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Abstract

Worldwide declines in shorebird populations, driven largely by habitat loss and degradation, motivate environmental
managers to preserve and restore the critical coastal habitats on which these birds depend. Effective habitat management
requires an understanding of the factors that determine habitat use and value to shorebirds, extending from individuals to
the entire community. While investigating the factors that influenced shorebird foraging distributions among neighboring
intertidal sand flats, we built upon species-level understandings of individual-based, small-scale foraging decisions to
develop more comprehensive guild- and community-level insights. We found that densities and community composition of
foraging shorebirds varied substantially among elevations within some tidal flats and among five flats despite their
proximity (all located within a 400-m stretch of natural, unmodified inlet shoreline). Non-dimensional multivariate analyses
revealed that the changing composition of the shorebird community among flats and tidal elevations correlated
significantly (rs = 0.56) with the spatial structure of the benthic invertebrate prey community. Sediment grain-sizes affected
shorebird community spatial patterns indirectly by influencing benthic macroinvertebrate community compositions.
Furthermore, combining sediment and macroinvertebrate information produced a 27% increase in correlation (rs = 0.71)
with shorebird assemblage patterns over the correlation of the bird community with the macroinvertebrate community
alone. Beyond its indirect effects acting through prey distributions, granulometry of the flats influenced shorebird foraging
directly by modifying prey availability. Our study highlights the importance of habitat heterogeneity, showing that no single
patch type was ideal for the entire shorebird community. Generally, shorebird density and diversity were greatest at lower
elevations on flats when they became exposed; these areas are at risk from human intervention by inlet sand mining,
construction of groins and jetties that divert sediments from flats, and installation of seawalls on inlet shorelines that induce
erosion of flats.
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Introduction

Worldwide declines in shorebird populations, driven by coastal

development and increasingly by direct and indirect effects of sea-

level rise [1,2], motivate environmental managers to better

preserve, restore, create, and manipulate the critical coastal

habitats on which these birds depend (e.g., [3–5]). Effective habitat

management requires a better understanding of the factors

determining habitat use and value to shorebirds. Study of foraging

by shorebirds on various sand flat habitats is a long-standing

subdiscipline of behavioral ecology (e.g., [6,7]) that focuses

primarily on whether patches of habitat are used non-randomly,

and then on how birds discriminate among alternative patches of

habitat to maximize their fitness.

The Ideal Free Distribution (IFD) optimal foraging model [8],

in which the distribution of foragers reflects habitat suitability

(based on factors such as prey density distribution and predation

risk), has long provided a framework for studying patch choice

decisions in foraging birds [9–11]. While foraging theory has

helped to illuminate mechanisms that drive feeding patterns in

targeted species by providing hypotheses, testing these hypotheses

often requires use of simplified assumptions and a narrow focus on

a single or limited number of shorebird species, prey species, and/

or environmental variables. Because of these limitations, questions

of how the entire community of shorebirds and its component

guilds, defined by factors that influence foraging, are influenced by

a broad array of environmental factors are more technically

difficult to determine, but recent advances in multivariate

statistical tools have opened the door for more comprehensive

and powerful analyses of determinants of shorebird foraging.

Here, we ask whether the distribution of a community of

foraging shorebirds conforms with expectations from the IFD; that

is, whether the density distribution of foraging guilds matches the

distributions of prey and presumed influential environmental
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variables. We build upon individual- and species-level under-

standings of foraging decisions in order to reveal more compre-

hensive guild- and community-level insights. Because the value of

a habitat to foraging shorebirds can depend upon both local

characteristics of the habitat patch and also the landscape-scale

context in which that patch is located [12], we also consider how

landscape characteristics affect habitat patch suitability. We apply

powerful multivariate statistical approaches to test whether

shorebird foraging guilds respond to differences in sedimentology

and the benthic invertebrate prey community among a set of inlet

intertidal sand flats (New River Inlet, North Carolina, USA). This

site was selected because its spatial scale was ideal for a compre-

hensive community analysis: large enough to include multiple

habitat patches of varying quality, yet small enough that foraging

shorebirds could choose among those differing patches without

traveling to distant locations.

Materials and Methods

Study Site
Marine Corps Base Camp Lejeune is located on the North

Carolina coast midway between Cape Lookout and Cape Fear.

Onslow Beach, Camp Lejeune’s 12 km-long, southeast-facing

barrier island, borders the Atlantic Ocean and is bounded on the

southwest by the New River Inlet (Fig. 1). Our study site,

comprised of five back-barrier intertidal sand flats, was located at

the southwest tip of Onslow Beach and was managed by the base

as a low impact/wildlife use zone. These sand flats experienced

semi-diurnal tides with mean and spring tidal ranges of 1.3 and

2.0 m, respectively.

Flats ranged in area from about 0.5 to 2 ha at spring low tide,

and were within 5–250 m of each other (Fig. 1). ‘‘Semi-Enclosed

Flat’’ was the most sheltered of the group; it was bordered on the

landward side by marsh and a sand spit and partially encircled

a large pool of water that was connected to the estuary by a short,

narrow (1–2 m wide) tidal channel. ‘‘Broad Flat’’ had the greatest

intertidal area, and was located on the estuary-facing side of the

sand spit. The southwestern tail of this flat was treated as a separate

site and thus sampled separately because of obvious differences in

surface shell cover (‘‘Shell Flat’’). ‘‘Island Flat’’ was a sandy shoal

that emerged shortly before low tide near and parallel to Broad

Flat. Located farthest from the ocean, ‘‘Tidal Creek Flat’’

bordered a marsh/tidal creek complex and was the muddiest of

the sand flats. Broad Flat, Shell Flat, and Semi-Enclosed Flat

emerged earliest in the tidal cycle, beginning about three hours

before low tide. As the tide continued to ebb, Tidal Creek Flat was

exposed next, followed by Island Flat. Tidal amplitudes were

similar over the course of the study, although spring tides in mid

December led to earlier exposure of Island Flat and greater

exposed areas of all flats.

GPS location and elevation surveys were conducted using

a Trimble Real Time Kinematic unit on 12 November 2008 and

supplemented by additional measurements on 9 February 2009.

