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ABSTRACT 

Hally O’Connor Quinn:  Bifactor Models, Explained Common Variance (ECV), and the 
Usefulness of Scores from Unidimensional Item Response Theory Analyses 

(Under the direction of David M. Thissen) 
 

Item response data can be classified on a dimensionality continuum – which extends 

from theoretically unidimensional through essentially unidimensional to multidimensional. 

Data found to be essentially unidimensional are suitable for a UIRT model, whereas data 

evaluated to be too multidimensional are more appropriately modeled using MIRT. This 

investigation takes a theoretical, analytical approach to studying the relationship between a 

recently introduced index of dimensionality – estimated common variance (ECV) – and a 

criterion to determine the justifiability of reporting subscores – proportional reduction in mean 

squared error (PRMSE). Based on ECV values, recommendations are given for choosing 

between UIRT and MIRT models, as well as whether subscores have added value over a total 

score. Future research should include simulations and real data analyses.  
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CHAPTER 1.  INTRODUCTION 

Originally developed for ability and achievement testing in educational settings, item 

response theory (IRT) is increasingly being applied in psychological and health outcomes 

research as a method to create assessments, analyze items, and score questionnaires. IRT 

models can be useful when the measurement of an underlying latent variable (which can be a 

proficiency, an ability, an attitude, illness severity, or degree of symptomatology) is of interest. 

Latent trait estimates are based on models that take into account the properties of the items 

administered (item parameters) and an individual’s responses to those items. To calculate 

scores on a test or scale, the trace lines, or item response functions, are combined to form a 

likelihood that can be used to compute an estimate of an individual’s level of the latent variable 

(Thissen & Orlando, 2001; Thissen & Steinberg, 2009). 

Assumption of Unidimensionality 

One assumption of commonly used IRT models is “appropriate” dimensionality, which 

in the vast majority of instances means unidimensionality (Embretson & Reise, 2000). The 

assumption of unidimensionality is met when a single latent variable accounts for the common 

variance among item responses and therefore, underlies the probability of an item response. 

“Yet every test and every set of responses by real individuals is multidimensional to some 

degree” (Harrison, 1986, p. 91). As it is highly unlikely that any test of real interest would 

produce exactly or truly unidimensional data, Drasgow and Parsons (1983) characterized a 

“sufficiently unidimensional” item pool as one in which the “application of an IRT model and 

estimation procedure … recovers the general latent trait that underlies responses to all items in 

the item pool” (p. 190). Stout defined “essential unidimensionality,” a similar concept, as the 

“existence of exactly one major latent dimension with minor dimensions ignored” (Stout, 1990, 
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p. 293). Consequently, it is useful to think of dimensionality as a continuum, which extends 

from theoretically unidimensional through essentially unidimensional to multidimensional item 

response data.   

Until recently, IRT has been dominated by unidimensional IRT (UIRT). Over the past 15 

years, there have been advances in estimation procedures for multidimensional IRT (MIRT; 

Edwards & Edelen, 2009; Reckase, 1997), which can model deviations from unidimensionality. 

Even with the development of MIRT models, the “appropriate” dimensionality assumption has 

to be satisfied; for that reason, it is necessary to assess dimensionality. Once assessed, data can 

be classified as essentially unidimensional and suitable for a UIRT model or if data are found to 

be too multidimensional, an MIRT model is likely more appropriate. Beyond the dimensionality 

found in data, researchers’ expectations and intensions for scores also factor into the use of 

UIRT or MIRT. 

Health outcome researchers often want one score from a scale, which generally means 

breaking a questionnaire into multiple parts if there is departure from essential 

unidimensionality. For example, some researchers have hypothesized that children cannot 

differentiate between anger, anxiety, and depressive symptoms and instead experience general 

negative-affect. A group of health outcome researchers conducted analyses to investigate 

dimensionality and discovered that children do indeed distinguish among the three emotions. 

The multidimensionality detected in the data led the researchers to create three separate scales 

instead of constructing one scale of emotional distress (Irwin et al., 2012; Irwin et al., 2010).  

In educational testing, there is often a desire for subscores on tests, which implies some 

degree of multidimensionality in the data and points to the use of MIRT models. Subscores have 

the potential to show students’ strengths and weaknesses and could theoretically be helpful in 

performance evaluations, placement, remediation, and further instruction. Therefore, many 

states, colleges, teachers, parents, and even students want subscores from the different sections 

of exams. Despite the apparent benefits of subscores, in many situations subscores have no 



 

3 

added value over the total score. In addition, the small number of items in each section often 

results in low subscore reliability. 

Measures of Dimensionality 

Many criteria have been proposed to evaluate dimensionality, such as the number of 

eigenvalues greater than 1.0 (Kaiser, 1960), the location of the “elbow” in a scree plot (Cattell, 

1966), omega (McDonald, 1970; Heise & Bohrnstedt, 1970), DIMTEST (Stout, 1987), as well as 

countless others (Hattie, 1985). However, to date there is no single satisfactory statistical 

measure of unidimensionality. Often, several substandard indices are used to measure the 

dimensionality of a dataset but this can lead to conflicting assessments of the structure of the 

data.  

This “gap” has created a carte blache of sorts in the applied literature, with researchers 

reporting subscores in addition to total scores when data are thought to be multidimensional. As 

noted previously, strictly unidimensional item response data are theoretical in nature and do 

not exist. Data determined to be essentially unidimensional are unidimensional enough to be 

characterized by a total score. The minor dimensions detectable in such data can be ignored and 

do not warrant the creation of subscales. Conversely, if data are too multidimensional to fit the 

definition of essential unidimensionality, the creation of subscales is necessary to accurately 

reflect variation from minor dimensions.  

Historically another issue with the measurement of dimensionality is that 

unidimensionality has not been sufficiently differentiated from other concepts, such as 

homogeneity, reliability, and internal consistency. These terms are distinct and should not be 

used interchangeably, yet these words are often confused and an index of one concept may be 

falsely purported to be an index of unidimensionality (Hattie, 1985).  

Therefore, the question of how researchers decide roughly where their item response 

data are located on the dimensionality continuum (unidimensional to essentially 

unidimensional to multidimensional) has yet to be adequately answered. Is there a relatively 
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simple way to decide whether a unidimensional or multidimensional IRT model should be fit to 

data? Should this decision incorporate information about whether subscores have added value 

over the total score? Is the choice between UIRT or MIRT affected by the usage of the scores? 

This investigation will attempt to answer these questions. 

