
Interactive Sound Propagation using

Precomputation and Statistical Approximations

Lakulish Antani

A dissertation submitted to the faculty of the University of North Carolina at
Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of
Philosophy in the Department of Computer Science.

Chapel Hill

2013

Approved by:

Gary Bishop

Dinesh Manocha

Ming C. Lin

Anselmo Lastra

Nikunj Raghuvanshi

ABSTRACT

LAKULISH ANTANI: Interactive Sound Propagation Using Precomputation and
Statistical Approximations

(Under the guidance of Dinesh Manocha.)

Acoustic phenomena such as early reflections, diffraction, and reverberation have

been shown to improve the user experience in interactive virtual environments and

video games. These effects arise due to repeated interactions between sound waves

and objects in the environment. In interactive applications, these effects must be

simulated within a prescribed time budget. We present two complementary ap-

proaches for computing such acoustic effects in real time, with plausible variation

in the sound field throughout the scene. The first approach, Precomputed Acoustic

Radiance Transfer, precomputes a matrix that accounts for multiple acoustic inter-

actions between all scene objects. The matrix is used at run time to provide sound

propagation effects that vary smoothly as sources and listeners move. The second

approach couples two techniques – Ambient Reverberance, and Aural Proxies – to

provide approximate sound propagation effects in real time, based on only the por-

tion of the environment immediately visible to the listener. These approaches lie at

different ends of a space of interactive sound propagation techniques for modeling

sound propagation effects in interactive applications. The first approach emphasizes

accuracy by modeling acoustic interactions between all parts of the scene; the second

approach emphasizes efficiency by only taking the local environment of the listener

into account. These methods have been used to efficiently generate acoustic walk-

throughs of architectural models. They have also been integrated into a modern

ii

game engine, and can enable realistic, interactive sound propagation on commodity

desktop PCs.

iii

To my parents, Jayshree and Shailesh Antani.

iv

Acknowledgments

The past five years spent working in the Department of Computer Science at UNC

Chapel Hill on the research that ultimately formed this dissertation have been mem-

orable. I would like to thank the many people who played an important role in my

journey and professional evolution. First of all, I would like to thank my advisor,

Prof. Dinesh Manocha, for his guidance and support, as well as the freedom I was

provided throughout the course of this work. I would also like to thank the members

of my committee, Prof. Gary Bishop, Prof. Ming C. Lin, Prof. Anselmo Lastra,

and Dr. Nikunj Raghuvanshi, for their insightful feedback and discussions on my

research work and this dissertation.

I would also like to thank the many talented collaborators I have had the privilege

of working with, including Anish Chandak, Micah Taylor, Ravish Mehra, Sean Cur-

tis, Hengchin Yeh, and Zhimin Ren. I would also like to thank Prof. Lauri Savioja

and Dr. Tapio Lokki at Aalto University, and Adam Lake at Intel Corporation for

their collaboration and insight. I would also like to thank the many anonymous

reviewers who have helped me improve the quality of my work.

I would like to thank Valve Corporation for permission to use the Source SDK

and Half-Life 2 artwork for our demo scenes. I would also like to thank the Army

Research Office, the National Science Foundation, and Intel Corporation for their

support. This work was supported in part by ARO contract W911NF-10-1-0506,

NSF awards 0917040, 0904990, and 1000579, and RDECOM contract WR91CRB-

v

08-C-0137.

Finally, I am indebted to my friends and family, especially my parents, Jayshree

and Shailesh Antani, not only for putting up with the long hours I spent working, but

also for providing me with constant, invaluable support and encouragement, without

which this work would not have been possible.

vi

Table of Contents

1 Introduction . 1

1.1 Applications . 2

1.1.1 Games . 2

1.1.2 Virtual Reality . 4

1.1.3 Architectural Acoustics . 5

1.2 Sound Rendering Pipeline . 5

1.2.1 Sound Synthesis . 5

1.2.2 Sound Propagation . 6

1.2.3 Auralization . 7

1.3 Challenges . 8

1.4 Thesis Statement . 9

1.5 Main Contributions . 9

1.5.1 Direct-to-Indirect Acoustic Radiance Transfer 10

1.5.2 Compact Acoustic Transfer Operators 11

1.5.3 Ambient Reverberance and Aural Proxies 12

1.6 Thesis Outline . 13

2 Background . 15

vii

2.1 The Acoustic Wave Equation . 16

2.1.1 Finite Difference Method . 18

2.1.2 Pseudo-Spectral Method . 18

2.1.3 Adaptive Rectangular Decomposition 19

2.2 The Helmholtz Equation . 19

2.2.1 Finite Element Method . 20

2.2.2 Boundary Element Method 21

2.2.3 Equivalent Source Method . 22

2.3 Geometric Acoustics . 23

2.3.1 Image Source Method . 25

2.3.2 Stochastic Ray Tracing . 25

2.3.3 Volume Tracing . 26

2.3.4 Diffraction . 27

2.3.5 Acoustic Rendering Equation 28

2.4 Impulse Responses . 28

2.4.1 Frequency Responses . 29

2.4.2 Echograms . 30

2.5 Auralization . 31

2.5.1 Real-Time Convolution . 32

2.5.2 Spatialization . 32

2.5.3 Binaural Rendering . 33

2.6 Precomputed Sound Propagation . 35

2.6.1 Static Source Methods . 35

2.6.2 Moving Source Methods . 36

2.7 Statistical Models . 37

viii

3 Acoustic Transfer Operators . 38

3.1 Acoustic Rendering Equation . 38

3.1.1 Acoustic Energy Transport . 38

3.1.2 The Acoustic Rendering Equation 40

3.2 Transfer Operators . 42

3.3 Discrete Transfer Operators . 43

3.3.1 Matrix Representation . 44

3.3.2 Alternative Derivation . 46

3.3.3 Complexity . 47

4 Frequency-Domain Acoustic Transfer Operators 49

4.1 Domain Discretization . 49

4.1.1 Echogram Representation . 49

4.1.2 Surface Sampling . 51

4.2 Precomputation . 51

4.2.1 Transfer Operator Computation 52

4.2.2 Transfer Operator Compression 53

4.3 Run-time . 55

4.4 Results . 56

4.4.1 Performance . 56

4.4.2 Analysis . 59

5 Compact Acoustic Transfer Operators 62

5.1 Precomputation . 63

5.1.1 Transfer Operator Precomputation 64

5.1.2 Echogram Representation . 65

5.2 Run-time . 67

ix

5.2.1 Acoustic Radiance Transfer 67

5.2.2 Dynamic Scenes . 70

5.2.3 Run-time Error Control . 71

5.3 Results . 72

5.3.1 Performance . 73

5.3.2 Time and Storage Complexity 74

5.3.3 Choice of Parameters . 76

6 Ambient Reverberance . 78

6.1 Artificial Reverberation . 78

6.2 Reverberation Time . 79

6.3 Mean Free Path . 80

6.4 Spatially-Varying Reverberation . 81

6.5 Directionally-Varying Reverberation 84

6.6 Results . 86

6.6.1 Performance . 87

6.6.2 Analysis . 88

7 Aural Proxies . 90

7.1 Image Source Method . 90

7.1.1 Rectangular Rooms . 91

7.2 Proxy Construction . 91

7.3 Proxy-Based Reflections . 94

7.4 Results . 95

7.4.1 Performance . 95

7.4.2 Analysis . 96

7.4.3 Evaluation . 98

x

8 Conclusion . 101

8.1 Frequency-Domain Diffuse Acoustic Transfer 101

8.2 Compact Acoustic Transfer Operators 103

8.3 Aural Proxies and Ambient Reverberance 106

8.4 Trade-offs . 107

8.5 Future Work . 108

xi

List of Tables

4.1 Performance of direct-to-indirect transfer for diffuse reflections. 57

4.2 Memory required by diffuse transfer operators. 58

4.3 Comparison of direct-to-indirect transfer with ART. 59

5.1 Performance and memory overhead of precomputing compact acoustic

transfer operators. 74

5.2 Run-time performance of compact acoustic transfer operators. 74

6.1 Performance of local distance average estimation. 87

7.1 Performance of proxy-based higher-order reflections. 96

7.2 Results of our preliminary user study. 100

xii

List of Figures

1.1 Examples of video games . 3

4.1 Overview of direct-to-indirect diffuse transfer. 52

4.2 Benchmark scenes for direct-to-indirect diffuse transfer. 57

4.3 Diffuse IRs computed with and without SVD compression. 60

4.4 SVD approximation error for diffuse transfer operators. 60

4.5 SVD approximation error with increasing reflection orders. 61

5.1 Overview of sound propagation with compact acoustic transfer oper-

ators. 63

5.2 Dynamic source shadowing. 71

5.3 Benchmark scenes for compact acoustic transfer operators. 72

5.4 SVD truncation error during KLT basis construction. 75

5.5 Energy decay curves computed with compact acoustic transfer operators. 77

6.1 Spatial and directional variation of mean free path. 82

6.2 Sampling directions to compute local distance average. 83

6.3 Benchmark scenes for ambient reverberance and aural proxies. 87

6.4 Convergence of local distance average estimate. 88

6.5 Accuracy of representing local distance with spherical harmonics. . . 88

7.1 Higher-order reflections using a rectangular aural proxy. 92

7.2 Convergence of proxy size estimation. 97

7.3 Comparison between impulse responses generated by aural proxies and

a reference image source method. 98

xiii

Chapter 1

Introduction

Computer graphics has made significant progress in the last few decades. Video

games, film, and animation have driven the development of improved graphics tech-

niques and hardware, as well as popularized their use, to the point that computer

graphics is now a household name. In addition to entertainment applications, com-

puter graphics has helped revolutionize the ways in which we interact with comput-

ers (through rich graphical user interfaces) and the ways in which we interpret data

(through, for example, scientific or medical visualization). In fact, computer graphics

techniques such as graphics processing units (GPUs) have made a profound impact

on fields as diverse as oil exploration and finance.

Interactive applications such as video games use high-performance, realistic visual

rendering, as well as many advanced techniques for physical simulation and character

animation. All of these techniques are used to improve the player’s sense of immer-

sion in the virtual environment. In recent years, games have used other modalities

such as touch and gesture recognition, to further improve player engagement. Sound

is another modality used to improve player immersion. Sound designers spend signifi-

cant amounts of time generating realistic sound effects and tuning the acoustic effects

of virtual environments. However, this process typically involves manual recording

of real-world sounds, or manual tuning of acoustic filters [33]. Acoustic simulation

or sound rendering techniques are rarely used in interactive applications due to their

compute-intensive nature.

The simulation of sound propagation, i.e., how sound waves behave in an envi-

ronment, can be used to add realistic acoustic effects to interactive applications. To

simulate sound propagation, we begin with the position of the sound source and the

sound waves it emits. This is combined with a description of the 3D environment

to simulate sound waves as they travel through the environment until they reach a

listener position. This thesis presents techniques for performing sound propagation

in interactive applications, to add acoustic effects in real-time.

1.1 Applications

There are a wide range of applications that can benefit from improved (i.e., more

accurate, more efficient, or both) sound propagation simulation. Some of these ap-

plications are briefly summarized below, along with the manner in which they use

(or may use) sound propagation simulation.

1.1.1 Games

Modern video games use advanced, high-performance rendering techniques for im-

proved lighting, shadows, and surface shading, as well as a range of simulation and

animation techniques for rigid bodies, fluids, smoke, and humanoid characters to

achieve an increased degree of visual realism. Increasingly, video games are turning

to other modalities such as touch-based input (with devices such as Apple’s iPad)

and gesture recognition (with devices such as Microsoft’s Kinect), to further improve

2

Figure 1.1: Examples of video games with gameplay that stands to benefit from sound
propagation effects. Left: Bioshock [1], a first-person shooter. Sound propagation
can help players locate unseen enemies, even from behind cover. Center: Thief
3 [21], a stealth game. Sound propagation can help players track and evade enemies.
Right: Amnesia [26], a survival horror game. Sound propagation can improve player
immersion and heighten the emotional experience.

player immersion.

Another vital means of improving player immersion is through realistic audio ren-

dering (or sound rendering). A wide variety of games benefit from the use of improved

acoustic effects. In first-person shooter games such as Bioshock [1] (Figure 1.1), ene-

mies (including hard-to-spot snipers) may attack the player from multiple directions,

and are often located behind cover. In such situations, directional acoustic cues can

often help players locate the enemies more quickly, leading to less frustrating game-

play. In stealth-based games such as Thief [21] (Figure 1.1), the player must often

evade wandering enemies, or track them without being seen. In such situations, too,

acoustic cues (particularly those pertaining to reflected or occluded sound) can help

players keep track of the whereabouts of enemies without having to maintain a line of

sight. In survival horror games such as Amnesia [26] (Figure 1.1), improved acoustic

effects can significantly improve immersion, and the level of player engagement.

However, current video games rarely use sound propagation simulation to create

immersive acoustic effects, instead relying on manual creation of audio filters for

this purpose. Usually, only the directionality of direct sound is modeled, based on

the relative positions of the sound source and listener. Artist-specified filters are

3

used for reflected, occluded, or reverberant sound [33]. The main reason for this is

that video games require interactive simulation that is performed in real-time as the

player moves around in the game environment. The simulation should also be able to

handle large, complex scenes with moving sources and moving listeners. Sound [33]

propagation effects must be updated around 10–15 times per second, while taking up

a relatively small fraction (typically around 20%) of a typical game’s frame budget.

Most current algorithms for sound propagation simulation are unable to meet these

tight constraints, thereby making them impractical for use in video games.

1.1.2 Virtual Reality

Virtual Reality (VR) systems have been used for a variety of purposes, ranging from

training [93], therapy [29], tourism [58, 51], and learning [53]. In such settings,

acoustic effects can add a significant degree of environmental context to the virtual

environment, and can improve the training or therapy process. For example, when

VR simulation is used for treating post-traumatic stress disorder (PTSD) [29], acous-

tic effects can help recreate a believable war experience in a controlled setting, to

help treat soldiers suffering from PTSD.

In VR applications, many of the interactivity constraints of video games apply.

However, since VR simulators often have more computational resources available to

them, as compared to games, it is often desirable to provide more accurate sound

propagation simulation results than would be needed for consumer-oriented video

games.

4

1.1.3 Architectural Acoustics

Architectural acoustics involves the use of acoustic principles and acoustic simula-

tion to improve the acoustic properties of architectural designs and buildings. Judi-

cious use of sound propagation simulation can significantly reduce redesign or recon-

struction costs that may be incurred due to poor acoustics. Typically, architectural

acoustic simulations are run offline [19], since their key requirement is accuracy of

the results. However, there may be scenarios where architects or architectural acous-

tic consultants need to employ acoustic simulation in an interactive manner. One

example is interactive prototyping, where architects wish to estimate the acoustic

impact of a design change while they modify the design. Another is architectural

walkthroughs, where interactive simulation is used to recreate the acoustics of a

space while carrying out a walkthrough of the architectural design, either to better

understand the acoustics of the design, or to showcase the design to clients.

1.2 Sound Rendering Pipeline

The simulation of sound can be organized into a rough sound rendering pipeline,

consisting of three stages related to the simulation of the generation, propagation,

and reception of sound waves.

1.2.1 Sound Synthesis

Sound synthesis refers to the physical modeling of the processes resulting in the

generation of sound waves. Practically, this involves determining the positions of

sound sources and the sound waves emitted by them. These may either be manually

specified with pre-recorded sound signals (stored in any standard audio file format,

5

such as Wave or MP3), or through physical simulation of the vibration of sounding

objects. In recent years, there has been much research on generating sound from rigid

body collisions [34, 61], friction [64], thin shell vibrations [16], rigid body fracture [95],

fluids [54, 94], and cloth [5].

Another important aspect of sound sources is their directivity. Different sound

sources emit sound waves with different amplitudes and phases in different directions.

For example, sound from a megaphone is louder in the direction it is pointing in than

in other directions. Many techniques have been developed for representing source

directivities, including far field approximations [87] and spherical harmonics [55].

1.2.2 Sound Propagation

Sound propagation refers to the modeling of how sound waves spread through an

environment after being emitted by the source. This involves modeling the geometry

and material properties of the environment.

The geometry is typically represented in discrete manner using triangle meshes

or voxel grids, depending on the simulation algorithm used. Acoustic simulation

typically does not require geometry to be represented at the same level of detail

as visual rendering, but the simplification of geometric models to the complexities

suitable for acoustic simulation remains an open problem [69].

The material properties of the scene are typically specified in terms of absorption

and scattering coefficients. These are defined for each octave of frequency. Recently,

there has been work on acquiring and incorporating direction-dependent material

properties [84], inspired by similar work in visual rendering, but this information is

often difficult to acquire from real-world objects.

Given information about sound sources, scene geometry, material properties, and

listener properties (described in the next section), a sound propagation algorithm is

6

used to determine the sound signal received by the listener. There are a wide vari-

ety of sound propagation algorithms, ranging from numerical methods (Sections 2.1

and 2.2), to ray-tracing-based methods (Section 2.3), to statistical models (Sec-

tion 2.7), each with its own advantages and disadvantages. These algorithms are

used to compute the sound field, i.e., the sound wave amplitude as a function of inci-

dence direction and time (or frequency) at the listener position. Sound propagation

involves modeling repeated interactions between sound waves and the environment.

The number of interactions is often referred to as the “order” of the interaction. For

example, a second-order reflection refers to a sound wave that has undergone two

reflections. For the purposes of this thesis, low-order refers to an order of 2–4 or less,

and higher-order refers to an order of more than 2–4, unless otherwise specified.

1.2.3 Auralization

In the context of this thesis, auralization refers to the process of presenting a simu-

lated sound field to the user over a speaker system. Multiple techniques have been

developed for auralization, ranging from amplitude panning and Ambisonics for gen-

eral multi-channel speaker systems, to binaural rendering for accurate sound field

reproduction over headphones (Section 2.5.2).

In most cases, sound propagation effects are computed independently of the sound

synthesis process, and represented using an impulse response (Section 2.4). This im-

pulse response must be convolved with the source sound signal. Interactive applica-

tions perform streaming, real-time convolution with time-varying impulse responses

using techniques based on the Short Time Fourier Transform (STFT) (Section 2.5.1).

7

1.3 Challenges

There are several challenges that must be overcome in order to develop a practi-

cal method for simulating sound propagation in interactive applications. These are

summarized below:

• Interactive performance. Sound propagation effects must be computed on-

the-fly in interactive applications, and must rapidly update as the source(s)

and/or listener move. Auralization (in particular, convolution) must be per-

formed in real-time at audio rates (typically 44.1 kHz) to avoid undesirable

audio artifacts. While sound propagation need not be computed as frequently

as visual frame updates, the cost of sound propagation, amortized over mul-

tiple frames, should take up a small fraction (5–10%) of a typical frame time

budget.

• Storage requirements. An increasingly popular approach for interactive

sound propagation algorithms is to precompute sound propagation between

static portions of the scene. However, for these approaches to support mov-

ing sources as well as moving listeners, they often require impractically large

amounts of data: in some cases several gigabytes of data even for scenes of mod-

erate size and complexity [63]. For practical use in interactive applications, the

size of any precomputed data should be kept as small as possible.

• Performance-quality trade-off. Interactive applications must scale across a

wide variety of hardware. The relative workloads of different components of an

interactive application (e.g., rendering, sound, physics, etc.) also tend to vary

with time. In such cases, it is beneficial for the sound propagation algorithm

to support a means of automatically scaling the quality of the results so as to

8

satisfy tight performance requirements.

• Complex, dynamic, and general scenes. Typical scenes in interactive ap-

plications are complex (containing large numbers of detailed objects), large

(often spanning several city blocks or more), and often lack special structure

(e.g., do not always contains cell-and-portal structures [72]). They often con-

tain moving sources, listeners, and even moving objects. Any practical sound

propagation algorithm must handle such environments at interactive rates.

1.4 Thesis Statement

Precomputed acoustic radiance transfer and geometry-based statistical models of-

fer two alternative approaches for adding higher-order sound propagation effects to

interactive environments based on application-specific constraints; the first method

provides realistic solutions that account for the geometry of the entire environment,

and the second provides coarse approximations based on the local environment of

the listener.