Survey points were recorded at 0.5 m intervals along transects

spaced approximately 10 m apart, perpendicular to the low-tide

water line of each flat. In total, 4388 points were imported into

ArcMap and inverse-distance weighted (IDW) to interpolate

elevations for all exposed sand flat surfaces. IDW data were used

to calculate surface area exposed for each flat at successive tidal

heights (Table S1).

Benthic Macrofaunal Invertebrates
Benthic macroinvertebrates were sampled on 12 November

2008, approximately at the temporal mid-point of our shorebird

censusing. We assumed benthic invertebrate densities did not

exhibit dramatic variation from mid-October to mid-December,

a period without major recruitment pulses (e.g., [13,14]), major

storms, or intense predation by fishes and crabs [15]. Flats were

sampled for benthic macrofauna in a spatiotemporal pattern

mimicking the general pattern of shorebird foraging at three stages

in the tide and thus at three tidal levels: (1) three h before low tide

(mid ebb tide) in the aerially exposed elevations; (2) 90 min before

low tide (late ebb tide) in the newly exposed zone; and (3) low tide

in the zone exposed last (Fig. 2). Because flats were sampled only if

aerially exposed, not all flats could be sampled at all three times:

Tidal Creek Flat was sampled first at late ebb and Island Flat only

at low tide. The dynamic pattern of flat exposure on 12 November

was typical of the study period (Table S1).

At each tidal stage, up to three microhabitats were distinguish-

able on each tidal flat, based on relative elevation and apparent

water content: ‘‘saturated’’ (damp, but no apparent surface water),

‘‘glossy’’ (a film of surface water visible on the sediment), and

‘‘subtidal’’ (,3 cm of water cover). As sampling at later tidal stages

focused on newly exposed areas, a ‘‘saturated’’ zone at late ebb

tide was lower in elevation than a ‘‘subtidal’’ sample taken at mid

ebb tide (Fig. 2). Because Island and Tidal Creek Flats had lower

mean elevations than Broad, Shell, and Semi-Enclosed Flats, they

contained only ‘‘glossy’’ and ‘‘subtidal’’ levels: no ‘‘saturated’’

samples were taken from these flats. A total of 7 replicate samples,

each formed by the contents of a core 82 cm2 in surface area and

10 cm deep, was taken at each of the three microhabitat levels at

each tidal stage on Semi-Enclosed Flat and at Broad Flat.

Additionally, a full set of 3 replicate samples from each

microhabitat was taken at Shell Flat; because this flat was much

smaller than the others, fewer replicates were taken here in order

to maintain comparable spacing between samples. Tidal Creek

Flat was sampled at late ebb and low tides with 8 replicate samples

per microhabitat level per tidal stage. A set of 7 replicate samples

per level were obtained from Island Flat at low tide. The 10-cm

depth was selected to capture benthic organisms that would be

within probing range of the whimbrel (Numenius phaeopus), and to

capture vertically-moving organisms that would periodically be

available to surface-feeding shorebirds. Our sampling protocol was

inclusive of all species of macroinvertebrates found in this depth

range in order to match our focus on the entire community of

shorebirds, which includes multiple feeding guilds. This depth was

sufficient to capture most if not all organisms that serve as

shorebird prey on intertidal sand flats of North Carolina inlets.

The only deep-burrowing vermiform invertebrates in this bio-

geographic area (Balanoglossus aurantiacus and Arenicola cristata) were

rare, judging from virtual absence of fecal casting evidence on the

surface (BMV and SRF, pers. obs.). The only local deep-

burrowing bivalve, the adult razor clam, Tagelus plebeius, can be

recognized by its evident dual siphon holes at the surface [16],

none of which were detected during our sampling. Although

siphons of bivalves can contribute to some shorebird diets, the

abundant bivalves of intertidal inlet flats in North Carolina (such

as Mercenaria mercenaria and Chione cancellata) are all suspension

feeders so, unlike some deposit feeders, their siphons are not

extended and thus vulnerable when the intertidal habitat is

exposed at low tide.

The 199 samples were returned to the laboratory on ice and

sieved immediately on 0.5-mm mesh, with contents preserved

using 10% buffered formalin with Rose Bengal stain. After sorting

and enumerating by species, genus, or occasionally a higher

taxonomic level, organisms were placed in 35% ethanol for #60 d

until they could be dried at 60uC to constant mass (,48 hours) and

weighed. For each sample, dry mass was computed for the four
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major taxonomic groups: polychaetes; crustaceans (94% amphi-

pods plus other small crustaceans such as isopods and larval

crustaceans); bivalves; and gastropods.

One-way Model I ANOVAs were used to test each major

group for differences in abundance, and separately in biomass,

among flats at each tidal level. Both response variables were log

(x+1)-transformed to meet statistical assumptions of normality

and homogeneity of variance. To determine whether benthic

community composition differed among flats, we performed

one-way ANOSIMs (analysis of similarity; [17]) based on Bray-

Curtis similarity matrices computed separately on abundance

and biomass (log(x+1) transformed), with flat as the independent

variable and individual samples as replicates. An n-MDS

ordination based on similarity matrices of flat/tidal stage

combination means, overlaid by results of a hierarchical cluster

analysis (PRIMER v.6.1.11), was employed to depict groupings.

We did not modify probabilities (a) to account for multiple

testing (here or in any other analyses); rather, we chose to

report unadjusted P-values but rely on them less than on F

ratios, R statistics, and t statistics to assess potential biological

patterns and provide evidence for rejection of null hypotheses.

Sediments
Sediment samples were collected concurrently with benthic

macrofauna. Each sediment sample consisted of three pooled 4.8-

cm diameter cores taken to 10 cm depth. The three cores were

taken haphazardly from the range of elevations sampled for

benthos at each tidal stage, with specific placement blind to surface

sedimentary characteristics. As the tide fell, mid ebb tide and late

ebb tide waterlines on each flat were marked with flags. All

sediment samples were taken at low tide, but replicate sets were

taken based on each marked waterline to match the zones sampled

for macrobenthos (Fig. 2). Consequently, Broad and Semi-

Enclosed Flats had 7 replicate samples along the waterlines of

each of the three tidal zones; Shell Flat had 3 replicates and Tidal

Creek Flat had 8 replicates each from the late ebb tide and low

tide waterlines; Island Flat, exposed only during low tide, had 4

replicate samples above the low-tide waterline and 4 below

(,3 cm subtidally).

