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ABSTRACT 
 

Fragile X Syndrome (FXS) is the most prevalent inherited form of autism. This condition 

is due to inappropriate silencing of the Fmr1 gene on the X-chromosome and subsequent loss of 

Fragile X Mental Retardation Protein (FMRP), a RNA-binding protein that represses dendritic 

protein translation. Clinical features of FXS include cognitive impairments, increased seizure 

susceptibility, and altered social behaviors. In these studies, I used the marble burying, open-

field, acoustic startle/prepulse inhibition, social exploration and nose poke behavioral assays to 

characterize phenotypic differences between male Fmr1-KO and wildtype mice that are 

comparable to known FXS behavioral defects. Results indicate that Fmr1-KO mice display 

increased perseverance and general hyperactivity, but are otherwise behaviorally similar to the 

control subjects. These findings provide a basis for future pre-clinical mouse studies that will 

attempt to correct behavioral and cellular abnormalities associated with FXS using 

pharmacological interventions during different stages of development. 

 

INTRODUCTION 
 

Fragile X Syndrome (FXS) is the leading genetic cause for intellectual disability in 

humans and effects approximately 1 in 4000 males (Crawford et al., 2001). FXS is caused by 

transcriptional silencing of the Fmr1 gene on the X chromosome due to expansive trinucleotide 

CGG repeats. Fmr1 encodes for Fragile X Mental Retardation Protein (FMRP), and thus FXS is 

characterized by FMRP deficiency and consequential physiological and behavioral abnormalities 

(Verkerk et al., 1991). These phenotypic defects include increased susceptibility to seizures 

(Dolen et al., 2007), cognitive dysfunction (Krueger 2011), impairments to spontaneous motor 

activity and abnormal social behavior (McNaughton et al., 2008). In mice, physiological 
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characteristics of FXS are achieved by knocking out the Fmr1 gene to simulate the FMRP 

deficiency found in FXS. FMRP is a RNA-binding protein that acts on numerous mRNA cargos 

to regulate local synaptic protein synthesis in dendritic spines of several brain areas. When 

bound, FMRP often represses translation of these mRNA’s, many of which are thought to 

promote synaptic plasticity and synapse formation (Garber et al., 2006). Absence of FMRP in 

FXS results in an excess of dendritic proteins that promote synaptic growth through pathways 

initiated by the Gqα-subunit of various G Protein-Coupled Receptors (GPCRs) and subsequent 

phospholipase C (PLC) and/or phosphoinositide 3-kinase cascades (Berry-Kravis et al., 2011).  

 Specific GPCRs affected by a lack of FMRP include those of the dopaminergic, 

glutamatergic and cholinergic subtypes. FMRP deficiency enhances long-term depression (LTD) 

of hippocampal synapses by means of the Gq-coupled metabotropic glutamate receptor 

(mGluR1/5) (Volk et al., 2007). Proposed pharmacological treatments for FXS have included 

mGluR antagonists such as 6-methyl-2-(phenylethynyl)pyridine (MPEP), which has successfully 

normalized some phenotypes of FXS in mice (Yan et al., 2005), but studies have yielded mixed 

results. Differences in results are likely due to the variety of roles that mGluR5 plays in brain 

reward circuitry. Unlike hippocampal consequences of Fmr1-KO, mice lacking FMRP display 

decreased mGluR5-LTD in medium spiny neurons (MSNs) of the nucleus accumbens (NAc) 

(Jung et al., 2012). Dolen et al. (2007) were able to successfully rescue many behavioral and 

physiological phenotypes of Fmr1-KO mice by genetically reducing mGluR5 expression during 

development, which implies that pharmacological manipulation of mGluR expression during 

development may be a more promising treatment strategy for reduction of FXS abnormalities.  

