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ABSTRACT 

Yadong Xu. Bayesian Maximum Entropy Integration of Ozone Observations and Air Quality Model 

Predictions for Improved Exposure Estimates  

(Under the direction of Wil liam Vizuete and  Marc Serre) 

 

To support the Womenôs Health Initiative (WHI) Memory Study (WHIMS), a nationwide cohort 

study, accurate ozone exposure estimates for ambient concentrations needed to be generated at a national 

scale for years 1993-2010. For this large spatial and temporal coverage we investigated different geo-

statistical approaches to generate estimates that integrate routine monitoring from surface ozone 

observations and episodic chemical transport model (CTM) outputs. The goal is to take advantage of the 

accuracy of the observational data and the continuous spatial/temporal coverage of CTM model outputs.   

In this work, we demonstrate a Bayesian Maximum Entropy (BME) data integration geo-statistical 

approach for making national scale ozone estimates that models the non-linear and non-homoscedastic 

relation between air pollution observations and CTM predictions. This is the first application of BME that 

fully accounts for variability in CTM model performance through our novel Regionalized Air Quality 

Model Performance (RAMP) approach.  A validation analysis was completed using only non-collocated 

data outside of a validation radius ὶ and the error statistics between observations and re-estimated values 

were obtained. We show that by accounting for the spatial and temporal variability in model performance 

there is 3-12 fold increase in R2 (the squared Pearson correlation coefficient) percentage change for the 

daily ozone concentrations compared to estimates that assume model performance does not change across 

space and time. 

Our second project is to investigate the differences of the predictive capacity for two upscaling 

methods: USM1 (data aggregation from hourly to daily followed by BME approach estimation) and USM2 

(perform BME approach estimation on hourly ozone followed by data aggregation).  We found that the less 
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computationally intensive method USM1 outperforms the method USM2.    This highlights the capability 

of the RAMP approach that was able to capture the spatial temporal variability in CTM model performance 

at time scale of interest. Thus, we recommend to use upscaling method USM1 to integrate CTM model 

predictions through RAMP approach because USM1 can achieve higher estimation accuracy and also 

associated with much lower computational cost.   
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CHAPTER 1 ï INTRODUCTION  

 

Ozone is one of the six ñcriteriaò pollutants with established standards in the Clean Air Act 

charged by the U.S. Environmental Protection Agency (EPA).  The National Ambient Air Quality 

Standards (NAAQS) for ozone has been updated a couple times in the history.  The current ozone standard 

requires that annual fourth-highest daily maximum 8-hour ozone concentrations, averaged over 3 years, 

should be less than 70 ppb (parts per billion).  Tropospheric ozone has been associated with a wide range 

of adverse health outcomes including respiratory effects, cardiovascular effects, central nervous systems 

effects and mortality[1].   

Most of the evidence on health effects of ozone relates to short-term exposure.  The accumulated 

evidences on impacts in populations residing in areas with elevated ozone levels for prolonged periods are 

more difficult to be detected and are highly uncertain.  The Womenôs Health Initiative (WHI) memory 

study (WHIMS), which involved a nationwide, multicenter cohort of older women aged 65 to 80 years old, 

aims to investigate the neurodegenerative effects of long-term ozone exposures in older women.  This 

large scale cohort study lasted for over 10 years, from year 1996 to year 2006.   Our work is to support an 

exposure model used to estimate personal exposures of these participants, who came from multiple 

metropolitan or rural areas across the continental United States.  Spatial and temporal variability in ozone 

concentrations vary across different geographical regions and local urban sectors, this has been a major 

contributor to the uncertainties in air pollution epidemiologic studies.  To achieve the goal of 

understanding the adverse health effects of long-term exposure to ozone, accurate ambient estimates of the 

spatiotemporal variation of ozone levels at fine space and for long time periods are needed.   
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1.1 Ozone estimates for epidemiologic studies 

Epidemiologic studies investigate the associations between health effects and exposure of human 

populations to ambient air pollution.  These studies fall into several categories, including cross-sectional, 

cohort, panel and time-series studies.  Despite the epidemiologic study design, the investigator usually 

needs to collect data in regards to air pollution exposure level for the study participants or population and 

their health outcomes. Exposure measurement error, which is the uncertainty associated with the exposure 

metrics used to represent exposure of an individual or population, is an important contributor to 

uncertainty in air pollution epidemiologic study results.  Exposure error can influence observed 

epidemiologic associations between ambient pollutant concentrations and health outcomes by biasing 

effect estimates toward or away from the true associations and widening confidence intervals.  The 

difference between true and estimated exposure to ambient pollutants has been one of the major 

components that contribute to exposure measurement error in air pollution epidemiologic studies.   Spatial 

and temporal variability in ozone concentrations can contribute to exposure error in epidemiologic studies, 

especially for cross-sectional and large-scale cohort studies, if the ambient ozone concentrations measured 

at the central site monitor is used as an ambient exposure surrogate, which is often different from the 

actual ambient ozone concentrations outside a participantôs or a populationôs residence.   Community 

exposure using the ambient ozone measurements at nearby monitoring stations may not be well 

represented when monitors cover large areas with several sub-communities having different emission 

sources and topographies, such as in Los Angeles, California, where ozone monitors are found to have a 

much wider range of inter-monitor correlations (-0.06 to 0.97) than the ones in Atlanta, Georgia (0.61 to 

0.96) [1]. 
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Ozone epidemiologic studies use different exposure metrics and have different sources of exposure 

error.  For ozone short-term exposure, different studies report different daily metrics, including the 

maximum 8-hour running average of the hourly concentrations occurring in a 24-hour period (8-hour daily 

max)[2-4], the maximum hourly concentrations occurring in a 24-hour period (1-hour daily max)[5, 6] and 

the average of the hourly concentrations occurring in a 24-hour period (24-hour average)[7, 8].  According 

to the observed ozone concentrations at monitoring sites, the correlations among these common daily 

metrics vary site by site.  Overall, the two daily peak values, daily 1-hour maximum and daily 8-hour 

maximum, are well correlated, with a median correlation of 0.97 across the AQS sites. The correlation 

between the 8-hour maximum and 24-hour average are somewhat less well correlated with a median 

correlation of 0.89[1].  This indicates the influence of the overnight period on the 24-hour average ozone 

concentrations. In contrast, the 1-hour daily max and 8-hour daily max are more indicative of the daytime 

ozone concentrations.  Little consensus exists as to which metric is the most appropriate. Preferably, 

epidemiologic studies are recommended to report results using multiple metrics.  For ozone long-term 

exposure, a long-term arithmetic mean, such as monthly, quarterly or yearly averages of the above daily 

metrics is often computed for the exposure assessment.  It is important to recognize the different averaging 

times to interpret the health effect estimates reported in epidemiologic studies.   

Epidemiologic studies use a wide variety of methods to assign exposure.  The commonly used 

exposure assessment methods, from simple indicators to complex models, include exposure indicators, 

personal monitoring, dispersion modeling, land-use regression modeling and geo-statistical spatial 

interpolation methods.  Each method has its advantages and disadvantages when applied to individual 

studies.  For example, personal monitoring has the advantage of providing relatively accurate individual-

level exposure data, but the disadvantage is that it is very costly and time consuming so it is only practical 

in small scale studies involving a limited number of participants.  The major disadvantage of dispersion 

modeling is that it requires highly specific input data, including specific emission inventories and 

meteorological information.   
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Among different geo-statistical methods, the four commonly used methods are spatial averaging, 

nearest neighbor, inverse distance weighting and kriging.   All of these four methods are weighted average 

methods, with the interpolation process involving the following steps: 1) defining the search area or 

neighborhood around the point of interest; 2) locating the observed data points within this neighborhood; 

and 3) assigning appropriate weights to each of the observed data points.  The differences are in their 

choices of sample weights.  With spatial averaging, the same fractional weights are assigned to all sampled 

values within a fixed distance.  With nearest neighbor method, only a single sampled value is used and a 

weight of 1 is assigned.  With inverse distance weighting, the closer samples are assigned with larger 

weights. With kriging, the weights are assigned based on the spatial autocorrelation statistics of the 

sampled dataset.   The common limitation of these interpolation methods is that it relies on the 

observational data alone, which poses a bigger challenge for those areas where the monitoring stations are 

very sparse and/or those time periods where ozone monitoring data is missing.  

1.2 Environmental sources of ozone data 

An important environmental source of ozone data is measurements from routine monitoring 

networks.  In the United States, EPA regulations require state environmental agencies to operate air 

pollution monitoring stations and report air monitoring data to the Air Quality System (AQS) database, 

which is a repository of the monitoring data collected across various monitoring networks.  The hourly 

ozone observational data from these monitoring stations are available from year 1993 to the present.  The 

office of air quality planning and standards (OAQPS) rely upon ozone measurements for air quality 

assessment and attainment/non-attainment designations. By year 2015, there are over 1250 ozone monitors 

reporting hourly data to AQS.  Strict quality assurance and quality control procedures for ozone 

monitoring have been developed and implemented at the monitoring stations.  The hourly ozone 

concentrations reported to the AQS database can be considered as a reliable and accurate data source.  