Bifactor models. As discussed previously, some item response data do not meet the 

assumption of unidimensionality, even when the criteria are expanded to include essential 

unidimensionality. This project focuses on the bifactor model and other related 

multidimensional models as a way to model multidimensionality. In a bifactor model 

(sometimes referred to as a nested factors or hierarchical factor model), each item loads on one 

general latent dimension, as well as additional orthogonal secondary dimensions (see Figure 1; 

Gibbons & Hedeker, 1992). In Figure 1, all items load onto a secondary dimension but this is not 

necessary. If some items load onto only the general dimension, the model is classified as an 

incomplete bifactor model.  

The general dimension is usually the main focus of the scale and accounts for the 

commonality among all of the items. The secondary dimensions, which are specific to subsets of 

items, reflect item response covariation not explained by the general dimension. Typically, the 

general dimension is a broad construct (e.g., depressive symptoms, quality of life, or reading 

comprehension) and the secondary dimensions are restricted in scope to specific concepts (e.g., 

affective or somatic symptoms, disease worry or mobility, different reading passages). 

In some ways, a bifactor model can be thought of as a helpful tool for measuring the 

dimensionality of scales. As the general and secondary dimensions are orthogonal (or 

uncorrelated), it is important to look carefully at the relative size of item slopes (or loadings) on 

the two dimensions. The slopes (or loadings) reflect the degree to which items are largely 

unidimensional and good indicators of the general dimension or are influenced more by the 

secondary dimensions. Therefore, it is possible to use a bifactor representation to get a broad 

sense of the extent to which items are multidimensional. 
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Figure 1. Bifactor model. 

Explained common variance (ECV). Explained common variance (ECV; Bentler, 

2009; Reise, Moore, & Haviland, 2010; Sijtsma, 2009; ten Berge & Sočan, 2004) is an indicator 

of unidimensionality. ECV is easily calculated using the estimated factor loadings of the general 

and secondary dimensions of a bifactor model: 
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unidimensional and fit with a unidimensional model. Figure 2 illustrates how values of ECV 

correspond to the previously described dimensionality continuum.  

 

Figure 2. Dimensionality continuum. 

ECV is a helpful statistic because it represents the variance attributable to the general 

dimension out of the total common variance. Furthermore, ECV utilizes IRT and as a result, it is 

measuring unidimensionality in the latent variable space unlike the majority of other proposed 

unidimensionality indices. On the other hand, the equation for ECV makes it apparent that this 

is a model-based statistic, so it is dependent upon the correctness of the researcher’s 

hypothesized bifactor model. It is currently unknown how these characteristics affect the utility 

of this unidimensionality index because too few studies have included the ECV statistic. 

To the author’s knowledge, Reise and colleagues (Reise, 2012; Reise et al., 2010; Reise, 

Scheines, Widaman, & Haviland, 2013) are the only researchers to investigate the performance 

of ECV. In studies of strategies for building structural equation models, Reise (2012) found that: 

“No benchmark values for ECV can be proposed for determining when the relative 

general factor strength is high enough so that it is safe to apply unidimensional models 

to multidimensional (bifactor) data because the relation between ECV and parameter 

bias is moderated by the structure of the data.” (p. 687) 

To date, however, no published studies have examined the relationship between ECV and scores 

– either subscores or total scores – in an attempt to find a benchmark that might aid in the 

process of determining whether UIRT or MIRT is better from a test-score perspective.  
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This research will attempt to find benchmark ranges for the ECV statistic. It is not 

practical to try to locate a single ECV value that could be used as a cutoff for the choice between 

a unidimensional and multidimensional model, but it is likely possible to find a range of ECV 

where recommendations about model choice will be useful. To do this, we will use an IRT 

framework to answer the question, “At what values of ECV do subscores add value over and 

above information provided by the total score?” Prior experience with calculating ECV for 

various datasets suggests that data with an ECV below 0.70 are multidimensional and should be 

broken into multiple scales, whereas data with an ECV above 0.90 should be considered 

essentially unidimensional. 

Where Do Bifactor Models Fit in with Other Multidimensional Models? 

Several multidimensional models are nested within the bifactor model structure. 

Ordered from least to most constrained, the models are: the bifactor model, the correlated 

simple structure model, and the second-order factor model, which is equivalent to the testlet 

response model. Researchers often compare the fit of nested models in order to decide which 

model fits the data appropriately. Usually the least restricted model is fit prior to any of the 

more restricted models of interest. As the bifactor model is the least constrained model in this 

sequence of multidimensional models, it is advisable to use it before any others and only 

continue with more constrained models if the bifactor model fits the data well. 

Correlated simple structure models. Correlated simple structure models, also 

called independent clusters, perfect clusters, or correlated traits models, are multidimensional 

models in which the multiple dimensions (or latent variables) may be correlated and the items 

are permitted to load onto only one of the multiple dimensions. Figure 3 shows an example of 

such a model for three subscales. When comparing this model to a bifactor model, or Figure 3 to 

Figure 1, they are quite similar. The difference between the two models is that the factors no 

longer have to be orthogonal and the general dimension loadings are constrained at zero (and 

thus, are missing) in the correlated simple structure model. 
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Figure 3. Correlated simple structure model. 
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this case, first-order factors) by putting a measurement structure on the correlations (the 

second-order factor). It is also important to note that the relationship between the items and the 

second-order factor is indirect because the items only load onto the first-order factors.  
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With two subscales (or specific dimensions), a second-order factor model is an 

equivalent yet different representation of a correlated simple structure model. A second-order 

factor model with three subscales may also have an exact relationship with a correlated simple 

structure model or may be merely close, depending on the particular structure of correlations 

among the subscales. When modeling four or more subscales, second-order factor models are no 

longer equivalent to correlated simple structure models; instead they are approximations of one 

another.  

 

Figure 4. Second-order factor model. 
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& Wang, 2007). All items load onto the general dimension and only one of the secondary 

dimensions. Both this description and the path diagram of the TRM, shown in Figure 5, are very 

similar to the bifactor model because the TRM is a restricted version of the bifactor model (Li, 

Bolt, & Fu, 2006). In a TRM, each item is constrained to have equal slopes (or loadings) on the 

general and secondary dimension with which it is associated, and the variances of the secondary 

dimensions are estimated, relative to the variance of the general dimension. Lastly, even though 

the path diagram of the second-order model (Figure 4) may not look like the TRM (Figure 5), 

they are formally equivalent (Rijmen, 2010; Yung, Thissen, & McLeod, 1999).   