1.5 Main Contributions

This thesis presents efficient algorithms for adding realistic sound propagation effects

to interactive applications. The algorithms are based on two general approaches,

both of which bring powerful ideas from visual rendering to the domain of acoustics.

First, we present two algorithms based on precomputed acoustic radiance transfer,

for precomputing sound propagation effects between static portions of the scene, and

using this information to efficiently compute sound propagation effects from a moving

source to a moving listener. Further, we present two algorithms based on simplified

9

acoustic models for sound propagation simulation, while using efficient techniques

for plausibly varying the parameters of these acoustic models in response to changes

in the position and orientation of the listener with respect to the scene geometry.

1.5.1 Direct-to-Indirect Acoustic Radiance Transfer

We present a new algorithm for modeling diffuse reflections of sound based on

the direct-to-indirect transfer approach [31]. Our approach is motivated by recent

developments in global illumination based on precomputed light transport algo-

rithms [31, 45]. Specifically, our work is based on direct-to-indirect transfer algo-

rithms for visual rendering, which map direct light incident on the surfaces of a

scene to indirect light on the surfaces of the scene after multiple bounces. The main

novel aspects of this work include:

• Precomputed Acoustic Radiance Transfer with Moving Sources and

Listeners. The algorithm computes an acoustic transfer operator in matrix

form which is decoupled from both the source and the listener positions, and

can efficiently update the acoustic response at the listener whenever the source

moves.

• Efficient Acoustic Radiance Transfer using Singular Value Decom-

position. The algorithm approximates the transfer matrix using the singular

value decomposition (SVD) to perform higher-order diffuse reflections. We

show that this approximation reduces the memory requirements and increases

the performance of our algorithm, compared to using acoustic transfer opera-

tors without approximation.

10

1.5.2 Compact Acoustic Transfer Operators

We present a novel geometric sound propagation algorithm that computes diffuse and

specular reflections as well as edge diffraction at near-interactive rates. In order to

model higher-order reflections and diffraction, our algorithm precomputes an acoustic

transfer operator that models how sound energy propagates between surfaces. We

use a scene-dependent Karhunen-Loeve transform (KLT) for compactly representing

the transfer operators. At run-time, we use a two-pass method that uses the transfer

operator to compute higher-order reflections and diffraction, along with interactive

ray tracing to model early reflections and diffraction. Some of the main benefits of

our approach include:

• Compact representation. Our compression technique, based on KLT, re-

sults in low memory overhead for the acoustic transfer operators, resulting in

a compression factor of up to two orders of magnitude over time-domain or

frequency-domain representations.

• Run-time control between accuracy and performance. Our choice of

basis for representing the acoustic transfer operator has the additional advan-

tage of allowing control over approximation errors, and thereby trading off

accuracy for performance in interactive applications.

• Moving sources and listeners. Our precomputed acoustic transfer operator

is defined in terms of samples distributed over the surfaces of a static scene.

As a result, we can efficiently handle moving sources and listeners.

• Occlusion of sound by dynamic objects. Our algorithm can handle (to a

limited extent) the effect of introducing a dynamic object on the sound field

at the listener due to occlusion of sound emitted from the source by moving

11

obstacles and the subsequent effect of the occlusion on propagated sound, or

due to occlusion of propagated sound by moving obstacles before it reaches the

listener.

1.5.3 Ambient Reverberance and Aural Proxies

We present a simple and efficient sound propagation algorithm inspired by work

on local illumination models (such as ambient occlusion [96]) and the use of proxy

geometry in visual rendering. Our approach generates spatially-varying, direction-

dependent reflections and reverberation in large scenes at interactive rates. We

perform Monte Carlo integration of local visibility and depth functions for a listener,

weighted by spherical harmonics basis functions. Our approach also computes a local

geometry proxy which is used to compute 2-4 orders of directionally-dependent early

reflections, allowing our technique to plausibly model outdoor scenes as well as indoor

scenes. Our approach reduces manual effort involved in tweaking reverberation filter

parameters, since it automatically generates spatially-varying reverberation based on

the scene geometry. Our approach also enables immersive, direction-dependent rever-

beration due to the use of spherical harmonics to compactly represent directionally-

varying depth functions. It is highly efficient, requiring only 5-10 ms to update the

reflection and reverberation filters for scenes with tens of thousands of polygons on

a single CPU core. Moreover, it is easy to implement and integrate into an existing

game, as shown by our integration with Valve’s Source engine. We also evaluate

our results by comparison against a reference image source method, and through a

preliminary user study.

12

1.6 Thesis Outline

The rest of this thesis is organized as follows:

• In Chapter 2, we review prior art in the fields of sound propagation simulation

and auralization, with a particular focus on interactive applications.

• In Chapter 3, we introduce acoustic transfer operators, which are essentially

scene-dependent matrices which encapsulate sound propagation effects. We

present their derivation from the acoustic rendering equation, as well as an

overview of using transfer operators for adding sound propagation effects.

• In Chapter 4, we describe a frequency-domain algorithm for computing and

storing acoustic transfer operators that model purely diffuse reflections of sound.

We also describe a technique based on the Singular Value Decomposition

(SVD), which allows higher-order diffuse reflections to be efficiently added to

the transfer operator without performing higher-order ray tracing.

• In Chapter 5, we describe a time-domain algorithm for computing and storing

acoustic transfer operators that model both diffuse and specular reflections of

sound, as well as edge diffraction (with some restrictions). The technique

uses the Karhunen-Loeve Transform to obtain a compact representation of the

transfer operators. We also describe a two-pass algorithm to model purely

specular early reflections in addition to the higher-order reflections modeled by

the transfer operator.

• In Chapter 6, we describe an efficient algorithm to use local geometry around

a moving listener to quickly estimate spatially- and directionally-varying pa-

rameters for artificial reverberation in interactive applications.

13

• In Chapter 7, we describe an efficient algorithm to compute a rectangular

proxy shape for the local geometry around a moving listener. We also describe

a method for estimating average material properties for the proxy shape, as well

as a method for using the proxy to efficiently compute higher-order reflections

of sound without performing higher-order ray tracing.

• Finally, in Chapter 8, we conclude the thesis, summarizing the main results,

discussing limitations of the presented techniques, and suggesting promising

avenues for future work.

14

Chapter 2

Background

Sound is a phenomenon caused by the vibrations of air or some other medium, e.g.,

water. These vibrations are measured in terms of the variation of pressure of the

medium over time. Pressure variations behave as longitudinal waves, i.e., the air

molecules oscillate in the direction in which the wave propagates. Sound waves (like

any other waves) are described as a superposition of sinusoidal waves. A sinusoidal

wave is described by its frequency ν, wavelength λ, and propagation speed c = νλ.

As sound waves propagate through an environment, they may exhibit multiple

kinds of acoustic phenomena [38], including:

• Reflection When a sound wave strikes a solid obstacle, it may give rise to a

reflected wave, as per the laws of reflection.

• Absorption Upon striking a solid obstacle, the wave may be absorbed by the

obstacle, resulting in reflected waves of reduced amplitude.

• Transmission Upon striking a solid obstacle, the wave may continue propa-

gating through the obstacle (subject to the physical properties of the obstacle).

• Interference When two sound waves encounter each other, the resulting pres-

sure variations are described by a superposition of the two sound waves. This

may result in a wave of greater or lesser amplitude than the original waves.

This phenomenon is referred to as interference.

• Diffraction When sound waves encounter obstacles whose size is compara-

ble to their wavelength, they bend around the obstacle. This phenomenon is

referred to as diffraction.

• Scattering The aggregate behavior of sound waves upon encountering ob-

jects or surfaces with fine structure (surface detail of size comparable to the

wavelength of the sound waves) is referred to as scattering. It is essentially

a combination of reflection, diffraction, and other phenomena, caused by the

individual elements of the fine structure of the scatterer.

To simulate sound propagation, we must calculate the acoustic pressure P (x, t)

in an environment as a function of position x and time t. Note that acoustic pressure

in this context refers to the difference between the actual pressure at a point and

some mean reference pressure (e.g., standard atmospheric pressure).

2.1 The Acoustic Wave Equation

The variation of pressure in a domain D with boundary ∂D is governed by the

acoustic wave equation [59]:

∇2P − 1

c2

∂2P

∂t2
= F, (2.1)

where P (x, t) is the pressure at any point x ∈ D as a function of time t, and

F (x, t) is a forcing function defined by sound sources. Here, the speed of sound, c,

16

is assumed constant; for large outdoor spaces this restriction must often be lifted to

account for temperature gradients and wind effects.

To complete the problem specification, we must specify the behavior of P on the

boundary ∂D. This is specified using some form of boundary condition, including:

• Dirichlet boundary conditions involve specifying the value of P at each point

on the boundary.

• Neumann boundary conditions involve specifying the normal derivative of P

at each point on the boundary, i.e., the component of the pressure gradient

normal to the boundary surface:

∂P

∂n
= ∇P · n. (2.2)

• Impedance boundary conditions involve specifying the specific acoustic impedance

Zs(ν) at each point of the boundary. Zs(ν) is the ratio of the pressure P and

the normal velocity vn = v · n:

Zs(ν) =
P

vn
. (2.3)

In general, Zs is a complex-valued quantity, defined for each frequency.

To solve for acoustic pressure in general domains, we must use numerical methods.

We now briefly describe some numerical methods that have been used for solving the

wave equation. Since they all solve for pressure as a function of time, they are also

referred to as time-domain methods.

17

2.1.1 Finite Difference Method

In the finite difference method (FDM or FDTD) [13], the spatial and temporal partial

derivatives are approximated by finite difference expressions. In other words, x and

t are discretized, and the derivatives of pressure are expressed as linear functions of

pressure sampled at these discrete positions and times, e.g.:

∂2P (x, t)

∂t2
=
P (x, ti+1)− 2P (x, ti) + P (x, ti−1)

∆t2
, (2.4)

where ti = i∆t. ∆t is also referred to as the time-step of the simulation. Similarly,

spatial derivatives are sampled at a grid resolution of ∆x. As per the Nyquist

theorem, to simulate sound waves of wavelength λ, we must have ∆x ≤ λ
2
. Moreover,

the time-step must satisfy the Courant-Friedrichs-Levy condition, i.e., ∆t ≤ ∆x√
3c

. The

implications of these conditions is that the computational complexity of FDTD is

O(ν4), and its storage complexity is O(ν3).

There are multiple variations of the finite difference method, depending on which

specific finite difference approximations are used. Each has its pros and cons, but the

most important limitation is that the grid must be oversampled to reduce numerical

errors [77]. Typically, ∆x ≤ λ
8

or less is needed for acceptable accuracy [48].

2.1.2 Pseudo-Spectral Method

The pseudo-spectral time domain method (PSTD) [48] computes the spatial deriva-

tives of pressure using a discrete Fourier transform (DFT) [14]. In other words, the

DFT of pressure over the discretized domain is first computed. Next, the Fourier

coefficients of the pressure field are advanced by one time-step using an analytical

expression. As a result, numerical errors due to time-stepping are avoided, and the

18

grid does not need to be oversampled. Also, the DFT can be efficiently computed

using the Fast Fourier Transform (FFT) algorithm [15]. However, the asymptotic

space and time complexity of this approach is the same as that of FDTD.

2.1.3 Adaptive Rectangular Decomposition

Adaptive rectangular decomposition (ARD) is a recently-proposed method [62] for

performing time-domain simulations in complex domains. The method is based on

the observation that in a rectangular domain, the wave equation has an analytical

solution, where the pressure can be described in terms of the coefficients of a discrete

cosine transform (DCT) [2]. These DCT coefficients can be time-stepped using an

analytical expression.

Therefore, the domain in decomposed into multiple rectangular subdomains using

a greedy flood-fill algorithm. In each subdomain, the DCT-based method is used,

and pressure is communicated across subdomain boundaries (or interfaces) using

a finite difference stencil. In other words, this is a domain decomposition method,

where the spatio-temporal analytic solution is used within each subdomain, and finite

differencing is used to perform coupling between subdomains.

2.2 The Helmholtz Equation

As an alternative to solving the wave equation, we may assume that the pressure

field is time-harmonic, i.e., P (x, t) = Ψ(x, ω)eιωt, where ω = 2πν is the angular

frequency. As per the Fourier theorem, any periodic function P can be represented as

a superposition of sinusoidal functions. Therefore, by using a sufficiently long period,

we may approximate any pressure field as a superposition of time-harmonic pressure

fields Ψ. This reduces the problem to that of solving the Helmholtz equation [59]:

19

∇2Ψ + k2Ψ = F̃ , (2.5)

where k = 2π
λ

is the wavenumber. There are multiple numerical methods for

solving the Helmholtz equation. Since they operate on a Fourier decomposition of

the pressue field, they are also called frequency-domain methods.

2.2.1 Finite Element Method

In the finite element method (FEM) [81], the domain is discretized using an irregular

mesh, whose elements may be of any shape. Typically, though, simple shapes, such

as tetrahedra in 3D, are used. With each vertex, or node, of the mesh, we associate

a basis function φi. These basis functions may be of any form as long their partial

derivatives can be defined. In practice, though, simple linear functions are commonly

used.

The pressure field at any point x ∈ D is defined as a linear combination of the

basis functions:

Ψ(x) =
∑
i

ciφi(x). (2.6)

Combining the above equation with the Helmholtz equation and the boundary

conditions yields a system of linear equations. Moreover, since the basis functions

are defined to have compact support, i.e., φi non-zero only for the mesh elements

adjacent to node i, the linear system can be represented using a sparse matrix. This

sparse matrix solve is performed once for each frequency.

The computational and storage complexity of FEM are dominated by the sparse

matrix linear solve. The number of elements in the spatial discretization must be

O(ν3) to satisfy the Nyquist condition. This results in an n×n sparse matrix, where

20

n = O(ν3). Since the linear solve must be repeated for each frequency, the storage

complexity of FEM is O(ν4), as is its computational complexity.

One of the main advantages of FEM over, say, FDTD, is that the mesh may be

irregular, and hence may better approximate complex boundaries.

2.2.2 Boundary Element Method

The boundary element method (BEM) [20] is based on the Helmholtz-Kirchhoff in-

tegral theorem, according to which, the pressure at any point in the interior of the

domain can be uniquely determined from the values of pressure (or its normal deriva-

tive) at each point on the boundary of the domain. Hence, BEM proceeds in two

steps.

First, the boundary is discretized using a surface mesh, typically a triangle mesh.

With each node of the boundary, we associate a basis function φi. The pressure at

any point x ∈ ∂D is again defined as a linear combination of the basis functions:

Ψ(x) =
∑
i

ciφi(x). (2.7)

Combining the above equation with the integral form of the Helmholtz equation

and the boundary conditions yields a system of linear equations, which must be

represented using a dense matrix, since the equations describe propagation between

each pair of surface mesh elements. Solving this system yields the pressure on the

boundary.

Finally, the value of pressure at any interior point is computed by evaluating an

integral as per the Helmholtz-Kirchhoff integral theorem. Since the domain itself is

not discretized in BEM, the numerical errors are significantly reduced.

As with FEM, the computational and storage complexity of BEM are dominated

21

by the complexity of solving the linear system. The number of elements in the

surface mesh must be O(ν2) to satisfy the Nyquist condition. This results in an

n × n dense matrix, where n = O(ν2). Since the linear solve must be repeated

for each frequency, the storage complexity (i.e., memory required while calculating

the solution) of BEM is O(ν5), and its computational complexity is O(ν7) if direct

matrix inversion is used. This complexity can be reduced to O(ν4) per frequency

using iterative Krylov subspace solvers.

This complexity can be further reduced using fast multipole methods (FMM) [30].

FMM approximates the interactions between groups of mesh nodes. The main result

of this approximation is that the size of the dense matrix is reduced to k×n, where k

is a large constant and n = O(ν2). Therefore, the storage complexity of FMM-BEM

is O(ν3), and its computational complexity is O(ν2 log ν) per frequency.

2.2.3 Equivalent Source Method

The equivalent source method (ESM) [55] is closely related to the BEM, in that it also

solves the integral form of the Helmholtz equation. However, instead of solving for

pressure sampled on the domain boundary, pressure is sampled on an offset surface

of the boundary. The pressure on the offset surface is then expressed as a weighted

sum of elementary point sources φi, which are Green’s functions for the Helmholtz

equation. The main advantage of sampling pressure on the offset surface is that

fewer basis functions (point sources) are required to express the pressure with the

same degree of accuracy.

The basis expansion of the pressure field is then combined with the integral form

of the Helmholtz equation and the boundary conditions, resulting in a system of

linear equations, which must be represented using a dense matrix. As a result,

the asymptotic complexity of ESM is the same as that of BEM, i.e., the storage

22

complexity of ESM is O(ν5), and its computational complexity is O(ν7).

Recently, a precomputation-based algorithm has been developed based on ESM,

which uses transfer operators similar to those defined in Chapter 3. This approach al-

lows scattering and diffraction from discrete objects to be simulated in real-time [52].

2.3 Geometric Acoustics

The computational and storage complexity of numerical methods for solving the wave

equation or Helmholtz equation grows rapidly with increasing frequency, or with

increasing domain size (i.e., area, volume). Therefore, these methods are feasible

only for low frequency sounds and small-to-medium-sized spaces. To simulate higher

frequencies or larger domains, we typically use geometric acoustics techniques.

By making a high-frequency assumption, it is possible to model the propagation

of sound waves using rays of sound emitted from a sound source. This is analogous

to geometric optics, where light is assumed to propagate along rays emitted from a

light source. First, the acoustic pressure is written as follows:

P (x, t) = A(x)eιω(t−W (x)/c0), (2.8)

where W (x) is called the eikonal, and expresses the variation of phase with po-

sition, and c0 is a reference speed of sound. As the speed of sound may change with

position in large domains (due to local variations of density, temperature, etc.), we

denote the speed of sound at any point x by c(x). Substituting into the wave equa-

tion, and making a high frequency approximation (i.e., ω → 0) yields the eikonal

equation [22]:

23

∇W · ∇W =
c2

0

c2(x)
. (2.9)

While the eikonal equation may be solved numerically, a simpler approach is often

used. This is based on the observation that the local direction of propagation of sound

at any point is parallel to ∇W (x). This allows sound propagation to be modeled

using rays propagating along ∇W (x). In general, the rays travel along curved paths,

as determined by the variation of c(x) over the domain. This approach is often

used to simulate underwater or atmospheric acoustics, where the domain sizes make

numerical methods impractical.

In domains where the speed of sound is constant (e.g., indoor spaces, or small

outdoor spaces), rays travel along straight lines. Upon encountering solid obstacles

(such as walls), the rays may be reflected, absorbed, transmitted, or scattered. Ge-

ometric acoustics algorithms determine how rays propagate through a domain, and

use this information to simulate sound propagation.

The most compute-intensive step of a geometric acoustics algorithm is typically

the ray tracing step, i.e., given a ray with its origin and direction, determining the first

point of intersection between the ray and the domain boundary, which also includes

objects in the scene. Modern geometric acoustics techniques can make use of the lat-

est work on high-performance ray tracing to significantly improve their performance.

These techniques use acceleration structures such as Bounding Volume Hierarchies

(BVHs) [44] or kD-trees [90], along with parallel programming techniques [65, 57],

to achieve near-interactive performance.

There are many algorithms for using ray tracing to simulate sound propagation.

Most of them fall into one of the following categories.

24

2.3.1 Image Source Method

For a rectangular domain with smooth, perfectly rigid walls, the wave equation

can be solved analytically. This solution can be written in multiple ways. The

normal mode expansion is used in ARD, to reduce dispersion errors in large spaces.

An alternative representation of the solution is the image source expansion [4]. In

this approach, a Neumann boundary condition can be applied to an infinite planar

reflector by reflecting the sound source about the reflector, resulting in a secondary

image source. This approach can be recursively applied to model multiple reflections.

The image source method is an exact solution of the wave equation for a rectangu-

lar room with perfectly rigid, perfectly smooth walls. The method models perfectly

specular (mirror-like) reflections only. The method does not account for general,

angle-dependent impedances. It does not model surface scattering from non-smooth

surfaces. And most importantly, when applied to finite planar reflectors in non-

rectangular domains [12], it does not account for diffraction and scattering effects

caused by the finite extent of the reflectors. Nonetheless, it remains a popular method

in many applications such as architectural acoustics.