There are, however, some limitations in this data source.  The distribution of ozone monitors across urban 

areas varies between cities because the number and location of required ozone monitors in an urban area 



 

 

5 

depend on many factors, such as the magnitude of the concentrations and population density.   The densest 

ozone monitoring sites are located in California and the eastern U.S, while relatively scarce across the 

central U.S.  Further, the monitoring durations on the stations are not consistent.  Due to the strong 

seasonality of ozone concentrations, many states limit their ozone monitoring to a certain portion of the 

year, termed the ozone season, the length of which varies from one area of the country to another.  As a 

result, less than half of the ozone monitoring sites in the U.S. operate year-round.   The majority of the 

sites only operate for summer months.  This is why the estimation approaches solely based on 

observational data in many of the previous epidemiological studies suffer from the missing data issues due 

to the sparse monitoring network across space and the inconsistent monitoring durations.   

Besides ozone monitoring networks, numerical model predictions have become a second source of 

environmental ozone data.  For more than a decade, air quality models such as Community Multi-scale Air 

Quality Modeling System (CMAQ) and Comprehensive Air Quality Model with extensions (CAMx) have 

been used as powerful computational tools for air quality management.  These models unite three major 

types of models, including meteorological models, emission models and a chemistry-transport model. 

They are designed to approach air quality as a whole by including state-of-science capabilities for 

modeling multiple air quality issues.   These models can simulate air pollution concentrations as averaged 

values of grid cells with continuous spatial and temporal coverage. For the purpose of air quality 

management and evaluation in the United States, there has been a wide range of modeling simulations 

completed which cover various model configurations, domains, episodes, chemical mechanisms and 

aerosol modules[9-14].  The acceptability of these modelsô performance was judged by comparisons of the 

model predicted concentrations, usually the daily 8-hour maximum ozone, to the corresponding observed 

values at monitoring sites.  The modeling community has made significant progress in reducing the 

emission uncertainties and inaccuracy of the chemical mechanisms in the air quality models to reduce the 

prediction errors.  Ozone model performance has been slowly improved as these modeling systems 

advance.  Overall, the daily 8-hour maximum ozone performance at AQS monitoring sites are relatively 

good, with the Mean Normalized Bias (MNB) within +/- 10% and Mean Normalized Gross Error (MNGE) 
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less than 20%. Although these models still have inherent uncertainties and weakness, the ozone 

concentrations predicted by these modeling platforms can closely reflect the corresponding observed 

concentrations in space and time.  Our work is to take what is available and make use of them.  

Due to limited computational resources, CTM model applications on national scale usually use a 

coarser horizontal grid cell resolution, such as 36x36 km2 for Continental U.S. or 12x12 km2 for the 

eastern U.S. covering thirty seven eastern states.  Model predictions from the 36x36 km2 Continental U.S. 

domain were often used to provide initial and boundary concentrations for simulations in the 12x12 km2 

domain. For those applications studying air quality at local scale, finer horizontal grid cell resolutions, 

such as 4x4 km2 or 2x2 km2 have been used.   In theory, higher resolution modeling is expected to yield 

better predictions because of better resolved model input fields, such as topography, land cover or 

emissions, and better mathematical characterization of physical and chemical processes.   Ozone model 

performance dependence on grid resolution have been examined [15, 16]. In general, finer grid scales are 

found to be able to better resolve the local scale spatial variability of ozone concentrations.   The newest 

release CMAQ 5.1 enables improved fine-scale simulations allowing users to simulate air quality at 

smaller settings like metropolitan areas as fine as 1x1km2 grid cell resolution.  Improvements in 

computational efficiency are expected to enable higher resolution in the future release of these modeling 

system.  

1.3 Geo-statistical approaches for integration of environmental data from multiple sources 

Geo-statistical approaches provide useful solution to integrate air pollution measurements and 

other relevant information.  Several Bayesian inference approaches [17-19] have been developed to 

provide a sophisticated statistical framework for the data integration of observations and CTM model 

predictions to improve ambient air pollution exposure estimates.  These approaches share the following 

characteristics: parameterize the relationship between air pollution observations and predictions, using 

kriging to obtain air pollution estimates for any given value of the parameters, and use Bayesian inference 

to obtain air pollution estimates that accounts for parameter uncertainty.  These methods, have the 
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following limitations: they assume that the relationship between air pollution observations and predictions 

is linear and homoscedastic, they share the linear limitations of the kriging estimator, and require a high 

computational cost.   

One approach is the Bayesian Maximum Entropy (BME) method of modern geo-statistics, a 

knowledge-processing framework, because of its following advantages. First of all, it can incorporate 

different kinds of knowledge bases, such as general knowledge derived from physical laws, scientific 

theories and specific knowledge processed from a given situation.  Secondly, there are no assumptions 

about the shape and distribution of the underlying probability law.  Therefore, it can integrate a wide 

variety of nonlinear, non-Gaussian uncertain datasets in a probabilistic way.  Thirdly, it is computational 

effective in spatial and temporal domains.   

In the past few years, BME has been applied to map criteria pollutant [20, 21].  Using BME to 

integrate air monitoring observations and numerical model predictions has been proven to be a cost-

effective and efficient technique in improving spatial predictions of ozone concentrations.   It allows us to 

take advantage of the strength from both data sources, the accuracy of the observational data and the good 

spatial/temporal coverage of air quality model outputs without assuming a parametric relationship between 

these two data sources.  In de Nazelle et al. [20], BME framework was used to develop ozone estimates for 

the state of North Carolina for a short study period, June 19th to June 30th of year 1996. The observational 

data from the stateôs ozone monitoring network in combination with model outputs from the Multiscale 

Air Quality Simulation Platform (MAQSIP) modeling system were integrated.  In this study, the BME 

framework gave preference to measured ozone data, also used MAQSIP model outputs as a function of 

model performance.  It showed that the BME data integration approach improves the accuracy and the 

precision of ozone estimations across the state of North Carolina when compared to a spatial interpolation 

of observational data alone.   
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1.4 Thesis Hypothesis and approach 

Our hypothesis is that fully characterizing the spatial and temporal heterogeneity in CTM model 

performance in our geo-statistical approach can increase estimation accuracy. In de Nazelleôs work [20], 

air quality model performance was assumed to be homogeneous for the study domain, so the bias and 

uncertainty associated with the model predictions were assumed to be the same across space and time. 

Therefore, the soft data was processed through pooling all the paired observed and modeled ozone 

concentrations in the domain at one time.  This assumption might be reasonable given the small study 

domain and short study period, but may not be applicable due to the documented spatial heterogeneity and 

temporal variability of ozone model performance across the country.  Therefore, we need to extend the 

work of de Nazelle et. alôs by developing a new approach that can accommodate the spatial or seasonal 

variability in the ozone model performance of the CTM. 

To test this hypothesis, we describe in Chapter 2 the development of a Regionalized Air Quality 

Model Performance (RAMP) approach to characterize the ozone model prediction errors that changes 

across space/time. Instead of making the assumption of air quality model performance homogeneity, we 

generate soft data as secondary information, to reflect the bias and uncertainty of model predictions 

changing across space and time. As a result, the RAMP approach is expected to capture geographical and 

temporal changes in bias and uncertainty associated with air quality model predictions.  The soft data 

generated from RAMP approach is integrated with the ozone observations in our BME model framework 

to produce ozone estimates.  We first compare the RAMP estimation with two other estimation scenarios, 

one using only ozone observations, and the other is a Constant Air Quality Model Performance (CAMP) 

scenario assuming that CTM model performance does not change across space and time.  We also compare 

our BME estimation to a cokriging estimation based on a parametric relationship between the observations 

and the CTM model predictions. 
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For the WHIMS work, the BME approach was used to interpolate directly the daily ozone 

concentrations by first aggregating the hourly observations and CTM model predictions. An alternative 

approach would be to first generate hourly BME estimates then aggregate it into a daily metrics. This 

alternative approach could be especially useful for those epidemiologic studies that require higher 

temporal resolution of ambient exposure estimates, such as those exposure models combining 

microenvironmental concentrations with human activity data to estimate personal exposures.   This could 

be relevant given the known diurnal patterns seen in hourly ozone data. The disadvantage of this 

alternative approach is the computational intensity, requiring over 200 times more CPU runtime.   In 

Chapter 3, our first task was to investigate the extent of the improvement on the accuracy of the hourly 

ozone estimates when incorporating CTM hourly model predictions through our RAMP approach.  Our 

second task is to investigate the differences of the predictive capacity between these two choices of 

generating daily ozone estimates.   We conducted a comparison of two upscaling methods: USM1 (data 

aggregation from hourly to daily followed by BME approach estimation) and USM2 (perform BME 

approach estimation on hourly ozone followed by data aggregation).   A validation analysis using only 

non-collocated data outside of a validation radius was performed and the error statistics between the 

observations and re-estimated values for two daily metrics, the daily maximum 8-hour average (DM8A) 

and the daily 24-hour average (D24A) ozone concentrations, were obtained to investigate the estimation 

accuracy.   
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CHAPTER 2 ï BAYESIAN MAXIMUM ENTROPY INTEGRATION OF OZONE 

OBSERVATIONS AND MODEL PREDICTIONS: A NATIONAL APPLICATION 1 

2.1 Introductio n 

According to EPAôs newly released Integrated Science Assessment for tropospheric ozone[1], the 

evidence of public health impacts on populations residing in areas with elevated ozone levels for 

prolonged periods are still uncertain. A better understanding of the adverse health effects to chronic ozone 

requires accurate exposure estimates at multiple temporal scales and at fine spatial resolutions.  Estimates 

of ozone concentrations typically rely on environmental data collected from two sources: monitoring 

networks and air quality chemical transport models (CTM).  The first source gives measurement 

concentrations for a long temporal time, but only at a point where the monitor is located. The CTM 

provides predictions for all locations, but is an average concentration based on the spatial resolution of the 

model grid cell. Further, given the intensive resources needed to build a CTM, the numbers of days that are 

simulated are limited. Several categories of data integration methods, including Kalman filter methods[22], 

variational methods [23], optimal interpolation [24] and Bayesian methods [17-19] have been developed to 

integrate these two types of data and rely on their individual strengths to build a more refined air pollution 

estimate. In this work, we choose the BME method of modern geostatistics, a knowledge-processing 

framework, because of its advantage of integrating a wide variety of nonlinear, non-Gaussian knowledge 

bases.  

