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ABSTRACT

DONGQING YU: Data-Driven Quality of Service Improvements in Hospitals
(Under the direction of Haipeng Shen and Serhan Ziya)

In recent years, there has been an increasing interest in developing novel methods for

effective and efficient healthcare service delivery and data analytics has widely been rec-

ognized as being essential for decision-making at various healthcare service settings. This

dissertation consists of three research projects each aiming to improve decisions at three

different healthcare settings with one being related to critical care delivery and the other

two being related to inpatient patient flow management. Each project combines statistical

analysis of hospital data with techniques and methodologies from operations research.

The first project concerns care delivery in the cardiac intensive care unit (CICU). We

analyze a prospective study to describe admissions and care practices within the CICU of

the UNC Hospital, and also evaluate the influence of an open versus closed model of care

on patient outcomes and resource consumption. The second and third projects study man-

agement of patient flow from emergency department (ED) to hospital internal wards (IWs).

Both projects develop effective inpatient flow management policies with the objective of

reducing ED boarding time, which is defined as the time between the decision for admission

for an ED patient and the time the patient is physically admitted to an IW. Delayed admis-

sion to IWs has been identified as a key factor for ED overcrowding and is a big challenge

for many hospitals. We approach the problem from two different angles: early discharging

patients to free up beds in IWs, and early requesting beds for ED patients based on early

prediction of need for IW beds. In both projects, we develop relevant statistical models for

analyzing the detailed hospital patient flow data and build mathematical decision models

to develop new methods. We also build simulation models and use these models to investi-

gate the benefits of the proposed methods. Simulation studies suggest significant potential

improvements in various performance measures of interest.
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CHAPTER 1

Introduction

In recent years, there has been an increasing amount of attention on effectively and

efficiently delivering healthcare services. Besides hospital administrators and medical prac-

titioners (physicians, nurses, ...), academic researchers have joined forces in this exciting

and important endeavor. Among them are queueing and operations management researchers

who have taken the queueing-network perspective of patient flows in the healthcare delivery

systems in general, and hospitals in particular, aiming at ways that appropriately balance

quality and efficiency to streamline operations, reduce congestion and delay, increase system

throughput, while providing better quality of service to patients.

This dissertation continues a recent popular research thread in this area and makes

contributions through three projects. The research combines detailed hospital patient-

flow data with queueing-theoretical perspectives, and uses data-driven approaches to better

match hospital resources with demand for healthcare services (Armony et al., 2011; Shi

et al., 2014). The three projects share a unique and common novelty: they effectively

combine tools from statistics, stochastic modeling, and optimization. Modern hospitals

consist of many medical units, among which our research considers efficient operations in

the following three such units: cardiac intensive care unit (CICU), emergency departments

(ED), and hospital internal wards (IWs). All studies take advantage of real patient flow

data collected at two hospitals: the UNC Hospital and the Rambam Hospital in Israel.

1.1 Cardiac Intensive Care Unit (CICU)

Intensive care units (ICUs) are hospital wards specialized in the care of patients with

critical illnesses that require continuous monitoring and treatment. ICUs are exceedingly

costly, consuming more than 20% of total hospital costs despite constituting less than 10%



of hospital beds in the US (Chalfin et al., 1995). CICU is the one dedicating to criti-

cally ill cardiovascular patients. A growing evidence supports that patients now occupying

CICU have become increasingly susceptible to multisystem organ injury and more frequent

consumers of costly critical care resources (Katz et al., 2010; Morrow et al., 2012).

Care models in the ICU have classically been described as either closed or open, depend-

ing upon the presence or absence of a dedicated critical care team. While a closed model has

been shown to improve patient outcomes in medical and surgical ICUs, the merits of various

care models have not been previously explored in the CICU setting. Given the complexity

and expenditure in the CICU, there is a compelling need to better understand and develop

optimal practice models for the effective and efficient care delivery in the CICU.

Chapter 2 investigates patient conditions and compare the two care models in the cur-

rent CICU in many ways. The data that support this study is prospectively collected from

the UNC Hospital. We identify and describe variations among demographics, comorbidities

and admission diagnoses, along with variability in the use of both cardiac and non-cardiac

critical care resources. To thoroughly compare the two care models in the CICU from both

clinical and fiscal perspectives, we evaluate patient outcomes in terms of CICU and hospi-

tal mortality, resource utilization, and length of stay. We find no significant impact of the

CICU structure on either CICU or hospital mortality. Although some significant differences

in the resource utilizations are found, it is not the case that one model is consistently more

resource-conservative than the other. We do find that patients have shorter length of stay

in the closed unit. This study sheds lights for the first time on understanding the pros and

cons of such operational models in the CICU.

1.2 Emergency Departments (ED) and Internal Wards (IW)

Long waiting times and length of stays in ED are ubiquitous in many parts of the

world. In ED, a long waiting time is more than an inconvenience as it can result in many

adverse outcomes including death (Bernstein et al., 2009; Sun et al., 2013). Besides a

variety of reasons behind prolonged waiting times and extended ED stays, the inability

to promptly move admitted patients from ED to inpatient units has been identified as
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a key contributor (Asplin et al., 2003; Trzeciak and Rivers, 2003; Institute of Medicine,

2007; Abraham and Reddy, 2010; National Center for Health Statistics, 2013). The time

of waiting for admission to an inpatient bed, known as the ED boarding time, refers to

the duration between the time when doctors decide to admit a patient and the time when

the patient is physically transferred to an inpatient bed. Prolonged ED boarding times not

only prevent the admitted patients from getting proper level of care in inpatient units, but

also result in ED congestion and decrease the hospital throughput, as such patients still

occupy ED resources that otherwise could have been used for the current and incoming

ED patients. Therefore, effective inpatient flow management is essential to proved better

quality of care to patients.

Chapters 3 and 4 focus on the patient flow from the ED to one of the inpatient units

– internal ward (IW), and aim to develop insights into effective inpatient flow management

from the perspective of the availability of inpatient beds and the timeliness of admission

decision, respectively. The data that support these two studies are from the Rambam

Hospital in Israel, which have been analyzed in detail in Armony et al. (2011). The data

are inter-departmental, in that they record patient flows from ED to IW, while ignoring

detailed time stamps within each unit (ED or IW). Our work and contributions in each

chapter are briefly summarized below.

Active Bed Management through Patient Early Discharges

It is important to understand the inpatient flow problem from a strict bed demand and

supply perspective. Demand for beds on any given day can simply exceed the available

bed capacity even after daily patient discharges are completed. Even if the number of

available beds post-discharge is enough to meet the daily bed demand, the bulk of bed

requests can occur before most of the discharges are complete, which results in a temporary

bed shortage during the day. This “misalignment” of bed requests (demand) and patient

discharges (supply), which is very common in practice, is one of the main causes of the

prolonged ED boarding times.

To address the “misalignment” issue, researchers have proposed to discharge patients

in inpatient units earlier in the day (Howell et al., 2008; Vicellio et al., 2008; Powell et al.,

2012; Shi et al., 2014). The effectiveness of the early discharge in reducing ED boarding
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time has been demonstrated. However, the realization of this potential benefit in practice

requires some efforts, which are not cost-free. In addition, because of daily fluctuations in

patient arrival and discharge, the severity of the bed shortage problem also changes from

day to day. Therefore, it would be essential that hospitals could be provided with a clear

guidance on how to manage patient discharges, in order to achieve the pre-specified service

target at the beginning of each day.

The main objective of Chapter 3 is to provide a data-driven patient early discharge plan.

We investigate the effects of active bed management within IW, through anticipating needs

for IW beds and freeing up bed capacity by early discharging IW patients who are medically

feasible. We demonstrate that it can reduce ED boarding times by early discharging feasible

patients in IW, which matches the finding in the literature. Our main contribution is to

provide hospitals a data-driven solution to the bed shortage problem through the following

framework.

To begin with, we identify that the initial IW occupancy, the number of arrivals to IW,

and the number of discharges from IW are three leading factors to the ED boarding time;

we then build a statistical model to characterize the relationship. Secondly, we consider two

approaches for discharging patients early: the first one is to discharge patients earlier in the

same day, while the other one is to discharge patients one day ahead; we then formulate two

discharge policies through math programming to determine the smallest number of early

discharges necessary in order to meet a particular target level for boarding times. Finally,

we build a discrete event simulation model and carry out a wide range of simulation studies

to illustrate potential benefits of our proposed approaches and the corresponding policies.

To the best of our knowledge, our work is the first to provide a practical guideline for

hospitals to implement early discharge based on their particular needs.

Active Bed Management via Early Bed Requests

Bed request and preparation for admitting a patient from ED to inpatient units won’t

start until the admission decision is certain, which usually happens at the end of ED service

when all test results and diagnoses are available. A typical ED patient spends several hours

in the ED before the admission decision is made. In the literature, a lot of studies predict

the probability of admission at the time of ED triage, which makes early admission decisions
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possible. If the decision of needing a bed can be made for an ED patient while he is still in

the course of ED service, then it is expected that by the time when this patient is ready for

the transfer, one bed will have been made available or in preparation, so that the transfer

can happen smoothly without much delay.

There are studies considering the early bed request option for each individual ED patient

one by one, which demonstrate that a significant amount of time waiting for admission can

be saved. However, making early bed request decision for each individual patient is too

sensitive to the prediction accuracy. Therefore, it is meaningful to investigate the aggregated

bed demand in the near future and request inpatient beds in a batch in advance to take

care of that aggregated demand.

The main objective of Chapter 4 is to estimate the aggregated bed demand and then

use the estimate to reduce ED boarding times. We investigate the effects of active timing

of admission decision making within ED, through anticipating needs for IW beds. First,

we demonstrate that it can reduce ED boarding times by early requesting an inpatient bed

for an ED patient based on the prediction of her/his own admission probability, which is

consistent with the findings in the literature. In addition, we illustrate the compensation

and cost for the realization of early bed request. Secondly, we formulate a bed request

policy through math programming to determine the aggregated bed demand in the future

and the appropriate number of bed requests needed in advance, in order to achieve the

right balance between the benefits and costs of early bed requests. Thirdly, we conduct

a variety of empirical studies based on the real hospital data. Fourthly, we develop and

calibrate the simulation model using empirical results to capture inpatient flow from ED to

IW. Finally, we conduct a series of simulation studies to demonstrate the good performance

of our proposed bed request policy. We systematically discuss the pros and cons of early

bed requests on the ED boarding time and other measures of service quality in hospitals.

In addition, to the best of our knowledge, our study is the first to use the aggregated bed

demand estimation based on the prediction of admission probability for ED patients to

guide the bed request decision.
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CHAPTER 2

Investigating the Benefits of Closed Unit Structure in the Cardiac Inten-
sive Care Unit

2.1 Introduction

The coronary care unit (CCU), with its inception dating back to the 1960s, has been

credited with significantly improving the care and survival of patients hospitalized with

acute myocardial infarction (e.g., Braunwald, 1998). Until recently, however, little is known

about the modern CCU and its influence on contemporary patient outcomes. In spite of a

limited evidence-base, these specialized units have nonetheless become pervasively embed-

ded within today’s healthcare systems – particularly those within academic medical centers.

What has been more recently acknowledged is that the CCU has evolved considerably over

the last several decades (e.g., Katz et al., 2007), underscored by a growing patient pop-

ulation admitted with increasing illness severity, for a myriad of cardiovascular maladies,

and with advancing critical illness (e.g., Katz et al., 2010). At the same time, patients

now occupying cardiac intensive care units (CICUs) have become increasingly susceptible

to multisystem organ injury and more frequent consumers of costly critical care resources

(e.g., Katz et al., 2010; Morrow et al., 2012).

Given the multiplicity and complexity of disease within today’s CICU, there is a com-

pelling need to better understand and develop optimal practice models for the delivery of

effective and efficient care. This is particularly true in an era in which past dysfunctional

processes and ineffective team dynamics have placed critically ill patients at enhanced and

undue risk for medical error and poor outcomes (e.g., Soumerai and Avorn, 2001). In the

intensive care unit (ICU), two models of healthcare delivery are most commonly employed

– an open and closed model. In the open staffing model, every admitted patient has his

own physician who determines the need for ICU admission and discharge, and who makes



all primary management decisions. In the closed model, on the other hand, all patients are

managed by a single practitioner or team who is responsible for directing clinical care while

the patient is in the ICU.

In the critical care literature, a lot of evidence suggests that the closed model of ICU

care can both improve patient outcomes and reduce critical care expenditures (e.g., Carson

et al., 1996; Multz et al., 1998; Ghorra et al., 1999). Though a recent survey of medical

directors has provided some clarity on the contemporary CICU landscape, and described

a predominance of closed care units within the United States (OMalley et al., 2013), or-

ganizational models have never been directly studied in the cardiovascular critical care

population.

In order to prospectively describe admissions and care practices within the CICU of a

large, tertiary care, academic hospital, and also to evaluate the influence of an open versus

closed model of care on patient outcomes and resource consumption, the following study is

conducted.

2.2 Description of Models of Care and Data

2.2.1 Patient Population and Models of Care

The University of North Carolina (UNC) is an 805-bed tertiary care, not-for-profit

teaching hospital embedded within a large healthcare system owned by the state of North

Carolina. It operates a 13-bed CICU dedicated to the management of all patients admitted

with a primary cardiovascular diagnosis who require critical care monitoring and support.

Prior to July 2013, the UNC CICU operated in an open model of care delivery, and had

done so for nearly two decades. As part of this model, multiple physician-led teams cared

for patients admitted to the CICU and then continued to manage these individuals once

they were moved out of the unit to either an intermediate-care (stepdown) or general car-

diology bed. In addition to the other patients who never required CICU-level care during

their admission, these teams were also ultimately responsible for discharging patients fol-

lowing their acute hospitalization. Each team was composed of an attending-level faculty

cardiologist, a cardiology fellow, several junior and senior Internal Medicine residents, and
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medical students, and each team followed only patients that had been admitted directly by

them. Each night, one of the teams was “on-call” and responsible for hospital admissions in

addition to providing medical support to all other hospitalized cardiac patients as needed.

In July 2013, as part of a planned structural transition, care delivery in the CICU

was changed from an open to a closed model. In the closed model, one physician-led

team was tasked with caring primarily for all cardiology patients requiring intensive care.

This team was composed of an attending-level faculty cardiologist, two cardiology fellows

and two residents paired to work alternating 12-hour shifts, along with 1-2 interns and

medical students present only during the daytime hours. When a patient was deemed

stable enough to transfer out of the CICU they were then received by a separate cardiology

floor/intermediate-care team who managed these individuals until hospital discharge.

There was no difference in training or expertise between attending physicians who par-

ticipated in the open or closed CICU; however, only a small cohort of these cardiologists (10

out of 25) was ultimately required to staff the closed unit. The remainder of the inpatient

staff cardiologists directed the care of cardiovascular patients needing floor or stepdown

beds. Only 1 cardiologist had advanced critical care training, and he attended during both

the open and closed CICU periods for an equal amount of time.

2.2.2 Data

In light of the anticipated structural transition, data were collected prospectively with

the goal of addressing changes in outcomes that could potentially be attributable to the

model of care delivery. From November 2012 to June 2013, while the CICU was operating

in an open format, data were collected on all consecutive patients ≥18 years of age admitted

to the unit with a primary cardiovascular diagnosis. During a planned 2-month transition

period during which the unit was changed from an open to closed model of care, no data

were recorded. Beginning in September 2013 through March 2014, data were once again

collected prospectively on consecutive CICU patients admitted to the closed unit. Patients

were excluded if they were admitted by a non-cardiac service or managed primarily by a

surgical team.
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Baseline demographic and clinical variables, admission and discharge diagnoses, medical

comorbidities, resource use, and outcomes were recorded for all patients. Trained abstrac-

tors were used for data collection, and serial assessments of data quality and completeness

were performed throughout the process. Disease severity at presentation was assessed using

the modified Acute Physiology and Chronic Health Evaluation II (APACHE II) Score and

the Simplified Acute Physiology Score II (SAPS II), both of which were initially derived and

have been subsequently validated for use in the intensive care setting (e.g., Knaus et al.,

1985; Le Gall et al., 1993). APACHE II and SAPS II scores for all eligible patients were

determined from clinical information obtained during the first 24 hours of admission to

the CICU. In each case, a higher score is indicative of greater illness. In addition, admis-

sion source was captured for all patients, and discharge disposition was recorded for those

individuals who ultimately left the hospital alive.

2.3 Data Analysis

Patient baseline demographic and clinical variables are presented as means with stan-

dard deviations for continuous variables and as frequencies with percentages for categorical

data. To evaluate differences between patients treated in the open versus closed models,

categorical variables are compared using the chi-squared or Fishers exact test where ap-

propriate; continuous variables are compared using the non-parametric Wilcoxon rank sum

test. Logistic regression, adjusting for patient disease severity at presentation, is used to

examine the impact of unit structure on the binary outcome of CICU mortality. Because

APACHE II and SAPS II scores are highly correlated, only the APACHE II score is used

for modeling purposes. CICU mortality is also analyzed by time-to-event survival analysis.

A Kaplan-Meier curve is plotted and compared using the log-rank test. In addition, Cox

proportional hazard models are fitted to estimate hazard ratios and 95% confidence inter-

vals for comparisons of unit structure on mortality for a number of pre-specified subgroups.

These subgroups include: age (<75 or ≥75 years), sex, race, BMI (<30, 30-35, ≥35 kg/m2),

primary admission diagnosis (heart failure, acute MI, cardiogenic shock, cardiac arrest and

sepsis), APACHE II score (<22 or ≥22), SAPS II score (<42 or ≥42), and the use of inva-
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sive mechanical ventilation. All reported p-values are two-sided and one-sided if necessary

and considered statistically significant for p < 0.05. This study was reviewed and approved

by our institutions Office of Human Research Ethics.

2.3.1 Demographics and Comorbidities

The entire study population consisted of 670 patients, 332 (49.6%) of whom were ad-

mitted to the open model CICU and 338 (50.4%) of whom were admitted during the closed

model of care. Baseline characteristics are shown in Table 2.1. Demographic variables were

largely similar between the two groups, although there were more Black patients admit-

ted during the closed CICU study period. Medical comorbidities were also quite similar

between the two cohorts, with the exception of prior MI which was more common among

closed model patients and history of pulmonary hypertension and previous CABG which

were both more commonly found during the open model of care.

2.3.2 Admission Source

Patients placed in the CICU during the open model study period were more often admit-

ted from the Emergency Department (ED), while transfers to the CICU from a floor/general

ward bed were more common in the closed model of care. Additional admission sources can

be seen in Table 2.2.

2.3.3 Admission Diagnoses and Severity-of-Illness

Table 2.2 also shows the primary diagnosis for CICU admission, along with other sec-

ondary diagnoses determined during hospitalization. In general, these were similar between

the two study populations. The most common reasons for admission to the CICU in general

were acute ischemia/infarction (STEMI and NSTE-ACS), acute heart failure, cardiogenic

shock, and arrhythmia, although Table 2.2 underscores the broad myriad of conditions that

were ultimately felt to require treatment in the intensive care setting. Only cardiac arrest

was found to be a statistically more common reason for admission in the closed CICU.
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Table 2.1: Baseline characteristics of the study population

Open Unit Closed Unit p-value
(n=332) (n=338) two-sided one-sided

Demographics
Age (years), mean (SD) 63 (15) 63 (15) 0.70
Sex, No. (%) 0.69

Male 207 (62) 205 (61)
Female 125 (38) 133 (39)

Race, No. (%) 0.03
White 192 (58) 188 (56) 0.59
Black 86 (26) 113 (33) 0.03 0.02
Other 54 (16) 37 (11) 0.05

Weight (kg), mean (SD) 87.1 (23.2) 87.3 (25.1) 0.55
BMI (kg/m2), mean (SD) 29.5 (7.5) 29.8 (8.2) 0.94

Comorbidities, No. (%)
CAD 167 (50) 180 (53) 0.49
MI 72 (22) 128 (38) <0.001 <0.001
PCI 70 (21) 63 (19) 0.44
CABG 54 (16) 36 (11) 0.04 0.02
CHF 186 (56) 152 (45) 0.004 0.003
CVD 46 (14) 33 (10) 0.12
PVD 40 (12) 25 (7) 0.05 0.03
CKD 80 (24) 80 (24) 0.93
ESRD 25 (8) 26 (8) 1.00
HTN 235 (71) 221 (65) 0.14
Hyperlipidemia 163 (49) 142 (42) 0.07
Diabetes Mellitus 118 (36) 122 (36) 0.94
Chronic Lung Disease 84 (25) 67 (20) 0.10
Chronic Liver Disease 18 (5) 17 (5) 0.86
Cancer (within 5 years) 29 (9) 39 (12) 0.25
Severe Valvular Disease 19 (6) 30 (9) 0.14
Pulmonary Hypertension 34 (10) 18 (5) 0.02 0.01
History of ICD/PPM 74 (22) 63 (19) 0.25

Abbreviations: BMI: Body Mass Index, CAD: Coronary Artery Disease, MI: My-
ocardial Infarction, PCI: Percutaneous Coronary Intervention, CABG: Coronary
Artery Bypass Graft, CHF: Congestive Heart Failure, CVD: Cerebrovascular Dis-
ease, PVD: Peripheral Vascular Disease, CKD: Chronic Kidney Disease, ESRD: End-
Stage Renal Disease, HTN: Hypertension, ICD/PPM: Implantable Cardioverter-
Defibrillator/Permanent Pacemaker

Disease severity was determined by both the APACHE II and SAPS II scoring sys-

tems. There was considerable correlation between the two scores (correlation of 0.89 among

open CICU patients and 0.85 among closed unit patients). While statistically significant

differences did exist between the two patient cohorts, numerically these differences were

small. The mean APACHE II score was 18 +/− 10 in the open study group and 16 +/−

11 in the closed one. These scores would predict an average anticipated ICU mortality of

32% and 28%, respectively. Similarly, the mean SAPS II score was 36 +/− 18 in the open
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model CICU and 33 +/− 18 during the closed model of care. These scores would predict

an average anticipated ICU mortality of 25% and 20%, respectively. In aggregate, these

results suggest that less ill patients may have been admitted during the closed CICU study

period as determined by previously validated ICU severity-of-illness measures. Finally, con-

sistent with these findings, but not reaching statistical significance, more delirious patients

(CAM-ICU positive) were admitted to the open compared to the closed CICU (Table 2.2).

