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ABSTRACT 

John Douglas Calaway: GENETIC REGULATION OF EPIGENETIC PROCESSES IN 
MOUSE: DNA METHYLATION AND X CHROMOSOME INACTIVATION  

(Under the direction of Fernando Pardo-Manuel de Villena) 
 

 Epigenetics is the study of inheritance not encoded by primary DNA sequence. In 

mammals, epigenetic processes are required for proper development, gene regulation, 

chromosome function (e.g., X-chromosome inactivation (XCI)), and genome stability. 

Misregulation of epigenetic processes is typically a hallmark of disease. Epigenetic 

marks vary depending on genomic position, cell type, environment, time, sex, and even 

between individuals within a population. Genetic variation is one source of epigenetic 

variability that has only recently been appreciated. It is unknown how prevalent and to 

what extent underlying genetic variation influences epigenetic variability, and 

furthermore, how this epigenetic variability contributes to phenotypic variation within a 

population. It has been postulated that epigenetic variation between individuals may help 

solve the ‘missing heritability’ problem. 

 In an attempt to address these questions and further characterize the influence of 

genetics on epigenetics, I demonstrate that DNA sequence variation in cis affects two 

epigenetic processes, DNA methylation and XCI. In the first section, I performed a 

genome- wide allele-specific methylation survey in the mouse brain to show widespread 

loci that influence nearby DNA methylation at CpGs. These differentially methylated 

CpGs tend to reside near transcription start sites and may serve a functional role. We 

estimate that there are roughly 13,000 of these loci genome-wide. Additionally, I show 
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that these strain-specific cis-acting loci also influence a parent-of-origin differentially 

methylated region in the 3’UTR of the Actn1 gene, which suggests that genetic variation 

might also influence highly conserved imprinted regions as well. 

 In the second section, I mapped a cis-acting locus called the X-chromosome 

controlling element (Xce) that influences XCI choice in mouse. I reduced the Xce candidate 

interval to a 176 kb region located approximately 500 kb proximal to Xist. I extensively 

characterized the genetic architecture of the new candidate interval in over 300 inbred and 

wild-caught mice. I conclude that each mouse taxa examined has a different functional Xce 

allele and there is no sharing. I identified two new Xce alleles (Xcee and Xcef) that bring the 

number to six functional alleles in Mus. I propose that structural variation of segmental 

duplications within this interval explains the presence of multiple functional Xce alleles. 

 Overall these results provide new insights into the genetic regulation of epigenetic 

processes in mouse. Furthermore, this work creates a foundation for future work to 

untangle the molecular mechanisms behind differential DNA methylation and X- 

chromosome inactivation choice. 
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CHAPTER I: INTRODUCTION 

 

 Epigenetics is the study of inheritance that is not encoded by primary DNA 

sequence. It encompasses a wide-range of biological processes and involves a diverse set 

of molecular players that include DNA methylation, histone post-translational modification, 

microRNA, long non-coding RNA, and prions [5-8]. In mammals, epigenetics is required for 

a single cell to give rise to a complex, multicellular organism through dynamic regulation of 

gene expression. Furthermore, epigenetics has additional roles in determining and 

maintaining the functional architecture of genomes and chromosomes (e.g., X chromosome 

inactivation (XCI)) [9, 10]. Accordingly, aberrant epigenetic regulation is associated with 

many human diseases, including cancer [8].  

 Epigenetics is context specific and varies depending on genomic position, cell type, 

environment, time, sex, and between individuals within a population. This poses 

experimental challenges and technological obstacles that have severely hampered its study. 

Yet despite these difficulties, significant progress has been made to characterize these 

different sources of epigenetic variability and determine how they impact phenotype. To 

date, however, the majority of work has focused on characterizing epigenetics within 

different functional regions of the genome (i.e., promoters and genes) [11].  More recently, 

studies have been published that attempt to catalog cell-specific epigenetic differences [12]; 

tease apart environmental factors that influence epigenetics [13]; and characterize the 

changing epigenome with age [14, 15]. Over the past three decades, epigenetics has 
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impacted most major fields of biology including practical applications in both medicine and 1	  

agriculture [16-19]. 2	  

The genetic regulation of epigenetics 3	  

Like two sides of a coin, the functional role of mammalian genomic DNA is 4	  

incomplete without also considering its epigenetic component and vice versa. Both DNA and 5	  

epigenetic players act in concert to bring about the complex genic regulation required for 6	  

proper development and homeostasis [7]. Thus it stands to reason that changes in one may 7	  

elicit a change in the other.  Mutations in DNA sequence encoding epigenetic machinery 8	  

have drastic and obvious effects, for example, deletions of methyl transferases have 9	  

genome-wide effects on CpG methylation [20-22]. On the other hand, redundant epigenetic 10	  

mechanisms are in place to maintain the structural integrity of the genome [23, 24]. Without 11	  

such mechanisms, transposable elements would proliferate unchecked [25]. In fact, these 12	  

epigenetic mechanisms guard the genome during chromosome segregation, recombination, 13	  

and double strand break repair and are key for faithful transmission of the genome from one 14	  

generation to the next [26]. Although these examples provide evidence of the critical link 15	  

between DNA sequence and epigenetics, they do not provide insight into how changes in 16	  

underlying DNA sequence influence epigenetics. In other words, understanding the role 17	  

genetic variation plays in epigenetic variability within a population. In its broadest sense, this 18	  

work aims to investigate how DNA sequence variability impacts epigenetics by means of two 19	  

epigenetic processes: DNA methylation and XCI. Some important questions for the genetic 20	  

regulation of epigenetics are: To what extent does genetic variability within a population 21	  

influence epigenetics and impact epigenetic variability? And ultimately, what effect does 22	  

epigenetic variability have on phenotypic variability?  23	  

 In the first section (Chapters II and III), I demonstrate that differentially methylated 24	  

regions (DMRs) are determined by genetic variation in cis. The DMRs are found genome- 25	  

wide in both genic and intergenic regions.  These results suggest that the impact of local 26	  
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sequence variation on DNA methylation in the mouse is pervasive with an estimated 13,000 27	  

differentially methylation CpGs genome-wide. Furthermore, there is an enrichment of DMRs 28	  

found near transcription start sites that may indicate a functional role in differential gene 29	  

expression. Based on my results using two inbred mouse lines (129S1/SvlmJ and 30	  

PWK/PhJ) that capture only a small fraction of the genetic diversity in Mus musculus (~1/3). 31	  

I conclude that local DNA sequence variation contributes to substantial genome-wide DNA 32	  

methylation variation in mouse than previously thought [27]. However, it is clear that the 33	  

functional significance of these DMRs needs to be determined before conclusions can be 34	  

drawn regarding their contribution to true phenotype variation. I further demonstrate that 35	  

local genetic variation affects differential methylation at a maternally methylated region in 36	  

the 3’UTR of Actn1 in mouse. I show that parent-of-origin DMRs are influenced by local DNA 37	  

sequence and speculate that genetic variation within DMRs at imprinting control regions 38	  

may in fact alter expression at imprinted regions.  39	  

In the second section (Chapters IV and V), I examine the genetic regulation of XCI 40	  

choice by mapping and characterizing a cis-acting locus called the X-chromosome 41	  

controlling element (Xce). By using a combination of historical phenotyping data and new 42	  

mouse genetic resources [1, 2], I narrowed the Xce candidate interval 10-fold to a region 43	  

that lies 500 kb proximal to Xist, thereby excluding Xite, Xist, and Tsix as Xce candidates.  44	  

It is thought that Xce serves as a trans-factor binding site that determines which X 45	  

chromosome will undergo XCI, a multistep epigenetic process that functionally inactivates 46	  

an entire X chromosome [28]. I show that the new Xce candidate interval contains a series 47	  

of segmental duplications and an inversion in the C57BL/6J reference assembly. I postulate 48	  

that the different functional alleles of Xce in Mus can be explained by structural variation 49	  

within the segmentally duplicated regions.  50	  

Furthermore, I investigated the genetic architecture of the new Xce candidate interval 51	  

in over 300 individual mice, including classical and wild-derived inbred and wild-caught 52	  
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mice. I conclude that each species or subspecies of mouse appears to have its own 53	  

functional Xce allele.  XCI skewing is common in the laboratory mouse, and the degree of 54	  

XCI skewing, determined by genetics alone, might reach complete skewing in favor of one X 55	  

chromosome over another. 56	  
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CHAPTER II: GENOME-WIDE DIFFERENTIAL METHYLATION PATTERNS IN 57	  

INTERSUBSPECIFIC HYBRID MICE1 58	  

 59	  

 60	  

BACKGROUND AND INTRODUCTION 61	  

 62	  

DNA methylation is an epigenetic process that covalently binds a methyl group to a 63	  

DNA base [30].  At the molecular level, methylated DNA may affect the binding of cellular 64	  

machinery [30, 31], influence the positioning of nucleosomes [32], and even change the 65	  

shape of DNA itself [33].  There are examples of DNA methylation utilized in all three major 66	  

branches of life [34].  Mammalian DNA methylation is predominantly 5-methylcytosine within 67	  

the context of a CpG dinucleotide motif (mCpG).  5-methylcytosine does exist outside of the 68	  

CpG motif, albeit limited and primarily restricted to early development [35].  mCpG is a key 69	  

epigenetic mark that plays a critical role in development and cell differentiation [32, 36], XCI 70	  

[31, 37], tr1ansposon silencing [38], tumorigenesis [39], and overall genomic stability [40]. As 71	  

with other critical epigenetic marks, disruption of normal methylation patterns has severe 72	  

phenotypic consequences [41-43]. 73	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 The following chapter describes work done in collaboration with Dr. Hyuna Yang, Dr. Elena 

de la Casa-Esperon, Dr. David L. Aylor, Dr. Leonard McMillan, Dr. Gary A. Churchill, and Dr. 
Fernando Pardo-Manuel de Villena.  I significantly contributed to the sample preparation, design and 
implementation of molecular phenotyping assays, and data analysis.  The expression data used to 
examine DMR functionality is from a previously reported study [29].  I also significantly contributed to 
the manuscript preparation including writing and figure design. 
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DNA methylation is variable 74	  

 DNA methylation is dynamic and varies widely during development with global 75	  

changes in methylation during the pre-implantation stages [44, 45].  Changes in DNA 76	  

methylation have also been associated with aging [14, 46].  Furthermore, multiple 77	  

environmental stimuli might also lead to changes in mCpG and there is a growing interest in 78	  

the intersection of epigenetics and toxicology [13, 46].  It is well established that local 79	  

variation in methylation along chromosomes plays a significant role in functional regulation 80	  

of gene expression [47-49].  In some cases, such is XCI, gene bodies are hypermethylated 81	  

on the active X chromosome while promoter elements are hypermethylated on the inactive 82	  

X chromosome [50, 51].  Methylation is also strongly associated with genomic imprinting 83	  

and the methylation status at the same CpG in two homologous chromosomes from a single 84	  

cell may vary depending on their parent-of-origin [52].  85	  

Local DNA effects on cytosine methylation 86	  

Variation in mCpG is observed among individuals from a population [27, 53].  Studies 87	  

of monozygotic and dizygotic twins reveal that genetic variation is a major driver of mCpG 88	  

variation among individuals [15, 54-56], although there is contention of whether DNA 89	  

sequence or environmental factors play a larger role [57].  In a previous study by Schilling 90	  

and coauthors [27], C57BL/6J and BALB/cJ reciprocal F1 hybrid mice were used to detect 91	  

allele-specific methylation.  Importantly, allele-specific methylation in F1 hybrids requires cis- 92	  

acting DNA sequence or epigenetic differences (Figure 2-1).  The authors discovered that 93	  

differentially methylated regions (DMRs) are primarily genetic-driven (strain effect) and act in 94	  

cis.   Furthermore, functional analysis demonstrated that strain-specific DMRs influence 95	  

nearby gene expression levels.  In fact, their results indicate that inter-individual variation in 96	  

epigenetic marks may contribute to phenotypic variation and also help explain missing 97	  

heritability [58].  Ultimately, the identification and functional annotation of variable 98	  

methylation that is heritable would be important to understand the evolution of epigenetics 99	  
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[59, 60]. And yet, despite the increased interest in population variation of DNA CpG 100	  

methylation, the genetic regulation of epigenetics remains in its infancy. 101	  

This study aims to address some basic questions including: How prevalent is the role 102	  

that local genetic variation plays in variation of mCpG; how much mCpG variation can be 103	  

ascribed to genetic variation (strain effects) versus imprinting (parent-of-origin effects); and 104	  

is methylation variable depending on sex?  105	  

	   106	  

Figure 2-1. F1 hybrids as a tool for discovering cis-acting variants that direct DNA 107	  
methylation.  Shown is a cell from an F1 hybrid between mouse strains 129S1/SvlmJ and 108	  
PWK/PhJ.  Both parental chromosomes (blue, 129S1 and red, PWK) are exposed to the 109	  
same cellular environment that includes trans-factors.  Therefore, differential methylation 110	  
requires a cis causative variant (genetic or epigenetic) that distinguishes the two 111	  
chromosomes from one another. 112	  

113	  
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Experimental Design 113	  

Any study aimed to answer these questions will confront several early decisions that 114	  

might impact the conclusions reached including: the platform used to examine mCpG, the 115	  

selection of organism, experimental design, and tissue(s) and/or developmental stage.  In 116	  

the following paragraphs we briefly outline the rationale behind our choices.   117	  

 Ideally, one would like to select a platform that estimates quantitative methylation at 118	  

individual CpGs within a large dynamic range in an allele-specific manner.  This latter 119	  

requirement is critical to partition methylation levels according the genotype and the parent- 120	  

of-origin that requires the presence of a closely linked informative variant to the 121	  

corresponding CpG. The platform would interrogate as many CpGs as possible evenly 122	  

distributed across the genome, and residing within or near functional elements.  Lastly, the 123	  

platform would be cost effective to allow the analysis of many biological replicates.   A 124	  

technique was developed that satisfies many of these requirements called Methylation- 125	  

sensitive Single Nucleotide Polymorphism analysis (MSNP) [53, 61].  MSNP was described 126	  

and applied to Affymetrix human genotyping arrays that use endonucleases to fragment 127	  

genomic DNA followed by PCR amplification of those fragments to create a genomic library.  128	  

MSNP exploits the amplification step by first introducing a methylation-sensitive 129	  

endonuclease digestion.  To determine allele-specific methylation, this method compares 130	  

buffer treated samples to HpaII treated samples and looks for SNPs that shift from 131	  

heterozygosity to homozygosity in favor of the methylated allele [61].  Additionally, MspI 132	  

digestion is used a positive control.  Our laboratory has developed a high-density Affymetrix 133	  

genotyping array for the mouse, the Mouse Diversity Array (MDA) [62].  The MDA is 134	  

particularly well suited to extend MSNP to the mouse because of the high density and 135	  

uniform distribution of SNP probes sets (>600K) that target the genetic variation of 136	  

laboratory mouse stocks [1].  MDA has the added value of the presence of over 900K exon 137	  

probes that cover known transcribed regions of the genome.  Although we cannot link allele- 138	  
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specific information to these probes, we can estimate the level of mCpG associated with 139	  

these genomic targets. 140	  

 141	  

 142	  

Mouse as a model for the genetic regulation of cytosine methylation 143	  

Given our focus on mammalian epigenetics, the mouse is an obvious model 144	  

organism.  An often-cited advantage of the laboratory mouse is the availability of a large 145	  

collection of well-characterized inbred strains with a wide range of genetic diversity in pair 146	  

wise comparisons.  By crossing two inbred strains, researchers can generate the desired 147	  

number of reciprocal F1 hybrids that for the autosomes only differ in the parental origin of 148	  

each pair of homologues.  The ability of replicate genomes can be combined with 149	  
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Figure 2-2.  Experimental design.  Panel A shows the breeding scheme to generate the 
mice used in this study.  Blue bars and red bars represent 129S1 and PWK genomes, 
respectively.  The order of the colored bars in the F1 progeny denotes the parent-of-
origin, maternal on the left and paternal on the right.  The sex of the progeny is listed to 
the left of the colored bars. Panel B shows each MSNP experimental condition and the 
predicted outcome.  The example shown is a PWK-specific methylated CpG near an A/T 
SNP. 
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environmental control to facilitate the characterization of the genetic contribution to mCpG 150	  

variability.  Reciprocal F1 hybrid mice are particularly attractive as experimental subjects 151	  

because heterozygous SNPs between the two parental strains can be utilized to tag allele- 152	  

specific methylation and thus identify strain-dependent and parent-of-origin effects.  153	  

Furthermore, every strain-dependent difference in methylation identified in F1 hybrid mice 154	  

necessary requires the presence of a local (cis) causative variant between parental strains 155	  

(Figure 2-1).   156	  

Recent advances in genotyping and whole genome sequencing (WGS) [1, 2, 63] 157	  

greatly facilitates the selection of parental strains.  Using WGS and imputation, one can 158	  

select the parental strains to have the desired level and distribution of genetic variation.  On 159	  

the other hand, the known MDA genotypes of the parental strains can be leveraged to 160	  

determine the number and distribution of putatively informative CpG sites using MSNP 161	  

analysis.  Finally, these studies can be placed in the desired evolutionary context thanks to 162	  

the recent assignment of every genomic region of every laboratory strain to one of the three 163	  

major subspecies of the house mouse [1].	   164	  

 Based on these data, we selected the 129S1/SvImJ and PWK/PhJ strains to 165	  

generate reciprocal F1 hybrids.  These parental strains have been sequenced [2, 64], are 166	  

highly genetically divergent genome-wide, fully inbred, readily available, and easy to breed.  167	  

They are also of interest to the wider scientific community because of their common use and 168	  

their inclusion in new mouse resources such as the Collaborative Cross (CC) and Diversity 169	  

Outbred (DO) populations [64, 65].  It is important to note that 129S1/SvlmJ is mostly 170	  

derived from Mus musculus domesticus while PWK/PhJ is mostly derived from Mus 171	  

musculus musculus [1].  Although the F1 hybrids used in this study are unlike most mice 172	  

found in natural populations, they provide an excellent platform to determine the effect of 173	  

genetic diversity on epigenetic variation.  It is also possible to take advantage of the fraction 174	  

of the genome that originates from the minority subspecies in each parental strain to 175	  
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estimate the effect of genetic variation on methylation variation within a species.  Figure 2-2 176	  

provides detailed information about the experimental design. In contrast with the constancy 177	  

of genotype within an individual, the epigenome will vary depending on the tissue analyzed.  178	  

Here we investigate allele-specific methylation in the adult mouse brain.  We chose this 179	  

tissue because imprinting is common in the mouse brain and thus can serve as a positive 180	  

control for the identification of allele-specific methylation [66].  The fact that the brain is a 181	  

heterogeneous tissue poses some challenges but has also advantages.  Among the 182	  

advantages is the fact that by using a heterogeneous tissue, we will increase the number of 183	  

potential allele-specific and parent-of-origin CpG sites. On the negative side we may be 184	  

unable to detect cell-type specific effects because of noise.  Ideally, we would like to 185	  

investigate allele-specific methylation in every cell type within the brain, but the current cost 186	  

would be prohibitive.   187	  

 Here we demonstrate that MSNP analysis with the MDA platform is an effective 188	  

method for surveying genome-wide allele-specific mCpG.  We identified overall differences 189	  

in DNA methylation between sexes.  We discovered that strain-specific DNA methylation is 190	  

far more pervasive that parent-of-origin DNA methylation genome-wide. 191	  

 192	  
193	  
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RESULTS 193	  
 194	  

Global MSNP analysis 195	  

A brief description of the 14 biological samples and 42 Affymetrix arrays is provided 196	  

in Figure 2-2.  We classified SNP and exon probes as informative for CpG methylation by 197	  

either stringent (CCGGI probes) or liberal criteria (CCGGI + CCGGII probes) (see Materials 198	  

and Methods).  According to the liberal criteria, of the 623,054 SNP probes and 597,245 199	  

exon probes on the MDA, we identified 340,828 SNP and 465,921 exon probes as having 200	  

one or more MspI restriction sites internal to its corresponding Affymetrix amplification 201	  

fragment (Figure 2-2 and Figure 2-3).  202	  

For each probe, we defined the possible methylation status of nearby CpGs based 203	  

on intensity differences between HpaII, MspI and buffer treated samples.  We classified 204	  

each SNP and exon probe sets as partially methylated, fully methylated, and unmethylated 205	  

(see Materials and Methods).  In addition, 309,278 SNP and 418,769 exon probes sets 206	  

cannot be classified in any of these three categories and are ignored in subsequent 207	  

analyses (denoted as unclassified in Figure 2-3). We reported previously that off-target 208	  

variants within MDA probe binding sites affect hybrization performance [67].  To determine if 209	  

off-target variants influence our ability to classify SNP and exon probe sets, we compared 210	  

the number of off-target variants between the four probe classes (Table S2-1).  We found a 211	  

significant enrichment of probes with off-target variants in the unclassified methylation class.  212	  

This result suggests that our ability to assign methylation state to SNP and exon probes is 213	  

hindered by off-target variation in the probe binding site.  214	  

Among the 31,550 SNP and 47,152 exon probe sets that can be classified, 7,613 215	  

SNP and 38,185 exon probes are associated with fully methylated CpG(s), 3,337 SNP and 216	  

8,260 exon probes are associated with unmethylated CpG(s), and 497 SNP and 707 exon 217	  

probes are associated with partially methylated CpG(s).  The methylation state associated 218	  
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with SNP and exon probes was mapped back to the genome to create a global methylation 219	  

map (liberal analysis, Figure 2-4; stringent analysis, Figure S2-1).  220	  

We then tested whether there are global sex-dependent methylation differences.  221	  

Because there were four (129S1xPWK)F1 female samples, but only two (129S1xPWK)F1 222	  

male samples, we randomly chose two out of the four females to have a balanced sample 223	  

size between the two sexes.  Obviously, when female and male X chromosomes were 224	  

analyzed separately, we observed striking differences in the degree of X chromosome 225	  

methylation (Figure 2-4 and Figure S2-1).  While sex differences in X chromosome 226	  

methylation are well documented [51, 68], the existence and direction of autosomal 227	  

differences is controversial.  Therefore, we compared the number of methylated, 228	  

unmethylated, and partially methylated probes in male and female autosomes.  Overall, 229	  

females have approximately 9% higher levels of autosomal methylation (males and females 230	  

have 41,643 and 45,790 SNP and exon probes associated with fully methylated CpG(s), 231	  

respectively. p-value = 1.55e-27).  To examine the differences at a local level, we mapped 232	  

the methylation state associated with each probe set back to the genome to create sex- 233	  

specific methylation maps (Figure S2-2).  Although sex specific maps are similar, there are 234	  

areas of apparent sex-specific methylation.  For example, proximal chromosome 15 is 235	  

heavily methylated in females, but not males.  236	  

 237	  
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Figure 2-3. Classification of MDA probes according to the CpG methylation status of 
tagged HpaII sites.  This Figure shows the method used to classify the MDA SNP and exon 
probe sets into methylation-informative subsets.  The number of probe sets in each 
classification was determined by liberal analysis (CCGGI, see Materials and Methods).  
Under each classification is a simulated two-dimensional plot to illustrate the hybridization 
pattern expected for each class.  The y-axis represents the overall intensity and is used 
throughout the entire analysis. The x-axis represent the contrast between the two allelic 
probes at heterozygous SNPs and is used only in the strain and parent-of-origin classes.  
Each plot show hybridization data for a single probe set for the 14 experimental samples 
used in this study.  Each sample is represented three times according to whether they were 
subject to HpaII (maroon), MspI (light green) and buffer (black) treatments.  Circles and 
squares represent the two types of reciprocal F1 hybrids.  We assigned seven different 
colors to seven methylation classes with consistent results.  Consistently methylated CpGs 
class is green, consistently unmethylated CpGs class is purple, partially methylated CpGs 
class is orange, PWK-specific methylation class is red, 129S1 specific methylation class is 
blue, maternal specific methylation class is pink and paternal specific methylation is light 
blue.  These colors are used throughout the chapter.	  
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 238	  

Allele-specific analysis of mouse brain DNA reveals strain and parent-of-origin 239	  
differences in methylation.  240	  
 241	  
To determine the extent and localization of allele-specific methylation we restricted our 242	  

analysis to SNPs that were heterozygous in our F1 hybrids and were classified as partially 243	  

methylated in the global analysis.  These conditions ensure that our analysis focuses on the 244	  

SNPs with potential strain-specific and parent-of origin information. Of the 497 partially 245	  

