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ABSTRACT 
 
Tara Anne Condon: Relationships between Lower Extremity Movement Quality, Internal 

Training Loads, and Injury Risk in NCAA Division I Male Collegiate Soccer Athletes.  
(Under the direction of Erik A. Wikstrom) 

 
 

The purpose of this study was to examine the relationships amongst internal 

training loads (ITL), lower extremity (LE) movement quality, and injury risk in male 

collegiate soccer athletes. Fifty-two Division-I athletes consented to this study. Daily ITL 

were collected and tracked over the course of two consecutive seasons using a rated 

perceived exertion scale and session duration. LE movement assessments were performed 

in preseason using the Landing Error Scoring system (LESS), and were used to create 

two groups: poor movers (n=33,LESS ≥5), and good movers (n=19,LESS ≤4). Repeated 

measures ANOVAs and Chi Squares were utilized for analysis. Mid-season ITL were 

significantly lower compared to early (p<.001) and late (p<.001) season ITL. No 

significant differences in ITL were found between poor and good movers. Early-season 

injury risk was not influenced by movement quality or ITL but future large sample 

studies are needed in NCAA collegiate athletes. 
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CHAPTER I 
INTRODUCTION 

 
According to the National Collegiate Athletic Association’s (NCAA) Injury 

Surveillance System (ISS),1 participation in recognized championship sports has 

increased within the last ten years in both male (20%) and female (80%) athletics. This 

trend can also be seen in high school athletics.2 With a rise in sports participation, there is 

also a subsequent rise in injuries.3 In a 2007 epidemiology study of injuries in collegiate 

athletics,4 researchers found an average injury rate of 16.4 incidents per 1000 athletic 

exposures (A-E) for regular season play. Another study found collegiate sports injury 

rates to be as high as 70.5 incidents per 1000 A-E for overuse injuries (women’s field 

hockey), and as high as 190.0 incidents per 1000 A-E for acute injuries (women’s 

soccer).5 As participation in collegiate athletics continues to rise, researchers and sports 

medicine professionals can expect to see an increase in athletic exposures, and a 

subsequent increase in the number of injuries.3 

 

Injury prevention and risk identification is a major role for clinicians in the field 

of sports medicine.6,7 Current research has begun to identify certain risk factors that 

clinicians can manipulate in order to prevent future injuries.6,7 These factors can be 

examined and modified during both the pre-season and regular season. One aspect of pre-

season screenings is to assess the musculoskeletal and biomechanical abilities of an 

athlete, with the goal of identifying those who are at greater risk for injury.7 Baseline 
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testing and movement screenings (such as the Landing Error Scoring System (LESS)) are 

helpful means for clinicians to identify risk factors, such as limited range of motion 

(ROM) and poor biomechanics.3,8,9 Research has shown that when these areas are poorly 

developed or limited – as identified during pre-season assessments – they can lead to 

abnormal training responses and increase injury risk.10-12 

 

As a team transitions from pre-season into their regular season, other means of 

decreasing the possibility of injury include manipulating risk factors such as training load 

and recovery.13,14,15 Training loads (TL) deal with the amount of work (whether it is too 

much, or too fast, or too soon) experienced externally and/or internally by an athlete.16 

External training loads (ETL), as defined by the International Olympic Committee,17 

refers to any external stimulus applied to an athlete that is measured independently of 

their intrinsic characteristics. An example includes parameters from a global positioning 

system (GPS), such as distance, velocity and acceleration.14,18 Internal training loads 

(ITL) attempt to quantify the physical work performed by taking in account the 

physiologic impact experienced by the athletes themselves.15 Rating of perceived 

exertion (RPE) scales are an efficient means of tracking ITL, which are used to determine 

how an athlete perceived their previous training segment.14,15 Research has begun to 

show an association between TL and musculoskeletal injuries;14,17,19–21 however, there is 

no single measure that has been identified to accurately quantify TL to predict injury 

risk.14 
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The intensity of a given exercise session (which is largely influenced by the ETL) 

will play a large role in the ITL experienced by an athlete. This gives clinicians the 

ability to use TL as a means of monitoring and altering an athlete’s training prescription 

throughout a season in order to keep a proper balance between work and recovery.15,22 

Studies have shown that there is a significant amount of variability in the intensity 

present within practice and game activities for a particular sport. Matches and 

competitions have continuously shown to have a higher intensity compared to that of a 

regular training session.4 Though further research is needed to validate TL as a means of 

representing how intensity impacts a training regimen, TL are beginning to give insight 

into the varying intensities of competition and its relationship to injury rate.4,23 

 

Internal training loads (ITL) attempt to quantify the physical work and 

physiological response experienced by an athlete as a result of the external loads placed 

on them.15,22 In order to obtain ITL, clinicians need to collect an exposure component and 

individualized response to activity. The exposure elements are extrinsic to the athlete, and 

are often recorded as the distance covered or duration of a particular training session. The 

majority of the current research examining ITL utilizes time for extrinsic loads.15 The 

athlete’s individual response to training has been measured in a variety of ways, some of 

which include heart rate (HR), lactate concentrations, biochemical markers, or RPE. 

Currently, the most employed method is to obtain an RPE via a modified Borg’s Scale of 

Perceived Exertion.15 By multiplying the athlete’s RPE and length of a given session, 

clinicians can create a session RPE (sRPE) and track the trends in ITL of each athlete 

throughout a season.25,26  
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With a rise in the popularity of sports and incidence of injuries, there is an 

increased need to properly plan training sessions in order to effectively balance the loads 

placed on an athlete.27,28 Future studies need to use a variety of TL (both external and 

internal means) as a combination of the two are more predictive and help to fully 

encompass the aspects of training that contribute to injury risk;15,26 however, in a recent 

systematic review,15 only 35 quality articles were identified for their work in examining 

the relationship between TL, injury and illness. Of these articles, the majority of the 

populations studied were rugby (n=12), cricket (n=5), Australian football (n=3), and 

soccer (n=3). Each study included a variety of skill levels (professional, elite, youth), 

different definitions of injuries and varying methods for obtaining TL.15 This causes a 

decreased ability to compare findings and establish a clear and accurate relationship 

between TL and risk of injury.  

 

Within the groups examined, none included a meaningful sample of NCAA 

collegiate athletes.15 There is an increased need to include a wider variety of different 

leveled sports in TL research, helping to establish a more complete risk profile between 

different sports, gender and age groups.15,29 In addition, there is limited evidence 

connecting pre-season LE movement assessments, in-season ITL, and injury risk. Thus, 

the purpose of this investigation was to examine the associations among relative and 

absolute rates of internal training load (ITL), LE movement quality, and risk of injury in 

NCAA Division I male collegiate soccer athletes during two traditional seasons. 
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Research Questions 

Research Question 1: How do relative (ACWR) and absolute (total weekly sum) internal 

training loads change during an NCAA Division I men’s collegiate soccer season?   

Hypothesis 1a: Absolute internal training loads will vary throughout a collegiate 

soccer season with higher levels observed prior to post-season tournaments.   

Hypothesis 1b: Relative internal training loads (ACWR) will vary throughout a 

collegiate soccer season with higher levels observed prior to post-season 

tournaments.  

 

Research Question 2: Do NCAA Division I male collegiate soccer players with good 

versus poor movement quality exhibit varying relative (ACWR) and absolute (total 

weekly sum) internal training loads during their season? 

Hypothesis 2a: Athletes who are defined as poor movers (LESS score [≥5]) will 

have higher average absolute internal training loads than athletes who are 

defined as good movers (LESS scores [≤4]). 

Hypothesis 2b: Athletes who are defined as poor movers (LESS score [≥5]) will 

have higher average relative internal training loads than athletes who are defined 

as good movers (LESS scores [≤4]). 

