Proposition 21. (p∗i , i = 1,2, ...,m, z∗ji, i = 1,2, ...,m, j = m+1,m+2, ...,n) is an optimal

solution of P4.
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Proof: Based on the definition of k ji, we have z∗ji ≥ 0 if m + 1 ≤ j ≤ n,1 ≤ i ≤ m, and

z∗ji = 0 otherwise.

Since xi =





0 if 1≤ i≤ m;

ζi if m+1≤ i≤ n.
and γi = 0 when i ≥ m + 1, based on constraint

(4.2), we have

γi−αi pi ≤
n

∑
j=m+1

z ji if 1≤ i≤ m

0≤ yi−
m

∑
j=1

zi j, p∗i = 0 if m+1≤ i≤ n

As a result, P2 can be written as follows:

Φ∗(−→x ,−→γ ) = max
Z,−→p

m

∑
i=1

pi(γi−αi pi)−
n

∑
j=m+1

m

∑
i=1

w jiz ji

s.t. γi−αi pi ≤
n

∑
j=m+1

z ji i = 1,2, ...,m

m

∑
i=1

z ji ≤ y j j = m+1,m+2, ...,n

γi−αi pi ≥ 0 i = 1,2, ...,m

z ji ≥ 0 j = m+1,m+2, ...n, i = 1,2, ...,m

pi ≥ 0 i = 1, ...,n

Note that the above model is the same as P4 except that the first constraint is an in-

equality instead of an equality. However, a solution satisfying γi−αi pi < ∑n
j=m+1 z ji, i =

1,2, ...,m can not be an optimal solution of the above model because decreasing ∑n
j=m+1 z ji

results in a new feasible solution, which has a larger profit. Therefore, the optimal solution

of P2 must satisfy γi−αi pi = ∑n
j=m+1 z ji, i = 1,2, ...,m. Consequently, p∗i , i = 1,2, ...,m,

obtained from solving the above model is also the optimal selling price of resource i of P4

and b∗j−m,i = z∗ji when m+1≤ j ≤ n,1≤ i≤ m. ¥

To conclude, the optimal solution of P4 can always be obtained by transforming the

input parameters and solving P2.
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5.1.3 Heuristic Procedure for Solving the Stage 2 Model

In this section, we discuss the implementation of the I-MRP heuristic developed in Chapter

4 for solving P4. As illustrated in Figure 5.2 and discussed in section 5.1.2, P4 can be

transformed into P2 with the following properties:

1. Resource i, 1≤ i≤ m, can only be a consumer and has zero initial capacity.

2. Resource i, m+1≤ i≤ m+q, can only be a supplier.

3. If there exist zero-capacity sets when the algorithm stops, the number of the resources

in each zero-capacity set is equal to 1 because the suppliers are not connected (i.e.,

unit reallocation cost from one supplier to the other is infinity).

As a result of the transformation, both MRP1 and MRP2 algorithms can be used for

solving P2. Due to the above special properties, the I-MRP algorithm can be simplified as

follows:

1. If m < 2, stop the algorithm.

2. Starting from the output of the MRP1(MRP2), find all the zero-capacity sets, denoted

by Si
zero, i = 1,2, ...,a. If a < 1, stop the algorithm. Otherwise, let j := 1.

3. If j = a + 1, stop the algorithm. Otherwise, choose zero-capacity set S j
zero, where

|S j
zero|= 1 and denote the only resource in S j

zero as jzero.

4. Calculate the marginal reallocation profit from g to l, for all 1 ≤ g ≤ m, 1 ≤ l ≤
m, g 6= l as follows:

MRP jzero
gl = [(

γl−2yl

αl
)+− (

γg−2yg

αg
)+ + k jzerog− k jzerol]11(yg > 0)11(z jzerog > 0)

5. Choose the pair of resources, say g∗, l∗, with the largest marginal reallocation profit.

6. If MRP jzero
g∗l∗ < ε, let j := j + 1 and return to step 3. Otherwise, let ∆g∗l∗ denote the

adjustment of the reallocation amount from g∗ to l∗ through jzero and conduct the

reallocation as follows:
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(a) If (
γl∗−2yl∗−2min(yg∗ ,z j∗zerog∗)

αl∗
)+− (

γg∗−2yg∗+2min(yg∗ ,z j∗zerog∗)
αg∗

)+ + k jzerog− k jzerol > 0,

∆g∗l∗ = min(yg∗,z j∗zerog∗).