Figure 2-4.  Global and allele-specific maps of methylation patterns in the mouse 
brain.  Each tick mark represents a probe set located at its corresponding chromosome 
position.  SNP and exon probes associated with fully methylated CpGs are shown in green, 
probe sets associated with unmethylated CpGs are shown in purple, and probe sets 
associated with partially methylated CpGs are shown in orange.  Results for X chromosome 
probe sets in males and females are plotted separately.  All probe sets are plotted in light 
grey. 
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methylated SNP probes, we identified 305 SNPs displaying a strain dependent methylation 246	  

patterns and 11 SNPs displaying a parent-of-origin dependent methylation patterns (Figure 247	  

2-3 and Table S2-2).  We mapped both classes of probes back to the genome to create 248	  

strain-of-origin and parent-of-origin global differential methylation maps (Figure S2-3).  One 249	  

hundred eighty-one partially methylated sites do not conform to this simple strain and 250	  

parental origin partition.  251	  

 

Table 2-1. Allele-specific DMRs. The table shows the breakdown of allele-specific DMRs 252	  
into strain, parent-of-origin, and number per chromosome.  The numbers inside parenthesis 253	  
are from the stringent analysis (CCGGI).  254	  

 255	  

Approximately half of the 305 strain dependent sites are associated with consistent 256	  

methylation of the allele of one of the parental strains while the other allele is consistently 257	  

unmethylated (i.e., 164 sites with consistent methylation of the PWK allele and 141 sites 258	  

with consistent methylation of the 129S1 allele).  As expected there is a significant deficit of 259	  

strain dependent sites on the X chromosome (see Discussion).  Both types of strain effects 260	  
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are represented in each autosome and the distribution is uniform.  To our knowledge, the 261	  

strain-dependent methylation loci have not been reported before.   262	  

 The parent-of-origin analysis identified SNPs tagging either maternal or paternal- 263	  

specific methylation (eight and three SNPs, respectively; Table S2-2).  All but two of the 264	  

SNPs associated with parent-of-origin methylation are located within or near (less 500 kb) 265	  

known clusters of imprinted genes [69-77].  The remaining two SNPs (rs32640412 and 266	  

rs32641208) tag two HpaII sites within the same Affymetrix amplicon on chromosome 12 267	  

(Figure S2-3). Although the allele-specific information is not independent, the methylation 268	  

status of the two HpaII sites must be consistent given the observed parent-of-origin effect.  269	  

These CpGs are maternally methylated and in the last intron of Actn1 that codes for a- 270	  

Actinin, a microfilament protein that interacts dynamically with Actin (see Chapter III).  Note 271	  

that the methylation statuses of the relevant HpaII sites have not been reported previously. 272	  

For example, the imprinted methylation status of the site associated with SNP rs31991512 273	  

on chromosome 7 was previously unknown. 274	  

Functional relevance of strain-specific DMRs 275	  

DNA methylation may directly or indirectly affect gene expression (i.e., by influence 276	  

the binding of transcription regulatory elements or by altering the local chromatin landscape) 277	  

[78-80].  Typically, transcription regulatory elements reside near the transcription start sites 278	  

(TSS) of genes they control.  To explore the possible functional role of the strain-specific 279	  

DMRs, we began with a simple test to determine if the strain-specific DMRs are significantly 280	  

closer to gene TSS than expected by chance.  For each of the 305 strain-specific DMRs, we 281	  

calculated the distance to the immediate proximal and distal gene TSS.  We then compared 282	  

the average of these distances to the average distance between all informative SNP probes 283	  

with at least one HpaII/MspI cut site (Figure 2-3). We rejected the null hypothesis that the 284	  

DMRs are not significantly closer to TSS than the informative SNP average (Figure 2-5A, p- 285	  

value = 1.96e-44).   286	  
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Next, we tested each of the 610 TSS for differential expression between the two 287	  

parental strains.  We used publically available eQTL data from liver expression of Pre- 288	  

Collaborative Cross mice (See Materials and Methods) [29].  Of the 610 TSS nearby 289	  

strain-specific DMRs, we found 157 of the TSS are associated with eQTLs.  We plotted the 290	  

frequency and direction of the differential expression and compared that to the frequency of 291	  

all genes with eQTLs (Figure 2-5B).  The bimodal distribution of DMRs associated with 292	  

eQTLs is similar to that of all genes with eQTLs.  293	  

Lastly, we determined if the direction of allele-specific expression was correlated to 294	  

the direction of allele-specific methylation.  To do so, we overlaid the methylation data with 295	  

the eQTL effect to determine if the methylation patterns correlated with the eQTL effect 296	  

direction (Figure 2-5C).  Of the 170 DMRs associated with eQTLs, we found all four 297	  

possible methylation and expression combinations: 43 showed high PWK methylation and 298	  

high PWK expression, 61 shows high PWK methylation and low PWK expression, 30 299	  

showed high 129S1 methylation and low 129S1 expression, and 36 showed high 129S1 300	  

methylation and high 129S1 expression (Figure 2-5D).  301	  
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Figure 2-5.  Functional analysis of strain-specific DMRs.  Panel A shows the distribution 
of distances (log10(base pairs)) between the 305 strain-specific DMRs and TSSs 
immediately proximal and distal (red histograms).  The superimposed density curve (black) is 
the distribution of distances between all MDA methylation informative SNPs (between PWK 
and 129S1) and their respective proximal and distal TSSs.  Panel B shows the distribution of 
DMRs associated with eQTLs.  The red line shows the distribution of strain-specific DMRs 
that are associated with differentially expressed genes and whether the gene is upregulated 
(positive effect) or downregulated (negative effect). The black line shows the distribution of all 
genes that are differentially expressed.  Panel C shows the distribution of the direction of 
differential methylation and the direction of differential expression.  Each circle represents a 
DMR and its color denotes the direction of methylation (blue, 129S1 and red, PWK), while its 
position on the X axis represents the eQTL effect. Panel D shows the relationship between 
methylation and expression at the 107 DMRs with nearby eQTLs.  
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DISCUSSION 302	  

 303	  

Allele-specific variation in epigenetic marks, including DNA methylation, is an 304	  

emerging field of great interest in basic biology and in the animal modeling of human 305	  

diseases.  Here we report an analysis that combines MSNP with a high-density genotyping 306	  

array in the mouse.  We identified tens of thousands of consistently methylated and 307	  

consistently unmethylated CpG sites distributed across the mouse genome (Figures 2-3 308	  

and 2-4).  Equally important, we were able to examine the relationship between genetic 309	  

variation and epigenetic variation at hundreds of partially methylated CpGs.  This extensive 310	  

new catalog of methylation status at CpG sites in laboratory mice can be mined to develop 311	  

assays to survey methylation variation during development, in different genetic backgrounds 312	  

and environmental conditions and healthy and diseased mice.  The catalog of SNP and 313	  

exon probe sets with methylation information and the CpGs tagged by them can be found on 314	  

the UNC System Genetics webpage (http://csbio.unc.edu/CCstatus/index.py) 315	  

Although we were inspired by previous reports describing MSNP in humans [53, 61], 316	  

our study has several important differences.  First, experimental design takes full advantage 317	  

of inbred mouse strains to disentangle relative contribution of sex, strain and parental origin 318	  

in a simple and elegant manner.  Second, the high density of the MDA greatly increases the 319	  

number of surveyable mCpG’s with allele-specific information.  We have also overcome 320	  

some of the limitations of previous analyses by determining methylation status based on 321	  

probe intensities instead of genotype calls.  We have shown previously that this approach 322	  

has significant advantages in phylogenetic analyses, reduction of ascertainment biases and 323	  

accuracy of haplotype reconstruction [1, 64, 67, 81].  An added advantage of intensity-based 324	  

analysis is that it can be extended to uninformative (i.e., homozygous) SNP probes and to 325	  

invariant genomic probes such as the exon probes of the MDA.  326	  
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An attractive feature of identifying allele-specific effects in F1 hybrids is that there is 327	  

an absolute requirement for strain specific variation in cis (i.e., local variation is necessary to 328	  

observed allele-specific effects, Figure 2-1).  This applies to gene expression as well as to 329	  

DNA methylation.  Thus, the work reported here provides the foundation to a genetic 330	  

approach to dissect an important epigenetic mark.  Briefly, F1 hybrids can be used to 331	  

identify strain-dependent effects but provide only a rough localization of the cis genetic 332	  

variant causative of mCpG variation.  In a second step one can take advantage of new 333	  

mouse resource populations such as the CC and DO to finely map the genetic variation 334	  

driving strain specific DMRs [64, 81].  Depending on the density of recombination, it may be 335	  

possible to localize the cis variants, propose molecular mechanisms, and identify sequence 336	  

motifs. 337	  

Despite the success of our modified MSNP approach, there is room for improvement 338	  

in two key areas: the number and type of enzyme used in the fragmentation steps prior to 339	  

library preparation and the number and type of methylation-sensitive endonuclease used to 340	  

estimate methylation levels.  With the availability of the mouse reference assembly and 341	  

whole genome sequence of commonly used laboratory strains [2, 3] a bioinformatics 342	  

approach could be used to maximize the methylation information collected, including both 343	  

presence/absence and allele-specific methylation. 344	  

Among the unanticipated conclusions reached in this study is the evidence of 345	  

female-specific global autosomal hypermethylation (Figure S2-2).  Our results are in conflict 346	  

with previous reports of hypermethylation in male autosomes [82, 83].  A possible 347	  

explanation for these discrepancies is the differences in number, location and identity of the 348	  

CpG sites surveyed.  MSNP uses SNP and exons probes to tag the methylation status at 349	  

one or a few nearby CpGs.  Therefore, each probe set provides an independent estimate of 350	  

CpG methylation at specific locations of the genome.  Overall, MDA-based MSNP targets 351	  

simultaneously thousands of localized CpGs distributed across the genome.  In contrast 352	  
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previous studies examine either only a few loci [82] or global methylation determined by 353	  

Southern blot analysis after digestion with HpaII [84].  We believe that MSNP analysis better 354	  

reflects sex-specific differences in autosomal mCpG methylation at many localized regions 355	  

of the genome.  Whether these sex-specific methylation differences can be generalized to 356	  

other conditions (for example other tissues, backgrounds and species) and whether they 357	  

contribute to explain sex-specific phenotypic differences are open questions.  Nevertheless, 358	  

these findings highlight the importance of including both sexes in epigenetic studies. 359	  

We observe a deficit of X-linked strain-specific methylation.  We expected such 360	  

results because only females can have informative SNPs on the X chromosome and 361	  

therefore, provide allele-specific information in our experimental design.  In addition, we 362	  

identify strain-specific methylation by consistent hypermethylation of one allele and 363	  

hypomethylation of the other.  However, mCpG plays a significant role in maintaining X 364	  

inactivation and therefore our analysis of X-linked mCpG is dependent on the X inactivation 365	  

status of a female [85].  Females are expected to have equal number of cells with an 366	  

inactive maternal or paternal X chromosome. However, genetic (Xce genotype), parent-of- 367	  

origin and stochastic factors can contribute to X inactivation skewing and this process is 368	  

highly variable in mouse (see Chapter IV).  Although the genetic component (Xce) in these 369	  

reciprocal crosses between 129S1 (Xcea) and PWK (Xcee, see Chapter IV) should lead to 370	  

minimal mean XCI skewing, stochastic variation and parent-of-origin effects can contribute 371	  

to large variability within genetically identical mice and significantly mask strain effects. 372	  

In this study, we identified 600 partially methylated CpGs.  In our analysis, “partially 373	  

methylated” denotes CpGs that have intermediate levels of methylation that are consistently 374	  

observed in F1 hybrids.  The number of loci subject to strain dependent effects is an order of 375	  

magnitude larger than the loci subject to parent-of-origin effects.  Of the 305 strain-specific 376	  

DMRs, 164 are PWK-specific and 141 are 129S1-specific.  This symmetry is expected 377	  

under neutral, positive and negative selection scenarios.  A strong asymmetry would require 378	  
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consistent selection over long evolutionary periods for hypermethylation in one lineage and 379	  

hypomethylation on the other lineage at many independent and uniformly distributed loci in 380	  

the genome: an unlikely scenario.  On the other hand, equal contribution to the DMRs of two 381	  

inbred strains with highly different divergence from the mouse genome reference is in sharp 382	  

contrast with the biases in strain effects found in microarray gene expression studies in 383	  

highly divergent mouse strains [86].  The differential expression biases are due to the 384	  

presence of genetic variants in the probes that preferentially reduce hybridization intensity in 385	  

the most divergent strain [67].  We avoided such artifacts by limiting our allele-specific 386	  

analysis to well performing probes that lack off target polymorphisms in the two parental 387	  

strains [67]. 388	  

An important use of our data is that they can be used to estimate the total number of 389	  

CpGs that are subject to strain-specific methylation.  Using the stringent criteria we identified 390	  

49 strain-specific autosomal differentially methylated CpGs.  Given the limitations of the 391	  

MSNP method, we surveyed only 4.9% of all HpaII cut sites or 0.37% of all CpGs genome 392	  

wide.  Extrapolating from our results, we estimate that there are ~13,000 strain-specific 393	  

differentially methylated CpGs.  We acknowledge that there are obvious limitations in our 394	  

approach including the fact that only two inbred strains have been surveyed (and more 395	  

importantly only two of the three major house mouse subspecies) and that we require a high 396	  

threshold to declare a CpG site subject to strain specific effects.  We also have only 397	  

analyzed a single tissue and developmental time.  Nonetheless this estimate is remarkable 398	  

because it predicts that strain effects on epigenetic variation is as prevalent as strain effects 399	  

in gene expression even after accounting for the high correlation in methylation status 400	  

between consecutive CpGs expected (Figure S2-3).   401	  

We tested the functional relevance of the strain-specific DMRs by using three 402	  

different analyses.  In mouse, CpG islands typically reside near TSS of genes they control 403	  

[87, 88]. We therefore first determined the distribution of distances between known TSS and 404	  
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the strain specific DMRs (Figure 2-5A).  We found that there are more differentially 405	  

methylated CpGs located near transcription start sites than expected by chance.  406	  

To further investigate the possible functional roles of the strain-specific DMRs, we 407	  

analyzed the correlation between the DMRs and differentially expressed genes.  We found 408	  

that 28.1% (170 of 604 tested) of the DMRs are located near transcripts with differential 409	  

gene expression between 129S1 and PWK.  This percentage is only slightly higher than 410	  

expected given the total number of differentially expressed genes compared to total genes 411	  

expressed (23.3%, p-value of 0.006).  One possible explanation for the low correlation 412	  

between DMR and differential gene expression is the tissue type used.  The MSNP 413	  

experiment utilized genomic DNA extracted from whole brain, while the expression data was 414	  

generated from 129S1xPWK F1 liver.   Though the mismatch between tissue types is not 415	  

ideal, the small number of DMRs that are associated with differentially expressed transcripts 416	  

may represent DMRs that are consistent between all tissue types.  These DMRs would likely 417	  

represent epigenetic marks established very early during development, before tissue lineage 418	  

was specified.  Nevertheless, future experiments should have matching methylation and 419	  

expression data in order to draw significant conclusions about DMR effects on nearby gene 420	  

expression. 421	  

MATERIALS AND METHODS 422	  

Mice and tissues 423	  

Mice from the two parental strains (129S1/SvImJ, and PWK/PhJ) were originally 424	  

obtained from The Jackson Laboratory.  They were bred at UNC-Chapel Hill for multiple 425	  

generations and interbred to generate reciprocal F1 hybrids.  Mice were euthanized at eight- 426	  

weeks of age and the right-hemispheres of the brain were dissected.  All procedures were 427	  

conducted in accordance with NIH guidelines for the care and use of experimental animals 428	  

and based on protocols approved by the Institutional Animal Care and Use Committee of 429	  

UNC-Chapel Hill.  430	  
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Mouse Diversity Array (MDA) processing  431	  

Genomic DNA was purified from tissues according to a standard protocol of 432	  

phenol/chloroform extraction followed by ethanol precipitation.  Each genomic DNA sample 433	  

was divided into three separate restriction digestion reactions containing HpaII, MspI, or 434	  

reaction buffer only.  For each reaction, 2.5 µg of DNA was digested in a total volume of 100 435	  

µl for three hours at 37°C, followed by heat inactivation.  Pre-digested samples were then 436	  

processed, from start to finish, according to the Affymetrix 6.0 genotyping protocol and 437	  

hybridized to the MDA [62] at the UNC Functional Genomics Core Facility.   438	  

MSNP analysis   439	  

The array intensities were normalized using MouseDivGeno [67] and intensities from 440	  

SNP and exon probe sets were used for further analysis.  We ignored probes with restriction 441	  

fragments longer than 2 kb because they yield a weak signal.  For each probe set, we 442	  

determined the number of MspI restriction sites (CCGG) internal to the corresponding NspI 443	  

or StyI restriction fragment and classified probe sets with one as CCGGI.  Probe sets with 444	  

more than one MspI site were classified as CCGGII.  Note that CCGGI includes cases 445	  

where there is one common MspI site in both StyI and NspI, and also cases where the StyI 446	  

(NspI) fragment has one MpsI site and the length of NspI (StyI) fragment is longer than 2 kb.  447	  

We used t-statistics to test whether any of the three digestion reactions conditions (no 448	  

enzyme, HpaII and MspI) lead to differences in mean intensity level at each probe set.  449	  

Since the number of probe sets is large and the sample size is small, we used the t-test with 450	  

shrinkage variance, implemented in R/maanova [89].  Using a p-value of 10-10, which 451	  

corresponds to a false discovery rate (q-value) of 10-7 after multiple test correction we tested 452	  

three hypotheses for each probe set:  453	  

i) Intensities from buffer condition > HpaII condition > MspI condition.   454	  

ii) Intensities from buffer condition = HpaII condition > MspI condition. 455	  

iii) Intensities from buffer condition > HpaII condition = MspI condition. 456	  
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We denoted SNP or exon probe sets that reject first, second and third hypothesis as 457	  

partially methylated, fully methylated, and unmethylated probe sets, respectively.  458	  

To test strain or parent-of-origin specific methylation, we restricted the analysis to 118,154 459	  

SNP probe sets, for which the genotypes of our F1 mice were heterozygous.  These 460	  

genotypes were obtained from the consensus call based on twelve undigested F1 samples 461	  

and also predicted the genotype of F1 hybrids based on the genotypes of parental strains 462	  

[1].  We evaluated the contrast between intensities for the two allelic probes at each 463	  

informative SNP tagging partially methylated CpGs.  In buffer treated F1 samples, both 464	  

alleles are expected to have similar intensities and the contrast to be near zero (Figure 2-3, 465	  

black circles and squares).  To identify allelic effects we tested whether the contrast 466	  

between the alternative alleles at each informative SNP probe set deviates from zero after 467	  

HpaII treatment.  This test is analogous to the logic employed by Kerkel et al. and Yuan et 468	  

al. with the advantage of using probe intensity data directly.  If the contrast deviated from 469	  

zero and the direction in both reciprocal crosses was consistent we classified this probe set 470	  

as strain specific methylation.  If the contrast deviated from zero and the direction in both 471	  

reciprocal crosses was opposite we classified this probe set as parent-of-origin dependent 472	  

methylation.  We used a t-test with p-value 0.01, equivalent to false discovery rate 0.05 and 473	  

silhouette score 0.5. Figure S2-5 provides the contrast plots for a subset of the 305 SNPs 474	  

with strain and parent-of-origin effect.  All sequence analyses are based on the mouse 475	  

genome assembly mm9, NCBI Build 37.   476	  

Expression analysis 477	  

To determine significant differential PWK and 129S1 expression, we analyzed 478	  

previously reported expression quantitative trait locus (eQTL) data [29].  Briefly, mRNA was 479	  

extracted from livers of 15-week-old Pre-Collaborative Cross mice and processed for 480	  

hybridization to the Affymetrix GeneChip Mouse Gene 1.0 ST Array.  Allele effects were 481	  

estimated using partial correlation coefficients. 482	  
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SUPPORTING MATERIAL 483	  

 484	  
Figure S2-1. Global map of methylation patterns in the mouse brain according to 485	  
stringent criteria.  SNP and exon probes tagged to: fully methylated CpGs are shown in 486	  
green, fully unmethylated CpGs are shown in purple, and partially methylated CpGs are 487	  
shown in orange.  Results for X chromosome probe sets in males and females are plotted 488	  
separately.  All probe sets are plotted in light grey. 489	  
 490	  
 491	  
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 492	  
Figure S2-2.  Sex-specific methylation map.  Each tick mark represents a probe set 493	  
located at its corresponding chromosome position.  SNP and exon probes associated with 494	  
fully methylated CpGs are shown in dark green (male) or light green (female), probe sets 495	  
associated with unmethylated CpGs are shown in dark purple (male) or light purple (female), 496	  
and probe sets associated with partially methylated CpGs are shown in dark orange (male) 497	  
or light orange (female). 498	  
 499	  
 500	  
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Figure S2-3.  Strain-specific and parent-of-origin methylation map. The Figure shows 
partially methylated SNP probe sets with consistent allele-specific results.  SNP probe sets 
associated with strain-specific CpG methylation are shown on top of each chromosome 
while SNP probe sets with parent-of-origin methylation are shown below each chromosome.  
SNPs tagging PWK-specific methylation class are shown in red, SNPs tagging 129S1 
specific methylation class are shown in blue, maternal specific methylation are shown pink 
and paternal specific methylation are shown in light blue.  Locations of known clusters of 
imprinted genes are shown in black. 
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Figure S2-4. Pairwise comparisons of sex-specific methylation.  Each panel 
compares male and female SNP and exon probes sets associated with partially 
methylated (A), methylated (B), and unmethylated (C) CpGs. 
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	   502	  
 504	  
 506	  
 508	  
 510	  
 512	  

 514	  
 516	  

518	  

Figure S2-5.  Contrast plot for SNP probes tagging strain-specific and parent-
of origin differentially methylated CpGs.  The y-axis represents the total 
hybridization intensity (probe A + probe B).  The x-axis represents the contrast in 
probes (A-B)/(A+B).  Samples treated with buffer only are black, HpaII treated are 
green, and MspI are blue.  	  
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 519	  

 520	  
 521	  
Table S2-1. Contingency table with off-target SNP probes.  Shown is the number of 522	  
observed and expected off-target variants that may interfere with probe binding [67]. 523	  
 524	  

 525	  
Table S2-2. Parent-of-origin table. Shown are the 11 SNPs that are associated with 526	  
parent-of-origin methylation. 527	  
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CHAPTER III: INTRONIC PARENT-OF-ORIGIN DEPENDENT DIFFERENTIAL 528	  

METHYLATION AT THE ACTN1 GENE IS CONSERVED IN RODENTS BUT IS NOT 529	  

ASSOCIATED WITH IMPRINTED EXPRESSION2 530	  

 531	  

RESULTS 532	  
 533	  

A Novel Actn1 DMR has Preferential Maternal Methylation in Diverse Mouse Tissue 534	  

 In a previous study, we performed a genome-wide methylation study of the mouse 535	  

brain DNA by methylation-sensitive single nucleotide polymorphism (MSNP) analysis 536	  

(Calaway et al. u2npublished results, Chapter II).  This analysis was applied to brain DNA of 537	  

F1 offspring of reciprocal crosses between 129S1 and PWK mice. Our study identified a 538	  

novel parent-of-origin dependent DMR associated with two SNPs, rs32640412 and 539	  

rs32641208, located in a CpG island and in the last intron of the Actn1 gene (Figure 3-1A).  540	  

Maternal-specific methylation of this DMR was confirmed by methylation-sensitive restriction 541	  

fragment length polymorphism (MS-RFLP) analysis (Calaway et al. unpublished results, 542	  

Chapter II).  543	  

 544	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2  The following chapter describes work done in collaboration with Jose Ignacio Dominguez, 
Megan E. Hanson, Ezequiel C. Cambranis, Dr. Fernando Pardo-Manuel de Villena, and Dr. Elena de 
la Casa-Esperon. The purpose of this study was to further characterize a parent-of-origin DMR 
discovered in the 3’UTR of the Actn1 gene from the genome-wide survey described in Chapter II.  
We quantified parent-of-origin and strain-specific methylation and attempted to determine the general 
size of the DMR.  Furthermore, we explored the possible functions of the DMR by measuring 
expression of Actn1 and surrounding genes. We found no allelic imbalance at the Actn1 gene or any 
nearby surrounding genes in seven different tissue types.  I significantly contributed to sample 
preparation, design and implementation of molecular assays, and data analysis.  I contributed to the 
writing of the manuscript, and the figures were of my design (with the exception of Figures 3-3 and 3-
4).  These results have been published in PLoS One (Calaway et al. 2012). 
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In this study, we have expanded the methylation analysis of the Actn1 gene. First, we 545	  

examined whether the Actn1 DMR occurs in tissues other than brain. Genomic DNA isolated 546	  

from whole brain, kidney, liver, spleen, testis, tail, and femoral muscle from four 547	  

(PWK×129S1)F1 mice and four (129S1×PWK)F1 mice were subjected to MS-RFLP. In this 548	  

technique, restriction digestion with methylation-sensitive endonucleases is performed prior 549	  

to PCR amplification of the region under our study; consequently, only methylated restriction 550	  

sites are preserved and, thus, amplified. In order to determine the methylation status of each 551	  

allele, an additional digestion was performed after PCR and before electrophoresis with 552	  

strain-specific endonucleases StyI (which only digests the PWK allele) or AhdI (specific for 553	  

the 129S1 allele) (Figure 3-1A). Depending on the direction of the cross, the percent 554	  

methylated maternal allele or paternal allele was calculated by the ratio of relative fragment 555	  

densities of either StyI (PWK) or AhdI (129S1) digestions (see Materials and Methods). 556	  

Both methylation measurements were correlated for each of the three methylation-sensitive 557	  

enzymes used: BsaAI, EagI and HpaII (Figure S3-1). Examples of BsaAI MS-RFLP results 558	  

for liver are shown in Figure 3-1B. Figure 3-1C represents the percent maternal methylation 559	  

at a single CpG internal to the BsaAI cut site (chr12:81,269,613 (m37), Figure 3-1A) in 560	  

diverse tissues. We observed that differential methylation at Actn1 is not unique to brain. 561	  

Similar results were obtained for both EagI and HpaII digestions (Figure S3-2). 562	  

 563	  
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Figure 3-1. Maternal methylation of a novel DMR at the Actn1 gene in diverse mouse 
tissues.  (A) A detailed map of the novel maternal Actn1 DMR is shown in the lower part. 
The diagram directly above shows the design for the MS-RFLP and bisulfite sequencing 
validation assays. Also included in this diagram are the locations of the methylation-
sensitive enzyme restriction sites tested with MS-RFLP (BsaAI, EagI and HpaII), the strain-
specific cut sites (AhdI (present in 129S1 but not in PWK, due to SNP rs32640406) and StyI 
(present in PWK but not in 129S1, due to SNP rs32640412)), and the strain-specific 
resulting restriction fragments (see Methods).  (B) MS-RFLP results of four mouse liver 
samples. The matrix above the gel shows the different conditions for each individual lane.  
The plus sign (+) indicates addition, while the minus sign (-) indicated no addition of each 
corresponding endonuclease.  (C) Percent maternal methylation of an individual CpG 
(targeted by the BsaAI endonuclease) within different tissues. Circles represent individual 
(PWKx129S1)F1 mice, while triangles represent individual (129S1xPWK)F1 mice. Horizontal 
bars represent percent maternal methylation averages.	  

