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ABSTRACT

trans-Resveratrol (Res), a phytoalexin found at high levels in grapes
and in grape products such as red wine, has been shown to have anti-
inflammatory and antioncogenic properties. Because the transcription
factor nuclear factor kB (NF-kB) is involved in inflammatory diseases and
oncogenesis, we tested whether Res could modulate NF-kB activity. Res
was shown to be a potent inhibitor of both NF-kB activation and NF-kB-
dependent gene expression through its ability to inhibit IkB kinase activ-
ity, the key regulator in NF-kB activation, likely by inhibiting an up-
stream signaling component. In addition, Res blocked the expression of
mRNA-encoding monocyte chemoattractant protein-1, a NF-kB-regulated
gene. Relative to cancer chemopreventive properties, Res induced apopto-
sis in fibroblasts after the induced expression of oncogenic H-Ras. Thus,
Res is likely to function by inhibiting inflammatory and oncogenic dis-
eases, at least in part, through the inhibition of NF-kB activation by
blocking IkB kinase activity. These data may also explain aspects of the
so-called “French paradox” that is associated with reduced mortality from
coronary heart disease and certain cancers and provide a molecular
rationale for the role of a potent chemopreventive compound in blocking
the initiation of inflammation and oncogenesis.

INTRODUCTION

Significant interest surrounds dietary approaches directed toward
the prevention of disease initiation and progression. Res3 (trans-3,
49,5-trihydroxystilbene), a natural phytoalexin found in grapes and
grape products such as red wine, has anticancer and anti-inflammatory
effects (1, 2). These findings are consistent with epidemiological
studies that defined the so-called “French paradox” (3, 4) as the
association of reduced mortality from coronary heart disease and
breast cancer (4, 5) with increased red wine consumption. In addition,
Res was found to have both estrogenic/antiestrogenic activitiesin
vitro andin vivo (6–8) and antioxidant properties (1, 9–12). Recently,
Res has been shown to possess chemopreventive activity by inhibiting
cellular events associated with tumor initiation, promotion, and pro-
gression (1, 13, 14); by inhibiting ribonucleotide reductase (15); and
by inhibiting proliferation of some cancer cellsin vitro (8, 13, 16, 17).
Pertinent to cancer prevention, Res also suppresses the expression of
inducible nitric oxide synthase (17) and cyclooxygenase-2 (1, 18),
which is likely to contribute to both its anti-inflammatory and anti-

oncogenic mechanism. Despite these important advances, the molec-
ular mechanism(s) by which Res exerts its broad biological effects has
not yet been elucidated.

The transcription factor NF-kB is strongly linked to inflammatory
and immune responses (19–22) and is associated with oncogenesis in
certain models of cancer (23–27). NF-kB is important for the regu-
lation of cell proliferation, cell transformation, and tumor develop-
ment (28–31). Recently, we demonstrated that oncogenic forms of
Ras (32) and the oncoprotein Bcr-Abl (26) both activate NF-kB
through the activation of the transcriptional function of the RelA/p65
subunit. Furthermore, not only is NF-kB activity required for Ras to
initiate cellular transformation, but it is also required for Bcr-Abl-
initiated tumorigenesis and transformation (26, 32). Activated NF-kB
has been found in primary breast tumors (25, 33) and has been shown
to be required for proliferation and survival of Hodgkin’s disease
tumor cells (24). In terms of cell proliferation, breast cancer and other
cancers often exhibit high levels of cyclin D1 (34, 35), and we and
others have shown that NF-kB activates transcription of the cyclin D1
gene (36, 37). Importantly, the requirement for NF-kB in oncogenesis
appears to be based, at least in part, on its ability to suppress trans-
formation-associated apoptosis (23).

