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ABSTRACT

Casey Elizabeth Anderson Berger: Circumventing the Sign Problem in Rotating Superfluids Using
Complex Langevin

(Under the direction of Joaquín E. Drut)

Quantum field theories with a complex action suffer from a sign problem in stochastic nonperturbative

treatments, makingmany systems of great interest – such as polarized ormass-imbalanced fermions andQCD

at finite baryon density – extremely challenging to treat numerically. Another such system is that of bosons

at finite angular momentum; experimentalists have successfully achieved vortex formation in supercooled

bosonic atoms, and have measured quantities of interest such as the moment of inertia. However, the rotation

results in a complex action, making the usual numerical treatments of the theory unusable.

This thesis treats systems of nonrelativistic bosons with finite angular momentum using two approaches.

One approach is to determine the virial coefficients using a semi-classical lattice approximation (SCLA).

Through this approach, we are able to compute the thermodynamic equation of state of the bosons for finite

trapping frequency, rotation, and inter-particle interaction. The second approach uses the complex Langevin

(CL) method – a method which employs an extension of the Langevin equation to complex space and

circumvents the sign problem to compute the full quantum behavior of a low energy system of interacting,

trapped, and rotating bosons.

We examine the density and angular momentum of the system using all three methods, but the CL

method in principal allows us to compute properties unique to rotating superfluids, in particular to show the

formation of density singularities (so-called vortex lattices) and compute the circulation of the fluid around

those vortices. This work advances our understanding of the quantum effects of rotation on ultracold bosonic

gases in two different limits.
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CHAPTER 1: Introduction

Quantum many-body systems are foundational to a wide range of interesting physical topics, from very

small scales (the quark-gluon plasma of the early universe) to very large ones (understanding the structure

of neutron stars). Advances in theoretical treatment of these systems can aid in the development of novel

materials, provide insights into the stability of nuclei, push forward the boundaries of knowledge about the

origin of the universe, and more. However, all but the simplest of these systems can be extremely challenging

to understand at a detailed level. Very few are accessible using analytical methods, and those which must

be calculated computationally frequently have limitations that prevent us from exploring some of the most

interesting physics.

This thesis explores one such system: rotating, interacting bosonic systems. The physics at the heart

of these systems is relevant across disciplines, from astrophysics to quantum materials to nuclear structure.

We begin with the kind of straightforward problem an undergraduate can solve and show how quickly the

complexity grows once we consider interacting quantum systems with many particles.

Section 1.1: From two- to many-body systems

1.1.1: The classical N-body problem

As with all complicated problems, it is best to start with the simplest possible version and build from

there. To understand the challenges of the quantum N-body problem, we begin with a problem that all

undergraduates learn to solve in the early years of their physics courses: the classical two-body problem1.

The classical two-body problem is most often introduced when students learn orbital mechanics, in the

context of the earth-sun interaction. The earth and the sun are two massive objects which exert equal and

opposite force on each other. The motion of the two bodies is determined by the gravitational force between

them. Since this force is a Newton’s third law pair, we are able to take advantage of the symmetries and

conservation laws of this system to greatly reduce the complexity of the problem.

The total momentum of the system is a conserved quantity, so we can perform a change of variables.

Instead of measuring our coordinates r1 and r2 relative to some external origin, we choose to express the

1This is a common example in advanced undergraduate physics courses, and can be found worked out in detail in Refs. [2, 3]
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equations above in terms of the center of mass coordinate measured relative to that external origin,R, and the

relative separation between the two bodies, r, and then the principles of conservation of momentum can be

applied. Since the total momentum is conserved, the center of mass velocity must be constant, and therefore

the center of mass motion, denoted by R, becomes a simple linear function of time:

R = vCM t (1.1)

and our two-coordinate problem has now been reduced to a one-coordinate problem. All that remains is to

solve for r which, while often not trivial, is something that can be done in a straightforward manner.

This classical two-body problem serves as a starting point for the more complicated classical N-body

problem, which can’t be solved by hand for large N , but can be solved numerically. The equations of motion

are given by

r̈i = −G
N∑

j=1, j,i

m j (ri − rj )
|ri − rj |3

. (1.2)

This is a 6N-dimensional ordinary differential equation with time being the only degree of freedom and can

be solved for some large number of objects, N , with memory requirements scaling linearly with the number

of objects.

This is, as mentioned above, a much simpler case than the quantum N-body problem, but it serves to

establish the approaches to problems such as these: use symmetries and conservation laws to reduce the

problem complexity and then solve computationally. Unfortunately, as we shall soon see, this is a necessary

but not sufficient step for studying quantum many-body systems, and quantum many-body problems will

require more sophisticated methods to solve, even computationally.

1.1.2: The quantum N-body problem

Quantum mechanics has its own canonical two-body problem: the hydrogen atom. Typically studied in

advanced undergraduate quantumcourses, this example shows immediately howquantumbehavior introduces

its own challenges to the approach. Still, it remains a problem with an exactly-solvable three-dimensional

wave function, in the absence of external fields or interactions. The approach is fundamentally similar to

the classical case, but while in classical mechanics we solve Newton’s equations of motion, in quantum

2



mechanics we solve the Schrödinger equation. The Schrödinger equation for the hydrogen atom is:

−



~2∇2
p

2mp
+
~2∇2

e

2me
+

e2

4πε0r


Ψ(re, rp) = EΨ(re, rp), (1.3)

where r is here defined as themagnitude of the separation between the electron and the proton, r = |re−rp | [4–

6], E is the energy of the system, and we are solving for the quantum wave-function, Ψ.

This equation has two useful features which make it a relatively simple problem. First, the solutions to

this equation have no time dependence; and second, since the Coloumb potential V (r) = − e2

4πε0r
depends

only on the separation r = |re − rp |, a change of variables can be applied, and the equation can be separated

into two independent equations, just as we did in the classical two-body problem, where our central potential

was gravitational rather than electrical.

The appropriate change of variables is from re and rp to the center of mass coordinate R and the relative

coordinate r, defined below:

R =
mere + mprp

me + mp
, and r = re − rp . (1.4)

With the introduction of total (M = me+mp) and reduced (µ =
memp

M ) masses, the new Schrödinger equation

is given by:

[
−
~2

2M
∇2
R −

~2

2µ
∇2
r −

e2

4πε0r

]
Ψ(R, r) = EΨ(R, r), (1.5)

which can be solved using separation of variables.

The solution to the center of mass equation is that of a free particle of mass M (just as in the classical

case), making it uninteresting to the internal structure of the hydrogen atom. It is the solution to the relative

motion equation which is of interest; the relationship between the proton and electron is what gives the

hydrogen atom its quantized values of energy and angular momentum.

This is an eigenvalue problem, and the solutions to Ψ(r, θ, φ) = Ylm(θ, φ)R(r) are the joint eigenstates

of the energy (Ĥ) and angular momentum operators (L̂2 and L̂z). For simplicity, we define a dimensionless

coordinate, ρ = r
a0
, where

a0 =
4πε0~2

µe2
, and Ẽ =

2µa0

~2
E. (1.6)
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The constant a0 is the Bohr radius, which is a physical constant corresponding to the average distance of the

electron from the nucleus in the ground state. Now the radial equation reads:

−d
dρ

(
ρ2 dR(ρ)

dρ

)
+

(
`(` + 1) − 2ρ − Ẽρ2

)
R(ρ) = 0 (1.7)

The solutions to this equation are related to the associated Laguerre polynomials Lk
n [7]:

Rn` (r) = N
(

2r
na0

)`
e−r/(na0) L2`+1

n+`

(
2r

na0

)
, (1.8)

where ` and n are integers and N is obtained by normalizing the radial wave function. Thus, the final

hydrogen wave functions are described by

Ψ(r) = N
(

2r
na0

)`
e
−r
na0 L2`+1

n+`

(
2r

na0

)
Ỳ m(θ, φ) (1.9)

with n, `, and m all quantum numbers describing the state. The unperturbed hydrogen energy eigenstates are

Operator Eigenvalue State Range
H0 − e2

8πε0a0
=

E1

n2
|n〉 n = 1, 2, ...,∞

L2 ~2`(` + 1) |`〉 ` = 0, ..., n − 1
Lz ~m |m〉 m = −`,−|` − 1|, ..., ` − 1, `

Table 1.1: The energy H0, total angular momentum L2, and z-component of the angular momentum Lz are all operators which are
simultaneous eigenstates of the unperturbed hydrogen Hamiltonian.

eigenstates of three operators simultaneously: the Hamiltonian or bare hydrogen atom energy Ĥ (principal

quantum number, n), the total angular momentum squared L̂2 (angular quantum number `), and the z-

component of angular momentum L̂z (magnetic quantum number m). Table 1.1 illustrates these values, the

operators they correspond to, their eigenvalues and eigenvectors (states), and the restrictions on their range.

Beyond the hydrogen atom, we quickly depart the realm of exactly-solvable quantum systems. While

in principle, the process is straightforward (i.e. solve the N-body Schrödinger equation), in practice, this

is only possible for a small number of scenarios, often ones which tell us very little about the complicated

physics seen in the universe. The presence of more than two particles with at least a two-body interaction

quickly yields intractable equations.

As most of the questions we can pose about the universe – e.g., what is the atomic structure of a

particular material? Why are some nuclei stable and others not? What is the internal structure of a neutron
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star? – are about large numbers of particles interacting with each other and the environment, this provides a

strong motivation for developing new methods to solve for the equations of motion of these systems. Many

approaches have been taken to this challenge, and different disciplines prefer different classes of methods.

Mean-field theories and related approaches are common in condensed matter and materials science; coupled

cluster approaches are often seen both in nuclear theory and quantum chemistry; and lattice gauge theory is

employed largely in relativistic systems like quantum chromodynamics (QCD) and quantum electrodynamics

(QED). These methods are all united by the need for computational resources to evaluate these numerically-

intensive systems.

Section 1.2: Stochastic methods and the sign problem

Computational methods have allowed for great advances in understanding of quantum many-body sys-

tems. However, limitations still exist. The computational complexity of many quantum problems scales

exponentially with the size of the system due to the size of the underlying Hilbert space, meaning that many

systems of great interest are still inaccessible due to lack of fast or powerful enough computers. Nuclear

structure is one such example; numerical solutions to the many-nucleon Schrödinger equation can only

be achieved for nuclei with atomic mass number of up to four. With well-controlled approximations and

innovative methods, calculations can be done for heavier nuclei – up to nickel (A = O(60)) [8]. Innovative

methods are what drive advancement in many-body quantum mechanics. Exact solutions to the many-body

Schrödinger equation simply require more computational resources than exist, and so creative and intelligent

alternatives must be developed.

Among these alternatives are quantum Monte Carlo (QMC) methods. These are a well-established set

of methods for calculating properties of quantum many-body systems. Their applications cover a massive

range of energy scales, from QCD to ab initio nuclear structure to neutron stars, and they provide a stable

technique for calculating properties of these systems. These methods take advantage of similarities between

path integral formulations of quantum mechanics and the statistical mechanics partition function in order to

construct a well-behaved probability distribution from which behavior of the system can be sampled using a

Markov chain method.

In the path integral formulation of quantum mechanics, the probability amplitude for a quantum process

is found by integrating over all possible paths. The contribution of each path is weighted by eiS , where S is

5



the action. This allows for the calculation of observables, as shown here:

Z =

∫
DxeiS[x] (1.10)

〈O〉 =
1

Z

∫
DxeiS[x]O(x). (1.11)

Assuming a real action, S[x], the complex weight can be made real by performing a Wick rotation it → τ,

such that now our observable is the integral of that observable over all paths x weighted by a probability

measure for that path:

〈O〉 =
1

Z

∫
Dx P (x)O(x). (1.12)

P (x) = e−S[x]. (1.13)

This formulation lends itself to a stochastic treatment of the path integral.

Quantum many-body problems can be written in terms of quantum fields, using quantum field theory

(QFT). The fields can then be discretized and placed on a spacetime lattice, a strategy known as lattice field

theory. The benefit of lattice methods is that the resulting path integral can often be evaluated stochastically,

and the expectation value of an observable can be given by

〈O〉 ≈
1

N

N∑
n=1

On, (1.14)

where N is the number of configurations sampled, and On is the value of the observable calculated with

lattice configuration n. If a good probability measure can be defined for the system, i.e. if P (x) = e−S[x]

is real and positive-definite, then the solution is exact with systematic uncertainties determined entirely by

lattice parameters and statistical uncertainties due to the number of samples. Thus, overall uncertainty can

be controlled by varying lattice size and spacing and number of samples.

1.2.1: The sign problem in quantum many-body physics

Some quantum many-body systems are inaccessible to QMC methods, for varying reasons. One of the

largest sets of these systems are those which suffer from the sign problem, also called the complex phase

problem. This is part of a larger group in computer science known as NP-hard problems, for which no

general solution is expected to exist (although it remains a topic of ongoing research). The sign problem can

arise when a system doesn’t have the desired behavior: a real, positive-valued weight in the path integral. In
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this case, the crucial step for QMC approaches – i.e. treating the weight like a probability distribution from

which we can sample values of the fields and the observables – becomes invalid.

If the action of a quantum many-body system is real and positive, we can use standard Monte Carlo

methods to evaluate the path integrals and compute observables. Howevever, there are many very important

cases when this condition is not satisfied, for example strongly-interacting QCD systems with non-vanishing

chemical potential and superconductors and superfluids under specific conditions. The sign problem con-

founds our ability to make progress in these areas with the methods that have been so effective in so many

quantum many-body systems. In order to move forward in understanding these systems, we must develop

new methods to circumvent the sign problem.

Section 1.3: Superfluidity

Superfluids, in the simplest terms, are fluids that flow without friction. In slightly less simple terms,

they transport a conserved charge (e.g. mass, particle number, electric charge) without loss of energy due to

dissipation for velocities smaller than some critical velocity:

vc = min
p

ε p

p
(1.15)

where ε p is the energy of the excitations on the condensate and p is its corresponding momentum.2

This behavior was first observed in liquid helium, but can appear in a wide range of substances. Su-

perfluidity is in fact a phase of a system, which occurs below a critical temperature. This temperature can

vary wildly across systems, which means superfluidity is a state observed across a dramatic range of energy

scales, from helium and other ultracold atomic gases at one end (Tc ≈ 10−7K) to quark matter at the other

end (Tc ≈ 1011K).

The frictionless flow of a superfluid is not its only remarkable behavior. Superfluid velocity has no curl,

and therefore is irrotational. However, nonzero hydrodynamic circulation can exist, and must be quantized

in units of 2π~/m, where m is the mass of the particles comprising the superfluid. If we try to rotate

superfluid helium – or another cold atomic gas – it develops spontaneous vortices in direct proportion to

the amount of angular momentum imposed on the system. This has been predicted as a direct result of the

properties of superfluids (see e.g. Refs. [11–13]) and observed in experiments with ultracold atoms (see e.g.

2For more information about superfluids, references [9] and [10] provide an excellent framework, on which the discussions in this
section were built.
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Refs [14–17]).

Superfluids sharemuchwith their phenomenological cousin, superconductors. While the two phenomena

are not identical, superconductors are also a phase of a system in which a conserved charge is transported

without energy loss. Superconductors break a local symmetry, while superfluids break a global symmetry –

this is the fundamental difference that separates them on a theoretical level. The strong connections between

the two – particularly their dissipationless transport – makes them together a subject of active inquiry.

We can build a theory of superfluids using a complex scalar field. The Lagrangian of the system will

be invariant under U(1) symmetry, and a necessary condition for superfluidity is the spontaneous breaking

of this U(1) symmetry, i.e. the ground state of the system will not be invariant under this symmetry even

though its Lagrangian is. The critical temperature is the point above which the superfluid has “melted," i.e.

the point where the ground state is symmetric under U(1).

Our system – which can become a superfluid below some critical temperature – is a complex scalar

field, representing spin-0 bosons with mass m and interacting via a repulsive contact interaction λ > 0. The

Lagrangian for our system is as follows

L = ∂µφ
∗∂µφ − m2 |φ|2 − λ |φ|4 (1.16)

This Lagrangian is invariant under U(1) rotations of the field, that is L is unchanged for

φ→ e−iαφ (1.17)

which is a global symmetry, as α is a constant and does not depend on spacetime.

There will also be a conserved charge – this is what is transported by the superfluid without loss of energy

– and this will arise from Noether’s theorem. Generally, the conserved charge of interest with superfluids is

a particle number charge.

While superfluidity is in essence a bosonic phenomenon, it does occur under certain circumstances in

fermionic substances. Cooper pairing allows fermions to form bosonic states: Fermi surfaces are unstable for

attractive interactions between the fermions, no matter how small the attraction strength, and this instability

causes a new ground state to manifest, where the fermions form pairs at the Fermi surface. This is best

known in the case of electronic superconductors, where the Cooper pairing of electrons leads to a state much
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like superfluidity, with a vanishing resistivity below some critical temperature.

Helium 3 is also fermionic, but forms Cooper pairs due to an attractive interaction between the atoms,

and can form multiple different superfluid phases. This has been observed in other ultracold atomic gases,

most notably by the Ketterle group [18], where vortex formation in lithium 6 demonstrated a superfluid state.

In high-energy physics, color superconductors may form in quark matter and inside dense stars.

Section 1.4: Superfluids and rotation

The spontaneous appearance of quantized vortices in a lattice structure is a characteristic feature of

superfluids at thermal equilibrium [19–22]. These effects are related to rotation and also external magnetic

fields [23], and the vortices can have dynamics that interact with sound waves [24]. Addition of spin-

orbit coupling creates further complexity in the system, leading to unique phases depending on the type of

coupling [25–28]

In 1949, Lars Onsager first predicted that vortices would form in rotating superfluids [12]. Richard

Feynman expanded on Onsager’s prediction a few years later, reiterating the expectation that quantized

vorticeswould appearwhen superfluidswere forced to rotate [13]. Another thirty years after these predictions,

the first direct observation of quantum vortices was made in rotating superfluid 4He [29]. Experimentally,

great progress has been made in studying rotating superfluids since the first direct observation of vortex

formation. In 2000, vortex formation was observed in stirred, magnetically-trapped rubidium atoms [17].

The next year, triangular vortex lattices of up to 130 vortices were observed in rotating ultracold sodium

atoms [14]. Ultracold atoms provide a highly controlled, tuneable setting for studying vortex formation and

other properties of rotating superfluids.

Adding rotation into a complex scalar field introduces new challenges into theoretical treatments of the

system. While a nonrelativistic complex scalar field already yields a potential sign problem in stochastic

treatments, there are ways to get around this sign problem. The additional complexity of the angular

momentum term in the action eliminates those possibilities and yields an irretrievably complex weight for

stochastic sampling. As a result, most theoretical work done on rotating superfluids is done using mean-field

treatments such as the Gross-Pitaevskii Equations (GPE). These equations have been very successful in

describing mean-field behavior of rotation in superfluids, including the spontaneous formation of vortices,

but stop short of a fully quantum examination of the system [19].

Rotating bosons exist in important physical systems that cut across disciplines. They are of interest in

9



condensed matter for understanding the effect of a magnetic field on superconductors, in nuclear physics for

describing the behavior of rotating nuclei, and in astrophysics for illuminating the physics of neutron stars

and pulsars. In order to continue to progress in these areas of physics, a method to work around the sign

problem must be used. Theoretically, treatment of these systems has stalled due to the presence of the sign

problem, and the subject of this thesis is to explore alternative methods to understanding rotating bosonic

systems.

Section 1.5: Outline

In Chapter 2, we explore an approximate method for describing the behavior of trapped, interacting, non-

relativistic many-body bosonic systems under rotation. This approximation is known as the virial expansion

and is valid only for certain temperature and density regimes. While useful for elucidating the behavior of

these systems at higher temperatures, we desire to use stochastic methods to understand the full quantum

effects of rotation. To that end, we introduce amethod in Chapter 3 called complex Langevin, which allows us

to study systems with a complex action stochastically rather than by using high-temperature or dilute-system

approximations. In Chapter 4, we apply this method to a relativistic Bose gas, as a proof of concept and to

illustrate the finer points of the method. And finally, in Chapter 5, we apply this method to a nonrelativistic,

harmonically-trapped, rotating, and interacting system of bosons, which in the low-temperature regime is a

rotating superfluid. We discuss the results of this method and compare them with our virial expansion, in

order to shed light on some of the challenges of treating this system.
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CHAPTER 2: Semi-classical lattice approximation for trapped, rotating, interacting quantum
matter

Section 2.1: Motivation: why use a semi-classical lattice approximation?

One way to avoid the sign problem quantum many-body systems is to use approximate methods. Despite

their limitations, approximations are excellent tools that can allow us to examine interesting behavior in

particular regimes without having to encounter the sign problem that can arise in a full stochastic calculation.

Often, they are our only way to benchmark numerical results.

In this case, we apply the virial expansion to a system of trapped, rotating, interacting bosons in 2D

and 3D and implement a semiclassical lattice approximation (SCLA) recently put forward in Refs. [30–32],

where it was applied to non-rotating matter.While these systems are not in themselves rotating superfluids,

they have the same field theoretical structure and in the right temperature and density regime could support

superfluidity. The approximation allows us to bypass the requirement of solving the N-body problem

to access the n-th order virial coefficient and describe the thermodynamics of the system using a virial

expansion. The virial expansion is valid in a high-temperature, low-density limit, while the semi-classical

lattice approximation requires that we use a strongly-interacting or weakly-interacting regime. In this case,

we look at the weakly-interacting case, where the interaction potential is significantly smaller than the

noninteracting Hamiltonian.