 

Research Question 3: Does the proportion of NCAA Division I male collegiate soccer 

players that incur an early-season low back or lower extremity injury differ significantly 

between those with good versus poor movement quality? 
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Hypothesis 3: Athletes who are defined as poor movers (LESS score [≥5]) will 

have a higher risk of sustaining an early-season low back or lower extremity 

injury compared to those athletes who are defined as good movers (LESS scores 

[≤4]). 

 

Research Question 4: Does the proportion of NCAA Division I male collegiate soccer 

players that incur an early-season low back or lower extremity injury differ significantly 

between those with and without a high (>1.5) relative internal training loads (ACWR)? 

Hypothesis 4: Athletes who experience a high acute:chronic workload ratio 

(ACWR ≥1.50) during the early-season will have a higher risk of sustaining a low 

back or lower extremity injury compared to those athletes experience a low 

acute:chronic workload ratio (ACWR ≤1.49) during the same time frame. 

 

Definition of Terms 

1) Training Load: the work experienced by an athlete during a given training and 

game session 

2) Traditional Season: the time in which the team works towards an NCAA national 

championship. It begins on the first day of pre-season, and ends on the last game 

in the NCAA tournament. For NCAA Division I collegiate men’s soccer, their 

NCAA national championship season occurs during the Fall semester. 

I. Early-Season: the first 1/3 (Week 1 through 6) of the entire traditional 

season 
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II. Mid Season: the middle 1/3 (Week 7 through 12) of the entire traditional 

season 

III. Late Season: the last 1/3 (Week 13 through 18) of the entire traditional 

season 

2) Injury: any musculoskeletal issue – which included any pain or disability suffered 

by an athlete during either a practice, competition or team organized event – that 

was reported to and evaluated by an individual on the sports medicine team.  

 

Limitations 

1) Multiple ATCs collecting study related sRPE and practice duration data 

2) Psychological factors that influence athletes’ sRPE response. These include but 

are not limited to the athlete’s emotions and coach’s indirect influence. 

3) Collected LESS at one time point during the pre-season. 

4) Lack of information regarding athlete’s ITL prior to the start of pre-season 

 

Delimitations 

1) Only athletes from one Division I men’s soccer program were utilized in this 

study. 
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CHAPTER II 
LITERATURE REVIEW 

 
Injury Incidence in Collegiate Sports 

According to the NCAA Injury Surveillance System (ISS),1 participation in 

recognized championship sports has increased within the last ten years in both male 

(20%) and female (80%) athletics. This trend can also be seen in high school athletics.2 

With a rise in sports participation, there is also a subsequent rise in injuries.3 In a 2007 

epidemiology study of collegiate athletes,4 researchers found an average injury rate of 

16.4 incidents per 1000 athletic exposures (A-E) for a regular season. Preseason practices 

had an injury rate of 6.6 incidents per 1000 A-E, which was upwards of 3-times higher 

than that of in-season practices.4 Another study found collegiate sports injury rates to be 

as high as 70.5 incidents per 1000 A-E for overuse injuries (women’s field hockey), and 

as high as 190.0 incidents per 1000 A-E for acute injuries (women’s soccer).5 As the 

participation in athletics continues to rise, researchers can expect to see an increase in the 

number of documented athletic exposures and injuries.3 

 
Risk Factors for Injury in Collegiate Sports 

Risk factors for musculoskeletal injuries can be broken down into two major 

categories: intrinsic and extrinsic risk factors. Intrinsic risk factors are individual to the 

athlete, and include things such as their gender, medical history, previous experience and 

imbalances in the musculoskeletal systems (such as strength, flexibility and 

neuromuscular control).16 
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Sex differences have been documented in a variety of injury patterns.30 Females 

have been consistently found to have an overall greater injury rate than their male 

counterparts.6,31,32 Multiple studies have found female athletes to have higher risk of 

sustaining an injury, specifically in intercollegiate athletics,6 professional basketball 

players33 and youth soccer players.34 The differences are even greater when examining 

specific injury patterns, such as ACL ruptures and concussions.35,36,37 Female athletes 

were found to be 9 times more likely to sustain an ACL tear,37 and reasons have been 

connected to gender differences in biomechanics and muscle function.38 

 

Research has shown that sex has demonstrated effects on movement screening 

performance scores, such as the Landing Error Scoring Systems (LESS).39 In various 

studies performed on cadets and collegiate athletes, males and females have demonstrated 

differences in LESS scores. Males demonstrate on average higher LESS scores (5.34 ± 

1.51)40 and more sagittal plane landing errors41 compared to the female group (4.65 ± 

1.69; p < 0.001),40 who demonstrate more frontal plane landing errors.41 

 

Though gender differences can be a complicated issue to clinicians due to their 

non-modifiable causes, other intrinsic risk factors for injury – such as neuromuscular 

control, movement mechanics and muscle imbalances – have the ability to be corrected 

with clinical interventions. Various studies have connected diminished neuromuscular 

control to increased incident of injury.10,11 Neuromuscular control is defined as a person’s 

ability to operate their limbs while performing movement tasks. This is achieved by joint 

and mechanoreceptors sending afferent signals to the brain to create a movement 
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strategy. Inefficient or bad movement strategies result in mismanagement of forces 

throughout the body, leading to structures being overloaded and overstressed.42 Clinical 

tests for assessing a patient’s movement strategies have been developed and studied for 

their validity and reliability to identify poor movers. Some tests that have been proven to 

be successful include the Functional Movement Screen,42,43 Star Excursion Balance 

Test42,44,45 and the Landing Error Scoring System test.42,46  

 

The FMS, or Functional Movement Screen, is a real-time assessment tool that 

incorporates the whole body’s ability to move with the goal of identifying imbalances 

based on observed asymmetries and dysfunctional movements.43,47,48 Most commonly 

performed using an overhead squat, the FMS’s major limitation is the lack of sport 

specific movements included in the assessment.49 Though compound movements 

(squatting, lunges, etc.) can give clinicians insights into possible underlying impairments, 

dynamic movements place a greater demand on the body, and these may be missed 

without further assessment.42,49 Other assessment tools have been studied that examine 

more dynamic movements, such as the Star Excursion Balance Test (SEBT). The SEBT 

is a clinical tool that assesses a person’s ability to maintain balance while performing a 

reaching task.44 It provides a challenge to the body’s sensorimotor system, and tests 

muscular strength, joint range of motion and a patient’s ability to balance.44,45 Though 

proven to be a reliable and valid predictor of lower extremity injury,50,51,52,53 the SEBT 

does not provide evidence about an athlete’s movement strategies during sport-specific 

activities.42  
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The Landing Error Scoring System (LESS) is another clinical movement screen 

that has been widely studied for its ability to detect athletes at greater risk for lower 

extremity injuries.46 The LESS uses a basic jump-landing task to challenge a person’s 

ability to control and move their body in space. First introduced in 2010, the LESS test 

grades an athlete’s ability to perform a jump-landing task based on a 17-error scale.8 The 

LESS can be used by both novice and expert clinicians, with an ICC of 0.84; however, 

this validity is dependent on the type of error assessed during the jump landing task.39 

Researchers suggest that errors not valid should be reduced from the current LESS 

scoring criteria.54 The LESS-RT (10-errors compared to the LESS 17-errors) has been 

developed and validated as a quicker assessment of movement quality.39 Further studies 

should consider examining the associations of the LESS. 

