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ABSTRACT 
 

JENS LEVY: Effects of Air Pollution on Liver Metabolism with Relevance for 
Cardiovascular Disease – A Multilevel Analysis 

(Under the direction of Dana Loomis) 
 

The liver is a possible target organ for exposure to particulate air pollution, which has 

been associated with acute and chronic cardiovascular effects. The studies contained within 

this dissertation evaluate the effects of ambient measures of PM10, NO2 and SO2 in relation 

to individual cholesterol parameters, LDL and HDL, in manuscript one, and alanine 

aminotransferase (ALT) levels in manuscript two.  I employed multilevel analysis on 

individuals nested in counties in a nationally representative sample survey data merged with 

ambient air pollution monitoring data. I explored the contribution of the mean county and 

deviation from the mean county pollution levels to evaluate the independent contribution of 

aggregate and individual exposures on individual outcome parameters.   

In random intercepts models of LDL, a mean county average increase of 10µg/dL of 

PM10 and 10 ppb of NO2 was associated with an increase of 4.26 mg/dL (95% CI: -1.57, 

10.06) and 3.61 mg/dL (95% CI:  0.98,6.30).  To the extent that individual level variation 

exists, the individual level pollutant estimates support the positive effect of PM10 and NO2 

at the county level.  Some evidence exists that the individual level effects of PM10 and SO2 

are higher at higher county mean levels of air pollution. 

Log ALT levels are inversely related to PM10 exposure at both the county (-0.011; 95% 

CI: -0.040, 0.017 ) and individual level ( -0.019 95% CI: -0.032, -0.005). The data suggest 

that log ALT is positively associated with county-level  NO2 and though negative at mean 
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county levels, the individual-level effect is more positive at higher county levels of NO2.  

Though the direction of these results is not consistent with hepatotoxicity, these results 

suggest alterations in liver metabolism that are shared with current cigarette smoking and 

may signify pathological changes in the liver. 

These data from around the country provide exposure contrasts that are evaluated against 

the alterations in the outcome measures at the appropriate level in the mixed models analysis. 

The cholesterol study provides evidence for a link between PM and atherosclerosis. The ALT 

study suggests a paradoxical relationship that may point to a meaningful alteration in 

metabolism with relevance to atherosclerosis.    
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I. INTRODUCTION 
 
 
 

CHAPTER I 
 

INTRODUCTION 
 

A vast amount of scientific evidence has accumulated that confirms the conclusion that 

particulate matter (PM) pollution and in particular particulate matter smaller than 2.5 µm in 

aerodynamic diameter (PM2.5), is associated with cardiovascular morbidity and mortality in 

addition to that from lung disease.  The evidence has compelled the Environmental 

Protection Agency (EPA) to promulgate new regulations for PM2.5 with which the health 

effects have been most strongly linked. These standards are laid out in the Air Quality 

Criteria for Particulate Matter published by EPA in 1996.  

 However, the new standards have provoked significant controversy and regulatory action 

has not been implemented due to challenges from industry. Some inconsistencies and 

limitations in the epidemiologic data are notable. Ambivalence remains due to the fact that 

the associations have been observed at ambient levels not previously considered hazardous 

and the possibility that the observed findings could be an artifact of complex and 

sophisticated statistical models or confounding.1 Also major gaps exist in the understanding 

of the biological mechanisms underlying the observed health effects. Among the questions 

that remain to be answered include: Are the significant exposures limited to the lung? Do the 

effects of PM exist only among some subset of the population who are vulnerable? What are 

the vulnerabilities? Are health effects limited to acute exposures or do acute effects of PM 

over time lead to significant health effects in the general population? Bringing communities 
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into compliance with the new standards is likely to be enormously expensive and have 

significant economic consequences.  Additional research is necessary to inform the 

management of PM pollution. 

Cardiovascular disease (CVD) and respiratory disease place tremendous burdens on the 

public health and the prevalence of exposures to PM pollution compel us to understand the 

scope of the problem in order to mitigate man-made and therefore modifiable causes of 

disease.  As countries transition into industrialized economies, obesity and CVD become 

more prevalent. Furthermore, the air pollution in transitioning economies is some of the 

worst in the world.   

Recently a substantial amount of mutually reinforcing evidence has emerged from both 

epidemiological and laboratory research, which points to the particular toxicities of certain 

components of fine particulate matter that may explain the patho-physiologic mechanism by 

which PM is causally related to adverse changes underlying CVD. These mechanisms by 

which PM exposures, presumably originating in the lung, include: 1) pulmonary and/or 

systemic inflammatory response involving endothelial dysfunction and pro-atherosclerotic 

changes involving coagulation and inflammation; 2) autonomic nervous system dysfunction 

in response to stimulation from the vagal nerves of the lung and/or systemic inflammation; 

and 3) toxicity to the myocardium.  Individual connections along the line within each of these 

posited relationships can be evaluated in epidemiological studies and will advance a coherent 

chain of established cause-effect evidence by which PM pollution exposures cause 

significant CVD morbidity and mortality.  

The investigations of CVD in relation to PM come at a time when there is an increasing 

appreciation of the role of the physical and social environment in cardiovascular risk. This 
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approach has more public health utility due to the emphasis on modifiable environmental 

exposures than essential differences that correspond to class and race.  In the past, research 

has focused on lifestyle and genetic explanations for the causes of disease – perhaps 

reflecting a historical predilection to reflect on intrinsic characteristics of race and/or heredity 

and Mendelian genetics. This has come with a neglect of understanding the heterogeneous 

influence of the environment’s impact and multiplicitous covariants of genes. Recent CVD 

research has examined the contribution of contextual relationships of individuals in relation 

to their social and physical environment of which air pollution is a significant part. Air 

pollution has both regional (macro) and small-scale (micro) variability in the environment 

relevant to ecological and individual level effects. Exposure measurements in environmental 

epidemiological studies that incorporate both sources of variability can elucidate important 

contextual effects or identify direct ecological effects on individual risk independent of those 

which are conferred by their individual analogue. Such studies can provide a more coherent 

understanding of the physical and social environment on CVD.  

Questions about health effects of air pollution are relevant to the concern of racial and 

social disparities in health and social justice. Class and race is associated with increased 

exposures to environmental hazards i.e. Superfund sites, toxic emissions, and existing waste 

facilities.2 Many environmental toxins produce hypertension and cardiac arrhythmias.3 

Studies indicate that disadvantaged communities (often non-white) experience higher than 

average exposures to air pollution4 and higher burdens of deleterious effects from air 

pollution.5 This may be because urban areas where a large percentage of racial minorities 

reside are prone to have higher levels of ambient air pollution due to heavy traffic and 

industry.6 One study has found that in addition to environmental tobacco smoke (ETS) and 
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concomitant PM10 ambient air measures, proximity of the home to urban traffic emissions 

was a major determinant of personal PM 2.5 exposures.7 Thus, environmental pollution and 

air pollution in particular may account for much of the socio-economic disparities in health in 

general and cardiovascular disease in particular. 

In addition to cardiovascular effects noted above, PM has been linked with infant 

mortality in Mexico City8 and in the U.S.9 In Asia, PM & SO2 (notably from coal stoves used 

for heating) was associated with low birth weight in children.10,11 In the highly polluted area 

of Northern Bohemia, PM10 and PM2.5 were associated with intrauterine growth retardation.12 

A critical question remains to be answered; how can ambient pollutants that may sometimes 

produce non-lethal effects on the target organ – the lung – have fatal consequences on a 

secondary organ system such as the cardiovascular system?  

The pathophysiological mechanisms arising from exposure to the lung that is necessary to 

establish causation are long and involve understanding alterations at the level of the cell, 

tissue, organ, organ system and organism. Toxicological and controlled human exposure 

studies can provide critical links; however they do not necessarily represent the consequences 

to humans of real world exposures.  Epidemiology alone cannot establish causation, but the 

iterative and mutually reinforcing investigation between epidemiology and toxicology is 

necessary to establish the health consequences of exposure to particulate air pollution.  

In the accumulating literature that connects exposures to PM to cardiovascular disease 

one critical linkage has been overlooked.  Alteration in liver metabolism has recently been 

recognized as a central component of cardiovascular disease and is involved with other 

characteristic metabolic alterations that together comprise what is known as metabolic 

syndrome. These include central adiposity, diabetes, glucose intolerance, low HDL, high 



 

5 

LDL, systemic inflammation and elevated blood pressure.13 While virtually all physiological 

alterations involved in the initiation and progression of atherosclerosis have been examined 

in relation to PM – airway injury and inflammation,14-16 oxidative stress,17,18 endothelial 

dysfunction,19 inflammation,20,21 insulin resistence/diabetes,22 autonomic nervous system 

dysfunction,23 arrhythmias,24 coagulation rheology,25,26 myocardial infarction,27 and 

atherosclerosis28,29 – no studies have examined lipid levels in relation to PM. Furthermore, 

scant attention has been paid specifically to alterations in liver metabolism of which lipid 

metabolism is part.  

In this dissertation, I employ multilevel techniques to investigate PM in relation to levels 

of LDL and HDL. I also examine PM in relation to alanine aminotransferase (ALT) that is a 

marker of hepatocytotoxicity. The multilevel analysis is employed in a data set that has the 

distinct advantage of including standardized data of the outcome measures and important 

covariates among individuals from around the United States. The geographical and temporal 

variation in this data set that is merged with ambient air pollution monitoring data provides 

valuable exposure contrasts to address the study questions. These data allowed me to 

examine air pollution that is both an ecological and individual exposure at the appropriate 

level, while accounting for the non-independence of individuals clustered in counties. Of 

particular value is that the exposures at the higher (ecological) level of aggregation (than that 

at which the outcomes are observed) are not treated as unrelated30. The unified expression of 

the exposures to air pollutants at the two levels allows for a statistical evaluation of the 

contextual dependencies of air pollution. Multilevel analysis therefore has some ability to 

address confounding issues that are typically overlooked in air pollution epidemiology, 
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which often relies on imprecise exposure measurement and lacks data on individual-level 

confounders. 

The studies in this dissertation include a novel application of a methodology in 

addressing an important linkage that is missing in the literature of air pollution epidemiology. 

The results of these studies are of tremendous public health importance as exposure to 

particulate air pollution and the consequences for CVD are increasing as countries undergo 

industrial transition.  
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II. BACKGR

CHAPTER II 
 

BACKGROUND 
 

A. Background - History     

Cardiovascular effects from air pollution were first recognized as a serious public health 

problem after severe air pollution episodes in the Meuse Valley, Belgium in 1930, and in 

London in 1952, resulted in excess deaths from cardiovascular in addition to respiratory 

disease.31  Beginning in the late 1980s new statistical methodologies were first applied to 

available data on daily mortality in relation to transient elevations in particle concentrations 

in North America, Latin America, Europe and Asia.32-34,35-38  These studies found significant 

elevations of CVD mortality in association with elevations in PM that were not accounted for 

by season and temperature and furthermore, they occurred with particulate air pollution 

levels below the current National Ambient Air Quality Standard (NAAQS) and appeared to 

have no lower threshold.39-41 Additional study indicated that mortality associations were with 

fine particulates (PM2.5)42,43 and sulfate. Furthermore, the evidence suggested that the results 

were not simply due to harvesting (loss of life brought forward by only a few days).40,44 

Other studies have begun to examine air pollution in relation to hospitalizations for 

cardiovascular related endpoints.45,46 

In addition to the analysis of CVD morbidity and mortality in relation to short-term 

exposures to particulate air pollution, two prospective cohort studies reported that chronic 

exposure to PM increased the risk of premature mortality.34,47 The loss of life due to ambient 

pollution has been estimated to be from one to three years.48,49  
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Based on the evidence, new standards for particulates smaller than 2.5 µm in diameter 

(PM2.5) have been promulgated by the EPA. Since then new evidence has continued to come 

from time-series analysis, case-crossover analyses, and chamber studies.31,50 The results have 

produced small but consistent estimates of relative risks of adverse health events from PM air 

pollution. While small these relative risks represent a major modifiable source of attributable 

risk and a major public health concern.  However, resistance to the implementation and 

enforcement of the particle standards has arisen in part because the biological mechanisms 

are poorly understood. In vitro investigations as well as animal and human laboratory studies 

have been conducted in order to elucidate the underlying biological mechanisms to explain 

how non-lethal effects on the target organ (the lung) have fatal consequences on secondary 

organ systems such as the cardiovascular system.   

 

B.  Background-PM 

In order to mitigate the effects of PM, it will be necessary to understand the components 

and/or characteristics of PM that are responsible for health effects. Unlike other criteria 

pollutants such as ozone, SO2 or NO2, particulate matter is not a defined entity but refers to a 

complex aerosol of solid and liquid, organic and inorganic materials.  Particles can be formed 

by conversion of gases or directly emitted into the atmosphere from stationary or mobile 

combustion sources. Some particles are naturally occurring such as crustal material 

(including windblown soil); however, the particles that are of regulatory and/or health 

concerns are largely the result of the combustion of fossil fuels.51  
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With respect to the categorization of PM in relation to the study of adverse health 

consequences from PM, the first cut is made by size of the particle. Gravimetric assessments 

are made of particles of a certain diameter. Particles that are larger than 10 µm in 

aerodynamic diameter are not considered to have much impact on human health, while 

particles smaller than this size (PM10) are considered respirable and as a consequence have 

intimate exposure with the lungs. A major new area of focus in the literature is the health 

effects of fine particles, those that are less than 2.5 µm in aerodynamic diameter (PM2.5). 

Adverse effects of these smaller particles are very plausible given that, human exposures to 

substantial amounts of fine particles only began with the domestication of fire while 

pathogen resistance has arisen over millions of years of evolution. Prior to this, particles that 

were prevalent in the atmosphere to which we have adapted were primarily products of 

mechanical processes and are in excess of 2.5µm in aerodynamic diameter. Contemporary 

PM pollution is unique in that it reflects a remarkable redistribution in the environment of 

metals and combustion products with highly reactive chemical structures.  Fine particles that 

exist today arise from processes associated with industrialization and have chemical 

structures and properties capable of stimulating or inhibiting signaling molecules that are 

mal-adaptive to the host.   

Fine particles include finely divided carbonaceous material derived from the incomplete 

combustion of hydrocarbon fuels from point sources (notably from coal fires in earlier 

decades but now mainly from diesel engines) and mobile sources. Particles from petrol 

engines are a consistent contributor to fine PM. Diesel engines however, produce 100 times 

more particles than do gasoline engines at similar levels of performance.52 Fine particles also 

include inorganic dusts (fly ash) dispersed from industrial processes, and secondary particles 
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such as sulfates and nitrates formed by reactions between gases in the atmosphere.53 

Additionally, fine particles proportionate to their smaller size and number will also have 

other compounds or elements adsorbed onto their surface. Diesel exhaust particles consist of 

a carbonaceous core onto which over 18,000 different high molecular weight compounds are 

adsorbed.15 Notably, metallurgical operations emit vapors that tend to condense on fine 

particulates. Particles vary in size, geometry, chemical composition, and physical properties 

and are crudely characterized in epidemiological studies largely by particle size.  

 

1. Particulate characteristics and toxicities 

Beyond size, there are several characteristics of particles that relate to their pathologic 

potential and that have been evaluated in laboratory studies to evaluate their pathogenicity. 

Characteristics such as elemental composition, surface chemistry,  soluble or bioavailable 

chemical constituents, biologic agents such as endotoxin, acidity, and metal content all relate 

to pathways that laboratory investigation have shown may mediate the associated health 

effects. The potential effects of particles on the respiratory system are diverse and complex.  

Effects related to chemistry and solubility among the classes of particulate air pollution that 

have been used in laboratory investigations are notably different. These include ambient 

urban air particles; highway derived dusts; dusts associated principally with power 

production i.e. coal derived fly ash (CFA); oil derived fly ash (ROFA) associated with oil 

burning power plants,51 but increasingly emissions from diesel fuel combustion; and natural 

fugitive dust.  

Recently, it has been suggested that much of the health effects of PM are mediated by 

ultrafine particles (particles less than 100 nm in size or UFPs).54 Characteristics of urban air 
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pollution, UFPs are derived principally from anthropogenic sources of mobile and stationary 

combustion processes.55 Levels are generally between 1 and 2 ug/m3.56 However, during 

episodic increases, levels can reach as high as 20-50 ug/m3.  

UFPs  have unique toxicological properties compared with larger particles.57 These 

particles associated with urban traffic are a small proportion of PM by mass but a large 

proportion by number of particles and surface area. Ultrafines are biologically more reactive 

than larger particles.14 Evidence of their unique toxicity comes from experiments that show 

harmful effects in the lung from exposure to ultrafine levels of material that are not 

intrinsically toxic, i.e. carbon or titanium dioxide.58,59 Ultrafines may be much smaller than 

cell structures. Furthermore, their large surface area allows absorption of substances from the 

environment onto their surface which increases the reactivity of the particle.  

It is the anatomy and physiology of the respiratory surface in the lung that is the interface 

between a person and inhaled pollutants. In spite of the considerable defenses of the lung, 

changes in the lung from exposure to PM and in conjunction with co-pollutants have been 

demonstrated to precipitate systemic changes. The relevant characteristics of this interface 

relate primarily to the macrophages and epithelial cells of the respiratory tract, and airway 

surface liquid. The toxicity of PM may be modified by the mechanics of inspiratory and 

expiratory airflow; however, the principal consideration is with the epithelial cells and the 

integrity of the epithelial cell layer, mobile immune cells (macrophages) and the surfactant 

(and its lipid and protein components) in the bronchioles and alveoli that coats the air-liquid 

interface. The surfactant lowers air/liquid surface tension essential for maintenance of normal 

functioning and avoidance of alveolar and airway collapse but also has a significant role in 

protecting the host from antigens.60 The tight junctions of adjoining epithelial cells provide a 
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significant barrier to solute movement between the liquid and intercellular space that 

communicates with the submucosa across the relatively porous basement membrane. The 

tight junctions maintain the positional integrity of the cells, thus allowing for the selective 

insertion of receptors and channels that confer polarity underlying transcellular transport and 

selective secretion of epithelial cell products to one or the other side of the epithelium.60 

 

2. Deposition of inhaled particulate matter  

Very small particles remain suspended in air for many weeks and a cloud of fine 

particulates may travel many miles and cross borders. Fine particulates (PM2.5) readily 

penetrate buildings and are therefore also a significant component of indoor air.61 It has been 

shown that indoor personal monitoring samples may contain as much chemical particulate 

matter as that found in fixed point outdoor sampling in the same general area.62 

Particles that are in the coarse range (>PM2.5) get deposited in the upper respiratory tract 

due to high velocities induced by turbulence and directional changes of the nasal, tracheal, 

and laryngeal passages. These particles are then removed by mucociliary clearance. Fine 

particles (<PM2.5), particularly ultrafines (<PM1.0), on the other hand demonstrate Brownian 

movement and are therefore likely to be deposited in the alveolar region of the lungs where 

removal of particles is largely by phagocytosis by alveolar macrophages.63 

UFPs have a very high deposition efficiency (approaching 50% for 20 nm particles). In 

the terminal airways and proximal alveoli where the net flow of air is zero, the deposition 

efficiency increases from diffusion.59 A unique toxicological property of inhaled ultrafine 

particles have been demonstrated by their propensity to penetrate the epithelium and reach 

interstial sites.64  Such a mode of exposure would be particularly relevant for the liver since 
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the liver is the major organ of their uptake from the circulation.55 Whether or not ultrafine 

particles can be translocated from the lungs into the systemic circulation is a source of 

controversy, but has tremendous significance since they have the potential to directly interact 

with extra-pulmonary organs like the endothelium, heart and liver. The evidence for this 

unique toxicity is mixed. A few studies have found evidence for translocation into the blood 

compartment after 1 hour, and could be measured in the circulation,65 liver, 55,66 brain,66,67 

and heart and spleen.66 In an exposure study of humans however, their was negligible 

evidence of translocation of 35 nm particles into circulation.68  

 

3. Exposure measurement  

Most air pollution studies use outdoor (ambient) monitors of urban background 

particulate matter as indicators for particle exposures. The validity of ambient monitor data to 

reflect personal exposure varies by pollutant.69  One significant problem with exposure 

measurement is that most people spend most of their lives indoors and indoor sources of air 

pollutants are numerous. Thus exposures based on ambient pollutant monitoring may not 

reflect personal exposure. However, a study by Sarnat et al. indicate that ambient PM2.5 

concentrations are suitable surrogates for personal exposures and furthermore, ambient 

gaseous pollutant measures are also suitable surrogate for personal exposure to PM2.5 but not 

for themselves.70 The Sarnat study suggests that gaseous pollutants measured with ambient 

monitors are surrogates rather than confounders in epidemiological studies of PM2.5.   

Geographical differences of surrogacy -Local temperatures, precipitation, clouds, 

atmospheric water vapor, wind speed and wind direction influence atmospheric chemical 

processes.71  Meteorological conditions that are related to short-term health outcomes can 
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confound PM estimates in studies of acute effects of air pollution. The chemical nature of 

particles can change significantly with location and time.55 Thus the pathogenic potential for 

a given mass concentration in study conditions can vary significantly. However, their 

toxicological potential related to their size also exists independently of chemical 

composition. The actual constituents of PM pollution are highly variable and geographically 

and site specific and differ with respect to characteristics with relevance to their toxicity. 

 

C. Background – CVD 

Cardiovascular disease represents the largest burden of premature morbidity and 

mortality in industrialized societies, but is highly prevalent in low to middle income countries 

as well.72  The burden of CVD is increasing along with the epidemic of obesity as economies 

become increasingly industrialized as is occurring in India and China. The etiology of 

atherosclerotic cardiovascular disease is multidimensional, involving endothelial 

dysfunction, lipid metabolism, rheology, homeostasis, glucose metabolism, inflammation and 

the autonomic nervous system.  The underlying relationships have implications for 

susceptibilities and variance in epidemiological studies.  Atherosclerosis develops over the 

course of many years.  Individual risk factors include obesity, physical inactivity, diet, 

tobacco use, high LDL, low HDL, blood pressure, elevated blood glucose and male sex.  In 

addition to individual risk factors characteristics, increasingly the context of individuals 

within the physical and social environment is being recognized as an important contributor to 

CVD.  

Socioeconomic environment (disadvantaged neighborhoods) is associated with an 

increased incident coronary event hazard ratio73 as well as insulin resistance.74 While 
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neighborhood characteristics may correspond to important differences in chronic stress due 

to poverty or violence, or to sources of social support, availability and cost of healthful foods, 

they also correspond to environmental pollutants. Environmental exposures may account for 

the health disparities between and among race characteristics. Class and race is associated 

with increased exposures to environmental hazards i.e. Superfund sites, toxic emissions, and 

existing waste facilities.2 Studies indicate that disadvantaged communities (often non-white) 

experience higher than average exposures to air pollution4 and higher burdens of deleterious 

effects from air pollution.5  

 

1. General CVD pathophysiology  

The cascade of events involved in the initiation and progression of atherosclerosis occurs 

over the course of years.  Theoretically, air pollution exposures could impact a number of 

pathogenic events that occur over the life-course. Atherosclerosis is a complex process 

characterized by the accumulation of lesions arising from foam cells formation in the space 

between the endothelium and smooth muscle of the arterial wall (the intima). The 

mechanisms by which these lesions arise involve the infiltration of low-density lipoprotein 

(LDL), monocytes and T-cells into the anti-oxidant poor environment of the arterial intima, 

the subsequent proliferation of the smooth muscle cells and increased production of 

extracellular matrix involving hemostatic proteins i.e. platelets and fibrinogen.  

Three major elements are involved in the pathogenesis of atherosclerosis arising from 

oxidative changes involving the endothelium: 1) Modification of endothelial function; 2) 

Changes in vascular tone; 3) sequlae of hyperplasia of smooth muscle cells in the intima of 
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affected blood vessels.75  Vascular events are associated with a rupture of the lipid rich 

plaques leading to platelet activation and fibrin deposition and occlusion of the lumen. 

Oxidative stress is central to the initiation, progression and destabilization of 

atherosclerotic plaques and involves cholesterol in its well established contribution to risk of 

CVD. Progression of atherosclerosis in men can be reduced in heavily smoking men by 

supplementing with vitamin C and E – antioxidants. Oxidative stress in endothelial cells, 

macrophages and smooth muscle cells results in the production of superoxide anions that in 

conjunction with high intimal levels of LDL may combine to generate high levels of oxidized 

LDL. This cell mediated LDL oxidation arises from an imbalance in the prooxidant systems 

(i.e. NADPH oxidase, lipoxygenase or myeloperoxidase) and the cellular content 

antioxidants such (i.e. reduced glutathione and superoxide dismutase.76 Under pathologic 

conditions, macrophages further precipitate inflammation by secreting growth factors, 

cytokines and inflammatory mediators. Furthermore, the presence of oxygen radicals 

precipitates monocyte penetration from the blood stream into the intima (monocyte 

chemotaxis) beneath the endothelium and differentiation into macrophages, which 

phagocytizes the oxidized LDL. Macrophages become filled with oxidized LDL and become 

foam cells. Thus oxidative modification of LDL contributes to two main causes of 

atherogenesis.   It precipitates macrophage lipoprotein derived accumulation of cholesterol 

and the induction of an inflammatory response.   

The modification of LDL is a necessary step in atherogenesis. Incubation of macrophages 

with native LDL does not result in foam cell formation as macrophage uptake of native LDL 

is satiable and regulated by cholesterol content;76 however, macrophages have scavenger 

receptors different from the LDL receptors that bind only modified forms of LDL, including 
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oxidized LDL and are not down-regulated by cellular content. Under continued oxidative 

stress, the LDL filled foam cells necrose, releasing their toxic contents into the intimal space, 

which in turn stimulates an inflammatory response in which neutrophils and additional 

macrophages are recruited to the lesion site.  

This underlying pathological process involving oxidative stress and cholesterol is 

modified by mechanisms that are involved in the control of the vascular tone under normal 

physiologic conditions. Vascular tone has traditionally been thought of as being directed at 

the level of the smooth muscle cell only, which responds to sympathetic/parasympathetic 

nerve stimulation or circulating vasoactive hormones e.g. products of the rennin-angiotensin 

system. It has become increasingly clear however, that the endothelium plays a major role in 

the regulation of vascular tone through its affects on smooth muscle contractility.75 The 

modification of vascular tone by humoral factors released from nerve terminals, cells in the 

kidneys or heart, or endothelial cells is referred to as neuroendocrine activation. 

Continued accumulation of foam cells in the intima result in fatty streaks. Along with the 

subsequent migration of smooth muscle cells from the media to the intima and their 

proliferation, the recruitment of macrophages and T-lymphocytes leads to plaque formation 

with the attending elaboration of collagen and fibrin matrix. The oxidized LDL induced 

macrophage cholesterol accumulation and plaque formation are the hallmarks of early 

atherosclerosis. Plaques in turn disrupt the vasodialation / vasoconstriction balance in favor 

of contraction which in turn increases sheer stress that can cause plaque disruption. Thus we 

see that pathologic changes occur as a result of oxidized LDL and precipitate a number of 

events that result in disease.  
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Inflammation, lipids and the endothelium - The endothelium, which is the vessel wall-

blood interface, is the largest autocrine, paracrine, and endocrine organ and is also a regulator 

of vascular tone, lipid breakdown, platelet activation, monocyte adhesion, thrombogenesis, 

inflammation and vessel growth.77  In response to physical and chemical stimuli, the 

endothelium produces a number of active substances that are responsible for its many 

functions. One of the most notable is its production of Nitric Oxide (NO) which is the 

predominant vasodilator. Other significant proteins include Endothelin-1, Angiotensin II, and 

thromboxane which promote vasoconstriction and platelet aggregation, smooth muscle 

proliferation and collagen breakdown.  