Section 2.2: Hamiltonian and formalism

We use a Hamiltonian formalism to generate our virial coefficients, as it lends itself well to the manip-

ulation of the partition function. Our Hamiltonian is composed of both a non-interacting term H0 and an

interacting term Hint:

Ĥ = Ĥ0 + V̂int. (2.1)

The noninteracting term can be further broken up into three contributions:

Ĥ0 = T̂ + V̂ext + ωz L̂z, (2.2)
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where

T̂ =
∑
s=1,2

∫
ddx ψ̂†s (x)

(
−
~2∇2

2m

)
ψ̂s (x), (2.3)

is the kinetic energy,

V̂ext=
1

2
mω2

tr

∫
ddx x2 (n̂1(x) + n̂2(x)), (2.4)

is the spherically symmetric external trapping potential in d dimensions, and

L̂z = i
∑
s=1,2

∫
ddx ψ̂†s (x)

(
x∂y − y∂x

)
ψ̂s (x), (2.5)

is the angular momentum operator in the z direction. The interaction term is given by

V̂int=−g

∫
ddx n̂1(x)n̂2(x), (2.6)

with g the bare interaction parameter, and where, for the sake of simplicity, we restrict ourselves to two

particle species with a contact interaction across species (i.e. no intra-species interaction).

In the above equations, the field operators ψ̂s, ψ̂
†
s correspond to particles of species s = 1, 2, and n̂s (x) are

the coordinate-space densities. In the remainder of this chapter, we will use units such that ~ = kB = m = 1.

2.2.1: Thermodynamics and the virial expansion

The grand-canonical partition function describes the statistical properties of the the quantum many-body

system, as all the thermodynamic quantities of interest can be determined from it. It has the general form

Z = Tr
[
e−β(Ĥ−µN̂ )

]
= e−βΩ, (2.7)

where β is the inverse temperature, Ĥ is the Hamiltonian given in Eq. (2.1), Ω is the grand thermodynamic

potential, N̂ is the total particle number operator, and µ is the overall chemical potential.

As the direct calculation of Z is a challenging problem in the presence of interactions, we will use the

virial expansion, which is an expansion around the dilute limit z << 1, where z = eβµ is the fugacity. This
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is given by

−βΩ = lnZ = Q1

∞∑
n=1

bnzn. (2.8)

The coefficients bn are known as the virial coefficients, and Q1 is the one-body partition function, which

can be calculated directly without too much trouble, as there is no interaction present (we will show this

calculation in Section. 2.2.2). This expansion is valid for small values of the fugacity, which can be affected

by both the temperature (T ∝ 1/β) and chemical potential of the system.

We can compare this virial expansion for the partition function with the expression of the grand-canonical

partition function in terms of the canonical partition functions QN of all possible particle number N :

Z =

∞∑
N=0

zNQN, (2.9)

and thereby obtain expressions for the virial coefficients

b1 = 1, (2.10)

b2 =
Q2

Q1
−

Q1

2!
, (2.11)

b3 =
Q3

Q1
− b2Q1 −

Q2
1

3!
, (2.12)

and to higher order. The quantity we are interested in is the change in these virial coefficients due to rotation:

δbn = b(0)
n (|ωz | > 0) − b(0)

n (ωz = 0) (2.13)

and due to the presence of interactions:

∆bn = bn − b(0)
n (2.14)

where b(0)
n is the virial coefficient of the system when there are no interactions.

The QN can themselves be written in terms of the partition functions Qa,b for a particles of type 1 and
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b particles of type 2:

Q1 = Q1,0 +Q0,1 = 2Q1,0, (2.15)

Q2 = Q2,0 +Q0,2 +Q1,1 = 2Q2,0 +Q1,1, (2.16)

Q3 = Q3,0 +Q0,3 +Q2,1 +Q1,2 = 2Q3,0 + 2Q2,1, (2.17)

and so on for higher orders. In the absence of intra-species interactions, only the Q1,1 and Q2,1 are affected,

such that the change in b2 and b3 due to interactions is entirely given by

∆b2 =
∆Q1,1

Q1
, (2.18)

∆b3 =
2∆Q2,1

Q1
− ∆b2Q1. (2.19)

Wewill use these expressions to access the high-temperature thermodynamics of the bosons in this system and

examine their dependence on the rotation frequency (expressed in dimensionless form as βωz), the strength

of the trapping potential (in dimensionless form, βωtr), and inter-particle interaction (whose dimensionless

form, λ, will depend on the bare coupling g and the dimensionality d).

2.2.2: Semiclassical lattice approximation

To calculate the interaction-induced change in the canonical partition functions ∆Q1,1 and ∆Q2,1, we use

an approximation. The exponential of the sum of two non-commuting operators can be related to the product

of the two exponentiated operators via an infinite series (the Baker-Campbell-Hausdorff formula) [6, 33]:

eA+B =

∞∑
n=0

(A + B)n

n!
= I + A + B +

1

2
(A + B)(A + B) + . . . (2.20)

eAeB = eA+B+ 1
2 [A,B]+... (2.21)

Our approximation consists in keeping only the leading term in the Magnus expansion derived from the

Baker-Campbell-Hasudorff formula:

e−β(Ĥ0+V̂int) = e−βĤ0e−βV̂int × e−
β2

2 [Ĥ0,V̂int] × . . . , (2.22)

where the higher orders involve exponentials of nested commutators of Ĥ0 with V̂int. Thus, the leading order

in this expansion consists in setting [Ĥ0, V̂int] = 0, which becomes exact in the limit where either Ĥ0 or V̂int
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can be ignored (i.e. respectively the strong- and weak-coupling limits).

Single-particle bases in 2D and 3D

In evaluating the results of the semiclassical lattice approximation, we will make use of the eigenstates

of Ĥ0 in 2D polar coordinates and 3D spherical coordinates.

Two spatial dimensions.- The single-particle eigenstates of Ĥ0 in 2D are given by

〈x|k〉 =
1
√

2π
Rkm(ρ)eimφ, (2.23)

where

Rkm(ρ) = N (2D)
km

√
ωe−ρ

2/2ρ |m |L |m |
k

(ρ2), (2.24)

where ρ =
√
ωr and

N (2D)
km
=
√

2

√
k!

(k + |m |)!
, (2.25)

with L |m |
k

the associated Laguerre functions. We have used polar coordinates r, φ, and a collective quantum

number k = (k,m), with k = 0, 1, . . . and m any integer value. The corresponding energy is

Ekm = ωtr(2k + |m | + 1) + ωzm (2.26)

These eigenstates are derived in more detail in Appendix A.1.

Three spatial dimensions.- The single-particle eigenstates of Ĥ0 in 3D are

〈x|k〉 = Rkl (ρ)Pm
l (cos θ)eimφ, (2.27)

where Pm
l

(x) are the associated Legendre functions and

Rkl (ρ) = N (3D)
kl

ω3/4
tr e−ρ

2/2ρlLl+1/2
k

(ρ2), (2.28)
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where

N (3D)
kl
=

√
1
√

4π

2k+2l+3 k!

(2k + 2l + 1)!!
. (2.29)

Here, we have used spherical coordinates r, θ, φ, where θ is the polar angle, and φ the azimuthal angle. The

collective quantum number k = (k, l,m) is such that k ≥ 0, l ≥ 0, and −l ≤ m ≤ l. The corresponding

energy is

Ek`m = ωtr(2k + l + 3/2) + ωzm. (2.30)

The eigenstates in 3D have been derived in great detail in many references, as the single-particle wave

function is the same as that of an electron in a hydrogen atom. For detailed derivations, see e.g. Refs [4–7].

Single-particle partition function Q1

As mentioned above, Q1 can be computed straightforwardly. The single-particle partition function is

described as

Q1 =
∑
k

e−βEk . (2.31)

Thus, in 2D,

Q1 = 2
∑
k,m

e−βEkm =
2 e−βωtr

(1 − e−βω+ )(1 − e−βω− )
, (2.32)

where ω± = ωtr ± ωz and the overall factor of 2 reflects the fact that we have two particle species.

Similarly, in 3D,

Q1 = 2e−βωtr3/2
1

(1 − e−2βωtr )(1 − e−βωz )

[
1

1 − e−βω−
−

e−βωz

1 − e−βω+

]
. (2.33)
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Two-body contribution ∆Q1,1.

The calculation of the first nontrivial virial coefficient, ∆b2, in our semiclassical approximation requires

the above result for Q1 and ∆Q1,1. At leading order,

Q1,1 = Tr1,1

[
e−βĤ0e−βV̂int

]
, (2.34)

where Tr1,1 represents the trace of the matrix when we have a single particle of each species. This leads to

Q1,1 =
∑

k1,k2,x1,x2

〈k1k2 |e−βĤ0 |x1x2〉〈x1x2 |e−βV̂int |k1k2〉

=
∑

k1,k2,x1,x2

e−β(Ek1
+Ek2

) Mx1,x2 |〈k1k2 |x1x2〉|
2, (2.35)

where we have inserted complete sets of states in coordinate space {|x1x2〉} and in the basis |k1k2〉 of

eigenstates of Ĥ0, whose single-particle eigenstates |k〉 have eigenvalues Ek. We have also made use of the

fact that V̂int is diagonal in coordinate space, such that

Mx1,x2 = 1 + Ba−dδx1,x2, (2.36)

where B = ad
(
eβgdD − 1

)
and we have introduced a spatial lattice spacing a as a regulator. This leads to a

new expression for ∆Q1,1:

∆Q1,1 = B
∑

k1,k2,x

ade−β(Ek1
+Ek2

) |〈k1k2 |x x〉|
2, (2.37)

which can be computed numerically.

The computationally demanding part of this calculation is the overlap function |〈k1k2 |x x〉|
2. Note that

this function can be factorized as |〈k1 |x〉|
2 |〈k2 |x〉|

2. Upon summing over k1, however we obtain a simpler

expression

∆Q1,1 = B
∑
x

adn2
β (x) (2.38)
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where

nβ (x) =
∑
k

e−βEk |〈k|x〉|2. (2.39)

The exponential decay with the energy will enable us to cut off the sum over k in most cases without

significantly losing precision. We show a representative example of such cutoff effects in Figure 2.1. We

can see in this figure that the relationship between the rotation frequency and trapping potential has an effect

on where we can cut off our sum. We see that in 2D when ωz = ωtr, our sum does not converge as we raise

the cutoff limit for k and m, but instead grows with that cutoff. This same effect is not visible for values of

ωz < ωtr.

This shows that at the specific point where ωz = ωtr, we can no longer calculate virial coefficients

efficiently in 2D. Fortunately, we are not concerned with the system at phase transition, but instead we are

interested in what happens below the critical rotation frequency.
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Figure 2.1: The figure shows n2β (x) as a function of our radial lattice for a few different cutoffs in k and m (2D) or k and l (3D),
demonstrating where we can cut off our sums. The left figure is for βωz = βωtr/2, where we see we can cut off our sums at very
small values. The right figure is for βωz = βωtr, which represents a phase transition in our system. We can see these effects in the
cutoffs, as shown by the figure on the right, where in 2D, n2β (x) fails to converge as we raise the cutoff in k and m.

To compute the sum, we refer back to the previously-defined single-particle eigenstates in 2D (Eq. (2.23)),

arriving at an expression in 2D for nβ:

nβ (x) = ωtr
e−ρ

2

2π

∑
k,m

e−βEkm f 2Dkm(ρ2), (2.40)

whose units come from the prefactor ωtr and, as expected from symmetry considerations, is only a function
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of the radial coordinate (concentric with the trapping potential). Here,

f 2Dkm(ρ2) ≡
2 k!

(k + |m |)!
ρ2 |m |

(
L |m |
k

(ρ2)
)2
, (2.41)

Similarly, in 3D,

nβ (x) = ω3/2
tr

e−ρ
2

√
4π

∑
k,l,m

e−βEklm f 3Dkl (ρ2)(Pm
l (cos θ))2 (2.42)

where

f 3Dkl (ρ2) ≡
2k+2l+3 k!

(2k + 2l + 1)!!
ρ2l

(
Ll+1/2
k

(ρ2)
)2

(2.43)

Which can be used to calculate ∆Q1,1 using Eq. (2.38).

Calculation of ∆Q2,1

Following the same steps outlined above, it is straightforward to show that

∆Q2,1 =
B
2

∑
k1k2k3

e−β(Ek1
+Ek2

+Ek3
)
∑
x1x2

|〈x1x2x1 |k1k2k3〉|
2. (2.44)

The overlap can be simplified slightly by factoring across distinguishable species:

〈x1x2x1 |k1k2k3〉 = 〈x1x2 |k1k2〉〈x1 |k3〉, (2.45)

where the matrix element 〈x1x2 |k1k2〉 is a permanent of single-particle states:

〈x1x2 |k1k2〉 = 〈x1 |k1〉〈x2 |k2〉 + 〈x2 |k1〉〈x1 |k2〉. (2.46)

As in the case of ∆Q1,1, we will sum over the energy eigenstates first, and then perform the spatial sum.

To that end, it is useful to define

nB
β (x1, x2) =

∑
k1k2

e−β(Ek1
+Ek2

) |〈x1x2 |k1k2〉|
2nβ (x1), (2.47)
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such that,

∆Q2,1 =
B
2

∑
x1x2

nB
β (x1, x2). (2.48)

As in the case of nβ (x), the exponential decay with the energy allows us to cut off the double sum in

nB
β (x1, x2) without significantly affecting the precision of the whole calculation.

2.2.3: Gauss-Hermite quadrature

As shown above, the single-particle wavefunctions (Eq. (2.23) and Eq. (2.27)) and the associated density

functions nβ (x) and nB
β (x1, x2) are governed in the radial variable by a Gaussian decay. For that reason, it

is appropriate to calculate the corresponding integrals using Gauss-Hermite quadrature. The corresponding

M points xi and M weights wi allow us to estimate integrals according to

∫ ∞

−∞

dx e−x
2

f (x) =
M−1∑
i=0

wi f (xi). (2.49)

In this work we use the same quadrature points and weights as in our previous work of Refs [34–36].

Section 2.3: Results

2.3.1: Noninteracting virial coefficients at finite angular momentum

We present here the calculation of the noninteracting (i.e. g = 0) virial expansion when ωz , 0. We

begin with the partition function of spin-1/2 bosons in terms of the single-particle energies E:

lnZ = 2
∑
E

ln(1 − ze−βE ). (2.50)

This can be further expanded for small z (the virial expansion) as

lnZ = −2
∑
E

∞∑
n=1

zn

n
e−nβE . (2.51)

Two spatial dimensions.- In 2D, E = Ekm = ωtr(2k + |m | + 1) + ωzm, where k ≥ 0 and m is summed

over all integers. Thus, we may write the sum as

lnZ = −2
∑
E

∞∑
n=1

zne−nβωtr

n

∑
k

e−βωtr2nk


∞∑
m=0

e−nmβω+ +
∞∑

m̄=1

e−nm̄βω−

. (2.52)
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where ω± = ωtr ± ωz . Carrying out the sums over k,m, m̄, we obtain

lnZ = Q1

∞∑
n=1

bnzn, (2.53)

where

Q1bn =
−2

n
e−nβωtr

(1 − e−nβω+ )(1 − e−nβω− )
. (2.54)

Finally, to determine bn we use Q1 as derived above in Eq. (2.32)), such that

bn =
−1

n
e−βωtr (n−1) (1 − e−βω+ )(1 − e−βω− )

(1 − e−nβω+ )(1 − e−nβω− )
. (2.55)

Note that, while the bn are always finite, Q1 diverges whenω− → 0. This signals an instability due to the fact

that, for any ω− < 0, i.e. ωz > ωtr, the system does not have a ground state. In terms of lnZ, the divergence

may be regarded as a phase transition at ωz = ωtr. In other words, in that limit the centrifugal motion due to

the rotation is strong enough to overcome the trapping potential and the system escapes to infinity.

Three spatial dimensions.- In 3D, E = Eklm = ωtr(2k + l + 3/2) + ωzm, where k ≥ 0, l ≥ 0, and

−l ≤ m ≤ l. Therefore, analyzing the problem as in the 2D case, we obtain

Q1bn =
−2

n
e−

3
2nβωtr

(1 − e−nβωtr )(1 − e−nβω+ )(1 − e−nβω− )
, (2.56)

and using (Eq. (2.33), we determine

bn =
−1

n
e−

3
2βωtr (n−1) (1 − e−βωtr )(1 − e−βω+ )(1 − e−βω− )

(1 − e−nβωtr )(1 − e−nβω+ )(1 − e−nβω− )
. (2.57)

As in the 2D case, the bn are always finite, but Q1 diverges when ω− → 0.

The impact of rotation, i.e. a finite βωz on a noninteracting system is displayed in Figure 2.2. In both

2D and 3D, the angular momentum has an approximately linear dependence on the rotation frequency, with

the slope of the line decreasing for larger trapping potentials. In 2D, the trap frequency has a much more

pronounced effect than in 3D, with the angular momentum collapsing to nearly a flat line for βωtr > 2, while

in 3D, the effect is more gradual.
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Figure 2.2: The difference in the second virial coefficient, δb2 = b2(ωz > 0)− b2(ωz = 0) (left) as a function of rotation frequency
βωz in 2D. Noninteracting bn normalized by their non-rotating, noninteracting values bn (βωz = 0) (right), as functions of n for a
few values of βωz and fixed βωtr = 5. The ratio bn/bn (βωz = 0) is the same in 2D and 3D.

2.3.2: Noninteracting thermodynamics at finite angular momentum

We can now derive a virial expansion for the angular momentum Lz and the z component of the moment

of inertia Iz :

〈L̂z〉 = −
∂ lnZ

∂(βωz )
= Q1

∞∑
n=1

Lnzn, (2.58)

where

Ln = nbn
e−nβω+ − e−nβω−

(1 − e−nβω+ )(1 − e−nβω− )
, (2.59)

and

〈Îz〉 = −
∂2 lnZ

∂(βωz )2
= Q1

∞∑
n=1

Inzn, (2.60)

where

In =
1

Q1

∂(Q1Ln)
∂(βωz )

= −nLn

[
e−nβω+ + e−nβω−

e−nβω+ − e−nβω−
+

2(e−nβω+ − e−nβω− )
(1 − e−nβω+ )(1 − e−nβω− )

]
. (2.61)

Note that in the limit ω+ = ω− (i.e. ωz = 0), Ln → 0 as expected in a system without rotation. In the limit

ω− → 0 (i.e. ωz = ωtr), on the other hand, Ln → ∞ as ω− → 0. As discussed in the previous section, in

that limit, the rotation overpowers the trapping potential confining the system, resulting in a phase transition
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to a system beyond the scope of our study.

Remarkably, because the dependence of Q1bn on ω+ and ω− is the same in 2D and 3D, the relationship

between Ln and bn is identical in 2D and 3D. It follows that the relationship between In and bn is identical

in 2D and 3D as well. Thus, any differences in the angular momentum and moment of inertia between two

and three dimensions arises entirely from the differences between the virial coefficients bn.

Furthermore, at ωz = 0, a finite moment of inertia remains, in 2D:

In → 2n(−1)ne−(2n−1)βωtr
(1 − e−βωtr )2

(1 − e−nβωtr )4
, (2.62)

and in 3D:

In → 2n(−1)ne−
1
2βωtr (5n−3) (1 − e−βωtr )3

(1 − e−nβωtr )5
. (2.63)

which characterizes the static response to small rotation frequencies within the virial expansion, as a function

of βωtr.

The impact of rotation on the angular momentum for a noninteracting system is shown in Figure 2.3, and

the impact of rotation on the moment of inertia for a noninteracting system is shown in Figure 2.4
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Figure 2.3: Noninteracting Lz/Q1 to third order in the virial expansion in 2D (left) and 3D (right), as functions of βωz for a few
values of βωtr.

2.3.3: Interacting virial coefficients at finite angular momentum

Once the inter-particle interaction appears, we can compute the change in the virial coefficients due to

this interaction as well as due to the rotation, as in Eq. (2.14). The results for the first two nontrivial virial
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Figure 2.4: Noninteracting Iz/Q1 to third order in the virial expansion in 2D (left) and 3D (right), as functions of βωz for a few
values of βωtr.

coefficients, b2 and b3 are shown in Figure 2.5 and Figure 2.6 for a range of bare couplings from g = 0 to

g = 1 as a function of ωz/ωtr. In all cases, the magnitude of the change in the virial coefficient increases

as the interaction strength, g, increases, but the behavior varies with increases in ωz/ωtr. (Recall that as

ωz/ωtr → 1, the system undergoes a phase transition.)
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Figure 2.5: Change in the virial coefficient b2 due to the combination of rotation and interaction, for two (left) and three (right)
spatial dimensions.

The change in ∆b2 is similar in 2D and 3D, although the effect is much larger in 2D. The next virial

coefficient, ∆b3, behaves very differently in 2D than it does in 3D. We can see that in 2D, ∆b3 looks very

similar to ∆b2, while in 3D, ∆b3 is negative rather than positive and its magnitude increases rather than

decreases with increasing rotation ωz .
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Figure 2.6: Change in the virial coefficient b3 due to the combination of rotation and interaction, for two (left) and three (right)
spatial dimensions.

2.3.4: Interacting thermodynamics at finite angular momentum

We can now use our results for ∆b2 and ∆b3 to calculate the thermodynamics and angular momentum

equations of state to third order in the virial expansion, as well as the static response encoded in the moment

of inertia. Denoting the noninteracting grand canonical partition function byZ0, we have

ln (Z/Z0) = Q1

∞∑
n=2

∆bnzn, (2.64)

such that the interaction effect on the angular momentum virial coefficient Ln is

∆Ln =
1

Q1

∂ (Q1∆bn)
∂(βωz )

=
∂ (∆bn)
∂(βωz )

+ ∆bn
∂ (ln Q1)
∂(βωz )

, (2.65)

and its counterpart for the moment of inertia is

∆In =
1

Q1

∂ (Q1∆Ln)
∂(βωz )

=
∂ (∆Ln)
∂(βωz )

+ ∆Ln
∂ (ln Q1)
∂(βωz )

, (2.66)

where, using Eq. (2.65) for ∆Ln,

∂ (∆Ln)
∂(βωz )

=
∂2 (∆bn)
∂(βωz )2

+
∂ (∆bn)
∂(βωz )

∂ (ln Q1)
∂(βωz )

+ ∆bn
∂2 (ln Q1)
∂(βωz )2

. (2.67)

Using the above formulas, along with the expressions obtained for ∆b2 and ∆b3 from Eq. (2.18), we

are able to obtain expressions for ∆L2, ∆L3, ∆I2, and ∆I3. Therefore, we can obtain the change due to the
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presence of repulsive interactions in the angular momentum and moment of inertia to third order in the virial

expansion:

∆〈Lz〉

Q1
= ∆L2z2 + ∆L3z3 +O(z4) (2.68)

∆〈Iz〉
Q1

= ∆I2z2 + ∆I3z3 +O(z4). (2.69)

These results are shown in Figure 2.7 and Figure 2.8.
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Figure 2.7: Change in the angular momentum 〈L̂z〉 due to the combination of rotation and repulsive contact interaction, for two
(left) and three (right) spatial dimensions, at z = e−2.0.