 

Figure 5. Testlet response model (TRM). 
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Unidimensional models. It is also possible to consider a unidimensional model as 

nested within the bifactor model. In a unidimensional model, each item loads onto the only 

general latent dimension in the model (Figure 6). If all of the loadings on the secondary 

dimensions in a bifactor model (Figure 1) are constrained to be zero, the model becomes a 

unidimensional model. 

 

Figure 6. Unidimensional model. 
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parameters for bifactor models, even those with more than two or three “secondary” dimensions 

(Cai, 2010; Cai, Yang, & Hansen, 2011; Gibbons & Hedeker, 1992; Gibbons, Bock, Hedeker, 

Weiss, Segawa, Bhaumik, et al., 2007). Other computational algorithm and equipment advances 

for MIRT models have occurred as well, but computational issues for assessments with multiple 

subdomains continue. Therefore, calculating subscores using MIRT models continues to be 

difficult. Employing the relationships among models described previously to our advantage, it 

follows that bifactor models (with their efficient parameter estimation) have the potential to be a 

useful tool in the process of approximating parameters of highly dimensional correlated simple 

structure models. These parameters can subsequently be used to calculate IRT-scale subscores 

for the models (Thissen, 2012). 

Subscores and Proportional Reduction in Mean Squared Error (PRMSE) 

The decision to report subscores for an assessment is often made based on the goals of 

the researcher(s), mandated policies, and/or the belief that subscores yield more information 

than a single score. Although subscores have the potential to provide diagnostic information, 

researchers should only report subscores after they have demonstrated sufficient psychometric 

quality. The Standards for Educational and Psychological Testing indicate that it is acceptable 

to report more than one score from a test if the scores can be shown to be distinct from one 

another, as well as reliable, comparable, and valid (Standards 1.12 and 5.12; American Education 

Research Association [AERA], American Psychological Association [APA], & National Council 

on Measurement in Education [NCME], 1999). Subscores are widely reported in psychological 

and educational testing. Subscores are often found in the literature without any psychometric 

information to substantiate their quality, which suggests that the subscores do not meet the 

standards. 

In 2008, Haberman proposed a criterion, proportional reduction in mean squared error 

(PRMSE), to determine the justifiability of reporting subscores. This statistic compares the 

reliability of using individual subscores and the total score as estimates of true individual 
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subscores. PRMSE was first applied in the context of classical test theory (Haberman, 2008), 

but its use has been extended to MIRT models (Haberman & Sinhary, 2010; Thissen, 2012). 

Using Haberman’s PRMSE criteria, many data sets were investigated in an attempt to determine 

when subscores have added value over total scores (Lyrén, 2009; Puhan, Sinharay, Haberman, 

& Larkin, 2010; Sinharay, 2010; Sinharay & Haberman, 2008). For the vast majority of tests 

examined, the subscores did not have added value. Some results revealed that it is possible for 

subscales in a test to be sufficiently distinct for subscores to provide meaningful diagnostic 

information. More broadly, researchers observed that subscores are more likely to provide 

added value when the total score has a low reliability, the subscore has a high reliability, and 

subscores are distinct from one another. 

Tests reporting subscores need to use a statistical procedure (such as PRMSE) to 

demonstrate that the subscores have adequate psychometric quality, not merely state that they 

have added value over the total score (Haberman, 2008; Haberman & Sinhary, 2010; Reise, 

Bonifay, Haviland, 2013; Thissen, 2012). Subscores should not be “reported … or by extension, 

used in research or policy and decision-making” if they do not have added value over and above 

the total score (Reise et al., 2013, p. 136). In educational measurement, scores are almost always 

the main focus. This generally means that consumers want as many scores (and as much 

information) as possible from a single evaluation. Requests for more diagnostic information 

than a single, total score can provide often leads to retrofitting - where subscores are created 

from tests designed to measure one trait or skill. It is imperative for it to be recognized and 

appreciated that “inherently unidimensional … test information cannot be decomposed to 

produce useful multidimensional score profiles – no matter how well intentioned or which 

psychometric model is used to extract the information” (Luecht, Gierl, Tan, & Huff, 2006, p. 6). 

To help researchers avoid making something out of nothing as far as subscores goes, it would be 

helpful if there were a fairly simple way to assess where item response data fall on the 
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dimensionality continuum (in the total score region, where the use of UIRT is suggested, or in 

the subscores region, where MIRT is recommended). 
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CHAPTER 2. METHOD 

This investigation takes a theoretical and analytical approach to studying the 

relationship between ECV and PRMSE. We are particularly interested in attempting to make 

recommendations for choosing between UIRT and MIRT models based on ECV values. Also, we 

hope to offer suggestions about the appropriateness of reporting subscores, which is related to 

model choice, using ECV values. 

Analytical Procedure 

In order to study the relationship between ECV and PRMSE, we need to calculate the 

ECV and PRMSE for various bifactor models and the PRMSE for their corresponding correlated 

simple structure models. To do this, we utilize Thissen’s (2012) simplification of the generalized 

inverse Schmid-Leiman transformation (Yung et al., 1999) to convert parameters of 

unconstrained bifactor models (that can be converted into TRMs by imposing equality 

constraints) to parameters of correlated simple structure models. Specifically, we follow the 

following five steps: (1) Convert the bifactor model factor loadings to TRM factor loadings and 

calculate the variances of the TRM secondary dimensions. (2) Convert the TRM factor loadings 

to second-order factor loadings using the TRM secondary dimension variances. (3) Calculate Y 

[the simplification of the inverse Schmid-Leiman transformation matrix from Yung et al. 

(1999)]. (4) Calculate the factor loadings for the correlated simple structure model using Y and 

the secondary dimension factor loadings from the TRM. (5) Calculate the implied correlation 

matrix among the factors of the correlated simple structure model using the second-order factor 

loadings. Appendix A presents an illustration of these steps with one of the bifactor models used 

in this study. 
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Once we have the parameters for the bifactor models and their corresponding correlated 

simple structure models, we calculate the bifactor model’s ECV and the PRMSE of two subscore 

estimates. The calculation of ECV is straightforward. The two subscore estimates that we are 

interested in are the expected a posteriori estimate for   for subscale k computed from its 

regression on     from the second-order model [             ] and the expected a posteriori 

estimate for   for subscale k computed from a unidimensional IRT model fitted to subscale k 

[            ]. Appendix B shows a simplified example of the calculation of both PRMSE 

values used in the study.  

