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ABSTRACT

Kenneth P. MacCabe: X-ray scatter tomography using coded apertures
(Under the direction of David Brady and Otto Zhou)

This work proposes and studies a new �eld of x-ray tomography which combines the principles of scatter

imaging and coded apertures, termed �coded aperture x-ray scatter imaging� (CAXSI). Conventional x-ray

tomography reconstructs an object's electron density distribution by measuring a set of line integrals known

as the x-ray transform, based physically on the attenuation of incident rays. More recently, scatter imaging

has emerged as an alternative to attenuation imaging by measuring radiation from coherent and incoherent

scattering. The information-rich scatter signal may be used to infer density as well as molecular structure

throughout a volume. Some scatter modalities use collimators at the source and detector, resulting in long

scan times due to the low e�ciency of scattering mechanisms combined with a high degree of spatial �ltering.

CAXSI comes to the rescue by employing coded apertures. Coded apertures transmit a larger fraction of

the scattered rays than collimators while also imposing structure to the scatter signal. In a coded aperture

system each detector is sensitive to multiple ray paths, producing multiplexed measurements. The coding

problem is then to design an aperture which enables de-multiplexing to reconstruct the desired physical

properties and spatial distribution of the target.

In this work, a number of CAXSI systems are proposed, analyzed, and demonstrated. One-dimensional

�pencil� beams, two-dimensional �fan� beams, and three-dimensional �cone� beams are considered for the

illumination. Pencil beam and fan beam CAXSI systems are demonstrated experimentally. The utility of

energy-integrating (scintillation) detectors and energy-sensitive (photon counting) detectors are evaluated

theoretically, and new coded aperture designs are presented for each beam geometry. Physical models are

developed for each coded aperture system, from which resolution metrics are derived. Systems employing

di�erent combinations of beam geometry, coded apertures, and detectors are analyzed by constructing linear

measurement operators and comparing their singular value decompositions. Since x-ray measurements are

typically dominated by photon �shot� noise, iterative algorithms based on Poisson statistics are used to

perform the reconstructions.

This dissertation includes previously published and unpublished co-authored material.
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CHAPTER 1: INTRODUCTION

1.1 Background

The goal of tomography is to estimate physical parameters such as the electron density at

each point in a three dimensional object [1]. Since x-rays provide penetration through other-

wise opaque targets, x-ray tomography is an established �eld for non-destructive examination

and is widely used in medicine, security, and quality inspection. The primary contributions

of this work are new modalities for tomography, enabled by reuniting coded apertures with

x-rays through scatter imaging. These techniques are collectively termed �coded aperture

x-ray scatter imaging� (CAXSI). An enabling feature of CAXSI is the design of a new family

of coded apertures called �frequency scale codes� which provide maximum distinguishability

of scatter points at di�erent ranges from a detector. For a review on imaging modalities in

x-ray tomography without coded apertures, see Reference [2].

The most popular and mature x-ray techniques operate in attenuation mode, where some

fraction of the x-rays illuminating a target object are absorbed or de�ected from the direct

ray path connecting the x-ray source and detector. By de�nition, the measured photons

in attenuation imaging are those which did not interact with the object and thus provide

limited information. In scatter imaging, scattered photons are measured, providing a number

of advantages and novel results which will be discussed presently.

For x-ray photons with energies in the range 1 keV to 1 MeV, the dominant interactions

with matter are photoelectric absorption, incoherent scattering, coherent scattering, and

�uorescence. All of these mechanisms contribute to each attenuation measurement, but

scatter imaging systems have the freedom to measure each contribution separately. Pho-

toelectric absorption and incoherent scattering are most useful for estimating bulk electron
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density. Density imaging based on �uorescence is also possible using the isotropic scattering

models presented in later chapters, and since �uorescence is based on atomic transitions it

can reveal concentrations of atomic constituents if the transition energies are detectable.

While �uorescence probes atomic structure, coherent scattering exhibits interference e�ects

between neighboring atoms which can tell us about molecular structure. This is the motivator

for coherent scatter imaging, where di�raction pro�les are estimated for each point in

an extended object. In the following, you will see demonstrations and examples of x-ray

tomography systems for density imaging based on incoherent scattering and for molecular

imaging based on coherent scattering.

The basic model for an x-ray tomography system is shown in Figure 1.1 and consists

of an x-ray source, beam-forming optical element(s), the target object, detector-side optical

element(s), and detector arrays for attenuation and/or scatter measurements.

Figure 1.1: Basic elements of an x-ray tomography system, including the x-ray source,
beam-forming optics, the target object volume, detector-side optics, and attenuation or
scatter detectors.

The x-ray source is considered here to be point-like and may emit a narrow-band or broad-

band spectrum. Since focusing is di�cult at x-ray energies, assume the optical elements rely

on absorption and consist of high-density metals such as lead or tungsten. These form a

2



class of reference structures, which partition the object into sensitivity regions speci�c to

each detector and enable tomography [3,4]. The source-side reference structures considered

here are pinhole and slit collimators, respectively forming pencil beams and fan beams as

shown in Figure 1.2. The exception is Chapter 5, which concerns volumetric scatter imaging

with full cone beam illumination. In principle, a 3D object may be translated through the

pencil or fan beam to scan its full volume. X-rays transmitted or scattered by the object

encounter detector-side optics before reaching the detectors. For the attenuation detectors,

these usually consist of anti-scatter grids which are angled collimators focused on the source

to reject scattered radiation. Until recently, scatter measurements have employed similar

collimators focused on individual object points. Unfortunately, most of the scattered signal

is thereby wasted through absorption since the collimators only transmit a narrow range of

angles.

The novelty of CAXSI is the introduction of coded apertures to scatter imaging. Coded

apertures, being planar reference structures, have a spatially varying transmittance. Unlike

collimators, they transmit rays with a wide range of incidence angles, producing measure-

ments with multiple sensitivity regions in the object and increased signal levels. Coded aper-

tures enable new imaging modalities, increase signal-to-noise and throughput, and reduce

dose compared with other techniques. The focus of this work is to analyze and demonstrate

these modalities and design appropriate coded apertures.
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(a) (b)

Figure 1.2: (a) Pencil beam and (b) fan beam collimation

Attenuation imaging has two major challenges which scatter imaging can overcome. First,

the line integrals in attenuation imaging only exist along lines connecting the source(s) and

detector(s), severely constraining the set of measurable rays. A �ray� is a straight line

segment connecting two points, along which radiation propagates under the assumptions of

geometric optics. Multiple measurements along di�erent line integrals are required to isolate

the contribution of individual voxels to the attenuation. Computed tomography (CT) is a

technique developed speci�cally for the purposes of untangling these line integrals [1]. In

most CT systems the object is rotated relative to the source/detector apparatus in order

to achieve ray diversity via the x-ray transform, with requirements on what constitutes

a complete set of measurements [5, 6]. While multi-source CT systems exist [7], the vast

majority of CT systems employ a single moving x-ray source and require a stationary target

during the course of the measurement. �Radon imaging� is based on the simplest model for

attenuation measurements, the Radon transform. The Radon transform is a set of parallel

projections in a plane. Fan beam Radon imaging is also possible, where the parallel rays

are simply reordered into fans, and similar approaches exist for cone beam tomography [1].
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However, none of these methods provide tomography along a single line without irradiating

at least a planar section of the object and acquiring a sequence of images.

In contrast with attenuation imaging, scatter imaging bene�ts from the natural diversity

of scattered rays. For each ray incident on a scattering object, multiple scattered rays are

produced in di�erent directions. Exploited properly, this means that a linear or planar

section of the target may be imaged in a snapshot (a single exposure of a detector array)

without the need for moving parts or multiple sources. Careful selection of scattered rays

is important for minimizing radiation doses and/or maximizing throughput in tomographic

systems. The ability to perform 1D tomography with a pencil beam alleviates the need

to irradiate neighboring regions. In Chapter 2, theoretical analysis of 1D and 2D scatter

imaging techniques shows that they could provide signi�cant reduction in radiation dose

compared with alternative methods.

The second challenge for attenuation systems is material discrimination. Attenuation

provides density information and e�ective atomic number when dual-energy (DE) or multi-

energy (ME) measurements are made via photon counting detectors and/or spectral �ltering

at the source or detector. For DE measurements, density and e�ective atomic number are the

only measurable properties. For ME measurements, relative combinations of atomic numbers

can be discerned but only if the absorption features (e.g. K-edges) or �uorescence energies

of the constituent atoms falls within the detection energy range. For many applications,

these features occur at energies too low to su�ciently penetrate the target. Incoherent

scattering has been used instead of attenuation for density imaging [2,8�14], and specialized

Radon methods have also been proposed for cone beam incoherent scatter tomography

[15]. Incoherent scattering, however, lacks information about chemical structure since each

electron contributes independently to the incoherent scattered radiation.

Coherent scattering provides much richer atomic and molecular information than attenu-

ation or incoherent scattering. Coherent scattering exhibits interference in the scatter angle

for materials with periodic structure [16]. In the simplest approximation, atoms located
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at crystal lattice sites become polarized and emit dipole radiation at the same frequency

as an incident �eld. Interference from neighboring atoms produces a scattered intensity

which can be a quickly-varying function of the scatter angle. This intensity is closely related

to the spatial Fourier transform of the electron density, providing important information

about the spatial arrangement of the atoms or molecules. Similar e�ects occur in liquids

and amorphous solids as in crystals, but with more smoothly-varying scattered �elds. The

coherently-scattered (di�racted) �eld depends strongly on both the x-ray energy as well

as the molecular structure of the target, and therefore provides a non-destructive chemical

probe.

X-ray di�raction for chemical detection is a mature �eld [17, 18]. A typical di�raction

experiment involves a small, point-like target and 1D x-ray illumination. Energy resolution

is achieved either by a narrow-band x-ray source or energy-sensitive detectors. Localization

in energy and space simpli�es the relationship between the measurements and the chemical

structure of the target.

Coherent scatter imaging is a relatively new �eld in which scatter/di�raction measure-

ments are made over an extended volume to measure the spatial and chemical con�guration

of a target. Coherent scatter imaging systems fall into three basic categories: selected volume

tomography (SVT) [13,19�25], coherent scatter computed tomography (CSCT) [26�30], and

coded aperture x-ray scatter imaging (CAXSI) [31�35].

In the SVT category, collimators form 1D or 2D illumination and each detector pixel is

collimated for sensitivity to a single localized volume element (voxel) within the beam. With

SVT, each voxel may be treated as an independent di�raction experiment which provides

the simplest imaging process. In order to minimize cross-talk between neighboring voxels

the collimators must consist of strongly absorbing materials and maintain a limited angle of

acceptance, causing the vast majority of the scattered photons to be wasted and contributing

to low signal-to-noise ratio (SNR). This consideration motivated the second category of

scatter imaging systems, CSCT, which was developed as a multiplexed alternative to SVT.
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CSCT can be achieved with 2D illumination and detector pixels collimated to individual lines

of voxels. The wider acceptance angle of the collimators improves throughput compared with

SVT. CSCT cleverly adapts the mathematical framework of CT, providing analytic image

reconstruction and error bounds [36]. Like CT, however, CSCT requires rotational scanning

and cannot be used for snapshot tomography.

The newest category of scatter imaging techniques is coded aperture x-ray scatter imaging

(CAXSI) [31�35]. The novelty of CAXSI is that the detector-side collimator is replaced by a

coded aperture with a carefully designed transmittance pattern. The aperture is constructed

with enough angular acceptance to measure scatter from any illuminated region of the object,

so that each detector pixel is sensitive to a di�erent combination of voxels. With a su�cient

number of linearly independent measurements the target may be reconstructed from the

measurements. Measurement diversity may be achieved by any combination of adding

detector pixels, changing the code pattern, moving the object, and/or moving the source and

detectors. Using CAXSI, a 1D or 2D tomographic section of the object may be reconstructed

from a snapshot and without unnecessary irradiation of adjacent regions. Additionally, SNR

and throughput are improved since viable aperture codes exist with average transmittance

of about 50%. The scatter signal acquired in a CAXSI system is one and two orders of

magnitude larger than with CSCT and SVT, respectively. CAXSI powerfully combines coded

apertures with x-ray scatter imaging to enable new imaging modalities and improvements in

image quality, acquisition speed, and chemical speci�city.

This document presents theory and analysis for pencil, fan, and cone beam CAXSI. The

pencil beam and fan beam systems were demonstrated experimentally and based on the

theoretical analysis of Chapter 2. The remainder of this section presents the principles of

x-ray scattering along with analytic and computational techniques used for scatter imaging.

Chapter 2 presents published theory and coded aperture designs for pencil and fan beam

CAXSI, and compares CAXSI, SVT, and CT in terms of the singular values of their associ-

ated measurement models. Chapter 3 adapts published experimental results for pencil beam
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CAXSI, in which density and chemical structure is recovered from a single snapshot along

a 1D pencil beam. This is extended in Chapter 4, demonstrating snapshot 2D tomography

and building on the lessons of the pencil beam system. Chapter 5 extends the ideas of

its preceding chapters and proposes new coded apertures and reconstruction algorithms for

cone beam scatter tomography. Chapter 6 compares models for systems incorporating linear

arrays of spectroscopic (energy-sensitive) detectors. Finally, Chapter 7 provides a summary

of this work and an outlook on the future of CAXSI.

1.2 Scatter imaging principles

Photoelectric absorption, incoherent scattering, and coherent scattering are the dominant

x-ray interactions with matter for photons in the 1 keV to 1 MeV energy range [37]. Figure

1.3 illustrates the two scattering mechanisms considered here. Incoherent scattering arises

when a free or weakly bound electron absorbs energy from a photon and recoils. The energy

transfer produces a shift in the photon's wavelength, known as the Compton shift. The

amount of energy transferred to the electron is a random variable in this quantum process,

but it is correlated with the scattering angle through energy and momentum conservation.

Coherent scattering may be understood classically, where an incident �eld excites dipole

radiation in atoms. If the atoms are organized according to some chemical structure, the

radiated �elds interfere and can produce highly directional radiation.

8



(a) (b)

Figure 1.3: Schematic representations of the two dominant x-ray scattering mechanisms
considered here: (a) incoherent (Compton) scattering, and (b) coherent (Bragg) scattering.
The sinusoids represent incident and scattered plane-waves. The e− in (a) is a scattered
electron. The gray circles in (b) are atoms positioned on a crystal lattice, and the concentric
rings are contributions from each atom to the scattered �eld.

The scattering cross section σ is well approximated by a superposition of the individual

cross sections: σ = σP +σI+σC , where σP is for photoelectric absorption, σI is for incoherent

scattering, and σC is for coherent scattering. These cross sections are functions of the

photon energy E and have been measured and tabulated for a variety of materials [38]. The

angular di�erential cross section dσ
dΩ

(θ, φ) is an even more complete description of a material's

scattering properties and de�ned such that σ =
�

dΩ dσ
dΩ

(θ, φ). The solid angle element is

dΩ = sin θdθdφ, and the polar angle θ is called hereafter the �scatter angle�, with θ = 0

being the direction of the incident illumination. Like σ, the di�erential cross section also

depends on E. In the following section, scatter measurements will be described in terms of

the incoherent di�erential cross section dσI
dΩ

and the coherent di�erential cross section dσC
dΩ

.

1.2.1 Scattering from a point

All imaging begins with points [39]. In this spirit, consider a simple scattering experiment

which is depicted in Figure 1.4.
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Figure 1.4: A simple x-ray scattering experiment, including a pencil beam, a point-like
sample, and a spectroscopic scatter detector.

A pencil beam with spectral number density N(E) illuminates a point-like sample with

thickness z and electron density n, which scatters rays into multiple directions. The detector

is assumed to cover an in�nitesimal solid angle Ω and positioned so that only x-rays with

scatter angle θ are measured. The detector operates in photon counting mode, and adds each

count to the appropriate energy bin. This is an example of an �energy sensitive� detector

(Chapter 6 analyzes the performance of CAXSI systems employing arrays of such detectors).

Letting ηi(E) be the probability that a detected photon with energy E is added to bin i,

the mean number of photons collected in energy bin i may be represented as a contribution

from incoherent and coherent scattering:

gi = znΩ

�
dE N(E)

[
ηi(E

′)
dσI
dΩ

(E, θ) + ηi(E)
dσC
dΩ

(E, θ)

]
. (1.1)

Equation (1.1) is called the �forward model� for the point scattering experiment. The par-

ticulars of the energy and angle ranges measured, as well as the target's material properties,

will determine which of these terms is dominant for a given measurement. The short x-ray

wavelength compared with the periodicity of atoms in molecules causes coherent scattering to

occur primarily in the forward direction at small θ. Incoherent scattering, however, is found

at all θ, and is relatively smoothly varying in energy and angle. The di�erential cross section

for incoherent scattering is well approximated by the Klein-Nishina formula [40], which has

a peak at θ = 0 and another at θ = 180◦. In equation (1.1), E ′ = E/
[
1 + E

mc2
(1− cos θ)

]
is the Compton-shifted energy for a photon at initial energy E and with scatter angle θ,
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where mc2 is the rest mass energy of the electron. Pencil beam tomography using incoherent

scattering is possible with a single pixel and without detector side collimation by using energy

sensitive detectors to �nd θ through E and E ′ [8]. However, for �energy integrating� detectors

(those without energy resolution), ηi(E
′) ≈ ηi(E) and the Compton shift is not resolved. In

this case, tomography is possible only through SVT or CAXSI, with signal strength being

the advantage of the latter. Energy integrating detectors, based on scintillation or direct

detection, will be assumed for Chapters 2-5.

The coherent scatter di�erential cross section dσC
dΩ

carries information about the spatial

distribution of the electron charge, which may be used to identify the scattering material.

Relaxing the assumption of a point-like target just slightly, let n (r) be the target's electron

density as a function of position r. For an incident �eld with wavevector ki proportional to

eiki · r, the phase at scattering point r is ki · r. The amplitude of the scattered wave from

point r is proportional to the electron density n (r). The scattered wave with wavevector kf

su�ers a phase lag of −kf · r relative to the point r. The total scattered �eld at wavevector

kf is a volume integral over n (r), with the phase factor ei(ki−kf) · r [16]:

E (kf ) =

�
d3rn (r) ei(ki−kf) · r,

to within some proportionality. The spectral irradiance of the �eld is proportional to

|E (kf )|2, motivating the following de�nition for the �scattering density�:

F (q) =

∣∣∣∣� d3r e−iq · r/~n(r)

∣∣∣∣2 ,
where the vector q = ~ (kf − ki) is called the �momentum transfer�, and ~ is the reduced

Planck constant. Jumping from the wave picture to a particle description, an incident photon

has the momentum vector pi = ~k and after scattering its �nal momentum is pf = ~kf .

The momentum transfer q = pf − pi is the momentum gained by the photon during the

scattering process, as illustrated by Figure 1.5.
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Figure 1.5: Graphical de�nition of the momentum transfer q = pf − pi. For coherent
scattering, |pf | = |pi| and both vectors lie on the surface of a sphere (the Ewald sphere).

In component form, the initial and �nal photon momenta are

pi =
E

c


0

0

1



pf =
E

c


sin θ cosφ

sin θ sinφ

cos θ


where θ is the polar angle in spherical coordinates and φ is the azimuthal angle. The

coherent scattering condition means that the photon does not lose energy in the process, so
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|pi| = |pf | = E/c. The components of the momentum transfer q = pf − pi are

q =
E

c


sin θ cosφ

sin θ sinφ

cos θ − 1

 (1.2)

The magnitude q of the momentum transfer vector gives us Bragg's law

q =
2E

c
sin

θ

2
, (1.3)

relating the momentum transfer magnitude q, x-ray energy E, and the scatter angle θ.

Equation (1.3) describes only the �rst di�raction order M = 1; higher orders are obtained

by multiplying the left hand side by the order number M . In what follows, all di�raction

orders except the �rst are ignored.

In crystals, F (q) is nonzero only when q/~ is approximately equal to a reciprocal

lattice vector. For a crystalline powder, averaging F (q) over the random distribution of

grain orientations produces a scattering density depending only on the magnitude q of the

momentum transfer. This approximation breaks down as the grain size increases, but the

simpli�cation is even more exact for liquids and amorphous solids. Then, the scattering

density is reduced to a function of a single parameter, F (q), and the scattered radiation

is said to possess azimuthal symmetry (it is independent of φ). Azimuthally symmetric

scattering is analyzed in Chapter 2 and assumed in the forward models for coherent scatter

imaging in Chapters 3, 4, and 6. The approximation F (q) ≈ F (q) is justi�ed when the

spatial imaging resolution is much larger than the length scale at which the material is

disordered.