Each sediment sample was dried for 24 hr at 120uC in the

laboratory and then weighed and sieved through a 2-mm mesh to

remove the largest particles and calculate percent-gravel content.

A ,5 g sub-sample of each sand sample was processed through

a CILAS laser particle size analyzer to determine particle size

distribution. Grain sizes were binned into six groups based on the

Figure 1. Location and elevation map of study site. (Note: apparent crenulations of the water edge on Broad and Semi-Enclosed Flats are
artifacts of the elevation measurement technique.) Base layer photograph from Bing Maps Aerial Imagery.
doi:10.1371/journal.pone.0052694.g001
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Udden-Wentworth scale (silt/clay: ,63 mm, very fine sand:

,125 mm, fine sand: ,250 mm, medium sand: ,500 mm,

coarse/very coarse sand: ,2000 mm, gravel: $2000 mm), and

percent composition was computed for each sample. Grain-size

group means were compared (1) among flats and (2) among tidal

elevations within flats using one-way Model I ANOVAs.

To test for among-flat differences in grain-size distribution, we

performed a one-way ANOSIM based on a Euclidean distance

resemblance matrix with flat as the independent variable and

grain-size distributions from individual samples as replicates. To

remove collinearity, the size classes ‘‘coarse/very coarse sand’’ and

‘‘gravel’’ were excluded from the analysis because they were highly

negatively correlated with ‘‘fine sand’’ (20.898). We further

constructed a similarity matrix from mean grain-size distributions

for each flat/tidal stage combination and used it as the basis for an

n-MDS ordination (Euclidean distance) and hierarchical cluster

analysis.

Shorebirds
Shorebird surveys were conducted on 14 dates between 15

October and 16 December 2008 (Table S1) by a single trained

observer (BMV). Observations were conducted at 90-min intervals

beginning three h before low tide (‘‘mid ebb tide’’), soon after

Semi-Enclosed and Broad Flats first emerged, and ending at low

tide when all flats were fully exposed. Each observation date was

chosen to provide a falling tide during daylight. All observations

were made on days without rainfall, with average wind speeds of

14 km hr21(range 0–32 km hr21) and air temperatures between 8

and 20uC (mean 14uC). During the first week of observations,

several wooden stakes were inserted in Broad Flat in order to

facilitate tidal height comparisons across dates. Shorebird surveys

were conducted by walking the length of the sand spit along the

vegetation line (Fig. 1) while counting and identifying all foraging

shorebirds on each exposed flat. Because every flat was fully visible

from this vantage point, double-counting of birds moving between

flats was avoided. Few between-flat movements occurred during

observation periods (which usually took about 10 min); if a bird

did move between flats, its final location was the one recorded.

Though they were not divided by water, Shell Flat and Broad Flat

were observed separately because of differences in surface shell

cover and human disturbance. To standardize human disturbance

level, we excluded from analysis all Shell Flat bird counts that

occurred while fishermen were on the flat. Observations were

made using 8640 porro prism binoculars at a minimum distance

of ,40 m from foraging birds. This distance was sufficient to

avoid disturbing the birds.

To determine whether shorebird community composition

consistently differed among flats over time, the PERMANOVA

routine in PRIMER6 [18] was employed to analyze the shorebird

community dataset using a randomized block design [19], with

fixed factor ‘‘Flat’’ and random blocking factor ‘‘Date.’’ Each tidal

stage was analyzed separately, and because Shell Flat was

occupied by fishermen at times (and thus had a lower number

of undisturbed replicates), it was excluded from this analysis. A

dummy variable was added during the construction of resem-

blance matrices to prevent the loss of null samples (observations

with no birds recorded) and associated degrees of freedom [20].

Before analysis, shorebird counts were standardized by area (birds

per hectare).

To display patterns in the shorebird community, a non-metric

multidimensional scaling (n-MDS) ordination using a Bray-Curtis

similarity matrix was constructed from the means of each flat/tidal

stage combination along with a hierarchical clustering (PRIMER

v.6.1.11) of these means.

Significant multivariate PERMANOVAs were followed by

univariate ANOVAs and Tukey-Kramer HSD post hoc contrasts

Figure 2. Sand flat sampling schematic. Sediment samples from all flats and all tidal heights were taken at low tide. The relative position of
where the sediment samples would be taken subsequently is indicated by the darker crosses in each of the diagrams showing earlier tidal stages.
doi:10.1371/journal.pone.0052694.g002
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to compare foraging densities at each tidal stage. Again, Shell Flat

was excluded. In addition, we used x2 to contrast foraging guild

distributions, and computed Simpson’s D to compare shorebird

community diversity among tidal stages.

Integrated Analyses
The relationship between sediment grain-size distribution and

benthic community structure was assessed using the BEST

procedure in PRIMER6 [17]. BEST searches for high rank

correlations between a fixed similarity matrix and resemblance

matrices produced from a subset of possible explanatory variables

that come from a second (‘‘active’’) similarity matrix. The degree

to which the multivariate patterns of the fixed matrix match the

patterns of the optimized subset matrix is the degree to which the

subset variables ‘‘explain’’ the patterns in the fixed matrix. Our

fixed matrix was the Bray-Curtis similarity matrix produced from

the benthic abundance dataset. Because benthic and sediment

samples were not matched one-to-one in the field, only ‘‘glossy’’

benthic samples were used in the first BEST analysis to provide the

closest match to tide-line sediment samples. In a second analysis,

all benthic samples were used. Both benthic and sediment datasets

were reduced (by averaging replicates) to 12 matching composite

samples– one per tidal stage exposed per flat. To remove

collinearity in the sediment variables in both BEST analyses,

‘‘very coarse sand’’ and ‘‘gravel’’ were excluded.