Data Structures 

This study crosses five data structures with eight factor loading patterns for a total of 40 

conditions (5 structures times 8 factor loading patterns). In all conditions, the dimensions are 

orthogonal and the secondary dimensions are balanced (i.e., the secondary dimensions are 

made up of an equal number of items). 

Table 1 shows the eight bifactor loading patterns that are investigated. The factor loading 

patterns were chosen such that the ECV is distinct for each pattern. In four of the factor loading 

patterns, each item loads onto both the general as well as a secondary dimension. The other four 

factor loading patterns are for incomplete bifactor models. In patterns 4, 6, 7, and 8, either one-

third or two-thirds of the loadings from the secondary dimensions have been removed. In these 

patterns, some items load onto only the general dimension whereas others load onto both the 

general and a secondary dimension. Such structures occur in practice when item factor loadings 

on secondary dimensions are low. 

Five data structures are examined in this study, shown in Table 2. The total number of 

items, number of secondary dimensions, and number of items per secondary dimension are 

varied in each of the structures. These structures were modeled after those used by Reise and 

colleagues (2013). The last structure (Structure 6) that they used is not included in this 
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investigation as it is unlikely that an assessment with 36 items and 12 group factors would be 

assumed to be unidimensional. All items are dichotomous. 

Table 1 

Bifactor loading patterns 

Pattern ECV 

Bifactor loadings  Loadings removed from 

General 

dimension 

Secondary 

dimensions 

  

 
 of the secondary 

dimensions 

 

 
 of the secondary 

dimensions 

1 0.50 0.6 0.6    

2 0.66 0.7 0.5    

3 0.69 0.6 0.4    

4 0.75 0.7 0.5    

5 0.80 0.8 0.4    

6 0.85 0.7 0.5    

7 0.86 0.8 0.4    

8 0.92 0.8 0.4    

 

 

Table 2 

Bifactor model structures 

Structure Total number of items 

Number of secondary 

dimensions 

Number of items per 

secondary dimension 

1 9 3 3 

2 18 3 6 

3 18 6 3 

4 36 3 12 

5 36 6 6 
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The range of ECV values (0.50 to 0.92) for the factor loading patterns was chosen to be 

realistic for assessments used in practice. As ECV is based on model structure, it is theoretically 

possible to have an ECV lower than 0.50, but it is improbable to find such a structure with data 

analysis. An ECV higher than 0.92 is also possible, yet it is unlikely that such an assessment’s 

unidimensionality would be in question. The factor loadings were also selected to be 

representative of assessments used in practice. 

As noted previously, only a few studies have investigated ECV and none have looked at 

ECV with regard to scoring. “If a researcher has in mind an ‘essentially unidimensional’ but 

broadband trait measure, then high [percentage of uncontaminated correlations] PUC is desired 

in order to diminish the biasing effects of the group factors” (Reise, 2012, p. 688). In addition, 

Reise et al. (2013) found that “to the extent that PUC is high (>.80), the values of…[ECV] are 

less important in predicting bias. When PUC is lower than .80, researchers may consider ECV 

values greater than .60…as tentative benchmarks” (p. 18). In order to be able to compare the 

results of the present study, we also calculate PUC for each condition.  

In a bifactor model, items that load onto a secondary dimension are correlated with 

other items that also load onto the same secondary dimension. Two sources of variance – from 

the general and secondary dimension – affect these correlations. When a unidimensional model 

is fit to such items, their estimated general factor loadings are biased because the model does 

not include the secondary dimensions. Items that belong to different secondary dimensions are 

correlated solely due to the general dimension; therefore, in a unidimensional model these 

correlations are not affected. To illustrate, in model structure 2, there are               

unique correlations. There are                correlations that are “contaminated” by 

both general and secondary dimension variance. There are            correlations that are 

uncontaminated because they arise only from general dimension variance. Therefore, PUC 

is             for this model structure. 
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Evaluation of PRMSE Statistics 

PRMSE values are not evaluated using a benchmark value, but instead by comparing 

them to other PRMSE values. The decision regarding the added value of subscores is made by 

comparing the two PRMSE values used in this study. Following the advice of Haberman, 

Sinharay, and Puhan (2009), if the reliability of the IRT subscore estimate computed using 

information from the general dimension (             ) is greater than the reliability of the 

IRT subscore estimate calculated from its own dimension (            ), subscores should not 

be reported because they offer no added value over total scores. In an effort to simplify decision-

making about reporting subscores, as well as aid in visualizing the data, a PRMSE ratio was 

created of these two PRMSE values: 

 
            

            

             
 (2) 

Therefore, when the PRMSE ratio is greater than 1.0, subscores are said to have added value. If 

the PRMSE ratio is 1.0 or very close to it, both PRMSE values are very similar. Lastly, if the 

PRMSE ratio is less than 1.0, subscores should not be reported because they do not add any 

information over the reported total score.  
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CHAPTER 3. RESULTS 

Tables 3 through 6 show the results for the complete bifactor models, factor loading 

patterns 1, 2, 3, and 5, respectively. Tables 7 through 10 show the results for the incomplete 

bifactor model structures, factor loading patterns 4, 6, 7, and 8, respectively. All of these results 

are ordered by PRMSE ratio from smallest to largest. Each table includes the number of 

secondary dimensions, number of items per secondary dimension, PUC, ECV, PRMSE ratio, as 

well as both PRMSE values that are used to calculate the ratio. Tables 7 through 10 also show 

the PRMSE ratio,             , and               for the removed secondary dimension(s). 

 

Table 3 

Factor loading pattern 1: General dimension loadings = 0.50, secondary dimension loadings = 

0.50, ECV = 0.50 

Number of 

secondary 

dimensions 

Number of items 

per secondary 

dimension PUC ECV PRMSE ratio 

      

        

      

         

6 3 0.88 0.50 1.68 0.62 0.37 

6 6 0.86 0.50 1.87 0.73 0.39 

3 3 0.75 0.50 2.16 0.62 0.29 

3 6 0.71 0.50 2.30 0.73 0.32 

3 12 0.69 0.50 2.41 0.82 0.34 

Note: PUC = percentage of uncontaminated correlations; ECV = explained common variance; 

PRMSE = proportional reduction in mean squared error; PRMSE ratio =              

             ;    = estimate of the true subscore for subscale k;     = estimate of the true total 

score from the general dimension of the second-order model;    = estimate of the true subscore 

for subscale k computed from a unidimensional IRT model fitted to subscale k. 
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Table 4 

Factor loading pattern 2: General dimension loadings = 0.70, secondary dimension loadings = 

0.50, ECV = 0.66 

Number of 

secondary 

dimensions 

Number of items 

per secondary 

dimension PUC ECV PRMSE ratio 

      

        

      

         

6 3 0.88 0.66 1.17 0.62 0.53 

6 6 0.86 0.66 1.30 0.73 0.56 

3 3 0.75 0.66 1.39 0.62 0.45 

3 6 0.71 0.66 1.50 0.73 0.49 

3 12 0.69 0.66 1.58 0.81 0.51 

Note: PUC = percentage of uncontaminated correlations; ECV = explained common variance; 

PRMSE = proportional reduction in mean squared error; PRMSE ratio =              

             ;    = estimate of the true subscore for subscale k;     = estimate of the true total 

score from the general dimension of the second-order model;    = estimate of the true subscore 

for subscale k computed from a unidimensional IRT model fitted to subscale k. 
 