(b) Else

i. If
γl∗−2yl∗−2yg∗

αl∗
− γg∗

αg∗
+ k jzerog− k jzerol > 0, ∆g∗l∗ = yg∗ .

ii. Else if γg∗ + γl∗−2yg∗−2yl∗−αg∗(k jzerog− k jzerol)≥ 0,

∆g∗l∗ =
αg∗αl∗

2(αg∗ +αl∗)
(
γl∗−2yl∗

αl∗
− γg∗−2yg∗

αg∗
+ k jzerog− k jzerol).

iii. Else, ∆g∗l∗ =− γg∗−2yg∗−αg∗(k jzerog−k jzerol)
2 .

7. Update yg∗ , yl∗ , z j∗zerog∗ and z j∗zerol∗ with yg∗ − ∆g∗l∗ , yl∗ + ∆g∗l∗ , z j∗zerog∗ − ∆g∗l∗ and

z j∗zerol∗ +∆g∗l∗ , respectively. Go to step 4.

If I-MRP algorithm finds at least one profitable reallocation, MRP1(MRP2) should be

run again. I-MRP and MRP1(MRP2) algorithm are run consecutively in this manner until

no improvement is obtained in the profit. This process will converge to a feasible solution

as shown in Proposition 18.

5.2 Multi-period Pricing Models

In this section, we consider a similar capacity investment problem as in Chapter 4 except

that in this case the second stage problem has multiple periods during which resources are

utilized flexibly to meet random demands from multiple market segments.

5.2.1 Model Formulation

Suppose that, in the second stage, the resources will be sold in T periods, and the demands

in all periods γ1
i , γ2

i , ..., γT
i , ∀i can be observed or predicted precisely before the operational

decisions are made. MP1, the first stage problem, determines the optimal capacities to

maximize the expected profit given the random demands for T periods.
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Stage 1 (MP1):

max−→x
Π(−→x ) = E[Φ∗(−→x ,

−→
Γ 1,

−→
Γ 2, ...,

−→
Γ T )]−

n

∑
i=1

cixi

subject to:

x1, x2, ..., xn ≥ 0

Φ∗(−→x ,−→γ 1,−→γ 2, ...,−→γ T ) is the optimal objective value of the stage 2 problem (MP2)

which allocates the resource capacities and decides the optimal prices of each period op-

timally to fulfill the demand based on the observed market sizes −→γ 1,−→γ 2, ...,−→γ T . Market

demand dt
i for resource i at the tth period can be controlled by the selling price pt

i according

to linear function dt
i = γt

i −αt
i p

t
i where αt

i is the slope of the demand-curve and γt
i is the

intercept. We assume that αt
i > 0 ∀i, t.

Stage 2 (MP2):

Φ∗(−→x ,−→γ ) = max
Z,−→p

n

∑
i=1

T

∑
t=1

pt
i(γi−αt

i p
t
i)−∑

i
∑
j 6=i

ki jzi j (5.6)

s.t.
T

∑
t=1

(γt
i−αt

i p
t
i)≤ xi + ∑

j 6=i
z ji−∑

j 6=i
zi j i = 1, ...n (5.7)

zi j ≥ 0 i = 1, ...,n, j = 1, ...,n, j 6= i (5.8)

γt
i−αt

i p
t
i ≥ 0 i = 1, ...,n, t = 1, ...,T. (5.9)

pt
i ≥ 0 i = 1, ...,n, t = 1, ...,T (5.10)

In (MP2), constraint (5.7) ensures that the sum of the demands during the T periods for

resource i does not exceed the total available capacity.