 564	  

Moreover, we observed differences in the mean percent maternal methylation at the 565	  

BsaAI CpG site between tissue types (Figure 3-1C). Pair wise t-tests revealed significant 566	  

differences in the percent maternal methylation between tail and other tissues (α <0.05 in 567	  

both types of F1 mice, Table S3-1). In addition, a two-factor ANOVA test identified 568	  

statistically significant differences not only between tissue types (F = 16.733, p-value = 569	  

7.639•10−10), but also between reciprocal F1 hybrids (F = 20.413, p-value = 4.821•10−5). 570	  
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However, the varying degree of maternal methylation between tissues is not significantly 571	  

different between reciprocal F1s. 572	  

Actn1 DMR Extent and Conservation in Murine Rodents 573	  

To determine if the Actn1 DMR is unique to mice or, on the contrary, conserved in 574	  

other mammalian species, we analyzed the orthologous regions in humans and rats. 575	  

Located distally on chromosome 12 in mouse (81,268,534-81,361,303, NCBI37/mm9), 576	  

Actn1 is orthologous with a region on rat chromosome 6 (103,187,905–103,282,948, Baylor 577	  

3.4/rn4) and human chromosome 14 (69,341,075–69,359,000, GRCh37/hg19). We 578	  

predicted the location of the human and rat orthologous DMRs based on the assumption 579	  

that they are typically associated with regions of high CpG dinucleotide density (CpG 580	  

islands) and their shores [41, 90].  We used the following criteria to define a CpG island: a 581	  

GC content greater than 50% and an observed/expected (O/E) CpG ratio greater than 0.6 582	  

over a 200 bp minimum length. Both the mouse Actn1 CpG island (27CpGs, 57.3% GC 583	  

content over 302 bp, CpG O/E 1.10) and the rat Actn1 CpG island (25CpG, 60.8% GC 584	  

content over 265 bp, CpG O/E 1.03) span most of the last exon coding region and part of 585	  

the last intron (intron 20 in reference sequences NM_134156.2 for mouse and 586	  

NM_031005.3 for rat) (Figure 3-1A). In humans, the CpG island is larger (40 CpGs, 68.2% 587	  

GC content, length 393 bp, CpG O/E 0.91) and includes a large portion of the 3′ UTR 588	  

(reference sequence NM_001102.3).  589	  

We investigated the methylation status of multiple CpG sites at the Actn1 CpG 590	  

islands of these three species by sodium bisulfite treatment followed by PCR and 591	  

sequencing analysis. (PWK×129S1)F1 mice displayed brain maternal hypermethylation and 592	  

paternal hypomethylation, while (129S1×PWK)F1 mice showed weak maternal methylation 593	  

and sporadic paternal methylation across the 19 CpG’s sequenced (Figure 3-2B).  594	  

 595	  
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Figure 3-2. Bisulfite sequencing analysis of the Actn1 DMR in mouse, rat and human 
tissues. Panel A shows bisulfite sequencing results from clones isolated from rat liver, 
mouse liver, and human hepatocytes. Each horizontal line represents a unique clone. Red 
and blue lines represent maternal and paternal parent-of-origin, respectively, based on five 
strain-specific variants. Open circles are unmethylated CpGs, while closed circles are 
methylated CpGs. Green and yellow circles shown in human hepatocyte clones represent 
variant rs11557769 and distinguish parental alleles, although parent-of-origin is unknown. 
Orthologous CpGs are connected by dotted lines (in relation to mouse). Panel B shows 
bisulfite sequencing results from clones isolated from rat right brain hemisphere (top) and 
mouse right brain hemispheres (bottom).	  

 596	  

We found similar results in mouse liver DNA (Figure 3-2A). These data indicate that 597	  

methylation at the Actn1 DMR depends both on the parental and the strain origin (the 598	  
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sequences in cis) of the CpG sites. They are also consistent with the MS-RFLP results of 599	  

(129S1×PWK)F1 mice (Figure 3-1C), which showed more methylation variability and, on 600	  

average, lower percent of maternal methylation than (PWK×129S1)F1 animals. In rat, we 601	  

were unable to identify a polymorphism for establishing a parent-of-origin anchor within the 602	  

347 bp bisulfite amplicon, due to the limited genetic diversity between available rat strains. 603	  

Nevertheless, we observed a strongly polarized population of hypermethylated or 604	  

hypomethylated bisulfite amplicons suggestive of differential methylation in both rat brain 605	  

and liver DNA (Figures 3-2A and 3-2B).  In contrast, the human ACTN1 DMR is 606	  

consistently methylated at greater than 94% (false discovery rate of 0.68%) in hepatocytes 607	  

(Figure 3-2A).  The presence of a T → A transversion (rs11557769, at position 69,341,653 608	  

(GRCh37/hg19)) allowed us to conclude that both the maternal and paternal alleles are 609	  

hypermethylated (Figure 3-2A). Therefore, in human hepatocytes, the orthologous region to 610	  

the mouse Actn1 DMR is not differentially methylated, while biased methylation is conserved 611	  

in murine rodents. 612	  

We also examined the methylation upstream and downstream of the mouse Actn1 613	  

DMR, by performing bisulfite treatment of liver DNA followed by PCR amplification of 614	  

flanking sequences. Our assay design was constrained by the scarcity of informative SNPs 615	  

between 129S1 and PWK and the profusion of homopolymers in the sequences surrounding 616	  

the DMR. Nevertheless, we generated data for one region upstream (81,270,081- 617	  

81,270,495, NCBI37/mm9) and one region downstream (81,263,196-81,263,520, 618	  

NCBI37/mm9) from our previous DMR bisulfite assay (Table S3-2 and Figure S3-3). 619	  

Comparative analysis of the results of the reciprocal crosses shows that the preferential 620	  

maternal methylation observed in the DMR does not extend to these neighboring regions 621	  

(Figure S3-3). Therefore, in mouse liver DNA, the DMR appears to be confined to the 622	  

vicinity of the last Actn1 intron. 623	  

 624	  
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Figure 3-3. Actn1 allelic expression analysis by SNuPE. A) Summary of the SNuPE 
(Single Nucleotide Primer Extension) method. B) Autoradiogram of SNuPE products after 
electrophoresis, showing biallelic expression ofActn1 in all tissues analyzed. 

 625	  

Next, we tested if the Actn1 parent-of-origin dependent DMR is associated with 626	  

imprinted expression of nearby genes. To date, there have been no reports of imprinted 627	  

expression of Actn1. To investigate if such is the case, we analyzed the expression of the 628	  

mouse gene in RNA obtained from the same tissues and F1 individuals studied for DNA 629	  

methylation purposes. In order to distinguish maternal from paternal expression, we 630	  

sequenced the Actn1 coding sequences and identified several SNPs between the 129S1 631	  

and PWK strains. The relative expression of 129S1 and PWK alleles was tested by Single 632	  

Nucleotide Primer Extension (SNuPE) at a SNP located in chr12:81269902 (m37) (Figure 3- 633	  

3) [91, 92]. In spite of the presence of the Actn1 DMR, we always observed Actn1 biallelic 634	  

expression, finding no indication of allelic expression bias in any sex, F1 or tissue type 635	  

(Figure 3-3B and Figure S3-4A). These results were validated by direct sequencing of the 636	  

cDNAs generated in the SNuPE analysis (Figure S3-4B). We also confirmed biallelic 637	  

expression of Actn1 at other SNPs (chr12:81,284,503 and chr12:81,274,013 (m37)) by 638	  

independent RT-PCR and sequencing analyses of F1 RNA samples (Table S3-3 639	  

and Figure S3-4B). 640	  

641	  
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Expression Studies of Actn1 do not Reveal Imprinting Effects 641	  

Imprinted gene expression can be restricted to specific isoforms or developmental 642	  

stages, being particularly common in placenta and embryonic tissues [58, 93-95].  In order 643	  

to test if a DMR effect on Actn1 transcription is restricted to prenatal stages, allelic 644	  

expression analysis by RT-PCR and sequencing was applied to (129S1×PWK)F1 and 645	  

(PWK×129S1)F1 E9.5 embryos and placentas of both sexes (Table S3-3).  646	  

	  

Figure 3-4. Mouse Actn1 isoforms. They result from alternative splicing of two exons at 
the 3′ end of the gene. These exons are designated SM (smooth muscle) and NM (non-
muscular) due to their homology to previously described rat alternative exons [96]. Exons 
are numerated 18–21 as on Ensembl transcript isoform ENSMUST00000021554. The 
position of the DMR in is indicated in the last intron (image not drawn at scale). 

 647	  

The results of this analysis showed no apparent allelic expression bias. We also 648	  

tested if the DMR had an imprinted expression effect restricted to any specific Actn1 649	  

isoform. In rat, three isoforms resulting from two alternatively spliced exons (NM (“non- 650	  

muscle”) and SM (“smooth muscle”) exons) have been described of this gene [96]. We 651	  

found these three Actn1 isoforms are also present in mouse (Figure 3-4). Sequencing 652	  

analysis of RT-PCR products with isoform-specific primers (Table S3-3) revealed that 653	  

expression of the three isoforms is biallelic in (129S1×PWK)F1 and (PWK×129S1)F1 adult 654	  

brain, E9.5 placentae and embryos of both sexes. Therefore, our results show that 655	  

the Actn1 parent-of-origin dependent DMR observed in F1 mice derived from PWK and 656	  

129S1 strains is not associated with Actn1 imprinted expression in any of the sexes, tissues, 657	  

developmental stages and isoforms analyzed. 658	  
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DISCUSSION 659	  

 660	  

During a genome-wide methylation study of the mouse brain DNA, we identified a 661	  

novel parent-of-origin dependent DMR in the 3′ end of the Actn1 gene (Chapter II). We have 662	  

confirmed that this intronic DMR is maternally methylated in brain of F1 individuals derived 663	  

from reciprocal crosses between 129S1 and PWK strains by MS-RFLP and bisulfite 664	  

analyses. We have extended our mouse study to a tissue panel that is representative of all 665	  

three germ layers: ectoderm (brain), mesoderm (kidney, spleen, muscle and testes) and 666	  

endoderm (liver). All examined tissues (except for the tail, a body part of mixed origin [97]) 667	  

display preferential maternal methylation of the Actn1 DMR. These results suggest that the 668	  

imprint was established very early during embryogenesis. Although this imprint persists 669	  

through subsequent differentiation, the extent of maternal methylation varies significantly 670	  

among tissue types, as well as between reciprocal crosses. Differences in allelic methylation 671	  

levels among tissues, as well as interindividual variation, have also been observed in other 672	  

DMRs, such as those associated with several imprinted genes [98-101]. 673	  

Traditionally, parent-of-origin dependent DMRs have been identified due to their 674	  

proximity to imprinted genes. In fact, they have been found even within imprinted gene 675	  

sequences (e.g., introns). Therefore, we examined the expression of Actn1 in the same 676	  

tissue panel as the methylation analyses. We found no indication of allelic imbalance in any 677	  

of the adult tissues examined. We also explored the possibility that imprinted expression 678	  

could be restricted to particular isoforms or to specific developmental stages (particularly 679	  

embryonic and extraembryonic tissues) [58, 93, 94]. We found three isoforms of 680	  

mouse Actn1 that result from alternative splicing of two alternative exons. Nevertheless, 681	  

none of them showed allelic expression bias in adult brain, E9.5 embryos or E9.5 placentas 682	  

of both reciprocal crosses and sexes. Therefore, our results do not support an association of 683	  

parent-of-origin dependent methylation at Actn1 with imprinted expression of the same 684	  
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gene. However, we cannot exclude the possibility that such imprinting could be restricted to 685	  

a very specific cell type and/or developmental stage that have not been captured by our 686	  

study. 687	  

We also tested if the DMR is involved in the imprinted expression of the next closest 688	  

transcripts: AK037382 and Zfp36l1, which are overlapping and close to the 3′ end of Actn1, 689	  

respectively, as well as Dcaf5 (Wdr22), a gene near to the 5′ end of Actn1 (see Materials 690	  

and Methods). However, we did not detect imprinted expression of these genes in any of 691	  

the adult and embryonic mouse tissues analyzed (data not shown). In fact, the closest 692	  

known imprinted genes are located as far as 29 Mb apart in the Dlk1-Dio3 cluster 693	  

(http://www.mousebook.org/catalog.php?catalog=imprinting). 694	  

From these results, we conclude that parent-of-origin dependent DMRs can be 695	  

uncoupled from imprinted expression effects on nearby genes and, therefore, they are not 696	  

perfect predictors of imprinted expression of genes located in their immediate proximity. This 697	  

has important implications for large-scale searches for novel imprinted genes through the 698	  

identification of parent-of-origin dependent epigenetic marks. In fact, recent genome-wide 699	  

studies have also revealed the existence of novel parent-of-origin dependent DMRs outside 700	  

known imprinted regions [102-105]. Although deeper analyses have allowed the association 701	  

of several of these DMRs with imprinted genes, the role of other DMRs remains unclear. 702	  

Some are located within introns (as the Actn1 DMR), while others are in intergenic regions 703	  

and far from gene sequences [103]. 704	  

We have gone a step further and interrogated if the Actn1 DMR is an oddity unique 705	  

to the mice used in our study (i.e., intersubspecific hybrids [1]), or if it is also present in other 706	  

species. We have found that, while orthologous Actn1 CpG islands exist in other mammals, 707	  

differential methylation is conserved in murine rodents (mouse and rat) but absent in 708	  

humans. Our findings open an interesting question: can parent-of-origin dependent DMRs 709	  

have been evolutionarily selected due to a functional role other than imprinted expression 710	  
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regulation? In other words: is the regulation of imprinted expression the only function of 711	  

these DMRs? Several evidences indicate that DMRs and imprinted gene expression do not 712	  

always go hand in hand. Within species, uncoupling of DMRs from imprinted expression can 713	  

occur even in those typically associated with imprinted genes: for instance, paternal 714	  

methylation of the imprinting control region of the Rasgrf1 gene has been observed even in 715	  

those tissues in which this gene is biallelically expressed [106]. This suggests that certain 716	  

parent-of-origin dependent DMRs may have been selected for imprinting regulation and 717	  

retained in all tissues throughout development, although imprinted expression would require 718	  

tissue-specific factors in addition to differential methylation [107]. However, these selective 719	  

pressures would be insufficient for the existence of other class of DMRs: those that are 720	  

associated to imprinted expression in some species but not others. Such is the case of 721	  

DMRs of the IGF2R gene, which is a gene that is imprinted in mice but not humans, while 722	  

parent-of-origin differential methylation is present in both species [108-110]. Our finding 723	  

adds an additional twist: DMR conservation in murine rodents in the absence of imprinted 724	  

expression evidence. 725	  

A simple explanation for the Actn1 DMR murine conservation is selection due to its 726	  

necessary contribution to the regulation of chromosomal functions other than imprinted 727	  

expression. In sexually reproducing organisms, parent-of-origin dependent epigenetic 728	  

differences have been associated to phenomena as diverse as chromosome segregation or 729	  

elimination and can affect replication, recombination and heterochromatinization of 730	  

chromosomes in many sexually reproducing organisms [111, 112]. They have also been 731	  

proposed to contribute to meiotic pairing and recombination and to DNA repair [111, 112]. 732	  

From this broad perspective, large-scale studies of differentially methylated regions have the 733	  

potential to unveil not only new imprinted genes, but also novel parent-of-origin dependent 734	  

phenomena. 735	  

 736	  
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MATERIALS AND METHODS 737	  

 738	  

Mouse Lines and Samples 739	  

 Two mouse strains were obtained from the Jackson Laboratory: 129S1/SvImJ 740	  

(abbreviated 129S1) and PWK/PhJ (abbreviated PWK). For MS-RFLP and expression 741	  

analyses, we collected whole-brain, kidneys, spleen, liver, testes, femoral muscle, and tail 742	  

from two female and two male (129S1xPWK)F1 mice, as well as two female and two male 743	  

(PWKx129S1)F1 mice at 6-weeks of age. In all crosses, dams are listed first and sires last. 744	  

Additionally, we isolated whole brain and liver from a 45-day-old, male Sprague Dawley rat 745	  

(Harlan). Dissected tissues were immediately frozen in liquid nitrogen and DNA and RNA 746	  

were extracted according to standard procedures. Expression studies were also performed 747	  

in RNA extracted from pooled E9.5 whole embryos and from E9.5 placentas: two female 748	  

and two male (129S1xPWK)F1 pools and two female and two male (PWKx129S1)F1 pools. 749	  

All procedures were conducted in accordance with NIH guidelines for the care and use of 750	  

experimental animals and based on protocols approved by the Institutional Animal Care and 751	  

Use Committee of UNC-Chapel Hill. Human hepatocytes, harvested from subjects with 752	  

various causes of death, were purchased from ADMET Technologies, Inc. (Durham, NC, 753	  

USA). 754	  

Methylation-Sensitive Restriction Fragment Length Polymorphism (MS-RFLP) 755	  

Analysis 756	  

 Genomic DNA was first digested with EcoRI (New England Biolabs) to reduce 757	  

structural complexity and ensure that the restriction site is accessible to subsequent 758	  

endonucleases digestions [113]. Samples were then either digested with methylation- 759	  

sensitive enzymes BsaAI, EagI, HpaII (NEB), or mock treated (buffer only). The cut sites of 760	  

BsaAI, EagI and HpaII include one or more of the CpGs targeted for PCR amplification. 761	  

Methylation-sensitive digested samples were then PCR amplified using a RFLP forward 762	  
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primer and a RFLP reverse primer, and radiolabeled dCTP (Figure 3-1A and Table S3-2). 763	  

PCR products were digested with either 129S1-specific StyI, PWK-specific AhdI, or mock 764	  

treated. Samples were electrophoresed through 5% acrylamide denaturing gel and 765	  

visualized by X-ray film. 766	  

 For allelic ratio quantitation, X-ray films were scanned (Epson) and the Tiff images 767	  

were imported into ImageJ [114] for densitometry. We arbitrarily named the undigested 768	  

RFLP amplicon, “A” (542 bp); the fragment generated by AhdI digestion, “B” (497 bp); the 769	  

larger fragment from StyI digestion, “C” (350 bp); and the smaller StyI fragment, “D” (192 bp) 770	  

(Figure 3-1A). The relative amount of each parental allele was determined by the ratio of 771	  

the sum of the absolute density of allele-specific fragments (Figure S3-5) and to the total 772	  

absolute density of all bands: 773	  

 774	  

StyI digestion: methylated PWK allele = (C+D)/(A+C+D) (direct measurement) 775	  

AhdI digestion: methylated 129S1 allele = B/(A+B) (direct measurement) 776	  

 777	  

This method for calculating percent methylated parental alleles gave an inflationary result for 778	  

PWK and a deflationary result for 129S1 based on buffer-only controls. We, therefore, 779	  

created a panel with diverse ratios of PWK and 129S1 genomic DNA and digested with StyI 780	  

or AhdI to serve as a standard curve (PWK/129S1:0/100, 5/95, 25/75, 50/50, 75/25, 95/5, 781	  

100/0). This allowed us to interpolate “actual” PWK/129S1 allelic ratios from “observed” 782	  

ratios (Figure S3-5B). We normalized all RFLP densitometry measurements by applying the 783	  

respective interpolation equations.  We utilized the R environment for conducting the two- 784	  

factor ANOVA and t-tests for determining significant differences in maternal methylation 785	  

between tissues and reciprocal crosses. 786	  

787	  
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Sodium Bisulfite Sequencing 787	  

 One microgram of genomic DNA from mouse (n = 2), rat (n = 1) or human (n = 1) 788	  

tissues was treated with Zymo Research EZ DNA Methylation-Gold Kit according to the 789	  

manufacturer’s protocol. Species-specific primers were designed to flank and amplify the 790	  

bisulfite converted DMR (Table S3-2). Purified PCR products were cloned and sequenced. 791	  

The false discovery rate for methylated CpG’s was calculated by the number of unconverted 792	  

non-CpG cytosines divided by the total number of non-CpG cytosines across individual PCR 793	  

reactions. 794	  

Expression analysis 795	  

Allele-specific expression of Actn1 was analyzed by two independent methods: 796	  

sequencing or Single Nucleotide Primer Extension (SNuPE) analysis of SNPs present in RT- 797	  

PCR products. RNA of the above described mouse tissue samples was retrotranscribed 798	  

(using Actn1-specific primers), followed by PCR (Tables S3-2 and S3-3), using the 799	  

appropriate controls to avoid genomic DNA amplification. An informative SNP at position 800	  

12:81,269,902 (m37) was selected for analysis of the relative expression of alleles by Single 801	  

Nucleotide Primer Extension (SNuPE) [91, 92] (Figure 3-3). Sanger sequencing of the same 802	  

RT-PCR products was performed in order to verify the SNuPE results; Actn1 allelic 803	  

expression was determined by chromatogram inspection of three SNPs at positions 804	  

12:81,269,902, 12:81,269,896 and 12:81,269,456 (m37) (Table S3-3 and Figure S3-4B). 805	  

As additional confirmation, we performed RT-PCR of brain samples with a different set of 806	  

primers (Tables S3-2 and S3-3). The resulting products were subjected to Sanger- 807	  

sequencing to test for allelic expression at SNPs located in positions 12:81,284,503 and 808	  

12:81,274,013 (m37) (Figure S3-4B). Allelic expression analysis of Actn1 isoforms was also 809	  

performed by sequencing of RT-PCR products, using isoform-specific primers Actn1-18SM, 810	  

Actn1-NM20 and Actn1-NMSM (Figure 3-4 and Tables S3-2 and S3-3). Allelic expression 811	  

of Zfp36l1, AK037382 and Dcaf5 (Wdr22) in embryonic and adult mouse tissues was 812	  
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determined by RT-PCR (see primers in Table S3-2), followed by Sanger-sequencing and 813	  

chromatogram inspection of SNPs between 129S1 and PWK alleles described at 814	  

http://www.sanger.ac.uk/cgi-bin/modelorgs/mousegenomes/snps.pl. 815	  
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 816	  

SUPPORTING MATERIAL 817	  

 818	  

	  

Figure S3-1: Correlation of maternal and paternal allelic methylation measurements at 
the Actn1 DMR. Depending on the direction of the cross, the percent maternal methylation 
and the percent paternal methylation measurements are calculated by the ratios 
of StyI or AhdI restriction fragment densities. The direct measurements of maternal 
methylation are plotted against the direct measurements of paternal methylation for each 
individual methylation-sensitive endonuclease. Fitted line equations and R2 values are 
shown in the graph interior. 
 819	  



49	  

	  

Figure S3-2: Percent maternal methylation of Actn1 DMR based on EagI and HpaII MS-
RFLP. Box and whisker plots showing the lower quartile, median, and upper quartile of 
percent maternal methylation by cross and by tissue type determined by HpaII or EagI MS-
RFLP.	  
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Figure S3-3: Bisulfite sequencing analysis of two regions flanking the Actn1 DMR in 
mouse liver tissues. Panel A shows regions of preferential methylation investigated by 
bisulfite sequencing. Solid red lines represent sequenced regions, while dotted lines 
represent gaps in sequenced regions. Panel B shows a schematic representation of the 
positions and sizes of the regions selected for methylation analysis by bisulfite sequencing 
with respect to the location of the last two exons of Actn1 (exons 20 and 21, 
ENSMUSE00000114871 and ENSMUSE00000335764, respectively). Two regions, situated 
downstream (DNS BSP amplicon) and upstream (UPS BSP amplicon) of the region in which 
we observed differential methylation (BSP amplicon) (Figure 3-2), were selected for bisulfite 
sequencing analysis and the results are shown below the schematic. Each horizontal line 
represents a unique clone. Red and blue marks symbolize maternal and paternal alleles, 
respectively, of strain-specific variants. Open circles represent unmethylated CpGs, while 
closed circles are methylated CpGs. 
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Figure S3-4: Allelic expression analyses of Actn1 in diverse mouse tissues shows 
biallelic expression. A) Results of SNuPE analyses of Actn1 RNA of adult tissues of 2 
females and 2 males of each cross, expressed as average proportion of 129S1 allele ± S.D. 
B) Examples of Actn1 cDNA sequence analysis at two polymorphisms.	  

