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ABSTRACT 

Cameron James Bloomquist: Continuous liquid interface production of medical devices for drug 

delivery and cancer therapy 

(Under the direction of Joseph M. DeSimone) 

With increasing interest in patient-specific dosage forms to tailor treatment and improve 

patient compliance, 3D printed drug formulations and medical devices have garnered much 

attention. The software-driven design and ability to fabricate a unique part with each print, 

makes 3D printing a versatile platform. This versatility affords personalization through 

anatomically-specific designs and the tuning a dosage form to each individual patient’s clinical 

needs. The recent introduction of the 3D printing technique, Continuous Liquid Interface 

Production (CLIP), presents a platform capable of producing devices in a rapid manner with 

mechanical properties suitable to serve as a final product rather than just a prototype. The study 

described herein is the investigation of CLIP as a methodology to fabricate drug-loaded, 

biocompatible medical devices with controlled release properties.  

We sought to characterize how parameters including crosslink density, polymer network 

composition, and the geometric complexity afforded by CLIP can be utilized to modify drug 

release from 3D printed dosage forms. Through systematic variation of the crosslink density and 

polymer composition of polycaprolactone and poly(ethylene glycol) based formulations, it was 

demonstrated that release kinetics of a small molecule drug surrogate, rhodamine B-base, can 

be modified through alterations in the resin formulation. Further, using a constant resin 

formulation, the RhB release was shown to be controllable through the geometric complexity 

built into the computer aided design (CAD) model.  



 iv 

The suitability of CLIP for production of drug-loaded devices was investigated by 

screening a panel of clinically-relevant small molecule therapeutics for stability towards potential 

stresses from the CLIP process, including UV irradiation and interactions with free radicals. 

Additionally, select formulations were chosen to produce model devices which were tested for 

biocompatibility, degradation and encapsulation of a chemotherapeutic, docetaxel, and a 

corticosteroid, dexamethasone-acetate. Devices indicated biocompatibility over the course of 

175 days of in vitro degradation and mirrored the release kinetics observed for the RhB model 

drug. 

Finally, these lessons learned were applied to the development and in vivo testing of two 

chemotherapeutic-loaded implantable devices: 1) an intraoperative implant for the prevention of 

lung cancer recurrence following resection and 2) brachytherapy spacers for the treatment of 

localized prostate cancer.  

  



 v 

 
Dedicated to Isaac James Bloomquist 

 
May your curiosities and passion to pursue them know no bounds 

 

  



 vi 

 
ACKNOWLEDGEMENTS 

I want to express my sincere gratitude to the countless people that without whom the 

completion of this work would not have been possible. I would first like to thank my advisor Dr. 

Joseph DeSimone for the opportunity to be a part of your group, work with an amazingly diverse 

and talented team of students and scientist, and to contribute to exciting and meaningful 

projects. The lessons I have learned about entrepreneurship, communication, and collaboration 

within interdisciplinary teams have been integral to my development as a scientist and leader. I 

would also like to thank my co-advisor and collaborator Dr. Andrew Wang for the opportunity to 

be a part of your group, and for the guidance and direction you provided throughout my 

graduate studies. The clinical perspective I gained from working with you and your group will 

prove invaluable for my career. Thank you to Dr. Wei You, Dr. Joel Tepper, and Dr. Sam Lai for 

agreeing to be a part of my committee and for the helpful feedback and guidance along the way. 

I would also like to acknowledge the UNC core facilities and groups, especially Charlene Santos 

and the Animal Studies Core, Dr. Stephanie Montgomery from the Animal Histopathology and 

Lab Medicine Core, as well as Dr. Amar Kumbhar from CHANL.  

To the amazing colleagues that I have had the pleasure of working alongside, learning 

from, and laughing with – I could not have asked for a better group and team to be a part of. 

Special thanks to the entire leadership team: Dr. Shaomin Tian, Dr. Jillian Perry, Dr. Sue 

Mecham, and Dr. Chris Luft. It is impossible to overstate how much I appreciate all the work you 

put in to develop students into scientists and researchers. Thanks to all the 3D printing team 

members past and present: Rima Janusziewicz, Dr. Adam Quintanilla, Dr. Cassie Caudill, Dr. 

Ashley Johnson, Dr. Greg Robbins, Dr. Ali Nebipasagil, Dr. Bob Pinschmidt, Dr. Lihong Huang, 



 vii 

and Dr. Kseniya Gavrilov. Thanks to the rest of the current DeSimone team, Dr. Kevin Olson, 

Dr. Jason Coffman and Dr. Erin Wilson. This has been an awesome challenge and I am grateful 

to each and every one of you for the truly collaborative atmosphere that makes doing research 

fun! 

I would also like to thank former DeSimone group members for making me feel like a 

valuable part of the team from day one: Dr. Cathy Froman for being my desk buddy and always 

telling me the honest truth about everything, and in the process giving me some of the best 

advice I have received throughout this experience – you are going to make an incredible mentor 

and teacher to those that will have the pleasure of working with you; Dr. Chintan Kapadia - your 

work ethic is inspirational, and your passion for life and persistent joy was contagious and made 

life in lab better every day; and Dr. Kevin Reuter for showing me the ropes during my rotation 

and always providing a laugh or two when needed. Special thanks to Dr. Tojan Rahhal – I am 

so glad we joined the DeSimone group at the same time. I never thought I would have 

developed as much as I have as a person and leader over the past 5 years. This would not 

have been the case if not for your willingness to talk about the important topics beyond science 

and your inclusion of me in the CCLD project. I will be forever grateful for the perspective you 

provided. Your hard work is already inspiring countless future leaders, engineers, and scientists; 

and I look forward to seeing how your efforts will positively impact the future of science. 

To my family, thank you so much for always being a source of support and 

encouragement. Geoff, you set the precedent for academic success in our family and were 

always willing to offer support, encouragement and guidance throughout my education. Your 

ability to argue about any topic (as frustrating as it can be) shaped my scientific approach by 

pushing me to be sure that I was always capable of backing up any statement with evidence or 

facts. Eric, your genuine curiosity helped shape the way I approached and communicated my 

research. You were never satisfied with the simple explanations that I gave most laypersons 

and you always wanted to know more. That pushed me to think deeper about my research and 



 viii 

allowed me to look at my work from a different scientific perspective. That desire to know more 

will serve you well in your career. Mom and Dad, thank you nurturing my sense of wonder and 

curiosity, which is essential for success as a scientist, from an early age. From going to science 

expos at school to building 2-liter tornados, you always found time to develop our curiosity. A 

wise man once told me, “Life is positioning,” and you guys put me in a position to be successful. 

I do not take that for granted.  

Lastly, and most importantly, I would like to thank my amazing wife, Ashley. You 

encouraged me to pursue my Ph.D. and supported me throughout the process. It is impossible 

to express how much I appreciate the sacrifices you made and the extra work you did for me 

during these years. I can say, without a doubt, that if not for you I would not have been able to 

do this. You played so many important roles for me: my motivation, my support, my therapist, 

my secretary, my accountant, my nutritionist, and my best friend. I love you so much. 

  



 ix 

 
TABLE OF CONTENTS 

LIST OF FIGURES ...................................................................................................................... xv	

LIST OF TABLES ....................................................................................................................... xix	

LIST OF ABBREVIATIONS ......................................................................................................... xx	

CHAPTER 1: INTRODUCTION TO DRUG DELIVERY AND 3D PRINTING .............................. 1	

Chapter goals ............................................................................................................................ 1	

1.1 Drug delivery and controlled release .................................................................................. 1	

1.2 3D printing and applications in drug delivery ...................................................................... 7	

1.2.1 Extrusion based 3D printing ....................................................................................... 13	

1.2.1.1 Fused deposition modeling (FDM) ...................................................................... 13	

1.2.1.2 Semi-solid Extrusion (EXT) ................................................................................. 15	

1.2.2 Powder-bed fusion ..................................................................................................... 16	

1.2.2.1 Selective laser sintering (SLS) ............................................................................ 17	

1.2.2.2 Inkjet and polyjet binder deposition ..................................................................... 18	

1.2.3 Stereolithography (SLA) ............................................................................................. 19	

1.3 Continuous Liquid Interface Production (CLIP) ................................................................. 22	

1.4 3D printing biomaterials .................................................................................................... 24	

1.4.1 3D printing in a clinical setting .................................................................................... 24	

1.4.2 Tissue engineering ..................................................................................................... 25	

References .............................................................................................................................. 29	

CHAPTER 2: SYNTHESIS AND CHARACTERIZATION OF PHOTOPOLYMERS 
 FOR BIOMEDICAL APPLICATIONS ................................................................. 38	

Chapter goals .......................................................................................................................... 38	



 x 

2.1 Introduction ....................................................................................................................... 38	

2.1.1 Radical photopolymerization ...................................................................................... 38	

2.1.2 Current state of biomaterials based on photopolymers .............................................. 42	

2.2 Materials and Methods ...................................................................................................... 44	

2.2.1 Materials ..................................................................................................................... 44	

2.2.2 Synthesis of methacrylate-functionalized polycaprolactone ....................................... 44	

2.2.2.1 Synthesis of PCL1100-TMA ................................................................................... 44	

2.2.2.2 Synthesis of PCL700- DMA ................................................................................... 45	

2.2.3 Photocalorimetry ........................................................................................................ 46	

2.2.4 Differential Scanning Calorimetry ............................................................................... 47	

2.2.5 Synthesis of HA-GMA ................................................................................................ 47	

2.2.6 Photo-rheology of HA-GMA ....................................................................................... 48	

2.2.7 Continuous Liquid Interface Production of a HA-GMA hydrogel ................................ 48	

2.3 Results and Discussion ..................................................................................................... 48	

2.3.1 Synthesis of methacrylate-functionalized polycaprolactone ....................................... 48	

2.3.2 Characterization of methacrylate-functionalized polycaprolactone ............................ 51	

2.3.2.1 Photokinetics ....................................................................................................... 51	

2.3.2.2 Thermal properties .............................................................................................. 54	

2.3.3 Synthesis of HA-GMA ................................................................................................ 55	

2.4 Conclusions ...................................................................................................................... 58	

References .............................................................................................................................. 59	

CHAPTER 3: CONTROLLING THE RELEASE OF A SMALL MOLECULE 
 DRUG SURROGATE FROM DEVICES FABRICATED WITH CLIP .................. 63	

3.1 Introduction ....................................................................................................................... 63	

3.2 Materials and Methods ...................................................................................................... 68	

3.2.1 Materials ..................................................................................................................... 68	

3.2.2 Continuous Liquid Interface Production ..................................................................... 68	



 xi 

3.2.3 CLIP fabrication of geometrically complex devices .................................................... 69	

3.2.3.1 Varying unit cell geometry with a constant unit cell size ...................................... 69	

3.2.3.2 Varying unit cell size with a constant unit cell geometry and 

print parameters .................................................................................................. 70	

3.2.3.3 Constant unit cell geometry, theoretical volume, optimized 

print parameters .................................................................................................. 71	

3.2.4 CLIP fabrication of devices with varying crosslink density ......................................... 73	

3.2.5 CLIP fabrication of devices with varying polymer network composition ..................... 75	

3.2.6 Characterization of CLIP devices ............................................................................... 77	

3.2.6.1 Swelling and gel fractions .................................................................................... 77	

3.2.6.2 Scanning electron microscopy ............................................................................. 78	

3.2.6.3 Thermal analysis of printed parts ........................................................................ 78	

3.2.6.3 RhB extraction ..................................................................................................... 78	

3.2.6.3 In vitro RhB release ............................................................................................. 78	

3.3 Results and Discussion ..................................................................................................... 79	

3.3.1 Effect of Geometry ..................................................................................................... 79	

3.3.1.1 Varying unit cell geometry with a constant unit cell size ...................................... 81	

3.3.1.2 Varying unit cell size while holding unit cell geometry  

and print parameters constant ............................................................................ 86	

3.3.1.3 Constant unit cell geometry, theoretical volume, optimized  

print parameters .................................................................................................. 89	

3.3.2 Effect of crosslink density ........................................................................................... 94	

3.3.3 Effect of polymer network composition ...................................................................... 98	

3.4. Conclusions ................................................................................................................... 101	

References ............................................................................................................................ 102	

CHAPTER 4: PRE-CLINICAL EVALUATION OF CLIP FOR THE FABRICATION  
OF PHARMACEUTICAL AND MEDICAL DEVICES ........................................ 105	

4.1 Introduction ..................................................................................................................... 105	

4.2 Materials and Methods .................................................................................................... 107	



 xii 

4.2.1 Materials ................................................................................................................... 107	

4.2.2 Drug screen for UV and radical stability ................................................................... 107	

4.2.3 Formulation of docetaxel and dexamethasone-acetate resins ................................. 109	

4.2.4 Polymerization kinetics of resins .............................................................................. 110	

4.2.5 Continuous Liquid Interface Production ................................................................... 111	

4.2.6 Drug loading and in vitro release from DTXL- and DexAc-loaded devices .............. 111	

4.2.7 Coating devices with DTXL and DexAc ................................................................... 112	

4.2.8 In vitro cytocompatibility ........................................................................................... 113	

4.2.8.1 Cell culture ......................................................................................................... 113	

4.2.8.2 Cytotoxicity of monomers .................................................................................. 113	

4.2.8.3 Cytocompatibility of leachables and degradation products ............................... 114	

4.3 Results and Discussion ................................................................................................... 115	

4.3.1 Drug screen for UV and radical stability ................................................................... 115	

4.3.2 Formulation and photokinetics of drug-loaded resins .............................................. 119	

4.3.3 Encapsulation, extraction and release of DTXL and DexAc from 

CLIP devices ............................................................................................................ 121	

4.3.4 Coating as a method for API incorporation .............................................................. 125	

4.3.5 In vitro biocompatibility of CLIP materials ................................................................ 126	

4.3.5.1 Cytotoxicity screen of CLIP monomers ............................................................. 127	

4.3.5.2 Degradation and cytotoxicity of CLIP devices ................................................... 129	

4.4 Conclusion and Future Work .......................................................................................... 130	

References ............................................................................................................................ 134	

CHAPTER 5: PRECLINICAL EVALUATION OF CLIP MEDICAL DEVICES ......................... 136	

Chapter goals ........................................................................................................................ 136	

5.1 Introduction ..................................................................................................................... 136	

5.1.1 Lung cancer recurrence following surgical resection ............................................... 136	

5.1.2 Brachytherapy background ...................................................................................... 138	



 xiii 

5.2 Materials and Methods .................................................................................................... 140	

5.2.1 Materials ................................................................................................................... 140	

5.2.2 Cell culture ............................................................................................................... 141	

5.2.3 Experimental Animals .............................................................................................. 142	

5.2.4 Methods for Intraoperative needles to reduce cancer recurrence ............................ 142	

5.2.4.1 Optimization of CLIP parameters for the fabrication of  

intraoperative devices ....................................................................................... 142	

5.2.4.2 Fabrication of drug-loaded intraoperative devices ............................................. 143	

5.2.4.3 In vitro drug release studies .............................................................................. 143	

5.2.4.4 In vivo tumor recurrence model ......................................................................... 144	

5.2.4.5 Clinical chemistry and histopathological analysis .............................................. 145	

5.2.5 Methods for CLIP brachytherapy spacers ................................................................ 145	

5.2.5.1 CLIP brachytherapy spacers for in vitro toxicity and in vivo efficacy ................. 145	

5.2.5.2 In vitro cytotoxicity of CLIP brachytherapy spacers ........................................... 146	

5.2.5.3 In vivo efficacy of CLIP brachytherapy spacers ................................................. 146	

5.2.5.4 Solvent uptake in brachytherapy spacers printed with different  

overall light exposures ...................................................................................... 147	

5.2.5.5 DTXL release from brachytherapy spacers printed with different  

overall light exposures ...................................................................................... 148	

5.2.5.6 Printing complex geometries on the scale of brachytherapy spacers ............... 149	

5.3 Results and Discussion ................................................................................................... 150	

5.3.1 Intraoperative implants to reduce cancer recurrence ............................................... 150	

5.3.1.1 Optimization of CLIP parameters and processing for fabrication  

of intraoperative device ..................................................................................... 150	

5.3.1.2 Fabrication and characterization of drug loaded intraoperative devices ........... 153	

5.3.1.3 Preliminary characterization of in vivo resection and recurrent  

tumor models .................................................................................................... 157	

5.3.1.4 In vivo efficacy of intraoperative devices against tumor recurrence .................. 159	

5.3.1.5 Future directions for development of intraoperative implants ............................ 164	



 xiv 

5.3.2 Brachytherapy spacers ............................................................................................ 165	

5.3.2.1 In vitro cytotoxicity of CLIP brachytherapy spacers ........................................... 165	

5.3.2.2 In vivo efficacy of DTXL-loaded brachytherapy spacers ................................... 166	

5.3.2.3 Photopolymerization kinetics as a method to control drug release ................... 167	

5.3.2.4 Complex geometries on the scale of brachytherapy spacers ............................ 169	

5.4 Conclusions and future directions ................................................................................... 171	

References ............................................................................................................................ 173	

 

  



 xv 

LIST OF FIGURES 

Figure 1.1 Controlled release systems compared to conventional administration ....................... 2	

Figure 1.2 Osmotically-driven drug release devices. Elementary osmotic pump ......................... 4	

Figure 1.3 General process of 3D printing ................................................................................... 9	

Figure 1.4 Potential system of patient-centered healthcare ....................................................... 10	

Figure 1.5 Examples of different designs used to manufacture 3D printed tablets .................... 12	

Figure 1.6 Extrusion based 3D printing methods ....................................................................... 15	

Figure 1.7 Powder-bed fusion 3D printing techniques ............................................................... 17	

Figure 1.8 Diagrams of stereolithography 3D printers ................................................................ 20	

Figure 1.9 CLIP enables fast print speeds and layerless part construction ............................... 23	

Figure 1.10 Typical process for fabrication of a tissue engineering scaffold to  

be seeded with cells following complete fabrication ................................................ 27	

Figure 2.1 Initiation and propagation steps in free radical photopolymerization  

of a monomethacrylate monomer. ............................................................................ 40	

Figure 2.2 Bimolecular termination of propagating methacrylate radicals .................................. 41	

Figure 2.3 Synthesis of PCL1100-TMA ......................................................................................... 49	

Figure 2.4 Synthesis of PCL700-DMA .......................................................................................... 50	

Figure 2.5 Quantitative 
13

C NMR of PCL700-DMA ....................................................................... 51	

Figure 2.6 Schematic of photo-DSC apparatus. ......................................................................... 52	

Figure 2.7 Photocalorimetry thermograms ................................................................................. 52	

Figure 2.8 Effects of light intensity of the extent of polymerization of PCL1100-TMA ................... 53	

Figure 2.9 Thermal analysis of methacrylated PCL monomers ................................................. 54	

Figure 2.10 Synthesis of HA-GMA ............................................................................................. 55	

Figure 2.11 Photo-rheology and CLIP of HA-GMA hydrogels .................................................... 57	

Figure 3.1 Potential approaches for producing drug-loaded devices ......................................... 67	

Figure 3.2 Geometrically complex CAD models of varying unit cells ......................................... 70	

Figure 3.3 Schematic of CAD generation for geometricly complex devices ............................... 71	



 xvi 

Figure 3.4 Generation of CAD files for model devices containing various surface  

areas and a constant volume .................................................................................... 72	

Figure 3.5 Schematic of !" calculation for a network made up entirely of  

crosslinking monomers ............................................................................................. 74	

Figure 3.6 Comparison of 3D printed and polymer foam scaffolds ............................................ 80	

Figure 3.7 Geometrically complex model devices made from three unique unit  

cell geometries with constant unit cell size ............................................................... 81	