2.3.4 Resource Consumption and Procedures

There was considerable variability in the use of both cardiovascular and non-

cardiovascular critical care resources throughout the study. In aggregate, over 1/3 of pa-

tients treated in the CICU underwent coronary angiography, 25% had a central venous

catheter and intra-arterial line, and more than 20% required invasive mechanical venti-

lation (Table 2.3). In the open model of CICU care, patients utilized significantly more

inotropic agents (p < 0.001), non-invasive positive-pressure ventilation (p < 0.001), anti-

arrhythmic medications (p < 0.001), and pericardiocentesis (p = 0.03). On the other hand,

patients in the closed model CICU utilized significantly more intra-arterial lines (p < 0.001),

vasopressor agents (p = 0.01), transthoracic echocardiography (p = 0.02), and veno-arterial

extracorporeal membrane oxygenation (VA-ECMO) (p = 0.02).

2.3.5 Patient Outcomes

Despite the aforementioned predicted mortality rates ranging from 20% to 33% by

APACHE II and SAPS II scoring systems, overall CICU and hospital mortality were only

11.5% and 14.5%, respectively. There is no statistical difference in either CICU or hospital

mortality when comparing open versus closed unit models (Table 2.4). In addition, we

investigate the difference of survival in CICU between two unit structures using survival

functions: we plot the Kaplan-Meier curve for each unit structure in Figure 2.1, and conduct

the logrank test. Under the null hypothesis that they two are not different, the 1-df chi-

square statistic has the value of 0.7, with the corresponding p-value of 0.388. It suggests

that survival functions are not statistically significantly different between the open and
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Table 2.2: Primary admission source, disease severity, and diagnoses

Open Unit Closed Unit p-value
(n=332) (n=338) two-sided one-sided

Source of Admission, No. (%) <0.001
ED 104 (31) 78 (23) 0.02 0.01
Other Hospital 97 (29) 98 (29) 1.00
Clinic 28 (8) 1 (0) <0.001 <0.001
Floor Bed 100 (30) 160 (47) <0.001 <0.001
Operating Room or Procedural Area 3 (1) 0 (0) 0.12

Severity of Illness, mean (SD)
APACHE II score 18 (10) 16 (11) <0.001 <0.001
APACHE II-Predicted Mortality (%) 32 (25) 28 (26) <0.001 <0.001
SAPS II score 36 (18) 33 (18) <0.001 <0.001
SAPS II-Predicted Mortality (%) 25 (27) 20 (26) <0.001 <0.001
Delirium (CAM-ICU Positive) 65 (20) 55 (16) 0.31

Primary Admission Diagnosis, No. (%)
STEMI 36 (11) 43 (13) 0.47
NSTE-ACS 45 (14) 56 (17) 0.28
Acute Heart Failure 30 (9) 47 (14) 0.05
Cardiogenic Shock 52 (16) 35 (10) 0.05
Cardiac Arrest

Primary Rhythm - VT/VF 6 (2) 6 (2) 1.00
Primary Rhythm - PEA/Asystole 12 (4) 29 (9) 0.01 0.01

Arrhythmia 37 (11) 24 (7) 0.08
Conduction Disease 12 (4) 13 (4) 1.00
Acute Valvular Disease 8 (2) 5 (1) 0.42
Cardias Tamponade 10 (3) 6 (2) 0.32
Acute Respiratory Failure 9 (3) 8 (2) 0.81
Sepsis/Infection 13 (4) 16 (5) 0.71
DVT/PE 2 (1) 2 (1) 1.00

Other Secondary Diagnoses, No. (%)
Acute Respiratory Failure 28 (8) 29 (9) 1.00
Acute Renal Failure 55 (17) 48 (14) 0.45
Sepsis/Infection 6 (2) 15 (4) 0.07
Cardiac Arrest 10 (3) 6 (2) 0.32
PE/DVT 11 (3) 14 (4) 0.68
Acute (Non-Intracerebral) Hemorrhage 4 (1) 10 (3) 0.18
Acute Heart Failure Exacerbation 30 (9) 11 (3) 0.002 0.001
Cardiogenic Shock 9 (3) 11 (3) 0.82
CVA/TIA 4 (1) 11 (3) 0.11

Abbreviations: APACHE: Acute Physiology and Chronic Health Evaluation, SAPS: Simplified Acute
Physiology Score, CAM-ICU: Confusion Assessment Method for the ICU, STEMI: ST-segment Elevation
Myocardial Infarction, NSTE-ACS: Non-ST-segment Elevation Acute Coronary Syndrome, VT/VF:
Ventricular Tachycardia/Ventricular Fibrillation, PEA: Pulseless Electrical Activity, DVT/PE: Deep
Vein Thrombosis/Pulmonary Embolus, CVA/TIA: Cerebrovascular Accident/Transient Ischemic Attack

closed units, and confirms our finding in Table 2.4. Visually Kaplan-Meier curves appear

to separate from each other after 10 days. It suggests that patients who stay longer in the

CICU might benefit from the closed model structure. Further, we still do not find significant
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Table 2.3: Resource utilization, No. (%)

Open Unit Closed Unit p-value
(n=332) (n=338) two-sided one-sided

Coronary Angiography 119 (36) 130 (38) 0.52
PCI 72 (22) 76 (22) 0.85
Central Venous catheter 77 (23) 68 (20) 0.35
Intra-arterial Line 48 (14) 121 (36) <0.001 <0.001
Vasopressor Use 58 (17) 84 (25) 0.02 0.01
Inotrope Use 70 (21) 36 (11) <0.001 <0.001
Mechanical Ventilation

Invasive 64 (19) 85 (25) 0.08 0.04
Non-Invasive 41 (12) 9 (3) <0.001 <0.001

Transthoracic Echocardiogram (TTE) 255 (77) 283 (84) 0.03 0.02
Transesophageal Echocardiogram (TEE) 8 (2) 10 (3) 0.81
IABP 14 (4) 20 (6) 0.38
VA-ECMO 0 (0) 6 (2) 0.03 0.02
Anti-arrhythmic Therapy 86 (26) 47 (14) 0.0001 <0.001
TH/TTM 14 (4) 7 (2) 0.12
Temporary Pacer 3 (1) 1 (0) 0.37
PPM Implantation 15 (5) 15 (4) 1.00
ICD 10 (3) 17 (5) 0.24
Ablation 16 (5) 15 (4) 0.86
DCCV/Defibrillation 21 (6) 19 (6) 0.75
Bronchoscopy 3 (1) 2 (1) 0.68
Thoracentesis 6 (2) 5 (1) 0.77
Paracentesis 0 (0) 2 (1) 0.50
Pericardiocentesis 14 (4) 5 (1) 0.04 0.03
Lumbar Puncture 1 (0) 1 (0) 1.00
Endoscopy 10 (3) 6 (2) 0.32

Abbreviations: PCI: Percutaneous Coronary Intervention, IABP: Intraaortic Balloon Pump,
VA-ECMO: Veno-Arterial Extracorporeal Membrane Oxygenation, TH/TTM: Therapeutic Hy-
pothermia/Targeted Temperature Management, PPM: Permanent Pacemaker, ICD: Implantable
Cardioverter-Defibrillator

difference in the CICU mortality between two unit structures when comparing a number

of pre-specified patient subgroups (Figure 2.2), though more point estimates consistently

favor the closed model structure. The analysis detail is left in Section 2.5.3.

From a length-of-stay perspective, patients spent an average of 1 day less in the CICU

during the closed model of care (p = 0.02). Among patients who did survive their acute

hospitalization, many (25%) required additional post-discharge resources including referral

to skilled nursing facilities, rehabilitation centers, transfer to other acute care hospitals,

or the use of Hospice (Table 2.4). These requirements were similar regardless of whether

patients were admitted to the open or closed CICU. There were, however, slightly greater

rates of hospital-to-hospital transfers following discharge from the closed CICU (p = 0.01).
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Table 2.4: Primary outcomes and disposition

Open Unit Closed Unit p-value
(n=332) (n=338) two-sided one-sided

Clinical Outcomes
Mortality, No. (%)

In CICU 43 (13) 34 (10) 0.28
In Hospital 47 (14) 51 (15) 0.74

LOS (days), median (IQR)
In CICU 3 (1, 5) 2 (1, 5) 0.04 0.02
In Hospital 5 (3, 11) 5 (3, 10) 0.77

Patient Disposition∗, No. (%) 0.06
Home 239 (84) 227 (79) 0.19
Rehab/SNF 35 (12) 38 (13) 0.80
Hospice 10 (4) 13 (5) 0.67
Transferred to Another Acute Care Hospital 0 (0) 7 (2) 0.02 0.01
Other Transfer 1 (0) 1 (0) 0.75

∗ For patients who survived index hospitalization (open, n=285; closed, n=286)
Abbreviations: LOS: Length of Stay, SNF: Skilled Nursing Facility
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Figure 2.1: Kaplan-Meier survival curve for the CICU mortality

2.4 Discussion

Emerging data has helped to characterize a striking evolution in the CICU. Once de-

veloped solely for the management of patients suffering from acute myocardial infarction,

a burgeoning retrospective evidence-base now purports that the contemporary CICU is

currently home to an increasingly complex, resource intensive, and diverse population of
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Figure 2.2: Hazard ratio for CICU mortality among pre-specified patient subgroups

patients presenting with a wide variety of cardiac and non-cardiac critical illnesses (e.g.,

Katz et al., 2007; Katz et al., 2010). We report similar findings in what we believe to be the

first prospective evaluation focusing on unselected patients hospitalized in an academic, ter-

tiary care CICU. Confirming other observational reports, we describe a heterogeneous group

of patients, admitted with a variety of primary diagnoses, who require frequent critical care

resources and long-term care support.

2.4.1 Is the CICU Beneficial?

Although extensively employed within modern hospitals and healthcare systems, the

true benefits of the CICU have never actually been validated. In fact, all prior studies

addressing the merits of CICU care have been largely experiential or historical reports,

published in an era predating contemporary treatment protocols and analyzed with limited

scientific rigor (e.g., Killip and Kimball, 1967). Despite this, these specialized units have

flourished, particularly within academic settings. While the current study does not directly

assess the effectiveness of CICU care for the management of patients with cardiovascular

critical illness over other settings, our findings certainly do not refute the commonly held
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notion that the CICU is a beneficial tool (e.g., Braunwald, 1998). We found that overall

CICU mortality at our institution was slightly greater than 11%. Well-studied ICU calcu-

lators tell us that we should have expected a mortality rate in the range of 25-30% based

upon presenting illness severity. While the APACHE II and SAPS II models may be poor

predictors of outcome in cardiovascular critical care cohorts - and admittedly have not been

validated among such populations - this finding should be interpreted with cautious opti-

mism. Whether this is the direct result of CICU care, the result of other non-ICU related

processes, or a combination of the two remains unclear. However, given the pervasive nature

of the CICU within contemporary healthcare systems, there is little presented here which

should undermine the enthusiasm for this care delivery platform.

2.4.2 What is the Best Way to Deliver CICU Care?

Accepting then that the CICU is an important component of cardiovascular care, the

next question to ask is how best to use the CICU. While we have a wealth of data helping to

inform care practices for specific disease states - including STEMI (e.g., O’Gara et al., 2013;

Jernberg et al., 2011) and cardiogenic shock (e.g., Hochman et al., 1999) - we know very

little about optimal models and structures of care for aggregate CICU patient populations.

We believe our study is, in fact, the first to address this topic. This is not to suggest that

care models have not been previously examined in general ICU settings; on the contrary,

there is indeed a fairly substantial body of evidence supporting closed models of ICU care

in a variety of non-cardiac critical care units (e.g., Carson et al., 1996; Multz et al., 1998;

Ghorra et al., 1999). No data, however, exists among today’s CICU patients.

We found no significant impact of CICU structure on patient mortality. Though nom-

inally improved CICU death rates were found during the closed model of care, the lower-

than-expected mortality rendered our study insufficiently powered to truly assess this robust

endpoint. Additional study, in considerably larger and multicenter cohorts, will be needed

to address survival as a product of CICU structure. Careful review of the Kaplan-Meier

survival curves, however, may prove somewhat illustrative and add insight into future study

design. While virtually superimposed within the first several days of CICU admission, these
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curves begin to substantially diverge after a little over a week. This might suggest that the

true benefit of a closed unit in the CICU might exist predominantly for patients with pro-

tracted critical illness. Perhaps patients that are discharged early from the CICU may

be too well to benefit from the comprehensive critical care that may result from a closed

ICU model, while those requiring longer stays in the CICU may have a more complex dis-

ease phenotype that warrants more structured critical care delivery. While all of this is

speculative, it should stimulate additional investigation.

Critical care resource utilization, while variable among CICU models, was certainly

substantial in this contemporary cohort of critically ill cardiovascular patients. This mirrors

other retrospective and observational series (e.g., Katz et al., 2010; OMalley et al., 2013).

While it is unclear if one unit model is more resource-conservative than the other, it is

prudent to point out that patients were more quickly discharged with shorter lengths-

of-stay in the closed CICU. Although length-of-stay is undoubtedly a complex and often

confounded metric of critical care, this observation is nonetheless important. ICUs are

exceedingly costly, consuming greater than 20% of total hospital costs despite constituting

less than 10% of hospital beds in the US (e.g., Chalfin et al., 1995). Future analyses

of models within the contemporary CICU must be able to address these costs-of-care, and

resource consumption certainly plays a major role. Other fiscally relevant topics to examine

will include professional fees, critical care documentation and billing, and ICU recidivism,

among others.

2.4.3 Limitations

Our study has several limitations which merit discussion. First, this is a single institu-

tion study from a US, university-based, academic medical center. As a result, our findings

may not be generalizable to other healthcare settings or regions. Nonetheless, we believe

that this is the most comprehensive and first prospective evaluation of contemporary CICU

care delivery, and should therefore represent an important foundation for future study. Sec-

ond, while attempting to assess the impact of care delivery models on cardiac critical care

outcomes, we cannot completely exclude that there may have been temporal changes in
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practice patterns that could have influenced our findings. This confounding should have

been minimized, at least in part, by the rather short timeline for investigation and the

consistency in care team members promoted throughout the study period. Additionally, we

must also acknowledge that this study does not specifically address the benefit or liability of

having critical care-trained physicians as part of the CICU. This has often been linked with

structural studies advocating for closed units in other ICU settings, but was not assessed

here. Undoubtedly, given that recommendations for additional training in cardiac intensive

care have found their way into recent guidelines and scientific statements (e.g., Morrow

et al., 2012; OGara et al., 2015), future study would be prudent in order to better under-

stand the optimal role of cardiac intensivists. Finally, cost of care was not described in this

study. Given the enormous expenditures associated with ICU admissions (e.g., Hochman

et al., 1999), this will be an important subject for further investigation.

2.4.4 Conclusions

In summary, the contemporary CICU continues to admit complex patients with mul-

tiple comorbidities, for diverse cardiovascular critical illnesses, and with a high-expected

risk for adverse outcomes. With that being said, there is considerable variability among

CICU patients, and this must be better understood in order to develop optimal admis-

sion and discharge criteria moving forward. While not associated with an improvement in

mortality among those treated in a CICU, the closed model of care resulted in decreased

lengths-of-stay. It will be important to utilize these findings in order to continue to develop

collaborative research efforts evaluating key components of the CICU. Not only does this

have the potential to impact patient care directly, but it may also influence other research

efforts. The CICU is often home to many of our contemporary cardiovascular clinical trial

participants. It is possible that differences in CICU care delivery may have already affected

past trail results, and failure to both understand existing variability and to standardize fu-

ture practice may lead to additional confounding. Finally, given the differences in care and

resources seen in academic and community hospitals across the US, attention should also fo-
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cus on how to develop individualized CICUs that can appropriately cater to an institutions

specific needs.

2.5 Additional Statistical Analysis

2.5.1 CICU Mortality

We use the logistic regression to model the CICU mortality, which is denoted by p. The

model structure indicator (open= 0, closed= 1) and important clinical variables are used as

the covariates, including gender, race, age, BMI, APACHE II score, and CICU LOS. The

fitted model is

log
p

1− p
= −5.60 + 0.15×APACHE II score + 0.04× LOS in CICU, (2.1)

where covariates are significant at the level of 0.05. Patient’s APACHE II score and LOS

in CICU have positive effects on the mortality rate. In other words, severer patients and

patients who have longer stays in CICU are more likely to die in CICU than other patients.

The scatter plot of the mortality rate predicted by Equation (2.1) and the score based

mortality rate for each individual patient is depicted in Figure 2.3, where different colors

are used to distinguish different unit structures. The mortality rates predicted by Model

(2.1) are consistently lower than what predicted by the the APACHE II scoring system.

Previously, in Section 2.3.5, we find that actual mortality rates are also lower than what

predicted by the the APACHE II scoring system. This finding suggests that it is worthwhile

to develop new models for the severity-of-illness score and the corresponding predicted

mortality rate for CICU patients in the future study.

2.5.2 Model of Length of stays

We are interested in length of stays (LOSs) within the following three stages: ICU,

hospital post-CICU, and hospital since CICU admission. Each LOS is in the unit of one

day and is defined as follows:

• LOS in CICU = Date of CICU discharge − Date of CICU admission + 1,
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Figure 2.3: Mortality rates predicted by Model (2.1) versus APACHE II score predicted
mortality rates

• LOS in hospital post-CICU = Date of hospital discharge − Date of CICU discharge

+ 1,

• LOS in hospital since CICU admission = Date of hospital discharge − Date of CICU

admission + 1.

Note that, a patient, who is admitted to and discharged from the CICU on the same

day, has the LOS in CICU as 1 day. We use multiple linear regression to model each

of the three stages of LOS. We take the log transformation for each LOS variable. The

pool of explanatory variables consists of categorical variables: unit indicator (open= 0,

closed= 1), acute heart failure (HF: No= 0, Yes= 1), ST-segment Elevation Myocardial

Infarction (STEMI: No= 0, Yes= 1), cardiogenic shock (CS: No= 0, Yes= 1), and cardiac

arrest (CA: No= 0, Yes= 1); and continuous variables: age and APACHE II score. We use

stepwise selection to choose the best models, which are shown as Models (2.2) - (2.4). Each

variable included in the three models is significant at the level of 0.05. From the sign of each

significant variable, we can see that: patients who had higher APACHE II scores or suffered

the HF and CS, consistently have longer LOSs in each of the three stages; patients who
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were implemented with STEMI consistently have shorter LOSs in all three stages; patients

who had CA have shorter LOSs in hospital post-CICU and hospital since CICU admission;

patients who were admitted in the closed unit have longer LOSs in hospital post-CICU than

those who were admitted in the open unit, but not significantly different LOSs in CICU or

the LOSs in hospital since CICU admission.

log {LOS in CICU + 1} = 1.054 + 0.011×APACHE II + 0.227×HF + 0.902× CS

− 0.228× STEMI

(2.2)

log {LOS in post-CICU + 1} = 1.068 + 0.206×Unit + 0.261×HF + 0.449× CS

− 0.280× STEMI− 0.614× CA

(2.3)

log {LOS in hospital + 1} = 1.678 + 0.010×APACHE II + 0.272×HF

+ 0.869× CS− 0.334× STEMI− 0.452× CA

(2.4)

2.5.3 Subgroup Analysis

In this section, we explain how the subgroup studies visualized in Figure 2.2 are con-

ducted. By comparing the CICU mortality for patients who were admitted into the open

and closed units, we do not find any significant difference, as shown in Table 2.4. We doubt

that impacts of unit structure on the CICU mortality might be different within finely strat-

ified subgroups (e.g., female versus male). We divide each suspected characteristic into two

or three subgroups, the detailed partitions are shown in Table 2.5.