 820	  
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	  	   821	  
	   822	  
Figure S3-5: Actn1 DMR analysis by RFLP. Panel A shows a sample gel displaying DNA 823	  
fragments resulting from RFLP analysis of the Actn1 DMR. The undigested amplicon is 824	  
arbitrarily named fragment A (542 bp). StyI digestion of this amplicon yields fragments C 825	  
(350 bp) and D (192 bp). AhdI digestion yields fragment B (497 bp). A smaller, 45 bp 826	  
fragment is generated from the AhdI digestion but migrates with free αP32-dCTP and, 827	  
therefore, was not included in the data analysis. Panel B shows a plot of artificially created 828	  
PWK/129S1 allelic ratios for the analysis of MS-RFLP data of Actn1 DMR. The X- and Y- 829	  
axes are the fraction of expected and observed methylated parental alleles, respectively. 830	  
Also shown are the polynomial interpolation equations used to normalize the observed 831	  
allelic ratios. 832	  
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Table S3-1: Pair wise t-tests of percent maternal methylation at the Actn1 DMR between 
tissues. Shown are the p-values (α<0.05)	  

 833	  
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Table S3-2: List of primers used in the MS-RFLP (RFLP-), Bisulfite-PCR (BSP-), RT-PCR 
and sequencing or SNuPE (Snu-) analyses.	  

 834	  
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Table S3-3: Summary of Actn1 allelic expression analyses performed (see Table S3-2 for 
primer sequences) 

 835	  
  836	  
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CHAPTER IV: GENETIC ARCHITECTURE OF SKEWED X INACTIVATION CHOICE IN 837	  

THE LABORATORY MOUSE3 838	  

 839	  

BACKGROUND AND INTRODUCTION 840	  

 Mammals have a female XX (homogametic) and male XY (heterogametic) allosomal 841	  

complement.  It is postulated that the X and Y chromosomes originated from a common 842	  

autosomal ancestor that over time have diverged both in gene content and structure [117, 843	  

118].  So much so, that the Y chromosome is one-tenth the physical size of the X 844	  

chromosome and contains 20-fold fewer genes.  Without a means to compensate for the 845	  

unequal number of X chromosomes, males and females would have drastically different 846	  

transcription levels for X-linked genes.  Mammalian females undergo a dosage 847	  

compensation mechanism called X chromosome inactivation (XCI) that restricts expression 848	  

to one parental X chromosome per cell.  This balances X-linked gene expression between 849	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  The following chapter describes work done in collaboration with Dr. Alan B. Lenarcic, John P. 
Didion, Dr. Jeremy R. Wang, Dr. Jeremy B. Searle, Dr. Leonard McMillan, Dr. William Valdar and Dr. 
Fernando Pardo-Manuel de Villena.  The aim of these experiments was to fine map Xce, investigate 
the haplotype diversity of our new Xce candidate interval in species and subspecies of Mus and Mus 
musculus, and characterize the refined Xce candidate interval.  I conducted the mouse breeding (with 
the exception of the crosses reported previously [115, 116]), sample preparation, and the design and 
implementation of the pyrosequencing assays.  I significantly contributed to the manuscript writing 
and the figures were of my design (with the exception of Figure 4-2).  These results and a portion of 
the introduction were published in PLoS Genetics (Calaway et al. 2013). Figure 4-1 is from an 
unpublished study currently under review (Crowley et al. submitted).  I was involved in the mouse 
dissections and sample preparation, RNAseq library preparation, and I provided input into the X 
chromosome inactivation portion of the manuscript including Supporting Figure design.  This work 
was done in collaboration with James J Crowley, Vasyl Zhabotynsky, Wei Sun, Shunping Huang, Isa 
Kemal Pakatci, Yunjung Kim, Jeremy R Wang, Andrew P Morgan, David L Aylor, Zaining Yun, 
Timothy A Bell, Ryan J Buus, Mark E Calaway, John P Didion, Terry J Gooch, Stephanie D Hansen, 
Nashiya N Robinson, Ginger D Shaw, Jason S Spence, Corey R Quackenbush, Cordelia J Barrick, 
Yuying Xie, Dr. William Valdar, Alan B Lenarcic, Wei Wang, Catherine E Welsh, Chen3-Ping Fu, 
Zhaojun Zhang, James Holt, Zhishan Guo, David W Threadgill, Lisa M Tarantino, Darla R Miller, Fei 
Zou, Leonard McMillan, Patrick F Sullivan, Fernando Pardo-Manuel de Villena.	  
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males and females (Figure 4-1A).  To compensate for the hemizygous state of the X 850	  

chromosome, it was postulated by Ohno in 1967 that the X chromosome evolved to 851	  

upregulate expression 2-fold to match the expression levels of the autosomes [118].  Figure 852	  

4-1B demonstrates that X-linked genes are indeed expressed at twice the level of 853	  

autosomal genes. 854	  

X chromosome inactivation (XCI): a paradigm of genetic-epigenetic regulation 855	  

 For simplicity, the XCI process may be divided into five discrete steps or stages: 856	  

counting/sensing, choice, initiation, spreading and maintenance.  The latter three stages  857	  

 

Figure 4-1: Global analysis of X inactivation and dosage compensation.  Panel A 
shows mean expression values for each gene on the X chromosome for males (n=39) 
versus females (n=51). The 1:1 linear relationship indicates that, as expected, inactivation of 
one X in females creates roughly equivalent expression levels between the sexes. Panel B: 
For each of 90 animals, a distribution of gene expression levels was generated for 
autosomal and X chromosome genes separately. These distributions were then plotted 
against each other as shown, with one line per animal. The result was a roughly 1:1 
relationship in the levels of expression from the autosomes and X chromosome. These 
results support Ohno’s hypothesis that X-linked genes are expressed at roughly two times 
the level of autosomal genes [118]. 



58	  

have been the subject of intense study over the past two and a half decades [9], while the 858	  

mechanisms and molecular players of the first and second stages of XCI (counting/sensing 859	  

and choice) remain elusive to this day. This is largely due to technical and biological 860	  

challenges associated with the initial stages of XCI process. 861	  

 Sensing/counting and choice occur early during development within a small 862	  

timeframe (in mouse, random choice is initiated between embryonic days (E) 5.5-6.3 [119, 863	  

120]).  This poses technical challenges for isolating embryos: 1) without contamination with 864	  

extraembryonic or maternal tissue, 2) at the correct developmental time point, and 3) with 865	  

enough tissue for molecular study. Embryonic stem cells (ES) and induced pluripotent stem 866	  

cell lines (iPS) have been used to address some of these problems.  However, care must be 867	  

taken to ensure that cultured ES and iPS cells do not have gross karyotypic abnormalities 868	  

[121]. 869	  

The XCI process is regulated by a locus called the X-inactivation center (Xic) that 870	  

resides near the center of the X chromosome (100.3 Mb, NCBI37/mm9) and is required for 871	  

the initiation and spreading of XCI in cis [122].  The inactivation of one X chromosome is 872	  

preceded by upregulation of a long non-coding RNA called the X-inactive specific transcript 873	  

(Xist) [123, 124].  Xist coats the X chromosome from which it was transcribed and elicits a 874	  

wave of epigenetic reprogramming including DNA methylation [37] and histone post- 875	  

translational modifications [9, 10, 85].  It is these epigenetic changes and not Xist that 876	  

ultimately maintain the inactive X chromosome state [125].  The active and inactive X 877	  

chromosomes are morphologically distinguishable with the inactive X physically condensed 878	  

(facultative heterochromatinized) [85], and devoid of any evidence of transcription 879	  

demonstrated by a lack of RNA polymerase II association [126].  880	  

Before Xist expression, two critical steps must occur.  First, the cell must ‘sense’ its 881	  

sex and ‘count’ the number of X chromosomes.  And secondly, if female, it must ‘choose’ to 882	  

inactivate all but one parental X chromosome.  There have been a few models proposed 883	  
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over the years to explain the sensing and counting mechanism that include blocking factors 884	  

that originate from the autosomes or X chromosomes [28], two-factor blocking [127], the 885	  

sensing and counting mechanism [128], the stochastic model [129], and the feedback loop 886	  

model [130].  The counting mechanism requires communication between the autosomes 887	  

and X chromosomes demonstrated by the relative number of active X chromosomes in 888	  

human and rabbit triploid and tetraploid cells [131-133].  The apparent interconnection 889	  

between the sensing and counting mechanisms alludes to a common regulatory pathway.   890	  

XCI choice 891	  

The choice of which parental X chromosome undergoes XCI occurs within the 892	  

developmental timeframe of E5.5-E6.3 [119, 120].  In mouse, the maternal X chromosome 893	  

remains active during the preimplantation stages [134, 135], while the paternal X 894	  

chromosome is preferentially inactivated until after ~E3.5 [119].  At which time, epiblast cells 895	  

within the embryo proper reactivate the paternal X chromosome and random choice is 896	  

poised to occur [136-139].  The paternal X chromosome remains preferentially inactivated in 897	  

the extraembryonic tissues [119].  By an unknown mechanism, each cell randomly chooses 898	  

to inactivate one of the two parental X-chromosomes and then commits to that choice by 899	  

initiating a cascade of transcriptional and epigenetic regulation that modifies both 900	  

chromosomes to distinguish the future inactive X from the active X [31, 37, 140-143].  The 901	  

initial choice each epiblast cell makes is preserved and transmitted mitotically to all its 902	  

daughter cells [144].  As a result, each female is a unique mosaic of somatic cells that 903	  

express either the maternally or paternally derived X chromosome.  The degree of 904	  

mosaicism (overall ratio and spatial distribution of cells) is determined by the initial number 905	  

of cells that undergo independent choice, by the developmental fate of each epiblast cell 906	  

and its multiplication rate.  907	  

908	  
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Genetics of XCI choice: The X chromosome controlling element (Xce) 908	  

The role of genetics in XCI choice was initially discovered by skewed XCI ratios in 909	  

female hybrids between certain stocks derived from classical inbred mouse strains.  These 910	  

female hybrids, on average, preferentially inactivated one X chromosome over the other in a 911	  

strain dependent manner [145, 146].  The effect was later mapped to a single location on 912	  

the X chromosome and given the name X-chromosome controlling element (Xce) for its role 913	  

in XCI choice [147].  Since its initial discovery, four functional alleles of Xce have been 914	  

characterized in Mus inbred strains, (Xcea, Xceb, Xcec and Xced ) and are distinguished by 915	  

their relative resistance or susceptibility to inactivation [145, 148-153].  The four Xce alleles 916	  

form an allelic series of XCI skewing, the magnitude and direction of which depends on the 917	  

Xce genotype of the female.  Furthermore, XCI skewing is only observed in Xce 918	  

heterozygotes while female homozygotes display no preference towards inactivating either 919	  

parental X chromosome [154]. The order of Xce allele strength is Xcea < Xceb < Xcec < Xced 920	  

(Figure 4-2A).  In other words, in female heterozygotes the X chromosome carrying the 921	  

stronger Xce allele has a higher probability of remaining active and thus, these females will 922	  

have a larger number of cells with that X chromosome active (Figure 4-2B).  From a genetic 923	  

standpoint, alleles at Xce are overdominant and therefore Xce acts in cis.  924	  
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Figure 4-2. The Xce allelic series.  Panel (A) shows the order of Xce allele strength. Panel 
(B) shows hypothetical distribution and mean XCI ratio skewing in female populations that 
are either homozygous or heterozygous for Xce alleles. 

 925	  

Xce has been mapped within a 1.85 Mb candidate interval that overlaps with the 926	  

current definition of the X inactivation center (Xic) which includes three long non-coding 927	  

RNAs Xist, Tsix and Xite that play major roles in murine XCI [155].  It has been postulated 928	  

that the Xce allelic series can be explained by genetic variation within these long non-coding 929	  

RNAs, specifically Xite [156].  An alternative hypothesis is that XCI choice is controlled by X- 930	  

linked and autosomal dosage factors [157-159] and thus Xce would serve as a binding site 931	  

for a trans-acting factor(s) that influences Tsix or Xist expression [158-161].  Nonetheless, 932	  

the identity of Xce remains unknown. This is in part due to the technical challenges of 933	  
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measuring XCI choice and to the relatively high level of stochastic variation in XCI in 934	  

isogenic female populations, which together make it difficult to infer with certainty the Xce 935	  

allele present in an individual female (Figure 4-2B).  Mapping Xce is further complicated by 936	  

the comparatively low recombination rate of the X chromosome and the fact that only 937	  

females are informative for the phenotype. 938	  

Parent-of-origin effects, autosomal modifiers and secondary skewing 939	  

Although Xce is the major locus controlling XCI choice, previous studies have 940	  

demonstrated that parent-of-origin and autosomal factors significantly influence XCI choice 941	  

[148, 149, 162-164].  A large mapping experiment identified suggestive loci on five 942	  

autosomes but none reached genome–wide significance [155].  The parent-of-origin effect 943	  

was first described by Forrester and Ansell in 1985 as a difference in XCI skewing 944	  

depending on whether the Xcec allele was maternally or paternally inherited in Xcec/b 945	  

heterozygotes.  The evidence available at the time, however, could not discriminate among 946	  

Xce, another X-linked locus or autosomal loci.  A more recent study provided additional 947	  

evidence of a parent-of-origin effect and postulated that its cause could be Xce itself or 948	  

epigenetic differences of one or more X-linked loci [163].  The same study showed an 949	  

increased variance in XCI skewing in F2 females heterozygous for the same combination of 950	  

Xce alleles as F1 hybrids, indicating the existence of autosomal factors that influence XCI 951	  

choice [163].  A more recent study used mouse lines with recombinant X chromosomes 952	  

derived from two genetically divergent mouse inbred strains (129S1/SvlmJ and CAST/EiJ) to 953	  

show that multiple regions along the X chromosome influence XCI choice, but was unable to 954	  

map any of them, including Xce [165].   955	  

Lastly, there are well-documented cases of secondary XCI skewing that influence the 956	  

XCI patterns observed in adults [166-168].  Secondary skewing occurs when an X linked 957	  

mutation impacts cell survival or proliferation. 958	  

959	  
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Challenges of mapping Xce 959	  

Technical issues associated with measuring XCI choice further complicate the 960	  

identification Xce.  A well-established surrogate for XCI choice is X-linked allele-specific 961	  

gene expression.  Nonetheless, gene expression in a female mouse can be influenced by 962	  

many factors in addition to XCI choice itself.  And thus, it is important to carefully choose X- 963	  

linked genes that most accurately reflect the true ratio of XCI while minimizing the presence 964	  

of misleading factors such as differential expression due to cis-acting regulatory variants, 965	  

tissue-specific skewing, or XCI escape.  As a general rule, estimation of XCI skewing 966	  

improves with the number of X-linked genes used. 967	  

In this study, we developed an approach that overcomes major challenges of 968	  

mapping Xce.  Our approach is based on association mapping of XCI skewing phenotypes 969	  

in classical inbred strains that have recently been genotyped at very high density [1] or had 970	  

their genome sequenced (whole genome sequence, WGS) [3].  Our analysis was restricted 971	  

to the previously defined candidate interval [155] and generated a new candidate interval of 972	  

much smaller size.  By generating multiple F1 hybrid females between inbred strains we 973	  

accurately determined the mean and the variance in XCI ratio within genetically identical 974	  

mice.  We also generated reciprocal crosses to determine the parent-of-origin effects.  975	  

Lastly, we performed these analyses in multiple tissues and thus determined whether tissue 976	  

choice had an effect on the estimation of skewing of XCI.  In order to analyze the X-linked 977	  

expression phenotype data we developed a hierarchical Bayesian model and inference 978	  

procedure that allows to us to estimate both the mean and the variability of XCI within an 979	  

individual female or female population.  We extended our phenotyping to wild-derived inbred 980	  

strains with different haplotypes of known subspecific origin [1], and used these data to 981	  

reconstruct the evolutionary history of the Xce locus itself.  982	  

983	  
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RESULTS 983	  
 984	  
Association mapping based on public data narrows the Xce candidate interval to 194 985	  
kb 986	  
 987	  
 In our initial approach to reduce the candidate interval we first identified a subset of 988	  

inbred mouse strains that had both a known Xce allele and high-density genotype [1] or 989	  

sequence data [2] available.  Over the past four decades, several inbred mouse strains have 990	  

been phenotyped for XCI skewing and these strains include representatives of each one of 991	  

the four known Xce alleles (Figure 4-3).  At the Xce candidate interval defined by Chadwick 992	  

and coworkers (2006), referred hereafter as the Chadwick interval, these strains have 993	  

haplotypes derived from two different Mus species, Mus spretus and Mus musculus, and 994	  

two subspecies of the latter, M. m. castaneus and M. m. domesticus [1].  Two strains, 995	  

CAST/EiJ and SPRET/EiJ, cannot be used to refine the candidate interval using single locus 996	  

association mapping techniques because they are singletons for both an Xce allele and the 997	  

specific or subspecific origin (Figure 4-3).  The remaining 25 strains are almost evenly 998	  

distributed between Xcea and Xceb carriers and all have a M. m. domesticus haplotype in the 999	  

candidate interval [1]. Furthermore, all of them are classical inbred strains descended from a 1000	  

small pool of founders and thus it is reasonable to assume that they share by descent the 1001	  

same causative genetic variant for their differences in Xce alleles.  Eleven of these strains 1002	  

(or a closely related sister strain) have been genotyped at high density and eight have been 1003	  

sequenced [1, 2].  Importantly, both alleles are represented among genotyped and 1004	  

sequenced strains (Xcea, seven genotyped and five sequenced strains and Xceb, four 1005	  

genotyped and three sequenced strains, Figure 4-3).  1006	  
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Figure 4-3. Inbred mouse strains with known Xce phenotype and their phylogenetic 
relationship.  Shown is a phylogenetic tree that reflects the sequence divergence within the 
Chadwick candidate interval for inbred mouse strains with known Xce alleles.  Inbred strains 
with a number one superscript have both MDA and Sanger sequencing information 
available, while mouse strains with a number two superscript have only MDA genotype data 
available.  Inbred strains with no number are assumed to have identical genotypes to a 
closely related strain that has been genotyped. Blue and green shading denotes the 
subspecific origin of the Chadwick interval for each strain (M. m. domesticus and M. m. 
castaneus, respectively). 
 1007	  

 For every SNP and indel present within the Chadwick interval, we determined the 1008	  

pattern of allelic similarities and differences among the subset of inbred strains with known 1009	  

Xce alleles (Strain Distribution Pattern, SDP: Figure S4-1) [67, 169].  SDPs were then 1010	  

classified into three categories based on consistency between phenotype and genotype: 1) 1011	  

fully consistent with the Xce phenotype (black tick marks), 2) inconsistent with the Xce 1012	  

phenotype (red tick marks), or 3) partially consistent (gray tick marks) (Figure 4-4 and 1013	  

Table S4-1). We focused our association analysis within the Chadwick interval, which is 1014	  

based on genetic mapping in populations segregating for the Xcea, Xceb, and Xcec alleles.   1015	  
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 Analysis of Mouse Diversity Array (MDA, [62]) genotypes and sequence data shows 1016	  

an enrichment of consistent SDPs (eight MDA SNPs, 120 Sanger SNPs and indels) at an 1017	  

194 kb interval spanning from rs29082048 to Sanger Mouse Genomes Project (SMGP) SNP 1018	  

position at 100,119,750 bp (Table S4-1).  This interval does not contain any inconsistent 1019	  

SNPs.  In addition, there are 23 SNPs with consistent SDPs randomly distributed throughout 1020	  

the distal portion of the Chadwick candidate interval (Figure 4-4).  These SNPs do not 1021	  

cluster and this region is punctuated with inconsistent SNPs.  1022	  

	   1023	  

Figure 4-4: The Xce candidate interval based on historical data.  Shown is a physical 1024	  
map that shows the locations of the previous Xce candidate intervals [155, 170].  Below the 1025	  
historical candidate intervals are the results of the SDP analyses using inbred strains 1026	  
selected from Panel A (See Methods).  Tick marks represent SDPs classified as consistent 1027	  
(black), inconsistent (red), and partially consistent (gray).  SNPs that retain consistent SDPs 1028	  
after inclusion of ALS/LtJ, LEWES/EiJ, PERA/EiJ, SJL/J, TIRANO/EiJ, WSB/EiJ, and 1029	  
ZALENDE/EiJ in the analysis are shown as blue tick marks above consistent SDPs. Our 1030	  
new maximum candidate interval is shown in gray below the tick marks.  The minimum 1031	  
candidate interval is shown in black, while regions excluded are shown in red. 1032	  
  1033	  

We conclude that the minimum Xce candidate interval is located approximately 558 1034	  

kb proximal to Xist (note that the maximum Xce candidate interval based on this analysis 1035	  

spans from inconsistent SMGP-SNP at position 99,091,507 bp to inconsistent SMGP-indel 1036	  

at 100,460,107 bp).  Within this candidate interval all phenotyped strains with the Xcea allele 1037	  

share the same haplotype and all strains with the Xceb allele share a different haplotype 1038	  

based on MDA genotypes. 1039	  
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XCI skewing in experimental F1 hybrids derived from inbred strains within unknown 1040	  
Xce. 1041	  
 1042	  

Our ability to reduce further the Xce candidate interval depended on the number of 1043	  

inbred strains with known Xce allele and high-density genotype data available. Ideally we 1044	  

would like to phenotype inbred strains that have Xcea and Xceb recombinant haplotypes in 1045	  

the candidate interval. Furthermore, we would like to characterize the Xce alleles of 1046	  

additional M. m. domesticus strains with haplotypes that are not associated with known Xce 1047	  

allele carriers. These strains will provide additional information about Xce functional diversity 1048	  

within M. m. domesticus and depending on their Xce phenotype, may further refine the Xce 1049	  

candidate interval. We selected three strains with Xcea/b recombinant haplotypes ALS/LtJ, 1050	  

SJL/J and WLA/Pas because of their availability and their ability to refine further the new 1051	  

candidate interval. Based on phylogenetic analysis of the new candidate interval (See 1052	  

Methods), we selected six wild-derived inbred strains, PERA/EiJ, TIRANO/EiJ, 1053	  