MP1 has similar properties to P1, where MP2 has a more complicated structure than P2.

Therefore, we focus on analyzing the properties of MP2 and provide an efficient heuristic

method to solve it.
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5.2.2 Properties of MP2

Similar to P2, MP2 is a concave problem. Let λi, ui j, βt
i, i = 1,2, ...,n, j 6= i, t =

1, ...,T be the Lagrange multipliers of (5.7),(5.8), and (5.9) respectively, and we use

pt∗
i ,z∗i j,λ∗i , u∗i j, βt∗

i to denote the corresponding optimal values of the decision variables and

the Lagrange multipliers. The optimal solution satisfies the following K-K-T conditions:

pt∗
i =

γt
i

2αt
i
+

λ∗i −βt∗
i

2
∀i, ∀t (5.11)

λ∗j −λ∗i = ki j−u∗i j ∀ j 6= i (5.12)

λ∗i (
T

∑
t=1

(−γt
i +αt

i p
t∗
i )+ xi + ∑

j 6=i
z∗ji−∑

j 6=i
z∗i j) = 0 ∀i (5.13)

u∗i jz
∗
i j = 0 ∀ j 6= i (5.14)

βt∗
i (γt

i−αt
i p

t∗
i ) = 0 ∀i, ∀t (5.15)

β∗i ≥ 0,λ∗i ≥ 0,u∗i j ≥ 0 ∀i, j (5.16)

Note that we omit the last constraint (5.10) in MP2 because pi is always nonnegative

in an optimal solution since the demand for resource i is nonnegative. Based on the K-K-T

conditions, Lemma 7 still holds.

Proposition 22. In an optimal solution of MP2, let y∗i = xi +∑ j 6=i z∗ji−∑ j 6=i z∗i j.

1. If y∗i = 0, pt∗
i = γt

i
αt

i
, ∀t.

2. If y∗i ≥ ∑T
t=1 γt

i
2 , pt∗

i = γt
i

2αt
i
, ∀t.

3. If 0 < y∗i < ∑T
t=1 γt

i
2 , let us order the periods based on the values of γt

i
αt

i
, t = 1, ...,T from

the largest to the smallest, and obtain a set of indices {t1, t2, ..., tT}, i.e.,

γt1
i

αt1
i
≥ γt2

i

αt2
i
≥ ...≥ γtT

i

αtT
i

.

An unique integer d which satisfies 1≤ d ≤ T can be found, and

ptl∗
i =





γtl
i

2αtl
i
+

∑d
j=1 γ

t j
i −2y∗i

2∑d
j=1 α

t j
i

if l = 1,2, ...,d;

γtl
i

αtl
i

if l = d +1, ...,T .
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Proof:

In an optimal solution, all decision variables and Lagrange multipliers are nonnegative.

We first show that

λ∗i −βt∗
i ≥ 0 ∀i, t (5.17)

If λ∗i − βt∗
i < 0, βt∗

i > 0. Based on (5.15), pt∗
i = γt

i
αt

i
, and based on condition (5.11),

λ∗i −βt∗
i = γt

i
αt

i
≥ 0, which is a contradiction.

1. If y∗i = 0, based on constraints (5.7) and (5.9), pt∗
i = γt

i
αt

i
, ∀t.

2. Suppose y∗i ≥ ∑T
t=1 γt

i
2 . If ∃t, pt∗

i 6= γt
i

2αt
i
. Based on condition (5.11), λ∗i 6= βt∗

i . Based on

(5.17), λ∗i −βt∗
i

2 > 0⇒ λ∗i > 0. When λ∗i > 0, based on condition (5.13),

T

∑
t=1

(γt
i−αt

i p
t∗
i ) = y∗i . (5.18)

Let us plug (5.11) into (5.18). We have, ∑T
t=1 γt

i − 2y∗i = ∑T
t=1 αt

i(λ
∗
i − βt∗

i ). Since

y∗i ≥ ∑T
t=1 γt

i
2 , ∑T

t=1 αt
i(λ

∗
i − βt∗

i ) ≤ 0. Based on (5.17), λ∗i = 0. It is a contradiction.