The di�erential cross section dσC
dΩ

(E, θ) and the scattering density F
(
q = 2E

c
sin θ

2

)
are

both proportional to the probability that a photon at energy E scatters into the direction

determined by θ. The di�erential cross section is expressed in terms of the scattering density
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as

dσC
dΩ

(E, θ) = A(E)
(
1 + cos2 θ

)
F

(
q =

2E

c
sin

θ

2

)
(1.4)

where A(E) is a normalization factor for each E so that
�

dΩdσC
dΩ

(E, θ) = σC(E), and σC(E)

is the total coherent scatter cross section, e.g. as reported by NIST [38]. Appendix A

discusses this normalization and how to compute F (q) and dσC
dΩ

(E, θ) for arbitrary q , E ,

and θ from di�ractometer measurements and knowledge of σC(E). The factor (1 + cos2 θ)

in equation (1.4) is proportional to the Thompson scattering factor (the low energy limit),

which arises since the scattered �eld has two polarization components and one of them (the

�radial� component) follows a cos2 θ dependence for the intensity.

Bragg's relationship (1.3) between two experimental parameters E and θ and the object-

speci�c parameter q enables multiple modalities for di�raction measurements. Measurement

of the scattering density at di�erent q values is achieved by varying θ with �xed E (angle-

dispersive), or varying E with �xed θ (energy-dispersive). Because of the limited acceptance

angle of the collimators, SVT requires energy dispersive measurements to recover F (q) [22].

Both angle and energy dispersive measurements have been demonstrated in CSCT [26,28,30]

and CAXSI [31,32,34,35] systems. Angle-dispersive CAXSI is the focus of Chapters 2, 3, and

4. There exists a continuum between angle-dispersive and energy-dispersive measurements

in which both E and θ vary, which is analyzed in Chapter 6.

Some comments on simplifying the forward model (1.1) are in order. Small angle

scattering is assumed for coherent scattering, so that cos2 θ ≈ 1. Incoherent scattering

is only considered for energy-integrating detectors, so ηi(E
′) ≈ ηi(E), and it is treated as

approximately isotropic. The coherent and incoherent contributions may be grouped into a

total scattering cross section according to σS = σI + σC :

gi = nzΩ

�
dE ηi(E)N(E)

dσS
dΩ

(E, θ)
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Some di�erent limits of this forward model enable di�erent measurement strategies. First,

assume a narrow-band source so that N(E) → δ (E − E0) and assume a perfect energy-

insensitive detector with η = 1, where the index i has been dropped since there is only a

single energy bin. The forward model in this case is

g = nzΩ
dσS
dΩ

(E0, θ) ,

which essentially the forward model for SVT. If n is the unknown density of a given voxel in

SVT, it can be recovered with an appropriate model for zΩdσS
dΩ

(E0, θ). This was the approach

of Lale for incoherent SVT [19]. To recover F (q) when coherent scattering is measured,

angle dispersive measurements would scan g(θ) to recover F (q) ∝ g
(
θ = 2 sin−1

[
qc

2E0

])
.

This approach is used in commercial di�ractometers for small, point-like samples at known

locations.

For common broadband x-ray tubes, narrow-band spectra most easily achieved through

heavy �ltration, wasting much of the incident �ux. If the source is broadband, recovery

of F (q) from g(θ) results in a deconvolution problem which can be ill-posed. To overcome

this problem for coherent scatter SVT, Harding and Kosanetzky took the energy-dispersive

approach [22]. Their energy-sensitive detector remained at a �xed angle θ0 and had a number

of energy bins so that, e�ectively, g(E) was measured. The coherent scatter forward model

is then

g (E) = nzΩN(E)η(E)k(E)F

(
q =

2E

c
sin

θ0

2

)
(1.5)

and the scattering density was recovered through F (q) ∝ g

(
E = qc

2 sin
θ0
2

)
, with assumed

models for the other terms. Despite the low throughput of SVT, this is so far the most

popular method for coherent scatter tomography due to its simplicity.
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1.2.2 Forward models for volume imaging

The principles of point scattering from the previous section can be assumed at each posi-

tion in a 3D object, with the total measurements being a superposition of the contributions

from each point. This superposition principle applies best to weakly attenuating/scattering

objects where the primary scatter is a mere perturbation of the incident beam and the

secondary scatter is a small perturbation of the primary scatter. In the remainder of

this work, perturbations of the incident and scattered radiation are assumed negligible or

otherwise corrected-for. The result is that the forward model becomes a linear transformation

of the scattering density F .

The purpose of scatter imaging is to estimate some combination of physical properties,

such as electron density and/or F (q), over the volume of the object. The imaging process may

be considered as a transformation H from the object's now spatially-dependent scattering

density F (r, q) to the measured �eld G (r′, E), where r = (x, y, z) is a position vector in the

object, r′ = (x′, y′, z′) is a measurement position, q is the momentum transfer, and E is the

measured photon energy. The job is to estimate F (the object) from G (the measurements),

given a system model H. In general, H may be a nonlinear transformation of F due to

multiple scattering e�ects and/or attenuation of the x-rays within the object, however for

simplicity a linear model is assumed in this work (with the exception of a bi-linear model

in Chapter 4). The techniques described here may be extended to iterative update of a

nonlinear H during the reconstruction process.

Good system design produces transformation H which is at least approximately invert-

ible. The simplest approach is to reduce the dimensionality of the space embedding the

object and replace the remaining coordinates with time t using scanning techniques. The

object is constrained to e�ectively one spatial dimension with pencil beam illumination and

two spatial dimensions with fan beam illumination. The forward model for single-pixel

incoherent SVT is basically of the form F (r) δ3 (r− s(t))→ G (t) for some voxel path s(t),

and δ3 is the Dirac delta function in 3D, which may be replaced by a function describing the
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shape of the actual voxels. Energy-dispersive SVT measures the coherent scattering density

via F (r, q) δ3 (r− s(t))→ G (E, t). SVT may also employ pixel arrays to capture one or two

spatial dimensions of F in parallel. CSCT rotates F (x, z, q) and obtains energy-integrated

measurements G (x, y, t) or energy-sensitive measurements G (x,E, t). SVT and CSCT both

employ detector-side collimation to limit the domain of F which is visible to each detector

pixel. CAXSI provides an alternative approach using coded apertures with wide angular

acceptance, increasing the fraction of the scattered radiation reaching the detectors.

Chapter 2 presents theory and analysis for incoherent and coherent CAXSI systems,

including coded apertures for forward models with F (z) → G(x), F (z, θ) → G (x, y), and

F (x, z)→ G (x, y). In Chapter 3, the coherent scattering density F (z, q) was reconstructed

from an experimentally-measured G(x, y), which is closely related to the transformation

F (z, θ) → G (x, y) discussed theoretically in Chapter 2. In Chapter 4, the object was

assumed separable as F (x, z)R(θ), where the radiance R(θ) included both coherent and

incoherent scattering. The functions F (x, z) and R(θ) were both estimated from the experi-

mental image G(x, y). In chapter 5, coded apertures are proposed for volumetric tomography

following F (x, y, z) → G (x, y, t). Chapter 6 compares forward models for energy sensitive

measurements according to the transformation F (z, q)→ G (x,E).

1.3 Coded apertures

At x-ray energies, focusing optics are often impractical due to their low e�ciency stem-

ming from the weak interaction of x-rays with matter. Coded apertures o�er an alternative

to focal elements, consisting of specially designed 2D patterns of opaque material (usually

lead, tungsten, or some other heavy element). Rays intersecting a coded aperture are ideally

either absorbed or transmitted without changing their direction. Coded apertures should

be thin enough to accept a range of incidence angles at the transparent regions, but should

also be thick enough to provide su�cient contrast at the opaque regions. This balance has

implications for imaging resolution, where the feature size of the aperture pattern is limited

by the aspect ratio achievable during the manufacturing process. For simplicity, the forward
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models presented in the following chapters assume a planar aperture, with an exception in

Chapter 6 which requires modeling of the 3D aperture due to an energy dependent forward

model. For each coded apertures system, resolution metrics are presented in terms of the

smallest length scale of the aperture pattern, however it may be decided.

In spectroscopy, coded apertures have been used as early as 1949 [41] to overcome

resolution versus throughput tradeo�s. By multiplexing signals together, spectra may be

reconstructed with signal to noise ratio (SNR) superior to single slit di�raction. From this

concept the �eld of Hadamard transform spectroscopy developed and has become a testament

to the power of multiplexing [42]. Recent studies show that novel codes in combination

with biased, nonlinear and/or decompressive estimators may provide a powerful tool for

compressive sampling [4]. Coded apertures may also be viewed as �light �eld� encoders

that enable radiance measurement using irradiance detectors [43]. Building on studies

of �reference structures� for compressive tomographic imaging [3, 44, 45], coded aperture

snapshot spectral imaging (CASSI) was developed in 2007 to measure a 3D spatial-spectral

scene from 2D measurements at visible and ultraviolet wavelengths [46, 47]. In 2009, an

extension of this approach was proposed for compressive x-ray tomography [48]. In each of

these examples, coded apertures are used to alleviate space-time-spectral trade-o�s and

enable snapshot acquisition of data conventionally recorded sequentially. For sparse or

compressible objects coded aperture multiplexing can improve system sensitivity and signal

to noise ratio even when photon noise is dominant [49].

Coded apertures also found early use in x-ray astronomy, where lenses are impractical and

the scene consists of point-like objects (stars) in a �cold� background. A predecessor to the

coded aperture system, the pinhole camera exhibits a classic tradeo� between throughput and

resolution similar to single slit spectroscopy. Increasing the size of the pinhole accepts more

photons but blurs the measured image. In 1962, Mertz and Young used coded apertures based

on Fresnel Zone Plates to beat the throughput versus resolution tradeo� of pinhole imaging

[50]. Their scheme allowed optical reconstruction via holography or digital reconstruction.
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Reference [51] provides a good description of their approach and an application to gamma

rays. Inspired by digital reconstruction, in 1968 Ables [52] and Dicke [53] each proposed

correlational imaging in which pinholes are positioned randomly in 2D to form a coded

aperture. By correlating the measured image with the pinhole pattern, the image can be

reconstructed with higher SNR than a single pinhole can provide for the same resolution.

Later work improved the design of these coded apertures by considering their correlation

properties [54�56].

Most of the coded apertures discussed above are types of �shift codes� and are well-

suited for x-ray astronomy and other applications where the goal is transverse 2D imaging.

An ideal shift code with transmittance T (x) will possess a correlational inverse T̂ (x) such

that
�

dxT (x)T̂ (x − a) = δ(a), where δ(· · ·) is the Dirac delta function. For incoherent

imaging, the transmittance is constrained to 0 ≤ T (x) ≤ 1 but T̂ (x) can take any value

since it is applied digitally. However, object points at di�erent ranges will produce di�erent

magni�cations of T (x), and the shift codes then lose their nice orthogonality properties.

When shift codes are applied to 3D objects, a slice at a certain depth may be put into

focus but it will still contain background contributions from the other slices, preventing true

tomography.

A central theme of this work is the use of scale codes based on sinusoid functions, which

were chosen based on their distinguishability under magni�cation. For a scale code T (x),

there exists an inverse T̂ (x) so that
�

dxT (x)T̂ (xa) = δ(a − 1). Scale codes are used

in subsequent chapters to provide resolution in the direction normal to a detector array

(�range�), and are combined with the shift code of Reference [56] for snapshot tomography

perpendicular to the detector plane. Orthogonality conditions can also be constructed

for rotational codes, which are introduced in Chapter 2. Chapter 5 generalizes the scale

codes used to a new family of �frequency scale codes� (FSC) for 3D tomography, along with

associated reconstruction algorithms based on Fourier analysis.
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1.4 Discretization of the forward model

The forward models considered here describe linear transformations between continuous

�elds. In practice, discretization occurs at the detector during the digital measurement

process and at the object during digital reconstruction. In the following, the object-space

coordinates are combined into the 4D vector x = (r, q) and similarly for the measurement

coordinates x′ = (r′, E).

Experimental measurements are modeled as random variables, with mean values given

by discrete projections of the spectral irradiance G (x′). The measurements are modeled

according to detector response functions {Φi (x
′)}i=1...M , whereM is the number of measured

values. The expected value of the ith measurement is gi =
�

dx′Φi (x
′)G (x′) , where the

integral extends over the support of Φi (x
′). A similar discretization for the object is possible

over basis functions {Ψj (x)}j=1...N , where N is the number of unknown object coe�cients.

The jth object coe�cient is fj =
�

dx Ψj (x)F (x). Here, orthonormal but not necessarily

complete bases for Φ and Ψ are assumed.

An important consideration is that the measurement response functions are based on

physical devices, however the object basis may be chosen to suit a particular problem since

it is merely a computational construct. In truncated singular value decomposition [4], the

object basis consists of the right singular vectors of H (singular value decomposition is

discussed in Section 1.6 below). Choosing another object basis in which F is compressible or

sparse is the concept behind compressed sensing [57,58]. For compressible objects, shockingly

few measurements are required to recover the function F with high �delity, even in the

presence of extreme noise. This revelation has led to a �urry of activity in the past decade,

applying compressive techniques in almost every �eld of imaging, communications, and signal

recovery [4].

The discrete forward model is

gi =
N∑
j=1

fj

�
dr′Φi (r

′)

�
dr Ψj (r) H (r′; r)
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=
N∑
j=1

Hijfj

g = Hf (1.6)

where the components of the forward matrix H are de�ned as Hij in going from the �rst to

second line. The third line puts the model in matrix form, de�ning vectors g and f with

components gi and fj, respectively. The result is a linear system with M equations and N

unknowns. In general, M 6= N and the inverse H−1 does not exist. Even if it does exist,

estimating f̂ = H−1g̃, where g̃ is a noisy measurement of g, may amplify the noise and

produce poor recovery of f . The solution is to develop reconstruction algorithms speci�c to

the noise statistics, as discussed in the next section.

1.5 Reconstruction algorithms

Two basic classes of reconstruction algorithms exist: direct and iterative. For direct

reconstruction, an approximate inverse H̃ is used in place of H−1. The estimated object is

then f̂ = H̃g̃, where g̃ is the noisy data with mean given by g. CT, SVT, and CSCT, all

enable direct reconstruction with a linear estimator H̃. The second class of algorithms is

iterative, meaning that the estimate f̂ is the limit of a converging sequence updated at each

iteration. Iterative reconstruction involves maximizing an objective function. When the

objective function is a likelihood function based on the statistics of the measurement noise

the algorithm is called a Maximum Likelihood Estimator (MLE). To a good approximation

for most imaging systems, photon counting measurements at x-ray energies are shot-noise

limited. The result is a Poisson-distributed count rate at each pixel and energy channel.

The resulting Poisson MLE algorithms are used for the reconstructions in this work. These

estimators are iterative and do not require construction of H̃ or H−1. The derivation of the

MLE algorithms used here are based on applying Poisson statistics to References [59, 60].

Maximum likelihood algorithms are also used for transmission tomography [61].
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For simplicity, assume that the random error in each measurement is independent of the

other measurements. The noisy data are drawn from a Poisson distribution,

g̃ ∼ Poisson (g + g0)

where Poisson (v) is a vector of independent Poisson realizations with mean values given by

the vector v. The vector g0 is a background term, which is included for the experimental

demonstrations in Chapters 3 and 4 since g0 = 0 is di�cult to achieve experimentally. For

simplicity, in the following derivation g0 = 0 but this term is restored later for the appropriate

derivations.

One may write the log-likelihood L in terms of a product of Poisson distributions for

each measurement:

L = ln
M∏
i=1

gg̃ii e
−gi

g̃i!

=
M∑
i=1

[g̃i ln gi − gi − ln g̃i!] (1.7)

The function of any maximum likelihood algorithm is to maximize L with respect to the

estimated object f . This should occur where the gradient vanishes:

∂L

∂fj
=

M∑
i=1

∂gi
∂fj

(
g̃i
gi
− 1

)
= 0 (1.8)

The derivatives ∂gi
∂fj

are precisely the components of the forward matrix H. In the case of

a nonlinear forward model, H should be updated along with g at each iteration. In vector

form, equation (1.8) implies that

HT (g̃./g)

HT1
= 1

22



where g̃./g is an element-wise division and 1 is a vector of ones the same size as g. Since

the expression on the left is the identity, the object f is a �xed point of the function F (f) =

f .∗H
T (g̃./g)
HT 1

, where .∗ is an element-wise multiplication. This suggests the �xed point iteration

fk+1 = fk. ∗
HT (g̃./gk)

HT1
, (1.9)

recalling that g̃ (and H in the nonlinear case) is a function of fk. The estimate fk+1 at the

(k + 1)st iteration is obtained by inserting the estimate fk at iteration k into the right hand

side of (1.9) and computing gk from the forward model (1.6). Equation (1.9) is the basic

update equation for Poisson MLE, and is used throughout this work with some modi�cations

where appropriate. For the experiments that follow, f was initialized with a constant value.

1.6 Singular value analysis

The coded aperture transmittance, along with the physics of the scattering and propaga-

tion, are embedded in the transformation H for a given measurement system. In general, H

is not invertible, or its inverse is not easily obtained. However, depending on the structure

of the forward model (and in turn the structure of the coded aperture), one can learn a

great deal about the object F even if it cannot be uniquely determined. The properties of

H determine which structures of F are measured most accurately.

The singular value decomposition (SVD) may be performed for any linear operator over

continuous or discrete domains and provides a powerful tool for comparing measurement

systems. Reference [4] discusses SVD analysis for computational imaging and related recon-

struction methods, such as truncated SVD and Tikhonov regularization. The basic concept

for system analysis is that measurement noise produces an e�ective singular value cuto�

below which the singular vectors, and thus F , are not reliably recovered.

The SVD of the linear operator H is guaranteed to exist and consists of two orthonormal

bases in the object and measurements spaces, {Vk (x)} and {Uk (x′)}, and the singular values
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{Sk}, where k = 1 . . . Ns is an index. The continuous form of the SVD is written as

G (x′) =
Ns∑
k=1

Uk (x′)SkFk (1.10)

where Fk =
�

dxVk (x)F (x) is the projection of F (x) onto the basis function Vk (x), a

�right singular vector�. The functions Uk are the �left singular vectors�. The singular value

Sk is the amplitude for which the singular vector Vk (x) is represented in the measurements.

If Sk = 0 for some k, then the corresponding Vk (x) is a vector in the null space of H and is

never measured. In the presence of noise, G (x′) is the mean of a random �eld and vectors

with small Sk may not be reliably recovered. Singular value analysis is therefore a critical

step in design of any linear measurement system.

The discrete version of the SVD is the matrix factorization H = USV†, where U and

V are unitary matrices and S is diagonal with entries given by the singular values Sk. The

operator † is the matrix adjoint, or �conjugate transpose�. The left singular vectors are

the columns of U and the right singular vectors are the columns of V. Speci�cally, the

components of U and V are

Uik =

�
dx′Φi (x

′)Uk (x′)

Vjk =

�
dx Ψj (x)Vk (x)

where i = 1 . . .M indexes the measurements, j = 1 . . . N indexes the object coe�cients,

and k = 1 . . . Ns indexes the singular values. Here, the functions {Φi} and {Ψj} are the

measurement and object bases of Section 1.4.

In Chapter 2, singular values are computed for pencil and fan beam CAXSI systems and

used to compare di�erent choices for coded apertures. Also, singular values for CAXSI are

compared with those of SVT and the Radon transform (as used in CT), with the conclusion

that CAXSI promises an advantage for situations where the radiation dose to the object is
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limited. Chapter 6 presents singular value analysis for energy sensitive measurements using a

pencil beam, showing the dependence on the energy resolution and choice of coded aperture.
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CHAPTER 2: CODED APERTURES FOR X-RAY SCATTER IMAGING

(Adapted from previously published work [33])

2.1 Background

The focus of this chapter is a theoretical analysis of tomography based on coded aperture

x-ray scatter imaging (CAXSI). Pencil and fan beam geometries are studied here, and

singular value decomposition (SVD) is used to compare coded aperture designs, and also

to compare each CAXSI system with other tomographic strategies such as Radon imaging

and selected volume tomography (SVT). Scatter imaging commonly relies on SVT using

collimation �lters at the source and at the detector [2]. CAXSI is a novel approach to

scatter imaging that uses coded masks between the scattering object and the detector array.