The strong association between cholesterol and atherosclerosis has consistently been 

found in epidemiological and experimental studies as well as clinical trials. A specific profile 

characterized by high low density lipoproteins (LDL) and low High density lipoproteins 

(HDL) is implicated. In the presence of hypercholesterolemia or hypertriglyceridemia, the 

endothelial function becomes impaired and this dysfunction may be the earliest anatomic 

evidence of atherosclerosis. Some of the key features associated with the presence of 

coronary disease are endothelial dysfunction, an increased vasoconstrictor response, 

enhanced interaction of circulating blood cells and the proliferation of smooth muscle cells.75 

An example of the shared fate of blood lipids and the endothelium, many clinical trials 

have reported improved endothelial function within 1 hour of lipid apheresis or within 2 

weeks of initiation of statin therapy in patients with atherosclerosis or CAD.77 Even in 

healthy middle aged men, endothelial functioning improved as a consequence of reductions 

of serum LDL cholesterol levels.78 
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HDL- and reverse cholesterol transport (RCT) - HDL has been found to protect against 

LDL oxidation.79 This protection may be due to protein components of HDL that bind 

transition metals. Ceruloplasmin and transferrin are metal binding acute phase proteins also 

associated with HDL.80 HDL has other antioxidative properties. PAF-AH association with 

HDL hydrolyzes oxidized phospholipids and removes oxidized fatty acids.81 Paroxonase 

(PON), another HDL associated protein, protects LDL from oxidative stress through its 

ability to hydrolyze phospholipids in oxidized LDL.80 Also, HDL may also play a role in the 

reverse transport of potentially reactive hydroperoxide species for hepatic detoxification. 

There are two different proposed mechanisms by which HDL is involved in removal of 

cholesterol from macrophage foam cells. The first is a lipoprotein mediated mechanism by 

which cholesterol is removed from plasma membranes of peripheral cells to lipid poor pre-β 

HDL particles. This requires lipoprotein A1 on HDL as well as an ATP-binding cassette 

transporter 1(ABC1) on the cell surface.82 The second mechanism is a diffusion mechanism 

that is dependent on LCAT which converts free cholesterol in HDL into cholesterol ester and 

moves into the core of HDL particles and thus maintaining a free cholesterol gradient to 

allow continued diffusion of free cholesterol across the plasma membrane to HDL. HDL may 

then be endocytosed by liver parenchymal cells or HDL may exchange cholesterol ester for 

triglyceride from triglyceride rich lipoproteins that is facilitated by CETP. 

LDL - High levels of LDL that attend high cholesterol levels may result in high intimal 

levels of LDL that are available to become oxidized LDL.83 As noted above, oxidized LDL 

contributes to atherosclerosis by causing macrophage lipoprotein derived accumulation of 

cholesterol and the induction of an inflammatory response.84 One consequence of this relates 

to endothelial dysfunction. Oxidized LDL has been shown to reduce NO synthesis and 
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release, and can also cause the destruction of NO. The limiting capacity of oxidative stress on 

NO compromises the balance between vasoconstriction and vasodilation. In vitro 

susceptibility to LDL oxidation and endothelium dependent vasomotion in humans has been 

demonstrated.83 

 

2. PM - CVD pathways  

The preceding review of the pathogenesis of atherosclerotic CVD provides necessary 

background for understanding the consequences one may expect from the putative 

mechanisms by which PM has been suggested to affect CVD.  Much of the available 

epidemiological evidence has indicated that PM can elicit systemic haemostatic and 

inflammatory as well as autonomic alterations. However, the full range of the implications 

arising from these alterations is not known. The possible consequences of PM exposures can 

have multiple direct and indirect effects resulting in pro-atherogenic changes that are 

dynamic and involve oxidative stress, inflammation, lipids, endothelial dysfunction, changes 

in vasomotor activity, shear stress and plaque disruption and vascular remodeling. Putative 

changes arising from PM exposures are superimposed over existing states of disease from a 

lifetime of exposures. These may include those induced from previous cumulative exposures 

to PM and other environmental pollutants. However, evaluating changes in these outcomes in 

relation to pollutants can help establish a coherent understanding of the causal influence of 

PM over the cascade of events that is necessary to motivate regulatory action. 
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3. Effect modification: susceptible populations  

The identification of categories of individuals who are susceptible to particulate air 

pollution has been explored in several epidemiological studies. In one study done in Montreal 

that utilized information from questionnaires obtained through the universal Quebec Health 

Insurance plan, increased daily mortality was related to particulate air pollution was 

consistently found among persons 65 years of age and over, persons with cancer, acute lower 

respiratory diseases, any form of cardiovascular disease, chronic coronary artery diseases and 

congestive heart failure; however, there was little evidence for the association among persons 

with acute or chronic upper respiratory diseases, airways diseases, hypertension, acute 

coronary artery diseases and cerebrovascular diseases.85 Another study has found that 

diabetics were twice the risk of PM-associated cardiovascular admission to the hospital than 

non-diabetics and persons over 75 years of age were at increased risk. This suggests potential 

mechanisms that are influenced by diabetes.86 Additional evidence for exploring interactions 

is apparent in a study of the Edinburgh artery study. Investigators tested the interaction 

between selected baseline risk factors of cardiovascular health. Although interaction was not 

found at conventional levels of significance, people with high concentrations of fibrinogen 

appeared to be more susceptible to adverse cardiovascular effects of particulate air 

pollution.87  

Taken together with the pathophysiology of CVD involving inflammation, the evidence 

of effect modifiers by conditions related to the pathways by which PM is putatively related to 

CVD points to some important considerations in evaluating the health effects of PM. A 

coherent analysis will provide for the fact that the effect of PM is likely to differ across 

persons with conditions related to inflammation and CVD i.e. fibrinogen, insulin 
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resistance/diabetes, age, high blood pressure, adverse blood lipid profiles, existing heart 

disease (and medication use) and lung disease (i.e. asthma). Furthermore, these conditions 

are not mutually exclusive and may vary geographically in a way that may correlate with 

pollution mixtures. Additionally, smoking, race, and poverty may also represent groups with 

susceptibilities. 

The Air Pollution and Health: A European Approach 2 (APHEA2) project indicated the 

possible effect modification by specific city characteristics. The effect of PM10 was higher in 

cities with high average NO2 levels than those with low average NO2 levels; higher in warm 

climate cities than in cold; and higher in cities with low standardized mortality rates than 

those with high standardized mortality rates.88 On an individual level, the investigators found 

that estimated increase in the daily number of deaths for all ages was slightly higher in the 

elderly than among all ages. 

 

D. Background-Biological Mechanisms  

Although a large body of epidemiological evidence exists that provides coherent 

evidence that PM pollution is a significant contributor to premature death from 

cardiovascular disease, a significant gap exists between the evidence and the ability to 

abrogate risk from exposure to PM, due the lack in understanding of clear biological 

mechanism/s that would explain how exposures limited to the lung can effect the heart/ 

circulatory system. A host of mutually reinforcing epidemiological and toxicological studies 

has addressed the knowledge deficits in the mechanistic pathways. Evidence continues to 

come from human exposure studies, in-vivo, and in-vitro laboratory studies at the level of the 

cell, tissue, organ, and systemic communication that may play a role of intermediates 
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between exposure to the lung and physiological alterations along the spectrum, of the CVD 

pathway.  

1. Pathways- pulmonary inflammation   

The totality of the evidence supports the idea that exposure to PM results in a systemic 

inflammatory response arising from alterations in cell signaling pathways as a consequence 

of the interaction between the particle and the lung.  The toxic components of PM may 

include acidity, transition metals, organics and biogenic materials in PM. The consequences 

of their toxicity may include alterations in signal transduction,89 contamination by 

endotoxins,90,91 and the generation of reactive oxygen species to form tissue damaging free 

radicals and its induction of an inflammatory process;92,93 This results in an increase of 

proinflammatory cytokine expression of the cells in the lung, causes neutrophil, B-

lymphocytes, eosinophils and monocyte influx in the airways and increased epithelial 

permeability as measured by total protein in the bronchoalviolar lavage.16,94  Furthermore, 

these changes in the lung are accompanied by proatherogenic alterations in the blood even 

without changes in lung function.95 

Individual linkages in the above pathway have been established and illustrate that toxicity 

of PM upon exposure to the lung is complex and may vary depending on strength and 

duration of exposure, the physicochemical properties of the particles as well as the 

circumstances such as the ph of the exposed tissue of the respiratory tract, copollutants and 

co-morbid conditions that may facilitate toxicity. Studies demonstrate the ability of PM to 

cause a range of in-vitro effects in macrophages and epithelial cells that include DNA 

damage, apoptosis (cell-death), ROS production, cytotoxicity, prostaglandin synthesis96 and 
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cytokine expression.  In the lung, the initial cytokine production occurs with phagocytosis of 

particles by macrophages and epithelial cells.94,97-99  

Macrophages - Inhaled fine and ultrafine particles deposit in large numbers in the 

terminal airways and alveoli, beyond the ciliated portions of the airway where the 

macrophages play the most important role in removing particles. During phagocytic activity, 

macrophages release reactive oxygen species, and proinflammatory cytokines including 

TNF-α, IL-6, granulocyte macrophage colony stimulating factor (GM-CSF), IL-1β.100 These 

cytokines are known to stimulate bone marrow to release leukocytes and platelets into 

circulation and stimulate the production of acute-phase proteins in the liver.   

The evidence suggests that the toxicological properties of PM on macrophages differ. 

One study evaluated different PM constituents (Oil Fly Ash, diesel dust and ambient air 

particles collected from 4 urban centers - on a mass basis and not evaluated in its 

fractionations) with respect to its cytotoxicity and cytokine (IL-6 & TNF) production in 

human and rat AM. In-vitro production of LDH (indicative of cytotoxicity) was found after 2 

hours –from exposure to Oil Fly Ash (OFA) but not from ambient air particles or diesel 

dust.90 However, after 20 hours ambient air particles were also cytotoxic suggesting two 

possible pathways of cytotoxicity in macrophages. Sub-cytotoxic levels of OFA showed 

immediate production of ROS (measured by chemiluminesence) that did not correspond with 

cytokine responses, while a smaller level of ROS production was observed after exposure to 

ambient particles but not from diesel dust. Ambient air particles however, produced the 

strongest cytokine production of (IL-6 and TNF) at non-cytotoxic concentrations of particles. 

This cytokine induction was inhibited by poymoxin B but not iron chelators indicating the 

cytokine production in AM arose from endotoxins and not metals. Reactive oxygen species 
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precipitated by metals in PM may be responsible for cytotoxicity but not necessarily in the 

up-regulation of cytokines in alveolar macrophages. 

With respect to the toxicity in macrophages, the evidence supports the role of PM – 

depending on particle composition – on exposure to AM to produce ROS and inflammatory 

mediators that may result in vascular permeability changes, airway constriction, tissue injury 

and inflammation. 

Epithelial cells - Epithelial cells also phagocytose particles in the lung. In vitro studies 

demonstrate that cytokine expression in epithelial cells appears, primarily to result from 

oxidative stress involving transition metals found in diesel dust, OFA, ROFA and more 

variably in ambient pollutants. Metals found in particles include Iron (FE), copper (CU), 

Nickel (Ni), Zinc (ZN), lead (Pb), and Vn.101 These metals readily generate ROS in Fenton 

like reactions. In vitro studies demonstrate that upon treatment with particles, epithelial cells 

increase production of GM-CSF, sICAM, IL-6, IL-8, TNF as well as the messenger RNAs 

coding these cytokines.92,102-104 Oxidative stress from metals is demonstrated by the 

inhibition of cytokine production with treatment by metal chelators and free radical 

scavengers. The production of cytokines (IL-6, IL-8 and TNF-alpha) is also induced by the 

soluble components of PM. The production of cytokines is also mimicked by metals.105  

As a consequence of an oxidative stress and the inflammatory response in the lungs, 

systemic alterations occur as a consequence of the cytokines that pass into general 

circulation. Oxidative stress precipitated by particulates in the lungs may be augmented by 

oxidants generated by recruited inflammatory leukocytes.57 Furthermore, oxidative stress 

induced from exposure to PM may also increase the permeability of the lung epithelium.106 

Airspace epithelial permeability is known to be increased in cigarette smokers. The 
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mechanism by which cigarette smoke induces epithelial permeability is likely the result of an 

oxidant induced effect accompanied by a reduction in the antioxidant reduced glutathione.107 

Similarly, oxidative stress from PM could induce the opening of tight junctions shown to 

occur in smokers. The increased epithelial permeability may also enhance the ability of 

diffusible molecules produced in the lungs in response to particles to gain access to the 

circulation. Smokers may also represent a particularly susceptible population to PM. 

Transition metals derived largely by fuel combustion and capable of producing Fenton 

like reactions exist along with ultrafine particulates. Much of the laboratory evidence points 

to the ability of metals in fine PM to precipitate the oxidative stress and cytotoxicity,108 

cytokine production and inflammation.93,109,110 Intratracheal instillation of ROFA suspension 

to rats resulted in severe inflammation, pulmonary injury that included recruitment of 

neutrophils, eosinophils and monocytes into the airway.111 The role of soluble transition 

metals in pulmonary injury is indicated by its replication by metal sulfate solution containing 

Fe, V, and Ni; furthermore the ROFA injury was abrogated by its depletion of these from the 

ROFA leachate. The production of acute lung injury and inflammation from intratracheal 

administered PM in rats is dependent on the dose of bioavailable transition metal and not on 

a mass basis.109 ROFA samples with soluble metals produce a far greater neutrophil influx 

than other ROFA.99  Similar neutrophil influxes to the lungs has been observed in rats 

exposed to soluble forms of Vanadium (V).112 Furthermore, cytokine mRNA expression of 

macrophage inflammatory protein-2 (MIP-2) and KC (these being the principle neutrophil 

chemotactic factors in rats) were induced within 1 hour - and continued throughout 48 hours 

- of exposure.  
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The effects of metal containing particulates on macrophages show some heterogeneity. 

The oxidative burst in alveolar macrophages in one study are greatest with ROFA containing 

soluble V and less with ROFA containing Nickel (NI); however, protein leakage and 

indications of lung injury (LDH) was correlated with its soluble NI content.113 This suggests 

the mechanisms of pulmonary injury differ between metals contained in PM. In another study 

the oxidant effect of concentrated air particulates (CAPS) collected at different times on 

hamster AMs showed significant variation.108 

The inflammatory response of epithelial cells from particles containing transition metals 

involves the activation of NF-kappa B.  Many cytokine genes are regulated in part by nuclear 

transcription factor kB. ROFA has been demonstrated in vitro to produce time and dose 

dependent increases in IL-6, IL-8 and TNF in epithelial cells that is dependent on activation 

of the NF-kB; this was inhibited by a metal chelator and free radical scavenging.114 Provo 

particles caused cytokine induced (IL-6 , IL-8 and intercellular adhesion molecule ICAM-1), 

neutrophil chemotractant dependent inflammation of rat lungs and this cytokine secretion 

was preceded by nuclear factor-kappa B activation.101 The copper found in the Provo extract 

replicated the activation of nuclear factor-kappa B and IL-8 in-vitro with cultured BEAS 

cells. Thus, activation of NF-kappa B may be a critical first step in the inflammatory 

response of epithelial cells to particles generated from oil combustion and containing 

transition metals. 

Protein tyrosine phosphate homeostasis is a mechanism governing the synthesis of 

proinflammatory proteins in human epithelial cells. Oxidative stress from particle exposure 

elicits disruption of tyrosine phosphate homeostasis with implications for increases in anti-

bacterial proteins (lysozyme and mucin).115 Non-cytotoxic levels of ROFA is shown to 



 

28 

disrupt protein tyrosine phosphate homeostasis, as demonstrated by an increase in 

phosphotyrosine levels.89 This effect was mimicked by vanadium containing solutions. 

Vanadium within ROFA may disrupt protein tyrosine phosphate homeostasis in BEAS cells 

that may increase the synthesis of proinflammatory proteins.  

Whether generation of oxidative stress and inflammation from ultrafines can exist by 

mechanisms other than the ability to induce Fenton reactions through release of transition 

metals is unclear. However, in-vivo research supports the unique contribution of size related 

toxicity on inflammation, independent of metals. Ultrafine levels of titanium dioxide were 

toxic in exposed animals while the equivalent mass of fine particles was not.116 The 

inflammogenicity of ultrafine carbon black (CB) relative to ultra-fine carbon black (UFCB) 

was evaluated in rats and evaluated from BAL fluid.117 Ultrafine Carbon black has been 

shown to have greater inflammogenicity than non-ultrafine respirable Carbon black.94,118  

These studies suggest that it is the size of the particle that is toxic rather than it’s chemical 

composition. 

Relevant to the unique properties of ultrafine to induce toxicity, studies have shown that 

ultrafine CB and ultrafine latex particles induce alterations in calcium signaling in human 

monocytic cell lines and in macrophages lavaged from rats.119 Intracellular calcium is 

involved in the control of transcription factors such as NF-KappaB.57  The mechanism by 

which ultrafines may enhance calcium influx is unknown; however, in the presence of  

thapsigarin that releases endoplasmic reticulum calcium stores, ultrafines enhance the influx 

of extracellular calcium through plasma membrane calcium channels.119 This suggests that in 

the presence of other proinflammatory mediators, ultrafines can have a substantial effect on 
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intra-cellular calcium–signaling pathways and possibly on expression of proinflammatory 

genes. 

Investigations have shown that inhaled or intratracheally instilled ultrafine particles of 

titanium dioxide, iron oxide and India ink are found mainly in alveolar macrophages116,120-123  

Agglomerated particles may be phagocytosed by alveolar macrophages; however, even for 

agglomerated particles that are insoluble the elimination may be slow. Macrophages that 

phagocytose large numbers of particles have diminished clearance functions.124  Furthermore, 

macrophages, which phagocytose a large number of ultrafine particles, are stimulated by the 

high particle load to release inflammatory mediators such as TNF.59 Particles may 

overwhelm the macrophage defense and remain unphagocytosed. Unphagocytosed particles 

in the peripheral lung can result in sustained stimulation of epithelial cells. The consequence 

of this could be the increased production of IL-8 or MIP1α. Increased production of these 

chemokines has been found in rats exposed to carbon black,125 a process that is important to 

the recruitment of neutrophils to the lungs.   

Ultrafine particles have many characteristics which may impart toxicity to the lung with 

consequences in cytokine mediated systemic changes that are proatherogenic. However, their 

size may impart a unique toxicological property over and above that of the larger 

fractionations of particulates and relevant to the health consequences arising from target 

organs other than the lung. This will be discussed below. 

2. Comparative toxicology 

In vivo models provide evidence of the systematic consequences that include alterations 

in inflammatory and hemostatic factors, impaired vascular function and accelerated 

atherosclerosis as a consequence of particle exposures.  The alterations in the blood include 
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elevations in fibrinogen,16,126 blood viscosity (largely a function of fibrinogen),25 CRP,20,23,26 

bone marrow  and decreases in hemoglobin and red blood cell count.26 Inconsistencies in 

some of these relationships exist. In a study that found elevations of CRP in relation to PM, 

no relationship with fibrinogen was found.26 In a study of the Multi-Ethnic Study of 

Atherosclerosis, the results were incompatible with strong effects of PM on elevations of 

CRP.21 

Oxidative stress - In-vivo experiments have demonstrated oxidative stress in the hearts 

and lungs of rats from exposure to concentrated PM2.5.18 Similarly, exposures to ambient 

PM2.5 associated with being a bus driver in central Copenhagen compared to those in 

rural/suburban areas, was associated with increased concentrations of  markers of lipid and 

protein oxidation in the blood.17   

Bone marrow stimulation  - In-vivo exposures to PM to rabbits have also been found to 

stimulate the bone marrow production of polymorphonuclear leukocytes (PMN) in the 

marrow and accelerated the production of band cells.127 The magnitude of these changes was 

related to the amount of particles phagocytosed by the macrophages. An epidemiological 

study of military recruits exposed to a severe air pollution episode resulting from the forest 

fires in Southeast Asia, characterized by increases in PM and SO2, had stimulation of bone 

marrow and release of immature PMNs into circulation128 similar to that seen in the rabbit 

study. This evidence suggests that upon exposure to PM in the lung, macrophages are 

stimulated to produce pro-inflammatory mediators that result in the observed bone marrow 

toxicity. These cytokines stimulate bone marrow to release premature platelets as well as 

granular and toxic PMNs, which preferentially sequester in capillaries and can cause tissue 

damage.100 
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3. Atherosclerosis 

An additional study that showed an increase in PMN and band cells in rabbits exposed to 

PM10 also showed an increase in the volume in atherosclerotic lesions in proportion to the 

number of alveolar macrophages that phagocytosed PM10.28 Furthermore, exposure to PM10 

caused an increase in plaque cell turnover, the extracellular lipid pools and the total amount 

of lipids in the lesions.  In a recent epidemiology study, exposure to PM based on GIS 

derived exposure gradients was associated with increases in intima-medial thickness among 

subjects involved in clinical trials in Los Angeles.29 

4. Unique role of ultrafines in systemic distribution 

While, it is generally believed that proatherogenic changes arise from cell signaling 

pathways as a consequence of inflammation in the surface of the lung, the ultrafine 

components of PM represent a unique toxicological potential independent of their metal 

content or their effects on the lung. Ultrafine particles or the soluble components of PM may 

penetrate the epithelium and cross over into the general circulation, resulting in direct 

toxicological effects of organs involved in CVD i.e. the endothelium of vasculature, the 

heart, liver, kidneys and platelets. The possibility exists that exposures may result in 

pulmonary retention and systemic distribution of PM with the possibility of other organs 

being the target of PM toxicity.  

Some studies support the potential of ultrafine particles to penetrate the lungs and enter 

into systemic circulation. Takenaka and colleagues have shown that while agglomerated 

ultrafine elemental silver (EAg) particles larger than 100 nm are phagocytosed by alveolar 

macrophages, disaggregated particles were frequently found in the alveolar walls.123  

Furthermore, the investigators found that after a low concentration of ultrafine EAg were 



 

32 

detected in other organs such as the heart and the blood that shows that systemic distribution 

occurred. Thus one hypothesis by which particulates may be related to CVD is that ultrafine 

particles may enter the alveolar wall and gain access to the circulating blood through 

capillaries.  

Another study has been performed which supports this hypothesis in humans. Nemmar et 

al. Showed that inhaled radiolabelled particles were detected in the blood after one minute 

and subsequently in the liver129 - a result that was similarly found in hamsters.130 This study 

has been criticized on account of the possibility that the radiolabels become unbounded from 

the particulates and bounded instead to plasma proteins. In contrast to Nemmar, Brown et al. 

found no significant accumulation of radiolabeled ultrafine particles in the liver.131 

Nonetheless, the potential of particles to enter the bloodstream is evident from the presence 

in the blood of proteins that are mainly if not exclusively produced in the respiratory tract i.e. 

Clara cell secretory protein CC16 & CC10, surfactant protein SP-A SP-B & SP-D, as well as 

mucin associated antigens KL-6, 17-B1 & 17-Q2.132 

E. Background- Liver 

The liver is the principle organ involved in the acute phase reaction. The involvement of 

the liver is therefore implied by the observations that PM stimulates systemic inflammation 

as demonstrated by associations of exposure to PM with CRP and fibrinogen.  In addition, as 

the liver’s central function is detoxification, the proposed mechanism by which ultrafine 

particles, metals or other soluble components of particles can be translocated from the lungs 

into the circulation also points to the involvement of the liver.  Changes in the metabolizing 

capacity of the liver may be the first sign that a pathological process is beginning .133 
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1. Toxicity to liver from PM 

The liver has been investigated as an obvious target organ in the study of the dosimetry 

following inhalation of PM. In a theoretical model, ultrafine particles administered directly 

into the blood circulation of rats by intravenous injection, accumulated in liver.134 In another 

model, ultrafine carbon black particles in suspension were injected into mice to mimic 

particles translocated into the pulmonary veins in systemic circulation.135 In-vivo 

fluorescence microscopy was used to measure the interactions of blood cells with the hepatic 

endothelium. UFPs were shown to increase the number of adherent platelets in the hepatic 

microvasculature of healthy mice. Accumulation of platelets is a 

procoagulatory/prtohrombotic effect. The change however did not occur with an 

inflammatory reaction nor did it induce hepatocellular tissue injury.  

Investigations of actual translocation of particles into the lung compartment have been 

hampered by methodological difficulties.  Inhaled ultrafine particles were found to 

accumulate in the liver of hamsters136 rats 137 and humans.129,136 However, these studies are 

questioned due the methodological difficulty that the label may come off.  In one study that 

was not vulnerable to this labeling concern, translocation to the liver via the blood 

compartment was demonstrated. However, an alternate route of exposure from the ingestion 

due to the animals cleaning themselves, may have occurred as well.55  

In spite of the evidence for particulate translocation and the evidence of systemic 

inflammation, remarkably few epidemiological studies have focused on the role of the liver 

in mediating the CVD health effects of PM. I found one epidemiological study of the effect 

of PM air pollution on liver toxicity represented by ALT levels. In this a positive relationship 

was observed between urban traffic and liver function tests. Increased levels of ALT were 
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found in municipal police employees doing traffic duty compared to those doing office 

work.138  This occupational study is likely to reflect unusually high exposure.  

2. The liver as mediator of inflammation, cytokine production, CVD 

The role of the liver in cardiovascular disease has recently been appreciated. Hepatic 

inflammation in nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis 

(NASH), characterized by elevations in ALT is associated with low-grade inflammation is 

highly prevalent in obese individuals and is recognized as part of the metabolic syndrome.139 

The metabolic syndrome is a host of conditions that includes systemic inflammation 

indicated by high levels of CRP, glucose intolerance, insulin sensitivity, diabetes, obesity, 

high blood pressure, high LDL, low HDL and now NAFLD. 

Rather than being a simple marker of occult liver disease, ALT levels in the absence of a 

more specific measure of NAFLD, reflect the involvement of the liver and visceral fat in 

CVD. Both visceral fat and subcutaneous fat are major sources of soluble factors that 

modulate energy homeostasis and tissue remodeling. These fat derived factors include 

hormones (leptin,k adiponectin and resisten), cytokines, (tumor necrosis factor TNF-α, IL-6, 

transforming growth factor-β TGF-β, and tissue factor, neurohormonal mediators 

(angiotensinogen), and clotting cascade regulators. These adipose-derived factors 

(adipokines) interact to regulate one another’s production and biological activity in fat as 

well as the liver. The resulting network of interdigitating signals coordinates complex 

responses to changes in energy substrate supply and demand, directing appropriate tissue 

catabolism and anabolism, to optimize survival.140 

Obesity modifies the liver to create a proinflammatory hepatic milieu. Altered adipokine 

production by expanded visceral adipose depots may initiate this process. For example, 
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excessive levels of TNF-α relative to its antagonist adiponectin, favors increased biological 

activity of TNF which further inhibit adiponectin. Reduced adiponectin activity promotes 

hepatocyte steatosis by enhancing fatty acid uptake, inhibiting fatty acid oxidation and 

reducing lipid export... Faced with excessive TNF- and fatty acids but little adiponectin, 

hepatocytes store lipids. 

