
ENTRAINMENT DOMINATED EFFECTS IN THE LONG RESIDENCE
TIMES OF SOLID SPHERES SETTLING IN SHARPLY STRATIFIED

MISCIBLE VISCOUS FLUIDS

Claudia Falcon

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the

Department of Mathematics.

Chapel Hill
2016

Approved by:

Roberto Camassa

Richard McLaughlin

David Adalsteinsson

Gregory Forest

Laura Miller

c� 2016
Claudia Falcon

ALL RIGHTS RESERVED

ii

ABSTRACT

Claudia Falcon: Entrainment dominated e↵ects in the long residence
times of solid spheres settling in sharply stratified miscible viscous

fluids
(Under the direction of Roberto Camassa and Richard McLaughlin)

This dissertation presents results on the e↵ects of sharp density variations in the dynamics

of settling spheres in viscous – dominated regimes by a combination of experimental, analytical,

and numerical tools. Particles settling through naturally – stratified fluids, such as the ocean

and the atmosphere, a↵ect many aspects of life, from air quality and pollution clearing times

to the formation of thin aggregate layers in the upper ocean. In this thesis, we develop an

understanding of the dynamics that a↵ect these problems by studying the behavior of a

sphere falling under gravity through a two-layer fluid.

We have found that the sphere slows down dramatically as it passes through the density

transition. In this system, we demonstrate the importance of the entrained fluid to the

delayed settling of the particle due to its added buoyancy force. In particular, we compare

long residence times at the interface rivaling the ones observed for porous spheres and marine

snow – aggregates that occur naturally in the ocean – in similar configurations. We call these

cases the entrainment dominated regimes, where di↵usion of salt could play an active role

and it is therefore needed in the modeling.

The developed first principle model is a highly coupled system that captures the most

significant aspects of settling in a sharp two - layer fluid. We discuss previously implemented

approximations and new experimental regimes where the approximation is no longer valid.

The asymptotic approaches and exact solutions for the sphere exterior problem of the Stokes

equations will be compared in a parametric study of relevance for experiments. The region of

validity for the approximations, the full theory agreement, and the possible need to include

iii

di↵usion in the entrainment dominated regimes will be discussed and explained.

The single particle theory further sheds light in the settling rates of marine aggregates

falling through sharp density transitions, and how this ultimately a↵ects marine carbon cycling.

In addition to solid spheres, we have examined porous, and drilled spheres , obtaining range

of parameters that enhance the residence time at the interface. We have also investigated

this phenomenon extensively through experiments by observing clouds of solid particles as

they settle through a sharply stratified water column.

iv

A mis padres -

El amor todo lo sufre,
todo lo cree, todo lo espera,

todo lo soporta.

-1 Corintios 13:7

v

ACKNOWLEDGEMENTS

I would like to thank my committee members for their recommendations and my advisors

for the countless devoted hours of research, teaching, and mentorship. They have been

instrumental to my career since I joined their lab as an undergraduate. Roberto Camassa is

known for his unique guidance through di�cult questions and making them seem easy through

simplified examples. I am thankful to Richard McLaughlin for his intuition, excitement for

interesting results, and challenging questions. Thank you for always pushing me to look

deeper after going over long pages of mathematics or sharing the results of an experiment.

Every meeting with them was a boost of energy to continue looking for solutions. Thank you

to both for your support through all these years.

I would also like to thank Joyce Lin. Her training introduced me to the field of fluid

dynamics and ultimately encouraged me to continue researching Mathematics at the graduate

level. I look up to her as a Mathematician and a friend and hope to continue collaborations

for years to come. A special mention must go to Kathryn Valchar for her immeasurable

hours of work and endless discussions that helped us improve our experimental techniques.

Her understanding of our goals made it easy to obtain good quality results. In addition,

thanks to Dylan Bruney, Sabina Iftikhar, and Gabriella Stein, for being the best team of

undergraduate researchers. Dylan’s innovative ideas and long hours in the lab until the

experiment was correctly completed, Sabina’s creativity and no-problem-is-too-big attitude,

and Gabi’s dedication to all aspects of the project helped us obtain the data shown in this

thesis. I would also like to thank Mike Baker, Mathew Chancey, Victoria Hughes, Dylan

Owen, Pierre-Yves Passaggia, Bailey Watson, and Arthur Wood for their contributions. To

all my colleagues in the Joint Fluids Lab and the Mathematics Department, thank you. In

addition, David Adalsteinsson, the developer of DataTank and committee member, always

vi

willing to advise on many numerical questions. Without his software and training, the analysis

would have been more di�cult and less visually appealing .

A special mention must go to the UNC IME program coordinator, Kathy Wood, for

her hard work and support since my undergraduate years in AGEP. I am grateful for her

encouragement to pursuit challenging projects, her career development advice, and friendship.

Obvious acknowledgments go to the AGEP, Gates Millennium, NSF GRFP, and UNC

Graduate School Dissertation Completion fellowships. The National Science Foundation

has been a significant supporter of all the laboratory work. Specifically, credit is due to the

NSF-CMG and NSF RTG DMS-0502266 grants.

Last but not least, I am thankful for my family and friends for providing understanding

and many happy moments. I am thankful for my husband, who is a constant support when

deadlines require all my attention. His pride for my work and continuous encouragement is a

fuel like no other. There are no words to thank my parents for all their sacrifices. It gives me

great pleasure to talk about my work at a mathematical level with great thinkers like them.

My mom is my true confidant in moments of pressure and her words are always the ones I

need to hear. My dad was the first who taught me to explore creativity in a mathematical

way. I thank him for his willingness to always listen to my messy mathematical thoughts.

Thank you both for being my role models as mathematicians but also for making me want to

grow better everyday so that someday I get to be a teacher to my children the same way you

have been to me.

vii

TABLE OF CONTENTS

Chapter 1. Introduction . 1

Chapter 2. First Principle Model . 4

2.1 Stokes flow in a cylinder . 7

2.2 Perturbation velocity . 12

2.3 Final Equations of motion . 14

Chapter 3. Stokes Solution Third Reflection 16

3.1 Solution by Stream Function . 16

3.2 Second Reflection Approximation . 21

Chapter 4. The Oseen Tensor . 27

4.1 Definition of Perturbation Velocity . 27

4.2 Integrable Singularities . 28

4.3 Line of Removable Singularities . 30

4.4 Reducing volume integral to 2D integral . 32

Chapter 5. Experimental Work . 33

5.1 Methods . 33

5.2 Solid Sphere Experiments . 36

5.3 Porous Sphere Experiments . 41

5.4 Particle Cloud Experiments . 49

Chapter 6. Numerical Implementation . 54

6.1 Stokes second reflection . 55

viii

6.2 Computation of w . 56

6.3 Interface Tracking Techniques and Validation 57

Chapter 7. Theory Approximations . 60

7.1 Far Field Approximation . 60

7.2 Near Field Approximation . 65

7.3 Leaky Sphere Approximation . 66

7.4 Shell Model . 72

7.5 Perturbation Approach . 73

Chapter 8. Entrainment Dominated Regimes 81

8.1 Comparison with Experiments . 82

8.2 Force Balance and the importance of Reflux 84

8.3 Shell Depletion and Layer Thickness . 86

Chapter 9. Conclusions . 88

Appendix A. Oseen Integrals . 89

A.1 Integration procedure . 94

Appendix B. Holding Curve . 108

Appendix C. Flow Past a Stokeslet . 112

Appendix D. Di↵usion Coe�cient in Corn Syrup 115

D.1 Sodium Chloride NaCl . 115

D.2 Potassium Iodide KI . 116

Appendix E. Nomenclature . 118

Appendix F. Numerical Codes . 119

ix

LIST OF FIGURES

2.1 Schematic of the theoretical setup and notation. 5

2.2 Diagram of the Stokeslets located at y and y

⇤. 13

3.1 Comparison of u

(2) with its expansion as R/R0 ! 0 and Z/R0 ! 0, eval-
uating on the surface of the sphere r =

p
R2 + Z2 = A, along ✓ = [0, ⇡]

discretized by n.Blue dots correspond to numerical integration and red dots to
the approximation. Values are for A = 0.635 cm, R0 = 5.4 cm, V = 1. 26

5.1 Plot of water percentage vs. dynamic viscosity (P). This data aids the viscosity
matching process between the fluid layers of corn syrup. 35

5.2 Velocity profiles of sphere of radiusA = 0.641cm and density ⇢
s

= 1.36712g/cm3

settling in a two-layer stratification with densities ⇢
t

= 1.34473 g/cm3and
⇢
b

= 1.34767 g/cm3 and average viscosity µ = 5.1595 Poise. The black line
represents the experiment tracking while, the dashed lines correspond to the
theoretical terminal velocities and the vertical blue line shows the time at
which the sphere is shown. 37

5.3 Velocity profiles of sphere of radius A = 0.233 cm and density ⇢
s

= 1.4 g/cm3

settling in a two-layer stratification with densities ⇢
t

= 1.3616 g/cm3and
⇢
b

= 1.36628 g/cm3 and viscosities µ
t

= 10.7307 Poise and µ
b

= 11.0323
Poise. The black line represents the experiment tracking while, the dashed
lines correspond to the theoretical terminal velocities. 38

5.4 Series of experiments from Stokes dominated regimes to Entrainment domi-
nated regimes. Experimentally measured velocity profiles of sphere of density
⇢
s

= 1.36712 g/cm3 and radius A = 0.641 cm settling in a two-layer stratifica-
tion with similar top layer density and sequentially increasing bottom layer
densities ⇢

b

= 1.35425, 1.36414, 1.36623 g/cm3 39

5.5 Velocity profiles of sphere of radiusA = 0.641 cm and density ⇢
s

= 1.36712g/cm3

settling in a two-layer stratification with densities ⇢
t

= 1.34647g/cm3and
⇢
b

= 1.35000g/cm3 and viscosities µ
t

= 5.06980 Poise and µ
b

= 5.27610 Poise.
The black line represents the experiment tracking while the blue line indicates
the full theory using the top layer viscosity in the first upper panel, an average
viscosity in the second panel, and bottom layer viscosity in the third lower
panel. The dashed lines correspond to their respective theoretical terminal
velocities using the code paremeters . 40

5.6 Picture of a plastic drilled sphere used in this sections experiments with radius
A = 0.635 cm, mass m

s

= 0.8986g, and porosity P = 0.38. 41

x

5.7 Velocity comparison between black solid line for the solid sphere and blue
dashed line for the drilled sphere. 42

5.8 Velocity profile of drilled sphere with e↵ective density ⇢
sf

= 1.36455 g/cm3 ,
computed terminal velocity for ⇢

sf

is shown in blue 43

5.9 Velocity profile of drilled sphere initially with e↵ective density ⇢
si

= 1.36032
g/cm3 sinking in a homogenous surrounding fluid of density ⇢

f

= 1.36364.
The drilled sphere begins to fall when its e↵ective density becomes larger than
the ambient fluid due to di↵usion of salt. The theoretical terminal velocity for
a solid sphere of density ⇢

sf

is shown in blue. 45

5.10 Velocity profile of drilled sphere with fluid rho
f

= 1.35883 g/cm3 inside. Red
line indicates theoretical terminal velocity for a solid sphere of equivalent
density ⇢

sf

. 46

5.11 Velocity profile of drilled sphere initially with fluid ⇢
i

= 1.35050 g/cm3 inside,
computed terminal velocities for ⇢

si

and ⇢
sf

are shown in red and blue respectively 47

5.12 Velocity profile of drilled sphere with fluid rho
f

= 1.35976 g/cm3 inside . . . 48

5.13 Particle cloud settling in two-layer stratified fluid, the cloud sharpens as it
reaches the interface. The stratification consists of a top layer with density
⇢
t

= 0.9987g/cm3 and a bottom layer of density ⇢
b

= 1.045g/cm3. The
particles are polystyrene beads of density ⇢

s

= 1.05g/cm3 and average radius
A = 0.02cm. 49

5.14 Concentration average around interface C
I

(t) versus time. The horizontal red
line denotes the 35% of the maximum value providing a residence time T = 99s. 51

5.15 Time-lapsed snapshots at (a) 2 s (b) 10 s (c) 15 s (d) 20 s of the particle
clouds settling in a two-layer of sharply stratified fluid, varying the size of the
particles. The size of the beads increase from the first row to the last. 52

5.16 Residence time versus particle radius, the range of particle sizes inside a cloud
are denoted by the solid line, while the dots represent the mean size inside the
cloud. 52

5.17 Residence time versus particle radius, read markings indicate porous particles
while black markings indicate solid beads. 53

5.18 Residence time as measured by C
I

(blue) and by C
P

(black) as we vary the
bottom layer density . 53

6.1 Diagram of domain of integration as determined by the entrainment and reflux
regions. The fluid domain ⌦

f

is shaded in blue and the sphere domain is
denoted ⌦

s

. 55

xi

6.2 Disection of interface when (a) interface is below the sphere showing two regions
of integration, (b) interface around the sphere, three regions of integration,
and (c) interface above the sphere, four regions of integration. 56

6.3 Domain of integration and removable singularities. The blue dot represents
the observation interfacial point and the red dashed line indicates where its
corresponding line of removable singularities occur. These points only need to
be dealt with when they get inside the blue shaded region, the fluid domain of
integration. 57

6.4 Validation of interpolation, interface tracking and volume integrals by showing
the point of zero Lagrangian displacement (top panels) and the normalized
reflux volume (bottom panels) with potential flow for radius of sphere A = 1 cm,
interface initialized y0 = �10 cm away from the sphere, and horizontal axial
cut o↵ at (a) R0 = 40 cm (b) R0 = 80 cm (c) R0 = 320 cm . The dashed lines
represent the asymptotic value of each quantity. 58

6.5 Plots of interface advected with uniform velocity free space Stokes advection
using (a) normal velocity and (b) full velocity 59

7.1 Streamlines of the Oseen Green’s function far field approximation along the
x2 = 0 plane around a sphere of radius A = 1 with one Stokeslet located at (a)
y = (0, 0, 2) , (b) y = (0.5, 0,�1.1), (c) ring of points forces above and below 62

7.2 Non-dimensional numerically obtained velocity profiles using the far field
approximation as the sphere density ⇢

s

! ⇢
b

with ⇢
t

= 1.42760g/cm3 ,
⇢
b

= 1.43060g/cm3, and µ = 17 Pois. The red point represents the point that
the interface goes into the sphere, deforming interface in a non-physical way
and stopping the simulation . 63

7.3 Comparison of the streamlines along the x2 = 0 plane around a sphere of
radius A = 1 with one Stokeslet located at y = (0, 0, 2) of the Oseen Green’s
function far field approximation W

FF

(left) and full kernel W (right) 63

7.4 Simulation of a sphere of density ⇢
s

= 1.4506 g/cm3 settling in two layer fluid.
Comparison of flow at the interfacial points. The blue arrows represent the
stokes flow u

s

while the red arrows indicate the perturbation flow using (a)
the far field approximation w

FF

and (b) the full solution w. 64

7.5 Far Field vs Full Theory in the Stokes dominated regime 64

7.6 Comparison between Far Field and Simplified Theories of the sphere velocities
profiles for increasing radius of the sphere: 0.1, 0.3, 0.635, 0.99, 1.1, and 1.5cm. 70

7.7 Computed Errors , showing increasing error for increasing sphere radius with
the exception of the first point A = 0.1cm due to poor integration resolution. 71

xii

7.8 Shell model schematic showing the assumed spherical shell around the sphere. 72

7.9 Comparison of shell model with experiment and full theory. 73

7.10 Top layer and bottom layer domains . 78

7.11 Domain of integration for integrals I
t

and I
b

. 79

7.12 Domain of integration for I
w

computed in code 79

7.13 Domains of integration . 80

8.1 Plot of Archimedean buoyancy and density anomaly force as ⇢
s

! ⇢
b

. . . . 81

8.2 (a) Interface at time t = 672 s, the last trusted time. (b)The sphere position.
(c)The sphere velocity. The black solid lines are the experiment tracking, the
blue dots are the theory prediction, and the black vertical lines indicate the
last trusted time t=672 s. 83

8.3 Zoomed in plots of sphere position showing the code departure from experiment. 84

8.4 Experiment and theory comparison approaching the entrainment dominated
regime. Left panel shows the model predicted interface and the right panel
shows the experiment in black and the theory in blue. The experimental
parameters are A = 0.641 cm, ⇢

s

= 1.36712 g/cm3, ⇢
t

= 1.34695 g/cm3, ⇢
b

=
1.36178 g/cm3, and µ = 4 Poise. 85

8.5 Experiment and theory comparison approaching the entrainment dominated
regime. Left panel shows the model predicted interface and the right panel
shows the experiment in black and the theory in blue. The experimental
parameters are A = 0.641 cm, ⇢

s

= 1.36712 g/cm3, ⇢
t

= 1.34419 g/cm3, ⇢
b

=
1.36639 g/cm3, and µ = 5.75 Poise. 85

8.6 Forces on the sphere for the Entrainment (w-dominated) regime showing
the importance of the reflux portion to the motion of the sphere since the
entrainment force F

E

is bigger than the Archimedean force F
A

for a portion of
time. 86

8.7 Experimental picture showing the thin shell around the sphere for entrainment
dominated regimes. 87

D.1 Plot of percent salinity concentration vs. conductivity. The dots are measure-
ments at 22o C for di↵erent concentrations of NaCl using an Orion conductivity
meter and probe. The black solid line is a cubic fit to the data providing a
map from conductivity to salinity. 115

xiii

D.2 Picture of the di↵usion coe�cient measurement set up inside the temperature
bath . 116

D.3 Experimental measurements at a fixed location in the top layer of salinity
based on the salinity-to-conductivity fit (black dots) and the solution to the
di↵usion equation (blue line) with D, the di↵usion coe�cient, chosen to best
fit the measurements. Conductivity was measured using the top layer probe
shown in Figure (D.2) . 117

xiv

CHAPTER 1

INTRODUCTION

Stratified environments frequently occur in nature. Examples include haloclines and

thermoclines in the ocean and atmosphere. These are often sharp density transitions formed

by density and temperature variations. Understanding how these sharp density di↵erences

a↵ect an immersed falling particle has applications from e↵ectively budgeting pollution in

the ocean to testing the e�ciency of the ocean’s carbon pump. Thin layers of particulate

matter have been measured to accumulate at the density transitions found in coastal waters.

Marine snow particles are aggregates of organic and inorganic matter that are constantly

raining in the ocean, and are a major component of the ocean’s carbon cycle. When marine

snow accumulates at a density interface, the layers of aggregates become hotspots for bacteria

remineralization, preventing the particles from settling to the bottom of the ocean[31].

Understanding the residence time of these particles by studying the fluid mechanics behind

their settling in variable density fluids, can provide insight into the evolution of aggregates

and their fate as part of the carbon cycle.

There have been many studies of stratification and particle settling. Most of these

studies, however, involve homogenous or linear stratified fluid, and very few account for the

importance of entrainment in sharp density transitions. Some of the research investigating

sharply-stratified environments is restricted to immiscible fluids where surface tension is

dominant [3, 26]. Previous studies have also considered the settling of marine aggregates and

porous spheres in sharp stratifications [11, 31].

The behavior of a single sphere falling in sharp stratification has been been studied by

[1, 8, 9, 33], but many questions remain. Interesting phenomena have been discovered after

it was found that a sphere undergoes levitation� sharp acceleration to near zero speed,

1

and sometimes even a directional (velocity) reversal, when falling under specific conditions

through a sharply stratified fluid [1]. As the sphere passes through the interface, the entrained

lower density fluid around the particle adds an extra buoyancy force that causes the delayed

settling. Solving this problem is a simplification of the settling of multiple aggregates but it

captures some of its most important dynamics.

The first–principle model that describes this behavior in viscous fluids is a highly coupled

system, derived by Camassa et. al. [8, 9]. Focusing on the low-Reynolds-number regime

simplifies the physics by making the fluid inertia negligible, which is reflected mathematically

by the linearization of the governing equations of motion. This makes them more accessible

to analysis and numerics. We use this model to study the dynamics of the long residence

times exhibited by solid spheres at density transition layers. In particular, we study the cases

with long residence times comparable to the ones observed for porous spheres and marine

aggregates in similar configurations. These cases fall into what we call the entrainment

dominated regime. This regime occurs when the di↵erence between the sphere density and

the bottom layer density (⇢
s

� ⇢
b

) approaches the di↵erence between the bottom layer density

and the top layer density (⇢
b

� ⇢
t

).When the residence times are comparable to di↵usion

time scales, salt di↵usion through the entrainment shell can play a significant role in the

sphere settling, making it important to understand its contribution in the modeling.

In order to compare the first-principle model solutions with the experimental data, we

need to numerically implement the final equations of motion, an integro-di↵erential equation

of the density of the fluid ⇢. The way in which we go about solving the resulting three

dimensional integral that defines the flow of the fluid determines the speed and accuracy

of the code. In this paper, we discuss previously implemented approximations and new

experimental parameters where these approximation are no longer valid. To remedy this, we

implement new ways to solve for the flow, including di↵erent integration techniques to account

for the integrable and removable singularities, analytical integration of one of the integrals,

as well a matched asymptotics of near and far field. In addition, we discuss properties of the

2

integrand- the Oseen tensor provided by [29]. The asymptotic approaches and exact solutions

for the sphere exterior problem of Stokes equations will be compared in a parametric study

of relevance for experiments. The region of validity for the approximations and the need to

implement matched asymptotic with the full solution will be discussed and explained.

Theoretically, there is much work to be done to understand the settling of marine

aggregates through sharp density transitions, and how this ultimately a↵ects marine carbon

cycling. To develop a mechanistic understanding of the behavior of these particles in the

ocean,we investigated this phenomenon in detail through experiments by observing clouds of

solid particles as they settle through a sharply stratified saltwater column. Chapter 5 describes

the experimental work and its Section 5.4 focuses on the multiple particle experiments in

sharply stratified fluids. The applications of our work can be instrumental for estimating

pollution-clearing times and the e↵ectiveness of the ocean as a pump in driving carbon excess.

Our study’s predictive tool gives us a better understanding on time scales and the attributes

of of delayed settling.

The set up of the single particle problem consists of a sphere of radius A settling under

gravity in an infinite cylinder of radius R0 that contains a stable two-layer stratification of

miscible fluid, with top layer density ⇢
t

and bottom layer density of ⇢
b

. We are interested in

obtaining the velocity V (t) and center position Y (t) of the sphere, as well as the fluid flow

denoted as v(x, t). In cylindrical coordinates, the observation point x = (R,�, Z)

3

CHAPTER 2

FIRST PRINCIPLE MODEL

In this chapter, we set up the equations of motion for a solid sphere of radius A and

velocity V (t) = (0, 0, V (t)) settling in sharp stratification and discuss the solutions as given

by [9]. The Navier-Stokes equations for incompressible, Newtonian fluid of velocity v(x, t)

and variable density ⇢(x, t) and at an observation point x in the fluid domain inside a cylinder

of radius R0 are given by:

@⇢

@t
+ v ·r⇢ = 0, r · v = 0, (2.1)

⇢

✓

@v

@t
+ v ·rv

◆

= ⇢ĝ �rp+ µr2
v, (2.2)

v = V (t) for |x � Y3(t)| = A, (2.3)

v = 0 for
q

x2
1 + x2

2 = R0, �1 < x3 < 1, (2.4)

v ! 0 for |x3| ! 1, (2.5)

where Y (t) is the position of the center of the sphere in the laboratory frame of reference, so

that Ẏ3(t) = V (t), ĝ = (0, 0, g) is the gravity acceleration vector with magnitude g = 981cm/s2

.

By nondimensionalizing the equations of motion, important dimensionless parameters arise.

The Reynolds, Strouhal, and Froude numbers are defined as Re = AU/⌫, St = A/UT , and

Fr = U/
p
gA, respectively, where U is the terminal velocity of the sphere in a homogeneous

fluid of density ⇢ref , and T is the deceleration time. The momentum equation becomes

Re St ⇢̃
@ṽ

@ t̃
+ Re ⇢̃ṽ · r̃ṽ =

Re

Fr2
⇢̃ẑ � r̃p̃+ r̃2

ṽ, (2.6)

4

x
3
, Z

R
0

x
1
, R

x
2

v(x, t)

A

V

θ

Y

ẑ

�

Tuesday, June 14, 16Figure 2.1: Schematic of the theoretical setup and notation.

with the pressure scaled by µU/A. Our experiments are consistent with low Re number

regime making it possible to scale out the inertial terms, simplifying (2.6) to the Stokes

equation with variable density:

r̃2
ṽ = r̃p̃� Re

Fr2
⇢̃ẑ. (2.7)

In dimensional form, the Equation (2.7), the incompressibility and boundary conditions,

for the Stoke’s approximation.

µr2
v = rp� ⇢ĝ, (2.8)

r · v = 0, (2.9)

v = V (t) for |x � Y3(t)| = A, (2.10)

v = 0 for
q

x2
1 + x2

2 = R0, �1 < x3 < 1, (2.11)

v ! 0 for |x3| ! 1 (2.12)

5

@⇢

@t
+ v ·r⇢ = 0. (2.13)

It is important to note that in equation (2.13) we have ignored di↵usion of salt, present

in the bottom layer fluid that serves as a stratifying agent . Some of our experiments –

the Entrainment regime experiments – slow down the settling rates and exhibit prolonged

residence times that are comparable with di↵usion time scales. By comparing those regimes

with this model, we can study the need for di↵usion to be included in the theory. In the

Stokes dominated regimes, we see the persistence of sharp interfaces between the upper and

lower fluids as well as along the entrainment around the sphere for the entire duration of

the experiment. These observations indicate that di↵usion is negligible in the Stokes regimes

while it may not be the case for the Entrainment Regimes. The di↵usivity of the salts used

in our fluids was measured and discussed in Appendix D. More evidence that no di↵usion

e↵ects are present in Stokes regime is given by the good agreement between experiments and

this non-di↵usive model. On the contrary, the Entrainment regimes show some discrepancy

when di↵usion time scales are of significance. These comparisons will be discussed in later

chapters.

The equation of motion for the sphere can be written as

m
s

dV (t)

dt
= m

s

ĝ +

I

S

� · n̂ dS, (2.14)

where m
s

is the mass of the sphere, � is the stress tensor, S is the surface of the sphere, and

n̂ is the outward normal unit vector to this surface.

The fluid flow can be written as

v(x, t) = u(x, t) + w(x, t) . (2.15)

and we can solve for each part by taking advantage of the linearity of the Stokes equations.

The first part, u(x, t), is a Stokes flow in a cylinder with static initial density distribution

6

⇢0(x3) = ⇢(x, 0) while the second part, w(x, t), is what we call the perturbation velocity, as

it has homogeneous boundary conditions and a forcing term ⇢(x, t)� ⇢0(x3). The equation

of motion for the sphere becomes

m
s

dV (t)

dt
= m

s

ĝ +

I

S

�
u

· n̂dS +

I

S

�
w

· n̂dS, (2.16)

where �
u

and �
w

are the stress tensors for u and w, respectively. The latter stress tensor

�
w

originates solely from the advection of the density field, and gives rise to an e↵ective

buoyancy-like force, which we refer to as the anomalous density force to distinguish it from

the usual Archimedean buoyancy.

2.1 Stokes flow in a cylinder

The equations of motion for the velocity component u(x, t) in equation (2.15), in the

frame of reference of the sphere are

µr2
u = rp

s

� ⇢0(x3 + Y3(t))ĝ, (2.17)

r · u = 0, (2.18)

u = 0 for |x| = A, (2.19)

u = �V (t) for
q

x2
1 + x2

2 = R0, �1 < x3 < 1 (2.20)

u ! �V (t) for |x3| ! 1 . (2.21)

The solutions are given by the method of reflections used in [18], found by decomposing

the flow into a series

u = (u(0) + u

(1)) + (u(2) + u

(3)) + . . . (2.22)

7

where

u

(0) = �V (t) (2.23)

u

(1) =

8

>

<

>

:

�u

(0) r = A

0 r ! ±1
(2.24)

u

(2) =

8

>

<

>

:

�u

(1) R = R0

0 Z ! ±1
(2.25)

u

(3) =

8

>

<

>

:

�u

(2) r = A

0 r ! ±1
(2.26)

...

The flow is expressed by this infinite sum and can be truncated to the odd-labeled terms,

making the flow satisfy boundary conditions on the sphere. On the other hand, when the

sum is truncated at the even-labeled terms the boundary conditions on the cylinder are

satisfied. The first term u

(0) is a constant flow (in space), whose inclusion changes the frame

of reference from the lab frame to a frame of reference moving with the sphere. The second

term u

(1) satisfies the boundary conditions using a sphere in Stokes flow in free space. [18]

provide the full solution for the third term u

(2), which cancels out the contribution of u

(1)

on the boundary of the cylinder. The magnitudes of u

(0) and u

(1) are O(1) and the sum of

the two velocities satisfies the boundary conditions on the sphere. The error incurred on

the cylinder walls has magnitude O(A/R0). The next reflection u

(2) has magnitude of order

O(A/R0), and the sum u

(0) + u

(1) + u

(2) satisfies the boundary conditions on the cylinder so

that this sum incurs an error on the sphere of order O(A/R0).

Happel and Byrne do not study the convergence nature of the series from this method of

reflections, but notice that each reflection contributes a multiplicative (small) factor A/R0.

To correct for the error made on the sphere by u

(2), the next reflection u

(3) must be of order

O(A/R0). Thus, u

(2) and u

(3) have the same order of magnitude. The rest of the terms are

8

not computed explicitly, but we can expect that this pattern be repeated, so that the series

expansion u = (u(0) + u

(1)) + (u(2) + u

(3)) + . . . decreases by an order of magnitude in pairs,

as indicated explicitly by the parenthetical grouping.

In the asymptotic expansion for u = u

(0) + u

(1) + u

(2) + u

(3) . . ., as formulated in [18] in

cylindrical coordinate (R, ✓, Z) with r =
p
R2 + Z2 is:

u(0)
Z

= �V (t), (2.27)

u(0)
R

= 0, (2.28)

u(1)
Z

= �V (t)

�3A

4r
� 3AZ2

4r3
� A3

4r3
+

3Z2A3

4r5

�

, (2.29)

u(1)
R

= �V (t)

�3ARZ

4r3
+

3A3RZ

4r5

�

, (2.30)

u(2)
Z

=
1

2⇡

Z 1

0

û
Z

(R,�) cos(�Z)d�, (2.31)

u(2)
R

=
1

2⇡

Z 1

0

û
R

(R,�) sin(�Z)d�, (2.32)

P (2)

µ
=

1

2⇡

Z 1

0

P̂ (R,�) sin(�Z)d�, (2.33)

where

û
Z

(R,�) =
�R

2
(H(�) +G(�))I1(�R) +H(�)I0(�R), (2.34)

û
R

(R,�) =
�R

2
(H(�) +G(�))I0(�R)�G(�)I1(�R), (2.35)

P̂ (R,�) = �(H(�) +G(�))I0(�R), (2.36)

9

and

H(�) =
AV {3� (6 + A2�2) (K0(�R0)I2(�R0) +K1(�R0)I1(�R0))}

I0(�R0)I2(�R0)� I1(�R0)2
, (2.37)

G(�) =
AV {�3 + A2(�R0)2 (K1(�R0)I1(�R0) +K2(�R0)I0(�R0))}

I0(�R0)I2(�R0)� I1(�R0)2
, (2.38)

with I
j

and K
j

are modified Bessel functions of the first and second kind.

For our purposes, we cannot truncate at the second reflection u

(2), which is the last term

of the series provided explicitly by [18]. Truncating at the second reflection would imply

satisfying boundary conditions on the wall but not on the sphere, therefore the interface

would pass through the sphere when u

(3) is neglected, as this term is of the same order as

u

(2). In order to compute u

(3), we must have u

(2) on the surface of the sphere for boundary

conditions. An expansion around small values R/R0 and Z/R0, can be made due to the

convergence properties of the infinity � integral of the series expansion of the integrand (see

Section 3.2). Therefore, evaluated at the surface of the sphere, the second reflection u

(2) ,

and thus the third reflection u

(3) is

u(3)
Z

�

�

�

r=A

= �u(2)
Z

�

�

�

r=A

= 2.10444
A

R0
V � 2.18004

A3

R3
0

V � 0.140011
A

R3
0

R2V + . . .

u(3)
R

�

�

�

r=A

= �u(2)
R

�

�

�

r=A

= 1.13669
A

R3
0

RZ V + . . .

(2.39)

The solution of the third reflection problem using the expansion from Equation (2.39) for

the second reflection u

(2) as boundary conditions is derived in Chapter 3. The third reflection

u

(3) was found by stream function solution of the Stokes problem with prescribed flow as

boundary conditions on the sphere.

10

u(3)
R

(R,Z) =
5A8RV Z((�1.13669)� (0.140011)) (3R2 � 4Z2)

8R3
0r

9

� A6RV Z ((�1.13669) (23R2 � 12Z2)� 6(2.18004)r2)

8R3
0r

7

� A6RV Z (�11(0.140011)R2 + 24(0.140011)Z2)

8R3
0r

7

� A4RV Z (�3(�2.10444)R2
0 + 3(2.18004)r2 � 2(0.140011)r2)

4R3
0r

5

� 3A2(�2.10444)RV Z

4R0r3

(2.40)

u(3)
Z

(R,Z) = �A8V ((�1.13669)� (0.140011)) (3R4 � 24R2Z2 + 8Z4)

8R3
0r

9

� A6V (�R2 � Z2) (�1.13669) (3R4 � 24R2Z2 + 8Z4)

8R3
0r

9

� A6V ((2.18004) (�2R4 + 2R2Z2 + 4Z4) + (0.140011) (R4 + 20R2Z2 � 16Z4))

8R3
0r

9

� A4V ((�2.10444)R2
0 (R

2 � 2Z2) + 3(2.18004) (R4 + 3R2Z2 + 2Z4))

4R3
0r

5

� A4V (�2(0.140011) (R4 + 3R2Z2 + 2Z4))

4R3
0r

5

� 3A2(�2.10444)V (R2 + 2Z2)

4R0r3
(2.41)

As mentioned in [9], the asymptotic properties of the reflection series as A/R0 ! 0 are

not discussed by [18]. The asymptotic ordering of terms in equation (2.22) would fail near the

cylinder boundary, which would require techniques from matched asymptotics to address this

nonuniformity in a region near the cylinder’s boundary. By keeping the expansion up to the

third reflection, we no longer satisfy the boundary conditions on the cylinder exactly, but the

violation is consistent with the overall asymptotic error of the retained terms as A/R0 ! 0.

All computations shown in this section use the above Happel and Byrne’s formulation.

The approximate solution for the homogeneous fluid Stokes flow in a cylinder can now be

11

used with variable density and time dependent sphere’s velocity to find the drag force due to

this flow,
I

S

�
s

· n̂dS = �g

Z

⌦
s

⇢0(x3 + Y3(t))d⌦s

� 6⇡AµV (t)K, (2.42)

where ⌦
s

is the sphere domain and K = (1� 2.10444(A/R0) + 2.08877(A/R0)3 + ...)�1 is

the drag coe�cient.