 

Specific movement patterns found during a LESS have been associated with 

increased risk of lower extremity injury. These limitations include decreased hip, knee 

and trunk flexion in combination with increased rotational and valgus forces at the 

knee.42,55–58 The LESS includes a multiplanar biomechanical assessment and allows a 

clinician to screen for the known movement dysfunctions.11,42,59–61 Some limitations of 

the LESS is that testing is performed using standard video cameras, and the assessment of 

performance is based on a single type of jump landing (drop vertical jump);42 however, 

studies have established the LESS as a sensitive and reliable clinical tool for evaluating 

an individual’s movement strategies,42,46 and research suggest that clinicians need to use 

a jump landing screen to identify those athletes who are at greater risk of lower extremity 

injuries.7,38 
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Another intrinsic risk factor for injury is the onset of fatigue. Fatigue developed 

during a given training session is connected to decreases in performance and higher 

incident rates of lower extremity injuries.62–64 Fatigue driven imbalances in 

neuromuscular control have been connected to decreased joint stability, and increased 

risk of injury.60,65 The body has natural protective mechanisms against injury, such as 

muscle stiffness. Muscle stiffness is developed through active and passive tissue tension. 

Fatigue reduces the body’s ability to maintain muscle stiffness during exercise. Without 

the ability to produce proportional muscle stiffness with relation to the external loads, the 

body has a limited potential to create dynamic joint stability, leading to an increase risk 

for injury.66 Insufficient balances between training sessions and recovery periods result in 

a greater cumulative fatigue in athletes. Greater levels of cumulative fatigue increase the 

incidence of negative adaptions to training, such as injury and illness.17,15 As clinicians, it 

is pertinent to introduce means that quantify fatigue and training load.  

 

With regards to player experience, studies by Pasque and Hewett3,9 demonstrated 

that more experienced high school wrestlers had a higher injury risk than those with less 

experience. The researchers stated that the more expert wrestlers had more playing time 

(i.e. more exposures and training load), a greater number of injury history incidents, and 

were more aggressive than the less experienced athletes.3,9 In comparison, Emery and his 

team did not find any significant difference for injury risk between U16 and U18 soccer 

players.3,67 The variations in results may be a consequence of the major differences in 

physiological requirements, skills and style of the diverse sports.  
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In comparison to intrinsic factors, extrinsic risk factors for injuries include (but 

are not limited to) the type of sport, external environment, surfaces, and training errors.16 

Relative risk of an acute injury can be determined by understanding the extent of player 

contact within a given sport.68 With participation in collision sports (boxing, lacrosse, 

football) and contact sports (basketball, soccer), there is an accepted risk of injury due to 

the nature of the sport, and dangers associated with training activities.68 Collision sports 

have a higher injury risk due to the larger forces, and increased player contact that occur 

during the practices and games.4,68 

 

Other factors involved during a practice or game that can lead to an increase risk 

of injury include the environment, playing surface and structure of the given session (i.e. 

workload placed on the athlete). Environmental factors, such as heat and humidity, can 

play a role in injury incidents.69 A higher level of humidity limits the body’s ability to 

thermoregulate, increasing the risk for heat related illnesses.69 Meyers and Barnhill 

examined the differences in injury rates between artificial turf and natural grass in 

football and reported that they exhibited unique injury patterns.70 Lastly, training errors 

deal with the amount of load (whether it is too much, or too fast or too soon) placed on an 

athlete.16 Training load can be defined as either internal or external15  Research has 

shown relationships between training load and musculoskeletal injuries,15 however 

further research is needed to validate the findings.  
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Training Loads 

As a team transitions from pre-season into their regular season, clinician’s use 

other measures to monitor injury risk. By examining the training loads (TL) experienced 

during practice and game activities, clinicians can better understand the relationship and 

balance of training and recovery. The intensity of a given exercise session will play a 

large role in the TL experienced by an athlete. This allows clinicians to use TL as a 

means of monitoring stress throughout a season, and to make recommendations regarding 

the alteration of a training prescription in order to keep a proper balance between work 

and recovery.15,22  

 

Studies have shown that there is a significant amount of variability in the intensity 

present within game and practice activities for a particular sport. Matches and 

competitions have continuously shown to have an higher intensity compared to that of a 

regular training session.4 Though further research is needed to validate TL as means of 

representing how intensity impacts a training regimen, TL are beginning to give insight 

into the varying intensities of competition and its relationship to injury rate.4,23,71 In a 

study done by Gabbett,71 TL data was collected daily for three rugby teams using a 

modified RPE scale72 over the course of one season. The study found a high correlation 

between incidence of injuries and intensity of a match.71 Other studies73,74 also agreed 

with Gabbett’s work,71 giving support to suggest that changes in intensity can lead to an 

increase in injury rates.  
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Training load can broadly be defined as the internal or external work experienced 

by a person.15 External training load (ETL), as defined by the International Olympic 

Committee,17 refers to any external stimulus applied to an athlete that is measured 

independently of their intrinsic characteristics. Examples of ETL include pitching in 

baseball,75,76 shots on goal in water polo,77 or the distance covered by a rower.78 This 

form of training load is primarily utilized in sports with repetitive actions, or ones where 

there is a continuous sporting action.15 Studies have found a moderate relationship 

between ETL and illness. Out of the 8 studies that have examined the interaction, 75% 

found a positive relationship between ETL and illness.15 

 

When examining the relationship between ETL and injury, there is strong 

research supporting the need to quantify ETL in sports that are upper extremity dominate 

or include activities such as throwing, pitching and/or bowling.29,79 Associations have 

been found between soreness in elite female water polo players and number of shots,77 as 

well as in baseball players and the number of pitches.75,76 This relationship has not been 

studied within lower extremity dominant or field sport athletes, such as kicking in soccer 

or passing in lacrosse. Mixed results have been found when examining the relationship 

between distance ran and injury risk. Fricker et. al80 found no relationship between total 

distance and injury in middle distance runners; however, current evidence is beginning to 

show that injury risk is not about the total load experienced by an athlete (i.e. total 

distance ran), but rather related to the relationship between changes in training load.20  
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It is important to note that ETL (such as number of balls bowled or pitches 

thrown) do not include all aspects of a training session that contribute to the demands 

experienced by an athlete.15,81 Quantifying ETL will only represent a portion of an 

athlete’s total loads, which leads to a limited percentage of TL to be considered when 

examining injury risk.82 When examining field sport athletes (such as soccer, lacrosse or 

field hockey), examining ETL – such as the number of passes or shots – can be 

impractical or impossible for a researcher to do accurately. Other examples of ETL, such 

as distance ran, acceleration of an athlete, etc., can be tracked using global positioning 

systems (GPS). Global positioning systems have shown to be beneficial for assessing the 

ETL of an athlete;83–85 however, these systems have not been proven to be valid 

assessments of an athlete’s total load and require resources that clinicians may not have 

access to.86,18,87 Future studies need to include all aspect of training, both external and 

internal to the athlete, as well as means of tracking TL that are more clinically practical.15 

 

Internal training loads (ITL) attempt to quantify the physical work and 

physiological response experienced by an athlete as a result of the external loads placed 

on them.15,22 This allows for a larger percentage of the athlete’s workload to be included 

when determining risk of injury. In order to obtain ITL, clinicians need to collect an 

exposure component and individualized response to activity. The exposure elements are 

extrinsic to the athlete, and are often recorded as the distance covered or duration of a 

particular training session. The majority of the current research examining ITL utilizes 

time for extrinsic loads.15  
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The athlete’s individual response to training has been measured in a variety of 

ways, some of which include heart rate (HR), lactate concentrations, biochemical 

markers, or a rating of perceived exertion (RPE). Currently, the most employed method is 

to obtain an RPE via the Borg’s Scale of Perceived exertion.15 By multiplying the 

athlete’s RPE and length of a given session, clinicians can create a session RPE (sRPE) 

and track the trends in ITL of each athlete’s throughout a season.25,26 Both ITL and ETL 

are limited in the sense that they do not account for the type of training the athletes 

partake in, such that short, intense sessions will be equal to that of a long, low-intensity 

event.15 

 

When analyzing the ways in which injury or illness are related to TL, clinicians 

can either look at the absolute or relative TL experienced by an athlete.15 Absolute 

training loads are defined as the sum of all the training loads (whether they are ETL or 

ITL) in a given training session, a particular set of training sessions, or over a given 

period of time (such as the sum of training loads throughout one week of training).15 

Relative training loads looks at the trends that occur in training, especially expressing the 

change as a percentage or ratio.  