The BEST procedure was also used to assess the spatiotemporal

relationship between tidal flat sediment grain-size composition and

the shorebird community. To match sediments with shorebird

samples, the process of compositing sediment samples used in the

sediment-benthos BEST analysis described above was repeated

until a one-to-one sample correspondence was reached, providing

each shorebird community sample with a matching sediment

profile for a given flat at a given tidal stage. Shorebird observations

from December were excluded because spring tides during that

half month of sampling changed the distributions of birds on the

flats relative to sediment sample locations, resulting in a poor

spatial match. The composite shorebird density data were

log(x+1)-transformed, and their Bray-Curtis similarity matrix

served as the fixed matrix for the BEST analysis.

The relationship between benthic macrofaunal and shorebird

communities was assessed using the BEST procedure as well. This

analysis was performed using the shorebird density and benthic

abundance datasets, with the similarity matrix from the shorebird

dataset serving as the fixed matrix. To reduce numbers of benthic

species (67), we included only those found in five percent or more

of the total samples (Table S2). To ensure that the original benthic

community patterns were preserved in this 14-species subset, we

ran a BEST analysis (BVSTEP: [21]) using the complete benthic

species list for the fixed matrix and the 14-species subset for the

active matrix: the resulting high correlation (Spearman correlation

coefficient rS = 0.94) confirmed that benthic community patterns

were preserved within the subset of most frequent species. We

performed a BEST analysis using the fixed shorebird Bray-Curtis

similarity matrix and the active benthic Bray-Curtis similarity

matrix from the reduced species set. As with the sediment dataset

in the previous analysis, benthic samples were composited until

a one-to-one sample correspondence was reached between benthic

and shorebird samples. In this way, each shorebird community

sample was matched with the benthic community composition of

a given flat at a given tidal stage.

A final BEST analysis drew upon all three datasets. The

composited sediment and benthic macrofauna datasets were

combined on a single spreadsheet to form an active matrix that

supplied explanatory variables from both datasets at the same

time. Once again, the Bray-Curtis similarity matrix from the

shorebird dataset served as the fixed matrix for the BEST analysis.

Ethics Statement
Marine Corps Base Camp Lejeune (MCBCL) Environmental

Management Division approved this research, and MCBCL

Range Control granted us access to the study site.

Results

Benthic Macrofaunal Invertebrates
Almost all (98%) invertebrates sampled belonged to one of four

major taxonomic groups: polychaetes (53%), crustaceans (34%),

bivalves (6%), or gastropods (5%) (see Tables S3, S4, S5, S6 for

complete species list). Within the 16 families of polychaetes

identified, 80% of individuals were either Nereis spp. (20%),

Capitella capitata (17%), Haploscoloplos robustus (16%), Heteromastus

filiformis (14%), Paraonis sp. (8%), or Aricidea fragilis (5%).

Crustaceans consisted mostly of amphipods (94%), but also

contained a few other small crustaceans including decapods (4%

- mostly larval), and isopods. Bivalves were mainly Donax variabilis,

Gemma gemma, or Mercenaria mercenaria, and the most abundant

gastropods were Nassarius obsoletus and Littorina irrorata.

One major difference among flats in benthic invertebrate

density or biomass emerged from our analyses. Shell Flat had

significantly higher polychaete densities than other flats at every

tidal stage (Fig. 3, plus Table S7 for statistical test results).

Polychaete biomass was also greater on Shell Flat than on Semi-

Enclosed or Broad Flats at mid ebb tide, but did not differ

significantly from other flats at late ebb tide or low tide (Table S8).

Polychaetes represent the most abundant of the potential prey for

shorebirds by a wide margin, with densities in the hundreds m22

compared to crustaceans in the tens m22 and gastropods and

bivalves in the single digits m22 (Fig. 3). Crustacean density was

significantly lower on Shell Flat than on Broad Flat at late ebb, but

Shell Flat did not differ significantly from any other flat at any tidal

stage in crustacean biomass or in either abundance or biomass of

bivalves or gastropods (Fig. 3, Tables S7 & S8).

In contrast, the benthic macrofaunal communities showed

highly significant variability among all flats using abundances of

the 14 most frequent species (ANOSIM, global R=0.158,

P,0.001). Individual pairwise comparisons of flats (Table S9)

revealed significant differences between each flat pair except Semi-

Enclosed and Shell Flat, and Semi-Enclosed and Tidal Creek Flat.

N-MDS ordination and cluster analysis (Fig. 4A) showed sub-

stantial discrimination among flats based on their relative

abundances of frequently occurring benthic macrofaunal species,

although Shell Flat at mid ebb tide grouped with Broad Flat rather

than with the later tidal stages on Shell Flat. Separation distances

among clusters of points representing each flat did not differ

greatly and showed no dramatic outlier (Fig. 4A). Results of an

analogous ANOSIM applied to the composition of the macro-

benthic communities based on biomass detected no significant

difference among flats (global R= 0.003, P.0.05), nor did an n-

MDS ordination of the community biomass dataset (not shown)

reveal any pattern, an outcome common to biomass analyses

because of the huge variability associated with inclusion of even

a single large-sized specimen.

Sediments
Each separate sediment grain size class revealed highly

significant differences in percentage composition among tidal flats

(ANOVA, P,0.001 for each size class). The flat most clearly

distinguishable from all others was Shell Flat, which had the
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coarsest sediments by far (Table S10). Tidal Creek Flat was

muddiest with a significantly higher percentage of silt and clay

than any other flat, whereas Island Flat had a higher percentage of

very fine sand, and Semi-Enclosed Flat had significantly more

medium sand than any others (Table S10). Additional ANOVAs

conducted to examine how sediment grain-size distributions varied

with tidal level within the flat demonstrated invariant granulo-

metry with elevation on Semi-Enclosed, Island, and Tidal Creek

Flats. However, Broad Flat showed a progressive fining of

sediments from mid ebb to low tide with significant increases in

silt/clay percentages (ANOVA: F2,18 = 8.60, P,0.01) and a trend

of increasing very fine sand. Shell Flat showed a marked

coarsening of sediments from mid ebb to late ebb and low tide

with increases in coarse/very coarse sand (ANOVA:F2,6 = 7.32,

P= 0.02) and decreases from mid to late ebb and low tidal levels in

fine sand (ANOVA: F2,6 = 13.32, P,0.01).

