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ABSTRACT

Yadong Xu Bayesian Maximum Entropintegration of Ozone Observations and Air Quality Model
Predictions for Improved Expose Estimates
(Under the direction dilliam Vizuete andMarc Serre)

To support the Womendés Health Initiative (WHI)
study, accurate ozone exposure estimates for ambient concentrations needed to be geaeratiedalt
scale foryears 199201Q For this large spatial and temporal coverage we investigated different geo
statistical approaches to generate estimates that integrate routine monitoring from surface ozone
observations and episodic chemical transpmwtel (CTM) outputs. The goal is to take advantage of the

accuracy of the observational data and the continuous spatial/temporal coverage of CTM model outputs.

In this work, we demonstrate a Bayesian Maximum Entropy (BME) data integratiestagistical
approach for making national scale ozone estimates that models ttieeawrand nofhomoscedastic
relation between air pollution observations and CTM predictions. This is the first application of BME that
fully accounts for variability in CTM model penfmance through our novel Regionalized Air Quality
Model Performance (RAMP) approach. A validation analysis was completed using ordgllomated
data outside of a validation radiusand the error statistics between observations aedtmmated values
were obtained. We show that by accounting for the spatial and temporal variability in model performance
there is 312 fold increase ifR* (the squared Pearson correlation coedfitj percentage change for the
daily ozone concentrations compared to estimates that assume model performance does not change across

space and time.

Our second project is to investigate the differences of the predictive capacity for two upscaling
methodsUSM1 (data aggregation from hourly to daily followed by BME approach estimation) and USM2

(perform BME approach estimation on hourly ozone followed by data aggregation). We found|dss the



computationally intensivenethod USM1 outperforms the metho®M2. This highlights the capability

of the RAMP approach that was able to capture the spatial temporal variability in CTM model performance
at time scale of interest. Thus, we recommend to use upscaling method USML1 to integrate CTM model
predictions though RAMP approach because USM1 can achieve higher estimation accuracy and also

associated with much lower computational cost.
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CHAPTER 17 INTRODUCTION

Ozone is one of the six fAcriteriad pollutants
charged by the U.S. Environmental Protection Agency (EPA). The National Ambient Air Quality
Standards (NAAQS) for o has been updated a couple times in the history. The current ozone standard
requires that annual fourthighest daily maximum-8our ozone concentrations, averaged over 3 years,
should be less than 70 ppb (parts per billion). Tropospheric ozone Imaadseeiated with a wide range
of adverse health outcomes including respiratory effects, cardiovascular effects, central nervous systems

effects and mortalifi].

Most of the evidence on health effects of ozone relates totenortexposure. The accumulated
evidences on impacts in populations residing in areas with elevated ozone levels for prolondsdperi
more difficult to be detected and are highly unce
study (WHIMS), which involved a nationwide, multicenter cohort of older women aged 65 to 80 years old,
aims to investigate the neurodegenerativeat$f of longterm ozone exposures in older women. This
large scale cohort study lasted for over 10 years, from year 1996 to year 2006. Our work is to support an
exposure model used to estimate personal exposures of these participants, who cameifriemn mult
metropolitan or rural areas across the continental United S@pedial and temporal variability in ozone
concentrationgary across different geographical regions and local urban sectors, this has been a major
contributor to the uncertainties iir @ollution epidemiologic studiesTo achieve the goal of
understanding the adverse health effects of-teng exposure to ozone, accurate ambient estimates of the

spatiotemporal variation of ozone levels at fine space and for long time periods &@. need



1.1 Ozone estimates for epidemiologic studies

Epidemiologic studies investigate the associations between health effects and exposure of human
populations to ambient air pollution. These studies fall into several categories, includirgectomsal,
cohort, panel and timseries studies. Despite the epidemiologic study design, the investigator usually
needs to collect data in regards to air pollution exposure level for the study participants or population and
their health outcons Exposure measuremieerror, which is the uncertainty associated with the exposure
metrics used to represent exposure of an individual or population, is an important contributor to
uncertainty in air pollution epidemiologic study results. Exposure error can influenceeabserv
epidemiologic associations between ambient pollutant concentrations and health outcomes by biasing
effect estimates toward or away from the true associations and widening confidence intervals. The
difference between true and estimated exposure to atqim#iutants has been one of the major
components that contribute to exposure measurement error in air pollution epidemiologic studies. Spatial
and temporal variability in 0zone concentrations can contribute to exposure error in epidemiologic studies,
especially for crossectional and largecale cohort studies, if the ambient ozone concentrations measured
at the central site monitor is used as an ambient exposure surrogate, which is often different from the
actual ambient ozone concentrations outsigesar t i ci pant 6s or a popul ati onos
exposure using the ambient ozone measurements at nearby monitoring stations may not be well
represented when monitors ep\targe areas with several scsimmunities having different emission
sources ad topograpies, such as in Los Angeles, Californidere ozone monitors are found to have a
much wider range of intenonitor correlations-0.06 to 0.9) than the ones in Atlanta, Georga61 to

0.96)[1].



Ozone pidemiologic studiesise different exposumetrics and have different sources of exposure
error. For ozone shetérm exposure, differentuglies report different daily metrics, including the
maximum 8hour running average of the hourly concentrations occurring inte@dperiod (hour daily
max) 2-4], the maximum hourly concentrations occurring in én@dr period (Thour daily max)5, 6] and
the aveage of the hourly concentrations occurring in é@dr period (24our averaggy, 8]. According
to the olserved ozone concentrations at monitoring sites, the correlations among these common daily
metrics vary site by site. Overall, the two daily peak values, ddilyut maximum and daily-Bour
maximum, are well correlated, with a median correlation of 8c9@ss the AQS sites. The correlation
between the -®iour maximum and 2lour average are somewhat less well correlated with a median
correlation of 0.8pL]. This indicates the influence of the overnight period on thieo24 average ozone
concentrations. In contrast, thehtur daily max and-8our daily max are more indicative thie daytime
ozone concerditions Little consensus exists as to which metric is the most approfriaerably,
epidemiologic studies are recommended to report results using multiple metrics. For ozdaatong
exposure, a lorterm arithmetic mean, such as monthly, quarterlyearly averages of the above daily
metrics is often computed for the exposure assessment. It is important to recognize the different averaging

times to interpret the health effect estimates reported in epidemiologic studies.

Epidemiologic studies usewide variety of methods to assign exposure. The commonly used
exposure assessment methods, from simple indicators to complex models, include exposure indicators,
personal monitoring, dispersion modeling, lars#® regression modeling and g&atisticalspatial
interpolation methods. Each method has its advantages and disadvantages when applied to individual
studies. For example, personal monitoring has the advantage of providing relatively accurate individual
level exposure data, but the disadvantagbat it is very costly and time consuming so it is only practical
in small scale studies involving a limited number of participants. The major disadvantage of dispersion
modeling is that it requires highly specific input data, including specific enigsventories and

meteorological information.



Among different geestatisticalmethods, the four commonly used methods are spatial averaging,
nearest neighbor, inverse distance weighting and kriging. All of these four methods are weighted average
methals, with the interpolation process involving the following steps: 1) defining the search area or
neighborhood around the point of interest; 2) locating the observed data points within this neighborhood;
and 3) assigning appropriate weights to each of blserwed data points. The differences are in their
choices of sample weights. With spatial averaging, the same fractional weights are assigned to all sampled
values within a fixed distance. With nearest neighbor method, only a single sampled valdarsluse
weight of 1 is assigned. With inverse distance weighting, the closer samples are assigned with larger
weights. With kriging, the weights are assigned based on the spatial autocorrelation statistics of the
sampled dataset. The common limitatidnhese interpolation methods is that it relies on the
observational data alone, which poses a bigger challenge for those areas where the monitoring stations are

very sparse and/or those time periods where ozone monitoring data is missing.