In the following, pencil beam CAXSI is shown to enable 1D tomography from a snapshot

measurement (a single exposure of a detector array) by detecting a diversity of scattered

x-rays. Later in this chapter, these ideas are applied to fan beam CAXSI, suggesting a new

coded aperture design for planar snapshot imaging. The �rst experimental demonstration

of pencil beam CAXSI is presented in Chapter 3, and its success inspired the experimental

fan beam CAXSI system of Chapter 4.

Singular value analysis is often used to evaluate the noise sensitivity of measurement

systems and to quantify the number of components measured above the noise �oor. SVD

analysis is presented in Section 2.5 which �nds that the singular values for CAXSI decay more

slowly compared with other techniques as the image resolution is increased. This suggests

possible improvements in dose requirements and/or signal to noise ratio for CAXSI systems.

The system geometry for forward scatter CAXSI is illustrated in Figure 2.1.
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Detector arrayCoded aperture

Object

Illumination plane

Figure 2.1: System geometry for planar scatter imaging

Scattered radiation from the illuminated object passes through a coded aperture placed

a distance d in front of a 2D detector array. In contrast with collimation �lters, the coded

aperture allows rays from multiple directions to simultaneously illuminate each detector

pixel. Increased photon e�ciency is the advantage of CAXSI relative to selected volume

imaging. CAXSI owes its throughput and snapshot advantages to coded apertures with high

average transmittance (50%), a number of which are presented here for pencil and fan beams,

and in Chapter 5 for cone beam illumination.

Shift codes are well known in coded aperture imaging and provide resolution parallel to

a detector array. The shift codes used here are based on quadratic residues. A novel result

of this work is sinusoid functions used as scale codes due to their distinguishability under

magni�cation, providing resolution in range from a detector plane. These sinusoid apertures

are precursors to the more general �frequency scale codes� of Chapter 5.

Linear scattering models are analyzed which are applicable when attenuation is negligible

or otherwise corrected for. The linear form of these forward models enables evaluation of

the SVD. Analytic SVDs are derived for isotropic scattering objects and numerical SVDs are

evaluated for the anisotropic cases. The next section analyzes pencil beam CAXSI under the

assumption of isotropic scattering. This is extended to anisotropic scattering and applicable
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coded aperture designs are presented in Section 2.3. A new coded aperture for fan beam

illumination and isotropic scattering is presented in Section 2.4, and the scalability of CAXSI

is compared with other tomographic strategies in Section 2.5. Results from this chapter are

summarized in Section 2.6.

2.2 Pencil beam CAXSI

As a �rst example of code design, suppose that a pencil beam illuminates a section of the

target object distributed along the z axis. Our goal is to image the object's scattering density

F (x = 0, y = 0, z), or simply F (z). The full volume may subsequently be reconstructed by

raster scanning.

Assume isotropic scatter to all detector positions, which approximates Compton (inco-

herent) scattering or x-ray �uorescence when attenuation is weak and the detector array

subtends a small solid angle with respect to the object (this last assumption will be relaxed

in Section 2.3). The detector elements lie in the z = 0 plane and measure the scatter. The

scatter visibility is modulated by a coded aperture a distance d from the detector plane. For

simplicity, we assume a 1D coded aperture transmittance T (x), where x may be a Cartesian

coordinate or a radius from the pencil beam axis. The signal at coordinate x in the detector

plane is

G(x) =

� zmax

d

F (z)T

[
x

(
1− d

z

)]
dz. (2.1)

For simplicity, the system geometric response is omitted and the source is monochromatic.

Estimation of F (z) from G(x) is enabled by judicious selection of T (x).

The coordinate transformation β = 1− d/z changes (2.1) to

M(x) =

� 1

0

F̃ (β)t(xβ)dβ, (2.2)

where F̃ (β) = F (z = d/(1− β)) d/(1 − β)2 and we assume zmax � d. Equation (2.2) is a

�scale transformation�; inversion is straightforward if T (x) is orthogonal in scale.

Sinusoid functions are orthogonal in scale, since sinusoids at di�erent frequencies have
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vanishing correlation. The simplest choice for T (x) satisfying the requirements that 0 ≤ T ≤

1 is T (x) = [1− cos(2πux)] /2, where u is the spatial frequency of the coded aperture. The

measurement model is then

G(x) =
1

2

� 1

0

F̃ (β) [1− cos(2πuxβ)] dβ. (2.3)

Equation (2.3) is familiar as the forward model for the Fourier transform spectroscopy

[4]. The singular vectors for this transformation are derived from the constant singular

vector associated with the 1 operator and prolate spheroidal singular vectors associated with

the kernel cos(2πuxβ). Assuming that the support of G(x) is [0, D], the singular value

corresponding to the �rst operator is Nx = uD, which is the number of sinusoid periods that

are observed for a scatter point at ∞.

The singular vectors of the operator −(1/2) cos 2πuxβ supported over β ∈ [0, 1] and

x ∈ [0, X] are the prolate spheroidal wavefunctions ψn(β) for n even [62]. The corresponding

singular values are
√
λnNx/2, where λn ≈ 1 for n < Nx/2 and λn ≈ 0 for n > Nx/2 [4].

The even prolate spheroidal functions are not orthogonal to the constant vector over [0, 1]

but the much larger singular value associated with the constant vector means that the spaces

spanned by the two operators approximate the space spanned by their sum. The singular

decomposition space thus consists of a single vector with singular value Nx/2 and Nx/2− 1

secondary vectors corresponding to singular values
√
Nx/2.

The prolate spheroidal basis yields resolution elements of length 1/Nx distributed uni-

formly distributed over β = [0, 1]. Converting back to the z coordinate, one derives resolution

∆z =
z2

Nxd
. (2.4)

This expression may be understood by noting that the location z of a single point scatterer

is localized by observing ū, the frequency of the sinusoid projected onto the detector. The

aperture code is magni�ed by a factor z/(z − d) and so ū = u(z − d)/z. The signals from
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two point scatters separated by a distance ∆z lose orthogonality when ∆ū ≤ 1/X due to

the �nite detector size X. Propagating this uncertainty to z through∆ū = ∂ū
∂z

∆z produces

equation (2.4).

2.3 Anisotropic scattering

In the previous section, sinusoidal codes were shown to provide range discrimination under

isotropic scattering. If a 2D detector is used, there is a redundancy of scattered rays which

may be exploited to estimate features other than density along the 1D object. In this section

we present such an example where a more general scattering model relaxes the assumption

of isotropic scattering to allow dependence on θ, the polar scattering angle. This applies, for

instance, to coherent scattering from liquids, powders, and amorphous compounds. In this

case one may vary the code T (ϕ, ρ) as a function of angle ϕ and radius ρ in order to image

θ and z simultaneously. The forward model in this case is

T (ϕ, ρ) =

� zmax

d

F (z, θ)T

[
ϕ, ρ

(
1− d

z

)]
dz (2.5)

with polar angle ϕ and radius ρ in the detector plane. Let r = ρ
(
1− d

z

)
be the radius

at which the ray connecting beam position z with detector radius ρ intersects the aperture

plane. Transforming the integral in equation (2.5) from z to r, and de�ning F̃ (r, ρ) =

ρd

(ρ−r)2F
(
z = ρd/(ρ− r), θ = tan−1 ρ−r

d

)
, the forward model takes the simple form

G(ϕ, ρ) =

�
T (ϕ, r) F̃ (r, ρ) dr. (2.6)

Each radius therefore de�nes a subspace for the operator
�
T (ϕ, r)(· · ·)dr and its matrix

representation T. The elements of the discrete forward operator T are Hij = T (i∆ϕ, j∆r),

given by samples of the transmittance at regular intervals in ϕ and r. Because T operates on

subspaces, the singular values of (2.6) are equal to those of T. However, the transformation

from F (z, θ) → F̃ (r, ρ) is not unitary and therefore the SVD of (2.5) is more complicated,
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motivating numerical evaluation.

We seek invertible codes for T with entries in [0, 1]. The simplest coded aperture is

based on the identity matrix, shown in polar and Cartesian coordinates in Figure 2.2. This

aperture is a type of collimator since each detector receives a single ray, and therefore provides

minimal throughput. Multiplexing with 50% average transmittance can be achieved by a

coded aperture based on a discrete cosine transform (DCT), shown in Figure 2.3. This mask

contains grayscale values, but some applications require binary codes due to fabrication

limitations. This motivates codes based on a Hadamard matrix (Figure 2.4) or randomized

features (Figure 2.5). A high resolution Cartesian image of the DCT code is included which

shows its continuous form, and the columns of the Hadamard matrix have been sorted so

the angular frequency increases with radius. This sorting operation is unitary and therefore

preserves the singular value spectrum.

For each of the apertures in Figures 2.2-2.5, the forward model (2.5) was numerically

evaluated as a matrix in order to �nd its singular value spectrum. The object was sampled

with 48× 48 pixels from z = d to 2d and θ = 0 to 27◦. Each coded aperture was simulated

at d = 100 mm with 31 polar sections and 31 radial sections from r = 0 to 25 mm. The

detector was sampled with 96 polar and 96 radial sections from ρ = 0 to 50 mm. The

singular value spectra for these code choices are plotted together in Figure 2.6, and this plot

includes the sinusoid code T (x) which was previously derived for isotropic scattering, labeled

�Harmonic in x�. The identity code shows the poorest performance, due to its low overall

transmission. The sinusoid and DCT codes show signi�cantly larger values and follow each

other closely. The Hadamard and random binary codes have the largest singular values and

choosing between these two depends on the noise �oor and which singular vectors should be

emphasized.

31



0

-π

π

25 mm
r

φ

(a) Polar coordinates (r, ϕ)

25 mm

25 mm
x

y

-25 mm

-25 mm

(b) Cartesian coordinates (x, y)

Figure 2.2: Coded aperture based on the identity matrix
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Figure 2.3: Coded aperture based on the discrete cosine transform (DCT)
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Figure 2.4: Coded aperture based on a Hadamard matrix
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Figure 2.5: Coded aperture based on a random binary matrix
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Figure 2.6: Singular value spectra of the pencil beam system for each code choice

2.4 Fan beam CAXSI

CAXSI may also be applied to planar imaging. Once again, consider isotropic scattering

for simplicity. When the entire yz plane is illuminated as in Figure 2.1, the forward model

becomes

G(x, y) =

� Y/2

−Y/2

� zmax

d

F (x′ = 0, y′, z′)× T
[
x

(
1− d

z′

)
, y

(
1− d

z′

)
+ y′

d

z′

]
dy′dz′. (2.7)

Choosing

T (x, y) =
1 + sin(2πux)p(νy)

2
, (2.8)

where p(νy) is described below, provides sensitivity to shifts in y and z. The quantity ν is

the spatial frequency of the code in the y direction. Speci�cally,

p(y) =
∑
n

pn [2 rect (y − n)− 1] ,
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where rect(y) is a unit square pulse of width 1 and {pn} is a binary sequence with two-level

auto-correlation. Such sequences may be found for various code lengths [63]. Quadratic

residue derived codes of length P = 4m+ 1, with P prime, are particularly straightforward,

and yield transverse imaging resolution ∆y = z/(νd) [56]. Two scatter points separated

by ∆y produce signals shifted by one code period in the y direction, which su�cient for

distinguishability.

Figure 2.7 shows new aperture designs that have sinusoidal dependence on the horizontal

(x) axis and a shift code in the vertical (y) axis using a quadratic residue code. The aperture

resolution (number of code features) was varied separately in each direction to illustrate the

scaling of the singular value spectrum, shown in Figure 2.8. Measurements were numerically

simulated over a 100 mm×100 mm area and 96×96 samples. The object was represented by

48×48 pixels over a square region of dimension 100 mm in the yz plane, centered 150 mm

from the detector. The coded aperture was simulated at distance 100 mm from the detector

and tiled to provide full coverage on the detector from all scatter points.
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(a) (b)

(c) (d)

Figure 2.7: Coded apertures based on a sinusoid in x (horizontal) and a quadratic residue
in y (vertical). The number of code features in each direction (x, y) are (a) 32×29, (b)
16×29, (c) 32×17, and (d) 16×17 features.
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Figure 2.8: Singular value spectra for each of the coded apertures in Fig. 2.7.

A look at the singular value spectra in Figure 2.8 reveals the e�ect of code resolution. The

codes with 16 features (8 sinusoid periods) in the x direction both cuto� at about 900 singular

values, and the codes with 32 features in x retain about 1600 singular values. Increasing

the shift code resolution from 17 to 29 features ampli�es the singular values but does not

appear to add more. Increasing the frequency of the harmonic code has the strongest e�ect

of adding singular values and amplifying the spectrum.

37



Figure 2.9: Coded aperture with resolution 32×29 based on uniform random values in
[0, 1].
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Figure 2.10: Singular value spectra for the proposed code and a random code.

The coded aperture with 32×29 features was compared with a similar random code drawn

from a uniform distribution on [0, 1] shown in Figure 2.9. The singular value spectra for the
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CAXSI systems using the two codes are shown in Figure 2.10. For the �rst 620 singular

values the new �Harmonic-MURA� code outperforms the random code but then a crossover

occurs and the random code produces a more slowly decaying spectrum. One can expect

that the random aperture will perform worse in a noisy environment where a limited number

of singular vectors are measurable.

2.5 Scalability of imaging techniques

This section compares CAXSI with Radon imaging and selected volume tomography

(SVT) for 2D tomography under the constraint of �xed radiation dose delivered to the object.

The singular values for each technique scale with the resolution of the desired image, where it

is assumed the number of measurements M equals the number of object coe�cients. Radon

imaging is a method of transmission tomography where the measurements are line integrals

of the target's density. Radon imaging requires multiple exposures for each tomographic

image. The singular values of the 2D Radon transform are λm =
√

4π/(m+ 1) [64], with

each value having a degeneracy of m + 1. The Radon transform therefore yields typical

singular values proportional to 1/M1/4. Letting N be the number of reconstructed pixels in

each object dimension, M = N2 so the singular values are of magnitude 1/
√
N . A pencil

beam scanned over a plane produces N subspaces each with N singular values proportional

to 1/
√
N . For the Radon system to deliver the same dose as the scanned pencil beam, the

source must be N times dimmer during Radon's N exposures. The e�ective scaling is then

1/N3/2 for Radon and1/
√
N for pencil beam CAXSI. Appendix B shows that the singular

values scale like 1/N for fan beam CAXSI, and since this is a snapshot technique the dose

is comparable to the scanned pencil beam.

Selected volume tomography (SVT) is a scatter imaging technique which uses collimation

at the source and detector so that each measurement is sensitive to a single object voxel [2].

Using an array of detectors collimated appropriately, snapshot measurement is possible using

SVT. The measurement matrix for SVT is diagonal and the elements are the singular values.

For a �xed dose, the singular values are proportional to 1/N for a pencil beam and 1/N2 for
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a fan beam since these are the fractions of the total number of voxels contributing to each

measurement.

Table 2.1 summarizes the scaling laws for 1D and 2D imaging using pencil and fan

beam CAXSI, Radon imaging, and SVT. In each case the singular values are scaled so the

maximum singular value corresponding to the constant singular vector is 1. Both pencil and

fan beam CAXSI show improvement over other methods for 1D and 2D imaging. In addition,

pencil beam CAXSI enables independent reconstruction of each ray, whereas planar Radon

imaging multiplexes points over a plane. Independent reconstruction of each 1D subspace

using pencil beam CAXSI enables spot tomography, where a single pencil beam illuminates

a region of interest, eliminating unnecessary doses to neighboring regions.

Image dimension Pencil Fan Radon SVT
1D 1√

N
- - 1

N

2D 1√
N

1
N

1
N3/2

1
N2

Table 2.1: Scaling of dose-constrained singular values for pencil beam CAXSI, fan beam
CAXSI, Radon imaging, and selected volume tomography (SVT). In each case the singular
values are scaled so that the maximum is 1.

These results assume equal photon e�ciency for scatter and transmission imaging. In

practice, the scatter systems will include an additional factor for the fraction of the total

scatter signal detected, and the ratio of scattered to transmitted photons for the object of

interest. These e�ects should be studied carefully for particular imaging applications.

2.6 Summary

This chapter analyzed CAXSI techniques employing pencil and fan beam illumination.

By using specially-designed coded apertures, 1D and 2D density distributions can be recon-

structed from a single exposure of an appropriate imaging detector. Sinusoid codes are shown

to provide range resolution under the assumption of isotropic scattering, an approximation

for x-ray �uorescence and Compton (incoherent) scattering. These will be examined again

in the context of cone beam scatter tomography in Chapter 5. Two dimensional codes were
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developed for anisotropic scattering along a pencil beam, applicable to Bragg scattering from

liquids, powders, and amorphous compounds. For each system, singular value analysis of the

�rst-order scattering model was presented, which was compared with Radon imaging and

SVT under a �xed dose constraint. CAXSI shows several advantages, including improved

scalability, snapshot capability, and the prospect of "spot tomography" where isolated regions

of interest are irradiated. Further re�nement of the scattering models could involve energy-

dependent absorption and multiple scattering e�ects. Based on the lesson learned here, the

next two chapters present experimental demonstrations of pencil and fan beam CAXSI.
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CHAPTER 3: PENCIL BEAM CAXSI

(Adapted from previously published work [31])

3.1 Background

This chapter describes a pencil beam x-ray system demonstrating coded aperture x-ray

scatter imaging (CAXSI). In the previous chapter, sinusoid codes were shown to provide

range resolution for pencil beam tomography. These ideas inspired the following experiment

which demonstrates snapshot 1D tomography using a periodic coded aperture, while also

measuring the coherent scattering density of the object at each point in the beam. In the

language of Chapter 1, this corresponds to the transformation F (z, q) → G (x, y), where

F is the unknown scattering density and G(x, y) is the measured irradiance image. This is

closely related to the anisotropic system F (z, θ)→ G(x, y) from the last chapter, and would

be identical to it for the case of a purely monochromatic beam. In the following, coherent

scatter imaging is achieved with angle dispersive measurements and a poly-energetic x-ray

source.

X-ray scatter imaging has shown promise for a wide variety of applications, including de-

tection of abnormal structures in biological tissue [27�29], measurements of surface structure

[65], and detection of explosives and other controlled substances [23, 66, 67]. Reference [10]

gives an overview of x-ray scatter imaging for explosives detection and shows reconstructions

of buried landmines using Compton back-scatter imaging, as well as reconstructions of

various plastics (nylon, PMMA, PE, PTFE, PVC) using coherent scatter computed to-

mography (CSCT). CSCT [26] has been applied to bone mineral density measurements [27]

and detection of urinary stones [29]. In addition, reference [30] demonstrates a fan beam

energy-dispersive CSCT system which can detect various plastics in an aluminum case.
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CSCT uses a series of images recorded at multiple angles to estimate an object's coherent

scatter properties. Another approach to scatter tomography is energy-dispersive x-ray

di�raction tomography (EXDT) [68], which scans an object voxel-by-voxel using collimators

and provides an e�ectively isomorphic mapping between the object voxels and the measure-

ments. EXDT was originally demonstrated with an x-ray tube and then with a synchrotron

source [69]. It has been used to probe polymer and bone surfaces [65], to reduce the false

alarm rate of luggage scanners in airline security [23], and to probe mineral content in thick

cement samples [24].

Figure 3.1: Basic pencil beam coded aperture x-ray tomography system.

The goal of this chapter is to experimentally demonstrate pencil beam CAXSI by re-

covering the momentum transfer pro�le of a scattering object at each point along the beam

using a single irradiance image. The experimental system is depicted in Figure 3.1, including

a 2D irradiance detector array perpendicular to the beam and a coded aperture between the

object and detector to modulate the scattered radiation. To obtain a volumetric scatter

image, the pencil beam could be scanned over a 3D object with estimation performed for

each transverse position.

The following section develops a measurement model for the pencil beam CAXSI system.

Section 3.3 describes the experimental setup, followed by reconstruction techniques in Section

3.4, and a discussion of the experimental results in Section 3.5.
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3.2 Forward model

In the pencil beam system depicted in Figure 3.1 the x-ray source is �ltered by a pinhole to

produce a pencil beam propagating along the z axis, which for simplicity is assumed in�nitely

narrow. The scattering object is placed between the primary and secondary apertures so

that it is penetrated by the beam. The primary beam is stopped by the secondary mask to

prevent it from �ooding the detector image. Scattered x-rays diverge from the main beam

to strike the aperture, where they are either absorbed or transmitted to the detector plane.