In turn the retention of fatty acids activates NF-kB within hepatocytes, increasing various 

mediators such as IL-6, TNF- , and IL-8, creating a proinflammatory milieu in the liver. 

Where it had been assumed that the production of IL-6 that is responsible for the 

increased production of CRP in the liver has been derived in other tissues, it is now 

recognized that it comes from fatty liver. This is particularly significant since increased 

sustained IL-6 from the liver causes systemic insulin resistance. Also, local increases in 

TNF- and IL-8 promote hepatocyte oxidant stress and eventual apoptosis. 

Obese livers are selectively depleted of CD4+ NKT cells because of increased rate of 

NKT apoptosis. NKT cells are the predominant source of interleukin-4 and interleukin-13, 

important anti-inflammatory TH-2 cytokines. Thus hepatic depletion of CD4+ NKT cells 

with obesity is accompanied by TH-1 polarization of other cytokine-producing liver 

mononuclear cells. This leads to excessive production of proinflammatory cytokines such as 

TNF-α and interferon-γ. 

Thus with visceral fat, the liver becomes a proinflammatory milieu that results in 

sustained increases of IL-6 that causes systemic insulin resistance, hepatocyte oxidant stress 

and apoptosis and infiltration of inflammatory cells to the liver. Increased hepatocyte death 

and inflammatory cells accumulate to cause NASH.  Increases in ALT therefore correspond 

to metabolic alterations that occur in the liver and which contribute to the progression of 
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CVD. Elevated ALT is associated with younger age, male sex, Mexican American ethnicity, 

impaired glucose metabolism and insulin resistance, obesity, central adiposity, high leptin, 

triglycerides, and C-peptide. Central adiposity, insulin, and leptin are the most highly 

associated factors.141 

In the interest of exploring how ALT as a sign of increased inflammation in the liver, it is 

notable that NAFLD corresponds with alterations in the response of the liver to oxidative 

stimuli.  Studies of liver disease have shown that in normal liver tissue, hepatocyte are robust 

to damage from foreign agents; however alterations in liver tissue associated with metabolic 

disorders make it vulnerable to inflammation and cell death from oxidative stress. Studies of 

NAFLD suggest a two-hit hypothesis to explain adaptations of the liver that are associated 

with CVD. 

Studies of alcoholic and non-alcoholic liver disease indicate that TNF-alpha is a key 

factor in orchestrating the response to physiologic and pathologic stimuli in the liver, and 

may be modified by nuclear factor kB (an antiapoptotic transcription factor). Tumor Necrosis 

Factor-alpha (TNF-α)  is the principle factor in mediation of hepatic inflammation, apoptosis 

and necrosis of liver cells, and paradoxically also mediates regeneration of liver tissue after 

injury.142 Normal hepatocytes are resistant to TNF-α induced apoptosis. In normal liver 

tissue, exposure to reactive oxygen species and bacterial endotoxins does not induce gene 

transcription for TNF-α as it does in other tissue.  TNF induced activation of nuclear factor-

kB is likely to be involved in this protecting hepatocytes.  Nuclear factor kB may neutralize 

the cell death initiated by TNF-alpha in normal liver tissue. Inhibition of TNF induced 

activation transcription factor nuclear factor-kB promotes cell death of hepatocytes exposed 

to TNF-alpha.  
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The effects on liver inflammation have been hypothesized to involve pathogenic stimulus 

on an existing metabolic disturbances that involve an increase in TNF. Thus the two-hits is 

one that increases the exposure of hepatocytes to TNF-alpha and another that interferes with 

a hepatocytes normal ability to protect itself from TNF-alpha induced cell death. The effect 

of TNF-alpha on hepatocytes in vivo is strongly influenced by other cytokines in liver tissue 

which are upregulated in the fatty liver. 

Obese patients have increased production and activity of uncoupling protein-2. The 

synthesis of uncoupling protein-2 in a fatty liver may help inhibit hepatocyte apoptosis, 

increasing hepatocyte survival. However, because cells with increased uncoupling-protein 

activity have partially depolarized mitochondria, they may also be more vulnerable to loss of 

the mitochondrial inner membrane potential, with consequent depletion of ATP and necrosis 

if exposed to secondary insults such as endotoxin and TNF-alpha. The uncoupling of protein 

2 may be once component of a general adaptive response that preserves the viability of 

hepatocytes in fatty livers but also increases the vulnerability of these cells to subsequent 

insults.   

As a consequence of obesity related alterations in the liver, metabolic adaptations 

improve hepatocyte survival while also making it vulnerable to future insults.  These changes 

that are associated with inflammation in the fatty liver can have idiosyncratic consequences 

from pathogenic stimuli.  The result of these metabolic alterations suggest the possibility that 

exposure to air pollution may alter the balance in the rate of hepatic apoptosis and 

proliferation of hepatocytes in favor of proliferation in normal liver tissue. Previous studies 

have shown decreases in ALT for both smoking  and coffee consumption.143 In an animal 

study, exposure to combustion exhaust gases containing a high percentage of SO2 caused 
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decreases in ALT activity in guinea pig livers.144 Exposure to wood smoke was noted to 

cause a decrease in ALT activity in rodents.145  

F. Epidemiology and particulate matter  

1. Effects of acute exposure 

Collectively, the evidence air pollution epidemiology demonstrates that particulate matter 

air pollution can accelerate the development of atherosclerosis and worsen its sequelae.31 The 

methodology involved in the accumulated evidence has heavily relied on temporal day-to-

day variations of outdoor particulate concentration in relation to day-to-day variation in 

mortality, emergency room visits, hospitalizations, exacerbations of ischemia or arrhythmia 

controlling for other time related factors.  These time-series studies and more recently case-

crossover designs27,146 measure only short-term exposure. The inference of these studies is 

largely limited to acute effects of PM air pollution. It is uncertain to what extent the excess 

deaths demonstrated in these studies represents a significant increase in mortality that would 

be reflected in changes in age-specific death rates in the general population, or merely the 

deaths of already ill persons being brought forward by only a few days (a harvesting effect).  

Furthermore, time-series studies are typically conducted one city at a time.   

A valuable methodological tool has more recently been applied to the setting of risk of 

mortality from short-term fluctuations of PM. Multi-level modeling has been used to measure 

the effects under the heterogeneous circumstances between locations and to evaluate the 

contributions of other co-pollutants simultaneously. A study of effects of PM10 on day to day 

mortality between 1987 and 1994 was done in an analysis of 20 cities encompassing 50 

million people.40  In this study, a two-stage Bayesian approach was used to combine the 

effect estimates of the cities together and includes city level variables in the analysis. The 
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authors found that the rate of death from all causes increased .51% and .68% for 

cardiovascular and respiratory deaths for each increase in 10 µg/cubic meter of PM while 

controlling for other criteria pollutants. In another study that combined data, Stieb and 

colleagues performed a meta-analysis of daily time-series studies of air pollution and 

mortality around the world, combining 109 studies from single and multipollutant models. In 

the multipollutant model excess all-cause mortality from PM10 and SO2 remained 

significantly different (referring to the frequentist interpretation) from zero.147  

2. Chronic exposures 

Measuring the effects of chronic exposure to PM air pollution is more difficult. The 

exposure contrasts that exist within populations from temporal variation in acute air pollution 

exposures diminish as exposure lags increase in the study of chronic effects. As a 

consequence, epidemiological studies have relied upon geographical variation in average PM 

air pollution. Inference from these studies is threatened by the necessity of utilizing exposure 

contrasts arising between populations. However, where they exist, cohort studies with 

adequate information to control for differences that may exist between geographically 

defined populations can account for the differences that may exist between populations. 

Cohort studies provide evidence of PM pollution exposure and heath relationships with 

relevance to the public health impact from exposures to PM air pollution, which occurs over 

time. Such studies have examined mortality as the outcome for which reliable data exists. 

The few longitudinal cohort studies which have been done suggest that PM is associated 

with significant loss of person-time measurable in changes in age-specific death rates. The 

Six-Cities study,148 the American Cancer Society  (ACS) cohort,34 and the Seventh day 

Adventist study are well known longitudinal studies. These data were used to examine the 
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differences in excess mortality from lung and cardiovascular disease at ambient PM 

community levels commonly found in the U.S. Two of the three analyses have found 

geographic differences in cardiovascular as well as respiratory mortality were correlated with 

ambient community levels of PM air pollution and sulfates. The Seventh Day Adventists in 

California found that long-term inhalable particles (measured PM10) were related to all cause 

mortality (from natural causes), nonmalignant respiratory mortality, and lung cancer 

mortality in males. They did not, however, find a relationship with cardiovascular disease.149 

A subsequent analysis of the ACS cohort doubled the follow-up time of the original analysis 

and included new PM2.5 data and also included dietary variables that account for total fat 

consumption, vegetables and citrus and high-fiber grains. The analysis showed that fine 

particulate and sulfur oxide-related pollution were associated with all cause, lung cancer and 

cardiopulmonary deaths. Coarse particle fraction and total suspended particles were not 

associated with mortality.150 Another study found that living in proximity to a major road 

was associated with a two-fold risk of cardiopulmonary mortality.151  

Between acute effects on both morbidity and mortality, and chronic effects on mortality, 

are associations between chronic effects and specific cardiovascular morbidity for which 

there is considerably less evidence. One notable exception is a study that provided the first 

epidemiological evidence of the specific association between PM air pollution and 

atherosclerosis.29 In this study, annual mean PM exposures at the residence of individuals 

were associated with carotid intima-medial thickness that is a direct measure of 

atherosclerosis.  
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3. Methodological challenges 

The single largest challenge in air pollution epidemiology is exposure measurement, 

particularly for the study of chronic effects of air pollution for which it is impracticable to 

use personal monitoring equipment. Reliance on ambient monitor data to estimate exposure 

is likely to continue. Though it has been demonstrated to be a reliable measurement of 

personal exposure indoors,70 the most obvious problem is that people cross in and out of 

micro-environments every day.  This problem is compounded by several other 

methodological problems.  The first is that the actual offending exposures are unknown, 

although laboratory and human exposure studies implicate specific constituents and 

characteristics that are variously associated with pollutants, in particular PM2.5, measured 

with ambient monitors. The relative contribution of ambient PM2.5 and its gaseous 

copollutants are correlated. Thus, the independent effects of PM2.5 that have been reported in 

the literature may be confounded by copollutants. However, ambient measures of gaseous 

copollutants have been shown to be poorly correlated with personal exposures to their 

respective pollutants; however, they have been found to be correlated with personal exposure 

to PM2.5. Therefore, rather than being confounders, gaseous pollutants can be considered to 

be surrogates of PM2.5.70,152  Nonetheless, as surrogates, the gaseous pollutants are likely to 

correspond to different components of PM2.5 which may confer unique pathogenic properties. 

Furthermore, the value of ambient monitoring data of gaseous pollutants as surrogates for 

PM2.5 exposure may vary over space and time. In addition, the ability of ambient measures of 

gaseous as well as particle matter pollution to discriminate between individual exposures 

among people living within the same area is limited. Triangulating exposures to a particular 
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residence using ambient monitors may depend on the number of monitors and their relative 

positions. 

The following illustrates the difficulties that follow from the above. Due to the high 

diffusion capacity of fine particulates, most people in one community have high exposure to 

PM associated with fine particles associated with a power plant. In contrast another area has 

greater variation but low average measures of PM2.5 derived from urban traffic. While they 

each have fine particles, for those in one community with the same exposure on a mass basis 

as someone in the other community, their biologically effective dose with respect to eliciting 

alveolar macrophage vs. epithelial cytotoxicity perhaps is different. In addition, those who 

live in proximity to highways may have very different exposures characterized by intensity 

and duration.  

Given the same measured exposure to PM2.5, the exposure characteristics in one 

community may confer a different risk than that in another community. The risks however 

may be relevant to two different mechanistic pathways. The consequences of each pathway 

however, may have relevance to either short-term or long-term risk.  These risks are also 

modified by earlier exposures that are correlated with current risk.  In addition, the physical 

and social environment that is related to CVD risk may be correlated with the different 

community air pollution exposure characteristics.  

This may result in either confounding or modification of the effects of associations with 

ambient air pollution monitor exposures. The confounding may occur within or between the 

levels of the community. These problems are compounded by errors in measurement of the 

respective pollutants.  The misspecification of the exposure or the measurement errors can be 
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associated in either an independent of dependent manner with the characteristics of the 

community or individuals within a community.  

While many of these problems are intractable, others may be either addressed through 

study methodology or tolerated as random error. However, one may also recognize the 

dependencies of scale in these problems. Although PM2.5 generally behaves as a regional 

pollutant in the eastern US, there can be considerable small-scale variability due to point 

source emissions (a smelter) or features such as street canyons in large cities.31  The different 

sources of variation over time and space can be exploited to tease apart the associations that 

are of value in statistical inference. 

Mixed models are useful in separating out variation from nested hierarchies.  It is ideal to 

include repeated measures as at least one component of the hierarchy.  However, exposure 

variation in time and space can be partitioned in mixed models in order to elucidate separate 

dependencies. Although each dependency may have sources of systematic or random error, 

mixed models can remove the influence of their joint effects.  

G. Background-Synopsis 

Epidemiological studies of the health effects of particulate matter health effects usually 

rely on ambient monitoring for exposure measurement. The resulting exposure measurement 

error is the single largest methodological difficulty in air pollution studies. Specifically, the 

difficulty is that the particular components and/or characteristics of PM that may be 

responsible for the observed health effects are various and poorly measured, particularly by 

measurements based on mass concentrations in relation to aerodynamic diameter. Laboratory 

investigations point to particles associated with the combustion of fossil fuels from urban 

traffic and associated with fine and ultrafine particles. Ambient monitoring data of PM, NO2 
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and SO2 are each valuable as surrogate measures for the latent exposures in air pollution. 

However, each has unique qualities that differ in their relationship with fine and ultrafine 

PM.   

A vast literature of epidemiological studies has demonstrated that elevations of ambient 

PM air pollution are associated with increased morbidity and mortality related to 

cardiovascular disease, in particular that related to ischemic heart disease and arrhythmic 

cardiac disease.72 Our understanding of the initiation and progression of CVD involves the 

interaction of the endothelium of the vasculature with lipids, macrophages, lymphocytes, 

coagulation, and the smooth muscle of the vasculature in response to stimuli.153 In addition to 

this, contemporary research implicates the liver as a major factor involved with other risk 

factors (LDL, HDL, obesity, diabetes, glucose intolerance, and blood pressure). Alterations 

associated with increased CVD risk include increased ALT levels in the blood that 

correspond with CRP that in turn is a sign of inflammation. Epidemiological studies of 

intermediate endpoints on the pathway can help elucidate the specific causal mechanisms by 

which PM precipitates disease. 

Investigations of the particular pathophysiological mechanisms underlying the 

epidemiological and laboratory observations are consistent in demonstrating that PM 

precipitates a systemic inflammatory response as well as autonomic nervous system 

dysfunction.154,155 Cell signaling involved in systemic responses to inflammatory stimuli is 

largely mediated by the liver. In addition, the liver is central to the host of pro-atherogenic 

alterations that are associated with metabolic syndrome. In obese people, visceral fat occurs 

with alterations in liver metabolism. Systemic inflammation that is precipitated by PM air 
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pollution will therefore be either mediated by the liver or have effects on the liver with 

possible implications for liver metabolism. 

Though ambiguous, evidence exists that ultrafine particles have the potential to enter into 

systemic accumulation and interact directly with circulation platelets, the endothelium, liver, 

brain and heart directly.  The principle function of the liver is to metabolize xenobiotics. 

Therefore, the liver is a target organ of any gases, particles or soluble components that may 

enter into circulation. The effects on the liver from either direct exposure from ultrafines or 

inflammatory stimuli from indirect exposure to the lung are likely to be dependent on other 

factors that govern the synthesis of transcription factors in the liver cells.  

While the liver has been studied in relation to dosimetry, little attention has been paid to 

the significance of the liver in mediating the cardiovascular health effects of PM.  In addition 

to the source of acute phase reactants, the liver metabolizes cholesterol that is pivotal in the 

initiation and progression of atherosclerosis.  ALT is a likely candidate to express toxicity 

arising from intimate contact between translocated particles and the liver. However, little is 

known about the contribution to variations in ALT in the normal range. Recently, studies 

have indicated that ALT may reflect inflammation in the liver that is associated with 

metabolic syndrome.  

In view of the considerations of exposure and the likely manifestations of CVD related 

changes arising from PM exposure, epidemiological studies must face the following 

methodological concerns: 1) Localities have their own unique pollution mixtures due to local 

pollution sources, meteorology, and background levels from natural sources or long range 

transport and therefore exposures within a region are likely to be quantitatively and 

qualitatively similar ; 2) The pathogenic components and characteristics of PM may vary 
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across time/season; 3)  people in a geographical location are likely to have had similar 

environmental exposures over time that impact existing levels of the measures related to 

disease; thus, short-term perturbations of these measures in relation to PM are superimposed 

over long-term effects from repeated exposures; 4)  Geographic differences that correspond 

to differences in average PM exposures may also correspond with other cultural, socio-

economic and social differences with consequences for CVD mortality.; 5)Different 

components and characteristics of PM may exert effects on multiple mechanistic pathways in 

CVD. 6) PM is crudely characterized in epidemiological studies with respect to its 

pathological potential ;  and 7) PM exists in a heterogeneous mixture with other pollutants, 

some that may exert similar effects i.e. on stimulation of inflammation in the lung or afferent 

nerves in the lung with consequences for CVD. 
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RATIONALE AND SPECIFIC AIMS 
 

CHAPTER III 
 

RATIONALE AND SPECIFIC AIMS 
 

A. Rationale 

The overall goal of the research contained in this dissertation is to evaluate the alterations 

in liver metabolism as a consequence of exposure to particulate matter (PM) air pollution.  

PM air pollution is related to cardiovascular disease (CVD). Contemporary research has 

shown that PM exposure associated with fine particles exerts oxidative and inflammatory 

effects in the lung and systemic inflammation consistent with physiological alterations 

associated with the initiation and progression of CVD. Furthermore, evidence exists that 

ultrafine particles associated with the combustion of fossil fuels are capable of translocation 

from the lung into general circulation thereby exerting direct toxicity on extrapulmonary 

organs and activation of platelets. Regardless of whether the effects are direct or indirect, 

they are likely to involve the liver in the course of detoxification or as the mediator of the 

acute phase response.  

The studies in this dissertation evaluate two possible consequences of the involvement of 

the liver with relevance to understanding the consequences represented by nearly ubiquitous 

man made particle air pollution. The liver is the principal organ in the orchestration of the 

acute phase reaction of the body to inflammatory stimuli.  In addition to its involvement in 

inflammation, the liver governs lipid metabolism. Though much of this research remains to 

be worked out, the physiology of each is not unrelated.  
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While many existing studies have examined the relationship between PM and other CVD 

related endpoints, none have evaluated specifically the alterations in lipid metabolism that 

are integral to the physiology of ischemic heart disease. Also if gases, ultrafine particles or 

soluble components of PM do enter into systemic circulation, it is reasonable to expect that 

they may have direct toxic effects on hepatocytes.  With the exception of the dosimetry of 

ultrafine particles upon inhalation, only few laboratory studies have examined PM effects on 

the liver. Alanine aminotransferase (ALT) is the most obvious parameter to examine to study 

hepatotoxicity from PM. ALT is the most specific marker of hepatocyte cell destruction.156 

To my knowledge, only one epidemiological study has examined ALT in relation to 

cytotoxicity or oxidative or inflammatory stimuli in the liver.138  

Particulate air pollution is a heterogeneous mix of solids, condensed gases, and liquids 

suspended in air that continually vary in their size and composition over space and time. The 

nature of air pollution is such that it has both ecological and individual level significance for 

exposure. Statistical power to identify associations is largely driven by exposure contrasts; 

however, the nature of PM exposures is such that the pathogenic potential associated with a 

per-unit increase of exposure dose is variable. Furthermore, it does not vary uniformly in 

relation to particle size, constituents and chemistry. Furthermore, these properties of 

particulate air pollution that are relevant to toxicity are measured with surrogates, usually 

ambient air monitor data. While the use of these data have been shown to be valid as 

measures of personal exposures, the correspondence between personal exposures to the 

underlying pollution characteristics and ambient monitor data is also likely to vary across 

circumstances of space and time.   
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The NHANES data includes sampled participants clustered geographically in counties 

from around the United States with standardized data. These data that have been merged with 

ambient monitor data from around the country can provide information on physiologic 

parameters on people under a host of environments. The characteristics and constituents of 

particulate air pollution that are relevant to their toxicological potential vary over space and 

time. Because persons in the same county will have qualitatively and quantitatively similar 

exposures, the between county variation provides a valuable exposure gradient. Within 

counties, small area variation can provide a valuable exposure gradient within the same 

exposure milieu and among other common contextual characteristics. As a consequence of 

variability that exists between counties (at the aggregate level) and within county levels (the 

individual level), two sources of variability are available to address the study questions, each 

with different value in making statistical inference. However, variability in the within county 

level exposures may vary about an underlying effect. This variability may imply important 

etiologically relevant differences in either biological effects or measurement error.  

Multi-level analysis is useful to separate the sources of variance in relation to the 

exposure for the purpose of simultaneously exploring the relationship across the two levels of 

exposure contrasts. It also allows the lower level exposure effect estimates to vary around a 

fixed effect and also over higher exposure levels.  

B. Study questions/specific aims 

Aim 1: To evaluate the relationship between short-term particulate air pollution exposure 

measures and levels of ALT measured in the blood. 

Hypothesis 1: Living in counties with high PM10, NO2 and SO2 pollution is associated with 

higher levels of ALT. 
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Hypothesis 2: Individual exposures related to small area and short-term temporal variation in 

exposures to PM10, NO2 and SO2 in the previous week, relative to others in a county, 

is related to higher levels of ALT  

Aim 2: To evaluate the relationship between chronic exposures (in the previous year) to 

particulate air pollution and levels of LDL and HDL. 

 

Hypothesis 1: Living in counties with high PM10, NO2 and SO2 pollution is associated with 

higher LDL cholesterol and secondarily lower HDL cholesterol levels. 

Hypothesis 2: Individual exposures related to small area geographical variation in PM10, 

NO2, and SO2 in the previous year, relative to others in a county, is related to high 

LDL cholesterol and secondarily to low HDL cholesterol.
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III. METHODS 

 
CHAPTER IV 

 
METHODS 

 

A. Overview of methods 

I conducted a secondary data analysis using the National Health and Nutrition 

Examination Survey (NHANES) III data merged with data from the Aerometric Information 

Retrieval System (AIRS) data. I evaluated the hypothesis that PM may precipitate liver 

mediated pro-atherogenic changes manifesting in alterations in LDL and HDL cholesterol 

levels (chapter 5), and alanine aminotransferase (ALT) levels (chapter 6). These data have 

been used before in order to evaluate the association of acute exposures to criteria pollution 

with hematological variables.157  Typically NHANES data are analyzed using survey 

regression methods that generate individual level estimates with variance estimates that are 

adjusted for sampling design. NHANES subjects are individuals nested in counties that are 

the primary sampling units (PSUs). The pollution levels sampled from around the country 

provide a variety of exposure levels that provides a spectrum of exposures and variation from 

geographical or temporal variation within the counties provide an additional source of 

variation. In the current study, I applied multilevel analysis to the hierarchies of the nested 

data structure in NHANES to allow for the simultaneous examination of group level and 

individual level exposures that is characteristic of air pollution. These models simultaneously 

account for the correlated errors that exist within groups arising from the sampling structure 

of the data. 
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B. Study population- NHANES III data 

The National Health and Nutrition Examination Survey (NHANES) is a survey 

conducted by the National Center for Health Statistics (NCHS), Centers for Disease Control 

and Prevention.  This survey has been designed to collect information about the health and 

diet of people in the United States. The Third National Health and Nutrition Examination 

Survey (NHANES III), 1988-94, was conducted on a nationwide probability sample of 

approximately 40,000 persons from over 81 counties with 89 survey sites done over two 

phases – first phase (between 1988 to 1991) & second phase (1991 to 1994). As exposure 

data is only available for the first wave, the analysis will only be performed on these data.  

The survey was designed to obtain nationally representative information on the health 

and nutritional status of the civilian non-institutionalized population of the United States 

through interviews and direct physical examinations. The study over-sampled minority 

populations, the very young (23% in NHANES vs. 9% in the population) and the elderly 

populations. African Americans (12,000) and Mexican Americans (12,000) each represent 

30% of the sample where they represent 12% and 5% of the national population. Persons 60 

years of age and older (12,000) represent 20% of the sample vs. 16% in the national 

population. (Source: http://www.cdc.gov/nchs/products/catalogs/subject/nhanes3.htm) 

The first stage of the sampling began by selecting 81 counties as primary sampling units 

using selection probability proportionate to county population. Thirteen large counties were 

chosen with certainty. Due to their large size, these 13 counties were divided into 21 survey 

locations. The remaining U.S. counties were grouped into 34 strata and two were selected 

from each. The resulting sampling structure has 81 PSUs selected and 89 locations. These 

strata were divided into geographic aggregates of blocks and area segments corresponding to 
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units for which Census estimates are available. Within these area segments, selection of 

households and group quarters were listed from which a subsample was designated for 

screening. The result enabled production of national, approximately equal, probability 

samples of households in the United States, but with higher rates among those geographic 

strata with high Mexican-American populations. Within each stratum, screening rates were 

used to produce the desired number of persons with the rarest age-sex domain in the race and 

ethnic group defining the geographic stratum.  The differences in the probability of selection 

resulting from over-sampling are incorporated into the weights. 

The data collection included an initial screening of households, followed by an interview 

at the household during which the interviewer administered a questionnaire. The 

questionnaire was designed to find out about educational levels, ethnicity, occupational 

information, health insurance coverage, family income and characteristics about the 

household itself. The home visit was also used to schedule examinations. More than 73% of 

the sample persons made an appointment, appeared at the MEC and completed the 

examination. Interviewers re-contacted those who broke their appointment or refused. About 

14% of these people agreed to take part, raising the examination rate by 4% to 77 percent. 

The data analyzed here includes that which was collected on people in 44 locations 

during the first phase between October 1988 and October 1991.  

C. Exposure data- Aerometric Information Retrieval System 

Air pollution data was obtained from the Aerometric Information Retrieval System 

(AIRS) of the U.S. Protection Agency. AIRS contains information on all of the routine 

pollution monitoring in the United States.  Pollutant exposures were assigned by means of 

geocoding. Each participant in NHANES III was assigned a longitude and latitude 
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corresponding to the population centroid of the census block group in which they lived. 

Block groups are collections of adjoining blocks, selected to be uniform in socio-economic 

status, with populations (in 1990) of about 1,000 persons. The longitude and latitude of each 

monitor in the United States was obtained by AIRS. Persons were assigned exposure values 

equal to the average of measurements from all monitors in their county of residence and 

adjoining counties, with the average weighted in proportion to the inverse of the square of the 

distance between their residence and the monitor. I created an exposure variable derived from 

this measurement value subtracted from the mean of all values (the grand mean). I refer to 

this as the unpartitioned exposure measure to distinguish it from the partitioned exposure 

measure described below. Pollution monitor data is missing for some participants in counties 

where there were no monitors and some counties had pollution data for some pollutants but 

not others. Therefore, analyses for individual pollutants do not include all of the same 

subjects.  