 

Clinicians have examined the percentage increase from week to week, as well as 

the ratio of recent and past loads, which is referred to as the acute-to-chronic 

(acute:chronic) workload ratio (ACWR).26 The acute phase of training is a period of 

‘fatigue’ that is sustained in the present time (absolute TL from one day, or absolute TL 

from one week). The chronic phase refers to the ‘fitness’ period that occurred in the 
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weeks prior to the current (or acute) phase, most commonly using the last month (i.e. 

prior 4 weeks).26,88 This analysis of training loads has been the most utilized and is the 

recommended way to examining the effects of training load on an athlete.15 Figure 2.1 

displays an example of a regular season absolute training load and the acute:chronic 

workload ratio (ACWR) for one team.  

 

Both absolute75,76,89 and relative loads29,81 have been shown to be related to injury 

occurrence.  However, relative workloads allow for a comparison of athletes of different 

levels by examining the ratio of change versus the entire sum.  Relative workloads also 

demonstrate a higher predictive capacity of determining injury risk than absolute 

loads.15,29 Findings from a recent systematic review,15 suggest that injury risk is better 

determined by examining the magnitude of the ratio between the acute and chronic load, 

where acute load is defined as the absolute load of the last 7 days, and the chronic load is 

defined as the average of the absolute weekly TL from the month prior.79 

 

Summary 

Injury prevention is a major role for clinicians in the sports medicine field. 

Current research has begun to identify the modifiable risk factors that can be 

subsequently manipulated in order to prevent future injuries. Pre-season examinations are 

required to include musculoskeletal and biomechanical assessments in order to detect 

those who are at a higher risk for injury.7 Baseline testing and movement screens – such 

as the FMS, SEBT and LESS – are popular means of helping to identify these factors.  
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With a rise in the popularity of sports and incident of injuries,1,2,3 there is an 

increase need for clinicians to monitor their athlete’s training and recovery. ITL have 

been proven to be a valid means of quantifying an athlete’s response to the loads placed 

on them throughout practice or game activies.15,22 By collecting a daily ITL, clinicians 

can keep a balance of the loads placed on an athlete, and help to decrease the risk of 

injuries that occur due to overtraining.27,28,85 In a recent systematic review,15 only 35 

quality articles were identified for their work in examining the relationship between TL, 

injury and illness. Of these articles, the majority of the populations studied were rugby 

(n=12), cricket (n=5), Australian football (n=3), and soccer (n=3). Each study included a 

variety of skill levels (professional, elite, youth), different definitions of injuries and 

varying methods for obtaining TL.15 The existing variety demonstrates the 

generalizability of TL but limits our ability to compare findings and establish a more 

complete risk profile in any given set of athletes.15,29   

 

Currently, no data exists on a meaningful sample of NCAA collegiate soccer 

atheltes.15 Thus, one of the goals of this study is to create a greater profile of TL by 

studying a population that has yet to be clearly monitored. With over 460,000 students 

participating in NCAA collegiate athletics every year,1 it is important to begin to 

establish the trends in ITL that occur in specific populations in this demographic. In 

addition to being limited in NCAA collegiate athletes, the literature fails to show the 

relationship between ITL and preseason biomechanical assessments. TL are often studied 

independently using univariate analyses, and not examined for any potential 

interrelationships with other injury risk factors. There is a lack of evidence connecting 
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pre-season risk factors and in-season TL. There is also no clear understanding of how 

athletes who are pre-disposed to injury experience loads compared to those who are not at 

greater risk. In athletes’ who are identified as “poor movers”, they can be hypothesized to 

work harder compared to their teammates during a given practice or game activity, and 

thus experience difference TL. As part of this study, one of our goals is to expand the 

body of evidence examining injury risk factors, and begin to understand how intrinsic 

risk factors manipulate ITL.   

 

Internal training loads (ITL), measured using an RPE scale and duration of 

training, is a relatively easy method of monitoring an athlete during their season. They 

are cost effective and allow a clinician in any setting to improve the performance of their 

athletes. It is important for research to validate clinical tools that are both practical and 

resourceful at all levels of sport. ITL have been widely studied, and are beginning to 

show their diverse applications. This study will only expand on what clinicians know 

about how an athlete responds to the demands of their sport and what causes a decrease in 

performance and/or injury to occur.  
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CHAPTER III 
METHODOLOGY 

 
Participants 

One NCAA Division I male collegiate soccer team was recruited during their Fall 

2016 and Fall 2017 season. Fifty-two athletes volunteered to allow their TL data to be 

examined for this project. All participants received a thorough explanation of the study – 

which included the risks and benefits – prior to consenting. The university’s Institutional 

Review Board approved this project. Only athletes who participated in team activity 

during the season being studied were included for analysis. Athletes were removed from 

each season’s analysis if they missed at least six weeks of play, had a season ending 

injury, and/or would not be participating in their team’s current season. Each season 

included a different set of athletes, with only 20 individuals completing both seasons. 

Summary statistics for the athletes’ demographics may be found in Table 3.1.  

 

Definition of Injury 

For the purpose of this study, we utilized an adaptation of the Gabbett et al71 

injury definition. An injury was defined as a musculoskeletal issue to the lower extremity 

or low back – which included any pain or disability suffered by an athlete during either a 

practice, competition or team organized event – that was reported to, evaluated, and had a 

treatment plan initiated by an individual on the sports medicine team. Any general 

medical, dermatological issues (infections, abrasions, lacerations, etc.), upper extremity 
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(UE), cervical, thoracic, and head injures, as well as contusions were not included for this 

study. The sports medicine team included: certified athletic trainer(s), supervised athletic 

training student(s), and team physician(s). All members of the sports medicine team are 

employed by UNC-CH to provide injury assessment, prevention and treatment services to 

the student-athletes.  

 

Pre-Season Measures 

Demographics 

Demographics - such as age (years), height (m) and weight (kg) – were taken 

during the team’s pre-participation examinations (PPE) as part of their standard care in 

the beginning of the Fall 2016 and Fall 2017 seasons (Table 3.1).  

 

Landing Error Scoring System (LESS) 

The LESS was used as a pre-season screening tool in order to assess the athlete’s 

biomechanical movement quality. Three successful trials were taken at the start of the 

Fall 2016 and Fall 2017 seasons. The LESS is a jump-landing task that requires the 

athletes to perform two jumps: a horizontally jump from a 30 cm box to a distance that is 

equal to 50% of the athlete’s height, followed by a maximum vertical jump.8 X-Box 

Kinect sensors were utilized instead of standard video cameras. A specialized online 

software, Physimax, was used to analyze jump-landing performance. This has been 

showed to be a reliable means of capturing accurate LESS performance scores.90  
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To complete the LESS, the athletes first started in front of a 30 cm box - in order 

to allow the X-Box Kinect sensors to recognize their limbs – prior to stepping onto the 

box. Once the athletes were in position, researchers cued them to jump forward past the 

marked line (representing 50% of their height), and then straight up into the air as high as 

they were able to after landing.8 Researchers did not give any feedback or make 

adjustments on biomechanics unless the athletes were not able to perform a successful 

jump. Padua et al8 described a successful jump as an athlete being able to (1) jump off the 

box with both feet; (2) initially jumping horizontal, not upwards towards the marked line; 

(3) initially landing with both feet; (4) completing a maximum vertical jump directly after 

landing in a fluid motion. Athletes were allowed one practice trial to familiarize 

themselves with the task, followed by three successful jumps.  