NF-kB activity is regulated in part by its subcellular localization.
Under noninduced conditions, NF-kB is sequestered in the cytoplasm
through interactions with an inhibitor protein known as IkB (28–31).
Numerous extracellular stimuli can activate NF-kB through signal
transduction pathways that activate an IKK complex that phosphoryl-
ates IkBa on serines 32 and 36. The phosphorylation of IkBa leads to
its ubiquitination and ultimate degradation by the proteasome (28–
31), allowing NF-kB to translocate to the nucleus where it activates
the expression of genes. Activation of the NF-kB/Rel family of
transcription factors regulates the expression of genes that participate
in pathways involving inflammation, cell proliferation, and apoptosis
(28–31), including the inflammatory mediators nitric oxide synthase
and cyclooxygenase-2 (38, 39). Although numerous effects have been
described for Res, the molecular mechanisms responsible for its
anti-inflammatory and antioncogenic effects are not yet clear. Here we
asked whether the chemopreventive effect of Res occurs through
inhibition of NF-kB activation, and, if so, through what mechanism.

MATERIALS AND METHODS

Cell Cultures and Cell Extracts

Human monocyte (THP-1) and macrophage (U937) cell lines were grown in
RPMI 1640 supplemented with 10% fetal bovine serum, 53 1025 M b-mer-
captoethanol, and 1% penstrep. Cells were seeded at a density of 106 cells/ml
and cultured at 37°C in a 5% CO2 atmosphere. Purified Res was purchased
from Sigma (St. Louis, MO) and prepared according to the manufacturer’s
protocol. Briefly, for all experiments, a 50 mg/ml stock solution prepared in
100% ethanol was used. Cells were preincubated for 60 min with Res (30mM)
and stimulated with either TNF (Promega; 10 ng/ml) for 15 min or with LPS
(Promega; 1mg/ml) for 4 h. CEs and NEs were prepared as described
previously (40) and stored at270°C. Rat1:iRas cultures expressing the IPTG-
inducible oncogenic H-Ras allele (23) were cultured in DMEM supplemented
with 10% fetal bovine serum. Before the experiments, subconfluent Rat1:iRas
cell cultures were serum-starved for 4 h and either left untreated or stimulated
with 5 mM IPTG in the presence or absence of Res.
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EMSA

NEs (5–10mg) were preincubated with 1mg of poly(deoxyinosinic-deoxy-
cytidylic acid) in binding buffer (10 mM Tris, 50 mM NaCl, 20% glycerol, 1
mM DTT, and 0.5 mM EDTA) for 10 min at room temperature. Approximately
30,000 cpm of32P-labeled DNA probe containing the murine MHC class I
NF-kB DNA binding site (41) were added and allowed to bind for 15 min. The
complexes were separated by 5% PAGE and detected by autoradiography.
Specificity of binding was examined by competition with excess unlabeled
oligonucleotide (UV21). For supershift assays, NEs were incubated with
antibodies against p50 and p65 subunits of NF-kB for 20 min at room
temperature before analysis by EMSA.

Transfection and Gene Expression Assay

3XkB-Luc Assay. THP-1 cells were cotransfected using DEAE/dextran
with the empty expression vector (pDCR) and either the 3XkB-luc reporter or
the super-repressor form of IkBa (SR-IkBa) expression vector (42). Trans-
fections used 5.0mg of the pDCR empty expression vector only, 1.0mg of the
3XkB-luc reporter, or 1.0mg of the SR-IkBa expression vector and were
brought to a final concentration of 5.0mg with the empty vector. After 48 h,
cells were pretreated for 60 min with Res (30mM) and stimulated for 6 h with
TNF (10 ng/ml). Cell lysates were made by freeze-thawing three times. Protein
concentrations were determined, and 100 mg of protein were assayed for
luciferase activity as described previously (32, 43). The results (Fig. 2A) are
expressed as the fold luciferase induction relative to the transfection that
contained the empty expression vector, whose value was placed at 1.0.

CAT Assay. THP-1 cells were cotransfected along with the pDCR empty
expression vector as described above, except that either 1.0mg of a NF-kB
CAT-linked reporter containing the WT HIV-LTR-CAT or 1.0mg of a MUT
HIV-LTR-CAT in which both induciblekB sites have been mutated. Pretreat-
ment and stimulation were as described above, and cells were harvested, and
the CAT activity was determined. The results are expressed as the fold CAT
induction as described above.Bars (Fig. 2B) represent the mean6 SE
determined from at least three independent transfection experiments. Statistical
analysis was performed by ANOVA (StatView), and different letters between
groups indicate significant difference atP . 0.01.