In the current analysis, the use of the weighted average of pollutant measurements 

provides geographic variability in exposure within a county to be reflected in the exposure 

measurement of chronic exposure to PM10, SO2 and NO2. The true geographical variation is 

driven by local point source and mobile source pollution as well as geographical and 

meteorological differences in the diffusion of air pollution. 

The variation of air pollution between counties can contribute to average health related 

outcomes among residents in the county, which is a different level of inference from 

associations derived from variation within a county. In the absence of significant variation 

within a county, average county level exposures are the best measurement for individuals 

residing in the county. In relation to an outcome, analysis of air pollution in these data ought 
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to reflect the level of analysis from which the variation in exposure is derived.  To this end, I 

parameterized the pollution exposure variables to be used in mixed models in order to arrive 

at separate estimates reflecting the county level (ecological) effect and the within county 

effect that has a more individual level of inference. 

Because ambient monitors measure different characteristics of pollutants that may relate 

to the underlying latent pollutant characteristics in different ways, no one pollutant is 

particularly representative of the pertinent exposure. From the literature, particulate air 

pollution that is associated with fossil fuel combustion is the most specific characterization of 

the underlying exposure. PM10, NO2 and SO2 are each indirect measures of this pollution, 

although each may reflect unique latent characteristics associated with fine PM. We used 

each in order to explore whether effects were associated with pollution from gasoline engines 

in urban traffic (NO2) or pollution from combustion from diesel (SO2). 

Exposure Variables: 

Pollutants obtained from AIRS data, geocoded to participants residence 

address with inverse variance weighting for multiple monitors. 

Main exposures:  

PM10 µg/m3 

SO2   ppb 

NO2 ppb 

Mean of prior year measures of pollutant (Manuscript #1 -Lipids) 

Mean of prior week measures of pollutant (Manuscript #2 -ALT) 

Partitioning of air pollution exposure measures - For each pollutant, I created a variable 

that is the county mean of subjects prior year (week for ALT) concentration exposures to the 
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air pollutant and subtracted the grand mean of the pollutant over all counties over the same 

period.  The result is a county level average air pollution exposure measure expressed as a 

deviation from the grand mean. To the extent that true variation in air pollution exposure is 

derived from between county variation, inference is limited to the population (ecologic or 

county) level, such that living in a polluted area is associated with increase/decreased average 

lipid (or ALT) levels. For each individual, I also created a variable that is the individual’s 

mean pollutant concentration at residence during the previous 12 months (1 week for ALT) 

minus the county average; this estimates an individual’s air pollution exposure expressed as a 

deviation from the county mean.  Inference on this parameter has a specific individual-level 

interpretation, allowing for measurement error, independent of its ecological analogue. It also 

tends to capture more local, rather than regional sources of pollution. 

The equations below illustrate the creation of the county level and individual level 

partitioned pollution exposure measurement for the ith individual in the jth county: 

PM j = jth county mean PM- grand mean PM 

PM ij =ith individual in county j PM – jth county mean PM 

The resulting parameters employed in a mixed model that partitions the variation at the 

county and within county level as described below allow the other parameters to be 

interpreted as the effects at the mean county and mean individual exposure (relative to their 

county) to air pollution. I refer to this parameterization of the air pollution variable as the 

partitioned air pollution levels, in reference to the partitioning of the exposure measures to 

correspond with the analogous between-county and within-county variation 

D. Statistical methodology 

In the NHANES data, individuals are clustered within PSUs. In the analysis, the design 
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effect will be accounted for by including a random intercept corresponding to the PSU. The 

mixed models account for the correlation of errors within PSUs as a consequence of 

unmeasured risk factors that cluster within PSU, such that two people in the same PSU are 

more alike than two people in different PSUs. This source of variation is not of etiologic 

interest but is a nuisance that is accounted for in the analysis. However, clustering may also 

occur on account of cumulative exposures before the measures were collected for the study. 

This source of variation may cause correlated errors that are not typically of etiologic 

interest. The unique geographical/meteorological/co-pollution mixtures in each PSU may 

however correlate with unique pathogenic properties of PM of which the PSUs are a sample 

of all possible combinations. Therefore, the PSUs have unique group properties such that the 

outcomes for individuals within the group may be correlated. Where there are shared 

common exposures to air pollution within a county, then the county level exposure is a 

surrogate of the individual level exposure. Within PSUs, the variations of exposures to PM 

are of direct etiologic interest. Multi-level models will allow for the simultaneous 

examination of the effects of group level predictors along with individual level predictors, 

and allowing for the non-independence of observations within the groups. 

The mixed model to be presented below is a generalized description to specifically 

identify the model as a linear model with an additional random component over the 1st level 

error. This additional error level denoted by the Z matrix allows county level variables to 

vary about the fixed components.  

1. Mixed model formulae 

The model for the General Linear Mixed Model is:  

y X Z e= + +β µ  
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where: 

y= an n x 1 vector of n observations of the continuous outcome variable , y. 

X= n x k matrix of predictor variables with 1s in the first column and p 

predictor variables measured for n observations (k=p+1) 

 

β=k x 1 vector for fixed effect parameters, to be estimated by the model. 

Z is an n x r design matrix 

µ is an r x 1 vector of unknown random effects parameters assumed to follow 

a multivariate normal distribution.  

e is an n x n matrix of residual variation, assumed to follow a multivariate 

normal distribution. 

The overall variance-covariance of y is V. 

V ZGZ R= +'  

Where: 

ZGZ’ is the random effects component and R is the generalized residual variation 

V is a block diagonal structure with n x n blocks within m x m block structure 

(n being the number of measures within a subject and m being the 

number of subjects). 

As an example, the multilevel analysis equations for a given continuous outcome (LDL 

and HDL in manuscript 1 or ALT in manuscript #2)  at the lower (1st) level with other 1st 

level covariates and that incorporates second level pollution parameters (PM) is shown here: 

1st level 

Yij = β0j + β1j (PM ij - PM j) + β2(Age) + β3(Vp) + r ij 
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2nd level 

β0j = γ00 + γ01 (MEAN PM j) + µ0j 

β1j = γ10 + γ11 (MEAN PM j) + µ1j 

 

With substitution the equation reduces to the following: 

Yij =[γ00 + γ01 (MEAN PM j) + γ10(PM ij - PM j) + γ11 (MEAN PM j) (PM ij - 

PM j) 

      + β2(Age) + β3(Vk)] + [ µ0j + µ1j(PMij-PMj) + r ij] 

 

Where: 

Yij is the cholesterol value of the ith person in the jth county. 

PM j is the mean county level PM10 measures, expressed as a deviation from 

the grand mean PM10. 

 

PM ij  is the individual level PM10 measure, expressed as a deviation from the 

county mean PM10. 

 

µ0j  is a vector of deviations about the fixed effect for the model intercept γ01. 

µ1j is a vector of deviation about the fixed effect for the model slope of γ10. 

r ij is a vector of errors associated with the individual-level 
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For modeling purposes the variables in the first bracket will correspond to the fixed 

effects and the variables in the second bracket will correspond to the random effects. As a 

result of this I can fit a model with the variables included as shown in the first bracket and 

including the variables corresponding to the mean levels of PM for each PSU as random 

effects. One such benefit is that I can evaluate the covariance between the random effect for 

the slope of short term PM exposures across the levels of the intercept values that account for 

the mean levels of air pollution. If the covariance (τ01) is significant, this would indicate that 

the effect of short term PM is conditional on the average levels of PM while controlling for 

other 1st level variables. Control variables will include variables that are risk factors for the 

outcomes but that are not believed to be descendents of the effect of short term PM effects. 

As an example, I will not include systolic blood pressure in a model that predicts LDL levels 

as their relative levels are both affected by inflammation. However, I will try to include 

variables that correspond to etiologically related measures that are not affected by short term 

PM exposures, such as age, BMI, and diabetes (insulin resistance). 

2. Model assumptions  

The exposure measurement values were derived from merging geocodes of the centroid 

of the census block group in which the NHANES participants resided to the air pollution 

monitor data based on a weighted average as described above in the description of the 

exposure data. These data are meant to represent individual level information.  Inference 

from statistical models using these individual level data is based on the assumption that 

individual measures from a person under a particular exposure level can stand in for that 

which would be observed under another such that the errors are exchangeable. This 

assumption is valid if the times at which the outcomes are measured in people are 
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independent or random with respect to the likelihood of exposure to the pollution measures. 

This assumption is reasonable given that the NHANES methodology is dictated by 

considerations that are not likely to have much to do with pollution levels. Another 

assumption is that the errors at the individual level are not correlated with the errors at the 

macro (county) level.  

3. Statistical Analysis 

In each of the two analyses, I employed multilevel analysis (Proc Mixed, SAS, Cary, NC) 

to model the individual level lipid (HDL and LDL) or ALT values as the dependent variable, 

among the participants in NHANES nested within counties. I performed two mixed model 

types. The first was a simple random intercepts model that allowed the intercept, representing 

the county average adjusted mean lipid levels, to vary by county. For each pollutant, I fit a 

model that included the partitioned pollution parameters. In each model, I included variables 

that based on subject matter knowledge, are known risk factors for an adverse lipid profile or 

were involved in the sampling methodology (sex, age, and race-ethnicity).   

In the random intercepts model including the partitioned pollution parameters , the 

interpretation of the resulting parameter estimates is the effect per unit change at average 

county prior 1-year (1 week for ALT) pollutant levels and average prior 1-year (1 week for 

ALT) within county pollution levels. The pollutant parameter effects themselves are 

independent of one another if the model is adequately specified and the county level errors 

are independent of the within county errors.   

In the simple random intercepts model with the partitioned pollution parameters, the 

within county errors may not be exchangeable and may vary systematically with the average 

county means, or vary randomly. The within county errors would not be homogeneous in the 
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case where there is a dose response effect, such that at higher county mean pollution levels 

the within county effect was higher (or lower). Another reason the within county errors were 

not homogeneous would be in the case where the exposure measure based on ambient 

monitors in one county was more accurate than in other countries. As the number of monitors 

or the spread of the population of the residences within the counties are not known in these 

data, these differences in measurement error may vary randomly. However, counties with 

greater variability in air pollution levels are likely to reflect greater discrimination in air 

pollution exposures. Where such greater variation occurs with higher mean county pollution 

levels, the within county errors would vary systematically with mean air pollution levels. For 

this reason I also fit a model that allowed the within county coefficients to vary 

systematically in relation to the county mean pollution level (the cross-level effect), and 

where the within county variation was sufficient to do so, the county level coefficients were 

allowed to vary randomly about a fixed effect in a random coefficient model.  

For each pollutant-response relationship, I evaluated a random coefficients model, that 

allowed the within county pollutant effects to vary randomly, and that included a fixed effect 

for the interaction of the average within county pollutant effect across the range of mean 

county levels.  In performing the random coefficients model, I used the robust variance 

estimator and unstructured covariance in order to let the data determine the covariance 

between the random intercepts and slopes. The unstructured covariance was used for the 

theoretical reason that it is plausible that the within county slope could be related to the 

underlying population characteristics related to the adjusted mean county level of the 

outcome variable represented by the random intercept. This would result in the random 

slopes covarying with the random intercepts reflected by the τ01. One consequence of this is 
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that in the case where there is not a lot of within county variation, one may get very data 

dependent solutions to the covariance between the random slopes and intercepts. Therefore, 

the random coefficients model is presented for qualitative evaluation and statistical inference 

is limited to the fixed effects models. 

Upon running the random coefficient models, I evaluated the likelihood ratio test 

subtracting the deviance statistic of the random coefficients model from the deviance statistic 

of the random intercept model, in order to evaluate if the slopes differed significantly. 

Having specified an unstructured covariance in the model, the likelihood ratio test had two-

degrees of freedom.  If there was no evidence that the within county pollutant slope changed 

systematically with the county means, as defined as a p-value greater than 0.15, I dropped the 

cross-level interaction term from the model and evaluated the likelihood ratio test of the 

random coefficients model again without it. 

E. Cholesterol analysis (MS1) 

The unique features of the analysis of LDL and HDL cholesterol in relation to exposure 

to PM10, NO2 and SO2 are described here. The principle difference in relation to the methods 

is that LDL and HDL, are not particularly labile characteristics and are considered to be 

determined by influences over time culminating in their status as a risk factor for future CVD 

events and are tied to other risk factors characterized as metabolic syndrome. We therefore 

consider cumulative exposure over time as the relevant time frame to evaluate the effects of 

PM exposures on the lipid profile. The two principle determinants of the lipid profile are 

LDL and HDL, where high levels of LDL and low levels of HDL confer greater risk.  

Outcome Variables: 

HDL-Cholesterol (Hitachi 704Analyzer/Boehringer-Mannheim Diagnostics) in mg/dl 
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LDL –Cholesterol calculated from measured total cholesterol and fasting triglycerides 

using the equation developed by Friedewald, Levy and Fredrickson  in mg/dl 

 

Total Cholesterol - high density cholesterol - triglyceride/5. in mg/dl.158 

 

Total Cholesterol (Hitachi 704Analyzer/Boehringer-Mannheim Diagnostics) in mg/dl 

Triglycerides. (Available only on 4yrs of age and older). (Hitachi 704 

Analyzer/Boehringer-Mannheim Diagnostics) in mg/dl 

 

Exposure variables: 

I create a partitioned pollution exposure parameter for each of the prior 1 year 

average pollutant measurements. As an example, the county and within county 

parameter for PM (measured by PM10, NO2, and SO2) was calculated as follows: 

PM j = jth county mean of prior 1-year PM- grand mean of prior 1-year PM 

PM ij =ith individual in county j prior 1-year PM – jth county mean prior 1-year PM 

 

The resulting county level parameter represents the deviation of the county mean of the 

prior 1 year exposure to PM10, from the mean prior 1 year exposure across all counties. The 

resulting within county level parameters represents the individual’s deviation from the 

county mean of the prior 1-year PM10 measurements. 
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1. Statistical Analysis  

Mixed models as described above were fit with LDL and HDL as the dependent 

outcomes. Each model was fit alternately with each partitioned pollution parameter in the 

random intercept model. The results of these models constitute the principle statistical results 

with the resulting effect estimates for county and individual level being the basis of inference 

regarding the effects of PM. 

2. Sensitivity Analysis 

Due to the assumption of the mixed models that differences in the county effects are not 

due to differences in the distribution within the counties of characteristics causally associated 

with the outcome, I alternately fit models that included alternate specifications of the most 

deterministic characteristics of the outcome based on substantive knowledge of the lipid 

outcomes. For cholesterol, the base model included a linear and quadratic term for both age 

and BMI as well as an interaction term for sex with the linear and quadratic form of age. In 

the other models I employed alternate specifications related to age, sex and BMI that 

included:1) a model without the interaction between sex and the age variables;2) a model 

with an interaction between sex and the BMI variables (instead of age); 3) A piecewise linear 

parameterization of age with the cutpoint corresponding to 60, reflecting the 

overrepresentation of people of this age group in the NHANES data; 4) The piecewise linear 

parameterization of age with an interaction between sex and the piecewise age parameters; 5) 

The most naïve specification of age and BMI, a single continuous variable for each, without 

any interactions. 

It is also assumed that no important variables are left out of the model that would make 

the errors at the individual level and the county level not exchangeable. I therefore ran 
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models that adjusted for additional possible confounders including: 1) a variable (1=yes, 

0=no) for whether the participant had lived at the same address for more than a year 2) The 

sum total of the number of times exercised in the last month; 3) education; 4) Household size 

5 or more (index) vs. 4 or less (referent); 5) Use of wood stove in the past 12 months; 6) Use 

of fireplace in the past 12 months; 7) Use of gas stove in the past 12 months; 8) Number of 

times eating seafood as an indicator of omega-3 fatty acid intake; 9) Coffee drinking that is 

associated with cholesterol levels; 10) Use of hypertension drugs. 

To facilitate comparison, the resulting parameter estimates for county and within county 

level pollutant estimates derived from each of the alternate model specifications were plotted 

with their 95% confidence interval.  

3. Effect measure modification 

In studies of acute effects of air pollution, people with diabetes and older people have 

been found to be at elevated risk for adverse effects of particle matter air pollution. I 

therefore evaluated if there was evidence that the joint effect from each air pollutant and 

alternately diabetes and age, was different from their independent effects.  To do this, I 

included interaction terms in each pollutant-lipid model.  As a means to evaluate if there was 

statistical evidence that diabetes, or age did in fact modify the risk from air pollution, I used a 

cutoff of p less than 0.20, understanding that these tests are underpowered. The interaction 

terms included the within-county air pollutant parameter. 

F. Alanine aminotransferase (MS2) 

The unique features of the analysis of ALT in relation to exposure to PM10, NO2 and SO2 

are described here. The principle difference in relation to the methods as compared to the 
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cholesterol analysis is that ALT as a measure of xenobiotic detoxification does fluctuate over 

the short term in response to stimuli. However, it too has determinants from influences over 

time that culminate in its reflecting the altered inflammatory state of the liver associated with 

NAFLD and tied to the other risk factors characterizing metabolic syndrome. As it was our 

intention to investigate the role of air pollution on the liver as the principle organ that would 

be involved in detoxification from stimuli arising from exposure to PM, we consider prior 1-

week exposures to pollutants available in this data set as the relevant time frame of exposure. 

However, to examine short-term fluctuation it was necessary to pay particular attention to 

adjusting for the waist to hip ratio reflecting visceral fat as the principle determinant of 

underlying ALT levels. Elevations in ALT in relation to PM would represent cytotoxicity in 

the liver. 

Outcome Variable: 

Alanine Aminotransferase (Hitachi 737 Anelyzer/Boehringer-Mannheim Diagnostics) 

in U/L. 

The distribution of ALT was positively skewed as were the residuals in models of ALT.  

The dependent variable of the mixed models was therefore log transformed ALT to 

normalize the errors of the model.  Furthermore, large values of ALT exist that are due to 

causes, such as hepatitis, and alcohol intake that would overwhelm any subtle changes due to 

air pollution. I therefore, restricted the analysis to exclude patients with explained elevated 

aminotransferases as defined in a previous study of aminotransferases in NHANES III 

subjects.159 Elevated aminotransferases among men were defined as either ALT greater than 

40 or AST greater than 37; among women it was defined as either AST or ALT greater than 

31. Participants with elevated aminotransferases were excluded if they also had hepatitis B 
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surface antigen, transferring saturation greater than 50%, or daily alcohol consumption of 

greater than 1 drink (10 gms) for women, or two drinks for men.  

 

Exposure variables: 

I create a partitioned pollution exposure parameter for each of the prior 1 week average 

pollutant measurements. As an example, the county and within county parameter for PM was 

calculated as follows: 

PM j = jth county mean PM- grand mean PM 

PM ij =ith individual in county j PM – jth county mean PM 

The resulting county level parameter represents the deviation of the county mean of the 

prior 1 week exposure to PM10, from the mean prior 1 week exposure across all counties. The 

resulting within county level parameters represents the individual’s deviation from the 

county mean of the prior 1-week PM10 measurements. 

1. Statistical Analysis 

I employed multilevel analysis (Proc Mixed, SAS, Cary, NC) to model the individual 

level log ALT values as the dependent variable, among the participants in NHANES nested 

within counties. I performed two mixed model types. The first was a simple random 

intercepts model that allowed the intercept, representing the county average adjusted mean 

lipid levels, to vary by county. For each pollutant, I fit a model that included the partitioned 

pollution parameters. In each model, I included variables that based on subject matter 

knowledge, are known risk factors for an adverse lipid profile.  These included, age, sex, 

BMI, waist to hip ratio,  saturated fat intake, alcohol consumption, race-ethnicity (black, 
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Mexican-American, and others, relative to the referent category whites), alcohol 

consumption, poverty income ratio (low and medium relative to the referent high).   

Smoking and second hand smoke share exposures to the lung and may share 

pathomechanistic pathways by which acute exposures may effect alterations in liver 

metabolism. Due to underreporting of smoking and the desire to measure the dose response 

of persons exposed to environmental tobacco smoke, I used serum cotinine measurements to 

reflect active and passive smoking based on a validation study of reported smoke exposure in 

NHANES III.160  Participants with cotinine levels greater than 15 ng/ml were designated as 

active smokers. Cotinine levels less than 15 ng/ml were considered passive smokers. 

In the random intercepts model including the partitioned pollution parameters, the 

interpretation of the resulting parameter estimates is the effect per unit change at average 

county prior 1-year pollutant levels and average prior 1-year within county pollution levels. 

The pollutant parameter effects themselves are independent of one another if the model is 

adequately specified and the county level errors are independent of the within county errors.  

However, given that the within county pollutants may not all be equivalent across counties, I 

evaluated a random coefficient model, that allowed the within county pollutant effects to 

vary randomly, and that included a fixed effect for the interaction of the average within 

county pollutant effect across the range of mean county levels.   

In performing the random coefficients model, I used the robust variance estimator and 

unstructured covariance in order to let the data determine the covariance between the random 

intercepts and slopes. Upon running the random coefficient models, I evaluated the 

likelihood ratio test subtracting the deviance statistic of the random coefficients model from 

the deviance statistic of the random intercept model, in order to evaluate if the slopes differed 
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significantly. Having specified an unstructured covariance in the model, the test was a two 

degree of freedom test.  If there was no evidence that the within county pollutant slope 

changed systematically with the county means, as defined as a p-value greater than 0.20, I 

dropped the cross-level interaction term from the model and evaluated the likelihood ratio 

test of the random coefficients model again without it. 

2. Sensitivity Analysis 

Due to the assumption of the mixed models that differences in the county effects are not 

due to differences in the distribution within the counties of characteristics causally associated 

with the outcome, I fit models that included alternate specifications of the most deterministic 

characteristics of the outcome based on substantive knowledge of the lipid outcomes. For 

ALT, adiposity is the greatest single determinant of ALT in the absence of excessive alcohol 

or hepatitis the base model included a linear term for both age and BMI as well as an 

interaction term for sex with BMI.  In the other models I employed alternate specifications 

related to age, sex and BMI that included 1) a county level variable for average age with an 

individual level variable for age; 2) county level variable for average age with an individual 

level variable for age expressed as a deviation from mean county level age; 3) The same as 2 

above but with a cross-level interaction for age; 4) individual level age and a quadratic term 

for age; 5) linear and quadratic terms for age with interaction terms for both with sex 6) age 

with a county level term for BMI; 7) age with a linear and quadratic term for BMI; 8) age 

with a linear and quadratic term for BMI with interactions with sex 9) age with linear and 

quadratic terms for alcohol and interactions with sex. 

The mixed models also assume that no important variables are left out of the model that 

would make the errors at the individual level and the county level not exchangeable. I 



 

71 

therefore ran models that adjusted for additional possible confounders including: 1) a 

variable (1=yes, 0=no) for whether the participant had lived at the same address for more 

than a year 2) The sum total of the number of times exercised in the last month; 3) education; 

4) Household size 5 or more (index) vs. 4 or less (referent); 5) Use of wood stove in the past 

12 months; 6) Use of fireplace in the past 12 months; 7) Use of gas stove in the past 12 

months; 8) Number of times eating seafood as an indicator of omega-3 fatty acid intake; 9) 

Coffee drinking that is associated with cholesterol levels; 10) Use of hypertension drugs. 

To facilitate comparison, the resulting parameter estimates for county and within county 

level pollutant estimates derived from each of the alternate model specifications were plotted 

with their 95% confidence interval.  

3. Effect measure modification 

The pathophysiology underlying stimuli to the liver which has been suggested by 

NAFLD research indicates that hepatocytes are vulnerable to insults after prior injury. To 

evaluate whether the stimulus of exposure to the different air pollutants is similar across 

levels of factors that are associated with ALT levels, I included a term for the product of the 

within-county pollutant variable and alternately male sex, age, BMI, metabolic syndrome, 

vitamin C and waist to hip ratio.  
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IV. RESULTS 
 

 
CHAPTER V 

 
RESULTS 

A. Manuscript 1: Chronic exposures to Air Pollution and Cholesterol Metabolism 
 
ABSTRACT 

Systemic effects of exposure to particulate matter (PM) air pollution can elucidate the 

mechanisms underlying the observed associations between acute and chronic exposure to PM 

and cardiovascular morbidity and mortality.  We applied multilevel models to NHANES III 

data merged with ambient air pollution monitor data to relate between and within-county 

variation in PM10, NO2, and SO2 to individual LDL and HDL levels.  The bulk of the 

available variation in cumulative prior year exposures to these pollutants exists at the 

ecological (between counties) level.  In random intercepts models of LDL, a mean county 

average increase of 10µg/dL of PM10 and 10 ppb of NO2 was associated with an increase of 

4.26 mg/dL (95%CI: -1.57, 10.06) and 3.61 mg/dL (95% CI:  0.98,6.30). Estimates at the 

individual level corroborate the county level associations although with considerably larger 

confidence intervals. Empirical Bayes estimates suggest that within county effects for PM10 

and SO2 are greater at higher county level average pollutant levels. Effects of pollutants on 

HDL were less apparent though the point estimates for county effect were all negative and 

the empirical bayes estimates suggest greater reductions associated with higher county 

averages of PM10, NO2 and SO2. In addition to the previously demonstrated effects of PM on 

acute phase proteins, hemostatic variables and endothelial dysfunction, the current results 

suggest that air pollution may have a proatherogenic impact on blood lipid levels.
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1. Introduction 
 

Exposure to particulate matter (PM) air pollution is a significant cause of cardiovascular 

(CVD) morbidity and mortality.1-4 The bulk of the epidemiological evidence comes from 

studies of acute effects, which may largely reflect effects among the vulnerable. A few 

studies, however, have found that living in a polluted environment is related to long-term risk 

of death from heart disease reflecting a far greater burden of health effects from chronic 

exposure to PM pollution in the general population. Studies of intermediates in the CVD 

pathway can provide critical linkages in establishing the biological mechanisms underlying 

PM health effects.  

The leading hypothesis of the pathophysiological mechanism underlying these 

associations is that upon exposure to the lung, PM results in oxidative stress which, in turn 

upregulates inflammatory mediators systemically. The evolving knowledge about the 

initiation and progression of atherosclerosis points to critical interactions between the 

endothelium of the circulatory system and the inflammatory response, coagulation, and blood 

lipids.  While studies have observed an association between acute exposures to air pollutants 

and oxidative stress,5 markers of inflammation,6-8 coagulation parameters,9-12 and autonomic 

dysfunction, no studies have evaluated the effect of PM on the lipid profile.  

In epidemiological studies of chronic exposures to air pollution, exposure measurement is 

a serious limitation. The pathogenic properties associated with PM have been tied variously 

to particle surface chemistry, or the specific constituents such as transition metals, elemental 

or organic carbon and endotoxin. In the absence of personal monitoring, epidemiological 

studies rely on ambient monitoring of PM that is characterized by particle size. In-vivo and 

in-vitro laboratory studies have found pathogenic properties associated with the course 
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fraction of PM (PM2.5 to PM10) and ultrafine components of PM; however, human studies 

primarily implicate fine particles (PM2.5) and in particular that from automobile exhaust and 

diesel particles as well as their respective surrogates, NO2 and SO2.  

Because of common climate conditions and the dispersion properties of PM, people 

residing in the same geographic region will have quantitatively and qualitatively similar 

exposures. Studies within a single area will therefore, have reduced exposure contrasts and 

little power to detect effects. Exposures from different regions and meteorological conditions 

are necessary to statistically enhance the ability to observe the outcome under a range of 

exposure levels. However, across different regions and meteorological conditions, particulate 

air pollution is likely to have different constituents and properties in relation to the measured 

PM, NO2 and SO2.  Furthermore, statistical methods must account for correlation that exists 

among individuals within the same population and the source of variability in pollution 

measures from either between or within geographical area.  