We model the hazard function of the CICU mortality using the Cox regression. For

each characteristic, we include the unit indicator (Unit= 0 stands for the open unit, and

Unit= 1 stands for the closed unit), the subgroup indicator (Z), and the interaction term

of the unit indicator and the subgroup indicator as covariates in the Cox regression. The

regression model can be expressed as follows:

λi(t) = λ0(t) exp {β1Uniti + β2Zi + β3Uniti × Zi}, (2.5)
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where λi(t) is the hazard of the ith patient at time t, and λ0(t) is the baseline hazard at

time t. Uniti is the indicator of whether patient i was admitted in the closed (Uniti = 0) or

the open (Uniti = 1) unit; Zi is the subgroup value of the study characteristic for patient

i. If the interaction term is significant, then we can conclude that impacts of unit structure

on the CICU mortality are different for among patient subgroups.

As

exp {β1 × 1 + β2 × j + β3 × 1× j}
exp {β1 × 0 + β2 × j + β3 × 0× j}

= exp {β1 + β3j}, (2.6)

exp {β1 + β3j} is the hazard ratio of the open unit to the closed unit within subgroup Zi = j,

listed in Table 2.5. The value of the hazard ratio means that, within the corresponding

subgroup, the hazard of the open unit is that number of times of the closed unit. For

example, 1.068 in the second row of Table 2.5 means that, for females, the hazard in the

open unit is 1.0683 times of that in the closed unit, which implies that the closed unit

is better for females than the open unit. Therefore, a hazard ratio that is larger than 1

supports that the closed unit is better for that subgroup of patients. The hazard ratio for

each subgroup together with the 95% confidence interval are plotted in Figure 2.2.

Although there are more hazard ratios greater than 1, which support that the closed unit

is better than the open unit for more subgroups of patients, neither of them is significant

at the level of 0.05, as indicated by p-values listed in the last column of Table 2.5. This

finding might be caused by the limited sample size, which is reflected by the long width of

each confidence interval shown in Figure 2.2.

23



Table 2.5: Hazard ratio of the CICU mortality in open versus closed unit within each
subgroup

Subgroup Open Closed Hazard ratio Lower 95% Upper 95% p-value

Age 0.575
< 75 29/255 26/266 1.110 0.653 1.887
≥ 75 14/77 8/72 1.478 0.620 3.526

Sex 0.582
Female 14/125 18/133 1.068 0.529 2.158
Male 29/207 16/205 1.397 0.757 2.579

Race 0.251
White 25/192 21/188 0.991 0.556 1.767
Black 8/86 11/113 1.046 0.432 2.532
Others 10/54 2/37 1.793 0.691 4.650

BMI 0.876
≤30 28/198 21/206 1.242 0.712 2.164
30-35 7/65 5/59 1.157 0.387 3.465
≥35 8/69 8/73 1.141 0.483 2.697

HF 0.728
No 42/302 30/291 1.159 0.725 1.854
Yes 1/30 4/47 0.777 0.087 7.018

STEMI 0.916
No 42/296 33/295 1.193 0.755 1.883
Yes 1/36 1/43 1.388 0.086 22.310

CS 0.188
No 32/280 33/303 1.225 0.747 2.010
Yes 11/52 1/35 5.077 0.653 39.492

CA 0.101
No 31/314 12/303 2.396 1.228 4.675
Yes 12/18 22/35 1.055 0.516 2.158

Sepsis 0.362
No 42/319 31/322 1.290 0.810 2.053
Yes 1/13 3/16 0.439 0.045 4.248

MV 0.207
No 12/229 6/245 2.058 0.770 5.503
Yes 31/103 28/93 1.007 0.603 1.681

APACHE II 0.200
<22 10/238 7/260 1.658 0.630 4.367
≥22 33/94 27/78 0.810 0.485 1.352

SAPS II 0.126
<42 11/230 9/268 1.538 0.636 3.718
≥42 32/102 25/70 0.689 0.406 1.169
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CHAPTER 3

Controlling Emergency Department Boarding Times via Active Bed Man-
agement

3.1 Introduction

Long waiting times and length of stays in ED are ubiquitous in many parts of the world.

In ED, a long waiting time is more than an inconvenience as it can lead to many adverse

outcomes including death (Bernstein et al., 2009; Sun et al., 2013). Numerous studies have

investigated the reasons behind extended ED stays and waiting times. While there are a

number of contributing factors, most of these studies identified long ED boarding times,

i.e., the times that ED patients spend waiting to be transferred to an inpatient unit, as

one of the primary reasons behind ED crowding (Asplin et al., 2003; Trzeciak and Rivers,

2003; National Center for Health Statistics, 2013). In this chapter, we consider the sub-

network consisting of the ED and IW at the daily level, and identify primary factors that

affect ED boarding times. To reduce ED boarding times, we investigate the effects of active

bed management within IW, through anticipating needs for IW beds and freeing up bed

capacity by early discharging IW patients that are medically feasible.

A long boarding time for a patient is an indicator of poor quality of service provided

to the patient. It signals the fact that the patient unnecessarily occupies scarce ED space

and resources, when in fact these resources could have been used for other patients who are

being treated in ED, or waiting for admission to ED. Most often, a long boarding time is

a direct consequence of the delay in identifying a bed in the hospital (often IW) to which

the patient can be transferred. Thus, as many studies have already concluded, in order to

alleviate ED overcrowding problem, focusing on the operations within ED alone is unlikely

to be productive; one needs to take a higher system-level view and address the main source



of the patient flow problem: the bed bottleneck in the hospital (e.g., Asplin et al., 2003;

Japsen, 2003; Olshaker and Rathlev, 2006; Howell et al., 2008; Hoot and Aronsky, 2008).

To better understand the patient flow problem from a strict bed demand and supply

perspective, it is useful to highlight the various ways that the hospital admission can become

a bottleneck. First of all, demand for beds on any given day can simply exceed the available

bed capacity even after daily patient discharges are completed. Second, even if the number

of available beds post-discharges is enough to meet the daily bed demand, the bulk of the bed

requests can occur before most of the discharges complete, which results in a temporary bed

unavailability during the day. This “misalignment” of bed requests (demand) and patient

discharges (supply), which is very common in practice, is one of the main causes of the

prolonged ED boarding times.

Third, even when a bed is physically available, admissions to the hospital can still be

a bottleneck. This is because when a decision is made to admit a patient, having a bed

available in the hospital does not mean that the patient will be transferred right away.

For reasons mostly related to the general crowdedness of the hospital, the patient can still

have a long boarding time. Specifically, as we demonstrate in this chapter, boarding times

are longer when the occupancy level of the hospital (number of patients) is higher. One

might think that as long as at least one bed is available when demand for a hospital bed

arises, it should not be difficult to identify the empty beds and transfer the patient right

away. If so, as long as the occupancy level is below the maximum capacity, there will not

be delays in boarding the patients. Unfortunately, that is not quite the case in practice

for various reasons. First, the bed assigned to a patient is not arbitrary. One needs to

spend effort to assign “the right patient to the right bed”, taking into account patient

characteristics and different specialty areas within the hospital. Circumstances frequently

force the hospitals to be flexible and utilize the aggregate bed capacity. However, if there

is no direct match between the patient type and the available bed, which is more likely to

happen when the occupancy level is high, it takes longer to determine where exactly the

patient should be transferred. Second, while the availability of beds may seem like the hard

constraint, what is in fact as critical is the staffing constraint. Unfortunately, higher levels

of bed occupancy coincide often with higher levels of workload for the staff. That in turn
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means that it would take the staff in any particular unit longer to prepare newly vacated

beds for new admissions, longer to respond to a transfer request from ED, and generally be

more reluctant to admit new patients, which would further increase their workload. Finally,

there are multiple decision makers when it comes to transferring a patient from ED to one of

the internal units within the hospital. As a result, hospitals, concerned with both efficiency

and fairness, end up adopting rather elaborate patient transfer processes, which tend to

take longer when the occupancy level is higher.

Partially motivated by the close relationship between the hospital occupancy level and

ED crowding, hospitals are paying more and more attention to utilizing their bed capacities

efficiently by adopting different forms of active bed management. As Powell et al. (2012) and

Shi et al. (2014) discuss in details, some hospitals focus their efforts on patient discharges,

specifically, changing their operations/staffing so that patients are discharged as early in

the day as possible and thereby the bed crunch problem typically felt in the middle of the

day (i.e., busier periods) is partially averted. Others have been initiating broader efficiency

improvement efforts that aim for better bed management. According to reports by Institute

of Medicine (2007) and Vicellio et al. (2008) on the state of hospital-based emergency

medicine delivery, some hospitals have created “bed czars” or “bed teams” whose job is

essentially to achieve the most efficient use of hospital beds in coordination with various

units in the hospital. Among the responsibilities of a bed czar is to account for all the

inpatient beds and “ensure rapid bed turnaround”. Hospital beds are frequently occupied

by patients who in fact no longer need the level of services provided for patients in those

beds. A report by Audit Commission (2003) finds that the median percentage of such beds

to be 5% with some trusts reporting more than 20%. This suggests that there is significant

potential for improving bed management without sacrificing the quality of care provided to

the patients.

The realization of this potential in practice, however, requires some efforts, which are not

cost-free. It might require hiring new staff members whose responsibilities would mainly be

efficient management of hospital beds and/or allocating some of the existing staff members

to the task of freeing up beds by carrying out tasks that will make it possible to push the

discharge times of some of the patients earlier (Howell et al., 2008; Vicellio et al., 2008).
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For a severely overcrowded hospital which has a bed bottleneck problem around the clock

every day of the week, the cost of putting in a constant effort to identify available beds can

be perfectly justified. For many hospitals, however, because of daily fluctuations in patient

arrivals and discharges, the severity of the bed bottleneck problem also changes from day to

day. For some days, there may be no need to aggressively seek space for new patients, while

for some other days, there can be a significant bed shortage. Such hospitals may adopt

more of a dynamic policy for allocating resources to the task of creating new bed space.

Every day, by taking into account the number of available beds, the number of patients

who are expected to be discharged over the next 24 to 48 hours, and the prediction for the

number of new bed requests to the internal wards, the hospital can determine whether or

not a bed bottleneck problem is likely to occur on that day and if yes how severe it will be.

This can then guide decisions regarding how aggressive the hospital needs to be (if at all)

when speeding up the discharge process of patients who are already medically safe to be

discharged.

The main objective of this study is to develop a framework, which can be used to make

this determination and investigate the potential benefits of adopting it. Specifically, the

study makes the following three contributions.

1. Using data from an Israeli hospital, we investigate how ED boarding times depend on

the hospital occupancy level, the number of new arrivals, and the number of discharges

for every day of the week, and quantify this relationship for this particular hospital.

2. We develop two optimization problems whose objective is to determine the smallest

number of early discharges necessary in order to meet a particular target level for

boarding times. An early discharge may either refer to moving an afternoon discharge

to the morning or moving a tomorrow’s discharge to today afternoon. Such early

discharges can only be done for a selective group of patients who are already medically

safe to be discharged. Note that our framework only offers a target for the number

of early discharges. The final decision of discharges has to be made by a qualified

medical staff. The first problem is meant to be solved by the hospital once every 24

hours and it essentially determines the least the hospital should do to achieve the
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target level of boarding time it aims to provide for its patients. The second problem

is meant to be solved by the hospital one day in advance to realize an ideal initial

occupancy target based on the historical experience.

3. We carry out an extensive simulation study to demonstrate the potential benefits of

using either early-discharge approach, in comparison with the baseline scenario under

which no early discharge is allowed. We also carry out a sensitivity analysis with

respect to the bed request rates to IW.

3.2 Literature Review

There is an extensive literature on methods improving the patient flow from ED to IW.

Here we focus on the discharge process for patients in IW. Rubino et al. (2007) and Vicellio

et al. (2008) point out the importance of adopting the “discharge by noon” target in freeing

up the occupied inpatient beds and improving patient throughput.

Armony et al. (2011) provide broad exploratory data analyses on the patient flow inside

ED, IW, and transfer process from ED to IW in the Rambam Hospital, which is also the

source of the data supporting our study. In the Rambam Hospital, a patient who is decided

to be hospitalized in IW by an ED physician is assigned and transferred to one of the

five IWs based on a certain routing policy. Although IW tries to admit patients within

four hours from the decision of hospitalization, significantly longer delays exist. Therefore,

they propose that reducing the waiting times in ED is essential to prevent the clinical

consequences of long delays. They identify a series of causes for the delays, e.g., the ward

occupancy, bed capacity, delayed IW discharges and so on. They observe that the longest

delay happens in the early morning, and follows with a consistent decline up until noon,

due to the fact that the physicians’ morning round is performed in the early morning but

completed in the afternoon. These findings motivate that it is meaningful to investigate the

ways to speed up the discharge process in IW, and convince us about potential subsequent

benefits.

Both Powell et al. (2012) and Shi et al. (2014) study the effect of the timing of discharges

on the ED boarding times by comparing the performance of different discharge distributions
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over a day. Powell et al. (2012) test three alternative discharge polices having the same total

volume as the original policy, but different distributions from the original one with peak

around 3pm in the model capturing the patient flow into and out of the inpatient beds at the

hourly level. The first tested discharge policy is shifting the original discharge distribution

1, 2, 3 and 4 hours earlier; the second one is uniformly discharging 75% patients from 7am to

noon and the remaining 25% from noon to 8pm; and the third one is uniformly discharging

all patients from 7am to 4pm. For the performance measure, they sum all the number of

patients who board during each hour over a day and get the total daily admitted patient

boarding hours. All the three alternatives are proved to be able to decrease the total daily

admitted patient boarding hours by various degrees.

The original discharge policy in the general wards of the hospital studied by Shi et al.

(2014) has a slim and high peak between 2-3pm and only 12.7% of patients are discharged

by noon. At one point, this hospital pushes forward the discharge process moderately, which

results in an additional peak earlier than the original 2-3pm peak, and around 26% of the

patients are discharged before noon. They observe slight reductions in two performance

measures: the average boarding times and the fraction of patients whose boarding times

are longer than 6 hours. To study the effect of the timing of discharge on relieving the

bed problem thoroughly, they propose to push forward the discharge process in a more

aggressive way to make that additional peak appear as early as 8-9am. To evaluate the

performance of this progressive policy, they simulate the inpatient operations in the real

hospital at the hourly level by building a stochastic network. The simulation results show

that this more aggressive discharge policy almost stabilizes the two performance measures.

We extend the idea in the above two papers, and consider moving tomorrow’s discharges

to today afternoon, in addition, moving discharges in the afternoon to the morning of the

same day.

Crawford et al. (2013) study the effect of the timing of discharges on the ED boarding

times by comparing different trigger strategies for letting patients leave earlier than the

regular discharge schedule. One static strategy is discharging a patient when her estimated

risk of readmission is acceptable; and two proactive strategies are discharging patients when

either the percent of patients waiting for an ED bed post triage or the percent of patients

30



waiting for an inpatient unit bed post treatment in ED is above a specified threshold. They

evaluate the performance of various strategies by building a discrete-event simulation model

of patient pathway through a hospital that comprises of an ED and several inpatient units

at the hourly resolution. Based on the simulation results, they conclude that, compared

with the static early discharge strategy, the two proactive ones can significantly reduce ED

waiting and boarding times, ambulance diversion duration, and percentage of leave without

treatment. In addition, the performance improvements of the proactive early discharge

strategies are sensitive to the patient arrival rates.

Besides trying different ways for early discharge and demonstrate the effects as the

above literature did, this study goes one step beyond - given the effects of reducing ED

boarding times of the various approaches, we start with a pre-specified ED boarding time

target, and suggest specific numbers of early discharges in order to achieve that target.

3.3 A Short Description of the Patient Flow

In this chapter, in order to study the delays in the transfer from the ED to IW, we

focus on patient flow within the subnetwork consisting of the ED, IW and the transfers of

patients from the ED to IW, which is referred to as ED+IW. In the hospital that we are

studying, a very high percentage of the patients visiting hospital stay within this subnet-

work. Among patients who enter hospital from ED, 13% of those are hospitalized in IW.

Switching attention to the IW, 96% of the internal patients come from ED, who are referred

to as ED-to-IW patients. The other 4% of the patients in IW are from other units inside

hospital, who are referred to as In-to-IW patients. These two incoming streams to IW are

shown as red solid and dashed line in Figure 3.1. We will concentrate on ED-to-IW patients

and their delays within the transfer process in the rest of the chapter.

When an ED patient is decided to be transferred to hospital inside at the end of the

treatment in ED, the request for a bed in IW is sent out and the corresponding routing

process is put in. The routing process is implemented by a software called “The Justice

Table” in the hospital that we are studying. Once an ED patient is assigned to be hos-

pitalized in IWs, one of the five IWs of the same function is chosen by a Head Nurse. If
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Figure 3.1: Patient Flows within ED+IW Subnetwork

this patient is refused by the first assigned IW, he will be waiting for the reassignment to

another IW. When this patient is eventually accepted by an IW, preparation for his arrival

begins. In order to complete the transfer, a bed, medical equipment and staff must be ready

for the transfer. Even if there is an available (empty) bed in this particular IW, this patient

might still suffer delay caused by the lack of either equipment or staff or both. For detailed

procedures that happen in the routing process, readers could refer to Armony et al. (2011).

Up to the point that all the requirements are ready, this patient will remain in the ED and

receive care from ED staff.

As we don’t have detailed data regarding the transfer process, we put the routing

mechanism inside a “black box”, as shown in Figure 3.1, to investigate the transfer delays

at the daily level. Of interest is the total amount of time that a transfer patient is held

within the “black box”. Once the patient spends necessary time inside the “black box”,

then the transfer is completed and he can enter IW. The total amount of time that an

ED-to-IW patient spends in the “black box”, from the time of assignment to IW to the

time of admission into IW, is often referred to as the ED boarding time in the literature.

Delays in the transfer from the ED to IW should be tightly coupled with IW occupancy

level and are affected by operational decisions such as IW admission behaviors and discharge

policies. Detailed analyses of the relationships between the ED boarding time and these
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impacting factors will be provided in the following sections. Moreover, we propose policies

to reduce the prolonged ED boarding time and investigate their benefits.

3.4 ED Boarding Times and Internal Ward Occupancy

In this section, we analyze the department-level patient flow data from the Rambam

Hospital, and identify system-level factors that can affect ED boarding times. We first

describe in Section 3.4.1 various variables in the hospital data, and how we process them

to obtain factors that are potentially related to ED boarding times. Section 3.4.2 then

demonstrates the lognormality of the ED boarding times. Finally, Section 3.4.3 builds

regression models to characterize how the mean and standard deviation of the lognormal

ED boarding time depend on various hospital factors.

3.4.1 Rambam Hospital Data and Processing

The Rambam Hospital is a large hospital in Israel that operates one ED treating on

average 247 patients every day, and five IWs hospitalizing on average 1,000 patients every

month. The data are provided to us through the courtesy of the Technion SEE Lab.

The data include the following time stamps for the ith patient’s stay within the ED+IW

subnetwork:

• EDRi — time that an IW bed request is sent out for an ED-to-IW patient;

• INRi — time that an IW bed request is sent out for an In-to-IW patient;

• ADMi — time of admission to IW;

• FIRSTi — time that the first procedure is performed in IW;

• DISi — time of discharge from IW.

For each individual patient that enters the ED+IW subnetwork on the same day t, we

can use the above time stamps to derive the following three daily system-level factors:
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• Nt — initial IW occupancy level of Day t, the number of patients whose times of

admission to IW (ADMi) are earlier than 00:00 of Day t and times of discharge from

IW (DISi) are later than 0:00 of Day t;

• At — daily arrivals to IW on Day t, the number of patients whose times of admission

to IW (ADMi) are later than 00:00 of Day t but no later than 23:59 of Day t;

• Dt — daily discharges from IW on Day t, the number of patients whose times of

discharge from IW (DISi) are later than 00:00 of Day t but no later than 23:59 of

Day t.

Summary statistics of these three factors are provided below in Table 3.1.

Table 3.1: Hospital Summary Statistics

Standard First Third
Variable Mean deviation quantile Median quantile

Initial IW occupancy level (#) 179.6 14.9 170.0 181.0 188.8
Initial IW occupancy level (%) 85.5 7.1 81.0 86.2 89.9
Daily arrivals to IW 33.6 8.0 28.0 34.0 39.8
Daily discharges from IW 33.6 14.1 27.3 37.0 43.0

Notes. N = 306 days between October 2006 to October 2007 (excluding the months January to March in 2007, when
one of the IWs was in charge of an additional sub-ward).