Results of analysis of similarity conducted on complete grain-

size distributions of each tidal flat revealed a significant difference

among the flats (ANOSIM: global R= 0.454, P,0.001). Sub-

sequent n-MDS ordination of sediment grain size distributions by

flat and tidal stage demonstrated that Shell Flat’s late ebb tide and

low tide sediment composition differed considerably from all other

flats and tidal stages (Fig. 4B), while the mid ebb tide sediments of

Shell Flat clustered with sediments from Broad Flat (similar at all

tidal stages). Semi-Enclosed Flat, Tidal Creek Flat, and Island Flat

occupied unique positions in the two-dimensional ordination space

Figure 3. Mean density and biomass of major benthic macrofaunal taxa by flat and tidal stage. Bivalves are not shown because there
was no significant difference in abundance among flats at any tidal stage, and only one significant difference in biomass (see Tables S7 and S8).
Gastropod biomass includes shell mass.
doi:10.1371/journal.pone.0052694.g003

Figure 4. N-MDS ordinations displaying similarities/differences among shorebird and benthic community compositions and
sediment grain-size distributions. Results of (A) benthic community composition, (B) sediment grain-size distribution, and (C) shorebird
community composition n-MDS ordinations, comparing each combination of flat and tidal stage, with overlays of circles and ovals grouping flats
according to cluster analysis results. Similarities given in percent. Grain-size cluster analysis overlay (B) is based on dissimilarity; increasing ‘‘Distance’’
values indicate an increase in dissimilarity among samples. Stress value of 0.12 (A) indicates that the 2-dimensional n-MDS ordination is an adequate
and useful representation of sample relationships; stress value of 0.02 (B) indicates that the 2-dimensional n-MDS ordination provides an excellent
representation of sample relationships; stress value of 0.08 (C) indicates a good representation. In (B), symbols for Semi-Enclosed Flat at late ebb and
low tides are superimposed. In (C), Shell Flat at late ebb tide is not depicted because birds were never observed on the flat at that tidal stage.
doi:10.1371/journal.pone.0052694.g004
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(Fig. 4B), indicating unique sediment particle size compositions on

each flat.

Shorebirds
Shorebird community composition differed among the flats at

each tidal stage, but exhibited no significant difference across the

sampling dates (Table 1). All post hoc pairwise comparisons of

tidal flats for late ebb and low tides demonstrated significant

differences in shorebird community composition except for the

contrast between Island and Tidal Creek Flats at late ebb tide

(Table 1). Results of n-MDS ordination and cluster analysis

conformed with the PERMANOVA results, showing clearly how

the points depicting shorebird community composition in two

dimensions segregated by flat (Fig. 4C). Broad and Island Flats

were most similar to one another, whereas Semi-Enclosed and

Shell Flats were both relatively distinct (Fig. 4C).

Similarly, an examination of flat use by shorebird foraging guild

showed clear differences among flats (Fig. 5). When observations

were pooled, tactile, visual, and mixed foragers comprised 66%,

18%, and 16% of total birds observed respectively. However, flat-

specific foraging guild ratios differed from this overall distribution

on all flats except Broad (Semi-Enclosed: x2 (8) = 118.5; Tidal

Creek: x2 (8) = 75.4; Island: x2 (8) = 61.5; Shell x2 (8) = 27.4;

P,0.001 for all). Unlike Broad Flat, Semi-Enclosed Flat had

a large proportion (78%) of visual foragers, while Tidal Creek Flat

was used almost exclusively (91%) by tactile foragers. Though

Island Flat was not dominated by a particular foraging guild, it

had a higher percentage of mixed foragers (35%) than the other

flats. Shell Flat was rarely used by shorebirds, but the few birds

that did use it were all visual foragers (3 species).

Univariate analyses of average shorebird density revealed many

significant differences among flats (Table 2; we excluded Shell Flat

from this analysis because of low sample size after eliminating

fisherman-disturbance dates). At each of the three tidal stages,

mean shorebird density on Semi-Enclosed Flat was consistently

lower than any other flat with exposed surface at that tidal stage

(Fig. 6). Semi-Enclosed Flat’s status as a low-density outlier was

analogous to its departure in community composition from the

other three flats analyzed (Fig. 4C).

The general pattern of change with ebbing tide revealed

increasing total numbers of feeding shorebirds summed across all

five tidal flats as the tide fell from its mid-ebb stage, as opposed to

staying constant and simply becoming redistributed as new

foraging areas become exposed and accessible (Fig. 6A). Addi-

tionally, the lower-elevation flats, Tidal Creek and Island,

exhibited relatively dense concentrations of shorebirds, especially

at late ebb (Fig. 6B). The peak in total abundance at late ebb tide

was driven by the numerically-dominant dunlin (Calidris alpina),

which was most abundant at that tidal stage (Fig. 7). Two other

commonly observed species, sanderling (Calidris alba) and black-

bellied plover (Pluvialis squatarola), tended to increase in abundance

from mid ebb to low tide (Fig. 7). In contrast, the semipalmated

plover (Charadrius semipalmatus) was most abundant at mid ebb tide,

and rarely foraged on the flats at later tidal stages (Fig. 7). Rarely

occurring species, including ruddy turnstones (Arenaria interpres),

piping plovers (Charadrius melodus), willets (Tringa semipalmata), and

yellowlegs (Tringa spp.) also contributed to observed species

diversity. Though diversity decreased at late ebb tide with the

influx of the numerically dominant dunlin (Simpson’s D= 2.0, 1.6,

and 2.5 for mid ebb, late ebb, and low tide respectively), their low

tide decline, combined with the increase in abundance of other

common species (Fig. 7) and an increase in occurrence of rare

species, resulted in an overall increase in shorebird community

diversity at low tide.

Integrated Analyses
A BEST analysis between sediment size classes and benthic

macrofaunal community composition in the glossy zone (essen-

tially the tide line) produced a Spearman correlation coefficient

(rs) of only 0.119 with ‘‘silt/clay’’ and ‘‘very fine sand’’ size classes.

However, the BEST analysis between sediments and composite

benthic samples (from saturated, glossy, and subtidal samples)

yielded a much higher optimized correlation (rs = 0.691, p,0.01;

with key contributing variables of ‘‘silt/clay’’, ‘‘very fine sand’’).