1.2 Environmental sources of ozone data

An important environmental source of ozone data is measurements from routine monitoring
networks. In the United States, EPA regulations require state environmental agencies to operate air
pollution monitoring stations and report aionitoring data to the Air Quality System (AQS) database,
which is a repository of the monitoring data collected across various monitoring networks. The hourly
0zone observational data from these monitoring stations are available from year 1993 teetite pres
office of air quality planning and standards (OAQPS) rely upon ozone measurements for air quality
assessment and attainmenthadtainment designations. By year 2015, there are over 1250 ozone monitors
reportinghourly data to AQS. Strict quajitassurance and quality control procedures for ozone
monitoring have been developed and implemented at the monitoring stations. The hourly ozone
concentrations reported to the AQS database can be considered as a reliable and accurate data source.
There ae, however, some limitations in this data source. The distribution of ozone monitors across urban

areas varies between cities because the number and location of required ozone monitors in an urban area



depend on many factors, such as the magnitude obtieentrations and population density. The densest
ozone monitoring sites are located in California and the eastern U.S, while relatively scarce across the
central U.S. Further, the monitoring durations on the stations are not consistent. Dugdtoghe s
seasonality of ozone concentrations, many states limit their ozone monitoring to a certain portion of the
year, termed the ozone season, the length of which varies from one area of the country to another. As a
result, less than half of the ozone ritoring sites in the U.S. operate ygaund. The majority of the

sites only operate for summer months. This is why the estimation approaches solely based on
observational data in many of the previous epidemiological studies suffer from the missisgutgalue

to the sparse monitoring network across space and the inconsistent monitoring durations.

Besides ozone monitoring networks, numerical model predictions have become a second source of
environmental ozone data. For more than a decade, aityquatels such as Community Mu#tcale Air
Quality Modeling System (CMAQ) and Comprehensive Air Quality Model with extensions (CAMXx) have
been used as powerful computational tools for air quality management. These models unite three major
types of mode, including meteorological models, emission models and a chetmatigport model.

They are designed to approach air quality as a whole by includingp$tstence capabilities for

modeling multiple air quality issues. These models can simulatelitipn concentrations as averaged
values of grid cells with continuous spatial and temporal coverage. For the purpose of air quality
management and evaluation in the United States, there has been a wide range of modeling simulations
completed which coverarious model configurations, domains, episodes, chemical mechanisms and
aerosol modulg8-14]. The acceptability of thesmrisanscafthe s 6
model predicted concentrations, usually the daiho8r maximum ozone, to the corresponding observed
values at monitoring sites. The modeling community has made significant progress in reducing the
emission uncertainties and inaccuracyha chemical mechanisms in the air quality models to reduce the
prediction errors. Ozone model performance has been slowly improved as these modeling systems
advance. Overall, the dailyt®ur maximum ozone performance at AQS monitoring sites arevedati

good, with the Mean Normalized Bias (MNB) within- #0% and Mean Normalized Gross Error (MNGE)



less than 20%. Although these models still have inherent uncertainties and weakness, the ozone
concentrations predicted by these modeling platforms caelgloeflect the corresponding observed
concentrations in space and time. Our work is to take what is available and make use of them.

Due to limited computational resources, CTM model applications on national scale usually use a
coarser horizontal gridedl resolution, such as 36x36 kfior Continental U.S. or 12x12 Kfor the
eastern U.S. covering thirty seven eastern states. Model predictions from the 363thkinental U.S.
domain were often used to provide initial and boundary concentratiosisrfiolations in the 12x12 kin
domain. For those applications studying air quality at local scale, finer horizontal grid cell resolutions,
such as 4x4 kAor 2x2 knt have been usedin theory, higher resolution modeling is expected to yield
better predicbns because of better resolved model input fields, such as topography, land cover or
emissions, and better mathematical characterizafiphysical and chemical processe®zone model
performance dependence on grid resolution have been exdtéd|. In generalfiner grid scales are
found to be able to better resolve the local scale spatial Mdyiabiozone concentrationsThe newest
release CMAQ 5.1 enables improved fsgale simulations allowing users to simulate air quality at
smaller settings like metropolitan areas as fine as 1%gkich cell resolution. Improvements in
computational diciency are expected to enable higher resolution in the future release of these modeling

system.

1.3 Geosstatistical approaches for integration of environmental data from multiple sources
Geostatisticalapproaches provide useful solution to integrate diofion measurements and

other relevant information. Several Bayesian inference appropich&8] have been developed to

provide a sophisticated statistidfedmework for the data integration of observations @mtyl model

predictions to improve ambient air pollution exposure estimates. These approaches share the following

characteristics: parameterize the relationship between air pollution observationsdiatioms, using

kriging to obtain air pollution estimates for any given value of the parameters, and use Bayesian inference

to obtain air pollution estimates that accounts for parameter uncertainty. These methods, have the



following limitations: they assme that the relationship between air pollution observations and predictions
is linear and homoscedastic, they share the linear limitations of the kriging estimator, and require a high

computational cost.

One approach is the Bayesian Maximum Entropy (BK&hEthod of modern gestatistics, a
knowledgeprocessing framework, because of its following advantages. First of all, it can incorporate
different kinds of knowledge bases, such as general knowledge derived from physical laws, scientific
theories and spéic knowledge processed from a given situation. Secondly, there are no assumptions
about the shape and distribution of the underlying probability law. Therefore, it can integrate a wide
variety of nonlinear, nofGaussian uncertain datasets in a prdtstigiway. Thirdly, it is computational

effective in spatial and temporal domains.

In the past few years, BME has been applied to map criteria polj@@1]. Using BME to
integrate air monitoring observations and numerical model predictions has been proven to-be a cost
effective and efficient technique in improving spatial predictions of ozone conti@mdra It allows us to
take advantage of the strength from both data sources, the accuracy of the observational data and the good
spatial/temporal coverage of air quality model outputs without assuming a parametric relationship between
these two data sotes. In de Nazelle et 420, BME framework was used to develop ozone estimates for
the state of North Carolina for a short study period, Juitedl9une 30 of year 1996. The observational
data from t he st aiwokinsconbination @ith model outpats fiom e Mukiscale
Air Quality Simulation Platform (MAQSIP) modeling system were integrated. In this study, the BME
framework gave preference to measured ozone data, also used MAQSIP model outputs as a function of
model performance. It showed that the BME data integration approach improves the accuracy and the
precision of ozone estimations across the state of North Carolina when compared to a spatial interpolation

of observational data alone.



1.4 Thesis Hypothesisand approach

Our hypothesis is that fully characterizing the spatial and temporal heterogeneity in CTM model
performance in our gestatistical approach can increase estimation accurany. d e Na z[20],| eb6s wo
air quality model performnce was assumed to be homogeneous for the study domain, so the bias and
uncertainty associated with the model predictions were assumed to be the same across space and time.
Therefore, the soft data was processed through pooling all the paired obserwextiatet ozone
concentrations in the domain at one time. This assumption might be reasonable given the small study
domain and short study period, but may not be applicable due to the documented spatial heterogeneity and
temporal variability of ozone modperformance across the country. Therefore, we need to extend the
work of de Nazelle et. alds by developing a new a
variability in the ozone model performance of the CTM.

To test this hypothesis, we débe in Chapter 2 the development of a Regionalized Air Quality
Model Performance (RAMPRypproacho characterize the ozone model prediction errors that changes
across space/time. Instead of making the assumption of air quality model performance hoyegeneit
generate soft data as secondary information, to reflect the bias and uncertainty of model predictions
changing across space and time. As a result, the RAMP approach is expected to capture geographical and
temporal changes in bias and uncertainty @ased with air quality model predictions. The soft data
generated from RAMP approach is integrated with the ozone observations in our BME model framework
to produce ozone estimates. We first compare the RAMP estimation with two other estimationsscenario
one using only ozone observations, and the other is a Constant Air Quality Model Performance (CAMP)
scenario assuming that CTM model performance does not changespaossand time. We also compare
our BME estimation t@ cokriging estimation based @ parametric relationship between the observations

and the CTM model predictions.