In addition, for the ith ED-to-IW patient, we use the difference between the time that

the first procedure is performed in IW (FIRSTi) and the time that an IW bed request

is sent out (EDRi) as the proxy of the ED boarding time of that patient. This can be

an overestimation for the actual delay time in the transfer process. However, as shown by

Elkin and Rozenberg (2007), a significant portion of this time period is indeed spent within

ED, so this is a reasonable estimate for the ED boarding time.

3.4.2 Lognormal ED Boarding Times

Figure 3.2 plots the histogram of all the ED boarding times within the study period

(consisting of 306 days), which is clearly right-skewed. An ED-to-IW patient needs to board

for 2.9 hours on average until the transfer is completed, while the median boarding time is

2.1 hours. Out of all the ED-to-IW patients, a quarter of them can be boarded within one
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hour. The operational goal of the hospital is to board patients within 4 hours (the vertical

dash line); however, 21% of the ED-to-IW patients have to wait for more than 4 hours!
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Figure 3.2: Distribution of ED Boarding Time

To aid the hospital decision at the beginning of each day, it helps to know the distri-

bution of ED boarding times within that day. For each day, we perform the Kolmogorov-

Smirnov test to check whether the ED boarding times follow a lognormal distribution. Only

one day (out of the 306 days) failed the test at the significance level of 0.05. Therefore,

the ED boarding times within a day can be well approximated as lognormally distributed.

Thompson et al. (2009) have also demonstrated the lognormallity of ED boarding times.

In other service systems such as telephone contact centers, Brown et al. (2005) find that

lognormal distributions are reasonable to model service times there (i.e. durations of con-

versations between callers and service representatives.)

3.4.3 System-level Factors and ED Boarding Times

Lognormal distributions are characterized by two parameters: the mean and the stan-

dard deviation on the log scale. Let Bt denote a random ED boarding time on Day t;

therefore logBt is normally distributed. Below we investigate how the system-level factors

can affect the mean (mt) and the standard deviation (st) of logBt, respectively.
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Figures 3.3 and 3.4 plot mt and st against the three system-level factors, respectively. To

highlight the day-of-the-week effect, the points are coded using different colors and symbols

according to their corresponding day of the week as shown in the legend. In addition,

Israeli holidays are shown as black asterisks. In both figures, there exists no clear day-of-

the-week effect in Panels (a) and (b). Interestingly in Panel (c) of both figures, there are

approximately three clusters related to day-of-the-week and holiday. From left to right, the

first cluster, with the lowest number of discharges, consists of points from Saturdays and

holidays; the second cluster is in the middle and corresponds to Fridays; while the third

cluster has the highest number of discharges and includes all weekdays. Note that in Israel,

Sunday is the first weekday; Friday is a half-day weekend; and Saturday is a whole-day

weekend. Therefore, we conjecture that the variability in the number of discharges is due

to lower staffing levels in weekends than those in weekdays.
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Figure 3.3: Mean of Log-transformed ED Boarding Time against: (a) Initial IW Occu-
pancy, (b) Daily Arrivals to IW, and (c) Daily Discharges from IW
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Figure 3.4: Standard Deviation of Log-transformed ED Boarding Time against: (a)
Initial IW Occupancy, (b) Daily Arrivals to IW, and (c) Daily Discharges from IW

In Panel (c), the black asterisks (for the 8 holidays listed in Table 3.2) are clustered

together with the Saturdays. Staffing level is usually low during major holidays, so this
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clustering supports our previous conjecture that the number of discharges is low when the

staffing level is low. As shown in Panels (a) and (b), these holidays do not systematically

differ from the other days in terms of initial IW occupancy level and number of daily arrivals

to IW. Therefore, we label and treat these days as Saturdays when we build regression

models for mt and st later on.

Table 3.2: 8 Israeli Holidays within The Study Period

Date Reason Date Reason

Oct. 2, 2006 Yom Kippur May 23, 2007 Pentecost
Apr. 3, 2007 First day of Passover Sep. 13, 2007 New Year
Apr. 9, 2007 Last day of Passover Sep. 27, 2007 Sukkot I
Apr. 24, 2007 Independence Day Oct. 4, 2007 Shmini Atzeret

Figures 3.3 and 3.4 suggest that we can predict mt and st using IW occupancy level

(Nt), number of arrivals to IW (At), and number of discharges from IW (Dt). Based on

Panel (c) in both figures, we include day-of-the-week indicators for weekdays, Fridays and

Saturdays, when modeling the effect of Dt on mt and st. We perform model selection to

identify the final model, the parameter estimates of which are provided in Table 3.3 for the

mean and the standard deviation of the log-transformed ED boarding time, respectively.

Table 3.3: Effect of System-level Factors on ED Boarding Times

mt st
Intercept -1.4974 (0.1902)*** 0.5165 (0.1316)***
Initial IW occupancy (Nt) 0.0101 (0.0010)*** 0.0028 (0.0008)***
Arrivals (At) 0.0124 (0.0021)***
Discharge (Weekdays & Friday) (Dt) -0.0034 (0.0011)** -0.0019 (0.0007)**
Friday Only -0.1227 (0.0414)**
Model fit F -test (Pr> F ) <0.001 <0.001
Adjusted R-squared 0.3721 0.0413

Notes. Standard errors are in parentheses. ** 0.01 significance; *** 0.001 significance.

Based on the above coefficients, the fitted models for mt and st are shown below in

Models (3.1) and (3.2), respectively:

mt =


−1.4974 + 0.0101Nt + 0.0124At − 0.0034Dt + εmt , Weekdays,

−1.6202 + 0.0101Nt + 0.0124At − 0.0034Dt + εmt , Friday,

−1.4974 + 0.0101Nt + 0.0124At + εmt , Saturday,

(3.1)
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st =


0.5165 + 0.0028Nt − 0.0019Dt + εst , Weekdays & Friday,

0.5165 + 0.0028Nt + εst , Saturday.

(3.2)

We can make the following observations based on the fitted models. The coefficient

estimates for the initial IW occupancy level are significantly positive (0.0101, p < 0.001)

and (0.0028, p < 0.001), respectively, indicating that IW occupancy increases the mean

and the standard deviation of the log-transformed ED boarding time. The number of

arrivals to IW has a significant positive effect for mt (0.0124, p < 0.001), although it is

not significant for st. Daily discharge is generally associated with reduction in both the

mean and standard deviation of the (log) ED boarding time on Weekdays and Fridays, as

indicated by the negative coefficients of the discharge terms in mt (-0.0034, p < 0.01) and in

st (-0.0019, p < 0.01), while discharge on Saturday does not significantly affect neither the

mean nor the standard deviation of the log-transformed ED boarding time. The coefficient

estimate for the indicator of Fridays in mt is negative (-0.1227, p < 0.01), indicating lower

number of discharges on average than other days of a week.

We now perform residual diagnostics on the two fitted models. Figure 3.5 shows the

residual plots (εmt and εst ) with the day-of-the-week highlighted by symbols and colors,

revealing randomness among the residuals. The normal quantile plots in Figure 3.6 suggest

that the residuals are normally distributed. In addition, we test the independence between

εmt and εst and find that they are significantly dependent (p < 0.001), with a correlation of

−0.3. Hence, we can model the residuals using the following bivariate normal distribution:

εmt
εst

 ∼ N

0

0

,
 0.0560 −0.0140

−0.0140 0.0339


 .

For any given day t, we introduce a day-of-week indicator wt, where wt ∈ {1 :

Sunday, · · · , 7 : Saturday}. At the beginning of any day t, the above fitted Model (3.1)

and (3.2) suggest that, given the initial IW occupancy level (Nt), the number of arrivals to

IW (At), the number of discharges from IW (Dt), and its day-of-week indicator (wt), we
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Figure 3.5: Residual Plots of Model (3.1) and (3.2)
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Figure 3.6: Normal Quantile Plots of Residuals of Model (3.1) and (3.2)

can predict the distribution of the log-transformed ED boarding times on Day t as:

log{Bt
(
wt, Nt, At, Dt

)
} ∼ N

(
mt

(
wt, Nt, At, Dt

)
, s2

t

(
Nt, Dt

))
, (3.3)

where mt and st are specified in Models (3.1) and (3.2). This distribution will be used to

guide our proposal for early-discharge policies in Section 3.5.

Models (3.1) and (3.2) assume linear effects of the initial IW occupancy level on the

mean and the standard deviation of the log ED boarding time. Below we check whether the

effect can be quadratic, which makes sense in that the higher the occupancy level, the bigger

the effect on the boarding time. Models (3.4) and (3.5) use the square of the occupancy

level (instead of the linear term), with the estimated coefficients listed in Table 3.4. The

coefficient estimates for the quadratic term are positive (0.00003, p < 0.001) and (0.00001,

p < 0.001) in both models, respectively. It reflects the fact that when the system is more
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congested, the effect of the initial IW occupancy level on the ED boarding time is larger.

For the other system-level factors, the coefficient estimates are similar to those in Models

(3.1) and (3.2).

Table 3.4: Effect of System-level Factors on ED Boarding Times

mt st
Intercept -0.6173 (0.1088)*** 0.7713 (0.0657)***
Initial IW occupancy square (N2

t ) 0.00003 (0.000003)*** 0.00001 (0.000002)***
Arrivals (At) 0.0125 (0.0021)***
Discharge (Weekdays & Friday) (Dt) -0.0033 (0.0011)** -0.0019 (0.0007)**
Friday Only -0.1227 (0.0414)**
Model fit F -test (Pr> F ) <0.001 <0.001
Adjusted R-squared 0.3756 0.0387

Table 3.5: Notes. Standard errors are in parentheses. ** 0.01 statistical significance;
*** 0.001 statistical significance.

mt =


−0.6173 + 0.00003N2

t + 0.0125At − 0.0033Dt + εmqt , Weekdays

−1.6201 + 0.00003N2
t + 0.0125At − 0.0033Dt + εmqt , Friday

−1.4974 + 0.00003N2
t + 0.0125At + εmqt , Saturday

(3.4)

st =


0.7713 + 0.00001N2

t − 0.0019Dt + εsqt , Weekdays & Friday

0.7713 + 0.00001N2
t + εsqt , Saturday

(3.5)

3.5 Determining the target number for early discharges or internal ward oc-
cupancy

In this section, we propose two policies which can be used to guide the hospitals in

making decisions regarding how many patients to early-discharge on any given day so as

to keep emergency department boarding times at a level that is acceptable to the hospital.

More specifically, both policies determine “suggested” target levels (for the number of early

discharges or equivalently the number of occupied beds in the internal ward) which the

hospital should strive for so as to ensure that the percentage of patients whose boarding
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times exceed a particular time limit (e.g. 4 hours) is not more than a particular value (e.g.

20 percent). Policy 1 is dynamic in the sense that the target number of early discharges

for each day is determined at the beginning of the day by taking into account the number

of patients currently in the internal wards, number of discharges expected on that day and

the following day, and the predicted number of new ED arrivals on that day based on the

historical data. On the other hand, Policy 2 determines target occupancy levels for the

internal ward for each day of the week in advance based on the historical data alone.

We consider two types of early discharges. In most hospitals - including the Rambam

hospital, where our data come from - a very high percentage of the patients are discharged

from the hospital in the afternoon. Once a bed is vacated, it is not immediately available for

admitting new patients since it needs to be cleaned. Therefore, a bed vacated by a patient

on a given day can be available for a new patient only late in the afternoon by which time

the number of bed requests from the emergency department would have already peaked.

In order to prevent this misalignment between the peak of the new bed requests and bed

availability in the internal wards, patients could be discharged earlier in the day. This

is the first type of early-discharge we consider and we call this same day early-discharge.

Patients who go through same day early-discharge are discharged on the same day they

were regularly scheduled to be discharged but they leave early in the morning. Specifically,

we assume that these patients leave early enough that it would be reasonable to assume

that the beds they vacate are available the whole day when predicting the boarding time

distribution for that day. Admittedly, this is an optimistic assumption. Clearly, in reality,

some of the new bed requests will arrive before the early-discharge process of some of the

patients is over. However, because the boarding time distribution is estimated for a random

patient on a given day, as long as a vast majority of the patients arrive after early discharges

are complete (which would happen if patients are discharged by 10 am), this assumption

would serve as a good approximation.

On any given day, in addition to the patients whose discharge times can be moved to

earlier in the day, patients who are normally going to be discharged tomorrow can also be

discharged early. Specifically, we assume that these patients can be early-discharged today

instead of tomorrow but they cannot be discharged as early in the day as same day early-
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discharges. Their beds become available today but only in the afternoon just like the beds

of those patients who are scheduled to be discharged today and are not early discharged.

We call this type of early discharge a one-day ahead early-discharge. However, we do not

consider one-day ahead early-discharge on Saturday based on the findings in Section 3.4.

3.5.1 Policy 1: Daily dynamic determination of the target number for early
discharges

Let D̃1
t denote the number of patients who will be discharged on Day t at regular

discharge times, which we call regular discharges, if none of the patients are early discharged

on that day (Note that D̃1
t = Dt.) Similarly, let D̃2

t denote the number of regular discharges

for day t+ 1 as of the beginning of Day t. (The actual number of regular discharges on day

t+ 1 can be higher if at least one of the patients admitted today stays only one day at the

hospital. Therefore, it is possible that D̃2
t 6= Dt+1). Also let y1

t denote the number of same

day early discharges and y2
t denote the number of one-day ahead early discharges for day t.

Then, we must have y1
t ≤ D̃1

t and y2
t ≤ D̃2

t .

Recall that the hospital sees Nt patients in the general ward at the beginning of Day

t, and in the absence of any early discharges, Dt patients will be discharged from the

hospital over the course of the same day at regular discharge times. However, with the

early discharges, before the arrival of the bulk of the patients of the day, the number of

occupied beds in the hospital will drop to Nt − y1
t and the number of non-early discharges

will be Dt − y1
t + y2

t . Note that the effect of one-day ahead early-discharge patients on the

boarding times will be like the regular discharge patients. Then, using the results of Section

3.4, the hospital can compute

P{Bt
(
wt, Nt − y1

t , At, Dt − y1
t + y2

t

)
> Θ}, (3.6)

the probability that a randomly chosen patient on Day t will have a boarding time that

exceeds Θ. The hospital would like to keep this probability low but also would like to keep

the “early discharge cost” low. Thus, the hospital might consider minimizing the total daily

discharge cost subject to a constraint on the probability. Specifically, the daily target levels
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for early discharges can be determined by solving the following optimization problem:

min f1y
1
t + f2y

2
t ,

s.t. P
{
Bt
(
wt, Nt − y1

t , At, Dt − y1
t + y2

t

)
> Θ

}
≤ α,

0 ≤ y1
t ≤ D̃1

t ,

0 ≤ y2
t ≤ D̃2

t × 1{wt 6= 7},

(3.7)

where α is the predetermined tolerance-level, and f1 > 0 and f2 > 0 are respectively the per

patient costs of same day early-discharge and one-day ahead early-discharge. As observed

in Section 3.4, number of discharges on Saturdays is extremely lower than all the other days

of a week, we believe it is caused by low staffing level on Saturdays. Therefore, it would be

appropriate to not consider 1-day-ahead early discharges on Saturdays.

Note that it is difficult to estimate f1 and f2 in reality as early discharging a patient

might require the involvement of a number of individuals and units within the hospital and

changes in the prioritization of certain tasks in the hospital. However, estimation of these

cost parameters is not necessary since the solution to the above optimization problem is

independent of the precise values of f1 and f2. Since early discharging tomorrow’s patient

today would be more challenging than discharging today’s patient earlier in the day, we can

assume that f1 < f2. Then, it is straightforward to show the following result (the proof is

immediate and therefore is left in Section 3.8).

Proposition 3.1. Suppose that f1 < f2 and for any fixed day t, log (Bt) has probability

cdf Φ (·) with mean given by mt = a0 + a1y
1
t + a2y

2
t and standard deviation given by st =

b0 + b1y
1
t + b2y

2
t . Then, if

1. a2 + Φ−1 (1− α) b2 < 0 and a1+Φ−1(1−α)b1
a2+Φ−1(1−α)b2

≤ −1, or

2. a2 + Φ−1 (1− α) b2 = 0,

we have: if ∃ a feasible solution to Problem (3.7) and
(
y1
t
∗
, y2

t
∗)

is an optimal solution.

Then if y2
t
∗
> 0, we have y1

t
∗

= D̃1
t .

Corollary 1. For models (3.1) and (3.2) developed for Rambam in Section 3.4, the condi-

tions of Proposition 3.1 hold for days if α < 0.9632.
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An implication of Proposition 3.1 is that if there is a feasible solution to Problem (3.7),

then an optimal solution can be found by using a simple greedy policy that first increases

y1
t one by one (and then y2

t if y1
t hits D̃1

t for weekdays and Friday) until the probability

constraint is satisfied.

If Problem (3.7) does not have a feasible solution, this would mean that even if the

hospital can early discharge all the patients who can be early discharged safely, the service

level constraint will not be met. Clearly, however, in such a case the hospital would prefer to

early discharge all the patients it can in order to keep the boarding times as low as possible

even if the target cannot be met. Thus, Policy 1 can be described as follows.

Description of Policy 1:

At the beginning of every day t (at midnight that marks the beginning of day t), do

the following:

Step 1: Set y1
t = D̃1

t and y2
t = D̃2

t and compute p̄ = P
{
Bt
(
wt, Nt − y1

t , At, Dt − y1
t + y2

t

)
>

Θ
}

. If p̄ > α, set δ1 = y1
t , δ

2 = y2
t , and skip Step 2; otherwise go to Step 2.

Step 2: Set δ1 = y1∗
t and δ2 = y2∗

t , where (y1∗
t , y

2∗
t ) is an optimal solution to Problem (3.7).

Step 3: Set the target level for same-day early discharge to δ1 and the target level for

one-day ahead early discharge to δ2.

Note that it is possible that δ1 = δ2 = 0 in which case there is no need to early discharge

any of the patients.

3.5.2 Policy 1-Var: Variation of Policy 1

Policy 1-Var is a heuristic version of Policy 1. It replaces the probability distributions of

IW arrival At, ε
m
t and εst in the objective function in problem (3.7) by their corresponding

mean values. Its solution (y1
t and y2

t ) can be expressed in a closed-form, as shown in

Expression (3.11) and (3.12) in Section 3.8, so it would be less time consuming. Therefore,

Policy 1-Var would be more desirable if it could get comparable solutions as Policy 1.
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3.5.3 Policy 2: A look-up table for the internal ward target occupancy level

For implementation purposes, a simpler alternative to Policy 1 would be computing

target occupancy level for the hospital in advance based on the historical data rather than

determining target early discharge levels every day. One important advantage of having

such a static predetermined occupancy level would be that since the staff would be aware of

the target levels in advance there would not be last minute “surprises” for the bed teams.

Knowing in advance what the target level would be, they can better prepare for early

discharges. In this chapter, recognizing the fact that patient demand and staffing levels can

differ significantly depending on the day of the week, we will consider setting a different

target level depending on the day of the week. It would certainly be even more convenient to

have a single target occupancy level that would be valid for every day of the week. However,

as we also observed in our simulation study, the benefits of having the target level vary with

the day of the week would likely outweigh the additional complexity in most cases.

As we discussed earlier, we can determine the probability distribution for Aw, the

number of patient arrivals for weekday w where w ∈ {1, 2, . . . , 7} indicates a specific day of

the week (e.g., Monday through Sunday). (Note that we use this probability distribution in

Policy 1 as well.) By analyzing the data, we can also determine the probability distribution

for Dw, the number of discharges for day w (in the absence of any early discharges) and

for any given midnight occupancy level N , we can compute P
{
Bw (N, Aw, Dw) > Θ

}
, the

probability that a randomly chosen patient on a randomly chosen but specific day of the

week w (e.g. a randomly chosen Monday) will have a boarding time that exceeds Θ. The

question then is for what values of the occupancy level, this probability will be below α as

desired by the hospital. If the probability is a non-decreasing function of the occupancy

level N , which we know is the case for the Rambam hospital and likely to be the case for

many other hospitals, the problem reduces to finding the largest value for the occupancy

level under which the probability is smaller than or equal to α. Thus, the target midnight

occupancy level Nw for day of the week w ∈ {1, 2, · · · , 7} can be determined by solving the
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following simple optimization problem:

max Nw,

s.t. P
{
Bw

(
Nw, Âw, D̂w

)
> Θ

}
≤ α.

(3.8)

The optimal solution to Problem (3.8), which we call N∗w will provide the hospital with a

target occupancy level the hospital should aim for a given day of the week w based on which

the hospital can determine how many patients to early discharge on each day.