RT-PCR

THP-1 cells were pretreated with Res (30mM), followed by TNF (10
ng/ml) stimulation for 3 h. RNA was isolated using the Trizol method (Life
Technologies, Inc.), and 1mg of total RNA was reverse-transcribed and
amplified by PCR (RT-PCR) using specific primers for MCP-1 and actin
(44), as described previously. The oligonucleotide primers used were as
follows: (a) MCP-1, 59-GGCTGAGCCCACTTATCACTCATGG-39 (59
primer) and 59-GGAAGCTTGCTGGAGGCGAGAGTGCGAG-39 (39
primer); and (b) actin, 59-CCAACCGCGAGAAGATGACC-39(59 primer)
and 59-GATCTTCATGAGGTAGTCAGT-39 (39 primer). Actin was used to
determine equal protein loading. The PCR temperatures used were 94°C for
45 s, 55°C (actin) and 60°C (MCP-1) for 30 s, and 72°C for 90 s, followed
by extension for 10 min at 72°C. The PCR reaction was set for various
cycles (20 –35 cycles) to maintain the linearity of the amplification. The
PCR products (10ml) were electrophoresed on a 2% agarose gel containing
gel star fluorescent dye (FMC Corp., Philadelphia, PA). A representative
photograph was scanned and analyzed. Negative controls consisted of tubes
with and without RNA. MCP-1 mRNA levels were quantitated by Phos-
phorImager analysis (Molecular Dynamics). Data are representative of
three independent experiments.

Western Blotting

Equal amounts of CEs were resolved on a 10% SDS-polyacrylamide gel and
transferred to nitrocellulose membrane. Blots were blocked in 5% milk in 13
TBST (Tris-buffered saline and 0.5% Tween 20) and probed with a specific
IkBa antibody (1:1000; Rockland). Blots were probed with a secondary
antirabbit antibody conjugated with horseradish peroxidase (1:10,000; Pro-
mega). Protein bands were visualized with an enhanced chemiluminescence
detection system (ECL; Amersham Life Technologies).

In Vitro Kinase Assay

THP-1 cells were treated as described above for the indicated time periods.
Whole cell extracts were prepared, and IKK was immunoprecipitated with a
specific antibody to the IKK-b subunit. IKK activity was measured using a
GST-IkB-a(1–54) WT or a MUT GST-IkB-a substrate (45–49). IKK activity
was measured using a GST-IkB-a(1–54) (4mg) WT or a MUT GST-IkB-a
substrate, where Ser32 and Ser36 were substituted by Thr (4mg; S32T and
S36T; Refs. 45–49). These substrates were enzymatically phosphorylated by
activated IKK with [g-32P]ATP (New England Nuclear, Boston, MA). IKK
activity was quantitated by PhosphorImager analysis (Molecular Dynamics)
and normalized to the IKK activity of untreated cells. Data are expressed as the
fold induction. Data are representative of three independent experiments.

ELISA in Situ Cell Death Assay and Microscopy

Rat1:iRas cells were pretreated with or without Res (30mM) for 60 min
before the addition of IPTG (5 mM) and incubated for 48 h. After incubation,
cell death was detected by the ELISAin situ apoptosis assay (Boehringer
Mannheim), and the percentage of apoptosis was quantitated. Staurosporine
was used as the positive control for the induction of apoptosis. This assay
measures DNA strand breaks and is therefore diagnostic for cells undergoing
apoptosis. In a parallel experiment, Rat1:iRas cells were either pretreated with
or without Res (30mM) for 60 min before the addition of IPTG (5 mM) and
incubated for 48 h. Nonadherent, dying cells are shown as refractive by
phase-contrast microscopy.