Figure 3.8 Solvent uptake and gel fraction of geometrically complex devices  

generated by arraying different unit cell geometries ................................................. 83	

Figure 3.9 Linear correlation between the theoretical surface area to volume  

ratio and gel fraction. ................................................................................................ 84	

Figure 3.10 Mass and RhB loading in geometrically complex devices 

 with constant unit cell size ....................................................................................... 84	

Figure 3.11 In vitro RhB release from geometrically complex devices 

 with uniform unit cell size ......................................................................................... 86	

Figure 3.12 Effect of unit cell size on theoretical part volume and surface area ........................ 87	

Figure 3.13 Visible light photograph of devices with constant print parameters, 

 constant unit cell geometry, and various unit cell dimensions ................................. 88	

Figure 3.14 In vitro RhB release and fabricated part mass ........................................................ 89	

Figure 3.15 Optimization of print parameters to achieve similar device mass ........................... 91	

Figure 3.16 Geometrically complex model devices loaded with RhB 

  as a surrogate drug ................................................................................................. 92	

Figure 3.17 Solvent swelling of geometrically complex devices generated by  

arraying node unit cells of 1, 2, and 3 mm fabricated with optimized  

parameters to control for part mass. ....................................................................... 93	

Figure 3.18 Characterization of geometrically complex model devices ..................................... 94	

Figure 3.19 Gel fractions of RhB-loaded disks with different crosslink densities ....................... 96	

Figure 3.20 Characterization of RhB-loaded model devices with different  

 crosslink densities .................................................................................................... 97	

Figure 3.21 Dependence of the PBS uptake and Tg of model devices on  

 diluent content in PCL700-DMA. ................................................................................ 99	

Figure 3.22 Effect of polymer network composition on in vitro RhB release  

from PCL700-DMA based formulations ................................................................... 100	



 xvii 

Figure 4.1 Representative HPLC chromatographs for drugs that are UV stable  

and UV labile .......................................................................................................... 116	

Figure 4.2 Stability of a panel of clinically-relevant drugs to UV exposure and  

radical presence ..................................................................................................... 117	

Figure 4.3 Stability testing in additional conditions ................................................................... 119	

Figure 4.4 Photocalorimetry thermal traces of blank, DTXL- and DexAc- 

loaded resins .......................................................................................................... 120	

Figure 4.5 Characterization of DTXL- and DexAc-loaded model devices ................................ 122	

Figure 4.6 Analysis of progress of drug extraction from release study samples ...................... 124	

Figure 4.7 Drug loading of coated disks ................................................................................... 125	

 Figure 4.8 Dissolution of DTXL and DexAc from drug-coated model disks. ........................... 126	

Figure 4.9 Biocompatibility of monomers on 344SQ cells ........................................................ 128	

Figure 4.10 Mass loss and cytotoxicity of model devices due to degradation and  

extraction of soluble content .................................................................................. 130	

Figure 4.11 Theoretical approaches to functionalize drug into network ................................... 133	

Figure 5.1 Brachytherapy schematic ........................................................................................ 139	

Figure 5.2 Modified Slide-a-lyzers
TM

 MINI dialysis cassettes for in vitro  
release studies ........................................................................................................ 149	

Figure 5.3 Intraoperative implant model ................................................................................... 150	

Figure 5.4 Effect of UV absorber on resolution of neelde arrowhead resolution ...................... 151	

Figure 5.5 Optimization of parameters for the post-processing of intraoperative  

implants to ensure uniformity of fabricated devices ................................................ 153	

Figure 5.6 Visible light image of blank, PTX, CPP, and PTX/CPP intraoperative  

implants .................................................................................................................. 154	

Figure 5.7 SEM imaging of intraoperative devices ................................................................... 155	

Figure 5.8 SEM micrographs of intraoperative devices (no drug) showing  

surface texture of implant backings ........................................................................ 156	

Figure 5.9 In vitro release of PTX and CPP from PEG550-DMA/HEMA resins ......................... 157	

Figure 5.10 Tumor volume curves for preliminary characterization of recurrent  

tumor models ......................................................................................................... 157	

Figure 5.11 Results of preliminary tolerability study ................................................................. 158	



 xviii 

Figure 5.12 Tumor inhibition effects of PTX implants compared to I.V. PTX,  

blank implants, and resection only ........................................................................ 160	

Figure 5.13 Individual tumor volume curves for each treatment arm ....................................... 161	

Figure 5.14 Histopathology of tumor tissue .............................................................................. 163	

Figure 5.15 Results of complete blood count and serum biochemical analysis  

of hematological, hepatic, and renal toxicity .......................................................... 164	

Figure 5.16 Janus-style intraoperative devices ........................................................................ 165	

Figure 5.17 In vitro cytotoxicity of brachytherapy spacers ....................................................... 166	

Figure 5.18 In vivo efficacy of DTXL-loaded brachytherapy spacers ....................................... 166	

Figure 5.19 Characterization of CLIP brachytherapy spacers fabricated using  

different overall light exposures. ............................................................................ 168	

Figure 5.20 In vitro DTXL release from spacers printed at different light intensities ................ 169	

Figure 5.21. Complex geometries printed on the scale of brachytherapy spacers .................. 170	

 

  



 xix 

LIST OF TABLES

Table 2.1 Photokinetic parameters of PCL1100-TMA upon exposure with a range 

of light intensities for 15 minutes .......................................................................... 53	

Table 3.1 Formulations and MC values for resins used in crosslink density experiment ............ 73	

Table 3.2 Formulations and MC calculations for resins used in the experiments 

to test the effect polymer network composition. ................................................... 76	

Table 4.1 Details of HPLC methods used in UV and radical stability screen ........................... 109	

Table 4.2 Formulations and #$ values for resins used to fabricate DTXL- and  

DexAc-loaded disks and disks used in degradation and cytotoxicity studies. .... 110	

Table 4.3 Photocalorimetry results of blank and drug-loaded resins. ...................................... 121	

Table 4.4 IC50 values for resin components in 344SQ cells ..................................................... 128	

  



 xx 

LIST OF ABBREVIATIONS 

3D Three dimensional 

5FU 5-fluorouracil 

AA Acrylic acid 

ALT Alanine aminotransferase 

API Active pharmaceutical ingredient 

AST Aspartate aminotransferase 

BLS 1326 2-tert-Butyl-6-(5-chloro-2H-benzotriazol-2-yl)-4-methylphenol 

BUN Blood urea nitrogen 

CAD Computer aided design 

CDDP Cisplatin 

CLIP Continuous Liquid Interface Production 

CPP Cisplatin prodrug 

DBC Double bond conversion 

DCM Dichloromethane 

DexAc Dexamethasone-21-acetate 

DMAEMA 2-(dimethylamino)ethyl methacrylate 

DMF Dimethylformamide 

DMSO Dimethyl sulfoxide 

DSC Differential Scanning Calorimetry 

DTXL Docetaxel 

EGDMA Ethylene glycol dimethacrylate 

EOP Elementary osmotic pumps 

EXT Semi-solid extrusion 

FDA Food and Drug Administration 

FDM Fused deposition modeling 



 xxi 

GMA Glycidyl methacrylate 

HA Hyaluronic acid 

HA-GMA Hyaluronic acid-glycidyl methcarylate 

HEMA 2-hydroxyethyl methacrylate 

HME Hot melt extrusion 

HPLC High-performance liquid chromatography 

LAP Lithium phenyl(2,4,6-triimethyl benzoyl) phosphinate 

LTPO Ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate 

MC Theoretical molecular weight between crosslinks 

MP2MA Di(ethylene glycol) methyl ether methacrylate 

mPEG PEG-dimethyl either 

mPEG-MA Poly(ethylene glycol) methyl ether methacrylate 

OROS Osmotic controlled-release oral delivery systems 

PBS Phosphate buffered saline 

PCa Prostate cancer 

PCL Poly(caprolactone) 

PCL-DMA Poly(caprolactone) dimethacrylate 

PCL-TMA Poly(caprolactone) trimethacrylate 

PEG Poly(ethylene glycol) 

PEG-DA Poly(ethylene glycol) diacrylate 

PEG-DMA Poly(ethylene glycol) dimethacrylate 

PEG-MA Poly(ethylene glycol) methacrylate 

PMA n-Propyl methacrylate 

PTX Paclitaxel 

RhB Rhodamine B-base 

RP Rate of polymerization 



 xxii 

SA/V Surface area to volume ratio 

SEM Scanning electron microscope 

SLA Stereolithography 

SLS Selective laser sintering 

STL Standard tessellation language file 

TEA Triethylamine 

TEA•HCl Triethylamine hydrochloride 

Tg Glass transition temperature 

tmax Time at max rate of polymerization 

TPO Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide 

UV Ultraviolet 

  



 1 

CHAPTER 1: INTRODUCTION TO DRUG DELIVERY AND 3D PRINTING 

Chapter goals 

The following chapter presents the relevant background materials and published 

literature to provide a context to the purpose of the work presented in this dissertation. Section 

1.1 introduces the ideas and approaches implemented in the development and engineering of 

controlled drug release systems, including oral, systemic, and local administration routes. Also 

introduced are the various layer-by-layer approaches of traditional 3D printing, and a 

comparison to Continuous Liquid Interface Production (CLIP). The ways that 3D printing has 

been used in a clinical and preclinical setting to produce medical devices and tissue engineering 

applications is reviewed. And lastly, 3D printing techniques that are being implemented for 

production of drug products are introduced and a perspective on the benefits and potential 

concerns for each method is discussed.  

1.1 Drug delivery and controlled release 

Even the best drug compounds and bioactive agents are entirely useless if they cannot 

reach their intended target.  Traditionally, bioactive drugs are administered via the oral or 

intravenous route. However, if the drug of interest is not stable to the acidic environment of the 

gastrointestinal tract or results in dose-limiting toxicities when delivered systemically, alternative 

drug delivery approaches are required for the drug candidate to be effective. As genomic 

screening technology continues to improve and drug targets become more specific, biologics 

have been increasingly utilized in drug development such as gene therapy, monoclonal 

antibodies, and recombinant proteins [1-5]. While these therapies provide benefits in their 

specificity and have the capability to treat diseases that were previously untreatable, the nature 

of their physicochemical properties typically does not afford simple oral and intravenous 
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delivery. Advanced drug delivery systems  (DDS), such as nanoparticle formulations, 

implantable polymer systems, and alternative delivery routes have been used clinically and 

preclinically to improve the efficacy and clinical outcomes for many of these therapies [6-11].   

In addition to physicochemical protection, the use of an advanced DDS affords the ability 

to prolong and control the release kinetics of a therapeutically active drug [6,12]. Due to the 

rapid release and subsequent clearance of a drug when using traditional methods of 

administration, repeated dosing is often required to maintain a drug concentration within a 

desired therapeutic window (Fig. 1.1).  This pharmacokinetic profile and requisite repeated 

dosing can lead to reduced drug effectiveness, poor patient compliance, and decreased quality 

of life; especially in patients requiring prolonged treatment or with chronic disease. The use of 

controlled release technology, however, affords the potential to maintain a constant drug 

concentration in the body without the multiple doses required of traditional systems.  

 

Figure 1.1 Controlled release systems compared to conventional administration. Reproduced with 

permission from [12]. 
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Many different approaches have been used to develop controlled release platforms, 

including methods to control release from oral, inhaled, implantable, injectable, and transdermal 

dosage forms. The commonality among the controlled release dosage forms is their reliance on 

polymeric materials and polymer properties to achieve their desired release profile. Generally, 

controlled release systems rely on principles of diffusion, dissolution, and permeation to tune 

release of drugs from the formulation. The wide range and tunability of said properties in 

polymeric systems makes their use relatively ubiquitous for the engineering of DDS with 

controlled release characteristics. Although specific requirements will vary by route of 

administration, generally, controlled release DDS can be split into categories based on the 

mechanism controlling their release: dissolution-controlled, diffusion-controlled, osmotically 

controlled, complexation-controlled systems, and “smart” triggered systems.   

In systems where dissolution controls the rate of drug release, the drug is typically 

directly encapsulated in a polymer with relatively low solubility or by applying polymer coatings 

with different thicknesses to drug granules to achieve various release rates. Similarly, systems 

can be designed to be controlled by diffusion through a polymer matrix or a membrane coating.  

If the case of the former, drug can be encapsulated like in dissolution-controlled systems. 

However, in the case of diffusion-controlled release, the release rate will be dictated by the rate 

at which the drug can propagate through the matrix material.  Diffusion-controlled systems can 

also be achieved by coating drug granules with a membrane coating, creating a reservoir-like 

device.  The drug granule serves as a reservoir of drug and the release of that drug is controlled 

by the rate at which the drug can diffuse through the membrane material.  Thus, the material 

properties and coating thickness of the chosen polymer will control the release rate.   

Osmotic pumps have also been used to modify release kinetics of drugs.  In elementary 

osmotic pumps (EOP), first developed in the 1970s, a drug loaded core is coated with a 

semipermeable membrane with a laser-drilled orifice.  Drug release is then controlled by the 

permeation of water across the membrane, driven by osmotic pressure, resulting in the 
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evacuation of the drug through the delivery orifice (Fig. 1.2 A). In EOP systems, drugs need to 

be highly water soluble because poorly water-soluble drugs cause insufficient osmotic pressure 

and incomplete release [13].  To address this drawback, the ALZA Corporation developed 

osmotic controlled-release oral delivery systems (OROS), which included the “Push-Pull” 

technology to facilitate improved and complete drug release for a wider range of drug 

molecules.  OROS utilizes two layers in the osmotic core of the device, one containing the drug 

and a second hydrophilic polymeric layer (Fig. 1.2 B).  This polymeric layer swells as water is 

transferred across the membrane, acting as a pump pushing the drug out of the drilled orifice 

(Fig. 1.2 C). OROS is capable of delivering drug at a zero order rate for up to 80 % of the drug 

load for 24 hours and has been successfully implemented in formulations to deliver verapamil 

HCl for the treatment of hypertension [14].  

Figure 1.2 Osmotically-driven drug release devices. Elementary osmotic pump (A). “Push-Pull” 

osmotic pump system prior to swelling (B) and following the swelling of the “push” compartment (C). 
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EOP and OROS were developed for oral delivery of drugs, but implantable devices 

utilizing osmotic control have as been developed for implantable, longer-term delivery systems 

as well.  For example, ALZA developed the ALZET pump for research use in laboratory animals 

to address difficulties in regular oral dosing of animals [15].  ALZA also developed the Duros 

implant, an osmotically driven drug delivery device that has been used in humans [16]. 

Another approach to achieve controlled release is through the complexation of drug to 

the polymer network directly, either through ionic or covalent bonds. One of the most widely 

implemented approaches for ionic complexation is the use of ionic exchange resins. Ion 

exchange resins, originally designed for analytical and protein chemistry purposes, are typically 

composed of water-insoluble polymers that have been functionalized to a high degree with 

ionizable groups. Resins can be formulated to be either anionic or cationic to be used to release 

either cationic or anionic drugs, respectively. Release of the active drug occurs upon ionic 

exchange with similarly charged ions in the release medium. This release can be controlled 

through modification of crosslink density of the resin, particulate size and surface area, ionic 

charge density of the resin and drug molecules, and ionic strength and pH of the release 

medium [12]. One example of successful implementation of ionic exchange resin for sustained 

drug release is in the smoking cessation aid, Nicorette
®
 [17]. Nicorette is a sorbitol-based 

chewing gum loaded with a nicotine cation-exchange resin that slowly releases nicotine while 

chewing [18]. Another common approach used to complex a drug within a polymer network is 

through covalent bonds. Typically, drugs are linked to the polymer network through spacers that 

are labile to hydrolytic, enzymatic, stimuli-sensitive cleavage releasing the drug.  With this 

approach, DDS can be tailored to release drug after a certain time based on hydrolysis kinetics 

or in a certain location based on specific location of a stimulus. 

Similarly, DDS can be designed using “smart materials” so that drug is only released 

when triggered with an external stimulus like ultrasonic or magnetic irradiation.  Further, smart 

DDS can be designed to serve as a closed loop system [19].  In this approach, the DDS would 
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act in a self-regulating manner in that the drug release would be adjusted according to the level 

of stimulation and constant feedback without the need for external intervention.  This is to say 

that these systems would be able to modulate the flux of drug from the device as a function of 

physiological need, rather than a constant zero order release rate.  For example, diabetes 

patients would not benefit from the constant elution of insulin from a device, but rather need 

insulin released in a fashion that is dependent on the glucose concentration. Release from self-

regulated smart DDS can be controlled by several stimuli similar to the systems innate to 

healthy human systems.  Examples include pH- [20], temperature- [21], inflammation-

responsive systems [22]. Systems have also been designed to respond to antibody binding [23] 

and ion-exchange with chelators [24]  

As important as the kinetics of the release and delivery are, it means nothing if the drug 

is not able to reach or remain at the target site of treatment. Thus, another key consideration in 

the design and engineering of DDS is the ability to localize the treatment to the site of action. By 

improving the localization of the therapeutic, drug efficacy will improve and resulting off target 

toxicities and complications will be reduced. Many approaches have been utilized to improve 

both the localization of the drug as well as its retention tie at the site of action.  

Localization in DDS delivered through traditional intravenous routes include the 

utilization of nanoparticle delivery systems. When utilized for the treatment of cancer, 

nanoparticles have been shown to preferentially localize in tumors through the enhanced 

permeability and retention effect. The specific size of nanoparticles allows for their permeation 

into the tumor through the leaky vasculature of the tumor environment. Once there, 

nanoparticles have increased retention due to the poor lymphatic drainage in tumor tissue, 

leading to a higher concentration of drug in the tumor compared to healthy tissue.  Further, 

nanoparticles can be targeted to the target cells by decorating the outside of the DDS with 

moieties that will increase cell uptake in tumor cells compared to healthy cells. Smart materials, 
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as mentioned previously, can further improve the specificity and effectiveness of these therapies 

by only allowing for drug release following uptake by a specific cell type. 

Drug localization can also be achieved through localized administration and engineering 

the material to increase site retention. Techniques and strategies include mucoadhesive 

materials for inhaled dosage forms [25], injectable dosage forms that undergo in situ gelation 

following administration [9], and direct implantation. One such example is the use of Gliadel 

Wafers for the delivery of carmustine following glioblastoma resection, which is often limited 

debulking rather than complete resection and thus requires adjuvant chemotherapy [26]. 

Though Gliadel Wafers only provide moderate improvement to an already dismal prognosis, and 

is not recommended for newly diagnosed patients. Another example of localized administration 

is drug eluting vascular stent, of which numerous approaches have been implemented for 

delivery of a range of drugs to prevent restenosis following angioplasty  [27,28]. Drug eluting 

stents serve as one of the prime examples of success for a drug-device combination product. 

 While these methods are the most direct approach to localized treatment, these are not 

without hurdles. Drug delivery still depends on diffusion from the material and the ability to 

overcome biological barriers at the disease site. The factors affecting delivery to multiple tissue 

types and the mathematical models developed to describe the have been reviewed by Weiser 

and Saltzman [29].  

1.2 3D printing and applications in drug delivery 

Personalized medicine has long been a goal of the medical field and has recently started 

to become a reality. With the evolution and application of genomic screening and sequencing, 

many therapies benefit from the use of pharmacogenetics to identify and understand the 

populations that a drug will be most efficacious for [2].  As personalized medicine has advanced, 

so has the appeal of using 3D printing techniques to personalize dosage forms. Current mass 

production manufacturing processes limit pharmaceutical dosage forms to a finite number of 
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doses and dissolution profiles available. However, as we move towards the age of personalized 

healthcare, it will be advantageous to have more ability to tune the characteristics of a drug 

formulation to the current needs of an individual patient. 3D printing offers interesting 

approaches to achieve this. 