0.0 0.2 0.4 0.6 0.8
z/ tr

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

I z/
Q

1

g = 1.0
g = 0.8
g = 0.6
g = 0.4
g = 0.2
g = 0.0

0.0 0.2 0.4 0.6 0.8
z/ tr

0.00

0.01

0.02

0.03

0.04

0.05

0.06

IH
O

,L
z

z
/Q

1

g = 1.0
g = 0.8
g = 0.6
g = 0.4
g = 0.2
g = 0.0

Figure 2.8: Change in the moment of inertia 〈Îz〉 due to the combination of rotation and repulsive contact interaction, for two (left)
and three (right) spatial dimensions, at z = e−2.0.

The change in angular momentum looks very similar in 2D and in 3D. It is initially roughly linear, but

as the rotation frequency begins to approach the trap frequency, the change in angular momentum plateaus

and then rapidly crosses zero and increases towards infinity as we approach the phase transition ωz = ωtr.
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We can see also that the moment of inertia, while initially changing much more slowly than the angular

momentum, starts to grow quickly in magnitude at the same point in rotation frequency where the angular

momentum slows its growth, and then also changes direction and increases towards infinity at the phase

transition.

Section 2.4: Summary and conclusions

In this chapter we have characterized the thermodynamics of a rotating Bose gase in 2D and 3D using

the virial expansion. We implemented the SCLA, which allowed us to bypass solving the n-body problem

to calculate the n-th order virial coefficient [37].

In all cases, a finite angular velocity ωz modifies both the single-particle partition function Q1 as well as

the virial coefficients; the latter are further modified by the interactions. We have presented explicit formulas

for the noninteracting case which do not appear elsewhere in the literature, to the best of our knowledge.

As can be anticipated, the system becomes unstable at ωz = ωtr, as the angular velocity allows particles to

escape the trapping potential in that limit. In that case, the virial coefficients remain finite, but Q1 diverges,

leading to divergent thermodynamics.

We have also obtained estimates to third order in the virial expansion for the angular momentum Lz as

well as the z component of the moment of inertia Iz , as functions of the angular velocity 0 < ωz < ωtr and

temperature βωtr.
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CHAPTER 3: Stochastic methods: from Markov chain Monte Carlo to Complex Langevin

Section 3.1: Quantum Monte Carlo methods

In order to treat quantum systems fully, we desire to move beyond approximate methods to ones which

capture the behavior of the systems more generally, rather than in a limited set of regimes. Among the most

popular methods for quantum many-body systems are quantum Monte Carlo (QMC) methods. This section

provides an overview of these methods and illustrates them through discussion of the 2D Ising model.

Quantum Monte Carlo methods are a subset of Monte Carlo methods for quantum systems. In these

methods, integrals (such as the path integral or the expectation value of the observables) are evaluated

stochastically, yielding results that are exact up to some statistical uncertainty which depends on the number

of samples used in the stochastic algorithm. This is done by means of a standard approximation scheme,

where a generic integral of some function f (x) with weight p(x)

I =

∫ b

a

dxp(x) f (x) (3.1)

can be approximated via a sum

IN =

N∑
i=1

∆x f (xi)p(xi) (3.2)

where ∆x = b−a
N . The exact integral is reproduced in the limit N → ∞. From this, is can be seen

that increasingly accurate approximations can be achieved by increasing the size of N . In QMC, this N

corresponds to the number of samples taken in the algorithm. In most cases, evaluating an integral this way

is inefficient, as the sort of integrals we wish to evaluate do not have uniform weight across paths. In fact,

the weight (p(xi) in this notation, which corresponds to the eiS of Eq. (1.10) and Eq. (1.11)), is likely to be

significant in just a few high-probability regions. Use of an algorithm which focuses the sampling in those

high-probability regions, therefore, will result in a much more efficient calculation.

Central to importance sampling is the concept of the Markov chain, in which each sampled value’s
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probability depends only on the value immediately prior, i.e.

P (φn) = f (φn−1). (3.3)

This property allows for the generation of a set of random samples from a probability distribution via a

sequential sampling process, making it an excellent technique for a computational algorithm. The use of

these Markov chains is known as importance sampling, and – as implied by the name – improves the speed

of our sampling by allowing us to generate configurations according to the probability distribution of the

system, rather than sampling uniformly and weighting the configurations after the fact.

3.1.1: Importance sampling and the Ising model

A classic example from statistical physics of the usefulness of importance sampling algorithms is the

Ising model. In 2D, the Ising model can be solved exactly, while in higher dimensions a stochastic solution

is necessary. This makes this model a helpful point of comparison between stochastic algorithms and the

known solution.

The 2D Ising model is a model for ferromagnetism in which spins are situated on an Nx × Nx lattice in

the presence of an external magnetic field. The Hamiltonian is

H = −J
∑
〈i, j〉

sis j − H
N∑
i=1

si, (3.4)

where J is the strength of the spin coupling and H is the strength of the magnetic field multiplied by the

atomic magnetic moment. The partition function is

Z =
∑
i

e−βEi (3.5)

where β = 1
kBT

and the energy of a single spin is calculated by summing over the nearest neighbors (n.n.):

Ei = −Jsi
*.
,

∑
j∈n.n.

s j +
H
J

+/
-
. (3.6)

The observables of interest in this model are the energy and magnetization. The energy of a single spin
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configuration is

E(α) =
N2

x∑
i=1

Ei (3.7)

and the magnetization of that configuration is

M (α) =
N2

x∑
i=1

Mi (3.8)

Mi = µsi . (3.9)

We can see from this description of the magnetization that it depends on the average direction of the spins.

If the spins are largely aligned in the same direction, we find a nonzero magnetization for that configuration,

whereas in a randomly-aligned system, we expect the magnetization to be zero.

The average energy and magnetization are computed by summing over all possible spin configurations

of the lattice in the following way:

〈E〉 =
1

Nα

∑
α

E(α) (3.10)

〈M〉 =
1

Nα

∑
α

M (α) (3.11)

where E(α) and M (α) come from Eq. (3.7) and Eq. (3.8).

Since the total number of possible lattice configurations Nα scales exponentially in lattice size (Nα ∝

2N2
x ), for even moderately-sized lattices (Nx > 4), we need to use a stochastic algorithm that prioritizes

sampling from high-probability configurations. This is where importance sampling comes in.

The importance sampling algorithm most often used with the Ising model is the Metropolis-Hastings

algorithm, which uses a random walk in configuration space paired with an accept-reject step to guide the

sampling towards higher-probability regions. In this case, what that means is that the algorithm proceeds as

follows:

1. Initialize the lattice with some random configuration of spins (+1 for up and −1 for down)

2. Calculate the total energy of this spin configuration (using Eq. (3.7))

3. Flip a single spin on the lattice
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4. Calculate the energy of this new configuration (again using Eq. (3.7))

5. Determine the ratio of the probability of this new configuration to the old one

P (α) =
1

Z
e−βE (α) (3.12)

P (αnew)
P (αold)

= e−β(E (αnew)−E (αold) (3.13)

6. Accept or reject the new configuration by comparing this ratio to a random number generated uniformly

in the range (0, 1).

7. If the new configuration is as probable or more probable than the random number, keep the new lattice

configuration. Otherwise, revert to the previous configuration, choose a new spin to flip, and repeat

the process outlined above

The algorithm continues until Nα spin configurations have been collected. The energy and magnetization of

these configurations are the samples, which we average together according to Eq. (3.10) to get our average

values.

3.1.2: Limitations of quantum Monte Carlo algorithms

The previous section relied upon the important assumption that the quantity weighting our observables

(e−βE in this case and eiS more generally) was positive definite. This allows is to treat the quantity like a

probability, and use it to guide our Markov chain. But what happens when we can no longer rely on this

assumption? This is an example of the sign problem arising in quantum lattice calculations.

This is where alternative stochastic methods can help. The remainder of this chapter focuses on the

stochastic method known as complex Langevin, which can be utilized to circumvent the sign problem.

Section 3.2: Complex Langevin: origins and method

The complex Langevin method first appeared in the 1980s and enjoyed a brief surge of interest following

the first successful numerical application for the quantum Hall effect by Klauder [38], which died down

as instabilities and mathematical challenges with the method arose. The method reappeared in relativistic

physics, particularly QFT, in the mid-2000s to early 2010s, as a viable method for circumventing the sign

problem in certain field theoretical studies such as non-equilibrium QFT, which can provide insights into

high-energy physics, particularly heavy ion collisions. Due to the non-perturbative nature of these non-
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equilibrium systems, standard approximation techniques fail. In 2005, Berges and Stamatescu demonstrated

the viability of CL to treat non-equilibrium QFT using first-principles simulations [39]. Later work built

on these results to examine how CL could lead to breakthroughs in our understanding of QCD plasmas in

heavy-ion collisions, early thermalization, and other open questions in quantum field theory [40, 41].

In 2008, Aarts and Stamatescu demonstrated that CL could be applied to models of finite density QCD

that exhibit a sign problem [42]. Shortly after that, Aarts demonstrated that CL could be used to circumvent

the sign problem in the relativistic Bose gas with finite chemical potential (see Refs [1, 43], which will be

discussed further in Chapter 4). This began a resurgence of interest in this method in the field of finite density

lattice QCD (LQCD), in which nonperturbative calculations of strongly interacting matter with finite baryon

chemical potential are inhibited by the sign problem. This renewed interest led to work in the next few years

on optimization of the method to prevent runaways and improve stability, using stochastic reweighting, gauge

fixing, and adaptive step size algorithms [44–46].

The successes of the method, and advances made in treating instabilities and singularities in the fermion

determinant, have generated interest in applying CL to non-relativistic systems – particularly many-fermion

systems, in which sign problems arise frequently [47–52]. Work with the CL method in the context of non-

relativistic systems is just beginning, but is already showing great promise [53]. This dissertation examines

the application of CL to bosonic systems, starting with a re-examination of the relativistic Bose gas, and then

adapting the method for nonrelativistic bosons, to study the behavior of rotating superfluids. This chapter

provides an overview of the CL method, from its derivation to the practical challenges faced in applying the

method.

3.2.1: Stochastic quantization: the Langevin method

While QMC techniques are extremely prevalent in quantummany-body physics, there exist other stochas-

tic methods for evaluating properties of interest. One of these alternatives, stochastic quantization, has been

used to treat Euclidean field theories since since Parisi and Wu first proposed the connection between the

Euclidean field theories and statistical systems coupled to a heat bath [54]. It is now well-established as a

successful tool for treating quantum many-body systems with a real Euclidean action [55]. At the center

of these methods – just as with Monte Carlo methods – is the use of a Markov process, where a stochastic

evolution yields new values whose dependence on the past values extends only to its immediate predecessor,
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i.e.

xn+1 = f (xn). (3.14)

One such Markovian process is Brownian motion, described the the Langevin equation: a stochastic differ-

ential equation. Use of the Langevin equation in stochastic quantization has led to an alternative name for the

method: the Langevin method. This method, originally developed for the modeling of dynamical variables

in molecular systems, evolves the Langevin equation to produce sets of solutions distributed according to

some probability.

The Langevin equation is well-established for real-valued fields, φ on a real manifold [56]. We can use

it to stochastically evaluate path integrals of the form

Z =

∫
Dφ e−S[φ] (3.15)

by evolving the fields, φ, with respect to a fictitious time. This fictitious time evolution is governed by the

Langevin equation:

dφ
dt
= −

δS[φ]

δφ
+ η̃. (3.16)

The first term on the right hand side is called the drift term, sometimes denoted as K :

K [φ] = −
δS[φ]

δφ
(3.17)

The second term on the right hand encodes the stochastic nature of the equation and is given by white noise.

In order to evolve the Langevin equation numerically, we can express the equation in a discrete form:

∆φ = K [φ]∆t + η, (3.18)

where η must fulfill the conditions:

〈η(t)〉 = 0 (3.19)

〈η(t)η(t ′)〉 = 2δ(t − t ′), (3.20)
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and is generally chosen to be a standard Gaussian random variable. This random process will produce

time-dependent configurations φη (t) distributed according to some probability distribution P[φ, t]. The

expectation value of a given observable O[φ] is then given by

〈
O[φη (t)]

〉
=

∫
Dφ P[φ, t]O[φ]. (3.21)

This illustrates the key ingredient of stochastic quantization, which is that the equilibrium distribution (if

it exists) of the d + 1 dimensional random process in Eq. (3.18) corresponds to the probability measure in

the d-dimensional path integral Eq. (3.15). The extra dimension is simply the fictitious time t, which is

integrated out when we compute the observable’s expectation value by taking a long-time average.

To establish the validity of such a Langevin average, we need to investigate the temporal behavior of

the expectation value and show that the time-dependent probability distribution depends on S[φ] in the way

dictated by Eq. (3.15), at least at large enough t. Such a property will justify the use of temporal averages

along the Langevin evolution to estimate the true expectation values of the theory.

An instructive discussion can be found in Ref. [56], which we will follow closely.

As a first step, we take the fictitious-time derivative of the expectation value

d
〈
O[φη (t)]

〉
dt

=

∫
Dφ

dP[φ, t]
dt

O[φ]. (3.22)

Note that in the integrand, only the probability distribution carries a fictitious-time dependence. Alternatively,

we may perform the same fictitious-time derivative by expanding the observable to second order in its φ

dependence

dO[φ] =
δO[φ]

δφ
dφ +

1

2

δ2O[φ]

δφ2
(dφ)2. (3.23)

According to Eq. (3.18) we may write the incremental dφ as the result of a stochastic process

dφ = −
δS[φ]

δφ
dt + dw , (3.24)
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where dw is the Wiener increment with the properties

〈dw2〉 =

∫ t+dt

t

dτ
∫ t+dt

t

dτ′ 〈η(τ)η(τ′)〉 = 2 dt (3.25)

〈dw〉 = 0, (3.26)

which follows from Eq. (3.19). Substituting this definition for dφ into Eq. (3.23) and using the properties of

dw yields

〈dO[φ]〉 =

〈
−
δO[φ]

δφ

δS[φ]

δφ
+
δ2O[φ]

δφ2

〉
dt , (3.27)

which allows us to write

d〈O[φη (t)]〉
dt

=

〈
−
δO[φ]

δφ

δS[φ]

δφ
+
δ2O[φ]

δφ2

〉
≡ 〈L〉 , (3.28)

where we have defined the Langevin operator

Lr =

∫
dτddx

(
δ

δφ
+ K [φ]

)
δ

δφ
, (3.29)

with the drift K [φ] = −
δS[φ]
δφ , according to Eq. (3.18). We may write this expectation value as an integral

over configurations and then integrate by parts:

d〈O[φη (t)]〉
dt

=

∫
Dφ

(
−
δO[φ]

δφ

δS[φ]

δφ
+
δ2O[φ]

δφ2

)
P[φ, t] (3.30)

=

∫
Dφ O[φ]

(
δ

δφ

δS[φ]

δφ
+

δ2

δφ2

)
P[φ, t]. (3.31)

Here wemade the important assumption that the probability vanishes at the boundaries (or decays fast enough

if the integration region is non-compact). These assumptions are crucial and will be discussed in more detail

below.

Comparing the above equation with Eq. (3.22) yields the Fokker-Planck (FP) equation:

d
dt
P[φ, t] = LT

r P[φ, t] , (3.32)

35



with the formal adjoint of the above Langevin operator

LT
r ≡

∫
dτddx

δ

δφ

(
δ

δφ
− K [φ]

)
, (3.33)

which is also referred to as the FP operator or FP Hamiltonian. To show that the stationary solution of this

equation is indeed our desired probability distribution we perform a similarity transformation

P̃[φ, t] = eS[φ]/2P[φ, t] , (3.34)

to rewrite the FP equation

d
dt
P̃[φ, t] = L̃T

r P̃[φ, t] , (3.35)

with

L̃T
r = eS[φ]/2 LT

r e−S[φ]/2 =

∫
dτdddx

(
−
δ

δφ
+

1

2
K [φ]

) (
δ

δφ
+

1

2
K [φ]

)
. (3.36)

This last equation reveals that, with a real action S[φ], our modified FP Hamiltonian is a self-adjoint and

positive semidefinite operator, with a unique FP ground state ψ0 = e−S[φ]/2 and vanishing FP energy E0 = 0.

We can therefore project our probability over the complete set of eigenfunctions and non-negative

eigenvalues of L̃T
r , and see that our probability collapses to the ground state in the long time limit:

P̃[φ, t] =
∞∑
n=0

anψne−En t
t→∞
−−−−→ a0e−S[φ]/2. (3.37)

Upon performing the back-transformation according to Eq. (3.34) we obtain

lim
t→∞
P[φ, t] ∼ e−S[φ] , (3.38)

which shows that the Langevin equation produces field configurations distributed according to the Boltzmann

weight e−S[φ] in the limit of large fictitious time.

The above justifies the use of temporal averages to estimate equilibrium expectation values. In practice,
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we obtain these by performing an integration over a time T :

〈O〉 ≈
1

T

∫ tth+T

tth

dt O[φη (t)], (3.39)

where tth reflects the equilibration time that is needed to approach the stationary probability distribution.

Thus, the Langevin equation produces a fictitious time evolution of a system governed by an action S[φ],

and after some thermalization time, the solutions converge to a set that can be averaged to determine the

expectation value of the observable.

3.2.2: Extending the Langevin method to complex variables

The Langevin method has been established as effective in the case of real-valued variables, but we seek

an alternative to QMC that will allow us to examine systems with both real and imaginary components, in

order to circumvent the sign problem that arises when treating those systems with QMC. In this section, we

show that the Langevin equations can be extended to a complex plane, yielding a set of stochastic differential

equations for the real and imaginary components of the fields. This generalization of the Langevin method is

naturally called the complex Langevin (CL) method, and was first suggested in the early 1980s independently

by Parisi [57] and Klauder [58, 59]. One of the benefits of extending the Langevin method to complex

variables is that it replaces the importance sampling process in QMC, which eliminates the the restriction to

real and positive semidefinite measures.

For a complex measure, e−S[φ]dφ, with S a holomorphic function S = u(φ) + iv(φ) on a real manifold

M, we cannot treat e−S[φ] as a real probability measure. In that case, the probability distribution in Eq. (3.21)

becomes a complex distribution

ρ[φ] =
e−S[φ]

Z
, (3.40)

while the field φ is still a real quantity. However, if we replace e−S[φ]dφ by a real measureP (φR+iφI )dφRdφI

defined on a complex manifold Mc, we can evaluate the equilibrium measure of P using the complex

Langevin process.

Complex Langevin extends the target manifold of the field φ to the complex plane by setting

φ→ φR + iφI, (3.41)
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and analytically extending the domain of the action functional:

S[φ]→ S[φR + iφI ]. (3.42)
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Figure 3.1: The Langevin method with real-valued fields versus complex-valued fields.

With such an extension, the CL method proceeds very much in the same way as the real Langevin

method (see Figure 3.1 for a side-by-side comparison), but now with a double system of coupled stochastic

differential equations:

∆φR = KR∆t + ηR (t), (3.43)

∆φI = KI∆t + ηI (t), (3.44)

where the real and imaginary drift functions KR and KI are found by taking the real and imaginary parts of

the functional derivative of the complex action:

KR = −Re
[
δS[φ]
δφ

]
, (3.45)

KI = −Im
[
δS[φ]
δφ

]
. (3.46)

The real and imaginary noise obey the properties shown in Figure 3.1.
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The extension to the complex manifold results in the set of coupled differential equations of Eq. (3.43),

which treat the real and imaginary parts of the fields individually and generate results for both real and

imaginary parts of the observables. While the amplitudes of the real and imaginary noise terms are related,

the two Wiener processes are completely independent. In practice, the imaginary noise is usually set to

zero, which satisfies the constraints shown in Figure 3.1 and it has been found to have the best numerical

properties [60]. Finally, it should be pointed out that, beyond the complexification of each real degree of

freedom, the above (coupled) Langevin processes are themselves real. After thermalization, the expectation

values for the imaginary parts of the observables should average to zero.
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Figure 3.2: Real (blue) and imaginary (red) density generated by Complex Langevin for a relativistic Bose gas at finite chemical
potential.

This can be seen clearly in Figure 3.2, which shows the real and imaginary parts of the density of a

system of relativistic bosons at finite chemical potential in 3 + 1 dimensions. As the chemical potential
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increases, the real part of the density rises (as the system condenses), but the imaginary value stays at zero.

This system is examined in more detail in Chapter 4.

Section 3.3: Formal justification and challenges for complex Langevin

Extension of the Langevin equation to complex variables is not perfect, so naturally some challenges

arise in implementing this method. The challenges faced by the CL method can be roughly divided into

two kinds: mathematical and practical. While these two areas share some overlap, they can be discussed

individually, as we will do in this section.