Recent improvements to the image source method are based on the fact that

image sources only need to be generated for surfaces that are visible to the source [17].

Applying this observation recursively allows the set of image sources to be organized

into an image source tree (or visibility tree). Efficient visibility algorithms can then

be used to generate the image source tree, resulting in improved efficiency.

2.3.2 Stochastic Ray Tracing

A more general method for using rays to simulate sound propagation is stochastic

ray tracing [37, 88, 46]. In this approach, a large number of rays are traced from

25

the source. These rays all carry equal amounts of energy, such that the total energy

carried by all rays is proportional to the intensity of the source. As the rays propagate

through the domain, they are reflected upon encountering the boundaries. The

method keeps track of the energy lost at each reflection due to absorption, as well

as the total distance traveled by each ray. Rays are counted as they pass through

a detection sphere around the listener position. The energy carried and distance

traveled by each ray is then used to determine the variation of acoustic energy over

time. This information can then be used to estimate the pressure at the listener

position [40].

Surface scattering can also be modeled using stochastic ray tracing. This is

achieved using a random incidence scattering coefficient [89], which, for any given

boundary point, models the probability that an incident ray is scattered away from

the specular reflection direction. This can be used to generate reflected rays traveling

along randomly chosen directions, thereby modeling diffuse reflections or general

surface scattering.

2.3.3 Volume Tracing

Tracing rays can lead to errors in sampling the domain boundary. Moreover, choosing

an appropriate size for the detection sphere at the listener remains a tricky prob-

lem [78]. An alternative approach is to trace volumes such as cones, pyramids [24]

or frusta [43]. In these approaches, testing whether a propagation path reaches the

listener requires a simple containment test with the corresponding cone, pyramid or

frustum. Adaptive frustum sampling approaches have also been developed [18], en-

abling frustum tracing to achieve near-interactive performance for early reflections,

even on complex models.

26

2.3.4 Diffraction

Neither the image source method nor stochastic ray tracing accounts for diffraction

around obstacles. Diffraction is a low-frequency phenomenon, and is not modeled

by high-frequency geometric acoustics techniques. Therefore, several techniques have

been developed to augment geometric acoustics by explicitly computing the effects of

diffraction. These methods begin by identifying diffracting edges, i.e., edges around

which sound waves bend [79]. A suitable edge diffraction model is then applied to

simulate diffraction, as well as the interactions between diffraction and reflecting

surfaces. Two commonly-used diffraction models are briefly discussed below.

Uniform Theory of Diffraction The Uniform Theory of Diffraction (UTD), orig-

inally developed for electromagnetic waves [36], is used to model diffraction about

an infinite, perfectly rigid wedge. This makes it inaccurate for the finite diffract-

ing edges encountered in all finite domains, but the relative simplicity of the model

makes it attractive, especially for interactive applications [85].

Biot-Tolstoy-Medwin model The Biot-Tolstoy-Medwin (BTM) model [76] is

based on the Huygens principle. Diffraction from a finite wedge is modeled by plac-

ing infinitesimal secondary sources along the diffracting edge, and integrating the

contributions due to all of them. This allows diffraction to be accurately modeled,

but the approach does not easily scale to multiple orders of diffraction, or to com-

plex scenes with many diffracting edges, since each diffracting edge must be densely

sampled. Recent work in this area has focused on these two aspects. From-region

visibility algorithms have been applied to efficiently cull invalid diffraction paths [7],

allowing BTM to handle large, complex scenes. Monte Carlo methods have been

used to efficiently evaluate the BTM integrals using GPUs [56].

27

2.3.5 Acoustic Rendering Equation

Many of the above techniques can be unified into a single formulation using the

acoustic rendering equation [67]. This is an integral equation based on a transport

theory formulation of the propagation of acoustic energy. We use this equation to

formulate the acoustic transfer operators described in Chapter 3. Note that since

this is an energy-based formulation, it cannot model detailed variations in the phase

of the pressure field.

2.4 Impulse Responses

During simulation (and particularly in interactive applications), we often need to

perform simulations in the same environment, with no changes to the scene, but with

different sound signals. In such situations, instead of repeating the entire simulation,

we exploit the fact that acoustics is a linear, time-invariant system [38].

Let f1(t) and f2(t) be two sound signals that can be emitted by a given source

in a given environment. Let g1(t) and g2(t) be the corresponding signals received

at a given listener position. Let H be the sound propagation operator such that

g1 = H(f1) and g2 = H(f2). Then H is linear if H(f1 + f2) = g1 + g2, and H(αf1) =

αg1 (and similarly for f2). H is time-invariant if H(f1(t − ∆t)) = g1(t − ∆t) (and

similarly for f2). This property is also referred to as shift-invariance.

Since the differential operator is linear time-invariant, it can be shown that the

propagation of sound waves, which is governed by a differential equation, can be

described as a linear time-invariant system. Then, like any linear time-invariant

system, sound propagation can be completely characterized by its impulse response,

i.e., h(t) = H(δ(t)), where δ(t) is the Dirac delta function:

28

δ(t) =

 +∞ if t = 0,

0 otherwise,
(2.10)

or, when dealing with discrete functions, the Kronecker delta function:

δ[t] =

 1 if t = 0,

0 otherwise.
(2.11)

Simulation is used to determine the impulse response. The actual signal received

at the listener for any given source signal f is then obtained through convolution:

g = h ? f =

∫ ∞
−∞

h(t− τ)f(τ)dτ. (2.12)

Note that impulse responses for physically valid sound propagation must be

causal, i.e., h(t) = 0 for t < 0.

2.4.1 Frequency Responses

Frequency-domain algorithms (such as FEM and BEM) compute the frequency re-

sponse, which is related to the impulse response through the Fourier transform:

H(ω) =

∫ ∞
−∞

h(t)e−ιωtdt, (2.13)

where H is the frequency response, expressed as a function of angular frequency.

The impulse response can be recovered from the frequency response using the inverse

Fourier transform:

h(t) =

∫ ∞
−∞

H(ω)eιωtdω. (2.14)

29

The frequency response is the result of applying the sound propagation operator

to the Fourier transform of the delta function, i.e., H(ω) = H(δ(ω)). The Fourier

coefficients of δ are all equal to 1.

Essentially, the Fourier transform expresses an arbitrary time signal as a weighted

sum of complex-valued sinusoids. In general, the values of H(w) are complex num-

bers, containing both magnitude and phase:

H(ω) = Aωe
ιφω . (2.15)

Scaling the magnitudes changes the frequency content of a signal. For example,

increasing the magnitudes of the low-frequency terms in a Fourier expansion results

in a bass boost. Scaling the phase terms, however, alters the temporal characteristics

of the signal. For example, multiplying H(ω) with e−ιω∆t (where ι =
√
−1) has the

effect of delaying the signal by ∆t:

∫ ∞
−∞

H(ω)e−ιω∆teιωtdω =

∫ ∞
−∞

H(ω)eιω(t−∆t)dω = h(t−∆t). (2.16)

In this manner, the Fourier transform allows both scaling and delays to applied

to the acoustic response using a uniform representation of both kinds of operations.

2.4.2 Echograms

Energy-based simulation algorithms, such as stochastic ray tracing, do not compute

the impulse response. Instead, they compute the acoustic energy received by the

listener as a function of time, often referred to as the echogram. We denote the

pressure at the listener by p(t), and the echogram by e(t). Moreover, we denote

the corresponding Fourier transforms by P (ω) and E(ω), respectively. Given the

echogram computed by the simulation, e(t) or E(ω), the impulse response, p(t) or

30

P (ω), can be computed as follows.

First, we note that due to the definition of acoustic energy, |E(ω)| ∝ |P (ω)|2.

This allows us to use a square root to compute the magnitude of the frequency

response. The phase information is irretrievably lost due to the energy-based nature

of the simulation. This information may be faked, however, using random phase,

a minimum-phase assumption, or by simply copying the phase of E(ω) [40]. Once

both the magnitude and phase are available, the impulse response can be computed

through an inverse Fourier transform.

2.5 Auralization

In interactive applications, sound propagation simulation is used to compute an im-

pulse response from a source to a listener. This is in turn used to generate immersive

audio with acoustic effects, using convolution. For example, an impulse response can

add reverberation to a cathedral, or occlusion effects behind a pillar. This process

of using the results of sound propagation simulation to generate audio signals that

incorporate acoustic effects is sometimes referred to as auralization. The basic idea is

to use convolution with a dry or anechoic audio clip (i.e., one which does not contain

any propagation effects) to generate the audio clip heard by the listener.

Performing convolution by evaluating the integral in equation 2.12 is computa-

tionally expensive. Therefore, most applications use the Fourier transform to perform

convolution, due to the following property:

F(f ? g) = F(f) · F(g), (2.17)

i.e., convolution in the time domain is multiplication in the frequency domain,

and vice-versa. Using the fast Fourier transform algorithm, the above equation can

31

be used to efficiently perform convolution.

2.5.1 Real-Time Convolution

In many interactive applications, the source signal may be too long for even the

Fourier-transform-based convolution to be efficient. Moreover, in many cases, the

source and/or listener may be moving, causing the impulse response to change over

time even as the source signal is being emitted. For such situations, the short-time

Fourier transform (STFT) [3] is used to perform real-time convolution.

The source signal is divided into sequential frames of a short duration, say 100 ms.

Each frame is convolved with the impulse response, with the result being longer than

the frame duration. For example, if a 100 ms frame is convolved with a 1s impulse

response, the result is a 1.1s signal. As each frame is convolved, the results are

combined together to form the final output audio stream. Two common approaches

to perform this combination are overlap-add and overlap-save [3].

Note that since each frame may be convolved with a different IR, the effects of

time-varying impulse responses can be taken into account. However, as IRs may

change unpredictably from frame to frame, audible artifacts may occur between

frames. These can be alleviated using carefully chosen windowing filters for interpo-

lation between frames.

2.5.2 Spatialization

For immersive sound rendering in interactive applications, it is important to model

the directional nature of sound. In other words, a user should be able to perceive

the direction from which sound from the source reaches the listener. This process

is sometimes referred to as spatialization. This is often achieved by decomposing

32

the sound field into a superposition of point sources or plane waves, whose sound

arrives at the listener from a fixed direction. Spatialization can be performed by

determining what signals to output from the user’s speakers so as to reproduce the

effect of the elementary point sources or plane waves.

Amplitude Panning Amplitude panning [60] refers to the general approach of

using the direction of the source (or plane wave) relative to the listener, as well

as the direction of a speaker relative to the listener, to compute the signal to emit

from the speaker. This is essentially described as a real-valued scaling factor that is

applied to the source signal. This way, for each speaker, a panning weight or panning

gain is computed, and applied to the source signal. There are multiple ways to define

panning weights, each with its own pros and cons.

Ambisonics Ambisonics [50] refers to an approach for representing the sound field

due to a plane wave or point source using spherical harmonics (SH). Essentially, the

SH coefficients of the sound field due to a plane wave are stored as separate chan-

nels in an audio file. (This format is also called B-format.) A hardware decoder is

typically used to reconstruct a multichannel audio stream from the SH coefficients.

Ambisonics have the advantage that the same audio signal can be used to automat-

ically scale to any arbitrary speaker system.

2.5.3 Binaural Rendering

All of the above spatialization techniques (amplitude panning, ambisonics, etc.) are

based on measuring or simulating the sound field at a single point. Humans, on

the other hand, have two ears, which enables sound sources to be located more

accurately. Moreover, the interactions between the head, ears and the sound field

33

results in subtle differences between the sound received at each ear [10]. These effects

are all captured using the head-related transfer function (HRTF), or its time-domain

equivalent, the head-related impulse response (HRIR) [10].

Given a point source or plane wave incident at the listener along a direction s, we

define two HRTFs, one for each ear, denoted by HRTFL(s) and HRTFR(s). These

are used as follows. We first measure or simulate the sound field at the center of

the head, in the absence of the head, and denote this by F (ω). The signals received

at the left and right ears are then denoted by GL(ω) and GR(ω), respectively, and

given by:

GL(ω) = HRTFL(s)F (ω), (2.18)

GR(ω) = HRTFR(s)F (ω). (2.19)

The signals GL and GR are then played on the two channels of a headphone sys-

tem. This gives the user the experience of actually being in the virtual environment.

Note that this approach cannot work with general speaker systems unless special

filtering is performed to cancel the effects of room acoustics in the listening space, as

well as the fact that all speakers can be heard at both ears. This process is referred to

as crosstalk cancellation [10]. Also note that for maximum impact, each user’s head

should be used to compute a custom HRTF. However, this is usually impractical, so

standard measurements [28] are typically used.

34

2.6 Precomputed Sound Propagation

In interactive applications, the goal is to model sound propagation in scenarios where

the listener, the sound sources, and in some cases even the geometry may be moving.

In such situations, running detailed numerical simulations, or performing compute-

intensive ray tracing every time either the source, listener, or geometry move is

usually impractical. For many interactive applications, however, we may assume

that large portions of the geometry are static. We may then precompute impulse

responses between static portions of the scene and use them to efficiently reconstruct

impulse responses for a moving listener. Such precomputation-based methods may

be broadly classified depending on whether or not they assume the source to be static

as well.

2.6.1 Static Source Methods

Beam tracing [27, 42] is one example of a precomputation-based method that assumes

static sources. Given a source position, it is possible to generate image sources to

model reflected (or even diffracted) sound. The beam tracing method generates

beams (or frusta) which correspond to each image source. A listener receives sound

from an image source if and only if it lies inside the corresponding beam. This allows

a beam tree to be precomputed in an offline process. During interactive simulation,

the listener position is used to efficiently determine which beams the listener lies

inside, and this information is used to render sound from the corresponding image

sources.

Alternatively, the domain boundary may be divided into several patches. Impulse

responses can be computed from the source to a point on each patch. During in-

teractive simulation, the points on each patch are treated as point sources emitting

35

a signal given by the corresponding precomputed impulse response. Contributions

from each patch are added together to obtain the final impulse response at the

current position of a moving listener. This approach has been combined with the

acoustic rendering equation to obtain an efficient frequency-domain method [68] for

precomputing sound propagation from a static source.

2.6.2 Moving Source Methods

In many interactive applications, the scene can naturally be divided to cells intercon-

nected by portals [25]. In such cases, it is possible to precompute impulse responses

from the center of each cell to the center of the same cell, as well as to the centers

of each of its neighboring cells [72]. During interactive simulation, the positions of

the moving source and moving listener are used to determine the cells they are in.

Paths are then computed from the source cell to the listener cell in the cell-and-

portal graph, and impulse responses for each consecutive pair of cells along such a

path are convolved sequentially to determine the final impulse response. Compact

representations have been developed for such approaches [83], but these are limited

to scenes which can be decomposed into cells and portals. This may not be possible

for many common kinds of environments, such as outdoor environments.

Numerical methods have also been used to develop precomputation-based sound

propagation algorithms. Recently [63], ARD was used to simulate sound propa-

gation from a grid of sources distributed throughout an environment, to a grid of

listeners also distributed throughout the environment. During interactive simulation,

the nearest grid points to the source and listener are determined, and interpolation

is performed to determine the source-to-listener impulse response given the pre-

computed impulse responses between the grid points. While this method has high

performance, it requires very large amounts (several gigabytes) of storage for the pre-

36

computed data, making it impractical for interactive applications on consumer-grade

hardware.

2.7 Statistical Models

As the preceding discussion has shown, direct application of numerical methods

tends to be impractical for interactive applications. Geometric methods are not fast

enough for interactive simulation of higher-order reflections and reverberation, since

this would require very high orders of reflection, and a very large number of rays

to be traced. While precomputed methods can be used for this technique, the size

of the precomputed data is often an issue. Therefore, most interactive applications

model effects like reverberation using simple statistical models.

The Eyring model [23] is an example of a statistical model for reverberation. It

represents reverberation using an exponentially decaying impulse response, modu-

lated by a noise function. This approximation has been developed for single rectangu-

lar rooms, but is often used for arbitrary environments. Recently, more sophisticated

models have been developed for coupled rooms [75]. Reverberation models are often

expressed using recursive infinite impulse response (IIR) filters, and implemented

using feedback delay networks [35]. Such artificial reverberation models form the

basis of the Interactive 3D Audio Level 2 specification [33], which is used in most

modern games.

37

Chapter 3

Acoustic Transfer Operators

In this chapter, we describe our formulation of acoustic transfer operators. We de-

velop acoustic transfer operators based on the acoustic rendering equation, and out-

line a family of algorithms collectively called Precomputed Acoustic Radiance Trans-

fer (PART). The basic approach involves precomputing acoustic transfer operators

and using them for efficient interactive sound propagation. Two such algorithms are

described later in Chapters 3.3.3 and 5.

3.1 Acoustic Rendering Equation

The acoustic transfer operator is derived from an integral equation describing the dis-

tribution of acoustic energy in an environment. We begin by defining the quantities

required to describe such energy distributions.

3.1.1 Acoustic Energy Transport

The energy contained in a sound field at a point is measured as the product of pressure

p and particle velocity u. The resulting “energy field” is a vector quantity, and can

be analyzed using the techniques of transport theory. To perform the analysis, we

define a phonon as a quantum of acoustic energy [11]. Phonons are virtual particles

that carry acoustic energy (in a sense analogous to photons), and travel in straight

lines.

Flux The total amount of energy (or equivalently, the total number of phonons)

passing through a region of space with area A is called the flux through the region.

Consider a differential volume element dr around a point r, and differential solid

angle ds around the direction s. The net number of phonons traveling through the

boundary of dr within the range of solid angles ds is called the flux density Φ(r, s).

Irradiance Consider a surface point r. The flux striking a differential area dA

from a direction s is called the irradiance:

E(r, s) =
dΦ(r, s)

dA · s
. (3.1)

Note that area is represented as a vector quantity, whose direction is equal to

the normal of the surface patch. The total irradiance at a point can be obtained

by integrating the above quantity over all directions in the hemisphere around the

surface normal.

Radiance The flux entering or leaving a differential area dA from a direction s

per unit solid angle is called the radiance:

L(r, s) =
d2Φ(r, s)

(dA · s)ds
. (3.2)

Radiance arriving at a point r is called incident radiance, whereas radiance leav-

ing a point r is called exitant radiance.

39

Radiance and Echograms Note that all of the above quantities – flux density,

irradiance, and radiance – are functions of time. The time variable t has been

hidden in the above equations for simplicity. If the flux density distribution in an

environment is induced by a sound source emitting a unit impulse, then the echogram

at the listener position can be obtained by integrating the radiance at the listener

position over the unit sphere (i.e., over all directions).

Therefore, we need a way to compute the radiance at any point in the environ-

ment, accounting for various sound propagation phenomena. This is achieved using

the acoustic rendering equation.

3.1.2 The Acoustic Rendering Equation

The acoustic rendering equation is an integral equation which governs the exitant

acoustic radiance at any surface point in the scene:

L(r, s, t) = L0(r, s, t)+

∫
∂Ω

V (r, r′)G(r, r′)ρ(s′, s, r, t)?P (r, r′, t)?L(r′, s′, t)dr′. (3.3)

The integration is carried out over all surface points r′, and s′ is the direction

from r′ to r. This is the time-domain version of the acoustic rendering equation.

In the frequency-domain version, the time variable t is replaced by the frequency ν,

and the convolutions are replaced by multiplications. L0 is the direct radiance, i.e.,

the exitant radiance at point r, along direction s, reflected directly from the sound

source. The definitions of the various terms in the integrand are provided below.

Visibility The visibility function V (r, r′) describes whether the points r and r′ are

mutually visible. Its value is 1 if the points are mutually visible, and 0 otherwise.

40

The visibility function is typically evaluated using a ray tracer.

Form Factor The form factor, or geometry term G(r, r′) accounts for the relative

positions and orientations of differential surface patches dA and dA′ around the

points r and r′, respectively:

G(r, r′) =
cos θin cos θout
|r− r′|2

, (3.4)

where θin is the angle between dA and s′, and θout is that between dA′ and s′.