2.2 Perturbation velocity

For the stratification-induced flow, we define G(x, t) = (⇢(x, t)� ⇢0(x3+Y3(t))) and write

the governing equations in a moving frame of reference,

µr2
w = rp

w

�G(x, t)ĝ, (2.43)

r · w = 0, (2.44)

w = 0 for |x| = A, (2.45)

w = 0 for
q

x2
1 + x2

2 = R0, �1 < x3 < 1 (2.46)

w ! 0 for |x3| ! 1. (2.47)

Thus, the boundary conditions for w are homogeneous, and we can find an approximate

solution for w(x, t) using the free space Green’s function due to [29]. This is the solution of

the equations

µr2
W (x,y) = rP (x,y)� ĝ�(x � y), (2.48)

r · W = 0, (2.49)

W = 0 for |x| = A, (2.50)

W ! 0 as |x| ! 1, (2.51)

12

for a Stokeslet of strength ĝ located at the point y outside a rigid sphere of radius A

surrounded by an infinite Stokes fluid. The resultant force on the sphere can be computed

using the Reciprocal Theorem [9].

y

y�

x

Figure 2.2: Diagram of the Stokeslets located at y and y

⇤.

We look for an asymptotic expansion w = w

(0) + w

(1) + w

(2) + w

(3) + ... for small

(⇢(x, t)� ⇢0). The first term of order O (A/R0) can be written as the convolution

w

(0)(x, t) =

Z

⌦
f

G(y, t)W (x,y)d⌦
f

, (2.52)

p(0)
w

(x, t) =

Z

⌦
f

G(y, t)P (x,y)d⌦
f

, (2.53)

where ⌦
f

is the fluid domain.

By interchanging the order of integration (which is allowed because of the convergence

properties determined by the integrands), the force calculation for the first order approximation

13

becomes

I

S

�(0)
w

ij

n
j

dS =

I

S

�p(0)
w

�
ij

+ µ

@w(0)
i

@x
j

+
@w(0)

j

@x
i

!!

n
j

dS

=

Z

⌦
f

G(y, t)

I

S

✓

�P (x,y)�
ij

+ µ

✓

@W
i

(x,y)

@x
j

+
@W

j

(x,y)

@x
i

◆◆

n
j

dS d⌦
f

= �
Z

⌦
f

G(y, t)
Aĝ

4

⇢

�3 (r2 + y23)

r3
� A2 (r2 � 3y23)

r5

�

d⌦
f

, (2.54)

where r = |y|.

Equations (2.52) and (2.54) determine the first order approximation to the fluid flow and

the resultant force on the sphere due to the density variation.

2.3 Final Equations of motion

Combining the results from Sections 2.1 and 2.2, we have the equation for the vertical

component of the velocity of the sphere and the advection of the fluid,

m
s

dV (t)

dt
= m

s

g � g

Z

⌦
s

⇢0d⌦s

�6⇡AµV (t)
�

1� 2.10444(A/R0) + 2.08877(A/R0)
3 + ...

��1

�
Z

⌦
f

G(y, t)
Aĝ

4

⇢

�3 (r2 + y23)

r3
� A2 (r2 � 3y23)

r5

�

d⌦
f

, (2.55)

@⇢

@t
(x, t) + (u(x, t) + w(x, t)) ·r⇢(x, t) = 0. (2.56)

This can be further reduced when written in nondimensional form,

Re St
4⇡

3

⇢
s

⇢ref

dṼ (t)

dt
=

Re

Fr2

✓

4⇡

3

⇢
s

⇢ref
�
Z

⌦̃
s

⇢̃0d⌦̃s

◆

�6⇡Ṽ (t)
�

1� 2.10444(A/R0) + 2.08877(A/R0)
3 + ...

��1

+
Re

Fr2

Z

⌦̃
f

G(y, t)

4

⇢

3 (r̃2 + ỹ23)

r̃3
+

(r̃2 � 3ỹ23)

r̃5

�

d⌦̃
f

, (2.57)

14

which shows that the sphere’s acceleration term dV/dt can be scaled out. We are left with

Ṽ (t) =
Re

Fr2

4⇡

3

⇢
s

⇢ref
�
Z

⌦̃
s

⇢̃0d⌦̃s

+

Z

⌦̃
f

G(y, t)

4

⇢

3 (r̃2 + ỹ23)

r̃3
+

(r̃2 � 3ỹ23)

r̃5

�

d⌦̃
f

!

/(6⇡K),

(2.58)

St
@⇢̃

@ t̃
(x, t) + (ũ(x, t) + w̃(x, t)) · r̃⇢̃(x, t) = 0, (2.59)

where K = (1� 2.10444(A/R0) + 2.08877(A/R0)3 + ...)�1.

In dimensional form, we have our final equations of motion for the sphere and fluid

velocities:

dY3

dt
(t; ⇢) = V (t; ⇢) = (6⇡AµK)�1

✓

m
s

g � g

Z

⌦
s

⇢0(x3 + Y3(t; ⇢))d⌦s

+

+

Z

⌦
f

G(y, t)
Aĝ

4

⇢

3 (r2 + y23)

r3
+

A2 (r2 � 3y23)

r5

�

d⌦
f

!

,

@⇢

@t
(x, t) + (u(x, t;V) + w(x, t; ⇢)) ·r⇢(x, t) = 0. (2.60)

The detailed formulations for the fluid velocitiy w can be found in Chapter 4. The formu-

las (2.60) in addition to the equations (2.27)–(2.30) and (2.52) for the approximation to the

velocity field compose our final model for the settling of the sphere with the specified density

stratification.

Mathematically, this model is a coupled pair of integro-di↵erential equations in both

⇢(x, t) and Y3(t; ⇢), where the speed of the sphere V (t) determines u, and the density field

⇢(x, t) determines the domain of integration for w. The initial data completely determine

the future evolution of the density field by advection through the fluid velocities, whose

combination satisfies the rigid boundary conditions (to within the accuracy of the analytic

approximations based on Stokes flow theory). The equations (2.60), show the highly coupled

system by emphasizing the dependence on ⇢ and V by writing them as arguments of the

functions.

15

CHAPTER 3

STOKES SOLUTION THIRD REFLECTION

3.1 Solution by Stream Function

The third reflection u

(3) =
⇣

u(3)
R

, 0, u(3)
Z

⌘

solves the Stokes equations with a prescribed

flow past the sphere. In cylindrical coordinates, the system of equations reads

µr2
u

(3) = rp(3) (3.1)

r · u(3) = 0 (3.2)

u(3)
Z

�

�

�

�

r=A

= �u(2)
Z

�

�

�

�

r=A

= 2.10444
A

R0
V � 2.18004

A3

R3
0

V � 0.140011
A

R3
0

R2V (3.3)

u(3)
R

�

�

�

�

r=A

= �u(2)
R

�

�

�

�

r=A

= 1.13669
A

R3
0

RZ V (3.4)

u

(3) ! 0 as r ! 1. (3.5)

In spherical coordinates, axial symmetry acts the same as above and u

(3) =
⇣

u(3)
r

, u(3)
✓

, 0
⌘

We

define the stream function to satisfy incompressibility. For the spherical coordinate system

(r, ✓,�) , where ✓ is the polar angle and � the aximuzal angle, the stream function is defined

as

u
r

=
1

r2 sin ✓

@

@✓
(3.6)

u
✓

= � 1

r sin ✓

@

@r
. (3.7)

16

The momentum equation and boundary conditions for becomes

✓

@2

@r2
+

sin ✓

r2
@

@✓

✓

1

sin ✓

@

@✓

◆◆2

 = 0, (3.8)

with boundary conditions

u
r

�

�

�

�

r=A

=
1

r2 sin ✓

@

@✓

�

�

�

�

r=A

= B1 cos ✓ +B2 cos 3✓, (3.9)

u
✓

�

�

�

�

r=A

= � 1

r sin ✓

@

@r

�

�

�

�

r=A

= B3 sin ✓ +B4 sin 3✓, (3.10)

where

B1 =
AV (2.10444R2

0 � 1.86086A2)

R3
0

(3.11)

B2 = �0.319175A3V

R3
0

(3.12)

B3 =
AV (2.3592A2 � 2.10444R2

0)

R3
0

(3.13)

B4 =
0.319175A3V

R3
0

(3.14)

and the behavior at infinity r ! 1,

1

r2 sin ✓

@

@✓
!

r!1
0 (3.15)

� 1

r sin ✓

@

@r
!

r!1
0. (3.16)

The above restrictions leads us to find a solution of the form

 = f(r) + g(r) cos 2✓ + h(r) cos 4✓. (3.17)

17

From the boundary conditions, we obtain the following restrictions on f, g and h

�4 (g(A) + 2h(A))

r2
= B1 (3.18)

�8h(A)

r2
= B2 (3.19)

g(A) = �f(A)� h(A) (3.20)

�2f(A)

r
= B3 (3.21)

2h(A)

r
= B4. (3.22)

The above together with the conditions at infinity, we get that the stream function is

 (r, ✓) = �
�

20r3
��1 �

A sin2(✓)
�

3A4(B2 � 4B4)

� A2r2(5B1 + 6B2 + 10B3 � 14B4) + 5A2 cos(2✓)
�

A2(B2 � 4B4)

+ r2(4B4 � 3B2)
�

+ r4(�5B1 + 3B2 + 10B3 � 2B4)
��

,

(3.23)

18

and the flow in spherical coordinate is,

u
r

=
A2V

4r5R3
0

cos(✓)
�

A6((�0.14001)� (1.13669))

+ A4r2(3(1.13669)� 2(�2.18001) + (�0.14001))

+ A2
�

�2(2.10444)r2R2
0 + 6(�2.18001)r4 (3.24)

� 4(�0.14001)r4
�

+ A4
�

5A2 � 7r2
�

((1.13669)

� (�0.14001)) cos(2✓) + 6(2.10444)r4R2
0

�

,

u
✓

=
A2V

16r5R3
0

sin(✓)
�

9A6((1.13669)� (�0.14001))� A4r2((1.13669)

+ 4(�2.18001)� 9(�0.14001))

� 4A2
�

(2.10444)r2R2
0 + 3(�2.18001)r4 � 2(�0.14001)r4

�

(3.25)

+ A4
�

15A2 � 7r2
�

((1.13669)

� (�0.14001)) cos(2✓)� 12(2.10444)r4R2
0

�

.

Changing to cylindrical coordinates, we obtain the expression for the third reflection of

the stokes velocity.

u(3)
R

=
5A8RV Z((�1.13669)� (0.140011)) (3R2 � 4Z2)

8R3
0r

9

� A6RV Z ((�1.13669) (23R2 � 12Z2)� 6(2.18004)r2)

8R3
0r

7

� A6RV Z (�11(0.140011)R2 + 24(0.140011)Z2)

8R3
0r

7

� A4RV Z (�3(�2.10444)R2
0 + 3(2.18004)r2 � 2(0.140011)r2)

4R3
0r

5

� 3A2(�2.10444)RV Z

4R0r3
,

(3.26)

19

u(3)
Z

= �A8V ((�1.13669)� (0.140011)) (3R4 � 24R2Z2 + 8Z4)

8R3
0r

9

� A6V (�R2 � Z2) (�1.13669) (3R4 � 24R2Z2 + 8Z4)

8R3
0r

9

� A6V ((2.18004) (�2R4 + 2R2Z2 + 4Z4) + (0.140011) (R4 + 20R2Z2 � 16Z4))

8R3
0r

9

� A4V ((�2.10444)R2
0 (R

2 � 2Z2) + 3(2.18004) (R4 + 3R2Z2 + 2Z4))

4R3
0r

5

� A4V (�2(0.140011) (R4 + 3R2Z2 + 2Z4))

4R3
0r

5

� 3A2(�2.10444)V (R2 + 2Z2)

4R0r3
.

(3.27)

20

3.2 Second Reflection Approximation

Performing the change of variables ↵ = �R0, the second reflection from Section (2.1),

u

(2) =
⇣

u(2)
R

, 0, u(2)
Z

⌘

in cylindrical coordinates, is expressed as

u(2)
R

(R,Z) =
1

2⇡R0

Z 1

0

û
R

(R/R0,↵) sin(↵Z/R0)d↵,

u(2)
Z

(R,Z) =
1

2⇡R0

Z 1

0

û
Z

(R/R0,↵) cos(↵Z/R0)d↵,
(3.28)

where

û
R

(R/R0,↵) =
↵R

2R0

⇣

H(↵) +G(↵)
⌘

I0

✓

↵
R

R0

◆

�G(↵)I1

✓

↵
R

R0

◆

, (3.29)

û
Z

(R/R0,↵) =
↵R

2R0

⇣

H(↵) +G(↵)
⌘

I1

✓

↵
R

R0

◆

+H(↵)I0

✓

↵
R

R0

◆

, (3.30)

and

H(↵) =
AV

n

3�
⇣

6 + A

2

R

2
0
↵2
⌘⇣

K0(↵)I2(↵) +K1(↵)I1(↵)
⌘o

I0(↵)I2(↵)� I1(↵)2
, (3.31)

G(↵) =
AV

n

�3 + A

2

R

2
0
↵2
⇣

K1(↵)I1(↵) +K2(↵)I0(↵)
⌘o

I0(↵)I2(↵)� I1(↵)2
, (3.32)

where I
j

and K
j

are modified Bessel functions of the first and second kind.

The integrals in equation (3.28) are not easily solved analytically, therefore to evaluate

the flow on the sphere we can perform an expansion far from the tank walls as R/R0 ! 0

and Z/R0 ! 0.

To expand the integrand like in [18] by their infinite series representation, we use the

21

following series expansions which converge in the whole complex plane.

cos (�Z) = cos

✓

↵Z

R0

◆

=
1
X

n=0

(�1)n (↵Z)2n

R2n
0 (2n)!

= 1� ↵2Z2

2R2
0

+ . . . (3.33)

sin (�Z) = sin

✓

↵Z

R0

◆

=
1
X

n=0

(�1)n (↵Z)2n+1

R2n+1
0 (2n+ 1)!

=
↵Z

R0
+ . . . (3.34)

I0 (�R) = I0

✓

↵Z

R0

◆

=
1
X

n=0

(1/4)n (↵R)2n

n!�(n+ 1)R2n
0

= 1� ↵2Z2

2R2
0

+ . . . (3.35)

I1 (�R) = I1

✓

↵Z

R0

◆

=
↵R

2R0

1
X

n=0

(1/4)n (↵R)2n

n!�(n+ 2)R2n
0

= 1� ↵2Z2

2R2
0

+ . . . (3.36)

The second reflection then becomes,

u(2)
R

=
1

2⇡R0

Z 1

0

d�

↵

2

R

R0

⇣

H (↵) +G (↵)
⌘

1
X

n=0

(1/4)n (↵R)2n

n!�(n+ 1)R2n
0

(3.37)

� G(↵)
↵R

2R0

1
X

n=0

(1/4)n (↵R)2n

n!�(n+ 2)R2n
0

! 1
X

n=0

(�1)n (↵Z)2n+1

R2n+1
0 (2n+ 1)!

!

,

u(2)
Z

=
1

2⇡R0

Z 1

0

d�

↵

2

R

R0

⇣

H (↵) +G (↵)
⌘ ↵R

2R0

1
X

n=0

(1/4)n (↵R)2n

n!�(n+ 2)R2n
0

(3.38)

+ H(↵)
1
X

n=0

(1/4)n (↵R)2n

n!�(n+ 1)R2n
0

! 1
X

n=0

(�1)n (↵Z)2n

R2n
0 (2n)!

!

.

Here, we justify Happel and Byrne expansion as R/R0 ! 0 and Z/R0 ! 0 inside the

infinite ↵ integral. Using the asymptotic expansions as ↵ ! 1 provided in [2] and the series

representation, we show the convergence of the integrals of the partial sums due to their

exponentially decaying behavior as ↵ ! 1. Using,

I
j

(↵) ⇠
↵!1

e↵p
2⇡�R0

✓

1� 4j2 � 1

8�R0
+ . . .

◆

(3.39)

K
j

(↵) ⇠
↵!1

r

⇡

2↵
e�↵

✓

1 +
4j2 � 1

8↵
+ . . .

◆

, (3.40)

22

we get that,

H(↵) ⇠
↵!1

2⇡A3V

R2
0

↵3e�2↵. (3.41)

and,

H(↵) = Ĥ(↵)
2⇡A3V

R2
0

↵3e�2↵ (3.42)

where Ĥ(↵) ! 1 as ↵ ! 1. (3.43)

For the purpose of being brief, we focus on the last portion of the u(2)
Z

integral:

Z 1

0

Fd↵ =

Z 1

0

d↵H(↵)I0(↵R/R0) cos(↵Z/R0) (3.44)

F =

H(↵)
1
X

n=0

(1/4)n (↵R)2n

n!�(n+ 1)R2n
0

!

cos (↵Z/R0) . (3.45)

Let F =
P

F
n

, and F
n

given by:

F
n

= H(↵)
(1/4)n (↵R)2n

n!2R2n
0

cos(↵Z/R0) (3.46)

We know that,

Z 1

0

�

�F
n

�

�d↵ C1
(1/4)n

n!2

Z 1

0

�

↵2n+3e�2↵
�

d↵, (3.47)

Therefore solving the integral we get,

Z 1

0

�

�F
n

�

�d↵ C1
(1/4)n

n!2

✓

(2n+ 3)!

22n+4

◆

(3.48)

23

taking the infinite sum

1
X

n=0

Z 1

0

�

�F
n

�

�d↵
1
X

n=0

C1
(1/4)n

n!2

✓

2n+ 3

22n+4

◆

(3.49)

 C1
22

9
p
3

(3.50)

< 1. (3.51)

And so, since

1
X

n=0

Z 1

0

�

�F
n

�

�d↵ < 1 (3.52)

Then by the Lebesgue Dominated Theorem,

Z 1

0

Fd↵ =
1
X

n=0

Z 1

0

F
n

d↵, (3.53)

and

Z 1

0

Fd↵ ⇠
Z 1

0

N

X

n=0

F
n

d↵. (3.54)

Therefore,

Z 1

0

d↵H(↵)I0(↵R/R0) cos(↵Z/R0) (3.55)

=

Z 1

0

d↵H(↵)
1
X

n=0

(1/4)n (↵R)2n

n!�(n+ 1)Rn

0

1
X

n=0

(�1)n (↵Z)2n

R2n
0 (2n)!

(3.56)

⇠
Z 1

0

d↵H(↵) +

Z 1

0

d↵H(↵)
↵2R2

4R2
0

+ . . . (3.57)

The ↵ integrals can be computed numerically to arbitrary accuracy providing a way to

find the boundary conditions near the sphere. Similarly, it can be shown that other integrals

involved in the computation of u

(2) satisfy the same property. In Figure 3.1, we compare u

(2)

24

with its approximation .

25

(a)

5 10 15 20 25 30

-0.003

-0.002

-0.001

0.001

0.002

0.003

n-0.7325

-0.7324

-0.7323

-0.7322

-0.7321

-0.7320

-0.7319

-0.7318

-0.7325

-0.7324

-0.7323

-0.7322

-0.7321

-0.7320

-0.7319

-0.7318
approximation
full integral

u
(2

)
R

� � � �

r
=

A

(b)

-0.7325

-0.7324

-0.7323

-0.7322

-0.7321

-0.7320

-0.7319

-0.7318

-0.7325

-0.7324

-0.7323

-0.7322

-0.7321

-0.7320

-0.7319

-0.7318
approximation
full integral

5 10 15 20 25 30

-0.7325

-0.7324

-0.7323

-0.7322

-0.7321

-0.7320

-0.7319

u
(2

)
Z

� � � �

r
=

A

n

Figure 3.1: Comparison of u

(2) with its expansion as R/R0 ! 0 and Z/R0 ! 0, evaluating
on the surface of the sphere r =

p
R2 + Z2 = A, along ✓ = [0, ⇡] discretized by n.Blue

dots correspond to numerical integration and red dots to the approximation. Values are for
A = 0.635 cm, R0 = 5.4 cm, V = 1.

26

CHAPTER 4

THE OSEEN TENSOR

4.1 Definition of Perturbation Velocity

The perturbation velocity is written as a convolution with the Green’s function W
j

(x,y),

w(0)
j

(x, t) =

Z

⌦
f

✏G(y, t)W
j

(x,y)d⌦
f

, (4.1)

where the Green’s function is written explicitly in terms of the Oseen tensor [29] T
jk

as

W
j

(x,y) = gT
j3/8⇡µ and

T
jk

=
�
jk

r
+

(x
j

� y
j

)(x
k

� y
k

)

r3
� a

|y|
�
jk

r⇤
� a3

|y|3
(x

j

� y⇤
j

)(x
k

� y⇤
k

)

r⇤3

� |y|2 � a2

|y|

⇢

y⇤
j

y⇤
k

a3r⇤
� a

|y|2r⇤3
⇥

y⇤
j

(x
k

� y⇤
k

) + y⇤
k

(x
j

� y⇤
j

)
⇤

+
2y⇤

j

y⇤
k

a3
y⇤
l

(x
l

� y⇤
l

)

r⇤3

�

� (|x|2 � a2)
@�

k

@x
j

,

�
k

=
|y|2 � a2

2|y|3

✓

3y
k

ar⇤
+

a(x
k

� y⇤
k

)

r⇤3
+

2y
k

a
y⇤
j

@

@x
j

1

r⇤
+

3a

|y⇤|
@

@y⇤
k

log
|y⇤|r⇤ + x

j

y⇤
j

� |y⇤|2

|x||y⇤|+ x
j

y⇤
j

◆

,

where a is the radius of the sphere, y

⇤ = a

2

|y|2y, r = |y�x|, r⇤ = |y⇤�x|, and the convention

of sum over repeated indexes is used. Thus, the Green’s function can be viewed as resulting

from the superposition of appropriate singularities inside the radius-a sphere at the reflection

point corresponding to the position y of the Stokeslet outside the sphere

27

4.2 Integrable Singularities

The integrand W
j

has a singularities at x = y coming from the terms

�
jk

r
+

(x
j

� y
j

)(x
k

� y
k

)

r3
� a

|y|
�
jk

r⇤
(4.2)

For simplicity, let us focus on the third component of the velocity W3, defining 12 terms

that add up to the total Green’s function vertical component. Each term is analyzed for

singularities separately.

W3 =
n=12
X

n=1

I
n

(4.3)

This first integrand term I1 is defined as

I1 =
1

r
+

(x3 � y3)2

r3
. (4.4)

The singularities of this term happen when

r = |x � y| = 0 (4.5)

x = y

28

These singularities are integrable. In fact, in cylindrical coordinates

(4.6)
Z

⌦
f

I1d⌦f

=

Z

⌦
f

✓

1

r
+

(x3 � y3)2

r3

◆

d⌦
f

=

Z

(⇢,⇣)

⇢ d⇢ d⇣

Z 2⇡

0

d✓
⇣ 1
p

R2 + ⇢2 � 2R⇢ cos(�� ✓) + (Z � ⇣)2

+
(Z � ⇣)3

(R2 + ⇢2 � 2R⇢ cos(�� ✓) + (Z � ⇣)2)
3
2

⌘

=

Z

(⇢,⇣)

⇢ d⇢ d⇣
4K
⇣

� 4R⇢

R

2�2⇢R+⇢

2+(⇣�Z)2

⌘

p

(⇢�R)2 + (⇣ � Z)2
+

4(Z � ⇣)2E
⇣

� 4R⇢

R

2�2⇢R+⇢

2+(⇣�Z)2

⌘

((⇢�R)2 + (⇣ � Z)2)
3
2

where K and E are elliptic integrals of the first and second kind respectively. To proof

integrability we multiply the integrand by an area element and bound it. If

lim
⇢!R

⇣!Z

⇣

p

(⇢�R)2 + (⇣ � Z)2
⌘

↵

�

�

�

I(⇢, ⇣)
�

�

�

 M, (4.7)

then,
�

�

�

I(⇢, ⇣)
�

�

�

 M
⇣

p

(⇢�R)2 + (⇣ � Z)2
⌘

↵

(4.8)

for ↵ < 2 because in a neighborhood D of (R,Z)

Z

D

M
⇣

p

(⇢�R)2 + (⇣ � Z)2
⌘

↵

d⇢d⇣ < 1

)
Z

D

�

�

�

I(⇢, ⇣)
�

�

�

d⇢d⇣ < 1

)
Z

D

I(⇢, ⇣)d⇢d⇣ < 1

(4.9)

The integrand has one singularity when R = ⇢ and Z = ⇣. Around this point (R,Z) =

(⇢, ⇣), the elliptic integral of the first kind K approaches zero and E ⇠ i
q

4R⇢

R

2�2⇢R+⇢

2+(⇣�Z)2

29

I(⇢, ⇣) = ⇢

✓

4K
⇣
� 4R⇢

R

2�2⇢R+⇢

2+(⇣�Z)2

⌘

p
(⇢�R)2+(⇣�Z)2

+
4(Z�⇣)2E

⇣
� 4R⇢

R

2�2⇢R+⇢

2+(⇣�Z)2

⌘

((⇢�R)2+(⇣�Z)2)
3
2

◆

I ⇢

✓

4p
(⇢�R)2+(⇣�Z)2

+
4(Z�⇣)2E

⇣
� 4R⇢

R

2�2⇢R+⇢

2+(⇣�Z)2

⌘

((⇢�R)2+(⇣�Z)2)
3
2

◆

lim
⇢!R

⇣!Z

⇣

p

(⇢�R)2 + (⇣ � Z)2
⌘

↵

�

�

�

⇢

✓

4p
(⇢�R)2+(⇣�Z)2

+ 16R⇢(Z�⇣)2

((⇢�R)2+(⇣�Z)2)2

◆

�

�

�

 M

This remaining integrands with denominator r⇤ have no singularities because r⇤ 6= 0 since

y

⇤ is always located inside the sphere, exterior to the fluid domain.

4.3 Line of Removable Singularities

Before we integrate the Green’ s function over the fluid domain, it is convenient to combine

alike singularities and recognize cancelations. The line of removable singularities appears

when the observation point x is co-linear with the evaluation point y in the opposite direction.

They come from the log term I
L

in the � expression and cancel out leaving no problems in

the physical domain.

I
L

= I9 + I10 + I11 + I12

I
L

=
�|y⇤|

⇣

1
|x�y

⇤| �
(x3�y

⇤
3)

2

|x�y

⇤|3

⌘

+ y

⇤
3(x3�y

⇤
3)

|y⇤||x�y

⇤| + 1

�|y⇤|2 + |y⇤||x � y

⇤|+ x1y⇤1 + x2y⇤2 + x3y⇤3

�

⇣

|y⇤|(x3�y

⇤
3)

|x�y

⇤| + y⇤3

⌘⇣

� |y⇤|(x3�y

⇤
3)

|x�y

⇤| + |x�y

⇤|y⇤3
|y⇤| + x3 � 2y⇤3

⌘

(�|y⇤|2 + |y⇤||x � y

⇤|+ x1y⇤1 + x2y⇤2 + x3y⇤3)
2

�
x3y

⇤
3

|y⇤||x| + 1

|y⇤||x|+ x1y⇤1 + x2y⇤2 + x3y⇤3
+

⇣

|y⇤|x3

|x| + y⇤3

⌘⇣

|x|y⇤3
|y⇤| + x3

⌘

(|y⇤||x|+ x1y⇤1 + x2y⇤2 + x3y⇤3)
2

30

As an example, lets take a closer look at the term I9,

I9 =
3A
�

(x3 � y⇤3)
�

|y⇤|2(x3 � y⇤3) + r⇤2y⇤3
�

� r⇤2|y⇤|(|y⇤|� r⇤)
�

r⇤3|y⇤|2 (r⇤|y⇤|� |y⇤|2 + x1y⇤1 + x2y⇤2 + x3y⇤3)
.

The singularities of this term I9 happen when its denominator vanishers at

r⇤|y⇤|� |y⇤|2 + x1y
⇤
1 + x2y

⇤
2 + x3y

⇤
3 = 0

|y⇤|
✓

r⇤ � |y⇤|+ x · y

⇤

|y⇤|

◆

= 0

|y⇤|
✓

r⇤ � |y⇤|+ (x � y

⇤ + y

⇤) · y

⇤

|y⇤|

◆

= 0

|y⇤| (r⇤ + (x � y

⇤) · n⇤) = 0

|x � y

⇤|+ (x � y

⇤) · n⇤ = 0

() x � y

⇤ = ↵y

⇤

|↵||y⇤| = ↵y

⇤ · y

⇤

|y⇤ |

�|↵| = ↵

x = y

⇤ + ↵ · y⇤

↵ < 0

We can see the denominator of each term in I
L

vanishes along an entire line, and it is

not surprising that each term alone is divergent, since we know we need the addition of all

the log terms I9 + I10 + I11 + I12 for the cancelation of singularities to occur.Plugging in the

co-linear terms to y = ↵x, for ↵ < 0 we get

31

log
|y⇤|r⇤ + x

j

y⇤
j

� |y⇤|2

|x||y⇤|+ x
j

y⇤
j

�

�

�

x

j

=↵y

j

(4.10)

= log
|y⇤||(↵� 1)y⇤|+ ↵y⇤

j

y⇤
j

� |y⇤|2

|↵y

⇤||y⇤|+ ↵y⇤
j

y⇤
j

(4.11)

= log
|y⇤||(↵� 1)y⇤|+ ↵y

⇤ · y⇤ � |y⇤|2

|↵y

⇤||y⇤|+ ↵y

⇤ · y⇤ (4.12)

= log
|↵� 1|+ (↵� 1)

|↵|+ ↵
(4.13)

which is independent of the variable of di↵erentiation y⇤3.

4.4 Reducing volume integral to 2D integral

The analytical integration in ✓ of each of the I
j

terms is a long calculation (see Appendix

A). Most of the integrals can be computed by finding the integral of the form

F =

Z 2⇡

0

d✓p
B + C cos ✓

=
4Kp
B + C

(4.14)

and its derivatives with respect to B and C. In this expression, B and C are functions of the

observation point x and the remaining integration variables ⇢ and ⇣.

32

CHAPTER 5

EXPERIMENTAL WORK

In this chapter we discuss experiments involving solid and porous spheres settling in the

low Reynolds regime, as well as particle clouds falling in homogenous and stratified finite

Reynolds fluids. The stratified density profiles include linear and sharp stratification. The set

up consists of miscible, often stably sharp stratifications of two layers and settling spheres

that are more dense than the ambient fluid densities.

We enhance the e↵ects of stratification and entrainment by studying a sphere in di↵erent

environments. We compare these results to that of a porous sphere, to make it a more similar

configuration to that of the ocean. Finally, experiments of multiple particles are performed

to show the extent of entrainment in the delayed settling of aggregates. All experiments shed

light to many issues of bio- and geo-physical applications. Similar to the higher Reynolds

number experiments in [1], we find that a single sphere exhibits a prolonged settling rate and

slows down substantially through a sharply stratified fluid. In addition, we find that there

are significant di↵erences between the Stokes dominated regime and the Entrainment regime,

where di↵usion of salt can play a role.

5.1 Methods

Clear, cylindrical plexiglass tanks with diameters ranging from 6.2 cm to 18.9 cm and

heights of either 31.8 cm or 52.1 cm are stratified with a top layer of lower density corn

syrup poured over a higher density (achieved by adding a chosen type of salt, often NaCl or

KI) corn syrup solution. We start with enough fluid for both layers that is mixed together

until homogenous. Then, we separate each layer and adjust with salt and water to attain

desired density and viscosity. The layers are left to degas overnight if needed. Evaporation is

33

minimized by covering free surfaces with airtight membranes and thermal convection can be

controlled by a thermal bath.

The settling of multiple particles thorough density transitions is performed in a fish tank

with dimensions of 61.6 cm by 61.6 cm by 34.3 cm. Room temperature, DI water is mixed

with room-temperature salt water to create two layers of the desired densities. To obtain a

sharp stratification and minimize the density transition layer, we use a di↵user, composed of

a sponge surrounded by buoyant styrofoam. The bottom poured into the tank, we place the

di↵user carefully, and pour the top layer though the di↵user at a low speed. Conductivity

meters can measure the tank at discrete heights that helps us obtain a density profile. The

beads are then placed in a funnel closed with a plunger until release time to minimize initial

speed.

In the case of sharp stratifications, the method vary depending on the viscosity fluid. For

saltwater solutions, we use the same method as [1] - the bottom more dense layer is poured

first, then a floating di↵user is placed on the bottom layer and slowly pour the top layer less

dense fluid. The density profile is measured with an Orion conductivity probe. In the case of

corn syrup, we slowly pour the top layer sliding it down the inclined wall of the tank.

To obtain a linear stratification, we use the two-bucket method from [16], where the top

layer fluid from the first bucket is pumped into the mixing bucket at one half the flow rate as

the mixed fluid is pumped into the tank where the experiment is to be conducted.

5.1.1 Data Analysis

The data obtained from experiments is recorded by taking a video or pictures at uniform

intervals in time of the experiments. We then use DataTank - a graphical, object oriented

programming work environment- to track the position of the particle and its velocity is

obtained from numerical di↵erentiation. We process the images by subtracting o↵ the

background and then taking a contour of the sphere to find its center of mass in time.

34

5.1.2 Matching viscosities

In order to compare our experiments with the theory, the viscosities between top and layer

fluid µ
t

and µ
b

must be matched within 2% of each other. The matching process requires

an extra level of careful measurements and adding water of to adjust while maintaining the

desired density. We have collected data to understand the e↵ect of water concentration in the

dynamic viscosity of corn syrup. Starting with pure corn syrup at 20oC of viscosity ⇡ 40P ,

we add di↵erent amounts of water obtaining the plot in Figure 5.1.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

W
at

er
 P

er
ce

nt
ag

e
 (

%
)

Dynamic Viscosity (P)

Water Percentage vs. Viscosity of Corn Syrup at 20�

Figure 5.1: Plot of water percentage vs. dynamic viscosity (P). This data aids the viscosity
matching process between the fluid layers of corn syrup.

If the layers are di↵erent viscosities, we obtain di↵erent outcomes depending on which

viscosity is higher. We have performed experiments when the top layer viscosity µ
t

is higher

than the bottom layer viscosity µ
b

and vicerversa. So far, the observations show that if

µ
t

> µ
b

, then the sphere takes longer to achieve terminal velocity in the bottom layer. Further

experiments should be conducted to compare these with the matched viscosities cases.

35

5.2 Solid Sphere Experiments

In this section, we focus on the single solid sphere experiments settling in two-layer

stratifications. The solutions for a sphere settling in homogenous environment are well known.

Experimentally, we have homogenous runs in fluid of density equal to that of the bottom

layer density ⇢
b

as a bench mark to compare with the behavior of the sphere when settling in

the bottom layer of a two-layer stratified fluid. IN each layer, the sphere should approach the

theoretical terminal velocity.

Theoretically the terminal velocity in the bottom layer in the absence of entrainment is

given by :

V
b

=
2K

9

gA2(⇢
s

� ⇢
b

)

µ
b

(5.1)

where K = 2.10444(A/R0)� 2.08877(A/R0)3 is the enhanced wall drag coe�cient [18].