  

                                                           
1 This chapter previously appeared as an article in the Journal of Environmental Science & Technology. 

The original citation is as follows: Xu, Yadong, Serre, L. Marc, Reyes, Jeanette, Vizuete, William.  

Bayesian Maximum Entropy Integration of Ozone Observations and Model Predictions: A National 

Application. Environmental Science & Technology (2016) 50 (8), 4393-4400. 



 

 

11 

We developed our data integration approach to obtain two metrics of ozone estimates, the DM8A 

and D24A ozone concentrations. Both of these metrics are commonly used in epidemiology studies [7, 8, 

25].  

Several Bayesian inference approaches [17-19] provide a sophisticated statistical framework for 

the data integration of ozone observations and model predictions and production of multiple time averaged 

estimates. These approaches share the following characteristics: parameterize the relationship between air 

pollution observations and predictions, use kriging to obtain air pollution estimates for any given value of 

the parameters, and use Bayesian inference to obtain air pollution estimates that accounts for parameter 

uncertainty. These methods, however, have the following limitations: they assume that the relationship 

between air pollution observations and predictions is linear and homoscedastic, they share the linear 

limitations of the kriging estimator, and have a high numerical cost.                        

To overcome these limitations de Nazelle et al. [20] introduced an approach based on the nonlinear 

extension of kriging provided by the Bayesian Maximum Entropy (BME) method of modern 

spatiotemporal geostatistics[26]. This approach uses a non-parametric methodology that fully accounts for 

the non-linearity and non-homoscedasticity of the relationship between air pollution observations and 

predictions. Their application of this approach showed that the BME method provided a numerically 

efficient data integration framework that combines a wide variety of nonlinear, non-Gaussian knowledge 

bases that are out of the reach of kriging-based methods. That study applied the BME framework to 

integrate ozone observations and model predictions simulated by the Multiscale Air Quality Simulation 

Platform (MAQSIP) in the state of North Carolina and exposure were estimated for a short study period, 

June 19th to June 30th of year 1996. That study demonstrated that the BME data integration approach, by 

incorporating the MAQSIP model predictions along with ozone observations, improved both the accuracy 

and the precision of ozone estimations across North Carolina. 
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It is clear from the de Nazelle et al.ôs work that the authors assumed that the model performance 

from the air quality model for ozone was homogeneous for the entire state. This was a reasonable 

assumption given the small study domain and short study period. In our work here, however, we are 

providing ozone estimates for the entire continental United States (US) for multiple time averages that 

could include a full year. Thus, de Nazelle et alôs assumption may not be applicable due to the unknown 

spatial heterogeneity and temporal variability of ozone model performance across the country.  Therefore, 

we extend the work of de Nazelle et alôs by developing our new RAMP approach that can accommodate 

any spatial or seasonal variability in the model performance of the CTM. The refined ozone estimates that 

we obtain could be applied for health assessments or adapted to generate exposure estimates for other 

criteria air pollutants.   

2.2 Data 

2.2.1 Ozone Monitoring Data 

The DM8A and D24A ozone concentrations for each monitoring site and day for the year 2005 

were constructed based on raw monitoring data from ozone monitoring stations measuring hourly O3 

concentrations using the procedure described here.  

We downloaded hourly ozone monitoring data (raw data) sampled from 1179 sites in the Air 

Quality Systems (AQS) database maintained by the U.S. Environmental Protection Agency (EPA), which 

is a repository of the monitoring data collected across various monitoring networks. Then we computed the 

DM8A and D24A of hourly ozone concentrations at each monitoring site to construct a daily ozone 

concentration database.   These daily averages are considered as hard data, an error-free proxy, in our later 

interpolation analysis (see SI section 7 for details).   
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2.2.2 Air Quality Model Predictions   

The air quality model data consists of hourly ozone concentrations predicted by the 

Comprehensive Air Quality Model with extensions (CAMx)[27]  modeling system on a 36x36km2 grid cell 

resolution domain covering the continental U.S. and a 12x12km2 grid cell resolution domain covering the 

Eastern U.S. as shown in Figure 1s. CAMx is a publicly available Eulerian grid-based model that can 

address tropospheric ozone, acid deposition, visibility, fine particulates and other air pollutants issues in 

the context of a ñone atmosphereò perspective.  The modeling simulations were created by the U.S. EPA as 

base-case simulations in their analysis of the final Transport Rule.  These air quality-modeling simulations 

used the CAMx version v5.30 with gas-phase chemistry mechanism CB05, and also refined 

meteorological and emission fields for the year 2005 across the United States.   Detailed model 

configurations and evaluation are discussed elsewhere[28].The hourly model predictions were used to 

compute the DM8A and D24A ozone concentrations at each grid cell.  These CTM predicted daily ozone 

concentrations are used to construct the soft data, as secondary information with uncertainties, consisting 

of the expected values of the daily concentrations and the uncertainties associated with the expected values 

at each grid cell. The details of soft data construction are described in section 3.3.  

2.3 Methods 

2.3.1 BME Estimation Methodology 

BME is a modern geo-statistical method [26] for spatial-temporal interpolation that incorporates 

information from many different data sources. The implementation and performance of BME have been 

detailed in other works[21, 29], and its application to the integration of O3 observations and model 

predictions was described by de Nazelle et al[20].  In short, we model the (offset-removed) transform, 

which is a commonly used deterministic transformation[30], of air pollution as a Space/Time Random 

Field (S/TRF) X(p) at space/time coordinate p=(s,t), where s is the spatial coordinate and t is time. Our 

notation for S/TRFs consists of denoting a single random variable ὢ in capital letters, its realization, ὼ, in 

lower case; and vectors in bold faces (e.g. ● ὼȟȣ ). The general knowledge base (G-KB) 
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characterizing X(p) consists of the mean function ά ▬ Ὁὢ, where ὉȢ is the stochastic expectation, 

describing its consistent trends, and the covariance function ὧ ▬ȟ▬ Ὁ ὢ▬ ά▬ ὢ▬ᴂ

ά▬ᴂ  describing its space/time dependencies. Likewise the site specific knowledge base (S-KB) 

consists of the hard data ● at space/time observation points ▬  located at the monitoring stations, and the 

soft data charactering the S/TRF values ●  at the space/time model prediction points ▬  in terms of a site-

specific PDF Ὢ● . Denoting the G-KB as Ὃ ά ▬ȟὧ ▬ȟ▬  and the S-KB as Ὓ ● ȟὪ● , 

we can summarize the BME steps as 1) using the Maximum Entropy principle of information theory to 

process the G-KB in the form of a prior Probability Distribution Function (PDF) Ὢ, 2) integrating the S-

KB using an epistemic Bayesian conditionalization rule to create a BME posterior PDF Ὢ characterizing 

the value ὼ taken by X(p) at any estimation point ▬  of interest, and 3) computing space/time estimates 

based on the BME posterior PDF. The BME posterior PDF is given by the BME equation 

Ὢ ὼ  ὃ Ὠ᷿●  Ὢ● Ὢ ●                                                                                               (E2-1) 

where ● ὼȟ●ȟ●  is the value of ὢ▬ at points ▬ ▬ȟ▬ȟ▬  and ὃ is a normalization 

constant.  

Let ὤ▬ ὤ▼ȟὸ be the Space/Time Random Field (S/TRF) representing daily ozone. In this study 

we define ὤ▼ȟὸ as the sum of a homogenous/stationary S/TRF and a known offset as follows. We first 

define the transformation of the ozone observational data ◑ at locations po as 

 

● ◑ɀέ ▬                                                                                                                         (E2-2) 

where έ ▬ may be any deterministic offset that can be mathematically calculated without error as a 

function of the space/time coordinate p.  We then define ὢ▬ as a homogeneous/stationary S/TRF 

representing the variability and uncertainty associated with the transformed data ●, and we let ὤ▬

ὢ▬ έ ▬ be the S/TRF representing daily O3. We can then calculate ᾀǶ, the estimated daily O3 at 

unmonitored location ▬ by obtaining the BME estimate ὼ for the transformed S/TRF ὢ▬ at the 

estimation point ▬ , and adding back έ ▬ , the offset calculated at ▬ .  
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The soft data are described by the PDF Ὢ●  characterizing the offset-removed ozone values ●  

at the soft data points ▬  corresponding to the centroids of the nm CTM computational nodes.  The offset-

removed ozone model predictions ὼ are calculated at these nodes. As a key conceptual aspect of our work, 

the generation of this soft data PDF requires not only the offset-removed ozone model predictions, but also 

the observation-prediction pairs where the observed and CTM predicted ozone concentrations are paired 

across space and time.   This PDF is expressed as 

Ὢ● Б Ὢὼȿὼȟ▬                                                                                                        (E2-3) 

which essentially characterizes how well each CTM offset-removed ozone value ὼ predicts the true offset-

removed ozone concentration ὼ at the computational prediction point ▬. Procedurally equation (3) is 

simply obtained by first calculating ὪὂἻ Б Ὢᾀȿᾀǿȟ▬ , where ᾀ and ᾀǿ are observed and CTM 

predicted ozone values, respectively, and then using the offset relationship ● ◑ɀέ ▬  to obtain 

Ὢ●Ἳ.      