3D printing, also known as rapid prototyping, solid freeform fabrication or additive 

manufacturing, was first reported in 1981 by Hideo Kodama [30,31]. 3D printing was originally 

developed to facilitate prototyping of designs in a relatively rapid manner and to avoid the 

resource intensive processes of molding or casting that require expensive tooling and long lead 

times. Industries such as aerospace, automotive, and other engineering fields quickly adopted 

3D printing for prototyping. There are multiple technologies and methods that fall under the 

umbrella term 3D printing, but they all share the concept of converting a 3D computer aided 

design (CAD) file to a physical part. Typically, a 3D file is first generated using a CAD software 

(e.g. Solidworks, AutoCAD, Autodesk, Materialise). The file is subsequently converted to an 

STL (standard tessellation language or STereoLithography) file, which defines the surface of the 

CAD file as triangulated vertices stored as a text file. This file is then sliced along the Z-axis and 

fed to the 3D printer consecutively as 2D layers. The 3D printer, through a combination of 

software and hardware, then converts that information into a solid 3D part by fabricating each 

layer in succession (Fig. 1.3). There are various 3D printing techniques that use different 

methods of forming the solid object. The most widely used forms of 3D printing can be 

categorized generally according to the method by which they deposit material and form the solid 

layers, including extrusion, binding of a powder, and photopolymerization of a liquid resin. 
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Figure 1.3 General process of 3D printing: Generation of CAD file and conversion to .STL, 

computational slicing, and formation of the 3D part layer-by-layer (in this case using, fused deposition 

modeling).  

Unlike the mass production of traditional pharmaceutical manufacturing, 3D printing 

allows for production of a unique design and formulation with each print without additional 

tooling or lead time. The additional benefit of 3D printing being a small footprint, software-driven 

production platform could allow point of care manufacturing in pharmacies and hospitals. 

Further, small incremental changes can be made as the needs of the patient changes, as 

opposed to the limited selection of dose and formulations that traditional pills provide. With 

expected advancements in patient monitoring through implementation of wearable technology in 

the healthcare field, clinicians will be able to utilize constant feedback to understand a patient’s 

current needs.  Fine tuning of dose and delivery methods will potentially revolutionize the way 

that physicians treat patients (Fig. 1.4).  
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Figure 1.4 Potential system of patient-centered healthcare. Clinical data generated from wearable 

technology and physiological sensors in a patient’s body can feed into a cloud-based network. Healthcare 

providers can then interface with machine learning to order a prescription based on the patient’s current 

needs. The prescription can then be filled by remotely printing the individualized formulation at a location 

that is easily accessible to the patient. Figure modified from [32] 

The benefits in personalization and production complexity that make 3D printing an 

attractive manufacturing method in many fields also apply to pharmaceutics. The most 

straightforward improvement 3D printing of drug formulations will provide is the ability to print 

exact doses rather than depending on the large jumps in dosing required when using mass 

produced formulations. This is especially important when implementing drugs with a small 

therapeutic window, where small changes in dose can have significant impacts on the toxicity to 

the patient. Further personalization can be achieved by incorporating all of a patient’s required 

medications into a single “poly-pill” (Fig. 1.5). For obvious reasons, it would not be possible to 

manufacture the vast number of drug combinations into single pills on a patient-by-patient bases 
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using traditional manufacturing methods. Printing of “Poly-pills” have been proposed as a way to 

improve patient compliance and reduce the burden of taking numerous pills, typically required in 

elderly patients.  

Beyond personalization, the additional complexity afforded by 3D printing can also be 

harnessed to improve pharmaceutical dosage forms. For example, Aprecia’s anti-epileptic drug, 

Spritam, has accrued a great deal of attention for being the first 3D printed drug product 

approved by the FDA. Spritam does not use 3D printing to personalize the product to patients. 

In this case, Aprecia’s “ZipDose” technology relies on 3D printing to create a formulation that 

achieves rapid dissolution that would not be possible with traditional pill and tablet presses. 3D 

printing also offers the ability to control the spatial distribution of different materials in a part. 

This also provides a method to control release rates of a single or multiple drugs from a single 

pill and can potentially be customized to the needs of individual patients. Beyond dose and 

dissolution tailoring, 3D printing has also been proposed as a method to improve pediatric 

compliance by allowing a child to choose the shape of their medication (e.g. in the shape of a 

child’s favorite animal) [33]. 
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Figure 1.5 Examples of different designs used to manufacture 3D printed tablets. Simplistic design 

of disc has been initially employed (a) [34]. Oval shape (b) [35] and an easier to swallow caplet shape 

was possible to fabricate using FDM 3D printing (c) [36]. FDM 3D printing allowed fabrication of partially 

hollow tablets (d) [34]. PB 3D printing constructed shell-core structure by selective deposition of binder 

solution in the shell domains (e) [37] and by adding internal supporting walls, tablet’s physical resistance 

can be improved (f) [38]. PB 3D printing was also utilized to build doughnut shape tablets with linear drug 

release (g) [39]. Pulsated drug release (h) and accelerating drug release (i) were achieved using casted 

gels in 3D printed containers [40]. Multi-layer (j) and core-shell (k) caplets allowed simultaneous and sub 

sequential release of two actives [41]. Polypills of 3 drugs (l) [42] or 5 different drugs (m) [43] with 

immediate and extended release patterns were EXT 3D printed. Figure and caption reused with 

permission from [32].  

One of the most significant hurdles to surpass for 3D printing pharmaceutical devices 

and dosage forms will be the regulatory one. While the FDA is encouraging continued research 

into 3D printing of dosage forms, there are a lot of important questions that remain unanswered. 

The regulatory concerns and issues have been discussed in a number of reviews and opinions 



 13 

and will not be discussed in detail here [32,44-46]. The focus of the following subsections will be 

to describe the benefits and limitations of each of the 3D printing methods that have been 

demonstrated as possible means to produce drug products. Previous publications have 

reviewed many of the advances in drug 3D printing [32,44,47-49]. Thus, the following 

subsections will not serve as a comprehensive survey of the literature, but rather present a 

selected representation to demonstrate the benefits and potential of each method. 

 

1.2.1 Extrusion based 3D printing  

1.2.1.1 Fused deposition modeling (FDM) 

Fused deposition modeling (FDM) is one of the most well known versions of 3D printing. 

This is in large part thanks to the wide commercial availability and relatively low cost of FDM 

printers through manufactures such as MakerBot. FDM operates through the patterning a two-

dimensional layer onto a print bend by extruding a thermoplastic filament through a heated 

nozzle (Fig. 1.6 A). The nozzle traces the pattern of the 2D slice, depositing the semi-molten 

plastic, which can cool to form the solid layer. The print is then lowered and the next layer can 

be printed. This is repeated in a layer-by-layer manner until the entire model is fabricated.  

FDM printers are easily accessible and meet much of the demand for early stage design 

and prototyping. However, FDM prints have limitations including slow build speeds, poor 

resolutions and accuracy, and a porous final product. FDM also typically results in parts that are 

anisotropic in the z-dimension. And while they can be isotropic in the x-y plane, this also is 

dependent on the infill and design parameters chosen [50].  

The small footprint, benchtop platform and lack of post-processing requirements makes 

FDM an attractive method for the 3D printing of drug products in a pharmacy setting, such as 

compounding pharmacies. FDM can produce pharmaceutical products using techniques 

analogous to those currently used in pharmaceutical manufacturing, such as hot melt extrusion 

(HME), and injection molding. However, the reliance on thermal extrusion limits the materials 
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available to formulate the drug products to thermoplastics. Due to difficulties in producing usable 

filaments, most early studies using FDM were limited to impregnating the commercially available 

3D printing filaments through solvent swelling. Researchers have since started to develop their 

own drug-loaded feedstocks based on pharmaceutical-grade materials previously used and 

accepted for large scale HME manufacturing. This has expanded the ability to modify the 

release through the employment of insoluble, readily soluble, and enteric materials [51,52]. As 

the range of stock materials expands, FDM printers equipped with multiple extrusion heads will 

be capable of fine tuning formulations to contain multiple release rates and drugs in a single 

formulation. 

Due to the high temperatures often involved in the extrusion of the FDM process, there 

would be no concern for potential microbial contamination. However, the same heat will limit the 

drugs that are available to be formulated using FDM to those that are not heat labile [53]. 

Another concern for the fabrication of drug products outside of a plant setting is the variability 

between printers that require calibration of the print bed [49]. Improvements including self-

calibrating machines and uniformity among printer features, such as nozzle diameter and print 

bed temperature could be among the many parameters that will be necessary to control prior to 

implementation of on-site printing.  

While 3D printing has the potential to help improve patient compliance, acceptability of 

parts from 3D printers may prove problematic. Specifically, FDM results in a part with visible 

layers and texture. A different appearance in a medication can often make patients 

uncomfortable. Recent studies by Goyanes et al. looked at patient acceptability of 3D printed 

medicines [54]. In their single site, open label trial, different geometries of FDM-printed placebo 

pills were given to 50 adult participants to determine the effect the shape, size and color had on 

acceptability and ease of picking and swallowing. The results of this study showed that 

conventional shapes such as capsules and disks were observed to be easy to swallow and pick, 

highlighting the importance of familiarity in end-user acceptability. Additionally, the torus shape 
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also showed ease of picking and swallowing, as well as the highest overall acceptability scores, 

indicating possible improvements over traditional shapes. Further, they showed that certain 

shapes were perceived as larger or smaller depending on their geometry, which may be 

important information that can direct the design of pills that are required to contain a large 

amount of drug. Alternatively, this could provide strategies for making a pill that requires a small 

dose appear larger without wasting excipient and filler material. Further patient-focused human 

factors studies will be important as this technology nears implementation in the clinical setting.  

 

Figure 1.6 Extrusion based 3D printing methods A) Schematic drawing of FDM 3D printing. B) 

Schematic of various forms of semi-solid extrusion (EXT). Reused with permission from [55] and [56]. 

1.2.1.2 Semi-solid Extrusion (EXT) 

Semi-solid extrusion (EXT) is like FDM, in that 3D objects are built by extrusion of 

material in 2D patterns in an iterative fashion. Rather than heating a filament for extrusion, EXT 

forms objects by extrusion of gels and pastes that are mixtures of polymers and solvent 

systems. Typically, material is deposited from syringes, in which the pressure can be modulated 

using pneumatic or mechanical means (Fig. 1.6 B). Following extrusion, the solvent is removed 

through evaporation, leaving a solid material. These systems have been used for a variety of 

applications from bioprinting with living cells [57] to the deposition of cheese for 3D printing of 

A B 
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food products [58]. The mechanical properties of the final material will depend on the 

combination and ratios of solids and solvents used. The resolution of EXT is limited by the 

nozzle from which the material is extruded, and is thus dependent on the bore size of the nozzle 

used.  

The EXT process is delicate and requires minimal or no heating. For applications in 

printing drug formulations, this has obvious benefits regarding drug stability. While operating 

temperatures are low, many of these formulations rely on solvents, and incomplete solvent 

removal may lead to toxicities or unpredictable dissolution profiles. Further, drying time may be 

climate dependent, and thus will be an important issue to address prior to fabrication of drug 

products outside of a typical plant manufacturing setting. 

With the ability to fabricate multi-material devices using benchtop instruments with 

multiple extrusion nozzles [42,43,59], EXT presents the possibility of producing “poly-pills” in a 

pharmacy using pre-formulated and regulated semi-solid inks. These potentially can be modified 

for the drugs they will contain as well as their release rates by manipulation of the excipients 

included in the inks. For implementation, however, the delicate nature of the resulting part and 

poor resolution requires improvement. 

 

1.2.2 Powder-bed fusion 

Another approach to 3D printing is through the spatially controlled binding of powder 

particles. This can be achieved through multiple methods but all have the commonality of the 

reliance on the joining of powder particles to form a solid 2D layer. Because of this, these 

methods share some benefits and some drawbacks. Specifically, powder-based 3D printing 

does not require the use of supports, which simplifies the planning and design process. The 

nature of powder binding also presents draw backs in regards to the final product being 
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characterized by a high level of porosity, which can affect the resulting mechanical properties 

[50]. 

1.2.2.1 Selective laser sintering (SLS) 

Selective laser sintering (SLS), like FDM, forms solid 2D layers through a thermal phase 

transition using a laser to fuse a layer of plastic or metal through sintering or melting according 

to the digitally sliced file (Fig. 1.7 B). Once a layer of powder has been patterned, the piston of 

the fabrication stage lowers, and a powder delivery stage raises to allow a leveling roller to 

spread a new layer of material for the next layer. Characteristically long fabrication times and 

potential heterogeneity of the fusion process, caused by thermal carryover from hot spots of the 

previously sintered layer, limit the application of SLS.  

Figure 1.7 Powder-bed fusion 3D printing techniques. Schematic drawing of (A) inkjet printing and (B) 

selective laser sintering, and (C) polyjet 3D printing. Reused from [55] and [60]. 

C. 
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1.2.2.2 Inkjet and polyjet binder deposition 

Inkjet printing is similar to the SLS process in that it forms 2D layers through the binding 

of a powder layer that has been spread out using pistons and rollers (Fig. 1.7 A). In inkjet 

printing, however, powder particles are bound together using droplets of liquid binder on the 

powder layer in the x-y plane with respect to the design file.  

Similarly, a technique known as polyjetting uses multiple jets to expel powder and binder 

simultaneously to form each layer (1.7 C). This technique relies on the photochemical 

crosslinking of the binder solution for solidification. By fixing UV lamps onto either side of the 

laterally scanning jet apparatus, the blend of binder and powder is solidified immediately of the 

binder solution by having UV lamps on either side of the jetting apparatus, so that when the jets 

pan back and forth the material is exposed immediately following deposition. Polyjettting is the 

technology behind many commercial 3D printers including those developed by Stratasys and 

HP.  

The use of powders and binder solutions provides many advantages for 3D printing of 

pharmaceutical products. Most notably, binder solutions and powder formulations have been 

well established for use in the pharmaceutical field [49]. API can be incorporated both into the 

powder as well as into the binder liquid. If the drug is part of the binder solution, use of multiple 

binder jets can allow for spatial control over the location of the API within layers [61]. 

Powder-based 3D printing results in a high porosity part, which can be both a positive 

and a negative. The porosity of the part is advantageous when the application requires fast 

disintegration, which is easily achieved [38]. Alternatively, this porous product leads to 

challenges in tablet friability and stability. The porosity can also be controlled to provide for 

gradients in material properties and release rates [62].  

Relative to other 3D printing platforms, powder-based printing subjects the API minimal 

physical stresses, being carried out at room temperature and does not require UV exposure. 

However, the process often requires the use of organic solvents to the binding solution. These 
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can potentially pose a toxicity issue as well as lead to extended processing times due to the 

required drying process. The process also can require large powder waste [32]. 

A process that is similar to poly-jetting that does not use powder is direct write inkjet 

printing. Inkjet printing uses similar instrumentation as 2D printers to dispense inks through 

thermal or piezo based jetting. This has been used to print personalized doses directly onto 

edible paper [63,64]. This has been used as a method to print drugs that require extremely 

accurate dosing, having shown standard deviation as low as 1.4 % when a 52 µg doses was 

printed of a model drug for printing [48,65]. Further, thermal inkjet printing has used to develop 

geometrically complex tablets beyond droplet printing in 2 dimensions. Kyobula et al. used 

thermal inkjet printing to fabricate honeycomb structures from an FDA approved material, 

beeswax [66]. Drug dissolution from these devices could be tuned by adjusting the size of the 

honeycomb cell and thus the surface area to volume ratio. Moving forward, this type of inkjet 

printing of 3D objects will be useful in reducing the amount of waste associated with powder-

based processes, but will require further material development and optimization.  

 

1.2.3 Stereolithography (SLA) 

SLA was developed and commercialized by Chuck Hull and 3D Systems. In SLA, a 

liquid photopolymer resin is solidified upon exposure from a UV light source. Different SLA 

techniques can be broken into two categories depending on how the UV light is projected into 

the resin. In top down SLA, a stage is located just below the top of a liquid resin bath (Fig. 1.8 

A). The resin on top of the stage is then exposed to UV light via direct laser writing, where a UV 

laser is rastered along the X- and Y-axes to cure the layer as dictated by the CAD file. At the 

completion of that layer, the platform lowers and a new layer of liquid resin is drawn on top 

using a blade. This process is then repeated until the 3D object is formed.  In contrast to top 

down SLA, bottom up SLA uses a digital micromirror device to project the 2D slice in its entirety 
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through a transparent window beneath the resin (Fig. 1.8 B). This enables curing of the entire 

layer at once, eliminating the need for laser raster. In bottom up SLA, the stage will begin at the 

bottom of the reservoir a specific distance from the window, dictated by the slice thickness. UV 

light is then exposed in the pattern of the 2D layer, the resin between the build platform and 

window is completely cured. After exposure, the solidified part must be delaminated from the 

window, typically through a peeling mechanism or mechanical scraping. Following delamination, 

the build platform can move up to the height of the next slice, allowing uncured resin to fill the 

space between the part and window. This filling process can add significant time to the print for 

high viscosity resins, and stage pumping mechanisms are typically employed to accelerate this 

process. Once the resin renewal is complete, the following layer is exposed. This process is 

then iterated until the full 3D structure is formed. 

 

Figure 1.8 Diagrams of stereolithography 3D printers. (A) Top-down stereolithography apparatus. (B) 

Bottom-up DLP-based stereolithography apparatus. Figure reused with permission from [55] 
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SLA has many benefits to 3D printing for biomedical applications, most notably is the 

resolution. SLA has been shown to have a vertical resolution of 1 µm and horizontal resolution 

of 2 µm [67]. Further, two-photon polymerization (2PP) techniques are able to print with a 

nanometer resolution because polymerization only occurs at the focal point of two lasers [68]. 

This favorable resolution and accuracy of SLA has led to many applications towards tissue 

engineering and medical devices [69].  However, minimal research has been carried out in the 

form of drug products. This is likely due to the toxicity of many of the starting materials, such as 

methacrylates and acrylates, vinyl ethers, and epoxy-based resins.  

Goyanes et al. used SLA to generate topical delivery devices based on the scanning of a 

nose [70]. Poly(ethylene glycol) (PEG) based devices containing salicylic acid for the treatment 

of acne were formulated with different ratios of PEG-diacrylate (PEGDA) to soluble PEG. Wang 

et al used SLA to fabricate PEGDA-based formulations for oral delivery of model drugs, 

acetylsalicylic acid and acetaminophen [53]. The model drugs showed sustained released over 

a 10-hour period, independent of the pH differences in a simulated environment of the GI tract. 

Further, this is an example of the use of an alternative 3D printing formulation for a drug that is 

not stable (acetylsalicylic acid) to a different 3D printing method (FDM). Another study by Vehse 

et al. also used Acetylsalicylic acid incorporated in microstereolithography-produced scaffolds 

fabricated with PEGDA [71]. In this study, a decrease in compression strength was observed 

with the addition of 1 %, 2 %, and 3 % by weight and a burst release effect was observed. The 

difference between the Wang and Vehse study in addition to the complex kinetics of radical 

photopolymerization highlights the importance of characterizing all parameters that affect the 

drug release all the parameters prior to implementation of drug products fabricated using this 

technology outside of a well-controlled manufacturing setting.  
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1.3 Continuous Liquid Interface Production (CLIP) 

A novel 3D printing approach was recently introduced called Continuous Liquid Interface 

Production (CLIP), which enables continuous fabrication of solid parts from a liquid resin bath 

[72]. Of the presented approaches, bottom up SLA is the most comparable, in that CLIP also 

forms the solid part from a photopolymerizable resin by projecting UV light from a DLP chip 

through a transparent window. However, due to permeability of the window to oxygen, a well-

known inhibitor of photopolymerization [73], no polymerization occurs at the interface of the 

window and the liquid resin (Fig. 1.9 A). This liquid interface negates the steps in between 

fabrication of layers necessitated by the complete cure to the window in bottom-up SLA (Sect. 