In two layers, the sphere slows down beyond its terminal velocity to the extra buoyancy

force provided by the entrainment fluid. In Figures (5.2) and (5.3), we show two Stokes

dominated experiments for di↵erent radius spheres. This e↵ect is magnified when the bottom

layer density approaches the density of the sphere, the sphere velocity approaches zero, and

the residence time increases. Because we are interested in testing the accuracy of the model

as we approach the entrainment regimes, we perform a series of experiments increasing the

bottom layer density. Examples of these experiments are portrayed in Figure (5.4). We note

that if viscosities are not very closely matched, the results would be not agree perfectly with

the theory, as seen in Figure (5.5)

36

time: 95 s A = 0.641 cm, ρt = 1.34473, ρb = 1.34767, μ= 5.1595,

60 70 80 90 100 110 120 130 140 150 160

-5

0

5

10

15

time (s)

sp
he

re
 p

os
iti

on
 (c

m
)

60 70 80 90 100 110 120 130 140 150 160
0.10

0.15

0.20

0.25

0.30

time (s)

sp
he

re
 v

el
oc

ity
 (c

m
/s

)

Figure 5.2: Velocity profiles of sphere of radius A = 0.641cm and density ⇢
s

= 1.36712g/cm3

settling in a two-layer stratification with densities ⇢
t

= 1.34473 g/cm3and ⇢
b

= 1.34767 g/cm3

and average viscosity µ = 5.1595 Poise. The black line represents the experiment tracking
while, the dashed lines correspond to the theoretical terminal velocities and the vertical blue
line shows the time at which the sphere is shown.

37

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

-10

-5

0

5

10

15

20 Sphere Position

Time (sec)

Po
si

tio
n

(c
m

)

A = 0.233 cm, ρs =1.4 g/cm3 ρt = 1.3616 g/cm3, ρb = 1.36628 g/cm3, μt = 10.7307 Poise, μb = 11.0323 Poise

0 100 200 300 400 500 600 700 800 900 1000 1100
0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Time (sec)

Ve
lo

ci
ty

 (c
m

/s
)

Figure 5.3: Velocity profiles of sphere of radius A = 0.233 cm and density ⇢
s

= 1.4 g/cm3

settling in a two-layer stratification with densities ⇢
t

= 1.3616 g/cm3and ⇢
b

= 1.36628 g/cm3

and viscosities µ
t

= 10.7307 Poise and µ
b

= 11.0323 Poise. The black line represents the
experiment tracking while, the dashed lines correspond to the theoretical terminal velocities.

38

ρb = 1.35425
ρb = 1.36414
ρb = 1.36623

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

time (s)

ve
lo

ci
ty

 (c
m

/s
)

Figure 5.4: Series of experiments from Stokes dominated regimes to Entrainment dominated
regimes. Experimentally measured velocity profiles of sphere of density ⇢

s

= 1.36712 g/cm3

and radius A = 0.641 cm settling in a two-layer stratification with similar top layer density
and sequentially increasing bottom layer densities ⇢

b

= 1.35425, 1.36414, 1.36623 g/cm3

39

Experiment
Theory

density from measured terminal (Vtm) is ρs= 1.36709 g/cm3

-10 -5 0 5 10 15 20

0.05

0.10

0.15

0.20

0.25

time (s)

sp
he

re
 v

el
oc

ity
 (c

m
/s

)

Experiment
Theory

density from measured terminal (Vtm) is ρs= 1.36716 g/cm3

-10 -5 0 5 10 15 20

0.05

0.10

0.15

0.20

0.25

time (s)

sp
he

re
 v

el
oc

ity
 (c

m
/s

)

Experiment
Theory

density from measured terminal (Vtm) is ρs= 1.36716 g/cm3

-10 -5 0 5 10 15 20

0.05

0.10

0.15

0.20

0.25

time (s)

sp
he

re
 v

el
oc

ity
 (c

m
/s

)

Figure 5.5: Velocity profiles of sphere of radius A = 0.641 cm and density ⇢
s

= 1.36712g/cm3

settling in a two-layer stratification with densities ⇢
t

= 1.34647g/cm3and ⇢
b

= 1.35000g/cm3

and viscosities µ
t

= 5.06980 Poise and µ
b

= 5.27610 Poise. The black line represents the
experiment tracking while the blue line indicates the full theory using the top layer viscosity
in the first upper panel, an average viscosity in the second panel, and bottom layer viscosity
in the third lower panel. The dashed lines correspond to their respective theoretical terminal
velocities using the code paremeters

40

5.3 Porous Sphere Experiments

A porous sphere assimilates better highly porous marine aggregates in the ocean. Un-

derstanding porous sphere settling and its comparison to solid sphere helps us enhance the

e↵ect of di↵usion at the interface and understand its significance. Porous spheres that can be

controlled the porosity and solid part density sphere is by drilling a solid sphere.

A sphere of mass m
s

= 1.4492 ± 0.0010 g with radius A = 0.635 ± 0.003 cm , and

density ⇢
s

= 1.3651 g/cm3 was drilled to obtain a m
d

= 0.8986 ± 0.0010 g and porosity

P = 1�m
d

/m
s

⇡ 0.38. The size of the drill bit was approximately 0.125 cm and about 102

concentric holes were drilled, which made the surface area of the holes to be about 1/4 of the

original sphere’s surface area .This drilled sphere was dropped in a tank of R0 = 5.4 cm of

homogenous fluid consisting of a salt,water, and corn syrup mixture.

Figure 5.6: Picture of a plastic drilled sphere used in this sections experiments with radius
A = 0.635 cm, mass m

s

= 0.8986g, and porosity P = 0.38.

In a sharply stratified environment, a solid sphere and a porous sphere were dropped into

the same tank and their velocities compared. The velocity profiles are similar, showing the

importance of entrainment in the long residence time of solid spheres, making it comparable

with residence time of porous spheres that were initially dense than the bottom layer thus

requiring di↵usion of salt in order to fall through the bottom layer.

Homogenous experiments in salty corn syrup were also performed to understand the need

41

0 200 400 600 800 1000 1200 1400 1600 1800 2000−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

 time (s)

ve
lo

ci
ty

 (c
m

/s
)

Solid Sphere
Drilled Sphere

Velocity (cm/s)

Figure 5.7: Velocity comparison between black solid line for the solid sphere and blue dashed
line for the drilled sphere.

for di↵usion. In the first homogenous experiment, the fluid inside the drilled sphere was

of density ⇢
f

, same salt-water-corn syrup mixture the sphere was dropped in. Therefore,

there should be no evidence of di↵usion. The experiment was performed inside a tempera-

ture bath to avoid the e↵ects of convection. The parameters of the experiment are listed below:

42

A = 0.635 cm - sphere radius

⇢
s

= 1.3651 g/cm3 - density of sphere’s solid part

P = 0.3799 - porosity of sphere

R0 = 5.4 - radius of the tank

⇢
f

= 1.36455 g/cm3 - density of the homogenous fluid in tank

⇢
sf

= (1� P)⇢
s

+ P⇢
f

= 1.36456 g/cm3 - density of the sphere

µ
f

= 14.763783 Poise - dynamic viscosity of the homogenous fluid

0 1000 2000 3000 4000 5000 6000 7000−1

0

1

2

3

4

5

6 x 10−3

time(s)

ve
lo

ci
ty

(c
m

/s
)

No Diffusion Experiment in Temp. Bath

Figure 5.8: Velocity profile of drilled sphere with e↵ective density ⇢
sf

= 1.36455 g/cm3 ,
computed terminal velocity for ⇢

sf

is shown in blue

The sphere behaves like a solid sphere would, reaching and staying at terminal velocity

43

until it starts to slow down 10 cm from the bottom of the tank. For the values given

above, the theoretical terminal velocity for a solid sphere in a cylinder is computed to be

vt = 0.00407 ± 4 ⇥ 10�5 cm/s shown as the blue line. However, the measured terminal

velocity is higher, possibly a sign of di↵erent drag force on the surface of the drilled sphere.

Another experiment in homogenous fluid in order to see evidence of di↵usion. This time, we

repeated the experiment dropping the drilled sphere in homogenous salty corn syrup fluid of

density ⇢
f

but with the important di↵erence that we pre-soaked the drilled sphere with fluid

of 0% salinity, making the e↵ective density of the drilled sphere ⇢
si

< ⇢
f

. We submerged

the drilled sphere inside the fluid and hold it with a cap at the surface of tank. Since the

e↵ective density of the drilled sphere is initially less than the surrounding fluid, the porous

sphere must stay at trapped at the top of fluid until di↵usion of salt increases its e↵ective

density helping it settle. The experiment was performed inside a temperature bath to avoid

the e↵ects of convection. The parameters of the experiment are listed below:

A = 0.635 cm - sphere radius

⇢
s

= 1.3651 g/cm3 - density of sphere’s solid part

P = 0.37 - porosity of sphere

R0 = 5.4 - radius of the tank

⇢
i

= 1.35218 g/cm3 - density of the fluid initially inside the sphere

⇢
f

= 1.36364 g/cm3 - density of the homogenous fluid in tank

⇢
si

= (1� P)⇢
s

+ P⇢
i

= 1.36032 g/cm3 - density of the sphere initially

⇢
sf

= (1� P)⇢
s

+ P⇢
f

= 1.36456 g/cm3 - density of the sphere after di↵usion

µ
f

= 14.763783 Poise - dynamic viscosity of the homogenous fluid

µ
i

= 12.488899 Poise - dynamic viscosity of the fluid inside the sphere

44

0 1 2 3 4 5 6
x 104

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 x 10−3

ve
lo

ci
ty

(c
m

/s
)

time(s)

Figure 5.9: Velocity profile of drilled sphere initially with e↵ective density ⇢
si

= 1.36032
g/cm3 sinking in a homogenous surrounding fluid of density ⇢

f

= 1.36364. The drilled sphere
begins to fall when its e↵ective density becomes larger than the ambient fluid due to di↵usion
of salt. The theoretical terminal velocity for a solid sphere of density ⇢

sf

is shown in blue.

The velocity profile shown in below shows the velocity profile of the drilled sphere, which

behaves as expected, having zero velocity for a long time until eventually increasing its

velocity as it exchanges fluid with the surrounding salty corn syrup, thus becoming denser

while settling. For the values given above, the theoretical terminal velocity for a solid sphere

of density ⇢
sf

in a cylinder is shown as the blue line above. However, the highest measured

velocity is a smaller, possible because the drilled sphere did not have time to exchange all

the fluid inside before reaching the bottom of the tank. Approximately around t = 2.6⇥ 104

seconds, the sphere is 10 cm from the bottom of the tank and its velocity begins to slow

down as it approaches the rigid surface.

45

5.3.1 Further homogenous experiments

More experiments were conducted with the drilled sphere to understand the evidence

of di↵usion. When the fluid inside the drilled sphere was the same salt-water-corn syrup

mixture the sphere was dropped in, there should be no evidence of di↵usion. All experiments

were performed inside a temperature bath to avoid the e↵ects of convection.

Experiment where di↵usion does not play a role

⇢
f

= 1.35883 g/cm3 - density of the homogenous fluid

⇢
sf

= (1� P)⇢
s

+ P⇢
f

= 1.36278 g/cm3 - density of the sphere and salt-water -corn syrup

µ = 11.03830 Poise - dynamic viscosity

Figure 5.10) shows the velocity profile of the sphere, which behaves like a solid sphere would,

reaching and staying at terminal velocity. For the values given above, the terminal velocity

should be vt = 0.02378 cm/s shown as the red line. However, as seen before, the measured

terminal velocity vt = 0.02753 cm/s is a bit higher, shown in blue.

0 100 200 300 400 500 600 700 800 900 10000.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

0.036

time(s)

ve
lo

ci
ty

(c
m

/s
)

No Diffusion

Figure 5.10: Velocity profile of drilled sphere with fluid rho
f

= 1.35883 g/cm3 inside. Red
line indicates theoretical terminal velocity for a solid sphere of equivalent density ⇢

sf

Note that the experiment was stopped before the sphere reached the bottom of the tank,

therefore the velocity profile above does not show the slow-down that happens when the

46

sphere feels the e↵ects of the bottom of the tank.

Experiment with evidence of di↵usion In order to see evidence of di↵usion, we pre-soaked

the drilled sphere with fluid of 0% salinity.

⇢
i

= 1.35050 g/cm3 - density of the fluid inside the sphere

⇢
f

= 1.35883 g/cm3 - density of the homogenous fluid

⇢
si

= (1� P)⇢
s

+ P⇢
i

= 1.35970 g/cm3 - density of the sphere initially

⇢
sf

= (1� P)⇢
s

+ P⇢
f

= 1.36278 g/cm3 - density of the sphere after di↵usion

µ
f

= 11.03830 Poise - dynamic viscosity of the homogenous fluid

µ
i

= 10.49592 Poise - dynamic viscosity of the fluid inside the sphere

0 200 400 600 800 1000 1200 14000.005

0.01

0.015

0.02

0.025

0.03

time(s)

ve
lo

ci
ty

(c
m

/s
)

Diffusion Experiment #3

Figure 5.11: Velocity profile of drilled sphere initially with fluid ⇢
i

= 1.35050 g/cm3 inside,
computed terminal velocities for ⇢

si

and ⇢
sf

are shown in red and blue respectively

Experiment where di↵usion does not play a role

47

⇢
f

= 1.35976 g/cm3 - density of the homogenous fluid

⇢
sf

= (1� P)⇢
s

+ P⇢
f

= 1.3631 g/cm3 - density of the sphere and salt-water corn syrup

µ = 9.37222 Poise - dynamic viscosity

Figure 5.12 shows the velocity profile of the sphere, which behaves like a solid sphere would,

reaching and staying at terminal velocity until it feels the e↵ects of the bottom of the tank.

0 100 200 300 400 500 600 700 8000.02

0.025

0.03

0.035

0.04

0.045

time(s)

ve
lo

ci
ty

(c
m

/s
)

No Diffusion

Figure 5.12: Velocity profile of drilled sphere with fluid rho
f

= 1.35976 g/cm3 inside

Note: For the values given above, the terminal velocity should be vt = 0.0238 cm/s shown

as the red line in the figure above. However, the actual terminal velocity vt = 0.0429 cm/s is

higher, as shown in blue, which outputs a ⇢
s

= 1.36581 g/cm3, higher than the density of the

solid part of the sphere, which is only possible if the fluid inside the sphere was heavier due

to salt residues.

48

5.4 Particle Cloud Experiments

Experimental observations of cloud of particles settling in sharp and linear stratifications

give important insight into the settling and formation of thin marine aggregate layers in the

ocean. For this section, we performed a range of experiments, varying the systems parameters

to develop an understanding of how these properties enhance the delayed settling of the

particles, making it possible for the layers to form.

Figure 5.13: Particle cloud settling in two-layer stratified fluid, the cloud sharpens as it
reaches the interface. The stratification consists of a top layer with density ⇢

t

= 0.9987g/cm3

and a bottom layer of density ⇢
b

= 1.045g/cm3. The particles are polystyrene beads of
density ⇢

s

= 1.05g/cm3 and average radius A = 0.02cm.

Homogeneous, sharply stratified, and linearly stratified tanks of salt water are prepared

in a glass fish tank of dimension 61cm x 31cm x 63cm (W X D X H). The sharply stratified

tank is prepared as described in the Methods Section, with chosen bottom density and fresh

water on top (density 0.997 g/cm3). The linear stratified tank is prepared using the two-

bucket methods, and results in a density transition from chosen density at the tank bottom

to fresh water at the top. Particle laden fluid is prepared in a separate container in which 10

grams of 1.05 g/cm3 polystyrene spheres of chosen size ranging from 0.02 to 0.17 cm radius

is mixed with 15 ml salty water. This results in an e↵ective density for the particle laden

cloud, exceeding the top density and the bottom ambient fluid density. A funnel is inserted

49

into the top of the tank, and plugged with a cylinder. A volume of 10ml of particle laden

fluid is poured into the funnel and then the plug is removed. We note that even though the

e↵ective density of the mixture exceeds the bottom layer, the particulate pancakes on the

transition layer, and descends at a very slow rate. The cases with the particulate cloud mixed

with upper layer fluid are more resembling of falling marine snow . We also note that for the

homogenous, sharply stratified, or linearly stratified cases, the descent rate of the cloud in

the upper layer fluid greatly exceeds the settling speed of a single particle in the upper fluid

by orders of magnitude. However, as the cloud is trapped upon the layer, the rate of descent

of the cloud is dramatically reduced to a speed comparable with the single particle settling

speed in the bottom layer. Ultimately, the trapped cloud in the sharply stratified case begins

to rain out in more finger like structures which evolve into descending clouds again falling

much faster than the single particle settling speed in the lower fluid.

In order to measure the changes of the particle cloud and track its position, we compute

the horizontally average concentration and the location of its centroid. With these quantities,

we can form definitions of residence time at the transition layer and compare velocity profiles.

The horizontally averaged concentration of the particle is given by

C
R

(Z, t) =

Z

R0

�R0

C(R,Z, t)dR. (5.2)

We can are interested if two values that will help us define the residence time. One is the peak

value of the concentration C
P

(t) = max(C
R

(Z, t)) and the other is the average concentration

around the interface

C
I

(t) =

Z

I+Z✏

I�Z

✏

C
R

(Z, t)dZ (5.3)

These quantities can the provide the residence time T by selecting the time it takes for

these measures of concentration to stay above a prescribed amount, which we set to 35% of

50

the maximum concentration value.

C
I

(t1) = C
I

(t2) = 0.35 (max[C
I

(t)]) (5.4)

T = t2 � t1 (5.5)

Residence Time = 99 secs

Rainout Time= 47 secs

Rain-in Time = 52 secs

60 80 100 120 140 160 180 200 220 240 260 280 300
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65
Intensity Sum Around Interface

Time (secs)

In
te

ns
ity

 S
um

Figure 5.14: Concentration average around interface C
I

(t) versus time. The horizontal red
line denotes the 35% of the maximum value providing a residence time T = 99s.

If we keep the e↵ective density of the cloud constant, but change the size of the particles

in it, we observe that the smaller beads means longer delayed settling while larger beads

exhibit a shorter residence time.

When looking at porous aggregates, the behavior of the delayed settling is a↵ected by the

porosity. Less porous aggregates behave like its solid counterparts in that the clouds of larger

particles exhibit shorter residence time. On the other hand, the more porous aggregates

switch this relation.

As the bottom layer density increases, the particle cloud increases its residence time at

the interface.

51

(a) (b) (c) (d)

Figure 5.15: Time-lapsed snapshots at (a) 2 s (b) 10 s (c) 15 s (d) 20 s of the particle clouds
settling in a two-layer of sharply stratified fluid, varying the size of the particles. The size of
the beads increase from the first row to the last.

Peak Range
Peak Mean

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16
0

10

20

30

40

50

60

70

80

90

100 Changing Size of Beads inside Cloud

Bead Size (cm)

R
es

id
en

ce
 T

im
e

(s
)

Figure 5.16: Residence time versus particle radius, the range of particle sizes inside a cloud
are denoted by the solid line, while the dots represent the mean size inside the cloud.

52

Porous Beads 4% Ag.
Porous Beads 2% Ag.
Solid Beads

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26
0

50
100
150
200
250
300
350
400
450
500
550
600

0
50
100
150
200
250
300
350
400
450
500
550
600Solid Beads Residence Time

Bead Diameter (cm)

R
es

id
en

ce
 T

im
e

(s
)

Figure 5.17: Residence time versus particle radius, read markings indicate porous particles
while black markings indicate solid beads.

Sum
Peak

1.022 1.024 1.026 1.028 1.030 1.032 1.034 1.036 1.038 1.040

35
40
45
50
55
60
65
70
75
80

Bottom Layer Density (g/cm3)

R
es

id
en

ce
 T

im
e

(s
)

Figure 5.18: Residence time as measured by C
I

(blue) and by C
P

(black) as we vary the
bottom layer density

53

CHAPTER 6

NUMERICAL IMPLEMENTATION

The resulting model provided in Equation (2.60) is a integro-di↵erential equation in the

fluid density ⇢ modeling a sphere settling in stratified fluid. In this chapter, we will explain

the numerical tools used to implement the full theory. The simulation advects a material

surface by the fluid flow u

s

(x, t;V) + w(x, t; ⇢) in the sphere frame of reference. The initial

data consist of the initial position of the sphere Y3(0), and an initial fluid density distribution

⇢0(x3), inside a cylinder of radius R0 and outside a sphere with radius A centered along

the cylinder axis (where the sphere center is constrained at all times for axially symmetric

solutions). Because of the axisymmetry of the problem, we only need to consider half of the

vertical cross section of the cylinder. The fluid flow and sphere velocity require ⇢ to define

the domain of integration to calculate w and the force on the sphere due to the perturbation

velocity. The majority of the computational time goes into calculating the volume integral

that provides the perturbation velocity w at every time step with a changing domain of

integration provided by ⇢. We have made simplifications and approximations to w that speed

up this expensive computation (See Theory Approximations). Many aspects of the numerics

that will be discussed in this chapter are not trivial in order to obtain fast and accurate

results to the problem at hand.

Under some conditions, the modeling requires implementing the complete solution of the

problem. Without approximations, the volume integral becomes more expensive to compute

numerically. To speed up the simulation, we integrate the kernel once in ✓ and reduce the

3D integral to a 2D integral. This is a cumbersome calculation resulting in long pages of

formulations of elliptic integrals of the first, second, and third kind, among other expressions.

In addition, the integrable singularities and removable singularities in the kernel need to be

54

treated properly for accurate and fast numerical integration.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1

0

1

2

3

4

R

Z
�f

�s

Sunday, July 24, 16

Figure 6.1: Diagram of domain of integration as determined by the entrainment and reflux
regions. The fluid domain ⌦

f

is shaded in blue and the sphere domain is denoted ⌦
s

6.1 Stokes second reflection

In the asymptotic expansion for u = u

(0) + u

(1) + u

(2) + u

(3) . . ., as formulated in [18] in

cylindrical coordinate (R, ✓, Z) with r =
p
R2 + Z2, the vertical component of the second

reflection is given by:

u(2)
Z

=
1

2⇡

Z 1

0

û
Z

(R,�) cos(�Z)d�, (6.1)

Numerically, we compute these integrals using fast Fourier transform (FFT) a priori for

a grid of Z values.

u(2)
Z

=
1

4⇡

Z 1

�1
û
Z

(R, |�|) e�i|�|Zd�, (6.2)

=
1

2

Z 1

�1
û
Z

(R, 2⇡|�̂|) e�2⇡i|�̂|Zd�̂, (6.3)

which can be expressed as a discrete Fourier transform (DFT)

u(2)
Z,k

=
1

2

N�1
X

n=0

û
Z,n

(R, |�
n

|) e�2⇡i|�
n

|Z
k , (6.4)

55

where �
n

= 2L
N�1n

6.2 Computation of w

Calculating the perturbation velocity w is the most expensive part of the code. The

resulting volume integration uses the changing entrainment and reflux domain as its domain

integration. We use cubic interpolation to use a uniform grid in the numerical integration. In

Figure 6.2, we show the three cases the code encounters and how it subdividing the domain

of integration in order to define each region as a graph for interpolation.

0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

R

Z

�
�

0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

R

Z

�

�

�

0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

R

Z
�

�

�

�

(a) (b) (c)

Figure 6.2: Disection of interface when (a) interface is below the sphere showing two regions
of integration, (b) interface around the sphere, three regions of integration, and (c) interface
above the sphere, four regions of integration.

The entrainment dominated regime requires implementing the complete solution of the

problem near the sphere. Combining the more expensive full solution and the far field solution

speeds up the calculation and provides accurate results for when the interface is near the

sphere where the far field does not work. Numerically, our challenge is to compute the full

solution of the perturbation velocity accurately and fast.

Without approximations, the volume integral becomes expensive to compute numerically.

To speed up the simulation, we integrate the kernel once in ✓ and reduce the 3D integral to a

2D integral. This is a cumbersome calculation resulting in long expressions including elliptic

integrals of the first, second, and third kind (see Appendix 4.2). In addition, the integrable

56

and removable singularities in the kernel need to be treated properly for accurate and fast

numerical integration.

The removable singularities present in the Oseen tensor needs special care when performing

an integration that requires high working precision. The removable singularities are further

explained in section (4.2), where we show that they cancel out and pose no problem for the

integration. These points of numerical complication occur along a line

y = ↵x, (6.5)

with ↵ < 0 . When the line of removable singularities appear in the domain of integration,

-4 -2 0 2 4
-4
-3
-2
-1
0
1
2
3
4

R

Z

-4 -2 0 2 4
-4
-3
-2
-1
0
1
2
3
4

R

Z

Figure 6.3: Domain of integration and removable singularities. The blue dot represents the
observation interfacial point and the red dashed line indicates where its corresponding line of
removable singularities occur. These points only need to be dealt with when they get inside
the blue shaded region, the fluid domain of integration.

correct cancelation of large numbers must occur to obtain a continuous kernel.

6.3 Interface Tracking Techniques and Validation

In order to determine the domain of integration for the volume integral that outputs the

perturbation velocity w, we must interpolate in the entrainment and reflux regions provided

by the interfacial points.

57

6.3.1 Potential Flow

In order to validate our interface tracking, interpolation routine, and volume integrals,

we perform a simple advection using potential flow and keeping everything else the same as

in the full code. Using the results obtained in [10], we can compare the reflux volume V
R

normalized by the volume of the sphere V
S

, with its asymptotic expression.

V
R

= 2⇡

Z 1

R

⇤
(f(R)� Z⇤)RdR (6.6)

-10 -8 -6 -4 -2 0 2 4 6 8 10

2

4

6

8

10

12

14
Point of Zero Lagrangian Displacement R*

Z (cm)

R
* (

cm
)

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Z (cm)

V R
 /

V S

-10 -8 -6 -4 -2 0 2 4 6 8 10

2

4

6

8

10

12

14
Point of Zero Lagrangian Displacement R*

Z (cm)

R
* (

cm
)

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Z (cm)

V R
 /

V S

-8 -6 -4 -2 0 2 4 6 8 10

2

4

6

8

10

12

14 Point of Zero Lagrangian Displacement R*

Z (cm)

R
* (

cm
)

-8 -6 -4 -2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Z (cm)

V R
 /

V S

(a)
(b) (c)

Figure 6.4: Validation of interpolation, interface tracking and volume integrals by showing the
point of zero Lagrangian displacement (top panels) and the normalized reflux volume (bottom
panels) with potential flow for radius of sphere A = 1 cm, interface initialized y0 = �10 cm
away from the sphere, and horizontal axial cut o↵ at (a) R0 = 40 cm (b) R0 = 80 cm (c)
R0 = 320 cm . The dashed lines represent the asymptotic value of each quantity.

58

6.3.2 Normal Advection

0 0.5 1 1.5 2 2.5 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

R

Z

0 0.5 1 1.5 2 2.5 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

R

Z

0 0.5 1 1.5 2 2.5 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

R

Z

0 0.5 1 1.5 2 2.5 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

R

Z

0 0.5 1 1.5 2 2.5 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

R

Z

0 0.5 1 1.5 2 2.5 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

R

Z

(a)
(b)

Figure 6.5: Plots of interface advected with uniform velocity free space Stokes advection
using (a) normal velocity and (b) full velocity

59

CHAPTER 7

THEORY APPROXIMATIONS

Approximations to the model were made for di↵erent applications. In this chapter, we

study the approximations and discuss their usefulness, region of validity, and comparison to

the full theory.

7.1 Far Field Approximation

When the observation point x is far from the sphere, we can simplify the perturbation

velocity w(x), by approximating the fundamental solution

W (x,y) ⇠ W

FF

(x,y) as
A

|x| ! 0. (7.1)

We can use this approximation far from the sphere

w

FF

(R,Z, t) =

Z 2⇡

0

d✓

Z 1

0

Z 1

�1
✏G(⇢, ⇣, t)W

FF

(R,Z, ⇢, ⇣, ✓)⇢ d⇢ d⇣ (7.2)

The kernel W

FF

(x, ⇢, ⇣, ✓) can be integrated once in ✓ analytically, simplifying the

expression and reducing the dimension of the integral, thus speeding up the numerics.

w

FF

(R,Z, t) =

Z 1

0

Z 1

�1
✏G(⇢, ⇣, t)Ŵ (R,Z, ⇢, ⇣)⇢ d⇢ d⇣ (7.3)

In cylindrical coordinates, integrated once in ✓, the components
⇣

Ŵ
R

, Ŵ
Z

⌘

of the far

field approximation of O(A7) are

60

Ŵ
R

=
3A5R (⇢4 (4Z2(8⇣ + 3Z)�R2(8⇣ + 23Z)))

128µ (⇣2 + ⇢2)7/2 (R2 + Z2)7/2

+
3A5R (8⇣⇢2 (�3R4 +R2 (⇣2 + 3Z2 + 37⇣Z) + Z2 (�4⇣2 + 6Z2 � 33⇣Z)))

128µ (⇣2 + ⇢2)7/2 (R2 + Z2)7/2

+
3A5R (8⇣3 (2R4 +R2 (2⇣2 � 2Z2 � 17⇣Z)� 2Z2(Z � 4⇣)(2Z � ⇣)))

128µ (⇣2 + ⇢2)7/2 (R2 + Z2)7/2

+
A3R (R2 (2⇣2 � ⇢2) (5⇣ + Z) + Z (3 (2⇣4 + 3⇣2⇢2 + ⇢4) + Z2 (2⇣2 � ⇢2)))

16µ (⇣2 + ⇢2)5/2 (R2 + Z2)5/2

+
10A3RZ2⇣ (⇢2 � 2⇣2)

16µ (⇣2 + ⇢2)5/2 (R2 + Z2)5/2
+

3ARZ (2⇣2 + ⇢2)

16µ (⇣2 + ⇢2)3/2 (R2 + Z2)3/2

�
(Z � ⇣)

⇣

2 (⇣2 + ⇢2 +R2 + 2⇢R + Z2 � 2⇣Z)K
⇣

� 4R⇢

R

2�2⇢R+Z

2+⇣

2+⇢

2�2Z⇣

⌘⌘

R
p

⇣2 + ⇢2 +R2 � 2⇢R + Z2 � 2⇣Z (⇣2 + ⇢2 +R2 + 2⇢R + Z2 � 2⇣Z)

�
(Z � ⇣)

⇣

2 (�⇣2 � ⇢2 +R2 � Z2 + 2⇣Z)E
⇣

� 4R⇢

R

2�2⇢R+Z

2+⇣

2+⇢

2�2Z⇣

⌘⌘

R
p

⇣2 + ⇢2 +R2 � 2⇢R + Z2 � 2⇣Z (⇣2 + ⇢2 +R2 + 2⇢R + Z2 � 2⇣Z)

(7.4)

Ŵ
Z

=
⇡

16R

3A5R2 (8R4 (2⇣3 � 3⇣⇢2) +R2 (8⇣ (2⇣4 + ⇣2⇢2 � ⇢4)� 8Z2 (2⇣3 � 3⇣⇢2)

(⇣2 + ⇢2)7/2 (R2 + Z2)7/2

+
Z (�136⇣4 + 296⇣2⇢2 � 23⇢4))� 4Z2 (8⇣ (2⇣4 + ⇣2⇢2 � ⇢4) + 4Z2 (2⇣3 � 3⇣⇢2)

(⇣2 + ⇢2)7/2 (R2 + Z2)7/2

+
�3Z (12⇣4 � 22⇣2⇢2 + ⇢4)))

(⇣2 + ⇢2)7/2 (R2 + Z2)7/2
+

24AR2Z (2⇣2 + ⇢2)

(⇣2 + ⇢2)3/2 (R2 + Z2)3/2

�8A3R2 (R2 (2⇣2 � ⇢2) (5⇣ + Z) + Z (3 (2⇣4 + 3⇣2⇢2 + ⇢4) + Z2 (2⇣2 � ⇢2)))

(⇣2 + ⇢2)5/2 (R2 + Z2)5/2

� 80A3R2Z2⇣ (⇢2 � 2⇣2)

(⇣2 + ⇢2)5/2 (R2 + Z2)5/2

�
16(Z � ⇣)

⇣

2 (⇣2 + ⇢2 +R2 + 2⇢R + Z2 � 2⇣Z)K
⇣

� 4R⇢

R

2�2⇢R+Z

2+⇣

2+⇢

2�2Z⇣

⌘

⇡
p

⇣2 + ⇢2 +R2 � 2⇢R + Z2 � 2⇣Z (⇣2 + ⇢2 +R2 + 2⇢R + Z2 � 2⇣Z)

+
2 (�⇣2 � ⇢2 +R2 � Z2 + 2⇣Z)E

⇣

� 4R⇢

R

2�2⇢R+Z

2+⇣

2+⇢

2�2Z⇣

⌘⌘

⇡
p

⇣2 + ⇢2 +R2 � 2⇢R + Z2 � 2⇣Z (⇣2 + ⇢2 +R2 + 2⇢R + Z2 � 2⇣Z)

1

A

(7.5)

This approximation does not satisfy boundary conditions, and it is only only accurate far

61

from the sphere.

-2 -1 1 2

-2

-1

1

2

-4 -2 2 4

-4

-2

2

4

(a) (b) (c)

Figure 7.1: Streamlines of the Oseen Green’s function far field approximation along the
x2 = 0 plane around a sphere of radius A = 1 with one Stokeslet located at (a) y = (0, 0, 2) ,
(b) y = (0.5, 0,�1.1), (c) ring of points forces above and below

7.1.1 Region of validity

As ⇢
s

� ⇢
b

! ⇢
b

� ⇢
t

, the density anomaly flow w is no longer subdominant with respect

to the stokes flow u

s

and thus the approximation fails due the error near the sphere a↵ects

the shape of the interface sending interface into the sphere.

It is easy to show that the far field approximation does not satisfy boundary conditions.

We can justify using the far field approximation w

FF

(R,Z) as long as the interfacial

points stay within the region of validity, and the error produced by the approximation is

subdominant in comparison with the magnitude of the Stokes flow.

7.1.2 Comparison with Full Theory

62

�s
sphere density =1.7506 g/cc
sphere density =1.4676 g/cc
sphere density =1.4506 g/cc
sphere density =1.4456 g/cc
sphere density =1.4406 g/cc

nd
 v

el
oc

ity

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

nd time
0 1 2 3 4 5 6 7

Figure 7.2: Non-dimensional numerically obtained velocity profiles using the far field ap-
proximation as the sphere density ⇢

s

! ⇢
b

with ⇢
t

= 1.42760g/cm3 , ⇢
b

= 1.43060g/cm3,
and µ = 17 Pois. The red point represents the point that the interface goes into the sphere,
deforming interface in a non-physical way and stopping the simulation

Figure 7.3: Comparison of the streamlines along the x2 = 0 plane around a sphere of radius
A = 1 with one Stokeslet located at y = (0, 0, 2) of the Oseen Green’s function far field
approximation W

FF

(left) and full kernel W (right)

63

0 0.5 1 1.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

R

Z

0 0.5 1 1.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

R

Z

(a) (b)

Figure 7.4: Simulation of a sphere of density ⇢
s

= 1.4506 g/cm3 settling in two layer fluid.
Comparison of flow at the interfacial points. The blue arrows represent the stokes flow u

s

while the red arrows indicate the perturbation flow using (a) the far field approximation w

FF

and (b) the full solution w.