As described by de Nazelle et al [31], the PDF Ὢᾀȿᾀǿȟ▬  is modeled using a parameterized 

statistical distribution, chosen to be the normal distribution truncated below zero with an expected value 

‗ ᾀǿ and variance ‗ ᾀǿ, such that: 

Ὢᾀȿᾀǿ ɮ ᾀȠ‗ ᾀǿȟ‗ ᾀǿ                                                                                                         (E2-4) 

In the soft data construction approach implemented by de Nazelle et al [31] the parameters ‗ ᾀǿ and 

‗ ᾀǿ vary as a function of the model prediction ᾀǿ but are constant with respect to the space/time point 

▬, hence their implementation is based on a Constant Air quality Model Performance (CAMP). The 

CAMP approach was appropriate since in their application the air quality model performance did not 

change across their small study geographical domain (North Carolina) and short study duration (<15 days).  
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Our aim, however, is to extend the BME methodological framework to the national domain by modeling 

‗ ᾀǿȟ▬  and ‗ ᾀǿȟ▬  as a function of both ᾀǿ and the space and time coordinate ▬, expressed as below.   

Ὢᾀȿᾀǿȟ▬ ɮ ᾀȠ‗ ᾀǿȟ▬ ȟ‗ ᾀǿȟ▬                                                                                             (E2-5) 

Therefore, we need to investigate how the air quality model performance varies across the continental US. 

2.3.2 Variability of CTM Model Performance Evaluation across t he Continental US 

 

Each observed daily concentration ᾀ is paired with its corresponding CTM prediction value ᾀǿ, 

and the error for the observation-prediction pair is defined as Ὡ ᾀǿ ᾀ. To evaluate the air quality 

model performance over a given space time region R of interest, we calculate error statistics such as the 

Mean prediction Error (ME), the Standard deviation of the prediction Error (SE), the mean normalized bias 

(MNB) and the mean normalized gross error (MNGE) as defined in SI equations A.1s-A.4s.   

According to the model performance analysis of this CTM (see Supporting Information (SI) 

section A.1), for the DM8A O3, we find that overall the CAMx simulation with 12x12km2 grid cell 

resolution has a substantially lower over-prediction (median ME=+1.4ppb) than that with 36x36km2 grid 

cell resolution (median ME=+4.5 ppb). Furthermore, as summarized in Figures A.2s and A.3s, the ME, 

SE, MNB and MNGE at individual monitoring sites vary over a wider range for the simulation with 

36x36km2 grid cell resolution.  The variability of these ME and SE values exhibit clear geographical trends 

(SI figures A.4s-7s for the DM8A and figures A.12s-15s for the D24A): Urban cities located in the east 

and west coast tend to have higher over-prediction bias (i.e. higher ME) and higher imprecision (i.e. higher 

SE) than sites located in the central United States.  We also found noticeable seasonal differences in the 

model performance for both CTM simulations (SI Figures A.8s-9s for the DM8A and figures A.16s-17s 

for the D24A).   
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The results of this analysis provide strong evidence that the performance of CTM varies 

considerably across the national domain and over seasons. Therefore, there is a need to extend the 

implementation of the BME framework to account for this space/time variability in model performance. 

We use the Regionalized Air Quality Model Performance (RAMP) method to quantify how the expected 

value ‗ ᾀǿȟ▬  and variance ‗ ᾀǿȟ▬  for the ozone soft data derived from CTM outputs vary as a 

function of both the CTM prediction ᾀǿ and the space/time computational node ▬ for which that prediction 

was calculated. The goal of the RAMP method is to select the most relevant observation-prediction pairs to 

most accurately identify the CTM bias associated with the prediction value ᾀǿ outputted for any space/time 

computational node ▬ of interest.   

2.3.3 The Proposed Regionalized Air Quality Model Performance (RAMP) Evaluation Framework 

 

In the first stage of the RAMP analysis, we pool for each monitoring site the observation-

prediction pairs (ᾀȟᾀǿ) that are within a time tolerance of ῳὝ ρςπ Ὠὥώί of a particular time of interest t.  

Examples of two selected sites are shown in Figure 1. These pairs are highly relevant to the location ▼ 

where the monitoring station is sited, and the 120 days time window is chosen to balance the abundance of 

the pairs and the intention to retain seasonal specificity in the ᾀǿ ᾀ differences. We stratify the pairs in 

10 equal percentile bins of increasing predicted values ᾀǿ, and for each bin we calculate the mean and 

variance of observed values, 

‗ ᾀǿȟ▼ȟὸ
ȟ▼ȟ
В ᾀ

ȟ▼ȟ
                                                                                  (E2-6) 

‗ ᾀǿȟ▼ȟὸ
ȟ▼ȟ
В ᾀ ‗ ᾀǿȟ▼ȟὸ

ȟ▼ȟ
                                                (E2-7) 

where ὲ ᾀǿȟ▼ȟὸ is the number of (ᾀȟᾀǿ) pairs in the bth bin, ᾀ is the jth observation value in these 

ὲ ᾀǿȟ▼ȟὸ pairs, and ᾀǿ is the average of the predictions ᾀǿ in these ὲ ᾀǿȟ▼ȟὸ pairs.  
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Figure 2. 1: RAMP analysis conducted specifically at time t=11-Jul-2005 and for sites ID 060372005(left) 

and 120713002(right). The empty circles show the pairs of observed-modeled values (ᾀȟᾀǿ) that are within 

120 days of t. The vertical lines show the stratification of these pairs in 10 bins. The interpolation lines 

connecting the filled circles and triangles show how the mean of the observed value in each bin, 

‗ ᾀǿȟ▼ȟὸ (filled circles), and the corresponding standard deviation, ‗ ᾀǿȟ▼ȟὸ (filled triangles) 

change as a function of the average modeled value ᾀǿ in that bin. 

In the second stage of the RAMP analysis we obtain ‗ ᾀǿȟ▬  and ‗ ᾀǿȟ▬  for actual predicted 

values ᾀǿ and space/time grid point ▬ ▼ȟὸ  as follows. For each monitoring site ▼ we perform a 

linear interpolation/extrapolation of the ‗ ᾀǿȟ▼ȟὸ  and ‗ ᾀǿȟ▼ȟὸ  values to obtain ‗ ᾀǿȟ▼ȟὸ  and 

‗ ᾀǿȟ▼ȟὸ  (see interpolation lines in figure 3), and then we do a spatial interpolation of these values to 

obtain ‗ ᾀǿȟ▬  and ‗ ᾀǿȟ▬  at ▬ ▼ȟὸ  using the following formula 

‗  ᾀǿȟ▼ȟὸ
В ▼ȟ▼   ȟ▼ȟ

В ▼ȟ▼
Ƞ ύ ▼ȟ▼

▼ȟ▼
                                     (E2-8) 

where n=1,éN refers the N monitoring sites closest to the location of the computational node ▼ of 

interest, and ύ ▼ȟ▼  is a weight equal to the inverse of the distance between the computational node ▼ 

of interest and the n-th neighboring monitoring station.  

Stated simply ᾀǿ ‗ ᾀǿȟ▬  is the bias characterizing systematic errors associated with a CTM 

prediction value of ᾀǿ calculated at space/time grid point ▬ ▼ȟὸ , and ‗ ᾀǿȟ▬  is the variance 

characterizing the associated imprecision. The strength of the RAMP method is that it does not make any 

assumption on the relationship between observed and predicted values, and therefore geographical and 

temporal changes in non-linear and non-homoscedastic relationships are automatically captured in the 
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calculation of ‗ ᾀǿȟ▬  and ‗ ᾀǿȟ▬ , which are fully integrated in the BME soft data through equation 

(E2-4). 

2.3.4 Offset analysis 

The offset is used to transform the daily O3 data into residual offset-removed data. The ozone 

offset έ ▬  at an arbitrary location ▬ ▼ȟὸ  is obtained using an exponential kernel smoothing of the 

surrounding observed O3 data [30] 

έ ▼ȟὸ В ύᾀȾВ ύ                                                     (E2-9) 

where ᾀ is the observed value at space/time observation point ▬ ▼ȟὸ  within the neighborhood of the 

point ▬ of interest, and the kernel smoothing weights are ύ ÅØÐ 
▼ ▼

, ὥ is the spatial 

offset kernel smoothing range and ὥ is the temporal offset kernel smoothing range. 