Bidirectional Reflectance Distribution Function The bidirectional reflectance

distribution function (BRDF) ρ(s′, s, r, t) is the ratio of exitant radiance along s and

incident irradiance along s′, at the point r:

ρ(s′, s, r, t) =
dL(r, s, t)

dE(r, s′, t)
. (3.5)

In the time domain, the BRDF is a function of time. Intuitively, this is because

the surface at point r may vibrate in a complex manner when a sound wave is incident

on it. As a result, even through the incident sound wave may be an impulse, the

reflected sound wave may have a more complex temporal structure. In the frequency

domain, the BRDF is defined for multiple frequencies. The phase terms of the BRDF

values account for the complex temporal structure of reflected sound waves.

Propagation Term The propagation term P (r, r′, t) accounts for propagation of

phonons from r′ to r. It is used to model propagation delays and air absorption:

P (r, r′, t) = e−α|r−r
′|δ

(
t− |r− r′|

c

)
, (3.6)

where α is the air absorption coefficient, and c is the speed of sound.

41

3.2 Transfer Operators

The acoustic rendering equation can be rewritten in the following way:

L(r, s, t) = L0(r, s, t) +

∫
∂Ω

R(r, s, r′, t) ? L(r′, s′, t)dr′, (3.7)

where R(r, s, r′, t) = V (r, r′)G(r, r′)ρ(s′, s, r, t) ?P (r, r′, t) is the reflection kernel.

Equations of the above form are called Fredholm equations of the second kind. Such

equations have a unique, continuous solution which can be written as a Liouville-

Neumann series as shown below:

L(r, s, t) =
∞∑
i=0

Li(r, s, t), (3.8)

with the individual elements of the series, Li, related by the following recursive

relation:

Li+1(r, s, t) =

∫
∂Ω

R(r, s, r′, t) ? Li(r
′, s′, t)dr′. (3.9)

Intuitively, Li is the radiance distribution after i orders of reflection, and the

recursive relation above calculates the i + 1 order radiance by reflecting the i order

radiance at the domain boundary.

In operator notation, the above equations can be written as:

42

Li+1 = RLi,

L =
∞∑
i=0

Li

=
∞∑
i=0

RiL0

= T L0, (3.10)

where T = (I − R)−1 is called the acoustic transfer operator. Since ||R|| < 1,

where ||R|| denotes the norm of the operator R, we have T = (I+R+R2 + · · ·) [86].

As the above equations show, applying the acoustic transfer operator to the direct

radiance distribution yields the final radiance distribution. More importantly, for a

static domain boundary, the transfer operator can be precomputed and efficiently

applied to the direct radiance at run-time, resulting in efficient simulation of detailed,

high-order sound propagation effects.

3.3 Discrete Transfer Operators

For transfer operators to be used in a practical application, they must first be con-

verted to a discrete representation. Essentially, this involves discretizing the inde-

pendent variables r, s, and t. This process is described below.

Surface Discretization The domain boundary ∂Ω is discretized by subdividing it

into a number of patches. The patches are analogous to the surface elements used in

boundary element methods. The radiance functions are assumed to be constant over

each patch. The value of radiance in a patch is obtained by computing the radiance

at a single surface sample point (or collocation point) associated with each patch.

43

Direction Discretization We assume that the transfer operator and the radiances

L0 and L are constant over all directions. In other words, the transfer operator is

independent of direction s. The implications of this assumption on the kinds of

acoustic phenomena that can be modeled by the transfer operator are discussed in

more detail in Chapters 3.3.3 and 5.

Time Discretization The time variable t is sampled at the audio sampling rate

(e.g., 44.1 kHz or 48 kHz) so as to capture acoustic effects across the audible range

of frequencies.

3.3.1 Matrix Representation

After performing surface, direction, and time discretization, the transfer operator

can be represented as a matrix, as described below.

Radiance Vectors Suppose the number of surface samples is nr and the number

of time samples is nt. Then the acoustic radiance can be written as an nrnt × 1

vector, which, in block notation, is:

l =

l(1)

l(2)

...

l(n)

 , (3.11)

where l(1) is nt × 1 vector representing the radiance at surface sample 1, etc.

Convolution Matrices Consider a discrete signal lj with nt samples, represented

as an nt × 1 vector, and an impulse response (or other discrete filter) h with nt

samples. The convolution gj = h ? lj can be represented as a matrix-vector product

44

gj = Hlj. For example, with an impulse response with 3 non-zero samples:

H =

h1 h2 h3 0 0 0 0

0 h1 h2 h3 0 0 0

0 0 h1 h2 h3 0 0

0 0 0 h1 h2 h3 0

0 0 0 0 h1 h2 h3

. (3.12)

Note that the signal lj must be sufficiently zero-padded to prevent aliasing.

Block Matrix Representation The radiance at surface sample j can be written

in terms of the direct radiance at surface samples j’ as follows:

l(j) =
nr−1∑
j′=0

T(j, j′)l0(j′), (3.13)

where T(j, j′) is a convolution matrix describing the acoustic transfer from sample

j′ to sample j. In block matrix notation, the transfer operator has the following form:

T =

T(1, 1) T(1, 2) · · · T(1, n)

T(2, 1) T(2, 2) · · · T(2, n)

...
...

...
...

T(n, 1) T(n, 2) · · · T(n, n)

 . (3.14)

In this form, the transfer matrix has dimensions nrnt × nrnt.

Frequency-Domain Representation To obtain a frequency-domain representa-

tion, we take the Fourier transform of the radiance vectors and the transfer matrix:

Fl = FTF−1Fl0, (3.15)

45

where F is the matrix representation of the Fourier transform operator. Since

the Fourier basis functions (i.e., complex sinusoids) are eigenfunctions of linear time-

invariant operators, applying the Fourier transform to a convolution matrix converts

it to a diagonal matrix. Therefore, each block T(i, j) becomes a diagonal matrix

after applying the Fourier transform. This allows the transfer operator to be split

into multiple independent matrices, once for each frequency sample, resulting in nt

matrices, each of dimension nr × nr.

3.3.2 Alternative Derivation

An alternative way of deriving transfer matrices from the acoustic rendering equa-

tion is follows. Suppose the boundary ∂Ω is discretized into n patches, numbered

0 through n − 1. Suppose the patch with index i is denoted by ∂Ωi, and the cor-

responding sample point is denoted by ri. Using the acoustic rendering equation to

calculate the exitant radiance at ri yields:

L(ri, t) = L0(ri, t) +

∫
∂Ω

R(ri, r
′, t) ? L(r′, t)dr′. (3.16)

For any point r′ ∈ ∂Ωj, we have L(r′, t) = L(rj, t), since radiance is assumed to

be constant over each patch, and rj ∈ ∂Ωj. This allows us to split the integral as

follows:

L(ri, t) = L0(ri, t) +
n−1∑
j=0

L(rj, t) ?

(∫
∂Ωj

R(ri, r
′, t)dr′

)
. (3.17)

We define:

Ri,j(t) =

∫
∂Ωj

R(ri, r
′, t)dr′. (3.18)

46

This allows us to rewrite Equation 3.17 as:

L(ri, t) = L0(ri, t) +
n−1∑
j=0

L(rj, t) ? Ri,j(t). (3.19)

The functions Ri,j(t) may be precomputed and stored in convolution matrix form,

denoted by R(i, j). These convolution matrices may be assembled in the block matrix

form discussed in Section 3.3.1, yielding the one-bounce transfer matrix, R. The

acoustic transfer operator is then obtained as:

T = I + R + R2 + · · ·

= (I−R)−1. (3.20)

3.3.3 Complexity

This section describes the asymptotic time and storage complexity of using transfer

operators.

Time Complexity Applying the transfer operator to a direct radiance distribution

is a matrix-vector multiplication. The complexity of a matrix-vector multiplication

is O(n2), for matrices of dimension n × n and vectors of dimension n × 1. For

a time-domain transfer operator, the time complexity is therefore O(n2
rn

2
t). For

frequency-domain transfer operators, nt independent matrix-vector multiplications

result in a time complexity of O(ntn
2
r).

Storage The storage cost of time-domain as well as frequency-domain transfer

operators is O(ntn
2
r). For frequency-domain transfer operators, this is because there

are nt independent matrices, each of dimension nr × nr. For time-domain transfer

operators, since each nt × nt convolution matrix contains only nt unique numbers,

47

the storage complexity is only O(ntn
2
r).

In practice, nr and nt can have large values, and storing and using transfer oper-

ators in a naive manner is often impractical, requiring several gigabytes of storage.

In the following chapters, we will describe efficient ways to store and use acoustic

transfer operators.

48

Chapter 4

Frequency-Domain Acoustic
Transfer Operators

In this chapter, we discuss a specific algorithm based on the PART framework, for

simulating higher-order diffuse reflections of sound [8]. The algorithm performs its

calculations in the frequency domain. We also describe an approach for incorporating

higher-order reflections in the transfer operator without performing multi-bounce ray

tracing.

4.1 Domain Discretization

The algorithm represents acoustic radiance and acoustic transfer operators by dis-

cretizing in the spatial and frequency domains as discussed below.

4.1.1 Echogram Representation

Echograms are discretized into N time-domain samples, where the value of N is

chosen based on the desired audio sampling frequency and the length of the IR

modeled (which could be tuned based on the expected reverberation time of a room).

We compute the Discrete Fourier Transform (DFT) using the Fast Fourier Transform

(FFT) algorithm. A unit impulse emitted by the source at time t = 0 has all

Fourier coefficients set to 1. Since the Fourier transform is linear, attenuation and

accumulation of IRs can be performed easily (n denotes a discrete sample index):

F(af1(n) + bf2(n)) = aF(f1(n)) + bF(f2(n)). (4.1)

Unlike in the time domain, in the frequency domain delays can also be applied

using a scale factor, since the Fourier basis vectors are eigenvectors of linear time-

invariant operators:

F(f(n−∆n)) = e−ιω∆nF(f(n)). (4.2)

Note that care must be taken to ensure that the delays align on time-domain

sample boundaries, otherwise the inverse Fourier transform will contain non-zero

imaginary parts.

Given the length of the impulse response to be modeled, we truncate the Fourier

coefficients of the echogram, retaining a (relatively) small number of coefficients.

This gives a discrete representation for acoustic radiance at a point.

Echogram Reconstruction Computing the echogram using the above expres-

sions for delay and attenuation results in a frequency-domain signal, with a limited

set of Fourier coefficients. Before recovering an impulse response for convolution, the

missing Fourier coefficients of the echogram must be reconstructed. This is achieved

by replicating the Fourier coefficients in the frequency domain until the desired num-

ber of samples are obtained. In the time-domain, this operation is equivalent to

upsampling the signal.

50

4.1.2 Surface Sampling

We parameterize the scene surface by mapping the primitives to the unit square (a

uv texture mapping) using Least Squares Conformal Mapping (LSCM) [47]. The

user specifies the texture dimensions; each texel of the resulting texture is mapped

to a single surface sample using an inverse mapping process. The number of texels

mapped to a given primitive is weighted by the area of the primitive, to ensure a

roughly even distribution of samples. We chose the LSCM algorithm for this purpose

since it is widely used in current 3D modeling tools (e.g., Blender 1); it can be replaced

with any other technique for sampling the surfaces as long as the number of samples

generated on a primitive is proportional to its area.

Diffuse Patches Since we are modeling diffuse reflections, it is not necessary to

model directional variation of acoustic radiance at surface points. Therefore, we

assume that all surface patches are diffuse.

4.2 Precomputation

Our algorithm provides two main improvements over the state-of-the-art acoustic

radiance transfer algorithms: (a) we decouple the source position from the precom-

puted data by computing an acoustic transfer operator ; and (b) we use the SVD to

compress the transfer operator and quickly compute higher-order reflections. The

rest of this chapter details how our algorithm achieves these improvements over the

state-of-the-art. Our overall approach is as follows (see Figure 4.1):

• Preprocessing. We sample the surface of the scene and compute a transfer

operator which models one or more orders of diffuse reflections of sound among

1http://www.blender.org

51

Figure 4.1: Overview of our algorithm. In a precomputation step, we sample the
surfaces on the scene, and compute a one-bounce transfer operator for these samples
(T). We then use the SVD to compute the modes of the transfer operator. At
runtime, we shoot rays from the source (which may move freely) and compute direct
IRs at the surface samples. We then apply the transfer operator (with a user-specified
number of modes retained) repeatedly to quickly obtain the multi-bounce indirect
IRs at the surface samples. We compute the IR at the listener position in a final
gathering step.

the surface samples.

• Run-time. We compute first-order diffuse reflections at run-time, and apply

the transfer operator to efficiently compute higher-order diffuse reflections.

4.2.1 Transfer Operator Computation

The acoustic transfer operator is expressed over a set of p samples chosen over the

surface of the scene. Let there be f Fourier coefficients per surface sample. All

subsequent computations are performed on each Fourier coefficient independently.

For each frequency ωm, we define the acoustic radiance vector l(ωm), which con-

tains p elements that represent the mth Fourier coefficients of the radiance at each

surface sample. For the sake of brevity, we shall omit the parameter ωm from the

52

equations in the rest of this chapter as it may be obvious from the context.

The Neumann series expansion of the acoustic rendering expressed in matrix form

is:

ln+1(ωm) = R(ωm)ln(ωm), (4.3)

where ln(ωm) contains the mth Fourier coefficients of the radiance at each sur-

face sample after n reflections. The reflection matrix R(ωm) models the effect of

one diffuse reflection. The (i, j)th element of R(ωm) describes how the mth Fourier

coefficient at surface sample j affects the mth Fourier coefficient at surface sample i

after one diffuse reflection.

The entries in row i of R are computed by tracing paths sampled over the hemi-

sphere at surface sample i; the delays and attenuations along each path terminat-

ing at any other surface sample j are added to the entry Rij [68]. We can com-

pute a multi-bounce transfer operator with n orders of reflection as the matrix sum

Tn = R + R2 + · · · + Rn. The complete transfer operator T is given by the limit

limn→∞Tn. However, we truncate the series to a (user-specified) finite number of

terms.

4.2.2 Transfer Operator Compression

To apply the transfer operator once, the matrix-vector multiplication in Equation

4.3 needs to be performed once per Fourier coefficient at run-time. However, even for

scenes of moderate complexity, the number of surface samples, p, can be very large.

Since R is a p × p matrix and ln is a p × 1 vector, this step takes O(p2) time per

Fourier coefficient per order of reflection, which can quickly become quite expensive.

We use the SVD to compute a rank k approximation of R. This allows us to reduce

53

the complexity to O(pk).

Intuitively, truncating R to k modes using the SVD removes some of the high

spatial frequencies in the transfer operator. A lower-order mode of R might model

reflections from an entire wall, while higher-order modes might model details added

to the acoustic response due to local variations in the wall’s geometry (such as a

painting on the wall). In effect, the parameter k can be used to control the level-of-

detail of the acoustic response.

The cost of computing transfer matrices that represent additional bounces can

be further reduced to O(k2) by precomputing appropriate matrices as follows. The

direct radiances at each surface sample are stored in the vector l0. Suppose we have

a rank k approximation of R, given by R̃ = ŨS̃Ṽ
t
, where Ũ is a p× k matrix, S̃ is

a k × k diagonal matrix and Ṽt is a k × p matrix. Then the first-order radiance at

each surface sample is given by:

R̃l0 = ŨS̃Ṽ
t
l0

= Ũb,

where b = S̃Ṽ
t
l0 is l0 projected into the span of the first k right singular vectors

of R. The second-order response is:

R̃R̃l0 = Ũ(S̃Ṽ
t
Ũ)S̃Ṽ

t
l0

= ŨDb,

where D = S̃Ṽ
t
Ũ is essentially the one-bounce operator in the k-dimensional

54

subspace spanned by the singular vectors corresponding to the top k singular values

of R. The cost of multiplying b by D is simply O(k2). Notice that the third-order

response can be written as ŨD2b, and so on. This allows us to compute higher-order

responses using a k × k matrix instead of a p× p matrix.

4.3 Run-time

At run-time, we use the precomputed transfer operator is used as follows:

1. First, we shoot rays from the source to determine the direct radiance at each

surface sample.

2. Next, we apply the transfer operator to the direct radiance to obtain the indi-

rect radiance.

3. Finally, we shoot rays from the listener and gather the direct and indirect

radiance from each surface sample hit by a ray. These are added to obtain the

final echogram at the listener.

Another important design decision is how we compute the transfer operator.

There are two broad options:

1. Precompute the SVD approximation of the one-bounce transfer operator. Use

the method described in Section 4.2.2 to quickly precompute an approximate

multi-bounce operator.

2. Precompute the SVD approximation of the one-bounce transfer operator. At

run-time, the orders of reflection can be easily adjusted, perhaps based on

compute budget or sound quality.

55

The first option allows sound designers to rapidly adjust the orders of reflection

baked into the precomputed transfer operator. For example, one could first compute

a multi-bounce operator with 3 orders of reflection. If the resulting audio at run-time

sounds unsatisfactory, the precomputed data can quickly be updated with additional

orders of reflection without any further ray tracing or SVD computation.

In the second option, the SVD allows the IR accuracy to be traded off for per-

formance, providing adjustable level-of-detail for sound rendering.

4.4 Results

We now present some experimental results. All tests were performed on an Intel

Xeon X5560 workstation with 4 cores (each operating at 2.80 GHz) and 4GB of RAM

running Windows Vista. We report timings for all 4 cores since we use Intel MKL to

automatically parallelize our matrix operations over all cores of the test machine. We

have benchmarked our implementation on three scenes whose complexity is typical

of scenes encountered in acoustics applications. Figure 4.2 shows these scenes along

with some details.

4.4.1 Performance

For comparison, we chose the state-of-the-art frequency-domain acoustic radiance

transfer algorithm [68]. This approach effectively computes the transfer operator

(without any SVD approximation) and iteratively applies it to the direct acoustic

response until the solution converges. In order to perform a fair comparison, we

restrict both ART and our approach to computing 10 orders of reflection.

Table 4.1 summarizes the performance of the precomputation and run-time stages

of our algorithm. The run-time complexity depends on the number of modes re-

56

tained during the SVD approximation; the table clearly highlights this dependency.

As shown by the table, our algorithm very efficiently updates IRs when the source

position changes at run-time. Note that we precompute a one-bounce transfer op-

erator, and use the approach described in Section 4.2.2 to compute higher-order

reflections at run-time. Depending on the application, we could also precompute a

multi-bounce operator and apply it directly at run-time, further improving our per-

formance. Our implementation uses a more flexible approach of varying the orders of

reflection at runtime. As a result, it is possible to further improve the performance

of our implementation.

Figure 4.2: Benchmark scenes. From left to right: (a) Room (252 samples), (b) Hall
(177 samples), (c) Sigyn (1024 samples).

Scene Surface Precomputation Time Modes Runtime
Samples T SVD Initial Scatter Transfer Operator Final Gather

10 43.2 ms 24.0 ms 33.7 ms
Room 252 14.2 s 94.5 s 25 45.8 ms 43.8 ms 35.0 ms

50 42.4 ms 84.3 ms 36.4 ms

10 37.8 ms 26.8 ms 31.5 ms
Hall 177 13.1 s 93.1 s 25 37.1 ms 45.5 ms 30.2 ms

50 36.6 ms 79.7 ms 31.2 ms

Sigyn 1024 6.31 min 50.9 min 50 164.1 ms 218.1 ms 109.9 ms

Table 4.1: Performance characteristics of our algorithm. For each scene, we present
the precomputation time required by our algorithm for 1K Fourier coefficients. Under
precomputation time, we show the time required to compute the transfer operator, T,
and the time required to compute its SVD approximation. We also compare running
times for varying numbers of modes from the SVD. The table shows the time spent
at runtime in initial shooting from the source, applying the transfer operator, and
gathering the final IR at the listener position.

Table 4.2 shows the benefit of the SVD in compressing the transfer operator.

57

Scene Samples Reference 50 Modes

Hall 177 250.6 161.6
Room 252 508.0 221.6
Sigyn 1024 8388.6 839.2

Table 4.2: Memory requirements of the transfer operators computed by our algorithm
with (column 4) and without (column 3) SVD compression. Note that since the
entries of each matrix are complex numbers, each entry requires 8 bytes of storage.
All sizes in the table are in MB.