Far Field
Full Solution
Error

20 40 60 80 100

er
ro

r=
 fu

ll-
fa

r fi
el

d

−5×10−6

0

5

10

15×10−6

 s
ph

er
e

ve
lo

ci
ty

 (c
m

/s
)

0.24

0.26

0.28

time (s)
0 20 40 60 80 100

Experiment from Lin's Thesis

Figure 7.5: Far Field vs Full Theory in the Stokes dominated regime

64

7.2 Near Field Approximation

When the observation point x is very near the sphere, we can approximate the perturbation

velocity, w(x) by linearizing the kernel. Expanding w(x) around x0, such that |x0| = A, we

obtain,

w(x) ⇠ w(x0) + (x � x0) ·rx

w

�

�

�

x0

+ . . . (7.6)

Since w(x0) = 0 (7.7)

w

NF

= (x � x0) ·rw

�

�

�

x=x0

(7.8)

w(x, t) =

Z

⌦
f

(t)

W (x,y)d3y (7.9)

w

NF

(x, t) = (x � x0) ·rx

Z

⌦
f

W (x,y)d3y

!

�

�

�

x=x0

(7.10)

w

NF

(x, t) =

Z

⌦
f

(x � x0) ·rx

(W (x,y)d3y)
�

�

�

x=x0

(7.11)

W

NF

(x,y) = (x � x0) · (rx

W (x,y))
�

�

�

x=x0

as x ! x0 (7.12)

65

7.3 Leaky Sphere Approximation

In this section, we simplify the full model by relaxing the boundary conditions. The

equations of motion are in the reference of frame of the sphere. Let v(z, t) be the solution to

our problem . Let V (t) and Y (t) be the velocity and center of the sphere respectively. Then,

the equations of motion in a moving frame of reference is:

µr2
u = rp� ⇢ĝ, (7.13)

r · u = 0, (7.14)
I

S

udS = V (t) as A ! 0 (7.15)

@⇢

@t
+ u ·r⇢ = 0. (7.16)

Where u = v � V (t) and x = z � Y (t) and the equation of motion for the sphere can be

written as

m
s

dV (t)

dt
= m

s

ĝ +

I

S

� · n̂dS, (7.17)

where ĝ is the gravity acceleration vector oriented along the unit vector ẑ ⌘ (0, 0,�1), m
s

is the mass of the sphere, � is the stress tensor, S is the surface of the sphere, and n̂ is the

outward normal unit vector to this surface. Taking advantage of the linearity of the Stokes

equations, like in equation (2.15), we split the fluid flow into two parts,

u(x, t) = u

s

(x, t) + w(x, t) . (7.18)

µr2
u

s

= rp
s

� ⇢0(x3 + Y3(t))ĝ, (7.19)

r · u
s

= 0, (7.20)
I

S

udS = 0 as A ! 0 (7.21)

66

For the stratification-induced flow, we define G(x, t) = ⇢(x, t)� ⇢0(x3 + Y3(t)). We can write

the governing equations in a moving frame of reference,

µr2
w = rp

w

�G(x, t)⇢ref ĝ, (7.22)

r · w = 0, (7.23)
I

S

u

s

dS = 0 as A ! 0 (7.24)

(7.25)

The fundamental solution of the system above satisfies the following equations.

µr2
W (x,y) = rP (x,y)� ĝ�(x � y), (7.26)

r · W = 0, (7.27)
I

S

W dS = 0 as A ! 0 (7.28)

(7.29)

W (x,y) =
1

8⇡µ

✓

ĝ

|x � y| +
g(x3 � y3)(x � y)

|x � y|3
+

✓

f
s

|x| +
(f

s

· x)x
|x|3

◆◆

(7.30)

f
s

=
�3A

4

✓

ĝ

|y| +
gy3y

|y|3
◆

(7.31)

P = ⇢
ref

✓

ĝ · (x � y)

4⇡|x � y|3
+

f
s

.x

4⇡|x|3

◆

w =

Z

⌦
f

✏G(y, t)W (x,y)d⌦
f

(7.32)

p
w

=

Z

⌦
f

✏G(y, t)P
W

(x,y)d⌦
f

(7.33)

67

To find the force exerted on the sphere due to the simplified perturbation velocity, we

find F
w

as

F
w

= �
I

S

�
w

ij

n
j

dS = �
I

S

✓

�p
w

�
ij

+ µ

✓

@w
i

@x
j

+
@w

j

@x
i

◆◆

n
j

dS

Where w and p
w

are the perturbation velocity and pressure respectively.

Let n be the outward unit vector normal to the surface of the sphere. When then we

apply the divergence theorem on the surface that consist of the surface of the sphere of radius

A and the sphere of radius R. When we take the limit of R ! 1 , we obtain the force

exerted on the sphere of radius A in terms of a volume integral over our fluid domain. Let

⌦
f

the fluid domain.

F
w

= �
I

|x|=A

�
w

· ndS (7.34)

= �

Z

⌦
f

r · �
w

d⌦
f

+ lim
R!1

✓

I

|x|=R

�
w

· ndS

◆

!

(7.35)

= �

Z

⌦
f

✏G(y, t)⇢
ref

g ⌦
f

+ lim
R!1

✓

I

|x|=R

�
w

· ndS

◆

!

(7.36)

(7.37)

By finding the contribution of lim
R!1

✓

I

|x|=R

�
w

· ndS

◆

, we can find the force on the force due

to the perturbation velocity.

In order to compute the behavior of the stress at infinity, we are interested in solving the

following:

lim
R!1

I

|x|=R

�
w

· ndS (7.38)

where

�
w

ij

=

I

S

✓

�p
w

�
ij

+ µ

✓

@w
i

@x
j

+
@w

j

@x
i

◆◆

n
j

dS (7.39)

68

In order to determine the behavior of the stress at infinity, we could simplify the equations:

lim
R!1

I

|x|=R

�
w

ij

n
j

dS (7.40)

= lim
R!1

I

|x|=R

Z

⌦
f

✏G(y, t)

✓

�P
W

(x,y)�
ij

+ µ

✓

@W
i

(x,y)

@x
j

+
@W

j

(x,y)

@x
i

◆◆

d⌦
f

n
j

dS

=

Z

⌦
f

✏G(y, t) lim
R!1

I

|x|=R

✓

�P
W

(x,y)�
ij

+ µ

✓

@W
i

(x,y)

@x
j

+
@W

j

(x,y)

@x
i

◆◆

n
j

dS d⌦
f

Let F
W

= lim
R!1

I

|x|=R

✓

�P (x,y)�
ij

+ µ

✓

@W
i

(x,y)

@x
j

+
@W

j

(x,y)

@x
i

◆◆

n
j

dS.

The other contribution to the force exerted on the sphere is therefore.

lim
R!1

I

|x|=R

�
w

ij

n
j

dS =
3A(|y|2 + 2y23)

4|y|3
� 1 (7.41)

F
w

=

Z

⌦
f

✏G(y, t)⇢
ref

g

3A(|y|2 + 2y23)

4|y|3

!

⌦
f

(7.42)

Combining the solution for Stokes flow and the results from the section above, we have the

equation for the vertical component of the velocity of the sphere and the advection fluid.

dY3

dt
(t; ⇢) = V (t; ⇢) = (6⇡Aµ)�1(m

s

g � g

Z

⌦
s

⇢0(x3 + Y3(t; ⇢))d⌦s

+

Z

⌦
f

✏G(y, t)⇢ref g
3A(|y|2 + 2y23)

4|y|3)d⌦
f

(7.43)

69

@⇢

@t
(x, t) + (u

s

(x, t;V) + w(x, t; ⇢)) ·r⇢(x, t) = 0.

The simplified model is compared with the far field and full theory from [9] for di↵erent

sphere radii. The simplified theory satisfies the boundary conditions when the radius of the

0 100 200 300 400 500 600 700
5

5.5

6

6.5

7

7.5

8 x 10−3

time(s)

ve
lo

ci
ty

(c
m

/s
)

Comparison A = 0.1 cm

Lin
Simplified

0 50 100 150 200 250
0.052

0.054

0.056

0.058

0.06

0.062

0.064

0.066

0.068

0.07

time(s)
ve

lo
ci

ty
(c

m
/s

)

Comparison A = 0.3 cm

Lin
Simplified

0 20 40 60 80 100 120
0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

time(s)

ve
lo

ci
ty

(c
m

/s
)

Comparison A = 0.635 cm

Lin
Simplified

0 10 20 30 40 50 60 70
0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

time(s)

ve
lo

ci
ty

(c
m

/s
)

Comparison A = 0.99 cm

Lin
Simplified

0 10 20 30 40 50 60
0.64

0.66

0.68

0.7

0.72

0.74

0.76

time(s)

ve
lo

ci
ty

(c
m

/s
)

Comparison A = 1.1 cm

Lin
Simplified

0 5 10 15 20 25 30 35 40 45
1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

time(s)

ve
lo

ci
ty

(c
m

/s
)

Comparison A = 1.5 cm

Lin
Simplified

Figure 7.6: Comparison between Far Field and Simplified Theories of the sphere velocities
profiles for increasing radius of the sphere: 0.1, 0.3, 0.635, 0.99, 1.1, and 1.5cm.

sphere A ! 0. The error between the velocity profiles obtained from the simplified and full

theory is computed by calculating the L1 norm the L2 norm, the L infinity norm, and the

normalized di↵erence between the minimum velocity dip.

70

0 0.5 1 1.5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 x 10−3

sphere radius (cm)

Er
ro

r

L1
L2
LInf
ErrorOfMin

Figure 7.7: Computed Errors , showing increasing error for increasing sphere radius with the
exception of the first point A = 0.1cm due to poor integration resolution.

71

7.4 Shell Model

The Shell Model assumes the entrainment shell about the sphere is spherical and omits the

reflux backflow portion (see Figure 7.9). In the Entrainment regime cases, the interface wraps

closely around the sphere and the reflux volume is very small, thus making this simplification

close to the full theory interfacial shape. The shell thickness goes to zero with the speed

distance from the sphere to the point at the south pole of the sphere. The final equations are

given by,

V (t, y
b

, y
i

) = (6⇡AµK)�1

✓

m
s

g � g

Z

⌦
s

⇢0(x3 + Y3(t))d⌦s

(7.44)

+ g (⇢
b

� ⇢
t

)

Z

⌦
fs

u03

�V0
d⌦

fs

!

dy
i

dt
= V (t) (7.45)

dy
b

dt
= u

s

(t) + w(t) (7.46)

A + �

A

(0, yb)

(R0, yi)

Figure 7.8: Shell model schematic showing the assumed spherical shell around the sphere.

When we run this model, the size of the shell is smaller than the full theory thus making

the sphere fall faster.

72

time =224 s

-0.5 0 0.5 1.0
-2.0

-1.5

-1.0

-0.5

0

0.5

1.0

1.5

2.0

R

Z

experiment
theory
shell model

0 200 400 600 800 1000 1200 1400 1600

-0.2

0

0.2

0.4

0.6

0.8

1.0 Sphere Position

time (s)

po
si

tio
n

(c
m

)
experiment
theory
shell model

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.10

0.15

0.20

0.25

time (s)

sp
he

re
 v

el
oc

ity
 (c

m
/s

)

theory
shell model

0 500 1000 1500 2000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10 Shell Approximation Thickness

time (s)

ε

theory
shell

0 0.5 1.0 1.5 2.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

position (cm)

ε

Figure 7.9: Comparison of shell model with experiment and full theory.

7.5 Perturbation Approach

Let v(z, t) be the solution to the problem of a single sphere falling in sharply stratified

fluids . Let V (t) and Y (t) be the velocity and center of the sphere respectively. Then, the

equations of motion in a moving frame of reference are:

m
s

dV (t)

dt
= m

s

gẑ +

I

S

� · n̂dS (7.47)

u

t

+ (u ·r)u = �1

⇢
rp+

µ

⇢
r2

u =
1

⇢
r · �, (7.48)

@⇢

@t
+ u ·r⇢ = 0. (7.49)

With boundary conditions:

u = V (t)ẑ on S , (7.50)

u ! 0 as |x| ! 1 (7.51)

73

Where u = v � V (t) and x = z � Y (t) , ĝ is the gravity acceleration vector oriented along

the unit vector ẑ ⌘ (0, 0,�1), m
s

is the mass of the sphere, � is the stress tensor, S is the

surface of the sphere,µ is the viscosity of the fluid, and n̂ is the outward normal unit vector

to this surface.

In the Stokes regime, we can drop the inertial terms , and the equations become :

�m
s

gẑ �
Z

S

� · n̂dS = 0 (7.52)

µr2
u

2 �rp = r · � = 0 (7.53)

@⇢

@t
+ u ·r⇢ = 0. (7.54)

with the same boundary conditions. Note that the force balance weight = stress would mean

zero acceleration according to Newton but the velocity of the sphere is still allowed to depend

on time, as long as law changes in time. In fact, we assume for ✏ = ⇢
b

� ⇢
t

<< 1:

⇢ = ⇢0(z, t) + ✏⇢1(x, t) (7.55)

u = u0 + ✏u1 + .. (7.56)

p = p0 + ✏p1 + ... (7.57)

� = �0 + ✏�1 + ... (7.58)

= ⇡p+ µru0 + ✏(�⇡p1 + µru1) + ... (7.59)

V = V 0 + ✏V 1 + .. (7.60)

so that we get :

µr2
u0 = rp0 + g⇢0(z), u0

�

�

�

S

= �V0ẑ (7.61)

µr2
u1 = rp1 + g⇢1(x, t), u1

�

�

�

S

= �V1ẑ (7.62)

74

Z

S

�0 · n̂ = m
s

g (7.63)
Z

S

�1 · n̂ = 0 (7.64)

@⇢0
@t

+ u0R ·r⇢0 + u0Z
@⇢0
@z

= 0. (7.65)

Since r⇢0 = 0, we need u0Z independent of R or ⇢0 = constant. We will choose the later.

And therefore, the equation

@⇢1
@t

+ u1 ·rR

⇢0 + u0 ·r⇢1 = 0 ,becomes (7.66)

@⇢1
@t

++u0 ·r⇢1 = 0 (7.67)

Now, we will need to solve for u1from Stokes equation force by ⇢1 distribution with V1 giving

Dirichlet boundary conditions V1 would then be determined by requiring,

Z

S

�1 · n̂dS = 0 (7.68)

(this is an equation for V1 through the reciprocal Theorem) This equation would be writable

compactly by using the reciprocal theorem, though u1 would still have to be computed. For

Higher order corrections (or if ⇢0 were to depend on z, which would bring in u1 · ⇢0 term in

advancing ⇢1.

(V 1)3ms

g =

Z

⌦
f

dV (f · u1 � h · u0) (7.69)

75

Want f = 0 (since it can be absorbed by hydrostatic pressure into p0) and h = �g⇢1(x, t)ẑ

(V 1)3 = �1/m
s

Z

⌦
f

dV ⇢1(x, t)(u0)3(x, t)

!

(7.70)

where ⌦
f

is the exterior domain and ⇢1(x, t) is obtained thru advance of rho1 with u0

@⇢1
@t

+ u0 ·r⇢1 = 0 (7.71)

Taking advantage of the linearity of the Stokes equations, we use our previous split of the

fluid flow into two parts to define u0 and u1. Let the small parameter ✏ = ⇢
b

� ⇢
t

, and we

define the constant ⇢0 = ⇢
t

.

u(x, t) = u

s

(x, t) + w(x, t) full theory (7.72)

u(x, t) = u0(x, t) + ✏u1(x, t) approximation (7.73)

The first term, u0 = u

s

(x, t), is a Stokes flow in homogenous fluid of density ⇢0. In the lab

phrase:

(u0)(3) = (u0)(Z) = �V0

�3A

4r
� 3AZ2

4r3
� A3

4r3
+

3Z2A3

4r5

�

(7.74)

(u0)(R) = �V0

�3ARZ

4r3
+

3A3RZ

4r5

�

(7.75)

While the second term u1 = w(x, t) is given by the buoyancy driven flow. Combining the

solution for Stokes flow and perturbation velocity, we obtain the equation for the vertical

76

component of the velocity of the sphere and the advection fluid.

dY3

dt
(t; ⇢) = (V0)3 + ✏(V1)3(t; ⇢1)

=
g

6⇡Aµ
(m

s

� 4

3
⇡A3⇢0) + ✏

�1/m
s

Z

⌦
f

dV ⇢1(x, t)(u0)3(x, t)

!

@⇢1
@t

(x, t) + u0(x, t;V) ·r⇢1(x, t) = 0. (7.76)

7.5.1 Define (V1)3

Defining our desired integral in terms of the deformed interface curve ⌘ = Z(R).

(V 1)3 = �1/m
s

Z

⌦
f

dV ⇢1(x, t)(u0)3(x, t)

!

(7.77)

⇢1 =
⇢� ⇢0
⇢
b

� ⇢
t

=
⇢� ⇢

t

⇢
b

� ⇢
t

; (7.78)

(V 1)3 = �1/m
s

✓

⇢
t

� ⇢
t

⇢
b

� ⇢
t

Z 2⇡

0

d✓

Z 1

0

RdR

Z 1

Z(R)

dZ (u0)3

+
⇢
b

� ⇢
t

⇢
b

� ⇢
t

Z 2⇡

0

d✓

Z 1

0

RdR

Z

Z(R)

�1
dZ(u0)3

� ⇢
t

� ⇢
t

⇢
b

� ⇢
t

Z

S

dS⇢
t

(u0)3

◆

= �1/m
s

Z 2⇡

0

d✓

Z 1

0

RdR

Z

Z(R)

�1
dZ(u0)3

= �1/m
s

I2

77

In our existing code, we already compute :

I
w

= �
Z 2⇡

0

d✓

Z

R0

p
R

2+Z

2
>A

RdR

Z

Z(R)

�Y3

dZ
(u0)3
�V0

Let us note that �Y3 < ⌘ in the reflux region and �Y3 > ⌘ in the entrainment region.

Therefore we can find our desired integrals:

I2 =

Z 2⇡

0

d✓

Z 1

0

RdR

Z

Z(R)

�1
dZ(u0)3 (7.79)

with the domain of integration shown below

I1

I2

Figure 7.10: Top layer and bottom layer domains

by finding the following integrals apriori:

I
b

=

Z 2⇡

0

d✓

Z 1

�Y 3

dZ

Z 1

Re(
p
A

2�Z

2)
RdR(u0)3 (7.80)

(7.81)

using the domain of integrations non-dependent on the interfacial curve.

78

It
Ic

Ib

Figure 7.11: Domain of integration for integrals I
t

and I
b

and using the already computed integrals in the code

I
w

= �
Z 2⇡

0

d✓

Z

R0

p
R

2+Z

2
>A

RdR

Z

Z(R)

�Y3

dZ
(u0)3
�V0

(7.82)

(7.83)

The diagram below illustrates the domain of integration of the integrals I
w

Figure 7.12: Domain of integration for I
w

computed in code

Combining the integrals by using the relations,

I2 = I
b

� (�V0) Iw (7.84)

79

I1

I2

It
Ic

Ib

Figure 7.13: Domains of integration

Therefore, the equation of motion for the sphere becomes :

(V 1)3 = �1/m
s

(I
b

� (�V0) Iw) (7.85)

where I
w

is already computed in the code.

Case 1: �Y3 < �A

I
b

= 2⇡

✓

Z �Y3

�Z

max

dZ

Z

R0

0

RdR(u0)3

◆

Case 2 :|Y3| < A

I
b

= 2⇡

✓

Z �A

�Z

max

dZ

Z

R0

0

RdR(u0)3 +

Z �Y3

�A

dZ

Z

R0

p
A

2�Z

2

RdR(u0)3

◆

Case 3: �Y3 > A

I
b

= 2⇡

✓

Z �A

�Z

max

dZ

Z

R0

0

RdR(u0)3 +

Z

A

�A

dZ

Z

R0

p
A

2�Z

2

RdR(u0)3

+

Z �Y3

A

dZ

Z

R0

0

RdR(u0)3

◆

Even if this approach could correctly predict the position of the sphere, the shape of the

interface will never be accurate.

80

CHAPTER 8

ENTRAINMENT DOMINATED REGIMES

In the limit as (⇢
s

� ⇢
b

) ! (⇢
b

� ⇢
t

), the sphere velocity V (t) becomes very close to zero

at the interface, the stokes velocity u

s

also vanishes, and the perturbation velocity w is in

charge of continuing the fluid motion and decrease the amount of entrained fluid, altering the

balance of forces and allowing the sphere to change speed. To understand how the balancing

of the forces behave as ⇢
s

! ⇢
b

, we plot them below for the Far Field approximation. As the

sphere approaches its minimum velocity at the interface, the perturbation velocity achieves

its maximum. The smaller ⇢
s

� ⇢
b

, the closer the the balance of forces become.

Figure 8.1: Plot of Archimedean buoyancy and density anomaly force as ⇢
s

! ⇢
b

When the density di↵erence (⇢
s

� ⇢
b

) = (⇢
s

� ⇢
b

) approaches the stratification jump

(⇢
b

� ⇢
t

) = (⇢
b

� ⇢
t

), the w field becomes dominant and we find ourselves in the Entrainment

Regime, where the correct computation of w dictates the accuracy of the simulation output.

Using the far field approximation as a replacement for w has shown good agreement

with the experiments when (⇢
s

� ⇢
b

) >> (⇢
b

� ⇢
t

), i.e. when the Stokes velocity is dominant

81

with respect to the perturbation velocity, u(x, t) >> w(x, t), since the interface does not

get close to the sphere when w is at its maximum. The approximation correctly predicts

the velocity profile of the particle and the changing shape of the deformed interface as the

sphere settles. As we push (⇢
s

� ⇢
b

) ! (⇢
b

� ⇢
t

) , the e↵ects of the entrainment become more

prominent, since the interface gets close to the sphere when w is dominant with respect to

the almost vanished stokes velocity u

s

. As the sphere approaches its minimum velocity at the

interface, the perturbation velocity achieves its maximum. In this regime, the error given by

the far field approximation is no longer negligible, and the violation of the non-slip boundary

conditions (see Figure 7.4) deformes the interface in a non-physical way. In addition, because

the sphere velocity and perturbation flow is computed as a volume integral over a changing

domain of integration given by ⇢, the shape of the interface a↵ects the accuracy of the flow

computed and the error that it propagates through each time step determines the overall

success of the model.

8.1 Comparison with Experiments

A plastic sphere of radius A = 0.635 cm density ⇢
s

= 1.3651 g/cm3 was released in a two-

layer sharply stratified tank of radius R0 = 5.4cm, with top layer density ⇢
t

= 1.3397 g/cm3

and bottom layer density ⇢
b

= 1.3649 g/cm3. Viscosities are µ
t

= 6.2349 Poise, µ
b

= 7.2315

Poise for top and bottom layers respectively.

The comparison shows the best most refined version so far. This simulation includes

the stokes flow up to the third correction, the full perturbation velocity in neighborhood of

the sphere. The interface is shown at the last trusted time, based on the smoothness of the

interface.

Note that at the last trusted time t = 672s, the experiment and theory have already

departed significantly from each other, as seen in Figure (8.3). Because the di↵usion time

scales are ⇠ 300 s, di↵usion could have been making the di↵erence seen up to the trusted

82

(b)

time =672 s

-0.5 0 0.5 1.0

-1.2
-1.0
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8
1.0
1.2

R

Z

experiment
theory

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-10

-5

0

5

10

Sphere Position

time (s)

po
si

tio
n

(c
m

)

experiment
theory

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.10

0.15

0.20

0.25

time (s)

sp
he

re
 v

el
oc

ity
 (c

m
/s

)

(a) (c)

Figure 8.2: (a) Interface at time t = 672 s, the last trusted time. (b)The sphere position.
(c)The sphere velocity. The black solid lines are the experiment tracking, the blue dots are
the theory prediction, and the black vertical lines indicate the last trusted time t=672 s.

83

time.

time =672 s

-0.5 0 0.5 1.0

-1.2
-1.0
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8
1.0
1.2

R

Z

experiment
theory

200 400 600 800 1000 1200

-1.5

-1.0

-0.5

0

0.5

1.0

1.5

2.0
Sphere Position

time (s)

po
si

tio
n

(c
m

)

experiment
theory

200 400 600 800 1000 1200

10 -3

2

4

6

8

10

12

14

time (s)

sp
he

re
 v

el
oc

ity
 (c

m
/s

)

Figure 8.3: Zoomed in plots of sphere position showing the code departure from experiment.

Other examples of approaching the entrainment regimes are shown in Figures 8.4 and 8.5.

In the first figure, the code agrees fairly well with the experiment and the only mismatch is due

to using an average viscosity between the top and bottom layers. The next figure, however,

falls into the more pronounced entrainment regimes where the residence time compares

to di↵usion time scales. In this case, the code does not recover in the same time as the

experiment does.

8.2 Force Balance and the importance of Reflux

The forces acting on the sphere are the Archimedean force F
A

and the density anomaly

force F
w

, such that the total force is equal to F = F
A

� F
w

. The latest can be expressed as

the combination of the entrainment force F
E

and the reflux force F
R

, and it satisfies that

F
w

= F
E

� F
R

.

In the Entrainment regime, the reflux contribution is small but significant as without it

the sphere would not be able to sink (see Figure 8.6). In contrast the Stokes regime would

not need the reflux contribution for the motion of the sphere to continue. In the Stokes

84

time =254 s

-3 -2 -1 0 1 2 3
-5

-4

-3

-2

-1

0

1

2

R

Z

0 100 200 300 400 500 600
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

time (s)
sp

he
re

 v
el

oc
ity

 (c
m

/s
)

Figure 8.4: Experiment and theory comparison approaching the entrainment dominated
regime. Left panel shows the model predicted interface and the right panel shows the
experiment in black and the theory in blue. The experimental parameters are A = 0.641 cm,
⇢
s

= 1.36712 g/cm3, ⇢
t

= 1.34695 g/cm3, ⇢
b

= 1.36178 g/cm3, and µ = 4 Poise.

time =429 s

-3 -2 -1 0 1 2 3
-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

R

Z

Experiment
Theory
Theory

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0

0.05

0.10

0.15

0.20

0.25

time (s)

sp
he

re
 v

el
oc

ity
 (c

m
/s

)

Experiment
Theory

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

-20

-15

-10

-5

0

5

10
Sphere position

time (s)

po
si

tio
n

(c
m

)

Figure 8.5: Experiment and theory comparison approaching the entrainment dominated
regime. Left panel shows the model predicted interface and the right panel shows the
experiment in black and the theory in blue. The experimental parameters are A = 0.641 cm,
⇢
s

= 1.36712 g/cm3, ⇢
t

= 1.34419 g/cm3, ⇢
b

= 1.36639 g/cm3, and µ = 5.75 Poise.

85

FA : archimedean force
FE : from entrainment
FR : from reflux
(FE -FR) : density anomaly force

100 200 300 400 500 600 700 800 900
0

2

4

6

8

10

12

14

time(s)

Fo
rc

es
 o

n
sp

he
re

 (g
 c

m
/s

2)

Figure 8.6: Forces on the sphere for the Entrainment (w-dominated) regime showing the
importance of the reflux portion to the motion of the sphere since the entrainment force F

E

is bigger than the Archimedean force F
A

for a portion of time.

regime, the entrainment force F
E

is smaller than the Archimedean force F
A

.

8.3 Shell Depletion and Layer Thickness

A natural question to ask ourselves has to do with the shell thickness and its contribution

to the the extra buoyancy force on the sphere and the advection of fluid. What parameter

wins in helping the motion of the sphere? If ⇢
b

� ⇢
t

is very large then the rate of depletion is

fast – advecting with w that has magnitude directly proportional with (⇢
b

� ⇢
t

), therefore

the shell gets very small thus helping the sphere recover. However, we have seen that a large

(⇢
b

� ⇢
t

) also a↵ects the magnitude of the extra buoyancy force on the sphere making it slow

down.

86

Figure 8.7: Experimental picture showing the thin shell around the sphere for entrainment
dominated regimes.

87

CHAPTER 9

CONCLUSIONS

The importance of the study of the settling of particles in stratified fluids can be extended

to the many environmental applications such as better understanding the marine carbon cycle.

From solid and porous particles to multi particle problem, the e↵ects of entrainment plays a

significant role in their delayed settling. Pollution clearing times and industrial applications

are just of a few of the significant aspects of this study. This project focuses on miscible

sharp stratification regimes that are of known importance in the ocean, where thin layers of

aggregate become hotspots of bacteria remineralization. Our study focusing on a single solid

sphere showed that not only a sphere can exhibit a slow down beyond its terminal velocity

at the bottom layer but it can also rest at the interface for periods of time comparable to

di↵usion time scales of salt into the entrainment shell.

Our investigation to model the descent of a solid sphere in sharp stratifications has

significantly improved in optimizing the numerics and computational time. More importantly,

we have been able to implement the full theory needed the entrainment regime cases. By

implementing the full solution and approximations in their respective regions of validity, the

result of this investigation provides a predictive tool and describes the validity of the model for

large time scales when salt di↵usion plays an active role. In addition, the simulation delivers

a significant time reduction to solving the proposed problem where a full Navier-Stokes

simulation would be needed. The resulting solution shows the velocity of the sphere, the

shaping of the interface, and the fluid flow created. With these results, we expect to give

insight into the role of strong stratification in the prolonged settling of solid and porous

particles in the ocean.

88

APPENDIX A

OSEEN INTEGRALS

In this appendix, we focus only on writing out the ✓ integral of the vertical component

only, but the full horizontal component is also implemented in the numerical code. Let us

define the vertical component of the perturbation velocity w
Z

(R,Z) is given by:

w
Z

(R,Z) =

Z 1

0

d⇢ ⇢

Z

⇣2(⇢)

⇣1(⇢)

d⇣

Z 2✓

0

d✓

I1 + I2 +

��a2 + ⇢2 + ⇣2
p

⇢2 + ⇣2

!

(I3 + I4 + I5 + I6)

+
�

a2 �R2 � Z2
�

(I7 + I8 + I9 + I10 + I11 + I12)

!

(A.1)

where
R 2⇡

0 d✓I
j

are given by:

Z 2⇡

0

d ✓I1 = F1

�

R2 + ⇢2 + (Z � ⇣)2,�2R⇢
�

+ (Z � ⇣)2F2

�

R2 + ⇢2 + (Z � ⇣)2,�2R⇢
�

Z 2⇡

0

d ✓I2 =

s

a2

⇢2 + ⇣2
� F1

✓

a4 � 2a2Z⇣ + (R2 + Z2) (⇢2 + ⇣2)

⇢2 + ⇣2
,� 2a2R⇢

⇢2 + ⇣2

◆

�

s

a2

⇢2 + ⇣2

a2 (⇣ (Z⇣ � a2) + ⇢2Z)2 F2

✓

a

4�2a2Z⇣+(R2+Z

2)(⇢2+⇣

2)
⇢

2+⇣

2 ,�2a2R⇢

⇢

2+⇣

2

◆

(⇢2 + ⇣2)3

Z 2⇡

0

d ✓I3 =

a⇣2F1

✓

a

4�2a2Z⇣+(R2+Z

2)(⇢2+⇣

2)
⇢

2+⇣

2 ,�2a2R⇢

⇢

2+⇣

2

◆

(⇢2 + ⇣2)2

Z 2⇡

0

d ✓I4 = �
a3⇣ (⇣ (a2 � Z⇣)� ⇢2Z)F2

✓

a

4�2a2Z⇣+(R2+Z

2)(⇢2+⇣

2)
⇢

2+⇣

2 ,�2a2R⇢

⇢

2+⇣

2

◆

(⇢2 + ⇣2)3

Z 2⇡

0

d ✓I5 = �
a3⇣ (⇣ (a2 � Z⇣)� ⇢2Z)F2

✓

a

4�2a2Z⇣+(R2+Z

2)(⇢2+⇣

2)
⇢

2+⇣

2 ,�2a2R⇢

⇢

2+⇣

2

◆

(⇢2 + ⇣2)3

89

Z 2⇡

0

d ✓I6 = �
2a3⇣2 (a2 � Z⇣)F2

✓

a

4�2a2Z⇣+(R2+Z

2)(⇢2+⇣

2)
⇢

2+⇣

2 ,�2a2R⇢

⇢

2+⇣

2

◆

(⇢2 + ⇣2)3

+ 2a3⇣2
R⇢F4

✓

a

4�2a2Z⇣+(R2+Z

2)(⇢2+⇣

2)
⇢

2+⇣

2 ,�2a2R⇢

⇢

2+⇣

2

◆

(⇢2 + ⇣2)3
Z 2⇡

0

d ✓I7 =

✓

3a⇣2

⇢2 + ⇣2
� 3Z⇣

a
+ a

◆

F2

✓

a4 � 2a2Z⇣ + (R2 + Z2) (⇢2 + ⇣2)

⇢2 + ⇣2
,� 2a2R⇢

⇢2 + ⇣2

◆

� 3a

✓

Z � a2⇣

⇢2 + ⇣2

◆2

F6

✓

a4 � 2a2Z⇣ + (R2 + Z2) (⇢2 + ⇣2)

⇢2 + ⇣2
,� 2a2R⇢

⇢2 + ⇣2

◆

Z 2⇡

0

d ✓I8 =

6a⇣
⇣

Z � a

2
⇣

⇢

2+⇣

2

⌘

(Z⇣ � a2)F6

✓

a

4
⇢

2

(⇢2+⇣

2)2
+
⇣

a

2
⇣

⇢

2+⇣

2 � Z
⌘2

+R2,�2a2R⇢

⇢

2+⇣

2

◆

⇢2 + ⇣2

+

6a⇣
⇣

Z � a

2
⇣

⇢

2+⇣

2

⌘

R⇢F7

✓

a

4
⇢

2

(⇢2+⇣

2)2
+
⇣

a

2
⇣

⇢

2+⇣

2 � Z
⌘2

+R2,�2a2R⇢

⇢

2+⇣

2

◆

⇢2 + ⇣2

�
2a⇣2F2

✓

a

4
⇢

2

(⇢2+⇣

2)2
+
⇣

a

2
⇣

⇢

2+⇣

2 � Z
⌘2

+R2,�2a2R⇢

⇢

2+⇣

2

◆

⇢2 + ⇣2

Z 2⇡

0

d ✓I11 = �
3
⇣

|x|
p

⇢2 + ⇣2 + Z⇣
⌘

F9

⇣

a

2|x|
p

⇢

2+⇣

2

|y|2 + a

2
Z⇣

|y|2 ,
a

2
R⇢

|y|2

⌘

a|x|
Z 2⇡

0

d ✓I12 =
3
⇣

|x|
p

⇢2 + ⇣2 + Z⇣
⌘

F9

⇣

a

2|x|
p

⇢

2+⇣

2

|y|2 + a

2
Z⇣

|y|2 ,
a

2
R⇢

|y|2

⌘

a|x|

90

and the F
j

are expressed in terms of elliptic integrals K, E, and ⇧ of the first, second,

and third kind respectively.

F1(A,B) =
4K
�

2B
A+B

�

p
A+B

F2(A,B) =
4E
�

2B
A+B

�

(A� B)
p
A+B

F3(A,B) =
4
�

(A+B)E
�

2B
A+B

�

� AK
�

2B
A+B

��

B
p
A+B

F4(A,B) = �
4
�

A(A+B)E
�

2B
A+B

�

� (A2 � B2)K
�

2B
A+B

��

B(A� B)(A+B)3/2

F5(A,B) =
(8A2 � 4B2)E

�

2B
A+B

�

+ 8A(B � A)K
�

2B
A+B

�

B2(A� B)
p
A+B

F6(A,B) =
4
�

(B � A)K
�

2B
A+B

�

3(A� B)2(A+B)3/2

+
4AE

�

2B
A+B

��

3(A� B)2(A+B)3/2

F7(A,B) = �
4
�

(A2 + 3B2)E
�

2B
A+B

�

+ A(B � A)K
�

2B
A+B

��

3B(A� B)2(A+B)3/2

F8(A,B) = �
4
�

2 (A3 � 3AB2)E
�

2B
A+B

�

+ (�2A3 + 2A2B + 3AB2 � 3B3)K
�

2B
A+B

��

3B2(A� B)2(A+B)3/2

F9(A,B) =
2⇡p

A2 � B2

F10(A,B) =
2⇡A

(A2 � B2)3/2

F11(A,B) = � 2⇡B

(A2 � B2)3/2

91

The log terms that contains the removable singularities I
L3 = I9 + I10 + I11 + I12 give rise to

elliptic integrals of the third kind ⇧.