 

Table 5 

Factor loading pattern 3: General dimension loadings = 0.60, secondary dimension loadings = 

0.40, ECV = 0.69 

Number of 

secondary 

dimensions 

Number of items 

per secondary 

dimension PUC ECV PRMSE ratio 

      

        

      

         

6 3 0.88 0.69 1.03 0.56 0.55 

6 6 0.86 0.69 1.20 0.71 0.59 

3 3 0.75 0.69 1.24 0.56 0.45 

3 6 0.71 0.69 1.38 0.71 0.51 

3 12 0.69 0.69 1.48 0.82 0.55 

Note: PUC = percentage of uncontaminated correlations; ECV = explained common variance; 

PRMSE = proportional reduction in mean squared error; PRMSE ratio =              

             ;    = estimate of the true subscore for subscale k;     = estimate of the true total 

score from the general dimension of the second-order model;    = estimate of the true subscore 

for subscale k computed from a unidimensional IRT model fitted to subscale k. 
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Table 6 

Factor loading pattern 5: General dimension loadings = 0.80, Secondary dimension loadings 

= 0.40, ECV = 0.80 

Number of 

secondary 

dimensions 

Number of items 

per secondary 

dimension PUC ECV PRMSE ratio 

      

        

      

         

6 3 0.88 0.80 0.93 0.61 0.66 

6 6 0.86 0.80 1.03 0.72 0.70 

3 3 0.75 0.80 1.06 0.62 0.58 

3 6 0.71 0.80 1.13 0.71 0.63 

3 12 0.69 0.80 1.19 0.79 0.66 

Note: PUC = percentage of uncontaminated correlations; ECV = explained common variance; 

PRMSE = proportional reduction in mean squared error; PRMSE ratio =              

             ;    = estimate of the true subscore for subscale k;     = estimate of the true total 

score from the general dimension of the second-order model;    = estimate of the true subscore 

for subscale k computed from a unidimensional IRT model fitted to subscale k. 

As the tables show, there are three possible ways to decrease PUC: 1) decrease the 

number of secondary dimensions in a test without removing items from the test (which means 

increasing the number of items per secondary dimension), 2) increase the number of items per 

secondary dimension without adding items to the test (which results in decreasing the number 

of secondary dimensions), or 3) increase the number of items per secondary dimension by 

lengthening the test. Therefore, many small secondary dimensions produce a test with a high 

PUC value, whereas a test with fewer secondary dimensions that are large will have a lower PUC 

value. On the other hand, test length, number of secondary dimensions, and number of items 

per secondary dimension do not affect ECV. 

Based on Tables 3 through 6, the PRMSE ratio appears to be related to the PUC. As PUC 

decreases, the ratio increases. The numerator,             , increases as items are added to 

each already existing secondary dimension, thereby making the test longer. On the other hand,  
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Table 7 

Factor loading pattern 4: General dimension loadings = 0.70, 
 

 
 secondary dimension loadings = 0.50, ECV = 0.75 

Number of 

secondary 

dimensions 

Number of items 

per secondary 

dimension PUC ECV 

PRMSE 

ratio 

      

        

      

         

Removed secondary dimension(s) 
Mean 

PRMSE 

ratio 

PRMSE 

Ratio 

      

        

      

         

6 3 0.92 0.75 1.13 0.62 0.55 0.66 0.55 0.83 0.90 

6 6 0.90 0.75 1.25 0.73 0.59 0.79 0.70 0.88 1.02 

3 3 0.83 0.75 1.31 0.62 0.47 0.77 0.55 0.71 1.04 

3 6 0.80 0.75 1.37 0.73 0.53 0.87 0.70 0.80 1.12 

3 12 0.79 0.75 1.41 0.81 0.57 0.93 0.81 0.87 1.17 

Note: PUC = percentage of uncontaminated correlations; ECV = explained common variance; PRMSE = proportional reduction in 

mean squared error; PRMSE ratio =                           ;    = estimate of the true subscore for subscale k;     = estimate 

of the true total score from the general dimension of the second-order model;    = estimate of the true subscore for subscale k 

computed from a unidimensional IRT model fitted to subscale k. 
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Table 8 

Factor loading pattern 6: General dimension loadings = 0.70, 
 

 
 secondary dimension loadings = 0.50, ECV = 0.85 

Number of 

secondary 

dimensions 

Number of items 

per secondary 

dimension PUC ECV 

PRMSE 

ratio 

      

        

      

         

Removed secondary dimension(s) 
Mean 

PRMSE 

ratio 

PRMSE 

Ratio 

      

        

      

         

6 3 0.96 0.85 1.11 0.62 0.56 0.65 0.55 0.85 0.88 

6 6 0.95 0.85 1.22 0.73 0.60 0.77 0.70 0.91 0.99 

3 3 0.92 0.85 1.26 0.62 0.49 0.74 0.55 0.74 1.00 

3 6 0.90 0.85 1.31 0.73 0.55 0.83 0.70 0.84 1.07 

3 12 0.90 0.85 1.36 0.81 0.60 0.90 0.81 0.90 1.13 

Note: PUC = percentage of uncontaminated correlations; ECV = explained common variance; PRMSE = proportional reduction in 

mean squared error; PRMSE ratio =                           ;    = estimate of the true subscore for subscale k;     = estimate 

of the true total score from the general dimension of the second-order model;    = estimate of the true subscore for subscale k 

computed from a unidimensional IRT model fitted to subscale k. 
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Table 9 

Factor loading pattern 7: General dimension loadings = 0.80, 
 

 
 secondary dimension loadings = 0.40, ECV = 0.86 

Number of 

secondary 

dimensions 

Number of items 

per secondary 

dimension PUC ECV 

PRMSE 

ratio 

      