3.3.1: Mathematical aspects: convergence, correctness, boundary terms, and ergodicity

As described above, the CL process defines a random walk in a complexified manifold, such that for

a given configuration φ = φR + iφI there is a well-defined probability P[φR, φI, t] at time t. For a given

observable O, there will be an expectation value

〈O〉
P (t) ≡

∫
DφRDφI P[φR, φI, t]O[φR + iφI ]. (3.47)

By virtue of the CL process, as discussed in the previous section, the real probability P[φR, φI, t] obeys the

FP equation:

∂P

∂t
= LTP , (3.48)

where

LT =

∫
dτddx

{
δ

δφR

[
NR

δ

δφR
− KR

]
+

δ

δφI

[
NI

δ

δφI
− KI

]}
. (3.49)

It is not obvious a priori whether this process reproduces the desired expectation values of the physical

observables, i.e. whether 〈O〉
P (t) actually corresponds to the physical expectation value of the theory. It is

not even clear that the process will converge and if it does, whether it converges to the correct answer.

The fundamental question underlying the validity of the CL approach is the relation between the CL

distributionP[φR, φI, t] and the desired complex distribution ρ[φ] in Eq. (3.40). The latter defines the physics
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of interest and is a fixed point of its own FP equation

∂ρ

∂t
= LT

0 ρ, (3.50)

where

LT
0 =

∫
dτddx

δ

δφR

[
δ

δφR
+

δS
δφR

]
, (3.51)

which is obtained by temporal differentiation of

〈O〉ρ(t) ≡

∫
DφR ρ[φR, t]O[φR]. (3.52)

Here, it is assumed (as in the above section) that the boundary terms vanish at infinity. More specifically, we

want to know whether

〈O〉
P (t) = 〈O〉ρ(t) , (3.53)

holds.

In Refs. [60, 61] it was shown how the desired relationship Eq. (3.53) can be proven for holomorphic

observables, as long as the action and the associated drift are both holomorphic functions of φ. The proof

relies on analyzing the behavior of

F (t, τ) =
∫
DφRDφI P[φR, φI, t − τ]O[φR + iφI, τ], (3.54)

where 0 ≤ τ ≤ t. The function F (t, τ) interpolates between the two expectation values of interest:

F (t, 0) = 〈O〉
P (t), F (t, t) = 〈O〉ρ(t) . (3.55)

where we have assumed that the initial conditions are chosen as

P (φR, φI, 0) = ρ[φR, 0]δ(φI − φI,0). (3.56)
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We find that

F (t, 0) =
∫
DφRDφIP[φR, φI, t]O[φR + iφI, 0] = 〈O〉

P (t), (3.57)

while, using the initial conditions of Eq. (3.56),

F (t, t) =
∫
DφRDφIP[φR, φI, 0]O[φR + iφI, t] =

∫
DφR ρ[φR, 0]O[φR + iφI,0, t] = 〈O〉ρ(t), (3.58)

where we have used Eq. (3.50) and integration by parts to shift the Langevin evolution operator from O to ρ.

If F (t, τ) is independent of τ, then Eq. (3.53) holds, and the Langevin method is formally shown to be

valid for complex-valued variables. This means that if it converges, it will converge to the correct physical

answers. Naturally, this statement assumes that the expectation values in Eq. (3.53) agree at t = 0, which can

be ensured by choosing the initial condition of the Langevin process as above. The τ derivative of F (t, τ)

involves an integration by parts:

∂

∂τ
F (t, τ) =

∫
DφRDφI

{
P[φR, φI, t − τ]LO[φR + iφI, τ] − LTP[φR, φI, t − τ]O[φR + iφI, τ]

}
, (3.59)

where L is the Langevin operator and LT its adjoint. If we integrate by parts and the boundary terms are

zero, then ∂
∂τF (t, τ) = 0. If the decay of

P[φR, φI, t − τ]O[φR + iφI, τ] , (3.60)

and its derivatives is not fast enough to ensure that the boundary terms will vanish, then it cannot be

guaranteed that the expectation values of the quantities of interest obtained via a Langevin process will

converge to the correct values [60, 61].

Two general issues for CL are raised by this examination: first, the behavior of the probability distribution

at boundaries and second, the rate of decay of the drift function. We discuss these in more detail below:

Behavior of the probability distribution at boundaries

The behavior of boundaries at infinity is a relevant question for models in both relativistic and non-

relativistic physics. In particular, for gauge theories the complexification of the link variables leads to
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non-compact groups, e.g. SU(3) becomes SL(3,C). A similar effect is seen in nonrelativistic physics when

using compact Hubbard-Stratonovich transformations. In either case, merely assuming that the derivative of

F (t, τ) in Eq. (3.59) vanishes is a bad idea. For that to happen, the solutions to the FP equation must fall off

sufficiently quickly along non-compact directions in the (complexified) space of field configurations1. That

property is very difficult to determine a priori, but can be checked a posteriori following the arguments of

Ref. [64]. Case studies show that in many cases, while the solutions fall off faster than exponentially in the

real directions, the decay in the imaginary directions may be insufficient [60]. Such an insufficient decay at

infinity can also lead to the so-called excursion problem, where the drift function grows uncontrollably in

the imaginary direction, pulling the results away from the real line.

In addition to the boundaries at infinity in the imaginary space, under some conditions boundaries can

arise in the complex space due to a singular drift function. This singular drift function can occur as a result

of zeroes in the fermion determinant, and the probability distribution must also go to zero in the region of

these poles. While this thesis is concerned with the application of CL to bosonic field theories, it is worth

mentioning that there have been some techniques developed in order to address these issues in fermionic

field theories.

For fermionic actions where poles appear naturally, the results for the holomorphic case can be used,

provided that a region around the poles is cut out [65]. That procedure is justified as long as the probability

measure vanishes around those poles sufficiently fast; in other words, the boundaries around the poles take

on the same relevance as those at infinity. A detailed study of incorrect convergence due to poles in the drift

function showed that the location of these poles, the decay of the probability distribution, and the behavior

of the observables in the region near the poles all played a role in whether the method would return correct

results [64, 65].

Distribution of the drift function

A re-examination of the conditions for correctness in Refs. [64, 66] revealed that failure of CL that in

some cases has been attributed to the excursion and singular drift problems are actually due to the drift

function falling off too slowly. It was argued in Ref. [67], using a semiclassical analysis, that when more

than one saddle point in the complex plane contributes to the ensemble averages, the CL method can lead to

1See Refs. [62, 63] for an insightful discussion of an exactly solvable case)
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incorrect answers due to the different complex phases associated with each saddle point.

While the condition of fast decay was recognized in [60, 61], the precise rate was not immediately clear.

In Ref. [64], the above arguments were reviewed by considering a finite step-size in Langevin time. It was

then found that the above integration by parts is valid if the probability distribution of the drift term falls

off faster than any power at large drift magnitude. In practice, it is very difficult to establish the behavior of

Eq. (3.59), but it is perfectly possible to study the probability distribution of the drift and establish whether

the decay is exponential. If this condition is satisfied, then the drift function is unlikely to be singular and

the system is a good candidate for complex Langevin without concern about the presence of poles.

3.3.2: Practical aspects: numerical instabilities, gauge cooling, dynamic stabilization, and regulators

On the practical side, several strategies have been identified to tackle specific issues that arise in a

numerical treatment of complex Langevin. While some systems are not well-suited to CL because their

probabilities don’t decay fast enough at the boundaries, others are good candidates until numerical noise

pulls the simulation off the acceptable trajectory. Numerical noise can incorrectly place something on the

wrong trajectory, leading to excursions in the imaginary direction, and somost strategies to resolve issueswith

the CL algorithm are attempts to control the numerical instabilities without great sacrifice to computational

resources.

One of the issues recognized early on is the appearance of instabilities in the form of runaway trajectories

along the CL evolution [68, 69]. These can become frequent enough to completely spoil a calculation

performed at fixed step size. In Ref. [45], the need for adaptive step size integration of the complex Langevin

equations was identified. It was found that such an approach provides a solution to the problem of instabilities

and has thus become the standard for CL calculations.

A separate issue for correctness, mentioned above, is that of insufficient decay at infinity. In practice, it

can lead to uncontrolled excursions of the CL process into the complex plane, making calculations unstable.

To that end, a few practical solutions have been explored.

Gauge cooling ([70–74]) is one example of such practical solutions which, though necessary, is often not

sufficient. It remains, however, the best understood approach from a mathematical perspective [73]: gauge

cooling is a mathematically exact procedure. The idea is that at each Langevin step, one can make a gauge

transformation to keep the variables close to the compact subgroup. In gauge fields, this means transforming

in SU(3,C) to maintain the link variables within an acceptable distance from SU(3).

44



Dynamic stabilization was developed to further aid with the excursion problem [75–78]. The essential

idea of this approach is to add a term to the Langevin drift K in the schematic form

K → −DS + iαDSM, (3.61)

where −DS is the standard CL drift, αDS is a control parameter, and M acts only in the non-SU(3) directions

and grows rapidly with the distance from the SU(3) manifold. The above modification to the Langevin

evolution cannot be derived from the action but it vanishes in the continuum limit and prevents large

excursions into the complex plane.

While gauge cooling and dynamic stabilization first appeared in relativistic calculations, regulators,

or modified actions, first appeared in a nonrelativistic application, namely Ref. [79]. They were also

discussed more recently in Ref. [63] and the idea is similar to dynamic stabilization, except that the resulting

modifications on the Langevin equations are directly derived from the action. In both of those works, the

modification consisted of adding a term of the form ξφ2, which is decreased and the limit as ξ → 0 examined

in the final results. While the advantages of such a practical solution were clear, it is by no means a full

solution and in many cases – especially at strong coupling or low temperatures – it is not possible to make ξ

small and obtain a converging calculation.
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CHAPTER 4: The relativistic Bose gas

Section 4.1: Motivation

As discussed in previous chapters, field theories with a complex action suffer from a sign problem when

treated with conventional Monte Carlo approaches. This includes QCD at finite baryon density, but also

bosonic field theories with a chemical potential and an action such that S∗(µ) = S(−µ). The complex

Langevin method was used to tackle the sign problem in the relativistic Bose gas at finite µ, and was one of

the first successful examples of CL used in QFT on the lattice [1]. This chapter re-examines this application

of CL to relativistic bosons as proof of concept and to establish the algorithm which will be later adapted to

nonrelativistic bosons.

Section 4.2: Action and formalism: relativistic, interacting bosons at finite chemical potential

The system is a self-interacting complex scalar field in 4 spacetime dimensions, represented by the action:

S =
∫

d4x
[
|∂νφ|

2 + (m2 − µ2) |φ|2 + µ(φ∗∂4φ − ∂4φ
2φ) + λ |φ|4

]
(4.1)

where m2 > 0, µ is the chemical potential, and λ represents a contact interaction. It is expected that, at

zero temperature, this system will undergo a phase transition to Bose-Einstein condensation at some critical

chemical potential µc > 0.

This action can be discretized, in order to treat the system with a lattice field theory, in the following

way:

S =
∑
x


(2d + m2)φ∗xφx + λ(φ∗xφx )2 −

d∑
ν=1

(φ∗xe−µδν,4φx+ν̂ + φ∗x+ν̂eµδν,4φx )

, (4.2)

where here we have generalized the action to d spacetime dimensions. The lattice spacing in both space

and time is given by a = 1, and the lattice volume is V = Nt Nd−1
x , with periodic boundary conditions in

all spacetime directions. The chemical potential, µ is an imaginary, constant vector potential function that

points in the t direction. This results in an action such that S∗(µ) = S(−µ), which suffers from the sign

problem in ordinary Markov chain Monte Carlo (MCMC) approaches.
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To circumvent the sign problem, we apply instead the complex Langevin method. As discussed in Chap-

ter 3, the Langevin equations read:

∂φx (tL)
∂tL

= −
δS[φ]

δφx (tL)
+ ηx (tL). (4.3)

Here, tL is the Langevin time and η is random noise (real andGaussian-distributed, as discussed in Chapter 3).

The fields φx (tL) must then be expressed explicitly in terms of their components, in order to represent the

complex action in terms of real fields. Thus, φx (tL) is written as φx = 1√
2

(φ1 + iφ2). From this point, we

drop the explicit dependence on tL in the fields in our notation, for simplicity.

The complex action expressed in terms of real fields φa=1,2 is:

S =
∑
x

[(d+
m2

2
)φ2

a,x +
λ

4
(φ2

a,x )2 −

d−1∑
i=1

φa,xφa,x+î − cosh(µφa,xφa,x+4̂) + isinh(µεabφa,xφb,x+4̂) (4.4)

with an implied summation over repeated indices and a = 1, 2, and d the Euclidean spacetime dimension.

The real fields φa are then complexified:

φa = φ
R
a + iφIa (4.5)

and the Langevin time, tL , is discretized as tL = nε . The resulting discretized and complexified Langevin

equations then become:

φRa,x (n + 1) = φRa,x (n) − εKR
a,x (n) +

√
εηa,x (4.6)

φIa,x (n + 1) = φIa,x (n) − εK I
a,x (n) (4.7)

With

KR
a,x = −Re



(
δS[φ]

δφa,x

)
φa→φ

R
a +iφ

I
a


(4.8)

K I
a,x = −Im



(
δS[φ]

δφa,x

)
φa→φ

R
a +iφ

I
a


(4.9)

These equations govern the evolution of our fields in the fictitious Langevin time, which will yield a set of

configurations distributed according to the desired probability distribution P[φ] = e−S[φ]. The algorithm for
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this process is given below:

1. Initialize the four fields (φR1 , φ
I
1, φ

R
2 , and φ

I
2) at each site on an Nt Nd−1

x lattice using a uniform random

number distribution centered around zero.

2. Evolve the whole lattice for n steps of size ε in complex Langevin time. At each Langevin step:

• Generate real, Gaussian distributed noise.

• Generate the action from the fields.

• Update the four field components at each site using Eq. (4.6).

• After some thermalization time, save decorrelated samples, to calculate averaged observables

with good statistical properties

3. Repeat this over all the different sizes and values for the chemical potentials

We are interested in calculating the average particle density, 〈n̂〉 and the square of the field modulus 〈φ∗φ〉,

both quantities which are real-valued despite the complexity of the action. The density of the system is given

by

〈n̂〉 =
1

V

∑
x

2∑
a,b=1

(δab sinh µ − iεab cosh µ) φa,xφb+4̂. (4.10)

The derivation of the density as a function of the four field components (φR/I1/2 ) is worked out in greater detail

in Appendix B.1. The square of the field modulus is a simpler expression:

〈φ∗φ〉 =
1

V

∑
x

2∑
a=1

φa,xφa,x (4.11)

which can also be expressed in terms of our four field components by noting that φa,x = φRa,x + iφIa,x .

At the critical chemical potential, µ = µc, there should be a 2nd order phase transition to a BEC, with

〈n〉 =
1

V
∂lnZ
∂µ

, 0 (4.12)

The critical chemical potential µc is given in the non-interacting case by |µ0
c | = 2 arcsinh(m/2), while in

the interacting case, it is expected that |µc | > |µ0
c |.

48



Section 4.3: Results

4.3.1: Statistical and systematic effects

In order to calculate the quantities of interest, we must first determine the thermalization time of the

system, as well as compute the autocorrelation of the observables.
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Figure 4.1: Thermalization of the Langevin simulation for chemical potentials below the critical point (left) and above it (right).
After thermalization, the running average remains stable despite fluctuations in the individual samples.

We can see the thermalization point by looking at values of the observables as they evolve in Langevin

time. They will begin at the point of initialization, and change rapidly under the influence of the Langevin

drift function, until eventually they settle into a random walk around some stable, mean value. This is easy

to see in the right panel of Figure 4.1, where our real and imaginary observables differ significantly from

each other at the end of the Langevin evolution. While the samples fluctuate – and even appear to evolve

– a running average shows that the average value remains stable after thermalization. In the left panel, we

see the thermalization for an observable which averages to zero is harder to pick out, as the change from the

initial values to the point of thermalization is not as pronounced. In this case, we can use the thermalization

point for other observables to ensure we capture the correct behavior.

We also must compute the autocorrelation time, τA. This tells us how many steps we must take between

samples in order to truly be using decorrelated samples, and we can also incorporate this into our error

analysis. We use a bootstrap analysis to determine the autocorrelation time (in Langevin seconds), which we

can then convert to autocorrelation steps by dividing the time by the Langevin spacing (ε = 5 × 10−5). We
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can update the error to include autocorrelation error into our standard statistical error in the following way

∆A =

√
σ2

Nsamples
(1 + 2τA), (4.13)

where ∆A includes both statistical error and autocorrelation error.

Now that we have established our basic practices for error analysis, we can discuss the results obtained

via the CL method.

4.3.2: The noninteracting case

The noninteracting action can be expressed in the following way:

S =
∑

x,x′,a,a′

φ∗x,aMx,a;x′a′φx′,a′ . (4.14)

This can be further simplified and then compared with results obtained using complex Langevin for λ = 0.

When we write our lattice action of Eq. (4.2) in the form proposed in Eq. (4.14), we find that M is

M[m, d, µ] = (2d + m2)δx,x′ −
d∑
j=1

(δx,x′− ĵ + δx,x′+ ĵ ) − (e−µδx,x′−4̂ + eµδx,x′+4̂). (4.15)

Since M only depends on the separation between x and x ′, it can be diagonalized by a Fourier transformation.

The derivation of M and its subsequent Fourier transformation is shown in Appendix B, and the resulting

diagonal matrix is:

Dk,k′ =
*.
,
(2d + m2) −

d∑
j=1

(eik
′
j + e−ik

′
j ) − (e−µ−iω

′

+ eµ+iω
′

)+/
-
δk,k′ . (4.16)

This diagonal representation of the lattice action is much simpler to work with than the position-space

representation. We can use this matrix to determine analytical values for the density and the field modulus

squared (|φ2 |) and check the results of the CL method for this special case of λ = 0.

The partition function can be written the following way, for an action that can be expressed as Eq. (4.14)

Z =

∫
Dφ∗Dφe−S[φ] =

1

det M
, (4.17)

And we can produce analytical results for observables by taking derivatives of the partition function with
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respect to various parameters, as in

−1

V
∂lnZ
∂α

=
−1

VZ

∫
Dφ∗Dφe−S[φ∗,φ]−∂S

∂α
=

〈
∂S
∂α

〉
. (4.18)

The derivative of the action with respect to the mass squared (m2) gives us φ∗φ:

−1

V
∂lnZ
∂(m2)

=
1

VZ

∫
Dφ∗Dφe−S[φ∗,φ] (φ∗φ) = 〈

φ∗φ
〉
, (4.19)

We can compare these analytical results against values produced by the CL algorithm. When we apply

Eq. (4.17), we can find this in terms of our diagonal matrix D, and then compute the result exactly. When

we do this, we find that

〈
φ∗φ

〉
=

∑
k

D∗
kk

|Dkk |
2
, (4.20)

where the sum is restricted to values of k that correspond to the Fourier transformed lattice sites: kα = 2π n
Nx

,

with n ∈ (0, Nx − 1).

Additionally, the density is found by taking a derivative with respect to the chemical potential, µ:

−1

V
∂lnZ
∂µ

= 〈n̂〉 . (4.21)

In terms of D, this is

〈n̂〉 =
∑
k

D∗
kk

(cos k4 sinh µ + i sin k4 cosh µ)

|Dkk |
2

, (4.22)

with our k sum restricted to the same values as before.

The results are shown in Figure 4.2. We see that the CL algorithm correctly reproduces the exact values

for this case.

4.3.3: Real initialization, no interaction, zero chemical potential

For the special case in which the imaginary fields are initialized to zero, the chemical potential is fixed

to zero, and there are no interactions, the results should be entirely real. In this case, there is technically

no need for complex Langevin, as there is no sign problem, but we should expect our code to return the
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Figure 4.2: The real imaginary components of the density as a function of chemical potential, both exact and CL results, for
Nx = Nt = 4 (left) and 6 (right).

appropriate results for an entirely real case.

We found that for φI1,2(tL = 0) = 0, µ = 0, and λ = 0, the code returned results with no imaginary

parts. The imaginary fields and actions were identically zero, and the imaginary density averaged to zero (the

imaginary density is a combination of real and imaginary fields, so we would not expect it to be identically

zero, but we would expect it to be zero within its standard deviation).

4.3.4: Finite chemical potential and interaction: the full CL treatment

Values of the field modulus squared and density were computed with stepsize ε = 5 × 10−5 for 5 × 106

steps in Langevin time. For thermalization, the first 5 × 104 steps were left out of analysis. These values

were computed for lattices of size Nx = Nt = 4, 6, 8, and 10 and chemical potential 0 ≤ µ ≤ 1.7. Our results

were qualitatively consistent with Ref. [1], as seen in Figure 4.3 and Figure 4.4. Discrepancies between our

computed values and the values from Ref. [1] are likely due to small differences that arise in digitizing the

data from the original plots, as well as small differences in dealing with systematic effects. While the original

work simply averages all the samples, our recreation takes into account the effects of autocorrelation, taking

fewer, de-correlated samples to average for the final value.

Section 4.4: Summary and conclusions

We have shown in this chapter the ability of the complex Langevin method to treat a system with a sign

problem. The method is able to handle a system whose action is complex, evolving a set of field values from

which observables of interest can be computed. The resulting set of observables, after some thermalization,

can then be averaged, much like with standard QMCmethods. The statistical error is related to the number of
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Figure 4.3: Comparison of our results for the density of the relativistic Bose gas at finite potential, against the results of Ref. [1] for
Nx = Nt = 4 (left) and 6 (right).
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Figure 4.4: Comparison of our results for the field modulus squared of the relativistic Bose gas at finite potential, against the results
of Ref. [1] for Nx = Nt = 4 (left) and 6 (right).

samples by the usual 1/
√

N factor, and therefore statistical error can be managed by increasing or decreasing

the number of samples computed.

This method provides a useful tool for treating systems with a sign problem in relativistic physics. In the

next chapter, we will apply it to a nonrelativistic bosonic system which also suffers from a sign problem: the

rotating superfluid.
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CHAPTER 5: Interacting Bose gas at finite chemical potential and angular momentum

Section 5.1: Motivation

In 1946, Fritz London first proposed that superconductivity and superfluidity were "quantummechanisms

on a macroscopic scale" [11]. Additionally, he linked superfluidity with the (then only theoretical and not

observed) mechanism of Bose-Einstein condensation. Since London’s early insights into superfluid behavior,

the system has been studied extensively using super-cooled atoms [11].