Each pixel in the detector array receives scattered power from multiple points along the

beam, and the structure of this multiplexing is controlled by the aperture code.

As discussed in Section 1.2.1 of Chapter 1, upon coherent scattering an x-ray photon

changes its momentum by q = pf − pi, where pi is the incident momentum and pf is the

�nal momentum. The coherent scattering condition is |pf | = |pi|, from which follows Bragg's

law q = 2E
c

sin
(
θ
2

)
, where q = |q|, E is the x-ray energy, and θ is the scattering angle as

shown in Figure 3.1.

The scattering density F (z, q) is the probability that an incident photon scatters at beam

location z with momentum transfer q. This model only depends on the magnitude of the

momentum transfer and not its direction, so it applies to liquids, �ne powders (as in this

experiment), and amorphous compounds. In the absence of a coded aperture, scattering

at angle θ from position z produces an irradiance at radius ρ on the detector proportional

to 1/ (z2 + ρ2). The coded aperture is modeled by the transmission function T (ρ, φ) in the

plane z = d, where (ρ, φ) are the polar radius and angle relative to the beam. To within

some proportionality constant, the total irradiance at the detector point (ρ, φ) is

G(ρ, φ) =

�
dz

(
1

z2 + ρ2

)
T

(
ρ

[
1− d

z

]
, φ

) �
dq F (z, q)P

(
E =

zqc

ρ

)
, (3.1)

where c is the speed of light and we assume small scattering angles so sin(θ/2) ≈ ρ/(2z).
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P (E) is the power spectral density of the beam, assumed independent of z so that the linear

model applies. Equation (3.1) is the �forward model� for this pencil beam system, and

consists of integrals of the scattering density over z and q. The argument ρ (1− d/z) to the

aperture transmittance T is the intersecting radius for the scattered ray connecting scatter

point z and measurement radius ρ in the detector plane

In contrast with previous studies of coded aperture imaging that emphasize �shift codes�

based on their properties under translation [56], range imaging requires �scale codes� that

are maximally distinguishable under magni�cation. As discussed in Chapter 2, equation

(3.1) is a scale transformation of the aperture code T (ρ, φ) which depends on the scatter

position z. The projected image of the aperture code is magni�ed by z/(z − d). One can

disambiguate scatter points at di�erent values of z by applying aperture codes which are

orthogonal under changes in scale (i. e. magni�cation). Sinusoid codes (e.g. T (ρ) = cos(ρ))

have this property. To also disambiguate q the code must also vary as a function of φ. As

binary codes are easily manufactured, we chose the square grid

T (ρ, φ) =
1 + sign (sin(ux))

2
, (3.2)

where u is the spatial frequency and x is a Cartesian coordinate in the ρ, φ plane. Equation

(3.2) describes a binary version of the sinusoid, where the transmittance values lie between

zero and one in accordance with incoherent imaging. An x-ray projection of the correspond-

ing physical aperture is shown in Figure 3.3, which consisted of periodic slits drilled in to

a lead plate. This x-ray projection image was used for T instead of (3.2) for better model

accuracy.

The continuous forward model (3.1) is discretized by expanding the scattering density

over compact voxel functions in the coordinates z and q. For this purpose we use the

function rect(x) which is equal to unity for |x| < 1/2 and zero everywhere else. The

voxels are chosen with sampling rates ∆z in z and ∆q in q and have centers (zj, qj).
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With reference to Section 1.4 of Chapter 1, this corresponds to choosing the object basis

Ψj (z, q) = rect
( z−zj

∆z

)
rect

(
q−qj
∆q

)
. The discrete model for the scattering density is

F (z, q) =
∑
j

fj rect

(
z − zj

∆z

)
rect

(
q − qj

∆q

)
, (3.3)

where fj is a set of coe�cients characterizing the object. The detector is arti�cially parti-

tioned into polar sections indexed by i, corresponding to the measurement basis Φi (ρ, φ) =

rect
(
ρ−ρi
∆ρ

)
rect

(
φ−φi
∆φ

)
. The power measured in the section at polar coordinates (ρi, φi) and

width (∆ρ,∆φ) in these coordinates is

gi =

�
ρdρ rect

(
ρ− ρi

∆ρ

) �
dφ rect

(
φ− φi

∆φ

)
G(ρ, φ), (3.4)

taking care to consider the periodicity of φ. When equations (3.3) and (3.4) are used in

equation (3.1), the discrete model is expressed as the linear system

g = Hf , (3.5)

where g and f are vectors with components gi and fj, and H is the �forward matrix". Noting

that
�

dx rect(x)f(x) =
� 1/2

−1/2
dx f(x), H has components

Hij =

� ρi+
∆ρ
2

ρi−∆ρ
2

ρdρ

� φi+
∆φ
2

φi−∆φ
2

dφ

� zj+
∆z
2

zj−∆z
2

dz

(
1

z2 + ρ2

)
× T

(
ρ

[
1− d

z

]
, φ

) � qj+
∆q
2

qj−∆q
2

dq P

(
zqc

ρ

)
.

The discrete forward model (3.5) can be used with numerical methods to estimate the object

vector f , given measurements g and functional models for P (E) and T (ρ, φ). The forward

matrix H for the experimental system was computed and used with a maximum likelihood

algorithm derived from Reference [59] to reconstruct the underlying object vector f for each

object con�guration (the procedure is described in detail in Section 3.4). The reconstructed

objects are presented in Section 3.5, but �rst the experimental setup is described in the next
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section.

3.3 Experimental methods

In order to build the pencil beam CAXSI experiment shown in Figure 3.1, a standard

diagnostic x-ray system, which has been described in detail previously [70,71], was modi�ed

to include an optical bench, a collimator, a coded aperture, and a sample stage at adjustable

positions in the beam. The x-ray source used was a General Electric (GE) model MX100 that

has a tungsten target with a 12◦ anode angle. The focal spot for this source was speci�ed to

be 0.6 mm full-width at half-max (FWHM). The acquisition mode was set at 116 kVp, 500

mAs. The source produced Bremsstrahlung radiation in the energy range 20-116 keV and

also characteristic lines from tungsten's Kα transition doublet at 58.0-59.3 keV and from the

Kβ transitions at 66.7-67.7 keV. The x-ray beam had an inherent �ltration equivalent to 1.1

mm thick aluminum (as measured at 80 kVp).

Since broadband illumination is expected to degrade chemical speci�city in coherent

scatter systems [72], spectral shaping is critical to angle dispersive measurements. Toward

that end, the beam was shaped by a 0.1 mm thick tungsten �lter which served as a band-

pass between approximately 30 keV and tungsten's K-edge at 69.5 keV. The expected source

spectrum was modeled using the semi-empirical x-ray spectrum modeling program XSPECT

[73]. XSPECT produced a model for the mean spectral number density N (E) of photons

illuminating the object. This model is plotted with a normalized maximum value in Fig.

3.2, and was used to calculate the power spectral density P (E) ∝ EN(E).
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Figure 3.2: XSPECT model for the source spectral number density N(E) at the object.

Scattered x-rays were collected with a stationary amorphous silicon indirect cesium iodide

(CsI) �at panel detector (Paxscan, 4030 CB series, Varian Medical Systems, Palo Alto, CA)

designed to perform with extended dynamic range. The detector had a pixel size of 194 µm

and a matrix size of 2048 × 1536. The source-to-image distance was 201 cm. The detector

was gain-calibrated at the expected photon �ux. Furthermore, it was o�set calibrated before

each acquisition with 16 dark frames to correct for structured noise. Post-calibrated images

were acquired using the image acquisition and processing software ViVA (Varian Medical

Systems).

The pencil beam was achieved using a primary aperture at a distance of 130 cm from

the source. The primary aperture consisted of a hole 2 mm in diameter drilled into a 6 mm

thick lead sheet. Taking into account the focal spot size of 0.6 mm, the beam divergence

half-angle is estimated to have been about 0.06◦, which approximately satis�es the parallel

ray condition for an ideal pencil beam. The secondary aperture was placed 180 cm from the
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source and consisted of another 6 mm thick lead sheet oriented parallel to the detector. The

aperture, with its x-ray projection shown in Fig. 3.3, had a square center piece designed to

block the primary beam and the horizontal bar structures served as supports. The aperture

code was designed to implement equation (3.2) with u = 9.9 cm−1 so that the period was

0.64 cm.

Figure 3.3: X-ray projection of the 29.7 cm × 29.4 cm secondary aperture (full detector
image). The aperture is cropped slightly in the horizontal direction, and the features are
slightly irregular due to sagging of the lead.

Two crystalline powders, sodium chloride (NaCl) and aluminum (Al), were chosen as

scattering targets for their strong coherent-scatter cross sections and applicability to powder

detection. These samples were placed in separate Nalgene vials of 1 cm outer diameter.

The Nalgene vials themselves were identical, and had negligible contributions to the scatter

signal. This was found by measuring the scatter image from an empty vial, which was
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indistinguishable from the background noise. Throughout the experiments, the vials were

consistently placed so that the beam penetrated their full diameters.

The results presented in Section 3.5 are based on three di�erent object con�gurations,

with the simple goal of demonstrating the system's ability to simultaneously resolve both z

and q. These con�gurations are summarized in Table 3.1.

Con�guration: A B C
NaCl sample z = -60.2 cm - z = -60.2 cm

Al sample - z = -60.2 cm z = -52.6 cm

Table 3.1: Table outlining the three sample con�gurations for this experiment, with the z
coordinate given for the center location of each vial. In con�guration A, the NaCl was placed
alone in the beam. In con�guration B, the Al was alone in the beam. For con�guration C,
both samples were placed in the beam at di�erent locations.

The �rst con�guration (A) included only a vial of NaCl centered at 60.2 cm from the

detector, at coordinate z = −60.2 cm (in the computational model the range was expressed

in negative values). This con�guration produced the di�raction image shown in Figure

3.4a, where the Debye rings from NaCl are visible, with modulation imposed by the coded

aperture. Each ring is centered on the detector location which would be the location of the

pencil beam, if it were not blocked by a beam stop.

The second con�guration (B) repeated the �rst, but with Al instead of NaCl in the vial.

This produced the di�raction image in Figure 3.4b, which is similar to the image obtained

with NaCl but with di�erent sized rings. The shadow of the aperture is basically identical

in Figures 3.4a and 3.4b since the samples were placed at the same location.

The third con�guration (C) was meant to test the system's ability to measure the

di�raction spectra of two samples at di�erent ranges. The vial of NaCl was placed at z =

−60.2 cm, as before, and the vial with Al was placed closer to the detector at z = -52.6 cm.

This produced the image in Figure 3.4c, which is essentially a superposition of the di�raction

patterns from the separate samples. Note that this is not, however, a superposition of Figures

3.4a and 3.4b, since the Al sample was placed at a di�erent location to acquire Figure 3.4c.
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The Al sample was deliberately placed closer to the detector to decrease the radius of the

rings and cause potential confusion with the NaCl rings. Since the NaCl was kept in the

same location, the contribution from NaCl to Figure 3.4c is essentially that shown in Figure

3.4a, ignoring noise e�ects. The more uniform parts of the scatter image, away from the

di�raction rings, are best to examine the modulation from the aperture. The visibility of this

modulation varies with x (horizontal) since it is a superposition of two di�erent frequencies,

each corresponding to a speci�c sample range and thereby enabling reconstruction along

z. All three images in Figure 3.4 were normalized for viewing to keep the peak brightness

constant.

In addition to the di�raction images, a background frame was acquired with no samples

in the beam in order to measure any additional radiation from secondary sources in the

system. The di�raction images along with the background images were used to reconstruct

the scattering pro�les of each test object as a function of position and momentum transfer,

and these were compared with individual reference pro�les measured by an X'Pert PRO

commercial x-ray powder di�ractometer (PANalytical B.V., Almelo, The Netherlands) with

prepared samples in known positions. The next section describes the algorithm used to

reconstruct the test objects, and Section 3.5 discusses the reconstruction results.
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(a) (b) (c)

Figure 3.4: Di�raction images acquired with (a) NaCl, (b) Al, and (c) a combination of
NaCl and Al placed in the beam.

3.4 Reconstruction algorithm

The data collected by the system discussed above consisted of superpositions of the

scattered radiation from di�erent test objects in the beam. This section describes how the

scattering density for each con�guration was estimated from the corresponding scatter image.

Given the discrete measurement model (3.5), each di�raction image is represented by a

vector g. The images also contained a noisy background with mean g0 so that the expected

value at each pixel is given by g = Hf + g0. Treating the x-ray detection as a statistical

process, the actual measurements g̃ are approximated by the Poisson process

g̃ ∼ Poisson(Hf + g0),

where Poisson(v) is a vector of independent Poisson observations with mean values given

by the components of some mean vector v. Given g̃, H, and a noisy measurement of the

background g̃0 ∼ Poisson(g0), we are interested in estimating f as accurately as possible.

The process begins by estimating g0 from g̃0 using a Poisson image de-noising algorithm,
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and using the resulting estimate ĝ0 of g0 to reconstruct f . In particular, g0 was estimated

using a maximum penalized likelihood estimation method discussed in [74], according to

which:

ĝ0 ≡ arg ming0∈Γ (− logP(g̃0|g0) + τpen(g0))

where the Poisson likelihood P(a|b) for the noisy vector a with mean b is given by a product

of independent Poisson distributions:

P(a|b) =
∏
i

exp (−bi) baii
ai!

,

and i = 1 . . . N indexes the detector pixels. Γ is a collection of possible estimates to search

from, pen(g0) is the penalization or the regularization function corresponding to estimate g,

and τ is the term that balances the log-likelihood term and the penalization term. The class

of estimates Γ was obtained by partitioning the image space in a recursive-dyadic (powers

of two) fashion from coarser to �ner cells, and �tting a constant to each partition cell. The

algorithm chose the multi-scale, partition-based estimate that was the best �t to the data

and was also piecewise smooth. The penalization term is proportional to the number of cells

in the partition and is used to enforce prior knowledge that g0 is piecewise smooth. Given

ĝ0, f was estimated according to a generalized maximum likelihood (GML) estimator given

by

f̂ ≡ arg minf (− logP(g̃|Hf + ĝ0)) .

The GML estimate of f can be obtained using an iterative deconvolution method such as

that described in References [59,60]. A pseudo-code of this iterative reconstruction method

is provided below:

1. Initialize f̂0 = HT g̃.

2. For iteration k = 0, 1, . . .
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(a) f̂k+1 = f̂k. ∗HT
(
g̃./
[
Hf̂k + ĝ0

])
./
(
HT

1N×1

)
where .∗ and ./ are element-wise

operations and 1N×1 is a vector of ones of size N × 1.

(b) Stop iterating if P(g̃|Hf̂k+1 + ĝ0) ≤ P(g̃|Hf̂k + ĝ0) (the likelihood begins to

decrease)

3. The �nal estimate is given by f̂ = f̂k.

The stopping criterion (step 2b) assumes convergence, and was used for the reconstructions.

In general, the solution f̂ may be a local instead of global maximum of the likelihood. To

avoid stopping if the likelihood oscillates, one could require that the stopping criterion is

satis�ed for a certain number of consecutive iterations. To avoid unproductive computations,

the stopping criterion could also be made to quit when the improvement in the likelihood or

change in f̂ falls below a set threshold.

In the experimental setup, the detector array consisted of 2048 × 1536 square pixels.

In order to reduce computational complexity, �polar down-sampling" was applied to the

measured di�raction images. Aside from modulation by the aperture, the di�raction patterns

consisted of concentric rings which can be e�ectively represented over bins in the polar

coordinates (ρ, φ) relative to the beam position. In practice, relatively few polar bins are

su�cient to reliably capture the information content in the di�raction images. The images

were partitioned into 233 uniform radius bins between ρ = 2.5 cm and ρ = 11.5 cm. The

polar angle was similarly segmented over its entire range into 120 bins. As a result of

this strategy, the image was reduced from 2048 × 1536 to 233 × 120 pixels, which a�orded

signi�cant savings in the computation of H. Examples of these �polar down-sampled� images

are shown in Figure 3.10.

The GML algorithm described above was applied to the di�raction data (Figure 3.4)

in order to estimate f for each test con�guration. These results are discussed in the next

section.
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3.5 Results and discussion

The forward matrix H for the pencil beam system was calculated by sampling the object

space with voxels of width 0.33 cm in z and 0.027 nm−1 in q. Here, numerical values of q are

expressed in nm−1, where (q in nm−1) = (q in keV/c) / (2h), where h is the Planck constant.

This is done to match the de�nition of momentum transfer �x� used in in Reference [66].

From the single-frame di�raction images shown in Figure 3.4 for each con�guration A,

B, and C (Table 3.1), the vector f representing the scattering density F (z, q) was estimated

using the methods described in the previous section. Plots of the recovered scattering density

F (z, q) are shown for each con�guration in Figures 3.5, 3.6, and 3.7, where the color scale

indicates the value of F (z, q). In these �gures, the dotted white lines correspond to the

constant z values used to plot the momentum transfer spectra in Figures 3.8 and 3.9 below.

z / cm

q 
/ i

nv
er

se
 n

an
om

et
er

s

 

 

−65 −60 −55 −50 −45

1.5

2

2.5

3

3.5

4

4.5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Figure 3.5: Reconstructed scattering density F (z, q) for con�guration A with NaCl at
z = -60.2 cm. The dotted white line indicates the spatial location used for plotting the
momentum transfer pro�le in Figure 3.8c.
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Figure 3.6: Reconstructed scattering density F (z, q) for con�guration B with Al at
z = -60.2 cm. The dotted white line indicates the spatial location used for plotting the
momentum transfer pro�le in Figure 3.8d.
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Figure 3.7: Reconstructed scattering density F (z, q) for con�guration C with NaCl at
z = -60.2 cm and Al at z = -52.6 cm. The dotted white lines indicate the spatial locations
used for plotting the momentum transfer pro�les in Figures 3.9b and 3.9c.
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Figures 3.8a and 3.8b show the estimated spatial distributions f(z) =
�

dq F (z, q) of the

scattering densities recovered for NaCl and Al placed separately in the beam at z = -60.2 cm

(con�gurations A and B in Table 3.1). Although the beam penetrated only 1 cm of each

sample, the spatial reconstructions show full-width-half-max (FWHM) in z equal to 5 cm

(8.5%) for the NaCl sample and 5.7 cm (9.6%) for the Al sample . The peak of the spatial

pro�le occurs at z0 = -59.3 cm for both samples, marked by the dotted white lines in Figures

3.5 and 3.6. This value of z0 lies 0.9 cm from the true location of the center of the vial.

But scattering originates all along the 1 cm vial, corresponding to an uncertainty in the true

peak of 1 cm. The position error for the independent experiments (A) and (B) are therefore

bounded between 0.4 cm and 1.4 cm (between 0.7% and 2.3%), showing a slight bias but

making a quite reasonable measurement of z for the two samples. This demonstrates the

along-beam ranging capability of the coded aperture system.

Figures 3.8c and 3.8d show the estimated momentum transfer pro�les f(q) = F (z0, q) at

the spatial peak z0 = -59.3 cm for NaCl and Al from their separate con�gurations A and B,

respectively. These followed the dotted white lines in Figures 3.5 and 3.6. The dotted red

lines in Figures 3.8c and 3.8d are the known di�raction pro�les for each powder, acquired

with carefully prepared samples in a PANalytical X'Pert Pro di�ractometer. The dominant

peaks in both pro�les were accurately reconstructed, and there is evidence of some of the

smaller peaks. The dominant peak for NaCl was reconstructed at q = 1.767 nm−1 (0.2%

error) with a FWHM of 0.06 nm−1 (3.6%). The dominant peak for Al was reconstructed at

q = 2.149 nm−1 (0.4% error) and a FWHM of 0.07 nm−1 (3.3%). These results show that

the pencil beam coded aperture system can be used to estimate the di�raction spectra of

target samples without a priori position information.
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Figure 3.8: Reconstruction results when a single sample (NaCl or Al) is placed along the
beam (con�gurations A and B). The along-beam distance z is measured in negative values
from the detector. (a) Spatial scattering pro�le f(z) for NaCl in con�guration A. (b) Spatial
scattering pro�le f(z) for Al in con�guration B. (c) Momentum transfer pro�le f(q) for NaCl
in con�guration A. (d) Momentum transfer pro�le f(q) for Al in con�guration B. The red
�reference� pro�les are the known x-ray di�raction pro�les for each sample.
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Figure 3.9: Reconstruction results with both samples in the beam (con�guration C). (a)
Spatial scattering pro�le f(z) with both samples in the beam. (b) Momentum transfer pro�le
f(q) for NaCl at z = -59.3 cm. (c) Momentum transfer pro�le f(q) for Al at z = -52 cm.
The red �reference� pro�les are the known x-ray di�raction pro�les for each sample.