RESULTS

Res Inhibits NF-kB DNA Binding Activity. For our initial stud-
ies, we investigated whether Res inhibited NF-kB DNA binding
activity. We used two macrophage/monocytic cell lines, THP-1 and
U937, both of which are well characterized with regard to activation
of NF-kB. THP-1 cells were either left untreated or exposed to TNF,
a potent inducer of NF-kB in many cell types. As expected, TNF
strongly induced activation of NF-kB DNA binding activity, as de-
termined by EMSA (Fig. 1,Lane 2). In a dose-response study, we
found that the effective dose of Res for inhibiting activation of NF-kB
was 30mM (data not shown), and this dose was used for all experi-
ments. Pretreatment with Res had little effect on the basal binding
activity of NF-kB (data not shown) but strongly blocked the ability of
TNF to activate NF-kB DNA binding (Fig. 1,Lane 3). Similarly, the
induction of NF-kB in THP-1 cells by LPS, a potent bacterial endo-
toxin, was also effectively blocked by Res (Fig. 1,Lane 5). Virtually

Fig. 1. Res-mediated repression of TNF- and LPS-induced NF-kB activation. THP-1
cells were pretreated with Res (30mM) and stimulated with either TNF (10 ng/ml; 15 min)
or LPS (1mg/ml; 4 h). NEs were analyzed by EMSA as described. Data are a photograph
of an autoradiograph and are representative of three independent experiments.
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identical data were obtained with U937 cells (data not shown), indi-
cating that the ability of Res to block NF-kB activation is not cell-type
specific. Consistent with these results, it has been shown recently that
Res can inhibit NF-kB activation in RAW 264.7 macrophage cells
(17). In the same extracts, DNA binding of the constitutive transcrip-
tion factor Oct-1 and the CAAT/enhancer binding protein transcrip-
tion factor were unaffected by the presence of Res (data not shown),
demonstrating that Res does not negatively affect transcription factors
in a general manner.

Res Inhibits NF-kB-dependent Gene Transcription.Consistent
with the DNA binding data, Res strongly blocked the induction of a
NF-kB-dependent luciferase reporter (3XkB-luc) in response to TNF
stimulation of THP-1 cells (Fig. 2A), as did expression of a modified
form of the NF-kB inhibitor IkBa (SR-IkBa). SR-IkBa, which
cannot be phosphorylated or degraded (45, 50–53), binds to NF-kB
and blocks the nuclear translocation and subsequent transactivation of
NF-kB-responsive transcription (42). Relative specificity for NF-kB
inhibition was shown in an experiment where Res blocked the induc-

tion of the NF-kB-regulated HIV-LTR-CAT reporter in response to
TNF stimulation (Fig. 2B). However, Res did not strongly block a
site-directed MUT of the HIV-LTR-CAT reporter in which the two
NF-kB binding sites were mutated (Fig. 2B). To extend the transient
transfection reporter data, we determined whether endogenous gene
expression could be repressed by Res. mRNA levels for two NF-kB-
regulated genes, IkBa and MCP-1, were examined by RT-PCR anal-
ysis after TNF stimulation in the presence or absence of Res. Al-
though Res was capable of partially inhibiting TNF-induced mRNA
levels for IkBa (data not shown), it more strongly repressed the
induction of the MCP-1 mRNA (Fig. 2C). Because Res does not
completely block the nuclear translocation of NF-kB under our ex-
perimental conditions, these results may indicate a more stringent
requirement for elevated levels of NF-kB for MCP-1 gene expression
as compared with IkBa gene expression. The effects of Res on NF-kB
DNA binding activity (Fig. 1) paralleled those observed in the NF-
kB-dependent gene expression studies (Fig. 2,A–C). More impor-
tantly, and consistent with a role for Res in inhibition of atherogen-