In 1949, Lars Onsager predicted that vortices would form in rotating superfluids [12]. Richard Feynman

expanded on Onsager’s prediction a few years later, reiterating the expectation that quantized vortices would

appear when superfluids were forced to rotate [13]. Another 30 years after these predictions, the first direct

observation of quantum vortices was made in rotating superfluid helium [29].

Superfluid velocity has no curl, and therefore is irrotational. However, nonzero hydrodynamic circulation

can exist, and must be quantized in units of 2π~/m [11]. This disconnect between the finite circulation and

the irrotational superfluid velocity forces the superfluid to form singular regions in the density, leading to

the formation of vortices.

Experimentally, great progress has been made in studying rotating superfluids since the first direct

observation of vortex formation. In 2000, vortex formation was observed in stirred, magnetically-trapped

rubidium atoms [17]. The next year, the Ketterle Group at MIT observed triangular vortex lattices of up to

130 vortices in rotating ultracold sodium atoms [14]. Ultracold atoms provide a highly controlled, tuneable

setting for studying vortex formation and other properties of rotating superfluids. Theoretically, treatment

of these systems has stalled due to the presence of the sign problem. This chapter is an attempt to apply the

complex Langevin method to circumvent the sign problem in a rotating superfluid.

Section 5.2: Action and formalism

We examine in this chapter a 2+1 dimensional system of nonrelativistic bosons of mass m with a contact

interaction λ in an external harmonic trap of frequency ωtr and experiencing a rotation of frequency ωz .

Both the harmonic trap and the rotation are centered around the midpoint of the lattice, and we use hard-wall

boundary conditions in the spatial extent of the lattice and periodic boundary conditions in Euclidean time.
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The path integral for the system is

Z =

∫
Dφe−S[φ] (5.1)

with action

S =
∫

dxdydτ
[
φ∗

(
H − µ −

m
2
ω2
trr

2
⊥ − ωzLz

)
φ + λ(φ∗φ)2

]
(5.2)

where

r2
⊥ = (x − xc)2 + (y − yc)2, (5.3)

with xc and yc the center of the trap. The angular momentum is defined in terms of the quantum mechanical

operator,

ωzLz = iωz (x∂y − y∂x ). (5.4)

The use of complex fields to represent the superfluid generates a sign problem even in the action of external

trap, rotation, or interaction. This sign problem can be overcome with a straightforward rewriting of the

problem in the simple cases – for example, the free gas – but the introduction of the angular momentum

term prevents the use of this rewriting to overcome the sign problem. The imaginary term in the angular

momentum forces the action to be complex, generating a sign problem that must be circumvented another

way.

To take this action to a lattice representation, we must discretize the space. The origin becomes the

center of the lattice, and therefore x and y are measured relative to the point (xc, yc) = ( Nx−1
2 , Nx−1

2 ) on the

lattice. We use odd values of Nx in our simulations to ensure that the center of the lattice falls on a lattice

site, rather than between sites.

Using a backward-difference derivative and denoting the position on the 2 + 1 dimensional spacetime
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lattice as r , we define:

∂jφ =
1

a
(φr− ĵ − φr ) (5.5)

∂2
j φ =

1

a2
(φr− ĵ − 2φr + φr− ĵ ). (5.6)

We combine ∂τ−µ in the lattice representation and similarly represent the angularmomentum, interaction, and

external trap as external gauge fields in order to avoid divergences in the continuum limit (see Appendix C.1

for details and justification of these steps). Finally, using spatial lattice site separation a = 1 and temporal

lattice spacing dτ, our lattice action becomes

Slat =
∑
r


φ∗rφr − φ

∗
redτµφr−τ̂ − φ∗r

dτ
2m

∑
i=x,y

(
φ∗rφr+î − 2φ∗rφr + φ

∗
rφr−î

)
(5.7)

−idτωz

(
( x̃ − ỹ)φ∗rφr−τ̂ − x̃φ∗rφr−ŷ−τ̂ + ỹφ∗rφr−x̂−τ̂

)
−dτ

m
2
ω2
tr( x̃2 + ỹ2)φ∗rφr−τ̂ + dτλ(φ∗rφr−τ̂ )2

]
.

where x̃ and ỹ are our x and y coordinates shifted by the center of the trap:

x̃ = x −
Nx − 1

2

ỹ = y −
Nx − 1

2
,

where lattice sites are numbered from 0 to Nx − 1.

Section 5.3: The complex Langevin method for rotating bosons

In order to treat this action composed of complex-valued fields, we use the complex Langevin method

described in detail in Chapter 3 and used in the study of the relativistic Bose gas in Chapter 4. This method

uses a stochastic evolution of the complex fields in a fictitious time in order to produce sets of solutions

distributed according to the weight e−S[φ]. While standard MCMC methods produce these sets by sampling

from the distribution e−S[φ], this method allows us to stochastically evaluate observables whose physical

behavior is governed by our action, S[φ], without specifically sampling from the distribution as though it

were a probability.
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5.3.1: Evolving the fields

First, we must write our complex fields explicitly as a complex sum of two real fields (i.e. φ =

1√
2

(φ1 + iφ2). This is worked out in Appendix C.3 for all the contributions to our action. We then

complexify the fields and evolve the real and imaginary part of each field according to the complex Langevin

equations, a set of coupled stochastic differential equations shown here:

φRa,r (n + 1) = φRa,r (n) + εKR
a,r (n) +

√
εηa,r (n) (5.8)

φIa,r (n + 1) = φIa,r (n) + εK I
a,r (n), (5.9)

where a = 1, 2 labels our two real fields, ε is the size of our discretized step in Langevin time, and η is

Gaussian-distributed real noise with mean of 0 and standard deviation of
√

2 (this satisfies the requirements

of Eq. (3.19)). The drift functions, K , are derived from the action:

KR
a,r = −Re

[
δS
δφa,r

|φa→φ
R
a +iφ

I
a

]
(5.10)

K I
a,r = −Im

[
δS
δφa,r

|φa→φ
R
a +iφ

I
a

]
(5.11)

The derivation of the Langevin drift functions is worked out in Appendix C.6, and the results are shown

below. From this point, we scale our parameters by dτ for simplicity of notation

µ̄ = dτµ (5.12)

m̄ = m/dτ (5.13)

ω̄tr = dτωtr (5.14)

ω̄z = dτωz (5.15)

λ̄ = dτλ. (5.16)
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The real drift function is then given by

−KR
a,r = φRa,r −

eµ̄

2

(
φRa,r−τ̂ + φ

R
a,r+τ̂

)
+

2

m̄
φRa,r −

1

2m̄

∑
i=±x,y

φR
a,r+î

−
ω̄2

trr
2
⊥

4
(φRa,r+τ̂ + φ

R
a,r−τ̂ )

+ω̄z (x − y)φIa,r −
ω̄z

2

[
x
(
φIa,r−ŷ + φ

I
a,r+ŷ

)
− y

(
φIa,r−x̂ + φ

I
a,r+x̂

)]
(5.17)

+

2∑
b=1

{
εab

[
eµ̄

2

(
φIb,r−τ̂ − φ

I
b,r+τ̂

)
+
ω̄2

trr
2
⊥

4

(
φIb,r+τ̂ + φ

I
b,r−τ̂

)
−
ω̄z

2
x
(
φRb,r−ŷ − φ

R
b,r+ŷ

)
+
ω̄z

2
y
(
φRb,r−x̂ − φ

R
b,r+x̂

)]
+ λ̄

(
φRa,rφ

R
b,rφ

R
b,r − φ

R
a,rφ

I
b,rφ

I
b,r − 2φIa,rφ

R
b,rφ

I
b,r

)}
,

and the imaginary drift function is given by

−K I
a,r = φIa,r −

eµ̄

2

(
φIa,r−τ̂ + φ

I
a,r+τ̂

)
+

2

m̄
φIa,r −

1

2m̄

∑
i=±x,y

φI
a,r+î

−
ω̄2

trr
2
⊥

4
(φIa,r+τ̂ + φ

I
a,r−τ̂ )

−ω̄z (x − y)φRa,r −
ω̄z

2

[
y
(
φRa,r−x̂ + φ

R
a,r+x̂

)
− x

(
φRa,r−ŷ + φ

R
a,r+ŷ

)]
(5.18)

+

2∑
b=1

{
εab

[
−

eµ̄

2

(
φRb,r−τ̂ − φ

R
b,r+τ̂

)
−
ω̄2

trr
2
⊥

4
(φRb,r+τ̂ + φ

R
b,r−τ̂ ) −

ω̄z

2
x(φIb,r−ŷ − φ

I
b,r+ŷ)

+
ω̄z

2
y(φIb,r−x̂ − φ

I
b,r+x̂ )

]
+ λ̄

(
φIa,rφ

R
b,rφ

R
b,r + 2φRa,rφ

R
b,rφ

I
b,r − φ

I
a,rφ

I
b,rφ

I
b,r

)}
.

These equations are used to update the values of our complexified fields as in Eq. (5.10) at each step in

the Langevin evolution. This evolution continues for a long period in Langevin time (determined by the

observation of thermalization followed by enough steps to produce good statistical error). Observables of

interest can be calculated as functions of the fields at each point in Langevin time and averaged to find the

expectation value.

5.3.2: Calculating observables

The observables of interest in this simulation are the particle density 〈n̂〉, the square of the field modulus

〈φ∗φ〉, and the angular momentum 〈L̂z〉.

Most of these observables can be computed by taking various derivatives of the action expressed as a

function of the fields and the parameters. The details of these calculations are worked out in Appendix C.7.
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The real and imaginary components as a function of the fields are shown here for the density

Re〈n̂〉 =
1

V

∑
r

2∑
a,b=1

eµ̄

2

[
δab

(
φRa,rφ

R
b,r−τ̂ − φ

I
a,rφ

I
b,r−τ̂

)
− εab

(
φRa,rφ

I
b,r−τ̂ + φ

I
a,rφ

R
b,r−τ̂

)]
(5.19)

Im〈n̂〉 =
1

V

∑
r

2∑
a,b=1

eµ̄

2

[
δab

(
φRa,rφ

I
b,r−τ̂ + φ

I
a,rφ

R
b,r−τ̂

)
+ εab

(
φRa,rφ

R
b,r−τ̂ − φ

I
a,rφ

I
b,r−τ̂

)]
, (5.20)

the square of the field modulus

Re〈φ∗φ〉 =
1

V

∑
r

2∑
a,b=1

1

2

(
φRa,rφ

R
a,r − φ

I
a,rφ

I
a,r

)
(5.21)

Im〈φ∗φ〉 =
1

V

∑
r

2∑
a,b=1

φRa,rφ
I
a,r, (5.22)

and the angular momentum

Re〈Lz〉 =
1

V

∑
r

2∑
a,b=1

LR
z,r

2
(5.23)

LR
z,r = x̃(φRa,rφ

I
a,r−ŷ + φ

I
a,rφ

R
a,r−ŷ) − ỹ(φRa,rφ

I
a,r−x̂ + φ

I
a,rφ

R
a,r−x̂ ) + 2( ỹ − x̃)φRa,rφ

I
a,r

+ εab
(
x̃(φRa,rφ

R
b,r−ŷ − φ

I
a,rφ

I
b,r−ŷ) − ỹ(φRa,rφ

R
b,r−x̂ − φ

I
a,rφ

I
b,r−x̂ )

)
Im〈Lz〉 =

1

V

∑
r

2∑
a,b=1

LI
z,r

2
(5.24)

LI
z,r = ỹ(φRa,rφ

R
a,r−x̂ − φ

I
a,rφ

I
a,r−x̂ ) − x̃(φRa,rφ

R
a,r−ŷ − φ

I
a,rφ

I
a,r−ŷ) + ( x̃ − ỹ)

(
(φRa,r )2 − (φIa,r )2

)
+ εab

(
ỹ(φRa,rφ

I
b,r−x̂ + φ

I
a,rφ

R
b,r−x̂ ) − x̃(φRa,rφ

I
b,r−ŷ + φ

I
a,rφ

R
b,r−ŷ)

)
.

In all of the above, V = N2
x Nτ is the spacetime lattice volume.

Section 5.4: Results

The simulation is allowed to run for tL = εnL = 3000 "Langevin seconds." For a Langevin stepsize ε of

0.001, this corresponds to nL = 3×106 steps in the simulation. Thermalization is determined by observing a

leveling-off of the observables in Langevin time. This is shown in Figure 5.1 for the density of the superfluid.

5.4.1: The free Bose gas

Exact solutions exist for the free, nonrotating, noninteracting bosonic gas – the free Bose gas – in 1, 2,

and 3 spatial dimensions. We can check that our code is producing reasonable results by comparing the

results of our algorithm with ω̄tr = ω̄z = λ̄ = 0 against those exact solutions. The details of these derivations

59



0 500 1000 1500 2000 2500 3000
tL

0.05

0.00

0.05

0.10

0.15

n(
t L

)

Real
Imaginary

Figure 5.1: Averages of the observables are taken after discounting some fraction of the evolution, starting at tL = 0. This gives the
system time to thermalize and ensures that our observables samples are taken from a set which is independent of the simulation’s
initial conditions.

are shown in Appendix D.

In Figure 5.2, we can see the results of the CL calculation of the density and square of the field modulus

compared with the exact solution. We see that the method accurately reproduces the known solutions, with

some small disagreement in the region of the phase transition close to µ = 0.

5.4.2: The trapped, rotating, interacting Bose gas

Now that we have shown that the CL method reproduces exactly-known values for a simplified system,

we can proceed with computing the observables for a trapped, interacting, and rotating system. The real part

of the density is shown in Figure 5.3 as a function of the chemical potential and as a function of the rotation

frequency. The imaginary part of the density evaluated to zero within statistical error, and therefore is not

shown in this figure.

We can see from the behavior of the density as a function of rotational frequency that we encounter a
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Figure 5.2: The field modulus squared (left) and density (right) of the free Bose gas in 2+ 1 dimensions via CL, compared with the
exact solutions.

similar issue to the phase transition discussed in Chapter 2, where the centrifugal force of the rotating fluid

exceeds the force of the trapping potential which is containing the system. This results in negative values of

the density, which is unphysical. We saw in Chapter 2 that when the rotation frequency exceeds the trapping

potential, the angular momentum observable calculated via virial coefficients becomes negative. In addition,

the particle number observable becomes negative at this critical point, which when scaled by the volume of

the system corresponds to the density.
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Figure 5.3: Density of the superfluid as a function of chemical potential without rotation or interaction and various trapping
strengths (left) and as a function of the rotation with no trap or interactions and various chemical potentials (right).

In Figure 5.4, we see the angular momentum andmoment of inertia as a function of the rotation frequency.

The moment of inertia was determined from the angular momentum directly using a numerical derivative.
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Figure 5.4: Angular momentum (left) and moment of inertia (right) as a function of the rotational frequency.

Section 5.5: Summary and conclusions

The results of the previous section have not been as illuminating as one might hope. This system has

proven to be significantly more challenging than it appears from first glance.

The delicate balance of the various system parameters – in particular, the rotational frequency ωz , the

trap frequency ωtr, and the interaction λ – requires extremely careful tuning, which is difficult to achieve

in small systems. This meant that much of the data acquired from the CL simulation was very noisy, and

it was easy to tip the system into an un-physical result (for example, the case of negative density we see

in Figure 5.3) with very minor adjustments of the parameters.

In addition, we still see semi-classical behavior of the fluid, which suggests we are not in the superfluid

regime yet. This is particularly visible in Figure 5.4, where the angular momentum exhibits approximately

linear behavior instead of the quantized step-function behavior we would expect from a superfluid with forced

rotation.

The challenge that arises here is one of computational resources. In order to see more quantum behavior,

wemust go to lower temperatures. However, lower temperatures in this non-relativistic treatment corresponds

to longer lattices in the time direction, T ∝ 1/β = 1/(Nτdτ). As the algorithm itself scales linearly both

with the lattice volume and the length of the Langevin evolution, a significant increase in the time lattice

results in a massive increase in the computational demand of the algorithm.

It is also possible that there is some information lost due to the finite time step of our Langevin evolution.

However, this again raises the challenge of limited computational resources, as decreasing the Langevin

stepsize ε requires a corresponding increase in the length of the Langevin evolution, which controls the
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scaling of the algorithm in the same way that the volume increase does.
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CHAPTER 6: Discussion and Conclusion

The sign problem remains a significant challenge in quantum many-body physics, and no one method

has provided a general solution. A number of attempts in the field of quantum many-body computation

have yielded results that are valid for specific systems or only in specific regimes. This thesis examined one

system – that of non-relativistic, trapped, interacting, and rotating bosons – via two methods intended to

circumvent the sign problem.

The first method, the virial expansion, is able to provide results for trapped, interacting, and rotating

bosons, but only in a high-temperature, low-density regime. These results give us a glimpse into a system

that has not been explored in depth before: that of high-temperature rotating Bose-Einstein condensates.

It also provides benchmarks and insights into the behavior of this system at varying rotations and trapping

potentials that can help us to interpret the results of other methods.

The second method, complex Langevin, does not restrict us to studying a high-temperature, low density

regime. This means we can examine trapped, rotating, interacting bosons as they reach the superfluid regime

and form vortices to sustain their angular momentum. This behavior has long been observed in experiment,

but on the theoretical side has been limited to mean-field theory approaches, which do not capture the full

behavior of this macroscopic quantum phenomenon.

Unfortunately, while the CL method is a well-established method for circumventing the sign problem in

many similar systems, the particular sensitivity of the rotating superfluid to the various system parameters

– rotation frequency, interaction strength, chemical potential, and trapping potential – means that the CL

approach requires much greater computational intensity. The size of the spatial lattices must be increased

in order to accommodate the delicate balance between thermal wavelength, harmonic oscillator scattering

length, and rotational speed. Furthermore, early results from the system suggest that even the largest temporal

lattice size used in this simulation is insufficient to capture the transition to the superfluid regime. The length

of the temporal lattice is inversely proportional to the temperature of the system, meaning to reach the

ultra-low temperatures needed to observe superfluidity in this system require very large lattices.

While the work here presents evidence of the CL method’s effectiveness in treating this system, our

current computational resources do not meet the needs of this particular problem. The CL algorithm has
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shown that it can produce realistic results for a rotating bosonic gas, within the physical limits of the system,

but in order to push this method to its limits and determine whether it successfully captures the quantum

behavior of a rotating superfluid, much greater computational resources will be needed. This work is reserved

for later study, as potential candidate for testing on the Exascale computing machines that will be arising in

the near future through the Department of Energy.
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APPENDIX A: DERIVATIONS FOR CALCULATING VIRIAL COEFFICIENTS

Section A.1: Single-particle basis in 2D

In this appendix we will show the solution of the Schrödinger equation for a harmonically trapped particle

coupled to the z component of angular momentum in 2D. We begin with the Schrödinger equation in polar

coordinates:

(
−
∂2

∂r2
−

1

r
∂

∂r
−

1

r2

∂2

∂φ2
+ m2ω2

trr
2 − 2mE

)
Ψ(r, φ) = 0 (A.1)

We then change variables such that ρ = m
√
ωtrr , and m, ~ = 1, which yields

r →
1
√
ωtr

ρ, (A.2)

∂

∂r
→
√
ωtr

∂

∂ρ
, (A.3)

∂2

∂r2
→ ωtr

∂2

∂ρ2
. (A.4)

With those replacements, we write Ψ(ρ, φ) as a product of functions of two individual variables, Ψ(ρ, φ) =

R(ρ)Φ(φ), such that

[
−

(
ρ2 ∂2

∂ρ2
+ ρ

∂

∂ρ
+

∂2

∂φ2

)
+ ρ4 − 2ρ2 E

ωtr

]
R(ρ)Φ(φ) = 0, (A.5)

This decouples our partial differential equation into two ordinary equations, each of which must be equal to

a constant m̃2:

−
1

Φ(φ)
∂2

∂φ2
Φ(φ) = m̃2, (A.6)

−
ρ2

R(ρ)
∂2R(ρ)
∂ρ2

−
ρ

R(ρ)
∂R(ρ)
∂ρ

+ ρ4 − 2ρ2 E
ωtr
= −m̃2. (A.7)

We can solve the equation for Φ(φ) straightforwardly: Φ(φ) ∝ eim̃φ, with the constraint that m̃ must be an

integer to ensure the solution is not multivalued 1.

1A thorough explanation of this derivation can be found in numerous mathematical methods texts, see e.g. Ref. [7]
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The equation for ρ, setting E
ωtr
= Ẽ, is then

−ρ2 ∂
2R(ρ)
∂ρ2

− ρ
∂R(ρ)
∂ρ

+
(
m̃2 + ρ4 − 2ρ2Ẽ

)
R(ρ) = 0. (A.8)

At long distances (ρ→ ∞) we have a harmonic oscillator equation

−
∂2R(ρ)
∂ρ2

+ ρ2R(ρ) = 2ẼR(ρ), (A.9)

which indicates that at long distances the solution behaves as a Gaussian.

At short distances (ρ � 1), on the other hand, our equation reduces to

−ρ2 ∂
2R(ρ)
∂ρ2

− ρ
∂R(ρ)
∂ρ

+ m̃2R(ρ) = 0. (A.10)

We can approach this by proposing proposing R(ρ) = R0ρ
c, which leads to an equation for the power c in

terms of our constant m̃:

−c2 = m̃2, c = ±m̃. (A.11)

The case m̃ = 0 yields two solutions: a constant R(ρ) = R0 and R(ρ) = ln ρ. We can discard the second

one since it diverges at the origin, which our wave function should not do. For the same reason we discard

the case m̃ < 0. Therefore, the short-distance behavior is R(ρ) ∝ ρ |m̃ |.