1.2.3). As a result, CLIP affords the ability to print in a continuous fashion, pulling the part out of 

the liquid resin bath while the DLP projects the slices in the form of a UV movie. The lack of 

steps between layer formation eliminates the tradeoff between print time and resolution in 

traditional layer-by-layer 3D printing approaches (Fig. 1.9 C).  

Beyond benefits to print speed, the lack of a delamination step allows parts to be 

fabricated in a delicate manner using CLIP. This widens the scope of materials that can be 

applied to CLIP, allowing for fabrication using materials with low green strengths, such as 

hydrogels or elastomers, as well as delicate geometries that may not be possible using 

fabrication methods that apply more mechanical stress during the process [74,75]. Further, 

CLIP has  been shown to not be affected by the anisotropy that limits many other additive 

manufacturing methods to prototyping techniques [76].  
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Figure 1.9 CLIP enables fast print speeds and layerless part construction. (A) Schematic of CLIP 

printer where the part (gyroid) is produced continuously by simultaneously elevating the build support 

plate while changing the 2D cross-sectional UV images from the imaging unit. The oxygen-permeable 

window creates a dead zone (persistent liquid interface) between the elevating part and the window. (B) 

Resulting parts via CLIP, a gyroid (left) and an argyle (right), were elevated at print speeds of 500 

mm/hour (movies S1 and S2). (C) Ramp test patterns produced at the same print speed regardless of 3D 

model slicing thickness (100 μm, 25 μm, and 1 μm). Reproduced with permission from [72]. 

CLIP has been employed in the development of medical devices through use in 

prototyping multiple materials and design factors for the fabrication and optimization of 

microneedles [77]. Additionally, a custom-built microCLIP instrument was developed by van Lith 

et. al. to be used for printing high resolution stents with radical scavenging abilities [78]. This 

dissertation seeks to present the application of CLIP towards the development and fabrication of 

biomedical and drug-eluting devices. 
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1.4 3D printing biomaterials 

1.4.1 3D printing in a clinical setting 

Over the relatively short 30-year lifetime of 3D printing and rapid prototyping, a great 

deal of progress has been made towards clinical application of this technology. By nature, the 

personalized design and fabrication that 3D printing and additive manufacturing provide make 

traditional regulatory approaches difficult. However, as of 2015, 85 medical devices that are 

produced by 3D printing have been approved by the FDA. In 2016 the FDA released a technical 

guidance for the engineering and manufacturing of medical devices with additive manufacturing 

[79]. One area that 3D printing has been used to improve how clinicians are treating patients is 

in the manufacture and application of custom orthopedic implants. Traditionally, to perform bone 

grafts and reconstruction operations, surgeons were required to use drills and tools to modify 

the implants to fit the patient. With the use of 3D printing approaches like the implant developed 

by Oxford Performance Materials for skull reconstruction, which was approved by the FDA in 

2013, implants can be precisely manufactured according to the patient’s anatomy [80].  

The implementation of 3D printing in the clinic has been driven and aided by the 

evolution of medical imaging technology, which has become more accurate and less invasive. 

High definition 3D imaging data can be captured through techniques such as multi-detector 

computed tomography (MDCT) and magnetic resonance imaging (MRI), though MDCT is more 

commonly used thanks to its less complex processing requirements [81]. The use of medical 

imaging has been used to guide the design of personalized medical implants. For example, a 

team of surgeons and biomedical engineers at the University of Michigan used image-based, 

3D printed tracheal stents to treat infants with tracheobronchomalacia [82,83]. Other common 

uses of medical imaging include the production of bespoke devices to improve radiotherapy 

techniques [84]; the design of patient-specific surgical instruments and guides; and printing 3D 
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models of patients’ anatomy to aid in surgical planning, patient education, and medical training 

[85-87]. 

1.4.2 Tissue engineering 

Outside of the clinic, a great deal of research has focused on uses of 3D printing 

techniques for biomedical applications. Many of the recent developments towards biocompatible 

materials suitable for various 3D printing techniques have been thoroughly reviewed by others 

[55,57,69,88-94]. Some highlights will be presented here, with an emphasis on 

photopolymerization applications, due to the relevance to CLIP.  

Tissue engineering has been a major focus for the application of 3D printing, with the 

goal to mimic the organization and complex nature of living tissues. Better recapitulation of 

functional tissue improves the ability to create more accurate research models for studying 

pharmacokinetic and drug metabolism in vitro [95], in vitro disease models [96,97], and 

potentially lead to development of fully functional tissue equivalents for regenerative medicine 

[98]. Often referred to as bioprinting or biofabrication, the use of 3D printing to selectively 

pattern a matrix of cells and/or synthetic or natural polymers provides many advantages over 

traditional methods of tissue engineering. For example, bioprinting allows for production of cell-

laden scaffolds with control over the 3D organization of cells and matrix material rather than a 

random distribution of cell type and support material [56].. This is important for the development 

of tissue mimics that have a non-uniform distribution of mechanical environments or cell types. 

Typical methods for bioprinting employ semisolid extrusion techniques discussed in Sect. 

1.2.1.2, as well as more advanced techniques that have been reviews more extensively 

elsewhere [56,99]. A main area of focus in the biofabrication field is the development of 

appropriate materials, both naturally-derived and synthetic to serve as the matrix for the cells, 

also known as bioink. Natural polymers used for biofabrication include hyaluronic acid (HA), 

collagen, alginate, gelatin, and fibrin, and provide chemical signals to guide cell growth and 
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mimic the innate extra cellular matrix. However, these natural polymers also present draw backs 

such as batch-to-batch variability in levels of signal. An alternative approach has been to use 

synthetic polymers such as poly(ethylene-glycol) (PEG), poly(lactic acid) (PLA), poly(lactic-co-

glycolic acid) (PLGA) and poly(caprolactone) (PCL).  These synthetic bioinks have been used 

as biologically inert materials, but do not provide the much-needed biological signals required 

for cell viability.  

Regardless of the methodology, a major hurdle for the 3D printing of organ systems is 

the need for vascularization. Recent successes in incorporating vascular constructs into 

biofabricated parts have been achieved [100], and further strategies to encourage 

vascularization of scaffolds are being pursued. Alternatively, others have attempted to design 

artificial organs, like ears, that are cartilage-based and do not depend on vascularization. 

Organs like an ear do, however, require complex electrochemical systems to perform the 

requisite function.  McAlpine et al have used bioprinting in addition to a silver nanoparticle-

loaded conductive polymer to manufacture a bionic ear that was capable of processing radio 

frequency signals [101]. McAlpine’s group has also developed the ability to 3D print tactile 

sensors directly onto freeform structures, like human fingers, which may have future impacts in 

the fields of artificial skin, wearable devices, and smart prosthetics [102].  
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Figure 1.10 Typical process for fabrication of a tissue engineering scaffold to be seeded with cells 
following complete fabrication. Reproduced with permission from [103] 

Due to the cytotoxic nature of the starting materials and intermediates associated with 

photopolymer and stereolithography resins, these technologies have been predominantly used 

for the fabrication of biocompatible scaffolds to be seeded with cells following complete post-

processing (Fig. 1.10). There are examples of cell-containing resins being used during 

stereolithography [104,105]; however, most are only a few layers thick, which allows for short 

print times prior to introduction to cell medium and appropriate conditions for cell viability [69]. 

Stereolithography and other 3D printing techniques that do not allow cell viability during the 

fabrication process are often used in applications that require robust and specific mechanical 

properties. Precise control of mechanical properties, which may not be achievable within the 

limited printing materials that allow cell viability, is an important factor in directing the 

differentiation of mesenchymal stem cells [106]. Future directions for biofabrication and 3D 
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printing tissue engineering applications will include enhancement in the ability to induce 

vascularization in scaffolds printed from both acellular and cell-loaded bioinks. For acellular print 

materials, an understanding of the factors that are most important and creative ways to 

incorporate and control the release of biochemical growth signals will be important steps 

forward for development of tissue engineering scaffolds.  
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CHAPTER 2: SYNTHESIS AND CHARACTERIZATION OF PHOTOPOLYMERS FOR 
BIOMEDICAL APPLICATIONS 

Chapter goals 

This following chapter introduces the basic concepts of radical photopolymerizations. 

The current use of photopolymers for biomedical applications with an emphasis on additive 

manufacturing platforms is presented. Experimental work demonstrating the synthesis and 

characterization of two photopolymerizable polyesters based on polycaprolactone oligomers is 

presented. Additionally, preliminary results using CLIP to print with the biologically derived 

hyaluronic acid are discussed.  

 

2.1 Introduction 

2.1.1 Radical photopolymerization  

As discussed in Chapter 1, CLIP relies on photopolymerization to form the solid part 

during the fabrication process. Specifically, CLIP uses UV light (385 nm) wavelength to initiate a 

radical chain polymerization. Typically radical photopolymer systems are based on monomers 

containing unsaturated groups, such as acrylate, methacrylate, vinyl ethers and fumarate 

functional groups. Radical polymerization occurs in three steps: initiation, propagation, and 

termination [1] 

Initiation is a series of two reactions. The first reaction is the generation of free radicals, 

which is achieved through initiator systems (though examples have been demonstrated without 

the need for separate initiators [2,3]). The most commonly used initiator type is a single 

component system, or type I photoinitiator. Alternatively, type II initiators generate free radicals 

through a bimolecular mechanism such as co-initiating or photosensitizing systems. Type I 
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systems will be discussed here, as the initiators used in this work and relevant literature utilize 

type I photoinitiators. In a type I initiating systems, a single UV-absorbing molecule can be 

excited by a specific wavelength of light and undergo homolytic cleavage, forming two free 

radicals (not necessarily identical or equally reactive, however) (Eqn. 2.1). 

I + ℎ( → 	 +∗ 	
-. 2R • (2.1) 

Where kd	is the rate constant for the dissociation of the initiator. The second reaction of the 

initiation step is the addition of the radical to the monomer molecule (Eqn. 2.2).  

R • +	M	
-5 RM • (2.2) 

Where	M represents a monomer molecule, ki	is the rate constant of the initiation step, RM• 

represents the polymer chain initiating species. 

The propagation step of radical polymerization proceeds through successive addition of 

monomer molecules to the chain initiating species (Eqn. 2.3). 

RM • +	M	
-7 M8 • +	M	

-7 -7 -7 M9 (2.3) 

Where kp is the propagation rate constant. The propagation of the chain occurs very rapidly with 

rate constants in the range of 10
2
-10

4
 L mol

-1
 s

-1
 for most monomers [1]. 

The initiation and propagation for a methacrylate functional group is illustrated in figure 

2.1. Upon irradiation with UV light, the radical of the initiator attacks the methacrylate and forms 

a bond by combining with one electron of the unsaturated bond. The other electron returns to 

the tertiary carbon, which can now continue to react with additional monomers to facilitate 

propagation. 
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Figure 2.1 Initiation and propagation steps in free radical photopolymerization of a 
monomethacrylate monomer. 

 

Finally, the termination step can be described generally as the formation of a dead 

polymer, which occurs potentially through two different mechanisms: chain transfer (to a 

monomer, solvent, initiator, or additive) and bimolecular termination. Bimolecular termination is 

the loss of two reactive centers and can proceed through re-combination (Eqn. 2.4) or 

disproportionation, in which a proton is transferred from one reactive species to another (Eqn. 

2.5).  

M9 • 	+	M; •	
<=> M9?; (2.4)

 

M9 • 	+	M; • 	
<=@ M9 +	M; (2.5)

 

Where ktc	and	ktd	represent the termination rate constant through a re-combination and 

disproportionation mechanism, respectively. These two rate constants can be combined to a 

constant kt to describe all forms of termination regardless of mechanism. The termination step 

for a methacrylate polymerization can be seen in figure 2.2.	 
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Figure 2.2 Bimolecular termination of propagating methacrylate radicals occurs through 
combination (top path) or disproportionation (bottom path). 

Rate equations for each step can be combined to give an equation for the polymerization 

rate, Rp (Eqn 2.6) [1]. 

CD = <F !
CG

2<H

I
J

(2.6) 

Where Ri	 is the rate of initiation. This equation can be expressed as that shown in equation 2.7 

when being applied to photochemical initiation. 

CD = <F !
K+L

<H

M
8

(2.7)
 

Where Ia represents the absorbed light intensity, and is a function of the extinction coefficient, 

initiator concentration, and layer thickness. It is important to note that equations 2.6 and 2.7 are 

derived assuming steady state and bimolecular termination. However, radical termination is a 

diffusion controlled process, and thus the observed kt will depend on the properties of the 

polymer network. Because the network properties will change as the polymerization proceeds, kt 

is actually regarded as a termination rate coefficient rather than a rate constant and is a function 

of the kinetic chain length [4]. The most notable effect of diffusion controlled termination is the 

gel effect or autoacceleration period of polymerization, in which the increased chain lengths of 

propagating polymers decreases diffusivity and thus termination, leading to an accelerating rate 

of polymerization. Further, when the monomers have more than one unsaturated group (e.g. 

another methacrylate group at the end of R’ in Fig. 2.1), many other factors have to be 
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considered including intramolecular cyclization and microgelation, which have been discussed 

at length elsewhere [4,5].  

2.1.2 Current state of biomaterials based on photopolymers 

Photopolymers and methacrylate/acrylate-based materials have many uses beyond 

additive manufacturing techniques. In clinical practice, these chemistries are commonly found in 

bone cements [6,7], dental resins [8,9], and surgical adhesives [10]. Further, clinical and 

preclinical research has been focused on using photochemically-initiated polymerization and 

crosslinking of hydrogels based on synthetic and natural materials for the development of 

specialized scaffolds for tissue engineering and drug delivery applications [11-14]. Common 

materials for synthetic hydrogels include methacrylate-functionalized poly(ethylene glycol) 

(PEG) crosslinkers blended with monomeric materials such as 2-hydroxyethyl methacrylate 

(HEMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). Synthetic hydrogels have been 

demonstrated as a tunable approach to the release of macromolecules by controlling the 

concentration and length of crosslinker [15]. Natural hydrogels including gelatin [16,17], 

hyaluronic acid [18,19], collagen and other extra cellular matrix components [14] have been 

used for applications including improved cell culture approaches to modeling disease, tissue 

regeneration, and drug delivery materials for in situ gelation.  

Due to the nature of the materials, initiators, and UV light used there are associated 

cytotoxicities with radical photopolymer systems. Recent work to mitigate these toxicities include 

the use of novel initiating systems such as using free-radical generators naturally found in 

biological systems. Nguyen et. al. used riboflavin, or vitamin B12, as a free radical generator in 

a two photon polymerization to generate scaffolds from PEG-diacrylate [20].  Others have 

focused on using photosynthesizers to allow the use of the less damaging blue light instead of 

UV light for the initiation of the polymerization [21-23]. 



 43 

Many of these materials and approaches have been applied to additive manufacturing 

and 3D printing platforms. Certain criteria must be met for a material to be suitable for use with 

photopolymer-based 3D printing techniques such as CLIP and SLA. The resin, which is the 

mixtures of the photopolymer starting materials including monomers and initiators, is typically 

required to be a liquid, fast reacting, and result in a solid polymer that has suitable structural 

integrity to withstand forces of the printing process. Specific requirements will vary depending 

on application, including desired mechanical properties, biocompatibility, and biodegradability.  

Common materials used for biomedical applications in SLA and CLIP include PEG-

based oligomers, small molecule monomers, poly(propylene fumarate) (PPF), and composite 

materials [24]. PEG-based materials that are functionalized to contain more than one reactive 

group (each unsaturated functional group is f=2) are capable of being a stand-alone monomer 

material if the molecular weight is less than ~ 800 g mol
-1

, as these are amorphous and liquid at 

room temperature with reasonably low viscosity [25]. PPF is commonly used as a starting 

material for development of biodegradable networks [26,27]. However, it requires the addition of 

a non-degradable reactive diluent to achieve appropriate viscosities.  

Development of biodegradable photoreactive materials based on functionalized 

polyesters has been an area of interest over the past decade. Most of these are based on 

polyesters such as poly(d,l-lactic acid) (PLA) [28], Poly(caprolactone) (PCL) [29], 

poly(trimethylene carbonate) (PTMC) [30], which have been well characterized and studied for 

use in biomedical applications [31]. A common approach to synthesize these is through ring 

opening polymerization, using a poly-ol as an initiator, to generate a polyester with multiple 

terminal hydroxyl groups. The hydroxyl groups can subsequently be functionalized with 

methacryloyl chloride, methacrylic anhydrides, or glycidyl methacrylate.  

This chapter will outline a few of the approaches to synthesize and characterize photo-

polymerizable biomaterials including a low molecular weight methacrylate-functionalized PCL. 

Characteristics of PCL, including the slow degradation kinetics and ability to dissolve 
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hydrophobic drugs, make it an attractive candidate for use in developing medical devices for 

prolonged drug delivery towards the applications discussed throughout this dissertation. 

Additionally, the oligomers of PCL are liquid at room temperature, affording simple resin 

formulation and handling with no heating required. Additionally, proof-of-concept studies 

demonstrating the use of CLIP to fabricate structured hydrogels using a naturally derived 

material, hyaluronic acid, are presented. 

 

2.2 Materials and Methods 

2.2.1 Materials 

Anhydrous dichloromethane (DCM), triethylamine (TEA), magnesium sulfate, sodium 

chloride (NaCl), dimethylformaide (DMF) were purchased from Fisher Scientific. Glycidyl 

methacrylate (GMA), sodium bicarbonate, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide 

(TPO), methacryloyl chloride (Fluka, ≥ 97 %) were purchased from Sigma Aldrich. Lithium 

phenyl(2,4,6-triimethyl benzoyl) phosphinate (LAP) was purchased from TCI America. 

Hyaluronic acids (5K, 10K, 40K, 500K, 1M) were purchased from Lifecore Biomedical.  

Polycaprolactone-triol (Mn 900 g mol
-1

) and polycaprolactone diol (Mn 530 g mol
-1

) were 

purchased from Sigma-Aldrich and vacuum dried overnight prior to use. All other materials were 

used as received and store as recommended by distributor.  

2.2.2 Synthesis of methacrylate-functionalized polycaprolactone  

2.2.2.1 Synthesis of PCL1100-TMA 

A representative procedure for the synthesis of polycaprolactone-trimethacrylate Mn = 

1100 g mol
-1

 (PCL1100-TMA) was as follows. Poly-ε-caprolactone (PCL) triol (50g, 0.0556 mol, 

0.1668 mol –OH) was charged to a 500 mL round bottom flask and stored under reduced 

pressure in a vacuum oven overnight.  The flask was then fitted with a magnetic stir bar and 
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addition funnel, and was placed under nitrogen flow.  DCM (200 mL) was added via cannula 

and TEA (0.2757 mol) was added via syringe.  The solution was placed under stirring in an ice 

bath. Methacryloyl chloride (0.2757 mol) was transferred to the addition funnel using a syringe 

and then added dropwise to the reaction solution over the course of one hour.  The reaction was 

allowed to proceed overnight, after which the triethylamine hydrochloride (TEA•HCl) was 

removed by filtration.  The remaining solution was washed with saturated sodium bicarbonate 

(1x), 10 % NaCl solution (3x), and water (3x). The organic layer was recollected, dried over 

magnesium sulfate, and the solvent was removed under reduced pressure in a rotary 

evaporation and vacuum oven. 