Fig. 2. Res suppresses NF-kB-regulated gene expression.A, THP-1
cells were cotransfected using DEAE/dextran with the empty expres-
sion vector (pDCR) and either the 3XkB-luc reporter or the super-
repressor form of IkBa (SR-IkBa) expression vector. To inhibit
NF-kB activity, SR-IkBa, which cannot be phosphorylated or de-
graded, was used to block nuclear translocation and subsequent trans-
activation of NF-kB-responsive genes (42). Transfections used 5.0mg
of the pDCR empty expression vector only, 1.0mg of the 3XkB-luc
reporter, or 1.0mg of the SR-IkBa expression vector and were brought
to a final concentration of 5mg with the empty vector. After 48 h, cells
were prepared as described. The results are expressed as the fold
luciferase induction relative to the transfection that contained the
empty expression vector, whose value was placed at 1.0.Bars,
mean6 SE determined from at least three independent transfection
experiments. Statistical analysis was performed by ANOVA (Stat-
View), and different letters between groups indicate significant differ-
ence atb, P , 0.01 andc, P , 0.05.B, THP-1 cells were cotransfected
along with the pDCR empty expression vector as described above,
except that either 1.0mg of a NF-kB CAT-linked reporter containing
WT HIV-LTR-CAT or 1.0 mg of a MUT HIV-LTR-CAT in which
both induciblekB sites have been mutated. Pretreatment and stimula-
tion were as described, cells were harvested, and CAT activity was
determined. The results are expressed as the fold CAT induction as
described above.Bars, mean6 SE determined from at least three
independent transfection experiments. Statistical analysis was per-
formed by ANOVA (StatView), anddifferent lettersbetween groups
indicate significant difference atP . 0.01. C, THP-1 cells were
pretreated with Res (30mM), followed by TNF (10 ng/ml) stimulation
for 3 h. Total RNA was reverse transcribed and amplified by PCR
(RT-PCR) using specific primers for MCP-1 and actin. A representa-
tive photograph was scanned, and MCP-1 mRNA levels were quanti-
tated by PhosphorImager analysis (Molecular Dynamics). Data are
representative of three independent experiments.
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esis, MCP-1 was recently shown to be required for atherogenesis in
the ApoE knockout animal model (44). These results indicate that Res
inhibits NF-kB-dependent gene expression through the inhibition of
induction of NF-kB DNA binding activity.

Inhibition of TNF-induced IKK Activity. The majority of induc-
ers of NF-kB stimulate a signal transduction pathway that leads to the
activation of the IKK complex (45–49) that phosphorylates IkBa on
Ser32 and Ser36. Phosphorylated IkBa is then targeted for ubiquitina-
tion and subsequent degradation by the 26S proteasome, liberating
NF-kB and allowing nuclear translocation (28–31). To determine the
level at which Res blocks NF-kB activity, we analyzed the relative
levels of IkBa after exposure of cells to TNF. CEs were prepared
from the THP-1 cells used previously for EMSA. As expected, TNF
stimulation led to a strong IkBa degradative response in THP-1 cells
after 15 min (Fig. 3A, Lane 3), followed by a reappearance of IkBa
at 30 min (Fig. 3A, Lane 4). Consistent with the ability to block
NF-kB activation (Fig. 1), Res inhibited IkBa degradation in response
to TNF (Fig. 3A, Lanes 6–8). Additionally, Res blocked TNF-induced
phosphorylation of IkBa (data not shown) as demonstrated with the
use of a phosphospecific antibody directed to Ser32, suggesting that
Res inhibits an upstream signaling component in the TNF signaling
pathway. We therefore analyzed levels of IKK activity after TNF
treatment of THP-1 cells in the absence or presence of Res. Whole cell
extracts were prepared, and IKK was immunoprecipitated with a
specific antibody to the IKK-b subunit (46). IKK activity was meas-
ured using a GST-IkBa(1–54) WT or a MUT GST-IkBa substrate, in
which Ser32 and Ser36 were substituted by threonine (S32T and S36T;
Refs. 45–49). Res was found to be a potent inhibitor of inducible IKK
activity in response to TNF exposure (Fig. 3B). Additional data show

that Res is apparently not an intrinsic IKK inhibitor because Res does
not block IKK activity when added directly to thein vitro kinase
reaction (data not shown). Moreover, it is unlikely that the mechanism
of action of Res relative to its ability to inhibit NF-kB acts through its
antioxidant property because others (54) have shown that TNF-in-
duced IKK activity was not affected by pretreatment with the potent
antioxidantN-acetyl-L-cysteine. Additionally, it is unlikely that the
mechanism of action of Res to block NF-kB acts through its estro-
genic properties because treatment of THP-1 cells with 17-b-estradiol
at concentrations as high as 1025

M did not lead to inhibition of
NF-kB (data not shown). Thus, our results suggest that the major
mechanism whereby Res blocks NF-kB activity acts through the
inhibition of induction of IKK activity.