Unlike the optimization problem we solve for Policy 1, the solution to Problem 3.8 does

not determine how many same-day early discharges and how many one-day ahead early

discharges are needed. However, the difference in the way the two types of early discharges

affect the occupancy level essentially determines what exactly needs to be done. As we

discussed above, a same-day early discharge can be assumed to decrease the occupancy

level by the beginning of that day. On the other hand, a one-day ahead early discharge

would help reduce the boarding time but the discharge, even though one day earlier, would

not happen early enough in the day to have an effect on the occupancy level at the beginning

of the day. Therefore, Policy 2 requires that the hospital try to meet the target occupancy

level by early discharging the patients who are already going to be discharged that day.

However, if that will not be enough to bring the hospital to the target level, Policy 2 still

calls for one-day ahead early discharges as many as practically feasible and needed to reach

the target level. Specifically, Policy 2 can be described as follows.

Description of Policy 2:

At the beginning of every day t (at midnight that marks the beginning of Day t), do

the following:

Step 1: If Nt, the number of patients in the internal wards is less than or equal to N∗wt
,

the target occupancy level for that day of the week, then set δ1 = δ2 = 0, and skip Step 2;

otherwise go to Step 2.

Step 2: If Nt − Dt ≤ N∗wt
, set δ1 = Nt − N∗wt

and δ2 = 0; otherwise set δ1 = Dt and

δ2 = min{Nt −N∗wt
−Dt, D̃t+1}.
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Step 3: Set the target level for same-day early discharge to δ1 and the target level for

one-day ahead early discharge to δ2.

3.5.4 Policy 2-Var: Variation of Policy 2

Policy 2-Var is a variation of Policy 2. Instead of applying different target midnight

occupancy levels to different days of a week, it uses a same target level for every day, and

the number is just the arithmetic average of N∗w’s in Policy 2.

3.6 Simulation Study

In this section, we report the results of a simulation study we conducted to investigate

the potential benefits of early discharging patients using the two policies we described in

Section 3.5. We first describe the simulation model.

3.6.1 Description of the simulation model

The simulation model is not meant to capture the ED or the hospital operations at a

very detailed level. The model captures what happens every day in an aggregate manner

and it can be seen as a discrete-time model where time proceeds in units of 1 day. The

model keeps track of the number of patients in the IW and the remaining length-of-stay

(in terms of days) for each patient in the IW. When a new patient is admitted to the

IW, a new length-of-stay is generated using the distribution obtained from the historical

data. The length-of-stay for a patient can take any value between 1 and L days. We

define class i patients as those who will stay i more days in the IW (unless they are early

discharged one-day ahead when they are class 1 patients). Note that each patient’s class

changes everyday. For example, for i ≥ 2, today’s class i patient is tomorrow’s class i − 1

patient. Let Xi
t denote the number of class i patients at the beginning of Day t, and define

Xt = {Xi
t : 0 ≤ i ≤ L−1} as the vector of the number of patients of each class in IW at the

beginning of Day t. At the end of every day, the simulation model updates the vector Xt by

incorporating new patients, accounting for discharges, and carrying out the necessary class

updates as the length-of-stay for each patient needs to be reduced by one. Note that X0
t
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is the number of patients who are scheduled to be discharged on Day t, which is equal to

Dt (or D̃1
t ) when implementing Policy 1. Similarly, X1

t is the number of patients currently

scheduled to be discharged tomorrow given that we are currently on Day t, and is equal to

D̃2
t . The hospital has C beds and therefore

∑L−1
i=0 X

i
t ≤ C. (Since the maximum value for

the length-of-stay is L, at the beginning of any day, there are no patients with a remaining

length-of-stay of L.)

The sequence of events on any given day t is as follows: First, the hospital determines

δ1 and δ2, the number of same-day and one-day ahead early discharge patients. When

making this decision, the hospital knows the occupancy level Nt =
∑L−1

i=0 X
i
t , the probability

distribution for A1
wt

and A2
wt

, the number of arrivals on that day, andDt = X0
t and D̃2

t = X1
t ,

the maximum number of same-day and one-day ahead early discharges. Then, same-day

early discharges leave, the occupancy level is updated to Nt−δ1, and the scheduled number

of afternoon discharges are updated to Dt−δ1 +δ2. The model then generates a1
t and a2

t the

realized values for the number of patients who will arrive on that day and then the boarding

time for each patient given the total number of arrivals of the day, updated occupancy level

as well as the updated number of afternoon discharges. Necessary updates are done to

compute the relevant performance measures (e.g., number of patients whose boarding time

exceeds Θ) at the end of the simulation run.

At the end of the day, the vector Xt is updated to determine Xt+1. This is done

as follows. First, some of the patients may not be accepted to the IW because of the

limited bed capacity. Specifically, the total number of admissions to the IW is given by

min{a1
t + a2

t , C −Nt +Dt + δ2} where the first term is the total number of patient arrivals

and the second term is the available number of beds by the end of the day. Thus, the implicit

assumption here is that patients wait for an IW bed as long as they will be provided with

a bed by the end of the day but they are transferred to a different hospital (or another

alternative arrangement is made) if a bed is not going to be available for them some time

during the day. For each admitted patient, length-of-stay is generated. For j ∈ {1, 2, . . . , L},

let Zjt denote the number of admitted patients with a length-of-stay of j days. (Note that
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we must have
∑L

j=1 Z
j
t = min{a1

t + a2
t , C −Nt +Dt + δ2}.) Then, Xt+1 is determined by

X0
t+1 = X1

t − δ2 + Z1
t ,

Xi
t+1 = Xi+1

t + Zi+1
t , 1 ≤ i ≤ L− 2,

XL−1
t+1 = ZLt .

Finally, time is updated to t+ 1 and the same sequence of events are repeated for day

t+ 1.

3.6.2 Specification of simulation model parameters

As discussed in previous sections, the IW model is created using data from the Rambam

hospital. We try to capture what happens at Rambam in the IW model, in terms of arrivals,

occupancy, discharges, and operational goal. We use Poisson distribution to model the

probability distribution of each type of arrivals to IW, ED-to-IW and In-to-IW, for each

day of a week, respectively. We estimate the mean of each type of arrivals (p = 1: ED-

to-IW, p = 2: In-to-IW) over the same day of a week w (w ∈ {1, · · · , 7}), and denote it

as λpw. Table 3.6 lists the estimated values of λpw from the Rambam data. As mentioned

before, we use Apwt to denote the number of the pth type of arrivals on any given day t,

then Apwt ∼ Poisson (λpwt), where wt is the day-of-the-week indicator of Day t. Further,

we use Awt to denote the total number of arrivals to IW on any given day t. Therefore,

Awt ∼ Poisson
(
λ1
wt

+ λ2
wt

)
.

Table 3.6: Estimated Values of λpw, p ∈ {1, 2}, w ∈ {1, · · · , 7}

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
(w = 1) (w = 2) (w = 3) (w = 4) (w = 5) (w = 6) (w = 7)

ED-to-IW (p = 1) 35.41 35.19 33.56 31.90 34.40 26.50 23.08
In-to-IW (p = 2) 2.76 2.77 2.73 2.81 2.13 1.69 0.98

To capture the actual IW occupancy in the Rambam hospital, we sample the length-of-

stay for each patient who enters the IW model, from the empirical distribution of patient’s

length-of-stay in the real IW. Besides, the capacity of the IW model is set to be the same as

the real IW, 210 beds, which is the maximum number of patients in the IW observed from
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the real hospital data. The service goal in the Rambam hospital is to keep the ED boarding

times below 4 hours, therefore the service-levels (Θ) in both the optimization problem (3.7)

and (3.8) are set to be 4 hours for all the simulation runs. Intuitively, the smaller the

tolerance-level (α) is specified, the stricter the policy is and the more early discharges will

be resulted in. In order to verify this trend, we set a series of tolerance-levels.

Simulation results under the baseline scenario, when no early-discharge policy is im-

plemented, verify that the IW model could capture the IW arrivals and occupancy level

(shown in Figure 3.7) in the real hospital very well. However, from Figure 3.8, we can see

that the IW discharge pattern differs from what happens in the real hospital, especially on

Saturdays. Panel (a) compares the histogram of daily number of discharges from IW be-

tween the real hospital (left) and IW model (right). It is obvious that there are two modes

in the real data, but there is only one in the IW model. The left mode in the real data

is Saturdays, the whole-day weekend in Israel, and corresponds to the second pink boxplot

from the right of Panel (b). Panel (b) shows that the IW model underestimates the number

of discharge during weekdays, while overestimates it during weekends (Friday (purple) and

Saturday (pink)). If one only look at the IW discharge in the real hospital, day-of-week

effect is easily to be identified: weekends are lower than weekdays. We conjecture that the

low level of discharges on weekends are due to low staffing level; however, the lack of data

on staffing makes it difficult to demonstrate this conjecture.
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Figure 3.7: Comparison of IW Occupancy Level (%) between Real Hospital and IW
Model in Terms of: (a) Histogram, and (b) Boxplot for Each Day-of-week
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Figure 3.8: Comparison of IW Discharges between Real Hospital and IW Model in
Terms of: (a) Histogram, and (b) Boxplot for Each Day-of-week

The IW model is simulated as an non-terminating system. Without loss of generality,

the first day in each simulation run is set as Sunday. Each run is initialized with the

same non-empty stage X0. We simulate 8008 days consecutively, of which the first 728

days are deleted for the warm-up reason, and the remaining 7280 days are divided into 20

non-overlapping batches of equal length of 364 days (52 weeks). The warm-up period is

sufficiently long to populate the system with enough occupancy levels.

3.6.3 Results of the simulation Study

Given the relationship between patient boarding times and the occupancy level of the

internal wards, which we have established in Section 3.4, it would be reasonable to expect

that any of the early-discharge policies we proposed in Section 3.5 can help in reducing

the overall patient boarding times. Our goal in this section is to investigate how much

improvement the hospital would get by adopting one of these four policies and which one

works best. Making this assessment, however, is not straightforward. A simple comparison

of what fraction of the patients exceeds the predetermined level would be misleading and

unfair because one also needs to consider the “cost”, i.e., the average number of daily early

discharges needed, under each policy. After all, it is clear that the policy that achieves the

best possible boarding time performance will be one that early discharges all the patients

who can be feasibly early discharged. However, such a policy might be undesirable or
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even not implementable since that would require early discharging more patients than the

hospital can handle.

Another issue to consider is the effect of early-discharges on the daily number of new

admissions. By early discharging patients one-day ahead, in addition to helping reduce

the boarding times, the hospital also creates additional space for new patients. When the

hospital operates at full or close to full capacity, this additional space would lead the hospital

to accept more patients than it would in the absence of early discharges, which might in

turn have the unintended consequence of increasing boarding times. Of course, the hospital

might welcome more patients considering its societal and financial benefits but again such

benefit should be assessed in comparison with the “cost” of early discharges and possible

increase in boarding times. In short, proper assessment of the different policies we propose

requires simultaneous consideration of a number of related performance measures. Here,

we will be mainly focusing on three: fraction of patients whose boarding times exceed the

predetermined level of 4 hours, average number of early discharges per day, average number

of admissions per day.

We first study how the four early-discharge policies perform in comparison with the

baseline scenario of having no early discharges. Figure 3.9 demonstrates the fraction of

patients whose boarding times exceed the predetermined level of 4 hours for prespecified

tolerance levels under different policies. We construct 95% confidence interval (CI) by using

the 20 batch means from each simulation run. The gray area on the top of Figure 3.9 is

the 95% CI of the fractions under the baseline scenario of having no early discharges in the

simulation model, and it is used to tell whether early-discharge policies can help in reducing

the overall patient boarding times.

For each discharge policy, we start to set tolerance-level (α) from 0.23, the mean fraction

under the baseline scenario, and lower by a constant difference of 0.01 to 0.14. These 11

tolerance-levels are indicated by the small red bars, and labeled on the x-axis as well.

We run each discharge policy with these 11 tolerance-levels and construct 95% CI of the

fractions, distinguished by different colors as labeled in the legend. The decreasing trend,

which exhibits in all discharge policies, supports the previous conjecture that the smaller the

tolerance-level (α) is specified, the stricter the policy is and the more early discharges will be
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Figure 3.9: 95% Confidence Intervals of Fractions of Patients Whose Boarding Times
Exceed the Predetermined Level of 4 Hours Under Different Policies

resulted in. If one looks into each group of four policies with the same tolerance-level, it is

easy to notice that Policy 1 always achieves the lowest fractions; Policy 1-Var is comparable

to Policy 1; Policy 2 and Policy 2-Var are comparable but with higher fractions. If one

looks from group to group, it is easy to notice that the performance of discharge policies

firstly beat, then hit, lastly miss the prespecified target when the tolerance-levels decrease.

The comparable performance of Policy 1 and Policy 1-Var makes us comfortable to use

Policy 1-Var instead of Policy 1 when computing time is more constraint than computing

accuracy. From Figure 3.9 solely, we can also see that Policy 1 and Policy 1-Var are superior

to both Policy 2 and Policy 2-Var in regards to boarding time performance. This is not a

surprising outcome (although not guaranteed) since unlike Policy 2 and its variation, Policy

1 and its variation take into account of changing occupancy levels day-to-day and thus

are attuned to meeting the target boarding time performance. Next, comparisons will be

extended by balancing the benefit and the “cost” of early discharges regarding the following
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two aspects: average number of early discharges per day and average number of admissions

per day.

Panel (a) of Figure 3.10 plots the fraction of patients whose boarding times exceed 4

hours versus the average number of early discharges over each simulation run for different

tolerance-levels under different early-discharge polices. Tolerance-levels are chosen from

{0.27, 0.26, · · · , 0.14} for Policy 1 and Policy 1-Var, and {0.24, 0.23, · · · , 0.09} for Policy

2 and Policy 2-Var, to make the boarding time performance comparable. The uptrend

convinces that better boarding time performance is achieved at the cost of more early

discharges. It is clear that the policy that achieves the same boarding time performance by

early discharging the smallest number of patients will be the best. Therefore, we eliminate

scenarios with worse boarding time performance (larger fractions) and larger number of early

discharges. Panel (c) of Figure 3.10 shows the scenarios that cannot be removed based on

previous eliminating rule. It is clear that no policy can dominate others consistently; while

Policy 1 and Policy 1-Var perform better when targets are stricter.

Panel (b) of Figure 3.10 visualizes the effect of early discharges on the daily number of

new admission. The uptrend illustrates that additional space for admitting new patients

are created by early discharging patients one-day ahead. It is not surprising that the policy

(black dot at the upper right corner) with the largest early discharges realizes the largest

number of new admissions. The clear differences between Policy 1 and its variation and

Policy 2 and its variation at the moderate levels of target tell us that Policy 1 and its

variation are more sensitive to one-day ahead early discharges than the other two. As the

display of CIs in Figure 3.9, we find similar behavior patterns between Policy 1 and its

variation, and Policy 2 and its variation, respectively.

3.6.4 Changing the Arrival Rates

In this section, we analyze the sensitivity of four early-discharge policies to the changes

in IW arrival rates. Here, we scale the Poisson arrival rates down and up from the original

rates by 10% and 20%, respectively. Intuitively, when more new patients need service in
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Figure 3.10: Fraction of Patients Whose Boarding Times Exceed 4 Hours Against: (a)
Average Number of Early Discharges per Day, (b) Average Number of Admissions per
Day, and (c) Average Number of Early Discharges per Day for Only Dominating Scenarios

IW, the overall ED boarding times should be increased. Figure 3.11 provides evidence to

support the effect of arrival rates on the ED boarding times under the baseline scenario.

In the case of each arrival rate, we compare four discharge policies under a series of

tolerance-levels, in terms of three aspects same as before: fraction of patients whose boarding

times exceed the predetermined level of 4 hours, average number of early discharges per day,

average number of admissions per day. From top to bottom, Figure 3.12 shows the trade-

off under the scenario with 20% lower, 10% lower, the same as, 10% higher, and 20%

higher than the original arrival rate. Two figures in the same row correspond to the same
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Figure 3.11: 95% Confidence Interval of the Fractions of Patients Whose Boarding
Times Exceed 4 Hours Within a Day in the IW Model Under the Baseline Scenario for
Different Arrival Rates

arrival rate scenario: the left one is the plot of fraction of patients whose boarding times

exceed 4 hours versus average number of early discharges per day; and the right one is the

plot of fraction of patients whose boarding times exceed 4 hours versus average number of

admissions per day.

In most cases, we can still observe that the more the early discharges, the better the ED

boarding time performance. While the early discharge benefit seems to be violated when

the arrival rate is 20% more than that of the real hospital (on the lower left of Figure 3.12),

and under the situation with stricter targets (smaller tolerance-levels). After examining the

new admissions on the right hand side, we realize that benefit might be diluted by more

new admissions. It is still the case that the policy that achieves the same boarding time

performance with less early discharges and more new admissions will be the best. Similarly

to the scenarios with the original arrival rates, we cannot distinguish one policy from the

pool with the best performance under this criterion.
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Figure 3.12: Trade-off Plots for Different Arrival Rates
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3.7 Conclusion and Discussion

In this chapter, we identify three leading factors to affect the ED boarding time on

the daily operating level: the initial IW occupancy, the number of arrivals to IW, and the

number of discharges from IW. We verify that the ED boarding times within a day in our

studying hospital follow a lognormal distribution, and in addition, use linear regression to

quantify the relationship between the mean and standard deviation of the log-transformed

ED boarding time and the three leading factors, respectively. The quantified mathematical

relationships are used to guide the later decision making.

We propose two options of early discharge: one is to discharge patients who are expected

to be discharged from IW by the end of today leave before the new bulk of arrivals (before

noon), and the other is to discharge patients who are expected to be discharged from IW

tomorrow by the end of today. To implement these two options, we propose two early

discharge policies: one is to dynamically determine the target number of each type of

early discharges every day by solving a optimization problem, and the other is to create a

look-up table listing the ideal occupancy to start the IW service for each day of the week in

advance. The two policies have the same quality of service target: to control the probability

of a randomly chosen patient on any day with a boarding time exceeding the target service-

level to be not above the tolerance-level in the mind of the hospital administrators. Both

policies aim to give the exact discharge plan to the hospital administrators, given that they

have a clear target/goal in their mind.

We build a discrete-event simulation model to capture the daily inpatient flow dynamics

from ED to IW. Its rationality has been validated. Then, we conduct a series of studies

using the simulation model. First, we check how the ED boarding performance of each

policy changes with respect to the choice of the tolerance-level. We verify that the early

discharge is able to reduce the ED boarding time, in addition, the more early discharges

are conducted, the lower the ED boarding time can be achieved. The early discharge is not

cost-free, for it needs some extra efforts. Then the policy that achieves the same level of

service performance while early discharging less patients is better. We demonstrate that

Policy 1 is better than Policy 2. To check the robustness of the better performance of
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Policy 1, we conduct a series of sensitivity analyses. The better performance of Policy 1 is

consistently observed when the IW arrival rate is either increased or decreased up to 20%

of the origin.

Though the conclusions come from the simulation model built upon an extensive empir-

ical study of a single hospital, we believe that similar results can be found in other hospitals

based on the similarity in many empirical observations between them. These proposed

policies can be generalized to other hospitals as long as certain requirements are satisfied

(Proposition 3.1); besides, these insights can help hospital managers choose among different

policies to implement. In addition, based on the benefits and costs of the implementation,

hospital administrators can choose the desired service-level and tolerance limit to implement

these policies.

Our study has limitations in several aspects. First, the effectiveness of the proposed

policies is evaluated based on predictions from a single hospital. Thus, our findings might

not always be generalizable to other hospital settings, e.g., those do not satisfy the conditions

of Proposition 3.1. Second, we recognize that it is very challenging to implement either the

“same-day” or the “one-day ahead” early discharge in practice. Because discharging patients

by noon is difficult as physicians and nurses are busy with the morning rounds, in addition,

early discharging patients one-day ahead might cause deteriorations further readmissions to

IW. Last but not the least, discharging more patients, in turn admitting more new patients

as more vacant beds are available, might overload the IW. These would require coordination

throughout the entire hospital, and additional staffing and resources to be added according

to the specific discharge plan of that day. Though the number of early discharges given

by the proposed policies may not be completely practical, we believe it can serve as a goal

for hospital managers to aim at if they intend to eliminate excessively long boarding times

within that day. In addition, our model could help hospital managers estimate the benefits

on reducing boarding times gained from certain numbers of two types of early discharges.
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3.8 Proof of Proposition (3.1)

Proof. Based on the second and third constraint of problem (3.7), we know that the possible

feasible region is inside or on the boundary of the following rectangle:

{(
y1
t , y

2
t

)
: 0 ≤ y1

t ≤ D̃1
t , 0 ≤ y2

t ≤ D̃2
t

}
. (3.9)

Therefore, Proposition 3.1 could be rephrased as the optimal solution, if there exits one, is

on the lower-right boundary of the above rectangle:

{(
y1
t , y

2
t

)
: 0 ≤ y1

t ≤ D̃1
t , y

2
t = 0

}⋃{(
y1
t , y

2
t

)
: y1

t = D̃1
t , 0 ≤ y2

t ≤ D̃2
t

}
. (3.10)

To make the proof clearly, we rewrite the models for mean and standard deviation of log-

transformed ED boarding time as:

mt = a0 + a1y
1
t + a2y

2
t ,

and

st = b0 + b1y
1
t + b2y

2
t ,

where a0 = βm0 + βm1 Nt + βm2 At + βm3 Dt + βm4 wt + εmt , a1 = −
(
βm1 + βm3

)
, a2 =

βm3 , b0 = βs0 + βs1Nt + βs2At + βs3Dt + βs4wt + εst , b1 = − (βs1 + βs3), b2 = βs3.