The table shows that without using SVD, the transfer operators may be too large

to be used on commodity hardware. For the uncompressed (“reference”) case, the

transfer operator size is p× p, for each Fourier coefficient (1K in our case). For the

compressed (“50 Modes”) case, the transfer operator size is p× k for Ũ, k× k for D

and k × p for S̃Ṽ
t
, where k is the number of modes retained. In the table, k = 50,

and p is the number of surface samples in the scene.

Table 4.3 compares the run-time performance of our method and ART. The table

shows the time required to update the IRs at the listener when the source moves. The

table clearly shows the advantage of our approach. Since our precomputed transfer

operator is decoupled from the source position, moving the source does not require

recomputing the transfer operator, allowing the source position to be updated much

faster than would be possible with ART.

Table 4.3 can also be used to derive the performance of our algorithm for the

case when a multi-bounce transfer operator is precomputed. For example, suppose we

precompute a transfer operator with 10 orders of reflection for the Sigyn scene. Then

the run-time cost would be the same as that of the one-bounce operator, i.e., 468.5

ms. The difference, i.e. (512.8ms−468.5ms)×1024 = 45.4s would be the additional

time spent during preprocessing to derive the multi-bounce operator from the one-

bounce operator (the factor of 1024 arises due to the fact that the timings in Table

58

Scene Orders Radiance Transfer Direct-to-Indirect Transfer
(50 modes)

2 11.7 s 131.8 ms
Room 5 11.8 s 154.4 ms

10 12.0 s 179.3 ms

2 10.6 s 116.5 ms
Hall 5 10.7 s 147.3 ms

10 10.9 s 170.5 ms

2 185.3 s 468.5 ms
Sigyn 5 186.7 s 491.2 ms

10 188.7 s 512.8 ms

Table 4.3: Comparison of our approach with ART. We compare the time required
by our algorithm to update the source position and recompute the IR at the listener
position after a varying number of diffuse reflections. Since ART does not decouple
the transfer operator from the source position, it needs to perform a costly recom-
putation of the transfer operator each time the source moves. On the other hand,
our algorithm quickly updates the direct IR at all surface samples, then applies the
precomputed transfer operator. This allows our approach to handle moving sources
far more efficiently than ART.

4.3 are for matrix-vector multiplication, whereas precomputing the multi-bounce

operator from the one-bounce operator requires matrix-matrix multiplications).

4.4.2 Analysis

Figure 4.3 compares the output of our algorithm and ART. The figure shows energy

decay curves, smoothed using a moving-average low-pass filter, for different numbers

of modes. As the figure shows, reducing the number of modes significantly (down

to 50 modes) has very little effect; however, if far fewer modes are used, significant

errors appear in the energy decays, as expected. Coupled with the memory savings

demonstrated in Table 4.2 and performance advantage demonstrated in Table 4.3, we

see that using the SVD allows us to significantly reduce memory requirements and

increase performance without significant degradation of the computed IRs. Along

59

with the plots, Figure 4.3 shows RT60 (reverberation time) values estimated from

the decay curves. The data demonstrates that SVD approximation upto 50 modes

does not lead to significant change in reverberation time. Of course, the best way

to demonstrate the benefit of our approach is by comparing audio clips; for this we

refer the reader to the accompanying video 2.

Figure 4.3: Comparison of diffuse IRs (30 orders of reflection, absorption coefficient
0.2) computed by our system with and without SVD compression, for some of our
benchmark scenes. The plots show squared IRs, smoothed using a moving-average
low-pass filter.

Figure 4.4: SVD approximation error for transfer operators. For each benchmark
scene, the plots show the relative Frobenius norm error of rank-k approximations of
T (for one value of ω) for all possible values of k. From left to right: (a) Room (252
samples), (b) Hall (177 samples), (c) Sigyn (1024 samples).

The SVD approximation error of the transfer operator is measured using the

Frobenius norm. Figure 4.4 plots the error against the number of modes retained

2http://gamma.cs.unc.edu/Sound/diffuse/

60

Figure 4.5: SVD approximation error for each higher order of reflection, for the Sigyn
scene (see Figure 4.2).

in the transfer operator. The figure suggests that we could potentially use a very

small number of modes to compute IRs with diffuse reflections at runtime. Figure 4.5

plots the SVD approximation error (at 50 modes) with increasing orders of reflection.

The figure clearly shows that the error introduced by the SVD approximation for

higher orders of reflection quickly converges. In other words, the IR energy due to

higher-order reflections can be modeled using very few SVD modes of the transfer

operator. This matches the intuition that higher-order reflections have low spatial

frequency. As a result, when computing very high orders of reflection (say 50), we

can use very few SVD modes beyond the first 2-3 orders while still capturing the

higher order energy (which must be captured to model the late reverberation tail of

the IR) accurately.

61

Chapter 5

Compact Acoustic Transfer
Operators

In this chapter, we discuss another specific algorithm based on the PART frame-

work [6]. The algorithm performs its calculations in the time domain. The devel-

opment of this algorithm is motivated by two goals. First, we wish to incorporate

specular reflections and diffraction in the transfer operator. Second, since the sizes

of the frequency-domain transfer operators computed using the algorithm of Chap-

ter 3.3.3 are still quite large (several hundred megabytes), we wish to develop more

compact representations of the transfer operator. The algorithm presented in this

chapter generates compact transfer operators using the Karhunen-Loeve transform,

and uses multi-bounce ray tracing and a two-pass run-time algorithm to simulate

specular reflections as well as diffraction.

5.1 Precomputation

We assume that acoustic radiance at a surface sample does not vary with direction

(i.e., the surface samples are diffuse emitters and receivers). In other words, the trans-

fer operator models sound energy which is emitted uniformly in all directions from a

given surface sample, and propagates through the scene (undergoing several diffuse

and specular reflections as well as diffraction) until the propagation is finally termi-

Figure 5.1: Overview of our algorithm. Top row: Precomputation. Bottom row:
Run-time interactive sound propagation.

nated upon incidence at some other surface sample. The propagated, incident sound

field is averaged over all incidence directions, resulting in a directionally-invariant

indirect acoustic radiance at each surface sample. This simplifying assumption is

motivated by the fact that after a few orders of reflection, most of the sound energy

in a scene would have typically undergone diffuse reflections [39]. This may result

in some higher-order echoes being replaced with reverberation, but can be corrected

when computing the early response. We now describe our approach for computing a

compact representation of the acoustic transfer operator.

5.1.1 Transfer Operator Precomputation

In order to define the acoustic transfer operator for the scene, we first sample n points

on the surface of the scene using area-weighted sampling [31] (Figure 5.1 (b)). We

then construct a compact, scene-dependent KLT basis for representing echograms

(Figure 5.1 (c)), which we then use to compress echograms computed between each

surface sample (Figure 5.1 (d)).

We use energy-based path tracing (i.e., Monte Carlo integration of the acoustic

rendering equation) to compute the sample-to-sample echograms. When each path

63

encounters a geometric primitive, it can be diffusely reflected, specularly reflected or

diffracted, depending on material properties. Attenuations are applied according to

standard geometric acoustics models as discussed below.

Diffuse Reflections Rays are diffusely reflected as per the Lambertian model by

randomly sampling a direction on the hemisphere at the point of incidence, and

sending a reflected ray along the sampled direction. The ray’s energy is attenuated

by the frequency-dependent diffuse coefficient d(ν) = (1− α(ν))σ(ν), where α(ν) is

the frequency-dependent absorption coefficient and σ(ν) is the frequency-dependent

scattering coefficient of the surface material.

Specular Reflections Specular reflection of rays is performed by reflecting in-

cident rays as per the laws of reflection. The ray’s energy is attenuated by the

frequency-dependent specular coefficient s(ν) = (1− α(ν))(1− σ(ν)).

Edge Diffraction Diffraction is modeled using an energy-based ray tracing model

derived from Heisenberg’s uncertainty principle [74, 73]. Rays which pass sufficiently

close to a diffracting edge [74] are diffracted by deviating them in the plane normal to

the diffracting edge. The angle of deviation is randomly sampled from a frequency-

dependent probability distribution.

5.1.2 Echogram Representation

In order to capture closely-spaced echoes, which may arise in 2nd or 3rd order re-

flections captured in the transfer operator, we sample echograms at the audio sam-

pling rate of 48 kHz. As a result, it is impractical to store precomputed sample-to-

sample echograms in the time domain, since this would require 192 kB per second per

64

echogram. For n ≈ 256 surface samples, this would result in the transfer operator

requiring 12 GB of storage per second.

Frequency-domain representations have been used in prior precomputation-based

sound propagation algorithms, but require a very large number of coefficients (m ≈

1024) to represent either the echograms themselves [68], or the decay envelopes of

the echograms [72] (which cannot be used to model sharp echoes arising from 2nd or

3rd order reflections).

Commonly used signal compression techniques are based on representing the

signals using transforms such as the Fourier transform, the discrete cosine transform

(DCT) and the related modified discrete cosine transform (MDCT) [92], and wavelet

representations. Fourier and DCT representations require a few thousand coefficients

[72, 68] in order to represent the wide range of audible sound frequencies. While

the MDCT and wavelet transforms are typically sparse, they too require hundreds

of coefficients in order to represent middle-to-high-frequency reverberation in large

spaces. Ideally, we would prefer a basis in which echograms can be represented using

relatively few coefficients.

For this, we use a scene-dependent Karhunen-Loeve basis, derived using the

Karhunen-Loeve Transform (KLT) [49]. The KLT is defined as follows. In order

to derive an orthogonal basis for a d-dimensional vector space S, we first randomly

sample some number (say p) of vectors in the space. These vectors are written as col-

umn vectors and placed side-by-side to form the data matrix Ad×p (subscripts denote

matrix dimensions). We can then use the singular value decomposition (SVD) to de-

compose the data matrix: Ad×p = Ud×pΣp×pV
t
p×p. The columns of the orthogonal

matrix U are then used as a basis set for S.

To generate an orthogonal basis for sample-to-sample echograms in a given scene,

we first randomly choose p pairs of surface samples, and compute echograms between

65

them (using path tracing). The dimension of the vector space in which all echograms

lie is equal to the number of samples used to represent the echograms in the time

domain. These echograms are used to form the data matrix, and then the SVD

is used to compute the KLT basis matrix U. Since the basis vectors are sorted

in decreasing order of singular values, we can truncate U and retain only the first

m columns. As demonstrated in the accompanying video, the approximation error

can be barely perceptible (in our benchmarks), even with very few basis vectors

(m ≈ 32− 64).

In essence, this formulation “learns” a good basis for representing echograms in

a given scene by using several example echograms computed in the scene. Assuming

the surface sample pairs used to generate the example echograms are distributed

throughout the scene, the Karhunen-Loeve transform can be used to estimate a basis

of echograms that requires the fewest number of coefficients to represent an echogram

in the scene for a given approximation error. Furthermore, since the storage and time

complexity of this algorithm scales linearly with m, we choose the Karhunen-Loeve

basis to represent the acoustic transfer operators compactly.

5.2 Run-time

At run-time, we use an approach similar to prior visual rendering algorithms [91]

and compute sound propagation effects using a two-pass algorithm (see Figure 5.1).

The two passes work as follows:

1. Early Response using Ray Tracing. Since low-order specular reflections

and diffraction are important for sound localization, low-order reflections (dif-

fuse and specular) and edge diffractions are computed using path tracing [11].

2. Late Response using Radiance Transfer. We analytically compute the di-

66

rect echogram at each surface sample due to the (potentially moving) source(s)

(Figure 5.1 (f)). The acoustic transfer operator is then applied to the direct

echograms; this yields echograms at each surface sample which model higher-

order reflections and diffraction. The resulting echograms are gathered from the

surface samples at the listener (Figure 5.1 (g)) to quickly compute the higher-

order echogram from a moving source to a moving listener (Figure 5.1 (h)).

We now detail each pass of our algorithm.

5.2.1 Acoustic Radiance Transfer

The direct echogram due to a single source at surface sample j can be completely

characterized by a delayed impulse with (distance) attenuation asj and a delay dsj .

Similarly, the response at a listener due to direct sound along each gather ray i can

be completely characterized by a delayed impulse with (distance) attenuation ali and

a delay dli.

For simplicity, the BRDFs at the first and last reflections are multiplied into the

acoustic transfer operator. Furthermore, for simplicity of exposition, we assume that

the number of gather rays traced from the listener is also n; in practice, we trace

O(n) gather rays, with the constant factor chosen based on run-time performance.

As each gather ray hits a point on the surface of the scene, the point is mapped to a

surface sample using nearest-neighbor interpolation. We denote the surface sample

corresponding to gather ray i by S(i).

These attenuations and delays are then combined with the compressed acoustic

transfer operator to compute the final echogram as follows. We denote the precom-

puted echogram from sample j to sample S(i) by Li,j(t). Then the energy received

at the listener via propagation paths whose first reflection occurs at sample j and

67

last reflection occurs at sample S(i) is given by:

Ei,j(t) = asja
l
iLi,j(t− dsj − dli), (5.1)

and the final echogram at the listener is obtained by adding together energy

received from all possible propagation paths:

E(t) =
n∑
i=1

n∑
j=1

asja
l
iLi,j(t− dsj − dli). (5.2)

Since the sample-to-sample echograms in the transfer operator are stored in a

basis with m coefficients, we use the basis expansion to obtain:

Li,j(t) =
m∑
k=1

αki,jb
k(t), (5.3)

E(t) =
m∑
k=1

(n∑
i=1

n∑
j=1

asja
l
iα
k
i,j

)
bk(t− dsj − dli), (5.4)

where bk denotes the kth basis function and the α’s are coefficients of echograms in

the basis space. The above expression can be reformulated as a sum of convolutions:

E(t) =
m∑
k=1

Hk(t)⊗ bk(t), (5.5)

Hk(t) =
n∑
i=1

n∑
j=1

asja
l
iα
k
i,jδ(t− dsj − dli). (5.6)

Therefore, at run-time, we use the source position to quickly update asj and dsj ;

and the listener position to quickly update ali and dli. These are used along with the

compressed transfer operator to construct the convolution filters Hk(t); convolving

68

the echogram basis functions with these filters and accumulating the results yields

an echogram representing higher-order reflections and diffraction from the source to

the listener.

Low-Order Effects Since we assume that surface samples are diffuse emitters and

receivers, the radiance transfer pass cannot model all kinds of propagation paths.

Consider a variant of Heckbert’s regular expression notation [32] for propagation

paths, with D denoting a diffuse reflection, S denoting a specular reflection, and

E denoting an edge diffraction. Then the radiance transfer pass is restricted to

computing D(D|S|E)∗D paths.

However, low-order specular reflections and diffraction provide important direc-

tional cues to the listener ([38], pp. 194). Therefore, in the first pass of our algorithm,

low-order path tracing is performed to compute 1-3 orders of specular reflections and

edge diffraction as well as first-order diffuse reflections. At each specular reflection

or edge diffraction, energy can be converted to diffuse energy and transferred to the

precomputed transfer operator, allowing paths of the form (S|E)q(D|S|E)∗(S|E)q

(for low values of q) to be modeled, thus allowing low-order purely specular and

purely diffraction paths to be modeled. As can be seen from the corresponding regu-

lar expressions, the paths modeled in the first and second passes are disjoint (i.e., no

path is traced in both passes), hence the echograms from each pass can be directly

added, along with the direct source-to-listener contribution, to determine the final

echogram at the listener.

69

5.2.2 Dynamic Scenes

The acoustic transfer operator is inherently decoupled from both source and listener

positions. As a consequence of this formulation, our algorithm can compute higher-

order sound propagation in scenes with moving sources and listeners, as mentioned

above. Moreover, the computation of early reflections is performed using ray tracing,

and hence we can handle fully dynamic scenes in the ER pass.

Dynamic objects may also affect the late response. We use interactive ray tracing

[80] to compute direct echograms at each surface sample (Figure 5.2 (a)). As a

result, these rays can intersect and be blocked by dynamic objects (Figure 5.2 (b)).

This allows dynamic objects to induce a “shadow” region and reduce the energy in

the direct echograms at the surface samples in the shadow region (see Figure 5.2

(b)). Since these (modified) direct echograms are used as input to the precomputed

acoustic transfer operator in the first pass, our formulation allows dynamic objects

to modify (to a limited extent) the propagated sound field heard at the listener in

the LR pass. Similarly, since interactive ray tracing is used in the final gather step,

reflected and/or diffracted sound can be occluded by a dynamic object before it

reaches the listener.

However, since the transfer operator is pre-computed for surface samples defined

over static geometry only, we cannot model reflections or inter-reflections off dynamic

objects in the radiance transfer pass. For example, we can only model ER (and not

LR) due to sound reflecting off a moving car. Furthermore, since the transfer operator

is computed over static surfaces only, we cannot model “indirect shadow” regions –

i.e., occlusion of reflected days by dynamic objects (Figure 5.2 (c)). For example, we

cannot accurately model the case where two static rooms are separated by a dynamic

door, since the precomputed transfer operator cannot take into account the changes

70

source

(a)

source

dynamic
object

direct
shadow

(b)

source

direct
shadow

indirect
shadow

dynamic
object

(c)

Figure 5.2: Dynamic source shadowing. (a) A sound source in a static room. Blue
dots indicate surface samples. (b) Adding a dynamic object (in this case, a rectangle).
Some rays traced from the source are blocked by the dynamic object. This induces a
“shadow” region and changes the direct response at the red dots. This in turn would
affect the indirect response everywhere. This effect is modeled by our algorithm. (c)
Direct energy reflected from surface samples may also be occluded by the dynamic
object, inducing an “indirect shadow” region. However, since we precompute sample-
to-sample transfer, indirect shadows are not modeled by our algorithm.

in visibility between surface samples on the walls of the two rooms caused by opening

or closing the door.

5.2.3 Run-time Error Control

One of the advantages of our choice of echogram basis is that it allows run-time

control over the accuracy of the sound propagation. Using fewer basis coefficients

at run-time allows accuracy to be adapted to a limited compute budget without

sacrificing the frequency content of the propagated sound. The SVD used to compute

the Karhunen-Loeve basis for a scene implicitly sorts the basis functions such that

most of the energy is distributed into the first few basis functions (see Figure 5.4).

The remaining basis functions can be ignored at run-time by truncating the SVD,

with only a minor impact on the accuracy of the echograms computed. Since the

run-time performance scales linearly with the number of basis coefficients used (see

Section 5.3.2), we can increase performance by using fewer basis coefficients, at the

71

Figure 5.3: Benchmark scenes for compact acoustic transfer operators. From left
to right: Sibenik (80K triangles), Movie Theater (120K triangles), Basement (0.5K
triangles), and Attic (1K triangles).

cost of a slight reduction in sound quality (as shown in the accompanying video).

5.3 Results

We now present details of our implementation and experimental results demon-

strating its performance. Our implementation is written in C++, compiled using

Microsoft Visual Studio 2010. We use Intel Math Kernel Library (MKL) for paral-

lelization of linear algebra operations, and NVIDIA OptiX for interactive ray tracing.

All precomputation and run-time tests were performed on an Intel Core 2 Quad 2.83

GHz CPU with 4GB RAM and an NVIDIA GeForce GTX 480 GPU, running Win-

dows 7. Figure 5.3 shows the benchmark scenes used in our experiments.

Detecting Diffraction Paths We exploit the flexible nature of OptiX ray tracing

kernels [57] to allow the ray tracer to detect rays passing close to diffracting edges.

Diffracting edges are first detected based on the relative orientations of their incident

triangles [79]. For each diffracting edge, a bounding box is added to the OptiX scene

graph, using a bounding box program. The thickness of these bounding boxes is

user-specified. During ray tracing, rays that intersect the edge bounding boxes are

detected using an intersection program. These rays recursively spawn new diffraction

rays using a closest hit program. An energy-based formulation is used to derive the

attenuation due to diffraction. In this manner, separate kernels (a bounding box

72

program, intersection program, and a closest hit program) are used in conjunction

to detect diffraction paths for rays that pass close to diffracting edges.