 

The mean of the three trials were used to calculate the LESS score using the 17 

jump-landing characteristics. We recorded the overall LESS score, as well as the 

individual errors that were made during the jump-landing task. Based on their LESS 

score, athletes were placed into one of two movement quality groups – good mover and 

poor mover. We utilized a modified version of the four groups originally described by 

Padua et al.8 For our study, a good mover was an athlete who demonstrated a LESS score 

≤ 4, whereas a poor mover has a LESS score ≥ 5. This cutoff score was determined based 

on a previous study done by Padua et al,38 where they examined soccer athletes and 

determine those with a LESS score of 5 or higher were at greater risk for injury. This 

study was mainly examining risk for ACL injury; however, due to the limited data on 

LESS cutoff scores for soccer players, this score was used for the purpose of this study. 
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In-Season Measures 

Internal Training Load (ITL) 

Training load, as previously defined in Chapter I, is defined as the work 

experienced by an athlete during a given training or game session. For the purpose of this 

study, ITL will be used to track the athlete’s workload throughout their regular season. 

This method of quantifying ITL involves collecting a daily rating of perceived exertion 

(RPE) after an exercise bout in order to obtain a session RPE (sRPE).72 For our study, we 

used a modified Borg’s Scale of Perceived Exertion (Figure 3.1).  Originally described by 

Foster et al,72 sRPE represents an overall rating of the intensity for the complete training 

session. The sRPE will be a whole number between 0 and 10 and multiplied by the 

duration of the training session or game. It will be recorded in arbitrary units (AU). 

Duration of the training session is defined as length of time (measured in minutes) 

between the start of warm ups, until the end of playing, and will be recorded to the 

nearest minute. A normal practice ends during a final meeting with the head coach; 

however, if certain players stop early for any reason, it was noted. Duration of a game 

will be recorded as the number of minutes calculated by the university’s sports 

administration personnel and documented on the box score of the game. 

 

Training loads was only collected for team-organized activity. For days that the 

team did not have any team organized practice, game or weight session(s), both sRPE and 

duration will be recorded as a zero. sRPE was taken within 30 minutes after the end of a 

soccer event. Any data that was missed during this time frame was collected as soon as 

possible by one of the certified athletic trainers.  
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Training Load Data Reduction 

ITL data was collected as a whole integer on the RPE scale from 0-10, and 

duration was recorded to the nearest minute. This method of quantifying ITL involved 

multiplying the athlete’s RPE (1-10) by the duration of the session (in minutes) to give a 

daily ITL (AU). For every week, seven daily loads were collected and summed together 

to give one absolute weekly ITL per player. The absolute weekly ITL will be used to 

create an acute:chronic workload ratio (ACWR), which is the ratio between the acute 

load (current absolute weekly ITL) compared to the chronic load (average of the prior 

four week’s absolute weekly TL). ACWR were calculated starting five weeks into each 

season, due to the lack of ITL data from the team during the off-season. Each season was 

18 weeks long, and was divided into three 6-week segments: early-season (Week 1-6), 

mid-season (Week 7-12), and late-season (Week 13-18). 

 

Documentation of Injuries 

Following each season, low back and LE injury data was extracted from each 

participant’s electronic medical record.  A standardized data collection form was used to 

record information (date of injury, body region, type of injury) pertaining to each injury. 

For this investigation, only the date of injury was used for analysis while all other 

information was recorded for descriptive purposes only.  

 

Procedures 

Prior to the start of the season, the team was educated on the purpose and means 

of collecting an sRPE, to decrease the variance due to misunderstanding of training loads. 
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As previous described by Gabbett and Jenkins,25 athletes were shown the scale (Figure 

3.1) after each session and asked ‘how did you feel today’s [training session, lift, game] 

was, from start to finish?’, giving the ATC an estimation of intensity.72 ITL were 

recorded by the ATCs every session, from the first day of pre-season until the final match 

of the NCAA championship season. This method was utilized for Fall 2016 and Fall 2017 

seasons. Values were collected within 30 minutes of the end of each given session and 

recorded as whole integers. In addition to sRPE, the team’s ATCs were also held 

responsible for collecting the duration of a given training session, as previously defined. 

The ITL was recorded manually on paper and later organized on an electronic master 

dataset. Data was de-identified when analyzing the data at the end of each season.  

 

Statistical Analysis 

This was an observational study that examined the relationships between jump-

landing biomechanics, in-season metrics of quantifying intensity (absolute and relative 

ITL) and incident of injury. Multiple statistical analyses were run to answer the research 

questions proposed.  

 

Research Question 1 

How do relative (ACWR) and absolute (total weekly sum) internal training loads change 

during an NCAA Division I men’s collegiate soccer season?    

 

Separate one-way repeated measure ANOVA were used to examine potential 

differences in absolute and relative ITL experienced by collegiate soccer athletes among 
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the early-, mid-, and late-season segments. Post-hoc comparisons will be run when 

appropriate to determine the location of statistically significant findings. Alpha level was 

set to .05. 

  

Research Question 2 

Do NCAA Division I male collegiate soccer players with good versus poor movement 

quality exhibit varying relative (ACWR) and absolute (total weekly sum) internal training 

loads during their season? 

 

Separate two-way repeated measure ANOVA were used to determine significant 

difference between good and poor movers during season segments. For both absolute and 

relative ITL, the within-subject variable used was time. The between-subject factor was 

movement quality group, as previously defined. Post-hoc comparisons will be run when 

appropriate to determine the location of statistically significant findings. Alpha level was 

set to .05. 

 

Research Question 3 

Does the proportion of NCAA Division I male collegiate soccer players that incur an 

early-season low back or lower extremity injury differ significantly between those with 

good versus poor movement quality? 
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A Pearson’s chi-square analysis was run between movement quality group and 

injury status (injured or healthy) in the early season segment. A significance level of 0.05 

was used.  

 

Research Question 4  

Does the proportion of NCAA Division I male collegiate soccer players that incur an 

early-season low back or lower extremity injury differ significantly between those with 

and without a high (>1.5) relative internal training loads (ACWR)? 

 

A Pearson’s chi-square was run between ACWR group and injury status (injured 

or healthy) in the early-season segment. A significance level of 0.05 was used. For group, 

athletes that exhibited an ACWR greater than or equal to 1.50 at least once during the 

early-season were placed in the high ACWR group. An athlete whose ACWR during the 

early-season never exceeded 1.49 was placed in the low ACWR group. 
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Table 3.1. Participant Demographic Information 

  n Height (m) Weight (kg) Age (yrs) LESS Score Injured Non-Injured 

Fall 2016 23 1.82 ± .07 75.65 ± 8.22 19.70 ± 1.33 5.57 ± 1.83 15 8 

Fall 2017 29 1.80 ± .04 75.82 ± 5.20 19.72 ± 1.31 4.79 ± 1.50 17 12 

Combined 52 1.81 ± .06 75.74 ± 6.64 19.71 ± 1.30 5.13 ± 1.68 32 20 
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Figure 3.1. The modified Borg’s Scale of Perceived Exertion used to collect the sRPE.  
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CHAPTER IV 
RESULTS 

 

Research Question 1 

How do relative (ACWR) and absolute (total weekly sum) internal training loads change 

during an NCAA Division I men’s collegiate soccer season?    

 

A Mauchly's Test of Sphericity demonstrated no significant departure from 

normality in the absolute ITL load data were (p=0.695).  Analysis of absolute and relative 

ITL across parts of season took place using a one-way repeated measures ANOVA. 

Differences were noted over time between the early- and mid-season (p < .001), early- 

and late-season (p < .001), and mid- and late-season average absolute TL (p < .001). The 

ACWR was normally distributed (p = 0.605) but the ACWR did not differ across the 

season segments (F(2, 90)=0.367, p =.694). The average ACWR and average weekly 

absolute TL for the combined two seasons are displayed in Figure 4.1 and Table 4.1.   