At, εmt , and εst are random variables. If we can prove that for any given At =

a, εmt = e and εst = f , P
{
Bt
(
wt, Nt − y1

t , a,Dt − y1
t + y2

t

)
> Θ

}
≤ α, then

P
{
Bt
(
wt, Nt − y1

t , At, Dt − y1
t + y2

t

)
> Θ

}
≤ α.
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Step 1: Find the feasible region.

P
{
Bt
(
wt, Nt − y1

t , a,Dt − y1
t + y2

t

)
> Θ

}
≤ α

⇐⇒ P
{

logBt
(
wt, Nt − y1

t , a,Dt − y1
t + y2

t

)
> log Θ

}
≤ α

⇐⇒ P
{

Z >
log Θ−mt

st

}
≤ α

⇐⇒ P
{

Z ≤ log Θ−mt

st

}
≥ 1− α

⇐⇒ log Θ−mt

st
≥ Φ−1 (1− α)

⇐⇒ log Θ−mt ≥ Φ−1 (1− α) st

⇐⇒ log Θ−
(
a0 + a1y

1
t + a2y

2
t

)
≥ Φ−1 (1− α)

(
b0 + b1y

1
t + b2y

2
t

)
⇐⇒

(
a2 + Φ−1 (1− α) b2

)
y2
t ≤ −

(
a1 + Φ−1 (1− α) b1

)
y1
t +

(
log Θ− a0 − Φ−1 (1− α) b0

)
1. When a2 + Φ−1 (1− α) b2 = 0, then the feasible region is

0 ≤ −
(
a1 + Φ−1 (1− α) b1

)
y1
t +

(
log Θ− a0 − Φ−1 (1− α) b0

)
.

2. When a2 + Φ−1 (1− α) b2 < 0, then the feasible region is

y2
t ≥ −

a1 + Φ−1 (1− α) b1
a2 + Φ−1 (1− α) b2︸ ︷︷ ︸

,g

y1
t +

log Θ− a0 − Φ−1 (1− α) b0
a2 + Φ−1 (1− α) b2︸ ︷︷ ︸

,h

.

Step 2: We are to prove that the optimal solution is on the lower-right boundary (3.10)

under certain circumstance for each of the above two cases respectively.

1. When a2 + Φ−1 (1− α) b2 = 0,

y1
t ≥

log Θ− a0 − Φ−1 (1− α) b0
a1 + Φ−1 (1− α) b1

2. When a2 + Φ−1 (1− α) b2 < 0 and g ≤ −1.

(a) Assume
(
y1
t
∗
, 0
)

is the first point on the lower-right boundary that satisfies the

constraints (0 ≤ y1
t
∗ ≤ D̃1

t ), then we are to prove that no point under y1
t + y2

t = y1
t
∗
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satisfies the constraints. Otherwise, assume we have
(
y1
t
′
, y2
t
′
)

such that y1
t
′
+ y2

t
′ ≤

y1
t
∗ − 1 and satisfying the constraints, namely y2

t
′ ≥ gy1

t
′
+ h. Then,

0 ≥ gy1
t
′ − y2

t
′
+ h ≥ gy1

t
′
+ gy2

t
′
+ h ≥ g

(
y1
t
′
+ y2

t
′
)

+ h.

That is to say that
(
y1
t
′
+ y2

t
′
, 0
)

also satisfies the constraints, while y1
t
′
+ y2

t
′ ≤

y1
t
∗ − 1 < y1

t
∗
, so it is a contradiction.

(b) Assume
(
D̃1
t , y

2
t
∗
)

is the first point on the lower-right boundary that satisfies the

constraints (0 < y2
t
∗ ≤ D̃2

t ), then we are to prove that no point under y1
t + y2

t =

D̃1
t + y2

t
∗

satisfies the constraints. Otherwise, assume we have
(
y1
t
′
, y2
t
′
)

such that

y1
t
′
+y2

t
′ ≤ D̃1

t +y2
t
∗−1 and satisfying the constraints, namely y2

t
′ ≥ gy1

t
′
+h. Then,

i. if y1
t
′
+ y2

t
′ ≥ D̃1

t ,

y1
t
′
+y2

t
′−D̃1

t ≥ y1
t
′
+gy1

t
′
+h−D̃1

t−gD̃1
t+gD̃

1
t = (1 + g)

(
y1
t
′ − D̃1

t

)
+gD̃1

t+h ≥ gD̃1
t+h,

that is to say
(
D̃1
t , y

1
t
′
+ y2

t
′ − D̃1

t

)
also satisfies the constraints, while y1

t
′
+

y2
t
′ − D̃1

t ≤ y2
t
∗ − 1 ≤ y2

t
∗
, so it is a contradiction;

ii. if y1
t
′
+ y2

t
′
< D̃1

t ,

0 ≥ gy1
t
′ − y2

t
′
+ h ≥ gy1

t
′
+ gy2

t
′
+ h ≥ g

(
y1
t
′
+ y2

t
′
)

+ h,

that is to say
(
y1
t
′
+ y2

t
′
, 0
)

also satisfies the constraints, so it is a contradiction.

Solution: We can come up with a closed-form solution to the optimal problem to (3.7),

when we replace At, ε
m
t and εst by a fixed value (e.g., mean value), respectively.

1. If a2 + Φ−1 (1− α) b2 < 0 & g ≤ −1 & log Θ−a0−Φ−1(1−α)b0
a1+Φ−1(1−α)b1

≤ D̃1
t , or a2 + Φ−1 (1− α) b2 =

0, (
y1
t , y

2
t

)
=

(
max

{
0,
⌈ log Θ− a0 − Φ−1 (1− α) b0

a1 + Φ−1 (1− α) b1

⌉}
, 0

)
; (3.11)
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2. if a2 + Φ−1 (1− α) b2 < 0 & g ≤ −1 & log Θ−a0−Φ−1(1−α)b0
a1+Φ−1(1−α)b1

> D̃1
t ,

(
y1
t , y

2
t

)
=

(
D̃1
t ,
⌈ log Θ− a0 − Φ−1 (1− α) b0 −

(
a1 + Φ−1 (1− α) b1

)
D̃1
t

a2 + Φ−1 (1− α) b2

⌉)
; (3.12)

where d.e is the ceiling function, namely the smallest integer greater than the inside value.
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CHAPTER 4

Investigating the Benefits of Early Bed Request on Emergency Department
Performance

4.1 Introduction

Emergency department (ED) patients admitted to a hospital’s inpatient unit often

endure excessive wait times for the transfer. This prolonged wait is not only a result of

the ED operations, but is a consequence of hospital-wide operations. Improvements in the

transfer delay may result from making changes in patient work flow. Nearly half of ED

patients who are eventually hospitalized stay in IWs, and the vast majority of IW patients

come directly from ED. For this reason, we focus on the hospital sub-network consisting of

the ED and the IW (“ED+IW”).

Variety of factors contribute to the boarding of ED patients (e.g., Asplin et al. (2003)).

In this chapter, we are interested in the timeliness of bed requests for an ED patient.

Typically, in almost all EDs, the request for an IW bed and the subsequent allocation work

are delayed until the IW admission decision for an ED patient is ascertained, which happens

at the end of the patient’s ED service. A typical ED patient spends several hours in the

ED before a final disposition decision is made. What if the admission decision can be done

earlier? Then the IW could start the preparation to admit earlier, and the waiting time for

admission to IW can be reduced. Note that, this waiting time for admission to inpatient

units is also known as the ED boarding time, which is the time elapsed between patient’s

admission decision and the time that patient is physically transferred to the designated

inpatient unit.

Statistical models for predicting an ED patient’s admission probability before the final

disposition, possibly at triage, have been widely studied in the literature (e.g., Sun et al.

(2011)), and have been shown to be highly reliable. Our goal in this chapter is, rather than



developing predictive models, to discuss both the actual ways and operational benefits for

applying the admission prediction to the decision making. Qiu et al. (2015) investigated

the threshold and timing of early bed request by using the admission probability prediction,

and Peck et al. (2012) suggested that the summation of predicted probabilities could be

used as the estimation of the inpatient beds demand.

In this chapter, we demonstrate the effectiveness of integrating the patient admission

probability within the bed request process. Besides, we propose a framework that aggregates

patient admission probabilities to improve the timeliness of inpatient transfer and reduce

the ED boarding time. Unlike Qiu et al. (2015), we propose a framework that utilizes pa-

tient admission probabilities in an aggregated way, rather than only uses the probability for

each individual patient one by one, to avoid the sensitivity of the prediction accuracy of an

individual patient. Different from Peck et al. (2012), we employ the patient admission prob-

abilities to guide bed request decisions, besides minimizing the expected costs associated

with boarding delays and bed capacity wastage.

This chapter is organized as follows. We begin by reviewing the related literature

in Section 4.2. In Section 4.4, we introduce the two policies proposed to guide the bed

request process for ED patients by using the predicted IW admission probabilities. Then,

we describe the simulated ED+IW subnetwork: we explain how a patient moves and how

each proposed policy is implemented in the simulation model in Section 4.5; and show the

empirical studies carried out to build a simulation model of high fidelity in Section 4.6. In

Section 4.7, we discuss the simulation studies carried out to evaluate the effects of early bed

request on hospital operations. We first validate the simulation model in Section 4.7.1, and

it follows by the interpretation of the results of a number of simulation runs in Section 4.7.2.

Finally, we verified in Section 4.8 that early requesting beds for ED patients who are likely

to be hospitalized in the IW can reduce the overall ED boarding times to some extent;

however, early requesting beds too aggressively might worsen the transfer performance;

causing significantly increasing workload without any benefit.
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4.2 Literature Review

Many articles studied hospital admission decisions using information available at triage,

such as patients’ demographic characteristics, arrival time and mode, clinical measures, com-

plaints, severity level, and so on; with application of a variety of methodologies. Decisions

can be related to classification or probability. For example, Leegon and Aronsky (2006),

Li et al. (2009) and Sun et al. (2011) used different classification tools to identify whether

or not an ED patient is going to be admitted. Peck et al. (2012) and Peck et al. (2013)

predicted the probability that each individual ED patient is to be admitted, and Peck et al.

(2012) proposed that the probabilities can be used as estimation of the inpatient bed needs

in the future. Although many of these papers demonstrated that the admission prediction

is promising and suggested that there are potential benefits, none of them investigated the

benefits of using these predictions to guide the patient flow in general and the inpatient

transfer in particular.

Peck et al. (2014) used the sum of admission probabilities to prioritize discharges in in-

patient units. Qiu et al. (2015) proposed a model using the predicted admission probability

for each individual ED patient to determine the optimal time to start the bed preparation.

In this chapter, we propose two policies to guide the inpatient bed request decisions. Pol-

icy 1 evaluates each ED patient’s admission probability against the admission probability

threshold, similar to what Qiu et al. (2015) proposed. Policy 2 extends the idea of Peck

et al. (2014): it considers all ED patients’ admission probabilities in aggregate, in order to

make bed request decisions to take care of all patients in the ED. Furthermore, to better

match the bed capacity with the bed demand, Policy 2 uses a mathematical model to handle

the costs associated with transfer delay and bed capacity wastage.

For building the simulation model to capture the patient flow within the ED+IW sub-

network to implement our proposed bed request policies, it is important to keep track of

each patient along each step in ED, IW and the ED-to-IW transfer. Therefore, we need

to estimate the time duration that an ED patient stay within each service and transfer

segment. Many articles estimated parts of or the entire ED length of stay (LOS) using

information on each individual patient’s demographic and clinical information, hour-of-the-
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day and day-of-the-week, and the departmental aggregated occupancy and staffing levels.

For example, Sun et al. (2012) used quantile regression and Plambeck et al. (2014) applied

fluid model estimators and linear regression to predict the waiting time before being seen

by a doctor in the ED. Yoon et al. (2003) applied linear regression to estimate the total ED

LOS.

Due to the lack of patient clinical information in our data, we need methods to estimate

ED LOS given ED and hospital census levels. In particular, Rathlev et al. (2007) demon-

strated that the daily mean ED LOS depends on the number of elective surgical admissions,

number of ED admissions, and hospital occupancy. In general, Whitt (1999) showed that

it is reliable to predict the waiting time of a customer in the queue using the number of

customers ahead of that customer. In this chapter, we predict the length of time during

each segment of ED LOS (receiving service in ED and waiting for transfer in ED) using

patient’s gender and age, day-of-the-week, hour-of-the-day, number of patients in the ED

service, number of transfers, and hospital occupancy.

4.3 Description of IW Bed Request

We use Figure 4.1 to show the stylized process of how a bed request is triggered for an

ED patient in typical hospital operations. When a patient starts the service in the ED, a

few diagnoses and tests are carried out during this process, at the end of ED service, the

disposition decision on whether or not he needs to be admitted into IW is made for him,

based on corresponding results. If he is decided as an IW admission, then a bed request is

put in, thereafter staff in IW will begin to allocate a bed and prepare it for his admission.

During this period, the patient is boarding in the ED. When the allocation and preparation

work is done, this patient is able to be physically transferred to IW. Therefore, the time

used to allocate and prepare an IW bed is just his ED boarding time. We call the process of

fulfilling a bed request as the IW bed-allocation process, and the corresponding time spent

in this process as IW bed-allocation time. We denote the IW bed-allocation time and the

ED boarding time of any given ED patient i as BEDED-IWi and EDBOARDi, respectively.
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Then we have:

EDBOARDi = BEDED-IWi . (4.1)

Figure 4.1: Regular Bed Request

What if the bed request is put in earlier, within the course of a patient’s ED service?

Then, the bed allocation process overlaps with the patient’s ED service process. Thereby,

patient boarding can be reduced, and the corresponding ED boarding time is

EDBOARDi = max
{
BEDED-IWi − {tEnd − tRequest}, 0

}
. (4.2)

It is possible that the bed allocation is done before an ED patient finishes the ED

service, when the bed allocation time is shorter than the difference between the end of ED

service and the time of bed request, then a bed has already been done with the necessary

allocation process for the patient’s admission when he finishes the ED service. Therefore,

the patient can be transferred immediately after the ED service, the ED boarding time is

just zero. Under this case, the requested bed will have to wait for the transferred patient,

since it finishes the bed-allocation before it is occupied by the transferred patient. This

time period is named as the IW-bed idle time, and denoted as BEDIDLEi for the ith ED

patient and can be expressed as follows:

BEDIDLEi =
{
{tEnd − tRequest} −BEDED-IWi , 0

}
(4.3)

In the next, we propose actual ways of using the predicted admission probability to

trigger the bed request before the end of the patient’s ED service. For the rest of this
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chapter, we name the request for an IW bed which is sent out at the end of the patient’s

ED service as regular bed request , and the bed request which is sent out based on the

predicted admission probability before the end of the patient’s ED service as early bed

request.

4.4 Making Early IW Bed Requests: Two Policies

Throughout this chapter we make three important assumptions: First, each ED pa-

tient’s true IW admission probability is known at the beginning of the patient’s ED service.

We use i to index each patient, and Xi to denote patient i’s IW admission probability. The

second assumption is that, the IW bed-allocation time for regular and early bed request

has the same probability distribution, which will be discussed in Section 4.6. The third

assumption is that, the timing of a bed request does not affect the ED patient’s service

time, and whether or not the patient will be admitted.

We propose two policies to guide hospitals in making bed request decision by taking

advantage of the IW admission probability prediction, so as to lower the ED boarding

times. More specifically, Policy 1 is at the patient-level in the sense that it early requests

IW bed for each individual ED patient by taking into account the patient’s IW admission

probability; Policy 2 is at the system-level as it early requests IW beds as a batch based on

IW admission probabilities for all patients who are currently in the ED and the outstanding

early bed requests.

4.4.1 Policy 1: Early Requesting A Bed for Each Individual ED Patient

Policy 1 makes the early bed request decision for each individual ED patient based on

the patient’s IW admission probability. If the IW admission probability of any ED patient i

(Xi) is greater than a pre-determined threshold p∗ (i.e., Xi > p∗), then he is given an early

bed request; otherwise, no early bed request action is triggered. In addition, we assume

that all early bed request decisions are made at the beginning of patients’ ED services.

At the end of the patient’s ED service, the disposition decision on whether or not he is

to be admitted into IW is made. If a decision is made to admit the patient and had already
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been given an early bed request, then he will be transferred to the reserved bed in IW when

the IW bed-allocation process is completed; if a decision is made to admit the patient but

was not given an early bed request, then a regular bed request is placed for the patient

immediately; if the patient is not admitted into IW (admitted into non-IW or discharged)

but an early bed request had been made for the patient, then the early bed request is

canceled immediately; if the patient is not admitted into IW (admitted into non-IW or

discharged) and an early bed request was not made, then no further action is taken.

As assumed before, neither the IW bed-allocation time nor the ED service time depends

on the time when bed request is put in. Then, no matter regular or early bed request is given

for a patient, it would take the same amount of time to complete the IW bed-allocation

process and the ED service, respectively. Therefore, the amount of ED service time can be

saved from the transfer delay if a patient is given the early bed request at the beginning of

the ED service. We denote the ED service time for any ED patient i as EDSERV ICEi.

Then,

EDBOARDi = max
{
BEDED-IWi − EDSERV ICEi × 1{Xi > p∗} , 0

}
. (4.4)

As explained before, it is possible that the requested bed will have to wait for the

transferred patient. As the early bed request is sent out at the beginning of the patient’s

ED service in Policy 1, the bed idle time for the ith ED patient can be expressed as:

BEDIDLEi = max
{
EDSERV ICEi × 1{Xi > p∗} −BEDED-IWi , 0

}
. (4.5)

The hospital wants the ED boarding times to be reduced, so it gives the incentive to

early request a bed for a likely inpatient. However, it does not mean that the hospital would

like to make the IW bed ready unnecessarily early and hold for an ED patient to finish the

ED service. Therefore, it would be better to come up with a policy that can make a good

balance. In addition, the early bed request might turn out to be unnecessary, in which case

the workload is increased without any benefit. Setting the threshold of early bed request

too high would mean very few early requests; and setting the threshold too low would
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mean too many unnecessary requests. Thus, there is an “optimal” level for the threshold.

Clearly, Policy 1 is sensitive to the choice of the threshold value. Hence, we propose Policy

2, which makes bed request decision by aggregating the IW admission probabilities of all

ED patients, and takes into account the pros and cons of early bed request.

4.4.2 Policy 2: Early Requesting Beds As a Batch

Instead of using the IW admission probability prediction for each individual patient

one by one to make the bed request decision, Policy 2 considers the predictions for all

the patients who are currently staying in the ED. To strike the balance between the ED

boarding time and the workload, Policy 2 uses the classic newsvendor model (e.g., Porteus

(2002)) to determine the number of bed requests in the batch at the beginning of each hour.

At the beginning of each hour h, hospital sees EDcensush patients in the ED, who are

currently receiving service in the ED. Recall that, Xi is used to denote the IW admission

probability of any ED patient i. Here, a new variable Yi is introduced to indicate whether

ED patient i is going to be admitted or not:

Yi =


1, w.p. Xi,

0, w.p. 1−Xi.

(4.6)

Then, Yi ∼ Bernoulli (Xi). In addition, it is reasonable to assume that Y1, Y2, · · · , Yn are

independent. At the beginning of hour h, hospital sees EDcensush patients in the ED, Sh ,∑EDcensush
i=1 Yi patients are going to be admitted. Sh follows a Poisson-binomial distribution,

with mean
∑EDcensush

i=1 Xi and variance
∑EDcensush

i=1 Xi(1 − Xi). The possible values of Sh

are all non-negative integers from 0 to EDcensush , namely Sh ∈ {0, 1, · · · , EDcensush}.

Let θh denote the number of bed requests at hour h, θh ∈ {0, 1, 2, · · · }. The hospital

faces underage cost if requesting too few beds. On the other hand, if requesting too many

beds, then the hospital faces the overage cost. Let cp and cb be the unit cost of boarding

an ED patient and holding an IW bed, respectively. At the beginning of hour h, if θh beds

71



are requested correspondingly, then the mismatch cost is:

C(θh) =


cp(Sh − θh), if θh < Sh,

0, if θh = Sh,

cb(θh − Sh), if θh > Sh.