        

      

         

Removed secondary dimension(s) 
Mean 

PRMSE 

ratio 

PRMSE 

Ratio 

      

        

      

         

6 3 0.92 0.86 0.91 0.61 0.68 0.72 0.61 0.85 0.81 

6 6 0.90 0.86 1.00 0.72 0.72 0.81 0.73 0.90 0.91 

3 3 0.83 0.86 1.02 0.62 0.60 0.80 0.61 0.75 0.91 

3 6 0.80 0.86 1.08 0.71 0.66 0.88 0.73 0.83 0.98 

3 12 0.79 0.86 1.12 0.79 0.71 0.93 0.82 0.88 1.03 

Note: PUC = percentage of uncontaminated correlations; ECV = explained common variance; PRMSE = proportional reduction in 

mean squared error; PRMSE ratio =                           ;    = estimate of the true subscore for subscale k;     = estimate 

of the true total score from the general dimension of the second-order model;    = estimate of the true subscore for subscale k 

computed from a unidimensional IRT model fitted to subscale k. 
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Table 10 

Factor loading pattern 8: General dimension loadings = 0.80, 
 

 
 secondary dimension loadings = 0.40, ECV = 0.92 

Number of 

secondary 

dimensions 

Number of items 

per secondary 

dimension PUC ECV 

PRMSE 

ratio 

      

        

      

         

Removed secondary dimension(s) 
Mean 

PRMSE 

ratio 

PRMSE 

Ratio 

      

        

      

         

6 3 0.96 0.92 0.89 0.61 0.69 0.71 0.61 0.86 0.80 

6 6 0.95 0.92 0.98 0.72 0.73 0.80 0.73 0.91 0.89 

3 3 0.92 0.92 1.00 0.62 0.62 0.78 0.61 0.77 0.89 

3 6 0.90 0.92 1.05 0.71 0.68 0.86 0.73 0.85 0.95 

3 12 0.90 0.92 1.09 0.79 0.72 0.91 0.82 0.90 1.00 

Note: PUC = percentage of uncontaminated correlations; ECV = explained common variance; PRMSE = proportional reduction in 

mean squared error; PRMSE ratio =                           ;    = estimate of the true subscore for subscale k;     = estimate 

of the true total score from the general dimension of the second-order model;    = estimate of the true subscore for subscale k 

computed from a unidimensional IRT model fitted to subscale k. 
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the              remains approximately the same when additional secondary dimensions are 

added to a test but the number of items per secondary dimension remains constant. Lastly, the 

             decreases when test length is held constant, but secondary dimensions are added, 

which results in a decrease in the number of items per secondary dimension. The denominator, 

             , increases as the number of secondary dimensions increases (without adding 

additional items to the test) or as the number of items per secondary dimension increases 

(without adding additional secondary dimensions). Clearly, the number of items per secondary 

dimension largely influences             , whereas the number of secondary dimensions and 

the length of a test affect              . Tables 7 through 10 illustrate that as PUC decreases, 

the PRMSE ratio for the removed secondary dimension loadings as well as the mean PRMSE 

ratio of the incomplete bifactor models increases. 

 Figures 7 and 8 show the relation between ECV and PRMSE ratio for the bifactor models 

with 3 and 6 secondary dimensions, respectively. Based on the figures and the previous 

observations about PUC and PRMSE, we notice that holding ECV constant, the PRMSE ratio 

increases with the addition of items to the test (while keeping the number of secondary 

dimensions constant, hence adding items to each secondary dimension), as the test gets shorter 

from the removal of secondary dimensions, or as the number of secondary dimensions decrease 

(while the test length is kept constant). Looking at the figures and across tables 3 through 10, 

each of which shows only one factor loading pattern or ECV, it appears as though there is a 

range of possible PRMSE ratios for any particular ECV value. When ECV is low, the range of 

PRMSE ratios is large, but as ECV increases the range decreases. Furthermore, as ECV 

increases, the value of the PRMSE ratio decreases generally speaking. 

 According to the suggestions given by Haberman et al. (2013), subscores are said to have 

added value for any test with a PRMSE ratio greater than 1.0. The vast majority of previous 

research that has been conducted using PRMSE has found that subscores do not have added 

value over a total score. In this study, only one of the 20 complete bifactor models has a PRMSE 
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ratio lower than 1.0. Five of the 20 incomplete bifactor models have a PRMSE value equal to or 

lower than 1.0 and 13 have a mean PRMSE ratio equal to or lower than 1.0. Thus, for most of the 

bifactor model structures investigated in the present study, subscores will have added value over 

a total score based on PRMSE values. 

 
Figure 7. Relation between ECV and PRMSE ratio for bifactor models with 3 secondary 
dimensions. 
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Figure 8. Relation between ECV and PRMSE ratio for bifactor models with 6 secondary 
dimensions. 
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CHAPTER 4. CONCLUSION AND DISCUSSION  

This is the first investigation of the relationship between ECV and PRMSE. Once a 

bifactor model has been fit to data, the calculation of ECV is simple and quick. On the other 

hand, PRMSE is much more difficult and time consuming to compute. With the added 

information from this study, it is no longer necessary to take the time and energy to calculate 

PRMSE for every scale. Based solely on ECV, we now have appropriate knowledge to be able to 

make certain decisions about models and scores. 

We can easily compute ECV if a bifactor model can be fit to data and it fits well. What 

does ECV suggest about the dimensionality of data, as it applies to the use of UIRT or MIRT?  

 If ECV is greater than 0.90, we conclude that the data are unidimensional enough to 

use UIRT. We can also say that the PRMSE ratio (as used in the present study) is less 

than or approximately equal to 1.0. 

 If ECV is between 0.70 and 0.90, we advise using additional information to choose a 

model. This is a grey area on the dimensionality spectrum (see Figure 9); therefore, 

using ECV alone is not adequate here. We advise calculating PRMSE and taking into 

account the usage of the proposed subscores. 

 If ECV is less than 0.70, there is enough multidimensionality in the data to warrant 

modeling it with MIRT. Subscores for the multiple subscales will provide added value 

over simply reporting a total score. 

This project aimed to further research on the dimensionality statistic, ECV. Although we 

did not find a single ECV value that gives a clear-cut answer to how multidimensional is too 

multidimensional for UIRT, we can now make recommendations to applied researchers based 

on ECV because we have more of an indication of how it performs. While this analytical 
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Figure 9. Dimensionality continuum with suggestions on the use of ECV. 
 

 
exploration provided information about ECV and its relation with PRMSE, there were 

limitations. Future research will need to incorporate simulations and use actual data to explore 

our conclusions. Also, we only considered dichotomous items; therefore, polytomous items 

should be used in subsequent studies.  