For the WHMS work, the BME approach was used to interpolate directly the daily ozone
concentrations by first aggregating the hourly observations and CTM model predigtioalternative
approach would be to first generate hourly BME estimates then aggregate it into a daily metrics. This
alternative approach could be especially useful for those epidemiologic studies that require higher
temporal resolution of ambient expms estimates, such as those exposure models combining
microenvironmental concentrations with human activity data to estimate personal exposures. This could
be relevant given the known diurnal patterns seen in hourly ozone data. The disadvantage of this
alternative approach is the computational intensity, requiring over 200 times more CPU runtime. In
Chapter 3, our first task was to investigate the extent of the improvement on the accuracy of the hourly
ozone estimates when incorporating CTM hourly nhadedictions through our RAMP approach. Our
second task is to investigate the differences of the predictive capacity between these two choices of
generating daily ozone estimates. We conducted a comparison of two upscaling methods: USM1 (data
aggregatin from hourly to daily followed by BME approach estimation) and USM2 (perform BME
approach estimation on hourly ozone followed by data aggregatidwalidation analysis using only
noncollocated data outside of a validation radius was performed aredrtr statistics between the
observations and +estimated values for two daily metrics, the daily maximuho8r average (DM8A)
and the daily 2our average (D24A) ozone concentrations, were obtained to investigate the estimation

accuracy.



CHAPTER 27 BAYESIAN MAXIMUM ENTROPY INTEGRATION OF OZONE
OBSERVATIONS AND MODEL PREDICTIONS: A NATIONAL APPLICATION *!

2.1 Introductio n

According to EPAG6s newly released | ntlgthe at ed
evidence of public health impacts on populations residing in areas with elevated ozone levels for
prolonged periods are still uncertafbetter understanding of the adverse health effects to chronic ozone
requires accurate exposure estimates at multiple temporal scales and at fine spatial resolutions. Estimates
of ozone concentrations typically rely on environmental data collectedtfvoreources: monitoring
networks and air quality chemical transport models (CTM). The first source gives measurement
concentrations for a long temporal time, but only at a point where the monitor is located. The CTM
provides predictions for all locationisut is an average concentration based on the spatial resolution of the
model grid cell. Further, given the intensive resources needed to build a CTM, the numbers of days that are
simulated are limited. Several categories of data integration methddsljmgcKalman filter method22],
variational methodf23], optimal interpolatioi24] and Bayesian methoi$7-19] have been developed to
integrate these two types of data and rely on their individual strengths to build a more refined air pollution
estimate. In this work, we choodee BME method of modern geostatistics, a knowlgogeessing
framework, because of its advantage of integrating a wide variety of nonlinegBanssian knowledge

bases.

1 This chapter previously appeared as an article in the Journal of Environmental Science & Technology.
The original citation is a®llows: Xu, Yadong, Serrd.,. Marc, Reyes, Jeanett¥izuete, William.

Bayesian Maximum Entropy Integration of Ozone Observations and Model PredictionoAaNa
Application.Environmental Science & Technolo®016 50 (8), 4393440Q
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We developed our data integration approach to obtain two metrics of ozondestima DM8A
and D24A ozone concentrations. Both of these metrics are commonly used in epidemiology&tdies
25].

Several Bayesian inference approadi€sl9 provide a sophisticated statistical framewfrk
the data integration of ozone observations and model predictions and production of multiple time averaged
estimates. These approaches share the following characteristics: parameterize the relationship between air
pollution observations and predictignsse kriging to obtain air pollution estimates for any given value of
the parameters, and use Bayesian inference to obtain air pollution estimates that accounts for parameter
uncertainty. These methods, however, have the following limitations: they adsatrttee relationship
between air pollution observations and predictions is linear and homoscedastic, they share the linear
limitations of the kriging estimator, and have a high numerical cost.

To overcome these limitations de Ndeadt al.[20] introduced an approach based on the nonlinear
extension of kriging provided by the Bayesian Maximum Entropy (BME) method of modern
spatiotemporal geostatistj@§]. This approach uses a nparametric methodology that fully accounts for
the nonlinearity and horhomoscedasticity of the relationship between air pollution observations and
predictions. Their application of this approach showed that the BME method provided a numerically
efficient data integration framework that combines a wide variety ofmemanlj norGaussian knowledge
bases that are out of the reach of krigiraged methods. That study applied the BME framework to
integrate ozone observations and model predictions simulated by the Multiscale Air Quality Simulation
Platform (MAQSIP) in the ste of North Carolina and exposure were estimated for a short study period,
June 19 to June 30 of year 1996. That study demonstrated that the BME data integration approach, by
incorporating the MAQSIP model predictions along with ozone observatiopsgved both the accuracy

and the precision of ozone estimations across North Carolina.
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It is clear from the de Nazelle et al.o6s work
from the air quality model for ozone was homogeneous for the etatiee $his was a reasonable
assumption given the small study domain and short study period. In our work here, however, we are
providing ozone estimates for the entire continental United States (US) for multiple time averages that
couldinclude afullyeaThus, de Nazelle et al és assumption may
spatial heterogeneity and temporal variability of 0zone model performance across the country. Therefore,
we extend the work of de Nazel |oachéatcaaacéommdiate de v el
any spatial or seasonal variability in the model performance of the CTM. The refined ozone estimates that
we obtain could be applied for health assessments or adapted to generate exposure estimates for other

criteria air pollutarg.

2.2 Data

2.2.1 Ozone Monitoring Data

The DM8A and D24A ozone concentrations for each monitoring site and day for the year 2005
were constructed based on raw monitoring data from ozone monitoring stations measuring hourly O3
concentrations using theqmedure described here.

We downloaded hourly ozone monitoring data (raw data) sampled from 1179 sites in the Air
Quality Systems (AQS) database maintained by the U.S. Environmental Protection Agency (EPA), which
is a repository of the monitoring data ealted across various monitoring networks. Then we computed the
DMB8A andD24A of hourly ozone concentrations at each monitoring site to construct a daily ozone
concentration database. These daily averages are considered as hard datayea proay,in our later

interpolation analysis €& Sl section 7 for details).
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2.2.2 Air Quality Model Predictions

The air quality model data consists of hourly ozone concentrations predicted by the
Comprehensive Air Quality Model with extensions (CARJ modeling system on a 36x@6¢ grid cell
resolution domain covering the continentaSUand a 12x1&r? grid cell resolution domain covering the
Eastern U.S. as shown in Figure 1s. CAMx is a publicly available Euleriabagigtd model that can
address tropospheric ozone, acid deposition, visibility, fine particulates and other air fsoifisia@s in
the context of a fione atmosphereo perspective.
basecase simulations in their analysis of the final Transport Rule. These air quatigling simulations
used the CAMXx version v5.30ithr gasphase chemistry mechanism CBO05, and also refined
meteorological and emission fields for the year 2005 across the United Sissled model
configurations and evaluation are discussed else\@&r€he hourly model predictions were used to
compute the DM8A and D24A ozone concentrations at each grid cell. These CTM prddiigtedone
concentrations are used to construct the soft data, as secondary information with uncertainties, consisting
of the expected values of the daily concentrations and the uncertainties associated with the expected values

at each grid cell. The déisof soft data construction are described in section 3.3.
2.3 Methods

2.3.1 BME Estimation Methodology

BME is a modern gestatistical methofl26] for spatialtemporal interpolation that incorporates
information from many different data sources. The implementation and performaBig-diave been
detailed in other work21, 29], and its application to the integration of O3 observations amttimo
predictions was described by de Nazelle &G In short, we model the (offsetmoved) transform,
which is a commonly useceterministic transformatigB0], of air pollution as a Spacefiie Random
Field (S/TRF)X(p) at space/time coordinape(s,t), wheresis the spatial coordinate abhé time. Our
notation for S/TRFs consists of denoting a single random vaxainleapital letters, its realizationy in

lower case; and vectors in bold faces (e.g. w8 ). The general knowledge base-KB)
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characterizing{(p) consists of the mean function == ‘O @, whereO 8 is the stochastic expectatio
describing its consistent trends, and the covariance fundtidies O O mm O == O =i

G =2 describing its space/time dependencies. Likewise the site specific knowledge-E&e (S
consists of the hard da#a at space/tim@bservation pointss= located at the monitoring stations, and the
soft data charactering the S/TRF valewesat the space/time model prediction pouassin terms of a site
specific PDFQ @ . Denotingthe @B as’O0 @ wmll) mim andthe KBas'Y e Qe |

we can summarize the BME steps as 1) usindg/tis@émum Entropyrinciple of information theory to
process the &B in the form of a prior Probability Distribution Function (PDE) 2) integrating the S

KB using an epistemiBayesiarconditionalization rule to create a BME posterior PRFharacterizing
the valuew taken byX(p) at any estimation poimés of interest, and 3) computing space/time estimates

based onhlte BME posterior PDF. The BME posterior PDF is given by the BME equation

Q 0 Qe Qe Me (E2-1)
wheree whe he s the value of) mm at PoiNtSmm [ [l @Nd0 is @ Normalization
constant.