Therefore, pt∗
i = γt

i
2αt

i
, ∀t. Note that in this case λ∗i = 0.

3. If 0 < y∗i < ∑T
t=1 γt

i
2 . First, we show that ∃t, βt∗

i = 0. If βt∗
i > 0, ∀t, based on (5.15) and

(5.17), we have pt∗
i = γt

i
αt

i
, and λi > 0. Based on (5.13), y∗i = 0, which is a contradiction.

Now we show, for the ordered indexes {t1, t2, ..., tT}, we have

(a) if βtl∗
i = 0, βt j∗

i = 0, j = 1,2, ..., l

(b) if βtl∗
i > 0, βt j∗

i > 0, j = l +1, l +2, ...,T.

When βtl∗
i = 0, based on (5.11), ptl∗

i = γtl
i

2αtl
i
+ λ∗i

2 . Since γtl
i −αtl

i ptl∗
i ≥ 0, λ∗i ≤ γtl

i

αtl
i
.

If βt j∗
i > 0, j ∈ {1,2, ..., l− 1}, based on (5.15), we have pt j∗

i = γ
t j
i

α
t j
i

and based on

(5.11),

λ∗i =
γt j

i

αt j
i

+βt j∗
i >

γtl
i

αtl
i
,

which is a contradiction. Therefore, βt j∗
i = 0, j = 1,2, ..., l
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When βtl∗
i > 0, if ∃βt j∗

i = 0, j ∈ {l +1, l +2, ...,T}, we have βtl∗
i = 0 because l < j,

which is a contradiction. Therefore, βt j∗
i > 0, j = l +1, l +2, ...,T.

Let d be an positive integer number which satisfies βt j∗
i = 0 if l ≤ d and βt j∗

i > 0 if

j > d. If d = T , there does not exist any integer 1 ≤ l ≤ T satisfies βt j∗
i > 0. Since

we have shown ∃t, βt∗
i = 0, so, d ≥ 1.

Next, we show that λ∗i > 0. If λi = 0, based on (5.17), βt∗
i = 0, ∀t. Based on (5.11),

we have pt j∗
i = γ

t j
i

2α
t j
i

and based on (5.7), ∑T
t=1 γt

i
2 ≤ y∗i . This is a contradiction. Therefore,

λ∗i > 0.

Since λ∗i > 0, based on (5.13),

y∗i =
T

∑
t=1

(γt
i−αt

i p
t∗
i )

=
d

∑
j=1

(γt j
i −αt j

i pt j∗
i )+

T

∑
j=d+1

(γt j
i −αt j

i pt j∗
i )

=
d

∑
j=1

(
γt j

i −αt j
i λ∗i

2
).

We have

λ∗i =
∑d

j=1 γt j
i −2y∗i

∑d
j=1 αt j

i

,

and

ptl∗
i =





γtl
i

2αtl
i
+ ∑d

j=1 γ
t j
i −2y∗i

2∑d
j=1 α

t j
i

if l = 1,2, ...,d;

γtl
i

αtl
i

if l = d +1, ...,T .

¥

Note the procedure to find the value of d is similar to the procedure to determine set T

presented in Appendix A.

Proposition 22 demonstrates how the optimal selling prices are related to the optimal

reallocation amounts in the optimal solution of MP2. If we can find the optimal reallocation

amounts, then the solution of MP2 is achieved.
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5.2.3 Heuristic for Solving MP2

In this section, we propose a heuristic algorithm to solve MP2. The idea is the same as the

heuristics developed in Chapter 4, i.e., make the reallocation if there is positive reallocation

profit until we cannot find any profitable reallocation. The heuristic algorithm is given as

follows:

Algorithm 3:

Let ε be a small positive real number.