Based on our research, ECV can be used as a shortcut to make decisions about the 

dimensionality of data. It is a quick-and-dirty computation that can easily place data into one of 

three categories. Using these groups, we make suggestions about the use of UIRT versus MIRT, 

as well as whether subscores have added value over a total score. Lastly, it is important to note 

that this entire project on ECV depends on a researcher’s ability to develop a well-fitting bifactor 

model for his/her data.
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APPENDIX A. SIMPLIFICATION OF THE GENERALIZED INVERSE  

SCHMID-LEIMAN TRANSFORMATION 

The generalized inverse Schmid-Leiman transformation is an algorithm provided by 

Yung et al. (1999) that converts parameters of an unconstrained bifactor model to parameters of 

a second-order factor model. If a bifactor model can be converted into a TRM by imposing 

equality constraints, this algorithm can be simplified, as shown by Thissen (2012). Thissen’s 

(2012) shortcut goes a step further and converts the TRM parameters into those of a correlated 

simple structure model. This process is illustrated using the following bifactor model (condition 

3 – structure 1, factor loading pattern 3): 
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In order for this loading matrix to conform to the equality constraints of the TRM (each item has 

equal loadings on the general and secondary dimension with which it is associated), it is 

necessary for the factor loading matrix to be: 
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To solve for     , the variances of the secondary dimensions in the TRM, the following sets of 

simultaneous equations are solved: 

 

 
 
 
 
 
 
 
 
 
          
          
          
          
          
          
          
          
           

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
        

     
   

      
  

       
 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
          
          
          
          
          
          
          
          
           

 
 
 
 
 
 
 
 

 (3) 

Here,    
 ,    

 , and    
  represent the variances of the secondary dimensions in the TRM. Note 

that in the TRM, the variances of the secondary dimensions are estimated (or in this case simply 

calculated) relative to the general dimension; hence the general dimension variance of 1.0. The 

variance of the first secondary dimension is: 

            
        

    
  

 

 
 

   
  

 

 
 

(4) 

 

The same calculation is carried out for the remaining variances of the secondary dimensions in 

the TRM: 

   
  

 

 
 

   
  

 

 
 

This results in     , the variances of the general and secondary dimensions in the TRM: 
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Using the variances of the secondary dimensions from the TRM, the second-order factor 

loadings for the second-order factor model (   ,    , and    ) are calculated: 

 

    
 

 
 
 
 
 
 
 
 

 

      
 

 

      
 

 

      
  
 
 
 
 
 
 
 

 

    
 

 
 
 
 
 
 
 
 

 

      

 

      

 

       
 
 
 
 
 
 
 

 

    
 

 
 
 
 
 
 
 

 

     
 

     
 

      
 
 
 
 
 
 

 

    
  

     

     

     

   
    
    
    

  

(5) 

 

To calculate the random variance components of the first-order factors for the second-order 

factor model, we use: 

 

     

     
   

      
  

       
 

  

     
        

        
        

   
      
      
      

  

(6) 
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To calculate the factor loadings for the correlated simple structure model, we use the secondary 

dimension factor loadings from the TRM and the matrix Y (Thissen, 2012). Y is a simplified 

version of a matrix from the generalized inverse Schmid-Leiman transformation (Yung et al., 

1999). 

 

  

 
 
 
 
 
 
       

   

       
  

        
 

 
 
 
 
 
 
 

 

   

        

        

        

  

   

       

       

       

   
     
     
     

  

(7) 

 

Y is then used with the secondary dimension factor loadings from the TRM to calculate the 

factor loadings for the correlated simple structure model: 
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36 

     

 
 
 
 
 
 
 
 
 
 
 
 
                

               

               

               

               

               

               

               

                
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
      
      
      
      
      
      
      
      
       

 
 
 
 
 
 
 
 

 

 

Using the second-order factor loadings from the second-order factor model, the correlation 

matrix among the factors of the correlated simple structure model is calculated: 

            
                 

    

      

     

     

     

  

     

     

     

 

 

 

 

 
 
 
   
   
   

        

     

     

     

  

     

     

     

 

 

 

 

 
 

 

      
            

            

            
    

   
   
   

   
      

      
      

   

      
            

            

            
   

      
      
      

  

      
           

           

           
   

           
           
           

  

(9)) 

 

The results of these computations are shown as path diagrams in Figure 10.
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Figure 10. Generalized inverse Schmid-Leiman transformation (from unconstrained bifactor to correlated simple structure model).
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.72

.72

.72

.72

.72

.72

.72

.72
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APPENDIX B. PROPORTIONAL REDUCTION IN  

MEAN SQUARED ERROR (PRMSE) 

Haberman and colleagues (Haberman, 2008; Haberman & Sinharay, 2010) advocate the 

use of the proportional reduction in mean squared error (PRMSE) to evaluate the precision of 

subscore estimates in an attempt to avoid reporting subscores which do not provide useful 

information. PRMSEs range from 0 to 1, with larger values indicating more accurate estimates 

(because a large PRMSE corresponds to a smaller mean squared error). PRMSE and reliability 

are conceptually related criteria, which is evident when looking at the general form of PRMSE, 

         
              

              
. (10) 

Haberman (2008) introduced PRMSE based on classical test theory and the concept of 

true scores. Using this approach, PRMSEs are used to evaluate the quality of three true subscore 

approximations based on the observed subscore, the observed total score, and a combination of 

the observed subscore and the observed total score. This paper refers to the PRMSEs as 

       ,        , and        , respectively. Haberman et al. (2009) recommend that if 

        is greater than        , subscores should not be reported because they do not offer 

“added value over the total scores” (p. 81). In addition, the use of the weighted average is 

suggested only if         is markedly larger than         and         because the weighted 

average involves slightly more computation, and score augmentation, as it is called, can be 

somewhat difficult to explain to consumers. Haberman and Sinharay (2010) extended their 

work with PRMSE to MIRT models. They suggest choosing between the two based on model 

preference (classical test theory or MIRT). 

 This study uses parameter estimates from bifactor as well as correlated simple structure 

models to compute subscore estimates. The subscore estimates from both models are then 

compared using PRMSE in an attempt to determine if subscores should be reported. The two 

estimates of subscores that we are interested in are the expected a posteriori estimate for   for 

subscale k computed from its regression on     from the second-order model [             ] 
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and the expected a posteriori estimate for   for subscale k computed from a unidimensional IRT 

model fitted to subscale k [            ].  