LetO=m G WO be the Space/Time Random Field (S/TRF) representing daily ozone. In this study
we defined ¥b as the sum of a homogenous/stationary S/TRF and a known offset as follows. We first

define the transformation of the ozone observational daté locationg, as

° » 7€ e (E2-2)
whereé¢ = may be any deterministic offset that can be mathematically calculated without error as a
function of the space/time coordingte We then defin€ == asa homogeneous/stationary S/TRF
representing the variability and uncertainty associated with the transformesd datal we let) mm

O == ¢ =mbethe S/TRF representing daily O3. We can then calaitatbe estimated daily O3 at
unmonitored locatiomss by obtaining the BME estimate for the transformed S/TRé == at the

estimation poini==, and adding back == , the offset calculated ad.
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The soft data are described by the PQFe  characterizing the offseemoved ozone values
at the soft data poinkss corresponding to the centroids of teCTM computational nodes. The offset
removed ozone model predictionsare calculated at these nodas.a key concepal aspect of our work
the generation of this soft data PDF requires not only the offsetved ozone model predictions, but also
the observatiomrediction pairs where the observed and CTM predicted ozone concentrations are paired
across space and timeThis PDF is expressed as
Qe B Q00 e (E2-3)
which essentially characterizes how well each CTM offsetoved ozone value predicts the true offset
removed ozone concentratianat the computational prediction poiaé Procedurally equation (3) is
simply obtained by first calculatii@ 6, B Q& I , Whered anddgare observed and CTM
predicted ozone values, respectively, and then using the offset relatienship 7¢ == to obtain
Qe .

As described by de Nazelle effall], the PDFQd Sidmm is modeled using a parameterized
statistical distribution, chosen to be the normal distribution truncated below zero with an expected value

0o and variance. 0@, such that:
Ve B arL wh @ (E2-4)
In the soft data construction approach implemented by de Nazellg3d} tle parameters &g and
Qg vary as a function of the model predicti@but are constant with respect to the space/time point

==, hence their implementation is based on a Constant Air quality Model Performance (CAMP). The
CAMP approach waappropriate since in their application the air quality model performance did not

change across their small study geographical domain (North Carolina) and short study duration (<15 days).
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Our aim, however, is to extend the BME methodological framewattietmational domain by modeling
_ Odwmm and_ Gdm= as a function of botfwand the space and time coordinagexpressed as below.
QO B AN G N O (E2-5)

Therefore, we need to investigate how the air quality model performance varies across the continental US.

2.3.2 Variability of CTM Model Performance Evaluation acrosst he Continental US

Each observed daily concentrati@ris paired with its corresponding CTM prediction vadde
and the error for the observatiprediction pair is defined & @& & . To evaluate the air quality
model performance over a given space time reBiohinterest, ve calculate error statistics such as the
Mean prediction Error (ME), the Standard deviation of the prediction Error (SE), the mean normalized bias
(MNB) and the mean normalized gross error (MNGE) as defined in Sl equAtitsé. 4s.

According to the moel performance analysis of this CTM (see Supporting Information (SI)
sectionA.1), for the DM8A O3, we find that overall the CAMx simulation with 12xt2grid cell
resolution has a substantially lower oyeediction (median ME=+1.4ppb) than that with 36k grid
cell resolution (median ME=+4.5 ppb). Furthermore, as summarized in Fig2®8andA.3s, the ME,
SE, MNB and MNGE at individual monitoring sites vary over a wider range for the simulation with
36x36&knt grid cell resolution. The variability dhese ME and SE values exhibit clear geographical trends
(Sl figuresA.4s7s for the DMBA and figure&.12s15s for the D24A): Urban cities located in the east
and west coast tend to have higher guediction bias (i.e. higher ME) and higher imprecidioa higher
SE) than sites located in the central United States. We also found noticeable seasonal differences in the
model performance for both CTM simulations (S| Figuke®s-9s for the DM8A and figure8.16s17s

for the D24A).
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The results of tls analysis provide strong evidence that the performance of CTM varies
considerably across the national domain and over seasons. Therefore, there is a need to extend the
implementation of the BME framework to account for this space/time variability in mpedermance.

We use the Regionalized Air Quality Model Performance (RAMP) method to quantify how the expected
value_ (dwm and variance (dwmm for the ozone soft data derived from CTM outputs vary as a
function of boh the CTM predictiorigand the space/time computational nadéor which that prediction
was calculated. The goal of the RAMP method is to select the most relevant obsemadiotion pairs to
most accurately identify the CTM bias assaaiavith the prediction valu@outputted for any space/time

computational nodam of interest.

2.3.3 The Proposed Regionalized Air Quality Model Performance (RAMP) Evaluation Framework

In the first stage of the RAMP analysis, we pool fatemonitoring site the observation
prediction pairs@ hid) that are within a time tolerance ®f'Y p ¢ ‘@ & cof a particular time of interest
Examples of two selected sites are shown in Figure 1. These pairs are highly relevalotcatitrev
where the monitorig station is sited, and ti&20daystime window is chosen to balance the abundance of
the pairs and the intention to retain seasonal specificity i6cthex differences. We stratify the pairs in
10 equal pecentile bins of increasing predicted valdgésand for each bin we calculate the mean and

variance of observed values,

;<
¢

ashv ———B ol (E2-6)

;(

;<

v ———B "y _ eshv o (E2-7)

3‘(

where¢  aghv o is the number ofd(d9 pairs in the B bin, & is the | observation value in these

¢ oGohv o pairs, andw@is the average of the predictiondin theset  aghv M pairs.
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Figure 2.1: RAMP analysis conducted specifically at time t=ILt:2005 and for sites ID 060372005(left)
and 120713002(right). The empty circles show the pairs of obseteddled valuesi(fog) that are within
120 days of t. The vertical lines show the stratification of these pairs in 10 bins. The interpolation lines
connecting the filled circles and triangles show how the mean of the observed value in each bin,

aehv b (filled circles), and the corresponding standard deviation, dghv fo (filled triangles)
change as a function of the average modeled vgirethat bin.

In the second stage of the RAMP analysis we obtaitd= and_ Odw= for actual predicted
valuesdwand space/time grid poiaa Y[ as follows. For each monitoring si®e we perform a
linear interpolation/extrapolation of the aghv v and_ &ghv b values to obtain adv o and
Gv D (see interpolation lines in figure 3), and then we do a spatial interpolation of these values to

obtain_ Odwm and_ (dw= ate= YO using the following formula

S B viv fw h . ~
_ Q(d’Wh) B viv ﬂU vhy T (E2—8)

wheren = 1 , réféfs theéN monitoring sites closest to the location of the computational woole
interest, and Yhv is a weight equal to the inverse of the distance between the computationa node
of interest and the-th neighboring monitoring station.

Stated simplydg _ Odwm is the bias characterizing systematic errors associdtec CTM
prediction value of@calculated at space/time grid poiat v , and_ Odwm is the variance
characterizing the associated imprecision. The strength of the RAMP method is that it does not make any
assumption on the relationship between observed and predicted values, and therefore geographical and

temporal changes in ndimear and nofhomoscedastic relationships are automatically captured in the
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calculation of_ (dwm and_ Odwm , which are fully integrated in the BME soft data through equation

(E2-4).

2.3.4 Offset analysis

The offset is used to transform the daily O3 data into residual -oéfisetved data. The ozone
offseté == at an arbitrary lodion== VYO is obtained using an exponential kernel smoothing of the
surrounding observed O3 d4&0]
€ vylIo B 0A4fB 0 (E2-9)
whered is the observed value at space/time observation gaint ¥ within the neighborhood of the

vy

pointm Of interest, and the kernel smoothing weightsiare A @D —— , @ is the spatial

offset kernel smoothing range atdis the temporal offset kernel smoothing range.