An optimal offset ὥ υπ Ὧά ὥὲὨ ὥ ρπ Ὠὥώ was chosen to ensure the transformed data has 

a low variance so that the geostatistical estimation error variance is minimized, while retaining high 

autocorrelation to ensure that neighboring data locations are informative at the estimation location (see SI 

section A.2 for details).  

2.3.5 Space-time Covariance Model 

The covariance model for the homogeneous/stationary S/TRF X(p) is developed from the 

experimental covariance of the transformed observational data ● ◑ɀέ ▬ . The experimental 

covariance value for a spatial lag r and a temporal lag ̱ is calculated as  

ὧǶὶȟ†
ȟ
В ὼ ȟὼ ȟ

ȟ
ά                                                    (E2-10) 

Where N(r, )̱ is the number of pairs of values (ὼ ȟὼ ȟ) separated by a spatial lag of r  and temporal 

lag of ̱ , and ά  is the mean of the ● data. In practice ὧǶὶȟπ and ὧǶπȟ† are calculated and plotted 

separately to facilitate the visualization of the space/time covariance models (SI Figures A.30s & 31s).  A 

3-structured exponential covariance model was chosen for the subsequent BME analysis (see SI section 

A.2 for details).   
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The formula of the 3-structured exponential covariance model is given by: 

ὧ ὶȟ† ὅ ‌ÅØÐ ÅØÐ ‍ÅØÐ ÅØÐ ρ ɻ ɼÅØÐ ÅØÐ  ]         (E2-11) 

Tables A.2s&3s list the parameters used in the space time covariance model.  

2.3.6 Validation analysis 

A validation analysis is used to assess the accuracy of different BME estimation approaches.  Each 

observed value ᾀ at space/time point ▼ȟὸ  is compared with the corresponding ozone concentration ᾀᶻ 

re-estimated using only non-collocated data outside of a radius ὶ of ▼.  

The validation error, which is the difference between each re-estimated value ᾀᶻὶ ) and observed 

value ᾀ is defined as Ὡᶻὶ ᾀᶻὶ ᾀ. The estimation accuracy is quantified based on statistics of 

these estimation errors, which is a function of the validation radius ὶ.  They consist of the Root Mean 

Square Error RMSE (ppb), the R2 (unitless), the Mean Normalized Bias MNB (%) and the Mean 

Normalized Gross Error MNGE (%) between observations and re-estimated values, calculated as a 

function of ὶ as shown in SI equations A.E7s-10s.   
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Using the validation error statistics RMSE (ὶ  and  Ὑ ὶ , we compare the following three BME data 

fusion scenarios 

1. Scenario OBS: Uses only ozone observations in the BME framework. This is the kriging limiting 

case of the BME data integration framework since kriging is the linear limiting case of BME when 

only hard data are used. 

2. Scenario CAMP: Integrates both observations and CTM predictions in the BME data integration 

framework using CTM soft data constructed with the CAMP approach, which assumes that CTM 

model performance is constant across space and time. 

3. Scenario RAMP: Integrates both observations and CTM predictions in the BME data integration 

framework, with CTM soft data obtained through the RAMP approach introduced here to account 

for the space/time variation in CTM model performance. 

 

We let Ὑ , Ὑ  and Ὑ  be the coefficient of determination of estimation error for 

scenario OBS, scenario CAMP and RAMP, respectively, and we define the percent change PCR2
OBSĄCAMP 

and PCR2
OBSĄRAMP as follow: 

0#Ὑ ᴼ  ρππ
 

 
                 (E2-12) 

0#Ὑ ᴼ  ρππ
 

 
                 (E2-13) 

A positive PCR2 indicates an increase in R2, which corresponds to the percent improvement in estimation 

precision resulting in integrating air quality model predictions in the BME data integration. 
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2.4 Results 

2.4.1 BME Ozone estimates  

When incorporating CTM prediction as soft data in the BME data integration framework 

(scenarios CAMP and RAMP), we use the soft data with the finer grid cell resolution when it is available. 

That means for the areas where both 36x36km2 and 12x12km2 grid cell resolution are available, we 

incorporate the 12x12km2 CTM prediction values. 

Figure 2.2 shows for Jul-11-2005 the BME estimates of DM8A ozone concentrations ᾀ obtained 

for the three estimation scenarios. This day was chosen because it has the highest standard deviation (at 

33.1 ppb) for CTM prediction errors at ozone monitoring sites, which means the CTM model performance 

has the highest spatial variability among sites. It is clear that on this day the BME mean estimates (in the 

top panel of Figure 2.2) in the immediate proximity of the monitoring stations (marked in circles) are at 

very similar levels in the three maps, being in good agreement with the observed data in their local 

neighborhood.  As the estimation location moves away from the monitoring stations, the difference among 

these three maps becomes more substantial. For example, in scenario OBS we see a wider area of high 

ozone value, with the area above 70ppb covering 811,296km2 across the continental United States.  In 

scenario CAMP the ozone plume above 70ppb only covers a much smaller area (545,184 km2) with the 

peak ozone concentrations in the plume reaching 85ppb. By contrast, in scenario RAMP the size of the 

ozone plume (the area where ozone levels are above 70ppb) is 570,096 km2 and the highest peak ozone 

concentration reaches 90ppb.  
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Figure 2. 2. Maps of BME mean estimates (Top) and corresponding standard deviations of BME estimates 

(Bottom) of the DM8A ozone concentrations (ppb) on day Jul-11-2005 obtained with scenario OBS (Left), 

CAMP (middle panels) and RAMP (Right). Circles in the maps represent locations of monitoring sites and 

color match legend for observed concentrations. 

 

The uncertainty associated with the BME estimates are quantified by the corresponding BME 

standard estimation error (bottom panel of Figure 2.2). For estimation scenario OBS there is a higher 

estimation uncertainty, with the highest BME standard estimation error reaching 8.7ppb for areas far away 

from any monitoring stations, and with an average standard estimation error of about 6.4ppb across the 

continental United States. This is in contrast to estimation scenarios CAMP and RAMP, where the BME 

standard estimation error remains relatively low, with the highest standard estimation error reaching 

6.5ppb and 6.3ppb for scenarios CAMP and RAMP. This indicates that integrating both observations and 

model predictions improved the quality of the ozone estimates, especially for areas far away from any 

monitoring station. Overall, scenario RAMP has the lowest standard estimation error, with an average 

standard estimation error of about 4.6ppb across the continental United States. 
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2.4.2 Soft data construction using the RAMP approach 

 

The construction of the soft data using the proposed RAMP approach can be illustrated by 

comparing scenario RAMP that accounts for the space/time variably of CTM performance, with scenario 

CAMP that does not. Two important parameters that differed in these two scenarios are the bias-corrected 

expected values ‗ ᾀǿȟ▬  and the corresponding soft data variance ‗ ᾀǿȟ▬ . 

Figure 2.3 shows a map of the raw CAMx modeled DM8A average ozone predictions for 11-July-

2005. Also shown in the figure are the bias-corrected CTM predicted values ‗ ᾀǿȟ▬  from scenarios CAMP 

and RAMP for the same day.  Both scenarios CAMP and RAMP corrected the CTM prediction bias to some 

extent, especially for areas close to the monitoring sites.  There are, however, substantial differences of the 

bias-corrected CTM predicted values ‗ ᾀǿȟ▬  between scenarios CAMP and RAMP.  For scenario CAMP, 

the map of the bias-corrected CTM predicted values ‗ shows lower values than scenario RAMP, with the area 

above 70 ppb covering 221,616km2 across the continental United States and the highest bias-corrected CTM 

predicted value ‗ at 105 ppb.  By contrast, in scenario RAMP the size of the area with bias-corrected CTM 

ozone levels greater than 70 ppb is 431,856 km2, with the peak bias-corrected CTM ozone level reaching 111 

ppb. This substantial difference is due to the assumed homogeneity of the CTM model performance in scenario 

CAMP that forces the same correction throughout the study domain. This correction results in an over 

correction in some local areas such as the area covering the western and southwestern states of Nevada, 

Idaho, Utah, Wyoming, Colorado, Arizona, New Mexico and California. In contrast, the scenario RAMP is 

better able to account for regional biases in model performance.   
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Figure 2. 3: The DM8A ozone concentrations in the United States on 11-July-2005 using (Left ) the raw 

CTM Model predictions, (Middle ) the bias-corrected expected values ‗ ᾀǿȟ▬  for the estimation scenario 

CAMP, and (Right) the bias-corrected expected values ‗ ᾀǿȟ▬  for the estimation scenario RAMP. 

The maps for the corresponding square root of soft data variance ‗ ᾀǿȟ▬  are shown in SI Figure 

A.34s. This map characterizes the imprecision associated with the bias-corrected CTM predicted values 

‗ ᾀǿȟ▬ . We find that scenario RAMP has more localized gradients for the variance ‗ ᾀǿȟ▬ , with the 

square root of ‗ ᾀǿȟ▬  spanning from a low value of 2.6 ppb to a high of 20.5 ppb, and averaging about 

8.7 ppb across the continental United States. By contrast, this variance has less spatial variability for the 

scenario CAMP; with a narrower span of ‗ ᾀǿȟ▬  values ranging from 9.2 ppb to 14.1 ppb, and a higher 

average over the continental United States of 10.3 ppb. This illustrates that the proposed RAMP method 

used in scenario RAMP has a greater ability to characterize regional changes in the precision of bias-

corrected CTM predictions. This is an important methodological improvement explaining the improved 

performance in scenario RAMP in the cross validation analysis described next. 
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2.4.3 Validation results 

The validation analysis was conducted to compare estimation scenarios OBS, CAMP, and RAMP. 