Based on the above analysis, we propose for the full solution the form:

R(ρ) = e−ρ
2/2ρ |m̃ |F (ρ), (A.12)

where F (ρ) is a function to be determined. This captures the behavior of R(ρ) in our limiting cases. With

that form, the radial equation becomes

ρ2 ∂
2F (ρ)
∂ρ2

+
∂F (ρ)
∂ρ

(bm̃ρ − 2ρ3) − 2am̃ρ
2F (ρ) = 0, (A.13)
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where am̃ ≡ 1 − Ẽ + |m̃ | and bm̃ ≡ 2|m̃ | + 1. We propose a power series form

F (ρ) =
∞∑
n=0

ρncn (A.14)

and obtain algebraic equations for cn from Eq. (A.13). Analyzing the lowest powers we obtain the following

conditions: From the lowest two powers of ρ, we find that c0 is not fixed but that c1 = 0. The remaining

coefficients are related by the recursion

cn+2 =
2(n + am̃)

(n + 2)(n + 1 + bm̃)
cn (A.15)

Thus, if both c0 and c1 vanish, then the solution vanishes identically. On the other hand, setting c0 = 1, only

the odd coefficients vanish and we obtain the remaining coefficients recursively. The overall normalization

can be set after the fact since the equation is linear. The series terminates if n = −am̃ for some n = 2k ≥ 0

(recall only the even n survive), which yields the quantization condition:

E
ωtr

= 2k + |m̃ | + 1. (A.16)

Returning to Eq. (A.13) for F (ρ), we perform another change of variables, such that x = ρ2

x = ρ2 (A.17)
∂

∂ρ
= 2ρ

∂

∂x
(A.18)

∂2

∂ρ2
= 2

∂

∂x
+ 4ρ2 ∂2

∂x2
(A.19)

so that now we have our differential equation in terms of x instead of ρ:

0 = am̃xF (x) +
(
2x2 − (bm̃ + 1)x

) ∂

∂x
F (x) − 2x2 ∂2

∂x2
F (x) (A.20)

Divide through by x and recall that

bm̃ = 2|m | + 1 (A.21)

am̃ = 1 − Ẽ + |m̃ | = 1 − (2k + |m̃ | + 1) + |m̃ | = −2k (A.22)
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With these substitutions, and slightly rearranging the equation, we see that this is the differential equation

whose solution is the associated Laguerre functions:

x
∂2

∂x2
L(x) + (α + 1 − x)

∂

∂x
L(x) + nL(x) = 0 (A.23)

The final step is to normalize the full wavefunction, which leads us to the full solution for the single-particle

wavefunctions in 2D:

〈x|k〉 =
1
√

2π
N (2D)
km

√
ωe−ρ

2/2ρ |m |L |m |
k

(ρ2)eimφ, (A.24)

where ρ =
√
ωr and

N (2D)
km
=
√

2

√
k!

(k + |m |)!
, (A.25)

with L |m |
k

the associated Laguerre functions.
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APPENDIX B: DERIVATIONS FOR THE RELATIVISTIC BOSE GAS

Section B.1: The density as a function of the discretized fields

The lattice density is defined as follows:

〈n〉 =
1

V

∑
x

nx (B.1)

nx =

2∑
a,b=1

(δab sinh µ − iεab cosh µ) φa,xφb+4̂ (B.2)

=

2∑
a,b=1

(δab sinh µ − iεab cosh µ)
(
φRa,xφ

R

b,x+4̂
− φIa,xφ

I

b,x+4̂
+ i

(
φRa,xφ

I

b,x+4̂
+ φIa,xφ

R

b,x+4̂

))
.

First, we explicitly compute the sum over a and b:

nx = sinh µ
(
φR1,xφ

R

1,x+4̂
− φI1,xφ

I

1,x+4̂
+ i

[
φR1,xφ

I

1,x+4̂
+ φI1,xφ

R

1,x+4̂

])
−i cosh µ

(
φR1,xφ

R

2,x+4̂
− φI1,xφ

I

2,x+4̂
+ i

[
φR1,xφ

I

2,x+4̂
+ φI1,xφ

R

2,x+4̂

])
(B.3)

+i cosh µ
(
φR2,xφ

R

1,x+4̂
− φI2,xφ

I

1,x+4̂
+ i

[
φR2,xφ

I

1,x+4̂
+ φI2,xφ

R

1,x+4̂

])
+ sinh µ

(
φR2,xφ

R

2,x+4̂
− φI2,xφ

I

2,x+4̂
+ i

(
φR2,xφ

I

2,x+4̂
+ φI2,xφ

R

2,x+4̂

))
.

Now, separating this into real and imaginary parts:

Re[nx] = sinh µ
(
φR1,xφ

R

1,x+4̂
− φI1,xφ

I

1,x+4̂
+ φR2,xφ

R

2,x+4̂
− φI2,xφ

I

2,x+4̂

)
(B.4)

+ cosh µ
(
φR1,xφ

I

2,x+4̂
+ φI1,xφ

R

2,x+4̂
− φR2,xφ

I

1,x+4̂
− φI2,xφ

R

1,x+4̂

)
Im[nx] = sinh µ

(
φR1,xφ

I

1,x+4̂
+ φI1,xφ

R

1,x+4̂
+ φR2,xφ

I

2,x+4̂
+ φI2,xφ

R

2,x+4̂

)
(B.5)

+ cosh µ
(
φR2,xφ

R

1,x+4̂
− φI2,xφ

I

1,x+4̂
− φR1,xφ

R

2,x+4̂
+ φI1,xφ

I

2,x+4̂

)
.

This form can be plugged directly into the code to compute the density.

Section B.2: Analytic solutions for noninteracting Bose gas via diagonalization of the action

The lattice form of the noninteracting relativistic Bose gas at finite chemical potential can be computed

exactly via Fourier transforms for d = 1, 2, and 3 spatial dimensions plus time. It can be expressed in a

matrix form, as

S =
∑

x,x′,a,a′

φ∗x,aMx,a;x′a′φx′,a′, (B.6)

70



where the matrix, M , is given by

M[m, d, µ] = (2d + m2)δx,x′ −
d∑
j=1

(δx,x′− ĵ + δx,x′+ ĵ ) − (e−µδx,x′−4̂ + eµδx,x′+4̂). (B.7)

This matrix can be diagonalized using a Fourier transformation, which is a unitary transformation

Di j = [U†MU]i j

where (in three spatial dimensions)

Uxk =
1√

Nd−1
x Nt

exp(i~k · ~x − iωt)

~x = a(x1, x2, x3)

t = ax4

~k =
2π

aNx
(k1, k2, k3)

ω =
2π

aNt
k4

δx,x′+4̂ = δt,t′+1δx,x′δy,y′δz,z′ .

When these unitary matrices are applied and simplified, we obtain the following diagonal matrix:

D =
1

Nd−1
x Nt

∑
x,x′

e−i~k ·~x+iωt *.
,
(2d + m2)δx,x′ −

d∑
j=1

(δx,x′− ĵ + δx,x′+ ĵ ) − (e−µδx,x′−4̂ + eµδx,x′+4̂)+/
-

ei ~k
′ ·~x′−iω′t′

=
1

Nd−1
x Nt

∑
x

e−i~k ·~x+iωt *.
,
(2d + m2) −

d∑
j=1

(eik
′
j + e−ik

′
j ) − (e−µ−iω

′

+ eµ+iω
′

)+/
-

ei ~k
′ ·~x−iω′t

=
1

Nd−1
x Nt

∑
x

*.
,
(2d + m2) −

d∑
j=1

(eik
′
j + e−ik

′
j ) − (e−µ−iω

′

+ eµ+iω
′

)+/
-

e−i~x ·(~k−~k
′)+it (ω−ω′) . (B.8)

Using the identity

N∑
j=1

ei(a−a
′) j = Nδa,a′, (B.9)
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our sum over x collapses and our factors of Nd−1
x Nt cancel, yielding

Dk,k′ =
*.
,
(2d + m2) −

d∑
j=1

(eik
′
j + e−ik

′
j ) − (e−µ−iω

′

+ eµ+iω
′

)+/
-
δk,k′, (B.10)

which is diagonal in the momentum space basis.

Now that we have this diagonal matrix, we can determine the density and field modulus squared as a

function of this density in the following way. First, the density:

〈n̂〉 =
−1

V
∂ lnZ

∂µ
=
−1

V
∂

∂µ
(− ln(det(M)))

=
1

V
∂

∂µ
Tr(ln M) =

1

V
∂

∂µ

∑
k

ln Dkk =
1

V

∑
k

1

Dkk

∂Dkk

∂µ

=
1

V

∑
k

1

Dkk
(cos k4 sinh µ + i sin k4 cosh µ). (B.11)

And now, the field modulus squared:

〈n̂〉 =
−1

V
∂ lnZ

∂(m2)
=
−1

V
∂

∂(m2)
(− ln(det(M)))

=
1

V
∂

∂(m2)
Tr(ln M) =

1

V
∂

∂(m2)

∑
k

ln Dkk =
1

V

∑
k

1

Dkk

∂Dkk

∂(m2)
=

∑
k

1

Dkk
. (B.12)
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APPENDIX C: DERIVATIONS FOR ROTATING SUPERFLUIDS VIA CL

Section C.1: Justification for the form of the non-relativistic lattice action

The continuum action for bosons in 2+1 dimensions with a non-relativistic dispersion, a rotating external

potential, a non-zero chemical potential, an external harmonic oscillator trapping potential, and an interaction

term is as follows:

S =
∫
V

d2xdτ

[
φ∗

(
∂τ −

1

2m
∇2 − µ − iωz (x∂y − y∂x ) −

mω2
tr

2
(x2 + y2)

)
φ + λ(φ∗φ)2

]
. (C.1)

To convert this to a lattice action, we must first discretize the derivatives. We will use a backwards finite

difference discretization for the single derivative and a central difference approximation for the double

derivative, such that:

∂iφr =
1

a

(
φr − φr−î

)
(C.2)

∇2φr =
∑
i

1

a2

(
φr+î − 2φr + φr−î

)
, (C.3)

where r = (x, y, τ) and the discretization length a (lattice spacing) is 1 for spatial derivatives and dτ for

temporal ones.

In order to treat the finite chemical potential, the external trapping potential, the rotation, and the

interaction we must shift our indices on the field that is acted on by µ, ωtr, ωz , and λ by one step in the

time direction. This is to make these potentials gauge invariant in the lattice formulation []. Since we have

periodic boundary conditions in time, we don’t have to worry about boundaries is. Therefore, our lattice

action becomes, at each lattice site, r:

Slat,r = φ∗r


φr − φr−τ̂ − dτµφr−τ̂ −

dτ

2m

∑
i=x,y

(
φr+î − 2φr + φr−î

)
−

dτmω2
tr

2
(x2 + y2)φr−τ̂


(C.4)

−φ∗r
[
idτωz

(
xφr−τ̂ − xφr−ŷ−τ̂ − yφr−τ̂ + yφr−x̂−τ̂

)]
+ dτλ(φ∗rφr−τ̂ )2.

The full action consists of summing over this value at each site on the spatiotemporal lattice as in

Slat =
∑
r

Slat,r (C.5)
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We can combine our time derivative and our chemical potential in the following way:

Slat,r = φ∗r


φr − (1 + dτµ)φr−τ̂ −

dτ

2m

∑
i=x,y

(
φr+î − 2φr + φr−î

)
− dτ

mω2
tr

2
(x2 + y2)φr−τ̂


(C.6)

−φ∗r
[
idτωz

(
xφr−τ̂ − xφr−ŷ−τ̂ − yφr−τ̂ + yφr−x̂−τ̂

)]
+ dτλ(φ∗rφr−τ̂ )2.

Note that to second order in the lattice size, this is equivalent to:

Slat,r = φ∗r


φr − edτµφr−τ̂ −

dτ

2m

∑
i=x,y

(
φr+î − 2φr + φr−î

)
− dτ

mω2
tr

2
(x2 + y2)φr−τ̂


(C.7)

−idτωzφ
∗
r

[
(x − y)φr−τ̂ − xφr−ŷ−τ̂ + yφr−x̂−τ̂

]
+ dτλ(φ∗rφr−τ̂ )2.

This will be our lattice action, which we will complexify and use to evolve our system in Langevin time.

Section C.2: The non-relativistic lattice action

To simplify, let’s divide the lattice action into smaller components:

Slat =
∑
r

(
Sτ,r + dτS∇,r − dτStr,r − dτSω,r + dτSint,r

)
(C.8)

with

Sτ,r = φ∗rφr − edτµφ∗rφr−τ̂ (C.9)

S∇,r =
2

m
φ∗rφr −

1

2m

∑
i=x,y

(
φ∗rφr+î + φ

∗
rφr−î

)
(C.10)

Str,r =
mω2

tr

2
(x2 + y2)φ∗rφr−τ̂ (C.11)

Sω,r = iωz

[
(x − y)φ∗rφr−τ̂ − xφ∗rφr−ŷ−τ̂ + yφ∗rφr−x̂−τ̂

]
(C.12)

Sint,r = λ(φ∗rφr−τ̂ )2. (C.13)

Note that we are restricting ourselves to two spatial dimensions at this point in the work. The extension of

this method to three-dimensional systems is saved for future work.

This action must next be rewritten with the complex fields expressed in terms of two real fields, φ =
1√
2

(φ1 + iφ2) and φ∗ = 1√
2

(φ1 − iφ2). Each piece of the action is computed below:

74



First, the time derivative and chemical potential part of the action:

Sτ,r = φ∗rφr − edτµφ∗rφr−τ̂

=
1

2

[
φ2

1,r + φ
2
2,r − edτµ (

φ1,rφ1,r−τ̂ + iφ1,rφ2,r−τ̂ − iφ2,rφ1,r−τ̂ + φ2,rφ2,r−τ̂
)]

=
1

2

2∑
a=1


φ2
a,r − edτµφa,rφa,r−τ̂ − iedτµ

2∑
b=1

εabφa,rφb,r−τ̂


. (C.14)

Next, the spatial derivative part (corresponding to the kinetic energy):

S∇,r =
1

2m


4φ∗rφr −

∑
i=x,y

(
φ∗rφr+î + φ

∗
rφr−î

)

=
1

4m


4
(
φ2

1,r + φ
2
2,r

)
−

∑
i=±x,y

(
φ1,rφ1,r+î + iφ1,rφ2,r+î − iφ2,rφ1,r+î + φ2,rφ2,r+î

)

=
1

4m

2∑
a=1


4φ2

a,r −
∑

i=±x,y

*
,
φa,rφa,r+î + i

2∑
b=1

εabφa,rφb,r+î
+
-


. (C.15)

Then, for the part of the action due to the external trapping potential:

Str,r =
mω2

tr

2
(x2 + y2)φ∗rφr−τ̂

=
mω2

tr(x2 + y2)
4

[φ1,rφ1,r−τ̂ + iφ1,rφ2,r−τ̂ − iφ2,rφ1,r−τ̂ + φ2,rφ2,r−τ̂ ]

=
mωtr(x2 + y2)

4

2∑
a=1

*
,
φa,rφa,r−τ̂ + i

2∑
b=1

εabφa,rφb,r−τ̂+
-
. (C.16)

Next, the rotational piece:

Sω,r = iωz

[
(x − y)φ∗rφr−τ̂ − xφ∗rφr−ŷ−τ̂ + yφ∗rφr−x̂−τ̂

]

=
iωz

2
[(x − y)

(
φ1,rφ1,r−τ̂ + φ2,rφ2,r−τ̂

)
+ i(x − y)

(
φ1,rφ2,r−τ̂ + φ2,rφ1,r−τ̂

)
]

−
iωz

2

[
x
(
φ1,rφ1,r−ŷ−τ̂ + iφ1,rφ2,r−ŷ−τ̂ − iφ2,rφ1,r−ŷ−τ̂ + φ2,rφ2,r−ŷ−τ̂

)]

+
iωz

2
[y

(
φ1,rφ1,r−x̂−τ̂ + iφ1,rφ2,r−x̂−τ̂ − iφ2,rφ1,r−x̂−τ̂ + φ2,rφ2,r−x̂−τ̂

)
]

=
ωz

2

2∑
a,b=1

[
εab

(
(x − y)φa,rφb,r−τ̂ − xφa,rφb,r−ŷ−τ̂ + yφa,rφb,r−x̂−τ̂

)
+ i

(
(y − x)φa,rφa,r−τ̂ + xφa,rφa,r−ŷ−τ̂ − yφa,rφa,r−x̂−τ̂

)]
. (C.17)
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And finally, the interaction term in the action:

Sint,r = λ(φ∗rφr−τ̂ )2

=
λ

4

(
(φ1,r − iφ2,r )(φ1,r−τ̂ + iφ2,r−τ̂ )

)2
=

(
φ1,rφ1,r−τ̂ + iφ1,rφ2,r−τ̂ − iφ2,rφ1,r−τ̂ + φ2,rφ2,r−τ̂

)2

=
λ

4

2∑
a,b=1

(
2φa,rφa,r−τ̂φb,rφb,r−τ̂ − φ

2
a,rφ

2
b,r−τ̂ (C.18)

+2 i εab (φ2
a,rφa,r−τ̂φb,r−τ̂ − φa,rφ

2
a,r−τ̂φb,r )

)
We will work with the lattice action in this form in order to derive the Langevin drift function.

Section C.3: Writing the complex action in terms of real fields

First, we take our complexfield, φ, and represent it as the complex sumof two real fields: φ = 1√
2

(φ1+iφ2).

For each of the action contributions, this gives us:

Re[Sτ,r ] →
1

2

2∑
a=1

(
φ2
a,r − edτµ φa,rφa,r−τ̂

)
(C.19)

Im[Sτ,r ] →
−edτµ

2

2∑
a,b=1

εabφa,rφb,r−τ̂ (C.20)

Re[S∇,r ] →
2∑

a=1

*.
,

2

m
φ2
a,r −

1

4m

∑
i=±x,y

φa,rφa,r+î
+/
-

(C.21)

Im[S∇,r ] →
−1

4m

2∑
a,b=1

∑
i=±x,y

εabφa,rφb,r+î (C.22)

Re[Str,r ] →
m
4
ω2

tr

(
x2 + y2

) 2∑
a=1

φa,rφa,r−τ̂ (C.23)

Im[Str,r ] →
m
4
ω2

tr

(
x2 + y2

) 2∑
a,b=1

εabφa,rφb,r−τ̂ (C.24)

Re[Sω,r ] →
ωz

2

2∑
a,b=1

εab
(
( ỹ − x̃)φa,rφb,r−τ̂ + x̃φa,rφb,r−ŷ−τ̂ − ỹφa,rφb,r−x̂−τ̂

)
(C.25)

Im[Sω,r ] →
ωz

2

2∑
a=1

(
( x̃ − ỹ)φa,rφa,r−τ̂ − x̃φa,rφa,r−ŷ−τ̂ + ỹφa,rφa,r−x̂−τ̂

)
(C.26)
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Re[Sint,r ] →
λ

4

2∑
a,b=1

(
2φa,rφb,rφa,r−τ̂φb,r−τ̂ − φ

2
a,rφ

2
b,r−τ̂

)
(C.27)

Im[Sint,r ] →
λ

2

2∑
a,b=1

εab
(
φ2
a,rφa,r−τ̂φb,r−τ̂ − φa,rφb,rφ

2
a,r−τ̂

)
, (C.28)

where x̃ and ỹ are our x and y coordinates shifted by the center of the trap:

x̃ = x −
Nx − 1

2

ỹ = y −
Nx − 1

2

and Sj,r = Re[Sj,r ] + iIm[Sj,r ], and ε12 = 1, ε21 = −1, and ε11 = ε22 = 0. From here, we can compute the

drift function we will need to evolve our fields in Langevin time.

Section C.4: Derivatives on the lattice

When taking derivatives of this lattice action with respect to the fields, we do the following:

δ

δφc,r

*.
,

Nr∑
q=1

2∑
a=1

φa,qφa,q+î
+/
-
=

2∑
a=1

Nr∑
q=1

(
φa,q

δ

δφc,r
φa,q+î +

δφa,q

δφc,r
φa,q+î

)
(C.29)

=

2∑
a=1

Nr∑
q=1

(
φa,qδc,aδr,q+î + δc,aδq,rφa,q+î

)
= φc,r−î + φc,r+î .

Similarly, when we have products of fields with different indices,

δ

δφc,r

*.
,

Nr∑
q=1

2∑
a=1

2∑
b=1

εabφa,qφb,q+î
+/
-
=

2∑
b=1

εcb
(
φb,r−î + φb,r+î

)
. (C.30)

Section C.5: Computing the derivative of the action with respect to the real fields

The first step in computing the CL Equations is to find δSr
δφa,r

.