I
L3 =

�|y⇤|
⇣

1
|x�y

⇤| �
(x3�y

⇤
3)

2

|x�y

⇤|3

⌘

+ y

⇤
3(x3�y

⇤
3)

|y⇤||x�y

⇤| + 1

�|y⇤|2 + |y⇤||x � y

⇤|+ x1y⇤1 + x2y⇤2 + x3y⇤3

�

⇣

|y⇤|(x3�y

⇤
3)

|x�y

⇤| + y⇤3

⌘⇣

� |y⇤|(x3�y

⇤
3)

|x�y

⇤| + |x�y

⇤|y⇤3
|y⇤| + x3 � 2y⇤3

⌘

(�|y⇤|2 + |y⇤||x � y

⇤|+ x1y⇤1 + x2y⇤2 + x3y⇤3)
2

+

⇣

|y⇤|x3

|x| + y⇤3

⌘⇣

|x|y⇤3
|y⇤| + x3

⌘

(|y⇤||x|+ x1y⇤1 + x2y⇤2 + x3y⇤3)
2
�

x3y
⇤
3

|y⇤||x| + 1

|y⇤||x|+ x1y⇤1 + x2y⇤2 + x3y⇤3

We can also leave this term without its closed form expression for the code. Still, I
L3 is

well understood and can be manipulated for numerical integration by analyzing its expression

in terms of another integral where its regularization can be extracted.

Let,

a1 = (R2 + Z2)(⇢2 + ⇣2) + A4 � 2A2Z⇣

b1 = �2A2R⇢

a2 = Z⇣ � A2

b2 = R⇢

a3 =
p

(R2 + Z2)(⇢2 + ⇣2) + Z⇣

c0 =
6A3⇣ � 3A(⇢2 + ⇣2)⇣

(⇢2 + ⇣2)3

s1 =

p

a21 � b21 � a1
b1

s2 =
�
p

a21 � b21 � a1
b1

92

and

Ĩ
L3 = c0

@

@Z

arctan

2
(b2r2 + 2a2r + b2)

p

2|b1|
p

r (s1 � r) (s2 � r)

2|b1| r (s1 � r) (s2 � r)� ((b2r2 + 2a2r + b2))
2

!!

= c0
@

@Z

⇣

P (r, ⇢, ⇣, R, Z)
p

r(s1 � r)(s2 � r)
⌘

= c0

�4r (a2⇢ (r2R⇣ � 2r⇢Z +R⇣) +R (⇢2 + ⇣2) ((r2 + 1) ⇢Z � 2rR⇣))
�

R2
�

(r2 � 1)2 ⇢2 � 4r2⇣2
�

+ 4r (r2 + 1)R⇢Z⇣ � 4r2⇢2Z2
�

⇥ 1
p

�r (a4r � a2 ((r2 + 1)R⇢+ 2rZ⇣) + r (R2 + Z2) (⇢2 + ⇣2))

!

The kernel of the integral of Ĩ9 only has a singularity at r = s1 which behaves as :

I
L3 ⇠ O

✓

1p
s1 � r

◆

as r ! s1 (A.2)

To account for this integrable singularity, we regularize the function by:

I9 = Ĩ9 � 1
2c0

1p
s1�r

p
s1(s2�s1)

s1

@s1
@Z

P
�

�

�

r=s1

= Ĩ9 + c0
1p
s1�r

✓

q
R⇢

p
(a4�2a2Z⇣+(R2+Z

2)(⇢2+⇣

2))2�4a4R2
⇢

2p
(a4�2a2Z⇣+(R2+Z

2)(⇢2+⇣

2))2�4a4R2
⇢

2

⇥
p
2(⇣(Z⇣�a

2)+⇢

2
Z)(�2a2r+(r2+1)R⇢+2rZ⇣)

aR⇢

⇥
⇣
a

4�2a2Z⇣�
p

(a4�2a2Z⇣+(R2+Z

2)(⇢2+⇣

2))2�4a4R2
⇢

2+R

2
⇢

2+R

2
⇣

2+⇢

2
Z

2+Z

2
⇣

2
⌘

(8a4r2�8a2r((r2+1)R⇢+2rZ⇣)+4r(r2+1)R⇢Z⇣+4r2Z2(⇢2+2⇣2)+R

2(4r2⇣2+(r4+6r2+1)⇢2))

◆

Which regularizes our function and adds an integrand in closed form.

I
L31 =

p

s1(s2 � s1)

s1

@s1
@Z

P
�

�

�

r=s1

p
s1 (A.3)

Finally, the last part of the kernel is a boundary term that came from the integration by

parts of the logarithmic function. In summary, the vertical component of the perturbation

velocity w3 is:

93

w3(R,Z) =

Z

d⇢ ⇢

Z

d⇣

Z 2⇡

0

d✓I1 +

Z 2⇡

0

d✓I2 +

��a2 + ⇢2 + ⇣2
p

⇢2 + ⇣2

!

✓

Z 2⇡

0

d✓I3

+ 2

Z 2⇡

0

d✓I4 +

Z 2⇡

0

d✓I6

◆

+
�

a2 �R2 � Z2
�

✓

Z 2⇡

0

d✓I7 +

Z 2⇡

0

d✓I8 +

Z

s1

0

dr (I
L3) + I

L31

◆◆

+

Z

d⇢ ⇢

Z 2⇡

0

d✓
�

a2 �R2 � Z2
�

I
L32

A.1 Integration procedure

In this section, we go over the integration procedure on the vertical component of one of

the Oseen tensor terms, I9.

Let,

I9 =
⇣

3
⇣

⇢2 + ⇣2
⌘⇣⇣r2⇣

⇣

r4 � 2r2R⇢ cos(�� ✓)� 2r2Z⇣ +
⇣

R2 + Z2
⌘⇣

⇢2 + ⇣2
⌘⌘

⇣

⇢2 + ⇣2
⌘2

+
r4
⇣

Z � r

2
⇣

⇢

2+⇣

2

⌘

⇢2 + ⇣2

⌘⇣

Z � r2⇣

⇢2 + ⇣2

⌘

�
⇣

s

r4

⇢2 + ⇣2

⇣

r4 � 2r2R⇢ cos(�� ✓)� 2r2Z⇣ +
⇣

R2 + Z2
⌘⇣

⇢2 + ⇣2
⌘⌘

⇣

s

r4

⇢2 + ⇣2
�

v

u

u

t

r4 � 2r2R⇢ cos(�� ✓)� 2r2Z⇣ +
⇣

R2 + Z2
⌘⇣

⇢2 + ⇣2
⌘

⇢2 + ⇣2

⌘⌘

�

⇢2 + ⇣2
��1
⌘⌘

⇣

r3
⇣r4 � 2r2R⇢ cos(�� ✓)� 2r2Z⇣ +

⇣

R2 + Z2
⌘⇣

⇢2 + ⇣2
⌘

⇢2 + ⇣2

⌘3/2

⇣

� r4

⇢2 + ⇣2
+

r2R⇢ cos(�� ✓)

⇢2 + ⇣2
+

r2Z⇣

⇢2 + ⇣2
+

s

r4

⇢2 + ⇣2
v

u

u

t

r4 � 2r2R⇢ cos(�� ✓)� 2r2Z⇣ +
⇣

R2 + Z2
⌘⇣

⇢2 + ⇣2
⌘

⇢2 + ⇣2

⌘⌘�1

(A.4)

94

which can be rewritten as

I9 =
↵ + �(A+B cos(�� ✓)) + �(A+B cos(�� ✓))3/2

J ((A+B cos(�� ✓))3/2 (2r2(A+B cos(�� ✓))1/2 + 2E � B cos(�� ✓)))

Let u = A+B cos(�� ✓)

I9 =
↵ + �u+ �u3/2

Ju3/2 (mu1/2 � u+ n)
(A.5)

Simplifying and applying partial fraction decomposition to the first two terms, we get:

I9 =
↵

J

n+m

2

n

3 u� m

n

2u1/2 + 1
n

u3/2
+

n+m

2

n

3 u1/2 +�m/n2 �m/n3(n+m2)

mu1/2 � u+ n

!

+
�

J

1
mn

u1/2 + 1
n

u1/2
+

1
mn

u� m

2+n

nm

mu1/2 � u+ n

!

+
�

J

✓

1

mu1/2 � u+ n

◆

(A.6)

Integrating over ✓ gives elliptic integrals K and E of the first and second kind respectively.

Z 2⇡

0

d✓I9 =
↵

J

⇣

4
n+m2

n3

K(2B
A+B

)
p
A+B

�
2⇡ m

n

2
p

(A� B)/(A+B)(A+B)
+

1

n

4E(2B
A+B

)
p
A+B(A� B)

+

Z 2⇡

0

d✓
n+m

2

n

3 u1/2 +�m/n2 �m/n3(n+m2)

mu1/2 � u+ n

⌘

+
�

J

⇣

2⇡
1

mn
+ 4

1

n

K(2B
A+B

)
p
A+B

+

Z 2⇡

0

d✓
1

mn

u� m

2+n

nm

mu1/2 � u+ n

⌘

+
�

J

Z 2⇡

0

d✓

✓

1

mu1/2 � u+ n

◆

(A.7)

The remaining integrals can be rewritten as

1

J

Z 2⇡

0

d✓
↵
�

n+m

2

n

3 u1/2 +�m/n2 �m/n3(n+m2)
�

+ �
�

1
mn

u� m

2+n

nm

) + �

mu1/2 � u+ n
(A.8)

95

=
1

J

Z 2⇡

0

d✓
⌧u1/2 + �u+ !

mu1/2 � u+ n
(A.9)

Let,

u = A+B cos(�� ✓)

du = B sin(�� ✓)d✓

d✓ =
du

±B
q

1� (u�A)2

B

2

Performing this change of variables leads to the integral form:

1

J

Z 2⇡

0

d✓
⌧u1/2 + �u+ !

mu1/2 � u+ n
(A.10)

=
2

BJ

Z

A�B

A+B

du
⌧u1/2 + �u+ !

⇣

mu1/2 � u+ n
⌘

q

1� (u�A)2

B

2

(A.11)

=
2

J

Z

A�B

A+B

du
⌧
p
u+ �u+ !

⇣

m
p
u� u+ n

⌘

p

B2 � (u� A)2
(A.12)

In order to make use of Byrd and Friedman [7] chapter on Integrands Involving the Square

Roots of Sums and Di↵erences of Squares, we make the transformation:

u = t2

du = 2 t dt

=
4

J

Z

p
A�B

p
A+B

dt
�t3 + ⌧ t2 + !t

⇣

mt� t2 + n
⌘

p

B2 � (t2 � A)2
(A.13)

Positive argument of radical Since A = r4 � 2r2⇣Z + (⇢2 + ⇣2)(R2 + Z2) and B = �2r2R⇢ ,

we can proof that A is always bigger than B in magnitude and thus A+ B and A� B are

96

always greater than zero.

Proof.

Consider the nondimensionalized expressions A+B and A� B

A+B = 1� 2⇣Z + (⇢2 + ⇣2)(R2 + Z2)� 2R⇢

A� B = 1� 2⇣Z + (⇢2 + ⇣2)(R2 + Z2) + 2R⇢

We can proof that A+B is sign definite, always greater than zero. As a quadratic function

of Z, the discriminant is always less than or equal to zero.

A+B =
�

⇢2 + ⇣2
�

Z2 � (2⇣)Z +
�

1 +R2
�

⇢2 + ⇣2
�

� 2R⇢
�

discriminant(A+B) = �4
�

R2⇢4 + 2R2⇢2⇣2 +R2⇣4 � 2R⇢3 � 2R⇢⇣2 + ⇢ 02
�

However, the only root that A + B has is R = ⇢/ (⇢2 + ⇣2) and Z = ⇣/ (⇢2 + ⇣2) does not

satisfy R2 + Z2 > 1.

Proof. Consider f(r) = A+B = r4 � 2r2⇣Z + (⇢2 + ⇣2)(R2 + Z2)� 2r2R⇢. We want to

proof thatf(r) > 08(R,Z, ⇢, ⇣)

f(r) = r4 � 2r2⇣Z + ⇢2R2 + ⇢2Z2 + ⇣2R2 + ⇣2Z2 � 2r2R⇢ (A.14)

= r4 + ⇢2R2 � 2r2R⇢+ ⇢2Z2 + ⇣2R2 + ⇣2Z2 � 2r2⇣Z (A.15)

= (r2 � ⇢R)2 + ⇢2Z2 + ⇣2R2 + ⇣2Z2 � 2r2⇣Z (A.16)

> (r2 � ⇢R)2 + ⇢2Z2 + ⇣2R2 � 2r2⇣Z (A.17)

Note that f(r) ! 1 as r ! ±1. We find the minimums of the function and find that they

97

are always greater than zero.

f 0(r) = 4r(r2 � ⇢R)� 4a⇣Z = 0 (A.18)

4r(r2 � ⇢R� ⇣Z) = 0 (A.19)

r = 0 and r = ±
p

⇢R + ⇣Z (A.20)

f(0) = ⇢2R2 + ⇢2Z2 + ⇣2R2 + ⇣2Z2 > 0

f(±
p

⇢R + ⇣Z) = (⇣Z)2 + ⇢2Z2 + ⇣2R2 � (⇢R + ⇣Z)⇣Z > 0

Now, we have an integral of the form:

=
4

J

Z

p
A�B

p
A+B

dt
R(t)

p

�(t2 � r1)(t2 � r2)
(A.21)

where r1 and r2 are the roots of the quadratic equation B2 � (t2 � A)2 of t.

r1 = A+B

r2 = A� B

and R(t) =
�

�t3 + ⌧ t2 + !t
�

/
�

mt� t2 + n
�

is a rational integral function of t. Where p1 and

p2 satisfy the relation :

t4 � (2n+m2)t2 + n2 = (t2 � p1)(t
2 � p2) (A.22)

p1 = 1/2
⇣

2n+m2 +m
p
m2 + 4n

⌘

(A.23)

p2 = 1/2
⇣

2n+m2 �m
p
m2 + 4n

⌘

(A.24)

Rewriting R(t) into symmetric and antisymmetric parts, we get:

98

R(t) = t R1(t
2) +R2(t

2)

tR1(t
2) =

t
�

(n�� ⌧m� !)t2 � �t4 + n!
�

t4 � (2n+m2)t2 + n2

R2(t
2) = =

(��m� ⌧)t4 + (n⌧ � !m)t2

t4 � (2n+m2)t2 + n2

So integral becomes:
4

J

Z

p
A�B

p
A+B

dt
R(t)

p

�(t2 � r1)(t2 � r2)
(A.25)

=
4

J

Z

p
A�B

p
A+B

dt
tR1(t2)

p

�(t2 � r1)(t2 � r2)
+

4

J

Z

p
A�B

p
A+B

dt
R2(t2)

p

�(t2 � r1)(t2 � r2)
(A.26)

The left integral involving tR1(t2) can be reduced to elementary form by substitution

t2 = u.

4

J

Z

p
A�B

p
A+B

dt
tR1(t2)

p

�(t2 � r1)(t2 � r2)
(A.27)

=
2

J

Z

A�B

A+B

du
R1(u)

p

�(u� r1)(u� r2)
(A.28)

R1(u) =
(n�� ⌧m� !)u� �u2 + n!

(u� p1)(u� p2)
(A.29)

99

Case 1: p1 and p2 lie outside the domain of integration
⇥

A+B,A� B
⇤

.

2

J

Z

A�B

A+B

du
R1(u)

p

�(u� r1)(u� r2)
(A.30)

=
p
⇡
⇣p

⇡
⇣ 2r21
q

1
r1�p1

q

p1�r2

r1�r2

+
2r1

q

1
r1�p1

q

p1�r2

r1�r2

�
4r1(p1 � r1)

⇣

q

p1�r2

p1�r1
� 1
⌘

q

r2�p1

(p1�r1)(r1�r2)

(A.31)

�
(p1 � r1)

⇣

r1
⇣

2� 3
q

p1�r2

p1�r1

⌘

+ 2p1
⇣

q

p1�r2

p1�r1
� 1
⌘

+ r2
q

p1�r2

p1�r1

⌘

q

r2�p1

(p1�r1)(r1�r2)

(A.32)

+
2

q

1
r1�p1

q

p1�r2

r1�r2

�
2(p1 � r1)

⇣

q

p1�r2

p1�r1
� 1
⌘

q

r2�p1

(p1�r1)(r1�r2)

⌘

(2(p1 � p2)(r1 � p1))
�1 (A.33)

+

p
⇡
⇣

2r21q
1

r1�p2

q
p2�r2
r1�r2

+ 2r1q
1

r1�p2

q
p2�r2
r1�r2

�
4r1(p2�r1)

⇣q
p2�r2
p2�r1

�1

⌘

q
r2�p2

(p2�r1)(r1�r2)

2(p1 � p2)(p2 � r1)
(A.34)

+

�
(p2�r1)

⇣

r1

⇣

2�3
q

p2�r2
p2�r1

⌘

+2p2

⇣q
p2�r2
p2�r1

�1

⌘

+r2

q
p2�r2
p2�r1

⌘

q
r2�p2

(p2�r1)(r1�r2)

+ 2q
1

r1�p2

q
p2�r2
r1�r2

2(p1 � p2)(p2 � r1)
(A.35)

+

�
2(p2�r1)

⇣q
p2�r2
p2�r1

�1

⌘

q
r2�p2

(p2�r1)(r1�r2)

⌘

2(p1 � p2)(p2 � r1)

⌘

(A.36)

⇥ (
p
r2 � r1)

�1 (A.37)

Case 2: p1 or p2 are one of the limits of integrations. For example, p1 = r1 = A+B, the

integral is divergent. We can extract its asymptotic expression as lower limit tends to r1.

2

J

Z

A�B

A+B

du
R1(u)

p

�(u� r1)(u� r2)
=

2

J

Z

r2

r1

du
(n�� ⌧m� !)u� �u2 + n!

(u� r1)(u� p2)
p

�(u� r1)(u� r2)

=
2

J

Z

r2

r1

du
(n�� ⌧m� !)u� �u2 + n!

(u� r1)3/2(u� p2)
p

�(u� r2)

100

The right integral involving R2(t2) can be split using partial fractions decomposition.

R2(t
2) =

C1t2

t2 � p1
+

C2t2

t2 � p2

C1 =
p1
�

�m+ ⌧
�

+m! � n⌧

p2 � p1

C2 =
�p2

�

�m+ ⌧
�

+ n⌧ �m!

p2 � p1

Where p1 and p2 satisfy the relation :

t4 � (2n+m2)t2 + n2 = (t2 � p1)(t
2 � p2)

p1 = 1/2
⇣

2n+m2 +m
p
m2 + 4n

⌘

= r4 + 2r2
p

(R2 + Z2) (⇢2 + ⇣2) +
�

R2 + Z2
� �

⇢2 + ⇣2
�

p2 = 1/2
⇣

2n+m2 �m
p
m2 + 4n

⌘

= r4 � 2r2
p

(R2 + Z2) (⇢2 + ⇣2) +
�

R2 + Z2
� �

⇢2 + ⇣2
�

The right integral becomes:

Z

p
A+B

p
A�B

dt
R2(t2)

p

�(t2 � r1)(t2 � r2)
=

Z

p
A+B

p
A�B

dt
(C1 + C2)

p

�(t2 � r1)(t2 � r2)

+ C1p1

Z

p
A+B

p
A�B

dt

(t2 � p1)
p

�(t2 � r1)(t2 � r2)

+ C2p2

Z

p
A+B

p
A�B

dt

(t2 � p2)
p

�(t2 � r1)(t2 � r2)

(A.38)

The first integral is a complete elliptic integral of the first kind K. The other two integrals

are elliptic integrals of the third kind, that become logarithmically infinite for t =
p
p1 and

101

t =
p
p2 respectively as :

± 1

2
p

(p21 � r1)(p21 � r2)
log(t�p

p1)

and ± 1

2
p

(p22 � r1)(p22 � r2)
log(t�p

p2)

and for t = �p
p1 and t = �p

p2 as :

⌥ 1

2
p

(p21 � r1)(p21 � r2)
log(t+

p
p1)

and ⌥ 1

2
p

(p22 � r1)(p22 � r2)
log(t+

p
p2)

The poles p1 and p2 become one of the the limits of integration, so there are four

possibilities (only two possibilities if we consider that R > 0 and ⇢ > 0).

p1 = A� B if R = ⇢ and Z = �⇣

p1 = A+B if R = �⇢ and Z = �⇣

p2 = A+B if (R = ⇢ and Z = ⇣)) p2 = b2 = (r2 �R2 � Z2)2

p2 = A� B if R = �⇢ and Z = ⇣

In each case, P (p) = 0, where p =
p
p1 or p =

p
p2, which means the integral is elliptic

of the second kind and has an infinite of (1/2) order. Therefore the last two integrals from

Equation (15) can be divided into three cases . Case 1: Let us consider the case when
p
p1

(or
p
p2) is not inside the domain of integration

⇥p
A+B,

p
A� B

⇤

. Let a2 = A � B =

r4�2r2⇣Z+(R2+Z2)(⇢2+⇣2)+2r2R⇢ and b2 = A+B = r4�2r2⇣Z+(R2+Z2)(⇢2+⇣2)�2r2R⇢,

and b < a. In this case, the solution is an elliptic integral of the third kind and the integral

is given by integrals of the form:

102

C

Z

a

b

t2dt

(t2 � p)
p

(a2 � t2)(t2 � b2)
=

b2g

b2 � p
⇧
�

↵2
1, k
�

(A.39)

Where g = 1/(
p
A� B), k2 = (a2 � b2)/a2 = �2B/(A � B) , and ↵2

1 = p(a2�b

2)
a

2(p�b

2) , with

p 6= b2 . Refer to table entry number (217.02).

Case 2: This case involves the case when
p
p1 (or

p
p2) is equal to the lower limit of

integration. Then solution is an elliptic integral of the second kind with alegraic infinite of

one-half order at point t = ±p
p1 (or p2).

Z

a

b

t2dt

(t2 � b2)
p

(a2 � t2)(t2 � b2)
=

Z

y

b

t2dt

(t2 � b2)
p

(a2 � t2)(t2 � b2)

+

Z

a

y

t2dt

(t2 � b2)
p

(a2 � t2)(t2 � b2)

The second integral can is given by Table entry number (218.07). The first integral has a

divergence at t = b. And so we can extract its asymptotic expression as lower limit tends to

b.

Z

y

b

t2dt

(t2 � b2)
p

(a2 � t2)(t2 � b2)
(A.40)

=

Z

y

b

t2dt

(t� b)(t+ b)
p

(a2 � t2)(t� b)(t+ b)
(A.41)

=

Z

y

b

t2dt

(t� b)3/2(t+ b)
p

(a2 � t2)(t+ b)
(A.42)

=

Z

y

b

F (t)dt

(t� b)3/2
(A.43)

= lim
✏!b

Z

y

✏

F (t)dt

(t� b)3/2
(A.44)

103

Since F (t) is di↵erentiable in interval, so by the M.V.T. , for every t in the interval we have

a point b
t

such that:

F 0(b
t

) =
F (t)� F (b)

t� b
(A.45)

F (t) = F (b) + F 0(b
t

)(t� b) (A.46)
Z

y

✏

F (t)dt

(t� b)3/2
(A.47)

=

Z

y

✏

F (b)dt

(t� b)3/2
+

Z

y

✏

F 0(b
t

)(t� b)dt

(t� b)3/2
(A.48)

⇠ 2F (b)
�

✏� b
�1/2

as ✏! b+ (A.49)

Because the left integral is bounded as ✏! b+

�

�

Z

y

✏

F 0(b
t

)dt

(t� b)1/2
�

� K as ✏! b+ (A.50)

Case 3: This case involves the case when
p
p1 (or

p
p2) is equal to the upper limit of

integration. Then solution is an elliptic integral of the second kind with alegraic infinite of

one-half order at point t = ±p
p1 (or p2).

Z

a

b

t2dt

(t2 � a2)
p

(a2 � t2)(t2 � b2)
=

Z

y

b

t2dt

(t2 � a2)
p

(a2 � t2)(t2 � b2)

+

Z

a

y

t2dt

(t2 � a2)
p

(a2 � t2)(t2 � b2)

The first integral is given by table entry number (217.06). The second integral has an

infinite that can be extracted similarly as in case 2.

104

Z

a

y

t2dt

(t2 � a2)
p

(a2 � t2)(t2 � b2)
(A.51)

=

Z

a

y

t2dt

(t� a)3/2(t+ a)
p

(t+ a)(b2 � t2)
(A.52)

=

Z

a

y

G(t)dt

(t� a)3/2
(A.53)

⇠ �2G(a)

(✏� a)1/2
as ✏! a� (A.54)

To summarize, the integral can be rewriten as

Z

a

b

dt
R(t)

p

�(t2 � a2)(t2 � b2)
(A.55)

where R(t) =
�t3 + ⌧ t2 + !t

mt� t2 + n
(A.56)

=

Z

a

b

dt
tR1(t2)

p

�(t2 � a2)(t2 � b2)
+

Z

a

b

dt
R2(t2)

p

�(t2 � a2)(t2 � b2)
(A.57)

=

Z

a

b

F (t) dt

(t2 � p1)(t2 � p2)
p

�(t2 � a2)(t2 � b2)
+

Z

a

b

G(t) dt

(t2 � p1)(t2 � p2)
p

�(t2 � a2)(t2 � b2)

= f(a, b, p1, p2) + C1
b2g

b2 � p1
⇧(↵2

1, k
2) + C2

b2g

b2 � p2
⇧(↵2

2, k
2)

⇠

⇣

F (b) +G(b)
⌘

(b2 � p1)b
p

2b(a2 � b2)

1
�

✏� b
�1/2

as ✏! b+

We perform asymptotics of the solution as p2 ! b2, which means ⇢! R when ⇣ = Z, to

check for integrability and regularize

Where each variable is given below as a function of the spatial variables ⇢, ⇣, Z, R .

105

b2 = r4 � 2r2R⇢� 2r2Z⇣ + (R2 + Z2)(⇢2 + ⇣2)

p2 = r4 � 2r2
p

(R2 + Z2)(⇢2 + ⇣2) + (R2 + Z2)(⇢2 + ⇣2)

b2 � p2 = �2r2R⇢� 2r2Z⇣ + 2r2
p

(R2 + Z2)(⇢2 + ⇣2)

g = (r4 + 2r2R⇢� 2r2Z⇣ + (R2 + Z2)(⇢2 + ⇣2))�1

↵2
2 =

�2R⇢(r4�2r2
p

(R2+Z

2)(⇢2+⇣

2)+(R2+Z

2)(⇢2+⇣

2))

(r4+2r2(R⇢�Z⇣)(R2+Z

2)(⇢2+⇣

2))(R⇢+Z⇣�
p

(R2+Z

2)(⇢2+⇣

2))

k2 = 4r2R⇢

r

4+2r2R⇢�2r2Z⇣+(R2+Z

2)(⇢2+⇣

2)

Consider the expression below that has a singularity when p2 ! b2

C2
b

2
g

b

2�p2
⇧(↵2

2, k
2) (A.58)

p2 ! b2 as ⇢! R and ⇣ ! Z (A.59)

b2g

b2 � p2
! 1 as ⇢! R and ⇣ ! Z (A.60)

↵2 ! 1 as ⇢! R and ⇣ ! Z (A.61)

C2 ! constant as ⇢! R and ⇣ ! Z (A.62)

In order to obtain the asymptotics of the full expression, we should consider how ⇧(n,m) !

0 as n ! 1 Note that for n > 1 the integral has a singularity at sin2 ✓ = 1/
p
n and the

elliptic integral of the third kind should be interpreted as a a Cauchy principal value integral.

[Reference: Gil et al., Numerical Methods for Special Functions]

⇧(n,m) =
R

⇡

2
0

d✓

(1�n sin2 ✓)
p

1�m sin2 ✓
(A.63)

Definition of variables in this section

106

Y = ⇢2 + ⇣2 X = R2 + Z2

B = �2r2R⇢ A = r4 � 2r2⇣Z +XY

C = r2⇣ D = C/Y

↵ = 3r4(Z �D)2 � = (3(Z �D)C � 3r4)/Y

� = 3r2/Y E = �r4 + r2Z⇣

F = r5/Y 5/2 G = r3E/Y 5/2

H = �Br3/(2Y 5/2) J = G/2E

m = 2r2 n = 2E + A

⌧ = ↵n+m

2

n

3 ! = ↵(�m/n2 �m/n3(n+m2))� �(
m2 + n

mn
) + �

� = � 1
mn

C1 =
p1

�

�m+⌧

�

+m!�n⌧

p2�p1

C2 =
�p2

�

�m+⌧

�

+n⌧�m!

p2�p1

107

APPENDIX B

HOLDING CURVE

The equations of motion for a sphere falling in sharply stratified fluid in low Re numbers

are:
dY3

dt
(t; ⇢) = (6⇡AµK)�1

✓

m
s

g � g

Z

⌦
s

⇢0(x3 + Y3(t; ⇢))d⌦s

+

+

Z

⌦
f

G(y, t)
Aĝ

4

⇢

3 (r2 + y23)

r3
+

A2 (r2 � 3y23)

r5

�

d⌦
f

!

,

(B.1)

@⇢

@t
(x, t) + (u(x, t;V) + w(x, t; ⇢)) ·r⇢(x, t) = 0.

Let us define a holding curve if there exists an interface shape that makes the sphere stop

and never recover. This implies the force on the sphere F
s

and the sphere velocity vanishes,

making the stokes velocity u

s

= 0. Therefore, @⇢/@t = 0 and the advection of the fluid is

solely dictated by the perturbation velocity.

F
s

= 0 (B.2)

w ·r⇢ = 0 (B.3)

For equation (B.2) to be satisfied, the perturbation velocity w = 0 (Case 1) or w must

be tangential to the curve of ⇢ (Case 2).If w 6= 0 and it is not tangent to the curve, then ⇢

evolves and there is no holding curve. When the interface is away from the sphere, we can

show that a holding curve does not exist.

Case 1 (w=0)

108

If w = 0, the only force that holds the sphere is pressure, and the momentum equation

becomes

rp+ (⇢� ⇢0) ĝ = 0. (B.4)

Equation (B.4) has no solution unless ⇢(x)� ⇢0(x3)) = f(x3). In other words,

r⇥ (�rp) = r⇥ (⇢� ⇢0)ĝ (B.5)

0 = g

✓

î
@(⇢� ⇢0)

@x1
� ĵ

@(⇢� ⇢0)

@x2

◆

(B.6)

Therefore if w = 0, then ⇢(x3) and there is no deformation, so there is no holding curve.

Case 2 (w tangent to ⇢)

If there is a holding curve, there is no evolution of ⇢, then the interface becomes a stream

function. Therefore w is generated by stream functions which means w would have to be

tangent to this curve. However, if ⇢ doesnt evolve and the curve is a stream line, we show

below that w must be equal to zero, reaching a contradiction and disproving the existence of

a holding curve.

From the equation of the advection of the fluid, a holding curve must satisfy:

r · (⇢w) = 0 (B.7)

Assuming the above is true and that it defines a holding curve, then the stream function is

constant on such curve and the holding curve is a stream line. Looking at the cross section

x2 = 0,

r · (⇢w) = 0 (B.8)

⇢w1 =
@

@x3
(B.9)

⇢w3 = � @

@x1
(B.10)

109

Let x3 = ⇣(x1) denote the curve where is a constant. We show that if the holding curve

is a graph ⇣(x1), then it cannot exists. Integrating the momentum equation over the fluid

domain, we get

Z

⌦
f

|rw|2d3x = 0

third component
Z

⌦
f

⇢w3 d3x =

Z 1

�1
dx1

Z

⇣(x1)

0

dx3
@

@x1

=

Z 1

�1
dx1

@

@x1

Z

⇣(x1)

0

dx3 (x1, x3)

!

� (x1, ⇣(x1))
@⇣

@x1

!

=

Z

⇣(1)

0

 (1, x3)dx3 �
Z

⇣(�1)

0

 (1, x3)dx3

= (1, ⇣(1))⇣(1) + (�1, ⇣(�1)) (�1)

= 0

since

@⇣

@x1
=
@ /@x1

@ /@x3
(B.11)

Z 1

�1
dx1 (x1, ⇣(x1))

@⇣

@x1
= 0 (B.12)

Translating this result to cylindrical coordinates

r · � =
1

r

@

@r
(r�(r)) +

@

@z
(�(z)) = 0 (B.13)

�(r) =
1

r

@

@z
(B.14)

�(z) =
1

r

@

@r
(B.15)

(B.16)

110

Z

⌦
f

|rw|2d3y (B.17)

= 2⇡

Z 1

0

rdr

Z

⇣(r)

0

dz
1

r

@

@r
(B.18)

= 2⇡

Z 1

0

dr

Z

⇣(r)

0

dz
@

@r
(B.19)

= 2⇡

Z 1

0

dr
@

@r

Z

⇣(r)

0

dz � (r, ⇣)⇣(r)

!

(B.20)

= (0, ⇣(0)) (B.21)

= constant (B.22)

By this argument, if the holding curve exits, the perturbation velocity would have to be

a constant, and by boundary conditions this constant is w = 0, therefore we reach a

contradiction.