 In Fmr1-KO mice, there is higher striatal dopamine (DA) turnover, decreased stimulated 

striatal DA release, and increased DA release in the prefrontal cortex. Altered DA levels in FXS 
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change DA receptor activity and activation of subsequent pathways. Like mGluR, D1/D2 

heterodimeric DA receptors activate pathways that induce synaptic plasticity by means of PLC, 

and D2 receptors play a role in activating striatal LTD. Because DA plays an especially 

important role in behavioral initiation and repetition, altered levels of the neurotransmitter have 

been associated with stereotypies characteristic of FXS (Fulks et al., 2010). Aripiprazole (ARI), 

a D2 receptor partial agonist, is used as a treatment for FXS symptoms like anxiety and 

aggression investigated and continues to be investigated as a treatment for FXS (Hagerman et al., 

2009). Fish et al. (2013) used intracranial self stimulation (ICSS) to show that ARI elevates brain 

stimulation reward in mice but its anhedonic effect is less pronounced in Fmr1-KO mice than in 

the control. These findings suggest that ARI may be effective at reducing genotype DA reward 

function difference and decreasing abnormal stereotypies commonly observed in FXS subjects.  

 Like the effect of FMRP deficiency on glutamate GPCRs, hippocampal LTD by M1 

muscarinic acetylcholine receptors (mAChR1) is enhanced in Fmr1-KO mice. M1 and M4 

antagonists, dicyclomine and tropicamide, respectively, partially improve behavioral 

abnormalities and seizure susceptibility associated with Fmr1-KO mice (Volk et al., 2007). 

Additionally, mAChR1-dependent LTD in MSNs of the NAc is enhanced by a FMRP 

deficiency, which contrasts with the FXS-associated NAc LTD decrease due to altered glutamate 

metabotropic receptor activity (Malanga, unpublished). If these mechanisms could be targeted by 

pharmacological treatment during a critical period of development, drug therapies for FXS may 

yield more consistent corrections of abnormalities brought about by FMRP deficiency. Fmr1-KO 

mice show increased motor stimulation after administration of the M1 antagonist trihexyphenidyl 

(THX) and a lower level of reward sensitivity to the drug in ICSS testing than do WT mice (Fish 

et al., 2013). It is expected that THX administration during development would normalize 
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mAChR LTD, improve motor function, and decrease stereotypies characteristic of Fmr1-KO 

mice. This pharmacological approach will be tested as a follow-up to the current preliminary 

data. 

Human males with FXS often exhibit heightened sensitivity to sensory stimuli (Miller et 

al., 1999). These individuals display low sensorimotor gating abilities, which can be measured in 

both mice and humans by means of a prepulse inhibition (PPI) assay, during which a weak 

acoustic stimulus is sounded prior to a loud, startling sound and is expected to lower the 

subject’s startle amplitude. The difference between acoustic startle reactions with and without a 

preceding weak sound acts as a measure of PPI, or sensorimotor gating. Male Fmr1-KO mice 

have been found to exhibit increased PPI, which may be indicative of physiological 

compensation for Fmr1 deletion in mice that do not occur in humans. Fmr1-KO mice have also 

exhibited lower startle thresholds to sound amplitude than Fmr1-wildtype (WT) mice. Low PPI 

has been associated with cognitive abnormalities of FXS and may indicate a mechanism of the 

disorder that is directly related to sensorimotor gating abnormalities (Frankland et al., 2004). 

Other studies have shown that Fmr1-KO mice display low PPI; results are mixed and it is 

therefore difficult to predict a phenotype for the Fmr1-KO mice used in the present study (de 

Vrij et al., 2008). Changes in acoustic startle behavior in Fmr1-KO subjects throughout 

pharmacological treatment may exhibit useful indications of therapeutic progress, as abnormal 

PPI levels are correlated with cognitive changes in FXS. 

 Social anxiety is a distinct characteristic of human FXS and is modeled in the current 

study using a stranger-mouse paradigm in a three-chambered apparatus. Fmr1-KO mice have 

previously displayed preference for being in the same chamber as a stranger mouse over being in 

an empty chamber, as Fmr1-WT mice do, but display a shorter average duration of nose contact 
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with the stranger mouse. This may indicate greater social anxiety or arousal in Fmr1-KO mice 

(McNaughton et al., 2008). While mouse models that display a more accurate simulation of FXS 

social behaviors would be ideal for animal studies of FXS therapies, correction of present 

indications of social inhibition is a primary goal for current treatment studies.  