5.3.1 Performance

Table 5.1 shows the performance of the precomputation phase of our algorithm, as

well as the storage requirements of the precomputed acoustic transfer operators. For

each scene, we show the time spent in computing example echograms (column 4) and

using them to construct a basis for echograms (column 5). We also show the time

required to precompute the compressed acoustic transfer operator for each scene

(columns 7 and 8). m refers to the number of example echograms used for basis

construction, and n refers to the number of surface samples chosen over the surface

of the scene. Finally, we show the storage required for the echogram basis in column

6, and for the transfer operators in column 9. As the table shows, our algorithm

can compute compact acoustic transfer operators which require only a few tens of

megabytes of storage within a few tens of minutes.

Table 5.2 demonstrates the performance of our two-pass run-time algorithm. For

each scene, we show the time spent in each stage of the run-time algorithm. Column

5 shows the time taken to compute direct echograms from the source at each surface

sample. Column 6 shows the time required to apply the transfer operator. Column

7 shows the time required to gather the higher-order echograms from each surface

sample. Column 8 shows the time required to compute the early response using

ray tracing. The table shows that our algorithm can efficiently compute higher-

order reflections of sound, even for complex models consisting of tens or hundreds

of thousands of triangles. Note that two of the scenes (Basement and Attic) are

not shown in Table 5.2. This is because these scenes are rendered within the game

engine, so the corresponding performance numbers are not representative of our

73

Scene Triangles Echogram Basis Transfer Operator
m Prop. (s) Constr. (s) Size (MB) n Computation (s) Size (MB)

Sibenik 80K 256 130.29 3.34 46.9 128 481.87 16.0
Movie Theater 120K 256 186.45 0.75 46.9 256 2243.17 64.0
Attic 1128 64 27.81 0.09 11.7 64 105.66 1.0
Basement 548 64 23.52 0.07 11.7 64 93.66 1.0

Table 5.1: Performance and memory overhead of our precomputation algorithm.

Scene Triangles m n Scatter Transfer Gather ER Total FPS

Sibenik 80K 32 128 0.4 149 42.5 1.4 193.3 5.2
Movie Theater 120K 16 256 0.6 77 82.8 2.1 162.5 6.1

Table 5.2: Performance of our run-time implementation. All times are in millisec-
onds.

stand-alone OptiX-based implementation. In particular, the game engine’s ray tracer

is not optimized for ray-traced rendering workloads. As the accompanying video 1

demonstrates, we still obtain sound propagation update rates of 5-10 FPS within the

game engine.

5.3.2 Time and Storage Complexity

During precomputation, path tracing is performed from each of the n surface samples,

to determine echograms between each pair of surface samples. These n2 echograms

are then compressed into the Karhunen-Loeve basis with m coefficients. Hence, stor-

ing the compressed acoustic transfer operator requires O(mn2) memory. Projecting

each echogram into the basis using a matrix-vector product requires O(mT) time,

where T is the number of time-domain samples used to represent the uncompressed

echogram. Therefore, the total time required to compress the acoustic transfer op-

erator is O(mn2T).

At run-time, the scatter and gather steps involve O(n) work each; computing

each convolution filter Hk(t) takes O(n2) time to evaluate the double summation in

1http://gamma.cs.unc.edu/CATR/

74

0 50 100 150 200 250 300
10−25

10−20

10−15

10−10

10−5

100

Basis size

lo
g(

E
rr

or
)

KLT Approximation Error (Sibenik)

0 50 100 150 200 250
10−50

10−40

10−30

10−20

10−10

100

Basis size

lo
g(

E
rr

or
)

KLT Approximation Error (Movie Theater)

0 5 10 15 20 25 30 35 40 45
10−40

10−35

10−30

10−25

10−20

10−15

10−10

10−5

100

Basis size

lo
g(

E
rr

or
)

KLT Approximation Error (Basement)

0 50 100 150 200 250
10−40

10−35

10−30

10−25

10−20

10−15

10−10

10−5

100

Basis size

lo
g(

E
rr

or
)

KLT Approximation Error (Attic)

Figure 5.4: Relative Frobenius norm error due to SVD truncation during KLT basis
construction, for different scenes.

Equation 5.6. The total time required to compute the convolution filters is hence

O(mn2). The basis functions bk(t) are stored in the frequency domain, hence we

can use the Fourier theorem to quickly compute the convolutions in Equation 5.6 in

O(mT lg T) time.

5.3.3 Choice of Parameters

There are several parameters that need to be appropriately chosen when using our

algorithm to compute and use acoustic transfer operators: s, the number of sam-

ples in an echogram; n, the number of surface samples; p, the number of example

echograms used for basis construction; and m, the number of basis functions retained

75

at run-time. We now discuss our choice of values for these parameters as used in our

experiments.

Echogram Length The echogram length can be determined using the expected

reverberation time of the scene. If the length of the echograms is chosen to be

T seconds, then at our sampling rate of 48 kHz, the size of each basis function is

s = 48000T samples. In our experiments, we use values of T ranging from 1–2

seconds.

Surface Samples The number of surface samples to generate for each scene can

be determined experimentally, guided by the fact that it is not possible to distinguish

directions of incidence of sound with as much resolution as it is possible to distinguish

directions of incidence of light [82]. Audio clips generated with varying numbers of

surface samples can be found in the accompanying video.

Basis Generation The values of p, i.e., the number of example echograms to

use for basis construction, were arrived at through experiment. We used values of

p ∈ [64, 512] to generate the KLT basis. We then used plots of Frobenius norm

error computed for the data matrix A to determine a sufficient value of p. Some

resulting plots of Frobenius norm error are shown in Figure 5.4. Note that we

randomly chose the surface sample pairs to generate the example echograms. For

more complex environments with multiple connected rooms with a large amount of

occlusion, it would be necessary to ensure (at least) that example echograms are

computed between each pair of adjacent rooms.

These plots were also used to determine sufficient values for m, i.e., the number of

basis functions used at run-time. As the plots show, low values of m (≈ 32− 64) can

be used without significant Frobenius norm error. Figure 5.5 shows energy decay

76

0 1 2 3 4 5 6 7 8 9 10

x 104

−160

−140

−120

−100

−80

−60

−40

−20

0

Time (samples)

E
ne

rg
y

(d
B

)

Energy Decay Curves (Sibenik)

Path Tracing (RT
60

 = 1.37s)

256 coefficients (RT
60

= 1.12s)

64 coefficients (RT
60

 = 1.10s)

32 coefficients (RT
60

 = 1.09s)

0 1 2 3 4 5

x 104

−160

−140

−120

−100

−80

−60

−40

−20

0

Time (samples)

E
ne

rg
y

(d
B

)

Energy Decay Curves (Movie Theater)

Path Tracing (RT
60

 = 1.45s)

64 coefficients (RT
60

 = 1.15s)

32 coefficients (RT
60

 = 1.03s)

16 coefficients (RT
60

 = 1.02s)

Figure 5.5: Energy Decay Curves for different scenes, with varying numbers of KLT
coefficients.

curves computed for varying values of m, compared with energy decay curves for

reference path tracing solutions. The plots show that m provides a straightforward

way to increase accuracy (at the cost of performance). Audio clips generated with

varying numbers of KLT basis functions can be found in the accompanying video.

These clips also show that low values of m can be used at run-time without significant

degradation of audio quality.

77

Chapter 6

Ambient Reverberance

In Chapters 3–5, we presented Precomputed Acoustic Radiance Transfer, an ap-

proach for efficiently simulating higher-order sound propagation effects in interactive

applications. However, the algorithms still required a few hundred milliseconds to

update impulse responses, and required tens to hundreds of megabytes to store their

precomputed data. This may make them too costly for applications intended to run

on commodity hardware.

Therefore, in this chapter, we describe Ambient Reverberance [9], an algorithm

for computing spatially- and directionally-varying reverberation in complex, dynamic

scenes. The algorithm uses the local geometry around the listener to dynamically

update the parameters of a statistical reverberation filter. It is able to compute

reverberation effects in a few milliseconds, without requiring any precomputed data.

6.1 Artificial Reverberation

In large, reverberant scenes, using wave-based or geometric simulation for comput-

ing an impulse response containing the reverberation effects is usually impractical.

Therefore, reverberation is modeled using artificial reverberators, which are essen-

tially implementations of infinite impulse responses (IIRs) such as the following:

y(t) =
N∑
i=1

cisi(t) + dx(t), (6.1)

si(t+ ∆ti) =
N∑
j=1

ai,jsj(t) + bix(t). (6.2)

where x(t) is the input signal, y(t) is the output signal (with reverberation effects

added), and ai,j, bi, ci, and d are constants. The values of these constants are, in

turn, determined by the values of the parameters of the statistical reverberation

model being used.

6.2 Reverberation Time

One of the most important parameters of any statistical reverberation model is the

reverberation time, denoted by RT60, which is defined as the time required for sound

energy to decay by 60 dB, i.e., to one millionth of its original strength, at which

point it is considered to be inaudible [23].

One of the earliest statistical methods for determining RT60 was the Sabine equa-

tion, originally developed for single rooms based on empirical observations:

RT60 =
k

c

V

Sα
, (6.3)

where V is the volume of the room, S is its surface area, α is the average ab-

sorption coefficient of the surfaces in the room, c is the speed of sound, and k is

a constant of proportionality. However, due to the presence of the α factor in the

79

denominator, this model does not work well for absorption coefficients below around

0.3. The Eyring model addresses this issue by modifying the absorption term in the

denominator:

RT60 =
k

c

V

S log(1− α)
. (6.4)

In either case, the statistical model essentially describes reverberation as an ex-

ponential decay:

E(t) = E0e
k t
RT60 (6.5)

= E0e
cS
4V
t log(1−α), (6.6)

where E0 is a constant. The exponential decay is typically modulated by a noise

function to provide more variation in the output audio.

6.3 Mean Free Path

Intuitively, the reverberation time is related to the manner in which sound undergoes

repeated reflections off of the surfaces in the scene. This in turn is quantified using

the mean free path µ, which is the average distance that a sound ray travels between

successive reflections.

In other words, consider tracing rays with random directions and with origins

at random points in the environment. Every time a ray intersects a surface, it

is reflected in a random direction (up to a maximum number of reflections). The

distance between two reflections is then averaged over all reflections and over all

paths, and the resulting value is called the mean free path.

80

Mathematically, the mean free path and the reverberation time are related as

follows [38]:

T = k
µ

log(1− α)
, (6.7)

where T is the reverberation time, µ is the mean free path, α is the average

surface absorption coefficient, and k is a constant of proportionality. Note that for

a single rectangular room, µ = cS
4V

, and it can be shown that Equation 6.7 can be

reduced to the Eyring model.

Next, we describe an approach for adjusting a user-controlled mean free path

based on local geometry information.

6.4 Spatially-Varying Reverberation

The mean free path varies with listener position in the scene, as shown in Figure 6.1.

A straightforward approach for computing the mean free path would be to use path

tracing to sample a large number of multi-bounce paths, and compute the mean free

path from first principles. However, like ambient occlusion, we only use local visibility

and depth information. We define a function l(ω), which denotes the distance from

the listener to the nearest surface along direction ω. We integrate over a unit sphere

centered at the listener’s position to determine the local distance average, l̄:

l̄ =
1

4π

∫
l(ω)dω. (6.8)

Figure 6.2 illustrates this process. This approach is similar in spirit to the process

of integrating a visibility function when computing ambient occlusion. The above

integral is evaluated using Monte Carlo integration. We trace rays out from the

81

(a) A coupled-room scene.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

(b) Spatial variation of mean free
path.

 1

 2

 3

 4

30

210

60

240

90

270

120

300

150

330

180 0

(c) Directional variation of mean
free path

Figure 6.1: Spatial and directional variation of mean free path. Left: A 3m×3m×1m
room adjacent to a 1m×1m×1m room. Center: Variation of mean free path over
the two-room scene, with varying listener position. Colors indicate mean free path
in meters. Note the smooth transition between mean free paths (and hence, between
reverberation times) at the doorway connecting the two rooms. Right: Variation
of mean free path with direction of incidence at the listener position indicated by
the red dot, with the listener’s orientation indicated by the arrow. The difference
between the left and right lobes, due to the different sizes of the rooms on either
side, indicates that more reverberant sound should be received from the left than
from the right.

listener, and average the distance travelled by each ray, denoting the result by l̄. A

reference reverberation time T0 is specified for the scene; we use this to determine a

reference mean free path µ0 as per Equation 6.7.

We then blend the user-controlled mean free path µ0 and the local distance av-

erage l̄:

µ = βl̄ + (1− β)µ0, (6.9)

where β ∈ [0, 1] is the local blending weight, and µ is the adjusted mean free path.

While β may be directly specified to exaggerate or downplay the spatial variation of

reverberation, we describe a systematic approach for determining β based on surface

absorption.

Suppose reverberated sound undergoes n reflections before bouncing to the lis-

82

Figure 6.2: Sampling directions around a listener to determine a local distance av-
erage. In this top-down view, solid black denotes a solid surface. The arrows denote
rays traced to sample distance from a point listener at the (common) origin of the
rays.

tener. Therefore, the distance traveled before the final bounce is (on average) nµ0,

and the total distance traveled upon reaching the listener is (on average) l̄ + nµ0.

Averaging over all n+ 1 bounces yields:

µ =
1

n+ 1
l̄ +

n

n+ 1
µ0, (6.10)

β =
1

n+ 1
. (6.11)

Intuitively, the linear combination of Equation 6.9 serves to update an average –

the mean free path – with the data given by the local distance average. As per the

definition of RT60 [38], sound energy decays by 60 dB after undergoing n bounces.

Each bounce reduces sound energy by a factor of α. Therefore:

(1− α)n = 10−6, (6.12)

n =
−6 log 10

log(1− α)
, (6.13)

83

The above expressions allow the reverberation time to be efficiently adjusted as

a function of the local distance average and surface absorption properties.

6.5 Directionally-Varying Reverberation

Mean free paths also vary with direction of incidence, as shown in Figure 6.1. The

above technique can be easily generalized to obtain direction-dependent reverberation

times from a single user-controlled reverberation time. We express µ as a function

of incidence direction ω:

µ(ω) = βl(ω) + (1− β)µ0. (6.14)

Here µ(ω) denotes the average distance that a ray incident at the listener along

direction ω travels between successive bounces. As before, l(ω) is computed using

Monte Carlo sampling from the listener position. Note that here, ω refers to the

direction of incidence at the listener, after any and all reflection or scattering. We

then use a spherical harmonics representation of l to obtain directional reverberation,

since spherical harmonics are well-suited for representing smoothly-varying functions

of direction.

Spherical Harmonics Spherical harmonics (SH) are a set of basis functions used

for representing functions defined over the unit sphere. SH bases are widely used in

computer graphics to model the directional distribution of radiance [71]. The basis

functions are defined as [70]:

84

Yp,q(θ, φ) = Np,q e
iqφ Pp,|q|(cos θ), (6.15)

Np,q =

√
(2p+ 1)(p− |q|)!

4π(p+ |q|)!
, (6.16)

where p ∈ N, −p ≤ q ≤ p, Pp,q are the associated Legendre polynomials, and

ω = (θ, φ) are the elevation and azimuth, respectively. Here, p is the order of the

SH basis function, and represents the amount of detail captured in the directional

variation of a function. Guided by the above definitions, we project l(ω) into a

spherical harmonics basis:

l(ω) =
P∑
p=0

p∑
q=−p

lp,qYp,q(ω), (6.17)

µ(ω) =
P∑
p=0

p∑
q=−p

µp,qYp,q(ω). (6.18)

The linearity of spherical harmonics allows us to independently adjust the SH

coefficients of the mean free path:

µp,q = βlp,q + (1− β)µ0. (6.19)

Multi-channel Reverberation Modern video games and VR systems can use

multi-channel speaker systems, such as 5.1 or 7.1 surround sound speakers, for audio

output. The above SH representations can be used to derive per-channel reverbera-

tion times in any arbitrary multi-channel speaker system, given the positions of the

individual speakers with respect to the user. The SH representations of the adjusted

mean free path can then be evaluated at any speaker position (as per Equation 6.18)

85

to determine the reverberation time for the corresponding channel. Alternately, we

can use the Ambisonics expressions for amplitude panning weights [60] to directly

determine the contribution of the lp,q terms at each speaker position. For example,

with first-order SH and N speakers, we use:

li =
1

N

∑
j

(1− 2ωj · ωi), (6.20)

where i ∈ [0, N − 1] are the indices of the speakers, the indices j range over the

number of rays traced from the listener, ωj are the ray directions, and ωi are the di-

rections of the speakers relative to the listener. We can then evaluate a reverberation

time for each speaker:

µi = βli + (1− β)µ0. (6.21)

This enables realistic directional reverberation on a variety of speaker configura-

tions, ranging from stereo to 5.1 or 7.1 home theater systems.

6.6 Results

We have integrated our approach into Valve’s Source game engine. Sound is rendered

using Microsoft’s XAudio2 API. Ray tracing, mean free path estimation, proxy gen-

eration, and impulse response computation are performed continuously in a separate

thread; the latest estimates are used to configure XAudio2’s artificial reverberators

for each channel as well as a per-channel convolution unit. Intel Math Kernel Library

is used for convolution. All experiments were performed on an Intel Xeon X5560 with

4 cores and 2GB of RAM running Windows Vista; our implementation uses only a

single CPU core. Figure 6.3 shows the benchmark scenes used in our experiments.

86

(a) Train Station (9k
polygons)

(b) Citadel (23k poly-
gons)

(c) Reservoir (32k
polygons)

(d) Outlands (56k
polygons)

Figure 6.3: Benchmark scenes used in our experiments.

Scene Polygons Ray Samples Time (ms)

Train Station 9110 1024 7.88
Citadel 23231 2048 8.94

Reservoir 31690 1024 10.79
Outlands 55866 1024 4.59

Table 6.1: Performance of local distance average estimation.

These are indoor and outdoor scenes with dynamic objects (e.g. moving doors), as

shown in the accompanying video.

6.6.1 Performance

Table 6.1 shows the time taken to perform the integration required to estimate mean

free path. Our implementation uses the ray tracer built into the game engine, which is

designed to handle only a few ray shooting queries arising from firing bullet weapons

and from GUI picking operations; it is not optimized for tracing large batches of rays.

Nonetheless, we observe high performance, indicating that our method is suitable for

use in modern game engines running on current commodity hardware. Given the local

distance average, the final mean free path and RT60 estimate is computed within 1–2

µs.

The complexity of the integration step is O(k log n), where k is the number of

integration samples (rays) and n is the number of polygons in the scene. For low

values of k, we expect very high performance with a modern ray tracer.

87

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
1.375

1.38

1.385

1.39

Integration samples

A
ve

ra
ge

 lo
ca

l d
is

ta
nc

e
(m

)

Train Station

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
2.5

2.51

2.52

2.53

2.54

2.55

2.56

2.57

2.58

2.59

2.6

Integration samples

A
ve

ra
ge

 lo
ca

l d
is

ta
nc

e
(m

)

Citadel

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0.93

0.932

0.934

0.936

0.938

0.94

0.942

0.944

0.946

0.948

0.95

Integration samples

A
ve

ra
ge

 lo
ca

l d
is

ta
nc

e
(m

)

Outlands

Figure 6.4: Convergence of local distance average estimate.

0 50 100 150 200 250 300 350 400 450
55

60

65

70

75

80

85

90

95

100

Number of SH coefficients

E
ne

rg
y

ca
pt

ur
ed

 (
%

)

SH Approximation Accuracy

Train Station
Outlands
Citadel

Figure 6.5: Accuracy of representing the local distance function in spherical harmon-
ics, as a function of the number of SH coefficients.

6.6.2 Analysis

Figure 6.4 plots the estimated local distance average as a function of the number

of rays traced from the listener, for different scenes. For clarity, the local distance

average is computed by integrating over the unit sphere, without directional weights.

88

The plots demonstrate that tracing a large number of rays is not necessary; the local

distance average quickly converges with only a small number of rays (1–2K); and can

be evaluated very efficiently, even in large, complex scenes.

Figure 6.5 illustrates the accuracy of a spherical harmonics representation of the

local distance function, for different scenes. The figure shows the percentage of energy

captured in the spherical harmonics representation as a function of the number of

coefficients, up to order 20 (i.e., p = 20). The figure clearly shows that very few

coefficients are required to capture most of the directional variation (75− 80%).