(4.7)

Therefore, the total expected mismatch cost of requesting θh beds for EDcensush patients

can be expressed as:

E (C (θh)) = cpE (Sh − θh)+ + cbE (θh − Sh)+

= cp

+∞∑
s=θh+1

(s− θh) fh(s) + cb

θh−1∑
s=0

(θh − s) fh(s),
(4.8)

where fh(s) is the probability mass function of Sh.

The hospital would like to lower the ED boarding times, but it can only be done at

the cost of increasing the cost of unnecessary bed requests. To balance the two conflicting

objectives, we can minimize the total expected waiting costs of ED patients and IW beds,

namely,

min
θh

E (C (θh)) . (4.9)

E (C (θh + 1))− E (C (θh)) = −cp + (cp + cb)

θh∑
s=0

fh(s) = −cp + (cp + cb)Fh (θ) , (4.10)

where Fh is the cumulative distribution function of Sh. −cp+(cp + cb)Fh (θh) is an increas-

ing function of θh, then the optimal solution to (4.9) satisfies

θ∗h , arg min
θh

E (C (θh))

= min

{
θh ∈ N : Fh (θh) ≥ cp

cp + cb

}
= min

{
θh ∈ N : Fh (θh) ≥ 1

1 + γ

}
,

(4.11)
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where γ = cb/cp is the relative cost of holding one bed to boarding one patient, N =

{0, 1, 2, · · · }. Equation (4.11) shows that θ∗h is uniquely determined by the relative cost γ

and the distribution of Sh.

θ∗h is the optimal number of bed requests for all patients currently in the ED at the

beginning of hour h. It is possible that some of them have already been counted when

making the bed request decision in the previous hours. Thereby, we need to do some

adjustments. If REQUESTh beds are under processing for bed requests of previous hours,

then this number should be deducted from the bed request of the current hour h. Therefore,

Policy 2 requests

max{θ∗h −REQUESTh , 0} (4.12)

number of beds at the beginning of any hour h.

In Policy 2, the bed request action is taken once at the beginning of each hour, and in

addition, it is not triggered by any specific patient directly. Each hour h, a batch of beds is

requested to take care all patients in the ED, the batch size is determined by (4.12). Any bed

from any batched bed request is sequentially held in the ready-bed-queue, after it complete

the necessary bed-allocation process. Any ED patient sequentially joins the ready-patient-

queue, after he is done with the ED service and also disposed as an IW admission. The first

patient in the ready-patient-queue will be transfered to the first bed in the ready-bed-queue.

Before the end of this section, we introduce the approximation we consider for the

Poisson-binomial distribution, when actually solving the optimal solution (4.11). Fh, the

cumulative distribution function of Poisson-binomial distributed Sh can be expressed as

follows:

Fh (k) =
k∑
l=0

∑
A∈Ml

∏
i∈A

Xi

∏
i∈Ac

(1−Xi), k = 0, 1, · · · , EDcensush , (4.13)

where Ac is the complement of A, and Ml is the set of all subsets of l integers that

can be selected from {1, · · · , EDcensush}. For example, if EDcensush = 3, then M2 =

{{1, 2} , {1, 3} , {2, 3}}. For most of the hours, the ED total census is greater than 40.

Then, the computation seems difficulty. Hong (2013) demonstrated that normal cdf can

approximate the Poisson-binomial cdf very well, especially when the success probabilities
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follow a Beta distribution. In particular, the cdf of the Poisson-binomial distribution Sh is

approximated by

Fh (k) ≈ Φ

 k + 0.5−
∑EDcensush

i=1 Xi(∑EDcensush
i=1 Xi(1−Xi)

)1/2

 , k = 0, 1, · · · , EDcensush , (4.14)

where Φ is the cdf of the standard normal distribution,
∑EDcensush

i=1 Xi and(∑EDcensush
i=1 Xi(1−Xi)

)1/2

are the mean and standard deviation of Sh, 0.5 is for the pur-

pose of continuity correction.

As the cdf of normal is strictly increasing and continuous, then the optimal solution

(4.11) can be approximated as follows:

θ∗h = min

{
θh ∈ N : Fh (θh) ≥ 1

1 + γ

}

≈ min

θh ∈ N : Φ

 θh + 0.5−
∑EDcensush

i=1 Xi(∑EDcensush
i=1 Xi(1−Xi)

)1/2

 ≥ 1

1 + γ


=

⌈
Φ−1

(
1

1 + γ

)
·

EDcensush∑
i=1

Xi(1−Xi)

1/2

+

EDcensush∑
i=1

Xi − 0.5

⌉
,

(4.15)

where Φ−1 is the inverse of standard normal cdf, dxe is the smallest integer greater than or

equal to x. Later on, in the simulation study, we will use the approximated solution (4.15)

to replace the θ∗ in the expression of (4.12).

4.5 Simulation Model

In this section, we describe the discrete-event simulation model built to capture the

patient flow inside the ED+IW subnetwork and report results of a series of simulation studies

conducted to investigate the potential effects of early bed requests on the ED boarding times.

The simulation model is meant to capture the patient flow inside the ED+IW subnetwork at

a relatively detailed level. The model keeps track of each patient’s stay in the subnetwork,

and it can be seen as a discrete-time model where time proceeds in the unit of one second.

We first describe the 3-step procedure to complete a bed request in Section 4.5.1, then
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discuss how each bed request policy is integrated within the patient flow in Section 4.5.2,

finally explain how a patient goes through the simulation model in Section 4.5.3.

4.5.1 3-Step Bed-Request Procedure

In the following, we describe the 3-step procedure to complete any bed request for ED

patients in the simulation model, where j is used to index an IW bed.

1. The IW bed-allocation time, denoted as BEDED-IWj ∈ R+, is randomly assigned using

Model (4.20), when a bed request is sent out. The bed request joins the queue to seize

the next vacant/flexible IW bed. A vacant IW bed is the one that is neither occupied

by a patient, nor has already been seized by another bed request; a flexible IW bed is

the one that has been processed for a canceled bed request.

2. When an IW bed j is seized, the bed-allocation process begins, which lasts for

BEDED-IWj . Once this process is completed, IW bed j is ready to accommodate an

ED-to-IW patient. We call this time point t0j .

3. IW bed j remains ready to admit an ED-to-IW patient, until there is an ED-to-IW

patient transferred to it. Once the transfer occurs, the IW bed j is occupied. We denote

this time point by t1j . The time difference between t0j and t1j is the time that IW bed j

waits for an ED-to-IW patient, which is referred to as IW-bed idle time and denoted as

BEDIDLEj . Namely,

BEDIDLEj = t1j − t0j . (4.16)

The IW-bed idle times are collected and used as one of the performance measures in the

following simulation study.

4.5.2 Formal Description of Bed-Request Policies

4.5.2.1 Policy 1

For each ED patient i, do the following.
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1. At the beginning of ED service, if IW admission probability (Xi) is greater than the pre-

specified threshold p∗, namely Xi > p∗, an early bed request is sent out, which follows

the 3-step bed request procedure; otherwise no early bed request action is triggered.

2. At the end of ED service (s0
i ), the admission decision is made for patient i: IW-admission

or IW-denial.

• If IW-admission and

– Xi > p∗, then patient i will be transferred to the IW bed seized by the early bed

request when it is completed;

– Xi ≤ p∗, then a regular bed request is sent out, which follows the 3-step bed request

procedure; patient i will be transferred to the IW bed seized by the regular bed

request when it is completed.

• If IW-denial and

– Xi > p∗, then the early bed request is canceled as follows: if the early bed request

is still waiting in the queue to seize an vacant/flexible IW bed, then it is removed

from the queue; if there is an IW bed j seized and processing for the early bed

request, then IW bed j still finishes the remaining IW-bed allocation process, but

it is not reserved by the early bed request for patient i any more, and it becomes

available to be seized by another early/regular bed request for an ED patient;

– Xi ≤ p∗, then no bed request action is taken for patient i.

4.5.2.2 Policy 2

At the beginning of any hour h, compute θ∗h using the formula (4.15), and count the

number of ongoing bed requests and record it as REQUESTh. Then,

• If θ∗h > REQUESTh, then send out θ∗h − REQUESTh number of bed requests, each

following the 3-step bed request procedure. When a bed request is completed, the bed

joins the ready-bed-queue to accommodate ED patients in the ready-patient-queue in the

order they arrive.

• If θ∗h ≤ REQUESTh, then no bed request action is triggered in this hour.
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4.5.3 Patient Route

In the simulation model, a patient can enter the system through the ED from outside,

or via IW either from outside or hospital units other than ED or IW.

4.5.3.1 ED Patient

If a patient enters the system via ED from outside, who is named as “ED patient”, then

the patient goes through the following steps:.

1. Join the queue to seize the next vacant ED bed for admission. When an ED bed is

seized, he is admitted into ED; the ED in-service census, denoted as EDSERVcensus,

increases by one. Upon admission, we randomly assign values of the following variables

for any ED patient i:

• gender, GENDERi ∈ {Male, Female} and age, AGEi ∈ {0 : age < 60, 1 : age ≥ 60}

(based on the proportions given in Table 4.2),

• IW admission probability, Xi ∈ (0, 1)

(based on the beta distribution shown in Section 4.6.4),

• non-IW admission probability, qi ∈ (0, 1)

(based on the probability mentioned in Section 4.6.4),

• ED service time, EDSERV ICEi ∈ R+

(based on Model (4.19)),

• non-IW bed-allocation time, BEDED-nonIWi ∈ R+

(based on Model (4.21)).

2. Patient i stays in ED for the preassigned length of time, EDSERV ICEi, to finish the

ED service. During this period, a bed request decision might be triggered depending on

which policy is active as described in Section 4.5.2.

3. At the end of ED service (the time point is recorded as s0
i ), the IW admission decision

is made based on Xi: IW-admission or IW-nonadmission. (Patient i has the probability

of Xi to be decided as an IW-admission.) The ED in-service census (EDSERVcensus)

decreases by one.
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• If IW-admission, the ED-to-IW census, denoted as ED-IWcensus, increases by one. ED

patient i waits in the ED until an IW bed is ready to accommodate him (waiting time

can be zero). Then (the time point is recorded as s1
i ), ED patient i releases the occupied

ED bed and is physically transferred to IW, the ED-to-IW census (ED-IWcensus)

decreases by one. The time elapsed between the end of ED service (s0
i ) and the

time of IW admission (s1
i ) is just the ED boarding time for ED patient i, denoted as

EDBOARDi. Then,

EDBOARDi = s1
i − s0

i . (4.17)

• If IW-nonadmission, the non-IW admission decision is made for ED patient i based

on qi: nonIW-admission or nonIW-nonadmission. Here, non-IW is used to denote all

inpatient units other than IW.

– If nonIW-admission, the ED-to-nonIW census, denoted as ED-nonIWcensus, in-

creases by one. ED patient i waits in the ED for the completion of the transfer

process, which lasts for the preassigned length of time, BEDED-nonIWi . When the

waiting time uses up, ED patient i is assumed to be transferred to non-IW, and re-

leases the occupied ED bed; the ED-to-nonIW census (ED-nonIWcensus) decreases

by one. As we do not track what happens inside non-IW, ED patient i leaves the

system.

– If nonIW-nonadmission, ED patient i releases the ED bed and leaves the ED and

the system immediately.

4.5.3.2 NonED-to-IW Patient

If a patient enters the system via IW from outside the hospital or hospital units other

than ED or IW, who is named as an “nonED-to-IW patient”, the following steps are taken.

Note that nonED-to-IW patients are different from ED-to-IW patients.

1. Upon arrival, any nonED-to-IW patient i is randomly assigned the IW bed-allocation

time, which is denoted as BEDnonED-IWi (∈ R+), based on Model (4.22). The patient

then joins the queue to wait for the next vacant IW bed. The time point is recorded as

r0
i ; the nonED-to-IW census, denoted as nonED-IWcensus, increases by one.
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2. Once a vacant IW bed is seized, nonED-to-IW patient i waits for the IW bed to complete

the bed-allocation process, which lasts for the preassigned time of BEDnonED-IWi .

3. When the bed-allocation process is completed (the time point is recorded as r1
i ), patient i

is admitted into IW; the nonED-to-IW census (nonED-IWcensus) decreases by one. The

time difference between entry (r0
i ) and admission (r1

i ) is named as the nonED-to-IW

waiting time for nonED-to-IW patient i and denoted as WAITnonED-IWi . Then,

WAITnonED-IWi = r1
i − r0

i . (4.18)

4.5.3.3 IW Patient

When a patient is physically admitted into IW from either ED (ED-to-IW) or other

than ED (nonED-to-IW), who is named as an “IW patient”, following steps are taken.

1. Upon the admission of any IW patient i, she/he is randomly assigned values of the

following variables; the IW census, denoted as IWcensus, increases by one.

• night-of-stay (# of nights), IWNIGHTi ∈ [0, 40]

(based on the empirical distribution from real hospital data, where summary statistics

are given in Table 4.3),

• time-of-discharge (hour-of-the-day), IWDISi ∈ [0, 24]

(based on the empirical distribution shown in Figure 4.5).

2. Starting with admission, IW patient i spends the pre-assigned IWNIGHTi number of

nights in IW in total. The remaining number of nights deceases by one at the end of

each day (midnight).

3. When the remaining number of nights decreases to zero, IW patient i is to be discharged

from IW the next day. The exact time-of-the-day when patient i is determined by

IWDISi.

4. When IW patient i is discharged from the IW (leaves the system), the occupied IW bed

is released and becomes vacant; the IW census (IWcensus) decreases by one.

79



During a patient’s stay in the system, the values of following variables are recorded: two

time variables at the patient-level: ED boarding time and nonED-to-IW waiting time; one

time variable at the bed-level: IW-bed idle time; five census variables: ED in-service cen-

sus, ED-to-IW census, ED-to-nonIW census, nonED-to-IW census, and IW census. These

variables will be used as performance measures to validate the simulation model and demon-

strate the effects of early bed request on the ED boarding times in Section 4.7. In addition,

the five census variables will also be used as inputs to the Model (4.19) - Model (4.22) in

Section 4.6.

4.6 Specification of Simulation Model Parameters

To capture what happens throughout an individual patient’s stay in the real hospital,

all inputs to the simulation model including probability distributions and predictive models

mentioned in the previous section, are estimated using data from the Rambam Hospital in

Israel. Emergency care for patients at this hospital occurs in one of the eleven EDs. In our

analysis, we will only focus on the main ED consisting of four major departments: Internal

Medicine, Surgery, Traumatology and Orthopedic ED. As explained in Armony et al. (2011),

other departments are located away from the main one, and are specialized for particular

patients, such as Pediatrics or Ophthalmology. For brevity, we will refer to those four

EDs as the ED. There are five IWs in the Rambam Hospital, which are responsible for the

treatment of a wide range of internal conditions. During the first three months in 2007,

one of the IWs was in charge of an additional 20-bed sub-ward, therefore we use the data

from April 2007 to October 2007. All five IWs provide similar medical services, therefore

we combine five IWs together into one with the aggregated capacity, which is referred to as

the IW afterwards.

For each patient, we observed patient’s gender and age at time of admission, time

stamps for entry, exit and the first procedure time in inpatient units, and the index stamp

to distinguish hospital units. From those stamps, we can come up with the length of stay

within each stage of hospital operations, and hospital-level census data as well. Summaries
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of key patient-level characteristics and hospital-level censuses are shown throughout this

section.

4.6.1 Bed Capacity

In the Rambam hospital, the ED has 40 beds and it treats on average 248 patients

per day. After checking the histogram of ED total census at the beginning of each hour in

Figure 4.2, we realize that the ED holds more than 40 patients simultaneously about 40%

of the time and can even exceed 100 patients. Besides, Armony et al. (2011) mentioned

that the Rambam hospital has no rigid constraint on the ED capacity, beds are added in

accordance to congestion levels. Then, we set the ED capacity at infinity in the simulation

model, EDcap = +∞. There are five IWs in the Rambam hospital, which accommodate

around 1000 patients monthly. Five IWs are responsible for the inpatient medical care to

similar types of patients, then the IW bed is reasonably treated as interchangeable. In the

simulation model, all IW beds are considered aggregately. Although the five IWs have 201

beds in record, the maximum number of patients in IW simultaneously is observed as 210,

therefore set the IW capacity fixed at 210, IWcap = 210.

Note that, the total ED census consists of three parts: ED in-service census, ED-to-IW

census, and ED-to-nonIW census, therefore the summation cannot exceed the ED capacity,

namely EDSERVcensus + ED-IWcensus + ED-nonIWcensus ≤ EDcap; in addition, the IW

census cannot exceed the IW capacity, namely IWcensus ≤ IWcap.
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Figure 4.2: Histogram of ED Total Census
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4.6.2 Arrival Rate

Then, we investigate the two arrival processes to the ED+IW subnetwork: arrival at

ED directly from hospital outside and arrival at IW from other inpatient units (non-IW)

(“nonED-to-IW”) or hospital outside directly. Panel (a) and (b) in Figure 4.3 show the

average number of ED arrivals and nonED-to-IW arrivals over each hour of the week, re-

spectively. For either type of arrival, hour-to-hour patterns are similar throughout a week,

while scales differ from day to day: weekdays (Sunday to Thursday) have larger numbers

than weekends (Friday and Saturday). We model each arrival process within each hour

of the week as a Poisson distribution with rate λfw,h, f ∈ {1, 2}, w ∈ {1, 2, · · · , 7}, h ∈

{0, 1, · · · , 23}. f = 1 and f = 2 stand for ED arrivals and nonED-to-IW arrivals, respec-

tively. w and h are to distinguish days of the week and hours of the day, respectively. Values

of λfw,h, which are estimated from the average number of the corresponding type of arrival

over the corresponding hour of the week from the real historical data, are listed in Table

4.1.
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Figure 4.3: Hourly Average Number of (a) ED Arrivals, and (b) nonED-to-IW Arrivals

4.6.3 Demographics

Table 4.2 lists demographics information for patients who arrive to ED from hospital

outside. In the simulation model, age ({0 : age ≤ 60, 1 : age > 60}) and gender ({0 :

male, 1 : female}) are randomly assigned for each new ED patient upon admission based

on the following percentages.
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Table 4.1: λfw,h, f ∈ {1, 2}, w ∈ {1, 2, · · · , 7}, h ∈ {0, 1, · · · , 23}

(a) ED (f = 1)

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
(w = 1) (w = 2) (w = 3) (w = 4) (w = 5) (w = 6) (w = 7)

h = 0 9.77 8.29 8.74 8.52 8.07 8.33 6.73
h = 1 8.10 6.19 6.19 5.45 5.93 6.40 5.73
h = 2 5.97 4.52 4.23 4.61 4.37 4.93 5.83
h = 3 4.10 3.16 3.26 3.13 3.13 3.93 5.23
h = 4 3.58 2.45 2.55 2.58 2.80 3.27 3.93
h = 5 3.58 2.23 2.55 2.16 2.43 2.80 4.20
h = 6 2.84 3.06 1.97 2.29 2.30 2.63 3.10
h = 7 3.81 4.10 3.68 3.35 3.67 3.30 3.60
h = 8 7.23 6.97 7.06 6.71 7.67 6.67 4.27
h = 9 14.23 12.23 12.16 12.58 9.83 11.23 6.87
h = 10 21.06 16.97 15.77 16.97 15.77 13.77 9.10
h = 11 20.87 17.81 17.48 17.81 17.33 14.53 9.63
h = 12 20.77 16.39 14.55 17.16 17.20 15.40 10.13
h = 13 19.32 16.68 15.74 16.16 15.90 14.53 10.53
h = 14 18.03 14.45 15.16 14.32 14.70 13.13 11.57
h = 15 15.48 13.35 13.42 11.94 13.50 11.50 9.63
h = 16 14.48 12.32 13.77 12.74 11.97 11.47 10.50
h = 17 15.45 11.68 13.81 12.23 14.03 10.83 9.90
h = 18 19.90 15.94 15.61 14.03 15.63 11.37 11.47
h = 19 17.90 15.03 16.06 13.29 14.93 10.47 13.73
h = 20 14.84 15.45 14.55 14.26 14.13 11.13 13.40
h = 21 13.55 13.26 13.68 13.06 13.50 10.87 13.93
h = 22 11.97 12.77 12.10 11.48 11.10 11.40 12.70
h = 23 10.03 10.00 10.87 10.29 10.10 9.33 11.67

(b) IW (f = 2)

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
(w = 1) (w = 2) (w = 3) (w = 4) (w = 5) (w = 6) (w = 7)

h = 0 0.10 0.03 0.10 0.03 0.03 0.03 0.03
h = 1 0.00 0.00 0.00 0.03 0.00 0.00 0.00
h = 2 0.00 0.00 0.06 0.00 0.00 0.03 0.00
h = 3 0.00 0.00 0.03 0.00 0.03 0.00 0.00
h = 4 0.00 0.00 0.03 0.06 0.00 0.03 0.00
h = 5 0.03 0.00 0.00 0.00 0.00 0.00 0.00
h = 6 0.03 0.03 0.00 0.00 0.00 0.03 0.00
h = 7 0.16 0.06 0.10 0.03 0.10 0.03 0.00
h = 8 0.16 0.13 0.13 0.23 0.10 0.13 0.07
h = 9 0.16 0.19 0.23 0.29 0.03 0.20 0.00
h = 10 0.35 0.23 0.19 0.19 0.13 0.13 0.10
h = 11 0.23 0.13 0.13 0.03 0.17 0.10 0.03
h = 12 0.10 0.06 0.16 0.29 0.17 0.10 0.03
h = 13 0.13 0.29 0.19 0.32 0.20 0.23 0.10
h = 14 0.19 0.32 0.29 0.19 0.20 0.20 0.07
h = 15 0.19 0.16 0.00 0.19 0.07 0.10 0.07
h = 16 0.23 0.42 0.29 0.10 0.13 0.03 0.20
h = 17 0.29 0.13 0.23 0.19 0.13 0.07 0.03
h = 18 0.16 0.16 0.13 0.10 0.13 0.03 0.17
h = 19 0.06 0.10 0.19 0.19 0.17 0.03 0.10
h = 20 0.23 0.10 0.16 0.00 0.00 0.07 0.07
h = 21 0.10 0.06 0.10 0.03 0.07 0.07 0.13
h = 22 0.03 0.13 0.13 0.10 0.00 0.03 0.07
h = 23 0.03 0.06 0.03 0.03 0.03 0.03 0.00
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Table 4.2: Demographics

ED IW

Male 58% 55%
Age>60 22% 61%

Female 42% 45%
Age>60 31% 63%

4.6.4 Admission Probability

In the real hospital data, we only observe whether or not an individual ED patient

is eventually admitted into IW, rather than the exact probability of the IW admission.