111

APPENDIX C

FLOW PAST A STOKESLET

The equations of motion for Stokes flow past a point force singularity are

µr2
u �rp = �A �(x, y, z) (C.1)

r · u = 0 (C.2)

@⇢

@t
+ u ·r⇢ = 0 (C.3)

⇢(t = 0) = H(z � z0) (C.4)

Where z0 is the position of the interface. The solutions to the equations is the stokeslet

solution, given in terms of the strength A = (0, 0,�1)

u =
1

8⇡µ

✓

A

|x| +
(A · x)x

|x|3

◆

(C.5)

We need the stream-surface for stokeslet.

dx

dt
= u(x, y, z, t) (C.6)

x

�

�

�

t=0
= (x0, y,z0) (C.7)

(C.8)

Characteristics

112

dx

dt
= u1 =

1

8⇡µ

✓

�zx

(x2 + y2 + z2)3/2

◆

; x(t = 0) = x0

dy

dt
= u2 =

1

8⇡µ

✓

�zy

(x2 + y2 + z2)3/2

◆

; y(t = 0) = y0

dz

dt
= u3 =

1

8⇡µ

✓

�1

(x2 + y2 + z2)1/2
+

�zx

(x2 + y2 + z2)3/2

◆

=
1

8⇡µ

✓

�x2 � 2z2

(x2 + y2 + z2)3/2

◆

; z(t = 0) = z0

Simplified Example :

For these notes, lets make z0 = 1 and work in the y-plane, y = 0.

dz

dx
=

x

z
+

2z

x
(C.9)

Let U = x

z

.

dz

dx
= U +

2

U
=

d

dx

⇣ x

U

⌘

=
1

U
� x

U2

dU

dx
(C.10)

x

U2

dU

dx
=

1

U
� U � 2

U
(C.11)

dU

U3 � U
=

dx

x
(C.12)

Integrating both sides, we get

Up
U2 + 1

=
C

x
(C.13)

113

Substituting U = x/z gives

x/z
p

(x/z)2 + 1
=

C

x
(C.14)

z2(x, C) =
x4 � C2x2

C2
(C.15)

z2(x, C) =
x4

C2
� x2 (C.16)

z2 + x2 =
x4

C2
. (C.17)

Applying initial conditions z(x(t = 0)) = z(x0) = z0 = 1, we get

C =
x2
0

p

x2
0 + z20

(C.18)

dx

dt
=

�
⇣p

x

4�C

2
x

2

|C|

⌘

x
�

x

4

C

2

�3/2
(C.19)

= �c2
p
x2 � c2

x4
(C.20)

dt =
x4

�c2
p
x2 � c2

dx. (C.21)

114

APPENDIX D

DIFFUSION COEFFICIENT IN CORN SYRUP

Previous experimental measurements of di↵usion coe�cient of both NaCl and KI have

been reported in [22] and [28]. However, [22] did so in a corn syrup solution heavily diluted

by water and [28] made his recordings outside of a temperature bath.

D.1 Sodium Chloride NaCl

In [22], Lin states that for water-salt solutions, the di↵usivity of salt (as well as most ionic

solutes) is 1.5⇥ 10�5cm2/s (see also, e.g., [32]), and there seems to be no reason that this

di↵usivity would provide faster rates in our viscous corn syrup solution. However, we have

observed some fingering instabilities and the development of plumes around the interface

when the concentrations of NaCl are greater than 2%. Furthermore, Moore measured the

conductivity of salt obtaining a 1.3⇥ 10�5cm2/s outside of a temperature controlled bath

[28] .

0 100 200 300 400 500 600−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Conductivity (muS/cm)

Sa
lin

ity
 (%

)

Taking Conductivities of Known Salinities at 22 C

Figure D.1: Plot of percent salinity concentration vs. conductivity. The dots are measurements
at 22o C for di↵erent concentrations of NaCl using an Orion conductivity meter and probe.
The black solid line is a cubic fit to the data providing a map from conductivity to salinity.

Using the function fit shown in Figure (D.3), we track the concentration of salinity given

by the conductivity probe.

115

Figure D.2: Picture of the di↵usion coe�cient measurement set up inside the temperature
bath

D.2 Potassium Iodide KI

Lin tested the di↵usion of potassium iodide using its natural coloring behavior, in water

diluted corn syrup obtaining an upper bound for the di↵usion coe�cient of the same magnitude

as that of NaCl [22]. However, when we stratify using KI and non-diluted corn syrup, the

sharp stratification is maintained for longer than three weeks.

A future experimental result includes an ongoing measurement comparing KI salinity in

pure corn syrup and 1% NaCl in a temperature bath setting. So far, the values indicate

that KI has a di↵usion coe�cient at least one magnitude smaller than NaCl. Therefore,

comparing the entrainment regimes using NaCl and KI as the stratification agents would

provide a setting in which di↵usion could play a role (NaCl) and a case in which our current

non-di↵usive theory would agree due to the slow time scales of di↵usion (KI).

116

0 1 2 3 4 5 6 7 8 9 10
x 106

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (seconds)

Sa
lin

ity
 (%

)

Top Probe

experimental data
lsq fit gives D=3.356229e−06

Figure D.3: Experimental measurements at a fixed location in the top layer of salinity based
on the salinity-to-conductivity fit (black dots) and the solution to the di↵usion equation (blue
line) with D, the di↵usion coe�cient, chosen to best fit the measurements. Conductivity was
measured using the top layer probe shown in Figure (D.2)

117

APPENDIX E

NOMENCLATURE

Consistent with absolute units, we have listed most of the global variables used in this

thesis.

A : radius of sphere

R0 : radius of the cylindrical tank

g : gravity acceleration constant

⇢
s

: density of the sphere

⇢
t

: density of the top layer

⇢
b

: density of the bottom layer

µ
t

: viscosity of the top layer

µ
b

: viscosity of the bottom layer

x = (x1, x2, x3) = (R,�, Z) : observation point in rectangular and cylindrical coordinates

respectively

y = (y1, y2, y3) = (⇢, ✓, ⇣) : location of stokeslet for the perturvation velocity w in rectangular

and cylindrical coordinates respectively

Y (t) : vertical position of the sphere positon

V (t) : third component of the sphere velocity

u

s

= (u
R

, 0, u
Z

) : stokes flow component for static density

u

(i) : stokes flow ith reflection from method of reflections

W
j

: Greens function from Oseen Tensor to solve for w

w = (w
R

, 0, w
Z

) : density anomaly flow component ⌦
f

: fluid domain of integration ⌦
s

:

sphere interior domain

118

APPENDIX F

NUMERICAL CODES

This appendix shows the fortran code developed by [22] that was modified to implement

further refinements to the full flow field and tracking of interface.

MODULE globalinfo

!experimental parameters

real (kind=8), parameter :: rhot =1.34647 !density of top fluid

real (kind=8), parameter :: rhob = 1.35000 !density of bottom fluid

real (kind=8), parameter :: rhos = 1.36712 !density of the sphere

real (kind=8), parameter :: mu = 5.0698 !dynamic viscosity of fluid

real (kind=8) :: U = 0.0; !initial velocity of fluid

real (kind=8), parameter :: y0 = -13 !!initial position of interface

real (kind=8), parameter :: R = 0.635; !radius of sphere

real (kind=8), parameter :: R0 = 5.4; !cylinder radius

real (kind=8), parameter :: maxTime = 6000.0; !time to run to

real (kind=8), parameter :: g = 981.0; !gravity

real (kind=8), parameter :: pi = 3.14159265;

!numerical parameters

real (kind=8), parameter :: dt= 1; !time step

real (kind =8), parameter :: numtrapz= 0.005; !h for trapezoidal trapz1trapz1

real (kind=8), parameter :: integthres= 0.1E-5; !simpson integration

real (kind=8), parameter :: singthres= 0.1E-6; !threshold singularity x=y

real (kind=8), parameter :: logsing= 0.1; !threshold log "sing" x=y

real (kind=8), parameter :: logtrapzbig= 0.5;!h trapz for log around "sing"

real (kind=8), parameter :: logtrapz= 0.1; ! htrapz for log

real (kind = 8) :: FFR =2*R ! radius of full solution

119

real (kind =8) ,parameter:: dx= 0.05;

integer (kind=4) :: RorZ

real (kind = 8) :: R0cl = 2*R

integer (kind=4),parameter :: XNfar=20, XNclose=60

integer (kind=4) :: XN = XNclose+XNfar

!integer (kind=4) :: RorZ, XN=ceiling(R0/dx)

!dependent parameters

real (kind=8) :: ms= 4.0/3.0*pi*R**3*rhos; !mass of the sphere

real (kind=8) :: oneoversixpiamuK

= (1-2.10444*(R/R0) +2.08877*((R/R0)**3))* 1.0/(6.0*pi*R*mu)

real (kind=8) :: stresspertcoeff

= -0.25*g*(rhot-rhob)*R*2.0*pi; !coefficient of the perturbatio stress

real (kind=8) :: buoyancytop= -4.0/3.0*pi*R**3*g*rhot; !buoyant force when sphere

is above the interface

real (kind=8) :: buoyancybottom = -4.0/3.0*pi*R**3*g*rhob; !buoyant force when

sphere is below the interface

real (kind=8) :: buoyancyCoeff1= -pi*g/3.0*(rhob-rhot); ! buoyant force coeff at

interface

real (kind=8) :: buoyancyCoeff2= -2.0*pi*g/3.0*R**3*(rhob+rhot); ! buoyant force

coeff at interface

real (kind=8) :: drhogover8mu= (rhob-rhot)*g/(8.0*mu); !coefficient for the

perturbation flow

real (kind=8) :: myt= 0 !initial time

!interface

real (kind=8), dimension(:), allocatable :: x, y, sx, sy, su ,sv ,wu ,wv,

cinterpx, cinterpy,cwinterpx, cwinterpy

real (kind=8) yend, xflagb, xflagl, px, py, myrho, myzeta

120

integer (kind=4) :: flagb, flagu, flagl,flagt, cinternalcount,

cwinternalcount

!fourier components

real (kind=8), parameter :: epsilon= 0.001

real (kind=8), parameter :: LZ= 10.0; !u2Z lambda integral limit

real (kind=8), parameter :: LR= 10.0; !u2R lambda integral limit

integer (kind=4), parameter :: NZ= 2**16; !discretization

integer (kind=4), parameter :: NR= 2**14;

real (kind=8), parameter :: u3coeff= -2.1044428*R/R0+2.1800173*R**3/R0**3;

real (kind=8), parameter :: upperZ= 40.0;

integer (kind=4), parameter :: upperRangeZ = ceiling((LZ-epsilon)*upperZ/(2.0*pi

)+1.0),&

upperRangeR = ceiling(LR*upperZ/(2.0*pi)+1.0);

real (kind=8) :: cylindervelR(upperRangeR, XNclose+XNfar+1), cylindervelZ(

upperRangeZ, XNclose+XNfar+1)

real (kind=8) :: zcoordinateZ(upperRangeZ), zcoordinateR(upperRangeR)

complex, parameter :: MINUS_ONE = -1.0

complex :: imagi = SQRT(MINUS_ONE)

real (kind=8) WZ(NZ), WR(NR), myHZ(NZ), myGZ(NZ),&

myHR(NR), myGR(NR), firstpartZ(NZ), firstpartR(NR), myk(NZ)

real (kind=8) AreaReflux,AreaSpherePortion,AreaEntrain, startx(XNclose+XNfar+1),

starty(XNclose+XNfar+1),wforceE, wforceR, wforce, ArchBouyancy,ArchBE,

stresspert, stresspertA,ArchBR, stresspertE,stresspertReflux

END MODULE globalinfo

program fulltime_2009_05_02_Fortran

121

use globalinfo

implicit none

integer (kind=4) i, ierr, flag, ix, iy, iv

real (kind=8) :: velocity(ceiling(maxTime/dt)+1), stresspertvect(ceiling(

maxTime/dt)+1), index, abserr=0.001,&

relerr=0.001

real (kind=8), dimension(:), allocatable :: V, VP

Character(len=65) :: filename

external rhoode

!initialize interface

ALLOCATE(x(XNfar+XNclose+1), STAT=ierr)

!ALLOCATE(x(XN+1), STAT=ierr)

IF (ierr /= 0) PRINT*, "x : Allocation failed"

ALLOCATE(y(XNfar +XNclose+1), STAT=ierr)

!ALLOCATE(y(XN+1), STAT=ierr)

IF (ierr /= 0) PRINT*, "y : Allocation failed"

DO i=1,XNclose + XNfar+1

if (i<XNclose+2) then

x (i) = (i-1)**(2) *(R0cl/XNclose**(2))

else

x(i) = (i - XNclose-1)* (R0 -R0cl) / XNfar + R0cl

endif

end do

y = y0

startx= x;

122

starty = y;

!initialize interface interpolated spherevel

ALLOCATE(cinterpx(1000000), STAT=ierr)

!ALLOCATE(x(XN+1), STAT=ierr)

IF (ierr /= 0) PRINT*, "cintertpx : Allocation failed"

ALLOCATE(cinterpy(1000000), STAT=ierr)

!ALLOCATE(y(XN+1), STAT=ierr)

IF (ierr /= 0) PRINT*, "cintertpy : Allocation failed"

!initialize interface interpolated from w

ALLOCATE(cwinterpx(1000000), STAT=ierr)

!ALLOCATE(x(XN+1), STAT=ierr)

IF (ierr /= 0) PRINT*, "cintertpx : Allocation failed"

ALLOCATE(cwinterpy(1000000), STAT=ierr)

!ALLOCATE(y(XN+1), STAT=ierr)

IF (ierr /= 0) PRINT*, "cintertpy : Allocation failed"

cinternalcount=XN+1;

cwinternalcount=XN+1;

do ix=1, max(cinternalcount,cwinternalcount)

cinterpx(ix)=x(ix);

cinterpy(ix)= y(ix);

cwinterpx(ix)=x(ix);

cwinterpy(ix)= y(ix);

123

end do

open (unit =9,file = ’VolumeTrack.dat’)

write(9,*) "Volume of Entrainment, Volume of Reflux, Volume of Portion of Sphere"

open (unit =8,file = ’WForce.dat’)

write(8,*) " ArchBER, Wforce = 6pimuAstresscoeff(wFE - wFR), SphARchBoyancy,

ArchBR,wforceR,wforceE"

!initialize cylinder velocity

call cylindervelinit()

!********************** TIME LOOP *******************!

do index = 0,ceiling(maxTime/dt)

ALLOCATE(V(2*(XN+1)), STAT=ierr)

IF (ierr /= 0) PRINT*, "V : Allocation failed"

ALLOCATE(VP(2*(XN+1)), STAT=ierr)

IF (ierr /= 0) PRINT*, "VP : Allocation failed"

!initialize stokes flow

ALLOCATE(su(XN+1), STAT=ierr)

IF (ierr /= 0) PRINT*, "x : Allocation failed"

ALLOCATE(sv(XN+1), STAT=ierr)

IF (ierr /= 0) PRINT*, "y : Allocation failed"

su = 0

sv = 0

124

!initialize w flow

ALLOCATE(wu(XN+1), STAT=ierr)

IF (ierr /= 0) PRINT*, "x : Allocation failed"

ALLOCATE(wv(XN+1), STAT=ierr)

IF (ierr /= 0) PRINT*, "y : Allocation failed"

wu = 0

wv = 0

V(1:XN+1) = x

V(XN+2:2*(XN+1)) = y

!===================== Write interface ====================== !

WRITE (filename, fmt=’(a,f10.2,a)’) ’interface’,index+1,’.dat’

open (unit =2,file = filename,form=’formatted’)

write(2,*) "x,y at time=", myt, "rhos", rhos

do ix=1, XN+1

write(2,*), x(ix), ",", y(ix),","

end do

!===================== Write interpolated interface ================== !

WRITE (filename, fmt=’(a,f10.2,a)’) ’interpolation’,index +1,’.dat’

!print *, "after writing filename"

open (unit =6,file = filename,form=’formatted’)

!open (unit =6,file = ’interpolation.dat’,form=’formatted’)

125

!print *, ’before loop ’, max(cinternalcount,cwinternalcount)

write(6,*) "interpolated interface x,y at time=", myt

do ix=1, max(cinternalcount,cwinternalcount)

write(6,*), cinterpx(ix), ",", cinterpy(ix),",", cwinterpx(ix), ",", cwinterpy(ix

),","

end do

!====================== ODE SOLVER ====================== !

flag = 1

call r8_rkf45 (rhoode, 2*(XN+1), V, VP, index*dt, (index+1.0)*dt, relerr, abserr,

flag)

x = V(1:XN+1)

y = V(XN+2:2*(XN+1))

! Write data files

WRITE (filename, fmt=’(a,f10.2,a)’) ’stokes’,index+1,’.dat’

open (unit =4,file = filename,form=’formatted’)

write(4,*) "us,sv at time=", myt

do ix=1, XN+1

write(4,*), su(ix), ",", sv(ix), ","

end do

WRITE (filename, fmt=’(a,f10.2,a)’) ’wpert’,index+1,’.dat’

126

open (unit =5,file = filename,form=’formatted’)

write(5,*) "wu,wv at time=", myt

do ix=1, XN+1

write(5,*), wu(ix), ",", wv(ix), ","

end do

open (unit =9,file = ’VolumeTrack.dat’)

write(9,*), AreaEntrain, ",", AreaReflux, ",", AreaSpherePortion

open (unit =8,file = ’WForce.dat’)

write(8,*), ArchBE, ",", wforce, ",", ArchBouyancy, ",", ArchBR,",",wforceR,",",

wforceE

open (unit =11,file = ’sphereVel.dat’)

write(11,*), U, ",", myt, ",", yend

IF (ALLOCATED(V)) DEALLOCATE(V,STAT=ierr)

IF (ALLOCATED(VP)) DEALLOCATE(VP,STAT=ierr)

IF (ALLOCATED(wu)) DEALLOCATE(wu,STAT=ierr)

IF (ALLOCATED(wv)) DEALLOCATE(wv,STAT=ierr)

IF (ALLOCATED(su)) DEALLOCATE(su,STAT=ierr)

IF (ALLOCATED(sv)) DEALLOCATE(sv,STAT=ierr)

call fillgaps()

127

velocity(index+1)=U

stresspertvect(index+1)=stresspert

print *, U, ",", myt, ",", yend

end do

print *, "velocity"

do iv = 1, ceiling(maxTime/dt)+1

print *, velocity(iv), ","

end do

print *, "stress"

do iv = 1, ceiling(maxTime/dt)+1

print *, stresspertvect(iv), ","

end do

print *, " "

print *,

"***"

print *, "x"

do ix=1, XN+1

print *, x(ix), ","

end do

print *, "y"

do iy=1, XN+1

print *, y(iy), ","

end do

print *,

"***"

128

print *, " "

end program fulltime_2009_05_02_Fortran

subroutine rhoode(T, V, VP)

use globalinfo

implicit none

real (kind=8) :: T, sr(XN+1), V(2*(XN+1)), VP(2*(XN+1)) !, wu(XN+1), wv(XN+1), su

(XN+1), sv(XN+1)

integer (kind=4) ierr, i, ix, iy

myt = T

ALLOCATE(sx(XN+1), STAT=ierr)

IF (ierr /= 0) PRINT*, "sx : Allocation failed"

ALLOCATE(sy(XN+1), STAT=ierr)

IF (ierr /= 0) PRINT*, "sy : Allocation failed"

wu = 0.0

wv = 0.0

sx = V(1:XN+1)

sy = V(XN+2:2*(XN+1))

call sphvel()

call specialpositions(sx, sy)

call wTN()

call stokes() !su, sv)

129

sr = sqrt(sx**2+sy**2)

do i = 1, XN+1

if (sr(i) <= R) then

wu(i) = 0.0

wv(i) = 0.0

su(i) = 0.0

sv(i) = 0.0

endif

end do

VP(1:XN+1) = su+wu

VP(XN+2:2*(XN+1)) = sv+wv

IF (ALLOCATED(sx)) DEALLOCATE(sx, STAT=ierr)

IF (ALLOCATED(sy)) DEALLOCATE(sy, STAT=ierr)

end subroutine rhoode

subroutine sphvel()

use globalinfo

implicit none

real (kind=8) :: buoyancy, stressbelowsphere, stresssidesphere, stressabovesphere,

stressbackflow, &

stressbelowsphereA, stresssidesphereA, stressabovesphereA, stressbackflowA, &

stressbelowsphereE, stresssidesphereE, stressabovesphereE, stressbackflowE,cindex

real (kind=8), external :: stresstail1D, stressIntegrandFlat1D,

stressIntegrandsphere1D, stressIntegrand1D,&

130

stresstail1DA, stressIntegrandFlat1DA, stressIntegrandsphere1DA,

stressIntegrand1DA, &

stresstail1DE, stressIntegrandFlat1DE, stressIntegrandsphere1DE,

stressIntegrand1DE

Character(len=45):: filename

integer i,ix, ierr

!for a two layer fluid only

if (sy(XN+1)>=R) then

buoyancy = buoyancybottom;

elseif (abs(sy(XN+1))<R) then

buoyancy = buoyancyCoeff1*(3.0*R**2*sy(XN+1)-sy(XN+1)**3)+

buoyancyCoeff2;

else

buoyancy = buoyancytop;

endif

!========= Initialize Interpolated ===== !

IF (ALLOCATED(cinterpx)) DEALLOCATE(cinterpx, STAT=ierr)

IF (ALLOCATED(cinterpy)) DEALLOCATE(cinterpy, STAT=ierr)

!initialize interface

ALLOCATE(cinterpx(1000000), STAT=ierr)

IF (ierr /= 0) PRINT*, "cintertpx : Allocation failed"

ALLOCATE(cinterpy(1000000), STAT=ierr)

IF (ierr /= 0) PRINT*, "cintertpy : Allocation failed"

cinternalcount=0.0;

131

cinterpx =0;

cinterpy = 0;

!calculate stress force

stresspert = 0.0;

if (maxval(sy) > minval(sy)) then

call specialpositions(sx, sy)

stressbelowsphere = 0.0;

stresssidesphere = 0.0;

stressabovesphere = 0.0;

stressbackflow = 0.0;

if (flagu /= 0) then

call simp(stressIntegrand1D, sy(1), max(-R, sy(1)), integthres,

stressbelowsphere)

call simp(stressIntegrandsphere1D, max(-R, sy(1)), R, integthres,

stresssidesphere)

call simp(stressIntegrand1D, R, yend, integthres, stressabovesphere

)

elseif (flagl /= 0) then

call simp(stressIntegrand1D, sy(1), max(-R, sy(1)), integthres, stressbelowsphere

)

call simp(stressIntegrandsphere1D, max(-R, sy(1)), yend, integthres,

stresssidesphere)

else

call simp(stressIntegrandFlat1D, sx(1), xflagb, integthres, stressbelowsphere)

endif

132

if (flagb /= XN+1) then

call trapz1(stresstail1D, xflagb, sx(XN+1),real(0.01,kind=8), stressbackflow)

endif

stresspert = stresspertcoeff*(stressbelowsphere + stresssidesphere +

stressabovesphere -stressbackflow)

endif

!calculate archimedean force of fluid

stresspertA = 0.0;

if (maxval(sy) > minval(sy)) then

call specialpositions(sx, sy)

stressbelowsphereA = 0.0;

stresssidesphereA = 0.0;

stressabovesphereA = 0.0;

stressbackflowA = 0.0;

if (flagu /= 0) then

call simp(stressIntegrand1DA, sy(1), max(-R, sy(1)), integthres,

stressbelowsphereA)

call simp(stressIntegrandsphere1DA, max(-R, sy(1)), R, integthres,

stresssidesphereA)

call simp(stressIntegrand1DA, R, yend, integthres, stressabovesphereA)

elseif (flagl /= 0) then

call simp(stressIntegrand1DA, sy(1), max(-R, sy(1)), integthres,

stressbelowsphereA)

call simp(stressIntegrandsphere1DA, max(-R, sy(1)), yend, integthres,

stresssidesphereA)

else

133

call simp(stressIntegrandFlat1DA, sx(1), xflagb, integthres, stressbelowsphereA)

endif

if (flagb /= XN+1) then

call simp(stresstail1DA, xflagb, sx(XN+1), integthres, stressbackflowA)

endif

stresspertA = -g*(rhob-rhot)*(stressbelowsphereA + stresssidesphereA +

stressabovesphereA-stressbackflowA)

endif

!calculate density anomaly force as it scales with shell size epsilon = -sy(1) -

A

!calculate archimedean force of fluid

stresspertE = 0.0;

if (maxval(sy) > minval(sy)) then

stressbelowsphereE = 0.0;

stresssidesphereE = 0.0;

stressabovesphereE = 0.0;

stressbackflowE = 0.0;

if (flagu /= 0) then

call simp(stressIntegrand1DE, sy(1), max(-R, sy(1)), integthres,

stressbelowsphereE)

call simp(stressIntegrandsphere1DE, max(-R, sy(1)), R, integthres,

stresssidesphereE)

call simp(stressIntegrand1DE, R, yend, integthres, stressabovesphereE)

elseif (flagl /= 0) then

134

call simp(stressIntegrand1DE, sy(1), max(-R, sy(1)), integthres,

stressbelowsphereE)

call simp(stressIntegrandsphere1DE, max(-R, sy(1)), yend, integthres,

stresssidesphereE)

else

call simp(stressIntegrandFlat1DE, sx(1), xflagb, integthres, stressbelowsphereE)

endif

if (flagb /= XN+1) then

call simp(stresstail1DE, xflagb, sx(XN+1), integthres, stressbackflowE)

endif

stresspertE = g*(rhob-rhot)*(stressbelowsphereE + stresssidesphereE +

stressabovesphereE-stressbackflowE)

endif

wforceE= stressbelowsphere + stresssidesphere + stressabovesphere

wforceR=stressbackflow

wforce = oneoversixpiamuK*stresspert

ArchBouyancy =oneoversixpiamuK*(g*ms + buoyancy)

ArchBE=-stresspertA *oneoversixpiamuK

ArchBR =-g*(rhob-rhot)*(-stressbackflowA)*oneoversixpiamuK

stresspertReflux= -g* (rhob-rhot)*stressbackflowE

U = oneoversixpiamuK*(g*ms + buoyancy + stresspert)

end subroutine sphvel

subroutine specialpositions(myx, myy)

!determine special positions on the interface

135

use globalinfo

implicit none

real (kind=8) buoyancy

real (kind=8) :: myx(XN+1), myy(XN+1)

integer (kind=4) temp(1), tempmaxi

flagl = 0

flagu = 0

!find position of backflow

yend = myy(XN+1)

if(maxval(myy) > yend) then

flagb = XN+1

do tempmaxi = 1, XN

if (myy(tempmaxi+1) > yend .and. myy(tempmaxi) <= yend) then

flagb = tempmaxi

exit

endif

end do

tempmaxi = min(flagb-2, XN-3)

tempmaxi = max(tempmaxi, 1)

call interpbridge(5, myy(tempmaxi:tempmaxi+4), myx(tempmaxi:

tempmaxi+4), yend, xflagb)

else

flagb = XN+1;

xflagb = myx(XN+1);

endif

136

!find x position of bottom of sphere

if (yend >= -R) then

temp = minloc(abs(myy+R))

flagl = temp(1)

if (myy(1) >= -R) then

xflagl = 0

else

!print *, ’sp 3’

call interpbridge(min(flagb+2, XN+1), myy(1:min(flagb+2, XN

+1)), myx(1:min(flagb+2, XN+1)), -R, xflagl)

!print *, ’sp 4’

endif

endif

!find x position of top of sphere

if (yend >= R) then

!flagu=is 1 if interface is past sphere top

flagu = 1;

temp = minloc(abs(myy-R))

flagt = temp(1)

endif

end subroutine specialpositions

137

subroutine fillgaps()

use globalinfo

implicit none

real (kind=8), dimension(:), allocatable :: newx, newy

real (kind=8) dist, newpt

integer (kind=4) internalcount, ierr, xi, posi

!initialize new interface

ALLOCATE(newx(2*(XN+1)), STAT=ierr)

IF (ierr /= 0) PRINT*, "newx : Allocation failed"

ALLOCATE(newy(2*(XN+1)), STAT=ierr)

IF (ierr /= 0) PRINT*, "newy : Allocation failed"

call specialpositions(x, y)

internalcount = 0.0

do xi=1,XN

internalcount = internalcount+1.0

newx(internalcount) = x(xi)

newy(internalcount) = y(xi)

dist = sqrt((x(xi+1)-x(xi))**2+(y(xi+1)-y(xi))**2)

if ((sqrt(x(xi)**2+y(xi)**2) < (2*R) .and. dist > dx) .or. dist >R/2)

then

138

!cubic interpolation to find point to fill gap.

internalcount = internalcount+1

if(x(xi) > 2.0*R) then

newx(internalcount) = 0.5*(x(xi+1)+x(xi))

posi = min(XN+1.0, xi+3.0)

!print *, "fillgap1"

call interpbridge(7, x(posi-6.0:posi), y(posi-6.0:posi), 0.5*(x(xi

+1)+x(xi)), newpt)

!print *, "fillgap2"

newy(internalcount) = newpt

else

posi = max(xi-3.0, 1.0)

if(flagl /= 0.0 .and. xi > flagl) then

newy(internalcount) = 0.5*(y(xi+1)+y(xi))

!print *, "fillgap3"

if (y(xi+1) >= y(xi)) then

call interpbridge(7, y(posi:posi+6.0), x(posi:posi+6.0),

0.5*(y(xi+1)+y(xi)), newpt)

else

call interpbridge(7, y(posi+6.0:posi:-1.0), x(posi

+6.0:posi:-1.0), 0.5*(y(xi+1)+y(xi)), newpt)

endif

!print *, "fillgap4"

if (newpt <= max(x(xi+1), x(xi)) .and. newpt

>= min(x(xi+1), x(xi))) then

newx(internalcount) = newpt

elseif (((0.5*(y(xi+1)+y(xi)))**2 + (0.5*(x(xi+1)+x(xi)))

2) > R2) then

139

newx(internalcount) = 0.5*(x(xi+1)+x(xi))

else

newx(internalcount) = sqrt(R**2 - (0.5*(y(xi+1)+y(xi)

))**2)

endif

else

newx(internalcount) = 0.5*(x(xi+1)+x(xi))

call interpbridge(7, x(posi:posi+6.0), y(posi:posi+6.0),

0.5*(x(xi+1)+x(xi)), newpt)

if (newpt <= max(y(xi+1), y(xi)) .and. newpt >= min(y(xi+1),

y(xi))) then

newy(internalcount) = newpt

elseif (((0.5*(y(xi+1)+y(xi)))**2 + (0.5*(x(xi+1)+x(xi)))

2) > R2) then

newy(internalcount) = 0.5*(y(xi+1)+y(xi))

else

newy(internalcount) = sqrt(R**2 - (0.5*(x(xi+1)+x(xi)

))**2)

endif

endif

endif

endif

end do

newx(internalcount+1) = x(XN+1)

newy(internalcount+1) = y(XN+1)

IF (ALLOCATED(x)) DEALLOCATE(x,STAT=ierr)

IF (ALLOCATED(y)) DEALLOCATE(y,STAT=ierr)

140

XN = internalcount

ALLOCATE(x(XN+1), STAT=ierr)

IF (ierr /= 0) PRINT*, "fillgap - x : Allocation failed"

ALLOCATE(y(XN+1), STAT=ierr)

IF (ierr /= 0) PRINT*, "fillgap - y : Allocation failed"

x = newx(1:internalcount+1)

y = newy(1:internalcount+1)

IF (ALLOCATED(newx)) DEALLOCATE(newx,STAT=ierr)

IF (ALLOCATED(newy)) DEALLOCATE(newy,STAT=ierr)

end subroutine fillgaps

subroutine interpbridge(N, interpx, interpy, xval, yval)

use globalinfo

implicit none

integer (kind=4) :: N, setmin(1), mini, maxi, tempi, tempj, interpchecki=1

real (kind=8) :: interpx(N), interpy(N), d(N), checkorder(N-1)

real (kind=8) xval, yval, checkmin, checkmax

if (N == 1) then

yval = interpy(1)

else

checkorder = interpx(2:N) - interpx(1:N-1)

checkmin = minval(checkorder)

interpchecki = 1

141

if (checkmin <= 0) then

mini = 1

maxi = 1

do interpchecki=1, N

do tempi = maxi, N-1

if (checkorder(tempi) > 0) then

mini = tempi

maxi = N

do tempj = tempi, N-1

if (checkorder(tempj) < 0) then

maxi = tempj

exit

endif

end do

exit

endif

end do

if (xval<= interpx(maxi) .and. xval >= interpx(mini))

then

exit

endif

end do

else

mini = 1

maxi = N

endif

142

if (xval > interpx(maxi) .or. xval < interpx(mini) .or.

interpchecki == N) then

if (xval>interpx(maxi)) then

print *, "too large"

elseif (xval < interpx(mini)) then

print *, "too small"

else

print *, "interpchecki", interpchecki, N

endif

print *, "out of domain error"

print *, "time", myt, "xval", xval, "flagl", flagl, "flagb",

flagb, "flagu", flagu

print *, "interpx"

do interpchecki = 1, N

print *, interpx(interpchecki)

end do

print *, "interpy"

do interpchecki = 1, N

print *, interpy(interpchecki)

end do

print *, "x"

do interpchecki = 1, XN+1

print *, sx(interpchecki)

end do

print *, "y"

do interpchecki = 1, XN+1

print *, sy(interpchecki)

end do

143

print *, interpx(maxi), xval, interpx(mini)

stop

endif

call spline_pchip_set (maxi-mini+1, interpx(mini:maxi), interpy(

mini:maxi), d)

call spline_pchip_val (maxi-mini+1, interpx(mini:maxi), interpy(

mini:maxi), d, 1, xval, yval)

endif

end subroutine

!For Non-Uniform Interface !Full2d & FF

subroutine cylindervelinit()

use globalinfo

implicit none

integer index

do index = 1, NZ

WZ(index) = real(index-1.0, kind=8)*(LZ-epsilon)/NZ

!myzrangeNZ(index) = real(index-1.0, kind=8)*2*pi/LZ

myk(index) = real(index-1.0, kind =8)*2.0*pi/(LZ-epsilon)

end do

do index = 1, NR

WR(index) = real(index-1.0, kind=8)*LR/NR

!myzrangeNR (index) = real(index-1.0, kind=8)*2*pi/LR

end do

144

call Hfunc(NZ, WZ+epsilon, myHZ)

call Gfunc(NZ, WZ+epsilon, myGZ)

call Hfunc(NR, WR, myHR)

call Gfunc(NR, WR, myGR)

firstpartZ = (WZ+epsilon)/2.0*(myHZ+myGZ);

firstpartR = WR/2.0*(myHR+myGR);

do index = 1, upperRangeZ

zcoordinateZ(index) = (index-1.0)*2.0*pi/(LZ-epsilon)

end do

do index = 1, upperRangeR

zcoordinateR(index) = (index-1.0)*2.0*pi/LR

end do

call cylindervelgrid()

end subroutine cylindervelinit

subroutine cylindervelgrid()

use globalinfo

implicit none

real (kind=8) :: FZ(NZ), FR(NR), BESSI

!real (kind=8), external :: sign

integer myi, WRi, WZi

real (kind = 4) wsavez(4*NZ+15), wsaver(4*NR+15)

145

complex (kind = 4) tempFR(NR), tempFZ(NZ)

real (kind = 8) :: besseli0R(NR), besseli1R(NR), besseli0Z(NZ), besseli1Z(

NZ)

do myi = 1, XN+1

!r-component of velocity

do WRi = 1, NR

besseli0R(WRi) = BESSI(0,WR(WRi)*x(myi))

besseli1R(WRi) = BESSI(1,WR(WRi)*x(myi))

end do

tempFR = real((x(myi)*firstpartR*besseli0R-myGR*besseli1R)*0.5,

kind=4)

tempFR(1) = 0.0

call cffti (NR, wsaver)

call cfftb (NR, tempFR, wsaver)

FR = real(aimag(tempFR)/NR*LR/pi, kind=8)

cylindervelR(1:upperRangeR, myi) = FR(1:upperRangeR)

!z-component of velocity

do WZi = 1, NZ

besseli0Z(WZi) = BESSI(0,(WZ(WZi)+epsilon)*x(myi))

besseli1Z(WZi) = BESSI(1,(WZ(WZi)+epsilon)*x(myi))

end do

tempFZ = real((x(myi)*firstpartZ*besseli1Z+myHZ*besseli0Z)*0.5,

kind=4)

146

call cffti (NZ, wsavez)

call cfftb (NZ, tempFZ, wsavez)