2.2.2.2 Synthesis of PCL700- DMA 

A representative procedure for the synthesis of polycaprolactone-dimethacrylate Mn = 

700 g mol
-1

 (PCL700-DMA) was as follows. Poly-ε-caprolactone (PCL) diol (102 g, 192.5 mmol) 

was added to a 2-neck round bottom flask and dried in a vacuum oven. The reaction flask was 

equipped with an addition funnel, sealed with rubber septa, and placed under magnetic stirring 

and a N2 purge. Anhydrous dichloromethane (DCM, 310 mL) and TEA (445 mmol) was added 

and the flask was placed in an ice bath. A 10 % molar excess of methacryloyl chloride (420 

mmol) in 200 mL DCM was added dropwise from the addition funnel over the course of 1.5 

hours and the reaction was allowed to proceed for an additional 3 hours. The formed TEA•HCl 

salt was removed by filtration and the filtrate was diluted 3-fold with DCM, washed three times 

with NaCl solution and three times with deionized water. The organic layer was collected, dried 

over magnesium sulfate and filtered. The bulk of the DCM was removed under reduced 

pressure on a rotary evaporator and the remaining DCM was removed in a vacuum oven at 35  

°C. Reaction progress was monitored by 
1
H NMR (Bruker, 300 MHz, CDCl3) and quantitative 

13
C NMR (Bruker, 600 MHz, CDCl3) was used to confirm degree of functionalization and 

molecular weight. For quantitative 
13

C NMR, scan conditions were determined by increasing the 
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relaxation time until relative peak integrations remained constant. A relaxation time of 75 s was 

used for the final spectrum that is presented here. 

2.2.3 Photocalorimetry 

Photopolymerization of methacrylated PCL resins was analyzed with photocalorimetry 

using a Discovery DSC fitted with the PCA accessory, equipped with a Onicure S-2000 mercury 

UV light source with a 365 nm external filter (TA instruments, New Castle, DE). Both PCL resins 

contained TPO at 1 wt % as a photoinitiator. 

To determine the onset of curing, a drop of resin was added to an aluminum DSC 

sample pan without a lid and placed in the DSC cell, which was held at a constant temperature 

of 25  °C under a 50 mL/min nitrogen flow. After an initial isothermal step (3 minutes for PCL1100-

TMA, 7 min for PCL700-DMA) samples were exposed to UV light for at least 10 minutes at 5 mW 

cm
-2

. 

To observe the effect of different light intensities on the double bond conversion (DBC) 

and rate of polymerization (RP) during a long UV exposure, 5 -7 mg of resin was added to an 

aluminum DSC sample pan without a lid and placed in the DSC cell, which was held at a 

constant temperature of 25  °C under a 50 mL/min nitrogen flow. After a 2-minute dark 

isothermal step, samples were exposed for 25 minutes to UV light with an intensity of 5, 9.5, or 

20 mW cm
-2

. The light was then turned off for 5 minutes, after which samples were exposed to 

another 5-minute cure to ensure the polymerization had completed, and for a baseline value for 

heat from the light alone. Each sample was run in triplicate. 

For pulsed experiments, samples were prepared the same way. Following a 2-minute 

dark isothermal step, samples were exposed to 1.8 second pulses (of the same intensities as 

above) followed by a 5-minute dark isothermal step. This was repeated one additional time for a 

total of two pulses. Following another 5-minute dark step, samples were subjected to a 15-
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minute exposure to complete the cure and identify the baseline heat value with the light on. 

Each sample was run in triplicate. 

 Heat was normalized with a horizontal baseline from the heat flow value at the end of 

the final cure step to account for the heat generated from the light alone. Rate of polymerization 

was calculated using equation 2.8:  

CF	=	
O

∆Q;LR
(2.8) 

where Q is heat flow in mW and ∆Hmax is the theoretical heat evolved if all methacrylate 

groups in the sample are reacted. For these experiments, ∆Hmax was calculated as the product 

of moles of methacrylate in the sample and ∆H for conversion of a methacrylate (60 kJ mol
-1

) 

[32]. Bond conversion was calculated by integrating equation 2.8. 

2.2.4 Differential Scanning Calorimetry 

DSC measurements were carried out on a Discovery series DSC (TA Instruments). For 

PCL700-DMA, a fraction of a disk fabricated with CLIP (~5 mg) was massed into an aluminum 

pan and sealed with a T-Zero hermetic lid. For PCL1100-TMA, the aluminum pan containing the 

bulk cured sample (~10 mg) from the photo-DSC analysis was sealed with a hermetic lid. 

Samples underwent a heat-cool-heat cycle by heating from 30  °C to 100  °C, cooling to -90  °C, 

and subsequently heating to 100  °C at a rate of 10  °C/min, under nitrogen atmosphere. Trios 

software (TA Instruments) was used for analysis of glass transition temperatures (Tg) at the 

midpoint of the transition of the second heat. 

2.2.5 Synthesis of HA-GMA 

Methacrylation of hyaluronic acid (HA-GMA) (Mw = 5K, 10K, 40K, 500K, 1M) was carried 

out according to the method present by Bencherif et. al. [19]. Briefly, HA (2.6 mmol repeat units) 

was dissolved at 0.5 % in a 1:1 mixture of 1X PBS and DMF in a glass bottle. GMA (132 mmol) 

and TEA (145 mmol) were added at a molar excess to HA repeat units. Bottles were covered 

with aluminum foil and placed under magnetic stirring for 10 days at room temperature. HA-
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GMA was then precipitated into acetone and separated with filtration, and subsequently dried at 

40  °C under reduced pressure in a vacuum oven. HA-GMA were stored at -20  °C. Analysis 

was carried out using 
1
H NMR in deuterated water (Bruker, 300 MHz). 

2.2.6 Photo-rheology of HA-GMA 

HA-40K-GMA, HA-500K-GMA, and HA-1M-GMA were dissolved in DI water at 2 % (w/v) 

and the photoinitiator Lithium phenyl(2,4,6-triimethyl benzoyl) phosphinate (LAP) dissolved at 

0.2 % (w/v). Solutions were tested for gelation using a TA discovery series photo-rheometer 

equipped with a 385 nm LED light source (TA Instruments). Samples were placed under 

constant frequency and exposed to UV light following 120 seconds to equilibrate.  

2.2.7 Continuous Liquid Interface Production of a HA-GMA hydrogel 

A square pyramidal structure (7x7 mm base) was fabricated using a CLIP S1 prototype 

printer (Carbon, Redwood City, CA) from the HA-1M-GMA (2 %) and LAP (0.2 %) solution. The 

part was printed with a light intensity of 20 mW cm
-2

, with a base exposure of 10 seconds, and 

continuous speed of 21 mm hr
-1

.  

 

2.3 Results and Discussion 

2.3.1 Synthesis of methacrylate-functionalized polycaprolactone  

The NMR results of the methacrylated PCL oligomeric starting monomers can be seen in 

figures 2.3-2.5. Three-armed PCL1100-TMA was synthesized through the methacryloyl chloride 

functionalization of a PCL-triol with a molecular weight of 900 g mol
-1

. The successful 

functionalization is confirmed by the presence of the 
1
H NMR peaks at 5.54-5.58, and 6.09 ppm, 

which correspond to the alkene protons, and the peak at 1.94 ppm, which correspond to the 

three methyl protons of the methacrylate functionality (Fig. 2.3). Comparing the integrations of 



 49 

these peaks to that of the primary methyl of the initiator (0.9 ppm) indicates a functionalization of 

87 %.  

Figure 2.3 Synthesis of PCL1100-TMA. PCL-diol was functionalized with methacrylate groups through 

reacting the terminal hydroxyl groups with methacryloyl chloride. The 
1
H NMR peaks at 1.94, 5.56, and 

6.09 represent the protons of the methacrylate groups and indicate a functionalization of 87 % through 

comparison to the primary methyl group of the backbone.  

Successful functionalization of PCL530-diol with methacryloyl chloride was evidenced by 

the appearance of the methacrylate peaks at 1.03, 5.55, and 6.09 ppm (Fig. 2.4). Quantitative 

13
C NMR was carried out to confirm the molecular weight and extent of functionalization (Fig. 

2.5). Comparing the integration of peaks for the alpha carbon in the ethylene glycol backbone 

(K, 68.9 ppm) to the peak for the methylene carbon of the vinyl group (A, 125.2 ppm) indicate a 

high extent of functionalization (~99 %). Comparison to carbons of the caprolactone repeat unit 
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(F, 28.2 ppm; G, 25.4 ppm; H, 24.5 ppm) supports the presence of 2 repeat units per 

methacrylate group (4 per diethylene glycol initiator), indicating a final Mn = 699 g mol
-1

. 

Figure 2.4 Synthesis of PCL700-DMA. (A) Functionalization of PCL-diol was achieved through reaction of 

the terminal hydroxyl groups with a methacryloyl chloride. (B) Successful functionalization is evidenced by 

comparison 
1
H NMR spectra of PCL-diol (top) and the reaction product (bottom). The appearance of 

peaks at 1.93, 5.55, and 6.09 ppm, indicative of the protons of the methacrylate group. 
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Figure 2.5 Quantitative 13C NMR of PCL700-DMA was carried out using a Bruker 600 MHz NMR and 
a relaxation time of 75 s per scan. 

 

2.3.2 Characterization of methacrylate-functionalized polycaprolactone 

2.3.2.1 Photokinetics 

Differential scanning photocalorimetry (photo-DSC), is a technique used to monitor the 

reaction progress and kinetics of UV polymerization. Photo-DSC uses the sample cell and 

platforms of a traditional DSC instrument, while a custom adaptor allows light guides connected 

to a UV light source to expose the samples during the experiment (Fig. 2.6). The heat evolved 

from a photopolymer resin held isothermally upon exposure to UV light can be translated to a 

rate of polymerization and extent of cure using known values for heat of conversion for the 

reactive functional group. 
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Figure 2.6 Schematic of photo-DSC apparatus.  

When PCL1100-TMA and PCL900-DMA where analyzed with photo-DSC, a rapid onset of 

the autoacceleration phase is observed in less than 2 seconds following exposure for each 

monomer (Fig. 2.7).  This is consistent with multi-methacrylated monomers and is also 

indicative of minimal intramolecular cyclization among the monomer materials [4]. These 

thermograms of photopolymerization are representative of the rapid polymerization kinetics 

required for use in CLIP and other photopolymer-based 3D printing techniques.  

 

Figure 2.7 Photocalorimetry thermograms for (A) PCL1100-TMA and (B) PCL700-DMA. 

The effect of light intensity used during photopolymerization on the resulting polymer 

network was explored with photo-DSC. The differences in the cure kinetics of PCL1100-TMA 

when exposed to three different light intensities can be seen in figure 2.8 A. The time to max Rp 

Heating

Cooling
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(empty) Pan
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and total DBC was significantly different for all three intensities (2-way ANOVA with Tukey’s 

multiple comparisons test, p < 0.005) (Table 2.1).  

Table 2.1 Photokinetic parameters of PCL1100-TMA upon exposure with a range of light intensities 
for 15 minutes. (n=3, error is given as ± standard deviations). 

 

Figure 2.8 Effects of light intensity of the extent of polymerization of PCL1100-TMA. (A) Rate of 

polymerization, RP, and total double bond conversion during a 15 minute cure is dependent on the light 

intensity used to cure the resin. The first three minutes of the cure is shown here, values for the DBC of 

the complete 15 min cure can be seen in Table 2.1. (B) The effect of light intensity on the DBC when 

exposed to 1.8s pulses of light of different intensities. The DBC achieved in pulse 1 and 2 are displayed in 

blue and orange, respectively. 

Further, when exposed to short pulses of light, the effect of light intensity on the resulting 

polymer network is even more apparent (Fig. 2.8 B). A short exposure of light was used to 

better represent the rapid nature of the CLIP process. During the CLIP process, the speed 

and/or light intensity can be varied to achieve different overall light exposures. The data 

presented here indicates that manipulation of total light exposure can result in appreciable 

differences in the DBC, and thus the crosslink density of the resulting network. This may have 

Light	Intensity	
(mW	cm-2 )

5 0.0137 ± 0.0008 19.19 ± 0.38 25.7 ± 2.1 81.9 ± 1.7
9.5 0.0349 ± 0.0032 19.97 ± 0.30 10.4 ± 1.0 87.6 ± 1.6
20 0.0596 ± 0.0040 18.58 ± 0.68 5.8 ± 0.4 93.8 ± 4.2

Total	DBC	(%)t	max	 	(s)DBC	@	Max	Rp	(%)Max	Rp	(s-1 )
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important implications on the resulting parts’ release kinetics and mechanical properties. Using 

light intensity to modify drug release is discussed further in Chapter 5. 

2.3.2.2 Thermal properties 

The thermal properties were measured to determine the Tg of the cured methacrylated 

PCL materials. Both PCL1100-TMA and PCL530-DMA indicate a low Tg after curing (Fig. 2.9). This 

agrees with the expected low Tg of PCL polymers. Further discussion of the effects of reactive 

diluents on the thermal properties of cured PCL materials is discussed in Chapters 3 and 4.  

Figure 2.9 Thermal analysis of methacrylated PCL monomers.   
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2.3.3 Synthesis of HA-GMA 

 

Figure 2.10 Synthesis of HA-GMA. HA-GMA was synthesized by functionalizing hyaluronic acid 
with glycidyl methacrylate. The reaction was carried out for 10 days to allow for functionalization to 

occur via both the ring opening and transesterification routes [19]. 
1
H NMR spectroscopy indicated 

successful functionalization of HA by the appearance of peaks at 5.65 and 5.34, representing the 

methacrylate functional groups. HA-10K is shown as a representative spectrum of a successfully 

functionalize HA material.  
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Successful functionalization of HA with methacrylate groups was evidenced by the 

appearance of peaks at 5.65 and 5.34 ppm (Fig. 2.10). The three largest molecular weight HA-

GMA’s (1M, 500K, and 40K) were formulated into a photocurable resin by dissolving in water to 

2 % (w/v) along with the photoinitiator, LAP, at a concentration of 0.2 % (w/v). When exposed to 

UV light on a photo-rheometer, all HA-GMA solutions were observed to solidify into a hydrogel 

within 5 seconds of light exposure (Fig. 2.11 A-C). Additionally, the cure times were seen to be 

inversely related to the HA molecular weight. Finally, a square pyramidal structure (7 x 7 mm 

base) was fabricated using CLIP to form a hydrogel using the HA-1M-GMA solution (Fig. 2.11 

D). 

These results, while preliminary, are important. The photoinitiator used, LAP, has been 

shown to be cytocompatible, which makes this hydrogel approach a potential method of using 

photo-based 3D printing to fabricated using cell-laden resins [33]. Further, to the author’s 

knowledge there have been no reported uses of HA as the only monomer to form a hydrogel 

using UV projection- or laser-based 3D printing techniques. Though there are examples of using 

interpenetrating networks [34] and lower resolution techniques such as bioplotting [35]. The lack 

of publications in fabrication of HA-based hydrogels using SLA, despite HA-methacrylates being 

widely developed [18,36-38], is likely a result of the harsh physical strains of the SLA approach 

compared to CLIP.  
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Figure 2.11 Photo-rheology and CLIP of HA-GMA hydrogels. Gelation of HA-GMA was observed in a 

solution of water using photo-rheology. Under a constant frequency, HA-GMA gels were exposed to UV 

light after 120 seconds. The crossover between G’ (storage modulus) and G’’ (loss modulus) indicates 

rapid gelation upon exposure. (A) HA-1M-GMA, (B) HA-500K-GMA, (C) HA-40K-GMA. (D) Square 

pyramidal hydrogel part fabricated from 2 % (w/v) HA-1M-GMA resin using CLIP. 
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2.4 Conclusions  

Most of the reported work using photopolymerizable polyesters for 3D printing are 

designed for applications in tissue engineering, and are typically made using non-reactive 

diluents in order to meet printing requirements. These non-reactive diluents require a post-print 

washing step that would not be suitable if a drug was directly dissolved in the resin, due to 

removal of drug during the non-reactive diluent removal steps. The low molecular weight PCL-

based materials presented in this chapter are characterized by being a liquid at room 

temperature, and fast reaction kinetics. These characteristics afford direct printing with material 

without requiring the use of diluents. The following chapters will present the use of liquid PCL700-

DMA along with other commercially available resins to fabricate drug-loaded devices with CLIP 

from resins with drug dissolved directly into resin during the CLIP process. The use of PCL1100 

TMA were reported recently by Johnson et. al. [25]. 

Additionally, the synthesis and CLIP fabrication of a hydrogel from an HA-based resin 

with a cytocompatible initiator is a promising avenue for potential incorporation of living cells 

during the CLIP process. Future work would need to include optimization of formulations, 

fabrication parameters and cytocompatibility testing. 
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CHAPTER 3: CONTROLLING THE RELEASE OF A SMALL MOLECULE DRUG 
SURROGATE FROM DEVICES FABRICATED WITH CLIP 

3.1 Introduction 

Implantable drug delivery systems provide an opportunity for local and sustained 

delivery of drug molecules to a target site while reducing exposure to healthy tissue, thus afford 

many benefits over traditional systemic dosage forms [1-3]. In addition to reduced adverse side 

effects, these devices eliminate the need for patients to take a pill or injection at specified time 

intervals and/or dosages thereby improving patient compliance and quality of life. Relevant 

commercial implantable drug delivery devices have been implemented for a range of 

applications including contraception, cardiovascular disease [4], ocular delivery [5], and opioid 

addiction [6].   

While there are many benefits of localized drug delivery implants, the economics of 

commercial manufacturing methods such as molding or extrusion, necessitate a mass-produced 

product of standard sizes. However, the introduction of additive manufacturing, or 3D printing, 

techniques towards producing drug delivery systems and medical devices provides the 

opportunity for customization and personalization of devices based on medical imaging and 

data [7]. 3D printing provides a small footprint, software-driven manufacturing platform, enabling 

fabrication that could be carried out by healthcare providers in the clinical setting. Further, 3D 

printing is a versatile platform, requiring no lead time or tooling, with the capability to fabricate a 

unique device or multiple devices with each print. Though implementation in the clinic is still in 

its infancy and faces various logistical and regulatory hurdles, there are already examples of 3D 

printed medical devices implanted in humans. For example, 3D printed pediatric tracheal stents 

made via fused deposition modeling (FDM) were used to treat airway obstructions carried out by 
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surgeons at the University of Michigan hospital [8]. Oxford Performance Materials received 

Food and Drug Administration (FDA) approval for their 3D printed cranial implants in 2013 

followed by successful implantation that same year [9]. In 2015 Aprecia Pharmaceuticals 

received the first FDA approval for an additively manufactured drug formulation with the 

approval of the anti-epileptic therapy, Spritam [10]. In addition, there are many examples of 

preclinical development of various 3D printing techniques applied to drug delivery devices [11-

15]. 

Recently the introduction of the 3D printing technique CLIP has been shown to improve 

speed and resolution, and has the ability to manufacture devices in a delicate manner [15,16]. 

CLIP utilizes a photoactive resin to reconstruct a 3D computer aided design (CAD) file that has 

been sliced into two-dimensional layers. A dynamic light projecting (DLP) chip is used to 

progressively project an ultraviolet (UV) light pattern of each slice through an oxygen-permeable 

and UV-transparent window beneath a bath of photoactive liquid resin. When exposed to UV 

light, a photoinitiator in the resin generates free radicals and initiates photopolymerization. 