1. Start with a solution without reallocation among the resources. −→y = −→x , zi j =

0, i, j = 1,2, ...,n. Order the periods based on the values of γt
i

αt
i
, t = 1, ...,T from

the largest to the smallest for every resource i, i = 1,2, ...,n, and obtain n sets of

indices {t i
1, t

i
2, ..., t

i
T}, i.e.,

γt i
1

i

αt i
1

i

≥ γt i
2

i

αt i
2

i

≥ ...≥ γt i
T

i

αt i
T

i

, i = 1,2, ...,n.

2. Compute the marginal profit of resource i as follows:

(a) If yi ≥ ∑T
t=1 γt

i
2 , λi = 0.

(b) If 0 < yi < ∑T
t=1 γt

i
2 , let d = 1.

i. If d = T or

d < t and
γt i

d
i

αt i
d

i

>
∑d

j=1 γ
t i

j
i −2yi

∑d
j=1 α

t i
j

i

≥ γ
t i
d+1

i

α
t i
d+1

i

,

let λi = ∑d
j=1 γ

tij
i −2yi

∑d
j=1 α

tij
i

. Record d and go to step 3.

ii. Otherwise, let d = d +1 and go to step 2(b)(i).

(c) If y∗i = 0, let λi = γt1
i

αt1
i
.

3. Compute the reallocation profit from resource i to resource j, denoted by MRPi j, for

all i 6= j as follows:

(a) If z ji = 0, MRPi j = [λ j−λi− ki j]11(yi > 0).
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(b) If z ji > 0, MRPi j =−[λi−λ j− k ji]11(yi > 0).

4. Choose the pair of the resources, say i∗, j∗, with the largest marginal reallocation

profit.

5. If MRPi∗ j∗ ≤ ε, stop. Compute the output as follows:

(a) ẑ∗i j = zi j, i, j = 1,2, ...,n

(b) i. If y∗i = 0, p̂t∗
i = γt

i
αt

i
, ∀t.

ii. If y∗i ≥ ∑T
t=1 γt

i
2 , p̂t∗

i = γt
i

2αt
i
, ∀t.

iii. If 0 < y∗i < ∑T
t=1 γt

i
2 ,

p̂tl∗
i =





γtl
i

2αtl
i
+

∑d
j=1 γ

t j
i −2y∗i

2∑d
j=1 α

t j
i

if l = 1,2, ...,d;

γtl
i

αtl
i

if l = d +1, ...,T .

(c) T̂ ∗ = ∑n
i=1 ∑T

t=1 p̂t∗
i (γi−αi p̂t∗

i )+∑n
i=1 ∑ j 6=i ki j ẑ∗i j

Otherwise, go to the next step.

6. Reallocate the resource from i∗ to j∗ based on the following (binary search):

Let ∆i∗ j∗ denote the adjustment of the reallocation amount from i∗ to j∗.

(a) If z j∗i∗ = 0, and after reallocating amount of yi∗ from i∗ to j∗, MRPi∗ j∗ > 0,

let ∆i∗ j∗ = yi∗ . Otherwise, search and obtain ∆i∗ j∗ ∈ (0,yi∗), which makes

MRPi∗ j∗ = 0 after reallocating ∆i∗ j∗ from i∗ to j∗.

(b) If z j∗i∗ > 0,

i. If after reallocating min(yi∗,z j∗i∗) from i∗ to j∗, MRPi∗ j∗ > 0, let ∆i∗ j∗ =

min(yi∗ ,z j∗i∗).

ii. Else if after reallocating max(yi∗,z j∗i∗) from i∗ to j∗, MRPi∗ j∗ > 0, let

∆i∗ j∗ = max(yi∗,z j∗i∗).

iii. Else, search and obtain ∆i∗ j∗ ∈ (0,yi∗), which makes MRPi∗ j∗ = 0 after re-

allocating ∆i∗ j∗ from i∗ to j∗.
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Update yi∗ , y j∗ and zi∗ j∗ with yi∗−∆i∗ j∗ , y j∗ +∆i∗ j∗ and zi∗ j∗ +∆i∗ j∗ respectively, and

go to step 2.