 

Research Question 2 

Do NCAA Division I male collegiate soccer players with good versus poor movement 

quality exhibit varying relative (ACWR) and absolute (total weekly sum) internal training 

loads during their season? 
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The majority of participants were considered poor movers (n=29, mean LESS 

score= 6.13 ± 1.24) while the remaining 18 participants were good movers (mean LESS 

score= 3.39±0.70). Analysis of absolute and relative ITL across parts of season between 

the two groups took place using a two-way mixed measure ANOVA. Absolute TL were 

normally distributed (p=0.821) and differed over time (F(2 90 =48.978, between the early- 

and mid-season (p < .001), early- and late-season (p < .001), and mid- and late-season 

average absolute TL (p < .001). A group main effect was not present (F(1,45)=0.889, 

p=0.351), and no Group x Time interaction was found (F(2,90) =1.773, p=.176). The 

ACWR also was normally distributed (p=0.752).  No Time (F(2,88)=0.558, p=0.574) or 

Group (F(1,44)=1.573, p=0.216) main effect were identified.  Similarly, no Group x Time 

interaction was identified (F(2,88)=1.834, p=0.166).  Figure 4.2 and Figure 4.3 illustrate 

group by time breakdowns while Table 4.2 displays the descriptive data.  

 

Research Question 3 

Does the proportion of NCAA Division I male collegiate soccer players that incur an 

early-season low back or lower extremity injury differ significantly between those with 

good versus poor movement quality? 

 

A total of 16 first-time injuries occurred during the early part of each of the two-

seasons, which represents 50% of all observed injuries.  While the majority of the early 

season injuries (n=11, 68.75%) where sustained by poor movers, the proportion of good 

verses bad movers who sustained an early-season injury did not differ (p=0.598). Figure 

4.4 illustrates the breakdown of injuries based on movement quality during the early-
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season segment. In the early part of the season, 11 poor movers (33.33% of poor movers) 

sustained a lower extremity or low back injury, relative to 5 good movers (26.32% of 

good movers). A breakdown of the injuries that occurred throughout the two seasons are 

included in Table 4.3. 

 

Research Question 4 

Does the proportion of NCAA Division I male collegiate soccer players that incur an 

early-season low back or lower extremity injury differ significantly between those with 

and without a high (>1.5) relative internal training loads (ACWR)? 

 

In early-season (week-1 through week-6), one healthy player (out of a total 34) 

had an ACWR that was greater than or equal to 1.5 relative to zero injured players (out of 

a total of 12). This was not significantly different between the groups (p=.548). The 

Pearson’s Chi square was found to have a low cell count, indicating that it was not 

adequately powered, and thus a valid analysis was not possible at this time. Figure 4.5 

illustrates the breakdown of ACWR based on injury status during early-season.    
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Figure 4.1. The bar graph displays the weekly absolute training loads averaged across all 
players both seasons. The line graph on top displays the acute:chronic workload ratio 
averaged across all players from both seasons. Each season is broken down into 6-week 
blocks, which correspond, to  “Early-Season”, “Mid-Season” and “Late-Season”.  
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Table 4.1. Descriptive Statistics for Part of Seasons - Average Weekly Absolute Internal 
Training Loads and Average Acute Chronic Workload Ratio 

  Average Weekly Absolute TL Average ACWR 

 Weeks Mean SD n Mean SD n 

Early-Season 1-6 1747.80 536.85 46 0.78 0.25 46 
Mid-Season 7-12 1464.54 370.85 48 1.07 0.43 48 
Late-Season 13-18 1966.19 702.01 46 1.05 0.54 46 
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Figure 4.2.  Part of season relative to the average weekly absolute internal training load, 
separated by movement quality group. The blue line represents the good movers (n=18, 
LESS score ≤ 4). The red line represents the poor movers (n=29, LESS score ≥ 5).  
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Figure 4.3.  Part of season relative to the average acute:chronic workload ratio, separated 
by movement quality group. The blue line represents the good movers (n=16, LESS score 
≤ 4). The red line represents the poor movers (n=30, LESS score ≥ 5).  
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Table 4.2. Descriptive Statistics of the Part of Seasons Separated by Movement Quality 

  Average Weekly Absolute ITL Average ACWR 

  Poor Movers Good Movers Poor Movers Good Movers 

  Mean SD Mean SD Mean SD Mean SD 

Early Season 1743.07 263.46 1652.01 326.22 0.80 0.24 0.76 0.24 

Mid Season 1442.05 218.63 1480.26 165.91 1.02 0.08 1.15 0.33 

Late Season 1947.16 297.59 1833.81 231.21 1.06 0.12 1.04 0.11 
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Figure 4.4.  This bar graph displays the observed count for the Pearson’s chi square test, 
comparing the injury status between movement quality groups. The blue bars represent 
participants whose did not sustain a lower extremity or low back injury during the first 6-
weeks. The red bars represent participants who sustained at least one lower extremity or 
low back injury during the first 6-weeks. The counts for each are displayed above the 
bars. 
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Table 4.3. Lower Extremity (LE) and Low Back Injury Characteristics 
 Region 

  Acute % Overuse % Total % 
Ankle/Foot 10 9.1% 1 0.7% 11 10.0% 
Hip/Groin 6 5.5% 1 0.7% 7 6.4% 
Knee 1 0.9% 1 0.7% 2 1.8% 
Lower Leg/Achilles 0 0.0% 3 2.0% 3 2.7% 
Low Back/Pelvis 2 1.8% 3 2.0% 5 4.5% 
Thigh 3 2.7% 1 0.7% 4 3.6% 
Total 22 20.0% 10 9.1% 32 29.1% 

Diagnosis 
  Acute % Overuse % Total % 

Sprain 11 10.0% 0 0.0% 11 10.0% 
Strain 9 8.2% 3 2.7% 12 10.9% 
Tendinopathy 0 0.0% 4 3.6% 4 3.6% 
Bursitis 2 1.8% 0 0.0% 2 1.8% 
Other 0 0.0% 3 2.7% 3 2.7% 
Total 22 20.0% 10 9.1% 32 29.1% 
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Figure 4.5.  This bar graph displays the observed count for the Pearson’s chi square test, 
comparing the average acute:chronic workload ratio (ACWR) between injury status 
during the early season. The blue bars represent participants whose average ACWR 
during the first 6-weeks were  < 1.5. The red bars represent participants whose average 
ACWR during the first 6-weeks were ≥ 1.5. The counts for each are displayed above the 
bars. 
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CHAPTER V 
DISCUSSION 

 
The purpose of this investigation was to examine the associations among relative 

and absolute rates of internal training load (ITL), LE movement quality, and risk of injury 

in NCAA Division I male collegiate soccer athletes during two traditional seasons. Our 

results demonstrate significant differences in absolute internal training loads (ITL) 

between different times of season. However, we did not find an association between 

movement quality, ITL or injury risk. 

 

Research Question 1 

How do relative (ACWR) and absolute (total weekly sum) internal training loads change 

during an NCAA Division I men’s collegiate soccer season?    

 

Average weekly absolute ITL was shown to be significantly greater during both 

the early-season and late-season segments compared to mid-season. The late-season 

segment had the highest average weekly absolute ITL. This supports our hypothesis that 

training loads vary throughout a collegiate men’s soccer season and be higher in the late-

season segment, which encompasses preparation for postseason play and postseason 

tournaments. However, we did not predict higher loads in pre-season. There were no 

significant differences found between ACWR values during each part of the season. 