An optimal offset @ L TQAMOE @ p T0 & dwas chosen to ensure the transformed dasa
a low variance so that the geostatistical estimation error variance is minimized, while retaining high
autocorrelation to ensure that neighboring data locations are informative at the estimation location (see Sl

sectionA.2 for details).

2.3.5 Spacetime Covariance Model
The covariance model for the homogeneous/stationary SX[[RHs developed from the
experimental covariance of the transformed observationaledata» ¢ == . The experimental

covariance value for a spatial lngnd a temporal lagis calculated as

GuFt —B "o e 5 d (E2-10)

Where N¢,.) is the number of pairs of valued ( @ ) separated by a spatial lagroand temporal
lagof_, andd is the mean of the data. In practicéii fit anddrurttt are calalated and plotted
separately to facilitate the visualization of the space/time covariance models (S| Aig0eg: 31s). A
3-structured exponential covariance model was chosen for the subsequent BME analysis (see Sl section

A.2 for details).
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The fornula of the 3structured exponential covariance model is given by:
wift 6| Agp— Agp— 1 A@GP—- A@BD— p | 1 AOPD— AP ] (E2-11)
TablesA.2s&3s list the parameters used in the space time coeariaodel.
2.3.6 Validation analysis

A validation analysis is used to assess the accuracy of different BME estimation approaches. Each

observed valué at space/time point ¥ is compared with the corresponding ozone concentrétion
re-estimated using only nerollocated data outside of a radiuof v.

The validation error, which is the difference between ea@stienated valué’ i ) and observed
valued is defined a¥J i a i & . The estimation accuracy is quantified based on statistics of

these estimation errors, which is a function of the validation radiu§hey consist of the Root Mean
Square Error RMSE (ppb), th& (unitless), the Mean NormalideBias MNB (%) and the Mean
Normalized Gross Error MNGE (%) between observations ardtimated values, calculated as a

function ofi as shown in S| equatiodsE7s10s.
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Using the validation error statisti®BMSE({l and‘Y i ,we compare the following three BME data
fusion scenarios

1. Scenario OBS: Uses only ozone observations in the BME framework. This is the kriging limiting
case of the BME data integration framework since kriging is the linear limiting case of BME when
only had data are used.

2. Scenario CAMP: Integrates both observations and CTM predictions in the BME data integration
framework using CTM soft data constructed with the CAMP approach, which assumes that CTM
model performance is constant across space and time.

3. Scerario RAMP: Integrates both observations and CTM predictions in the BME data integration
framework, with CTM soft data obtained through the RAMP approach introduced here to account

for the space/time variation in CTM model performance.

We letY Y andY be the coefficient of determination of estimation error for
scenario OBS, scenario CAMP and RAMP, respectively, and we define the percent chafge; Bup

and P®ogs; ravras follow:

O# o p T (E2-12)

O# o p T (E2-13)

A positive PCR? indicates an increase Rf, which corresponds to the percent improvement in estimation

precision resulting in integrating air quality model predictions in the BME data integration.
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2.4 Results

24.1 BME Ozone estimates

When incorporating CTM préction as soft data in the BME data integration framework
(scenarios CAMP and RAMP), we use the soft data with the finer grid cell resolution when it is available.
That means for the areas where both 3&r8&nd 12x1Rn? grid cell resolution are availablae
incorporate the 12xX2f CTM prediction values.

Figure 22 shows for Jull1-2005 the BME estimates of DM8A ozone concentrationsbtained
for the three estimation scenarios. This day was chosen because it has the highest standard deviation (at
33.1 ppb) for CTM prediction errors at 0zone monitoring sites, which means the CTM model performance
has the highest spatial variability among sites. It is clear that on this day the BME mean estimates (in the
top panel of Figure.2) in the immediate pramity of the monitoring stations (marked in circles) are at
very similar levels in the three maps, being in good agreement with the observed data in their local
neighborhood. As the estimation location moves away from the monitoring stations, the affareng
these three maps becomes more substantial. For example, in scenario OBS we see a wider area of high
ozone value, with the area above 70ppb covering 81kn2%&ross the continental United Statérs.
scenario CAMP the ozone plume above 70ppb colers a much smaller area (545, k&#) with the
peak ozone concentrations in the plume reaching 85ppb. By contrast, in scenario RAMP the size of the
ozone plume (the area where ozone levels are above 70ppb) is 5ki@;@@@l the highest peak ozone

coneentration reaches 90ppb.
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Figure 2.2. Maps of BME mean estimate$dp) and corresponding standard deviations of BME estimates
(Bottom) of the DM8A ozone concentrations (ppb) on daylli2005 obtained with scenario OBISeft),
CAMP (middle panels) and RAMMR{ght). Circles in the maps represent locations of monitoring sites and
color match legend for observed concentrations.

The uncertainty associated with the BME estimates are quantified by the corresponding BME
standard stimation error (bottom panel of Figur&p For estimation scenario OBS there is a higher
estimation uncertainty, with the highest BME standard estimation error reaching 8.7ppb for areas far away
from any monitoring stations, and with an average starekinahation error of about 6.4ppb across the
continental United States. This is in contrast to estimation scenarios CAMP and RAMP, where the BME
standard estimation error remains relatively low, with the highest standard estimation error reaching
6.5ppb ad 6.3ppb for scenarios CAMP and RAMP. This indicates that integrating both observations and
model predictions improved the quality of the ozone estimates, especially for areas far away from any
monitoring station. Overall, scenario RAMP has the loweststahestimation error, with an average

standard estimation error of about 4.6ppb adtesgontinental United States.
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2.4.2 Soft data construction using the RAMP approach

The construction of the soft data using the proposed RAMP approach can legeéitlistr
comparing scenario RAMP that accounts for the space/time variably of CTM performance, with scenario
CAMP that does not. Two important parameters that differed in these two scenarios arecbe éxited
expected values Odmm and the corresponding soft data varianced i .

Figure2.3 shows a map of the raw CAMx modeled DM8A average ozone predictions-Jofi 1
2005. Also shown in the figure are the biasrected CTM predicted values (= from scenarios CAMP
and RAMP for the same day. Both scenarios CAMP and RAMP corrected the CTM prediction bias to some
extent, especially for areas close to the monitoring sites. There are, however, substantial differences of the
biascorrected CM predicted values Odwm between scenarios CAMP and RAMP. For scenario CAMP,
the map of the biasorrected CTM predicted values shows lower values than scenario RAMP, with the area
above 70 ppb covering 221, across theontinental United States and the highest-b@sected CTM
predicted value. at 105 ppb. By contrast, in scenario RAMP the size of the area witbdriazted CTM
ozone levels greater than 70 ppb is 431 J85% with the peak biasorrected CTMbzone level reaching 111
ppb. This substantial difference is due to the assumed homogeneity of the CTM model performance in scenaric
CAMP that forces the same correction throughout the study domain. This correction results in an over
correction in some kel areas such as the area covering the western and southwestern Bletvesiaf
Idaho,Utah, Wyoming, Coloraddirizona, New Mexico and California. In contragte scenario RAMP is

better able to account for regional biases in model performance.
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Figure 2.3: The DM8A ozone concentrations in the United States edul#2005 using l(eft) the raw
CTM Model predictions,Nliddle) the biascorrected expected values 0dwm for the estimation scenario
CAMP, and Right) the biascorrected expected values Gdwm for the estimation scenario RAMP.

The maps for the corresponding square root of soft data varianiud== are shown in Sl Figure

A.34s. This map characterizéhe imprecision associated with the liasrected CTM predicted values

(dwm . We find that scenario RAMP has more localized gradients for the variari=s , with the
square root of Odw= Spanning from a low value of 2.6 ppb to a high of 20.5 ppb, and averaging about
8.7 ppb across the continental United States. By contrast, this variance has less spatial variability for the
scenario CAMP; with a narrower span_of (d= Vvalues ranging from 9.2 ppb to 14.1 ppb, and a higher
average over the continental United States of 10.3 ppb. This illustrates that the proposed RAMP method
used in scenario RAMP has a greater ability to characterize regional changes in the prelgiason of
corrected CTM predictions. This is an important methodological improvement explaining the improved

performance in scenario RAMP in the crossdation analysis described next.
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2.4.3 Validation results

The validation analysis was conducted to comtimation scenarios OBS, CAMP, and RAMP.
For those monitoring site locations covered by both CTM domains, soft data with a finer grid cell
resolution of 12x1RnT are incorporated for scenarios CAMP and RAMP.