For those monitoring site locations covered by both CTM domains, soft data with a finer grid cell 

resolution of 12x12km2 are incorporated for scenarios CAMP and RAMP.   

 Table 2.1 shows the percent change in R2 as a function of validation radius ὶ.  As shown in the 

table, scenario RAMP has the highest R2 for all radii ὶ. Furthermore, the PCR2
OBSĄCAMP, representing the 

percent change in R2 from scenario OBS to scenario CAMP, is consistently positive when ὶ larger than 

0km, indicating that de Nazelleôs approach, even when applied beyond the condition for which it was 

developed, is still more accurate than relying on observational data alone, and itôs percent increase in R2 

consistently improves as ὶ increases. The PCR2
OBSĄRAMP, representing the percent change in R2 when 

comparing scenarios OBS and RAMP, is also consistently positive. More importantly, it is larger than 

PCR2
OBSĄCAMP, with an overall 0.73% increase for the DM8A and 2.6% increase for the D24A O3 in R2 for 

ὶ=0 km. Furthermore, there is 2.9% increase for the DM8A and 5.9% increase for the D24A in R2 between 

scenario OBS and RAMP at locations more than 108km away from a monitoring station. We also 

calculated the percent change in R2 when we aggregate the BME estimates into weekly and monthly 

estimates (SI Table A.5s). Scenario RAMP still has the highest R2 increase for these aggregated metrics.  

More results of the cross-validation analysis are documented in SI section 5.   

These results demonstrate that integrating both observations and soft data processed through the 

RAMP approach improves the capability of estimating both of the DM8A and the D24A ozone 

concentrations compared to using only observational data and through the CAMP approach. Compared 

with the CAMP approach, the RAMP approach consistently results in a further improvement in estimation, 

as evidenced by the fact that the PCR2
OBSĄRAMP values are over 12 times greater than the PCR2

OBSĄCAMP 

values for the DM8A ozone concentrations and over 3.5 times greater than the PCR2
OBSĄCAMP values for the 

D24A ozone concentrations. 
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  Table 2. 1: Validation statistics for BME data integration scenarios OBS, CAMP, and RAMP* 

Validation 

radius 

►○ (km) 

DM8A D24A 

0 36 72 108 0 36 72 108 

╡╜╢╔╞║╢  
▬▬╫ 

5.536 6.309 6.799 7.041 5.705 6.178 6.303 6.422 

╡╜╢╔╒═╜╟ 
▬▬╫ 

5.675 6.442 6.966 7.250 5.803 6.222 6.383 6.545 

╡╜╢╔╡═╜╟ 
▬▬╫ 

5.445 6.109 6.531 6.732 5.487 5.835 5.917 6.004 

R2
OBS 

(unitless) 
0.886 0.853 0.829 0.817 0.792 0.757 0.747 0.738 

R2
CAMP 

(unitless) 
0.884 0.853 0.831 0.819 0.794 0.765 0.758 0.750 

R2
RAMP 

(unitless) 
0.893 0.866 0.849 0.841 0.813 0.789 0.786 0.781 

PCR2
OBSĄCAMP

 Ϸ  
-0.223 0.014 0.197 0.235 0.230 1.100 1.480 1.617 

PCR2
OBSĄRAMP

 Ϸ  
0.726 1.602 2.407 2.936 2.642 4.338 5.190 5.898 

p-value 

OBSĄCAMP

 ◊▪░◄■▄▼▼ 

1 0.990 0.321 0.0009 0.259 0.00041 <0.00001 <0.00001 

p-value 

OBSĄRAMP

 ◊▪░◄■▄▼▼ 

0.980 0.0001 <0.00001 <0.00001 0.0725 <0.00001 <0.00001 <0.00001 

 
* The analysis uses a constant offset and corresponding covariance model. ὶ(km) is the validation radius 

around monitoring stations within which all observation points are excluded in the validation estimations; 

R2
OBS, R

2
CAMP, R

2
RAMP are the squared spearmanôs correlation coefficients between the ozone observations 

and the BME estimates for the OBS, CAMP and RAMP data integration scenarios, respectively, RMSEOBS, 

RMSE CAMP and RMSERAMP are the corresponding root mean square errors; PCR2OBSĄCAMP is the percent 

change in R2 from OBS scenario to CAMP scenario, PCR2OBSĄRAMP is the percent change from scenario OBS 

to scenario RAMP; p-valueOBSĄCAMP is the p-value testing the hypothesis that there is no difference between 

the R2 in scenarios OBS and CAMP; p-value OBSĄRAMP is the p-value testing the hypothesis that there is no 

difference between the R2 in scenarios OBS and RAMP. 
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2.5 Discussion 

We have presented an ozone estimation method that is able to integrate observations with 

predictions from a CTM. These predictions are weighted according to model performance that varies 

across space and time based on a soft data construction utilizing the newly developed RAMP method.  

Thus, estimates are produced that put priority on observations and take advantage of air quality model 

predictions based on how well they reproduce the observed values.  Spatial fields generated from this 

approach provide an observation and CTM informed representation of ozone across space/time that is 

more accurate and precise than relying only on observation data. This was especially true for locations 

away from monitoring stations.   

We developed the RAMP method by extending the CAMP framework presented by de Nazelle et 

al[20]. We tested the RAMP method by comparing the percent change in R2 and found the percent increase 

achieved by the RAMP method (PCR2
OBSĄRAMP) was four to ten-fold greater than that of the CAMP method 

(PCR2
OBSĄCAMP). This improvement is attributed to the RAMP ability to account for the spatial and 

temporal variability in model performance. 

Approaches used to model the uncertainty associated with the CTM model predictions can be 

divided into parametric approaches that parameterize the relationship between the air pollution 

observations ὤ and predictions ὤ   [17, 18], and non-parametric approaches such as our RAMP method 

that directly model air quality performance based on paired observed and predicted values.  For example, 

Fuentes et al [17] assumes that ὤ▼ ‍ ▼ ‍ ▼ὤ▼ ‐▼, while Berrocal et al [18] assumes that 

ὤ▼ȟὸ ‍ ▼ȟὸ ‍ ▼ȟὸᾀǿὄȟὸ ‐▼ȟὸ, where in both cases the relation is linear and homoscedastic 

since the noise term is assumed to have a constant error variance, i.e. ‐▼ȟὸͯ ὔπȟ„ . By contrast, our 

novel RAMP approach is a non-parametric approach that fully accounts for the non-linear, non-

homoscedastic relationship between observations ὤ and predictions ὤ, and accounts for the 

spatiotemporally varying nature of that relationship.  
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To illustrate the difference between parametric and non-parametric approaches, we also compared 

our non-parametric estimates to the ones generated from a cokriging estimation with a parametric 

relationship between the observations and the CTM model predictions (SI section A.6).  In this analysis, 

we found that the disadvantage of cokriging is that it is limited by the parametric relationship and the final 

estimates tend to be heavily influenced by CTM model predictions.  Based on the validation results (SI 

Table A.6s), our approach outperforms the Co-kriging approach in terms of smaller root mean squared 

error, 5.45 ppb for RAMP and 6.5 ppb for Co-kriging, and higher spearmanôs R2, 0.893 for RAMP and 

0.845 for Co-kriging for the DM8A ozone.   

To the best of our knowledge, our proposed framework is one of the first to fully account for the 

spatiotemporal variation of the non-linear, non-homoscedastic relationship between air pollution 

observations and predictions. Major strengths of our approach are that its numerical implementation is 

based on a straight forward analysis of paired observations and predictions, which is computationally 

efficient and trivially implemented on parallel computers, and it reduces the uncertainty of the mapping 

error by putting more weight on air quality predictions where they reproduce well the observed values. 

This is particularly useful in large regulatory or health studies that need to incorporate air quality 

predictions with widely varying model performance across the study domain, such as studies examining 

the entire continental United States rather than some small portions of it, or studies combining air quality 

predictions from a variety of air quality model simulations with significantly varying model performance. 
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CHAPTER 3 ï BEM INTEGRATION OF OZONE OBSERVATIONS AND CTM PREDICTIONS 

AT MULTIPLE TIME SCALES 2 

 

3.1 Introduction  

For environmental epidemiologists and exposure scientists to assess the risk to the human 

population due to ozone exposure at national or regional scales requires accurate ambient ozone estimates 

at fine spatial and temporal resolutions. Most air pollution epidemiologic investigations, however, rely on 

ambient ozone estimates generated solely from air quality monitoring networks[4, 8, 25, 32, 33], such as 

the Air Quality System (AQS) operated by the U.S. Environmental Protection Agency (EPA). The AQS 

monitoring network has constraints in the geographic and temporal coverage, especially for the ozone-

monitoring network. In addition to hourly averages and sparse national coverage the network has less than 

half of its sites operating year round. Only during the summer are all sites operating. Pollutant predictions 

from a chemical transport model (CTM) is another useful environmental data source that is used for 

generating estimates. CTM model predictions have the advantage of having continuous spatial coverage, 

but sometimes are limited in their temporal coverage. Further there is inherent error and uncertainty in 

CTM model outputs that can be difficult to quantify. The continued need for ambient air pollution 

estimates with longer time periods and larger spatial scales has pushed the exposure community to find 

ways to combine these two data sources.  