However, the largest values were observed during the postseason, which supports part of 

our hypothesis. 
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We began collecting ITL on the first day of pre-season summer training. Five 

weeks of ITL data are required to calculate an ACWR and examine the relative ratio from 

the most recent week to the previous month. NCAA soccer players are not required to 

report to school until just before team camp begins, meaning we were only able to 

generate an ACWR for the final two weeks of the early-season segment.  This is a 

limitation of the current investigation because variations in an athlete’s summer training 

could lead to variation in responses to the twice-daily training sessions that occur during 

the first two weeks of the early-season segment. This is particularly troublesome as the 

early-segment featured the highest injury rate with 50% of lower extremity and low-back 

injuries occurring during this segment. According to NCAA rules, Division I student-

athletes in college soccer cannot be required to participate in any team activity in the 

summer prior to the start of their official season.38 Thus, the current structure of NCAA 

collegiate soccer appears to limit the effectiveness of ACWR as a measure of training 

load during the early segment of the season.  The ability to collect any ITL data prior to 

summer camp would depend on the desire of the individual players to voluntarily collect 

and report their own training load data throughout the summer.  

 

The highest ACWRs (as denoted by the red line in Figure 4.1) were during Week 

13 and 14. The greatest absolute ITL values were also recorded during this period of 

time. The increase in ACWR was largely influenced by the spike in absolute ITL during 

the same segment. In the two consecutive seasons studied, the last match of the regular 

season was played during Week 12, giving the team eight days until their conference 

tournament. Due to a loss in the first round of the conference tournament in both seasons, 



 44 

there was a larger break prior to the start of the NCAA tournament. During these two 

weeks (Weeks 14 and 15) the length of practices increased, contributing to the increase in 

absolute ITL and subsequently the ACWR relative to the final weeks of the regular 

season. 

 

The majority of ITL and ACWR research has been performed on professional 

athletes15. In a study performed by Malone et al,13 it was determined that professional 

soccer players who experienced a 1-week absolute load of ≥1500 to ≤ 2120 AU in the 

pre-season were at significantly higher risk of injury compared to those who experienced 

less than ≤1500 AU. The average weekly absolute training load for Week 1 in our sample 

was 2325 ± 331 AU, with 100% of the current sample experiencing loads greater than 

that described in Malone et al’s study. One reason for such a drastic difference is the 

variance in season duration.  Professional soccer seasons may last nine to eleven months, 

depending on a team’s success, while NCAA seasons are < five months.  Thus, early 

peak fitness may be a much higher priority to NCAA soccer coaches.  

 

Match scheduling between professional and NCAA Division-I soccer also differs. 

In professional European soccer, competitive matches are played very frequently, with an 

average of three days recovery91 due to participation in league and various tournament 

competitions.92 In professional soccer, not all tournaments are high priority, which 

creates opportunities for a team’s top 11 players to rest in lower priority games. For the 

current sample (see Table 5.1), the fewest days between matches (3.15 ± 1.27 days) 

occurred during the mid-season segment, while the late-season segment had the most 
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days between matches (7.40 ± 3.37 days). We recognize that match scheduling 

influenced our absolute training loads.  For example, less time between games in the mid-

season segment likely led to shorter, less intense training sessions in an effort to 

maximize performance in games.  In comparison, greater time between matches in the 

late-season segment likely resulted in longer and more intense practices.  While 

speculative, this pattern does correspond with the observed patterns within the absolute 

training loads (Figure 4.1).   

 

Match congestion (i.e. scheduling) has been the focus of several previous 

investigations.92,93,94 For example, Dupont et al92 found that 3-4 days between matches 

was enough to maintain physical performance, but did not protect against injuries. 

Moreira et al94 noted that sRPE did not change during a match-congested schedule (i.e. a 

schedule with <1 day between matches) in youth soccer players.  However, decreased 

hormone levels, such as testosterone, and performance were associated with accumulated 

fatigue during such a schedule. Thus, it appears that match scheduling can have an impact 

on a variety of factors related to athlete health and performance but additional, more 

comprehensive, research is needed to understand the connections among these factors.   

 

This is the first investigation that has explored training loads in an NCAA field 

sport.  While absolute training loads differed across the season, our investigation also 

identified multiple factors, such as movement quality, which should be considered in 

future investigations.  Due to the context of many of these factors, it appears professional 

soccer training load data will not translate to NCAA student athletes playing men’s 
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soccer.  Future studies should build on our initial results using larger sample sizes in an 

effort to determine meaningful absolute training load values during the pre-season as 

measures of ACWR will not be readily available due to current NCAA rules.  Research is 

also needed to determine the effect of NCAA soccer scheduling, and coaching strategies 

related to between-match-practice intensities on ITL, performance and biomarkers of 

athlete health (e.g. hormone levels) 

 

Research Question 2 

Do NCAA Division I male collegiate soccer players with good versus poor movement 

quality exhibit varying relative (ACWR) and absolute (total weekly sum) internal training 

loads during their season? 

 

There is no available research that has examined how movement quality 

influences training load throughout a traditional season. Our results illustrated that 

movement quality did not influence either absolute or relative ITL. We hypothesized that 

poor movers (LESS score ≥5) would have higher average absolute ITL compared to good 

movers (LESS scores ≤4), and that similar trends in the relative ITL (ACWR) would be 

present.  

 

The small sample size associated with our study may have limited our ability to 

identify meaningful differences in movement quality between good and poor movers. Of 

the 47 participants analyzed, the majority were identified as poor movers (61.70%). In a 

study performed by Padua et al,38 64% of 827 athletes (age: 13.9 ± 1.8; 42% males, 58% 
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females), tested prior to the start of their season had a LESS score of ≤4, where 36% had 

a LESS score of ≥5. While this suggests that our sample may be representative of athlete 

movement quality, sex is known to influence performance and biomechanics.6,31,32,41 

Therefore, direct comparisons between the studies should be done with caution.  

 

Though not shown to be significant, poor movers in our sample may have had 

larger changes in average weekly absolute ITL across the season segments (Figure 4.2). 

For example, from the early-season to mid-season segment, poor movers had a 17% 

decrease in their average weekly absolute TL compared to good-movers who only 

experienced a 10% decrease. Similarly, from the mid-season to late-season segment, poor 

movers experienced a 35% increase in average weekly absolute ITL compared to a 24% 

increase for good movers. In studies examining Australian Rules Football players, large 

week-to-week changes of >10% or cumulative week changes of  ≥75% were found to be 

associated with increased risk of injury.95,96 Given the preliminary nature of our 

investigation and the limitation – noted previously in this section – associated with 

ACWR, future research should explore relative change in absolute training load as a 

possible indicator of injury risk in NCAA athletes, particularly for poor movers.  

Similarly, future research is needed to explore the interaction between movement quality 

and training load on fitness declines throughout an entire season.  
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Research Question 3 

Does the proportion of NCAA Division I male collegiate soccer players that incur an 

early-season low back or lower extremity injury differ significantly between those with 

good versus poor movement quality? 

 

There was no association found between movement quality and injury status 

during the early season segment. Thus, we are not able to support our hypothesis that 

athletes who are defined as poor movers (LESS score ≥5) will have a higher risk of 

sustaining a low back or lower extremity injury compared to those athletes who are 

defined as good movers (LESS scores ≤4). While the majority of the injuries during the 

early season segment (68.75%) were sustained by poor movers, the proportion of injuries 

sustained between movement groups was not statistically significant (p=0.598).  

However, the higher number of injuries sustained by poor movers suggests that a cohort 

of poor movers should be potentially targeted to improve movement and decrease their 

injury risk. 

 

The first two weeks of the early-season (Figure 4.1) segment represents a 

collegiate soccer preseason. The literature has shown that pre-season practices have a 

higher injury rate compared to the remainder of the season.4 In our study, 50% of the 

observed injuries occurred during the early-season segment. Various reasons for this 

increased injury rate have been presented, such as lack of conditioning during the time 

prior, limited time between practices that decreases potential for recovery, and increased 

length and intensity of the preseason practices compared to in-season practices.4 Table 
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5.2 presents time (minutes) and sRPE for each part of the season. For both minutes and 

sRPE, the early-season segment’s values were >20% higher than the mid-season 

segment. Our findings are consistent with the existing literature on Australian rules 

football and professional soccer players.94,96,97 Further, our data indicate that the minutes 

and sRPE from Week 1 and 2 represented 43-44% of all minutes and SRPE experienced 

during the early-season segment, which supports the hypothesis that workloads during the 

pre-season are significantly higher compared to the regular season.  