 Marble burying is reflective of a basic perseverant digging behavior seen in various types 

of mice (Thomas et al., 2009). Repetitive motor behavior is characteristic of individuals on the 

autism spectrum (Carcani-Rathwell et al., 2006). Previous studies have shown that Fmr1-KO 

mice on certain genetic backgrounds display increased marble burying behavior, suggesting 

heightened perseverant behavior that coincides with the known human FXS phenotype (Spencer 

et al., 2011). The open field behavioral assay further tests for hyperactivity, anxiety, exploratory 

behavior and stereotypy by measuring distance travelled, motion repetition and areas occupied 

by the subject mouse in a one-hour trial. A previous study showed that Fmr1-KO mice display 

increased open field activity in all facets of behavioral assessment across different mouse 

backgrounds (Spencer et al., 2011). 

There is not yet sufficient background information for phenotypic designations of Fmr1-

KO mice in hole-board task performance, but this test has been designed as an indicator of 

repetitive behavior (Moy et al., 2008). It is expected that, as with the open field and marble 

burying tasks, the Fmr1-KO mice used in the current study will display increased repetitive 

behavior during the hole-board task by restricting nose pokes to specific holes in a sequential, 

perseverant manner relative to their Fmr1-WT counterparts. 

 This study attempts to characterize behaviors of Fmr1-KO mice including social 

exploration, open-field exploration, acoustic startle/PPI, marble burying and hole-board 

exploration. As a follow-up to this study, experimental treatments for FXS will be administered 
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to mice across different developmental stages in order to predict the efficacy of therapeutic 

interventions during childhood and/or adolescence. Long-term management of FXS behavioral 

abnormalities may be achieved when pharmacological manipulation occurs at a stage of critical 

development. This would be an improvement to the life-long treatments currently administered 

to individuals with FXS that provide only temporary and partial improvement to phenotypic 

abnormalities. Drugs tested will include the aforementioned trihexyphenidyl, MPEP and 

aripiprazole. 

 

MATERIALS AND METHODS 

Subjects. C57BL/6J Fmr1-KO and WT mice were tested starting at P50-62 over a course of five 

weeks. 11 Fmr1-WT and 10 Fmr1-KO mice served as subjects.  There were no weight 

differences between the two genotypes: WT, 30.2 g ± 1.4; KO, 30.8 g ± 0.5 (mean ± SEM).  One 

WT mouse was injured; data from this subject were removed from the study. Experimenter was 

blind to mouse genotype throughout the duration of the study (Fmr1-WT or KO).   

Marble Burying. Mice were tested in a standard cage containing 3 liters of corncob bedding with 

20 glass marbles arranged in an orderly array of 5 equidistant rows atop the bedding. The cage 

containing bedding and marbles was placed in a sound-attenuating box with a light and fan. Mice 

were placed in the cage for 30 minutes. After the trial, the mice were returned to their home 

cages and the number of marbles buried (2/3 of marble beneath bedding) was recorded.  

Open-Field Exploration / Hole-Board Exploration. The subjects were allowed to explore an 

open chamber (41 x 41 x 30 cm) for one hour. The chamber was crossed by an array of 

photobeams that allowed for tracking of total distance traveled (cm), fine movements (when 

same set of beams are broken repeatedly), rearing movements, and time spent in the center 
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region (VersaMax System, AccuScan Instruments). This same apparatus was modified for the 

nose poke assay by installation of a floorboard containing 16 equidistant holes. Photobeams 

within the chamber tracked mouse locomotion and number of nose pokes in each hole within a 

one-hour testing period (Pokemon system, AccuScan Instruments).  

Social Exploration. A clear, three-chambered rectangular Plexiglas testing apparatus was used. 

The two dividing walls contained closeable doorways and a video tracking system was used to 

track the subjects’ movements (Noldus Ethovision). The test was composed of two parts: a ten-

minute habituation period and a ten-minute social testing period. During habituation, the 

doorways were open and the mouse was placed in the center chamber. The mouse was allowed 

to freely roam the apparatus while the tracking system noted the number of entrances to and 

amount of time spent in each side.  