The BEST analysis between composited sediment size distribu-

tions for each tidal elevation of each flat and the corresponding

shorebird community composition based on average density at

each tidal elevation of every flat had an optimized correlation of

rs = 0.575 (p,0.01) with 2 variables: ‘‘medium sand’’ and ‘‘fine

sand’’ (the latter also standing as a proxy for ‘‘coarse/very coarse

sand’’ and ‘‘gravel’’). The BEST analysis comparing the compos-

ited samples of the 14-species subset of most frequent benthic

invertebrates at each tidal elevation of every flat to the shorebird

community composition based on abundances at each level of

each flat optimized with 1 variable (crustaceans) at rs = 0.561

(p,0.01). Finally, when all three composited datasets were used

concurrently (correlating sediment size composition and benthic

macrofaunal composition with shorebird community patterns), the

BEST analysis optimized at rs = 0.711 (p,0.01) with 4 variables

Table 1. Results of shorebird community PERMANOVA
analyses testing for significance of variation among tidal flats.

Tidal Stage

Factors & Pairwise
Comparisons Statistic Mid Ebb Late EbbLow

Factor FLAT pseudo-F 7.702 17.635 17.827

P 0.007 0.001 0.001

DATE pseudo-F 1.186 1.077 1.205

P 0.347 0.374 0.252

FLAT6DATE excluded excluded excluded

DF 1,7,15 3,7,26 3,12,47

Pairwise
Comparisons

SE–BR pseudo-t 2.775 4.761 4.900

P 0.007 0.001 0.001

SE–TC pseudo-t … 4.429 4.388

P … 0.003 0.001

BR–TC pseudo-t … 4.996 3.368

P … 0.001 0.004

IS–SE pseudo-t … 19.302 4.519

P … 0.003{ 0.001{

IS–BR pseudo-t … 4.685 3.852

P … 0.016{ 0.001

IS–TC pseudo-t … 4.184 2.997

P … 0.048{ 0.001

PERMANOVA analyses used a randomized block design, and tidal stages were
analyzed individually. Resulting P-values were obtained by permutation unless
otherwise noted. Ellipses (…) indicate no data (flat pairs not exposed at that
tidal stage). DF, degrees of freedom (Flat, Date, Total); BR, Broad Flat; IS, Island
Flat; SE, Semi-Enclosed Flat; TC, Tidal Creek Flat.
{P-values were obtained using Monte Carlo sampling because low sample size
did not yield enough possible permutations to get a reasonable test using the
permutation method.
doi:10.1371/journal.pone.0052694.t001
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(crustaceans, Capitella capitata, Donax variabilis, and ‘‘fine sand’’ (the

equivalent of ‘‘coarse/very coarse sand’’ and ‘‘gravel’’ as well

because of the strong collinearity among these three size classes in

the composite dataset)).

We were unable to estimate or partition out effects of spatial

autocorrelation for this study because we did not have a continuous

gradient in flats across space that would facilitate those computa-

tions. However, spatial autocorrelation would most likely have

reduced variation among flats across tidal stages, decreasing our

ability to detect changes over time, thereby implying that patterns

we demonstrate are conservatively estimated.

Visual examination comparing n-MDS plots A, B, and C (Fig. 4)

documents the similarity in patterns among sediments, benthos,

and the shorebird community. Fig. 4B shows that each flat is

sedimentologically unique, with different flats forming different

clusters. The single exception, Shell Flat at mid ebb tide (which

clusters with Broad Flat), matches our observations because Shell

Flat and Broad Flat were physically connected and Shell Flat did

not have shelly sediments at its highest elevation. These patterns

are echoed in the benthic community (Fig. 4A), where each flat has

a unique composition of benthos except for Shell Flat at mid ebb

tide, which is not distinguishable from the adjoining Broad Flat.

The pattern displayed by the shorebird community (Fig. 4C) is

similar to that of both the sediment and benthos, with Semi-

Enclosed Flat and Tidal Creek Flat each clustering away from the

others. Shell Flat, with its distinct sediments (Fig. 4B) and benthos

(Fig. 4A), also separates from the other flats in bird community

composition (Fig. 4C). In contrast, while Island Flat possesses

distinct sediments and benthos (Fig. 4A & B), its shorebird

community composition does not differ from that of Broad Flat

(Fig. 4C).

Discussion

Shorebird Community Distribution Patterns
Our study demonstrates how a neighborhood of tidal flats found

along a 400-m stretch of undeveloped, natural inlet shoreline can

exhibit non-random spatial distributions of feeding shorebirds. Not

all of these tidal flats, even those in close proximity, and not all

elevations on a given flat are perceived or used equally by

shorebirds. Both the total abundance of feeding shorebirds as well

as the species composition varied across flats and dynamically as

tidal elevation changed. As the tide fell from mid ebb to late ebb

and then to low, certain changes in patterns of flat use by foraging

shorebirds were observed repeatedly. Many foraging shorebirds

like dunlin tended to move down in elevation as the tide fell,

presumably taking advantage of the newly exposed, still wetted

sediments where surface activity of benthic invertebrates may

facilitate successful predation [22,23]. Total shorebird abundance,

summed across all flats, increased from mid ebb to lower tides, and

diversity was highest at low tide. The flat at the lowest elevation,

Island Flat, was especially heavily used once exposed at low tide,

with shorebird densities greater than or equal to any other flat. In

a study looking at the effects of the tidal cycle on shorebird habitat

selection, Burger and colleagues [24] found that while shorebirds

foraged on ocean and sound beaches shortly after high tide, as the

tide fell and mudflats were exposed birds moved from the beaches

to the mudflats. Similarly, two species that forage frequently on

ocean-facing shores of Onslow Beach, the black bellied plover and

sanderling, increased in abundance on the intertidal flats as the

tide fell (Fig. 7). These tidally-linked foraging patterns led to

increased shorebird diversity on the flats as low tide approached.