The current study employs multilevel analyses of the association between air pollution 

and cholesterol parameters (LDL & HDL) in the NHANES III data set.  In this study we 

explicitly examine air pollution as an individual level parameter as well as a community level 

parameter, in relation to cholesterol that is - similar to many inflammatory and coagulation 

proteins associated with air pollution - produced in the liver.  The clustered nature of the 

sampling design provides necessary variation at both county and individual levels that rather 

than being adjusted for, are of interest to evaluate the effect of air pollution.  

2. Methods 
 

The methods related to the NHANES sampling and the air pollution data are described in 

the earlier paper published on these same data which examined the relationship of same day 
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exposure to PM10 to fibrinogen levels;10 however, these methods are repeated here with 

modifications to reflect the lipid outcomes and the mixed models employed in this analysis. 

a. Health data (NHANES III) 

The Third National Health and Nutrition Examination Survey (NHANES III) was 

conducted between 1989 and 1994. NHANES III is a stratified random sample of the U.S. 

population, with oversampling of the elderly and minority populations.  Blacks and Mexican 

Americans each represent about 30% of the NHANES III sample. Persons older than 60 

years of age (16% of the U.S. population) account for 20% of the sample population. The 

NHANES population is equally split by gender. The NHANES III survey was conducted 

during two phases, each sampling approximately the same number (20,000) subjects in 44 

communities, and each representative of the general U.S. population when weighted for the 

oversampling. This analysis was restricted to the first phase. 

Subjects were seen in their homes by trained interviewers, and extensive medical history 

and demographic data were collected. The subjects then visited mobile medical examination 

centers, where they were examined. The blood specimens for analysis of lipids was collected 

in a red top 5 ml tube, stored at -20° C and shipped to the analytic center for testing. The 

analytic methods used by each of the participating laboratories are described in laboratory 

Procedures Used for NHANES III.13 The blood analysis included total cholesterol, 

triglycerides and HDL. LDL itself was not measured but was calculated from measured total 

and HDL cholesterol, and fasting triglycerides using the equation –LDL cholesterol= total 

cholesterol - high density cholesterol - triglyceride/5.).14 The dependent variables of primary 

interest in this particular study are: LDL and HDL.  
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b. Air Pollution Data 

     Air pollution data was obtained from the Aerometric Information Retrieval System 

(AIRS) of the U.S. Protection Agency. AIRS contains information on all of the routine 

pollution monitoring in the United States.  Pollution exposure was assigned by means of 

geocoding. Each participant in NHANES III was assigned a longitude and latitude of the 

population centroid of the census block group in which they lived. Block groups are 

collections of adjoining blocks, selected to be uniform in socio-economic status, with 

populations (in 1990) of about 1,000 persons. The longitude and latitude of each monitor in 

the United States was obtained by AIRS. Persons were assigned exposure values equal to the 

average of measurements from all monitors in their county of residence and adjoining 

counties, with the average weighted in proportion to the inverse of the square of the distance 

between their residence and the monitor. We created an exposure variable, derived from this 

measurement value subtracted from the mean of all values (the grand mean). We refer to this 

as the unpartitioned exposure measure to distinguish it from the partitioned exposure measure 

described below. Pollution monitor data is missing for some participants in counties where 

there were no monitors and some counties had pollution data for some pollutants but not 

others. Therefore, analyses for individual pollutants do not include all of the same subjects.  

     In the current analysis, the use of the weighted average of prior year pollutant 

measurements provide geographic variability in exposure to be reflected in the exposure 

measurement of chronic exposure to PM10, SO2  and NO2.  This variability exists from 

differences in exposure that exist between counties as well as within counties. To this end we 

parameterized the pollution exposure variables to be used in mixed models in order to arrive 
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at separate estimates reflecting the county level (ecological) effect and the within county 

effect that has a more individual level of inference. 

     Partitioning of air pollution exposure measures - For each pollutant we created a variable 

that is the county mean of the prior year exposure to the air pollutant and subtracted the 

grand mean of the pollutant over all counties.  The result is a county level average air 

pollution exposure measure expressed as a deviation from the grand mean. To the extent that 

true variation in air pollution exposure is derived from between county variation, inference is 

limited to the population (ecologic or county) level; such that living in a polluted area is 

associated with increase/decreased average ALT levels. For each individual, we also created 

a variable that is the individual’s prior year exposure minus the county average; this gives an 

individual’s air pollution exposure measure expressed as a deviation from the county mean.  

Inference on this parameter has a specific individual level interpretation, allowing for 

measurement error, independent of its ecological analogue. It also tends to capture more 

local, rather than regional sources of pollution. 

 

PM j = jth county mean PM- grand mean PM 

PM ij =ith individual in county j PM – jth county mean PM 

 

We refer to this parameterization of the air pollution variable as the partitioned air pollution 

exposure, in reference to analogous between-county and within-county variation of the mixed 

model.   
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c. Statistical Analysis  

     NHANES III sampled populations within counties selected at random within strata of 

geographic region.  Blacks, Hispanics and the elderly were oversampled to insure adequate 

numbers for analyses within these groups. NHANES III data have weights based on the 

probability of sampling. When used with software, such as SUDAAN that accounts for the 

particular sampling design, the weights generate estimates that are representative of the U.S. 

non-institutionalized population in a single level model.  In this way, the variance structure 

from the sampling design is adjusted to derive estimates for the individual level analysis. In 

the analysis conducted here however, we employ these data, not as a single level model, but 

as a collection of populations with relevant variation at both the county and individual levels.  

We use this data in the a multilevel model, in order to evaluate the effect of air pollution on 

individual lipid parameters, understanding that air pollution exposures are shared by people 

in the same geographic area and therefore have a large county level component, and 

recognizing that health outcomes tend to cluster within geographic regions due to 

commonalities of local ethnic, dietary and other environmental factors.  

     We employed mixed modeling (Proc Mixed, SAS, Cary, NC), of individual participants 

clustered within counties to estimate the relationship between 3 criteria air pollutants LDL 

and HDL cholesterol. The analytic strategy was to specify a model (irrespective of 

pollutants) including the individual level variables based on subject matter knowledge and 

known risk factors in order to account for as much of the individual level variation from the 

deterministic components known to govern cholesterol levels.  The inclusion of these 

variables as fixed effects minimized the between county variation that can be accounted for 

by differences in the distribution of individual level determinants of cholesterol.  The model 
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included variables involved in the sampling design: age, ethnicity (non-Hispanic Whites, 

non-Hispanic Blacks, Hispanics, and others). We also included variables known to be related 

to cholesterol levels: sex, BMI, saturated fat, waist to hip ratio and alcohol consumption and 

vitamin C,  smoking status (Former, Current and number of cigarettes per day) as well as 

cotinine (among current non-smokers). The base model also included quadratic terms for the 

variables age and BMI and waist to hip ratio, as well as an interaction between both the linear 

and quadratic term for age with sex.  Additionally, we included poverty income ratio (the 

ratio of the household income to the city specific poverty level) to adjust for socio-economic 

factors that may correlate with exposure to air pollution. Mixed models were fit which 

included a random effect for the intercept of each county, we used the robust variance 

estimator and the between-within method for determining degrees of freedom. 

     For each pollutant-cholesterol relationship, we employed the partitioned pollution 

variables with the individual level independent variables described above in two types of 

mixed models. The first was a random intercept model with a random effect for intercept 

corresponding to county and the partitioned variables included only as fixed effects in order 

to evaluate the independent effects of county and individual level pollutants, allowing for 

correlated errors within county. Each parameter in the model is interpreted as the effect at the 

mean county and mean individual exposure (relative to their county) to air pollution. 

Although the effects are derived from different levels of observation, each level is measuring 

the same effect; therefore, the evidence is most compelling when the two levels have similar 

effect estimates.   

     We evaluated the interaction of the within county (individual level) pollutant effect and 

the individual effect modifier in the random intercept model. Previous studies have identified 
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individuals with diabetes and older age to be susceptible to acute effects of PM10.
15 Smoking 

status was also examined to evaluate the effects where smoking is likely to overshadow air 

pollution effects, or where smoking may materially alter the underlying mechanistic 

pathways by which air pollution may inflict health effects. 

     For each pollutant –cholesterol relationship, we also fit a random coefficient model with 

an additional random effect for individual level pollutant. For these models we plotted the 

empirical Bayes estimates derived from the random coefficients model. Each of the random 

coefficient models initially included the partitioned pollutant variables with a cross-level 

interaction (interaction between county and individual level pollution parameters).  The 

results from this process are presented as the random coefficients model. An example of this 

model for PM10 is as follows: 

 

Yij =[γ00 + γ01 (PM j) + γ10(PM ij - PM j) + γ11 (PM j) (PM ij - PM j) 

+ β2(Age) +… βp(Vk)] + [ µ0j + µ1j (PM ij - PM j)+ r ij] 

 

Where: 

 Yij is the cholesterol value of the ith person in the jth county. 

PM j is the mean county level PM10 measures, expressed as a deviation from the grand 

mean PM10. 

PM ij  is the individual level PM10 measure, expressed as a deviation from the county 

mean PM10. 

µ0j  is a vector of deviations about the fixed effect for the model intercept γ01. 

µ1j is a vector of deviation about the fixed effect for the model slope of γ10. 
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r ij is a vector of errors associated with the individual-level 

 

     To plot the empirical Bayes estimates, we plotted the results from the random coefficients 

model for each pollutant, with a line corresponding to the fixed effect for the county level 

slope running through the coordinate corresponding to overall pollution mean and the 

adjusted mean cholesterol value. We then plotted the mean adjusted cholesterol values of the 

individual counties (y-coordinate) against the corresponding mean county pollution value (x-

axis).  The individual county slopes were plotted through these individual county points, with 

the length corresponding to the inter-quartile range of the within county pollution values 

(more specific description available in Appendix A). 

3. Results 
 
     The number of counties and number of individuals for which pollution measurements 

were available differ by pollutant (table1). Of the 46 counties in the first phase of the 

NHANES III data set, PM10 is available in 31 counties and 4,845 people, while NO2 is 

available for only 25 counties and 3,845 people.   Of the variation in prior year average air 

pollution measures, almost all of the variation is accounted for by differences between 

counties. SO2 (a regional pollutant) has the least amount of within county variation at only 

2.7% of the variation being explained by differences in home location within counties while 

NO2 (an indicator of mobile source pollutants) has the most (7.1%). 

     Given the domination of the variation at the level of the county, correlation between air 

pollutants in turn is primarily driven by the correlation of the county mean air pollutants 

(table 2a). County PM10 and NO2 are highly correlated with each other (r=0.65), while county 

PM10 is slightly negatively correlated with SO2 (r=-0.27). The correlation between PM10 and 
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NO2 at the county level suggests that the geographical distribution of PM10 measured is largely 

associated with PM from mobile source pollution. County NO2 itself is not correlated with 

SO2. Within counties, correlations between pollutants are in fact highly variable 

demonstrating that the remaining variation that exists within counties will provide their own 

unique pollution mixtures, (table 2b).  The somewhat negative correlation between PM10 and 

SO2 at both the county level and within county (on average) suggests that SO2 is not a 

surrogate for PM10, though it may correspond to PM at other unmeasured fractionations.  

     Several counties have no variation in the pollutant measures at all, while the counties with 

the most variation tend to be at higher mean levels of air pollution (figure 1). NO2 in 

particular has three counties with materially greater variation in NO2 levels than the rest. SO2 

also has little within county compared to between county variation; however, it has a more 

even distribution of variation among counties.  As a consequence, the estimates of the 

average within county (individual level) effect, in the mixed models, will be driven by those 

counties with the most variation.   

     The mean cholesterol parameters and their standard deviations were all very similar 

across the subpopulations for which pollution measures were available (table 3); however, 

some small variability in the distribution of variables among pollution subpopulations exists. 

The proportion of black subjects was lowest in the counties with PM10 measurements 

(27.0%) and highest in the counties with SO2 measurements (28.7%). The proportion of 

Hispanics varied from 24.4% in SO2 counties, to 32% in the PM10 counties. However, these 

differences being subtle, they are not likely to reflect significant differences in the 

populations under study in the different pollution analyses. 



 

83 

a. Random intercepts model   

     LDL Cholesterol – In mixed models of LDL, an increase of 10 ppb of the average county 

NO2 levels is associated with a 3.61 mg/dL (95%CI 0.98,6.25) increase of LDL and within 

county it is associated with a remarkably similar increase of 3.36  mg/dL (95%CI: -

4.45,11.17)  increase of LDL. An increase of 10 µg/dL in the county average year exposure 

to PM10 is associated with an increase 1.64 mg/dL of LDL (95%CI -0.691, 3.971) while an 

increase of 10 µg/dL over local differences in prior year exposure to PM is associated with a 

4.26 mg/dL (95%CI –1.566, 10.059). The county level effect for a 10 ppb increase in SO2 is 

virtually null (-0.06 mg/dL; 95%CI: -3.79, 3.67) while individual level SO2 is substantially 

more positive (6.06 mg/dL; 95%CI:-2.13, 14.25). 

     HDL Cholesterol- All county level pollutant effect estimates are consistent with a 

negative shift in HDL levels, indicating that living in a polluted county is associated with an 

average decrease of HDL.  The within county estimates provide at best little support for a 

negative (deleterious) effect (NO2). Within county effects show approximately a 1 mg/dl 

increase in HDL for an increase of 10 µg/dL (PM10) or 10 ppb (SO2). 

     Effect Measure Modification - Evidence exists for Age being an effect measure modifier 

of the PM10 and NO2 relationship with LDL and the SO2 relationship with HDL (table 5). 

Greater adverse relationships existed in relation to the lipid levels with increasing age. 

Contrary to the hypothesis of susceptibility to air pollution, the joint effect of exposure to 

NO2 and diabetes increased HDL levels over their respective independent effects suggesting 

a protective effect. Similarly, cigarettes appeared to be protective of the effect of NO2 on 

LDL. However, number of cigarettes smoked appeared to be associated with higher levels of 

LDL with increased exposure to SO2.  
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b. Random coefficients model 

     The results of the mixed models that allow the slopes of the within county effects to vary 

are presented in Table 6, and the resulting empirical Bayes estimates are presented in Figures 

6 (LDL) and 7 (HDL).  None of the LDL models give evidence that the association of local 

differences in yearly average pollutant effects differ significantly from the estimated fixed 

effects.  However, the cross level interactions that are apparent for both PM10 and SO2, 

indicate that the within county differences in local year average pollutant exposures are 

different across the range of mean county average year exposures. Deleterious increases in 

LDL are associated with increased local average pollutant levels only at high county average 

pollutant levels. Only for NO2 is there evidence that the within county level effect is constant 

across the range of mean county levels of NO2.  A change in yearly average county levels of 

NO2 is associated with an elevation of 3.6 mg/dL of LDL. On average within counties, a 

change of 10 ppb in average yearly NO2 pollution is associated with an increase of 7.08 

mg/dl of LDL levels.  

     Of the pollutant models of HDL, only PM10 shows evidence of heterogeneity of slopes. 

However, each pollutant model shows evidence of a difference in the direction of effect 

across the range of average county level pollutant exposures, suggesting an increase in HDL 

levels with local increases in pollutant at low county average year pollutant levels, and a 

decrease in HDL with local increases in pollutant  levels at higher county mean pollutant 

levels. 

4. Discussion 
 
     To our knowledge, this study is the first to examine the relationship between cholesterol 

levels and air pollution.  We employed hierarchical analyses using individual-level data 
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nested in counties to generate separate estimates of pollutant effects at the between-county 

and within-county levels. These data indicate that living in a county with high PM10 and NO2 

pollution levels was associated with higher levels of LDL cholesterol.  Though 

comparatively little variation of air pollution exposures exists within counties, the within 

county effect estimate corroborated the county level estimates of the effects of PM10 and NO2 

on LDL. Within county SO2 is positively related to LDL, though not statistically significant.  

Furthermore, the within county estimates of the effect of PM10 and SO2 were more positively 

associated with LDL at higher mean county levels of air pollutants that also correspond with 

higher within county variation of air pollutant estimates.   

     Effects of either between-county or within-county pollutants on HDL were not as 

apparent though this is not surprising since HDL is not as labile as LDL (looking for 

reference). In the random coefficient models allowing the within county slope to vary 

randomly and across mean county pollutant levels, it is curious to observe the different 

directions of the effect at low mean county pollutant levels compared to high county means.  

     The two most significant limitations of the current study are that the design is cross-

sectional and exposure is measured with error. In the absence of personal monitoring, 

exposures were estimated by interpolation of ambient pollution to the residences of 

participants. However, people spend only a portion of their lives at home so these estimates 

may differ from personal exposure. Furthermore, the one-year interval over which the 

exposure is averaged ignores possibly important dimensions of exposure related to intensity 

and duration. Finally, PM10, NO2, and SO2 are surrogates for different characteristics of 

pollutant exposures, like PM2.5 with which health effects have been associated. 
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     The data used here come from around the country and consequently provide greater 

exposure contrasts than studies in a single location. However, the vast majority of the 

variation in air pollutants exists between counties. Lack of variability within county leaves 

the county level to serve as a proxy for more specific measurements of individuals.  The 

validity of these models is dependent on an adequate specification of the model to 1) account 

for the variability at the county level which arises from differences that exist in the individual 

level; 2) account for cluster effects that may be correlated with county mean exposures.  If 

these conditions are met, the county level errors are independent of the individual (within-

county) errors and the between-county level estimates are valid for inference on the effect at 

the individual level. Our results were robust to many different specifications of the individual 

level model and after controlling for different possible confounders, which suggests that no 

residual aggregation bias exists. However, inadequate sample size at the county level can 

result in an under-estimation of the error associated with county level parameters in 

proportion to how balanced the data are across counties. 

     To the extent that within-county variation exists, this level provides evidence for the 

effect of air pollution on cholesterol parameters that is not subject to aggregation bias. The 

random coefficient models that allow the within county effect to vary randomly and to differ 

over county means with the cross-level interaction, have added benefits for inference. The 

evidence that air pollution exposures are related to higher levels of LDL suggests an 

important effect measure modification that may be dose response. Alternatively, it may 

suggest a difference related to exposure measurement. It is plausible that low within county 

exposure variation may reflect common background exposure to pollutants, while in counties 

with greater internal variation exposures represent pollution from traffic related emissions for 
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which NO2 and SO2 measurements are surrogates.  Thus cross-level interaction may reflect 

differences in exposure measurement error, indicating more deleterious effects (higher LDL 

and lower HDL) in counties where pollution is from sources that are more likely to 

correspond to PM2.5.      

     The current study adds to the accumulating evidence of detrimental effects of air 

pollution. Though not as specific as other acute phase reactants, acute inflammation is known 

to alter lipoprotein metabolism.16 The characteristic acute phase changes include increased 

triglyceride levels secondary to an increase in very low-density lipoprotein (VLDL) and 

reduced HDL and LDL. However, a more relevant model comes from chronic effects of 

cigarette smoking, which is associated with increases in plasma triglycerides, LDL, VLDL 

and decreases in plasma HDL cholesterol concentration.17 

     If these associations are related to inflammation, the potential consequences are under 

represented by alterations of cholesterol, since oxidative stress in combination with LDL 

results in oxidized LDL, which is far more likely to stimulate atheroma production.18   

     In conjunction with several epidemiological and laboratory studies that have observed an 

association between acute exposures to air pollutants and markers of inflammation,6 and 

coagulation parameters,9-12 adverse changes in the distribution of blood lipids provides a link 

in the list of pathophysiological changes that occur with the progression of atherosclerosis.   

     Direct evidence for proatherogenic changes as a consequence of PM exposure exist in 

animal and human studies. In Wataabe hyperlipidemic rabbits, exposure to PM10 caused 

progression of atherosclerotic lesions with greater volume, with greater lipid content and 

proportionate to the number of alveolar macrophages that phagocytosed PM10.19  In a study 

of otherwise healthy subjects with elevated LDL or homocysteine levels with baseline carotid 
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artery intima-medial thickness (CIMT) measures from two cohort studies,20 long term mean 

ambient concentrations of 10 ug/m3 PM2.5 were associated with a 4.2% larger CIMT, similar 

to that associated with exposure to ETS,21,22 the single largest contributor to indoor air 

pollution. 

     Overall, the findings support an association between particulate air pollution and adverse 

distributions of cholesterol measured in the blood of participants in the NHANES study.  

Exposure to cigarette smoke, both primary and secondary is associated with similar 

changes.17,23  Other physiological effects of air pollution, notably increases in inflammatory 

markers,7,10,24 oxidation (in rats)5 blood coagulation,25 endothelial dysfunction,26 and bone 

marrow stimulation, are shared with exposure to tobacco smoke.  These finding provide 

further support for the hypothesis that exposure to PM air pollution may contribute to the 

initiation and progression of atherosclerosis representing significantly more morbidity and 

mortality than that which is implied by studies of acute effects of air pollution. 
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Table 5. 1. Prior year average pollution exposure in 46 NHANES III phase I counties 

 

Pollutant unit Mean IQR SD 

No. of  

locations

No. of  

observations

Proportion of variance 

explained by county 

PM10 ug/m3 37.2 15.8 13 31 4858 95.3% 

NO2 ppb 26.5 10.7 11.4 25 3,845 92.9% 

SO2 ppb 19.7 21 21.0 25 3,874 97.3% 
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Table 5. 2  Spearman correlation coefficients between county average pollution exposure (prior year) 

 

2A. Correlations between county mean pollution levels 

Pollutant  PM10 N counties  NO2 N counties  SO2 N counties 

PM10  1 31  0.650 25  -0.267 23 

NO2  0.650 25  1 25  -0.095 21 

SO2  -0.267 23  -0.095 21  1 25 

          

 

2B. Statistics of county-specific within-county correlations between pollutants 

  PM10  NO2  SO2 

  Min Max  Min Max  Min Max 

PM10  - -  -0.97 0.89  -0.99 0.92 

NO2  -0.97 0.89  - -  -0.68 0.99 

SO2  -0.99 0.92  -0.68 0.99  - - 
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Figure 5. 1.  Prior year county pollutant mean by within county variance, bubbles proportional to county sample size 
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Table 5. 3. Univariate characteristics of lipid parameters and covariates by sub-populations in NHANES III 

 

 Measurements in counties with available ambient pollution measurements 

 PM10 (n= 31)  NO2 (n= 25)  SO2 (n= 25) 

Outcome n mean std  n mean std  n mean std 

LDL 2059 129.43 39.78  1587 128.78 39.01  1586 130.10 39.19 

HDL 4839 51.97 15.34  3741 51.58 14.87  3740 51.85 15.25 

Total Chol. 4856 208.05 44.78  3754 206.44 44.37  3753 206.95 44.33 

LDL HDL ratio 2059 2.71 1.20  1587 2.71 1.21  1586 2.74 1.23 

Covariates            

Age (yrs) 5228 47.82 18.80  4057 46.39 18.55  4042 47.60 18.78 

Female 2319 49%   1815 49.0%   1908 49.3 %  

White 1740 37%   1310 35.4 %   1631 42.1 %  

Black 1267 27%   1050 28.4 %   1111 28.7 %  

Mexican American 1512 32%   1183 31.9 %   945 24.4 %  

Other  179 4%   161 4.4 %   187 4.8 %  
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 Measurements in counties with available ambient pollution measurements 

 PM10 (n= 31)  NO2 (n= 25)  SO2 (n= 25) 

Outcome n mean std  n mean std  n mean std 

BMI 5206 26.84 5.53  4042 26.91 5.54  4029 26.70 5.56 

BMPWHR 4953 0.92 0.09  3854 0.92 0.08  3830 0.92 0.09 

Former smoker 1230 26%   951 25.7 %   1013 26.2 %  

Current smoker 1257 27%   1023 27.6 %   1081 27.9 %  

Cigarettes per day (current 

smokers) 5228 3.70 8.45  4057 3.75 8.51  4042 4.12 9.11 

            

Potential Confounders           

Social factors            

Poverty-Income ratio 4649 2.46 1.65  3590 2.46 1.63  3592 2.62 1.66 

Education (total years) 5186 10.80 4.13  4020 10.80 4.06  4005 11.33 3.83 

Household size (persons) 5228 3.57 2.22  4057 3.70 2.27  4042 3.50 2.18 
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 Measurements in counties with available ambient pollution measurements 

 PM10 (n= 31)  NO2 (n= 25)  SO2 (n= 25) 

Outcome n mean std  n mean std  n mean std 

Other exposures           

Wood stove use 177 3.8 %   111 3.0 %   142 3.7 %  

Fireplace use 799 17.0%   602 16.3 %   616 15.9 %  

Gas stove use 2837 60.5 %   2355 63.7 %   2351 60.8 %  

Environmental tobacco smoke 1745 37.1 %   1437 38.8 %   1535 39.6 %  

Serum cotinine (ng/ml) 4760 66.26 133.32  3684 66.57 132.41  3680 70.34 136.74 

            

Other factors            

Caffeine (drinks/month) 5216 34.41 51.07  4048 33.10 51.66  4028 35.03 52.81 

Alcohol (g/day) 5014 9.77 27.44  3887 9.72 26.86  3866 9.94 26.48 

Saturated Fat (g/day) 5032 26.40 17.31  3901 26.74 17.34  3882 26.81 17.67 

Serum vitamin C (mg/dL) 4707 0.70 0.44  3644 0.71 0.43  3634 0.71 0.44 

Dietary fish and shellfish 5219 6.28 7.91  4051 6.19 8.13  4034 6.53 8.43 
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 Measurements in counties with available ambient pollution measurements 

 PM10 (n= 31)  NO2 (n= 25)  SO2 (n= 25) 

Outcome n mean std  n mean std  n mean std 

(servings/week) 

Systolic BP (mmHg) 5213 125.96 19.67  4044 124.84 19.10  4028 124.86 19.16 
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Table 5. 4 Random Intercepts Model 

 

Effect Estimate df 

prob

t lower upper τ00 

SE of 

τ00 

LDL  (4a) 

PM10 (10 

µg/m3) 

     14.963 11.635 

  County level 1.640 29 0.161 -0.691 3.971   

  Within county 4.246 1460 0.152 -1.566 10.059   

NO2  (10 ppb)      12.873 12.317 

  County level 3.611 23 0.009 0.977 6.245   

  Within county 3.358 1148 0.399 -4.454 11.169   

SO2 (10 ppb)      24.187 15.602 

  County level -0.063 23 0.972 -3.794 3.667   

  Within county 6.058 1159 0.147 -2.128 14.245   

        

HDL (4b) 

PM10 (10 µg/m3)      2.123 1.060 

  County level -0.034 29 0.927 -0.790 0.722   

  Within county 0.938 3500 0.274 -0.741 2.618   

NO2  (10 ppb)      2.364 1.261 

  County level -0.169 23 0.584 -0.799 0.460   

  Within county -0.067 2763 0.961 -2.799 2.664   



 

97 

Effect Estimate df 

prob

t lower upper τ00 

SE of 

τ00 

SO2  (10 ppb)      2.015 1.188 

  County level -0.720 23 0.245 -1.966 0.527   

  Within county 0.931 2800 0.489 -1.709 3.570   
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Table 5. 5 Modification of effect of Cumulative prior year Exposure to Pollutants on Total Cholesterol by Age, Diabetes 

and Smoking (EM) 