ZALENDE/EiJ, LEWES/EiJ, and WSB/EiJ to represent each of the major haplotypes present 1054	  

in M. m. domesticus (with the exception of b3 which has only been observed in wild mice). 1055	  

We selected PWK/PhJ to characterize the Xce allele in a third M. musculus subspecies, M. 1056	  

m. musculus. We selected WSB/EiJ and PWK/PhJ because they are wild-derived strains 1057	  

of M. m. domesticus and M. m. musculus origin, they have available whole genome 1058	  

sequence [2] and they are founder strains in mouse genetic resources such as the CC [81] 1059	  

and DO [64]. Finally, we selected PANCEVO/EiJ to characterize the Xce allele present in a 1060	  

third species of mouse, Mus spicilegus. A summary of the justification for selecting each 1061	  

mouse strain and the information it provided towards mapping Xce is provided in Table S4- 1062	  

2. 1063	  

To determine which Xce allele is present in each strain, we generated genetically 1064	  

defined F1 female hybrids by crossing the unknown strain to inbred strains with well- 1065	  

characterized Xce alleles: Xcea, A/J and 129S1/SvImJ; Xceb, C57BL/6J; and Xcec, 1066	  
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CAST/EiJ. To estimate the presence, direction and extent of XCI skewing in each F1 hybrid 1067	  

female, we developed highly quantitative pyrosequencing assays and measured allele- 1068	  

specific X-linked gene expression (see Methods). On average, for each strain with an 1069	  

unknown Xce allele, we tested allele-specific expression in 69 F1 females (ranging from 40 1070	  

to 120 females per strain, Table S4-3). 1071	  

To analyze and integrate the X-linked expression data set, we developed a 1072	  

hierarchical Bayesian model and inference procedure. The method is described briefly in the 1073	  

Methods section, and full description will be reported elsewhere [171]. Briefly, our model 1074	  

parameterizes gene-tissue bias and precision, parent-of-origin effects, and genetic 1075	  

background effects (strain) to account for gross sources of uncertainty and error associated 1076	  

with our XCI phenotyping method. This allows us to combine the different gene 1077	  

measurements and tissues from individual females and establish a mean XCI ratio 1078	  

(see Materials and Methods) for a given cross. 1079	  

For each F1 cross, we tested whether the two parental strains carry the 1080	  

same Xce allele.  Figure 4-5 shows the gene expression data (panel A) and posterior mean 1081	  

and confidence intervals inferred from it (Panel B) for the SJL/J F1 crosses performed. The 1082	  

posteriors in Panel B estimate the mean inactivation proportion associated with each cross. 1083	  

They show where and how posterior probability for the underlying cross mean is 1084	  

concentrated on the scale of 0 (representing full maternal inactivation) to 1 (representing full 1085	  

paternal inactivation), with 0.5 indicating a cross average of about 50% paternal and 1086	  

maternal X-inactivation. By choosing regions of 95% posterior coverage, we see that the 1087	  

data allows us to measure mean X inactivation proportions accurately within 7.7% (+/−5%), 1088	  

placing for instance, the (SJL/JxCAST/EiJ)F1 firmly to the left of 50%, around 33.6% of cells 1089	  

with an active SJL/J X chromosome. As a rule, when a distribution shows a strong bias, in 1090	  

other words, when most of the posterior is concentrated on one side of 0.5 boundary, we 1091	  

use this as evidence to conclude that the two strains involved the cross have functionally 1092	  
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different Xce alleles. To quantify this bias, we used the tail posterior probability (i.e., the 1093	  

amount of posterior probability that lies on the side of 0.5 line, Figure 4-5C. These tail 1094	  

probabilities are like p-values and their small values strongly support the presence of 1095	  

skewed XCI. 1096	  

 Using this approach, we conclude that seven inbred strains, ALS/LtJ, SJL/J, 1097	  

LEWES/EiJ, PERA/EiJ, TIRANO/EiJ, WSB/EiJ and ZALENDE/EiJ carry an Xceb allele 1098	  

(Figure 4-5 and Figure S4-3). The M. m. musculus strain, PWK/PhJ has a new allele, 1099	  

named herein Xcee. Within the allelic series, the strength of this new allele falls 1100	  

between Xcea and Xceb (Figure 4-2A). Finally, PANCEVO/EiJ has an allele that is similar in 1101	  

strength to Xcea (Figure S4-3). The results for the WLA/Pas strain are inconclusive and will 1102	  

be discussed later. 1103	  

Incorporation of the ALS/LtJ and SJL/J strains to our association mapping further 1104	  

reduced the proximal boundary of the new Xce candidate interval by 9.6 kb. Furthermore, by 1105	  

including ALS/LtJ, SJL/J, LEWES/EiJ, PERA/EiJ, TIRANO/EiJ, WSB/EiJ and ZALENDE/EiJ 1106	  

into our SDP analysis, we reduced the number of SNPs with consistent SDPs within 1107	  

the Xce interval to 69 and further reduced the proximal boundary by 8.2 kb (Figure 4-4B, 1108	  

blue tick marks and Table S3-4). The minimum refined Xce candidate interval is bounded by 1109	  

SMGP-SNPs at positions 99,943,259 bp and 100,119,750 bp. 1110	  

Outside of the refined candidate interval but within the Chadwick interval only 14 1111	  

SNPs (WGS and MDA data) have consistent SDPs (Table S4-4). These SNPs (highlighted 1112	  

blue in Figure 4-4) do not cluster and are interspersed with SNPs with inconsistent SDPs. 1113	  

Lastly, only three SNPs on the entire X chromosome (rs29079362, rs13483921 and 1114	  

rs29081860) outside of the Chadwick interval have SDPs consistent with the Xce alleles.  1115	  
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Analysis of the Xce Candidate Interval Reveals a Set of Segmental Duplications 1116	  
Associated with Each Functional Xce Allele 1117	  
 1118	  

After phenotyping of the additional strains, the minimum candidate interval spans 1119	  

176 kb and its size and relative position with respect to the Xic does not change in the latest 1120	  

mouse genome assembly (GrCm38/mm10). The final interval contains five protein coding 1121	  

genes, six pseudogenes, and three novel rRNAs. The G+C content is elevated compared to 1122	  

the X chromosome average (44% versus 39%, respectively [172]). Repeat masker 1123	  

Figure 4-5: Allelic imbalance in selected female F1 hybrids.  Panel A is a plot of the 
allele-specific expression data from F1 hybrids, where each colored letter represents an 
individual gene measurement from brain (“b”), kidney (“k”), and liver (“v”) from an 
individual female. Panel B is a plot of the posterior mean and 95% credibility intervals for 
XCI fraction inferred for each genetic cross, based on our statistical model. Throughout, 
the x-axis reports the fraction of X-linked allele-specific expression from the strain with 
the unknown Xce allele. The color of each letter (on the right) and each corresponding 
posterior (on the left) denote the known Xce allele to which it is paired: black Xcea; 
blue Xceb and red Xcec. Panel C shows the inbred strains phenotyped for Xce, the 
strains each were crossed to, the total number of F1 females tested and the Xce alleles 
excluded and included based on posterior tail probabilities. 
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[173] identified 50 LINEs and 60 SINEs as well as 194 other DNA features such as LTRs 1124	  

and regions of low complexity. However, the most dramatic feature is the presence of a set 1125	  

of tandem duplications and inversion (Figure 4-6A). The NCBI37/mm9 (and the 1126	  

GrCm38/mm10) reference assembly contains four tandem duplications and one inversion 1127	  

herein referred as segmental duplication (SD) 1 (99,909,337–99,942,773 bp), SD2 1128	  

(99,940,942–99,961,388 bp), SD3 (99,959,575–100,013,166 bp), SD4 (100,013,346– 1129	  

100,035,061 bp), and inversion (I) 5 (100,040,370–100,084,982 bp) (Figure 4-6A). The 1130	  

average size of the duplications is 35 kb, the C+G content is 45%, and they typically span 1131	  

three genes, nine LINEs and 13 SINEs. The phylogenetic tree reveals that two pairs of 1132	  

duplications (SD1 and SD2 and SD3 and I5) are relatively recent events while duplication 4 1133	  

is the oldest (Figure 4-6B). The topological arrangement of these SDs cannot be explained 1134	  

simply by a set of tandem duplications. In particular, the phylogenetic origin, location and 1135	  

orientation of SD3, SD4 and I5 requires both an inversion and a deletion after the 1136	  

duplication event of their common ancestor (Figure 4-6B). 1137	  

Because genotypes in segmental duplications are notoriously unreliable [1, 62], we 1138	  

investigated whether probes designed to track the duplications in the newly released 1139	  

MegaMUGA array (to be reported elsewhere) support our haplotype assignment and 1140	  

mapping conclusions. The MegaMUGA array was designed on Illumina's (San Diego, CA) 1141	  

Infinium BeadChips platform that consistently produces high signal-to-noise ratio compared 1142	  

to conventional hybridization based arrays as demonstrated by previous studies [174, 175]. 1143	  
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 1144	  

These probes (Figure 4-6B, C and Table S4-5) consist of standard SNPs and probes with 1145	  

off target variants (VINOs) [67, 176] in addition to probes designed specifically to target the 1146	  

five duplications within the Xce candidate interval. Haplotype inference based on probe 1147	  

hybridization has been used successfully in other mouse populations such as the CC [81, 1148	  

176]. We found a striking consistency between the haplotypes defined by nominal 1149	  

genotypes and the haplotypes based on principal component analysis (PCA) of probe 1150	  

intensities in the segmental duplications. In fact, MegaMUGA probe intensities perfectly 1151	  

partition all mouse inbred strains according to their experimentally defined Xce alleles.  1152	  

Figure 4-6. Sequence analysis of the candidate interval.  In panel A, the candidate 
interval is show as a thick black bar. Below the candidate interval is a dotplot generated 
from pairwise sequence concordance in the mm9 genome assembly. Diagonal lines 
slanting down from left to right are duplications, while diagonal lines slanting up from left 
to right are inversions. Above the dotplot are arrows that show the four duplications 
(SD1-4) and inversion (I5) identified. Panel B is a phylogenetic tree that depicts the 
relationship between the duplications. The phylogenetic tree was generated using the 
CLUSTALW2 alignment software [4]. Also shown are the ten MegaMUGA markers used 
for the PCA analysis and their positions in relation to the segmental duplications. Shown 
in panel C are probe hybridization plots for two of these markers, UNC31159403 and 
XiD2 (all plots are provided in Figure S4-2). The axes represent hybridization intensities 
for probes tracking alternative alleles at each marker. The colors correspond to the 
different functional Xce alleles: gray Xcea; blue Xceb; red Xcee; green Xcec; yellow Xced. 
Note that these plots do not agree with the expectations for standard biallelic variants. 
Typically biallelic variant plots show three distinct clusters representing homozygous A, 
homozygous B, or heterozygous A/B. 



73	  

 

This is true not only for Xcea and Xceb carriers, but also for known Xcec, Xced, Xcee, 1153	  

and Xcef carriers (Figure 4-8). We extended this approach to analyze 110 genotyped 1154	  

samples with unknown Xce alleles (Figure 4-7 and Table S4-10). Samples with M. m. 1155	  

domesticus haplotypes in the candidate interval are partitioned into two groups 1156	  

corresponding to known carriers of Xcea and Xceb alleles, matching perfectly the results 1157	  

obtained by standard phylogenetic analysis. In addition, we found that wild-derived inbred 1158	  

strains as well as wild-caught mice with M. spretus, M. spicilegus, M. m. castaneus and M. 1159	  

m. musculus haplotypes cluster with the appropriate known carriers of an Xced, Xcef, Xcec, 1160	  

and Xceb, respectively. We note that the probes used in the PCA do not share sequence 1161	  

similarity and they do not track homologous regions within the duplications and inversion. 1162	  

Finally, no single probe (nor pair of probes) is able to partition all samples according 1163	  

to Xce haplotype or functional allele. There are, however, certain probes that contribute to 1164	  

 

Figure 4-7. Principal component analysis of 
Xce MegaMUGA probes. This figure shows a 
three-dimensional PCA plot based on 
hybridization intensity of ten MegaMUGA 
probes (Figure 4-6 and Table S4-10) within the 
refined Xce candidate interval. Mouse strains 
with known Xce alleles are shown as large 
spheres, while predicted mouse strains and 
wild-mice are shown as smaller spheres. 
Mouse samples are shaded according 
to Xce allele or Xce haplotype: 
Known Xcea allele, black; predicted Xcea allele, 
gray; known Xceb allele, blue; 
predicted Xceb allele, light blue; known Xcec 

allele, green; predicted Xcec allele, light green; 
known Xced allele, orange; predicted 
Xced allele, yellow; known Xced allele, orange; 
predicted Xced allele, yellow; known Xcee allele, 
red; predicted Xcee allele, pink; 
known Xcef allele, magenta.  
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the partitioning of the Xce alleles more than others (highlighted in Figure 4-6B). These 1165	  

results indicate that no single probe can explain the Xce allelic series and that each probe 1166	  

does not track a different Xce allele. 1167	  

Phylogenetic analysis of the Xce candidate interval 1168	  

To investigate the evolutionary history of the Xce locus, we generated phylogenetic 1169	  

trees based on genotype or sequence data (depending on availability) within the final 1170	  

minimum Xce candidate interval for 99 classical inbred strains, 66 wild-derived inbred 1171	  

strains and 124 wild-caught mice (Figure 4-8 and Table S4-6). This tree partitions these 1172	  

samples among five taxa, M. spicilegus, M. spretus, M. m. castaneus, M. m. 1173	  

musculus and M. m. domesticus that are consistent with previous studies [1, 2]. 1174	  

The Xce phenotype has been determined for at least one strain from each one of these taxa 1175	  

(Table S4-6). We found that each taxon (species or major subspecies) has a different 1176	  

functional Xce allele and there is no evidence of shared of alleles among taxa (Figure 4-8). 1177	  

Skewed XCI is present in all crosses between wild-derived strains belonging to different 1178	  

taxa. In contrast, skewing is not present in crosses involving strains from the same taxon. 1179	  

Within the M. m. domesticus subspecies we identified five haplotypes (a, b1, b2, b3 and b4). 1180	  

The a haplotype is associated with Xcea while two haplotypes, b1 and b2 are associated 1181	  

with Xceb. The b3 haplotype can be explained as recombination between a proximal b2 and 1182	  

distal b1 haplotype. The b3 haplotype has been observed in either a small mouse population 1183	  

on the Farallon islands off the coast of San Francisco, CA, and in one wild-caught mouse 1184	  

from Barcelona, Spain. The b4 haplotype appears to be a recombination between 1185	  

the a and b1 haplotypes and is found only in the WLA/Pas strain that carries an 1186	  

ambiguous Xce allele. 1187	  

Interestingly, there is an unequal distribution in the number and origin of M. m. 1188	  

domesticus stocks that carry each haplotype. For example, classical inbred strains are 1189	  

almost evenly divided among the a haplotype (n = 52) and the b1 haplotype (n = 47) (Figure 1190	  
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4-8). One classical inbred strain, CE/J carries the b2 haplotype. CE/J has been reported to 1191	  

be an outlier among classical inbred strain because it has the smallest fraction of haplotype 1192	  

sharing genome wide with strains with WGS available [63]. 1193	  

In contrast, wild-derived and wild-caught M. m. domesticus mice exclusively carry 1194	  

the b1, b2, b3 and b4 haplotypes (Figure 4-8). Note that we have determined 1195	  

experimentally the Xce allele for a wild derived representative of these two haplotypes. 1196	  

WSB/EiJ, PERA/EiJ, TIRANO/EiJ and ZALENDE/EiJ carry the b1 haplotype and 1197	  

LEWES/EiJ carries the b2 haplotype. All five wild-derived strains (WSB/EiJ, PERA/EiJ, 1198	  

TIRANO/EiJ, ZALENDE/EiJ and LEWES/EiJ) carry the Xceb allele. 1199	  

We conclude that in natural populations M. m. domesticus mice predominantly (or 1200	  

exclusively) carry the Xceb allele. We further conclude that given its absence among 121 1201	  

wild mice and wild-derived strains the a haplotype associated with the Xcea allele is likely a 1202	  

derived allele that arose during the domestication of fancy mice. Another possibility is 1203	  

that Xcea represents a rare allele in the wild (See Discussion, Figure 4-8 and Figure S4-4). 1204	  

 1205	  
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 1206	  

Figure 4-8. Natural history of Xce. This Figure shows a phylogenetic tree based on 18 
MDA SNP probes within the new Xce candidate interval. The topography of the tree 
accurately reflects the genetic relationship between the Xce alleles, however because of 
the limited number of SNP used to generate the tree and the ascertainment bias of the 
SNPs present on the MDA [1, 2], the tree is misleading with respect to the true genetic 
distance between Xce haplotypes (see Figure S4-4 for a more accurate representation 
of branch lengths). Open circles represent classical inbred strains with 
unknown Xce alleles; filled circles represent wild-derived or wild-caught mice with 
unknown Xce alleles; open squares represent classical inbred strains phenotyped 
for Xce; filled squares represent wild-derived strains with known Xce alleles. Strains with 
whole genome sequence data are shown with a star. We color coded the specific or 
subspecific origin of the candidate interval for the four major branches of the tree: red, M. 
m. musculus; blue, M. m. domesticus; green, M. m. castaneus, orange, M. spretus, 
pink, Mus spicilegus [3]. 
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Maternal Inheritance of the Strong Xce Allele Magnifies XCI Skewing  1207	  

Previous studies have shown that the parent-of-origin of the Xce allele can influence 1208	  

the skewing of XCI [148, 149, 163, 164]. To investigate this effect in our data set, we 1209	  

examined the XCI skewing in reciprocal F1 female hybrids (Table S4-3) and tested whether 1210	  

the effect of the parent-of-origin on X inactivation ratio was statistically significant. In order to 1211	  

increase the statistical power to detect parent-of-origin effects we aggregated crosses with 1212	  

the same combination of Xce alleles, doing so under the assumption that the parent-of- 1213	  

origin effects are substantially greater than putative effects of genetic background [163].  1214	  

 

 1215	  

We found that the parent-of-origin effect was highly significant overall (p = 0.0023) 1216	  

and was consistent in its direction, magnifying XCI skewing in the F1 female hybrids 1217	  

Figure 4-9. Maternal inheritance magnifies XCI skewing. Shown is allele-specific 
expression from reciprocal F1 Xce heterozygotes.  The X-axis is partitioned according to 
Xce allele pairs.  The Y-axis is the ratio of allele-specific expression from the X 
chromosome harboring the stronger Xce allele.  Ratios were determined using either 
RNAseq or pyrosequencing.   
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inheriting the stronger Xce allele from their mothers (Figure 4-9). The magnitude of its effect 1218	  

varied between 18% (the X-inactivation proportion in (CAST/EiJxWSB/EiJ)F1 females minus 1219	  

that in (WSB/EiJxCAST/EiJ)F1 females) and 2% (WSB/EiJxA/J)F1 females minus 1220	  

(A/JxWSB/EiJ)F1 females), averaging 9% among all crosses where reciprocals were tested. 1221	  

We note that the parent-of-origin effect is observed independent of whether XCI 1222	  

measurement is based on pyrosequencing or RNAseq data. We found less support for the 1223	  

parent-of-origin effect on X inactivation skewing in reciprocal F1 females generated by 1224	  

crosses between the WSB/EiJ strain (Xceb) and Xcea allele carriers (Table S4-3).  1225	  

Retrospective analysis of reported parent-of-origin effects is fully consistent with our 1226	  

hypothesis that maternal origin of a strong Xce allele magnifies the skewing (data not 1227	  

shown). 1228	  

1229	  
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DISCUSSION 1229	  

 Recent advances in mouse genetic resources [1, 2] provide an opportunity to resolve 1230	  

unanswered biological questions. Our method for association mapping integrates historical 1231	  

phenotyping data with these new genetic resources enabling us to reduce rapidly existing 1232	  

candidate intervals to a size amenable to mechanistic studies.  Our method is comparable to 1233	  

approaches used to identify candidate genes within candidate intervals reported 1234	  

previously [177-179].   The method guides subsequent experiments by identifying additional 1235	  

mouse strains that could reduce the candidate interval through informative historical 1236	  

recombinations. Moreover, our comparative analysis of different subspecies of mouse 1237	  

provides unique insight into the evolutionary history of the locus that is key to explaining its 1238	  

allelic series [1]. 1239	  

The validity of our approach relies on the fulfillment of several assumptions. These 1240	  

include the requirement that the locus under study explains a large fraction of the genetic 1241	  

variance and its action to be largely independent of other loci; that the causative mutation(s) 1242	  

for each functional allele has arisen once during evolutionary history; and that the genetic 1243	  

markers used in the analysis reflect the true haplotype diversity in the entire candidate 1244	  

interval. 1245	  

In our mapping of the Xce locus, fulfillment of the first assumption of a large genetic 1246	  

effect relies on 40 years of evidence that support the existence of a single major locus on 1247	  

the X chromosome near Xic that influence XCI choice [145, 149-152, 155, 170, 180, 181]. 1248	  

Note that these studies arrive at the same conclusion regardless of the combination of Xce 1249	  

alleles (Xcea, Xceb and Xcec) used in each particular study. Although parent-of-origin and 1250	  

autosomal effects have been reported, the consensus is that their contribution to XCI 1251	  

skewing variation is small compared with that of Xce [149, 155, 163]. The need to fulfill the 1252	  

second assumption, that each allele arose once, guided the decision to restrict our initial 1253	  

association mapping analysis to classical inbred strains only, since the probability of multiple 1254	  
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recurring mutations are extremely low based on their history [1, 2, 63].  Lastly, fulfilling the 1255	  

third assumption, we have previously shown that the marker density in MDA is sufficient to 1256	  

accurately reflect the underlying haplotype diversity genome wide and in particular in 1257	  

regions with lower levels of recombination such as the X chromosome [1, 2, 63]. 1258	  

We have shown that this approach was effective at rapidly reducing 1259	  

the Xce candidate interval 10-fold and that it may prove useful to map other genetic traits of 1260	  

interest provided that they meet the above listed criteria. In fact, Xce is a particularly difficult 1261	  

test case because of complexity of the XCI process and the reduced recombination rate on 1262	  

the X chromosome. 1263	  

We tailored our experimental design to anticipate the challenges of phenotyping 1264	  

mouse strains with unknown Xce alleles. First, the functional allele in a strain with an 1265	  

unknown Xce allele can be determined only by generating heterozygous females with 1266	  

known Xce alleles and then determining the ratio of XCI in the heterozygous progeny. The 1267	  

precision in identifying the unknown allele increases with the number of different alleles to 1268	  

which it is paired in the experimental F1 hybrids. We, therefore, crossed each strain with an 1269	  

unknown Xce allele to at least two strains with known and different Xce alleles. 1270	  

To estimate mean XCI skewing accurately, we phenotyped multiple females per 1271	  

cross. Moreover, for most females, we measured XCI skewing in at least three different 1272	  

tissues that roughly represent the three germ layers, brain (ectoderm), liver (endoderm) and 1273	  

kidney (mesoderm). Our results confirm previous reports that mean XCI skewing is similar 1274	  

between different tissues [154, 162, 182, 183]. We do, however, observe differences in the 1275	  

variance of XCI skewing between different tissues (brain ±6% kidney ±7.5%, and liver 1276	  

±8.2%). From a practical standpoint, whole brain had the smallest variance and thus would 1277	  

require fewer animals to accurately determine mean XCI skewing. 1278	  

It is appropriate to use gene expression to measure the proportion of cells using the 1279	  

maternal versus paternal X chromosomes. However, expression at single genes can be 1280	  
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misleading because of measurement bias or allelic imbalance independent of XCI choice 1281	  

such as cis-acting regulatory variants or XCI escape. To mitigate these potential issues, we 1282	  

measured multiple X-linked genes using pyrosequencing and/or RNAseq. By combining 1283	  

multiple gene measurements, we can better estimate the mean XCI skewing. Both 1284	  

technologies simultaneously measure maternal and paternal expression, reducing the 1285	  

concern of parent-specific measurement bias. 1286	  

Despite our thoroughness, we could not conclusively assign an Xce allele to the 1287	  

WLA/Pas strain, although we can exclude both Xcec and Xced. A possible reason for this is 1288	  

that in all crosses involving WLA/Pas the XceWLA/Pas allele was inherited through the paternal 1289	  

germline and in the absence of reciprocal crosses the parent-of-origin can potentially 1290	  

complicate Xce allele calling. A second, and more interesting explanation is that WLA/Pas 1291	  

has a b4 haplotype that appears to be a/b1 recombinant whose breakpoints fall within the 1292	  