89

Chapter 7

Aural Proxies

In this chapter, we describe an approach for efficiently simulating 2–4 orders of early

reflections. The approach combines the image source method with simplified rep-

resentations of the geometry around the listener. These simplified representations,

called Aural Proxies [9], allow higher-order image sources to be constructed with-

out performing multi-bounce ray tracing. The method complements the approach

described in Chapter 6, allowing early reflections to also be computed within a few

milliseconds, without requiring any precomputed data.

7.1 Image Source Method

State-of-the-art techniques for interactively modeling reflected sound are based on

the image source method [4]. This method involves determining virtual image sources

which represent reflected sound paths reaching the listener from the source. To deter-

mine the positions of the image sources, and which image sources contribute reflected

sound to the listener, rays are traced from the source position, and recursively from

each of the image sources.

7.1.1 Rectangular Rooms

Such multi-bounce ray tracing is possible in real-time [78] for up to around 4-5

orders of reflections. However, with all existing real-time ray tracers, achieving such

a level of performance requires dedicating significant computational resources (a large

number of CPU cores, or most, if not all, of the compute units on a GPU) solely to the

audio pipeline. These computational demands cannot be practically met by modern

game engines, that require most of the computational resources to be dedicated to

rendering, physics simulation, or AI. Hence, we propose an approximate approach

which demands significantly fewer computational resources.

Our approach only traces single-bounce rays, which can be used to compute image

sources for first-order reflections. We next describe a local model for extrapolating

from first-order image sources to higher-order image sources. This approach does not

require tracing additional rays to compute higher-order reflections, and hence has a

lower computational overhead than ray-tracing-based image source methods.

Our local model is based on the observation that in a rectangular (or shoebox)

room, image sources are never occluded, and their positions can be computed by

reflections about one of six planes, without having to trace any rays. In fact, in a

rectangular room, the superposition of sound fields induced by the image sources

obtained using this approach is an analytical solution of the wave equation in the

scene [4].

7.2 Proxy Construction

We begin by fitting a shoebox to the local geometry around the listener (see Fig-

ure 7.1). We consider the hit points of all the ray traced from the listener during

91

S S'

S''

Figure 7.1: Higher-order reflections using a rectangular aural proxy. A source S is
placed in a scene with walls and a rectangular object inside (solid lines). A ray-
tracing-based image source method is used to construct the first-order image source
S’, by reflecting S about the surface shown in solid red. The aural proxy, shown with
dashed lines, is used to reflect S’ and construct the second-order image source S” (by
reflecting S’ about the plane of the blue dotted surface). No ray tracing is needed
for the construction of S”. The blue outline indicates the position of S” as computed
by the ray-tracing-based image source method, by reflecting S’ about the plane of
the blue solid surface.

reverb estimation, and perform a cube map projection. This process bins each of

the hit points to one of the six cube faces. Suppose the set of hit points binned to

one particular cube face (with normal n) is denoted by {di,ni, αi}, where di is the

projection depth of the ith hit point, ni is the surface normal at the hit point, and αi

is the absorption coefficient of the surface at the hit point. We use this information

to compute the following aggregate properties for the cube face:

Depth We average the depths of the hit points:

d = [di], (7.1)

(where [·] denotes the averaging operator) to determine the average depth of the

cube face from the listener along the appropriate coordinate axis.

92

Absorption We similarly average the absorption coefficients of the hit points:

α = [αi], (7.2)

to determine the absorption coefficient of the cube face. Note that this process

automatically assigns higher weights to the absorption coefficients of surfaces with

greater visible surface area (as seen from the listener’s position).

Scattering In complex scenes, the surface normals ni are likely to deviate to a

varying extent from the cube face normal n. Assuming the cube face to be perfectly

planar is likely to result in excess reflected sound being computed. To address this is-

sue, and allow the proxy geometry to better approximate the reflection and scattering

behavior of the underlying scene geometry, we compute a scattering coefficient σ for

the cube face, which describes the fraction of non-absorbed sound that is reflected in

directions other than the specular reflection direction. Specifically, we compute the

random-incidence scattering coefficient, which is defined as the fraction of reflected

sound energy that is scattered away from the specular reflection direction, averaged

over multiple incidence directions [89].

For any given incidence direction, a surface patch reflects sound in the specular

direction for the cube face only if the local surface normal of the patch is aligned

with the surface normal of the cube face. We define an alignment indicator function,

χn, such that χn(ni) = 1 if and only if ||n · ni − 1|| ≤ ε, and 0 otherwise, where ε is

some suitably chosen tolerance. Since the total energy reflected from each hit point

is
∑

i(1− αi), we get:

σ = 1−
∑

i(1− αi)χn(ni)∑
i(1− αi)

, (7.3)

93

which we use as our scattering coefficient.

Note that we cannot use the listener’s local coordinate axes for projection, since

this would result in the shoebox dimensions varying even if the listener rotates in-

place, resulting in an obvious instability in the reflected sound field. Hence, we use

the world-space coordinate axes for projection.

7.3 Proxy-Based Reflections

Given the local shoebox proxy, we can quickly extrapolate from first-order reflections

to higher-order reflections. We take the first-order image sources computed using ray

tracing, and recursively reflect them about the faces of the proxy shoebox, yielding

higher-order image sources. This process efficiently constructs approximate higher-

order image sources. The image sources computed by this approach also have the

important property that the directions of the higher-order image sources relative

to the listener are plausibly approximated, i.e., if reflected sound is expected to

be heard from the listener’s right, the approximation tends to contain a reflection

reaching the listener from the right. This is because geometry lying (say) to the right

of the listener is mapped to a proxy face which also lies to the right of the listener.

Therefore, the relative positions of two objects or surfaces roughly correspond to the

relative positions of the proxy faces they are mapped to. (See the accompanying

video for more.)

To account for absorption and surface normal variations, after each order of

reflection, the strengths of the image sources are scaled by (1 − α)(1 − σ), where α

is the absorption coefficient of the face about which the image source was reflected,

and σ is its scattering coefficient.

94

7.4 Results

We have integrated our approach into Valve’s Source game engine. Sound is rendered

using Microsoft’s XAudio2 API. Ray tracing, mean free path estimation, proxy gen-

eration, and impulse response computation are performed continuously in a separate

thread; the latest estimates are used to configure XAudio2’s artificial reverberators

for each channel as well as a per-channel convolution unit. Intel Math Kernel Library

is used for convolution. All experiments were performed on an Intel Xeon X5560 with

4 cores and 2GB of RAM running Windows Vista; our implementation uses only a

single CPU core. Figure 6.3 shows the benchmark scenes used in our experiments.

These are indoor and outdoor scenes with dynamic objects (e.g. moving doors), as

shown in the accompanying video.

7.4.1 Performance

The time required to generate the proxy is scene-independent. In practice we observe

around 0.9–1.0 ms for generating the proxy using 1024 samples; the cost scales lin-

early in the number of samples. Table 7.1 compares the performance of constructing

higher-order image sources using our method to the time required by a reference ray-

tracing-based image source method. The performance of our method is independent

of scene complexity, whereas the image source method incurs increased computa-

tional overhead in complex scenes. Note that since both timings were measured by

running the technique on complex models used for visual rendering, the reference

times are particularly high. While these timings could be reduced by simplifying the

model, the numbers highlight the fact that our approach can achieve high perfor-

mance even on complex models designed for visual rendering, without necessitating

an additional step in the designer’s workflow where the model is simplified for acous-

95

Scene Refl. Orders Time (ms) Ref. Time (ms)

Outlands 2 0.005 380
3 0.010 3246

Reservoir 2 0.004 101
3 0.009 656

Citadel 2 0.01 341
3 0.02 3289

Train Station 2 0.005 30
3 0.015 223
4 0.049 1689

Table 7.1: Performance of proxy-based higher-order reflections, compared to refer-
ence image source method. Column 2 indicates the orders of reflection, Column 3
indicates time taken by our approach, and Column 4 indicates time taken by the
ray-tracing-based image source method to compute the reference solution.

tic purposes.

7.4.2 Analysis

Figure 7.2 plots the estimated dimensions of the dynamically generated rectangular

proxy as a function of the number of rays traced, for a given listener position in the

Citadel scene. For example, the curve labeled “X” plots the difference (in meters)

between the estimated world-space positions of the +X and -X faces of the proxy.

The other two curves plot analogous quantities for the Y and Z axes. The plot shows

that the estimated depths of the cube faces converge quickly, allowing us to trace

fewer rays at run-time.

Figure 7.3 compares the impulse responses generated by our method against

those generated by a reference ray-tracing-based image source method. In all cases,

we computed up to 3 orders of reflection, with a maximum impulse response length

of 2.0 seconds. For the reference image source method, we traced 16K primary rays

from the source position, and 32 secondary rays recursively from each image source.

96

0 2000 4000 6000 8000 10000 12000 14000 16000
2

3

4

5

6

7

8

Samples

E
st

im
at

ed
 S

iz
e

(m
)

Proxy Size Estimation

X
Y
Z

Figure 7.2: Convergence of proxy size estimation. The individual curves show the
estimates for the X, Y, and Z dimensions of the proxy computed at a particular
listener position in the Citadel scene.

For our method, we traced 16K primary rays from the source position to generate

the rectangular proxy, which we then used to generate higher-order reflections. In

all cases, the source and listener were placed at the same position.

In the case of the Train Station scene, our approach generates extraneous low-

amplitude contributions, while retaining a similar overall decay profile. The larger

number of contributions arises because our method maps many surfaces which do

not actually contribute specular reflections at the listener to the same cube face.

This leads to many more higher-order image sources being generated as compared

to the reference method. The amplitudes of these contributions are lower since the

estimated scattering coefficients compensate for the large variation in local surface

normals over the proxy faces by reducing the amplitude of the reflected sound.

In the case of the Reservoir scene, our approach misses a reflection peak which

can be seen in the reference impulse response (see Figure 7.3). This is most likely

a higher-order reflection from one of the rocks (which are small relative to the rest

of the scene). Our approach cannot model higher order reflections from relatively

small, distinct features such as the rocks in this scene, since the dimensions of the

rectangular proxy are dominated by the distant cliffs and terrain in this scene, which

97

occupy a larger visible projected surface area with respect to the listener position.

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Train Station (Our Approach)

Time (s)

A
m

pl
itu

de

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Train Station (Reference)

Time (s)

A
m

pl
itu

de

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Reservoir (Our Approach)

Time (s)

A
m

pl
itu

de

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Reservoir (Reference)

Time (s)

A
m

pl
itu

de

Figure 7.3: Comparison between impulse responses generated by aural proxies and
a reference image source method.

7.4.3 Evaluation

We have performed a preliminary user study to compare the quality of early reflec-

tions generated by our approach against those generated by a reference ray-tracing-

based image source method. The study involves 16 pairs of video clips showing the

same sound clips (gunshots) rendered within an environment. For each of our bench-

mark scenes, we generated 4 pairs of sound clips. Two of these pairs contained one

clip each from our method and the reference method. The remaining two pairs either

contained two identical clips generated using the reference method, or two identical

clips generated using our method. The ordering of clips was randomized for each

98

participant. For each pair of clips, participants were asked to rate a) which clip they

considered more immersive, and b) which clip they thought matched better with the

visual rendering. Both answers were given on a scale of 1 to 10, with 1 meaning the

first clip in the pair was preferred strongly, and 10 meaning the second clip in the

pair was preferred strongly.

Table 7.2 tabulates the results of this user study, gathered from 20 participants.

Question 1 refers to the question regarding overall level of realism. Question 2 refers

to the question regarding correlation with the visual rendering. For question and for

each scene, the table provides the mean and standard deviation of the scores for three

groups of questions. The first group, denoted REF/REF, contains video pairs con-

taining two identical clips generated using the reference method. The second group,

denoted OUR/OUR, contains video pairs containing two identical clips generating

using our method. The third group, denoted REF/OUR, contains video pairs con-

taining one clip generated using the reference method, and one clip generated using

our method. In this group, low scores indicate a preference for the reference method,

and high scores indicate a preference for our method.

As the results demonstrate, most participants did not exhibit a strong preference

for either of the clips in any pair, since most of the mean scores are between 5 and 6.

This indicates that the participants felt that our method generates results that are

comparable to the reference method with respect to the subjective criteria of realism

and correlation with visuals. On the other hand, the standard deviations may indi-

cate that further research is warrented into the factors that affect a user’s perception

of sound propagation effects and their resulting level of immersion. However, this is a

preliminary user study; we plan to perform a more extensive and detailed evaluation

of our technique in the future.

99

Question Scene REF/REF OUR/OUR REF/OUR
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

1 Citadel 5.3 0.99 5.9 0.97 5.3 1.88
Outlands 5.6 0.99 6.1 1.14 5.1 1.43
Reservoir 5.8 1.29 6.0 2.11 5.5 2.35
Train Station 6.2 1.36 6.2 1.09 5.6 2.13

2 Citadel 5.3 1.24 5.8 1.06 5.5 2.02
Outlands 5.6 0.83 6.0 1.02 5.4 1.43
Reservoir 5.8 1.33 5.7 2.13 5.2 2.26
Train Station 6.1 1.43 5.8 1.21 5.3 1.98

Table 7.2: Results of our preliminary user study. For each question and for each
scene, we tabulate the mean and standard deviations of the responses given by the
participants. The columns labelled REF/REF are the scores for questions involving
comparisons between two identical clips generated using the reference image source
method. The columns labelled OUR/OUR are the scores for questions involving
comparisons between two identical clips generated using our approach. The columns
labelled REF/OUR are the scores for questions involving comparisons between our
approach and the reference approach.

100

Chapter 8

Conclusion

In this thesis, we have presented multiple algorithms for simulating sound propaga-

tion in interactive applications. We have presented precomputation-based algorithms

that use frequency-domain or time-domain acoustic transfer operators to obtain real-

istic, geometry-dependent results. We have also presented efficient algorithms based

on simplified propagation models for reverberation and early reflections.

In this chapter, we summarize our results, discuss limitations, and present avenues

for future work.

8.1 Frequency-Domain Diffuse Acoustic Transfer

We have described a precomputed direct-to-indirect transfer approach to solving

the acoustic rendering equation in the frequency domain for diffuse reflections. We

have demonstrated that our approach is able to efficiently simulate diffuse reflections

for a moving sources and listeners in static scenes. In comparison with existing

methods, our approach offers a significant performance advantage when handling

moving sources.

Limitations Since this approach is a precomputation-based algorithm, it cannot

be used for scenes with dynamic objects. In such situations, ray-tracing-based algo-

rithms are the best available choice. However, in many applications, including games

and virtual environments, scenes are mostly static, with relatively few moving parts,

hence our algorithm can be used to model reflections within the static portions of

the scene.

Our algorithm performs matrix-vector multiplications on large matrices at run-

time. The matrix size depends on the surface area of the scene and the number of

geometric primitives used to represent the scene. Therefore, our method is useful

mainly for scenes of low to medium complexity.

Another limitation arises from the approach we use [68] to reconstruct the en-

ergy response from the subsampled Fourier coefficients. The replication of Fourier

coefficients leads to comb-filter artifacts in the final audio, and is an inherent limi-

tation of the reconstruction approach. An alternative would be to treat the Fourier

coefficients as defining the envelope of a noise process [72]. Both these approaches

are prone to errors; further study is needed to determine the suitability of one over

the other based on empirical and perceptual error.

Finally, the transfer matrix is computed using the acoustic rendering equation

[67], which has its own limitations, in that it is an energy-based approach (and

hence cannot easily model interference) and is based on geometric approximations to

the acoustic wave equation (and hence cannot accurately model low-frequency wave

effects such as diffraction).

Future Work In most complex scenes, each surface sample may influence only

a few other samples, due to occlusions. We could subdivide the scene into cells

separated by portals, compute transfer operators for each cell independently, and

102

model the interchange of sound energy at the portal boundaries. Cells and portals

have been previously used to model late reverberation [72], and would be a promising

research direction for acoustic radiance transfer.

The acoustic response is typically a smooth function over the surfaces of the

scene. Therefore, it would be beneficial to exploit spatial coherence by projecting

the transfer operator into basis functions (such as wavelets) defined over the surfaces

of the scene.

Some radiance transfer algorithms in visual rendering [71, 31] can model glossy

reflections by using a directional basis such as spherical harmonics (SH) at each

surface sample. Such a strategy can also be applied to model glossy reflections and

diffraction of sound, however, the memory requirements for such an approach might

be prohibitive.

Fractional delays [41] may also be used to generate a more accurate impulse

response when propagation path delays do not lie exactly on time samples.

8.2 Compact Acoustic Transfer Operators

We have presented an efficient algorithm for computing sound propagation for inter-

active applications. The algorithm is a two-pass hybrid of ray tracing and radiance

transfer algorithms. We have demonstrated that the algorithm can model high or-

ders of reflection (specular as well as diffuse) and edge diffraction at near-interactive

rates with low memory overhead.

Limitations Our approach is based on geometric sound propagation using path

tracing. As a result, all the limitations of geometric acoustics apply to our method. In

particular, our approach cannot accurately model low-frequency reflections and edge

103

diffraction. Since the acoustic rendering equation is an energy-based formulation

of sound propagation [67], phase-related effects, such as some cases of interference,

cannot be modeled.

The run-time ray-tracing pass only computes early reflections (2–3 orders). Cou-

pled with the fact that the radiance transfer pass assumes all surface samples are

diffuse emitters, this implies that we cannot model higher-order purely specular re-

flections (such as flutter echoes) or higher-order purely diffracted paths (such as

diffraction around complex curved surfaces).

Our handling of dynamic objects is restricted to modeling direct “shadows” cast

by a moving source due to moving objects. Since the transfer operators are com-

puted over static surfaces only, we cannot model “indirect shadows”, i.e., occlusion

of reflected sound by moving objects. As a result, we cannot completely handle

situations such as moving doors between static rooms.

Like other precomputation algorithms [83, 63], our approach performs significant

compression of the precomputed data in order to run on commodity hardware. This

compression is lossy, and results in a reduction in the accuracy of the simulation

results. As a result, our algorithm is not practical for detailed room acoustical anal-

ysis. It is designed for games and other interactive applications where approximate

directional cues, echoes and reverberation can be dynamically updated to generate

a plausible, immersive audio experience.

Future Work Our algorithm can serve as the basis for much future research geared

towards providing immersive audio in games and interactive applications. Firstly, it

would be useful to investigate the possibility of using spherical harmonics to model

the directional variation of acoustic radiance, while keeping memory overheads low.

Another strategy for reducing memory requirements might be based on the structure

104

of the acoustic transfer operator: in most game environments, occlusion would lead

to clustering within the transfer matrix. These clusters would roughly correspond to

cells in a cells-and-portals subdivision of the scene. Therefore, it might be useful to

consider computing a per-cell acoustic transfer operator and modeling sound propa-

gation between cells via the portals. The clusters may also be useful in optimizing

the distribution of surface samples. In general, developing techniques for automati-

cally choosing surface sample pairs for computing example echograms would be an

interesting avenue for future research.

Since nearest-neighbor mapping is used for the hit-points of gather rays, there

may be temporal error in interpolating echograms. This may lead to errors in the

final echogram. It would be useful to develop delay-aware interpolation schemes to

address these issues.

It would be very interesting to extend our basic precomputation framework to

a pressure-based formulation by computing the sample-to-sample transfer operators

using a numerical solver for the acoustic wave equation. This would essentially

amount to a precomputation-based Monte Carlo solution of the Kirchoff integral

formulation of the wave equation, and would result in increased accuracy in modeling

wave phenomena such as diffraction. A related formulation of transfer operators have

been used for numerically solving the Helmholtz equation using the Equivalent Source

Method [52].

Finally, it would be very useful to integrate our approach with a precomputation-

based sound synthesis algorithm such as Precomputed Acoustic Transfer (PAT) [34]

to develop a unified approach for performing efficient propagation of synthesized

sound in interactive applications.

105

8.3 Aural Proxies and Ambient Reverberance

We have presented an efficient technique for approximately modeling sound propaga-

tion effects in indoor and outdoor scenes for interactive applications. The technique

is based on adjusting user-controlled reverberation parameters in response to the

listener’s movement within a virtual world, as well as a local shoebox proxy for

generating early reflections with a plausible directional distribution. The technique

generates immersive directional reverberation and reflection effects, and can easily

scale to multi-channel speaker configurations. It is easy to implement and can be

easily integrated into any modern game engine, without significantly re-architecting

the audio pipeline, as demonstrated by our integration with Valve’s Source engine.