To test the system's ability to distinguish di�erent objects in the beam within a single

snapshot, one vial of NaCl and one vial of Al were placed along the beam at z = -60.2 cm and

z = -52.6 cm, respectively, according to con�guration (C). In this con�guration the pencil

beam passed �rst through the NaCl sample and then through the Al sample, producing the

di�raction image shown in Figure 3.4c. As before, the coe�cients f were reconstructed and

produced the scattering density F (z, q) shown in Figure 3.7. The spatial scattering pro�le

f(z) =
�
dq F (z, q) was computed and is shown in Figure 3.9a. The spatial distribution

shows a peak for NaCl at z = -59.3 cm, and as before the position error is bounded by

0.4 cm and 1.4 cm (0.7% and 2.3%). The peak for Al occurs at z = -52.0 cm, with the
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position error bounded by 0.1 cm and 1.1 cm (0.2% and 2.1%). The FWHM of each peak

are 5 cm for NaCl (8.9%) and 4 cm for Al (7.7%). Momentum transfer pro�les for these two

locations are shown in Figs. 3.9b and 3.9c. The dominant peak for NaCl was reconstructed

at q = 1.79 nm−1 with FWHM equal to 4.7%. The dominant peak for Al was estimated

to lie at q = 2.137 nm−1 (0.3% error) with FWHM equal to 4.7%. The reconstructed

momentum transfer pro�les are consistent, whether the objects are measured separately or

placed together in the beam. The four dominant Al di�raction peaks were reconstructed

successfully for both locations at which the sampled was placed.

(a) (b)

Figure 3.10: Polar plots of (a) the combined NaCl and Al di�raction pattern and (b)
the modeled di�raction pattern Hf̂ based on the corresponding object estimate f̂ and the
forward model H described in Section 3.2.

The combined NaCl and Al di�raction pattern (Figure 3.4c) is plotted in Figure 3.10a

over the polar coordinates (ρ, φ). Figure 3.10b shows the modeled di�raction pattern Hf̂

based on the corresponding object estimate f̂ and the forward model H described in Sec-

tion 3.2. The root-mean-squared error between these di�raction patterns is approximately

10% of the peak signal value in Hf̂ , indicating agreement between the two images and

providing combined validity to the measurement model, the experimental process, and the
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reconstruction algorithm. We suspect that shot noise and dark current noise are the primary

contributors to the di�erences between the two images.

There are several key limitations to the system demonstrated here. Because an irradiance

detector was used, the spectral characteristics of the source play a role in achieving good

momentum transfer resolution. The interplay between spectral �ltering and scatter signal

strength could be evaluated. Varying the exposure to produce di�erent signal-to-noise ratios,

or varying geometric parameters will also a�ect the results. The coded aperture could be built

with �ner features, which could improve the achievable resolution in space and momentum

transfer. For strongly attenuating or scattering objects, the attenuation of the primary and

scattered radiation should be accounted for using a nonlinear forward model.

These results demonstrate the use of coded apertures for pencil beam tomography with

a single snapshot, while recovering the coherent scatter di�raction pro�le of the target

at each point along the beam. The momentum transfer resolution should be su�cient

for performing spatially resolved material identi�cation when the scattering materials are

unknown. E�ects of noise, the system geometry, and acquisition parameters should be

studied in detail for speci�c applications of these techniques. The pencil beam system is a

solid foundation for understanding more sophisticated CAXSI experiments, and the following

chapter demonstrates an extension of this work to fan beam tomography.
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CHAPTER 4: FAN BEAM CAXSI

(Adapted from previously published work [32])

4.1 Background

This chapter describes a fan beam x-ray system demonstrating coded aperture x-ray

scatter imaging (CAXSI). In the previous chapter, pencil beam CAXSI was demonstrated

which reconstructed coherent scattering densities along the beam from a single snapshot. The

success of the pencil beam system inspired the following experiment which demonstrates

snapshot 2D tomography using the coded aperture proposed in Section 2.4 of Chapter 2,

while also measuring an angular scattering function based on the the object's di�erential

scattering cross section. In the language of Chapter 1, this corresponds to the transformation

F (x, z)R (θ)→ G (x, y), where F (x, z) is the unknown scattering density in 2D, R (θ) is the

�radiance� (power per solid angle) as a function of the scatter angle θ, and G(x, y) is the

measured irradiance image. This is closely related to the isotropic system F (x, z)→ G(x, y)

from Chapter 2, but with R(θ) allowing for anisotropic scattering with azimuthal symmetry.

Fan beam CAXSI is a snapshot technique for 2D tomography, and can be used to acquire

tomographic x-ray video of dynamic objects, suggesting possibilities for medical imaging. To

achieve 3D tomography of static objects, the object may be linearly scanned through the

plane of the fan beam. This idea will be revisited in Chapter 5 where coded apertures are

proposed for cone beam scatter imaging.

Snapshot 2D tomography has been demonstrated with a pinhole aperture and an irra-

diance detector placed parallel to a fan beam, with a proposal to replace the pinhole with

a coded aperture for increased signal strength [14]. The fan beam system used here is

illustrated in Figure 4.1, showing the fan beam collimator, alignment rail, coded aperture,
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and detector. This drawing also shows an object stage made from foam and a clock we used

to demonstrate scatter video. Chapters 2 and 3 gave a lot of attention to coded apertures

based on the transmission T (y) = (1 + cos(y))/2, which project a speci�c spatial frequency

distribution on the detector depending on the range distribution of the scattering density.

The orthogonality of the signals from each range via their unique frequencies enables one to

determine the scattering contribution from each range.

X-ray Image of the Coded Aperture

Figure 4.1: Diagram of the experimental system

The coded aperture used in the following is based on the one proposed in Section 2.4

of Chapter 2. The code includes a sinusoid code (the �scale� code) in the y coordinate for

range sensitivity while introducing phase reversals along the x direction based on a quadratic

residue code (the �shift� code). The shift code was based on the length-41 MURA code of

Reference [56].
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The transmission of the coded aperture follows

T (x, y) =

(
1 +

∑
iAi rect (ux− i)

∑
j(−1)j rect (2νy − j)

2

)
, (4.1)

where the direction x is parallel to the fan beam and y is perpendicular. The function

rect (· · ·) is a unit square pulse, and the summation over j produces a periodic dependence

on y. The spatial frequencies u and v de�ne the size of the code features in each direction,

and the value Ai = ±1 is the ith element of the shift code. The code transmittance (4.1)

di�ers from the theoretical one (equation (2.8) of Chapter 2) in the fact that it is binary,

which simpli�es the manufacturing process. Also, the roles of the Cartesian coordinates x

and y are swapped relative to Chapter 2.

With the coded aperture de�ned by (4.1), each point in the x−z plane produces a unique

scatter signal. For instance, a single point scatterer projects a shadow of the aperture onto

the detector. One uses the magni�cation of the y-axis harmonic code to determine z and

the shift of the x-axis code to determine x. When an extended object is placed in the beam,

the superposition of signals can be decomposed to reconstruct a tomographic image of the

scattering distribution. In the following section, the underlying theory of the forward model

and reconstruction algorithm for this fan beam system is presented. Section 4.3 describes

the experimental setup and methods, followed by reconstruction results in Section 4.4 and a

chapter summary in Section 4.5
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4.2 Theory

4.2.1 Forward model

Figure 4.2: Coordinate system diagram showing a single scattering event.

Figure 4.2 shows the coordinate system used to describe each scattering event. The

detector de�nes the plane z = 0 while the fan beam propagates in the plane y = 0. The coded

aperture de�nes the plane z = d and implements the transmission function T (x, y) de�ned

by equation (4.1). The object is positioned between the source and the coded aperture,

producing scattered radiation due to the incident fan beam. The scatter signal is encoded

by the aperture before reaching the detector plane.

The fan beam model in Section 2.4 of Chapter 2 assumed isotropic scattering. The model

proposed here relaxes this assumption, allowing for anisotropic scattering with azimuthal

symmetry, applicable to liquids, powders, or amorphous solids. The object is represented by

density F (r) and scattered radiance R(θ), where θ is the scatter angle. Here, the radiance

R(θ) is discovered through the reconstruction process, and is theoretically proportional to
�

dE P (E) dσ
dΩ

(E, θ), where E is the x-ray energy, P is the power spectral density of the

detected x-rays, and dσ
dΩ

is the di�erential scattering cross section of the material under

investigation.

For an inhomogeneous object, R(θ) would vary from point to point, posing the imaging

problem which reconstructs the 3D F (x, z, θ) from 2D measurements G(x, y). This may be
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possible, for example using compressive inference to impose statistical structure on F (x, z, θ).

Here, homogeneity of the scattering material is assumed instead. This allows the factorization

F (x, z, θ) = F (x, z)R(θ), which is largely responsible for the success of this demonstration.

Denoting 3D vectors by bold r, and ignoring proportionality constants, the linear forward

model is

Gj(r) =

�
r′∈V

d3r′
T
(
r + (r′ − r) d

z′

)
|r′ − r|2

Fj(r
′)R(θ) (4.2)

where Gj(r) is the measured irradiance image for exposure j, V is the volume of the beam

and Fj(r) is the object's exposed scattering density for frame j. The scatter angle θ is

implicitly a function of the source location s, the scatter point r′, and the measurement

position r. The factor |r′ − r|−2 is the geometric propagation factor for the scattered �eld.

The forward model (4.2) may apply to imaging a 3D static density Fj(r) = F (x, y − yj, z)

by selecting a sequence of object planes yj for each exposure (e.g. by linear translation),

or imaging a dynamic density F (x, z, tj) by choosing the observation times tj. This latter

technique is demonstrated below.

The continuous forward model (4.2) represents the linear transformation between the

scattering density Fj(r)R(θ) and the irradiance Gj(r) at frame j. The detector discretized

the measurements by representing each image as a matrix of pixel values. The detector pixels

are centered at the coordinates ri located on a rectangular grid in the plane z = 0. With

reference to Section 1.4 of Chapter 1, the measurement basis Φi (x, y) = δ (x− xi) δ (y − yi)

was assumed. This point-like sampling was chosen for computational speed. The discrete

measurements form the matrix g with components

gij = Gj (ri) (4.3)
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The function Fj(r) is represented as a superposition of point scatterers via the basis functions

Ψk (x, z) = δ (x− xk) δ (z − zk):

Fj (r) =
∑
k

δ (x− xk) δ (z − zk) fkj (4.4)

where δ(· · ·) is the Dirac delta function, rk = (xk, zk) is a set of 2D vectors de�ning the

sampling of the object in the plane of the beam (a rectangular grid was used), k is an index

over basis elements, and fkj are the density samples to be estimated. The point-like sampling

for the object and detector simpli�es the computation compared to other representations (e.g.

Fourier, Haar, wavelets, etc.). Using (4.3) and (4.4) with (4.2),

gij =
∑
k

T
(
ri + (rk − ri)

d
zk

)
|ri − rk|2

R (θik) fkj, (4.5)

where θik = cos−1 (ri−rk) · (rk−s)
|ri−rk||rk−s|

is the scatter angle for the ray connecting object point rk and

detector point ri, given the source position s. De�ne the radiance matrix R with components

Rik = R (θik) and the geometry matrix G with componentsGik = T
(
ri + (rk − ri)

d
zk

)
/ |ri − rk|2.

Equation (4.5) is written in matrix form as

g = (G. ∗R) f , (4.6)

where .∗ represents element-wise multiplication and f is the scattering density with compo-

nents fkj.

The angle dependence R(θ) was sampled using the rect (· · ·) function (rect (x) = 1 if

|x| < 1/2 and rect (x) = 0 otherwise), producing scatter angle bins indexed by l and centered

at θl with widths ∆θl:

R(θ) =
∑
l

bl rect

(
θ − θl
∆θl

)
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The coe�cients bl form the vector b and were determined by the reconstruction along with

f by inverting (4.6).

4.2.2 Reconstruction algorithm

The discrete forward model (4.6) was used with Maximum Likelihood Estimation (MLE)

[75] to obtain our results. The following derivation is based on the MLE algorithm from

Section 1.5 in Chapter 1, but with the added ability to estimate f and b in an alternating

fashion. Assume independent Poisson noise at each detector pixel. The components of

the measurement vector g̃ are distributed with mean values given by the corresponding

components of g, plus a measured background g0:

g̃ ∼ Poisson(g + g0).

De�ne the vector containing all unknown parameters as x = (f ,b), and let P (g̃|x) be the

probability of observing g̃ given object coe�cients x. By enforcing ∂P (g̃|x)/∂x to vanish in

order to achieve a maximum likelihood, we obtain the condition

∑
ij
∂gij
∂x

g̃ij
gij+g0ij∑

ij
∂gij
∂x

= 1x (4.7)

where 1x is a vector of ones with the same size as x. This suggests the iterative update

xn+1 = xn. ∗
∑

ij
∂gij
∂x

g̃ij
gij+g0ij∑

ij
∂gij
∂x

since this will stabilize when condition (4.7) is met. De�ne the vectors Πik with components

rect
(
θik−θl

∆θl

)
indexed by l. For the vectors f and b, the iterative update steps are

fn+1 = fn. ∗ (G. ∗R)T (y./ (g + g0)) ./ (G. ∗R)T 1g (4.8)

bn+1 = bn. ∗

(∑
ijk

ΠikGikfkj
yij

gij + g0ij

)
./

(∑
ijk

ΠikGikfkj

)
(4.9)
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The forward model and reconstruction algorithm were coded in Matlab and updates were

alternated between f and b using equations (4.8) and (4.9) to produce our results.

4.2.3 System design and resolution

Imaging in the range direction z is achieved by the harmonic code in the y direction.

Based on the arguments of Section 2.2 in Chapter 2, the range resolution is

∆z =
z2

Y vd
(4.10)

Transverse imaging relies on distinguishability of the shift code when translated in the x

direction. Translation of a scatter point from (x, z)→ (x+ ∆x, z) shifts the shadow by one

code period when

∆x =
z

ud
, (4.11)

which is the equation for transverse resolution, assuming the complete code sequence is

observed in the x direction.

The imaging resolution is limited by the feature size of the coded aperture and the

sampling rate of the scatter signal at the detector. The resolution of any x-ray detector is

limited by the interaction length of the x-rays and the detector material. Thicker materials

provide increased stopping power with the side e�ect of pixel cross-talk, particularly for large

incidence angles. A similar argument relates the resolution of the coded aperture with its

thickness, which we found to be the limiting factor for our setup.

4.3 Experimental methods

4.3.1 Con�guration

The fan beam assembly for this demonstration utilized an x-ray system previously devel-

oped for breast CT [76]. Figure 4.1 shows a diagram of the modi�ed system including the

fan beam collimator, alignment rail, coded aperture, and detector. This drawing also shows

an object stage made from foam and a clock we used to demonstrate scatter video. The
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collimated fan beam illuminated the object and x-rays scattered due to atomic interactions.

The scattered x-rays were transferred by the coded aperture, under ray optics, to the detector

plane where the scatter images were acquired.

4.3.2 Acquisition

The Rad-94 x-ray tube (Varian Medical Systems, Palo Alto, CA) was operated at

generator settings of 120 kV, 25 mA, and a 400 ms pulse duration. The focal spot had

a width of 0.4 mm and was stationed 775 mm from the detector plane. The source was

spatially �ltered by a series of lead collimators to produce a fan beam with 1 mm width and

a full-angle divergence of 0.3◦ at the object stage. A �at panel scintillation detector (model

4030E, Varian Medical Systems) detected scattered x-rays with a 406 mm by 293 mm active

area and 0.127 mm pixel pitch. The coded aperture was placed parallel to the detector at a

distance d = 100 mm. At the intersection of the fan beam and the detector, a strip of lead

(100× 10× 3 mm) blocked the primary beam. This beam stop prevented the primary beam

from saturating the detector, and allowed for full sensitivity to the relatively weak scatter

signal. All devices in the apparatus other than the source and detector were oriented along

an 80/20 rail. Devices on the rail included the coded aperture, stage for the object, and

a two-stage collimator that formed the fan beam. Each of these devices could be moved

linearly along the z-direction but remained �xed for the experiments.

4.3.3 Aperture fabrication

The coded aperture was modeled in Matlab and a mold was printed on an Objet Eden

333 printer (Stratasys, Eden Prairie, MN). The mold was �lled with tungsten powder (grain

size > 50µm) and sealed with epoxy. The mold was 1.35 mm deep with 0.3 mm plastic

backing for support, and the �lling process produced tungsten features about 1 mm thick

(z) with minimum feature size 1.25 mm in x and 0.75 mm in y. The code area was 160 mm

(x) by 200 mm (y). The plastic caused negligible attenuation of the x-rays compared with

the tungsten features.
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4.3.4 Model calibration

To ensure model accuracy, we experimentally determined the position of the x-ray anode.

We placed the coded aperture parallel and at several known ranges from the detector. Next,

we used ray tracing from paired aperture and image points to triangulate the position of the

source and found an o�set of s = (2.1, 12.8, 774.8) mm relative to the center of the detector.

The source position information was then used to orient the fan beam perpendicular to the

detector. The mathematical procedure for determining the source position is presented in

Appendix C.

To avoid systematic errors in aperture placement, an empirical measurement of T (x, y)

was used in the forward model. Several x-ray projections of the coded aperture were acquired

and averaged into a single image to reduce the e�ect of noise. The averaged image represented

the transmission function T (x, y) by using known information: the image's magni�cation,

the source position, and the aperture-detector distance d. This image is shown as an inset

in Figure 4.1.

4.3.5 Test objects

We chose to image plastic objects because they have strong scattering cross sections

and the lack of long-range order produces cylindrically symmetric scattering pro�les, as was

assumed in Section 4.2. To demonstrate snapshot 2D imaging we formed the letters "DUKE"

with our Objet printer. To demonstrate tomographic video, we used a clock with plastic

hands. Figures 4.3a and 4.3b show the plastic DUKE letters and the clock in position for

the experiments. Both were aligned parallel to the fan beam. The DUKE letters covered an

area of 100 mm by 40 mm and were 5 mm thick in the y direction, though the beam only

illuminated a 1 mm slice. Only the second hand of the clock was exposed to x-rays for that

part of the experiment.
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(a) (b)

Figure 4.3: Photos of (a) plastic DUKE letters and (b) the clock in position for the
experiments.

4.4 Results

Figure 4.3a shows the DUKE letters in place for the experiment, and Figure 4.4 shows

the scatter image acquired for the DUKE object.
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Figure 4.4: Cropped and binned scatter image for the plastic DUKE letters, corresponding
to a 4.9 cm × 4.5 cm detection area

The primary beam was blocked by a lead strip positioned on the detector, and this

region has been blacked out in the image. The scatter image was binned by 3× 3 pixels in

software to reduce memory requirements and cropped to prevent the beam stop and pixel

defects from a�ecting the reconstructions. Figure 4.5 shows reconstructions of the scattering

density F (x, z) and the scattered radiance R(θ) for this object.
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(b)

Figure 4.5: Reconstructed images for DUKE letters. (a) Density image F (x, z), with
x = vertical and z = horizontal. (b) Reconstructed scatter radiance R(θ).

Twenty iterations were run with 200 updates for F (x, z) and 5 updates for R(θ) at each

iteration. The density image was reconstructed with 2 mm sampling in x and z and the

radiance was sampled non-uniformly with 0.5◦ resolution at θ = 0.5◦ and up to 4◦ resolution

at θ = 75◦. The image shows recognizable letters. Blurring occurred mainly in the range

direction (z) since the high-angle scatter, which carries the most range information, was

relatively weak and a�ected by noise. The radiance consists of a low-angle coherent scatter

component with a broad tail resulting from high-angle Compton scattering.