Table2.1 shows the percent changeRias a function of validation radids. As shown in the
table, scenario RAMP has the highB&for all radiii . Furthermore, the FRogss cavp, representing the
percent change iR? from scenario OBS to scenario CAMP, is consistently positive Whizamger than
Okm indicathgthatdeNa z el | eds approach, even when applied
devel oped, is still more accurate than refPying
consistently improves as increases. The FRogss ravr, representing the percent chang&®fwhen
comparing scenarios OBS and RAMP, is also consistently positive. More importantly, it is larger than
PCR%0sss cavp, With an overall 0.73% increase for the DM8A and 2.6% increase for the D24ARS%oin
i =0km Furthermore, there is 2.9% increase for the DM8A and 5.9% increase for the DRZeiween
scenario OBS and RAM&t locations more than 1k& away from a monitoring station. We also
calculated the percent changeRfnwhen we aggregate the BME @séites into weekly and monthly
estimates (S| Tabla.5s). Scenario RAMP still has the highB8increase for these aggregated metrics.
More results of the crosslidation analysis are documented in Sl section 5.

These results demonstrate thegrating both observations and soft data processed through the
RAMP approach improves the capability of estimating both of the DM8A and the D24A ozone
concentrations compared to using only observational data and through the CAMP approach. Compared
with the CAMPapproach, the RAMP approach consistently results in a further improvement in estimation,
as evidenced by the fact that theRB&s: ravp Values are over 12 times greater than thBB&s, cave
values for the DM8A ozone concentrations and over 3.5 timesegitban the PR%ogs; cavpvalues for the

D24A ozone concentrations.
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Table 2.1: Validation statistics for BME data integration scenarios OBS, CAMP, and RAMP

Validation DMSA D24A
radius
» (km) 0 36 72 108 0 36 72 108

1 1my |5536 6.309 6.799 7.041 5.705 6.178 6.303 6.422
44 mu1 | 5675 6.442 6.966 7.250 5.803 6.222 6.383 6.545

44 {ir2} | 5445 6.109 6.531 6.732 5.487 5.835 5917 6.004
_4.|-

R_ZOBS 0.886 0.853 0.829 0.817 0.792 0.757 0.747 0.738
(unitless)

RZFAMP 0.884 0.853 0.831 0.819 0.794 0.765 0.758 0.750
(unitless)

RZ_RAMF’ 0.893 0.866 0.849 0.841 0.813 0.789 0.786 0.781
(unitless)
PQRosacave | 0223 0.014 0.197 0.235 0.230 1.100 1.480 1.617

b
P®osarave | 0.726  1.602 2.407 2.936 2.642 4.338 5.190 5.898

b

p-value

OB%, CAMP 1 0.990 0.321 0.0009 0.259 0.00041 <0.00001 <0.00001
O | «am gy

p-value

0B%, RAMP 0.980 0.0001 <0.00001 <0.00001 | 0.0725 <0.00001 <0.00001 <0.00001

" The analysis uses a constant offset and corresponding covarianceingkdilis the validation radius
around monitoring stations within which all observation points are excluded in the validation estimations;
Rloss Rcave, Rravrar € t he squared spearmanés correlation
and the BMEestimates for the OBS, CAMP and RAMP data integration scenarios, respe®MVS¥oes
RMSEcave and RMSEavpe are the corresponding root mean square errorR2Rs, campe is the percent
change irR? from OBS scenario to CAMP scenario, R%sss ravris the @rcent change from scenario OBS

to scenario RAMP; paluesss cavris the pvalue testing the hypothesis that there is no difference between
the R? in scenarios OBS and CAMP:\@alueogss rampis the pvalue testing the hypothesis that there is no
differencebetween thé? in scenarios OBS and RAMP.
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2.5 Discussion

We have presented an ozone estimation method that is able to integrate observations with
predictions from a CTM. These predictions are weighted according to model performance that varies
across sace and time based on a soft data construction utilizing the newly developed RAMP method.
Thus, estimates are produced that put priority on observations and take advantage of air quality model
predictions based on how well they reproduce the observedsvaipatial fields generated from this
approach provide an observation and CTM informed representation of ozone across space/time that is
more accurate and precise than relying only on observation data. This was especially true for locations
away from moitoring stations.

We developed the RAMP method by extending the CAMP framework presented by de Nazelle et
al[20]. We tested the RAMP method by comparing the percent chafjeird found the percent increase
achieved by the RAMP meth¢BCR’0ss: ravp) Was four to terold greater than that of the CAMP method
(PCR0sss camp). This improvement is attributed to the RAMP ability to account for the spatial and
temporal variability in model performance.

Approaches used to model the uncertaisgoaiated with the CTM model predictions can be
divided into parametric approaches that parameterize the relationship between the air pollution
observationgdand predictionsd [17, 18], and norparametric approaches such as our RAMP method
that directly model air quality performance based on paired observed and predicted values. For example,
Fuentest al[17) assumesthab v f v T v@ v - v, while Berrocal et 18 assumes that
OWD T YD T woadh - WO, where in both cases the relation is linear and homoscedastic
since the noise term is assumed to have a constant error variancefme.0 18, . By contrast, our
novel RAMP approach is a ngrarametric apfmach that fully accounts for the ntinear, non
homoscedastic relationship between observatioasd predictiongs, and accounts for the

spatiotemporally varying nature of that relationship.
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To illustrate the difference between parametric andpawametric approaches, we also compared
our nonrparametric estimates to the ones generated from a cokriging estimation with a parametric
relationship between the observations and the CTM model predictions (S| geéfiorin this analysis,
we found thathe disadvantage of cokriging is that it is limited by the parametric relationship and the final
estimates tend to be heavily influenced by CTM model predictions. Based on the validation results (Sl
TableA.6s), our approach outperforms the-R@ing apppach in terms of smaller root mean squared
error, 5.45 ppb for RAMP and 6.5 ppbfor€a i gi ng, and Ri0.898 mrRAMMaed r man o s
0.846 for Caokriging for the DM8A ozone

To the best of our knowledge, our proposed framework is one of thifftdly account for the
spatiotemporal variation of the ndinear, norRhomoscedastic relationship between air pollution
observations and predictions. Major strengths of our approach are that its numerical implementation is
based on a straight forwardadysis of paired observations and predictions, which is computationally
efficient and trivially implemented on parallel computers, and it reduces the uncertainty of the mapping
error by putting more weight on air quality predictions where they reprodutthe/ebserved values.

This is particularly useful in large regulatory or health studies that need to incorporate air quality
predictions with widely varying model performance across the study domain, such as studies examining
the entire continental UniieStates rather than some small portions of it, or studies combining air quality

predictions from a variety of air quality model simulations with signifilsavarying model performance.
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CHAPTER 31 BEM INTEGRATION OF OZONE OBSERVATIONS AND CTM PREDICTIONS
AT MULTIPLE TIME SCALES 2

3.1Introduction

For environmental epidemiologists and exposure scientists to assess théheshuman
population due to ozone exposure at national or regional scales requires accurate ambient ozone estimates
at fine spatial and temporal resolutions. Most air pollution epidemiologic investigations, however, rely on
ambient ozone estimates genecdasolely from air quality monitoring netwofKs8, 25, 32, 33], such as
the Air Quality System (AQS) operated by the U.S. Environmental Protection Agency (EPA). The AQS
monitoring network has conaints in the geographic and temporal coverage, especially for the-ozone
monitoring network. In addition to hourly averages and sparse national coverage the network has less than
half of its sites operating year round. Only during the summer are albpiteating. Pollutant predictions
from a chemical transport model (CTM) is another useful environmental data source that is used for
generating estimates. CTM model predictions have the advantage of having continuous spatial coverage,
but sometimes are litdd in their temporal coverage. Further there is inherent error and uncertainty in
CTM model outputs that can be difficult to quantify. The continued need for ambient air pollution
estimates with longer time periods and larger spatial scales has pusbrpdiere community to find

ways to combine these two data sources.