Calculation of               

To calculate              , we carry out steps 1-5 for each quadrature point in   space. 

49 quadrature points (at θ values -6.0 to 6.0 by 0.25 standard deviation units) are used for the 

4-dimensional models (bifactor model structures 1, 2, and 4). The number of quadrature points 

is reduced to 9 (at θ values -4.0 to 4.0 by 1.0 standard deviation units) for the 7-dimensional 

models (bifactor model structures 3 and 5) due to computational time. 

1) Using the parameters from the unconstrained bifactor model, we calculate the trace 

surface for item i using the multidimensional two-parameter logistic (M2PL) model: 

 
           

 

                 
 (11) 

T is the surface in k-dimensional   space that traces the probability of a positive 

response (    ) for item i.   is a k-dimensional vector of the slope parameters,   is a k-

dimensional vector of scores on the latent variables, and   is the intercept parameter (a 

scalar value).  

2) The information computation begins with the identity matrix (that is the inverse of the 

covariance matrix for the population distribution and has the same number of 

dimensions as the model). Item i’s information calculated at each point is added. This 

calculation uses item i’s vector of slope parameters and the probability of endorsement 

for item i evaluated at a specific point:  

              
                              (12) 

3) After information is calculated for item i, the trace surface is computed for the next item 

at the same point in   space. The trace surface value is used in the information 

calculation for that item, which is then added to the previous information matrix. The 
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trace surface and information are subsequently calculated for the remainder of the items 

and added to the total information matrix. 

4) The error covariance matrix for the point in   space is then found by taking the inverse of 

the information matrix: 

             (13) 

5) To find the weighted error variance for the general factor, the error variance 

corresponding to the general factor (the element in the first column of the first row in the 

error covariance matrix;     
 ) is weighted at each   by the standard normal Gaussian 

population density:  

            
                    (14) 

Steps 1-5 are carried out for the remainder of the quadrature points. The weighted error 

variances are summed to create an error variance for the general factor for the entire 

test.  

6) To calculate the reliability estimate of the general factor of the bifactor model, the 

average error variance for the model is subtracted from one: 

                  (15) 

7) Last, subscale k’s PRMSE based on the general factor is found by multiplying the general 

factor’s reliability estimate with the subscale k’s second-order factor loading from the 

second-order model: 

                       
 (16) 

Calculation of              

To calculate             , we follow the same general steps described above. The main 

differences in this PRMSE calculation are that the model parameters are from simple structure 

models and therefore, we are working in unidimensional   space. Appendix A explains the 

process of converting parameters from the unconstrained bifactor models that we begin with to 



 

41 

correlated simple structure models. Instead of the M2PL model, we use a unidimensional 2PL 

IRT model for subscale k: 

 
           

 

                
 (17) 

Example 

In order to illustrate the calculation of the two PRMSE values used in the study, a 

simplified example with only three dimensions is used (which is not one of the study 

conditions). Below is the M2PL bifactor structure used as the example:  

   

 
 
 
 
 
 
             
             
             
             
             
              

 
 
 
 
 

 ,    

 
 
 
 
 
 
   
   
   
   
   
    

 
 
 
 
 

 

For illustrative purposes, I use 3 quadrature points at θ values -1.0 to 1.0 by 1.0 standard 

deviation units. 

Calculation of              . For the first quadrature point (-1, -1, -1), the first item’s 

trace surface is computed: 

 
        

  
  
  

  
 

                         
  
  
  

       

 

        
  
  
  

        

(18) 

 

The information calculation begins with the identity matrix.  
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Information is then calculated for the first item:  

 
   

  
  
  

   
     
     
   

                              

   
  
  
  

   
             
             
         

  

(19) 

 

and added to the information matrix above: 

  
  
  
  

   
             
             
         

  

The trace surface and information matrices are then computed for the remainder of the items at 

the first quadrature point (-1, -1, -1).  

        
  
  
  

       ,    
  
  
  

   
             
             
         

  

        
  
  
  

       ,    
  
  
  

   
             
             
         

  

        
  
  
  

       ,    
  
  
  

   
             
         

             
  

        
  
  
  

       ,    
  
  
  

   
             
         

             
  

        
  
  
  

       ,    
  
  
  

   
             
         

             
  

The information matrices are added together to form the information matrix for the test at the 

first quadrature point. 
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Next the error covariance matrix is computed: 

 

    
  
  
  

   
               
             
             

 

  

 

    
  
  
  

   
                 
                
                

  

(20) 

 

The weighted error variance is found by weighting the error variance that corresponds to the 

general factor at each   by the standard normal Gaussian population density: 

 
   

  
  
  
  

                          

   
  

  
  
  

        

(21) 

 

The error variance is computed in the same way for the remaining 26 quadrature points and 

then all 27 values are added together to compute the average error variance for the test. 

              

The reliability estimate for the general factor is: 

             

          

(22) 

 

Using this reliability estimate, we are able to find the first subscale’s PRMSE estimate from its 

regression on the second-order factor (from the second-order factor model): 

                            

                    

(23) 
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Calculation of             . After using the methods described in Appendix A to 

calculate the item parameters for the corresponding simple-structure model, the first item’s 

trace line is calculated for the first quadrature point (-1): 

 
            

 

                        
 

                  

(24) 

 

The information calculation begins with 1.0 because the information that is attributed to the 

population distribution is 1.0 across   (from the assumption that the population distribution is 

standard normal Gaussian). 

      

Information is then calculated for the first item: 

                           

             

(25) 

 

and added to the information value above. 

        

The trace lines and information are then computed at the same quadrature point (-1) for the 

other two items that make up the first subscale. 

                 ,              

                 ,              

The information values are then added together to form the information for the subscale at the 

quadrature point. 

            

Next the error variance is computed: 

                 

              

(26) 
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The weighted error variance is found by multiplying the error variance by the standard normal 

Gaussian population density: 

    
                  

   
            

(27) 

 

The average error variance is computed in the same way for the remaining 2 quadrature points 

and then all 3 values are added together to compute the average error variance for the subscale. 

            ,    
           

            ,    
           

              

The marginal reliability estimate for this subscale is: 

                      

                   

(28) 

 

Summary 

As is evident, computing multidimensional item information and PRMSE based on 

MIRT is difficult and involves many calculations. Thus, finding a relationship between the easily 

calculated ECV and PRMSE would be quite helpful for applied researchers.
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