  

                                                           
2 This chapter is planned to be submitted as an article to the Journal of Environmental Science & 

Technology. Xu,Yadong, Serre, L. Marc, Reyes, Jeanette, Vizuete, William. BME Integration of Ozone 

Observations and CTM predictions at Multiple Time Scales.  
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We have developed a methodology[34] that attempts to incorporate the spatial and temporal 

changes in CTM model performance to guide the integration of ozone observations into a BME estimation 

framework. We have shown that by integrating the dynamic spatial and temporal changes in CTM 

performance we can improve ambient ozone exposure estimates at a national scale. In our previous 

study[34], we first aggregated both of the ozone observational data and CTM predictions from a hourly to 

a daily average and then applied the BME framework to estimate the daily maximum 8-hour average 

(DM8A) and daily 24-hour average (D24A) ozone concentrations. The use of daily averages in our BME 

estimation framework substantially reduced the computational effort. If for example, hourly averages were 

used in the BME estimation framework it would require 200 times more CPU time. The disadvantage is 

the loss of information that could be found in hourly averages that could be used by the BME framework 

and potentially improves accuracy of the estimations. 

Ideally the exposure estimates should be at time scales that are relevant to the health outcome. 

These times scales can range from hourly averages for research acute effects [4, 35] to monthly averages to 

study long-term health effects [32, 36]. In practice, many studies have used long-term arithmetic mean 

exposure estimates derived from small time scale estimates.  Like in our previous study, the hourly 

observations and CTM model predictions for ozone could first be aggregated into the appropriate time 

scale then apply an interpolation technique to estimate exposure at the large time scale of interest. An 

alternative method would be applying interpolation at a finer time scale and then aggregating the BME 

estimated concentrations into a longer time scale. The benefit of this method is that it keeps the 

spatiotemporal structure of the original dataset. For ozone it would retain the characteristics of the diurnal 

pattern and hourly changes in CTM model performance. Having the estimates at a finer time scale 

provides the freedom to construct other hourly-based exposure metrics such as daily 1-hour maximum, 

daily 8-hour maximum or daily 24-hour averages depending on the need of the studies. It is unknown 

whether the substantial increase in computational burden is worth the additional information provided to 

the BME framework.   
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Although the cost of implementation of these two up-scaling methods are known, less is known 

about their impact on estimation accuracy. Yu et al[21] compared estimates of ambient PM10 and ozone 

using these two upscaling methods in their BME analysis. Their study showed mixed results for ozone 

estimates that USM1(data aggregation followed by BME spatiotemporal interpolation) had lower 

estimation error than USM2 (perform BME interpolation at small time scales followed by data 

aggregation) at weekly and monthly time scales, but USM2 performed better when the time scales 

increased to larger than three months to one year. These results are constrained by a limited observational 

data set. The BME analysis relied solely on the AQS observed ozone dataset from 77 ozone-monitoring 

stations in the Carolinas over year 1995-2002. Their study also did not start with hourly ozone 

concentrations, instead, daily averages were used and aggregated into longer time scales.  

It is still unclear the extent to which keeping the diurnal pattern of ozone present in an hourly 

dataset would benefit the estimation accuracy when up-scaled to longer time scales. This work quantifies 

the impact in predictive accuracy when starting with hourly ozone concentrations contrasting it with the 

increased cost in computational burden. The work relies on a large national scale observational data set 

consisting of 1179 monitors for the year of 2005. National scale hourly CTM predictions for the entire year 

of 2005 are also used in a BME estimation framework.  

3.2 Data Sources 

The ozone observational data are hourly ozone monitoring data sampled from 1179 sites for the 

year 2005 downloaded from the Air Quality Systems (AQS) database maintained by the U.S. 

Environmental Protection Agency (EPA). Details on the processing and quality assurance of this data can 

be found in Xu et al[34].  
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The CTM model predictions consist of hourly ozone concentrations for the entire year of 2005 

predicted by the Comprehensive Air Quality Model with extensions (CAMx) modeling system. Model 

prediction has a spatial grid cell resolution of 36x36km2 covering the continental U.S. and a 12x12km2 grid 

cell resolution domain covering the Eastern U.S.  Detailed model configurations and evaluation are 

documented in the final Transport Rule by the U.S. EPA[28].   

3.3 Methods 

3.3.1 BME Estimation Methodology 

A detailed description of the BME framework used to generate ozone estimates can be found in 

Xu et al. 2016[34]. In short, first the AQS hourly data was paired with CTM modeled hourly ozone 

concentrations in space/time.  Then, localized bias-corrected CTM data were constructed as the soft data 

through RAMP approach, where the hourly ozone CTM predictions are weighted according to model 

performance that varies across space and time.  A transformation of these data was used, which consisted 

in removing from the data an offset obtained using an exponential kernel smoothing of the data. The 

exponential kernel smoothing was set so that the offset captured the spatial variability of the data over 

intermediate spatial distances and intermediate time scales. A 3-term exponential/exponential/cosine 

space/time covariance model was used to characterize the space/time autocorrelation in the offset removed 

hourly ozone data. Finally, we conduct a BME interpolation that 1) uses the Maximum Entropy principle 

of information theory to process the general knowledge base G-KB consisting of the mean function and the 

covariance function of ozone 2) integrates the site specific knowledge base S-KB using an epistemic 

Bayesian conditionalization rule to create a BME posterior PDF Ὢ characterizing the value ὼ taken by 

X(p) at any estimation point ▬  of interest, and 3) computes space/time estimates based on the BME 

posterior PDF.  The S-KB consisted of hourly observations treated as hard data and localized bias-

corrected hourly CTM data treated as soft data.   
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3.3.2 Variability of CTM Model Performance Evaluation across the Continental US 

An important feature of this methodology is that it fully evaluates the spatial and temporal 

variability in the CTM performance.  For this evaluation each observed hourly concentration ᾀ is paired 

with its corresponding CTM prediction value ᾀǿ, and the error for the observation-prediction pair is defined 

as Ὡ ᾀǿ ᾀ. To evaluate the CTM model performance over a given space time region R of interest, we 

calculate error statistics such as the Mean prediction Error (ME) and the Standard deviation of the 

prediction error (SE), the mean normalized bias (MNB) and the mean normalized gross error (MNGE) as 

defined in SI equations 1s-4s.   

Detailed results of the nationwide model performance analysis of this CTM are provided in SI 

section 1. In brief, we find that overall the CAMx simulation with 12x12km grid cell resolution has a 

substantially lower over-prediction (median ME=+3.4ppb) than that with 36x36km grid cell resolution 

(median ME=+6.1 ppb). There are clear geographical trends in the variability of these error statistics: 

Urban cities located in the east and west coast tend to have higher over-prediction bias (i.e. higher ME) 

and higher imprecision (i.e. higher SE) than sites located in the central United States.  The seasonal 

difference in model performance was also analyzed by recalculating the error statistics at each site 

separately for the summer (May, June, July and August) and winter (November, December, January and 

February). The over-prediction bias is noticeably higher in the summer, with the median ME for the 

summer equal to 4.1 ppb compared to 2.3 ppb for the winter, while the median MNB (237%) and MNGE 

(267%) values for the winter are much higher than for the summer with the median MNB at 129% and the 

median MNGE at 143%, indicating the CTM modelôs difficulty at capturing lower ozone concentrations in 

the winter.  
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Generally, the CTM reproduces hourly ozone concentrations with much higher prediction errors 

than the daily DM8A and D24A ozone values. For example, in the CAMx simulation with 12x12km2 grid 

cell resolution, the median SE for hourly ozone is 13.2 ppb, which is much higher than the ones for DM8A 

at 9.4 ppb and for D24A at 7.9 ppb.   The differences in MNB and MNGE are even greater between the 

hourly and daily metrics, with the median MNB at 145% for hourly ozone compared to the ones for 

DM8A at 9.3% and for D24A at 19.8% (See more detailed error statistics in SI table B.1s).  This can be 

explained by the fact that CTM models tend to severely over-predict nighttime hourly ozone 

concentrations at very low values and under-predict peak hourly ozone concentrations.        

3.3.3 Regionalized Air Quality Model Performance (RAMP) Analysis for Hourly Ozone     

The RAMP evaluation analysis is conducted in two stages. In the first stage we analyze CTM 

performance at specific monitoring stations, and in the second stage we perform an inverse weighted 

distance interpolation to assess CTM performance away from monitoring stations. 