Because its reactivity results in the rapid formation of stable, low energy peroxide radicals, 

permeated oxygen at the interface of the resin and window acts as a radical scavenger and 

creates a “dead zone” layer in the bath, within which no solidification occurs. At increasing 

distance into the resin from the window, the concentration of oxygen is depleted until the 

reaction kinetics favor polymerization over oxygen inhibition and solidification occurs in the UV-

exposed regions. Unique to CLIP, the oxygen-inhibited dead zone enables uninterrupted 

progression of the build, eliminating repeated mechanical delamination and coating steps 

necessary in layer-by-layer 3D printing techniques, such as stereolithography (SLA). The 

continuous nature of CLIP results in a delicate process that can produce monolithic parts in a 

rapid manner [17], and presents a 3D printing platform that is well suited for the fabrication of 

complex and functional devices in a clinical setting. 
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Multiple strategies can be employed to incorporate an API into a CLIP-produced medical 

device for drug delivery. Select examples of potential methods for API loading of CLIP-produced 

devices are illustrated in Fig. 3.1. These methodologies can be categorized by whether the API 

is present during the CLIP process or introduced after the production of the device. In the latter 

case, post-loading avoids subjecting the API to potential sources of degradation and can be 

achieved through traditional drug loading techniques. These include absorbing drug into the 

polymer network by swelling the part in a concentrated drug solution, or adsorbing the drug to 

the surface of the part through dip or spray coating. Further, one could utilize CLIP to fabricate 

unique devices that can serve as a means of simplifying or improving administration of drug 

dosage forms. For example, drug administration through a multichannel scala tympani electrode 

of a cochlear implant has been shown in preclinical models to overcome the difficulty of 

delivering drugs to the inner ear [18,19]. This theoretical combination product would benefit from 

personalization to the patient’s ear anatomy as well as the design complexity afforded by 3D 

printing.  

Alternative to post-loading, the API can also be directly incorporated into the photoactive 

liquid resin used to produce the device with CLIP. Soluble drugs, for example, can be dissolved 

directly into the liquid resin with a controllable and known concentration. The API can also be 

dispersed in the resin via a secondary phase, such as insoluble drug particulates, drug-loaded 

nano- or microparticles, or potentially as an emulsion. Before using a drug-loaded resin, 

additional testing is necessary to ensure that the drug is stable in the resin, is not susceptible to 

photolysis, and is not reactive towards the free radicals present during the polymerization 

process. Post processing parameters also need to be taken into account to ensure consistent 

drug loading. Despite these additional concerns, several potential benefits are provided when 

the API is incorporated directly in CLIP resins. From a drug release standpoint, complete 

dissolution of the drug into the resin results in a monolithic distribution in the polymer matrix of 

the final part. In the case of drug dispersions, the choice of secondary phase may provide 
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additional control over drug release. Further, direct incorporation of the drug into the resin 

creates an “ink” that can be used to produce a drug-loaded device directly without the 

equipment or specific protocols required for traditional post-loading techniques. The use of pre-

formulated drug “inks” may provide a level of quality control in implementing 3D printing as a 

means for producing personalized drug devices in a clinical setting. 

Here we explore the potential for the application of CLIP towards the design and 

fabrication of drug-loaded devices and demonstrate methodologies for tuning release of small 

molecule drugs from devices produced from drug-loaded liquid resins. We assessed device 

factors, including device geometry, crosslink density, and polymer network composition, that 

control the release rate of a surrogate drug molecule, rhodamine-B base (RhB), from 3D printed 

devices.  



 

 

Figure 3.1 Potential approaches for producing drug-loaded devices. API can be dissolved or dispersed directly in the liquid resin prior to the 
CLIP process. Alternatively, CLIP can be used to fabricate a device without drug. Following complete processing of the CLIP device, API can be 
loaded through absorption, adsorption, or filling a reservoir. Additionally, CLIP may be utilized to fabricate devices that facilitate drug 
administration such as subcutaneous infusion ports or cochlear implants with refillable drug reservoirs.

67 
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3.2 Materials and Methods 

3.2.1 Materials 

Monomers poly(ethylene glycol) dimethacrylate Mn = 750 g mol-1 (PEG750-DMA), 

Poly(ethylene glycol) dimethacrylate Mn = 550 g mol-1 (PEG550-DMA), poly(ethylene glycol) 

methyl ether methacrylate Mn = 500 g mol-1 (mPEG500-MA), poly(ethylene glycol) methacrylate 

Mn = 500 g mol-1 (PEG500-MA), poly(ethylene glycol) methacrylate Mn = 360 g mol-1 (PEG360-MA), 

di(ethylene glycol) methyl ether methacrylate (MP2MA), 2-hydroxyethyl methacrylate (HEMA), n-

propyl methacrylate (PMA), UV radical initiator diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide 

(TPO), UV-absorber 2-tert-Butyl-6-(5-chloro-2H-benzotriazol-2-yl)-4-methylphenol (BLS 1326) 

were purchased from Sigma Aldrich. Rhodamine B-base (RhB) was purchased from Acros 

Organics. Ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate, sometimes referred to as lucirin 

TPO (LTPO), was purchased from Combi-Blocks.  

Phosphate buffered saline (PBS), 2-propanol, acetonitrile, water, and chloroform were 

purchased from Fisher Scientific. Solvents were HPLC grade purity or higher. All materials were 

stored as directed by the supplier and used as received. 

Polycaprolactone-dimethacrylate Mn = 700 g mol-1 (PCL700-DMA) was synthesized as 

described previously in chapter 2. 

3.2.2 Continuous Liquid Interface Production 

CLIP was utilized to print RhB-loaded devices to study how three design and formulation 

factors affect drug release kinetics: device geometry, crosslink density, and polymer network 

composition. For all experiments, a base resin containing no cargo was first formulated at the 

given ratios. Base resins are formulated as neat solutions with known amounts of photoinitiator, 

UV-absorber, and reactive diluents dissolved directly into the liquid oligomeric monomers at 

different ratios. In all cases, mol % is relative to moles of methacrylate. Since all resin 

components were solubleat the ratios used, resins were formulated by combining the 
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components in an amber glass bottle and mixing with magnetic stirring overnight at room 

temperature. For drug surrogate-loaded resins, once the base resin was formulated, the drug or 

surrogate was added at the given weight percent (wt %) and allowed to dissolve with magnetic 

stirring overnight at room temperature.  

All devices presented were fabricated using a S1 CLIP prototype printer (Carbon) 

equipped with a 385 nm LED UV light source. STL files were sliced at 5µm using the Carbon 

printing software. The appropriate build rate and light intensity were based on the device design 

and resin formulation for each experiment.  

3.2.3 CLIP fabrication of geometrically complex devices 

3.2.3.1 Varying unit cell geometry with a constant unit cell size   

To study the effect of varying geometries, four unique CAD models were generated that 

had the same overall dimensions, but varying internal geometries (Fig. 3.2). The models were 

generated using Magics Structures (Materialise) to array three different unit cells to fill a cylinder 

(5mm diameter, 10 mm height). The dimensions of the unit cells were kept constant at 1.5 x 1.5 

x 1.5 mm. The theoretical values of surface area and volume was generated in the software 

platform. 

The base resin was formulated with PEG550-DMA with 1 wt % TPO initiator and 0.5 wt % 

BLS absorber. RhB was then added to a concentration of 0.5 wt %. Parts were arranged on the 

build platform using the Carbon software interface. All four parts were printed at a speed of 15 

mm hr-1 and a light intensity of 4 mW cm-2. Speed was determined based on the appropriate 

speed to print the solid cylinder without defects due to resin renewal.  

Parts were quickly dipped into isopropyl alcohol, removed from the build platform, and 

placed into a microcentrifuge filter insert with no membrane and spun at 4500 rpm for 10 

minutes at 4  °C. Following the centrifugation, one set of devices was set aside without receiving 

a postcure and the remaining devices were subjected to a 2 minute postcure in the Hg UV oven. 
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Figure 3.2 Geometrically complex CAD models of varying unit cells. Three different unit cells of a 
constant size (1.5 mm) were arrayed to fill a cylinder (5 mm diameter, 10 mm height).  

3.2.3.2 Varying unit cell size with a constant unit cell geometry and print parameters 

To generate structures with similar volumes and a range of surface areas, three different 

sizes of the same geometric unit cell (0.5, 1, and 2 mm in all dimensions) was arrayed to fill a 

cylinder (5 mm diameter, 10 mm height). A fourth model was generated by stacking a 3 mm 

long section of the 1 mm unit cell cylinder between 2 mm long sections of the 0.5 mm and 2 mm 

unit cell cylinders (Fig. 3.3) of each model. Devices were printed using the same resin 

formulation as in section 3.2.3.1. Parts were printed at 15 mm hr-1 and 4 mW cm-2. Parts were 

processed using microcentrifuge tubes like above, but due to the smaller pore sizes, parts were 

centrifuged at 2500 rcf for 5 hours at 40  °C. Parts were then exposed to a UV postcure in a Hg 

oven for 2 minutes. 
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Figure 3.3 Schematic of CAD generation for geometricly complex devices. A single unit cell of 
varying sizes (0.5, 1, 2 mm) was arrayed to fill a cylinder (5 mm diameter, 10 mm height) to generate the 
final structures. A device filled with all three unit cell sizes was also made. 

3.2.3.3 Constant unit cell geometry, theoretical volume, optimized print parameters 

To study the effects of device surface area on the release of a model drug, a single resin 

was formulated and used to print three model devices with the same volume and various 

surface areas. The base resin contained 48.5 wt % PEG550-DMA, 48.5 wt % HEMA, 0.5 wt % 

BLS, and 2.5 wt % LTPO. RhB was then added to the base resin at 0.2 wt % to serve as a drug 

surrogate. Geometrically complex STL models were generated using the CAD software Magics 

Structures (Materialise) by arraying a nodal unit cell to fill a cylinder (6mm diameter, 6mm 

height). While holding the dimensional proportions constant, three different sizes of the unit cell 

(1, 2, and 3 mm) were used to generate scaffolds with similar volumes and a range of surface 

areas (Fig. 3.4). Theoretical values of volume (V) and surface areas (SA) were generated in 

Magics and used in calculations of SA/V ratios.  
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Figure 3.4 Generation of CAD files for model devices containing various surface areas and a 
constant volume. A nodal unit cell of either 1, 2, or 3 mm in length and height was arrayed to fill a 
cylinder with a 6 mm diameter and 6 mm height, generating three devices with similar theoretical volumes 
(Vol.) and different theoretical surface areas (S.A.).  

Different print parameters for each unit cell size were optimized so that the mass of the 

fabricated parts was uniform between all three models, regardless of the size of the unit cell that 

was arrayed. To optimize the print parameters, each model was printed at a constant speed of 

15 mm hr-1 and the light intensity was varied from 5 to 17 mW cm-2. Final print parameters for 

each model were decided by choosing the light intensity that resulted in parts with similar 

average mass across all unit cells sizes.  

For the release study, devices filled with 1, 2, and 3 mm unit cells were printed at a light 

intensity of 7, 15, and 17 mW cm-2, respectively. To avoid extraction of encapsulated RhB by 

solvent washes, residual resin was removed through centrifugation. Parts were removed from 

the build platform and placed directly into a microcentrifuge filter insert with no membrane 
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(Corning) and spun at 2000 rpm for 40 minutes at 30  °C. Devices were then post cured for 5 

minutes (2.5 minutes on each side) in an UV oven fitted with an LED area cure unit (Phoseon 

Technology) with a narrow peak emission at 365 nm and a light intensity of 90 mW cm-2 at the 

height of the devices. 

3.2.4 CLIP fabrication of devices with varying crosslink density 

To evaluate the effect of crosslink density, resins were formulated using PEG750-DMA, 

PEG550-DMA, and mixtures of PEG550-DMA and the reactive diluents HEMA, MP2MA, and 

EGDMA at 25 and 50 wt %. This provides a range of theoretical molecular weight between 

crosslinks (!") as well as formulations that provide similar !"	with a different pendant endgroup 

functionality (Fig. 3.5). 

Table 3.1 Formulations and $% values for resins used in crosslink density experiment 

 
 !" was defined according to equation (3.1). 

!" =
!',) + !+ 1 + -

2 3.1 	
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where !',) is the average molecular weight of the crosslinking components (f > 2) and Mr is the 

molecular weight of the polymethacrylate backbone repeat unit not including any pendant groups. 

X is the crosslinking ratio and is defined as the molar ratio of methacrylates from chain-extending 

monomers (f = 2) to methacrylates from crosslinking agents (f > 2). A pictorial representation can 

be seen in Fig. 3.5. 

Figure 3.5 Schematic of $% calculation for a network made up entirely of crosslinking monomers 
(A) and one that contains chain-extending monomers (B). The molecular weight of crosslinking agents, 
$1,2, is defined as the average molecular weight of any multimethacrylate (f > 2) in the network and is 
illustrated with the blue arrow and text. The average molecular weight of the polymethacrylate backbone 
between crosslinking regions and is illustrated with a red arrow and text.  

Example calculations for resins formulated with a single crosslinking monomer, two 

different crosslinking monomers, and a monomethacrylate reactive diluent added to the 

crosslinking monomer are given below.  

For the network composed entirely of PEG550-DMA (Mn = 550 g mol-1):  

!" =
550 + 41 1 + 0 1

2 = 550 + 41
2 = 296 

For the network composed of 75 wt % PEG550-DMA (52 mol %, f = 4, Mn = 550 g mol-1), and 25 

wt % EGDMA (48 mol %, f = 4, MW = 198.22 g mol-1):  
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!',) = 550 0.52 + 198.2 0.48 = 381.1 

!" =
381.1 + 41(1 + 0 1)

2 = 381.1 + 41
2 = 211 

For a network composed of 75 wt % PEG550-DMA (59 mol %, f = 4, Mn = 550 g mol-1), and 25 wt 

% HEMA (41 mol %, f = 2):  

!" =
550 + 41(1 + 0.41 0.59)

2 = 310 

All resins contained TPO photoinitiator at 1 mol %. RhB was then dissolved into each 

resin at 0.5 wt %. A solid disk with a thickness of 1mm and a diameter of 5mm was designed in 

SolidWorks (Dassault Systèmes) to serve as a model device. Disks were arrayed in a 3x3 

pattern on the build platform and printed with CLIP at a continuous speed of 15 mm hr-1 and a 

light intensity of 3 mW cm-2. Upon completion of the print, the remaining uncured material on the 

surface of the part was removed by gently blotting the surface with a wipe. The part was then 

subjected to a 2 minute postcure under a mercury UV flood lamp (ELC-4001 equipped with UVA 

lamp, Electro-Lite Corporation, 365 nm peak wavelength, 43.3 mW cm-2).  

3.2.5 CLIP fabrication of devices with varying polymer network composition 

To evaluate the effect of chemical structure and resin formulation, RhB-loaded solid 

disks were fabricated from PCL700-DMA, with the addition of the monofunctional reactive 

diluents: mPEG500-MA, PEG500-MA, PMA, and HEMA at 15, 40 and 65 mol % and photoinitiator 

TPO at 1 mol % (Fig. 3.7). RhB was then dissolved into each resin at 0.5 wt %. Disks were 

printed with the same fabrication parameters as those in the crosslink density study. 



  

 
 

 

 

Table 3.2 Formulations and !" calculations for resins used in the experiments to test the effect polymer network composition. 
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3.2.6 Characterization of CLIP devices 

3.2.6.1 Swelling and gel fractions 

To determine swelling in PBS, dry disks were first weighed (M0) and subsequently 

incubated in 10 mL pH 7.4 PBS at 37 °C under constant oscillation (150 rpm) in an incubating 

shaker (VWR). After one week, the disks were removed and carefully blotted with a lab wipe, 

and the swollen mass was recorded (Ms). The disks were then washed with water to remove 

salts and dried under vacuum at 80 °C overnight and another 24h at room temperature. The 

final dry mass was recorded (Md) and degree of swelling was calculated using equation (3.2). 

Degree of Swelling (%) =
%& − %(

%(
×100 (3.2) 

Swelling and extraction of soluble components of geometrically complex devices was 

carried out in chloroform to confirm that monomer incorporation and crosslink density are not 

affected by the print parameters or model design. Scaffolds were swollen in 10 mL chloroform 

for 6 days at 37 °C under constant oscillation (n = 3). In the case of these geometrically complex 

shapes, the typical method of simply removing the surface liquid with a lab wipe was not 

sufficient due to their tendency to retain solvent in the small pores of the scaffold structure. 

Thus, after the device was removed from chloroform, the surface solvent was removed by 

exposing the device to a compressed air stream for 5 seconds. The swollen device was then 

transferred to a tared and capped vial to obtain the Ms. The parts were then dried under vacuum 

at room temperature overnight and the Md was recorded. The gel fraction of printed parts was 

determined according to equation (3.3). 

Gel Fraction (%) =
%(

%,
×100 (3.3) 



 

 78 

3.2.6.2 Scanning electron microscopy 

Parts were imaged by scanning electron microscope (SEM) with a Hitachi S-4700 SEM. 

Prior to imaging, parts were coated with 2 nm of a palladium-gold alloy using a Cressington 108 

sputter coater.  

3.2.6.3 Thermal analysis of printed parts 

DSC measurements were carried out on a Discovery series DSC (TA Instruments). Disk 

fractions (~5 mg) were massed into an aluminum pan and sealed with a T-Zero hermetic lid. 

Samples underwent a heat-cool-heat cycle by heating from 30 °C to 100 °C, cooling to -90 °C, 

and subsequently heating to 100 °C at a rate of 10 °C/min, under nitrogen atmosphere. Trios 

software (TA Instruments) was used for analysis of glass transition temperatures (Tg) at the 

midpoint of the transition.  

3.2.6.3 RhB extraction 

RhB was extracted from the geometrically complex devices from section 3.2.3.1. To 

improve the extraction efficiency, RhB was extracted in parts that had not undergone a UV 

postcure. Devices were placed in 10 mL of methanol in a 15 mL conical tube and placed under 

shaking for 5 days at room temperature. The devices were then moved to 10 mL of fresh 

methanol and allowed to shake for another 30 days at 37 °C. The concentration of RhB in both 

extraction solutions was determined using a plate reader (BioRad Laboratories) to compare 

sample fluorescence (ex. 544 nm, em. 590 nm) to a standard curve in methanol.  

3.2.6.3 In vitro RhB release 

For geometrically complex devices, parts were placed into 20 mL of pH 7.4 PBS in a 

glass scintillation vial and placed in an opaque box to protect from light. For RhB-loaded disks, 

parts were added to 10 mL of pH 7.4 PBS in an opaque 15 mL polypropylene conical centrifuge 

tube containing a glass capillary support. The capillary tube was placed so as to maintain the 
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disk in a vertical position and avoid forming a plug in the bottom of the tube, creating different 

concentration gradients on either side of the disk.  

The samples were placed in an incubating shaker (VWR) at 37 °C under constant 

oscillation at 150 rpm. At given timepoints, 1 mL of PBS release medium was removed and 

replaced with 1 mL of fresh PBS immediately. The concentration of RhB in the solution was 

determined with a plate reader by comparing sample fluorescence to that of a standard curve of 

fresh RhB in PBS. Curves were fit to the release data using the DDSolver plug-in for Excel 

(Weibull model) [20]. 

 

3.3 Results and Discussion 

3.3.1 Effect of Geometry 

One of the most notable benefits of using 3D printing is the freedom to fabricate objects 

with high geometric complexity, which would not be possible through traditional manufacturing 

methods such as extrusion or injection molding. Techniques like salt leaching and polymer 

foaming have been used for decades to generate porous structures with high surface areas 

[21]. However, these methods result in heterogeneous distribution of pore sizes and lack the 

control that is capable through 3D printing techniques (Fig. 3.6). Janusziewicz et al 

demonstrated the utility of CLIP to generate porous scaffolds based on CAD models [25]. They 

were also able to fabricate geometries beyond the capabilities of computer modeling by co-

opting the continuous nature of CLIP to introduce gradients in pore sizes, which are not possible 

to model outside of the limited number of geometries defined by tripley periodic functions. This 

control has important implications in the design and production of controlled release scaffolds. 

To characterize and demonstrate the application of complex geometries towards the design of 

controlled release drug delivery systems, models were design by arraying various unit cells to fill 
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a macro-shape (cylinders). Three approaches were taken: 1) holding the unit cell size constant 

while varying the unit cell geometry; 2) holding the unit cell geometry constant while varying the 

unit cell size, using the same print parameters for all; and 3) holding unit cell geometry constant 

while varying the unit cell size, using optimized print parameters resulting in constant resulting 

part volumes. 