Enhanced Apoptosis by Inhibition of Ras-mediated NF-kB Ac-
tivation. Res has been shown to inhibit mammary gland oncogenesis
in response to carcinogen exposure (1), and it has been shown to block
the growth of certain cancer cellsin vitro (13, 16, 17). Recently, the
importance of NF-kB in several oncogenic settings has been described
(23–27). One model used an IPTG-inducible oncogenic H-RasV12
allele stably integrated in the Rat-1 cell line (23). Inhibition of NF-kB
after IPTG-induction of H-RasV12 led to apoptosis, whereas activa-
tion of H-RasV12 when NF-kB was active led to a transformed
phenotype (23). Thus, it is postulated that NF-kB activation sup-
presses transformation-associated apoptosis. Therefore, we deter-
mined whether Res could induce apoptosis in the Rat-1 cell line in the
absence or presence of H-RasV12. Res pretreatment led to inhibition
of IPTG-induced Ras activation of NF-kB (Fig. 4A), suggesting that
IKK is involved in the induction of NF-kB in response to induced
expression of oncogenic Ras. Additionally, Res strongly induced

Fig. 3. Res prevents TNF-induced degradation
of IkBa by blocking IKK activity. A, IkBa degra-
dation kinetics. THP-1 cells were either untreated
(Lane 1), treated with TNF (10 ng/ml) for indicated
times (Lanes 2–4), or preincubated for 60 min with
Res (30mM) followed by TNF (10 ng/ml) stimula-
tion for the indicated times (Lanes 5–8). CEs were
prepared, and protein expression was assessed by
immunoblotting (60mg/lane) with an antibody spe-
cific for IkBa (Rockland). THP-1 cells were
treated as described. Whole cell extracts were im-
munoprecipitated with a specific antibody to the
IKK- b subunit (44). IKK activity was measured
using a GST-IkB-a(1–54) WT or a MUT GST-
IkB-a substrate. IKK activity was measured using
a GST-IkB-a(1–54) (4mg) WT or a MUT GST-
IkB-a substrate, in which Ser32 and Ser36 were
substituted by Thr (4mg; S32T and S36T). These
substrates were enzymatically phosphorylated by
activated IKK with [g-32P]ATP. IKK activity was
quantitated by PhosphorImager analysis (Molecu-
lar Dynamics) and normalized to the IKK activity
of untreated cells. Data are expressed as the fold
induction. Data are representative of three inde-
pendent experiments.

3480

CHEMOPREVENTIVE PROPERTIES OF Res

Research. 
on March 20, 2018. © 2000 American Association for Cancercancerres.aacrjournals.org Downloaded from 

http://cancerres.aacrjournals.org/


apoptosis, as determined by both cell death ELISA (Fig. 4B) and
morphological analysis (Fig. 4C,IPTG), in Rat-1 cells expressing
H-RasV12 (Fig. 4C,I andI1Res) but only weakly induced apoptosis
in Rat-1 cells that were not treated with IPTG (Fig. 4C, UandRes).
It should be noted that the modest apoptotic response in uninduced
Rat-1 cells is likely due to leaky expression of H-RasV12. Further-
more, significant cell death was also observed in TNF-stimulated
THP-1 cells after Res pretreatment (data not shown). Interestingly,
Res did not elicit an effective apoptotic response in established
Ras-transformed NIH-3T3 cells (data not shown). Thus, our data
strongly indicate that Res is more effective as a cancer chemopreven-
tive agent by inhibiting NF-kB activation during the initiation phase
of oncogenesis. In established NIH-3T3 cells stably expressing onco-
genic Ras, nuclear NF-kB levels are not increased by Ras expression
(43, 55). In this situation, Ras appears to require NF-kB activity but
functions to maintain NF-kB activity through the stimulation of the
transcription function of the basally expressed nuclear p65 subunit
expression (43, 55). These results are consistent with the idea that the
role of IKK in Ras transformation may be an early, transient event
allowing an initial accumulation of NF-kB through IKK activation to
protect against apoptosis.