In the first stage of the RAMP analysis, we focus specifically on each monitoring site, and for each 

monitoring site we pool the observation-prediction pairs (ᾀȟᾀǿ) that are within a time tolerance  ῳὝ of a 

particular time of interest t.  These pairs are highly relevant to the location ▼ where the monitoring station 

is located.  To be consistent with our previous study, we keep the same ῳὝ ρςπ Ὠὥώί for the hourly 

ozone.  Examples of two selected sites are shown in Figure 3.1. We stratify the pairs in 10 percentile bins 

of increasing predicted values ᾀǿ, and for each bin we calculate the mean ‗ ᾀǿȟ▼ȟὸ and variance 

‗ ᾀǿȟ▼ȟὸ of observed values (see detailed equations in Xu et al).   

In the second stage of the RAMP analysis we obtain ‗ ᾀǿȟ▬  and ‗ ᾀǿȟ▬  for actual predicted 

hourly values ᾀǿ at space/time grid point ▬ ▼ȟὸ .  We first perform a linear interpolation/extrapolation 

of the ‗ ᾀǿȟ▼ȟὸ  and ‗ ᾀǿȟ▼ȟὸ  values at each monitoring site to obtain ‗ ᾀǿȟ▼ȟὸ  and 

‗ ᾀǿȟ▼ȟὸ  at the predicted values.  Then we use inverse weighted distance to do a spatial interpolation of 

these values from the neighboring monitoring stations to obtain ‗ ᾀǿȟ▬  and ‗ ᾀǿȟ▬  at ▬ ▼ȟὸ .  

 

 



 

 

37 

 

Figure 3. 1: RAMP analysis conducted specifically at time t=11-Jul-2005 and for sites ID 060372005(left) 

and 120713002(right). The empty circles show the pairs of hourly observed-modeled values (ᾀȟᾀǿ) that are 

within 120 days of t. The vertical lines show the stratification of these pairs in 10 percentile bins. The 

interpolation lines connecting the filled circles and triangles show how the mean of the observed value in 

each bin, ‗ ᾀǿȟ▼ȟὸ (filled circles), and the corresponding standard deviation, ‗ ᾀǿȟ▼ȟὸ (filled 

triangles) change as a function of the average modeled value ᾀǿ in that bin. 
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3.3.4 Offset analysis 

The offset is used to transform the hourly ozone data into residual offset-removed data. The ozone 

offset έ ▬  at an arbitrary location ▬ ▼ȟὸ  is obtained using an exponential kernel smoothing[30] 

of the surrounding observed ozone data.  Several sets of kernel smoothing ranges, including the spatial 

range ὥ and the temporal range ὥ, are investigated. An optimal set of kernel smoothing ranges ὥ

υπ Ὧά ὥὲὨ ὥ ρπ Ὠὥώ were chosen to ensure the transformed data has a low variance so that the geo-

statistical estimation error variance is minimized, while retaining high autocorrelation to ensure that 

neighboring data locations are informative at the estimation location. These offset ranges are also 

consistent with what we used for the daily metrics. (See SI section 2 for details).  

3.3.5 Space-time Covariance Model 

The covariance model for the homogeneous/stationary S/TRF X(p) is developed from the experimental 

covariance of the transformed observational data ● ◑ɀέ ▬ . The experimental covariance value for 

a spatial lag r and a temporal lag ̱ is calculated and plotted separately to facilitate the visualization of the 

space/time covariance models.  Several covariance models were attempted and evaluated.  A 3-structured 

exponential/exponential/cosine covariance model was chosen for the subsequent BME analysis (see SI 

section B.2 for details).   

The formula of the 3-structured exponential/cosine covariance model is given by: 

ὧ ὶȟ† ὅ ‌ÅØÐ ÅØÐ ‍ÅØÐ ÅØÐ ρ ɻ ɼÅØÐ ÃÏÓ“  ]                         (E3-1) 

Where ὅ is the sill (variance), ὥ  and ὥ  are the spatial ranges and ὥ  and ὥ  are the temporal ranges, 

and Ŭ, b and (1-a-b) are the proportions of variability contributed by the first, second and third covariance 

structure, respectively.  The parameters a, b, ὥ , ὥ , ὥ , and ὥ  obtained by least square fitting for 

each offset are shown in SI table B.3s.  Compared with the covariance models for the daily metrics, the 

major difference of the covariance model for the hourly ozone is the cosine function in the third structure 

of equation 1. This function represents the diurnal pattern occurring in the observational ozone data, which 

was altered by the aggregation process for the daily metrics.    
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3.3.6 Validation analysis 

 

A validation analysis is used to assess the accuracy of two BME estimation upscaling methods 

USM1 and USM2.  Each observed value ᾀ at space/time point ▬Ȣ ▼ȟὸ  is compared with the 

corresponding ozone concentration ᾀᶻ re-estimated using only non-collocated data outside of a radius ὶ of 

▼. The validation error, which is the difference between each re-estimated value ᾀᶻὶ ) and observed 

value ᾀ is defined as Ὡᶻὶ ᾀᶻὶ ᾀ. The estimation accuracy is quantified based on statistics of 

these estimation errors, which is a function of the validation radius ὶ.  They consist of the Root Mean 

Square Error RMSE (ppb), the R2 (unitless), the Mean Normalized Bias MNB (%) and the Mean 

Normalized Gross Error MNGE (%) between observations and re-estimated values, calculated as a 

function of ὶ shown as below.   

ὙὓὛὉὶ В ᾀᶻὶ ɀᾀ                                                                   (E3-2) 

 

Ὑ ὶ
В ᶻ  ɀᶻ  Ӷ

В ᶻ  ɀᶻ  ᶻВ Ӷ

                                                             (E3-3) 

 

ὓὔὄὶ В ρππϷzᾀᶻὶ ᾀȾᾀ                                                           (E3-4) 

 

ὓὔὋὉὶ В ρππϷzȿᾀᶻὶ ᾀȿȾᾀ                                                            (E3-5) 

We first calculate the validation error statistics for the hourly ozone estimates to evaluate the 

improvement in predictive capacity between two estimation scenarios, with the OBS scenario using ozone 

observations only and the RAMP scenario incorporating the CTM model predictions through the RAMP 

approach.   

Our next step is to compare the following data fusion simulations (4 simulations for each daily 

metrics) as in list in Table 1 to investigate the differences in the predictive capacity between USM1 and 

USM2. 
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     Table 3. 1: The list of BME data integration simulations used in the validation analysis 

To simulate DM8A To simulate D24A 

Simulation 

name 

Upscaling 

method 

Soft data 

Scenario# 

Simulation 

name 

Upscaling 

method 

Soft data 

Scenario# 

DM8A-1 USM1 OBS D24A-1 USM1 OBS 

DM8A-2 USM2 OBS D24A-2 USM2 OBS 

DM8A-3 USM1 RAMP D24A-3 USM1 RAMP 

DM8A-4 USM2 RAMP D24A-4 USM2 RAMP 

     # Scenario OBS: only use ozone observations in BME data integration; Scenario RAMP: use both of  

     ozone observations and soft data processed through RAMP approach 

 

To investigate the influence of the CTM grid cell resolution on the accuracy of the BME estimates, 

we also conduct our validation analysis by using two sets of soft data, one processed from CAMx outputs 

with 36x36km2 grid cell resolution and the other from CAMx outputs with 12x12km2 grid cell resolution, 

for those monitoring sites located both in 36x36km2 and 12x12km2 modeling domains.   
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3.4 Results 

3.4.1 BME Ozone estimates  

 

To visualize the differences of BME ozone estimates from two up-scaling methods USM1 and 

USM2, we generate the maps for a selected day (11-July-2005), this day is chosen because it has the 

highest standard deviation (at 33.1ppb) for CTM prediction errors for DM8A at ozone monitoring sites.  

To create a map using up-scaling method USM1, we directly conduct BME interpolation with daily DM8A 

and D24A observations and the corresponding soft data generated through the RAMP approach.  To create 

a map using up-scaling method USM2, We first do a BME interpolation of hourly ozone for all the hours 

within this selected day. Then we obtain the maps of two daily metrics of ozone concentrations, DM8A 

and D24A, by aggregating hourly ozone maps with considering the time shift in different time zones in the 

continental United States.  The computational costs and efforts of generating the maps using USM2 is 

substantially higher than the ones using USM1, with the average CPU time for USM2 requiring 3403 

hours compared to the CPU time of 13.4 hours for USM1 when generating a map with 36x36km2 grid cell 

resolution for one selected day (See SI table B.4s).   

Figure 3.2 shows for Jul-11-2005 the BME estimates of daily ozone concentrations and their 

difference from methods USM1 and USM2. The maps are quite similar at capturing the high ozone plume 

(DM8A over 70ppb) in Wisconsin and Michigan and also the low ozone values (DM8A less than 30ppb) in 

Georgia and Florida. In fact differences in ozone concentrations were below 5ppb for most of the continental 

U.S.  For DM8A, the averaged difference across the continental U.S is 4.8ppb with the largest difference of 

32.5 ppb occurring in Kentucky. For the D24A, the averaged difference is 3.3 ppb with the largest difference 

of 29.6 ppb.  Additional maps for estimation scenario OBS demonstrating the differences between USM1 

and USM2 are provided in SI Section B.3.   
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Figure 3. 2. Maps of Jul-11-2005 ozone BME estimates in ppb of the DM8A (Top) and the D24A (Bottom) 

obtained from upscaling method USM1 (Left ) and USM2 (Middle ). Also shown are the absolute differences 

(USM2-USM1) between these two methods (Right).     

  














































































































































