2Thischapter is planned to be submittechasarticle to the Journal of Environmental Science &
Technology. Xi,Yadong, Serrd,. Marc, ReyesJeanetteYizuete, William. BME Integration of Ozone
Observationeind CTM predictions at Multiple Time Sles.
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We have developed a methodol{@f] that attempts to incorporate the spatial and temporal
changes in CTM model performance to guide the integration of ozone observatian8MEb estimation
framework. We have shown that by integrating the dynamic spatial and temporal changes in CTM
performance we can improve ambient 0zone exposure estimates at a national scale. In our previous
studyf34], we first aggregated both of the ozone observational data and CTM predictions from a hourly to
a daily average and then applied the BME framework to estimate the daily maxHmoum &verage
(DM8A) and daily 24hour average (D24A) ozone concentratidrize use of daily averages in our BME
estimation framework substantially reduced the computational effort. If for example, hourly averages were
used in the BME estimation framework it would require 200 times more CPU time. The disadvantage is
the loss of iformation that could be found in hourly averages that could be used by the BME framework
and potentially improves accuracy of the estimations.

Ideally the exposure estimates should be at time scales that are relevant to the health outcome.
These times sca$ can range from hourly averages for research affetds[4, 35 to monthly averages to
study longterm halth effectd32, 36]. In practice, many studies have used loergn arithmetic mean
exposure estimates dexd from small time scale estimates. Like in our previous study, the hourly
observations and CTM model predictions for ozone could first be aggregated into the appropriate time
scale then apply an interpolation technique to estimate exposure at théargeale of interest. An
alternative method would be applying interpolation at a finer time scale and then aggregating the BME
estimated concentrations into a longer time scale. The benefit of this method is that it keeps the
spatiotemporal structure tfe original dataset. For ozone it would retain the characteristics of the diurnal
pattern and hourly changes in CTM model performance. Having the estimates at a finer time scale
provides the freedom to construct other hotndged exposure metrics suchdaily 2hour maximum,
daily 8-hour maximum or daily 2our averages depending on the need of the studies. It is unknown
whether the substantial increase in computational burden is worth the additional information provided to

the BME framework.
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Although the cost of implementation of these tweagaling methods are known, less is known
about their impact on estimation accuracy. Yu glilcompared estimates of ambient PM10 and ozone
using these two upscaling methods in their BME analysis. Their study showedresu#d for ozone
estimates that USM1(data aggregation followed by BME spatiotemporal interpolation) had lower
estimation error than USM2 (perform BME interpolation at small time scales followed by data
aggregation) at weekly and monthly time scales, [®M®P performed better when the time scales
increased to larger than three months to one year. These results are constrained by a limited observational
data set. The BME analysis relied solely on the AQS observed ozone dataset from 7iaztoring
statins in the Carolinas over year 192602. Their study also did not start with hourly ozone
concentrations, instead, daily averages were used andyaggtento longer time scales.

It is still unclear the extent to which keeping the diurnal pattern ofeopogsent in an hourly
dataset would benefit the estimation accuracy whescafed to longer time scales. This work quantifies
the impact in predictive accuracy when starting with hourly ozone concentrations contrasting it with the
increased cost in comfational burden. The work relies on a large national scale observational data set
consisting of 1179 monitors for the year of 2005. National scale hourly CTM predictions for the entire year

of 2005 are also used in a BME estimation framework.

3.2 Data Souces

The ozone observational data are hourly ozone monitoring data sampled from 1179 sites for the
year 2005 downloaded from the Air Quality Systems (AQS) database maintained by the U.S.
Environmental Protection Agency (EPA). Details on the processinqualily assurance of this data can

be found in Xu et §B4].
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The CTM model predictions consist ajurly ozone concentrations for the entire year of 2005
predicted by the Comprehensive Air Quality Model with extensions (CAMx) modeling system. Model
prediction has a spatial grid cell resolution of 3@x&6covering the continental U.S. and a 12ki2grid
cell resolution domain covering the Eastern U.S. Detailed model configurations and evaluation are

documented in the final Transport Rule by the U.S. 2BA

3.3 Methods

3.3.1 BME Estimation Methodology

A detailed description of the BME framework used to generate ozone estimates can be found in
Xu et al. 201634]. In short, first the AQS hourly data was paired with CTM modeled hourly ozone
concentrations in space/time. Then, loaibiascorrected CTM data were constructed as the soft data
throughRAMP approach, where the hourly ozone CTM predictions are weighted according to model
performance that varies across space and time. A transformation of these data was used, wkéch consis
in removing from the data an offset obtained using an exponential kernel smoothing of the data. The
exponential kernel smoothing was set so that the offset captured the spatial variability of the data over
intermediate spatial distances and intermediate scales. A-Brm exponential/exponential/cosine
space/time covariance model was used to characterize the space/time autocorrelation in the offset removed
hourly ozone data. Finally, we conduct a BME interpolation that 1) uses the Maximum Entrajipieri
of information theory to process the general knowledge basB Gonsisting of the mean function and the
covariance function of ozone 2) integrates the site specific knowledge &a$8ng an epistemic
Bayesian conditionalization rule to creatBME posterior PDFQ characterizing the value taken by
X(p) at any estimation poimés Of interest, and 3) computes space/time estimates based on the BME
posterior PDF. The-8B consisted of hourly observations treated as hard datbealtzed bias

corrected hourly CTM data treated as soft data.
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3.3.2Variability of CTM Model Performance Evaluation across the Continental US

An important feature of this methodology is that it fully evaluates the spatial and temporal
variability in the CTM performance. For this evaluation each observed hourly concendrasqraired
with its corresponding CTM prediction valgg and the error for the observatiprediction pair is defined
asQ & a.To evaluate the CTM model performance over a given space time fegfdnterest, we
calcuhbte error statistics such as the Mean prediction Error (ME) and the Standard deviation of the
prediction error (SE), the mean normalized bias (MNB) and the mean normalized gross error (MNGE) as
defined in Sl equations 4s.

Detailed results of the natiwide model performance analysis of this CTM are provided in SI
section 1. In brief, we find that overall the CAMx simulation with 1Zxh8rid cell resolution has a
substantially lower oveprediction (median ME=+3.4ppb) than that with 36k3@rid cell resolution
(median ME=+6.1 ppb). There are clear geographical trends in the variability of these error statistics:
Urban cities located in the east and west coast tend to have high@redietion bias (i.e. higher ME)
and higher imprecision (i.e. high8E) than sites located in the central United States. The seasonal
difference in model performance was also analyzed by recalculating the error statistics at each site
separately for the summer (May, June, July and August) and winter (November, Decamksey; dnd
February). The oveprediction bias is noticeably higher in the summer, with the median ME for the
summer equal to 4.1 ppb compared to 2.3 ppb for the winter, while the median MNB (237%) and MNGE
(267%) values for the winter are much higher tfarthe summer with the median MNB at 129% and the
medi an MNGE at 143 %, indicating the CTM model 6s

the winter.
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Generally, the CTM reproduces hourly ozone concentrations with much higher prediaiign e
than the daily DM8A and D24A ozone values. For example, in the CAMx simulation with 12x12km2 grid
cell resolution, the median SE for hourly ozone is 13.2 ppb, which is much higher than the ones for DM8A
at 9.4 ppb and for D24A at 7.9 ppb. The di#feces in MNB and MNGE are even greater between the
hourly and daily metrics, with the median MNB at 145% for hourly ozone compared to the ones for
DMB8A at 9.3% and for D24A at 19.8% (See more detailed error statistics in SBtab)e This can be
explaned by the fact that CTM models tend to severely -@vedict nighttime hourly ozone
concentrations at very low values and urgledict peak hourly ozone concentrations.