 

Padua et al found that elite level youth soccer athletes who had LESS score of ≥5 

had a greater risk (1.2% increase) of sustaining an ACL injury compared to those with a 

LESS score <5.38 Using the Functional Movement Screen (FMS) system, athletes who 

score ≤ 14 (i.e. poor movers) were also at an increased risk of injury.98 In comparison, 

Everard et al99 found no association between composite FMS score ≤14 and injury in 

male military academy cadets. Poor movement assessed via the LESS (i.e. score >5) and 

FMS scores of 1 were associated with an increased injury risk. When utilizing the LESS 

and other movement assessments, clinicians need to account for confounding factors such 

as sex,40,41 fatigue,100 and previous injury history.38  For example, Gokerler et al100 

demonstrated that fatigue immediately impairs LESS performance. Fatigue developed 

over the course of one game,101 as well as over the course of a season,102 has been 

connected to decreases in athletic performance, and increased in injury risk.24 However, 

the impact of cumulative fatigue and/or in season training on movement quality remains 

unknown.    
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Research Question 4 

Does the proportion of NCAA Division I male collegiate soccer players that incur an 

early-season low back or lower extremity injury differ significantly between those with 

and without a high (>1.5) relative internal training loads (ACWR)? 

 

In the early-season segment, one healthy player (out of 34) experienced an 

ACWR that was ≥1.5. In comparison, zero injured players (out of 12). This was not 

found to be statistically significantly (p=0.548) (Figure 4.5).  As stated previously, a large 

limitation of the ACWR in NCAA soccer student athletes is the need for five weeks of 

continuous ITL data in order to examine the relative change of the acute load (one week) 

to the chronic load (four weeks)103. This limitation greatly diminished our ability to 

identify spikes in ACWR during the early-season segment, as the ACWR was only 

calculable for the final two weeks of this segment.  

 

Blanch et al104 noted that an ACWR spike ≥1.5 increased an athlete’s risk for 

injury in cricket, rugby league and Australian rules football. Malone et al13 found that 

soccer players who did poor on pre-season fitness testing, experienced greater injury risk 

when they experienced an ACWR of ≥1.25.  The average ACWR for the early-season 

segment in our sample was 0.78 ± 0.25.  However, this should be interpreted with caution 

as the ACWR was not calculated during the first four weeks of the early season segment 

(as described above). The potentially largest spike in TL for college soccer athletes is 

during Week 1 and 2 of their season, when they begin twice-daily training sessions. 

Future research is needed to identify a measure capable of quantifying injury risk in the 
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early season within NCAA athletes given their unique constraints on reported training 

load data prior to their pre-season camp.    

 

Other Factors to Consider 

 

Mental Fatigue 

 

Different from professional athletes, collegiate players spend a majority of their 

time outside of athletics. During a traditional season in Division-I college sports, the 

NCAA limits student-athletes to a maximum of four hours per day and 20 hours per 

week.105 However, it is important to note that daily and weekly hour limitations do not 

apply during preseason practice.105 This is in addition to being enrolled in a full-time 

program, which can be between 12-18 credit hours.105 In comparison, an average 

professional soccer player spends 6-24 hours per week completing a variety of training 

sessions (i.e. standard training, weights, etc) with the remaining time being personal.  The 

additional constraints on college athletes likely play a role in their overall performance 

and have been linked to increased fatigue, specifically mental fatigue.106 

 

Mental fatigue has been documented in the literature as a cause for decreased 

sporting performance.106 In soccer specifically, mental fatigue can lead to impairments in 

performance in soccer-specific running, passing, and shooting.107 During the early-

season, athletes begin classes and they have to adapt to the new loads placed on them 

both physically with soccer, and mentally in the classroom. During the mid-season 
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segment, they are no large changes in classroom requirements; however, it is during the 

last few weeks of the late-season segment that NCAA soccer student-athletes are asked to 

both compete in post-season competitions, as well as complete finals exams. The mental 

fatigue developed during the start of school, as well as during the final weeks may be a 

confounding factor in the reasons for higher ITL during the early-season and late-season 

segments. Player fatigue due to mental activity was not directly examined in this thesis 

project, and should be considered in future investigations.  

 

Other Analysis Options 

 

There is some evidence in the literature that supports using ACWR has a means of 

monitoring athletes for injuries.14,17,19–21 However, caution needs to be considered when 

utilizing ACWR to represent TL “errors”, as some of the changes in load are due to 

uncontrollable variables, such as the demands of competition.108 Changes in ACWR do 

not directly cause an injury; rather, they increase an athlete’s risk of injury by exposing 

the athlete to potential situations, and causing change in other risk factors, such as fitness 

and fatigue.109,110  

 

Current means of calculating ACWR use the idea of rolling averages, where the 

average of one week is compare to the average of the month prior. Rolling averages do 

not account for tissue conditioning, and overlook variations in a set period of time, 

obscuring the true picture of a workload throughout a season.109,111 Other researchers 

have hypothesized using a non-linear TL model, or an exponentially weight moving 
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average (EWMA), in substitution for the current method.109 According to research by Dr. 

Menaspà’s, the traditional means of calculating an ACWR fails to explain the declining 

nature of fitness, and effects of fatigue with time.109,111 At this moment, it is unknown 

which method of calculating ACWR is more sensitive, or in combination with movement 

quality, work better to identify injury risk. However, future research should look to 

establish their comparative effectiveness.110 

 

Summary 

 

Our results demonstrate significant differences in absolute internal training loads 

(ITL) amongst different times of season. In addition, we did not find a statistically 

significant association between movement quality, ITL and injury risk. However, when 

examining the average training loads in early season, athletes who were described as poor 

movers had a higher average weekly absolute ITL (1743.07 ± 263.46 AU) compared to 

those athletes who were described as good movers (1652.01 ± 326.22 AU). In addition, 

poor movers had overall more injuries (40% more) throughout the season compared to 

good movers (Figure 5.1).  

 

Even with a majority of the team being included in the poor mover group 

(63.46%), movement quality association with training loads and injury risk presents with 

trends that warrant further research with larger sample sizes. While there is value in 

movement quality as a screening tool for injury risk, it only encompasses one aspect of 

the injury etiology model described by Windt and Gabbett.24 In training load research, 
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there is an increase needs to determine the mechanisms in changes in ITL might cause 

injury, and what intrinsic factors cause athletes to be more robust or more susceptible to 

injury.110 Movement quality has yet to be ruled out as a factor that mediates or moderates 

the relationship between TL and injury, or whether or not it is the reason WL changes or 

what causes athletes to get hurt at certain TL.24,110 
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Table 5.1. Average Days between Competition - Combined Season Averages 
  n of games Mean SD Maximum Minimum 

Early-Season 9 3.38 1.96 8 1 
Mid-Season 10 3.15 1.27 6 2 
Late-Season 5 7.40 3.37 13 5 
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Table 5.2. Total Team Average Sum of sRPE and Time for the Part of Each Season 
                             sRPE (AU) Time (Minutes) 

  Mean SD % Change Mean SD % Change 

Early Season 147.67 25.24 - 2643.24 395.14 - 

Mid Season 120.21 16.11 18.60% 2048.60 286.22 22% 

Late Season 125.91 19.15 -4.75% 2624.20 368.99 -28% 
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Figure 5.1. This bar graph displays the observed count comparing the injury status 
between movement quality groups for both seasons combined. The blue bars represent 
participants whose did not sustain a lower extremity or low back injury. The red bars 
represent participants who sustained at least one lower extremity or low back injury. The 
counts for each are displayed above the bars. 
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