 

a. LDL 

Effect Modifier (EM) Age (years)  Diabetes  

Number of cigarettes smoked  

(current smokers) 

 Estimate p 95%CI  Estimate p 95%CI  Estimate p 95%CI 

EM 0.398 0.000 0.256,0.541  -12.397 0.127 -28.329,3.535  -0.052 0.731 -0.348,0.244 

County PM10  * 1.547 0.102 -0.326,3.419  1.417 0.185 -0.716,3.551  1.404 0.180 -0.688,3.496 

Indiv. PM10    * 4.504 0.144 -1.543,10.550  4.206 0.176 -1.891,10.304  5.216 0.168 -2.193,12.625

EM*ind PM10 * 0.369 0.030 0.035,0.702 

 

-4.690 0.642 -

24.455,15.075  

-0.353 0.397 -1.169,0.464 

            

EM 0.376 0.000 0.206,0.547  -16.495 0.056 -33.380,0.389  -0.116 0.394 -0.384,0.151 

County NO2   † 3.457 0.004 1.196,5.718  3.443 0.006 1.097,5.789  3.479 0.005 1.142,5.816 

Indiv NO2     † 3.856 0.363 -4.452,12.164  3.854 0.297 -3.398,11.105  5.836 0.245 -4.016,15.688
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Effect Modifier (EM) Age (years)  Diabetes  

Number of cigarettes smoked  

(current smokers) 

 Estimate p 95%CI  Estimate p 95%CI  Estimate p 95%CI 

EM *ind NO2   † 0.332 0.181 -0.154,0.819  -4.146 0.528 -17.015,8.724  -0.908 0.084 -1.938,0.122 

            

EM 0.445 0.000 0.262,0.629  -16.451 0.052 -33.020,0.118  0.038 0.828 -0.302,0.377 

County SO2   † 0.073 0.953 -2.469,2.615  0.087 0.944 -2.452,2.626  0.071 0.954 -2.432,2.574 

Indiv. SO2     † 3.993 0.371 -4.763,12.749  4.566 0.294 -3.962,13.094  0.946 0.841 -8.313,10.204

EM *ind SO2  † 0.024 0.921 -0.446,0.494 

 

-22.318 0.490 -

85.679,41.044  

0.731 0.104 -0.150,1.613 

* 10 µg/m3  

†  ppb 
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Table 5.5 b HDL 

Effect Modifier (EM) Age (year)  Diabetes  

Number of cigarettes smoked 

(current smokers) 

EM 0.086 0.000 0.051,0.120  -2.165 0.053 -4.360,0.031  -0.086 0.041 -0.169,-0.003

County PM10   * 0.225 0.456 -0.385,0.836  0.228 0.451 -0.383,0.839  0.224 0.456 -0.382,0.830 

Indiv. PM10       * 0.822 0.308 -0.759,2.402  0.882 0.363 -1.018,2.781  0.709 0.397 -0.932,2.350 

EM*ind PM10 * -0.011 0.804 -0.100,0.078  -0.487 0.873 -6.436,5.463  0.045 0.267 -0.034,0.124 

            

EM 0.071 0.000 0.032,0.111  -3.220 0.008 -5.595,-0.846  -0.103 0.027 -0.195,-0.012

County NO2   † 0.002 0.993 -0.561,0.566  -0.005 0.986 -0.568,0.558  0.003 0.992 -0.551,0.556 

Indiv NO2        † -0.152 0.909 -2.771,2.467  -0.366 0.804 -3.258,2.526  -0.205 0.858 -2.453,2.043 

EM *ind NO2 † 0.024 0.516 -0.048,0.096  4.578 0.112 -1.072,10.228  0.031 0.813 -0.229,0.292 

            

EM 0.077 0.000 0.037,0.118  -2.169 0.085 -4.640,0.302  -0.097 0.026 -0.182,-0.011

County SO2  † -0.975 0.011 -1.700,-0.250  -0.966 0.012 -1.701,-0.231  -0.968 0.011 -1.687,-0.249

Indiv. SO2      † 0.620 0.612 -1.780,3.021  1.217 0.407 -1.662,4.096  1.556 0.209 -0.869,3.981 
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Effect Modifier (EM) Age (year)  Diabetes  

Number of cigarettes smoked 

(current smokers) 

            

EM *ind SO2† -0.106 0.152 -0.251,0.039  -6.081 0.362 -19.167,7.005  -0.115 0.169 -0.279,0.049 

* 10 µg/m3  

†  ppb 
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Figure 5. 2. Sensitivity analysis – Alternative parameterizations of deterministic variables 

    Legend: Paraterization 

     p1: Age (linear & quadratic), BMI (linear & quadratic), interaction of sex and age 

     p2: Age (linear & quadratic), BMI (linear & quadratic) 
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     p3: Age (linear & quadratic), BMI (linear & quadratic), interaction of sex and BMI 

     p4: Age (piecewise linear), BMI (linear & quadratic) 

     p5: Age (piecewise linear), BMI (linear & quadratic), interaction of sex and piecewise age 

     p6: Age (linear), BMI (linear) 
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Figure 5.3 Sensitivity analysis – Adjusted for other sources of exposure and Potential confounders 

 

Legend:  

C1: At address greater than 1 year 
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C2: Exercise: Sum total of number of times exercised in last month (running, biking, 

swimming, aerobics,  dancing, calisthenics, gardening, weight lifting 

C3: Education – ref= college vs. high school, some high school, less than high school 

C4: Household size ref= 5 or more, vs. 4,3,2, or 1. 

C5: Wood stove use= Wood stove used in past  12 months. 

C6: Fireplace use = Fireplace used in past 12 months. 

C7: Gas stove use = Gas stove used in past 12 months. 

C8: Fish/Shrimp- No times eat fish, shrimp or clams in last month 

C9: Coffee – No times drink regular coffee in last month 

C10: Hypertension rx – Taken prescription medicine in last month for ICD9 401.9  
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Table 5. 6 Random Coefficients  Model 

 

Table 5.6a Model of LDL 

Effect Estimate df probt lower upper τ00 τ01 τ11 S.E. τ00 S.E.  τ01 S.E.  τ11

PM10 Likelihood ratio test: 0.9 p=0..64 

County level  (10 µg/m3) 1.717 29 0.140 -0.596 4.030       

Within county (10 µg/m3) -0.655 1459 0.863 -8.074 6.764 27.597 52.038 0.000 20.250 74.397 . 

Cross level Intxn 

(10 µg/m3) 

2.076 1459 0.110 -0.471 4.623       

NO2 Likelihood ratio test:1.3; p=0.52 

County level (10 ppb) 3.645 23 0.010 0.953 6.336       

Within county (10 ppb) 7.083 1147 0.002 2.540 11.625 12.257 -30.38 0.000 12.507 14.537 . 

SO2 Likelihood ratio test:2.4; p=0.30 

County level (10 ppb) -0.591 23 0.769 -4.709 3.527       

Within county (10 ppb) -3.698 1158 0.149 -8.720 1.325 33.866 83.612 0.000 23.485 31.567 . 

Cross level Intxn (10 ppb) 11.826 1158 0.000 6.036 17.616       
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Table 5.6a Model of HDL 

Pollutant effect Estimate df probt lower upper τ00 τ01 τ11 S.E. τ00

S.E.  

τ01 

S.E.  

τ11 

 mg/dl   mg/dl mg/dl       

PM10 Likelihood ratio test: 5.0 ;p=0.08 

County level (10 µg/m3) -0.037 29 0.920 -0.783 0.709       

Within county (10 µg/m3) 1.856 3499 0.089 -0.280 3.993 2.081 2.830 4.693 1.047 2.151 6.165 

Cross level Intxn  

(10 µg/m3) 

-1.070 3499 0.067 -2.214 0.074       

NO2 Random slope model did not converge 

County level (10 ppb) -0.185 23 0.557 -0.825 0.456       

Within county (10 ppb) 2.809 2762 0.042 0.099 5.519 2.345   1.254   

Cross level Intxn (10 ppb) -2.609 2762 0.002 -4.243 -0.976       

SO2 Likelihood ratio test 1.5  p=0.47 

County level (10 ppb) -0.671 23 0.259 -1.870 0.528       

Within county (10 ppb) 1.814 2799 0.200 -0.959 4.588 2.036 1.730 2.547 1.198 2.945 8.508 
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Pollutant effect Estimate df probt lower upper τ00 τ01 τ11 S.E. τ00

S.E.  

τ01 

S.E.  

τ11 

 mg/dl   mg/dl mg/dl       

Cross-level  Intxn (10 ppb) -2.299 2799 0.049 -4.585 -0.014       
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Figure 5. 4 Empirical Bayes estimates for LDL. 
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Figure 5. 5 Empirical Bayes estimates for HDL. 
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Table 5. 7  Two Pollutant mixed model of LDL 

 

Pollutant (ppb) Estimate df probt lower upper τ00 

S.E. of 

τ00 

Model of LDL mg/dl   mg/dl mg/dl   

Random intercept      9.731 13.542 

NO2 County level  4.42 18 0.014 0.997 7.848 . . 

NO2 Within county  2.38 939 0.482 -4.266 9.029   

SO2 County level  -0.476 18 0.779 -3.981 3.029   

SO2 Within county  3.181 939 0.355 -3.565 9.927   

SO2 Cross level Intxn 10.087 939 0.001 3.957 16.217   

        

Model of HDL               

Random intercept mg/dl   mg/dl mg/dl 2.167 1.456 

NO2 County level -0.432 18 0.319 -1.138 0.453 . . 
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Pollutant (ppb) Estimate df probt lower upper τ00 

S.E. of 

τ00 

NO2 Within county 2.989 2289 0.071 -0.245 6.223   

NO2 Cross level Intxn -2.516 2289 0.005 -4.284 -0.748   

SO2 County level -0.0672 18 0.278 -1.934 0.589   

SO2 Within county 1.793 2289 0.232 -1.146 4.732   

SO2 Cross level Intxn -2.552 2289 0.025 -4.730 -0.314   
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B. Manuscript 2: Short-term exposure to air pollution and alterations in alanine 
aminotransferase as an indicator of involvement of the liver 

 
ABSTRACT 

Liver pathology characterized by alterations in liver metabolism and associated with 

elevations in alanine aminotransferase (ALT) plays a significant role in cardiovascular 

disease (CVD) according to contemporary research. Given that the liver is the most 

significant source of acute phase reaction proteins and has a unique role in detoxification, it 

is plausible that effects of particulate matter (PM) pollution on CVD is mediated by the liver.  

We applied multilevel models to NHANES III data merged with ambient air pollution 

monitor data in order to relate between and within county variation in pollution exposures to 

serum ALT levels in subjects sampled from around the country. Relative to county average 

exposures, prior week average air pollution exposures were associated with decreased ALT 

levels. Similar associations with ALT were found in relation to cigarette smoke exposures. 

Our findings showed that an increase of 10 µg/m3 of PM10 was associated with a reduction of 

-0.019 log ALT. At average county pollutant levels, NO2 and SO2 were both negatively 

associated with log ALT levels. The effect of county level exposures was similarly negative 

for PM10 and SO2, but county NO2 was associated with increased ALT levels. These negative 

associations were attenuated at higher mean county levels.  These results suggest metabolic 

alterations from short-term exposures that may be significant to the initiation and/or 

progression of CVD over time.  
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1. Introduction 
 

The pathophysiological mechanisms underlying the associations between exposure to 

particulate matter air pollution (PM) and cardiovascular disease (CVD) morbidity and 

mortality remain to be elucidated.  However, the collective evidence suggests that air 

pollution can promote the development of atherosclerosis and worsen its sequelae.1  

Important linkages can be found by the study of critical pathway intermediates of CVD in 

relation to PM exposures. 

Studies have shown that the initiation and progression of atherosclerosis involve critical 

interactions between the endothelium and mediators of inflammation, coagulation factors, 

lipids and oxidative stress.2 Furthermore, risk factors for CVD tend to cluster together. BMI, 

waist circumference, fasting glucose (insulin resistance), type 2 diabetes, hypertension, 

hypertriglyceridemia, dyslipidemia are risk factors collectively known as metabolic 

syndrome. Additionally, obesity and metabolic syndrome is associated with chronic 

inflammation characterized by abnormal cytokine production, increased acute-phase 

reactants and activation of inflammatory signaling pathways.3 C-reactive protein (CRP), a 

marker of systemic inflammation is prospectively associated with incident CVD.4,5  Exposure 

to PM has been found to be associated with elevated CRP, Fibrinogen, blood coagulation 

factors, oxidative stress, endothelial dysfunction, and blood pressure.6 Few studies have 

evaluated the effects of PM air pollution on liver metabolism that is intimately connected to 

risk factors for CVD as well as the principle source of inflammatory and coagulation proteins 

with which air pollution has been associated.  
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It is currently believed that PM’s effects on CVD events result from pulmonary oxidative 

stress and inflammation with systemic consequences from the release of pro-inflammatory 

cytokines, reactive oxygen species (ROS) , activation of hemostatic pathways and impair 

vascular function. However the evidence remains inconclusive.1 An alternative hypothesis 

supports a more direct role by which components of PM, gas condensates, soluble 

constituents (e.g. transition metals) or nanometer sized particles (PM <= 0.1 µm) may 

penetrate the epithelium of the lung and pass directly into the blood to be disseminated 

systematically.1 Regardless of whether the effects are indirect or direct, the liver remains 

pivotal for evaluating sub-clinical atherogenic stimuli from air pollution, as the liver is the 

origin of many inflammatory proteins (such as fibrinogen and CRP) and is the organ 

responsible for metabolizing foreign substances in the blood.  Changes in the metabolizing 

capacity of the liver may be the first sign that a pathological process is beginning.7   

Involvement of the liver is further suggested by the recent recognition of its involvement 

in CVD. Non-alcoholic fatty liver disease is associated with visceral adiposity and metabolic 

syndrome. Unexplained aminotransferase elevation --an indicator of non-alcoholic fatty liver 

disease and an indicator of hepatic injury --is strongly associated with male sex, BMI, 

various measures of adiposity, dyslipidemia, diabetes, high insulin levels, hypertension and 

cigarette smoking.8-10. Fatty liver disease is believed to involve initial steatosis that creates a 

necessary metabolic alteration upon which additional stimuli causes oxidative stress, ROS 

formation and abnormal cytokine production.11 Elevated liver function tests have been found 

to be associated with serum CRP concentrations suggesting that systemic inflammation 

associated with CVD is from liver damage from local inflammation (in fatty liver disease) to 

the liver.3  
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The current study explored how the liver may be involved in mediating health effects of 

air pollution.  We used the NHANES III data merged with Aerometric Information Retrieval 

System (AIRS) data from the U.S. Environmental Protection Agency (EPA).  Use of these 

data enabled us to measure exposures to pollutants under various geographical contexts in 

order to evaluate the hypothesis that ambient air pollution may precipitate alterations in the 

levels of alanine aminotransferase (ALT) in the blood. These data have been used in previous 

studies to evaluate the effects of air pollution on other hematological parameters.12 In the 

current study we evaluate use of ALT as the dependent variable, as it is the most specific 

aminotransferase associated with liver cytotoxicity.  Further, elevated ALT has been found 

among municipal police in Rome, Italy exposed to urban traffic.13  

2. Methods 

a. Health Data  

The Third National Health and Nutrition Examination Survey (NHANES III) was 

conducted between 1989 and 1994. NHANES III is a stratified probability sample of the U.S. 

population, with oversampling of the elderly and minority populations.  Blacks and Mexican 

Americans each represent 30% of the NHANES III sample.  Persons older than 60 years of 

age (16% of the U.S. population) account for 20% of the sample population. The NHANES 

population is equally split by gender. The NHANES III survey was conducted during two 

phases, each sampling approximately the same number (20,000) subjects in 44 counties (the 

primary sampling units) and each representative of the general U.S. population when 

weighted for the oversampling. The current analysis was restricted to 8,039 adults in the first 

phase.  
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Subjects were seen in their homes by trained interviewers who collected extensive 

medical history and demographic data. The subjects then visited mobile medical examination 

centers, where they were examined. Blood specimens were collected and analyzed. The 

analytic methods for aminotransferases and serum cotinine used in this analysis are described 

in Laboratory Procedures Used for NHANES III.14. Subjects were categorized into one of 

four ethnicity groups: 1) non-Hispanic white; 2) non-Hispanic black; 3) Mexican American;  

and, 4) other. Information on age, education and poverty income ratio were categorized 

according to the design suggested by the National Center for Health Statistics. Individuals 

were classified as being in the low or medium income group if the poverty income ratio was 

less than 1.3 and 3.5 respectively.14 Medication use was ascertained through a series of 

questions related to prescription medications taken in the last month. The variable for 

diabetes was derived from either self-report of doctor having diagnosed diabetes, or taking 

medication for diabetes.  Anthropometric data was acquired using standardized methods 

during the physical examination, which included weight, standing height and waist 

circumference. From these data the body mass index (BMI in kg/m2) and waist to hip ratio 

were calculated. BMI categories were based on the National Heart, Lung and Blood Institute. 

Diagnosis of metabolic syndrome was determined if a participant had three or more of the 

following: 1) systolic blood pressure >= 130 mm Hg, diastolic blood pressure >=85 mm Hg, 

or on antihypertensive medication; 2) triglyceride >= 1.7 mmol/L 3) low HDL cholesterol 

<=40 mg/dL for men and <= 50 mg/dL for women 4) fasting glucose of greater than 6.1 

mmol//L 5) waist circumference >102 cm for men and >88 cm for women.15 Due to 

underreporting of smoking and the desire to measure the dose response of persons exposed to 

environmental tobacco smoke, we used serum cotinine measurements to reflect active and 
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passive smoking based on a validation study of reported smoke exposure in NHANES III.16  

Participants with cotinine levels >15 ng/ml were designated as active smokers. ALT was 

measured  from serum with the Hitachi 737 Analyzer (Boehringer-Mannheim Diagnostics).  

b. Air Pollution Data 

Air pollution data was obtained from the Aerometric Information Retrieval System 

(AIRS) of the U.S. Environmental Protection Agency (EPA). AIRS contains information on 

all of the criteria pollutant monitoring in the United States.  Pollution exposure was assigned 

by means of geocoding, which describes the longitude and latitude of the centroid of the 

census block group in which the participants lived. Block groups are collections of adjoining 

blocks with populations of 500 to 1,000 persons. The longitude and latitude of each monitor 

in the United States was obtained by AIRS. Persons were assigned exposure values equal to 

the weighted average of all monitors in their county of residence and adjoining counties, with 

weights proportionate to the inverse of the square of the distance between their residence and 

the monitor. Air pollutants available for this study included PM10 , NO2 and SO2. 

Pollution monitor data are missing for some participants in counties where there were no 

monitors and some counties had pollution data for some pollutants but not others. Therefore, 

analyses for individual pollutants do not include all of the same subjects. Variability of 

pollution exposure in these data reflects temporal and spatial variability. Temporal variability 

is derived from the subjects being examined over the course of six weeks in each county. 

Geographic variability of exposure within county is driven by the spatial distribution of 

sources estimated by the smoothing method described above.  Geographical variability in air 

pollution that exists between counties reflect variation of the air pollutants between counties 

that contribute to average health related outcomes from exposure to air pollution to residents 
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in the county. Some portion of exposure variation however, can arise from differences in the 

number of monitors in relation to the physical distance over which the participants reside, 

which can influence measurement error.   

We parameterized the pollutant exposures to reflect the between county (ecological level) 

and within county (individual level) measures. To do this we created a variable for each 

pollutant that is the county mean of the prior week exposure to the air pollutant and 

subtracted the grand mean of the pollutant over all counties.  The result is a county level 

average air pollution exposure measure expressed as a deviation from the grand mean. To the 

extent that true variation in air pollution exposure is derived from between county variation, 

inference is limited to the population (ecologic or county) level, such that living in a polluted 

area is associated with increase/decreased average ALT levels. For each individual, we also 

created a variable that is the individual’s prior week exposure minus the county average; this 

provides a measure of an individuals air pollution exposure expressed as a deviation from the 

county mean.  Inference on this parameter has a specific individual level interpretation, 

allowing for measurement error, independent of its ecological analogue. It also tends to 

capture more local, rather than regional sources of pollution. 

PM j = jth county mean PM- grand mean PM 

PM ij =ith individual in county j PM – jth county mean PM 

c. Statistical Analysis 

The NHANES III data sampled populations within counties selected at random within 

strata of country region.  Blacks, Hispanics and the elderly were oversampled to insure 

adequate numbers for analyses within these groups. NHANES III data have weights based on 

the probability of sampling. When used with software applications (e.g. PROC 
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SURVEYREG) that use between PSU within strata variation (still working this out) to 

account for the particular sampling design, the weights generate estimates that are 

representative of the U.S. non-institutionalized population in a single level model.  In this 

way, the variance structure from the sampling design is adjusted to derive estimates for the 

individual level analysis. In the current analysis however, we used an alternative analytic 

technique. In order to evaluate the relationship between ALT and air pollution, which has 

both large and small-area property characteristics, we treated these data as a collection of 

populations with relevant variation at both the county and individual levels.  We therefore 

performed multilevel analysis with the partitioned air pollution exposure parameters to 

separate the effect of the county and individual exposures to air pollution in relation to ALT. 

The multilevel model accounts for correlated errors from the sampling of individuals within 

PSUs, which can arise from the tendency of health outcomes to cluster within geographic 

regions due to commonalities of environmental factors, ethnicity, diet and other. For the sake 

of comparison we first ran models using both survey analytic software and mixed models 

using the single level (unpartitioned) air pollution parameter. 

Because aminotransferase elevations are strongly associated with excessive alcohol use, 

hepatitis and iron overload, simple adjustment may be insufficient to fully control 

confounding. We therefore restricted the analysis to patients with normal levels or 

“unexplained” elevations in aminotransferases as defined in a previous study using the 

NHANES III dataset.10 Subjects with elevations of aminotransferases – men with aspartate 

aminotransferase (AST) > 37 SI U/L  or ALT > 40 ; women with AST > 31 or ALT > 31 - 

who had hepatitis B surface antigen, Hepatitis B antibodies, transferrin saturation >50%, or 

daily alcohol consumption of more than one drink (10 gms of alcohol) a day for women, or 
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two drinks a day for men, were considered to have explained elevations of aminotranserases 

in accordance with Clarke et al. These subjects (n=189) were excluded from the analysis.  

Because residuals from models using ALT were highly skewed, the log of ALT was used 

as the dependent variable.  Initial bivariate relationships between individual risk factors and 

ALT were evaluated using procedures that account for the study design (PROC 

SURVEYMEANS in SAS). In order to provide estimates of the individual pollutant effects 

on log ALT under the usual prescriptions for analysis using the NHANES data, we used the 

same covariates described for the mixed models described below in a survey model (PROC 

SURVEY REG in SAS) with weights that sum to the non-institutionalized population of the 

United States.  As a way to compare the two analytic techniques, we ran both styles using the 

single level (unpartitioned) pollution parameter.  

Using the mixed models (Proc Mixed, SAS, Cary, NC), we used a random intercept 

model as the base model of ALT with covariates and the two-level partitioned pollutant 

parameters with the random intercept corresponding to each county. Later we extended the 

model to create random coefficient models that allowed the slope of the individual level 

pollution parameter to vary across counties. These models were fit using restricted maximum 

likelihood (REML) and between-within degrees of freedom.   

The regression models included variables involved in the sampling design: age, ethnicity 

(non-Hispanic Whites, non-Hispanic Blacks, Hispanics, and others). Smoking status 

(indicator variable for former smoker) was used to account for the effect of prior smoking 

history. Instead of using the self-reported smoking status and exposure to ETS, we used 

measured levels of serum cotinine– a metabolite of nicotine- as measures of cigarette 

smoking (as a continuous variable among those with cotinine levels > 15 ng/ml); and passive 
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smoking (as a continuous variable among those with cotinine levels less than 15 ng/ml). Each 

individual has a 0 referent for one or the other tobacco exposure variable to account for the 

competing exposures of active smoking or exposure to environmental tobacco smoke (ETS). 

We then included covariates based on subject matter knowledge of biology and risk factors in 

order to account for as much of the individual level variation from the deterministic 

components known to regulate ALT. These included sex, BMI, waist to hip ratio (WHR), and 

alcohol consumption. We also included a quadratic term for alcohol consumption and WHR 

to allow for potential non-linear associations with ALT.  Indicator variables for low and 

middle income (high income being the referent category) were included to adjust for socio-

economic. Additionally, to account for seasonal variation in ALT levels, an indicator variable 

was included for winter months if the subject was surveyed between the months of 

November to April.   

In order to evaluate the consistency of the pollutant effects within and between pollutant 

models, we generated empirical Bayes estimates from a random coefficient model for each 

pollutant model. This model included the partitioned pollutant variable with an interaction 

between county and individual level pollution parameters, and a random slope for individual 

pollution.  If the interaction was not significant (p>0.20) it was not included in the model. To 

facilitate comparisons of the county level and individual level in relation to each other and 

across pollutants, we plotted the resulting models, with a line corresponding to the county 

level slope.  We plotted the mean adjusted log ALT values (posterior county means, y-

coordinate) against the corresponding mean county pollution value (x-axis).  The individual 

county slopes (posterior county slopes) were plotted through these individual county points, 
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with the length along the x-axis corresponding to the inter-quartile range of the within county 

pollution values (details in appendix). 

3. Results 
 

Air pollutants were monitored in urban areas only; furthermore, not all air pollutants were 

monitored in each area of the United States during the study period. Thus, the analytic data is 

a subset of counties and individuals within counties. The mean, interquartile range (IQR), 

standard deviation, number of counties, and number of persons for whom the measure is 

available for each pollutant is presented in Table 1. For each pollutant, variation that occurs 

within a county will be variation around a particular latent quality of pollution as it relates to 

the particular county characteristics of the pollutant. Variability in air pollution exposure that 

exists at the aggregate level and that motivates this multi-level model is demonstrated to 

different degrees for each pollutant (last column of Table 1). The amount of exposure 

variation that is at the aggregate (county) level is highest for NO2 at almost 90%.  Less 

clustering of exposure exists for SO2 (70%), ozone (67%) and PM10 (46%). The individual 

level variation (within-county) therefore is smallest for NO2 (10%) and greatest for PM10 

(54%).  

The variation of exposure to pollutants is different across counties (Figure 1).  For the 

pollutants PM10 and SO2, the within-county variation tends to increase at higher county 

pollutant averages. For NO2, four counties have distinctly higher variation than the remaining 

counties.  

County level PM10 is highly correlated with NO2 (top table 2), and its correlation with 

SO2 is slightly negative. County level NO2 is negatively correlated with SO2. The average 

county correlation between PM10 and NO2 was 0.28 and ranged from -0.49 to 0.74 (bottom 
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table 2).  The average county correlation between PM and SO2 was 0.27 and ranged from -

0.42 to 0.82.  

The sub-populations of the NHANES III data for which each pollutant measure is 

available do not differ greatly from each other (Table 3).  However, the mean age and the 

proportion of whites are lower in each of the pollution sub-samples than in the entire 

NHANES III study population (data not shown). This reflects differences that correspond to 

largely urban rather than populations. Generalizability of the relationships from analysis of 

these data to the U.S. population would be affected to the extent by which variables involved 

in the sampling design of NHANES are effect modifiers of the pollutant ALT relationship. 