Step 1 of the above algorithm orders the periods for each resource. In step 2, marginal

shadow prices are computed based on Proposition 22. In step 3, we choose the pair of

resources i∗ and j∗ which have the maximum marginal reallocation profit. Step 4 stops

the algorithm if the approximated optimal solution is obtained. In step 5, we calculate the

amount of the adjustment of reallocation between the pair of the resources to eliminate

the reallocation profit between them by binary search. The complexity of the algorithm is

O(n3T ln2 M).

Similar to MRP1 and MRP2 algorithms discussed in Chapter 4, this algorithm converges

to an feasible solution. The proof is the same as the proof for MRP1 given in Proposition

17.

5.3 Conclusion and Future work

In this chapter, we investigated two extensions of the multi-resource model discussed in

Chapter 4. The first model contains q facilities which are used to satisfy demands from m

demand markets where m 6= q. We show that this model can be transformed to the model

studied in chapter 4 and solved by similar MRP1, MRP2 and I-MRP heuristics. Next, we

considered a multi-resource and multi-period model. We presented the properties of the

stage 2 problem of this model, and proposed a heuristic method to solve it.

A more realistic version of this multi-period problem is that, at the beginning of the

second stage, only the demand of the first period can be observed precisely. The pric-

ing and reallocation decisions need to be made based on the partial information. As time

goes on, the demand information of other periods becomes observable and the decisions on

pricing and reallocation are made accordingly. This decision process involves dynamic pro-

gramming and huge computational complexity. Finding an appropriate model and heuristic

methods to solve the problem efficiently remains as a future research question.
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Appendix A

Lemma 3. If a,b,c,d are real numbers satisfying

c > 0, d > 0,
a
c
≥ b

d
,

then
a
c
≥ a+b

c+d
≥ b

d
.

Proof:

c > 0, d > 0

=⇒ a
c
≥ b

d
⇐⇒ ad ≥ bc

=⇒ ad +ac≥ bc+ac, ad +bd ≥ bc+bd

=⇒ a
c
≥ a+b

c+d
≥ b

d
¥

Procedure to determine set T

When

∑
j∈S

(γ j−α j ∑
( f ,h)∈Sarc

l j

v f hk f h)+ > ∑
j∈S

2x j, λl > 0.

Let us order resources based on the values of γ j
α j
−∑( f ,h)∈Sarc

l j
v f hk f h, j ∈ S from the

largest to the smallest, and obtain a set of indices c(i) ∈ S, i.e., resource c(i) has the ith

position in the ordered sequence. If ∃i ∈ S with βc(i) = 0, according to (4.14),

γc(1)

αc(1)
− ∑

( f ,h)∈Sarc
lc(1)

v f hk f h−λl ≥
γc(2)

αc(2)
− ∑

( f ,h)∈Sarc
lc(2)

v f hk f h−λl

≥ ...≥ γc(i)

αc(i)
− ∑

( f ,h)∈Sarc
lc(i)

v f hk f h−λl ≥ 0

=⇒ βc(1) = βc(2) = ...βc(i−1) = 0
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Let d denote the position of the last resource i with βi = 0 in the sequence c(1),c(2), ...,c(ns),

i.e., βc(1) = βc(2) = ... = βc(d) = 0, and βc(d+1) = βc(d+2) = ...βc(ns) > 0.

Then T 6= Ø and βc(1) = 0.

Now, we discuss the following two cases: d = ns and 1≤ d < ns.

If d = ns, it means T = S, and

λl =
∑ j∈S(γ j−α j ∑( f ,h)∈Sarc

l j
v f hk f h)−2∑ j∈S x j

∑ j∈S α j
.