FZ = real(exp(imagi*epsilon*abs(myk))*real(tempFZ/NZ, kind=8)*(LZ-

epsilon)/pi+3.0*R/pi*epsilon*((-2.0*R**2/(3.0*R0**2)+1.0)*x(myi)

2/R02+log(epsilon*0.5*R0)-1.0), kind=8)

cylindervelZ(1:upperRangeZ, myi) = FZ(1:upperRangeZ)

end do

end subroutine cylindervelgrid

subroutine stokes () !(su, sv)

use globalinfo

implicit none

real (kind=8) :: k1(XN+1), k2(XN+1),u3r(XN+1), u3z(XN+1), myr(XN+1), tempx

(4), tempy(4),&

myinterp1, myinterp2, myinterp3, myinterp4 !, su(XN

+1), sv(XN+1)

real (kind=8), external :: sign

integer (kind=4) :: starti, sizecyl, i, j

k1 = 0

k2 = 0

sizecyl = size(cylindervelR, 2)

myr = sqrt(sx**2+sy**2)

147

do i=1, XN+1

!for non-uniform interface

if (sx(i)<=R0cl) then

starti = floor((sx(i)*(XNclose**2.0)/R0cl)**(1.0/2.0)+1.0)

else

starti = floor((sx(i)-R0cl)*XNfar/(R0-R0cl)+XNclose +1.0)

endif

starti = max(starti, 1);

starti = min(starti, sizecyl-3);

!horizontal velocity component

call interpbridge(upperRangeR, zcoordinateR, cylindervelR(1:

upperRangeR, starti), abs(sy(i)), myinterp1)

call interpbridge(upperRangeR, zcoordinateR, cylindervelR(1:

upperRangeR, starti+1), abs(sy(i)), myinterp2)

call interpbridge(upperRangeR, zcoordinateR, cylindervelR(1:

upperRangeR, starti+2), abs(sy(i)), myinterp3)

call interpbridge(upperRangeR, zcoordinateR, cylindervelR(1:

upperRangeR, starti+3), abs(sy(i)), myinterp4)

! tempx = (/ ((starti-1+j)*dx, j=0,3) /)

tempx = (/(startx(starti+j), j=0,3)/) !try for non-uniform interface

tempy = (/ myinterp1, myinterp2, myinterp3, myinterp4 /)

tempy=tempy*sign(sy(i))

call interpbridge(4, tempx, tempy, max(min(sx(i), R0), real(0.0,

kind=8)), k1(i))

148

!vertical velocity component

call interpbridge(upperRangeZ, zcoordinateZ, cylindervelZ(1:

upperRangeZ, starti), abs(sy(i)), myinterp1)

call interpbridge(upperRangeZ, zcoordinateZ, cylindervelZ(1:

upperRangeZ, starti+1), abs(sy(i)), myinterp2)

call interpbridge(upperRangeZ, zcoordinateZ, cylindervelZ(1:

upperRangeZ, starti+2), abs(sy(i)), myinterp3)

call interpbridge(upperRangeZ, zcoordinateZ, cylindervelZ(1:

upperRangeZ, starti+3), abs(sy(i)), myinterp4)

tempy = (/ myinterp1, myinterp2, myinterp3, myinterp4 /)

call interpbridge(4, tempx, tempy, max(min(sx(i), R0), real(0.0,

kind=8)), k2(i))

end do

!print *, sx(XN+1), sy(XN+1), k1(XN+1), k2(XN+1)

!print *, "stokes 2"

!third reflection minus stokes part

u3z = -(R**2*(12.62665286929866*R0**2*(sx**2 + sy**2)**3*(sx**2 + 2*sy**2) +&

1.276699789481672*R**6*(3*sx**4 - 24*sx**2*sy**2 + 8*sy**4) +&

149

2*R**2*(sx**2 + sy**2)**2*(2.10444214488311*R0**2*(sx**2 - 2*sy**2) -&

6.260028903991107*(sx**4 + 3*sx**2*sy**2 + 2*sy**4)) -&

R**4*(sx**2 + sy**2)*(-0.14001148948167197*(sx**4 + 20*sx**2*sy**2 - 16*sy**4)

-&

2.18001729431815*(-2*sx**4 + 2*sx**2*sy**2 + 4*sy**4) +&

1.1366883*(3*sx**4 - 24*sx**2*sy**2 + 8*sy**4)))*U)/&

(8.*R0**3*(sx**2 + sy**2)**4.5)

u3r = -(R**2*sx*sy*(-6.38349894740836*R**6*&

(3*sx**2 - 4*sy**2) +&

12.62665286929866*R0**2*(sx**2 + sy**2)**3 +&

2*R**2*(sx**2 + sy**2)**2*&

(-6.31332643464933*R0**2 -&

6.260028903991107*(sx**2 + sy**2)) +&

R**4*(sx**2 + sy**2)*&

(1.5401263842983917*sx**2 -&

3.3602757475601273*sy**2 +&

1.1366883*(23*sx**2 - 12*sy**2) +&

13.080103765908902*(sx**2 + sy**2)))*U)/&

(8.*R0**3*(sx**2 + sy**2)**4.5)

!Stokes Flow with reflections

su = U*((-0.75*R*sx*sy/myr**3+0.75*R**3*sx*sy/myr**5)-k1) + u3r

sv = U*(1+(-0.75*R/myr-0.75*R*sy**2/myr**3-0.25*R**3/myr**3+0.75*sy**2*R**3/myr

**5)-k2)+u3z;

150

!Stokes Free Space

!su = U*(1)*((-0.75*R*sx*sy/myr**3+0.75*R**3*sx*sy/myr**5))

!sv = U*(1+(1)*(-0.75*R/myr-0.75*R*sy**2/myr**3-0.25*R**3/myr**3+0.75*sy**2*R**3/

myr**5));

end subroutine stokes

subroutine Hfunc(Num, lambda, ReturnH)

use globalinfo

implicit none

integer index, Num

real (kind=8) :: lambda(Num), besselk0(Num), besselk1(Num),&

besseli1(Num), besseli2(Num), besseli0(Num), ReturnH(Num),&

BESSK, BESSI

do index = 1, Num

besselk0(index) = BESSK(0,R0*lambda(index))

besselk1(index) = BESSK(1,R0*lambda(index))

besseli0(index) = BESSI(0,R0*lambda(index))

besseli1(index) = BESSI(1,R0*lambda(index))

besseli2(index) = BESSI(2,R0*lambda(index))

end do

ReturnH = R*(3.0-(6.0+R**2*lambda**2)*(real(besselk0)*besseli2+besseli1*

real(besselk1)))/(besseli0*besseli2-besseli1**2);

151

end subroutine

subroutine Gfunc(Num, lambda, ReturnG)

use globalinfo

implicit none

integer index, Num

real (kind=8) :: lambda(Num), besselk1(Num), besselk2(Num), besseli1(Num),

besseli2(Num), besseli0(Num), ReturnG(Num),&

BESSK, BESSI

do index = 1, Num

besselk1(index) = BESSK(1,R0*lambda(index))

besselk2(index) = BESSK(2,R0*lambda(index))

besseli0(index) = BESSI(0,R0*lambda(index))

besseli1(index) = BESSI(1,R0*lambda(index))

besseli2(index) = BESSI(2,R0*lambda(index))

end do

ReturnG = R*(-3.0+R**2*lambda**2*(real(besselk1)*besseli1+besseli0*real(

besselk2)))/(besseli0*besseli2-besseli1**2);

end

function sign(val)

implicit none

152

real(kind=8) val, sign

if (val< 0) then

sign = -1.0

else

sign = 1.0

endif

end function

!outputs interpolated interfaces

function stresstail1D (xval)

use globalinfo

implicit none

real (kind=8) eta, xval, stresstail1D

integer (kind=4) startingi

startingi = max(flagb-2, 1)

call interpbridge(XN+2-startingi, sx(startingi:XN+1), sy(startingi:XN+1),

xval, eta)

stresstail1D =-xval*(eta*(R**2-3.0*(eta**2+xval**2))/sqrt(eta**2+xval**2)

**3)&

+xval*(yend*(R**2-3.0*(xval**2+yend**2)))/sqrt(xval**2+yend**2)**3&

-xval*6.0*log(eta+sqrt(xval**2+eta**2))+xval*6.0*log(yend+sqrt(xval

2+yend2))

153

cinternalcount = cinternalcount +1;

cinterpy(cinternalcount) = eta;

cinterpx(cinternalcount) = xval;

end

function stressIntegrandFlat1D (xval)

use globalinfo

implicit none

real (kind=8) xval, eta, stressIntegrandFlat1D

integer (kind=4) endingi

endingi = min(flagb+2, XN+1)

call interpbridge(endingi, sx(1:endingi), sy(1:endingi), xval, eta)

stressIntegrandFlat1D = -xval*(yend*(R**2-3.0*(yend**2+xval**2))/sqrt(yend

2+xval2)**3)&

+xval*(eta*(R**2-3.0*(xval**2+eta**2)))/sqrt(xval**2+eta**2)**3&

-6.0*log((yend+sqrt(xval**2+yend**2))**xval)+6.0*log((eta+sqrt(xval

2+eta2))**xval)

cinternalcount = cinternalcount +1;

cinterpy(cinternalcount) = eta;

cinterpx(cinternalcount) = xval;

end

function stressIntegrandsphere1D(yval)

use globalinfo

implicit none

154

real (kind=8) yval, eta, stressIntegrandsphere1D

integer (kind=4) tempflagb

tempflagb = min(flagb+2, XN+1)

call interpbridge(tempflagb, sy(1:tempflagb), sx(1:tempflagb), yval, eta

)

stressIntegrandsphere1D = 2.0/R*(R**2-yval**2)-eta**2*(-R**2+3.0*(yval**2+

eta**2))/(yval**2+eta**2)**(1.5)

cinternalcount = cinternalcount +1;

cinterpy(cinternalcount) = yval;

cinterpx(cinternalcount) = eta;

end

function stressIntegrand1D(yval)

use globalinfo

implicit none

integer (kind=4) tempflagb

real (kind=8) yval, eta, stressIntegrand1D

tempflagb = min(flagb+2, XN+1)

call interpbridge (tempflagb, sy(1:tempflagb), sx(1:tempflagb), yval, eta

)

!print *, "tempflagb",tempflagb, "yval", yval,"eta",eta

155

stressIntegrand1D =- eta**2*(-R**2+3.0*(yval**2+eta**2))/((yval**2+eta**2)

**(1.5));

cinternalcount = cinternalcount +1;

cinterpy(cinternalcount) = yval;

cinterpx(cinternalcount) = eta;

end

subroutine wTN () !(wu, wv)

use globalinfo

implicit none

real (kind = 8) wbackflow(XN+1), wsidesphere(XN+1), wbelowsphere(XN+1),

wabovesphere(XN+1),&

tempbackflow, tempsidesphere, tempbelowsphere, tempabovesphere !, wu(XN+1), wv(XN

+1),

real (kind=8), external :: w2IntegrandBackflow, w2IntegrandBelowSphere,

w2IntegrandPartialSphere,&

w2IntegrandZetaSphere, w2IntegrandZetaVert, w2IntegrandR, w2IntegrandZ

integer (kind=4) wi

real (kind=8) AEbelow,AEside,AEabove!,AreaEntrain, AreaReflux, AreaSpherePortion

real (kind=8), external :: RefluxAreaFunction,EntrainPartialSphere,

EntrainZetaSphere,EntrainZetaVert,EntrainBelowSphere, AreaElementZeta,

AreaElementRho

integer ierr

156

wbackflow = real(0.0, kind=8)

wsidesphere = real(0.0, kind=8)

wbelowsphere = real(0.0, kind=8)

wabovesphere = real(0.0, kind=8)

AreaReflux = real(0.0, kind=8)

AreaEntrain = real(0.0, kind=8)

call specialpositions(sx, sy)

!========== FIND ENTRAINMENT AND REFLUX VOLUMES =========!

!reflux

if(flagb <XN+1.0) then

!print *, "w0"

call simp(RefluxAreaFunction, xflagb, sx(XN+1), integthres, AreaReflux)

endif

if (flagu /= 0.0) then

AreaSpherePortion= (4/3*pi*R**3);

call simp(EntrainPartialSphere,real(0.0,kind=8),xflagl,integthres,AEbelow)

157

call simp(EntrainZetaSphere, max(-R, sy(1)), R, integthres, AEside)

call simp(EntrainZetaVert, R, yend, integthres, AEabove)

AreaEntrain=AEbelow+AEside+AEabove;

elseif (flagl /= 0.0) then

!find area of the sphere

AreaSpherePortion= (pi*(yend+R)**2/3)*(3*R - (yend+R));

call simp(EntrainPartialSphere, real(0.0, kind=8), xflagl, integthres,AEbelow)

call simp(EntrainZetaSphere, max(-R, sy(1)), yend, integthres, AEside)

AreaEntrain=AEbelow+AEside;

else

!print *, "w6"

AreaSpherePortion= 0.0;

158

call simp(EntrainBelowSphere, max(sx(1), real(0.0, kind=8)), xflagb, integthres,

AEbelow)

AreaEntrain=AEbelow;

endif

!========== FIND perturbation velocity w =========!

do RorZ = 0, 1

if (minval(sy) < maxval(sy)) then

do wi = 1, XN+1

px = sx(wi)

py = sy(wi)

!========= Initialize Interpolated ===== !

IF (ALLOCATED(cwinterpx)) DEALLOCATE(cwinterpx, STAT=ierr)

IF (ALLOCATED(cwinterpy)) DEALLOCATE(cwinterpy, STAT=ierr)

!initialize interface interpolated

ALLOCATE(cwinterpx(1000000), STAT=ierr)

159

IF (ierr /= 0) PRINT*, "cintertpx : Allocation failed"

ALLOCATE(cwinterpy(1000000), STAT=ierr)

IF (ierr /= 0) PRINT*, "cintertpy : Allocation failed"

!print *, ’after pertvelT.f90’

cwinternalcount=0.0;

cwinterpx =0;

cwinterpy = 0;

tempbackflow = real(0.0, kind=8)

tempsidesphere = real(0.0, kind=8)

tempbelowsphere = real(0.0, kind=8)

tempabovesphere = real(0.0, kind=8)

if(flagb <XN+1.0) then

!print *, "w0"

call trapz1(w2IntegrandBackflow, xflagb, sx(XN+1), numtrapz, tempbackflow)

endif

if (flagu /= 0.0) then

!print *, "w1"

call trapz1(w2IntegrandPartialSphere, real(0.0, kind=8), xflagl, numtrapz,

tempbelowsphere)

!print *, "w2"

call trapz1(w2IntegrandZetaSphere, max(-R, sy(1)), R, numtrapz, tempsidesphere)

!print *, "w3"

160

call trapz1(w2IntegrandZetaVert, R, yend, numtrapz, tempabovesphere)

!print *, "w3.5"

elseif (flagl /= 0.0) then

!print *, "w4"

call trapz1(w2IntegrandPartialSphere, real(0.0, kind=8), xflagl, numtrapz,

tempbelowsphere)

!print *, "w5"

call trapz1(w2IntegrandZetaSphere, max(-R, sy(1)), yend, numtrapz, tempsidesphere

)

!print *, "w5.5"

else

!print *, "w6"

!print *, "below sphere limits", real(0.0, kind=8), xflagb

call trapz1(w2IntegrandBelowSphere, max(sx(1), real(0.0, kind=8)), xflagb,

numtrapz, tempbelowsphere)

!print *, "belowsphere", tempbelowsphere

endif

wbackflow(wi) = tempbackflow

wbelowsphere(wi) = tempbelowsphere

wsidesphere(wi) = tempsidesphere

wabovesphere(wi) = tempabovesphere

end do

endif

if (RorZ > 0) then

wu = (-wbackflow+wbelowsphere+wsidesphere+wabovesphere)*drhogover8mu

161

else

wv = (-wbackflow+wbelowsphere+wsidesphere+wabovesphere)*drhogover8mu

!print *, sx(2), sy(2)

! print *, "wbackflow", wbackflow

! print *, "wbelowsphere",wbelowsphere(2)

! print *, "wsidesphere",wsidesphere(2)

! print *, "wabovesphere",wabovesphere(2)

endif

!print *, "wv", wv

end do

!print *, "flow components", wbelowsphere(3), wsidesphere(3)

if(abs(wbelowsphere(1)) > 1000.0) then

stop

endif

!print *, "w7"

end subroutine wTN

!========== FOR VOLUME TRACK =========!

function AreaElementRho (rho)

use globalinfo

implicit none

real (kind =8) rho, AreaElementRho

162

AreaElementRho = 2*pi*rho;

return

end

function AreaElementZeta (zeta)

use globalinfo

implicit none

real (kind =8) zeta, AreaElementZeta

AreaElementZeta = 2*pi*myrho;

return

end

function RefluxAreaFunction(rho)

use globalinfo

implicit none

real (kind=8) rho, zcoord, RefluxAreaFunction

real (kind=8), external :: AreaElementZeta

call interpbridge(XN+2-max(flagb-2, 1), sx(max(flagb-2,1):XN+1), sy(max(flagb-2,

1):XN+1), rho, zcoord)

myrho = rho

call simp2(AreaElementZeta, yend, zcoord, integthres, RefluxAreaFunction)

163

end

function EntrainZetaSphere(zeta)

use globalinfo

implicit none

real (kind=8) zeta, xupper, xlower, EntrainZetaSphere

real (kind=8), external :: AreaElementRho

myzeta = zeta

call interpbridge(min(flagb+2, XN+1), sy(1:min(flagb+2, XN+1)), sx(1:min(flagb+2,

XN+1)), zeta, xupper)

xlower = sqrt(R**2 - zeta**2)

call simp2(AreaElementRho, xlower, xupper, integthres, EntrainZetaSphere)

end

function EntrainPartialSphere(rho)

use globalinfo

implicit none

real (kind=8) rho, zcoord, EntrainPartialSphere

real (kind=8), external :: AreaElementZeta

myrho = rho

164

call interpbridge(min(flagl+3, XN+1), sx(1:min(flagl+3, XN+1)), sy(1:min(flagl+3,

XN+1)), rho, zcoord)

call simp2(AreaElementZeta, zcoord, -R, integthres, EntrainPartialSphere)

end

function EntrainZetaVert(zeta)

use globalinfo

implicit none

real (kind=8) zeta, xupper, EntrainZetaVert

real (kind=8), external :: AreaElementRho

integer (kind=4) temp(1), tempmini

myzeta = zeta

call interpbridge(min(flagb+2, XN+1), sy(1:min(flagb+2, XN+1)), sx(1:min(flagb+2,

XN+1)), zeta, xupper)

call simp2(AreaElementRho, real(0.0, kind=8), xupper, integthres,EntrainZetaVert)

end

function EntrainBelowSphere(rho)

use globalinfo

implicit none

real (kind=8) rho, zcoord, EntrainBelowSphere

165

real (kind=8), external :: AreaElementZeta

call interpbridge(max(flagl+2, XN+1), sx(1:max(flagl+2, XN+1)), sy(1:max(flagl+2,

XN+1)), rho, zcoord)

myrho = rho

call simp2(AreaElementZeta, zcoord, yend, integthres, EntrainBelowSphere)

end

!========== FOR VOLUME TRACK =========!

function w2IntegrandBackflow(rho)

use globalinfo

implicit none

real (kind=8) rho, zcoord, w2IntegrandBackflow

real (kind=8), external :: w2IntegrandZeta

!print *, "w1"

call interpbridge(XN+2-max(flagb-2, 1), sx(max(flagb-2,1):XN+1), sy(max(flagb-2,

1):XN+1), rho, zcoord)

!print *, "w1"

myrho = rho

call trapz1(w2IntegrandZeta, yend, zcoord, real(min(0.001,numtrapz),kind=8),

w2IntegrandBackflow)

166

cwinternalcount = cwinternalcount +1;

cwinterpx(cwinternalcount) = rho;

cwinterpy(cwinternalcount) = zcoord;

end

function w2IntegrandZetaSphere(zeta)

use globalinfo

implicit none

real (kind=8) zeta, xupper, xlower, w2IntegrandZetaSphere

real (kind=8), external :: w2IntegrandRho

myzeta = zeta

!print *, "w2"

call interpbridge(min(flagb+2, XN+1), sy(1:min(flagb+2, XN+1)), sx(1:min(flagb+2,

XN+1)), zeta, xupper)

!print *, "w2"

xlower = sqrt(R**2 - zeta**2)

call trapz1(w2IntegrandRho, xlower, xupper, numtrapz, w2IntegrandZetaSphere)

cwinternalcount = cwinternalcount +1;

cwinterpx(cwinternalcount) = xupper;

cwinterpy(cwinternalcount) = zeta;

end

function w2IntegrandPartialSphere(rho)

use globalinfo

167

implicit none

real (kind=8) rho, zcoord, w2IntegrandPartialSphere

real (kind=8), external :: w2IntegrandZeta

myrho = rho

!print *, "w3"

call interpbridge(min(flagl+3, XN+1), sx(1:min(flagl+3, XN+1)), sy(1:min(flagl+3,

XN+1)), rho, zcoord)

!print *, "w3"

call trapz1(w2IntegrandZeta, zcoord, -R, numtrapz, w2IntegrandPartialSphere)

cwinternalcount = cwinternalcount +1;

cwinterpx(cwinternalcount) = rho;

cwinterpy(cwinternalcount) = zcoord;

end

function w2IntegrandZetaVert(zeta)

use globalinfo

implicit none

real (kind=8) zeta, xupper, w2IntegrandZetaVert

real (kind=8), external :: w2IntegrandRho

integer (kind=4) temp(1), tempmini

myzeta = zeta

!temp = minloc(sy(1:min(flagb, XN+1)))

!tempmini = temp(1)

!print *, "w4"

168

!call interpbridge(min(flagb, XN+1)-tempmini+1, sy(tempmini:min(flagb, XN+1)), sx

(tempmini:min(flagb, XN+1)),zeta, xupper)

call interpbridge(min(flagb+2, XN+1), sy(1:min(flagb+2, XN+1)), sx(1:min(flagb+2,

XN+1)), zeta, xupper)

!print *, "w4"

!print *, yend

call trapz1(w2IntegrandRho, real(0.0, kind=8), xupper, numtrapz,

w2IntegrandZetaVert)

cwinternalcount = cwinternalcount +1;

cwinterpx(cwinternalcount) = xupper;

cwinterpy(cwinternalcount) = zeta;

end

function w2IntegrandBelowSphere(rho)

use globalinfo

implicit none

real (kind=8) rho, zcoord, w2IntegrandBelowSphere

real (kind=8), external :: w2IntegrandZeta

!print *, "w5p2"

call interpbridge(max(flagl+2, XN+1), sx(1:max(flagl+2, XN+1)), sy(1:max(flagl+2,

XN+1)), rho, zcoord)

!print *, "w5p2"

myrho = rho

!print *, zcoord, yend, myrho

169

call trapz1(w2IntegrandZeta, zcoord, yend, numtrapz, w2IntegrandBelowSphere)

cwinternalcount = cwinternalcount +1;

cwinterpx(cwinternalcount) = rho;

cwinterpy(cwinternalcount) = zcoord;

end

!===

!Integrands

!===

function w2IntegrandZeta(zeta)

use globalinfo

implicit none

real (kind=8) zeta, w2IntegrandZeta

real (kind=8), external :: w2IntegrandR, w2IntegrandZ, w2IntegrandRFF,

w2IntegrandZFF

Real*8 ellipticE, ellipticK,ellipticE1, ellipticK1

DOUBLE PRECISION k,k1, kbar, tempK, tempE, DRF, DRD, ex, ey, ez

integer ier

170

myzeta = zeta

if (((py-myzeta)**2+(px-myrho)**2)>singthres) then

!==

!inputs for ellipticK, ellipticE,ellipticK1, and ellipticE1

!==

k = 4.0*px*myrho/((py-myzeta)**2+(px-myrho)**2)

kbar = k/(k+1.0)

ex = 0.0

ey = 1.0-kbar

ez = 1.0

tempK = DRF(ex, ey, ez, ier)

tempE = tempK-1.0/3.0*kbar*DRD(ex, ey, ez, ier)

ellipticE = sqrt(1.0+k)*tempE

ellipticK = (1.0/sqrt(1.0+k))*tempK

endif

k1 = -((-4.0)*R**2.0*px*myrho*(R**4.0+(-2.0)* &

171

R**2.0*(px*myrho+py*myzeta)+(px**2.0+py**2.0)*(myrho**2.0+myzeta**2.0))**(-1.0))

kbar = k1/(k1+1.0)

ex = 0.0

ey = 1.0-kbar

ez = 1.0

tempK = DRF(ex, ey, ez, ier)

tempE = tempK-1.0/3.0*kbar*DRD(ex, ey, ez, ier)

ellipticE1 = sqrt(1.0+k1)*tempE

ellipticK1 = (1.0/sqrt(1.0+k1))*tempK

if (RorZ >0.0) then

if (px**2+py**2 >= (FFR)**2) then

w2IntegrandZeta= w2IntegrandRFF()

else

w2IntegrandZeta =w2IntegrandR(ellipticK,ellipticE,ellipticK1,ellipticE1)

endif

else

if (px**2+py**2 >= (FFR)**2) then

w2IntegrandZeta = w2IntegrandZFF()

!print *,’FarField’, ’px’,px,’py’,py, ’zeta’,zeta,’ rho’,myrho

172

!print *, "integrand value", w2IntegrandZeta

else

w2IntegrandZeta =w2IntegrandZ(ellipticK,ellipticE,ellipticK1,ellipticE1)

!print*,’3D Oseen’, ’px’,px,’py’,py, ’zeta’,zeta,’ rho’,myrho

!print *, "integrand value", w2IntegrandZeta

endif

endif

!print *, "integrand value", w2IntegrandZeta

!print *, "eval pts", zeta, px, py

!print *, "eval pt and result", myzeta, w2IntegrandZeta, myt

!endif

end

function w2IntegrandRho(rho)

use globalinfo

implicit none

real (kind=8) rho, w2IntegrandRho

real (kind=8), external :: w2IntegrandR, w2IntegrandZ, w2IntegrandRFF,

w2IntegrandZFF

173

Real*8 ellipticE, ellipticK,ellipticE1, ellipticK1

DOUBLE PRECISION k, k1, kbar, tempK, tempE, DRF, DRD, ex, ey, ez

integer ier

myrho = rho

if (((py-myzeta)**2+(px-myrho)**2)>singthres) then

!===

! inputs for ellipticK, ellipticE,ellipticK1, and ellipticE1

!===

k = 4.0*px*myrho/((py-myzeta)**2+(px-myrho)**2)

kbar = k/(k+1.0)

ex = 0.0

ey = 1.0-kbar

ez = 1.0

tempK = DRF(ex, ey, ez, ier)

tempE = tempK-1.0/3.0*kbar*DRD(ex, ey, ez, ier)

ellipticE = sqrt(1.0+k)*tempE

ellipticK = (1.0/sqrt(1.0+k))*tempK

174

endif

k1 = -((-4.0)*R**2*px*myrho*(R**4.0+(-2.0)* &

R**2.0*(px*myrho+py*myzeta)+(px**2.0+py**2.0)*(myrho**2.0+myzeta**2.0))**(-1.0));

kbar = k1/(k1+1.0)

ex = 0.0

ey = 1.0-kbar

ez = 1.0

tempK = DRF(ex, ey, ez, ier)

tempE = tempK-1.0/3.0*kbar*DRD(ex, ey, ez, ier)

ellipticE1 = sqrt(1.0+k1)*tempE

ellipticK1 = (1.0/sqrt(1.0+k1))*tempK

if (RorZ >0.0) then

if (px**2+py**2 >= (FFR)**2) then

w2IntegrandRho = w2IntegrandRFF()

else

w2IntegrandRho = w2IntegrandR(ellipticK,ellipticE,ellipticK1,ellipticE1)

endif

else

if (px**2+py**2 >= (FFR)**2) then

175

w2IntegrandRho = w2IntegrandZFF()

else

w2IntegrandRho = w2IntegrandZ(ellipticK,ellipticE,ellipticK1,ellipticE1)

endif

endif

end

!====================== Far Field kernel for px^2+py^2 > 4R^2

=====================!

function w2IntegrandRFF()

use globalinfo

implicit none

real (kind=8) w2IntegrandRFF, ellipticE, ellipticK

DOUBLE PRECISION k, kbar, tempK, tempE, DRF, DRD, ex, ey, ez

integer ier

w2IntegrandRFF = 0.0

if (px > 0.0 .and. ((py-myzeta)**2+(px-myrho)**2)>singthres) then

k = 4.0*px*myrho/((py-myzeta)**2+(px-myrho)**2)

kbar = k/(k+1.0)

ex = 0.0

ey = 1.0-kbar

ez = 1.0

tempK = DRF(ex, ey, ez, ier)

tempE = tempK-1.0/3.0*kbar*DRD(ex, ey, ez, ier)

176

!tempK=0.0

!tempE=0.0

ellipticE = sqrt(1.0+k)*tempE

ellipticK = (1.0/sqrt(1.0+k))*tempK

w2IntegrandRFF = 2.0*(py-myzeta)/(pi*px*sqrt((px-myrho)**2+(py-myzeta)**2)&

*((px+myrho)**2+(py-myzeta)**2))*((px**2-myrho**2-(py-myzeta)**2)*ellipticE&

+((myrho+px)**2+(py-myzeta)**2)*ellipticK)&

-3.0*R*px*py*(2.0*myzeta**2+myrho**2)/(2.0*sqrt(px**2+py**2)**3*sqrt(myzeta**2+

myrho**2)**3)&

+(R**3*px*(px**2*(py + 5.0*myzeta)* (2.0*myzeta**2 - myrho**2)&

+ py*(py**2*(2.0*myzeta**2 - myrho**2) + 10.0*py*myzeta*(-2.0*myzeta**2 + myrho

**2)&

+3.0*(2.0*myzeta**4 + 3.0*myzeta**2*myrho**2 + myrho**4))))/(2.0*(px**2 + py**2)

(2.5)*(myzeta2 + myrho**2)**(2.5))&

- (3.0*R**5*px*(8.0*px**4*(2.0*myzeta**3 - 3.0*myzeta*myrho**2) +px**2* (-8.0*py

2*(2.0*myzeta3&

- 3.0*myzeta*myrho**2) + py*(-136.0*myzeta**4 + 296.0*myzeta**2*myrho**2 - 23.0*

myrho**4)&

+ 8.0*myzeta*(2.0*myzeta**4 + myzeta**2*myrho**2 - myrho**4)) -4.0*py**2*(4.0*py

2*(2.0*myzeta3&

- 3.0*myzeta*myrho**2) + 8.0*myzeta*(2.0*myzeta**4 + myzeta**2*myrho**2 - myrho

**4)&

- 3.0*py*(12.0*myzeta**4 - 22.0*myzeta**2* myrho**2 + myrho**4))))/(16.0*(px**2 +

py**2)**(3.5)*&

(myzeta**2 + myrho**2)**(3.5))

w2IntegrandRFF = w2IntegrandRFF*myrho

177

endif

end

function w2IntegrandZFF()

use globalinfo

implicit none

real (kind=8) w2IntegrandZFF, ellipticE, ellipticK

DOUBLE PRECISION k, kbar, tempK, tempE, DRF, DRD, ex, ey, ez

integer ier

w2IntegrandZFF = 0.0

!if (px > 0.0 .and. ((py-myzeta)**2+(px-myrho)**2)>1.0E-006) then

if (((py-myzeta)**2+(px-myrho)**2)>singthres) then

k = 4.0*px*myrho/((py-myzeta)**2+(px-myrho)**2)

kbar = k/(k+1.0)

ex = 0.0

ey = 1.0-kbar

ez = 1.0

tempK = DRF(ex, ey, ez, ier)

tempE = DRF(ex, ey, ez, ier)-1.0/3.0*kbar*DRD(ex, ey, ez, ier)

!tempK=0.0

!tempE=0.0

ellipticE = sqrt(1.0+k)*tempE

ellipticK = (1.0/sqrt(1.0+k))*tempK

178

w2IntegrandZFF = 4.0*((py-myzeta)**2*ellipticE+((px+myrho)**2+(py-myzeta)**2)*

ellipticK)/&

(pi*sqrt((px-myrho)**2+(py-myzeta)**2)*((px+myrho)**2+(py-myzeta)**2))&

-3.0*R*(px**2+2.0*py**2)*(2.0*myzeta**2+myrho**2)/(2.0*sqrt(px**2+py**2)**3*sqrt(

myzeta**2+myrho**2)**3)&

-R**3/(2.0*sqrt(px**2+py**2)**5*sqrt(myrho**2+myzeta**2)**5)*&

(px**4*(-2.0*myzeta**2 + myrho**2) - 2.0*py**2*(2.0*myzeta**4 + 3.0*myzeta**2*

myrho**2&

+ myrho**4 + py**2*(2.0*myzeta**2 - myrho**2) + 5.0*py*myzeta*(-2.0*myzeta**2 +

myrho**2))&

+ px**2*(2.0*myzeta**4 + 3.0*myzeta**2*myrho**2 + myrho**4 + 5.0*py*myzeta*(-2.0*

myzeta**2 + myrho**2)&

+py**2* (-6.0*myzeta**2 + 3.0*myrho**2)))&

-(3.0*R**5*(px**4*(8.0*myzeta**4 - 24.0*myzeta**2*myrho**2 + 3.0*myrho**4 + 8.0*

py*(2.0*myzeta**3&

- 3.0*myzeta*myrho**2)) - 8.0*py**3*(4.0*myzeta**5 + 2.0*myzeta**3*myrho**2 -

2.0*myzeta*myrho**4&

+ py**2*(4.0*myzeta**3 - 6.0*myzeta*myrho**2) - py*(12.0*myzeta**4 - 22.0*myzeta

2* myrho2&

+ myrho**4)) - 8.0*px**2*py*(-6.0*myzeta**5 - 3.0*myzeta**3* myrho**2 + 3.0*

myzeta* myrho**4&

+ py**2* (2.0* myzeta**3 - 3.0* myzeta* myrho**2) + py* (22.0*myzeta**4 - 45.0*

myzeta**2* myrho**2&

+ 3.0*myrho**4))))/(16.0*(px**2 + py**2)**(3.5)* (myzeta**2 + myrho**2)**(3.5))

w2IntegrandZFF = w2IntegrandZFF*myrho

endif

end

179

function w2IntegrandR(ellipticK,ellipticE,ellipticK1, ellipticE1)

! this is the horizontal component of the velocity

use globalinfo

implicit none

real (kind=8) w2IntegrandR,ellipticE, ellipticK,ellipticE1, ellipticK1,ILogR

real (kind=8), external :: I1R,I2R,I3R,I4R,I5R,I6R,I7R,I8R,LogTermThetaR

w2IntegrandR=0.0;