Limitations Our reverberation approach does not account for spatially-varying

surface absorption properties; however, this is a limitation of the underlying statis-

tical model, the Eyring model [23]. Our approach for modeling reflections involves

a coarse shoebox proxy; as a result the accuracy of the generated higher-order re-

flections depends on how good a match the proxy model is to the underlying scene

geometry. Finally, since our reverberation approach does not perform global (multi-

bounce) ray tracing, but involves an user-controlled reverberation time, it is subject

to error in the adjusted mean free path.

Future Work There are many avenues for future work. One main challenge is to

develop a method for incorporating multi-bounce ray tracing into mean free path

estimation in real-time, so as to generate more realistic reverberation. Our current

approach for reverberation estimation does not account for diffracted rays reaching

the listener; incorporating such rays would result in a richer frequency-dependent

106

variation in the reverberation. The reverberation approach also does not account

for the scattering properties of the surfaces hit by rays. One approach for modeling

scattering properties would be to trace secondary rays from the hit points, and esti-

mate distances to scene surfaces from the hit point. This way, if the sound at a hit

point tends to be scattered into a larger room, we would obtain more reverb from the

direction of the hit point. This approach would require more expensive Monte Carlo

tracing (and would be even closer to ambient occlusion than the present technique),

hence for performance reasons, approximate techniques analogous to screen-space

ambient occlusion [66] may need to be developed. Furthermore, it would be interest-

ing to explore a more accurate approach for fitting shoebox proxies to scene geometry,

based on projections along the principal axes of the point cloud of geometry samples

obtained through ray tracing. Finally, we need to evaluate our approach in more

game and VR scenarios and perform detailed user studies to evaluate its benefits.

8.4 Trade-offs

The algorithms based on Precomputed Acoustic Radiance Transfer (Chapters 3–5)

account for the geometry of the entire scene. This makes them suitable for inter-

active applications were increased accuracy is desirable in exchange for somewhat

reduced performance. We have also demonstrated that PART can be used to sim-

ulate approximate diffraction effects (Chapter 5). On the other hand, the Ambient

Reverberance and Aural Proxies algorithm (Chapters 6 and 7) only account for

the geometry around the listener. This makes them suitable for applications where

performance is of utmost importance, and where plausible variation in sound prop-

agation effects is sufficient. These methods can handle dynamic scenes, but do not

support diffraction or complex multiple scattering effects.

107

8.5 Future Work

One of the most important topics for future research into precomputation-based

sound propagation algorithms is the development of more compact representations

for radiance (or other similar precomputed data). On the other hand, the overall goal

of further research into simplified statistical models for sound propagation is that of

improved accuracy. We believe that the combination of these two ideas – source- and

listener-independent precomputation, and simplified propagation models – offers the

best of both worlds, and presents one of the most promising avenues of future work

in the area of sound propagation for interactive applications.

Other topics for future research include techniques for automatically simplifying

geometric models to retain only the acoustically relevant features, as well as hybrid

techniques for combining numerical and geometric propagation techniques, thus pro-

viding a balance between simulation accuracy and performance in large, complex

scenes.

108

Bibliography

[1] 2K Games. Bioshock, 2007.

[2] Ahmed, N., Natarajan, T., and Rao, K. R. Discrete cosine transform.
IEEE Trans. Computers C-23, 1 (1974), 90–93.

[3] Allen, J. Short term spectral analysis, synthesis, and modification by discrete
fourier transform. Acoustics, Speech and Signal Processing, IEEE Transactions
on 25, 3 (1977), 235–238.

[4] Allen, J. B., and Berkley, D. A. Image method for efficiently simulating
small-room acoustics. J. Acoustical Society of America 65, 4 (1979), 943–950.

[5] An, S., James, D. L., and Marschner, S. Motion-driven concatenative
synthesis of cloth sounds. ACM Trans. Graphics 31, 4 (2012).

[6] Antani, L., Chandak, A., Savioja, L., and Manocha, D. Interactive
sound propagation using compact acoustic transfer operators. ACM Trans.
Graphics 31, 1 (2012).

[7] Antani, L., Chandak, A., Taylor, M., and Manocha, D. Efficient finite-
edge diffraction using conservative from-region visibility. Applied Acoustics 73,
3, 218–233.

[8] Antani, L., Chandak, A., Taylor, M., and Manocha, D. Direct-to-
indirect acoustic radiance transfer. IEEE Trans. Visualization and Computer
Graphics 18, 2 (2012), 261–269.

[9] Antani, L., and Manocha, D. Aural proxies and directionally-varying re-
verberation for interactive sound propagation in virtual environments. IEEE
Trans. Visualization and Computer Graphics 19, 4 (2013), 567–575.

[10] Begault, D. 3D Sound for Virtual Reality and Multimedia. Academic Press,
1994.

[11] Bertram, M., Deines, E., Mohring, J., Jegorovs, J., and Hagen, H.
Phonon tracing for auralization and visualization of sound. In IEEE Visualiza-
tion 2005 (2005), pp. 151–158.

109

[12] Borish, J. Extension of the image model to arbitrary polyhedra. J. Acoustical
Society of America 75, 6 (1984), 1827–1836.

[13] Botteldooren, D. Finite-difference time-domain simulation of low-frequency
room acoustic problems. J. Acoustical Society of America 98, 6 (1995), 3302–
3308.

[14] Bracewell, R. N. The Fourier transform and its applications. McGraw-Hill,
2000.

[15] Brigham, E. O. The Fast Fourier Transform and its applications. Prentice-
Hall, 1988.

[16] Chadwick, J., An, S., and James, D. L. Harmonic shells: A practical
nonlinear sound model for near-rigid thin shells. ACM Trans. Graphics 28, 5
(2009), 119:1–119:10.

[17] Chandak, A., Antani, L., Taylor, M., and Manocha, D. Fastv: From-
point visibility culling on complex models. Computer Graphics Forum (Proceed-
ings of the Eurographics Symposium on Rendering) 28 (2009), 1237–1246.

[18] Chandak, A., Lauterbach, C., Taylor, M., Ren, Z., and Manocha,
D. Ad-frustum: Adaptive frustum tracing for interactive sound propagation. In
Proc. IEEE Visualization (2008).

[19] Christensen, C. L. ODEON Room Acoustics Program User Manual. Odeon
A/S, 2009.

[20] Ciskowski, R. D., and Brebbia, C. A. Boundary element methods in
acoustics. Springer, 1991.

[21] Eidos Interactive. Thief: Deadly shadows, 2004.

[22] Engquist, B., and Runborg, O. Computational high frequency wave prop-
agation. Acta Numerica 12 (2003), 181–266.

[23] Eyring, C. F. Reverberation time in dead rooms. J. Acoustical Society of
America 1 (1930), 217–241.

[24] Farina, A. Ramsete: A new pyramid tracer for medium and large scale acoustic
problems. In Proc. EURONOISE (1995).

[25] Foale, C., and Vamplew, P. Portal-based sound propagation for first-person
computer games. In Australasian Conference on Interactive Entertainment 2007
(2007), pp. 9:1–9:8.

[26] Frictional Games. Amnesia: The dark descent, 2010.

110

[27] Funkhouser, T., Carlbom, I., Elko, G., Pingali, G., Sondhi, M., and
West, J. A beam tracing approach to acoustic modeling for interactive virtual
environments. In SIGGRAPH 1998 (1998), pp. 21–32.

[28] Gardner, W. G., and Martin, K. D. Hrtf measurements of a kemar. J.
Acoustical Society of America 97, 6 (1995).

[29] Gerardi, M., Rothbaum, B. O., Ressler, K., Heekin, M., and Rizzo,
A. Virtual reality exposure therapy using a virtual iraq: case report. Journal
of Traumatic Stress 21, 2 (2008), 209–213.

[30] Gumerov, N. A., and Duraiswami, R. A broadband fast multipole accel-
erated boundary element method for the three dimensional helmholtz equation.
J. Acoustical Society of America 125, 1 (2009), 191–205.

[31] Hašan, M., Pellacini, F., and Bala, K. Direct-to-indirect transfer for cin-
ematic relighting. ACM Transactions on Graphics (Proceedings of SIGGRAPH
2006) 25, 3 (2006), 1089–1097.

[32] Heckbert, P. S. Adaptive radiosity textures for bidirectional ray tracing. In
Proc. SIGGRAPH (1990).

[33] IASIG. Interactive 3d audio rendering guidelines, level 2.0. http://www.iasig.
org/pubs/3dl2v1a.pdf, 1999.

[34] James, D. L., Barbi, J., and Pai, D. K. Precomputed acoustic transfer:
Output-sensitive, accurate sound generation for geometrically complex vibration
sources. In SIGGRAPH (2006).

[35] Jot, J.-M., and Chaigne, A. Digital delay networks for designing artificial
reverberators. In AES Convention (1991).

[36] Kouyoumjian, R., and Pathak, P. A uniform geometrical theory of diffrac-
tion for an edge in a perfectly conducting surface. Proceedings of the IEEE 62,
11 (1974), 1448–1461.

[37] Krokstad, A., Strom, S., and Sorsdal, S. Calculating the acoustical
room response by the use of a ray tracing technique. J. Sound and Vibration 8,
1 (1968), 118–125.

[38] Kuttruff, H. Room Acoustics. Elsevier Science Publishing Ltd., 1991.

[39] Kuttruff, H. A simple iteration scheme for the computation of decay con-
stants in enclosures with diffusely reflecting boundaries. The Journal of the
Acoustical Society of America 98, 1 (1995), 288–293.

111

[40] Kuttruff, H. K. Auralization of Impulse Responses Modeled on the Ba-
sis of Ray-Tracing Results. Journal of the Audio Engineering Society 41, 11
(November 1993), 876–880.

[41] Laakso, T. I., Välimäki, V., Karjalainen, M., and Laine, U. K. Split-
ting the unit delay - tools for fractional delay filter design. IEEE Signal Pro-
cessing Magazine 13 (1996).

[42] Laine, S., Siltanen, S., Lokki, T., and Savioja, L. Accelerated beam
tracing algorithm. Applied Acoustics 70, 1 (2009), 172–181.

[43] Lauterbach, C., Chandak, A., and Manocha, D. Interactive sound
rendering in complex and dynamic scenes using frustum tracing. In Proc. IEEE
Visualization (2007).

[44] Lauterbach, C., Yoon, S.-E., Tuft, D., and Manocha, D. Rt-deform:
Interactive ray tracing of dynamic scenes using bvhs. In IEEE. Symp. Interactive
Ray Tracing (2006).

[45] Lehtinen, J., Zwicker, M., Turquin, E., Kontkanen, J., Durand, F.,
Sillion, F. X., and Aila, T. A meshless hierarchical representation for light
transport. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2008)
27, 3 (2008), 1–9.

[46] Lentz, T., Schroeder, D., Vorlander, M., and Assenmacher, I. Vir-
tual reality system with integrated sound field simulation and reproduction.
EURASIP Journal of Applied Signal Processing 2007, 1 (2007).

[47] Lévy, B., Petitjean, S., Ray, N., and Maillot, J. Least squares con-
formal maps for automatic texture atlas generation. ACM Trans. Graph. 21, 3
(2002), 362–371.

[48] Liu, Q. H. The pseudospectral time-domain (pstd) method: A new algorithm
for solutions of maxwell’s equations. In Proc. IEEE Antennas and Propagation
Society International Symp. (1997).

[49] Loève, M. Probability Theory Vol. II. Springer-Verlag, 1978.

[50] Malham, D. G. Ambisonics: A technique for low-cost, high-precision three-
dimensional sound diffusion. In Proc. International Computer Music Conf.
(1990).

[51] McGookin, D., Brewster, S., and Priego, P. Audio bubbles: Employing
non-speech audio to support tourist wayfinding. Haptic and Audio Interaction
Design (LNCS 5763) (2009), 41–50.

112

[52] Mehra, R., Raghuvanshi, N., Antani, L., Chandak, A., Curtis, S.,
and Manocha, D. Wave-based sound propagation in large open scenes using
an equivalent source formulation. ACM Trans. Graphics (to appear).

[53] Melzer, A., Kindsmuller, M., and Herczeg, M. Audioworld: A spatial
audio tool for acoustic and cognitive learning. Haptic and Audio Interaction
Design (LNCS 6306) (2010), 46–54.

[54] Moss, W., Yeh, H., Hong, J.-M., Lin, M. C., and Manocha, D. Sound-
ing liquids: Automatic sound synthesis from fluid simulation. ACM Trans.
Graphics 29, 3 (2010).

[55] Ochmann, M. The source simulation technique for acoustic radiation problems.
Acustica 81 (1995), 512–527.

[56] Okada, M., Onoye, T., and Kobayashi, W. A ray tracing simulation of
sound diffraction based on the analytic secondary source model. IEEE Trans.
Audio, Speech, and Language Processing 20, 9, 2448–2460.

[57] Parker, S., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J.,
Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A.,
and Stich, M. Optix: A general purpose ray tracing engine. In SIGGRAPH
(2010).

[58] Pielot, M., Henze, N., Heuten, W., and Boll, S. Tangible user interface
for the exploration of auditory city maps. Haptic and Audio Interaction Design
(LNCS 4813) (2007), 86–97.

[59] Pierce, A. D. Acoustics: An introduction to its physical principles and appli-
cations. Acoustical Society of America, 1989.

[60] Pulkki, V. Spatial sound generation and perception by amplitude panning
techniques. PhD thesis, Helsinki University of Technology, 2001.

[61] Raghuvanshi, N., and Lin, M. C. Interactive sound synthesis for large scale
environments. In Symposium on Interactive 3D Graphics and Games (I3D)
(2006).

[62] Raghuvanshi, N., Narain, R., and Lin, M. C. Efficient and accurate
sound propagation using adaptive rectangular decomposition. IEEE Trans. Vi-
sualization and Computer Graphics 15, 5 (2009), 789–801.

[63] Raghuvanshi, N., Snyder, J., Mehra, R., Lin, M., and Govindaraju,
N. Precomputed wave simulation for real-time sound propagation of dynamic
sources in complex scenes. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH 2010) 29, 4 (2010), 68:1 – 68:11.

113

[64] Ren, Z., Yeh, H., and Lin, M. C. Synthesizing contact sounds between
textured objects. In IEEE Virtual Reality (2010).

[65] Reshetov, A., Soupikov, A., and Hurley, J. Multi-level ray tracing
algorithm. In SIGGRAPH (2005).

[66] Shanmugam, P., and Arikan, O. Hardware accelerated ambient occlusion
techniques on gpus. In Proc. Symposium on Interactive 3D Graphics (2007).

[67] Siltanen, S., Lokki, T., Kiminki, S., and Savioja, L. The room acoustic
rendering equation. Journal of the Acoustical Society of America 122, 3 (2007),
1624–1635.

[68] Siltanen, S., Lokki, T., and Savioja, L. Frequency domain acoustic radi-
ance transfer for real-time auralization. Acta Acustica united with Acustica 95
(2009), 106–117.

[69] Siltanen, S., Lokki, T., Savioja, L., and Christensen, C. L. Geometry
reduction in room acoustics modeling. Acta Acustica united with Acustica 94
(2008), 410–418.

[70] Sloan, P.-P. Stupid spherical harmonics tricks. In Game Developers Confer-
ence (2008).

[71] Sloan, P.-P., Kautz, J., and Snyder, J. Precomputed radiance transfer
for real-time rendering in dynamic, low-frequency lighting environments. ACM
Transactions on Graphics (Proceedings of SIGGRAPH 2002) 21, 3 (2002), 527–
536.

[72] Stavrakis, E., Tsingos, N., and Calamia, P. Topological sound propa-
gation with reverberation graphs. Acta Acustica united with Acustica (2008).

[73] Stephenson, U. M. An analytically derived sound particle diffraction model.
Acta Acustica united with Acustica 96 (2010), 1051–1068.

[74] Stephenson, U. M., and Svensson, U. P. An improved energetic approach
to diffraction based on the uncertainty principle. 19th International Congress
on Acoustics (ICA) (2007).

[75] Summers, J. E., Torres, R. R., and Shimizu, Y. Statistical-acoustics
models of energy decay in systems of coupled rooms and their relation to geo-
metrical acoustics. Journal of the Acoustical Society of America 116, 2 (2004),
958–969.

[76] Svensson, U. P., Fred, R. I., and Vanderkooy, J. An analytic secondary
source model of edge diffraction impulse responses. Journal of the Acoustical
Society of America 106 (1999), 2331–2344.

114

[77] Taflove, A., and Hagness, S. C. Computational Electrodynamics: The
finite-difference time-domain method, third ed. Artech House, 2005.

[78] Taylor, M., Chandak, A., Mo, Q., Lauterbach, C., Schissler, C.,
and Manocha, D. Guided multiview ray tracing for fast auralization. IEEE
Trans. Visualization and Computer Graphics 18, 11 (2012), 1797–1810.

[79] Taylor, M., Chandak, A., Ren, Z., Lauterbach, C., and Manocha,
D. Fast edge diffraction for sound propagation in complex virtual environments.
In Proc. EAA Symp. Auralization (2009).

[80] Taylor, M. T., Chandak, A., Antani, L., and Manocha, D. Resound:
interactive sound rendering for dynamic virtual environments. In ACM Multi-
media 2009 (2009), pp. 271–280.

[81] Thompson, L. L. A review of finite-element methods for time-harmonic acous-
tics. J. Acoustical Society of America 119, 3 (2006), 1315–1330.

[82] Tsingos, N. Perceptually-based auralization. In International Congress on
Acoustics (2007).

[83] Tsingos, N. Precomputing geometry-based reverberation effects for games. In
Audio Engineering Society Conference: Audio for Games (2009).

[84] Tsingos, N., Dachsbacher, C., Lefebvre, S., and Dellepiane, M. In-
stant sound scattering. In Proc. Eurographics Symposium on Rendering (2007).

[85] Tsingos, N., Funkhouser, T., Ngan, A., and Carlbom, I. Modeling
acoustics in virtual environments using the uniform theory of diffraction. In
SIGGRAPH 2001 (2001), pp. 545–552.

[86] Veach, E. Robust Monte Carlo methods for light transport simulation. PhD
thesis, Stanford University, 1997.

[87] Vecherin, S. N., Wilson, D. K., and Ostashev, V. E. Incorporating
source directionality into outdoor sound propagation calculations. J. Acoustical
Society of America 130, 6 (2011), 3608–3622.

[88] Vorlander, M. Simulation of the transient and steady-state sound prop-
agation in rooms using a new combined ray-tracing/image-source algorithm.
Journal of the Acoustical Society of America 86, 1 (1989), 172–178.

[89] Vorlander, M., and Mommertz, E. Definition and measurement of
random-incidence scattering coefficients. Applied Acoustics 60, 2 (2000), 187–
199.

115

[90] Wald, I., Slusallek, P., Benthin, C., and Wagner, M. Interactive
rendering with coherent ray tracing. In Eurographics (2001).

[91] Wallace, J. R., Cohen, M. F., and Greenberg, D. P. A two-pass
solution to the rendering equation: A synthesis of ray tracing and radiosity
methods. Computer Graphics (Proceedings of SIGGRAPH 1987) 21, 4 (1987),
311–320.

[92] Wang, Ye; Vilermo, M. Modified discrete cosine transform: Its implications
for audio coding and error concealment. J. Audio Eng. Soc 51, 1/2 (2003),
52–61.

[93] White, G. R., Fitzpatrick, G., and McAllister, G. Toward accessible
3d virtual environments for the blind and visually impaired. In Proc. Inter-
national Conference on Digital Interactive Media in Entertainment and Arta
(DIMEA) (2008).

[94] Zheng, C., and James, D. L. Harmonic fluids. In SIGGRAPH (2010).

[95] Zheng, C., and James, D. L. Rigid-body fracture sound with precomputed
soundbanks. In SIGGRAPH (2010).

[96] Zhukov, S., Inoes, A., and Kronin, G. An ambient light illumination
model. Rendering Techniques (1998).

116