δSr
δφa,r

=
δSτ,r
δφa,r

+ dτ
δS∇,r
δφa,r

− dτ
δStr,r

δφa,r
− dτ

δSω,r
δφa,r

+ dτ
δSint,r
δφa,r

(C.31)
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Again, we proceed by modifying each of the parts of the action. First, the time and chemical potential term:

δ

δφa,r
Sτ,r =

1

2

δ

δφa,r

2∑
a=1


φ2
a,r − edτµφa,rφa,r−τ̂ − iedτµ

2∑
b=1

εabφa,rφb,r−τ̂



= φa,r −
edτµ

2

(
φa,r−τ̂ + φa,r+τ̂

)
− i

edτµ

2
εab

(
φb,r−τ̂ + φb,r+τ̂

)
(C.32)

Next, the spatial derivative part:

δ

δφa,r
S∇,r =

−1

4m
δ

δφa,r

2∑
a=1



∑
i=±x,y

φa,rφa,r+î − 2φ2
a,r + i

2∑
b=1

∑
i=±x,y

εabφa,rφb,r+î


=
−1

4m

∑
i=±x,y

(
φa,r+î + φa,r−î

)
+

1

m
φa,r

=
−1

2m

∑
i=±x,y

φa,r+î +
1

m
φa,r

=
1

m
φa,r −

1

2m

∑
i=±x,y

φa,r+î . (C.33)

Then the part of the action due to the external trapping potential:

δ

δφa,r
Str,r =

mω2
trr

2
⊥

4

δ

δφa,r

2∑
a=1

*
,
φa,rφa,r−τ̂ + i

2∑
b=1

εabφa,rφb,r−τ̂+
-

=
mω2

trr
2
⊥

4
*
,
φa,r+τ̂ + φa,r−τ̂ + i

2∑
b=1

εab
(
φb,r+τ̂ + φb,r−τ̂

)+
-

=
mω2

trr
2
⊥

4
*
,
(φa,r+τ̂ + φa,r−τ̂ ) + i

2∑
b=1

εab
(
φb,r+τ̂ + φb,r−τ̂

)+
-

(C.34)

where r2
⊥ = x2 + y2.
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Next, the rotational piece:

δ

δφa,r
Sω,r =

ωz

2

δ

δφa,r

2∑
a,b=1

[
εab

(
xφa,rφb,r−ŷ − yφa,rφb,r−x̂

)
+

i
(
(x − y)φ2

a,r − xφa,rφa,r−ŷ + yφa,rφa,r−x̂
)]

=
ωz

2

2∑
b=1

εab
[
x
(
φb,r−ŷ + φb,r+ŷ

)
− y

(
φb,r−x̂ + φb,r+x̂

)]

+ i
ωz

2

[
2(x − y)φa,r − x

(
φa,r−ŷ + φa,r+ŷ

)
+ y

(
φa,r−x̂ + φa,r+x̂

)]

=
ωz

2

2∑
b=1

εab
[
x
(
φb,r−ŷ + φb,r+ŷ

)
− y

(
φb,r−x̂ + φb,r+x̂

)]

+ i
ωz

2

[
2(x − y)φa,r − x

(
φa,r−ŷ + φa,r+ŷ

)
+ y

(
φa,r−x̂ + φa,r+x̂

)]
(C.35)

And finally, the interaction term in the action:

δ

δφa,r
Sint,r =

λ

4

δ

δφa,r

2∑
a,b=1

(
2φa,rφa,r−τ̂φb,rφb,r−τ̂ − φ

2
a,rφ

2
b,r−τ̂

+2 i εab (φ2
a,rφa,r−τ̂φb,r−τ̂ − φa,rφ

2
a,r−τ̂φb,r )

)
=

λ

2

2∑
b=1

(
2φb,r (φa,r−τ̂φb,r−τ̂ + φa,r+τ̂φb,r+τ̂ ) − φa,r (φ2

b,r−τ̂ + φ
2
b,r+τ̂ )

)
(C.36)

+i
λ

2

2∑
b=1

εab
(
2φa,r (φa,r−τ̂φb,r−τ̂ − φa,r+τ̂φb,r+τ̂ ) + (φb,r − φa,r )(φ2

a,r−τ̂ − φ
2
a,r+τ̂ )

)

Section C.6: Complexification of the drift function

The next step is to complexify our real fields, a and b, such that φa = φRa + iφIa. We do this for each part

of the drift function, Ka,r =
δSr
δφa,r

.

First, the time and chemical potential term:

δ

δφa,r
Sτ,r = φa,r −

edτµ

2

(
φa,r−τ̂ + φa,r+τ̂

)
− i

edτµ

2
εab

(
φb,r−τ̂ + φb,r+τ̂

)
= φRa,r −

edτµ

2

(
φRa,r−τ̂ + φ

R
a,r+τ̂

)
+

edτµ

2
εab

(
φIb,r−τ̂ − φ

I
b,r+τ̂

)
+i

[
φIa,r −

edτµ

2

(
φIa,r−τ̂ + φ

I
a,r+τ̂

)
−

edτµ

2
εab

(
φRb,r−τ̂ − φ

R
b,r+τ̂

)]
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So

Re
[

δ

δφa,r
Sτ,r

]
= φRa,r −

edτµ

2

(
φRa,r−τ̂ + φ

R
a,r+τ̂

)
+

edτµ

2
εab

(
φIb,r−τ̂ − φ

I
b,r+τ̂

)
(C.37)

Im
[

δ

δφa,r
Sτ,r

]
= φIa,r −

edτµ

2

(
φIa,r−τ̂ + φ

I
a,r+τ̂

)
−

edτµ

2
εab

(
φRb,r−τ̂ − φ

R
b,r+τ̂

)
(C.38)

Next, the spatial derivative part:

δ

δφa,r
S∇,r = −

1

2m

d∑
i=±1

φa,r+î +
2

m
φa,r

= −
1

2m

∑
i=±x,y

φR
a,r+î

+
2

m
φRa,r − i *.

,

∑
i=±x,y

φI
a,r+î

−
2

m
φIa,r

+/
-

So

Re
[

δ

δφa,r
S∇,r

]
=

1

2m
*.
,
4φRa,r −

∑
i=±x,y

φR
a,r+î

+/
-

(C.39)

Im
[

δ

δφa,r
S∇,r

]
=

1

2m
*.
,
4φIa,r −

∑
i=±x,y

φI
a,r+î

+/
-

(C.40)

Then the part of the action due to the external trapping potential:

δ

δφa,r
Str,r =

mω2
trr

2
⊥

4

2∑
a=1

*
,
(φa,r+τ̂ + φa,r−τ̂ ) + i

2∑
b=1

εab
(
φb,r+τ̂ + φb,r−τ̂

)+
-

=
mω2

trr
2
⊥

4

2∑
a=1

*
,
(φRa,r+τ̂ + φ

R
a,r−τ̂ ) −

2∑
b=1

εab
(
φIb,r+τ̂ + φ

I
b,r−τ̂

)+
-

+i
mω2

trr
2
⊥

4

2∑
a=1

*
,
(φIa,r+τ̂ + φ

I
a,r−τ̂ ) +

2∑
b=1

εab (φRb,r+τ̂ + φ
R
b,r−τ̂ )+

-

So

Re
[

δ

δφa,r
Str,r

]
=

mω2
trr

2
⊥

4

2∑
a=1

*
,
(φRa,r+τ̂ + φ

R
a,r−τ̂ ) −

2∑
b=1

εab
(
φIb,r+τ̂ + φ

I
b,r−τ̂

)+
-

(C.41)

Im
[

δ

δφa,r
Str,r

]
=

mω2
trr

2
⊥

4

2∑
a=1

*
,
(φIa,r+τ̂ + φ

I
a,r−τ̂ ) +

2∑
b=1

εab (φRb,r+τ̂ + φ
R
b,r−τ̂ )+

-
(C.42)

where r2
⊥ = x2 + y2.
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Next, the rotational piece:

δ

δφa,r
Sω,r =

ωz

2
εab

[
x̃
(
φb,r−ŷ + φb,r+ŷ

)
− ỹ

(
φb,r−x̂ + φb,r+x̂

)]

+i
ωz

2

[
2( x̃ − ỹ)φa,r − x̃

(
φa,r−ŷ + φa,r+ŷ

)
+ ỹ

(
φa,r−x̂ + φa,r+x̂

)]

= −ωz ( x̃ − ỹ)φIa,r + x̃
ωz

2

(
φIa,r−ŷ + φ

I
a,r+ŷ

)
− ỹ

ωz

2

(
φIa,r−x̂ + φ

I
a,r+x̂

)
+εab

ωz

2

[
x̃
(
φRb,r−ŷ + φ

R
b,r+ŷ

)
− ỹ

(
φRb,r−x̂ + φ

R
b,r+x̂

)]

+i
ωz

2

[
2( x̃ − ỹ)φRa,r − x̃

(
φRa,r−ŷ + φ

R
a,r+ŷ

)
+ ỹ

(
φRa,r−x̂ + φ

R
a,r+x̂

)]

+i
ωz

2
εab

[
x̃
(
φIb,r−ŷ + φ

I
b,r+ŷ

)
− ỹ

(
φIb,r−x̂ + φ

I
b,r+x̂

)]

So

Re
[

δ

δφa,r
Sωz,r

]
=

ωz

2

[
x̃
(
φIa,r−ŷ + φ

I
a,r+ŷ

)
− ỹ

(
φIa,r−x̂ + φ

I
a,r+x̂

)
− 2( x̃ − ỹ)φIa,r

]

+
ωz

2
εab

[
x̃
(
φRb,r−ŷ + φ

R
b,r+ŷ

)
− ỹ

(
φRb,r−x̂ + φ

R
b,r+x̂

)]
(C.43)

Im
[

δ

δφa,r
Sωz,r

]
=

ωz

2

[
2( x̃ − ỹ)φRa,r − x̃

(
φRa,r−ŷ + φ

R
a,r+ŷ

)
+ ỹ

(
φRa,r−x̂ + φ

R
a,r+x̂

)]

+
ωz

2
εab

[
x̃
(
φIb,r−ŷ + φ

I
b,r+ŷ

)
− ỹ

(
φIb,r−x̂ + φ

I
b,r+x̂

)]
(C.44)

And finally, the interaction term in the action, which requires quite a bit of algebra:

δ

δφa,r
Sint,r =

λ

2

2∑
b=1

(
2φb,r (φa,r−τ̂φb,r−τ̂ + φa,r+τ̂φb,r+τ̂ ) − φa,r (φ2

b,r−τ̂ + φ
2
b,r+τ̂ )

)
(C.45)

+i
λ

2

2∑
b=1

εab
(
2φa,r (φa,r−τ̂φb,r−τ̂ − φa,r+τ̂φb,r+τ̂ ) + (φb,r − φa,r )(φ2

a,r−τ̂ − φ
2
a,r+τ̂ )

)
(C.46)
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=
λ

2

2∑
b=1

[
2φRb,rφ

R
a,r−τ̂φ

R
b,r−τ̂ − 2φRb,rφ

I
a,r−τ̂φ

I
b,r−τ̂ + 2φRb,rφ

R
a,r+τ̂φ

R
b,r+τ̂ − 2φRb,rφ

I
a,r+τ̂φ

I
b,r+τ̂

−2φIb,rφ
R
a,r−τ̂φ

I
b,r−τ̂ − 2φIb,rφ

I
a,r−τ̂φ

R
b,r−τ̂ − 2φIb,rφ

R
a,r+τ̂φ

I
b,r+τ̂ − 2φIb,rφ

I
a,r+τ̂φ

R
b,r+τ̂

−φRa,rφ
R
b,r−τ̂φ

R
b,r−τ̂ + 2φIa,rφ

I
b,r−τ̂φ

R
b,r−τ̂ + φ

R
a,rφ

I
b,r−τ̂φ

I
b,r−τ̂ − φ

R
a,rφ

R
b,r+τ̂φ

R
b,r+τ̂

+2φIa,rφ
R
b,r+τ̂φ

I
b,r+τ̂ + φ

R
a,rφ

I
b,r+τ̂φ

I
b,r+τ̂

]

+i
λ

2

2∑
b=1

[
2φRb,rφ

R
a,r−τ̂φ

I
b,r−τ̂ + 2φRb,rφ

I
a,r−τ̂φ

R
b,r−τ̂ + 2φRb,rφ

R
a,r+τ̂φ

I
b,r+τ̂ + 2φRb,rφ

I
a,r+τ̂φ

R
b,r+τ̂ )

+2φIb,rφ
R
a,r−τ̂φ

R
b,r−τ̂ − 2φIb,rφ

I
a,r−τ̂φ

I
b,r−τ̂ + 2φIb,rφ

R
a,r+τ̂φ

R
b,r+τ̂ − 2φIb,rφ

I
a,r+τ̂φ

I
b,r+τ̂

−φIa,rφ
R
b,r−τ̂φ

R
b,r−τ̂ − 2φRa,rφ

I
b,r−τ̂φ

R
b,r−τ̂ + φ

I
a,rφ

I
b,r−τ̂φ

I
b,r−τ̂ − φ

I
a,rφ

R
b,r+τ̂φ

R
b,r+τ̂

−2φRa,rφ
R
b,r+τ̂φ

I
b,r+τ̂ + φ

I
a,rφ

I
b,r+τ̂φ

I
b,r+τ̂

]

−
λ

2

2∑
b=1

εab
[
2φRa,rφ

I
a,r−τ̂φ

R
b,r−τ̂ − 2φIa,rφ

I
a,r−τ̂φ

I
b,r−τ̂ + 2φIa,rφ

R
a,r−τ̂φ

R
b,r−τ̂ + 2φRa,rφ

R
a,r−τ̂φ

I
b,r−τ̂

+2φRb,rφ
R
a,r−τ̂φ

I
a,r−τ̂ − 2φRb,rφ

R
a,r+τ̂φ

I
a,r+τ̂ + φ

I
b,rφ

R
a,r−τ̂φ

R
a,r−τ̂ − φ

I
b,rφ

I
a,r−τ̂φ

I
a,r−τ̂

−2φRa,rφ
R
a,r+τ̂φ

I
b,r+τ̂ − 2φRa,rφ

I
a,r+τ̂φ

R
b,r+τ̂ − 2φIa,rφ

R
a,r+τ̂φ

R
b,r+τ̂ + 2φIa,rφ

I
a,r+τ̂φ

I
b,r+τ̂

+2φRa,rφ
R
a,r+τ̂φ

I
a,r+τ̂ − φ

I
a,rφ

R
a,r−τ̂φ

R
a,r−τ̂ + φ

I
a,rφ

I
a,r−τ̂φ

I
a,r−τ̂ + φ

I
a,rφ

R
a,r+τ̂φ

R
a,r+τ̂ − φ

I
a,rφ

I
a,r+τ̂φ

I
a,r+τ̂

−φIb,rφ
R
a,r+τ̂φ

R
a,r+τ̂ + φ

I
b,rφ

I
a,r+τ̂φ

I
a,r+τ̂ − 2φRa,rφ

R
a,r−τ̂φ

I
a,r−τ̂

]

+i
λ

2

2∑
b=1

εab
[
2φRa,rφ

R
a,r−τ̂φ

R
b,r−τ̂ − 2φIa,rφ

R
a,r−τ̂φ

I
b,r−τ̂ − 2φIa,rφ

I
a,r−τ̂φ

R
b,r−τ̂ − 2φRa,rφ

I
a,r−τ̂φ

I
b,r−τ̂

−2φRa,rφ
R
a,r+τ̂φ

R
b,r+τ̂ + 2φRa,rφ

I
a,r+τ̂φ

I
b,r+τ̂ + 2φIa,rφ

R
a,r+τ̂φ

I
b,r+τ̂ + 2φIa,rφ

I
a,r+τ̂φ

R
b,r+τ̂

+φRb,rφ
R
a,r−τ̂φ

R
a,r−τ̂ − φ

R
b,rφ

I
a,r−τ̂φ

I
a,r−τ̂ − φ

R
b,rφ

R
a,r+τ̂φ

R
a,r+τ̂ + φ

R
b,rφ

I
a,r+τ̂φ

I
a,r+τ̂

−2φIb,rφ
R
a,r−τ̂φ

I
a,r−τ̂ + 2φIb,rφ

R
a,r+τ̂φ

I
a,r+τ̂ − φ

R
a,rφ

R
a,r−τ̂φ

R
a,r−τ̂φ

R
a,rφ

I
a,r−τ̂φ

I
a,r−τ̂ + φ

R
a,rφ

R
a,r+τ̂φ

R
a,r+τ̂

−φRa,rφ
I
a,r+τ̂φ

I
a,r+τ̂ + 2φIa,rφ

R
a,r−τ̂φ

I
a,r−τ̂ − 2φIa,rφ

R
a,r+τ̂φ

I
a,r+τ̂ )

]
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So when we rearrange this, we have

Re
[

δ

δφa,r
Sint,r

]
=

λ

2

2∑
b=1

[
2φRb,rφ

R
a,r−τ̂φ

R
b,r−τ̂ − 2φRb,rφ

I
a,r−τ̂φ

I
b,r−τ̂ + 2φRb,rφ

R
a,r+τ̂φ

R
b,r+τ̂

−2φRb,rφ
I
a,r+τ̂φ

I
b,r+τ̂ − 2φIb,rφ

R
a,r−τ̂φ

I
b,r−τ̂ − 2φIb,rφ

I
a,r−τ̂φ

R
b,r−τ̂ − 2φIb,rφ

R
a,r+τ̂φ

I
b,r+τ̂

−2φIb,rφ
I
a,r+τ̂φ

R
b,r+τ̂ − φ

R
a,rφ

R
b,r−τ̂φ

R
b,r−τ̂ + 2φIa,rφ

I
b,r−τ̂φ

R
b,r−τ̂ + φ

R
a,rφ

I
b,r−τ̂φ

I
b,r−τ̂

−φRa,rφ
R
b,r+τ̂φ

R
b,r+τ̂ + 2φIa,rφ

R
b,r+τ̂φ

I
b,r+τ̂ + φ

R
a,rφ

I
b,r+τ̂φ

I
b,r+τ̂

]

−
λ

2

2∑
b=1

εab
[
2φRa,rφ

I
a,r−τ̂φ

R
b,r−τ̂ − 2φIa,rφ

I
a,r−τ̂φ

I
b,r−τ̂ + 2φIa,rφ

R
a,r−τ̂φ

R
b,r−τ̂

+2φRa,rφ
R
a,r−τ̂φ

I
b,r−τ̂ + 2φRb,rφ

R
a,r−τ̂φ

I
a,r−τ̂ − 2φRb,rφ

R
a,r+τ̂φ

I
a,r+τ̂ + φ

I
b,rφ

R
a,r−τ̂φ

R
a,r−τ̂

−φIb,rφ
I
a,r−τ̂φ

I
a,r−τ̂ − 2φRa,rφ

R
a,r+τ̂φ

I
b,r+τ̂ − 2φRa,rφ

I
a,r+τ̂φ

R
b,r+τ̂ − 2φIa,rφ

R
a,r+τ̂φ

R
b,r+τ̂

+2φIa,rφ
I
a,r+τ̂φ

I
b,r+τ̂ + 2φRa,rφ

R
a,r+τ̂φ

I
a,r+τ̂ − φ

I
a,rφ

R
a,r−τ̂φ

R
a,r−τ̂

+φIa,rφ
I
a,r−τ̂φ

I
a,r−τ̂ + φ

I
a,rφ

R
a,r+τ̂φ

R
a,r+τ̂ − φ

I
a,rφ

I
a,r+τ̂φ

I
a,r+τ̂

−φIb,rφ
R
a,r+τ̂φ

R
a,r+τ̂ + φ

I
b,rφ

I
a,r+τ̂φ

I
a,r+τ̂ − 2φRa,rφ

R
a,r−τ̂φ

I
a,r−τ̂

]

Im
[

δ

δφa,r
Sint,r

]
=

λ

2

2∑
b=1

[
2φRb,rφ

R
a,r−τ̂φ

I
b,r−τ̂ + 2φRb,rφ

I
a,r−τ̂φ

R
b,r−τ̂ + 2φRb,rφ

R
a,r+τ̂φ

I
b,r+τ̂

+2φRb,rφ
I
a,r+τ̂φ

R
b,r+τ̂ ) + 2φIb,rφ

R
a,r−τ̂φ

R
b,r−τ̂ − 2φIb,rφ

I
a,r−τ̂φ

I
b,r−τ̂ + 2φIb,rφ

R
a,r+τ̂φ

R
b,r+τ̂

−2φIb,rφ
I
a,r+τ̂φ

I
b,r+τ̂ − φ

I
a,rφ

R
b,r−τ̂φ

R
b,r−τ̂ − 2φRa,rφ

I
b,r−τ̂φ

R
b,r−τ̂ + φ

I
a,rφ

I
b,r−τ̂φ

I
b,r−τ̂

−φIa,rφ
R
b,r+τ̂φ

R
b,r+τ̂ − 2φRa,rφ

R
b,r+τ̂φ

I
b,r+τ̂ + φ

I
a,rφ

I
b,r+τ̂φ

I
b,r+τ̂

]

+
λ

2

2∑
b=1

εab
[
2φRa,rφ

R
a,r−τ̂φ

R
b,r−τ̂ − 2φIa,rφ

R
a,r−τ̂φ

I
b,r−τ̂ − 2φIa,rφ

I
a,r−τ̂φ

R
b,r−τ̂

−2φRa,rφ
I
a,r−τ̂φ

I
b,r−τ̂ − 2φRa,rφ

R
a,r+τ̂φ

R
b,r+τ̂ + 2φRa,rφ

I
a,r+τ̂φ

I
b,r+τ̂ + 2φIa,rφ

R
a,r+τ̂φ

I
b,r+τ̂

+2φIa,rφ
I
a,r+τ̂φ

R
b,r+τ̂ + φ

R
b,rφ

R
a,r−τ̂φ

R
a,r−τ̂ − φ

R
b,rφ

I
a,r−τ̂φ

I
a,r−τ̂

−φRb,rφ
R
a,r+τ̂φ

R
a,r+τ̂ + φ

R
b,rφ

I
a,r+τ̂φ

I
a,r+τ̂ − 2φIb,rφ

R
a,r−τ̂φ

I
a,r−τ̂

+2φIb,rφ
R
a,r+τ̂φ

I
a,r+τ̂ − φ

R
a,rφ

R
a,r−τ̂φ

R
a,r−τ̂φ

R
a,rφ

I
a,r−τ̂φ

I
a,r−τ̂ + φ

R
a,rφ

R
a,r+τ̂φ

R
a,r+τ̂

−φRa,rφ
I
a,r+τ̂φ

I
a,r+τ̂ + 2φIa,rφ

R
a,r−τ̂φ

I
a,r−τ̂ − 2φIa,rφ

R
a,r+τ̂φ

I
a,r+τ̂ )

]
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Section C.7: Lattice observables

The average density is the sum over the local density at each spatial site, normalized by the spatial lattice

volume:

〈n̂〉 =
1

Nd
x

∑
r

nr (C.47)

where nr can be found by taking the derivative of the lattice action with respect to the chemical potential,

and then complexifying the fields as we have done before. We start by noting that dτµ = βµ/Nτ and take a

derivative with respect to βµ:

nr = −
∂

∂(βµ)
Sτ,r = −

∂

∂(βµ)