Relating Shorebird Community Distribution to Benthos
and Sediments
BEST analyses demonstrated that the shorebird community

distribution correlated strongly with local variation in the benthic

invertebrate community (rs = 0.56), explaining a large portion of

the pattern in shorebird foraging habitat use. Adding information

on sediment grain-size distributions to the benthic invertebrate

community dataset and forming a composite of predictor variables

revealed that inclusion of grain size information further improved

by about 27% the correlation with the distribution pattern of

feeding shorebirds (rs = 0.71). One might have expected the

granulometry of the flats to have had its influence on where

shorebirds feed indirectly via the strong impacts of grain size

composition on the benthic invertebrates themselves. Indeed,

grain size and benthic macrofauna exhibited a correlation co-

Figure 5. Flat use by shorebird foraging guild. Percentages are flat-specific. All tidal stages combined.
doi:10.1371/journal.pone.0052694.g005

Table 2. Results of one-way ANOVAs comparing mean
shorebird densities among tidal flats, as a function of tidal
stage.

Tidal Stage P-value F Ratio DF T-K post hoc contrasts

Mid Ebb 0.0247 6.32 1, 15 BR.SE{

Late Ebb ,0.001 24.37 3, 26 TC= IS.BR= SE

Low ,0.001 10.73 3, 47 IS.TC= BR= SE

BR, Broad Flat; IS, Island Flat; SE, Semi-Enclosed Flat; TC, Tidal Creek Flat. Shell
Flat was not included in this analysis.
{No post hoc test necessary; inequality follows from ANOVA outcome.
doi:10.1371/journal.pone.0052694.t002
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efficient of 0.69, indicating that much of the spatial variance in

benthic invertebrate community composition could be explained

by local changes in sediment size composition. Yet, the further

direct explanatory value of adding in sediment grain size

information to benthic invertebrate composition in explaining

shorebird habitat use suggests the operation of direct effects of

sediment size beyond indirect effects operating through de-

termination of prey types and abundances (Fig. 4).

The strong relationship between benthic invertebrates as prey

and feeding shorebirds as predators is predictable based on many

earlier studies of feeding shorebirds (e.g., [25–31]). The direct

contribution of sediment size to explaining shorebird feeding

distributions after already accounting for its influence acting

indirectly through benthic invertebrate prey seems likely to reflect

the ability of some sediments to modify the availability of the

benthic prey independent of their abundance [32–34]. This direct

influence of sediment character may help explain a flat-specific

anomaly in shorebird usage. Tidal Creek Flat was characterized

by much higher silt/clay content than any other flat. In this study,

densities of the tactile-foraging dunlin were much higher on Tidal

Creek Flat than on Semi-Enclosed or Broad Flats, even though

there were no significant differences in macroinvertebrate densities

among the three flats. With its higher silt/clay percentages,

sediments of Tidal Creek Flat were less porous, and its poor

drainage resulted in the persistence of many small pools and areas

covered with a thin veneer of water as the tide fell. Because these

water-cover characteristics lead to prolonged surface activity in

some macrobenthic prey organisms [22,23], shorebirds that forage

on these macrofauna likely experience increased prey availability

under such conditions. Consequently, the higher foraging densities

of dunlin on Tidal Creek Flat may have been a consequence of

poor water drainage enhancing prey availability or detectability

facilitated by higher prey activity [22,35] or greater sediment

penetrability for probing bills [36].

While shorebirds foraged heavily on Tidal Creek Flat, Shell Flat

was used by very few birds despite its extraordinarily high

polychaete densities (Fig. 3, Fig. 6). The sediments of Shell Flat

contained the highest concentrations of gravel and coarse particles

including shell fragments, which interfere with prey detection and

capture by impeding sediment penetration by probing shorebirds

[34]. Although substrate with a sizeable amount of coarse material

may act as a refuge to infaunal prey [33], benthic invertebrates are

Figure 6. Mean foraging shorebird (A) abundances and (B) densities, by flat and tidal stage. Shell Flat is plotted for comparison only; it
was not included in statistical tests due to low sample size when fisherman disturbance dates were excluded. Asterisks indicate submerged flats.
doi:10.1371/journal.pone.0052694.g006
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still vulnerable to visually feeding shorebirds when at the surface

[37]. Thus, while tactile, probing foragers experience a decrease in

prey capture success, the guild of visual foragers appears better

suited to utilize a coarse-sediment habitat. This seemed to be the

case for Shell Flat, where the only species observed feeding were

black-bellied plovers, piping plovers, and ruddy turnstones (see

Table 3 for complete species list and associated foraging modes).

Ruddy turnstones forage by flipping shells and coarse material and

then looking for prey hidden underneath, a method perfectly

suited for the sedimentary characteristics of Shell Flat. Black-

bellied and piping plovers are both visual foragers that rely on

surficial presence and activity of prey rather than substrate

penetration to locate food items. In contrast, the visibly armored

surface of Shell Flat apparently deterred shorebirds in the probing

guild, such as the dunlin, which was never observed on Shell Flat

while representing the dominant shorebird on all other flats (Fig. 5).

Even with fisherman-disturbed dates removed, Shell Flat sup-

ported extremely low numbers of foraging shorebirds (0–2 birds

per observation). The most parsimonious explanation for the

enhanced abundance of polychaetes on Shell Flat is that armoring

of the sediment surface inhibited dunlin and other probers, which

served to provide polychaetes with a refuge against predation so

their abundances were elevated above neighboring flats lacking

shell armoring.

Landscape Influences
Another major distinction among flats in shorebird use, the

comparatively low abundances of foraging shorebirds on Semi-

Enclosed Flat (Fig. 6), cannot be explained by the distribution of

prey: Semi-Enclosed Flat had comparable prey densities to the

more heavily used flats. However, the surrounding habitat matrix

may have contributed to the low foraging shorebird densities on

Semi-Enclosed Flat at late ebb and low tides. The flat was nearly

surrounded by marsh vegetation, so that as the flat area expanded

with the falling tide its leading edge moved away from sparse

vegetation on one side but approached dense marsh vegetation

and tall trees on the opposite side of the small cove (Fig. 1).

Vegetation proximity plays an important role in shorebird nest site

selection [38], and may also influence choice of foraging site

[39,40]. While studying predation risk to small shorebirds, Dekker

and Ydenberg [41] found that dunlin face an increased risk of

predation by raptors as distance to vegetation decreases. In

Figure 7. Trends in abundance of commonly observed shorebird species: by tidal stage. All flats combined.
doi:10.1371/journal.pone.0052694.g007

Shorebird Foraging Assemblages among Patches

PLOS ONE | www.plosone.org 11 December 2012 | Volume 7 | Issue 12 | e52694



contrast to Semi-Enclosed Flat, the expanding edge of each of the

other flats moved toward open water or another sand flat,

providing increased distance from hidden predators or raptors

hunting from perches.