Since every snapshot produces a 2D slice of an object at one moment in time, we used

the clock to demonstrate tomographic video. We positioned the clock shown in Figure 4.3b

so that its second hand ticked in the plane of the beam. A strip of plastic 2 mm thick in the

y direction was attached to the second hand so that it was the only object in the beam. As

the hand ticked at 1 Hz, scatter images were acquired at 2 Hz. A total of 30 scatter images

(not shown) were acquired over a span of 15 seconds. Each frame was used to estimate an

instantaneous density image f(x, z). The reconstructed frames are shown with timestamps

in Figure 4.6a, and as a downloadable video �le1. The complete set of scatter images was

1Hyperlink: http://www.opticsinfobase.org/ao/viewmedia.cfm?uri=ao-52-19-4582&seq=1
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used to jointly estimate R(θ) for this object, shown in Figure 4.6b. We expected this curve

to vary from Figure 4.5b since each object was made from a di�erent plastic, however model

error may also contribute, especially at large scatter angles due to the non-planar nature of

the physical aperture.
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(b)

Figure 4.6: Reconstructions of the clock's second hand. (a) Reconstructed density images
F (x, z, t), with x = horizontal and z = vertical. Each frame is labeled with the time stamp.
(b) Reconstructed scatter radiance R(θ).
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The resolution equations (4.10) and (4.11) show the importance of a high-resolution

coded aperture. Our aperture was built with 1/u = 1.25 mm and 1/v = 0.75 mm with an

expected resolution of (∆x,∆z) = (2.5 mm, 2.5 mm) at z = 200 mm. This assumes that the

observable scatter image has length Y = 120 mm. During reconstruction, we found our 2D

aperture transmission function to introduce modeling errors at high incidence angles and so

we cropped the detector to X ≈ 49 mm and Y ≈ 45 mm. Cropping in x only narrows the

transverse �eld of view, however cropping in y theoretically degrades the range resolution to

∆z = 6.7 mm, a slight overestimate based on the reconstruction results.

4.5 Summary

These results demonstrate snapshot tomography using fan beam CAXSI. A more detailed

analysis is required to explore the resolution limits and signal to noise ratio of the fan beam

CAXSI system.

The range sensitivity of our aperture-detector arrangement allows us to capture forward

and/or back-scatter signals, as long as the aperture and detector are placed perpendicular

to the beam. This �exibility is useful when one side of the object is not accessible, or when

only the forward scatter component is strong enough to measure.

The bi-linear forward model in equation (4.2) captures only the basic physics of the

system. Multiple scattering e�ects were omitted, which include attenuation of the primary

beam and scattered rays within the object. Also, a perfect irradiance detector with uniform

energy response was assumed. Further, the planar coded aperture model might be replaced

by more careful modeling of its 3D structure, especially for large incidence angles. The

discretization via point-like sampling in space and time for each detector pixel may have

introduced modeling error, and a more sophisticated scheme would include their response

functions. Similar point-like sampling in the object may be replaced by other basis functions.

More detailed modeling of these e�ects should improve the quality of the reconstructed

images.

Only the coherent and incoherent scatter signals were measured to produce our results.
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The reconstructions could be improved by measuring the transmitted signal in the plane of

the fan beam. By measuring contributions from each type of x-ray interaction and comparing

with a reference library of cross sections, fan beam CAXSI is promising for determining

distributions of constituent materials within extended or dynamic objects. The e�ects of

noise, system geometry, and acquisition settings should be studies in detail when applying

these techniques to a speci�c application.

While a static 3D object may be translated through the fan beam to build up slices,

collimation into a fan beam wastes photons. The next chapter generalizes the scale codes

used here to a new family of coded apertures for cone beam scatter tomography.
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CHAPTER 5: CODED APERTURES FOR VOLUME IMAGING

5.1 Background

Coded aperture imaging found early use in x-ray astronomy, where transverse 2D imaging

is the goal. The Fresnel zone plates (FZP) proposed by Mertz and Young in 1961 [50], and

analyzed further by Barrett and Horrigan [51], provided a way to beat the resolution-versus-

throughput tradeo� of pinhole imaging. The idea was that each star projects a shadow

of the FZP onto the detector plane, and these shadows are superimposed in the measured

image. Each shadow exhibits a di�erent shift determined by the position of the original star.

When the measured image is developed into a transparent medium and illuminated with

coherent light, each shadow acts like a lens and focuses the coherent light back to the source

point, with some magni�cation. The result is a holographic image of the original scene. The

hologram may be reconstructed optically or digitally, depending on the equipment available.

The ability to perform this reconstruction is due to the orthogonality of the FZP shadows

centered at di�erent locations.

Inspired by digital processing, the URA [55] apertures developed by Fenimore and Can-

non in 1978 and related MURA [56] apertures developed by Gottesman and Fenimore in

1989 are based on similar ideas about orthogonality, and posses correlational decoding

arrays which produce perfect 2D point spread functions. The FZP and (M)URA codes

are examples of �shift codes�, but the orthogonality relationships of these shift codes break

down under magni�cation, which occurs when image points are located at di�erent ranges

from the detector. When applied to 3D scenes, shift codes provide some ability to �focus�

the reconstruction to di�erent depths, however the chosen slice will always be corrupted by

out-of-focus planes. This e�ect points to a fundamental limitation of 3D tomography from
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2D measurements.

The FZP method is a type of holography, where incoherent light is used to measure

the image and coherent light (or a digital representation of it) is used to perform the

reconstruction. By shining coherent light through the measured image, a boundary condition

is created which produces the holographic image, which is often a su�cient representation

of the object. A coherent optical �eld is bound by Maxwell's equations and is completely

speci�ed on a 2D surface, but no such constraint exists for the original object. The distinction

between holography and tomography is that tomography reconstructs the radiating object,

not the �eld. Reconstruction based on the (M)URA codes encounter the same limitation;

the 2D measurement is just one realization of the optical �eld, while 3D tomography requires

multiple measurements of the �eld under varying conditions.

In this chapter, a new family of coded apertures for 3D scatter or emission tomography is

proposed which incorporates built-in scale orthogonality. These are termed �frequency scale

codes� (FSC) and are generalizations of the sinusoid apertures of previous chapters. FSCs

impose a certain relationship between spatial frequency and range, which is exploited during

tomographic reconstruction. The main feature of a FSC is that it contains a unique spatial

frequency in each direction. A FSC may be used in a traditional coded aperture system,

where the 2D aperture is placed a distance d in front of a 2D detector array. The FSC

enables direct tomographic reconstruction via Fourier analysis when the aperture-detector

distance d or object-detector distance z is scanned while acquiring a sequence of images. The

linear scanning motion of d or z may be more attractive for certain applications than the

combination of translational and rotational scanning required for cone beam transmission

tomography. Furthermore, broadband FSCs may be constructed which sparsely sample the

Fourier space when the number of available exposures is limited. These codes are aligned

with the ideas of compressive sampling, and will be discussed along with possibilities for

adaptive sensing.
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In Chapter 4, snapshot tomography was demonstrated for fan beam illumination perpen-

dicular to a detector plane. This may be applied to volume imaging by scanning the object

through the fan beam to build up the 3D image from individual slices. However, common

x-ray sources do not naturally produce fan beam illumination, and therefore much of the

available power is absorbed at the source-side collimators. The proposed FSC methods may

employ the full cone beam, providing a signi�cant increase in signal power as long as the

primary beam can be separated from the scatter measurements. Furthermore, FSCs are

applicable to emission tomography, where one cannot directly constrain the spatial domain

of the emitted radiation.

5.2 Forward model

To develop the forward model for 3D scatter tomography, the object is represented by the

isotropic scattering density F (r, z), where r = (x, y) and z is the distance from the detector

plane. The function F (r, z) may also represent the emission rate of a self-radiating object

at point (x, y, z). The derivation of Reference [51] is followed, but with some changes in

notation and with the z dependence retained. Here, the measured irradiance is G (r), H (r)

is the transmittance of the aperture, and the Fourier transformed versions are indicated by

a tilde (̃ ). As in Reference [51], only �rst-order scattering e�ects are considered to develop a

linear forward model, approximating weakly attenuating or scattering objects. For strongly

attenuating or scattering objects, the linear model may be applied iteratively as di�erential

corrections to the estimated F (r, z) until convergence is achieved.

De�ne the magni�cation m(z) = z/ (z − d) of the aperture shadow as projected from

distance z. In the paraxial case, the propagation distance is approximately z. The forward

model relates the scattering density F (r, z) to the measured irradiance G (r′):

G (r′) =

�
dz

z2

�
drF (r, z)H (r + [r′ − r] /m) (5.1)
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Taking the 2D spatial Fourier transform of G with respect to r′,

G̃ (k) =

�
dz

z2

�
drF (r, z)

�
dr′ e−2πik · r′H (r + [r′ − r] /m)

=

�
dz

z2

�
drF (r, z) me2πik · r(m−1)H̃ (km)

=

�
mdz

z2
F̃ (k [1−m] , z) H̃ (km) (5.2)

The aperture acts as a scaled transfer function for each z slice of the object, but with

the complication of the z integral which superimposes the di�erent planes. The goal of

tomography is to completely separate these slices.

A careful look at (5.2) reveals that the measured frequency k contains information

about object frequency k (1−m) = kd/ (d− z) in each slice z. The aperture must contain

frequency km = kz/ (z − d) in order for the object frequency kd/ (d− z) at range z to be

transmitted. If the aperture has a single frequency, then each measured frequency will be

mapped to a di�erent spatial frequency at each range. Consider a single frequency aperture

with the Fourier transform:

H̃ (k) = δ2 (k− u) (5.3)

with δ2 being the 2D Dirac delta function. Incoherent imaging requires H to be real-valued

between zero and one, so (5.3) should contain a component at −u and a zero frequency

component. But upon inverse Fourier transformation, the expression (5.3) would produce

a complex valued H. A complex H may be synthesized using balanced detection, meaning

measuring once with an aperture containing a cosine dependence and another containing

a sine dependence. Assuming balanced detection, the single frequency in (5.3) is justi�ed.

Plugging (5.3) into (5.2),

G̃ (k′) =

�
mdz

z2
F̃ (k′ [1−m] , z) δ2 (mk′ − u)

=

�
mdz

z2
F̃ (k′ [1−m] , z)

1

k′u
δ
(
m− u

k′

)
δ
(
k′φ − uφ

)
(5.4)
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with the delta function expanded intermediately as δ2 (mk′ − u) = 1
u
δ (mk′ − u) δ (kφ − uφ).

The variables k and kφ are the magnitude and polar angle for k, and similarly for u. The

function δ
(
k′φ − uφ

)
constrains the polar angles so k′ is in the same direction as u and we

also have k′ ‖ k. Transforming the integral in (5.4) from z to m = z/ (z − d),

G̃ (k′) = − 1

k′ud
δ
(
k′φ − uφ

) � dm

m
F̃ (k′ [1−m] , z) δ

(
m− u

k′

)
= − 1

u2d
δ
(
k′φ − uφ

)
F̃

(
k = k′ − u, z =

ud

u− k′

)
(5.5)

To invert (5.5), note that k′ = k + u and k′ is in the same direction as u with a smaller

magnitude. This means that the object frequency has magnitude k = u − k′. Figure 5.1

shows how the object frequency k at range z transforms to the measured frequency k′.

Figure 5.1: Relationship between the object frequency k at range z, the aperture frequency
u, and the measured frequency k′ = u/m(z) = k + u.

Equating k′ = u/m(z) = k + u, it becomes evident that to measure the object point

(k, z) the aperture frequency u and distance d must satisfy d = kz
u
. Inverting (5.5) for F̃ ,

the reconstruction is

F̃

(
k = −ud

z
, z

)
= −u2d G̃

(
k′ = u

[
1− d

z

])
(5.6)

The reconstruction is only de�ned along the 1D curve k(z) = −ud/z in the object space.

Object points at di�erent ranges are measured as di�erent frequency components on the

detector. This was the concept behind the sinusoidal scale codes of Chapters 2-4. The entire

object space may be reconstructed by scanning the aperture frequency u, however dynamic
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apertures are di�cult to implement. Instead, one may vary d or z to achieve the same e�ect

as scaling the magnitude of u. Rotational scanning is also necessary to reconstruct frequency

components in all directions, unless a code with multiple frequencies is used, as described in

the next section.

The reconstructed spatial frequency at range z is k = ud
z
, giving transverse spatial

resolution ∆x ≈ z
ud
. When scanning these parameters, the combination of u, d, and z

which minimizes ∆x should be used to estimate the resolution. The range resolution was

previously derived in Chapter 2 for a code with frequency u to be ∆z ≈ z2

Dud
= ∆x z

D
, where

D is the diameter of the detector. The range uncertainty is based on the ability to resolve the

frequency of the magni�ed aperture over a �nite area. In practice, measurement quantization

will also contribute to the achievable resolution.

5.3 Frequency scale codes (FSC)

As shown in the previous section, a single frequency aperture allows reconstruction of a

1D curve in the object's space (k, z). Codes with multiple frequencies could be envisioned

if ambiguities in frequency and range could be prevented. Note that in Figure 5.1 all

three vectors are parallel or anti-parallel, so that the aperture may include frequencies in

multiple directions without introducing ambiguity since they occupy separate subspaces.

This motivates the de�nition of a frequency scale code (FSC) as a pattern which contains a

unique spatial frequency in each direction. A good FSC should not only include the proper

frequency structure, but should also allow high throughput.

The simplest FSC is proposed here as producing a ring in Fourier space. The aperture

is parameterized by the radius u of the ring and only 1D scanning of u, d, or z is required

to reconstruct the 3D object. Such an aperture was mentioned in Chapter 2 and is based on

the transmittance

H (ρ, φ) =
1 + cos (2πuρ+ nφ)

2
(5.7)

84



where ρ is the polar radius in the aperture plane and φ is the polar angle. The �ring� aperture

is plotted for u, n = 1 along with its discrete Fourier transform (DFT) in Figure 5.2.
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Figure 5.2: Coded aperture for volume tomography based on a ring structure in frequency
(Equation (5.7)): (a) the aperture in physical space and (b) the magnitude of its DFT
showing a unique frequency in each direction. The DC component was removed for clarity,
and the modulations around the ring are a result of using a real-valued H.

With the �ring� aperture, a surface of revolution in the (k, z) space is measured by each

exposure of the 2D detector array. These surfaces are illustrated in Figure 5.3 and follow

from k = ud/z. They show how the object space may be �lled out by varying ud. If the

object is translated in z, the surface of revolution will accordingly shift in z.
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Figure 5.3: Three surfaces in the object space, each measurable by a 2D snapshot with
the �ring� FSC. The surfaces are de�ned by |k| = ud/z. The coordinates kx and ky are the
components of the transverse spatial frequency k, and the units assume d = 1. Three values
of ud are shown: ud = 100 (red), 200 (green) and 300 (blue).

To qualify as a FSC, H̃ may contain any curve with a unique frequency in each direction.

A choice which produces a spiral in the frequency domain is closely related to the DCT

aperture of Chapter 2 but with re�ection symmetry:

H (ρ, φ) =
1 + cos (2πuρmod (φ, π))

2
(5.8)

where mod (φ, π) = φ − nπ and n is the largest integer such that φ ≥ nπ. This code is

plotted for u = 1 in Figure 5.4 along with its DFT. These FSCs, and others, enable direct

tomographic reconstruction by removing the ambiguity between spatial frequency and range.
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Figure 5.4: Coded aperture for volume tomography based on a spiral structure in frequency
(Equation (5.8)): (a) the aperture in physical space and (b) the magnitude of its DFT
showing a unique frequency in each direction. The DC component was removed for clarity,
and the modulations along the curve are a result of using a real-valued H.

5.4 Scanning techniques

The distances d and/or z may be scanned to �ll out the object space, instead of changing

the aperture pattern which is di�cult in practice. A simple approach uses a static FSC

code where the distance d is varied. In this case, let G̃ (k, d) be the 2D spatially Fourier

transformed measurements for aperture position d. Assume the �ring� frequency structure

H̃ (k) = 1
2πu

δ (k − u). With this in (5.2), equation (5.6) becomes

G̃ (k′, d) = − 1

2πu2d
F̃

(
k = k′

(
1− u

k′

)
, z =

ud

u− k′

)
(5.9)

For the measurement containing information about F̃ (k, z), the aperture must have been

at position d = kz/u. Manipulating k = k′
(
1− u

k′

)
in (5.9), object frequency k at slice z is

found at measurement frequency k′ = k
(
1− z

d

)
. Using the known d,

F̃ (k, z) = −2πukz G̃

(
k′ = k

(
1− u

k

)
, d =

kz

u

)
(5.10)

which provides the reconstruction method for a moving aperture.
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If the object is translated relative to the aperture-detector apparatus, the sequence

G̃ (k, zoff ) is acquired, where zoff is the o�set of the object relative to its initial position.

Information about F̃ (k, z) is found from the measurement at zoff = ud
k
− z. The inversion

resembles (5.10):

F̃ (k, z) = −2πu2d G̃

(
k′ = k

(
1− u

k

)
, zoff =

ud

k
− z
)

(5.11)

Equation (5.11) is the inversion formula when moving the object relative to the aper-

ture/detector apparatus. This approach is very promising for a variety of applications,

where the object is linearly translated and the scanner itself requires no moving parts.

5.5 Compressive sampling

Compressive tomography is a process by which an object embedded in N dimensional

space is reconstructed from measurements embedded in less than N dimensions. Conven-

tional transmission tomography as well as the scatter techniques discussed above trade time

for the missing dimension(s). In Reference [77], compressive sampling and reconstruction

strategies are shown to maintain image quality as the measurements are sub-sampled in

various ways for transmission tomography. It is expected that similarly encouraging results

will be found when scatter tomography is analyzed in the context of compressed sensing. If

enough prior information is known about the object, then 3D tomography may be possible

in the extreme case of acquiring a single 2D snapshot. For this purpose one might design a

FSC with a quickly varying frequency as a function of direction in order to sparsely sample

the object's entire Fourier space, keeping in mind that the frequency should be a unique

function of direction. This ensures that no range ambiguity ensues since each frequency

component in the code then samples a unique curve in the object space. The object basis

used above consists of 2D transverse Fourier components and 1D range. In the context of

compressed sensing, the Fourier basis is a great choice for imaging points while acquiring

very few measurements [57]. The FSC also enables measurement of individual frequency
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components in the object, and as a result the sensing process may be tailored for speci�c

object classes.
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CHAPTER 6: ENERGY SENSITIVE CAXSI

6.1 Background

The previous chapters focused on energy-integrating detectors, where the total irradiance

is measured by each pixel, with some quantum e�ciency determined by the x-ray wavelength.

Energy sensitive detectors, in contrast, measure the spectral composition of the x-rays which

provides additional information about coherent scatter events via Bragg's law. This is

achieved in solid state devices by measuring the height of the current pulse produced from

each absorbed photon in a semiconductor. In Chapter 2, coded apertures were presented

for pencil beam scattering experiments and the resulting singular values were compared. In

the following, this analysis is extended to linear arrays of energy sensitive detectors, such as

those used in the experimental demonstration of energy sensitive CAXSI in Reference [35].

The anisotropic scattering model of Chapter 2 reconstructs an object's scattering density

f (z, θ), where z is the distance along the pencil beam and θ is the scattering angle. This

model is applicable to coherently scattering objects if one considers a mono-energetic beam

at energy E. Then, the scattering density as a function of momentum transfer is F (z, q) =

f
(
z, θ = 2 sin−1 qc

2E

)
. If the beam is broadband, recovering F (z, q) from f (z, θ) is limited

by the fact that photons at multiple energies (and therefore multiple q values) contribute

to each θ. Thus, energy sensitive detectors are desirable since they e�ectively remove this

ambiguity by sorting the detected photons according to distinct energy channels.

In the following, the pencil beam CAXSI system of Chapters 2 and 3 is analyzed for the

case of energy sensitive detectors. Figure 6.1 shows the basic geometry.
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Figure 6.1: Pencil beam system geometry considered for energy sensitive CAXSI.

The aperture plane is parallel to the detector array and separated by distance d. The

forward model relates the object's scattering density F (z, q) to the measured �eld G (x,E):

G (x,E) =

� zmax

d

Acos θ dz

x2 + z2
T

(
x

m (z)

)
F

(
z, q =

2E

c
sin

θ

2

)
(6.1)

where z is measured from the detector plane, x is the measurement position within the

detector plane, and E is the measured photon energy. The energy spectrum is assumed to

be perfectly �at, or otherwise corrected for in the measurements. The factor A cos θ
x2+z2 is the

solid angle subtended by the area element A facing the z direction at detector position x,

as viewed from the position z along the pencil beam. In the following, A will be ignored,

rendering (6.1) valid up to a proportionality. The function T (x) is the transmittance of the

aperture, assumed to be independent of energy, and m (z) = z/ (z − d) is the magni�cation

of the aperture relative to the point z. For simplicity, only quantization in E is considered

so that the measurements can be represented as Gi (x), for energy bin i = 1 . . . N . This is a

useful model since many x-ray detectors have high spatial resolution and little or no energy

resolution. Letting ηi (E) be the quantum e�ciency of bin i, the forward model is

Gi (x) =

�
dE ηi (E) G (x,E) (6.2)

For simplicity, only small angle scattering is considered, which generally applies to high
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energy coherent scatter experiments. In this limit, cos θ ≈ 1, x2 + z2 ≈ z2, and θ ≈ x/z.