 After ten minutes of habituation, the mouse was contained within the center of the 

apparatus with the doorways closed. One clear, holed Plexiglas cage was placed on each side of 

the apparatus. The cage on one side was left empty while the cage on the other side contained an 

unfamiliar adult C57BL/6J male. The mouse was then free to explore all areas of the apparatus 

(the doors were opened) for ten minutes. The tracking system noted the number of entrances into 

each side of the apparatus, amount of time spent in each side and amount of time spent within a 5 

cm vicinity of each cage.   

Acoustic Startle / Prepulse Inhibition (PPI). Mice were placed in a Plexiglas cylinder within a 

sound-attenuating box with a light and fan. The cylinder was situated atop a piezoelectric 

transducer, which enabled measurement of full-body flinch magnitude as a startle response 

indicator (San Diego Instruments). The test included a five minute habituation period followed 

by 42 trails of 7 types: no-stimulus, acoustic startle stimulus alone (SS, 40 ms; 120 dB), and 
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trials with a prepulse stimulus (PPS, 20 ms; either 74, 78, 82, 86, or 90 dB) 100 ms prior to a SS. 

Measurements of startle amplitude were recorded by a computer system and PPI yields at each 

sound amplitude were calculated as (100 - [(response amplitude for PPS + SS together/response 

amplitude for SS alone) x 100]).  

Data Analysis. All statistical analyses were performed with SPSS (IBM). A one-way Analysis of 

Variance (ANOVA) was used to evaluate effect of genotype, and, when a significant F was 

observed, post hoc Fisher’s Protected Least Significant Difference (PLSD) tests were conducted. 

For the sociability test, a repeated measures ANOVA was conducted to determine side 

preference within genotype. For all analyses, p < 0.05 was considered significant. 

 

RESULTS 

Marble-burying assay.  No significant effects of genotype in were found:  WT, 16.8 marbles ± 

0.5; KO, 17.3 marbles ± 0.4 (mean ± SEM). 

Open field test.  The Fmr1-KO mice demonstrated significant increases in rearing movements at 

almost every time point during the one-hour test (Figure 1A) [post-hoc tests following repeated 

measures ANOVA, main effect of genotype, F(1,19)=11.95, p=0.0026].  A similar, but non-

significant, trend for increased locomotor activity was also observed in the KO group (Figure 

1B) [main effect of genotype, F(1,19)=3.99, p=0.0602].  No effects of genotype were found for 

fine movements or time spent in the center region of the open field (data not shown). 
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Figure 1.  Rearing movements and distance traveled in a novel open field.  Data shown are 
means (± SEM) for each group for a one-hour test.  *p<0.05. 
 
Social Exploration. Loss of Fmr1 did not lead to changes in the three-chamber task.  During 

habituation, both groups demonstrated similar exploration of the three-chamber box, without any 

side preference (Figure 2A).  In the test for sociability, the Fmr1-KO mice spent significantly 

more time in the side of the box with the stranger mouse, in comparison to the empty cage side 

(Figure 2B) [within-genotype comparison following repeated measures ANOVA, main effect of 

side, F (1,17)=12.09, p=0.0029].  Both WT and KO mice had significant preference for spending 

more time in direct proximity to the stranger cage (Figure 2C) [within-genotype comparisons 

following repeated measures ANOVA, main effect of side, F (1,17)=19.72, p=0.0004].  There 

were no genotype differences between numbers of entries during either the habituation or 

sociability phases (data not shown). 
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Figure 2.  Significant social preference in Fmr1-KO mice.  Data shown are mean (+ SEM) for 
each group (n=9 WT and 10 KO mice) for a 10-min test.  * p < 0.05, within-genotype 
comparison between stranger side and empty cage side.  
 
Acoustic Startle / Prepulse Inhibition (PPI). As shown in Figure 3, the Fmr1-WT and KO mice 
had similar performance in the acoustic startle test. 

           

Figure 3.  No genotype differences in acoustic startle responses or prepulse inhibition.  Data 
shown are means (+ SEM) for each group.  Trials included no stimulus (No S) trials and acoustic 
startle stimulus (AS) alone trials.  
 