3.33 Regionalized Air Quality Model Performance (RAMP) Analysis for Hourly Ozone

The RAMP evaluation analysis is conducted in two stages. In the first stage we analyze CTM
performance at specific monitoring stations, and in the second stage we perform an inverse weighted
distance interpolation to assess CTM performance away rfinonitoring stations.

In the first stage of the RAMP analysis, we focus specifically on each monitoring site, and for each
monitoring site we pool the observatiprediction pairs¢ @) that are within a time toleranae "%f a
particulartime of interest. These pairs are highly relevant to the locatomvhere the monitoring station
is located.To be consistent with our previous study, we keep the sailte p ¢ ‘@ & dbar the hourly
ozone. Examples of two selected sites hevd in Figure3.1. We stratify the pairs in 10 percentile bins

of increasing predicted valuég and for each bin we calculate timean_ &ghv o and variance

ahv o of observed values (see detailedigipns in Xu et al).

In the second stage of the RAMP analysis we obtaitd= and_ Odw= for actual predicted
hourly valuesat space/time grid poimks VD . We first perform a lineanterpolation/extrapolation
ofthe_ hvid and_ oshvd values at each monitoring site to obtainadv v and

adv ho  at the predicted values. Them use inverse weighted distance to do a spatial interpolation of

these values from the neighboring monitoring stations to obtaifies and_ (s Ates Y .
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on 11-Jul-2005 for sitelD 060372005 on 11-Jul-2005 for sitelD 120713002
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Figure 3.1: RAMP analysis conducted specifically at time t=<IL2005 and for sites ID 060372005(left)

and 120713002(right). The empty circles show the pairs of hourly obseeeled valuesifog) that are

within 120 days of t. The verticalinkes show the stratification of these pairs in 10 percentile bins. The
interpolation lines connecting the filled circles and triangles show how the mean of the observed value in

each bin_ oashv i (filled circles), and the correspomdj standard deviation, _ d&shv i (filled
triangles) change as a function of the average modeled a@lneahat bin.
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3.3.4 Offset analysis

The offset is used to transform the hourly ozone data into residuat@iseveddata. The ozone
offseté =m atan arbitrary locatioms ¥ is obtained using an exponential kernel smoof{f3iélg
of the surrounding observed ozone data. Several sets of kern¢hsrgoanges, including the spatial
range® and the temporal range, are investigated. An optimal set of kernel smoothing ranges
LV QA E @ p T0 O dvere chosen to ensure the transformed data has a low variance so that the geo
statistical estimation error variagmés minimized, while retaining high autocorrelation to ensure that
neighboring data locations are informative at the estimation location. These offset ranges are also

consistent with what we used for the daily metrics. (See Sl section 2 for details).

3.3.5 Spacetime Covariance Model

The covariance model for the homogeneous/stationary SX[RHs developed from the experimental
covariance of the transformed observational data » 7€ == . The experimental covariance value for
a spatial lag and a temporal lagis calculated and plotted separately to facilitate the visualization of the
space/time covariance modelSeveral covariance models were attematied evaluated. A-8tructured
exponential/exponential/cosine covariance model was chosen for the subsequent BME analysis (see Sl
sectionB.2 for details).

The formula of the 3tructured exponential/cogircovariance model is given by:

oift 6| Agp— Agp— 1 Agp— A@Gp— p | 1 A@B— Al O— ] (E31)

Where( is the sill (variance)d andw are thespatial ranges andd andw are the temporal ranges,

andU b and (ta-b) are the proportions of variability contributed by the first, second and third covariance
structure, respectively. The parameterb, ® ,® ,® ,ard® obtained by least square fitting for

each offset are shown in Sl talde8s. Compared with the covariance models for the daily metrics, the

major difference of the covarianeceodel for the hourly ozone is the cosine function in the third streict

of equation 1. This function represents the diurnal pattern occurring in the observational ozone data, which

was altered by the aggregation process for the daily metrics.
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3.3.6 Validation analysis

A validation analysis is used to assess the acgufimvo BME estimation upscaling methods

USM1 and USM2. Each observed vafuat space/time poin8 VD is compared with the
corresponding ozone concentratiwnre-estimated using only necollocated data outside of a radiusf

v. The validation error, which is the difference betweach reestimated valu&’ i ) and observed

Z

valued is defined a%J i o i & . The estimation accuracy is quantified based on statistics of
these estimation errors, which is a function of the validataius . They consist of the Root Mean
Square Error RMSE (ppb), th& (unitless), the Mean Normalized Bias MNB (%) and the Mean
Normalized Gross Error MNGE (%) between observations ardtimated values, calculated as a

function ofi shown as below.

YO'YO —B &1 zd (E32)
B z z
Y < ] (E33)
B ozt z B r
0 U 61 -B pnnddi a o (E3-4)
0600 -B pnmbsdi a4 (E35)

We first calculate the validation errstatistics for the hourly ozone estimates to evaluate the
improvement in predictive capacity between two estimation scenarios, with the OBS scenario using ozone
observations only and the RAMP scenario incorporating the CTM model predictions througéiMRe R
approach.

Our next step is to compare the following data fusion simulations (4 simulations for each daily
metrics) as in list in Table 1 to investigate the differences in the predictive capacity between USM1 and

USM2.
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Table 3.1: The list of BME data integration simulations used in the validation analysis

To simulate DM8A To simulate D24A
Simulation Upscaling Soft data Simulation Upscaling Soft data
name method Scenarid name method Scenarid
DM8A-1 UsSMm1 OBS D24A-1 USM1 OBS
DMB8A-2 USM2 OBS D24A-2 USM2 OBS
DMB8A-3 USM1 RAMP D24A-3 USM1 RAMP
DM8A-4 USM2 RAMP D24A-4 USM2 RAMP

#Scenario OBS: only use ozone observations in BME data integration; Scenario RAMP: use both of
ozone observations and soft datageissed through RAMP approach

To investigate the influence of the CTM grid cell resolution on the accuracy of the BME estimates,
we also conduct our validation analysis by using two sets of soft data, one processed from CAMx outputs
with 36x36knt grid cellresolution and the other from CAMx outputs with 12x12igmd cell resolution,

for those monitoring sites located both in 36x36amd 12x12krimodeling domains.
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3.4 Results

3.4.1 BME Ozone estimates

To visualize the differences of BME ozone estiesdtom two upscaling methods USM1 and
USM2, we generate the maps for a selected day\{y42005), this day is chosen because it has the
highest standard deviation (at 33.1ppb) for CTM prediction errors for DM8A at 0zone monitoring sites.

To create a 1ap using ugscaling method USM1, we directly conduct BME interpolation with daily DM8A

and D24A observations and the corresponding soft data generated through the RAMP approach. To create
a map using wscaling method USM2, We first do a BME interpolatairhourly ozone for all the hours

within this selected day. Then we obtain the maps of two daily metrics of ozone concentrations, DM8A

and D24A, by aggregating hourly ozone maps with considering the time shift in different time zones in the
continental Uited States. The computational costs and efforts of generating the maps using USM2 is
substantially higher than the ones using USM1, with the average CPU time for USM2 requiring 3403

hours compared to the CPU time of 13.4 hours for USM1 when generatiag with 36x36kragrid cell

resolution for one selected day (See Sl t&hiks).

Figure 3.2 shows for Jull1-2005 the BME estimates of daily ozone concentrations and their
difference from methods USM1 and USM2. The maps are quite similar at capturiightezone plume
(DMB8A over 70ppb) in Wisconsin and Michigan and also the low ozone values (DMB8A less than 30ppb) in
Georgia and Florida. In fact differences in ozone concentrations were below 5ppb for most of the continental
U.S. For DM8A, the averagatifference across the continental U.S is 4.8ppb with the largest difference of
32.5 ppb occurring in Kentucky. For the D24A, the averaged difference is 3.3 ppb with the largest difference
of 29.6 ppb. Additional maps for estimation scenario OBS demonstriie differences between USM1

and USM2 are provided in S| Section B.3.
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Figure 3.2. Maps of Jull1-2005 ozone BME estimates in ppb of the DM8&p) and the D24ABottom)
obtained from upscaling method USMZ(t) and US/12 (Middle). Also shown are the absolute differences
(USM2-USM1) between these two methodght).
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