While Semi-Enclosed Flat was used by few shorebirds, Island

Flat experienced high densities of foraging birds when it was

exposed at later tidal stages (Fig. 6B). The heavy usage of Island

Flat was probably a consequence of its geography: as an island, it

had roughly double the water-edge length of any equal-sized sand

flat connecting to higher ground (Fig. 1). Edges play an important

role for many species of foraging shorebirds including dunlin

[24,42,43], the most abundant species on the New River Inlet sand

flats at Onslow Beach. Dunlin and other ‘‘edge followers’’

(typically probers– see [43]) follow the moving tide line and exert

heavy feeding pressure within that margin. Perhaps this intensity

of foraging on Island Flat at low tide was responsible for the

relatively low abundance of the two most important major taxa of

prey invertebrates, polychaetes and crustaceans, which were both

significantly higher on other flats. Consequently, the area-edge

relationship may play a pivotal role in determining the foraging

habitat value of a sand flat to foraging shorebirds.

Although much of the spatiotemporal variation in the compo-

sition of the community of foraging shorebirds can be explained by

joint knowledge of the benthic macroinvertebrate community and

sediment size composition, a considerable portion of the variability

remains unexplained. Geographic components such as vegetation

proximity and area-edge relationships likely account for some of

this unexplained variability; however, we did not quantify the

entire suite of potentially influential landscape variables in this

study. Accordingly, we chose not to include limited landscape

variables (alongside complete sets of prey species and sedimentary

characteristics) in our analyses because their inclusion could

compromise the interpretability of our results: any observed

increase in variance explained by an included landscape variable

might actually be driven by any number of additional unmeasured

or co-varying variables.

Behavior
It is possible thatbirdbehavior also contributed to theunexplained

variability in shorebird spatiotemporal distributions although the

specific mechanisms are not clear. Agonistic behaviors did not play

a major role in structuring patterns of patch use as few negative

interactions were observed, consistent with species-specific literature

(e.g., [44,45]),which reports little tono territorialityorotheragonistic

behavior among non-breeding and/or wintering dunlin, semi-

palmated plover, or sanderling (North Carolina specific: [46]), and

non-aggressive intraspecific spacing in black-bellied plovers [47].

Only once did we observe a bird being chased from a flat:

a semipalmated plover chased a conspecific off of Semi-Enclosed

Flat (the bird flew to Broad Flat). However, even spacing between

individual feeding black-bellied plovers (.50 m) was evident.

Although ruddy turnstones are known to interact aggressively with

other shorebirds foraging in close proximity (,1 m) [48], we never

observed any aggressive interactions between ruddy turnstones and

other species on the flats.

Conclusions
Prey abundance and availability (as mediated by sediment

characteristics) explain much of the variation in foraging patterns of

the shorebird community, a conclusion mirroring ones arising

previously from studies of habitat selection by single species. Our

multivariate analyses confirmed this relationship for guilds repre-

senting different foraging modes and revealed that no single patch

type is ideal for all guilds that comprise the entire shorebird

community. Habitat heterogeneity (defined by patches with varying

sedimentological and elevational characteristics) is necessary to

support the full spectrumofshorebirdswithdifferentpreypreferences

and foragingmodes. Consequently, inlets containing extensive areas

of heterogeneous intertidal sand and mud flats are important to

sustaining functional diversity of shorebird communities.

Results of our study have important implications for shorebird

conservation and coastal management. The sediments that form

intertidal sand flats near inlets are part of a dynamic oceanbeach and

inlet sand-sharing system with a finite sand resource. When humans

intervene in this sand-sharing system by erecting groins and jetties

intended to capture and retain sand in front of a specific shoreline

property to protect against erosion, such interventions disrupt the

natural flow of sand and commonly result in downdrift sand deficits

[49–51]. Similarly, seawalls constructed on inlet shores to protect

shoreline development fromwavedamage andoverwash functionby

redirecting the energyofbreakingwavesdownward,whichgenerates

sediment erosion seawardof thewalls and leads to lossof the intertidal

habitat [49–51]. Finally,mining sands fromebb- or flood-tidal deltas

within inlets during boat channel construction and maintenance or

for use in beach nourishment removes sand from the littoral sand-

sharing system [49,51]. The changes induced by each of these

engineering interventions impose a high risk of reduction in the

volumeof sandavailable for retention inextensive intertidal sand flats

within inlets. Inlet flatsareespeciallyvaluable foragingareas formany

shorebirds because of their proximity to preferred nesting grounds

near natural inlets, where frequent overwash inhibits development of

dense vegetation and thereby sustains their high attractiveness to

many shorebirds as nesting areas [52]. Consequently, shorebird

conservationcouldbemoreeffective ifhumanaccess to inlet tidal flats

wasminimizedduring shorebirdnesting andchick-rearing seasons in

conjunctionwith current nesting-groundprotection practices.Along

with this seasonal management focus, preclusion of both engineered

shoreline stabilization structures near inlets and inlet sand mining is

critical to sustaining the heterogeneous intertidal feeding and nearby

nesting habitats required by diverse shorebird assemblages.
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Table 3. Predominant foraging modes of all observed
shorebird species.

Common name Species
Predominant foraging
mode

Ruddy turnstone Arenaria interpres visual

Sanderling Calidris alba mixed

Dunlin Calidris alpina tactile

Western sandpiper Calidris mauri mixed

Piping plover Charadrius melodus visual

Semipalmated plover Charadrius semipalmatus visual

Black-bellied plover Pluvialis squatarola visual

Willet Tringa semipalmata mixed

Yellowlegs Tringa spp. visual (in daylight)

doi:10.1371/journal.pone.0052694.t003
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thic invertebrate biomass among tidal flats at each tidal
stage, and post hoc contrasts using Tukey-Kramer HSD.
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flats following Analysis of Similarity (ANOSIM) on
benthic invertebrate community composition dataset
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Table S10 Results of Tukey-Kramer HSD post hoc
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