Nose Poke. As shown in Figure 4, the Fmr1-KO mice made significantly more nose pokes than 
the wild type mice [F(1,19)=6.11, p=0.023], suggesting that loss of Fmr1 led to abnormal 
repetitive behavior.  
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Figure 4. Genotype difference in total nose pokes for a one-hour test. Data shown are means (+ 
SEM) for each group. * p < 0.05. 
 
 
DISCUSSION  

The current study of C57BL/6J Fmr1-KO mice found no genotype effect on marble 

burying, social exploration, PPI, acoustic startle response, repetitive fine movement behavior, 

time spent in the center region of a locomotor chamber or hyperactivity in an open field assay. 

The experimental group displayed significantly more rearing movements in the open field test, 

more nose pokes in the hole-board assay and greater hyperactivity in the hole-board assay. These 

findings indicate that the present mouse model is not ideal for pharmacological testing of novel 

treatments for FXS because the mice tested did not exhibit certain core aspects of the FXS 

behavioral phenotype. These findings also present the novel hole-board assay as a practical test 

for perseverance in mouse models of autism with fewer confounding factors than other tests of 

perseverance such as marble burying. 

While the Fmr1-KO mouse model consistently displays functional and structural 

abnormalities that are comparable to those of human FXS, the translation of this genetic 

simulation to FXS-like behaviors is not as reliable in animal models. Past behavioral studies of 

Fmr1-KO mice with seemingly comparable experimental procedures have yielded conflicting 
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results. Acoustic startle/PPI is a historically controversial test for Fragile X-like reactivity and 

sensorimotor gating abilities in mice. While human males with FXS exhibit greater startle 

reactions to acoustic stimuli, decreased PPI, and compromised cognitive performance, Fmr1-KO 

mouse models have displayed similar acoustic startle increases but also PPI and cognitive 

capability increases (Frankland et al., 2004). While the correlation between PPI and cognitive 

task performance is maintained in the mouse model for FXS, FMRP deficiency has an opposite 

effect on these traits in mice than in humans. Other studies have shown PPI in Fmr1-KO mice to 

be lower than the control subjects (de Vrij et al., 2008) or, in strains other than C57BL/6J, no 

different from the Fmr1-WT group (Nielsen et al., 2002).  

 The current study asserts that there is no genotype difference in acoustic startle response 

or PPI in C57 mice. Although other studies have promoted the idea that this lack of difference is 

strain-specific to mice on hybrid genetic backgrounds, the current findings contradict this. 

Equivalent startle response levels were observed between Fmr1-KO and WT mice. A learning 

task was not performed in this study, but would have contributed to our findings by testing the 

hypothesis put forth by Frankland et al., (2004) that changes in cognitive ability are directly 

correlated with PPI alterations in models of FXS.  

 During the open field assay, Fmr1-KO mice showed no change in levels of locomotion, 

repeated fine movements or time spent in the center region of the chamber. These findings are in 

agreement with Moy et al. (2009) who found no genotype difference in distance travelled over 

the course of one hour by C57BL/6J mice, but also tested Fmr1-KO and WT mice of the 

FVB/129 strain and found that these knockouts travel greater distances than Fmr1-WT subjects 

throughout the first 40 minutes of the assay. Nielsen et al. (2002) studied the effects of Fmr1-KO 

in both C57 and a hybrid C57xFVB cross and observed no strain or genotype effect in any facet 
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of the open field test, but did not publish data on rearing movements. The present study observed 

a greater number of rearing movements in Fmr1-KO mice throughout the hour of testing. 

Increased rearing activity is correlated with heightened anxiety, especially in novel social 

situations (Mines et al., 2010), but because anxiety was not displayed by increased time spent in 

the center region, it is more likely that more rearing movements signify general hyperactivity 

(Moy et al., 2014). This indication of hyperactivity is supported by greater distance travelled by 

Fmr1-KO subjects over the course of the nose poke assay.  

 The experimental subjects performed more nose pokes during the hole-board test than the 

controls, indicating expected perseverant behavior commonly seen among humans with FXS. 