Bragg's law becomes simply zq = Ex/c. This is worth examining; each photon lands at a

speci�c (E, x) pair. One would like to �nd its origin in (z, q), but Bragg's law only provides

us the product zq. The coded aperture is necessary to determine z, which in turn resolves

q [35].

6.2 Resolution analysis

The impulse response is found by inserting the impulse F (z, q) = δ (z − z0) δ (q − q0)

into (6.1) and using (6.2):

Hi (x; z0, q0) =

�
dE ηi (E)

�
dz

z2
T

(
x

m (z)

)
δ (z − z0) δ

(
q0 −

Ex

zc

)
=

(
c

z0x

)
T

(
x

m (z0)

)
ηi

(z0q0c

x

)

The point spread function (PSF) is the correlation of the impulse responses from two

neighboring points in the object space:

PSF (z1, q1; z0, q0) =
∑
i

�
dxHi (x; z1, q1)Hi (x; z0, q0)

=
c2

z0z1

�
dx

x2
T

(
x

m (z1)

)
T

(
x

m (z0)

)∑
i

ηi

(z1q1c

x

)
ηi

(z0q0c

x

)
(6.3)

The simplest model for an energy sensitive detector partitions the photon energy E into

equally spaced, non-overlapping bins of width and separation ∆E. The quantum e�ciency

of bin i is ηi (E) = rect
(
E

∆E
− i
)
, where rect (· · ·) is a unit square pulse (rect (x) = 1 for

|x| ≤ 1
2
, and rect (x) = 0 otherwise). The sum over energy bins in (6.3) can be re-written

as rect
(
z1q1−z0q0
x∆E/c

)
. This constrains contributing values of x to the integral in (6.3) to those

satisfying x > c|z1q1−z0q0|
2∆E

. The detector subtends the range x ∈ [xmin, xmax] with x > 0 and
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total length D = xmax − xmin. The PSF is

PSF (z1, q1; z0, q0) =
c2

z0z1

� xmax

xmin

dx

x2
T

(
x

m (z1)

)
T

(
x

m (z0)

)
rect

(
z1q1 − z0q0

x∆E/c

)
(6.4)

This function is plotted for no aperture (T (x) = 1) and a sinusoid aperture (T (x) =

1+sin(2πux)
2

) in Figure 6.2. These �gures illustrate the ambiguities in (z, q) and the necessity

for the coded aperture. Both PSFs are extended along the curve zq = const, however the

sinusoid code produces an absolute maximum at z1 = z0, providing sensitivity to the z

coordinate. The range resolution for a sinusoid code was previously derived in Chapter 2 to

be ∆z ≈ z2/ (Dud), where u is the spatial frequency of the coded aperture [33].
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Figure 6.2: Plots of the PSF for (z0, q0) = (2.05d, 1.5∆E/c) and varying (z1, q1). The

transmittance functions are (a) T (x) = 1, and (b) T (x) = 1+sin(2πux)
2

. The point (z0, q0) lies
at the center of each image. The PSFs are extended along the curve zq = const, however the
sinusoid code in (b) produces an absolute maximum at z1 = z0, providing distinguishability
between points at di�erent ranges. Values used were ud = 50 and xmax = d.

Because the energy response sets a lower bound on the x coordinate via the rect (· · ·)

function, the PSF completely vanishes when c|z1q1−z0q0|
2∆E

≥ xmax. At constant z = z0 = z1,

the width of the PSF in q is

∆qmax =
4xmax∆E

cz
(6.5)
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The expression (6.5) is an upper bound for the momentum transfer resolution at constant

z. Ignoring the transmittance function T in (6.4) for a moment, the 1/x2 dependence means

that the PSF decays quickly for c|z1q1−z0q0|
2∆E

> xmin, and it plateaus for c|z1q1−z0q0|
2∆E

≤ xmin.

The width of the plateau region is

∆qmin =
4xmin∆E

cz

which is a lower bound for the momentum transfer resolution, since momentum transfer

values within this range produce maximally correlated measurements. In practice, xmin will

be limited by two factors: �rst, the ability to separate the scatter signal from the primary

beam, and second, the maximum energy of the primary beam. Focusing on the latter,

consider an energy spectrum with the range E ∈ [Emin, Emax]. For a given (z, q), the scatter

signal lies in the range x ∈ zqc
[

1
Emax

, 1
Emin

]
. Assuming the minimum x lands on the detector,

the momentum transfer resolution for a beam with �nite energy range is

∆qmin = 4q
∆E

Emax
(6.6)

This expression shows that the relative uncertainty in momentum transfer is closely related

to the energy resolution of the detector and maximum detectable energy of the x-ray source.

6.3 Simulations

The PSF and resolution from the previous section assumed a perfectly �at x-ray spectrum

and a perfectly planar coded aperture. In this section a more sophisticated model including

a realistic x-ray spectrum and a 3D coded aperture is studied using numerical simulations.

The linear detector array lies at z = 0 and covers the transverse coordinates x = 0 to x = d,

where d = 128mm. The array consists of 512 pixels with pitch 0.25 mm. The aperture

plane is centered at z = d and the object subtends the range z = d to z = 2d. The object

is pixelated with 128 samples in z and 128 samples in momentum transfer from q = 0 to

94



16 keV/c. The x-ray source is placed at z = 4d and produces an in�nitely thin pencil beam

along the z axis.

The forward model described by equations (6.1) and (6.2) was discretely sampled for

the simulations, with two modi�cations. First, a realistic x-ray spectrum was included,

consisting of a Bremsstrahlung component and characteristic lines from a tungsten anode.

The spectrum is plotted in Figure 6.3 and was computed using the graphical version of

SpekCalc 1.1 [78�80], with default settings except an energy range of 20 keV to 148 keV in

1 keV intervals. The spectral density was included as an additional factor N (E) outside the

integral in equation (6.1). In the following, this function N (E) is referred to as simply the

�tungsten spectrum�.
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Figure 6.3: SpekCalc model for the incident spectral number density N (E) from a tungsten
anode at 148 kVp.

The second modi�cation to the forward model was a more sophisticated description of

the coded aperture. The aperture was modeled as a periodic array of lead blocks of width

0.5 mm in x and z with a duty cycle of 50%. Scattered rays were computed for each

pair of object and detector pixels. The intersections of these rays with the lead blocks

were computed using the ray tracing algorithm described in Reference [81]. This resulted

in partial attenuation of certain rays as they grazed the lead features. For each ray, the
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attenuation was evaluated from 20 keV to 148 keV in intervals of 0.1 keV using the NIST

XCOM database entry for lead [38]. These calculations e�ectively replaced T
(

x
m(z)

)
with a

more complicated transmittance T (x, z, E) in (6.1).

To study the e�ect of energy resolution, the interval E ∈ [20, 148] keV was divided into

a number n of equally spaced energy bins. In the following sections, system metrics are

analyzed as they depend on n and the structure of the coded aperture. For illustration,

Figure 6.4 plots the impulse response for the point (z, q) = (192mm, 8 keV/c) with n = 4

energy bins. The measurements are a transformed version of the incident energy spectrum,

modulated by the periodic aperture.
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Figure 6.4: Impulse response for the object point (z, q) = (192mm, 8 keV/c) with n = 4
energy bins.

The structure of the incident energy spectrum becomes important when the detector's

energy resolution is poor. Consider the case of n = 1 energy bin, with ∆E = 128 keV. The

PSFs for this case are shown in Figure 6.5, comparing a �at spectrum with the tungsten

spectrum. For �xed z, the structure of the PSF along q is related to the scale-correlation of

the incident spectrum. In Figure 6.5a, a �at spectrum was used and the PSF shows weak

dependence on q, and therefore provides poor resolution in momentum transfer. In Figure

6.5b, the tungsten spectrum was used which introduces a strong dependence on q. This
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was the motivation for applying spectral �ltering to narrow the incident energy distribution

in Chapter 3. Note, however, that in Figure 6.5b there are now multiple maxima along z,

hinting that the improved q sensitivity with the tungsten spectrum comes at some cost.
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Figure 6.5: Plots of the PSF for (z, q) = (192mm, 8 keV/c) and a single energy bin (n = 1).
The energy spectrum in (a) was �at from E = 20 keV to 148 keV and in (b) the tungsten
spectrum was used (Figure 6.3).

6.4 SVD analysis

In the spirit of Chapter 2, this section includes SVD results for the pencil beam system

using energy sensitive detectors. In particular, the dependence of the singular value distribu-

tion on the detector energy resolution and coded aperture design is presented. In discretizing

the forward model de�ned by equations (6.1) and (6.2), discretization proceeded as in the

previous section but with minimum q value increased from 0 to 2 keV/c to avoid numerical

singularities. The resulting forward matrix H was calculated and its SVD was computed in

Matlab according to H = USV† (the SVD is described in Section 1.6 of Chapter 1). Figure

6.6 shows the computed singular value spectra for n = 1, 2, 4, 8, 16, 32, and 64 energy

bins, corresponding to ∆E = 128, 64, 32, 16, 8, 4, and 2 keV, respectively. The plot uses a

logarithmic scale on the vertical axis for clarity.
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Figure 6.6: Singular value spectra for n = 1, 2, 4, 8, 16, 32, and 64 energy bins,
corresponding to ∆E = 128, 64, 32, 16, 8, 4, and 2 keV, respectively. For each detection
scheme, the SVD was computed for the periodic aperture (dotted lines) and the case when
no aperture is present (solid lines).

The solid lines represent the case when no coded aperture is used, and the dotted lines

are for the case of the periodic aperture described in the last section. Each spectrum was

normalized so that the largest singular value is 1, however this did not qualitatively change

the results. Two important trends are evident from the SVD spectra in Figure 6.6. First, by

increasing the number of energy bins, more singular values lie above a given cuto� (10−4 was

chosen for this plot). This is expected since the PSF narrows with respect to momentum

transfer q as the energy resolution improves. More energy bins means more measurable

modes. The second important trend is that the singular values increase when the periodic

coded aperture is introduced. This is closely related to the aperture inducing a strong

dependence of the PSF on range z.

The singular value analyst must not only consider spectra as in Figure 6.6, but also the

structure of the right (object space) singular vectors. The vectors with the largest singular

values will be the object structures measured with the highest �delity in the presence of

noise. For illustration, in the Figures 6.7-6.11, singular vectors are shown for n = 1 and

n = 16 bins (∆E = 128 keV and 8 keV, respectively). In each �gure, nine vectors are shown

which are equally spaced in index over the range of singular values larger than chosen cuto�,
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and �s.v.� indicates each vector's corresponding singular value. The plot for each vector uses

a color scale based on those shown in Figure 6.5, but with di�erent minimum and maximum

color values for clarity. The cuto� was chosen to be 0.01, which represents a certain noise

level above which the singular vectors will be called �measurable�.

Figure 6.7 shows the vectors for n = 1 energy bin with no aperture (�open�). Consistent

with the previous PSF calculations, these vectors are elongated along curves of constant zq

and will cause blurring in these directions.
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Figure 6.7: Singular vectors for ∆E = 128 keV without a coded aperture.

By including the periodic coded aperture, the singular vectors become those shown in

Figure 6.8. These vectors show a strong dependence on z, as expected from calculation of

the PSF, and so we expect better imaging performance with the coded aperture than for the

�open� case. The coded aperture works to add more measurement modes, as evidenced by

having 419 vectors above the cuto� versus 273 for the open aperture. Said another way, the

advantage of the coded aperture for this linear, energy-integrating detector is 1.53 times as

many �measurable� modes.
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Figure 6.8: Singular vectors for ∆E = 128 keV without a periodic coded aperture.

Turning now to the energy sensitive measurements with n = 16 energy bins (∆E =

8 keV), Figure 6.9 shows the singular vectors when no aperture is present. These vectors do

not show much improvement over the case of n = 1 energy bin (Figure 6.7); they are still

blurred along curves zq = const. While introducing energy resolution from n = 1 bin to

n = 16 bins increased the number of measurements by a factor of 16, the number of singular

vectors above the cuto� only doubled for the open aperture.
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Figure 6.9: Singular vectors for ∆E = 8 keV without a coded aperture.

When the periodic coded aperture is introduced to the system with n = 16 energy bins,

the singular vectors are those shown in Figure 6.10. These vectors have strong dependence

on both z and q, and importantly the number of singular values above the cuto� increased by

a factor of 5.8 over the energy integrating detector with n = 1. Compared with the uncoded

(�open�) system in the energy sensitive case n = 16, the coded aperture system enjoys a

surprising four-fold increase in the number of measurable modes at the speci�ed cuto� level

of 0.01. Based on Figure 6.6, the open system needs n = 64 energy bins to achieve this

number of measurable modes. These results suggest that combining the energy resolution

of the detector and the resolving power of the coded aperture will be critical to high �delity

reconstruction of arbitrary scattering densities F (z, q).

It is interesting to notice that while the structure of the singular vectors cannot be directly

manipulated by choosing the aperture code (since the forward model depends on all system

parameters), the singular vectors shown in Figures 6.8 and 6.10 for the periodic aperture

bear a strong presence of periodic structure. For comparison, the singular vectors are shown
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in Figure 6.11 for n = 16 energy bins used with a random binary aperture, wheres instead of

arranged in a periodic structure, the lead features of the aperture were positioned randomly

on the same grid. These vectors appear more random and may be better suited for objects

not emphasizing periodic structure.

Vector 1     
s.v. = 1.0000

q 
/ k

eV
/c

2

4

6

8

10

12

14

16
Vector 307   
s.v. = 0.0976

Vector 612   
s.v. = 0.0535

Vector 918   
s.v. = 0.0380

q 
/ k

eV
/c

2

4

6

8

10

12

14

16
Vector 1223  
s.v. = 0.0294

Vector 1529  
s.v. = 0.0228

Vector 1834  
s.v. = 0.0174

z / mm

q 
/ k

eV
/c

140 160 180 200 220 240
2

4

6

8

10

12

14

16
Vector 2140  
s.v. = 0.0131

z / mm
140 160 180 200 220 240

Vector 2445  
s.v. = 0.0100

z / mm
140 160 180 200 220 240

Figure 6.10: Singular vectors for ∆E = 8 keV with a periodic coded aperture.
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Figure 6.11: Singular vectors for ∆E = 8 keV with a random binary coded aperture.

6.5 Reconstructions

To test the wisdom of the previous sections, measurements were simulated for the various

energy sensitive detection schemes and MLE reconstructions were performed. Figure 6.12

shows the simulated object F (z, q), which is based on a photograph from the Apache Trail

in AZ, US. This is a non-physical object, since the coordinates are range z and momentum

transfer q. Nevertheless, this example is meant to show the ability of the pencil beam

system to reconstruct any arbitrary scattering density F (z, q). Since the forward model (6.1)

ignores proportionality constants, the intensity scale in Figure 6.12 is somewhat arbitrary.

The forward matrix H for each trial was computed and used to simulate measurements via

g = Hf . These data were input to the Poisson MLE algorithm described by equation (1.9)

in Chapter 1. To study the performance of the system in the low-noise (high �ux) limit,

noise was not introduced to g prior to reconstruction. The iterations were terminated when

the relative change in the log-likelihood (equation (1.7) in Chapter 1) dropped below 1%.
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Figure 6.12: The 2D object object used to simulate data for the reconstructions, where
the grayscale value represents the value of the scattering density F (z, q).

The performance of four coded apertures were compared for varying energy resolution:

(1) the periodic code with 256 elements as previously described, (2) a binary random code

where each of the 256 elements had a 50% probably of containing lead, (3) a grayscale random

code where each of the elements had a concentration of lead randomly chosen between 0

and 1, and (4) no coded aperture. For illustration, the noiseless measurements for the

random grayscale aperture are shown in Figure 6.13, where the color scale indicates the

mean number of photons in each measurement. As expected from the incident spectrum

(Figure 6.3), the measurements show peaks from the characteristic lines at 59, 67, and 69

keV, and the Brehmsstrahlung background at a range of energies. The broad distribution of

the measurements over space (x) and energy (E) shows that they are a hybrid of energy and

angle dispersive. Looking at the measurements in Figure 6.13, it may be surprising that the

original image is encoded therein.
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Figure 6.13: Simulated noiseless measurements g for the case of n = 1024 bins (∆E =
0.125 keV) with a periodic coded aperture. The color scale indicates the number of photons
in each measurement.

Reconstructions for the di�erent apertures and selected energy resolutions are shown in

Figure 6.14. The energy resolution in each case is found from ∆E = 128 keV/n, where n

is the number of energy bins. The reconstructed image is not recognizable for any aperture

using the energy integrating detector (n = 1 energy bin), but consistent with the SVD

discussion of the previous section the cases with coded apertures shows more resemblance to

the original object. With n = 64 energy bins the image starts to appear, except in the case

with no coded aperture. The reconstructions improve with increasing energy resolution, as

expected. These results show the bene�t of using any of these apertures with energy sensitive

measurements.
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Figure 6.14: Reconstructed f from the simulated measurements with varying energy
resolution and coded apertures. Compare to the original object in Figure 6.12.

To compare the di�erent reconstructions quantitatively, the root mean squared error

(RMSE) was computed for each image and is plotted as a function of energy resolution in

Figure 6.15. Each aperture is given a curve with a di�erent color. The RMSE values were

divided by the mean value of the original object (Figure 6.12) to give meaning to the vertical

scale.
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Figure 6.15: RMSE values for each reconstruction, plotted as a function of the number of
energy bins and the choice of coded aperture. These RMSE values were divided by the mean
value of the original object.

The reconstruction error decreases with an increase in the number of energy bins, as

expected. The grayscale random code performed the best (it had the lowest RMSE), followed

closely by the random binary code. The periodic code, while optimized for range resolution

under isotropic scattering, could not quite compete with the random codes in this anisotropic

model. Consistent with the PSF and SVD analysis above, the case with no aperture performs

the worst. All the RMSE curves �attened out after 1024 energy bins, likely due to the limited

precision of the model used for the incident spectrum.

Unlike the SVD analysis, the RMSE is an object-dependent metric. Further study would

examine the reconstruction error for a broader class of objects, and compare 2D energy

sensitive arrays with the analysis in Chapter 2. Energy sensitivity provides additional dimen-

sionality to the measurements which will be critical for scaling CAXSI to 4D reconstruction

of F (x, y, z, q).
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CHAPTER 7: SUMMARY AND OUTLOOK

The primary contributions of this work are new methods for tomography by reuniting

coded apertures with x-rays through scatter imaging. These techniques are collectively

named �coded aperture x-ray scatter imaging� (CAXSI). Enabling technologies for CAXSI

are coded apertures designed for each speci�c imaging modality, and computational imaging

techniques for recovering the desired images.

Non-destructive testing via x-ray tomography is critical to medicine, security, and qual-

ity inspection. X-ray attenuation imaging enjoys a long history of success in these and

related �elds. Scatter imaging, while less mature than attenuation imaging, has already

enjoyed several decades of success. Scatter imaging seeks to measure the three dominant x-

ray interactions with matter (photoelectric absorption, incoherent scattering, and coherent

scattering) separately to provide improvements to tomography in the form of reduced dose,

new modalities, and chemical speci�city. Coded aperture imaging is another mature �eld

with roots in x-ray astronomy, which has since been used with great success in spectroscopy

and spectral imaging.

Chapter 1 included background on the history of coded apertures and x-ray scatter

imaging, and a description of the advantages of CAXSI compared with alternative techniques.

The physical principles of scattering were discussed, beginning with scattering from a point-

like target and examining the structure of the resulting incoherent and coherent scatter

signals. Emphasis was placed on coherent scattering since this is the primary mechanism

for chemical identi�cation, and simpli�cations and assumptions to the physical models

were presented which were used in the following chapters. The extension of the point-

like scattering experiment to volumetric imaging was discussed, with the measurement
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process viewed as a linear transformation from the unknown distribution of the target

object to the measurement domain. The dimensionality of the measurements compared

with that of the reconstructed object was discussed for the various imaging modalities that

followed, plus those in the literature. The concept of discretization of the continuous forward

model was presented, establishing a common mathematical framework for the theory and

experimental results. A noise model based on Poisson statistics was introduced which is

applicable to photon-limited measurements and a corresponding reconstruction algorithm

was derived based on Maximum Likelihood Estimation (MLE), which formed the basis

of the reconstruction algorithms used throughout this work. Chapter 1 concluded with a

description of the singular value decomposition (SVD) and motivated its utility in analyzing

measurement structure and comparing di�erent coded aperture designs.