SD4 in the candidate interval (see below and Figure 4-6A). 1293	  

Although only a small number of readily available mouse strains carry M. m. 1294	  

castaneus or M. m. musculus haplotypes, a previous study measured XCI skewing in 1295	  

reciprocal F1 hybrids between PWD/PhJ and AKR/J [184]. This study reported that 1296	  

PWD/PhJ has an Xce allele that is weaker than Xceb. This result matches our conclusion 1297	  

that PWK/PhJ, a closely related wild-derived inbred strain [1], carries the Xcee allele. 1298	  

Furthermore, we conclude that M. m. musculus do not carry the Xcec allele as reported in a 1299	  

congenic mouse line believed to be of M. m. musculus origin within the Xce candidate 1300	  

interval [183]. 1301	  

Our conclusion that the structural variants in the duplications within the candidate 1302	  

interval are likely to be responsible for the different Xce alleles provides simple and 1303	  

satisfactory answers to questions such as the presence of the allelic series, the 1304	  

overdominant nature and mechanism of action of Xce, and the evolutionary origin of the 1305	  

interspecific differences for XCI choice. Copy number variation within a region with complex 1306	  
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segmental duplications and inversions can explain the large number (six alleles described 1307	  

so far in Mus) and different strength of the alleles at Xce. For example, the different strength 1308	  

of Xce alleles can be attributed to the number of copies of a binding site for a trans-factor 1309	  

that is critical for the initiation of XCI [157-161]. 1310	  

One of the conclusions of our study is that each one of the five taxa (species or 1311	  

major subspecies) analyzed for XCI choice in Mus has a different functional allele and that 1312	  

there is no evidence of shared alleles between them. The rate of mutation for CNV at 1313	  

segmental duplicated regions fits well with the observed functional diversity at Xce. Given 1314	  

that unequal recombination is thought to be the primary process generating CNVs, it is 1315	  

noteworthy that two of the haplotypes reported here (b3 and b4) involve crossing over within 1316	  

the duplications. In fact, we observe an apparently correct heterozygous call at SNP 1317	  

rs29082017 in two males with the b3 haplotype. Given that males cannot be true 1318	  

heterozygotes for X linked markers, the result strongly suggests that an unequal crossing 1319	  

over has generated a new haplotype with paralogous variation. Resequencing the candidate 1320	  

interval in these strains should provide important information on the relationship between 1321	  

CNVs and functional Xce alleles. 1322	  

It is striking that each species and subspecies examined thus far has a different 1323	  

functional allele. Furthermore, in the six wild-derived M. m. domesticus mouse strains 1324	  

phenotyped in this study, we do not find the occurrence of multiple functional alleles. We 1325	  

conclude that in M. m. domesticus, Xceb is the prevalent allele and other functional alleles 1326	  

are either rare or absent. The broad geographic origin of the wild-derived strains analyzed 1327	  

here strongly support this conclusion (Table S4-6). The only apparent exception to this rule 1328	  

is the presence of two functional alleles in classical inbred strains, Xcea and Xceb. That said, 1329	  

it is likely that Xceb is the ancestral allele within the domesticus subspecies and Xcea is a 1330	  

new, derived allele that originated early during the domestication of fancy mice. However, 1331	  

the phylogenetic tree shown in Figure 4-8 reveals deep branching 1332	  



83	  

between Xcea and Xceb haplotypes that at first glance suggests that both are old alleles. 1333	  

Upon further investigation, there is evidence that the deep branching observed in Figure 4-8 1334	  

may be an artifact generated by genotyping and alignment problems in regions with 1335	  

segmental duplications (i.e., the apparent SNP are paralogous variants rather that allelic 1336	  

ones). Figure S4-4 provides evidence in favor of this later scenario as the deep branching 1337	  

disappears immediately proximal (Figure S4-4A) and distal (Figure S4-4C) to the 1338	  

duplicated regions. Furthermore, there is a dramatic increase in the density of heterozygous 1339	  

calls in the WGS data for inbred strains that overlaps the region of segmental duplications 1340	  

(Figure S4-4D). 1341	  

The phylogenetic analysis also provides an explanation for the apparent differences 1342	  

in the genetics of XCI choice between mouse and humans. Mouse geneticists were able to 1343	  

find evidence of genetic control of XCI because they used mice derived from multiple taxa 1344	  

and because Xcea and Xceb are equally represented among classical laboratory inbred 1345	  

strains. In fact, were we to have studied only wild-derived or wild mice of M. m. 1346	  

domesticus origin, we would very likely have concluded that XCI choice is not under the 1347	  

control of a X chromosome linked locus. We speculate that this is probably the situation in 1348	  

humans too, but note that this conclusion would be due to a lack of functional variation at 1349	  

the Xce locus and not proof of the absence of a locus controlling XCI choice. 1350	  

 We conclude that Xce is the major determinant of primary XCI choice and maps 500 1351	  

kb proximal to key components of the murine Xic (Xist, Tsix and Xite).  This conclusion is 1352	  

compatible with a previous study that used the association between Xce alleles and 1353	  

microsatellite markers to refine the distal end of the Xce candidate interval [179].  However, 1354	  

the exclusion of Xist was dependent on a single classical inbred strain (JU/Ct) with a 1355	  

recombinant haplotype, which is now extinct.  Our results are also compatible with the 1356	  

general conclusions reached by Thorvaldsen and coworkers (2012). Nonetheless a direct 1357	  

comparison of both studies is difficult. Thorvaldsen and colleagues (2012) used only two 1358	  
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functional alleles, Xcea and Xcec from highly divergent mouse strains to map roughly X- 1359	  

linked regions influencing XCI choice. They found that all their crosses, regardless of 1360	  

heterozygosity within the Chadwick interval, there is some degree of skewing in favor of the 1361	  

129S1/SvlmJ and CAST/EiJ recombinant chromosome X. This led to the conclusion that 1362	  

multiple X-linked loci influence XCI choice. Although we provide strong evidence that 1363	  

the Xce allelic series is due to structural variation in the Xce candidate interval, we cannot 1364	  

exclude that a selected few SNPs within the Chadwick interval may also contribute to XCI 1365	  

choice. There are 14 SNPs distal to the Xce interval reported here with consistent SDPs 1366	  

in M. m. domesticus after the incorporation of the four strains with M. m. 1367	  

domesticus phenotyped. None of these SNPs individually can explain the allelic series and 1368	  

no simple combination of them within a single gene can be directly tied to the phenotype. On 1369	  

the other hand our reciprocal crosses between ALS/LtJ and C57BL/6J agree with 1370	  

Thorvaldsen’s hypothesis that additional loci may have an effect in XCI choice as we find 1371	  

that the parent-of-origin effect is present despite homozygosity at the Xce locus (Figure S4- 1372	  

3). Both studies strongly predict the presence of an additional X-linked locus (or loci) 1373	  

controlling the parent-of-origin effect. 1374	  

The genetic analysis of the Xce locus presented in this study sets the stage for the 1375	  

molecular characterization of Xce. However, the most direct experiments will require access 1376	  

to the cells and biological material of the critical window at which XCI choice is made either 1377	  

by in vivo or ex vivo using ES cell lines. 1378	  

 1379	  

MATERIALS AND METHODS 1380	  

 1381	  

Mouse breeding and tissue isolation 1382	  

Mice from nine inbred strains (129S1/SvlmJ, A/J, ALS/LtJ, C57BL/6J, CAST/EiJ, 1383	  

LEWES/EiJ, PWK/EiJ, SJL/J, and WSB/EiJ,) were originally obtained from the Jackson 1384	  
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Laboratory (Bar Harbor, ME). Mice of the WLA/Pas strain were generously provided by 1385	  

Xavier Montagutelli from the Pasteur Institute (Paris, FR). Mice were bred at UNC-Chapel 1386	  

Hill for multiple generations and interbred to generate F1 hybrids. Litters of F1 mouse pups 1387	  

were sacrificed within 24 hours after birth. We harvested whole brain, whole liver, right 1388	  

kidney, tail and a forepaw (for sexing, [185]). Tissues were infused with RNAlater (Qiagen) 1389	  

and frozen at −80°C to preserve RNA integrity until extraction. Whole brain was isolated 1390	  

from mouse pups derived from crosses (DDKxC57BL/6J)F1 X PANCEVO/EiJ, (C57BL/6J X 1391	  

DDK)F1 X TIRANO/Ei and (C57BL/6J X DDK)F1 X ZALENDE/Ei [115] and (C57BL/6J X 1392	  

PERA)F1 X C57BL/6J [116]. These mouse crosses were generated for previous studies and 1393	  

reported elsewhere. All mice were treated according to the recommendations of the 1394	  

Institutional Animal Care and Use Committee (IACUC) of the University of North Carolina at 1395	  

Chapel Hill. 1396	  

Genotypes 1397	  

 Mouse genotypes were acquired from recent studies that employed next-generation 1398	  

sequencing [2, 3] and high-density genotyping array technology [1, 62]. Tables S4-1, S4-4, 1399	  

and S4-6 provide a list of all mice (inbred and wild-caught) and the origin of the genotype 1400	  

information. As an initial filtering step, heterozygous and low-confidence genotyping calls 1401	  

were removed from the data set. Heterozygosity within the Xce candidate interval was 1402	  

determined in F2 mouse pups using microsatellite marker DXMit16 (~99.3 Mb) [186]. 1403	  

Genomic DNA was amplified according to previously reported conditions with the exception 1404	  

of a fluorescent label covalently bound to one DXMit16 primer (6-FAM-5′- 1405	  

CTgCAATgCCTgCTgTTTTA-3′). 0.5 µl of amplified products were resuspended in 9.0 µl of 1406	  

HIDI formamide (Life Technologies) and 0.5 µl of LIZ1200 sizing ladder (Life Technologies). 1407	  

Samples were run on the ABI 3730xl DNA analyzer using long-run fragment analysis 1408	  

conditions. Traces were analyzed with ABI PeakScanner software. 1409	  

1410	  
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Association mapping 1410	  

At each diallelic variant within the Chadwick interval, we represented the C57BL/6J 1411	  

(or C57BL/6JN) allele as zero and all other strains with the same genotype as zero. Strains 1412	  

with the alternative allele are represented with the number one. We then generated strain 1413	  

distribution patterns for each variant as a series of ones and zeros for the strains in the 1414	  

following order: 129S1/SvlmJ, A/J, BALB/cByJ, C3H/HeJ, CBA/J, DDK/Pas, C57L/J, 1415	  

DBA/1J, DBA/2J, and AKR/J (Table S4-1). We classified an SDP as completely consistent 1416	  

when all Xcea allele carriers are ones (share the same allele) and all Xceb allele carriers are 1417	  

zeros (share the same allele as C57BL/6J) (Tables S4-1 and S4-4). We defined an 1418	  

inconsistent SDP when one or more Xcea strain(s) are zeros and one or more Xceb strain(s) 1419	  

are ones (i.e., A/J, 129S1/SvlmJ, BALB/cByJ, C3H/HeJ, CBA/J, AKR/J opposite to DDK, 1420	  

C57BL/6J, DBA/1J, DBA/2J) (Tables S4-1 and S4-4). Lastly, we defined a diallelic variant 1421	  

as partially consistent when one or more Xcea strain(s) are zeros or one or 1422	  

more Xceb strain(s) are ones (Tables S4-1 and S4-4). 1423	  

Measuring allelic imbalance in F1 female hybrids 1424	  

mRNA was extracted from tissues of F1 mice using an automated bead-based 1425	  

capture technology (Maxwell 16 LEV Total RNA Kits, Promega). Purified mRNA was 1426	  

checked for quality and quantity using a Nanodrop spectrophotometer (Thermo Scientific). 1427	  

For each sample, mRNA was retrotranscribed (SuperScript III, Life Technologies) to 1428	  

produce cDNA. We designed primers (Table S4-7) to capture expression SNPs (Table S4- 1429	  

8) within X-linked genes to serve as surrogates for maternal and paternal XCI status. In 1430	  

individual reactions, we amplified 1 µl of cDNA in a final volume of 30 µl for 35 cycles 1431	  

(See Table S4-7 for PCR cycling conditions). One primer for each assay was biotinylated in 1432	  

order to immobilize and purify the amplified products using streptavidin beads (GE 1433	  

Healthcare) according to the manufacturer's protocol (Qiagen). We used Pyrosequencing 1434	  

technology to measure the proportion of maternal and paternal X-linked gene expression 1435	  
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simultaneously. Pyrosequencing quantitatively measures, in real-time, the release of 1436	  

pyrophosphate as a result of nucleotide incorporation during the polymerase chain 1437	  

reaction [187]. Purified, single-stranded amplicons were primed for pyrosequencing using 1438	  

gene-specific primers (Table S4-7) and pyrosequenced using the PyroMark Q96 MD 1439	  

instrument (Qiagen) and PyroMark Gold Q96 Reagents (Qiagen) according to 1440	  

manufacturer's protocols. Allelic proportions were determined by the quantitative analysis 1441	  

option of the PyroMark Q96 MD Software. Raw results are show in Table S4-9. 1442	  

RNAseq analysis 1443	  

RNAseq data used in this study is reported elsewhere (Crowley et al. 2013, 1444	  

unpublished). Briefly, we generated cDNA libraries (Illumina (San Diego, CA) TruSeq RNA 1445	  

Sample Preparation Kit v2) from whole brain mRNA of female reciprocal F1 hybrids between 1446	  

CAST/EiJ, PWK/PhJ, and WSB/EiJ. Using the Illumina HiSeq 2000 instrument, we 1447	  

sequenced 100 bp paired end reads (2×100). For each F1 hybrid, we mapped 100 bp 1448	  

paired-end RNAseq reads to pseudogenomes of each parent (CAST/EiJ, PWK/PhJ and 1449	  

WSB/EiJ) using TopHat. Pseudogenomes are approximations of CAST/EiJ, PWK/PhJ and 1450	  

WSB/EiJ strain genomes constructed by incorporating all known SNPs and indels into the 1451	  

C57BL/6 genome (mm9) [188]. We allowed two mismatches total per 100 bp read. For each 1452	  

read, we annotated the number of maternal and paternal alleles (using SNPs and indels). 1453	  

XCI ratios were determined by counting the number of maternal reads versus the number of 1454	  

paternal reads. To measure XCI ratios, we selected 10 X-linked genes that are distributed 1455	  

across the X chromosome (Wdr13, Atp6ap2,Usp9x, Cask, Cd99l2, Idh3g, Dlg3, Zcchc18,  1456	  

Tsc22d3, Iqsec2). For each gene, we selected two informative SNPs between PWK, CAST, 1457	  

and WSB so that at least five of the ten genes were informative for a given F1 hybrid. For 1458	  

each informative SNP, we counted allele-specific reads to determine XCI ratios. Results are 1459	  

summarized in Table S4-9. 1460	  

1461	  
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Statistical model for cross-specific X-inactivation ratios 1461	  

Pyrosequencing and RNAseq provided estimates of the X-inactivation ratios 1462	  

obtaining for particular genes in specific tissues in particular individuals. In order to infer X- 1463	  

inactivation ratios pertaining to individual mice and to the crosses that generated them, we 1464	  

developed a hierarchical Bayesian model linking the observed experimental measurements 1465	  

to a structured set of higher order parameters. These parameters reflected not only the 1466	  

stochastic relationships between measurements, individuals and crosses, but also between 1467	  

different sources of experimental variation. Let !"# be the measured X-inactivation 1468	  

proportion from pyrosequencing or RNAseq in the #th gene-tissue combination of the "th 1469	  

mouse, and let $ be the F1 cross to which mouse " belongs, where for instance, crosses 1470	  

(129S1/SvlmJxPWK/PhJ)F1 and (PWK/PhJx129S1/SvlmJ)F1 are distinct. We first model a 1471	  

latent variable %"  representing the X-inactivation proportion inherent to the individual mouse 1472	  

" as if arising from a beta distribution  1473	  

%"~Beta($)$+1,  ($1−)$+1, 1474	  

with cross-specific mean governed by )$ and cross-specific variance proportional to ($−1. 1475	  

This individual-specific parameter %" then forms the basis of a further beta distribution, which 1476	  

models tissue-gene specific measurements !"# as if generated by 1477	  

!"#~Beta(/#01#$2#%"+1,  /#01#$1−2#1−%"+1), 1478	  

where 2# and /#−1 are the bias and variance introduced by tissue-gene combination #, and 1479	  

where 1#$ allows for cross-specific variance in X-inactivation. All higher order parameters 1480	  

are themselves modeled in loosely-specified grouped hierarchies based realistic but vague 1481	  

priors (as in, eg, [189]). This hierarchical structure allows information and uncertainty to 1482	  

propagate within and between parameters, and results in improved estimation through 1483	  

shrinkage (see, eg, [190]). We obtain posterior distributions for all parameters, including 1484	  

those representing unobserved data, using Markov Chain Monte Carlo (MCMC). Marginal 1485	  
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posterior probability densities are computed for )$ parameters for crosses between mice 1486	  

with unknown Xce alleles using information from mice with known alleles. The )$ posterior 1487	  

density that includes the most support for )$=0.5 is taken as the most plausible candidate 1488	  

for having Xce allele shared by the unknown strain. In general, posteriors for )$ 1489	  

concentrated near 0.5 are more consistent with there being a shared allele between 1490	  

maternal and paternal pairs, whereas posterior densities shifted from 0.5 suggest that the 1491	  

Xce is different. 1492	  

Significance test of parent-of-origin effects 1493	  

The statistical significance of parent-of-origin effects was determined by permutation. 1494	  

We first estimated the difference in specimen-level X-inactivation, %", between genetically 1495	  

matched individuals of reciprocal parentage and unequal Xce alleles, and used this estimate 1496	  

as our test statistic. We then repeated this estimation under 10000 shuffles of the parent-of- 1497	  

origin labels in order to generate a null distribution of the test statistic, and thereby estimate 1498	  

a p-value for the parent-of-origin effect in the real data. 1499	  

Principal Component Analysis (PCA) 1500	  

For each sample, we constructed a vector of Illumina probe intensities of 1501	  

MegaMUGA markers within the refined Xce candidate interval (Table S4-10). We then 1502	  

performed principal component analysis on these vectors and report the projection of each 1503	  

sample onto the first three principal components. 1504	  

Phylogenetic analysis. 1505	  

For each inbred strain and wild-caught mouse, we assigned the subspecific origin of 1506	  

the Chadwick and new Xce candidate interval based on diagnostic alleles from SNP and 1507	  

VINO calls [1, 67]. We then built DNA distance, maximum likelihood, and DNA parsimony 1508	  

phylogenetic trees (PHYLIP (Phylogeny Inference Package) [191]) based on all variation 1509	  

within the candidate interval. No major differences were observed between analysis types, 1510	  
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so we chose maximum likelihood with 100 bootstraps to represent the phylogenetic 1511	  

relationship between mice in Figure 4-8. 1512	  

 1513	  

SUPPORTING MATERIAL 1514	  

 1515	  

 1516	  

Figure S4-1: Strain Distribution Patterns (SDP).  This Figure depicts how the patterns of 1517	  
strain genotypes were classified as consistent, inconsistent or incompletely consistent with 1518	  
the Xce phenotypes.  SNPs or indels that partition the strains according to their Xcea and 1519	  
Xceb phenotype were classified as “consistent” and represented as a black (or blue) tick 1520	  
mark in Figure 4-4.  SNPs or indels that are shared by both Xcea and Xceb strains were 1521	  
classified as an SDP that is “inconsistent” with the Xce phenotypes and represented as a 1522	  
red tick mark in Figure 4-4.  Lastly, A SNP or indel that is partially consistent but not 1523	  
inconsistent with the Xce phenotypes was classified as “partially consistent” and represented 1524	  
with a gray tick mark in Figure 4-4.  1525	  
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 1526	  
Figure S4-2: MegaMUGA probe plots. Each of the ten panels is a hybridization plot of an 1527	  
individual MegaMUGA probe targeting the Xce candidate interval.  As described in Figure 1528	  
4-6C, the axes represent hybridization intensities for probes tracking alternative alleles at 1529	  
each marker.  The colors correspond to eight biological replicates of the eight founder inbred 1530	  
strains of the CC.  Yellow A/J; black C57BL/6J; pink 129S1/SvlmJ; blue NOD/ShiLtJ; light 1531	  
blue NZO/HiLtJ; green CAST/EiJ; red PWK/PhJ, and purple WSB/EiJ.  Samples in gray 1532	  
represent 300 control DNAs.   1533	  
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 1534	  

Figure S4-3: Allelic imbalance in additional strains characterized.  Shown in Panel A 1535	  
are scatter plots and posterior mean and 95% credibility intervals for additional strains 1536	  
phenotyped in this study. Shown in Panel B are the posterior distributions of the 1537	  
phenotyping data in Panel A. 1538	  
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 1539	  
Figure S4-4:  Phylogenetic analysis of the Xce and flanking intervals using whole 1540	  
genome sequence data.  Shown are DNA distance trees based on whole genome 1541	  
sequence data [2, 3] within the corresponding intervals.  Panel D shows the SNP density 1542	  
(solid line) and heterozygosity (dashed lined) within the candidate (Panel B) and flanking 1543	  
intervals (Panels A and C). 1544	  
 1545	  
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1003853#s5 1546	  
 1547	  
Table S4-1: Genotype data in the Chadwick interval for strains with previously known 1548	  
Xce allele.  This table summarizes consistent, inconsistent and partially consistent SDPs for 1549	  
inbred mouse strains with previously known Xce alleles.  The data includes MDA and 1550	  
Sanger sequencing data. 1551	  
 1552	  

 1553	  

Table S4-2: Justification of selected inbred strains. This table lists the justification for 1554	  
selecting each strain and summarizes the number of F1 females phenotyped for each inbred 1555	  
strain with an unknown Xce allele. 1556	  
 1557	  
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1558	  
Table S4-3: Summary of crosses.  This table summarizes all strains and crosses 1559	  
phenotyped in this study, their corresponding Xce alleles, and the molecular method used to 1560	  
measure allele-specific expression.  In addition, listed are the posterior mean, median and 1561	  
confidence intervals determined by the Bayesian hierarchical model.  1562	  
 1563	  
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1003853#s5 1564	  
 1565	  
Table S4-4: Genotype data in the Chadwick interval for strains with known Xce allele. 1566	  
This table summarizes consistent, inconsistent and partially consistent SDPs for inbred 1567	  
mouse strains with previously known Xce alleles combined with mouse strains phenotyped 1568	  
in this study. 1569	  
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 1570	  

Table S4-5: MegaMUGA probe information. Summarized in this table are the ten 1571	  
MegaMUGA probes used in the principal component analysis.  Shown are the probe names, 1572	  
sequences and ranking according to how much each probe contributes to each principal 1573	  
component. 1574	  
 1575	  
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1003853#s5 1576	  
 1577	  
Table S4-6: List of all mouse samples.  This table lists each mouse samples used in this 1578	  
study (total of 327).  We annotated haplotypes based on its association with mouse strains 1579	  
with known Xce alleles; we assigned the subspecific origin of the Xce candidate interval, 1580	  
whether the mouse is a classical inbred [1], wild-derived inbred, or wild-caught; and we 1581	  
assigned each classical strain to a subclass [1] and each wild-derived or wild-caught to a 1582	  
geographic origin. For each mouse sample, we list the haplotype based on 18 MDA 1583	  
genotypes, the name of the haplotype (i.e., a, b1, b2, etc), The letter “V” stands for variable 1584	  
intensity oligonucleotide (VINO) [67], the letter “H” stands for heterozygous, and the letter 1585	  
“N” stands for no call. 1586	  

 1587	  
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Table S4-7: Primers and conditions for pyrosequencing assays.  Primer sequences and 
annealing temperatures for primer pairs are shown.  For amplification prior to 
pyrosequencing, a universal PCR protocol was used but the annealing temperature was 
tailored specifically to each primer pair. 