Figure 3.6 Comparison of 3D printed and polymer foam scaffolds. (A) SEM image of hydroxyapatite 
scaffold. Image reused from [22]. (B) SEM image of PDLLA network scaffold with a gyroid structure 
fabricated by SLA. Scale bar represents 500 µm. Reproduced with permission from [23]. (C) Pore size 
maps of µCT analysis and (D) distributions and accessibility curves of built PDLLA gyroid structures and 
salt-leached scaffolds. Reproduced with permission from [24].  
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3.3.1.1 Varying unit cell geometry with a constant unit cell size 

By arraying various unit cells of the same dimensions into a macro geometry, different 

models were generated to contain different surface area to volume ratios. Model scaffolds were 

printed containing 0.5 wt % RhB as a small molecule drug surrogate and were imaged with SEM 

(Fig. 3.7 A) and a digital camera equipped with a macro (10X) lens (Fig. 3.7 B). Under higher 

SEM magnification, a patterned texture can be observed in certain regions of the devices (Fig. 

3.7 C). These patterns appear on the side of the device facing away from the window and light 

source, towards the build platform. These appear to be a result of the pixels, and digital 

measurement reveals that they are approximately 20 µm wide, which is the size of the projected 

pixel in the S1 printer used. This texture will likely not have an observable effect on devices of 

this size, but may become important when trying to fabricate parts at a smaller scale. 

 

Figure 3.7 Geometrically complex model devices made from three unique unit cell geometries with 
constant unit cell size. (A) SEM images devices 1.5 mm node, diamond, and rhombic unit cells. (B) 
Visible light image of devices on a US quarter for scale. (C) High magnification SEM image showing the 
device surface texture due to pixel effects. 
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If the approach of using geometry to modify drug release is to be implemented in a 

clinical setting, it is necessary to ensure that the device geometry is independent of polymer 

network of the resultant park at the molecular level. To probe the monomer incorporation and 

crosslink density of the resulting parts, the gel content and solvent uptake were observed in 

ethanol. Results in Fig. 3.8 indicate that the post processing parameters are important to the 

uniformity of the resulting polymer network. Devices of different geometries that did not undergo 

the 2 minute postcure in the Hg UV oven indicate a significant difference among the various 

geometries in both ethanol uptake and the gel fraction of the part. However, devices subjected 

to the postcure process appear to have a crosslink density and monomer incorporation that is 

independent of device design and geometry. Statistical analysis indicated no significant 

difference between the various shapes, with the exception of solvent uptake in the solid cylinder 

compared to the diamond unit cell. 
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Figure 3.8 Solvent uptake and gel fraction of geometrically complex devices generated by arraying 
different unit cell geometries. Characterization of the gel fraction (A and B) and solvent uptake (C and 
D) of devices that received no postcure (left) and those that were subjected to a 2 minute postcure in a 
Hg UV oven. Statistics were performed using one way ANOVA using Sidek’s multiple comparison test. † 
indicates significance versus Node, ‡ indicates significance versus Diamond, and § indicates significance 
versus Rhombic. 

Further, when the gel fraction is plotted against the theoretical SA/V ratio (Fig. 3.9), parts 

that were not postcured show a significant correlation between the gel fraction and SA/V (P = 

0.0047). In postcured samples, correlation is not significantly non-zero (P = 0.8324) indicating 

that there is no correlation between the gel fraction and part geometry following the 2 minute 

postcure. 
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Figure 3.9 Linear correlation between the theoretical surface area to volume ratio and gel fraction. 

The mass and RhB loading characterization of the devices can be seen in Fig. 3.10. The 

difference in device mass can be attributed to the different part volumes that result from arraying 

unit cells with different geometries to fill the same macro geometry (cylinder with 5 mm 

diameter, 10 mm height) (Fig. 3.10 A). Because all devices were fabricated from the same resin 

formulation (0.5 wt % RhB), the mass of RhB loaded in the device also varies depending on the 

device design (Fig. 3.10 B). Further, the drug loading trends with the device mass, which is 

expected for monolithic solution, or “one-block” systems, in which the drug mass is directly 

dependent on device volume. Drug loading was calculated by dividing the mass of RhB that was 

extracted from device by total part volume prior to extraction (Fig. 3.10 C). The RhB loading was 

similar for all device geometries with an average of 0.45 ± 0.04 wt %.  

Figure 3.10 Mass and RhB loading in geometrically complex devices with constant unit cell size. 
(A) Device mass (n=3) (B) Mass of RhB extracted from devices (n=3) and (C) percent loading by weight. 
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In vitro results indicate that the rate at which RhB is released increases with the 

increasing SA/V ratio over the first 48 hours (Fig. 3.11 A). Being a highly crosslinked, non-

degradable network, the drug release is expected to be through a diffusion mechanism. When 

the SA/V ratio is increased, the average diffusion distance of the RhB will decrease. Thus, these 

results are in agreement with the expected outcome. The fraction of RhB released from devices 

filled with node and diamond unit cells were not statistically significant at any time point 

analyzed (multiple T-tests with Holm-Sidek method). By 28 days RhB release from all three 

geometrically complex devices plateaued, while the solid device was still releasing RhB (Fig. 

3.11 B).  

 The difference between the release rates for the devices with different unit cells is a 

clear indicator of the control the geometry can provide in modifying the release of a drug. 

However, when plotted as total mass of RhB released, the results demonstrate a possible 

drawback of this approach. While the solid device has a slower release with approximately 28 % 

of loaded cargo released compared to 68 % from the high SA/V rhombic device, a total of 296 

µg RhB diffused from the solid device compared to 280 µg released from the device arrayed 

with rhombic unit cells (Fig. 3.11 C). This would present a challenge for implementing this as a 

technique to modify release to the specific needs of individual patients, because tuning the 

release rate would also result in a different overall dose.  



 

 86 

Figure 3.11 In vitro RhB release from geometrically complex devices with uniform unit cell size. 
RhB release was calculated relative to the theoretical RhB loading over 48 hours (A) and 28 days (B). 
RhB release presented as total mass (in µg) released over 28 days (C). 

3.3.1.2 Varying unit cell size while holding unit cell geometry and print parameters constant 

An alternative approach to achieve different SA/V ratios within the same macro-

geometry is to vary the unit cell size while holding the unit cell geometry constant (Fig. 3.12). 

This generates CAD models with similar theoretical volumes and thus drug loading, while 

varying the theoretical surface areas. Four different CAD models were generated for this 

experiment by arraying a diagonal node unit cell to fill the same 5 x 10 mm cylinder as used in 

section 3.3.1.1. Three models were generated by uniformly filling the same 5 x 10 mm cylinder 

as used in section 3.3.1.1 with diagonal node unit cells of 0.5, 1, or 2 mm dimensions.  

Additionally, a fourth model was generated by filling the cylinder with portions of all three sizes 

to demonstrate the ability to mix geometries to combine release characteristics to engineer a 

device with optimal release kinetics.  
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Figure 3.12 Effect of unit cell size on theoretical part volume and surface area. When using the 
same unit cell geometry, different unit cell dimensions will generate structures with similar volumes and 
differing surface areas.  

Images of the devices containing varying sizes of the same unit cell, fabricated with 

identical parameters (15 mm hr-1, 4 mW cm-2) can be seen in Fig. 3.13. Because the RhB 

release from this fully crosslinked system is diffusion-based, it would be expected that release 

rate would trend inversely with the unit cell size. As the size of the unit cell decrease, the 

surface area and drug release rate would increase.  
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Figure 3.13 Visible light photograph of devices with constant print parameters, constant unit cell 
geometry, and various unit cell dimensions. (A) Image of three devices printed with uniform unit cell 
dimensions with decreasing in size from left to right, and a device made with a combination of all three 
unit cell dimensions in the farthest right device. Zoomed image of devices with uniform 2 mm (B), 1 mm 
(C), and 0.5 mm (D) unit cells. 

Results of the in vitro release study (Fig. 3.14 A) support this hypothesis for devices with 

1 and 2 mm unit cells. Surprisingly however, the device fabricated with the smallest unit cell (0.5 

mm) showed the slowest release despite having the highest theoretical SA/V ratio. This does 

not align with the expectation for a device with a lower theoretical diffusion distance. When 

comparing the theoretical volume to the experimental part mass (Fig. 3.14 B), it appears that the 

cause is inaccuracies in the print. This is likely due to cure-through in the z-plane. Because all 
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devices were fabricated using the same light intensity, speed, and resin, the light penetration 

depth light will remain the same for every model. As the unit cell size decreases, the depth of 

the cure-through becomes larger relative to the desired void volume. Thus, the overall part 

mass trends inversely with the unit cell size. It is important to note that release from devices 

fabricated with the combination of all three unit cells still falls right in the middle of the three, 

demonstrating that the effects of geometry can be combined. This also supports the hypothesis 

that the change in part mass is a result of the printing process rather than any effects of 

incomplete resin removal during prost processing. This is promising for future work that may 

include generating models of the effects of device geometry to facilitate algorithm-based dosage 

design for personalized devices  

Figure 3.14 In vitro RhB release and fabricated part mass. (A) Release rate of RhB in pH 7.4 PBS 
shows a dependence on the unit cell size of the CAD model. (B) Although the models have similar 
theoretical volumes, the resulting part mass appears dependent on the unit cell size. 

3.3.1.3 Constant unit cell geometry, theoretical volume, optimized print parameters 

As with the previous experiment, parts were designed by arraying the same macro 

geometry with node unit cells of differing sizes. By using the same unit cell geometry, parts are 

expected to have similar part volumes while surface area is inversely correlated with unit cell 

size. To address the issue of cure-through discussed in section 3.3.1.2, print parameters were 

optimized for each device by varying the light intensity with a constant print speed of 15 mm hr-1. 
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The resulting mass of the devices was used as an indicator of their volume. The mass of 

devices printed with light intensities between 5 and 17 mW cm-2 indicated that similar device 

mass can be achieved for cylinders with node unit cells of 1, 2, and 3 mm by using a light 

intensity of 7, 15, and 17 mW cm-2, respectively (Fig. 3.15 A). Average masses of 16 devices 

printed for each model were not significantly different (Fig. 3.15 B). Of note, there did appear to 

be an association between part mass and its location on the build platform, with the effect 

seemingly magnified with the smaller unit cell (Fig. 3.15 C-F).  
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Figure 3.15 Optimization of print parameters to achieve similar device mass. (A) Dependence of 
part mass on light intensity used to print devices generated using different sizes of the same unit cell 
printed using a constant build rate (15 mm hr-1). (B) Part mass of devices printed for in vitro release 
studies (n=16). (C) Position labels for parts relative to the build platform. Masses of printed devises 
grouped by print number and their position on the build platform for devise built from 1 mm (D), 2 mm (E), 
and 3 mm (F) unit cells. 
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Model cylindrical scaffolds fabricated to contain 0.2 wt % RhB as a surrogate small 

molecule therapeutic (Fig. 3.16) were printed at similar part mass, and thus RhB loading (Fig. 

3.18 B). The gel content and solvent uptake characteristics of the devices were used as 

indicators of the monomer incorporation and crosslink density of the polymer networks. 

Acetone, ethanol, and chloroform were screened to determine the best solvent to swell the 

devices in, which was found to be chloroform (Fig. 3.17).  

Figure 3.16 Geometrically complex model devices loaded with RhB as a surrogate drug. Visible 
light photograph (A) and SEM image (B) of 1, 2, and 3mm unit cells arrayed to fill a 6 mm x 6mm 
(diameter x height) cylinder, from left to right. 
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Figure 3.17 Solvent swelling of geometrically complex devices generated by arraying node unit 
cells of 1, 2, and 3 mm fabricated with optimized parameters to control for part mass. 

Devices printed with three different geometries show a gel content over 91 % and similar 

chloroform uptake at approximately 92 % by weight (Fig. 3.18 A). The similarities in swelling and 

gel content between devices with different geometries supports the assumption that the polymer 

networks are identical on a molecular level, regardless of feature size. Consequently, the 

observed difference in RhB release in vitro can be attributed to the device geometry (Fig. 3.18 

C). The cylindrical device based on the smallest unit cell, and hence the highest surface area, 

shows a rapid release, with the majority of the RhB released within the first 3 days. The cylinder 

with the largest unit cell (lowest surface area) shows a slower gradual release over the course 

of 28 days. These results are in accordance with the principles of diffusion-controlled drug 

release systems [26-29]. Decreasing the unit cell size reduces the average diffusion distance for 

a small molecule drug to move through the polymer network to reach the aqueous tissue phase. 

An important characteristic of the design scheme presented here is the ability to design drug-

loaded devices with numerous possible drug release profiles all with the same total delivered 

drug dose. This method of design-dictated release benefits from the reproducible precision in 

architecture fabrication afforded by 3D printing and CLIP, which is not possible with traditional 

methods of scaffold fabrication such as salt leaching or electrospinning. The reproducible nature 
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of this method of fabricating complex devices will be beneficial to 3D printing technology when it 

is evaluated from a regulatory standpoint. 

 

Figure 3.18 Characterization of geometrically complex model devices. (A) Chloroform uptake and gel 
fraction (n = 3). (B) Average mass of parts printed at the indicated print parameters (n = 16). (C) 
Cumulative RhB release in vitro. Cumulative release data was fit to the Weibull_3 mathematical model 
using the DDSolver plug-in in Excel.  

3.3.2 Effect of crosslink density 

CLIP and other photopolymer-based additive manufacturing techniques utilize UV light 

to initiate radical polymerization of unsaturated moieties, such as methacrylate groups. 

Primarily, the formation of the solid part relies on covalent crosslinks in the network, which are 

introduced by monomers or low molecular weight oligomeric macromers with at least two 
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photopolymerizable groups. The concentration of the crosslinking agent can be modulated to 

control the rate of diffusion and release of a small molecule drug that has been incorporated into 

the resin. To demonstrate and characterize the ability to control the release of small molecule 

drugs by controlling the crosslink density, PEG-based CLIP resins were formulated to vary the 

average molecular weight between crosslinks (%-). RhB was dissolved into all resins to serve 

as a surrogate for a small molecule drug. We varied the theoretical %- of the polymer network in 

two ways: by changing the molecular weight of the dimethacrylate crosslinker in fully crosslinked 

systems (PEG750-DMA, PEG550-DMA, PEG550-DMA/EGDMA), and through the addition of chain-

extending monomethacrylate diluents to the crosslinking oligomer, PEG550-DMA (PEG550-

DMA/HEMA and PEG550-DMA/MP2MA). The first method, in which the polymer network is 

formulated entirely of crosslinking oligomers/monomers (f = 4), uses the length of the PEG 

oligomer between the terminal methacrylate functional groups to dictate the molecular weight 

between the crosslinks, assuming 100 % conversion of methacrylate groups (Fig. 3.5). In the 

second case, the length of the oligomer between methacrylate groups is constant, but chain-

extending monomers are introduced (f = 2). Incorporation of these monomethacrylate 

monomers statistically increases the distance between crosslinks in the network (Fig. 3.5). If we 

consider %- to be the average of the molecular weight of crosslinking oligomer and the 

molecular weight of the chain-extended backbone between the crosslinking agents it is possible 

to compare theoretical %- assuming the ideal and complete reactions (Fig. 3.5). 
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Figure 3.19 Gel fractions of RhB-loaded disks with different crosslink densities. 

Regardless of the formulation used, all printed parts produced a high gel fraction of at 

least 95 % (Fig. 3.19). DSC analysis of the printed disks indicated a higher glass transition 

temperature (Tg) of -17.8 °C for PEG550-DMA compared -39.3 °C for PEG750-DMA. Further, the 

Tg was increased with the addition of HEMA, while slightly decreasing with the addition of 

MP2MA (Fig. 3.20 A). The Tg effects are a function of both chemical make-up and crosslink 

density. As expected due to the increased theoretical %-, PBS swelling trends upward with 

increasing PEG molecular weight and with the addition of monomethacrylate chain-extenders. 

Conversely, disks containing the low molecular weight crosslinker EGDMA show minimal uptake 

of PBS. The effect of crosslink density is evidenced by overlaying the theoretical %- with the 

PBS swelling (Fig. 3.20 B).  
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Figure 3.20 Characterization of RhB-loaded model devices with different crosslink density. (A) 
Dependence of the Tg of the printed part on the amount of chain-extending diluent. (B) Theoretical %- 
overlaid with the disks swelling in PBS. (C) Cumulative RhB release in vitro. Cumulative release was fit to 
the Weibull_1 mathematical model using the DDSolver plug-in in Excel. 

As the primary mechanism of drug release from non-degradable, highly crosslinked 

networks is diffusion, swelling is expected to be directly correlated with release kinetics. Results 

of the in vitro release study (Fig. 3.20 C) show that disks fabricated with 100 % PEG750-DMA, 

which has the highest swelling in PBS and highest %-, release RhB the fastest with 

approximately 60 % of the model drug being released in the first 24 hours and 80 % by 4 days. 

Interestingly, while the addition of HEMA to PEG550-DMA increases the swelling in PBS 

compared to the addition of MP2MA, parts fabricated from blends of PEG550-DMA and MP2MA 

showed a higher release rate. This exemplifies the importance of the pendant group on the 

chain-extending diluent. The slower release from disks containing HEMA is likely a result of 

hydrogen bonding between the hydroxyl group of HEMA and the RhB molecule, leading to a 

tighter association between the model drug and the network.  
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3.3.3 Effect of polymer network composition 

Along with the crosslink density, the chemical structure and properties of the polymers 

will dictate the rate at which the drug molecule is able to diffuse out of the network. To study the 

effect of resin formulation and the resulting polymer network on drug release, we analyzed RhB 

release from devices fabricated using five different resins based on polycaprolactone-

dimethacrylate: PCL700-DMA, PCL700-DMA/PEG500-MA, PCL700-DMA/mPEG500-MA, PCL700-

DMA/HEMA, and PCL700-DMA/PMA (Fig. 3.7). 

These blends were chosen to study the effect of the addition of hydrophilic PEG groups 

into the hydrophobic PCL network. The resins were formulated so that the ratios of 

methacrylates from the crosslinking PCL700-DMA to those of the chain-extending diluents were 

held constant at 80:20, 60:40, and 35:65. Thus, assuming ideal and complete reactions, we can 

directly compare formulations with the same theoretical %-, with or without the presence of 

PEG. Further, the effect of pendant functional groups was observed through the comparison of 

methoxy-terminated PEG to hydroxy-terminated PEG, and HEMA to PMA. 

Disks were successfully printed with each formulation, apart from the resin with the 

highest concentration of PMA, which resulted in a very brittle disk with cracks. The swelling and 

DSC results demonstrated that addition of hydrophilic PEG greatly increases the uptake of PBS 

(Fig. 3.21 A) and decreases the Tg of the network (Fig. 3.21 B). Networks containing increasing 

amounts of HEMA and PMA, which have the same theoretical molecular weight between 

crosslinks, show an increase in Tg (Fig. 3.21 B) and minimal differences in PBS uptake (Fig. 

3.21 A).  
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Figure 3.21 Dependence of the PBS uptake (A) and Tg (B) of model devices on diluent content in 
PCL700-DMA. 

In the in vitro release study, an increased release of RhB was observed with addition of 

monomethacrylate PEG compared to fully crosslinked PCL700-DMA (Fig. 3.22 A). Interestingly 

however, addition of small molecule chain-extenders, PMA and HEMA, resulted in a decreased 

RhB release (Fig. 3.22 A and B). This is contrary to purely PEG-based hydrophilic networks 

where the increased %- from addition of small chain-extending monomers, like HEMA, is 

correlated with increased swelling and RhB release. This indicates that in primarily hydrophobic 

networks, like PCL, it is not the crosslink density, but rather the material composition that is the 

more important variable in controlling the RhB release and part swelling. Also, the end group of 

the chain-extending diluent appears to play an important role in RhB release in these networks, 



 

 100 

as the addition of PMA shows a slower release compared to networks containing the same 

amount of HEMA (Fig. 3.22 B).  