DISCUSSION

Extensive data are now accumulating that dietary constituents can
strongly influence the potential for disease outcome (56–59). In
epidemiological studies, Red wine consumption was shown to have
numerous protective effects, and Res has been shown to be respon-
sible for those beneficial effects (60, 61). In particular, a phenomenon
defined as the “French paradox” has emerged (3, 4), which is the
association of reduced mortality from coronary heart disease and
breast cancer (4, 5). Although it is well established that naturally
occurring compounds function as chemopreventive agents (1, 62, 63),
the physiological mechanisms of these dietary constituents as extra-
cellular signals involved in transcription activation are only presently
emerging.

Our data indicate that Res is a potent inhibitor of NF-kB nuclear
translocation and IkBa degradation. Furthermore, Res effects are
mediated through the inhibition of IKK, the key regulatory complex
required for NF-kB activation of gene transcription. The molecular
target of Res action is presently unknown because Res does not appear
to directly block IKK activity. Presumably, Res inhibits an upstream
signaling component that leads to the activation of IKK, and we are
presently examining whether Res inhibits NF-kB-inducing kinase or
MEKK1, upstream activators of the IKK complex (46, 64–67). Be-
cause evidence has been presented that Res can block AP-1 activity
(18), which is consistent with our observations (data not shown), one
possibility is that MEKK1 is the target of Res action because MEKK1
can activate both the AP-1 and NF-kB pathways (46, 64–67). This
hypothesis, if proven, could explain the dual inhibition of NF-kB and
of AP-1 transcriptional responses.

NF-kB is strongly associated with inflammatory diseases and on-
cogenesis (28–31), and the activation of NF-kB target genes, includ-
ing proinflammatory cytokines, has been implicated in promoting the
transformation and survival of tumor cells (23, 42, 68–70). However,
NF-kB activation has been shown to be blocked by anti-inflammatory
compounds such as aspirin (71, 72) and glucocorticoids (73–76).
Therefore, our results demonstrate that a potent chemopreventive
compound also targets NF-kB activation to block both inflammation
and cancer initiation. In this case, Res blocks the signaling pathway
leading to NF-kB activation through its ability to block IKK activa-
tion. Res would then block the expression of NF-kB-dependent genes
such as MCP-1 and other genes that would normally promote inflam-

Fig. 4. Apoptotic effects of Res in Rat-1 cells expressing IPTG-inducible oncogenic
H-Ras.A, Res -mediated suppression of NF-kB in Rat1:iRas cells (23). Rat1:iRas cultures
stably expressing the IPTG-inducible oncogenic H-Ras allele were serum-starved, and
after 4 h, complete media were added. Cells were pretreated in the absence (U, Lane 1)
or presence of Res (30mM; Lanes 3and 4) for 60 min. Cultured Rat1:iRas cells were
stimulated for 48 h with IPTG (5 mM; Lanes 2and3) to induce H-Ras-activated NF-kB
DNA binding. NEs were analyzed by EMSA with the MHC class I NF-kB DNA binding
probe as described previously (41). Data are representative of three independent experi-
ments. B, Res induces DNA fragmentation in Rat1:iRas cells. Rat1:iRas cells were
pretreated with Res (30mg/ml) for 60 min before the addition of IPTG (5 mM) and
incubated for 48 h. After incubation, cell death was detected by the ELISAin situ
apoptosis assay (Boehringer Mannheim), and the percentage of apoptosis was quantitated.
Staurosporine was used as a positive control for the induction of apoptosis.C, Res
enhances apoptosis in IPTG-induced Rat1:iRas cells. Micrograph panel (320 magnifica-
tion): Rat1:iRas cells were either pretreated without (U) or with Res (Res; 30mM) for 60
min before the addition of IPTG (5 mM; iptg and I1Res) and incubated for 48 h.
Nonadherent dying cells are shown as refractive by phase-contrast microscopy.
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mation, protect against apoptosis, and potentiate cell growth. Thus,
our results provide a molecular rationale to explain the broad chemo-
preventive properties of Res.
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