 

 1588	  

1589	  

Name Sequence anneal temperature used
Ddx26b-F 5’-biotin-ggCCTCCATACTACTTAATAACCAAg-3’
Ddx26b-Rev 5’-ggTAggCCACATgCAgAATg-3’
Ddx26b-Pyro 5’-TCTTCCCCACTgATgCTAgAATT-3’ N/A
Fdg1-F 5’-biotin-CTCCAACCTCAACATgCCTCg-3’
Fdg1-Rev 5’-TTCAggAgggTggAATTgATggC-3’
Fdg1-Pyro 5’-gTCCTggCCTgCAgTTCgAg-3’ N/A
Rragb1-F 5’-CTgTATAAggCATggTCCAgCATTg-3’ 
Rragb1-Rev 5’-biotin-ATCggTgggCATCTCgCTgTTC-3’
Rragb1-Pyro 5’- CTgATgAAgTTCTTCTgTTTgA-3’ N/A
Mid2-F 5'-CTggACCACgAgAATgAgAAgg-3’
Mid2-Rev 5'-biotin-gCAgTATTCACCTCAACTTgCTg-3’
Mid2-Pyro 5'-TCgTCACCgAgACCATCAgg-3’ N/A
Zfp185-F 5'-CCCTgAgCACTCCAgATTCTTg-3'
Zfp185-R 5'-biotin-CAgCATgTTAgTACAgTCCTCgg-3'
Zfp185-Pyro 5'-AgATCTCAgCATCCTAgAgCC-3' N/A
Xist-F 5'-biotin-TggAgTCTgTTTTgTgCTCCTgCC-3' Thorvaldsen et al., 2012 [169]
Xist-Rev 5'-CCTTgCTgggTTCAggAAAgCgTC-3' Thorvaldsen et al., 2012 [169]
Xist-pyro 5'-ATAggCTgCTggCAgTCCTTgA-3' N/A

Cycling conditions
95x2min
95x15sec
annealx20sec
72x30sec
72x10min

35X

56°C

62°C

56°C

60°C

60°C

58°C
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 1589	  

 1590	  

Table S4-8: Pyrosequencing expression assay allele information.  The table shows the 1591	  
mouse strains phenotyped and their genotype for each pyrosequencing assay used.  Strains 1592	  
without genotype information are labeled “N/D.” 1593	  
 1594	  
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1003853#s5 1595	  
 1596	  
Table S4-9: Pyrosequencing and RNAseq raw data.  This matrix shows the fraction of 1597	  
maternal expression generated from pyrosequencing and RNAseq of mouse pups.  Each 1598	  
row represents an individual mouse and each column represents a gene measurement.  NA 1599	  
is used to show missing data. 1600	  
 1601	  
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1003853#s5 1602	  
 1603	  
Table S4-10: PCA results.  Shown are the first three principal components used to 1604	  
generate Figure 4-7 for each mouse sample. 1605	  
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CHAPTER V: SUMMARY AND FUTURE DIRECTIONS4 1606	  

 1607	  

 1608	  

SECTION ONE 1609	  

Listed below are general conclusions drawn from section one: 1610	  

• cis-acting sequence variation is a major contributor to differential CpG 1611	  

methylation in mouse, with an estimated 13,000 differentially methylated CpGs 1612	  

genome-wide. 1613	  

• Although further mechanistic studies are needed, differential CpG methylation 1614	  

appears to be functionally relevant by its association with nearby differential gene 1615	  

expression. 1616	  

• cis-acting sequence variation influence parent-of-origin DMRs and may alter 1617	  

allelic imbalance. 1618	  

Sequence variation and parent-of-origin DMRs 1619	  

The results show that CpG methylation at the Actn1 DMR is dependent on both 1620	  

parent-of-origin and strain (Figures 3-1C and 3-2).  Specifically, I demonstrated that the 1621	  

maternal PWK allele is more consistently methylated than the maternal 129S1 allele using 1622	  

three independent molecular assays: MSNP (Chapter II), MS-RFLP, and sodium bisulfite 1623	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4	  The following chapter summarizes and draws conclusions regarding the genetic regulation 

of epigenetic processes and discusses ongoing work.  I would like to thank Dr. Jack Griffith’s 
laboratory, specifically Brian Bower for providing assistance in the setup of the pulse field gel 
electrophoresis system.  I would like to thank Dr. Fernando Pardo-Manuel de Villena for his guidance 
with Southern blots.  The MSNP optimization was done in collaboration with John Didion, a fellow 
graduate student in the Pardo-Manuel de Villena laboratory.  As with Chapter IV, Figure 5-1 and 5-7 
are from an unpublished study currently under review (Crowley et al. 2013).   
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sequencing.  Sodium bisulfite sequencing reveals the true nature of the DMR methylation.  1624	  

A greater proportion of PWK alleles are methylated when inherited through the maternal 1625	  

germline than when 129S1 is maternal (Figure 3-2).  Furthermore, the methylated PWK 1626	  

clones isolated are consistently methylated across all CpGs sequenced.  On the other hand, 1627	  

methylation is sporadic across all CpGs sequenced for the maternal 129S1 allele (Figure 3- 1628	  

2).   1629	  

Within a 1.5 kb region that encompasses the Actn1 DMR, there are 21 annotated 1630	  

SNPs and 3 annotated indels that distinguish PWK from 129S1 [2, 3].  In fact, one variant is 1631	  

a CpG to TpG transition in PWK (rs32640412).  Given the requirement that strain-specific 1632	  

DMRs in F1 hybrids are caused by a nearby cis acting variant(s) (genetic or epigenetic) it 1633	  

stands to reason that parent-of-origin DMRs are subject to the same genetic influences.  It is 1634	  

possible to further test this hypothesis using inbred strains with different sequence variation 1635	  

within the Actn1 DMR.  These strains could be used to generate F1 hybrids to compare the 1636	  

consistency of DMR methylation to that of 129S1 and PWK.  The sequence similarities and 1637	  

differences (correlated with differential methylation) between strains may shed light on the 1638	  

causative variant(s) and perhaps divulge possible molecular mechanisms.  For instance, 1639	  

Dnmt3a, a de novo methyltransferase in mouse, is influenced by the periodicity of CpGs 1640	  

[192].  The sequence variation in PWK does create differences in the CpG periodicity and 1641	  

may explain the strain-specific methylation differences. 1642	  

129S1xCAST, PWKxC57BL6, and PWKxA/J reciprocal F1 mice were tested using 1643	  

MS-RFLP and showed the same maternal DMR (data not show).  Rough estimates using 1644	  

densitometry of strain-specific RFLP bands reveals that each cross shows a similar PWK 1645	  

maternal effect (data not shown).  Furthermore, 129S1, A/J and C57BL/6J are IBD within 1646	  

that region [2, 3].  However, future CpG methylation profiling is required for an accurate 1647	  

comparison between strains, including additional MS-RFLP and bisulfite sequencing.    1648	  
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 1649	  

After extensive investigation, the functional role of the Actn1 DMR is unknown, and 1650	  

therefore offering any possible phenotypic consequences of the strain by parent-of-origin 1651	  

effects would be purely speculative.  However, it is possible to extend this observation to 1652	  

other parent-of-origin DMRs, for instance imprinting control regions (ICR).  Sequence 1653	  

variation within these ICRs may alter the highly-conserved alleleic imbalance required for 1654	  

proper development.  Although the phenotypic consequences of severe alterations to known 1655	  

imprinted regions is well established [193], little is known about how subtle changes 1656	  

influence phenotype [57, 194, 195].  There is convincing evidence that imprinted regions are 1657	  

not all-or-nothing as once originally thought (Figure 5-1, Crowley et al. under review).  1658	  

Crowley and colleagues showed, using reciprocal F1 hybrids between three divergent 1659	  

mouse inbred strains PWK/PhJ, CAST/EiJ, and WSB/EiJ, that imprinting expression is 1660	  

Figure 5-1. Genes imprinted in mouse brain. 
Plotted is the paternal expression ratio for 98 genes 
declared to be imprinted. Each dot corresponds to a 
reciprocal cross (i.e., CASTxPWK versus 
PWKxCAST) and dot size is proportional to the 
parent-of-origin p-value significance level. Genes 
known from the literature to be maternally expressed 
are shown in red, those known to be paternally 
expressed in blue, and novel imprinted genes in 
black (N = 56 novel genes). Genes with a strain by 
parent-of-origin effect are indicated by underline (N = 
47 genes).   
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surprising incomplete (Figure 5-1).  In fact, they report 47 genes that are dependent on both 1661	  

strain and parent-of-origin (Figure 5-1, underlined).  There are annotated sequence variants 1662	  

within the ICRs that control these imprinted genes [2, 3].  Subtle changes in methylation 1663	  

may alter the function of key imprinting regulators such as CCCTC-Binding factor (CTCF; a 1664	  

trans-factor involved in imprinting regulation).  It has been shown that CTCF occupancy is 1665	  

affected by differential methylation [196]. The genetic diversity within classical and wild- 1666	  

derived inbred strains could be used to target causative genetic variation for mechanistic 1667	  

study [1, 169].  It must be noted, however, that the RNAseq library was generated from 1668	  

mRNA isolated from the right hemisphere of the brain. It is possible that the incompletely 1669	  

imprinted genes are caused by differential expression between different cell types within the 1670	  

brain.  1671	  

 In the early 20th century, Conrad Waddington put forth the idea of canalization, or 1672	  

phenotypic robustness [197].  He postulated that the evolution of development incorporated 1673	  

a buffering system to shield large phenotypic changes caused by small environmental or 1674	  

genotypic changes.  It is therefore possible that despite the apparent widespread 1675	  

differentially methylated CpGs, their effects on developmental phenotypes may be minimal.  1676	  

However, it is clear that understanding the genetic regulation of cytosine methylation is far 1677	  

from being fully realized and will require both discovery and mechanistic studies to fully 1678	  

appreciate the role epigenetic variation plays within a population.  The genome-wide 1679	  

methylation survey (Chapter II) and the characterization of the Actn1 DMR (Chapter III) 1680	  

significantly contribute to the emerging field of the genetic regulation of cytosine methylation 1681	  

in mammals. 1682	  

Ongoing work: An optimized MSNP protocol to investigate additional variables 1683	  
affecting DNA methylation in mouse 1684	  
 1685	  
 After identifying the shortcomings of the first MSNP genome-wide survey, we used a 1686	  

similar but computationally optimized approach and expanded the scope of the original 1687	  
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experiment by introducing environmental and age-related variables. We generated 1688	  

reciprocal crosses between two genetically divergent mouse inbred strains, NOD/LtJ and 1689	  

PWK/PhJ, in order to maximize the number of SNPs that distinguish the two parental 1690	  

haplotypes and to track parent-of-origin DNA methylation.  Two cohorts of mice were fed 1691	  

either a diet depleted of key methyl-donors (choline and folic acid) or a control diet (Figure 1692	  

5-2). Both cohorts were sampled at 15 weeks of age to study acute environmental effects on 1693	  

DNA methylation.  Mice that were fed a methyl-deficient diet were then switched to the 1694	  

control diet for an additional 10 weeks to study the stability of environmentally induced 1695	  

changes in allele-specific DNA methylation.  Our preliminary analysis confirms our original 1696	  

observation that genetic variation in cis drives the methylation state of nearby CpGs.  1697	  

 We observed global changes in DNA methylation in the two experimental conditions 1698	  

(Figure 5-3).  These results also suggest a strain by parent-of-origin by diet effect. We also 1699	  

observe local effects such as parent-of-origin, strain, and diet (Figure 5-4).   1700	  

 Given the different strains used, this study may be used to expand the catalog of 1701	  

strain-specific DMRs (Chapter II) and perhaps parent-of-origin DMRs.  Also, the optimized 1702	  

protocol increases the number of methylation informative probes by 37% and reduces the 1703	  

ambiguity seen by using two different fragmentation enzymes. In summary, this dataset 1704	  

shows promise for untangling the effects diet has on the methylome both at a global and 1705	  

local level. 1706	  

 1707	  
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Figure 5-2. Experimental Design.  Shown are the crosses, diet and time of sacrifice for the 
48 mice in the study.  There were six biological replicates for each experimental condition. 

 1708	  

 

 
 
 
 
Figure 5-3. Global differences in DNA 
methylation at 26-weeks of age.  Shown 
are the distributions of probe hybridization 
intensity for each of the four experimental 
conditions. 
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Figure 5-4.  Local DNA methylation effects.  Shown are hybridization plots for three 
different loci showing parent-of-origin, strain, and diet effects.  In panels A and B, triangles 
represent (NODxPWK)F1 hybrids, and red X’s represent (PWKxNOD)F1 hybrids.  In panel 
C, green triangles represent mice fed a choline sufficient diet, while red X’s are those fed a 
choline deficient diet. 

 1709	  

 RNAseq libraries were created at the Jackson Laboratory from a subset of the 48 1710	  

mouse livers used for MSNP analysis shown above.  Among other analyses, this data set 1711	  

could be used to study the phenotypic effects of differential DNA methylation.  Interesting 1712	  

comparisons would be gene expression changes between: 1713	  

• diet 1714	  

• age (15 and 26 weeks) 1715	  

• allele-specific  1716	  

• parent-of-origin 1717	  

• combinations of all four 1718	  

 If informative SNPs tagging DNA methylation reside near these differentially 1719	  

expressed genes, it would be interesting to see if there is a correlation between changes in 1720	  

gene expression and changes in DNA methylation.  Also, are environmental exposures that 1721	  
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change the methylome acute, or do they persist over time? And does this correlate with 1722	  

changes in gene expression with age? 1723	  

 1724	  

SECTION TWO 1725	  

Shown below are general conclusions drawn from section two: 1726	  

• Xce is a distinct locus and not merely the result of genetic variation within Xist, 1727	  

Tsix, or Xite.   1728	  

• The Xce candidate interval contains a segmentally duplicated region and CNV 1729	  

between allele carriers may explain the Xce allelic series 1730	  

• The genetic architecture of Xce is rich in Mus, with six functional alleles identified 1731	  

to date. 1732	  

• Maternal inheritance of the strong Xce allele magnifies XCI skewing 9%. 1733	  

• Our results support the hypothesis that Xce is a trans-factor binding site that acts 1734	  

upstream of Xist. 1735	  

• Taken together, genetic variation impacts both CpG methylation and XCI in 1736	  

mouse.  1737	  

The Xce candidate interval 1738	  

 After 40 years of research, the Xce candidate interval stood at 1.85 Mb and 1739	  

included major players in the XCI process, Xist, Tsix, and Xite.  The failure to substantially 1740	  

reduce the candidate interval size was primarily due to the high stochastic variability and 1741	  

large recombinant population needed to fine map.  However, our approach overcame these 1742	  

challenges by integrated new high-density genotype data [1] and whole genome sequencing 1743	  

data [2, 3] with historical Xce phenotyping data.  By doing so, were able to utilize association 1744	  

mapping and select strains with historical recombinations and significantly reduce the Xce 1745	  

candidate interval 10-fold to 176kb.  Furthermore, we were able to exclude Xist, Tsix and 1746	  

Xite as candidates for Xce (Chapter IV, Figure 4-4). 1747	  
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 Importantly, the new candidate interval is of much smaller size and thus is more 1748	  

amenable for mechanistic studies.  For instance, the interval is small enough to perform 1749	  

homologous recombination experiments.  These may include sequence exchanges in ES 1750	  

cells to recapitulate the XCI skewing in Xce heterozygotes.  129S1/SvlmJ ES cell lines are 1751	  

homozygous for Xcea.  By exchanging the candidate interval with a different functional allele, 1752	  

say CAST/EiJ (Xcec), and select for heterozygous ES tranformants, the skewing of XCI 1753	  

choice in the differentiated ES population should mirror skewing seen in 1754	  

129S1/SvlmJxCAST/EiJ F1 female hybrids.  Alterations to the copy number and linear 1755	  

arrangement of the segmentally duplicated region could be used to gain insight into the 1756	  

molecular mechanism itself.  For instance, is it the copy number, linear arrangement or both 1757	  

that distinguishes the different functional alleles?  Are there specific duplications that 1758	  

distinguish the functional alleles, or can some be removed without influencing the function?  1759	  

Answers to these questions may divulge whether the molecular mechanism is involves 1760	  

binding site duplications, orientation, or topology differences that alters Xce’s proximity to 1761	  

the Xic.  1762	  

 The smaller interval size may also be amenable to biochemical studies.  These 1763	  

include, but are not limited to: Crosslinking proteins to DNA at the critical window of XCI 1764	  

choice and then pulling down the Xce candidate sequence; characterizing chromatin 1765	  

structure and post-translational modifications during XCI choice; and characterizing DNA 1766	  

methylation changes before and after XCI choice.  However, the success of these 1767	  

experiments depends on determining the Xce sequence for each functional Xce allele.  1768	  

Xce allelic series 1769	  

 Xce was initially discovered in 1965 [146] through the observation that female mice 1770	  

heterozygous for Cattanach’s translocation ((T(1;X)Ct), [198]) segregated for ‘high’ and ‘low’ 1771	  

levels of white coat color variegation.  Unbeknownst to Cattanach and colleagues, the 1772	  

mouse strains used to derive the translocation line carried two functional alleles (CBA, Xcea; 1773	  
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PCT, Xceb).  Thus the two ‘states’ of coat color variegation were caused by either XCI 1774	  

skewing in females heterozygous for Xcea/b or random XCI in females homozygous for 1775	  

Xcea/a or Xceb/b.  Since that time, four functional Xce alleles have been identified in Mus 1776	  

(Xcea,b,c, and d) and a total of 16 inbred strains phenotyped (not including sister strains).  Our 1777	  

study brings that number to 26, nearly doubling the strains phenotyped.  Furthermore, we 1778	  

have identified two new functional alleles, one in a strain of M. m. musculus descent 1779	  

(PWK/PhJ, Xcee), and one derived from a mouse of M. spicilegus descent (PANCEVO/EiJ 1780	  

(Xcef).  These findings reveal that genetics play a significant role in XCI in the laboratory 1781	  

mouse.  The Xce allelic series creates a wide-range of XCI skewing from as little as 45:55 1782	  

(Xcea/e) to nearly 0:100 (Xcea/d).  Xce skewing is present in both classical inbreds as well as 1783	  

intersubspecific crosses.  Although the degree of mean XCI skewing is minimal in commonly 1784	  

used classical inbred strains (mean XCI skew in Xcea/b heterozygotes is 40/60), nearly 50% 1785	  

of all F1 crosses between classical inbred strains will have mean XCI skewing (Figure 4-8).  1786	  

Furthermore, we predict that all intersubspecific crosses will result in Xce heterozygosity and 1787	  

mean XCI skewing.  These results demonstrate that Xce has a significant effect on X-linked 1788	  

gene expression and should be incorporated into future X-linked gene expression models. 1789	  

The evolution of the Xce allelic series 1790	  

 Taken together, our results significantly expand our understanding of the genetic 1791	  

architecture of XCI choice.  The number of functional Xce alleles is consistent with the idea 1792	  

that the Xce allelic series is the result of CNV of a trans-factor binding site. Unlike a SNP 1793	  

that may or may not result in a new functional allele, each change in the copy number of the 1794	  

Xce region results in a new functional allele.  Interestingly, we find that each species or 1795	  

subspecies has its own functional allele and there is no sharing between them.  This 1796	  

observation could be due to the limited number of strains phenotyped in each branch.  1797	  

However, the results from the M. m. domesticus and M. m. musculus branch suggest 1798	  

otherwise.  Within the M. m. domesticus branch, we find that Xceb is common to both 1799	  
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classical inbred strains as well the sole allele in wild-derived strains (Figure 4-8).  Yet, Xcea 1800	  

is specific to classical inbred strains only. These results indicate that either Xcea is a rare 1801	  

allele in the wild or a new, derived allele-specific to classical inbred strains.  If the latter is 1802	  

the case, then Xceb is the ancestral allele.  1803	  

 Furthermore, we have phenotyped two additional strains of M. m. musculus origin, 1804	  

SKIVE/EiJ and JF1/Ms. The XceSKIVE and XceJF1 alleles were tested against known Xcea and 1805	  

Xceb carriers, and yet produced inconclusive results (data not shown).  Although, we cannot 1806	  

assign a specific allele to the two strains, we can conclude that SKIVE/EiJ and JF1/Ms do 1807	  

not harbor the Xcec or Xced alleles.  Unfortunately, we did not have access to reciprocal 1808	  

crosses involving SKIVE/EiJ and JF1/Ms and believe the parent-of-origin effect is the cause 1809	  

of our uncertainty.  However, the XCI skewing recorded is completely consistent with a 1810	  

maternal parent-of-origin effect involving the Xcee allele (Figure 4-9, data not shown). 1811	  

 If the lack of functional diversity observed is not merely a sampling issue, then 1812	  

perhaps there is a fitness component to XCI skewing.  Eutherian mammals undergo random 1813	  

XCI, unlike the rest of theria, such as metatheria and monotremes [199].  From a fitness 1814	  

perspective, random XCI balances the use of each parental X chromosome in half for a 1815	  

given female.  It is possible that within a panmictic population, skewing of XCI would bias X 1816	  

chromosome expression towards one X chromosome over another.  Mutations in linkage 1817	  

disequilibrium with Xce would either be preferentially activated or inactivated depending on 1818	  

the strength of the Xce allele.  It would stand to reason that deleterious or advantageous 1819	  

alleles linked to Xce might be selected against or for, depending on the strength of the Xce 1820	  

allele.  Therefore the apparent lack of functional diversity may be a result of a selective 1821	  

sweep towards one functional allele over another in a randomly mating population.  Dr. Alan 1822	  

Lenarcic and Dr. Will Valdar have attempted to simulate this effect, with limited success, 1823	  

using a computer model of a population segregating for two different functional Xce alleles 1824	  

alleles.  Interestingly, the simulations yielded either insignificant or no selection whatsoever, 1825	  
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and no simulation completely eliminated an allele from the population.  These results may 1826	  

be due to incomplete modeling, or simply that selection does not occur at Xce.  However, 1827	  

this is an attractive hypothesis that deserves additional investigation. 1828	  

How our results fit the current model of XCI 1829	  

 It was proposed by Mary Lyon in 1971 that Xce may serve as a binding site for a 1830	  

jointly synthesized autosomal trans-factor involved in the early stages of XCI sensing and 1831	  

choice [200].  Alternatively, she proposed a model where the initial factor originates from the 1832	  

X chromosomes and actives an autosomal factor, which in turn inactivates one X 1833	  

chromosome [28].  Critical to these models is the stochiometry of X to autosomal factors 1834	  

[131-133].  Since that time, a few models have been proposed that incorporate recent 1835	  

findings in XCI research [130].  Common to all of these models is communication between 1836	  

autosomes and X chromosomes, and that typically involves X-linked trans-factor binding site 1837	  

or X-linked signal that induces an autosomal response. Keeping with these proposed 1838	  

models, I put forth an expanded hypothesis that incorporates our Xce findings.  I propose 1839	  

that the different functional Xce alleles are distinguished by expansions and/or contractions 1840	  

of a series of tandem segmental duplications. Specifically, the variation in the segmentally 1841	  

duplicated region changes the probability of either a trans-factor binding Xce that promotes 1842	  

Xist expression (leading to XCI in cis) or promotes Tsix (leading to an active X) (Figure 5- 1843	  

5A). An alternative hypothesis is that Xce is a non-coding RNA that either promotes Xist or 1844	  

Tsix expression in cis.  Duplications of this non-coding RNA changes the probability of that 1845	  

chromosome remaining active (Figure 5-5B). The simplest model to explain the Xce allelic 1846	  

series and the rapid evolution of the locus is that variation in the number of segmental 1847	  

duplications result in the change of copy number of the trans-factor binding site. Therefore, 1848	  

the ‘weaker’ Xce alleles (i.e., Xcea) would have more copies and would increase the 1849	  

probability of binding the sensing/counting trans-factor and initiate the XCI process (Figure 1850	  

5-5B, blue chromosome). Likewise, the ‘stronger’ Xce alleles would have fewer copies and 1851	  
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thus have a lower probability of binding the trans-factor and undergoing XCI (Figure 5-5B, 1852	  

red chromosome).  To test this hypothesis the Xce candidate interval will have to be 1853	  

assembled properly for at least two different functional alleles (see Ongoing work). 1854	  

 

 
FIGURE 5-5. How Xce fits into the current XCI choice mechanism. Shown in Panel A 
are two possible mechanisms of Xce.  First, an autosomal trans-factor binds Xce that in turn 
induces either Xist or Tsix.  Xce may act as an enhancer or insulator, or may produce a non-
coding RNA that acts in cis.  In Panel B two X chromosomes with different functional Xce 
alleles (Xcea and Xcec) are represented with blue and red lines, respectively.  Shown to the 
left is a timeline of the XCI process beginning with the unknown sensing and counting 
mechanism and ending with the spreading and maintenance stages.  The different 
functional alleles are distinguished by their probabilities of inducing Xist expression.  Shown 
are Xcea and Xcec. The Xcea allele has a greater chance of binding the trans-factor and thus 
has a higher chance of inactivation when in heterozygosity with Xcec. 
 1855	  

1856	  
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Modeling XCI choice   1856	  