After adjusting for variables included in the base model without air pollutants, the 

amount of variation in the outcome that is accounted for by the clustering of ALT levels 

within counties (the intraclass correlation) was 4.65%. Limited to the subpopulations with 

available pollution measures for PM10, NO2, and SO2, the intraclass correlation coefficient 

was 4.49%, 4.67% and 4.43%, respectively (data not shown).  In spite of this relatively small 

amount of clustering within county, all statistics for variation in the adjusted mean county 

ALT levels (random intercepts) were significant (based on p for the variance of the random 

intercepts- the τ00 statistic- from the mixed model being less than 0.05), reflecting statistically 

meaningful residual geographic clustering of log ALT after adjusting for individual level 

predictors of ALT.   

Males have higher ALT levels than women (Table 3). ALT levels are highest among 

those in their 30s and are decrease over each successive age group. ALT levels are highest 

among Mexican Americans and those classified as “other” while the levels are lowest among 

the non-Hispanic Blacks.  Consistent with the literature, ALT levels are highest among the 
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most obese either defined by BMI or WHR. Notably, levels of ALT in the underweight 

category were higher than those in the normal BMI category.  Former smokers had higher 

ALT levels compared to current and never smokers.  Consistent with the clustering of 

conditions associated with CVD in the literature, ALT levels were higher among those 

categorized as having metabolic syndrome and diabetes. 

In the survey style regression analysis, both PM10 and SO2 pollution exposures are 

associated with lower levels of ALT, while NO2 was associated with higher levels of ALT 

(top of Table 4). However, in the mixed models analysis with the same unpartitioned 

parameterization of pollutant exposures, NO2 was unrelated to ALT levels, indicating that the 

association is lost in allowing the county level intercepts (representing the adjusted mean 

ALT levels) to vary randomly.  However, these estimated effects from these two types of 

analysis do not take into account the level from which the variation of air pollution is 

derived. Of the pollutants in the mixed model analysis, SO2 has the strongest effect showing 

an increase of 10 ppb exposure to be associated with –0.021 (95% CI: –0.57, 0.15) change in 

log ALT. An increase of 10 µg of PM10 is associated with a –0.017 (95% CI: -.029,-0.005) 

change in log ALT.  

The partitioned pollution effects from the simple random intercepts model on log ALT 

are shown at the bottom of Table 4.  None of the county level pollutant estimates show 

statistically meaningful associations with log ALT, with only the NO2 coefficient as positive. 

Each individual level effect for the pollutants associated with particles - PM10, NO2 and SO2 - 

is negative; statistically the negative ALT effect is most strongly associated with PM10. NO2 

has a negative association with log ALT but is not as significant owing to a smaller N and 
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less within county variability noted above. The effects for PM10 and SO2 are consistent (the 

same negative association) between the county and individual level effects. 

The partitioned pollutant effects from the random intercepts model are consistent when 

the models are adjusted for other possible confounders that include competing exposures 

(wood stove, fireplace and gas stove use), exercise over the last month, other socioeconomic 

status (SES) related variables (education and household size), and other dietary variables, 

such as  -coffee and seafood intake that indicated omega-3 fatty acid intake (data not shown). 

Controlling for hypertension or diabetes medications did not change the effects. Also, the 

inclusion of whether or not the patient had lived in the household for at least a year or if the 

ALT specimen was collected under fasting conditions did not change the effect estimate of 

either between or within county air pollution.  

To evaluate the effects across the range of exposures that exist among the counties 

sampled in NHANES III the final models resulting from the backward elimination from the 

random coefficient models with cross-level interactions described above are shown in Table 

5.  Evidence that the individual level effects of PM10 and SO2 differed across counties exists 

based on the criteria of a p-value of 0.20 or less. The likelihood ratio test for the inclusion of 

the random slope of PM10 and SO2 had a p-value of 0.004 and 0.045 respectively. The 

random coefficient model for NO2 did not converge due to the lack of within county 

variability so only the fixed effects from the random intercepts model could be presented. 

However, interactions for NO2 as well as SO2 were included in the model as evidence exists 

that the individual level slopes differed across the range of county level exposures (based on 

the criterion of 0.20).  
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The fixed county level effect and the empirical Bayes estimates of the county specific 

individual level results from these models were plotted in Figure 2. Though there is some 

variability, the individual level slopes for PM10 are mostly negative, the average slope being -

0.013 log-ALT/per 10 µg per micrometer (95%CI -0.032,0.013;). The effect of NO2 on log 

ALT is different across mean county levels of NO2 (cross-level interaction), being negative at 

low county means and approximately null at higher county means. Similarly, the effect of 

SO2 on log ALT is negative at low county means and on average approximately null at high 

county means. Of the pollutant models, due to the absence of a cross-level interaction and the 

consistency of the slopes, it is justifiable to model the use the simple random intercepts 

model in interpreting the effects of PM10 - where the exposure is simply an individual effect 

independent of the county level.  

Finally, we performed the analysis on the data that included those with “explained” 

elevations in ALT and the results were not materially different (data not shown). 

4. Discussion 
 

We found consistent negative relationships among the county specific estimates of the 

relationship between exposure to PM10 and ALT levels. Similarly, at average county mean 

pollution levels for NO2 and SO2, these pollutants were also negatively associated with ALT.  

The evidence suggests that the associations became less negative in counties with higher 

mean levels of air pollution.  The implications of the county level effects are discussed below 

in relation to the interpretation of partitioned effects from mixed models.  To our knowledge, 

this is the first population based (nonoccupational) study of ALT levels in relation to air 

pollution.  
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Consistent with the literature, metabolic syndrome, diabetes, BMI, and in particular, 

visceral fat, are all strongly related to elevations in ALT levels. The relationship between air 

pollution measures and ALT, however, are not consistent with the Rome Constables Study , 

or with what would be expected if air pollution is toxic to the liver. Nonetheless, it is 

significant that the association with cigarette smoking among current smokers - known to 

stimulate oxidative stress and is associated with elevations in CRP -is similarly associated 

with a decrease in log ALT levels in these data, ranging from a decrease of 0.0033 to 0.0047 

log ALT per cigarette smoked (p=0.002) and NO2 (p=0.0001) respectively. Therefore, while 

not showing evidence of liver damage, exposure to air pollution is associated with a 

particular metabolism shared with cigarette smoking.  

A few studies provide support for the observation of decreases in ALT in relation to 

environmental pollutant exposure.  A previous study of Japanese  workers  has shown a 

negative association between ALT and number of cigarettes smoked per day.17 In an animal 

study, exposure to combustion exhaust gases containing a high percentage of SO2 caused 

decreases in ALT activity in guinea pig livers18 and exposure to wood smoke was noted to 

cause a decrease in ALT activity in rodents.19  

The principal limitation of this study is that these are cross-sectional data and therefore 

are limited in establishing causal relationships. Furthermore, serum aminotransferase levels 

can fluctuate in individuals. Another limitation is that exposure measurement relied upon 

interpolation from ambient monitors to residence. This is likely to result in misclassification 

of personal exposure to the measured pollutants. PM2.5, which is a more relevant measure of 

exposures that have been associated with health effects, was not available in these data that 

were collected before ambient monitoring of PM2.5 began. However, in a study of the 
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surrogacy of ambient air pollution levels for personal exposure, ambient levels of NO2, SO2 

and ozone were poor indicators of personal exposures to the gases themselves; however, they 

were good surrogates for exposure to PM2.5.20   This study suggests that ambient NO2 and 

SO2 may stand for personal exposure to their associated fine particles from urban traffic and 

sulfites respectively.  

Background concentrations in parts of the country are higher for NO2 (in the south) and 

SO2 (in the north).  In the parameterization of pollutants utilized in this analysis, background 

concentrations would be reflected by low variability within county and small values for the 

individual level pollution measure, with the magnitude of the exposure represented by the 

mean county level. Local sources of pollutants such as that from urban traffic will be 

reflected by substantial variation in these pollutants within county and the magnitude of the 

differences relative to the county mean are reflected in the individual level parameter. In 

these data, rather than reflecting exposure to SO2 specifically, we interpret individual level 

exposures as a surrogate measure for sulphite particles from either point source (power 

plants) or combustion products from mobile diesel sources. Similarly individual level NO2 is 

a marker for traffic related particulate (PM2.5) air-pollution. Individual level PM10 is likely to 

encompass particle related air pollution from both though still encompassing the less coarse 

fraction of PM that is less relevant as an exposure.   

Individual level relationships are more reliable for causal inference than ecological 

associations. In these data however, the association at the county level contributes 

significantly to the interpretation from the mixed model. In counties with little variation in 

exposure to an air pollutant, the county level measurement reflects relevant exposure to 

levels that are shared across the county. Furthermore, county average exposure over the prior 
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week is correlated with the same over longer periods of time and therefore, the county level 

effect has causal value as a reflection of consequences of living in a polluted county. 

As a consequence of the ambiguity in the inference derived from the county level 

pollution parameter, the cross-level interactions may reflect two dynamics:  1) The less 

negative individual level slopes at higher mean county levels may reflect either dose-

response of the health effects; or, 2) the cross-level interaction may relate to qualitatively 

different exposures with respect to ALT of either NO2 or SO2 corresponding to different 

county mean levels of the pollutant. A third possibility is that the exposure measurement 

error is different across mean county pollution levels.  

The observation of decreased levels of ALT in relation to exposure to air pollution 

suggests alterations in metabolism in response to exposure to particulate air pollution and 

that is shared with cigarette smoke exposure. These results are not consistent with hepatocyte 

cytotoxicity from direct exposure to components of ultrafine particulate matter in the 

circulation via exposures to the lung. While contrary to evidence of hepatotoxicity, these 

results may reflect a paradoxical toxicity arising from oxidative or inflammatory stimuli 

originating in the lung. Under the two hit hypothesis suggested in the literature, hepatocyte 

injury that results in necrosis or apoptosis and higher levels of ALT, would be apparent at 

high exposure levels and/or in livers that are susceptible livers.  However, at low levels 

and/or in healthy livers, such exposures may result in a proliferation of hepatocytes instead of 

cell death.11 We hypothesize that at lower exposures among people with healthy livers, 

exposure to air pollution may reflect a proliferation rather than destruction of liver cells 

(reflected by reduced levels of ALT), ultimately making livers more vulnerable to future 

environmental exposures. 
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Table 6. 1 Prior week average pollution exposure in 46 NHANES III phase I counties 
 

 
Pollutant unit Mean Interquartile 

range 

std 

dev 

No.of 

locations 

No. of 

observations 

Proportion 

of variance 

explained 

by county 

        
PM10 ug/m3 35.8 21.4-45.7 19.1 30 4698 46.00% 

NO2 ppb 27.6 14.3-32.5 14.3 24 3704 89.00% 

SO2 ppb 17.5 9.4-25.0 10.7 25 3874 69.50% 
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Figure 6. 1  County pollutant mean by variance, bubbles proportional to county sample 
size. 
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Table 6. 2 Spearman Correlation coefficients between county average Pollution exposure (prior week) 
 

  Correlations between pollutants       

Variable  PM10 p N counties  NO2 p N counties SO2 p N counties

PM10   1  30  0.48 0 24 -0.07 0 23 

NO2   0.48 0 24  1  24 -0.15 0 21 

SO2   -0.07 0 23  -0.15 0 21 1  25 

            

  Average within county correlations between pollutants     

  PM10    NO2   SO2   

  Mean Corr Min Max  Mean Corr Min Max Mean Corr Min Max 

PM10   1    0.28 -0.5 0.74 0.27 -0.4 0.82 

NO2   0.28 -0.5 0.74  1   0.31 -0.1 0.71 

SO2  0.27 -0.4 0.82  0.31 -0.1 0.71 1   
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Table 6. 3 Univariate Characteristics of Lipid Parameters and covariates by sub-populations  
 

 Measurements in counties with available ambient pollution measurements  

 PM10 (n= 30)   NO2 (n= 24)   SO2 (n= 25)  

 n mean std  n mean std  n mean std 

Outcome             

ALT (SI u/l) 3964 14.54 9.71  3090 14.57 9.48  3275 14.46 9.43 

Elevated ALT 186 4.70%   146 4.70%   153 4.70%  

            

Covariates            

Age (years) 4368 48.05 18.87  3444 47.16 18.76  3628 48.11 18.89 

Female 2184 50%   1711 49.70%   1814 50.00%  

White 1665 38.10%   1252 36.40%   1562 43.10%  

Black 1186 27.20%   986 28.60%   1044 28.80%  

Mexican Amer. 1348 30.90%   1054 30.60%   849 23.40%  

Other 169 3.90%   152 4.40%   173 4.80%  

Body Mass Index (kg/m3) 4349 26.74 5.51  3430 26.74 5.52  3615 26.6 5.51 
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 Measurements in counties with available ambient pollution measurements  

 PM10 (n= 30)   NO2 (n= 24)   SO2 (n= 25)  

 n mean std  n mean std  n mean std 

Outcome             

Waist/Hip ratio 4138 0.92 0.09  3260 0.92 0.08  3431 0.92 0.09 

Former smoker 1159 26.50%   899 26.10%   964 26.60%  

Current smoker 1160 26.60%   941 27.30%   997 27.50%  

Cigarettes/day (Current 

smoker) 

4368 3.78 8.66  3444 3.86 8.78  3628 4.08 9.14 

            

Potential Confounders            

Social factors            

Poverty/Income ratio 3885 2.53 1.66  3069 2.52 1.63  3233 2.64 1.66 

Education (years) 4333 10.96 4.08  3412 10.95 3.99  3596 11.38 3.82 

Household size (persons) 4368 3.52 2.16  3444 3.59 2.17  3628 3.46 2.11 
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 Measurements in counties with available ambient pollution measurements  

 PM10 (n= 30)   NO2 (n= 24)   SO2 (n= 25)  

 n mean std  n mean std  n mean std 

Outcome             

Other exposures            

Wood stove use 165 3.80%   102 3.00%   134 3.70%  

Fireplace use 738 16.90%   550 16.00%   568 15.70%  

Gas stove use 2615 59.90%   2177 63.30%   2192 60.50%  

Environmental Tobacco 

Smoke 

1595 36.50%   1312 38.10%   1409 38.80%  

Serum cotinine (ng/mL) 4068 0.9 5.67  3191 0.84 5.06  3374 0.86 5.45 

Dietary factors            

Caffeine (drinks/month) 4356 35.28 53.44  3435 34.02 53.35  3615 35.86 54.36 

alcohol (g/day) 4176 10.03 27.16  3291 9.86 26.19  3463 9.95 26.02 

Saturated fat (g/day) 4191 26.4 17.03  3303 26.84 17.29  3478 26.67 17.36 

Serum Vitamin C (mg/dL) 3918 0.71 0.44  3059 0.71 0.43  3240 0.72 0.43 



 

 

140

 Measurements in counties with available ambient pollution measurements  

 PM10 (n= 30)   NO2 (n= 24)   SO2 (n= 25)  

 n mean std  n mean std  n mean std 

Outcome             

Fish and shellfish 

(portions/week) 

4360 6.27 7  3439 6.23 7.13  3622 6.46 7.34 
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Table 6. 4 Bivariate relationships between variables and ALT levels in all Phase I 
NHANES data 
 
Variable N Mean  

(SI U/L) 

Std Error  95% Confidence 

Interval  

Sex      

Total 7137 15.2651 0.3042 14.6358, 15.8944 

  Males 3562 17.9038 0.3033 17.2764,18.5313 

  Females 3575 12.8888 0.3523 12.1601,13.6174 

     

Age     

  20 to 29 1365 15.0941 0.5342 13.9889,16.1992 

  30 to 39 1355 16.6242 0.496 15.5981,17.6502 

  40 to 49 1136 16.1089 0.4543 15.1690,17.0487 

  50 to 59 863 15.601 0.4923 14.5826,16.6195 

  60 to 79 1056 14.2813 0.4494 13.3516,15.2110 

  70 to 79 793 12.5803 0.2369 12.0902,13.0704 

  80 & above 569 10.3952 0.477 9.4084,11.3819 

     

Race/Ethnicity     

   White non-H 3240 14.8007 0.3652 14.0451,15.5562 

   Black non-H 1727 13.4735 0.3065 12.8394, 14.1076 

   Mexican Amer. 1945 20.0975 0.653 18.7468, 21.4483 

   Other 225 20.1349 1.209 17.6340, 22.6359 
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Variable N Mean  

(SI U/L) 

Std Error  95% Confidence 

Interval  

BMI Category     

  Underweight 133 15.138 3.2427 8.4299,21.8462 

  Normal 2786 13.1629 0.2802 12.5832,13.7426 

  Overweight 2536 16.1781 0.3443 15.4658,16.8904 

  Class I obese 1113 17.3087 0.4146 16.4511,18.1663 

  Class II and III obese 541 20.4766 1.2231 17.9464,23.0068 

     

WHR quartiles     

  4th- smallest 1750 12.5208 0.4322 11.6266, 13.4150 

  3rd 1849 15.0855 0.3637 14.3332,15.8377 

  2nd 1673 17.2731 0.4612 16.3190,18.2272 

  1st largest 1505 18.2344 0.4149 17.3762,19.0926 

Smoking Status     

  Never 3306 15.0516 0.3268 14.3755,15.7276 

  Former 1909 15.7707 0.5142 14.7069,16.8345 

  Current 1922 15.1296 0.4204 14.2598,15.9993 

     

Metabolic Syndrome     

  Yes 1544 17.9998 0.6457 16.6641,19.3355 

  No 5593 14.7071 0.3437 13.9962,15.4181 
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Variable N Mean  

(SI U/L) 

Std Error  95% Confidence 

Interval  

Diabetes 

  Yes 363 18.8149 1.1976 16.3375,21.2923 

  No 6774 15.1443 0.3083 14.5066,15.7819 
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Table 6. 5  Regression of Prior 1 week average exposures and ALT 
 
Survey Regression (PROC SURVEYREG)     

Pollutant 

Effect  

Estimate  

(SI u/l) 

S.E. Denom 

df. 

prob 

t 

95% Confidence  

Interval 

PM10 (µg/m3) -0.016 0.008 17 0.07 -0.033, 0.001   

NO2 (ppb) 0.031 0.012 15 0.027 0.004, 0.057   

SO2 (ppb) -0.043 0.034 15 0.223 -0.116, 0.029   

Mixed Model (Random 

Intercepts) 

     

Pollutant 

Effect  

Estimate  

(SI u/l) 

S.E. d.f. prob 

t 

95% 

Confidence  

Interval 

τ00 S.E. of 

τ00 

Unpartitioned        

PM10 (µg/m3) -0.017 0.006 3118 0.007 -0.029, -0.005 0.011 0. 004 

NO2 (ppb) -0.001 0.01 2436 0.885 -0.020,0.018 0.009 0.004 

SO2 (ppb) -0.021 0.018 2555 0.245 -0.057,0.015 0.012 0. 004 

        

Partitioned        

PM10 (µg/m3)      0.011 0.004 

County level -0.011 0.014 28 0.426 -0.040, 0.017 . . 

Individual 

level 

-0.019 0.007 3350 0.008 -0.032, -0.005   
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Mixed Model (Random 

Intercepts) 

     

Pollutant 

Effect  

Estimate  

(SI u/l) 

S.E. d.f. prob 

t 

95% 

Confidence  

Interval 

τ00 S.E. of 

τ00 

NO2 (ppb)      0.009 0.004 

County level 0.008 0.013 22 0.525 -0.018, 0.035 . . 

Individual 

level 

-0.014 0.016 2625 0.387 -0.045, 0.017   

        

SO2 (ppb)      0.012 0.004 

County level -0.019 0.037 23 0.619 -0.095, 0.058 . . 

Individual 

level 

-0.023 0.019 2759 0.215 -0.059, 0.013   
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Table 6. 6 Random Coefficient model of log ALT by pollutant 

effect 

Estimate 

(SI u/l) 

Std 

err df probt 

95% 

Confidence 

Interval τ00 τ01 τ11 

S.E. of 

τ00 

S.E. of 

τ01 

S.E. of 

τ11 

PM10 (µg/m3) Likelihood ratio test for random 11.2; p=0.004 

County level -0.009 0.011 28 0.389 -0.032, 0.013 . . . . . . 

Within county -0.013 0.010 3350 0.172 -0.032, 0.006 0.010 0.002 0.001 0.003 0.001 0.001 

NO2 (ppb) Random intercept model only 

County level 0.008 0.013 22 0.525 -0.019, 0.035       

Within county -0.037 0.026 2624 0.157 -0.089, 0.014 0.010   0.004   

Cross level Intxn 0.017 0.010 2624 0.095 -0.003, 0.037       

SO2 (ppb) Likelihood ratio test for random slope 6.2  ; p=0.045 

County level -0.018 0.037 23 0.625 -0.095, 0.058 . . . . . . 

Within county -0.046 0.018 2758 0.011 -0.081, -0.011 0.012 0.002 0.002 0.004 0.002 0.003 

Cross level Intxn 0.036 0.018 2758 0.039 0.002, 0.071       

†log ALT modeled as a continuous dependent variable, using linear mixed models. 
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τ00 =  Variance of random intercepts from mixed model 

τ01 = Covariance of random intercepts and random slope from mixed model 

τ11 = Variance of random pollutant coefficient from mixed model 
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PM10

PM10 10 micrograms per cubic meter
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Figure 6. 2 County level slope of pollutant effect empirical Bayes estimates of log ALT. 
 

Northeast=Black, Midwest=Blue, South=Red, West=Green , 

BC=Between county WC=Within county (individual) 

Vertical is grand pollutant mean. Horizontal is mean adjusted county level average log ALT (grand intercept) 
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V. CONCLUSIONS 
 

 
CHAPTER VI 

 
CONCLUSIONS 

 
"There is no true interpretation of anything; interpretation is a vehicle in the service of 
human comprehension. The value of interpretation is in enabling others to fruitfully think 
about an idea"  --Andrea Buja 

 
While it is well established that there are cardiovascular effects of air pollution, it is not 

known what the full extent of the effects are. The reason for this is that the particular 

mechanisms by which PM air pollution affects the cardiovascular system are not well 

understood. This knowledge is necessary to understand the full impact that these ubiquitous 

yet modifiable exposures have on the population. This is particularly important at this time 

due to increased industrialization in developing countries with the consequences for obesity 

and CVD.  Furthermore as the urgency related to green house emissions from the combustion 

of fossil fuels and foreign dependency for energy is now being recognized, the answer to this 

question could provide additional impetus for change and inform policy in development of 

alternative fuels. 

Major gaps exist in understanding the pathophysiological mechanisms underlying the 

observed health effects. Among the questions that remain to be answered are:  Are the health 

effects limited to a particular vulnerable population?; and are they limited to acute exposures 

or do acute exposures over time lead to significant health effects in the general population? 

Epidemiology is relied upon to demonstrate the health burdens under the circumstances of 

real world exposures. However, the study of air pollution has been hampered by poor 
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exposure measurement and a lack of understanding of coherent mechanisms including what 

are the particular characteristics and components of PM that affect pathological changes

Inconsistencies may occur for a number of reasons:  1) the characteristics of particle air 

pollution with pathogenic potential vary over space and time; 2) the pertinent comorbid 

conditions and potentiating exposures are not understood; 3) The time lags in 

epidemiological studies are not characterized well to measure the effects appropriately; and  

4) Where exposures are measured they may not correspond to the personal exposures and or 

the burden to the host. The studies in this dissertation redress some of these limitations by 

exploring a novel meditative mechanism and by applying methodology in a unique way to 

mitigate the difficulties of exposure assessment. 

Atherosclerosis underlies much of the CVD with which the health effects of PM have 

been associated. The studies in this dissertation fill an obvious gap in the extant literature 

regarding the effect of PM in initiating and promoting atherosclerosis. Alterations in liver 

metabolism that occur in conjunction with visceral fat and is indicated by elevations in ALT 

has been found to be a critical component involved in the host of conditions that lead to 

ischemic disease.  Other epidemiological and human exposure studies have examined other 

manifestations of these conditions in relation to PM. These include increased blood pressure, 

lymphocytes, fibrinogen, blood coagulation factors (platelets ), arterial vasoconstriction 

(blood pressure), endothelial dysfunction and systemic inflammation as indicated by CRP 

and fibrinogen. The studies in this dissertation examine two consequences that are implied by 

the involvement of the liver in mediating health effects. 

Exposure assessment that relies on ambient monitoring has a number of limitations. Fine 

particles have a high diffusion capacity and are a significant component of indoor air 
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pollution. Epidemiological studies that include subjects all within the same area are limited 

due to common exposures. Furthermore, exposures in these areas are correlated over time. 

For these reasons PM is to a large extent an ecological level exposure. As a consequence the 

exposure contrasts within a particular region are limited. Where exposures to PM do vary 

within a region, additional variation is valuable as an exposure gradient within that exposure 

milieu. The current studies are predicated on the observation that exposure to air pollution in 

free living populations is both an ecological and individual level exposure. This multi-level 

perspective is applied in this dissertation to standardized data from around the country with a 

nested structure that is analogous to meaningful exposure contrasts. 

A. Findings 

The results of these studies point to adverse alterations in LDL, which is compatible with 

associations observed with cigarette smoking. The alterations while being subtle are 

portentous for the reason that such changes which may occur in association with oxidative 

stress would suggest even greater deleterious changes due to the oxidized LDL.  

The alterations observed with ALT from acute exposures were not consistent with 

hepatocyte cytotoxicity. If PM does actually translocate into the general circulation, one 

would expect adverse effects from intimate contact between toxic components and 

hepatocytes reflected in increases in ALT.  The negative associations refute this hypothesis. 

The consistent negative effects beg post hoc hypotheses that would be suited for 

laboratory investigation. It may be that ALT is down regulated as a secondary effect from 

other oxidative and inflammatory stimuli from PM exposures. Alternately, under the two hit 

hypothesis that has been proffered by investigators of liver disease, decreases in ALT may 

indicate a stimulus that causes a proliferation of hepatocytes. In its capacity as the organ 
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responsible for metabolizing xenobiotics, liver cells have characteristics that make them 

more robust and resistant to damage. It is plausible that hepatocytes respond differently to 

stimuli such that it may alter the balance between hepatocyte proliferation and apoptosis in 

favor of apoptosis. This is portentous for future vulnerability and CVD given that such 

changes may cause alterations that make the liver prone to future insults and contribute to the 

proinflammatory milieu associated with CVD. 

Taken together these studies are suggestive of alterations in liver metabolism with 

consequences for other alterations related to metabolic syndrome, atherogenesis and 

thrombosis.  While the particular study questions are novel and the methodology has 

advantages in addressing the study questions, these studies are far from being definitively 

positive studies. 

B. Limitations 

Reliance on ambient monitoring for exposure assessment remains a limitation as in most 

observational studies without personal monitoring. The interpolation from monitoring 

stations to the home residence is not an adequate substitute for individual level exposures. 

People do not spend all their lives at home. Nor is the air pollution outside the home identical 

to that inside the home. Other sources of air pollution exist indoors and outdoors. In 

particular carbon monoxide is not included in the air pollution data. Some indoor exposures 

are measured but with varying degrees of precision such as use of fireplace or wood stove in 

the past month. Much of this measurement error is likely to be unsystematic, however 

systematic differential exposure may also be present in these data. Nonetheless, these data 

have an abundance of variables that either directly or indirectly correlate with determinants 

of exposure. It is likely that on average, the misspecification of exposure from the use of 
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ambient monitoring in these data is unsystematic and will likely result in noise (random 

misclassification) that simply attenuates the effect estimates. 