Then, we need to find a reasonable distribution to model the IW admission probability of

a random ED patient. Beta distribution is a suitable model for the random behavior of

percentages. Besides, Peck et al. (2014) demonstrated that the admission probability can

be modeled with a beta distribution using real hospital data. Therefore, we decide to use a

beta distribution to estimate the IW admission probability for our hospital data either.

The mean of the beta distribution should be equal to the fraction of IW admission

in the real hospital, 0.126; while the choice of variance is arbitrary as long as the density

curve is right-skewed. In fact, the variance is chosen as 0.05 in the simulation study. The

density curve plotted in Figure 4.4 confirms the rationality of choosing 0.5 as the variance.

Meanwhile, whether or not an ED patient will be admitted should be independent with

each other. Therefore, the ED patient’s IW admission probability, X, is independently and

identically distributed as Beta (0.15, 1.05).

In our study hospital, there are 29.2% of ED patients admitted to inpatient units after

the ED service: 12.6% are admitted to IW as mentioned before, and 16.6% are admitted to

non-IW (all inpatient units other than IW). 16.6% of non-IW admissions is out of all ED

patients, which corresponds to 19.0% out of all ED patients who are not admitted into IW.

Therefore, in the simulation study, 19.0% of all ED patients who are not admitted into IW

will be decided as the non-IW admissions.
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Figure 4.4: Probability Density Function of Beta (0.15, 1.05)

4.6.5 Service Times

To keep track of each patient’s stay in the simulation model, we need to know the length

of time within each step in the ED+IW sub-network. Table 4.3 lists summary statistics of

seven patient-level time variables observed from the real data.

Table 4.3: Patient-level Summary Statistics

Standard First Third
Variable Mean deviation quantile Median quantile

ED total length-of-stay (hours) 4.4 4.0 1.6 3.2 5.7
ED service time (hours) 3.8 3.6 1.4 2.8 4.8
ED boarding time (hours) 2.7 2.9 1.0 1.9 3.4
ED-to-nonIW waiting time (hours) 2.1 3.0 0.4 1.0 2.3

NonED-to-IW waiting time (hours) 3.1 4.2 0.5 1.3 3.7
Night-of-stay in IW (nights) 4.9 5.7 2.0 3.0 6.0
Time-of-discharge from IW (hour-of-day) 15.2 2.9 14.4 15.0 16.5

Patients need to stay in IW for 4.8 nights, on average, from admission to discharge. A lot

of things will happen during this long period, therefore it is hard to model the total length of

time that a patient spends in IW based on the information obtained upon admission. From

the plot of the average number of discharges from IW per hour over each day of the week in

Figure 4.5, we observe that most IW discharges happen around 3pm on weekdays (Sunday

to Thursday); the peak is shifted earlier to around 2pm and the scale is lowered a lot on

Friday; the shape looks flat and the scale is the lowest throughout Saturday. Therefore, we

model the total IW LOS by two separate parts: night-of-stay and time-of-discharge, on the
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grounds of these exceptional hour-of-the-day and day-of-the-week discharge patterns. First,

an integer sampled from the historical night-of-stay data is assigned as the night-of-stay

for any IW patient upon admission. Then, a real number is sampled from the historical

time-of-discharge data corresponding to the same day of the week as the day when any IW

patient is to discharge (the remaining night-of-stay decreases to zero).
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Figure 4.5: IW Discharges

Before the end of this section, we will describe the predictive models built for the fol-

lowing four time variables of any individual patient i: ED service time (EDSERV ICEi),

IW bed-allocation time for ED-to-IW patients (BEDED-IWi), non-IW bed-allocation time

for ED-to-nonIW patients (BEDED-nonIWi), and IW bed-allocation time for In-to-IW pa-

tients (BEDnonED-IWi). For the last three bed-allocation times, we do not have direct

data, instead we observe the actual time that a patient spends waiting in each transfer

process (ED-to-IW / ED-to-nonIW / nonED-to-IW). Therefore, we use the observed ED

boarding time, ED-to-nonIW waiting time and nonED-to-IW waiting time, to approximate

the corresponding bed-allocation times.

The independent variables include: gender (GENDERi), age (AGEi), day-of-the-week

(wi), hour-of-the-day (hi), and five hospital-level census variables, which are computed

upon admission of patient i. Table 4.4 lists summary statistics for each of five hospital-level
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census variables: ED in-service census (EDSERVcensus), ED-to-IW census (ED-IWcensus),

ED-to-nonIW census (ED-nonIWcensus), nonED-to-IW (nonED-IWcensus), and IW census

(IWcensus).

Table 4.4: System-level Summary Statistics

Standard First Third
Variable Mean deviation quantile Median quantile

ED in-service census 38.0 16.7 24.0 35.0 50.0
ED-to-IW census 3.4 2.4 2.0 3.0 5.0
ED-to-nonIW census 3.4 2.2 2.0 3.0 5.0
NonED-to-IW census 0.2 0.5 0.0 0.0 0.0
IW census 167.2 14.2 157.0 168.0 178.0

First, we list all the independent variables we use to fit the linear regression model for

each time variable as follows:

log{EDSERV ICEi} = α0 + α1wi + α2hi + α3AGEi + α4GENDERi

+ α5EDSERVcensusi + α6IWcensusi

+ α7ED-IWcensusi + α8ED-nonIWcensusi + εi,

(4.19)

log{BEDED-IWi} = β0 + β1wi + β2hi + β3EDSERVcensusi + β4IWcensusi

+ β5ED-IWcensusi + β6ED-nonIWcensusi

+ β7nonED-IWcensusi + εi,

(4.20)

log{BEDED-nonIWi} = γ0 + γ1wi + γ2hi + γ3EDSERVcensusi

+ γ4ED-IWcensusi + γ5ED-nonIWcensusi + εi,

(4.21)

and

log{BEDnonED-IWi} = τ0 + τ1wi + τ2hi + τ3IWcensusi

+ τ4ED-IWcensusi + τ5nonED-IWcensusi + εi.

(4.22)

Then, we estimate the coefficient of each independent variable using least squares. Table

4.5 lists coefficients for variables that are significant at the level of 0.1, where significances

(Yes/No) instead of coefficients are indicated for both day-of-the-week and hour-of-the-day.
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Table 4.5: Coefficients of Predictive Models

Variable Model (4.19) Model (4.20) Model (4.21) Model (4.22)

Intercept 0.4038 (0.0660) -0.5845 (0.2149) -0.2495 (0.0973) -3.5364 (0.8583)
Day-of-week Yes Yes Yes No
Hour-of-day Yes Yes Yes No
Age 0.2961 (0.0090) — — —
Gender 0.1272 (0.0079) — — —
ED in-service census 0.0063 (0.0004) 0.0037 (0.0013) No —
IW census 0.0015 (0.0003) 0.0067 (0.0011) — 0.0224 (0.0051)
ED-to-IW census 0.0049 (0.0018) 0.0368 (0.0010) 0.0120 (0.0066) No
ED-to-nonIW census 0.0050 (0.0019) -0.0147 (0.0059) No —
NonED-to-IW census — No — No
Adjusted R-squared 0.0496 0.0319 0.0084 0.0453
Variance of residuals 0.7759 0.9180 1.6486 1.9163

Notes. Standard errors are in parentheses.

We check whether each error term in the above models is normally distributed with

mean as zero and variance as the variance of regression residuals, which are listed in Table

4.5, by depicting the following quantile-quantile plots in Figure 4.6. Except the error term

in Model (4.22), all other error terms are far from the normal assumption. Then, when

we need a error to do the prediction of any time variable, we consider the nonparametric

method for Model (4.19) - (4.21) – sampling from the corresponding regression residuals; we

still use the normal distribution N (0, 1.9163) to randomly generate errors for Model (4.22).

Therefore, for each time variable, by directly feeding the actual value of each independent

variable into the corresponding model, together with a sampled/generated error, we can get

the time value on the log scale. Finally, we can take exponential to get the time value on

the original scale.

4.7 Simulation Study

The ED+IW subnetwork is simulated as an non-terminating system. Without loss of

generality, the first day in each simulation run is set as Sunday. For each run, we initialize

the simulation model with the same non-empty ED and IW; and consecutively simulate

for 4368 days, of which the first 728 days are deleted for the warm-up reason, and the

remaining 3640 days are divided into 10 non-overlapping batches of equal length of 364

days (52 weeks). The warm-up period is deemed sufficiently long to populate the system
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Figure 4.6: Quantile-Quantile Plots

with enough censuses. The average performance measure are computed for each batch,

including three patient-level time variables: ED boarding time, nonED-to-IW waiting time,

and IW-bed idle time, and four system-level census variables: ED total census, IW census,

ED-to-IW census, nonED-to-IW census.

For Policy 1, we test eight different values of the probability threshold (p∗ ∈ [0, 1]), to see

how the performance measure changes with respect to the choice of p∗. Each p∗ makes the

fraction of patients who are given the early bed request to be 0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.7,

or 1, namely P (X > p∗) ∈ {0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.7, 1}. P (X > p∗) = 0 corresponds to

the baseline scenario that no early bed request is implemented; P (X > p∗) = 1 corresponds

to the extreme case that early requesting a bed for any ED patient at the beginning of ED

service. Because it is very challenging to estimate the real costs of boarding patients and

also holding beds. For Policy 2, we test seven different values of the relative cost (γ = cb/cp)

of holding one bed (cb) to boarding one patient (cp): γ ∈ {10, 5, 2, 1, 1
2 ,

1
5 ,

1
10}.

89



We first validate that the simulation model can capture what happens in the real hos-

pital, in Section 4.7.1. Then, we summarize all the simulation results and make conclusion

how the early bed request affect the operations in the ED+IW subnetwork, in Section 4.7.2.

4.7.1 Validation of Simulation Model

We compare the real hospital data with the simulation results under the baseline sce-

nario, when no early bed request is implemented. To make a thorough validation, we con-

sider the following four system-level census variable: ED total census, IW census, ED-to-IW

census, and nonED-to-IW census. To check whether the simulation model can capture the

variability within a day, each census variable is collected at the beginning of each hour of a

day, and averaged over the whole simulation period.
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Figure 4.7: Model Validation: Hourly Census Variables
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From Panel (a) of Figure 4.7, we observe that the simulation model can resemble the

total number of patients in the ED during most hours of the day very well. However, in the

early morning from 0 to 5, even though the simulation model can capture the decreasing

trend, the simulation results show consistently higher numbers than the real hospital data.

It indicates that either the arrival or the discharge process or both are not captured very

well in the simulation model. After looking over the real hospital record, we realize that a

lot of transfers occur exactly at 23:59, which can be visualized from Panel (a): 55 patients

are in the ED service at 23:00, while only around 45 patients are at 0:00. Armony et al.

(2011) mentioned that this unreasonable time of discharge was faked for the purpose of

insurance reimbursement. In the simulation model, the discharges from ED are continuous,

therefore it needs a few hours to get to the same level as the real data.

From Panel (b) of Figure 4.7, we observe that the curves of IW census throughout the

day are quite similar in the simulation model and the real hospital. It suggests the arrival

and discharge patterns in the IW are captured pretty well.

Panel (c) and Panel (d) of Figure 4.7 show the numbers of patients waiting in the ED-

to-IW and nonED-to-IW transfer processes, respectively. Generally, the simulation model is

able to capture the variability pattern throughout a day for each transfer process. However,

the simulation results are consistently overestimated a little bit. The overestimation might

be caused by the mechanism of how to make a transfer in the simulation model. First, an

available IW bed needs to be seized, then the IW-bed allocation process is started on the

seized bed. The times of IW-bed allocation are approximated by ED boarding times in the

real hospital data. Therefore, the time waiting for an available IW bed is the reason to the

overestimation. In addition, when we estimate the ED boarding times, we model on the

log scale first and then take the exponential; a small larger on the log scale will be enlarged

extremely after taking the exponential.

In Figure 4.8, we first compare the distribution of the ED boarding time constructed

from the real hospital data with that constructed from the simulation results under the

baseline scenario, then make a comparison in terms of the nonED-to-IW waiting time dis-

tribution. Note that, for each time variable, no data in the real hospital record is greater

than 20 hours, however, less than 3% of data in the simulation results is greater than 20

91



ED boarding time (hours)

D
en

si
ty

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

(a.1) Real Data

ED boarding time (hours)

D
en

si
ty

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

(a.2) Simulation

NonED−to−IW waiting time (hours)

D
en

si
ty

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(b.1) Real Data

NonED−to−IW waiting time (hours)

D
en

si
ty

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(b.2) Simulation

Figure 4.8: Model Validation: Distribution of ED Boarding Time and NonED-to-IW
Waiting Time

hours. To make the comparison more clearly, those density bars corresponding to value

beyond 20 hours are truncated for each distribution of the simulation results in Figure 4.8.

Basically, the distribution of each time variable from the simulation results and the real

data look similar. However, we find some discrepancies, when digging into details. First,

the distribution from the simulation results for both variables seem smoother than that

from the real data. That is because the size of data in the simulation results are more than

15 times larger than that in the real data. Second, the simulation results have lower density

with small values compared with the real data. This finding is consistent with what found

from the number of patients in each one of the two transfer processes before.

In conclusion, we verify that the simulation model is able to capture the variabilities

in the real hospital operations with high fidelity. Therefore, it is meaningful to use the
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simulation results derived from this simulation model to make conclusions and comparisons

later on.

4.7.2 Simulation Results

In this section, we are using plots of 95% CIs of four key performance measures to

show the pros and cons of the early bed request, and making comparisons between the two

proposed bed request policies. In Figure 4.9, all black CIs belong to the baseline scenario.

All blue CIs in the left four panels belong to one of the seven scenarios under Policy 1,

which are arranged in the increasing order of the fraction of patients being given early bed

requests, from 0.05 to 1. All blue CIs in the right four panels belong to one of the seven

scenarios under Policy 2, which are arranged in the decreasing order of the relative cost,

from 10
1 to 1

10 . To be specific, firstly, the cost of boarding one patient is less than the cost

of holding one bed, and the difference is getting smaller and smaller; then two costs are the

same; in the end, the cost of boarding one patient is greater than the cost of holding one

bed, and the difference is getting larger and larger. The label on the x-axis indicates the

exact setting of each specific scenario. Note that, the labels for Policy 2 are in the format of

cb : cp, e.g., 1:10 stands γ = cb/cp = 1/10 and means that the cost of boarding one patient

is 10 times of the cost of holding one bed.

From both the ED boarding time and ED total census shown in the top four panels of

Figure 4.9, we can see that all blue CIs are lower than the black CIs. Therefore, we find

that early bed request is able to reduce both the ED boarding time and the ED occupancy,

no matter which policy is implemented. Next, let’s focus on the trend from left to right

shown in the these four panels. Based on the arrangement of each policy, we should expect

the downward trend for the ED boarding time, as more and more patients tend to be given

early bed requests. In addition, the ED occupancy should be lowered at the same time, as

the transfer delay is reduced. Policy 2 meets our expectation in both measures. However,

for Policy 1, we observe that the ED boarding time decreases when P (X > p∗) is small,

then starts to increase since P (X > p∗) = 0.4. The same behavior is found for the ED

occupancy. The reasons are: 1) when an appropriate proportion of patients are given early
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Figure 4.9: Simulation Results
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bed requests, the inpatient flow process does benefit from the early bed request; 2) however,

when the proportion of early bed requests are too large, the available bed capacity in IW is

very low. Then, the time to allocate a bed for a new admission is prolonged, in addition, the

boarding times of patients who are not given early bed requests are prolonged extremely.

Therefore, the benefits of the early bed request are diluted.

The early bed request is not cost-free, as it needs some extra efforts. Next, we present

the costs of the early bed request from two points: bed idle time, and waiting time for

patients transferred from other than ED, as shown in the bottom four panels of Figure 4.9.

The non-decreasing trend shown in each plot tells us that the better transfer performance

comes along with longer bed idle time and waiting time for patients transferred from other

than ED. For Policy 1, the increasing rate of bed idle time becomes higher and higher,

as more and more early bed requests are given, and of which more and more are actually

unnecessary as the expected number of admissions remains unchanged. The waiting time

for patients transferred from other than ED starts to increase since P (X > p∗) = 0.4, then

becomes faster and faster, as too many IW beds are requested for transfers from ED, the

available IW capacity for patients transferred from other than ED is very low. However, the

increased amount for bed idle time in Policy 2 is much smaller than Policy 1. In addition,

for the waiting time of transfers from other than ED, we do not even see significant increase

for Policy 2.

Figure 4.10 shows the scatter plot of the mean ED boarding time (y-axis) and the mean

IW-bed idle time (x-axis) under each scenario of each policy, where black dots are for Policy

1 and blue triangles are Policy 2. The U-shape of Policy 1 confirm our previous concern

that it is too sensitive to the threshold: an aggressive threshold might hurt the overall

system: higher costs with even longer boarding time. To make a comparison between two

policies, we need to clearly compare how much each policy trades off for the same level of

improvement in the patient boarding. The policy that achieves the same patient boarding

performance with less trade-off would be better. Hence, the better policy would appear

in the lower left of this figure, where locates all the scenarios of Policy 2. Therefore, we

conclude that Policy 2 is consistently much better than Policy 1, it can achieve better service

quality while causing less trade-off.
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Figure 4.10: ED Boarding Time vs IW-Bed Idle Time

4.8 Conclusion and Discussion

In this chapter, we propose two strategies to integrate the prediction of the IW admission

probability with the inpatient bed request process. We build a discrete-event simulation

model to capture what happens within the ED+IW subnetwork using a lot of empirical

studies of a real hospital data, and validate its rationality. We demonstrate that the early

bed request can improve the boarding delay and reduce the ED occupancy as well. At the

same time, we illustrate that the early bed request is not cost-free, the better performances

come along with longer IW bed idle times and increased delays for transfers from other

than ED. Furthermore, we show that it is essential to choose an appropriate probability

threshold of the early bed request, and come up with a cost-sensitive model to strike a good

balance between the pros and cons of the early bed request. Results from simulation studies

are promising and suggest significant reduced ED patient boarding times and cost saving

potential.

Though the conclusions come from the simulation model built upon an extensive empir-

ical study of a single hospital, we believe that similar results can be found in other hospitals

based on the similarity in many empirical observations between this hospital and others.

These proposed policies can be generalized to other hospitals; besides, these insights can
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help hospital managers choose among different policies to implement. In addition, based

on the benefits and costs of the implementation, hospital administrators can choose the

practical probability threshold and relative cost to implement these policies.

Our study has limitations in several aspects. First, the effectiveness of the proposed

policies is evaluated in the simulation model built based on empirical studies from a single

hospital. Thus, our findings might not be always generalizable to other hospital settings,

e.g., the predictive models of the time variables might be fundamentally different from ours

(Models (4.19) - (4.22)) in terms of the direction of each independent variable. Second, the

better performance of Policy 2 is based on the assumption that all beds in IW have the same

function and are interchangeable in this study. Had we included the bed specialization, it

would be likely that the improvement resulted from Policy 2 is not that much.
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