According to (4.14),

0≤
∑ j∈S(γ j−α j ∑( f ,h)∈Sarc

l j
v f hk f h)−2∑ j∈S x j

∑ j∈S α j
≤ γc(ns)

αc(ns)
− ∑

( f ,h)∈Sarc
lc(ns)

v f hk f h

must be satisfied.

If 1≤ d < ns,

λl =
∑d

j=1(γc( j)−αc( j) ∑( f ,h)∈Sarc
lc( j)

v f hk f h)−2∑ j∈S x j

∑d
j=1 αc( j)

(5.19)

and

γc(d+1)

αc(d+1)
− ∑

( f ,h)∈Sarc
lc(d+1)

v f hk f h <
∑d

j=1(γc( j)−αc( j) ∑( f ,h)∈Sarc
lc( j)

v f hk f h)−2∑ j∈S x j

∑d
j=1 αc( j)

≤ γc(d)

αc(d)
− ∑

( f ,h)∈Sarc
lc(d)

v f hk f h (5.20)

must be satisfied.

The value of d can be determined by increasing d from 1 to ns until (5.20) is satisfied.

Now, we show that d can be found in this way and it is unique. In equation (5.19), let us

increase d from 1 to ns. At some point, λl becomes positive because

∑
j∈S

(γ j−α j ∑
( f ,h)∈Sarc

l j

v f hk f h)+ > ∑
j∈S

2x j.
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If at this point,

λl >
γc(d+1)

αc(d+1)
− ∑

( f ,h)∈Sarc
lc(d+1)

v f hk f h,

then we stop increasing d. Otherwise we increase d until

λl >
γc(d+1)

αc(d+1)
− ∑

( f ,h)∈Sarc
lc(d+1)

v f hk f h.

If

λl ≤
γc(d+1)

αc(d+1)
− ∑

( f ,h)∈Sarc
lc(d+1)

v f hk f h,

even when d is increased to ns− 1, then β j = 0 ∀ j ∈ S. This follows from Lemma (3),

which implies that if

∑ns−1
j=1 (γc( j)−αc( j) ∑( f ,h)∈Sarc

lc( j)
v f hk f h)−2∑ j∈S x j

∑ns−1
j=1 αc( j)

≤ γc(ns)

αc(ns)
− ∑

( f ,h)∈Sarc
lc(ns)

v f hk f h

then

∑ns
j=1(γc( j)−αc( j) ∑( f ,h)∈Sarc

lc( j)
v f hk f h)−2∑ j∈S x j

∑ns
j=1 αc( j)

≤ γc(ns)

αc(ns)
− ∑

( f ,h)∈Sarc
lc(ns)

v f hk f h

Consider the case that d is increased until

λl >
γc(d+1)

αc(d+1)
− ∑

( f ,h)∈Sarc
lc(d+1)

v f hk f h.

Since

λl ≤
γc(d)

αc(d)
− ∑

( f ,h)∈Sarc
lc(d)

v f hk f h,

condition (5.20) is satisfied, and the value of d is computed. Moreover d is unique, because

if we continue increasing d to d +1, since

∑d
j=1(γc( j)−αc( j) ∑( f ,h)∈Sarc

lc( j)
v f hk f h)−2∑ j∈S x j

∑d
j=1 αc( j)

>
γc(d+1)

αc(d+1)
− ∑

( f ,h)∈Sarc
lc(d+1)

v f hk f h,
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according to Lemma (3), we have

∑d+1
j=1(γc( j)−αc( j) ∑( f ,h)∈Sarc

lc( j)
v f hk f h)−2∑ j∈S x j

∑d+1
j=1 αc( j)

>
γc(d+1)

αc(d+1)
− ∑

( f ,h)∈Sarc
lc(d+1)

v f hk f h.

Hence, condition (5.20) cannot be satisfied. By this argument, we can show that condition

(5.20) cannot be satisfied by increasing d after the first point which satisfies condition

(5.20). ¥
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