One potentially systematic misclassification may occur as a result of people crossing 

through different micro-environments such that measurements associated with home 

exposure may differ significantly from their real exposures. Occupation and commuting that 

may correlate with the outcomes in these studies may correlate with home exposure. It is not 

a tenable assumption that such misclassification is similar across all people in all counties 

and that it is not systematically related to characteristics associated with risk factors for the 

outcomes studied here. 

Related to this, the following thought experiment includes a worst case  scenario: 

Affluent people (with low CVD risk) live in less polluted areas are characterized as low 

exposure, but commute, exposing them to traffic relate air pollution. If the converse is also 

true that less advantaged people travel from their residence in high exposure neighborhoods 

to low exposure neighborhoods, then for part of their day, their measured exposures would be 

the complete reverse of their true exposure. While this is possible, it would also have to be a 

consistent scenario across all counties and variation was only geographical and not temporal. 

The results in these studies provide an estimate of the within county effect that is the average 

of the county effects. If the worst case scenario is infrequent, this would result in a bias 

toward the null. 

The NHANES data were collected in the 1980s when PM10 was the only mass based 

metric collected by the EPA. Consequently, a significant limitation is that these pollution 

data do not include PM2.5. Fine particulates are more representative of fossil fuel combustion 

with which health effects are associated.  Ultrafine particulates that are associated with 
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transition metals and particles that are capable of unique toxicological properties are also not 

available. The available pollution measures are correlated with the more relevant PM2.5. 

Indeed the Sarnat study demonstrated that ambient monitor data of NO2 and SO2 was a good 

surrogate for personal exposure to PM2.5. However, each measured pollutant may represent 

different correlates of the toxicological properties of fine PM.  

Finally, the lack of within county variation limits the contribution of this level of 

evidence. In particular is the fact that the variation is smallest at the lowest mean county 

levels. As a consequence it is difficult to make much out of the particular direction, much 

less strength of the within county effects at these low county levels. The cross-level 

interaction that is demonstrated in many of the pollutant-outcome models is ambiguous. It is 

possible that this does reflect a true dose-response such that the effect really does differ 

across the range of average county level effects. However, it may also be the result of 

differential misclassification related to county mean or variance of pollution levels. 

C. Strengths 

The current research fills an obvious gap in the extant body of evidence that links PM 

exposure to CVD. Alterations in liver metabolism may provide a coherent explanation for 

many of the associations between PM and CVD that have been observed, such as systemic 

inflammation with related consequences for atherosclerosis and death from CVD. 

Furthermore, it may suggest specific reasons why some people are more vulnerable to these 

effects than others.  People with existing CVD, diabetes and older people will have 

alterations in liver metabolism that are likely to be more susceptible to the effects from PM. 

These two studies are reinforcing as representing near and long term consequences of PM 

exposure in relation to liver metabolism and risk of future morbidity and mortality.  
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The methodology employed in these analyses provides some methodological advantages 

in evaluating health effects of PM in observational studies that rely on ambient monitoring. 

The principle advantage comes from the partitioning of the exposure between the county 

level and within county level.  It provides two relevant effect estimates corresponding to 

levels of exposure, each with relevance for statistical inference. To the extent that people 

within the same county share common exposures and that these exposures are correlated over 

time, the county level exposure is a meaningful measure that simply captures the ecological 

nature of PM exposure. This is estimated independent of the pollution relationship at the 

within-county level. If the models are adequately specified at the individual level, the county 

level effects will control for confounding at the individual level that may arise from 

differences in aggregate characteristics of measured variables being correlated with county 

mean pollution levels. 

In the situation where the majority of the variation occurs between counties, then this 

parameter captures this aggregate level effect. The variation within counties where it occurs 

is additional evidence that is conditional on the county effect, but provides valuable evidence 

that arises from this level. To the extent that they both agree provides support for the single 

hypothesis that PM is related to the outcome, as occurs with the effect of prior year 

exposures on LDL levels. 

While it is possible that misclassification of within-county exposure due to individuals 

crossing over microenvironments may be systematically related to the outcome, where the 

source of variability within county is not due to geography alone, this bias would not be as 

relevant. In the ALT study, there is also temporal variability over the course of the 6 weeks 

during which the samples were collected by the mobile examination center. The time at 
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which their blood was collected is unlikely to be related to temporal variations in air 

pollution exposure. Thus the individual level parameter is likely to be derived from variation 

that does not systematically correlate with exposure. Furthermore, the people crossing micro-

environments during the day are almost certainly in the same region, and thus their macro 

exposure remains the same.  

In evaluating the effects of pollutants on the outcome parameters, I was able to compare 

the effects with that of active and passive smoking that, having a similar pathway mechanism 

provides an internal validation of the observed pollutant effects. This is more particularly 

relevant in the analysis of ALT. Though the effect for pollution on ALT levels at the 

individual level was counterintuitive, a similar effect was seen for passive smoking. This 

provides support that the observed pollutant effect is not spurious. 

In the absence of adequate personal exposure data, I exploited data that has large 

exposure gradients available in data from around the country. Furthermore it specifically 

addresses the latent qualities that exist in exposure monitor data. These latent qualities relate 

to: 1) SO2 and NO2 as surrogates of personal exposure relate to particulate matter from 

sulphites and urban traffic respectively;  2) Measured ambient levels of PM10, SO2, or NO2 

variously represent common pathogenic potential such as precipitation inflammation in the 

lung; 3) The unique properties of particulates that these correspond to may differ regionally 

in relation to their measurements; 4) Exposures are correlated in a region and over time such 

that effects of PM reasonably include a valid etiological inference from living in a polluted 

area.  In this study, the separation of the effects from air pollution exposures into within and 

between county allow a more realistic statistical representation of the nature of exposure. In 

spite of the cross-sectional nature of these data, the analysis has advantages over traditional 
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Epidemiology studies using ambient monitor data that do not treat exposures in the relevant 

contextual framework. 

D. Summary 

The results of the study of cholesterol were consistent with the hypothesis and provide a 

link in the evidence that exists between PM exposures and atherosclerosis, which has 

previously not been examined. In the other study, the results were opposite from the 

expectation that systemic effects of PM would be represented by an increase in ALT 

reflecting hepatocyte cytotoxicity. Although to a large degree the alternative explanations 

were post-hoc, these provide, I believe, a valuable new hypothesis by which the liver may 

mediate the effects of particles. Specifically, those alterations in liver metabolism that 

correspond with short term decreases in ALT may signify a paradoxical response with 

relevance to stimuli that affect the future metabolizing ability of the liver.
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APPENDICES 
 
A.  County slope plotting 

B.  Coding of covariates 

C.  Manuscript 1. Additional Results 

D.  Manuscript 2. Additional Results 

E.  Manuscript 2. Results including subjects with “explained” ALT elevations  
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A. County slope plotting 
 
     Details of the empirical Bayes estimates resulting from the random coefficients model: 

First we included a single slope running through the national average pollution mean (x-axis) 

and intercept (y-axis) to reflect the between county estimate. In addition we plot the 

individual slopes for each of the counties. For these, the position on the y-axis was a function 

of the overall intercept, plus the individual random intercept, plus the increment predicted 

from the between county slope based on the county average pollutant exposure.  The position 

on the x-axis corresponded to the county average pollutant exposure. The slopes surrounding 

each county are derived from the fixed effect for the within-county slope, plus the increment 

from the cross-level interaction (if significant), plus the random slope (if significant). The 

length of the within county slope is determined by the individual county IQR for the 

pollutant. 
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B. Coding of covariates 

 

1. Personal level covariates 

a. Stratification variables used in NHANES sampling methodology: 

Sex : Male=index value;  Female=referent 

Age (In whole years) continuous  

Age categorical:1-2, 3-5, 6-11, 12-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-

79, 80+ 

Ethnicity: Non-Hispanic; white (referent value); non-Hispanic black; Mexican 

American; other (includes other Hispanics, Asians and Native Americans.  

 

b.Social-Economic variables 

Education: 0-8 years, 9-11 years, 12 years, 13 plus years 

Poverty income ratio (PIR)- continuous 

PIR – Categorical: High (referent)= ge 3.5; Middle income 1.3 + to 3.5; Low 

income lt 1.3  

 

Household size continuous: Categorical: 1 (referent), 2, 3,4, 5 and up 

 

c. Biological risk factors 

BMI in kg/m continuous 

BMI as categorical:  

'1=UNDERWGHT' BMPBMI<18.5 

'2=NORMAL' 18.499<BMPBMI<25 

'3=OVERWGHT' 24.999<BMPBMI<30 

'4=CLASS I' 29.999<BMPBMI<35 

'5=CLASS 2,3' 34.999<BMPBMI     

 

Waist to hip ratio: 

1st quartile lt -0.07  
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2nd quartile if -0.07 to 0.00  

3rd quartile 0.00 to 0.06  

4th quartile gt 0.06  

 

Metabolic syndrome (Yes if 3 or more of the following): 

Systolic blood pressure greater than 130;  

diastolic blood pressure greater than 85;  

taking medication for hypertension;  

serum triglycerides greater than 1.7 mmol/L;  

HDL less than 40 (male) or 50 (female) ;  

fasting glucose greater than 6.0;  

waist circumference grater than 102 cm (males) and 88 cm (females) 

 

Diabetes mellitus (where available): glucose tolerance test (OGTT) 

Smoking Current/Past/Never 

Current Smoking Packs/day (smokers only) 

Environmental Tobacco Smoke (yes/no) 

Cotinine-A laboratory measure of Nicotine metabolite in (ng/ml) 

d. Dietary risk factors 

Alcohol Consumption (g/day) 

Saturated Fat consumption 

e. Competing exposures 

Wood stove use 

Fireplace use 

Gas stove use 

 

2. Group level risk covariates: 

Season: Dichotomized to Winter (Index value: November through April) vs 

Summer (May through October). 
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C. Manuscript 1. Additional Results 
 
 
Table A5. 1 Random Intercepts Total Cholesterol and LDL/HDL ratio 
 
 

Effect Estimate df probt

lower

upper τ00 

S.E. of 

τ00 

Total Cholesterol (4a) 

PM10       

County level 0.963 29 0.173 -0.446, 2.371 . . 

Within county 1.974 3512 0.498 -3.739, 7.687 17.444 9.249 

Survey reg       

NO2       

County level 2.229 23 0.012 0.544, 3.914 . . 

Within county 0.186 2772 0.954 -6.146, 6.518 3.393 5.640 

Survey reg       

SO2       

County level 0.560 23 0.650 -1.961, 3.081 . . 

Within county 3.410 2809 0.385 -4.280, 11.099 11.404 7.416 

       

LDL to HDL Ratio (4b) 

PM10       

County level 0.030 29 0.476 -0.054, 0.113 . . 

Within county 0.070 1460 0.084 -0.009, 0.149 0.023 0.013 
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Effect Estimate df probt

lower

upper τ00 

S.E. of 

τ00 

Survey reg       

NO2       

County level 0.068 23 0.134 -0.022, 0.157 .  

Within county 0.111 1147 0.153 -0.041, 0.263 0.023 0.016 

Survey reg       

SO2       

County level 0.101 23 0.167 -0.046, 0.247 . . 

Within county 0.195 1159 0.197 -0.101, 0.492 0.014 0.012 

 



 

 

166

Table A5. 2 Modification of effect of Prior year Exposure to Pollutants on Total Cholesterol by Age, Diabetes and Smoking  
 

Effect  

Modifier 

(EM) 

Age (year)  Diabetes  Number of cigarettes smoked 

(current smokers) 

 Estimate p 95%CI Estimate p 95%CI Estimate p 95%CI 

          

Total Cholesterol (5a)           

County PM10* 1.154 0.069 -0.094, 2.402  1.558 0.017 0.299, 2.816  1.141 0.079 -0.139, 2.421 

Indiv. PM10 * 2.791 0.299 -2.482, 8.064  1.538 0.577 -3.874, 6.950  3.427 0.253 -2.444, 9.298 

EM*ind PM10 * 0.323 0.003 0.112, 0.534  -1.871 0.788 -15.481, 11.740  -0.481 0.002 -0.792, -0.169 

            

County NO2 † 2.402 0.002 0.986, 3.817  2.033 0.006 0.644, 3.422  2.42 0.002 1.025, 3.815 

Indiv NO2 † 0.214 0.939 -5.268, 5.697  -0.65 0.806 -5.844, 4.544  1.956 0.438 -2.984, 6.895 

EM *ind NO2 † 0.067 0.663 -0.235, 0.369  0.46 0.961 -18.008, 18.927  -0.736 0.018 -1.348, -0.125 
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Effect  

Modifier 

(EM) 

Age (year)  Diabetes  Number of cigarettes smoked 

(current smokers) 

 Estimate p 95%CI Estimate p 95%CI Estimate p 95%CI 

County SO2 † -0.253 0.774 -2.060, 1.553  0.22 0.819 -1.752, 2.192  -0.231 0.796 -2.055, 1.593 

Indiv. SO2 † 2.171 0.564 -5.214, 9.557  1.546 0.723 -6.995, 10.087  5.127 0.106 -1.084, 11.338 

EM *ind SO2 † -0.321 0.047 -0.637, -0.005  -2.425 0.886 -35.475, 30.626  -0.37 0.256 -1.009, 0.268 

            

LDL to HDL Ratio (5b)           

County PM10* 0.013 0.685 -0.053, 0.080  0.017 0.641 -0.057, 0.092  0.01 0.772 -0.061, 0.082 

Indiv. PM10* 0.079 0.05 0.000, 0.159  0.079 0.043 0.002, 0.155  0.106 0.022 0.015, 0.197 

EM*ind PM*10 0.008 0.009 0.002, 0.014  -0.144 0.603 -0.688, 0.400  -0.011 0.235 -0.030, 0.007 

            

County NO2 † 0.062 0.095 -0.012, 0.137  0.061 0.123 -0.018, 0.141  0.064 0.093 -0.011, 0.139 

Indiv NO2 † 0.125 0.138 -0.040, 0.291  0.125 0.159 -0.049, 0.300  0.201 0.03 0.020, 0.382 

EM *ind NO2† 0.007 0.314 -0.006, 0.019  -0.096 0.74 -0.661, 0.469  -0.033 0.074 -0.069, 0.003 
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Effect  

Modifier 

(EM) 

Age (year)  Diabetes  Number of cigarettes smoked 

(current smokers) 

 Estimate p 95%CI Estimate p 95%CI Estimate p 95%CI 

            

County SO2 † 0.073 0.138 -0.025, 0.172  0.068 0.181 -0.034, 0.169  0.072 0.138 -0.025, 0.168 

Indiv. SO2 † 0.19 0.254 -0.137, 0.518  0.184 0.241 -0.123, 0.490  0.115 0.501 -0.221, 0.451 

EM *ind SO2 † 0.01 0.295 -0.009, 0.028  0.407 0.668 -1.455, 2.269  0.014 0.465 -0.024, 0.052 

            

* 10 µg/m3  

†  ppb 



 

 

169

Table A5. 3 Random Coefficients  Model for air pollutants on Total Cholesterol and LDL to HDL ratio 
 
A. Total Cholesterol 

effect Estimate df probt 

lower 

upper τ00 τ01 τ11 

S.E. of 

τ00 

S.E. of 

τ01 

S.E of 

τ11 

PM10 (µg/m3) Likelihood ratio test 1 p=0.61 

County level 1.062 29 0.102 -0.226, 2.349       

Within county 0.876 3512 0.752 -4.562, 6.314 16.821 -12.61 14.199 9.123 19.176 25.527 

NO2 (ppb) Likelihood ratio test: 1.2; p=0.55 

County level 2.560 23 0.004 0.919, 4.200 . . . . . . 

Within county -2.280 2772 0.538 -9.534, 4.974 3.704 18.917 65.375 5.750 29.012 114.48 

SO2 (ppb) Likelihood ratio test: 1.4; p=0.50 

County level 0.062 23 0.959 -2.395, 2.519 . . . . . . 

Within county -0.446 2808 0.908 -8.007, 7.115 11.325 32.336 44.924 7.526 28.256 108.52 

Cross level Intxn 5.487 2808 0.033 0.450, 10.523       
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B. LDL to HDL ratio 

effect Estimate df probt lower upper τ00 τ01 τ11 

S.E. of 

τ00 

S.E. of 

τ01 

S.E of 

τ11 

PM10 Likelihood ratio test: 0 ;p=1.0 

County level 0.030 29 0.468 -0.054 0.114 . . . . . .

Within county 0.064 1460 0.114 -0.015 0.142 0.023 -0.003 0.000 0.042 0.850 .

NO2 Likelihood ratio test: 0 p=1.0 

County level 0.068 23 0.127 -0.021 0.157 . . . . . .

Within county 0.109 1147 0.143 -0.037 0.254 0.023 0.006 0.000 0.068 0.829 .

SO2 Likelihood ratio test 2.5  p=0.29 

County level 0.082 23 0.267 -0.067 0.232 . . . . . .

Within county 0.001 1158 0.994 -0.226 0.228 0.018 0.050 0.000 0.105 0.050 .

Cross-level interaction 0.358 1158 0.001 0.154 0.563       
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 Figure A5. 1 Empirical Bayes estimates for Total Cholesterol  
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 Figure A5. 2: Empirical Bayes estimates for LDL to HDL ratio 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

173

D. Manuscript 2. Additional Results 
 
Table A6. 1 Partitioned estimates -county and individual (grey) – Adjusted for Potential confounders 
 

  PM10   NO2   SO2 

Adjustment Variable Est SE p   Est SE p   Est SE p 

Fasting sample -0.011 0.014 0.426  0.008 0.013 0.529  -0.019 0.037 0.614

 -0.019 0.007 0.008  -0.013 0.016 0.398  -0.023 0.019 0.217

Times exercised in last month -0.011 0.014 0.447  0.008 0.013 0.522  -0.020 0.037 0.599

 -0.018 0.007 0.010  -0.013 0.016 0.405  -0.020 0.019 0.292

Education -0.011 0.014 0.417  0.008 0.013 0.545  -0.019 0.037 0.614

 -0.019 0.007 0.008  -0.014 0.016 0.377  -0.023 0.018 0.214

Household size -0.011 0.014 0.437  0.009 0.013 0.516  -0.019 0.037 0.604

 -0.019 0.007 0.008  -0.015 0.016 0.347  -0.023 0.019 0.221

Wood Stove last 12 months -0.011 0.014 0.423  0.008 0.013 0.534  -0.019 0.037 0.622
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  PM10   NO2   SO2 

Adjustment Variable Est SE p   Est SE p   Est SE p 

 -0.019 0.007 0.007  -0.013 0.016 0.407  -0.023 0.019 0.205

Fireplace last 12 months -0.012 0.014 0.396  0.008 0.013 0.551  -0.016 0.037 0.681

 -0.018 0.007 0.009  -0.014 0.016 0.390  -0.022 0.019 0.244

Gas stove used for cooking -0.013 0.014 0.353  0.008 0.013 0.546  -0.016 0.037 0.677

 -0.018 0.007 0.010  -0.014 0.016 0.383  -0.022 0.019 0.238

Vitamin C (mg/dL) -0.012 0.014 0.389  0.009 0.013 0.492  -0.018 0.037 0.638

 -0.018 0.007 0.010  -0.015 0.016 0.358  -0.022 0.019 0.236

Seafood -0.012 0.014 0.418  0.008 0.013 0.535  -0.018 0.037 0.635

 -0.018 0.007 0.012  -0.014 0.016 0.357  -0.020 0.019 0.284

Coffee  -0.011 0.014 0.430  0.008 0.013 0.532  -0.019 0.037 0.612

 -0.018 0.007 0.009  -0.013 0.016 0.402  -0.023 0.018 0.218
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  PM10   NO2   SO2 

Adjustment Variable Est SE p   Est SE p   Est SE p 

Hyper tension medication -0.011 0.014 0.422  0.008 0.013 0.530  -0.019 0.037 0.623

 -0.018 0.007 0.009  -0.015 0.016 0.352  -0.024 0.018 0.197

Diabetes rx -0.012 0.014 0.405  0.009 0.013 0.507  -0.018 0.037 0.632

  -0.019 0.007 0.007   -0.014 0.015 0.356   -0.023 0.018 0.196
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Table A6. 2 Effect Modification of selected variables with within county air pollutant parameter 
 
 Age  Sex  BMI 

Parameter Estimate Prob t 95%CI Estimate Prob t 95%CI  Estimate Prob t 95%CI 

           

Effect Modifier -.006 0.000 -.008, -.005 0.132 0.009 0.033, 0.231  0.011 0.000 0.007, 0.016 

County PM10 -.011 0.424 -.040, 0.017 -.011 0.426 -.040, 0.017  -.011 0.425 -.040, 0.017 

Individual PM10 -.019 0.010 -.033, -.004 -.017 0.026 -.033, -.002  -.039 0.009 -.068, -.009 

EM * ind PM10 -.000 0.655 -.001, 0.000 -.002 0.785 -.019, 0.014  0.002 0.119 -.000, 0.004 

           

Effect Modifier -.007 0.000 -.008, -.005 0.124 0.016 0.023, 0.225  0.011 0.000 0.007, 0.016 

County NO2 0.008 0.528 -.019, 0.035 0.008 0.526 -.018, 0.035  0.009 0.516 -.018, 0.035 

Individual NO2 -.013 0.413 -.044, 0.018 -.004 0.863 -.044, 0.037  0.009 0.672 -.034, 0.053 

EM * ind NO2 0.000 0.647 -.001, 0.002 -.021 0.475 -.078, 0.037  -.002 0.395 -.006, 0.002 

Effect Modifier -.006 0.000 -.008, -.005 0.163 0.002 0.059, 0.267  0.012 0.000 0.007, 0.017 
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 Age  Sex  BMI 

Parameter Estimate Prob t 95%CI Estimate Prob t 95%CI  Estimate Prob t 95%CI 

           

County SO2 -.018 0.626 -.095, 0.058 -.019 0.613 -.096, 0.058  -.019 0.616 -.095, 0.058 

Individual SO2 -.027 0.144 -.062, 0.009 -.011 0.612 -.055, 0.032  -.079 0.071 -.165, 0.007 

EM * ind SO2 -.001 0.249 -.003, 0.001 -.023 0.401 -.076, 0.030  0.004 0.161 -.002, 0.011 

EM= Effect modifier 
 
 



 

 

178

 
 Metabolic Syndrome  Vitamin C  WHR 

Parameter Estimate probt 95%CI  Estimate probt 95%CI  Estimate Probt 95%CI 

           

Effect Modifier 0.116 0.000 0.070 ,0.161  0.016 0.347 -.017, 0.049  0.679 0.000 0.331, 1.027

County PM10 -.011 0.431 -.040, 0.017  -.013 0.380 -.042, 0.016  -.011 0.431 -.040, 0.017 

Individual PM10 -.016 0.046 -.031, -0.000  -.010 0.398 -.033, 0.013  -.019 0.008 -.033, -.005 

EM * ind PM10 -.009 0.624 -.043, 0.026  -.011 0.470 -.041, 0.019  -.081 0.082 -.172, 0.010 

            

Effect Modifier 0.113 0.000 0.058, 0.167  0.002 0.933 -.036, 0.039  0.738 0.000 0.325, 1.151

County NO2 0.009 0.502 -.017, 0.035  0.009 0.487 -.018, 0.036  0.008 0.535 -.019, 0.035 

Individual NO2 -.007 0.686 -.040, 0.026  -.041 0.164 -.098, 0.017  -.014 0.388 -.045, 0.017 

EM * ind NO2 -.025 0.522 -.103, 0.052  0.034 0.183 -.016, 0.084  0.076 0.722 -.344, 0.496 

            

Effect Modifier 0.092 0.000 0.041 ,0.143  0.017 0.362 -.019, 0.052  0.632 0.003 0.220, 1.045
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 Metabolic Syndrome  Vitamin C  WHR 

Parameter Estimate probt 95%CI  Estimate probt 95%CI  Estimate Probt 95%CI 

           

County SO2 -.017 0.660 -.095, 0.061  -.018 0.636 -.094, 0.058  -.019 0.619 -.095, 0.058 

Individual SO2 -.042 0.094 -.091, 0.007  0.012 0.770 -.071, 0.096  -.023 0.202 -.058, 0.012 

EM * ind SO2 0.060 0.302 -.054 ,0.175  -.050 0.341 -.153, 0.053  -.005 0.983 -.438, 0.428 
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E. Manuscript 2. Results including subjects with “explained” ALT elevations 
 
Table A6.3 Regression of Prior 1 week average exposures and ALT - all patients 
 

Random Intercepts Mixed Model 

Pollutant 

Effect  Estimate S.E. d.f. prob t Lower Upper τ00 S.E. of τ00

Unpartitioned         

PM10 -0.018 0.006 3408 0.003 -0.030 -0.006 0.010 0. 004 

NO2 -0.006 0.010 2667 0.520 -0.025 0.013 0.009 0.004 

SO2 -0.020 0.018 2812 0.272 -0.056 0.016 0.012 0. 004 

         

Partitioned         

PM10       0.011 0.004 

County level -0.010 0.014 28 0.461 -0.039 0.018 . . 

Individual 

level 

-0.019 0.007 3408 0.004 -0.032 -0.006   

         

NO2       0.009 0.004 

County level 0.009 0.013 22 0.462 -0.017 0.035 . . 

Individual 

level 

-0.026 0.016 2667 0.099 -0.057 0.005   
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Random Intercepts Mixed Model 

Pollutant 

Effect  Estimate S.E. d.f. prob t Lower Upper τ00 S.E. of τ00

SO2       0.012 0.004 

County level -0.026 0.037 23 0.497 -0.103 0.052 . . 

Individual 

level 

-0.019 0.019 2812 0.32 -0.056 0.018   
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Table A6. 4 Random Coefficient model of log ALT by pollutant – all patients 
 

Effect Estimate 

Std 

err df probt 95%CI τ00 τ01 τ11 

S.E. of 

τ00 

S.E. of 

τ01 

S.E. of 

τ11 

PM10 Likelihood ratio test for random 6.5; p=0.038 

County level -0.012 0.013 28 0.361 -0.038, 0.014 . . . . . . 

Within county -0.011 0.011 3407 0.343 -0.033, 0.011 0.010 0.002 0.001 0.003 0.001 0.001 

Cross level Intxn -0.006 0.006 3407 0.350 -0.018, 0.006       

NO2 Likelihood ratio test for random slope 7.7  ; p=0.021 

County level 0.011 0.013 22 0.415 -0.016, 0.038           

Within county -0.053 0.055 2666 0.334 -0.160, 0.054 0.009 -0.020 0.038 0.004 0.010 0.034 

Cross level Intxn 0.023 0.026 2666 0.390 -0.029, 0.074           

SO2 Likelihood ratio test for random slope 0.9   ; p=0.0.63 

County level -0.024 0.038 23 0.522 -0.102, 0.053 . . . . . . 

Within county -0.037 0.016 2811 0.025 -0.069, -0.005 0.012 0.001 0.002 0.005 0.002 0.003 
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Cross level Intxn 0.036 0.018 2758 0.039 0.002, 0.071       

†log ALT modeled as a continuous dependent variable, using linear mixed models. 

τ00 =  Variance of random intercepts from mixed model 

τ01 = Covariance of random intercepts and random slope from mixed model 

τ11 = Variance of random pollutant coefficient from mixed model 
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