ILogR = 0.0;

if (px > 0.0) then

if (abs (myzeta*px + py * myrho) < logsing) then

!call simp2(LogTermThetaR, real(0.0,kind=8), real(2.0*pi,kind=8),integthres,

ILogR)

call trapz1(LogTermThetaR, real(0.0,kind=8),real(2.0*pi,kind=8), logtrapzbig,

ILogR)

else

call trapz1(LogTermThetaR, real(0.0,kind=8),real(2.0*pi,kind=8), logtrapz, ILogR)

endif

w2IntegrandR = I1R(ellipticK,ellipticE)+I2R(ellipticK1,ellipticE1)&

+I3R(ellipticK1,ellipticE1)+I4R(ellipticK1,ellipticE1)&

+I5R(ellipticK1,ellipticE1)+I6R(ellipticK1,ellipticE1)&

+I7R(ellipticK1,ellipticE1)+I8R(ellipticK1,ellipticE1)+ILogR

180

w2IntegrandR = w2IntegrandR*myrho/pi

endif

!print *, "w2IntegrandR", w2IntegrandR

end

function w2IntegrandZ(ellipticK, ellipticE,ellipticK1, ellipticE1)

use globalinfo

implicit none

real (kind=8) w2IntegrandZ,ellipticE, ellipticK,ellipticE1, ellipticK1,ILogZ

real (kind=8), external :: I1Z,I2Z,I3Z,I4Z,I5Z,I6Z,I7Z,I8Z,LogTermThetaZ

ILogZ = 0.0;

if (abs (myzeta*px + py * myrho) < logsing .and. abs (myzeta*px + py * myrho) >

0.0) then

call trapz1(LogTermThetaZ,real(0.0,kind=8),real(2.0*pi,kind=8),logtrapzbig, ILogZ

)

elseif (abs (myzeta*px + py * myrho) > logsing)then

call trapz1(LogTermThetaZ, real(0.0,kind=8),real(2.0*pi,kind=8),logtrapz, ILogZ)

endif

w2IntegrandZ = I1Z(ellipticK,ellipticE)+I2Z(ellipticK1,ellipticE1)&

+I3Z(ellipticK1,ellipticE1)+I4Z(ellipticK1,ellipticE1)&

181

+I5Z(ellipticK1,ellipticE1)+I6Z(ellipticK1,ellipticE1) &

+I7Z(ellipticK1,ellipticE1)+I8Z(ellipticK1,ellipticE1)+ILogZ

w2IntegrandZ = w2IntegrandZ*myrho/pi

end

function I1R(ellipticK,ellipticE)

use globalinfo

implicit none

Real*8 I1R, ellipticE, ellipticK

I1R=0

if (((py-myzeta)**2+(px-myrho)**2)>singthres) then

I1R= 2.0*px**(-1.0)*(px**2.0+(-2.0)*px*myrho+myrho**2.0+(py+(-1.0)*myzeta)**2.0)

**(-1.0/2.0)* &

(px**2.0+2.0*px*myrho+myrho**2.0+(py+(-1.0)*myzeta)**2.0)**(-1.0)*(py+(-1.0)*

myzeta)*(&

(px**2.0+(-1.0)*myrho**2.0+(-1.0)*(py+(-1.0)*myzeta)**2.0)*ellipticE+(px

**2.0+2.0* &

px*myrho+myrho**2.0+(py+(-1.0)*myzeta)**2.0)*ellipticK)

endif

end

function I1Z(ellipticK,ellipticE)

182

use globalinfo

implicit none

Real*8 I1Z, ellipticE, ellipticK

I1Z=0

if (((py-myzeta)**2+(px-myrho)**2)>singthres) then

I1Z=4.0*(py+(-1.0)*myzeta)**2.0*(px**2.0+(-2.0)*px*myrho+myrho**2.0+((-1.0)*py+

myzeta)**2.0) &

(-1.0/2.0)*(px2.0+2.0*px*myrho+myrho**2.0+((-1.0)*py+myzeta)**2.0)**(-1.0)* &

ellipticE+4.0*(px**2.0+(-2.0)*px*myrho+myrho**2.0+((-1.0)*py+myzeta)**2.0)**(&

-1.0/2.0)*ellipticK;

endif

end

function I2R (ellipticK1, ellipticE1)

use globalinfo

implicit none

Real*8 I2R, ellipticE1, ellipticK1

Real*8 :: a

a=R;

183

I2R= (-2*(a**2/(myrho**2 + myzeta**2))**2.5*&

(a**2*myzeta - (myrho**2 + myzeta**2)*py)*&

((a**4 - 2*a**2*myzeta*py - (myrho**2 + myzeta**2)*(px**2 - py**2))*&

ellipticE1 - &

(a**4 + 2*a**2*(myrho*px - myzeta*py) + &

(myrho**2 + myzeta**2)*(px**2 + py**2))*&

ellipticK1))/&

(a**2*px*(a**4 + 2*a**2*(myrho*px - myzeta*py) + &

(myrho**2 + myzeta**2)*(px**2 + py**2))*&

Sqrt((a**4 - 2*a**2*(myrho*px + myzeta*py) + &

(myrho**2 + myzeta**2)*(px**2 + py**2))/(myrho**2 + myzeta**2)))

end

function I2Z(ellipticK1,ellipticE1)

use globalinfo

implicit none

Real*8 I2Z, ellipticE1, ellipticK1

Real*8 :: a

a=R;

I2Z= 4.0*(a**2.0*(myrho**2.0+myzeta**2.0)**(-1.0))**(1.0/2.0)*((myrho**2.0+myzeta

2.0)(-1.0) &

*(a**4.0+(-2.0)*a**2.0*(px*myrho+py*myzeta)+(px**2.0+py**2.0)*(myrho**2.0+myzeta

**2.0) &

))**(-1.0/2.0)*((-1.0)*a**2.0*(myrho**2.0+myzeta**2.0)**(-2.0)*(myrho**2.0*py+

myzeta* &

184

((-1.0)*a**2.0+py*myzeta))**2.0*(a**4.0+2.0*a**2.0*(px*myrho+(-1.0)*py*myzeta)+(

&

px**2.0+py**2.0)*(myrho**2.0+myzeta**2.0))**(-1.0)*ellipticE1+(-1.0)*ellipticK1)

end

function I3R (ellipticK1, ellipticE1)

use globalinfo

implicit none

Real*8 I3R, ellipticE1, ellipticK1,coeff

Real*8 :: a

a=R;

coeff=(a**2+(-1.0)*myrho**2+(-1.0)*myzeta**2)*(myrho**2+myzeta**2)**(-1.0/2.0);

I3R= coeff*((-2*myzeta*((a**4 - 2*a**2*(myrho*px + myzeta*py) + &

(myrho**2 + myzeta**2)*(px**2 + py**2))* &

ellipticE1 - &

(a**4 - 2*a**2*myzeta*py + &

(myrho**2 + myzeta**2)*(px**2 + py**2))*&

ellipticK1))/&

(a*(myrho**2 + myzeta**2)**2*px*&

Sqrt((a**4 - 2*a**2*(myrho*px + myzeta*py) + &

(myrho**2 + myzeta**2)*(px**2 + py**2))/&

(myrho**2 + myzeta**2))))

return

185

end

function I3Z (ellipticK1, ellipticE1)

use globalinfo

implicit none

Real*8 I3Z, ellipticE1, ellipticK1,coeff

real*8 :: a

a=R;

coeff=(a**2+(-1.0)*myrho**2+(-1.0)*myzeta**2)*(myrho**2+myzeta**2)**(-1.0/2.0);

I3Z=coeff*(4.0*a*myzeta**2.0*(myrho**2.0+myzeta**2.0)**(-2.0)*((myrho**2.0+myzeta

2.0)(-1.0)*(&

a**4.0+(-2.0)*a**2.0*(px*myrho+py*myzeta)+(px**2.0+py**2.0)*(myrho**2.0+myzeta

**2.0))) &

**(-1.0/2.0)*ellipticK1)

return

end

function I4R(ellipticK1, ellipticE1)

use globalinfo

implicit none

Real*8 I4R, ellipticE1, ellipticK1,coeff,a

a=R;

coeff=(a**2+(-1.0)*myrho**2+(-1.0)*myzeta**2)*(myrho**2+myzeta**2)**(-1.0/2.0);

186

I4R=-coeff* ((2*a*(-((a**2*myzeta)/(myrho**2 + myzeta**2)) + py)*&

((a**4 - 2*a**2*myzeta*py + &

(myrho**2 + myzeta**2)*(px**2 + py**2))*&

(a**4 - 2*a**2*(myrho*px + myzeta*py) + &

(myrho**2 + myzeta**2)*(px**2 + py**2))*&

ellipticE1 - &

(a**8 - 4*a**6*myzeta*py - &

4*a**2*myzeta*(myrho**2 + myzeta**2)*py*&

(px**2 + py**2) + &

(myrho**2 + myzeta**2)**2*(px**2 + py**2)**2 + &

a**4*(-2*myrho**2*(px**2 - py**2) + &

2*myzeta**2*(px**2 + 3*py**2)))*&

ellipticK1))/&

((myrho**2 + myzeta**2)**2*px*&

(a**4 + 2*a**2*(myrho*px - myzeta*py) + &

(myrho**2 + myzeta**2)*(px**2 + py**2))*&

((a**4 - 2*a**2*(myrho*px + myzeta*py) + &

(myrho**2 + myzeta**2)*(px**2 + py**2))/&

(myrho**2 + myzeta**2))**1.5))

return

end

function I4Z(ellipticK1, ellipticE1)

use globalinfo

implicit none

Real*8 I4Z, ellipticE1, ellipticK1,coeff

187

real*8 :: a

a=R;

coeff=(a**2+(-1.0)*myrho**2+(-1.0)*myzeta**2)*(myrho**2+myzeta**2)**(-1.0/2.0);

I4Z=-coeff* ((4*a**3*myzeta*(-(a**2*myzeta) + (myrho**2 + myzeta**2)*py)*&

ellipticE1)/((myrho**2 + myzeta**2)**2*(a**4 + 2*a**2*(myrho*px &

- myzeta*py) + (myrho**2 + myzeta**2)*(px**2 + py**2))*&

Sqrt((a**4 - 2*a**2*(myrho*px + myzeta*py) + (myrho**2 +&

myzeta**2)*(px**2 + py**2))/(myrho**2 + myzeta**2))))

return

end

function I5R(ellipticK1, ellipticE1)

use globalinfo

implicit none

Real*8 ellipticE1, ellipticK1,coeff,I5R

real*8 :: a

a=R;

coeff=(a**2+(-1.0)*myrho**2+(-1.0)*myzeta**2)*(myrho**2+myzeta**2)**(-1.0/2.0);

I5R= -coeff*((-2*a**3*myzeta*((a**4 - 2*a**2*myzeta*py - (myrho**2 + myzeta**2)*(

px**2 &

- py**2))*ellipticE1 - &

(a**4 + 2*a**2*(myrho*px - myzeta*py) + (myrho**2 + myzeta**2)*(px**2 + py**2))*

ellipticK1))/&

188

((myrho**2 + myzeta**2)**2*px*(a**4 + 2*a**2*(myrho*px - myzeta*py) + (myrho**2 +

&

myzeta**2)*(px**2 + py**2))*&

sqrt((a**4 - 2*a**2*(myrho*px + myzeta*py) + (myrho**2 + myzeta**2)*(px**2 +&

py**2))/(myrho**2 + myzeta**2))))

return

end

function I5Z (ellipticK1, ellipticE1)

use globalinfo

implicit none

Real*8 I5Z, ellipticE1, ellipticK1,coeff

real*8 :: a

a=R;

coeff=(a**2+(-1.0)*myrho**2+(-1.0)*myzeta**2)*(myrho**2+myzeta**2)**(-1.0/2.0);

I5Z= -coeff*((4*a**3*myzeta*(-(a**2*myzeta) + (myrho**2 + myzeta**2)*py)*

ellipticE1)/&

((myrho**2 + myzeta**2)**2*(a**4 + 2*a**2*(myrho*px - myzeta*py) + (myrho**2 +

myzeta**2)*(px**2 + py**2))*&

Sqrt((a**4 - 2*a**2*(myrho*px + myzeta*py) + (myrho**2 + myzeta**2)*(px**2 + py

2))/(myrho2 + myzeta**2))))

end

function I6R (ellipticK1, ellipticE1)

use globalinfo

implicit none

189

Real*8 I6R, ellipticE1, ellipticK1,coeff

real*8 :: a

a=R;

coeff=(a**2+(-1.0)*myrho**2+(-1.0)*myzeta**2)*(myrho**2+myzeta**2)**(-1.0/2.0);

I6R= coeff* ((4*myzeta*((a**4 - 2*a**2*(myrho*px + myzeta*py) + (myrho**2 +

myzeta**2)*(px**2 + py**2))* &

((a**8 - 4*a**6*myzeta*py - 4*a**2*myzeta*(myrho**2 + myzeta**2)*py*(px**2 + py

**2) + &

(myrho**2 + myzeta**2)**2*(px**2 + py**2)**2 + 2*a**4*(myrho**2*py**2 + myzeta

2*(px2 + 3*py**2)))*ellipticE1- &

(a**4 - 2*a**2*myzeta*py + (myrho**2 + myzeta**2)*(px**2 + py**2))*&

(a**4 + 2*a**2*(myrho*px - myzeta*py) + (myrho**2 + myzeta**2)*(px**2 + py**2))*

ellipticK1) + &

a**2*(-a**2 + myzeta*py)*((a**4 - 2*a**2*myzeta*py + (myrho**2 + myzeta**2)*(px

2 + py2))*&

(a**4 - 2*a**2*(myrho*px + myzeta*py) + (myrho**2 + myzeta**2)*(px**2 + py**2))*

ellipticE1- &

(a**8 - 4*a**6*myzeta*py - 4*a**2*myzeta*(myrho**2 + myzeta**2)*py*(px**2 + py

**2) + &

(myrho**2 + myzeta**2)**2*(px**2 + py**2)**2 + a**4*(-2*myrho**2*(px**2 - py**2)

+ 2*myzeta**2*(px**2 + 3*py**2)))*&

ellipticK1)))/(a*(myrho**2 + myzeta**2)**3*px*(a**4 + 2*a**2*(myrho*px - myzeta*

py) + (myrho**2&

+ myzeta**2)*(px**2 + py**2))*((a**4 - 2*a**2*(myrho*px + myzeta*py) + (myrho**2

+ myzeta**2)*&

190

(px**2 +py**2))/(myrho**2 + myzeta**2))**1.5))

end

function I6Z (ellipticK1, ellipticE1)

use globalinfo

implicit none

Real*8 I6Z, ellipticE1, ellipticK1,coeff

real*8 :: a

a=R;

coeff=(a**2+(-1.0)*myrho**2+(-1.0)*myzeta**2)*(myrho**2+myzeta**2)**(-1.0/2.0);

I6Z= coeff* ((-4*a*myzeta**2*((a**4 - (myrho**2 + myzeta**2)*(px**2 + py**2))*

ellipticE1 &

+ (a**4 + 2*a**2*(myrho*px - myzeta*py) + (myrho**2 + myzeta**2)*(px**2 + py**2))

*ellipticK1&

))/((myrho**2 + myzeta**2)**2*(a**4 + 2*a**2*(myrho*px - myzeta*py) + (myrho**2 +

myzeta**2)*(px**2 + py**2))*&

Sqrt((a**4 - 2*a**2*(myrho*px + myzeta*py) + (myrho**2 + myzeta**2)*(px**2 + py

2))/(myrho2 + myzeta**2))))

end

function I7R (ellipticK1, ellipticE1)

use globalinfo

191

implicit none

Real*8 I7R, ellipticE1, ellipticK1,coeff

real*8 :: a

a=R;

coeff=(-1.0/2.0)*(a**2.0+(-1.0)*px**2.0+(-1.0)*py**2.0)*(myrho**2.0+myzeta**2.0)

**(-3.0/2.0)*((&

-1.0)*a**2.0+myrho**2.0+myzeta**2.0)

I7R=- coeff* ((2*((-3*myzeta*(a**4 + 2*a**2*(myrho*px - myzeta*py) + (myrho**2 +

myzeta**2)*(px**2 + py**2))*&

(a**4 - 2*a**2*(myrho*px + myzeta*py) + (myrho**2 + myzeta**2)*(px**2 + py**2))*&

(-((a**4 - 2*a**2*myzeta*py - (myrho**2 + myzeta**2)*(px**2 - py**2))*ellipticE1

) + &

(a**4 + 2*a**2*(myrho*px - myzeta*py) + (myrho**2 + myzeta**2)*(px**2 + py**2))*

ellipticK1))/&

(myrho**2 + myzeta**2) - a**2*(-((a**2*myzeta)/(myrho**2 + myzeta**2)) + py)*&

(-((a**8 - 4*a**6*myzeta*py - 4*a**2*myzeta*(myrho**2 + myzeta**2)*py*(px**2 + py

**2) + &

(myrho**2 + myzeta**2)**2*(px**2 + py**2)**2 + 2*a**4*(myrho**2*(7*px**2 + py**2)

+&

myzeta**2*(px**2 + 3*py**2)))*ellipticE1) + (a**4 - 2*a**2*myzeta*py + (myrho**2

+ &

myzeta**2)*(px**2 + py**2))*(a**4 + 2*a**2*(myrho*px - myzeta*py) + (myrho**2 +&

myzeta**2)*(px**2 + py**2))*ellipticK1 + 2*(myrho**2 + myzeta**2)*px**2*(4*(a**4

-&

2*a**2*myzeta*py + (myrho**2 + myzeta**2)*(px**2 + py**2))*ellipticE1 - &

(a**4 + 2*a**2*(myrho*px - myzeta*py) + (myrho**2 + myzeta**2)*(px**2 + py**2))*&

192

ellipticK1))))/(a*px*(a**4 + 2*a**2*(myrho*px - myzeta*py) + (myrho**2 + myzeta

**2)&

*(px**2 + py**2))**2*((a**4 - 2*a**2*(myrho*px + myzeta*py) + (myrho**2 + myzeta

**2)&

*(px**2 + py**2))/(myrho**2 + myzeta**2))**1.5))

end

function I7Z (ellipticK1, ellipticE1)

use globalinfo

implicit none

Real*8 I7Z, ellipticE1, ellipticK1,coeff

real*8 :: a

a=R;

coeff=(-1.0/2.0)*(a**2.0+(-1.0)*px**2.0+(-1.0)*py**2.0)*(myrho**2.0+myzeta**2.0)

**(-3.0/2.0)*((&

-1.0)*a**2.0+myrho**2.0+myzeta**2.0)

I7Z=- coeff* ((4*(myrho**2 + myzeta**2)**2*(((a**2*(myrho**2 + 4*myzeta**2) - 3*

myzeta*(myrho**2 + myzeta**2)*py)*&

(a**4 + 2*a**2*(myrho*px - myzeta*py) + (myrho**2 + myzeta**2)*(px**2 + py**2))*&

(a**4 - 2*a**2*(myrho*px + myzeta*py) + (myrho**2 + myzeta**2)*(px**2 + py**2))*

ellipticE1)/&

(a*(myrho**2 + myzeta**2)**3) - (a*(-((a**2*myzeta)/(myrho**2 + myzeta**2)) + py)

**2*&

(4*(a**4 - 2*a**2*myzeta*py + (myrho**2 + myzeta**2)*(px**2 + py**2))*ellipticE1-

&

193

(a**4 + 2*a**2*(myrho*px - myzeta*py) + (myrho**2 + myzeta**2)*(px**2 + py**2))*&

ellipticK1))/(myrho**2 + myzeta**2)))/((a**4 + 2*a**2*(myrho*px-myzeta*py) + &

(myrho**2 + myzeta**2)*(px**2 + py**2))**2*((a**4 - 2*a**2*(myrho*px + myzeta*py)

&

+ (myrho**2 + myzeta**2)*(px**2 + py**2))/(myrho**2 + myzeta**2))**1.5))

end

function I8R (ellipticK1, ellipticE1)

use globalinfo

implicit none

Real*8 I8R, ellipticE1, ellipticK1,coeff

real*8 :: a

a=R;

coeff=(-1.0/2.0)*(a**2.0+(-1.0)*px**2.0+(-1.0)*py**2.0)*(myrho**2.0+myzeta**2.0)

**(-3.0/2.0)*((&

-1.0)*a**2.0+myrho**2.0+myzeta**2.0)

I8R=- coeff* ((4*myzeta*Sqrt(myrho**2 + myzeta**2)*((a**12 - 5*a**10*myzeta*py -

a**8*(myrho**2 + &

5*myzeta**2)*(px**2 - 2*py**2) + (myrho**2 + myzeta**2)**3*px**2*(px**2 + py**2)

**2 + &

a**2*myzeta*(myrho**2 + myzeta**2)**2*py*(3*px**4 + 2*px**2*py**2 - py**4) + &

2*a**6*myzeta*py*(myzeta**2*(7*px**2 - 5*py**2) + myrho**2*(9*px**2 - 3*py**2)) -

&

a**4*(myzeta**4*(5*px**4 + 12*px**2*py**2 - 5*py**4) + 6*myrho**2*myzeta**2*(px

**4&

194

+ 4*px**2*py**2 - py**4) + myrho**4*(px**4 + 12*px**2*py**2 - py**4)))*ellipticE1-

&

(a**12 + a**10*(2*myrho*px - 5*myzeta*py) + (myrho**2 + myzeta**2)**3*px**2*(px

2 + py2)**2 + &

a**2*(myrho**2 + myzeta**2)**2*(px**2 + py**2)*(2*myrho*px**3 - myzeta*py*(3*px

2 + py2)) - &

a**4*(myrho**2 + myzeta**2)*(px**2 + py**2)*(2*myrho*myzeta*px*py + myrho**2*(px

2 - py2)&

- myzeta**2*(px**2 + 5*py**2)) + a**8*(-6*myrho*myzeta*px*py - myrho**2*(px**2 -

2*py**2) +&

myzeta**2*(px**2 + 10*py**2)) - 2*a**6*(-3*myrho*myzeta**2*px*py**2 + 3*myrho**2*

myzeta*py**3 &

+ myzeta**3*py*(2*px**2 + 5*py**2) + myrho**3*(2*px**3 - px*py**2)))*ellipticK1)

)/&

(a*px*(a**4 + 2*a**2*(myrho*px - myzeta*py) + (myrho**2 + myzeta**2)*(px**2 + py

2))2*&

(a**4 - 2*a**2*(myrho*px + myzeta*py) + (myrho**2 + myzeta**2)*(px**2 + py**2))

**1.5))

end

function I8Z (ellipticK1, ellipticE1)

use globalinfo

implicit none

Real*8 I8Z, ellipticE1, ellipticK1,coeff

real*8 :: a

a=R;

195

coeff=(-1.0/2.0)*(a**2.0+(-1.0)*px**2.0+(-1.0)*py**2.0)*(myrho**2.0+myzeta**2.0)

**(-3.0/2.0)*((&

-1.0)*a**2.0+myrho**2.0+myzeta**2.0)

I8Z=- coeff* ((4*a*myzeta*((-2*myzeta*(a**4 + 2*a**2*(myrho*px - myzeta*py) + &

(myrho**2 + myzeta**2)*(px**2 + py**2))*&

(a**4 - 2*a**2*(myrho*px + myzeta*py) + (myrho**2 + myzeta**2)*(px**2 + py**2))*&

ellipticE1)/&

(myrho**2 + myzeta**2) + (-((a**2*myzeta)/(myrho**2 + myzeta**2)) + py)*&

(2*(-a**2 + myzeta*py)*(4*(a**4 - 2*a**2*myzeta*py + (myrho**2 + myzeta**2)*(px

2 + py2))*&

ellipticE1 - &

(a**4 + 2*a**2*(myrho*px - myzeta*py) + (myrho**2 + myzeta**2)*(px**2 + py**2))*&

ellipticK1) + &

((a**8 - 4*a**6*myzeta*py - 4*a**2*myzeta*(myrho**2 + myzeta**2)*py*(px**2 + py

**2) + &

(myrho**2 + myzeta**2)**2*(px**2 + py**2)**2 + &

2*a**4*(myrho**2*(7*px**2 + py**2) + myzeta**2*(px**2 + 3*py**2)))*&

ellipticE1 - &

(a**4 - 2*a**2*myzeta*py + (myrho**2 + myzeta**2)*(px**2 + py**2))*&

(a**4 + 2*a**2*(myrho*px - myzeta*py) + (myrho**2 + myzeta**2)*(px**2 + py**2))*&

ellipticK1)/a**2&

)))/((a**4 + 2*a**2*(myrho*px - myzeta*py) + (myrho**2 + myzeta**2)*(px**2 + py

2))2*&

((a**4 - 2*a**2*(myrho*px + myzeta*py) + (myrho**2 + myzeta**2)*(px**2 + py**2))

/&

(myrho**2 + myzeta**2))**1.5))

end

196

function LogTermThetaR(theta)

!--

! Integrand coming from log term to integrate 3D

!--

use globalinfo

implicit none

real*8 phi,x2,coeffn,LogTermThetaR

real*8 theta,pxx,y1,y2,y3,x1,x3,pxy,ys1,ys2,ys3,pxs,pxxys

real*8 :: a

a=R;

y1 = myrho *cos(theta)

y2= myrho* sin(theta)

y3 = myzeta

x1 = px

x2= 0

x3 = py

pxy=(myrho**2.d0+myzeta**2.d0)**(1.d0/2.d0)

pxx=(px**2.d0+py**2.d0)**(1.d0/2.d0)

ys1 = a**2/pxy**2.d0*y1

ys2= a**2/pxy**2.d0*y2

ys3 = a**2/pxy**2.d0*y3

coeffn= (-3.0*(a**2 - x1**2 - x2**2 - x3**2)*(a**2 - y1**2 - y2**2 - y3**2))/&

(2.0*a*(y1**2 + y2**2 + y3**2))

197

pxs=(ys1**2.d0+ys2**2.d0+ys3**2.d0)**(1.d0/2.d0)

pxxys=((x1-ys1)**2 + (x2-ys2)**2 +(x3-ys3)**2)**(1.d0/2.d0)

LogTermThetaR= coeffn *((((pxs*x1 + pxx*ys1)*(pxs*x3 + pxx*ys3))/ &

(pxx*(pxs*pxx + x1*ys1 + x2*ys2 + x3*ys3)**2) - &

(x1*ys3)/(pxx*(pxs*pxx + x1*ys1 + x2*ys2 + x3*ys3)) + &

((pxs - pxxys)*(pxs*(x1 - ys1) + pxxys*ys1)*(pxs*(x3 - ys3) + pxxys*ys3))/&

(pxxys**2*(-pxs**2 + pxs*pxxys + x1*ys1 + x2*ys2 + x3*ys3)**2) + &

((x1 - ys1)*(pxs**2*(x3 - ys3) + pxxys**2*ys3))/&

(pxxys**3*(-pxs**2 + pxs*pxxys + x1*ys1 + x2*ys2 + x3*ys3)))/pxs)

return

end

function LogTermThetaZ(theta)

!--

! Integrand coming from log term to integrate 3D

!--

use globalinfo

implicit none

real*8 phi,x2,coeffn,LogTermThetaZ

real*8 theta,pxx,y1,y2,y3,x1,x3,pxy,ys1,ys2,ys3,pxs,pxxys

real*8 :: a

a=R;

phi=0

y1 = myrho *cos(theta)

y2= myrho* sin(theta)

198

y3 = myzeta

x1 = px

x2= 0

x3 = py

pxy=(myrho**2.d0+myzeta**2.d0)**(1.d0/2.d0)

pxx=(px**2.d0+py**2.d0)**(1.d0/2.d0)

ys1 = a**2/pxy**2.d0*y1

ys2= a**2/pxy**2.d0*y2

ys3 = a**2/pxy**2.d0*y3

coeffn= (-3.0*(a**2 - x1**2 - x2**2 - x3**2)*(a**2 - y1**2 - y2**2 - y3**2))/&

(2.0*a*(y1**2 + y2**2 + y3**2))

pxs=(ys1**2+ys2**2+ys3**2)**(1.d0/2.d0)

pxxys=((x1-ys1)**2 + (x2-ys2)**2 +(x3-ys3)**2)**(1.d0/2.d0)

LogTermThetaZ=coeffn*(((pxs*x3 + pxx*ys3)**2/(pxx*(pxs*pxx + x1*ys1 + x2*ys2 + x3

*ys3)**2) - &

(pxs*pxx + x3*ys3)/(pxx*(pxs*pxx + x1*ys1 + x2*ys2 + x3*ys3)) + &

((pxs - pxxys)*(pxs*(x3 - ys3) + pxxys*ys3)**2)/ &

(pxxys**2*(-pxs**2 + pxs*pxxys + x1*ys1 + x2*ys2 + x3*ys3)**2) + &

(pxs*pxxys**2*(-pxs + pxxys) + pxs**2*(x3 - ys3)**2 + pxxys**2*(x3 - ys3)*ys3)/&

(pxxys**3*(-pxs**2 + pxs*pxxys + x1*ys1 + x2*ys2 + x3*ys3)))/pxs)

return

end

199

REFERENCES

[1] Abaid, N., Adalsteinsson, D., Agyapong, A. & McLaughlin, R. M. 2004 An internal
splash: Levitation of falling spheres in stratified fluids. Phys. Fluids 16 (5), 1567–1580.

[2] Abramowitz, M. & Stegun, I. 1965 Handbook of Mathematical Functions . Dover Publi-
cations

[3] Akers, B. & Belmonte, A. 2006 Impact dynamics of a solid sphere falling into a viscoelastic
micellar fluid. J. Non-Newton. Fluid 135, 97–108.

[4] Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge: Cambridge
University Press.

[5] Bercovici, D. & Mahoney, J. 1994 Double flood basalts and plume head separation at
the 660-kilometer discontinuity. Science 266, 1367–1369.

[6] Brenner, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane
surface. Chem. Eng. Sci. 16, 242–251.

[7] Byrd, P. F. & Friedman, M., D. 1954 Handbook of elliptic integrals for engineers and
physicists . Berlin: Springer.

[8] Camassa, R., Falcon, C., Lin, J., McLaughlin, R. M. & Parker, R. 2009 Prolonged
residence times for particles settling through stratified miscible fluids in the Stokes
regime. Phys. Fluids 21, 031702-1–4.

[9] Camassa, R., Falcon, C., Lin, J., McLaughlin, R. M. & Mykins, N. 2010 A first-principle
predictive theory for a sphere falling through sharply stratified fluid at low Reynolds
number. J. Fluid Mech. 664, 436–465.

[10] Camassa, R., McLaughlin, R. M., Moore, M. & Vaidya, A. 2008 Brachistochrone paths
in potential and stokes flow past a sphere. Phys. Lett. A .

[11] Camassa, R., Khatri, S., McLaughlin, R. M., Prairie, J. C., & White, B. L. 2013
Retention and entrainment e↵ects: Experiments and theory for porous spheres settling
in sharply stratified fluids. Phys. Fluids 25, 081701-1–7

[12] Oseen, C. W. 1927 Hydrodynamik . Leipzig: Academische Verlagsgesellschaft M. B. H.

[13] Condie, S. A. & Bormans, M. 1997 The influence of density stratification on particle
settling, dispersion and population growth. J. of Theor. Biol. 187, 65–75.

[14] Darwin, C. 1953 Note on hydrodynamics. Proc. Camb. Phil. Soc. 49, 342–254.

[15] Denman, K. L. & Gargett, A. E. 1995 Biological-physical interactions in the upper ocean:
The role of vertical and small scale transport processes. Annu. Rev. Fluid Mech. 27,
225–255.

200

[16] Economidou, M & Hunt, G. G. 2009 Density stratified environments: the double-tank
method.Exp.Fluids 46, 453-466.

[17] Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics with Special
Applications to Particulate Media. Leyden: Noordho↵ International Publishing.

[18] Happel, J. & Byrne, B. J. 1954 Motion of a sphere and fluid in a cylindrical tube. Ind.
Eng. Chem. 46 (6), 1181–1186.

[19] Higdon, J. J. L. 1979 A hydrodynamic analysis of flagellar propulsion. J. Fluid Mech.
90 (4), 685–711.

[20] Jurine, D., Jaupart, C., Brandeis, G. & Tackley, P. J. 2005 Penetration of mantle plumes
through depleted lithosphere. J. Geopyhs. Res. .

[21] Kellogg, W. W. 1980 Aerosols and climate. In Interaction of Energy and Climate (ed.
W. Bach, J. Prankrath & J. Williams). D. Reidel.

[22] Lin, J. 2009 An Experimental and Mathematical Study on the Prolonged Residence Time
of a Sphere Falling through Stratified Fluids at Low Reynolds Number. PhD thesis(Univ.
North Carolina, North Carolina).

[23] MacIntyre, S., Alldredge, A. L. & Gottschalk, C. C. 1995 Accumulation of marine snow
at density discontinuities in the water column. Limnol. Oceanogr. 40 (3), 449–468.

[24] Linton, C. M. 1995 Multipole methods for boundary-value problems involving a sphere
in a tube. IMA J. Appl. Math. 55, 187–204.

[25] Ma, T. & Wang, S. 2001 A generalized Poincaré-Hopf index formula and its applications
to 2-D incompressible flows. Nonlinear Anal–Real 2, 467–482.

[26] Manga, M. & Stone, H. A. 1995 Low reynolds number motion of bubbles, drops and
rigid spheres through fluid-fluid interfaces. J. Fluid Mech. 287, 279–298.

[27] Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a
nonuniform flow. Phys. Fluids 26 (4), 883–889.

[28] Moore, M. N. J 2010 Stratified flows with vertical layering of density: theoretical and
experimental study of the time evolution of flow configurations and their stability. PhD
thesis(Univ. North Carolina, North Carolina).

[29] Oseen, C. W. 1927 Hydrodynamik . Leipzig: Academische Verlagsgesellschaft M. B. H.

[30] Parsons, J. D., Bush, J. W. M. & Syvitski, J. P. M. 2001 Hyperpycnal plume formation
from riverine outflows with small sediment concentrations. Sedimentology 48, 465–478.

[31] Prairie, J. C., Ziervogel, K., Arnosti, C., Camassa, R., Falcon, C., Khatri, S.,
McLaughlin, R. M., White, B. L., &Yu, S. 2013 Delayed settling of marine snow at
sharp density transitions driven by fluid entrainment and di↵usion-limited retention.
Mar.Ecol Prog Ser 487, 185–200

201

[32] Rard, J. A. & Miller, D. G. 1979 The mutual di↵usion coe�cients of NaCl–H2O and
CaCl2–H2O at 25oC from Rayleigh interferometry. J. Sol. Chem. 8, 701–716.

[33] Srdić-Mitrović, A. N., Mohamed, N. A. & Fernando, H. J. S. 1999 Gravitational settling
of particles through density interfaces. J. Fluid Mech. 381, 175–198.

[34] Sutor, M. M. & Dagg, M. J. 2008 The e↵ects of vertical sampling resolution on estimates
of plankton biomass and rate calculations in stratified water columns. Estuar. Coast.
Shelf Sci. 78, 107–121.

[35] Tanner, R. I.1963 End e↵ects in falling-ball viscometry. J. Fluid Mech. 17, 161–170.

[36] Taylor, G. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube.
Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
pp. 186–203.

[37] Turco, R. P., Toon, O. B., Ackerman, T. P., Pollack, J. B. & Sagan, C. 1990 Climate
and smoke: An appraisal of nuclear winter. Science 247 (4939), 662–665.

[38] Widder, E. A., Johnsen, S., Bernstein, S. A., Case, J. F. & Neilson, D. J. 1999 Thin
layers of bioluminescent copepods found at density discontinuities in the water column.
Mar. Biol. 134, 429–437.

[39] Yick, K. Y., Torres, C. R., Peacock, T. & Stocker, R. 2009 Enhanced Drag of a Sphere
Settling in a Stratified Fluid at Small Reynolds Number. J. Fluid. Mech. 632, 49–68.

202