Increased hyperactivity during this assay could reflect urgency to perform this repetitive task in 

different areas of the chamber, which may explain why distance travelled during the open field 

assay had no genotype effect. Patients with FXS often exhibit repetitive behaviors including 

preference for routine, hand flapping and echolalia. Such behaviors are also found in other forms 

of autism, but have been observed as being especially prominent in FXS (Moss et al., 2009). Past 

studies have not been successful in simulating this characteristic phenotype of FXS in mouse 

models through other assays such as marble burying. Thus, the current observations of repetition 

in the hole-board test introduce this novel assay as a more accurate means of observing 

perseverance. 

Like the present data, Spencer et al. (2011) found no difference in marble burying 

activity between Fmr1 genotypes in the C57BL/6J strain. Additionally, both genotypes in our lab 

buried the vast majority of the marbles that they were exposed to, which indicates that, like the 

KO mice, the WT subjects were repetitive diggers. This assay thus revealed little about the 

repetitive digging behavior of the mouse FXS model only because the WT mice also displayed a 
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high level of digging. Although not an issue in the current study, hyperactivity could confound 

this task because general movement within the cage tends to set the marbles more deeply within 

the corncob bedding. As mentioned by Spencer et al. (2011), the nose poke assay is a seemingly 

more practical test of perseverance, and they were also able to confirm findings of repetitive 

behavior in C57 mice with the nose poke assay (unpublished).  

 Social anxiety, shyness and emotional withdrawal are common characteristics of 

individuals with FXS (Moss and Howlin, 2009). An accurate model of FXS would be expected 

to display decreased social tendencies, yet the Fmr1-KO mice in the current study showed a 

preference for being near a stranger mouse (both direct vicinity and in the same chamber) over 

being in an empty chamber.  This is consistent with findings in some other studies, including 

Spencer et al. (2011), who studied Fmr1-KO mouse performance over a variety of tasks and 

genetic backgrounds. While most strains showed no genotype difference in preference for social 

interaction, it was suggested that this may have been confounded by increased hyperactivity in 

KO mice over several strains (including C57BL/6J) but was not confounded by hyperactivity in 

the B6D2 (C57BL/6JxDBA/2J) hybrid strain. This hybrid strain also showed other core 

characteristics of autism including repetitive behavior and impaired social communication, and 

was determined a more accurate model for FXS than C57BL/6J and other tested mouse strains 

(Spencer et al., 2011). 

 There has been evidence that environmental stimuli, especially during development, can 

rescue long-term behavioral and neuronal phenotypes of FXS (Restivo et al., 2005). 

Additionally, maternal behavior may trigger epigenetic factors in young mice that determine 

future behavior (D’Amato et al., 2005). Home cage environment was controlled for in the 

present study, but maternal behavior was much more difficult to monitor or control and could be 
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a confounding factor. Assuring that all pups are fostered with WT mothers would control for the 

maternal behavior confound, as social aversion associated with FXS would likely translate to 

decreased maternal care in the case of Fmr1-KO mothers. Additionally, a greater sample size 

would reduce the chance of this factor effecting overall results, and more mice are currently 

being raised to undergo the same testing and contribute to the sample size of the current study. 

 As displayed in the current study with review of literature, it is evident that behavioral 

studies of mouse models for human neurological conditions yield variable results. Certain 

variation could be strain-dependent, but variability across studies is often seen within a strain as 

well. Crabbe et al. (1999) controlled behavioral experiments across different laboratories and 

found that behavioral data are often idiosyncratic to the location of the studies or the scientists 

involved. Thus, consensus regarding characteristic behaviors of mouse models for a specific 

human neurological condition can rarely be reached unless a behavioral phenotype is repeatedly 

displayed over numerous studies in different labs. Endophenotyping has been proposed as a 

means of improving the credibility and practicality of behavioral phenotyping to increase the 

specificity for behavioral expectations according to the condition being studied. This would 

include an assessment of traits that are directly related to and can be used as markers for a 

specific biological dysfunction (Hunsaker, 2012). This strategy would improve studies that 

employ animal models of syndromic causes of autism; direct correlation of a biological marker 

with a specific behavioral abnormality would limit the ambiguity associated with an otherwise 

phenotypically heterogeneous disorder. 
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