(
φ∗rφr − φ

∗
reβµ/Nτφr−τ̂

)
=

1

Nτ
eβµ/Nτ

(
φ∗rφr−τ̂

)
=

1

2Nτ
eβµ/Nτ

2∑
a=1


φRa,rφ

R
a,r−τ̂ − φ

I
a,rφ

I
a,r−τ̂ −

2∑
b=1

εab (φIa,rφ
R
b,r−τ̂ + φ

R
a,rφ

I
b,r−τ̂ )



+
i

2Nτ
eβµ/Nτ

2∑
a=1


φIa,r−τ̂φ

R
a,r−τ̂ + φ

R
a,r−τ̂φ

I
a,r−τ̂ +

2∑
b=1

εab (φRa,rφ
R
b,r−τ̂ − φ

I
a,rφ

I
b,r−τ̂ )


(C.48)

The angular momentum operator, Lz can be written

Lz = ((x − x0)py − (y − y0)px ) = −i~((x − x0)∂y − (y − y0)∂x ). (C.49)

We are interested in the expectation value of this operator: 〈Lz〉, which is found by summing over the lattice:

〈Lz〉 = −i
∑
r

φ∗r ((x −
Nx − 1

2
)∂y − (y −

Nx − 1

2
)∂x )φr, (C.50)

where ~ → 1. First, let us implement our lattice derivative: ∂jφr = 1
a2 (φr− ĵ − φr ) (recall that our lattice

spacing is a = 1):

〈Lz〉 = −i
∑
r

φ∗r ((x − rc)φr−ŷ − xφr − (y − rc)φr−x̂ + yφr ) (C.51)

= i
∑
r

(
(y − rc)φ∗rφr−x̂ − (x − rc)φ∗rφr−ŷ − (y − x)φ∗rφr

)
Here we have also written Nx−1

2 as rc for simplicity. Let us write φ as 1√
2

(φ1 + iφ2); then, our angular
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momentum operator becomes a sum over the lattice sites and the real fields φ1 and φ2:

〈Lz〉 =
i
2

∑
r

(y − rc)
(
φ1,rφ1,r−x̂ + iφ1,rφ2,r−x̂ − iφ2,rφ1,r−x̂ + φ2,rφ2,r−x̂

)
−

i
2

∑
r

(x − rc)
(
φ1,rφ1,r−ŷ + iφ1,rφ2,r−ŷ − iφ2,rφ1,r−ŷ + φ2,rφ2,r−ŷ

)
(C.52)

−
i
2

∑
r

(y − x)(φ2
1,r + φ

2
2,r )

=
1

2

∑
r

2∑
a=1

(
(y − rc)φa,rφa,r−x̂ − (x − rc)φa,rφa,r−ŷ − (y − x)φ2

a,r

)
(C.53)

−
i
2

∑
r

2∑
a,b=1

εab
(
(x − rc)φa,rφb,r−ŷ − (y − rc)φa,rφb,r−x̂

)
Next, we must complexify our real fields: φa = φRa + iφIa, leading us to the following equation for the angular

momentum in terms of our four lattice fields:

〈Lz〉 = −
i
2

∑
r

2∑
a=1

(
(x − rc)(φRa,rφ

R
a,r−ŷ − φ

I
a,rφ

I
a,r−ŷ) − (y − rc)(φRa,rφ

R
a,r−x̂ − φ

I
a,rφ

I
a,r−x̂ )

)
−

i
2

∑
r

2∑
a=1

(y − x)
(
(φRa,r )2 − (φIa,r )2

)
−

i
2

∑
r

2∑
a,b=1

εab
(
(x − rc)(φRa,rφ

I
b,r−ŷ + φ

I
a,rφ

R
b,r−ŷ) − (y − rc)(φRa,rφ

I
b,r−x̂ + φ

I
a,rφ

R
b,r−x̂ )

)
+

1

2

∑
r

2∑
a=1

(
(x − rc)(φRa,rφ

I
a,r−ŷ + φ

I
a,rφ

R
a,r−ŷ) − (y − rc)(φRa,rφ

I
a,r−x̂ + φ

I
a,rφ

R
a,r−x̂ )

)
+

∑
r

2∑
a,b=1

(y − x)φRa,rφ
I
a,r

+
1

2

∑
r

2∑
a,b=1

εab
(
(x − rc)(φRa,rφ

R
b,r−ŷ − φ

I
a,rφ

I
b,r−ŷ) − (y − rc)(φRa,rφ

R
b,r−x̂ − φ

I
a,rφ

I
b,r−x̂ )

)
.
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When this is divided into the real and imaginary parts of the observable, we get:

Re〈Lz〉 =
1

2

∑
r

2∑
a=1

(
(x − rc)(φRa,rφ

I
a,r−ŷ + φ

I
a,rφ

R
a,r−ŷ) − (y − rc)(φRa,rφ

I
a,r−x̂ + φ

I
a,rφ

R
a,r−x̂ )

)
+

∑
r

2∑
a=1

(y − x)φRa,rφ
I
a,r (C.54)

+
1

2

∑
r

2∑
a,b=1

εab
(
(x − rc)(φRa,rφ

R
b,r−ŷ − φ

I
a,rφ

I
b,r−ŷ) − (y − rc)(φRa,rφ

R
b,r−x̂ − φ

I
a,rφ

I
b,r−x̂ )

)
.

Im〈Lz〉 = −
1

2

∑
r

2∑
a=1

(
(x − rc)(φRa,rφ

R
a,r−ŷ − φ

I
a,rφ

I
a,r−ŷ) − (y − rc)(φRa,rφ

R
a,r−x̂ − φ

I
a,rφ

I
a,r−x̂ )

)
−

1

2

∑
r

2∑
a=1

(y − x)
(
(φRa,r )2 − (φIa,r )2

)
(C.55)

−
1

2

∑
r

2∑
a,b=1

εab
(
(x − rc)(φRa,rφ

I
b,r−ŷ + φ

I
a,rφ

R
b,r−ŷ) − (y − rc)(φRa,rφ

I
b,r−x̂ + φ

I
a,rφ

R
b,r−x̂ )

)

Section C.8: Some exact solution for the nonrelativistic system

C.8.1: Nonrotating, noninteracting, nonrelativistic, finite chemical potential in 1, 2, and 3 dimensions

The lattice action for a nonrotating, noninteracting, and nonrelativistic system is the following:

Slat,r = φ∗r

φr − edτµφr−τ̂ −

dτ
2m

d∑
i=1

(
φr+î − 2φr + φr−î

)
. (C.56)

This can be written as fields multiplying a matrix:

Slat,r =
∑
r

∑
r′

φ∗r Mφr′ =
∑
r

∑
r′

φ∗r


(1 +

dτd
m

)δr,r′ − edτµδr−τ̂,r′ −
dτ
2m

d∑
i=1

(
δr+î,r′ + δr−î,r′

)
φr′, (C.57)

which we can use to determine analytically the density and field modulus squared of this system in order to

check against our code’s results. Recall that

〈n̂〉 =
−1

V
∂lnZ
∂(βµ)

=
−1

V
∂

∂(βµ)
(−ln(det(M))) (C.58)

=
1

V
∂

∂(βµ)
Tr (lnM) =

1

V
∂

∂(βµ)

∑
k

lnDkk =
1

V

∑
k

1

Dkk

∂Dkk

∂(βµ)
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with βµ = Nτdτµ, and note that for a nonrelativistic system,

〈
φ∗φ

〉
=
−1

V
∂lnZ
∂(d/m)

=
−1

V
∂

∂(d/m)
(−ln(det(M))) (C.59)

=
1

V
∂

∂(d/m)
Tr (lnM) =

1

V
∂

∂(d/m)

∑
k

lnDkk

=
1

V

∑
k

1

Dkk

∂Dkk

∂(d/m)
=

∑
k

1

Dkk
.

Diagonalizing our matrix, M

We can represent the nonrotating, noninteracting action as

S[λ = ω = 0] =
∑
r,r′

φ∗r Mr,r′[d,m, µ]φr′ (C.60)

where

Mr,r′[d,m, µ] =


(1 +

dτd
m

)δr,r′ − edτµδr−t̂,r′ −
dτ
2m

d∑
i=x,y

(δr+î,r′ + δr−î,r′)

. (C.61)

We want to diagonalize M by applying a transformation matrix, such that Dkk′ = U†MU, where

Ur,k =

√
2d√

Nd
x Nτ

eik0t
d∏
i=1

sin(kixi) (C.62)

U†
r,k
=

√
2d√

Nd
x Nτ

e−ik0t
d∏
i=1

sin(kixi) (C.63)

k0 =
2πn0

Nτ
, n0 ∈ [1, 2, ..., Nτ ] (C.64)

ki =
πni

(Nx + 1)
, ni ∈ [1, 2, ..., Nx]. (C.65)
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Applying the transformation matrix, we get

Dk,k′ =
2d

Nd
x Nt

∑
r,r′

e−ik0t
d∏
i=1

sin(kixi)
[
(1 +

dτd
m

)δr,r′
]

eik
′
0t
′

d∏
i=1

sin(k ′i x
′
i)

−
2d

Nd
x Nt

∑
r,r′

e−ik0t
d∏
i=1

sin(kixi)
[
edτµδr−t̂,r′

]
eik

′
0t
′

d∏
i=1

sin(k ′i x
′
i) (C.66)

−
2d

Nd
x Nt

∑
r,r′

e−ik0t
d∏
i=1

sin(kixi)


dτ
2m

d∑
i=1

δr+î,r′


eik

′
0t
′

d∏
i=1

sin(k ′i x
′
i)

−
2d

Nd
x Nt

∑
r,r′

e−ik0t
d∏
i=1

sin(kixi)


dτ
2m

d∑
i=1

δr−î,r′


eik

′
0t
′

d∏
i=1

sin(k ′i x
′
i).

Resolving the delta functions, performing the sum over r ′, and pulling everything that does not depend on

r = (t, ~x) outside the sum, this reduces to

Dk,k′ =
2d

Nd
x Nt

(1 +
dτd
m

)
∑
r

e−it (k0−k
′
0)

d∏
i=1

sin(kixi) sin(k ′i xi)

−
2d

Nd
x Nt

edτµe−ik
′
0

∑
r

e−it (k0−k
′
0)

d∏
i=1

sin(kixi) sin(k ′i xi) (C.67)

−
2d

Nd
x Nt

dτ
2m

∑
r

e−it (k0−k
′
0)

d∏
i=1

sin(kixi)
d∑
i=1

sin(k ′i xi + k ′i )

−
2d

Nd
x Nt

dτ
2m

∑
r

e−it (k0−k
′
0)

d∏
i=1

sin(kixi)
d∑
i=1

sin(k ′i xi − k ′i ).

To further expand the last two lines, we use the following trig identity: sin(a ± b) = sin(a) cos(b) ±

sin(b) cos(a), which gives us:

Dk,k′ =
2d

Nd
x Nt

(1 +
dτd
m
− edτµe−ik

′
0 )

∑
r

e−it (k0−k
′
0)

d∏
i=1

sin(kixi) sin(k ′i xi) (C.68)

−
2d

Nd
x Nt

dτ
2m

d∑
i=1

cos(k ′i )
∑
r

e−it (k0−k
′
0)

d∏
i=1

sin(kixi) sin(k ′i xi)

−
2d

Nd
x Nt

dτ
2m

d∑
i=1

sin(k ′i )
∑
r

e−it (k0−k
′
0)

d∏
i=1

sin(kixi) cos(k ′i xi)

−
2d

Nd
x Nt

dτ
2m

d∑
i=1

cos(k ′i )
∑
r

e−it (k0−k
′
0)

d∏
i=1

sin(kixi) sin(k ′i xi)

+
2d

Nd
x Nt

dτ
2m

d∑
i=1

sin(k ′i )
∑
r

e−it (k0−k
′
0)

d∏
i=1

sin(kixi) cos(k ′i xi).
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Using the following Fourier identities

∑
x

sin(k x) sin(k ′x) =
Nx

2
δk,k′∑

x

sin(k x) cos(k ′x) = 0 (C.69)∑
x

e−ix(k−k′) = Nxδk,k′

(C.70)

we find that

Dk,k′ =
2d

Nd
x Nt

*
,
1 +

dτd
m
− edτµe−ik

′
0 −

dτ
m

d∑
i=1

cos(k ′i )+
-

Ntδk0,k′0

d∏
i=1

Nxi

2
δki,k′i

=
2d

Nd
x Nt

*
,
1 +

dτd
m
− edτµe−ik

′
0 −

dτ
m

d∑
i=1

cos(k ′i )+
-

Nt

(
Nx

2

)d
δk,k′

Dk,k′ = *
,
1 +

dτd
m
− edτµe−ik

′
0 −

dτ
m

d∑
i=1

cos(k ′i )+
-
δk,k′,

or, slightly rearranged:

Dk,k′ = *
,
1 − edτµe−ik

′
0 +

dτ
m

d∑
i=1

(1 − cos(k ′i ))+
-
δk,k′ . (C.71)

Note that this is a complex matrix, with real and imaginary parts:

Re [Dk,k′] = *
,
1 − edτµ cos(k ′0) +

dτ
m

d∑
i=1

(1 − cos(k ′i ))+
-
δk,k′ (C.72)

Im [Dk,k′] = edτµ sin(k ′0)δk,k′ . (C.73)

C.8.2: Analytical solution for the nonrotating, noninteracting density

We can now use our diagonal matrix Dk,k′ = Dk,k to solve for the density of this system. Recall that

〈n̂〉 =
1

V Nτ

∑
k

1

Dkk

∂Dkk

∂(dτµ)
. (C.74)
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We first need to solve for ∂Dkk

∂(dτµ) :

∂Dkk

∂µ
=

∂

∂(dτµ)


*
,
1 − edτµe−ik

′
0 +

dτ
m

d∑
i=1

(1 − cos(k ′i ))+
-
δk,k′


(C.75)

= −edτµe−ik
′
0δk,k′ .

Plugging this in to our equation for the density gives us:

〈n̂〉 =
1

Nd
x Nt

∑
k

D∗
kk

|Dkk |
2

(
−edτµe−ik

′
0δk,k′

)
. (C.76)

C.8.3: Analytical solution for the nonrotating, noninteracting field modulus squared

〈
φ∗φ

〉
=

∑
k

1

Dkk
=

∑
k

D∗
kk

|Dkk |
2
. (C.77)
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APPENDIX D: THE FREE (NONRELATIVISTIC) BOSE GAS

The lattice action for a nonrotating, noninteracting, and nonrelativistic system in d + 1 dimensions is the

following:

Slat,r = φ∗r

φr − edτµφr−τ̂ −

dτ

2m

d∑
i=1

(
φr+î − 2φr + φr−î

)
. (D.1)

This can be written as fields multiplying a matrix, just as we saw in Chapter ??, which we can use to

determine analytically the density and field modulus squared of this system in order to check against our

code’s results. Recall that

〈n̂〉 =
−1

V
∂ lnZ

∂(βµ)
=
−1

V
∂

∂(βµ)
(− ln(det(M))) (D.2)

=
1

V
∂

∂(βµ)
Tr(ln M) =

1

V
∂

∂(βµ)

∑
k

ln Dkk =
1

V

∑
k

1

Dkk

∂Dkk

∂(βµ)

with βµ = Nτdτµ, and note that for a nonrelativistic system,

〈
φ∗φ

〉
=
−1

V
∂ lnZ

∂(d/m)
=
−1

V
∂

∂(d/m)
(− ln(det(M))) (D.3)

=
1

V
∂

∂(d/m)
Tr(ln M) =

1

V
∂

∂(d/m)

∑
k

ln Dkk

=
1

V

∑
k

1

Dkk

∂Dkk

∂(d/m)
=

∑
k

1

Dkk
.

Section D.1: Diagonalizing our matrix

We can represent the nonrotating, noninteracting action as

SFBG =
∑
r,r′

φ∗r Mr,r′[d,m, µ]φr′ (D.4)

where

Mr,r′[d,m, µ] =

(1 +

dτd
m

)δr,r′ − edτµδr−t̂,r′ −
dτ

2m

d∑
i=1

(δr+î,r′ + δr−î,r′)

. (D.5)
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We want to diagonalize M again by applying a transformation matrix, such that Dkk′ = U†MU, where

Ur,k =

√
2d

Nd
x Nτ

eik0t
d∏
i=1

sin(kixi)

U†
r,k
=

√
2d

Nd
x Nτ

e−ik0t
d∏
i=1

sin(kixi)

k0 =
2πn0

Nτ
, n0 ∈ [1, 2, ..., Nτ ]

ki =
πni

(Nx + 1)
, ni ∈ [1, 2, ..., Nx].

Applying the transformation matrix, we get

Dk,k′ =
2d

Nd
x Nt

∑
r,r′

e−ik0t
d∏
i=1

sin(kixi)
[
(1 +

dτd
m

)δr,r′
]

eik
′
0t
′

d∏
i=1

sin(k ′i x
′
i)

−
2d

Nd
x Nt

∑
r,r′

e−ik0t
d∏
i=1

sin(kixi)
[
edτµδr−t̂,r′

]
eik

′
0t
′

d∏
i=1

sin(k ′i x
′
i) (D.6)

−
2d

Nd
x Nt

∑
r,r′

e−ik0t
d∏
i=1

sin(kixi)


dτ

2m

d∑
i=1

δr+î,r′


eik

′
0t
′

d∏
i=1

sin(k ′i x
′
i)

−
2d

Nd
x Nt

∑
r,r′

e−ik0t
d∏
i=1

sin(kixi)


dτ

2m

d∑
i=1

δr−î,r′


eik

′
0t
′

d∏
i=1

sin(k ′i x
′
i).

Resolving the delta functions, performing the sum over r ′, and pulling everything that does not depend on

r = (t, ~x) outside the sum, this reduces to

Dk,k′ =
2d

Nd
x Nt

(1 +
dτd
m

)
∑
r

e−it (k0−k
′
0)

d∏
i=1

sin(kixi) sin(k ′i xi)

−
2d

Nd
x Nt

edτµe−ik
′
0

∑
r

e−it (k0−k
′
0)

d∏
i=1

sin(kixi) sin(k ′i xi) (D.7)

−
2d

Nd
x Nt

dτ

2m

∑
r

e−it (k0−k
′
0)

d∏
i=1

sin(kixi)
d∑
i=1

sin(k ′i xi + k ′i )

−
2d

Nd
x Nt

dτ

2m

∑
r

e−it (k0−k
′
0)

d∏
i=1

sin(kixi)
d∑
i=1

sin(k ′i xi − k ′i ).
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To further expand the last two lines, we use the trig identity sin(a ± b) = sin(a) cos(b) ± sin(b) cos(a),

which gives us:

Dk,k′ =
2d

Nd
x Nt

(1 +
dτd
m
− edτµe−ik

′
0 )

∑
r

e−it (k0−k
′
0)

d∏
i=1

sin(kixi) sin(k ′i xi)

−
2d

Nd
x Nt

dτ

2m

d∑
i=1

cos(k ′i )
∑
r

e−it (k0−k
′
0)

d∏
i=1

sin(kixi) sin(k ′i xi)

−
2d

Nd
x Nt

dτ

2m

d∑
i=1

sin(k ′i )
∑
r

e−it (k0−k
′
0)

d∏
i=1

sin(kixi) cos(k ′i xi)

−
2d

Nd
x Nt

dτ

2m

d∑
i=1

cos(k ′i )
∑
r

e−it (k0−k
′
0)

d∏
i=1

sin(kixi) sin(k ′i xi)

+
2d

Nd
x Nt

dτ

2m

d∑
i=1

sin(k ′i )
∑
r

e−it (k0−k
′
0)

d∏
i=1

sin(kixi) cos(k ′i xi). (D.8)

Using the following Fourier identities

∑
x

sin(k x) sin(k ′x) =
Nx

2
δk,k′∑

x

sin(k x) cos(k ′x) = 0∑
x

e−ix(k−k′) = Nxδk,k′

(D.9)

we find that

Dk,k′ =
2d

Nd
x Nt

*
,
1 +

dτd
m
− edτµe−ik

′
0 −

dτ

m

d∑
i=1

cos(k ′i )+
-

Ntδk0,k′0

d∏
i=1

Nxi

2
δki,k′i

=
2d

Nd
x Nt

*
,
1 +

dτd
m
− edτµe−ik

′
0 −

dτ

m

d∑
i=1

cos(k ′i )+
-

Nt

(
Nx

2

)d
δk,k′

Dk,k′ = *
,
1 +

dτd
m
− edτµe−ik

′
0 −

dτ

m

d∑
i=1

cos(k ′i )+
-
δk,k′,

or, slightly rearranged:

Dk,k′ = *
,
1 − edτµe−ik

′
0 +

dτ

m

d∑
i=1

(1 − cos(k ′i ))+
-
δk,k′ . (D.10)
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Note that this is a complex matrix, with real and imaginary parts:

Re [Dk,k′] = *
,
1 − edτµ cos(k ′0) +

dτ

m

d∑
i=1

(1 − cos(k ′i ))+
-
δk,k′ (D.11)

Im [Dk,k′] = edτµ sin(k ′0)δk,k′ . (D.12)

We can now use our diagonal matrix Dk,k′ = Dk,k to solve for the density of this system. Recall that

〈n̂〉 =
1

V Nτ

∑
k

1

Dkk

∂Dkk

∂(dτµ)
. (D.13)

We first need to solve for ∂Dkk

∂(dτµ) :

∂Dkk

∂µ
=

∂

∂(dτµ)


*
,
1 − edτµe−ik

′
0 +

dτ

m

d∑
i=1

(1 − cos(k ′i ))+
-
δk,k′


(D.14)

= −edτµe−ik
′
0δk,k′ .

Plugging this in to our equation for the density gives us:

〈n̂〉 =
1

Nd
x Nt

∑
k

D∗
kk

|Dkk |
2

(
−edτµe−ik

′
0δk,k′

)
. (D.15)

and doing the same for the field modulus gives us:

〈
φ∗φ

〉
=

∑
k

1

Dkk
=

∑
k

D∗
kk

|Dkk |
2
. (D.16)
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