 The overarching goal of our XCI model is to precisely estimate the XCI pattern in an 1857	  

individual female and then use that information to understand stochastic, genetic and 1858	  

epigenetic factors influencing XCI choice in female populations.  Here, I provide a summary 1859	  

of our XCI choice model; relay what it tells us about different factors influencing choice; and 1860	  

discuss its impact on future XCI research.  A more detailed explanation can be found 1861	  

elsewhere [171].  1862	  

 Unlike a typical regulatory locus that controls gene expression of one or a few gene 1863	  

products nearby, Xce is unique because it indirectly influences the expression of hundreds 1864	  

of genes across the entire X chromosome.  Currently, the effects of Xce can be observed 1865	  

only after the fact; once the XCI process has occurred.  We measure XCI choice by 1866	  

estimating the proportion of cells that have an inactive maternal versus paternal X 1867	  

chromosome.  To do so, we use allele-specific (in this case, parental specific) X-linked gene 1868	  

expression as a surrogate.  We then measure X-linked gene expression in a tissue with the 1869	  

expectation that it truly reflects the original maternal/paternal XCI progenitor cell 1870	  

stoichiometry caused by primary XCI choice. 1871	  

 Our model [171] attempts to parameterize sources of XCI choice variability and 1872	  

uncertainty (Figure 5-6).  Three factors mainly contribute to mean XCI skewing (although we 1873	  

have yet to determine if and to what extent they may also influence variance): Xce, parent- 1874	  

of-origin, and secondary skewing.  And, there are two factors that mainly contribute to XCI 1875	  

variance within a population: chance and autosomal modifiers (Figure 5-6).   1876	  

 The variance of XCI within a female population depends on the number of cells that 1877	  

undergo independent choice.  An analogy that best describes the two possible outcomes of 1878	  

XCI is flipping a coin, which represents the probability facing each cell that undergoes 1879	  

independent choice.  In Xce homozygotes, the coin has an equal probability of landing on 1880	  

heads or tails. The number of flips allowed will buffer the mean from deviating too far from 1881	  
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50/50, which represents the number of cells that undergo independent choice.  The 1882	  

variance, therefore, will be greater in females with fewer cells that undergo independent 1883	  

choice (orange, Figure 5-6). In Xce heterozygotes, the coin is weighted and thus one side 1884	  

has a higher probability of landing face up, leading to mean XCI skewing (dark green, 1885	  

Figure 5-6).  The weight differential between two sides of the coin (Xce allele strength) 1886	  

determines the number of females needed to show significant deviation from 50/50.  For 1887	  

instance, Xcec/a heterozygotes (~75/25) deviate far from 50/50, while Xcea/e heterozygotes 1888	  

are close to 50/50 (45:55).  For this reason, it would take far more females to show mean 1889	  

skewing in Xcea/e heterozygotes than Xcec/a heterozygotes.  Therefore, the certainty of Xce- 1890	  

induced XCI skewing is dependent on the number of females phenotyped and the number of 1891	  

cells that undergo independent choice (which is related to the tissue type used).   1892	  

 It has been shown that the variation in XCI is also impacted by autosomal modifiers 1893	  

[163].  Mapping these modifiers is of great interest to the XCI community, because they 1894	  

could be the dosage factors that communicate with the X chromosome during the early 1895	  

stages of sensing and counting.  Currently, we are using the CC and DO populations to map 1896	  

both the autosomal modifiers and parent-of-origin effect (see Ongoing work).  The 1897	  

combination of our model and these two mouse resources provide an opportunity to finely 1898	  

map these factors.   1899	  

 In the past, X –linked traits were considered low-hanging fruit: easily identified by 1900	  

their severe phenotypes in males [201], XO females [202], or XX females with 100% 1901	  

skewing in favor of the deleterious allele [203]. But more recently, mapping complex traits 1902	  

involving the X chromosome have fallen by the wayside because of XCI skewing and 1903	  

variability within female populations.  Our study facilitates future mapping studies by 1904	  

estimating and predicting the contribution of each factor influencing XCI (Figure 5-6).  1905	  

Furthermore, our model allows for characterization of additional factors influencing XCI 1906	  

choice such as secondary skewing caused by X-linked mutations affecting cell survival or 1907	  
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proliferation (Figure 5-6). Taken together, this model and our large experimental dataset 1908	  

create a novel resource for future X-linked association mapping studies. 1909	  

 

Figure 5-6. Factors influencing XCI choice.  Shown are five different factors influencing 
XCI choice.  The distributions show the XCI patterns seen in hypothetical female 
populations.  Chance and autosomal factors have been shown to influence the variability of 
XCI choice within a population [163, 204].  Mean XCI choice is influenced by Xce, PoO and 
secondary skewing.  The amount of skewing shown is not set in stone and will change 
depending on the genotype of Xce and X-linked variation (secondary skewing).  
 1910	  

 From a developmental perspective, our study may provide a platform for 1911	  

characterizing mammalian cellular lineages during key developmental stages [205, 206]. For 1912	  

example, the variation in XCI patterns between tissues suggests that the pool of cells that 1913	  

gives rise to each tissue type varies.  Our model gives a sense of the number of cells that 1914	  
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undergo independent choice and ultimately contribute to each tissue (Chapter IV, 1915	  

Discussion).  1916	  

 Finally, given the predictive power of our phylogenetic analysis of the Xce candidate 1917	  

interval, this information could be used to generate crosses that lack mean XCI skewing, or 1918	  

intentionally select strains with XCI skewing.  The Xce allelic series provides a natural way 1919	  

to dial up or down the X chromosome expression from one strain or another.  This provides 1920	  

an opportunity to study X-linked variation by crossing strains harboring different Xce 1921	  

functional alleles to create naturally skewed female mosaics.  1922	  

Phenotypic consequences of skewed XCI 1923	  

 RNAseq is an especially powerful tool for determining XCI skewing because of the 1924	  

large number of eSNP measurements across the X chromosome.  Where as a single gene 1925	  

may mislead due to tissue or cis-driven differential expression, RNAseq provides 1926	  

comprehensive allelic-imbalance information anywhere informative eSNPs are expressed.  1927	  

In addition to increased accuracy for estimating the ratio of maternal to paternal XCI, 1928	  

RNAseq also reveals the significant and chromosome-wide phenotypic consequences of 1929	  

Xce functional heterozygosity.  Take for example Figure 5-7. The female in Panel A 1930	  

displays chromosome-wide allelic imbalance in favor of the CAST X chromosome (76% 1931	  

CAST).  This is interpreted as 76% of the cells are expressing the CAST X chromosome 1932	  

over the WSB X chromosome.  (CASTxWSB)F1 0113 has an X expression profile similar to 1933	  

a CAST inbred female instead of a true hybrid between CAST and WSB.  The female hybrid 1934	  

shown in Panel C is a prime example of the stochastic and parent-of-origin factors 1935	  

influencing choice.  Given the genotype at Xce (Xceb/c) the expectation is a mean XCI 1936	  

skewing of ~70% in favor of the CAST X chromosome.  Although both females are 1937	  

genetically identical (with the exception of mitochondria), the parent-of-origin of the X 1938	  

chromosomes is different.  This has the effect of reducing XCI skewing if the strong allele is 1939	  

inherited through the paternal germline (Chapter IV, Figure 4-9).  Lastly, Xce 1940	  
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heterozygosity may have subtle changes in X chromosome skewing as seen in Panel B.  1941	  

(PWKxWSB)F1 0084 has XCI skewing in favor of the WSB X chromosome (~53%). 1942	  

 

 

 1943	  

Ongoing work: sequence characterization of the Xce candidate interval 1944	  

 The Xce candidate interval must be assembled correctly for future mechanistic 1945	  

studies.  Previously, we attempted to use publically available next-generation sequencing of 1946	  

mouse strains with known Xce alleles to determine CNV within the candidate interval ([2, 3], 1947	  

data not shown), but were unsuccessful. The main reasons are: 1) segmentally duplicated 1948	  
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Figure 5-7. X chromosome-wide allelic imbalance as a result of XCI skewing. Shown in 
Panel A is allele-specific gene expression across the entire X chromosome for a single 
female F1 hybrid (CASTxWBS)F1 0113.  Each dot represents an informative eSNP that 
tracks allelic ratio of expression between the CAST and WSB X chromosomes.  The y axis 
is the number of CAST reads divided by total number of reads.  The color of the dot signifies 
the proportion of RNAseq reads that comes from each parental X chromosome.  Red, CAST 
(PWK in Panel B); Blue, WSB and genes expressed close to 50/50 are a hybrid of the two 
colors, purple.  Panel B is a (PWKxWSB)F1 hybrid female.  Panel C is a (WSBxCAST)F1 
hybrid female.	  
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regions are difficult to assemble de novo; and 2) CNVs are difficult to interpret with short 1949	  

next-generation sequencing reads available [2, 3]. Listed below is a step-by-step tailored 1950	  

approach to overcome the challenges that accompany segmentally duplicated regions: 1951	  

1) Characterize bacterial artificial chromosomes (BACs) that span the Xce 1952	  

candidate interval from mouse libraries that were derived from inbred strains with 1953	  

different functional Xce alleles. 1954	  

a. I cultured 18 BAC clones from five different mouse libraries (C3H/HeJ, 1955	  

C57BL/6J, C57BL/6NJ, NOD/LtJ and MsM/Ms) that represent 3 different 1956	  

functional Xce alleles (Xcea, Xceb, Xcee) Figure 5-8. 1957	  

 

Figure 5-8. Map of BACs that span the candidate interval.  This figure displays the 
segmental duplications labeled SD1-I5.  Shown underneath the duplications are BACs that 
span the Xce candidate interval.  BACs derived from mouse strains C57BL/6J and 
C57BL/6NJ are shown in blue.  BACs in bold with an asterisk are fully sequenced [172], 
while the remaining are mapped based on end-sequencing.  In orange are BAC clones 
derived from two different NOD/LtJ libraries; in red, from C3H/HeJ; and in green, from 
MSM/Ms. Also shown are the restriction sites for SalI and Southern blot probes. 
 1958	  

2) Assemble the C57BL/6J reference by determining BAC sizes using Pulse Field Gel 1959	  

Electrophoresis and by using restriction fragment analysis. 1960	  

a. Shown in Table 5-1 are the BAC sizing results for the 18 BAC clones. 1961	  
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Table 5-1. Pulse field gel electrophoresis BAC sizing result.  This table shows PFGE 
results for each BAC examined.  Clones with a PFGE size that does not agree with its end-
sequencing size have an asterisk. 

 1962	  
 b. Restriction mapping using SalI and SacII revealed size discrepancies between 1963	  

predicted fragment sizes and observed fragment sizes (Table 5-2, Figure 5-8). 1964	  

 

Table 5-2: SalI digestion results and Southern blot analysis using probe two.  Clones 
in green shown Southern results that agree with the predicted sequence and size of the 
restriction fragment.  Clones in yellow either did not contain probe sequence or had a size 
discrepancy.   
 1965	  
 c. Southern blot analysis confirmed that restriction fragments of digested BAC DNA 1966	  

 containing the probe sequence are present and are of the correct size.   1967	  

3) Identify BACs of interest for next-generation sequencing using PacBio long-read 1968	  

technology. 1969	  

a. As controls, RP23-149P4, RP23-76A20 (rederived), and RP23-112I20 will be 1970	  

sequenced.  In addition, MsM-263L7, MsM-123E10, MsM-52A19, MsM- 1971	  

!"

Clone name Library Derived from Xce allele Start (mm9) Stop (mm9)
End-sequencing 

length (kb)
Estimate size 
(PFGE) (kb)

difference
(kb)

RP23-149P4 RPCI-23 C57BL/6J b 99,781,893 99,974,664 192.8 196.2 3.4
RP23-76A20 RPCI-23 C57BL/6J b 99,871,536 100,105,736 234.2 97.0 -137.2
RP23-112I20 RPCI-23 C57BL/6J b 100,047,468 100,249,207 201.7 198.7 -3.0
RP24-270A1 RPCI-24 C57BL/6NJ b 99,896,469 100,044,114 147.6 151.1 3.5
RP24-201J24 RPCI-24 C57BL/6NJ b 100,055,682 100,172,447 116.8 157.4 40.6
RP24-255E13 RPCI-24 C57BL/6NJ b 100,139,454 100,279,500 140.0 145.6 5.5
DN-4I23 DIL-NOD NOD/LtJ b 99,972,803 100,103,402 130.6 162.9 32.3
DN-381B13 DIL-NOD NOD/LtJ b 100,061,148 100,188,157 127.0 131.7 4.7
CH29-487D16 CHORI-29 NOD/LtJ b 99,735,210 99,975,240 240.0 250.3 10.2
CH29-513M21 CHORI-29 NOD/LtJ b 99,916,632 100,101,122 184.5 224.6 40.1
CH29-17F16 CHORI-29 NOD/LtJ b 99,991,978 100,153,987 162.0 199.7 37.6
C3H-226F19 C3H iBAC C3H/HeJ a 99,931,247 100,044,075 112.8 154.6 41.8
C3H-177G18 C3H iBAC C3H/HeJ a 100,082,631 100,235,772 153.1 165.0 11.8
C3H-23L20 C3H iBAC C3H/HeJ a 100,131,701 100,257,848 126.1 168.5 42.3
MsMg01-263L7 MsMg01 MSM/Ms e 99,883,258 100,000,816 117.6 143.5 25.9
MsMg01-123E10 MsMg01 MSM/Ms e 99,907,218 100,047,448 140.2 95.5 -44.7
MsMg01-52A19 MsMg01 MSM/Ms e 100,000,811 100,077,933 77.1 99.8 22.7
MsMg01-529C20 MsMg01 MSM/Ms e 100,047,443 100,179,746 132.3 160.8 28.5
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529C20, C3H-226F19, C29-513M21, and DN-4I23 will be sequenced 1972	  

because they span the segmentally duplicated region and show multiple lines 1973	  

of evidence that their end-sequence map length is inaccurate and their 1974	  

internal sequence cannot be represented by the reference sequence. 1975	  

4) Assemble the Xce candidate interval correctly for each functional Xce allele carrier.  1976	  

This includes determining the proper copy number and linear arrangement of the 1977	  

duplications. 1978	  

a. The success of this step requires that there is adequate read depth and 1979	  

sufficient overlap between BACs to assemble the Xce region de novo for 1980	  

each allele carrier.  Several assembly problems are anticipated even with the 1981	  

long sequencing technology such as incorporating sequencing errors during 1982	  

multiple reads of the same circularized template DNA [207].  The long-read 1983	  

technology of PacBio has a trade-off: The length of the read is correlated to 1984	  

error rate.  Therefore, the longer the read, the higher the error rate.  A 1985	  

solution to this problem would be to combine both short read (Illumina) 1986	  

sequencing and BacBio technology. 1987	  

5) Annotate CNVs, SNP and indels for each strain.   1988	  

a. A read threshold will need to be established for de novo SNP, CNVs and 1989	  

indels.  Previous studies using PacBio technology will guide this process 1990	  

[207]. 1991	  

6) Identify candidate Xce loci (locus).  1992	  

a. The candidates must fulfill two requirements: 1) strains with the same Xce 1993	  

allele should share the same sequence and 2) that sequence must be 1994	  

different from unlike Xce allele carriers.  1995	  
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7) Expand sequence analysis to mouse strains without genomic libraries but with 1996	  

known Xce alleles.  This is an important step because of the limited number of 1997	  

mouse genomic libraries available. 1998	  

a. Pyrosequencing assays will be designed that target paralogous variation 1999	  

between duplications identified by PacBio.  These assays will be sensitive 2000	  

enough to detect two-fold increase in copy number between inbred strains. 2001	  

8) Examine the sequence of Xce.  The sequence itself (e.g., secondary structure or 2002	  

binding motifs) might provide insight into the molecular mechanism of XCI choice 2003	  

and direct future experiments. 2004	  

Essentially, this approach will mirror our association mapping in Chapter IV. 2005	  

Ongoing work: Mapping parent-of-origin and autosomal modifiers 2006	  

 Previous studies have shown that parent-of-origin influences XCI skewing [148, 2007	  

149, 163].  We have further characterized this phenomenon by demonstrating that maternal 2008	  

inheritance of the strong Xce allele magnifies Xce skewing by ~9% (Chapter IV).  It is 2009	  

unclear if the parent-of-origin locus(i) is Xce or somewhere else on the X chromosome., The 2010	  

CC mouse resource population and perhaps sibling pairs of DO mice may be used to map 2011	  

the parent-of-origin effect [64, 81].  Briefly, the CC and DO are genetic mosaics of eight 2012	  

inbred founders [64, 81] that have four functional Xce alleles segregating between them 2013	  

(Figure 4-8).   2014	  

 Reciprocal CC-RIX female mice (F1’s between finished CC lines) offer a quick 2015	  

approach to roughly map the parent-of-origin effect.  For example, the haplotype 2016	  

reconstruction of the X chromosome between CC-RIX lines associated with the presence or 2017	  

absence of the parent-of-origin effect can be used to quickly include or exclude regions of 2018	  

identity by descent (IBD) (Figure 5-9).  The presence of the parent-of-origin effect excludes 2019	  

regions of IBD between CC-RIX X chromosomes, while regions of IBD must be included in 2020	  

the absence of the parent-of-origin effect (Figure 5-9).  The analysis could be tailored to 2021	  
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include the possibility of multiple loci contributing to the parent-of-origin effect by allowing 2022	  

effects less than the average maternal effect of 9%. 2023	  

  2024	  

 

Figure 5-9. Mapping the parent-of-origin effect.  Shown are the X chromosome haplotype 
reconstruction of two CC-RIX mice, (3069x867)F1 and (3252x1515)F1.  Each color denotes 
a CC founder strain, A/J-yellow, C57BL6-gray, 129S1-pink, NOD-dark blue, NZO-light blue, 
CAST-green, PWK-red, and WSB-purple. Regions of IBD (orange areas) are included or 
excluded in reciprocal CC-RIX depending on the presence or absence of the parent-of-origin 
effect.  
 2025	  

 Mapping autosomal modifiers affecting XCI choice is not as straightforward as 2026	  

mapping the parent-of-origin effect.  A recent study attempted to map these modifiers, but 2027	  

none reach genome-wide significance despite nearly 1000 mice used in the study [163].  2028	  

The Diversity Outbred population should address this problem given the recombination 2029	  

landscape and large number of segregating variants compared to the F2 mice used in the 2030	  

study above.  Nevertheless, given the apparent multi-locus results shown by Chadwick et al. 2031	  

2005, at least 1000 DO mice will need to be phenotyped for a robust QTL analysis.  2032	  

 To date, I have extracted RNA from 590 female DO mice, 456 of which have good 2033	  

MegaMUGA genotypes for haplotype reconstruction.  Of those 456 mice, 398 have at least 2034	  

one informative pyrosequencing assay to measure XCI ratios (Figure 5-10).  I have 2035	  
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measured XCI ratios in 247 of these mice for a total of 296 pyrosequencing measurements.  2036	  

Additional DO mice from various studies at UNC and the Jackson Laboratory are available 2037	  

and pyrosequencing analysis is underway to phenotype these animals.  2038	  

 The identification of parent-of-origin and autosomal modifiers may be a critical leap 2039	  

forward in XCI research if these modifiers are indeed the key players in the sensing and 2040	  

counting mechanism. 2041	  

 2042	  

 

	  
	  
	  
	  
	  

	  

	  
	  
	  

 
 
Figure 5-10: Distribution of females with 
informative pyrosequencing assays. Of 
the 456 DO females with genotype data, 58 
do not have an informative eSNP capture by 
the pyrosequencing assays, 108 have one, 
161 have two, 107 have three, and 22 
females have four. 

 2043	  

The genetics of epigenetics 2044	  

  Taken together, my work provides a genetic perspective on epigenetic processes in 2045	  

mouse and demonstrates that genetic variability within populations is a major contributor to 2046	  

epigenetic variance.  Furthermore, this work reinforces the idea that underlying DNA 2047	  

sequence and epigenetic mechanisms are intimately linked and influence one another.  2048	  

Ultimately, epigenetic variability may have small or large phenotypic consequences 2049	  

demonstrated by the spectrum of XCI skewing in Xce heterozygotes.  Finally, this 2050	  

dissertation provides significant insight into the genetic regulation of DNA methylation and 2051	  

XCI in mouse and builds a solid foundation for future mechanistic work.  2052	  

2053	  

Histogram of y[, 1]

y[, 1]

Fr
eq
ue
nc
y

0 1 2 3 4 5

0
50

10
0

15
0

20
0

Fr
eq

ue
nc

y 

# informative assays 



122	  

MATERIALS AND METHODS 2053	  
 2054	  

BAC culture and purification 2055	  

 A total of 20 BACs were ordered from the Children's Hospital Oakland Research 2056	  

Institute (RP23-149P4, RP23-76A20, RP23-112I20, RP24-270A1, RP24-201J24, RP24- 2057	  

255E13, CH29-513M21, CH29-487D16, CH29-17F16), Riken (MsMg01-123E10, MsMg01- 2058	  

263L7, MsMg01-52A19, MsMg01-529C20), The Sanger Institute (C3H-226F19, C3H- 2059	  

177G18, C3H-23L20), and the Center for Applied Genomics (DN-4I23, DN-117I4, DN- 2060	  

361A24, DN-381B13).  LB stabs were used to strike LB agar plates containing 5% glucose 2061	  

and 12.5 µg/ml chloramphenicol.  A single colony was plucked and cultured overnight in 100 2062	  

ml of 2X YT media (Sigma) with 12.5 µg/ml chloramphenicol.  Bacterial cultures were 2063	  

pelleted and BAC DNA extracted using BACMAX DNA purification kit (Epicentre).  DNA 2064	  

quality and quantity was checked with a nanodrop spectrophotometer (Thermo Scientific). 2065	  

PFGE and alkaline gel transfer 2066	  

 Approximately 30 µg of purified BAC DNA was suspended in 1% low melt agarose 2067	  

(Calbiochem) and transferred to CHEF Mapper plug molds (BioRad).  Solidified plugs were 2068	  

cut in thirds and either placed in buffer (10mM Tris), digested with SalI, or with SacII 2069	  

according to manufacturer’s protocol (New England Biolabs).  Plugs were loaded into 0.9% 2070	  

low melt agarose gels and electrophoresed for 22 hours (6 v/cm, switch time 15”-35”, 120°) 2071	  

using a CHEF-DR III pulse field electrophoresis system (BioRad). Gels were transferred to 2072	  

positively charged membranes (Zeta-Probe GT, BioRad) overnight using alkaline transfer.   2073	  

Southern blotting 2074	  

 Membranes were prehybridized overnight using Ultrahyb (Ambion).  100 ng of 2075	  

purified DNA probes (see Table S5-1) targeting the duplicated region were radiolabeled 2076	  

using random hexamer primers and P32 dCTP (Invitrogen) and hybridized to the membrane 2077	  
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overnight.  Membranes were washed in 2X SSC, 1% SDS for 30 minutes, followed by 0.2X 2078	  

SSC, 1% SDS for 30 minutes.  Membranes were exposed to X ray film for visualization.   2079	  

 

 

Table S5.1: Primers used to generate probes for Southern blots. 

 2080	  

2081	  

Name Sequence Tm 5'position
Probe1-F GCCTTGGTTTCAGTATACAG 50.7 99910236
Probe1-Rev AACTGTATTGTGTTTTCATTGC 50.4 99910890
Probe2-F TTCTCCTTACAGGAGTGAAGG 53.5 99961227
Probe2-Rev ACAACCGCCTGATCCATA 53.5 99962064
Probe3-F CTCCAAAGCAAGACGGACATGG 58.3 100007398
Probe3-Rev CAGGTGTTCGTGCAAGAGATGG 58.3 100008182
Probe4-F CATGAAACAAGCATCACTCTG 52.7 100034409
Probe4-Rev CAGAAATGATACAGCCACTAAGG 53.3 100034970
Probe5-F TGCGATAGTGGGCTATGG 54.2 100093728
Probe5-Rev AAATGCTGAAACTGCTAGAACG 53.7 100094575
Probe6-F CACACAGACAGTCCTAGTCTAG 53.8 100133760
Prove6-Rev GGTGTTCGATGAACCTGG 53.2 100134259
Probe7-F GGTTTCCACGCATGTTATCC 54.1 100156526
Probe7-Rev GATTGTTGGAGACATGGCTC 53.6 100157352
Probe8-F GTAGTCCTTGCAGTTATGAAGG 53.0 100078161
Probe8-Rev AGGGTATGGGGTACTTTTGG 54.1 100078764
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