Chapter 2 took a broad look at CAXSI systems from a theoretical standpoint and

proposed a number of new coded aperture designs. The pencil beam system employing a

periodic coded aperture was analyzed in detail, including its analytical SVD and resolution

metrics under isotropic scattering conditions. Study of the anisotropic case led to new ideas

about rotational orthogonality of codes, and motivated a number of novel coded apertures

which were compared through numerical evaluation of their singular values. Fan beam

scatter tomography was also analyzed for isotropic scattering, motivating yet another coded

aperture design. The scalability of pencil beam and fan beam CAXSI were compared with

Radon imaging and SVT, and found to be more favorable in terms of the magnitude of the

singular values. This suggests that CAXSI system may achieve superior SNR and/or reduced

patient dose when used in medical applications.

The �rst experimental demonstration of CAXSI was presented in Chapter 3. The ex-

perimental system included pencil beam illumination and enabled reconstruction of the

scattering density as a function of range and momentum transfer. This was the �rst use

of a periodic coded aperture to provide the range resolution necessary for such an endeavor.

The momentum transfer spectra from two di�erent crystalline samples at di�erent locations
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were reconstructed simultaneously from a single exposure (a �snapshot�) of a 2D detector

array with no a priori position information. These results demonstrated the potential for

tomography along 1D sections of a target and simultaneously measuring di�raction properties

at each location. The pencil beam approach could be raster-scanned to acquire tomographic

reconstructions through a volume or scanned over select regions of an object to obtain

information about its material composition at each point of interest.

The success of the pencil beam CAXSI experiment motivated its extension to a fan beam

system in Chapter 4. Transverse structure was introduced to the periodic coded aperture

according to a modi�ed uniformly redundant array (MURA). This coded aperture was the

�rst of its kind for imaging 2D object sections oriented perpendicular to a detector plane.

The imaging resolution resulting from such an aperture was presented, and an experimental

setup was constructed which enabled reconstruction of a 2D slice of an object from a snapshot

measurement. By acquiring a sequence of images, a dynamic object was reconstructed as the

�rst demonstration of video-rate tomography. This technique can be used for measurement

of a static 3D object if the fan beam is scanned in the direction of its normal. In addition

to reconstructing density images, the reconstruction algorithm also recovered the angular

scattering distribution for each object, which depends on, and may provide insight into, its

material composition.

Moving beyond 1D and 2D systems, Chapter 5 proposed coded apertures and Fourier-

based direct reconstruction algorithms for 3D imaging under isotropic scattering or emission.

This approach was motivated in part by literature on incoherent holography using a Fresnel

zone plate. A distinction was drawn between holography, which reconstructs the optical �eld,

and tomography, which reconstructs the radiating object. Multiple exposures are required for

tomography, and reconstruction techniques were presented for time series measurements from

a 2D detector array. Aside from changing the code itself over the time series, which is di�cult

in practice, the distance between the aperture and detector may be varied, or the object may

be linearly translated to achieve complete sampling of the object. Coded apertures enabling
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such reconstructions were presented which belong to a new family termed �frequency scale

codes� (FSC). The 1D sinusoid coded aperture proposed in Chapter 2 and used in the

experimental setup of Chapter 3 is understood to be the simplest FSC. Reconstruction using

a FSC enables sampling of individual Fourier coe�cients, motivating a discussion of potential

applications to compressive tomography and adaptive sensing.

Chapter 6 introduced the concept of energy sensitive detection for coherent scatter

imaging. These detectors provide a wealth of information about coherent scatter events

due to the energy dependence of Bragg's law. This chapter considered linear arrays of

energy sensitive detectors for coherent scatter imaging with a pencil beam. The degree of

energy resolution was studied as it a�ects the imaging resolution in range and momentum

transfer. Point spread functions were analyzed in terms of their dependence on the incident

spectrum, coded aperture, and energy resolution of the detector. SVD analysis provided

insight into the bene�ts of improved energy resolution and incorporation of a coded aperture.

Reconstructions were performed from simulated measurements which verify the e�ects of

improved energy resolution and the bene�ts of using a coded aperture.

The results presented here provide direction for future work in tomographic scatter

imaging. Detailed resolution and signal to noise analyses will be necessary for speci�c ap-

plications of the various CAXSI modalities. The forward models presented here capture the

basic physics of each system, however more sophisticated models will include corrections for

attenuation and multiple scattering e�ects as well. Multiplexed coherent scatter tomography

of 3D objects will require further study, with energy sensitive detection being a key enabling

technology. The coded aperture techniques presented in this work may also be useful for

ray-based optical systems operating at wavelengths far removed from x-rays.
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APPENDIX A: ENERGY TRANSFORMATION OF THE COHERENT
SCATTER DIFFERENTIAL CROSS SECTION

The coherent scatter forward models introduced in Section 1.2.1 of Chapter 1 and used

in Chapters 3 and 6 ignore the energy dependent coherent scatter cross section σC (E). This

can be partially justi�ed by using a narrowband spectrum, or in the �rst order scattering

approximation by multiplying N (E) by the probability for coherent scattering. In the

following, a more accurate model is presented which retains the normalization factor A(E)

and the Thompson factor 1 + cos2 θ in the expression for the di�erential scattering cross

section dσC
dΩ

(equation (1.4) in Chapter 1). This section uses the notation de�ned there,

except that in the following, the �C� subscripts are dropped so that σ and dσ
dΩ

refer to

coherent scatter cross sections.

Assume the x-ray di�raction measurement g (θ) was acquired by an energy-dispersive

di�ractometer such as the X'Pert PRO (PANalytical B.V., Almelo, The Netherlands). The

beam is approximated as monochromatic at energy Ē and the sample is assumed to be point-

like. An irradiance detector scans the scatter angle θ to acquire the irradiance measurements

g (θ). Given this function and a model for σ (E) for this sample from standard tables [38],

we would like to calculate the di�erential cross section dσ
dΩ

(E, θ) at arbitrary energy E and

angle θ and use it in more accurate forward models. As a consequence of the normalization,

a linear forward model in dσ
dΩ

(E, θ) will become nonlinear in the scattering density F (q),

The measured irradiance g (θ) is proportional to dσ
dΩ

(
Ē, θ

)
, the di�erential cross section

at energy Ē and angle θ. The normalization enforces that the known total cross section

σ (E) =
�

dΩ dσ
dΩ

(E, θ), where dΩ = sin θdθdφ is a solid angle element at angle θ and φ is

the azimuthal angle, of which the scattering is assumed independent. For simplicity, assume

the measurements are normalized so that
�

dΩ g
(
Ē, θ

)
= 1. The di�erential cross section

dσ
dΩ

(
Ē, θ

)
at �xed Ē is simply

dσ

dΩ

(
Ē, θ

)
= σ

(
Ē
)
g (θ) (7.1)
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Rewriting the left side of this expression in terms of the coherent scattering density F (q)

(equation 1.4 in Chapter 1), and solving for this function, we �nd the scattering density

F (q) =
g
(
θ = 2 sin−1

[
qc
2Ē

])[
1 + cos2

(
2 sin−1

[
qc
2Ē

])] (7.2)

where q is only speci�ed up to a value of 2Ē
c

sin θ̄max
2

, and θ̄max is the maximum scatter angle

measured. The expression (7.2) ignores the factor σ
(
Ē
)
/A
(
Ē
)
since we only need to specify

F (q) to within a multiplicative constant to compute dσ
dΩ

(E, θ). Repeating equation (1.4) in

Chapter 1:

dσ

dΩ
(E, θ) = A (E)

(
1 + cos2 θ

)
F

(
q =

2E

c
sin

θ

2

)
(7.3)

and enforcing the normalization σ (E) =
�

dΩ dσ
dΩ

(E, θ), we �nd the normalization factor

A (E) =
σ (E)�

dΩ (1 + cos2 θ)F
(
q = 2E

c
sin θ

2

) (7.4)

The result is the di�erential cross section

dσ

dΩ
(E, θ) =

σ (E) (1 + cos2 θ)F
(
q = 2E

c
sin θ

2

)
�

dΩ′ (1 + cos2 θ′)F
(
q = 2E

c
sin θ′

2

) (7.5)

where Ω′ and associated θ′ are integration variables, and F (q) is computed from (7.2). Note

that the di�erential cross section (7.5) is now nonlinear in the scattering density F (q),

producing a more complex but accurate scattering model. However, the linear scattering

models of Chapters 3 and 6 are justi�ed when the denominator in (7.5) does not vary

signi�cantly over the measured energy range.
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APPENDIX B: SINGULAR VALUE DECOMPOSITION FOR FAN BEAM
CAXSI

In this section we derive the singular value decomposition for fan beam CAXSI under

isotropic scattering, as described in Chapter 2. Starting with the forward model in equation

(2.7) from Chapter 2, we introduce the projective coordinates:

α = y′
d

z′

β = 1− d

z′

If we de�ne a new object function F (α, β) = d
(1−β)3F

(
x′ = 0, α

1−β ,
d

1−β

)
, the forward model

becomes

G(x, y) =

1�

0

∞�

−∞

F (α, β)T [xβ, βy + α] dα dβ.

The adjoint is de�ned by

FA(α′, β′) =

Y/2�

−Y/2

X/2�

−X/2

G(x, y)T [xβ′, β′y + α′]
∗

dx dy.

We rearrange this expression in terms of the normal operator:

FA(α′, β′) =

1�

0

∞�

−∞

F (α, β)K(α, β, α′, β′) dα dβ

with kernel function

K(α, β, α′, β′) =

X/2�

−X/2

Y/2�

−Y/2

T [xβ, βy + α]

× T [xβ′, β′y + α′]
∗

dx dy (7.6)
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Now consider a separable aperture code with the form T (x, y) = [1 + A(x)B(y)] /2 and

−1 ≤ A(x)B(y) ≤ 1. Inserting this into equation (7.6):

KS(α, β, α′, β′) =

X/2�

−X/2

Y/2�

−Y/2

1 + A(xβ)B[βy + α]

2

× 1 + A(xβ′)∗B[β′y + α′]∗

2
dy dx.

We consider codes with 50% average transmission so that
X/2�
−X/2

Y/2�
−Y/2

A(xβ)B[βy + α] dy dx ≈

0. Then we can neglect this contribution and consider only

KS(α, β, α′, β′) =
XY

4
+

1

4

X/2�

−X/2

A(xβ)A(xβ′)∗ dx

×
Y/2�

−Y/2

B[βy + α]B[β′y + α′]∗dy (7.7)

With our scale code A(x) = cos (2πux), the integral over X is

X/2�

−X/2

cos (2πuxβ) cos (2πuxβ′) dx

=
1

2

X/2�

−X/2

cos [2πux(β − β′)] + cos [2πux(β + β′)] dx

=
1

2πu(β − β′)
sin [πuX(β − β′)] +

1

2πu(β + β′)
sin [πuX(β + β′)]

≈ X

2
sinc[Nx(β − β′)],

with Nx = uX. This neglects the rapidly oscillating term β + β′. The eigenfunctions for

the sinc kernel are the prolate spheroidal wavefunctions [82], however we take a di�erent

approach here. For simplicity we take Nx � 1 so that the integral is only nonzero when
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β ≈ β′. Equation (7.7) is approximated by

KS(α, β, α′, β′) =
XY

4
+
X

8
sinc[Nx(β − β′)]

×
Y/2�

−Y/2

B[
β + β′

2
y + α]B[

β + β′

2
y + α′]∗dy (7.8)

with β+β′

2
≈ β ≈ β′ at the peak of the sinc function. If B(y) is periodic with period P so

that B(y) =
∞∑

n=−∞
cn exp

(
2πiny
P

)
(as would be represented by a convolutional code), then

KS(α, β, α′, β′) =
XY

4
+
X

8
sinc[Nx(β − β′)]

×
Y/2�

−Y/2

[∑
n

cn exp

(
2πin

P

[
β + β′

2
y + α

])]

×

[∑
n′

c∗n′ exp

(
−2πin′

P

[
β + β′

2
y + α′

])]
dy.

We approximate the integral with a full period over the periodic function, which is 2P
β+β′ ,

neglecting any edge e�ects:

KS(α, β, α′, β′) =
XY

4
+
X

8
sinc[Nx(β − β′)]

Y (β + β′)

2P

×
P/(β+β′)�

−P/(β+β′)

[∑
n

cn exp

(
2πin

P

[
β + β′

2
y + α

])]

×

[∑
n′

c∗n′ exp

(
−2πin′

P

[
β + β′

2
y + α′

])]
dy.

All of the terms for which n 6= n′ are zero, so the integral becomes

KS(α, β, α′, β′) =
XY

4
+
X

8
sinc[Nx(β − β′)]

Y (β + β′)

2P
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×
P/(β+β′)�

−P/(β+β′)

∑
n

|cn|2 exp

(
2πin

P
[α− α′]

)
dy.

Evaluating the integral,

KS(α, β, α′, β′) =
XY

4
+
XY

8
sinc[Nx(β − β′)]

×
∞∑

n=−∞

|cn|2 exp

(
2πin

P
[α− α′]

)
.

The sum is just the Fourier series of the auto-correlation of B(y), represented by BA(y):

KS(α, β, α′, β′) =
XY

4

(
1 +

1

2
sinc[Nx(β − β′)]BA(α− α′)

)
(7.9)

Equation (7.9) describes the point spread function (PSF) at projective coordinates (α, β)

due to an impulse at (α′, β′). The singular value decomposition can be found by solving the

eigenvalue equation

λ2
mnF (α′, β′) =

1�

0

∞�

−∞

Fmn(α, β)K(α, β, α′, β′) dα dβ, (7.10)

with the eigenvectors being the singular vectors of the kernel and the eigenvalues being the

squares of the singular values λmn. For simplicity, we assume the object is periodic such that

F (α, β) = F (α + P, β + 1). An ansatz for the form of the singular vectors is

Fmn(α, β) = e−2πi(αmP +βn)

Inserting this into the eigenvalue equation (7.10),

λ2
mne

−2πi
(
α′m
P

+β′n
)

=
1

P

� P/2

−P/2
dα

� 1

0

dβ e−2πi(αmP +βn)K(α, β, α′, β′).
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On the right hand side, the integrals over the �rst term in K(α, β, α′, β′) evaluate to

XY

4P

� P/2

−P/2
dα e−

2πiαm
P

� 1

0

dβ e−2πiβn =
XY

4
δn0δm0

The second term in K produces

XY

8P

� P/2

−P/2
dα e−

2παm
P BA(α− α′)

� 1

0

dβ e−2πiβnsinc [Nx(β − β′)] .

The �rst integral evaluates to (XY/8) exp(−2πimα′/P )|cm|2. For the second integral, since

Nx � 1 the sinc function only contributes when β ≈ β′ and we can extend the limits to

±∞. The result is the Fourier transform of the sinc, or exp(−2πβ′n)rect(n/Nx)/Nx. We

�nd singular values

λmn =

√
XY

2

√
δm0δn0 +

|cm|2

2Nx

rect

(
n

Nx

)
. (7.11)

To evaluate cm, note that the function B(y) is the convolution of the code sequence a(y) =∑Ny−1
n=0 anδ(y − nP/Ny) and the pulse train b(y) =

∑∞
m=−∞ rect[Ny(y/P −m)], where Ny is

the code length. From the convolution theorem, the continuous Fourier transform of B(y) is

B̃(ν ′) = ã(ν ′)b̃(ν ′), where ν ′ is a spatial frequency and

ã(ν ′) =

� ∞
−∞

dy e−2πiyν′ a(y)

=
N−1∑
n=0

ane
−2πinν′P/Ny

b̃(ν ′) =

� ∞
−∞

dy e−2πiyν′ b(y)

=
1

Ny

sinc

(
ν ′P

Ny

) ∞∑
m=−∞

δ
(
ν ′ − m

P

)

The coe�cients cm can be extracted via

cm = lim
ε→0

� m/P+ε

m/P−ε
dν ′ B̃(ν ′)
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=
1

Ny

sinc

(
m

Ny

)Ny−1∑
n=0

ane
−2πinm/Ny

=
1

Ny

sinc

(
m

Ny

)
ãm,

where {ãm} is the discrete Fourier transform (DFT) of {an}. From Parseval's theorem, the

root-mean-squared (RMS) value of ãm is

√√√√ 1

Ny

Ny−1∑
m=0

|ãm|2 =

√√√√Ny−1∑
m=0

|an|2

=
√
Ny

where the last line follows from an = ±1. Therefore we have |cm| ≈ sinc(m/Ny)/
√
Ny.

Substituting this value for cm in equation (7.11), the singular values for m 6= 0 or n 6= 0 are

λmn =
1

2

√
XY

NxNy

rect

(
n

Nx

)
sinc

(
m

Ny

)

This spectrum has maximum value λ00 =
√
XY /2 and roughly NxNy singular values that are

smaller by a factor of
√
NxNy. When estimating N2 object coe�cients with Nx = Ny = N ,

the singular values have magnitude proportional to 1/N .
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APPENDIX C: DETERMINATION OF SOURCE POSITION

In this section we present the technique used to locate the x-ray anode for the experiment

in Chapter 4. We placed point phantoms at positions pa, where the index a labels the

particular phantom. The phantom points used were the corners of the coded aperture when

placed at varying ranges from the detector plane. X-ray projections of these points were

made to give the image positions qa on the detector. We would like to �nd the position s of

the x-ray anode (hereafter, the �source�) from these projections.

Each point phantom and its image together produce a line. The source ideally lies at

the intersection of these lines, but due to measurement errors the lines may not all cross. A

simple choice is to minimize the sum of the squared distances from s to each line. The line

de�ned by point p and q is parameterized by

r (λ) = q + λ (p− q) (7.12)

The squared distance between s and each point on this line is

L2 (λ) = |s− r (λ)|2

=
∑
i

(si − ri (λ))2

=
∑
i

[si − qi − λ (pi − qi)]2

=
∑
i

[
(si − qi)2 + λ2 (pi − qi)2 − 2λ (si − qi) (pi − qi)

]
Where the sum runs over all spatial dimensions. The minimum distance occurs when

dL2 (λ)

dλ
= 0

= 2
∑
i

(
λ (pi − qi)2 − (si − qi) (pi − qi)

)
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and therefore when

λ =
(s− q) · (p− q)

|p− q|2

Inserting this into (7.12) gives the minimum distance

L2 =
∑
i

[
(si − qi)2 +

(
(s− q) · (p− q)

|p− q|2

)2

(pi − qi)2 − 2

(
(s− q) · (p− q)

|p− q|2

)
(si − qi) (pi − qi)

]

= |s− q|2 −
(

(s− q) · (p− q)

|p− q|2

)2

To �nd s, minimization can be performed on the sum of minimum distances to each line:

J =
∑
a

L2
a

=
∑
a

(
|s− qa|2 − [(s− qa) ·ua]2

)

where ua = pa−qa
|pa−qa| . The derivatives of J with respect to the components si are

∂J

∂si
=

∑
a

[2 (si − qai )− 2uai (s− pa) ·ua]

Minimization occurs when

∂J

∂si
= 0 (7.13)

=
∑
a

[2 (si − qai )− 2uai (s− qa) ·ua]

=
∑
a

(si − qai )−
∑
a

uai
∑
j

(
sj − qaj

)
uaj

=
∑
a

(si − qai )−
∑
a

uai
∑
j

uaj
(
sj − qaj

)
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which can be expressed as

∑
a

∑
j

(
δij − uai uaj

) (
sj − qaj

)
= 0∑

a

∑
j

(
δij − uai uaj

)
sj =

∑
a

∑
j

(
δij − uai uaj

)
qaj

∑
j

∑
a

(
δij − uai uaj

)
sj =

∑
a

(
qai − uai

∑
j

uaj q
a
j

)
∑
a

(1− ua ⊗ ua) s =
∑
a

(1− ua ⊗ ua) qa[∑
a

Ma

]
s =

∑
a

Maqa (7.14)

where Ma = 1 − ua ⊗ ua is the operator projecting a vector onto the space orthogonal to

ua. The solution for the source position s is

s =

[∑
a

Ma

]−1∑
a

Maqa

where the inverse can be solved by standard linear algebra techniques.
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