 

Figure 3.22 Effect of polymer network composition on in vitro RhB release from PCL700-DMA 
based formulations with the addition of 50 mol % reactive diluent (A) and PCL700-DMA with the addition 
of increasing amounts of small molecular weight chain-extending monomer (B). Data was fit to the 
Weibull_3 mathematical model for resins containing mPEG500MA or PEG500MA; all others fit to Weibull_1 
mathematical model using the DDSolver plug-in for Excel.  
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3.4. Conclusions 

3D printing has the potential to play a major role in an anticipated shift towards patient-

tailored medicine with the ability to manufacture personalized medical devices and 

pharmaceutical dosage forms [10,11,30]. Here we demonstrated the feasibility and potential 

advantages of utilizing CLIP to formulate and fabricate encapsulated drug-loaded devices for 

controlled and prolonged release applications. In vitro drug diffusion studies showed that 

release of a drug surrogate, RhB, can be tuned with device geometry while holding drug loading 

constant by changing the size of the unit cell used to create scaffolds. Crosslink density and 

polymer network composition were also both shown to be additional means to tune the release 

of RhB. Crosslink density had different impacts on PEG- and PCL-based networks, with PBS 

swelling and drug release increasing in hydrophilic PEG-based network and decreasing in 

hydrophobic PCL-based networks, with the addition of chain-extending monomers. 

In conclusion, CLIP provides an interesting and promising 3D printing platform for the 

fabrication of personalized devices for controlled release applications. Moving forward, in vivo 

drug release data will be an important step towards the use of this approach for applications 

such as implantable drug delivery devices. It may be interesting to try to apply existing models 

or create new models to characterize the effects of device geometry and formulation on drug 

release [31,32]. It will also eventually be necessary to develop algorithms and computer 

programs that apply these models to patients’ imaging and medical data. A physician would 

then be able to enter patient data and generate devices that can have both a personalized 

shape and release characteristics dependent on that patient’s needs. 
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CHAPTER 4: PRE-CLINICAL EVALUATION OF CLIP FOR THE FABRICATION OF 
PHARMACEUTICAL AND MEDICAL DEVICES 

4.1 Introduction 

As discussed in the introductory chapter of this dissertation, 3D printing has garnered a 

great deal of interest for biomedical applications both in pre-clinical development and clinical 

implementation. 3D printing in the biomedical field has the potential to dramatically change the 

way physicians treat and interact with patients, but important feasibility and regulatory concerns 

will need to be addressed. Notably, the exciting aspects of point-of-care manufacturing for 

personalized devices raises important quality questions. Future regulations and guidances will 

need to focus on issues specific to 3D printing, such as quality of the raw materials used, 

technical aspects of the production method, and guidances for post-production quality 

assurance. 

One of the earliest examples of personalized medical device manufacturing is the 

production is the 3D printing of tracheal splints designed for the individual anatomy of three 

infants [1]. Further, the interdisciplinary team of physicians and biomedical engineers published 

a review that presents their experience navigating the current regulatory requirements and a 

perspective on what areas will be important focal points as 3D printing ushers in an era of 

customization in the medical field [2]. For personalization of medical devices to be achieved on 

a large scale, 3D printing methods will require extensive studies to understand all parameters 

that affect the condition and performance of the final product. If each part were unique and 

produced in different settings then the risks of inconsistency and failure would be too high to 

manage. For example, the anisotropic nature of traditional 3D printing means that a simple 

change in the orientation during fabrication can significantly affect the resulting physical 

properties of the final part. Thus, novel approaches to quality control will be needed, such as 
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regulation to ensure consistent source materials combined with well characterized and 

regulated software that ensure consistent performance of parts regardless of the design being 

produced. 

In the case of using 3D printing to produce customized dosage forms, these controls 

become even more vital to the success of the technology. Development and validation of 

process analytical technology (PAT) will be an important aspect of quality control when 

manufacturing moves beyond the assembly line [3-6]. Additional development and regulatory 

considerations will have to be made to ensure that the active pharmaceutical ingredient (API) is 

stable to the process used and that an accurate and stable dosage form is reproducibly 

generated. Previous review articles present a more thorough discussion of regulatory 

considerations for 3D printed products for drug administration [6] and implantable medical 

devices [2].  

In this chapter, experiments are presented to demonstrate the potential use of CLIP for 

biomedical and drug delivery applications. We screened a panel of 12 clinically relevant small 

molecule drugs for radical and UV stability. Docetaxel (DTXL) and dexamethasone-acetate 

(DexAc) were dissolved into 5 different CLIP resins with a range of crosslink densities and 

hydrophobicity. The effect the addition of an API had on the photokinetics of the resins was 

characterized using photocalorimetry. DTXL and DexAc-loaded resins were used to fabricate 

model devices which were analyzed for drug loading and release kinetics for comparison to 

outcomes observed in chapter 3. Devices without API were analyzed for toxicity in vitro 

according to ISO 10993, a widely used standard for validation of medical devices. 
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4.2 Materials and Methods 

4.2.1 Materials 

Poly(ethylene glycol) dimethacrylate Mn = 750 g mol-1 (PEG750-DMA), poly(ethylene 

glycol) methacrylate Mn = 360 g mol-1 (PEG360-MA), poly(ethylene glycol) dimethacrylate Mn = 

550 g mol-1 (PEG550-DMA), poly(ethylene glycol) dimethacrylate Mn = 350 g mol-1 (PEG350-DMA), 

2-hydroxyethyl methacrylate (HEMA), 2-hydroxyethyl acrylate (HEA), ethylene glycol 

dimethacrylate (EGDMA), acrylic acid (AA), diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide 

(TPO), poly(ethylene glycol) dimethyl ether Mn = 250 g mol-1, poly(ethylene glycol) Mn = 10,000 

g mol-1 (PEG), polycaprolactone-diol Mn = 530 g mol-1 (PCL-diol) and Tween80 were purchased 

from Sigma Aldrich. Poly(ethylene glycol) Mn = 200 g mol-1 was purchased from Acros Organics.  

Phosphate buffered saline (PBS), 2-propanol, acetonitrile, and water were purchased 

from Fisher Scientific. Solvents were HPLC grade purity or higher. The therapeutic drugs 

progesterone, hydrocortisone, dexamethasone-21-Acetate (DexAc), paclitaxel, bicalutamide, 

acetaminophen, ibuprofen, acetylsalicylic acid, and salicylic acid were purchased from Sigma-

Aldrich; docetaxel (DTXL) and gemcitabine were purchased from LC Labs; and 5-fluorouracil 

(5FU) was purchased from Acros Organics. All materials were stored as directed by the supplier 

and used as received. 

Polycaprolactone-dimethacrylate Mn = 700 g mol-1 (PCL700-DMA) was synthesized as 

described in Chapter 2. 

4.2.2 Drug screen for UV and radical stability 

The UV-stability was tested for a panel of small molecule drugs including: progesterone, 

hydrocortisone, DexAc, DTXL, paclitaxel, gemcitabine, bicalutamide, 5FU, acetaminophen, 

acetylsalicylic acid, salicylic acid, and ibuprofen. UV-stability was assessed in UV-inert resins 
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formulated by dissolving each drug at 2 % (w/w) into either PEG-diol or PEG-dimethyl either 

(mPEG) alone or in the presence of photoinitiator, TPO at 1 wt %. 

A drop (10-20 µL) of the drug-loaded UV-inert resins was added to the bottom of a clear 

glass vial and irradiated in a nitrogen purged UV oven with either a mercury light source with 

peak emission at 365 nm (ELC-4001 equipped with UVA lamp, Electro-lite Corporation) or an 

LED light source with narrow emission centered at 365 nm (FireJet FJ800, Phoseon 

Technology) for 2.5, 5, 7.5, and 10 minutes. The UV intensity of the ovens was measured using 

a pass-through radiometer (DISKURE 365) to be 43.3 mW cm-2 and 180 mW cm-2 for the Hg 

and LED lamps, respectively. DTXL was also tested with a 10 minutes exposure in an oxygen 

atmosphere, with all other conditions remaining the same. Following UV exposure, samples 

were dissolved in 1 mL of acetonitrile, filtered through a 0.45 µm PVDF filter, and analyzed with 

HPLC. UV stability was calculated as the ratio of the integrated peak area, normalized by 

sample mass, of the UV-irradiated samples to that of an unexposed sample. 

Additional tests were carried out to irradiate three formulations (DTXL, DexAc, and 

progesterone) with light from an LED light source with a wavelength of 385 nm. This was carried 

out in the photocalorimetry apparatus (see section 4.2.5 for further details). Samples (10-20 µL) 

were irradiated in an aluminum DSC pan. The resin was then dissolved by placing the entire 

pan into a glass vial containing 1 mL of acetonitrile. After vortexing for 10 minutes, solutions 

were filtered and analyzed with HPLC.  

Four HPLC methods were used to analyze the panel of drugs screened for UV and 

radical stability. An Agilent 1260 series HPLC equipped with a Zorbax Eclipse C-18 reverse 

phase column (Agilent) at 40 °C and a constant flow rate of 1 mL/min was used for all methods. 

Samples were run on a gradient method composed of solvents A and B. Method details for each 

method are presented in Table 4.1. The composition of the mobile phase was changed as a 

linear gradient between the steps. 
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Table 4.1 Details of HPLC methods used in UV and radical stability screen 

4.2.3 Formulation of docetaxel and dexamethasone-acetate resins 

For each formulation presented, 3 versions were prepared: blank, DTXL-loaded, and 

DexAc-loaded. Five base resins containing no cargo were first formulated from neat PCL700-

DMA and PEG750-DMA, as well as blends of PCL700-DMA with PEG750-DMA, PEG360-MA, and 

HEMA at 50 mol % (table 4.2). TPO photoinitiator was added at 1 mol % by mixing under 

magnetic stirring at room temperature overnight to complete the blank resin formulation. To 

prepare the DTXL- and DexAc-loaded resins, DTXL and DexAc were added to the blank resin at 

2 wt % and allowed to stir for an additional night at room temperature. Mol % is defined by the 

ratio of moles of methacrylates of the component to the total moles of methacrylate in the 

A B % B Time

50% 0 min Docetaxel (227)

85% 7 min Paclitaxel (227)

100% 7.1 min Bicalutamide (280)

100% 15 min Gemcitabine (280)

50% 15.1min Progesterone (254)

50% 19 min Dexamethasone-Acetate 
(254)

0% 0 min

100% 10 min

100% 12 min

0% 12.1 min

0% 15 min

30% 0 min Salicylic Acid (227)

30% 7 min Acetylsalicylic Acid (227)

Acetaminophen (254)

5-Fluorouracil (280)

30% 0 min

100% 10 min

100% 15 min

30% 15.1 min

30% 20 min

Drug (detection wavelength, 
nm)

MethodSolvent
Method ID

Hydrocortisone (254)AcetonitrileWater2

AcetonitrileWater1

Ibuprofen (227)Acetonitrile + 
0.1% TFA

Water + 0.1% 
TFA4

Acetonitrile + 
0.1% TFA

Water + 0.1% 
TFA3
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formulation multiplied by 100. Wt % is defined as the ratio of the component mass to the total 

mass multiplied by 100. 

Table 4.2 Formulations and ./ values for resins used to fabricate DTXL- and DexAc-loaded disks and 
disks used in degradation and cytotoxicity studies. 

 

4.2.4 Polymerization kinetics of resins 

Photopolymerization kinetics of blank and drug-loaded resins were characterized with 

photocalorimetry using a Discovery DSC (TA instruments, New Castle, DE) equipped with an 

AccuCure LED light source with emission at 385 nm (Digital Light Lab, Knoxville, TN). 5-7 mg of 

resin was added to an aluminum DSC sample pan without a lid and placed in the DSC cell, 

which was held at a constant temperature of 25 °C under a 50 mL/min nitrogen flow. After a 3-

minute isothermal step, samples were exposed to UV light for 5 minutes at 6 mW cm-2. The light 

was then turned off for 3 minutes followed by another 3 minute UV exposure to ensure the 
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reaction was complete. Heat was normalized with a horizontal baseline from the heat flow value 

at 298 seconds of the UV exposure step. Rate of polymerization (Rp) was calculated using (4.1).  

01 = 
2

∆4567
(4.1) 

where Q is heat flow in mW and ∆Hmax is the theoretical heat evolved if all methacrylate groups 

in the sample are reacted. For these experiments, ∆Hmax was calculated as the product of moles 

of methacrylate in the sample and ∆H for conversion of a methacrylate (60 kJ mol-1) [7]. Bond 

conversion was calculated by integrating equation 5. 

4.2.5 Continuous Liquid Interface Production 

Drug-loaded and blank disks (1mm x 5mm) were fabricated on a S1 CLIP prototype 

printer (Carbon) equipped with a 385 nm LED UV light source. Disks were printed at a 

continuous speed of 25 mm hr-1 and light intensity of 3 mW cm-2 for fully crosslinked systems 

(PCL700-DMA, PEG750-DMA, PCL700-DMA/PEG750-DMA) and 25 mm hr-1 and 5 mW cm-2 for 

chain-extended systems (PCL700-DMA/PEG360-MA, PCL700-DMA/HEMA). Unreacted resin on the 

surface of the disks was removed by dabbing with a lab wipe. The devices were then postcured 

for 5 minutes (2.5 minutes on each side) in a LED UV oven (365 nm, 90 mW cm-2) under a 

nitrogen atmosphere. 

4.2.6 Drug loading and in vitro release from DTXL- and DexAc-loaded devices 

To determine drug-loading, drug was extracted from the disks in 1 mL of a 1:1 (v/v) 

solution of acetonitrile and 2-propanol at 37 °C while shaking at 150 rpm. After at least 24 hours, 

the concentration of the drug in the extraction solution was determined by removing 400 µL for 

HPLC analysis. To ensure complete extraction, 400 µL of fresh acetonitrile/2-propanol solution 

was added and the extraction was allowed to continue. This process was replicated for a total of 

4 total samples over the course of 2 weeks. It was determined that 48 hours was sufficient for 

complete drug extraction from sample disks. 
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The concentration of drug in the extract solutions was determined using an Agilent 1260 

series HPLC equipped with a Zorbax Eclipse C-18 reverse phase column (Agilent) at 40 °C and 

a constant flow rate of 1 mL/min. Samples were run on a gradient method composed of solvents 

A (pure water) and B (pure acetonitrile). The mobile phase was changed from 50 % to 85 % B 

over 7 minutes, washed with a 3-minute isocratic hold of 100 % B, and followed by 5 minutes at 

50 % B to equilibrate the column prior to the next sample. Absorbance was measured at 227 nm 

for DTXL and 254 nm for DexAc, and concentrations of the extraction solution were calculated 

by comparing peak integrations to a standard curve of known concentrations. 

To test in vitro drug release, DTXL- and DexAc-loaded disks were individually added to a 

scintillation vial containing 15 mL of pH 7.4 PBS with 0.1 % (v/v) Tween 80 to maintain sink 

conditions. Samples were placed in an incubating shaker at 37 °C and 150 rpm. Drug release 

was calculated by determining the amount of drug remaining in the disk after a given amount of 

time in the release medium. At given timepoints, disks were removed from the release medium 

(n = 3 for each timepoint) and the remaining drug was extracted and analyzed. Fraction of drug 

(F) released was calculated according to (4.2): 

8 =
9, − 9:
9,

×100 (4.2) 

where D0 is the mass of drug extracted from disks that have not been exposed to release 

conditions (initial loading) and Dt is the mass of drug extracted from disks after the given amount 

of time in the release solution.  

4.2.7 Coating devices with DTXL and DexAc 

A coating solution was made by dissolving DTXL and DexAc at a concentration of 30 

mg/mL in a mixture of 75 % acetonitrile and 25 % 2-propanol by volume. PEG (Mw = 10,000 g 

mol-1) was then dissolved in the drug solutions to a concentration of 330 mg/mL. Blank disks 

made from PCL700-DMA, PEG750-DMA, and blends of PCL700-DMA/PEG750-DMA, PCL700-

DMA/PEG360-MA, and PCL700-DMA/HEMA at 50 mol % were dipped into the drug/polymer 
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solution for 1-2 seconds. Disks were then lifted out of the solution so that the 1 mm thickness of 

the disk was in a vertical orientation. The disk was allowed to air dry for around 15 seconds, 

placed on wax paper and allowed to dry under reduced pressure in a vacuum oven at room 

temperature overnight. Coating mass was calculated by recording the mass of each disk prior to 

coating and following overnight drying. 

In vitro release was carried out by adding disks to 15 mL pH 7.4 PBS with 0.1 % 

Tween80 and placing under constant oscillation of 150 rpm at 37 °C in the incubated shaker (n 

= 3). At given timepoints, 5 mL of release solution was removed and replaced with fresh 

PBS/Tween80. Following the 25 hour timepoint, all of the release medium was removed and 

replaced with 75 % acetonitrile 25 % 2-propanol and allowed to extract the remaining drug at 37 

°C for 3 days. The drug concentration in the release and final extraction solutions was analyzed 

using HPLC.  

4.2.8 In vitro cytocompatibility 

4.2.8.1 Cell culture 

HUVEC human umbilical vein endothelial cells and HeLa human epithelial 

adenocarcinoma cells were originally obtained from American Type Culture Collection (ATCC). 

344SQ cells were a gift from the University of Texas M.D. Anderson Cancer Center (Jon Kurie 

Lab). HUVEC cells were cultured in HuMEC complete medium containing HuMEC supplement 

and bovine pituitary extract. HeLa cells were cultured in MEM containing Earle’s salts. 344SQ 

cells were cultured in RPMI medium. Both media were supplemented with 10 % fetal bovine 

serum. All cells were maintained in a humidified atmosphere of 5 % CO2 at 37 °C.  

4.2.8.2 Cytotoxicity of monomers 

Small molecule and oligomeric monomers were screened for cytotoxicity using murine 

small cell lung cancer cells, 344SQ cells. Cells were seeded in 200 µL of media in a 96 well 

plate (5000 cells/well) and allowed to adhere overnight. Resins were dissolved or well dispersed 
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in fresh medium at concentrations between 10 and 1.28x10-6 % (w/v) and dosed to cells for 72 

hours. After the incubation period, cell viability was assessed using a luminescence-based 

assay. All media was removed by aspiration and 100 µL fresh medium was added back to the 

cells. 100 µL of CeLLTiter-Glo® Luminescent Cell Viablity Assay reagent (Promega) was added 

and the plate was placed on a microplate shaker for 2min, followed by 10 minutes at room 

temperature in the dark. The luminescence signal was then recorded using a SpectraMax M5 

plate reader (Molecular Dynamics). Cell viability was expressed as a percentage of the viability 

of cells treated with fresh PBS only. 

4.2.8.3 Cytocompatibility of leachables and degradation products 

Cytotoxicity of any leachable or degradation product was observed in accordance to ISO 

10993-5. Blank disks made from PCL700-DMA, PEG750-DMA, and blends of PCL700-

DMA/PEG750-DMA, PCL700-DMA/PEG360-MA, and PCL700-DMA/HEMA at 50 mol % were first 

sterilized by soaking in 70 % ethanol for 20 minutes followed by two rinses with PBS. Disks 

were then transferred to a sterile screw cap microcentrifuge tube containing 1.5 mL pH 7.4 PBS 

under aseptic conditions and placed in an incubated shaker at 37 °C under oscillation at 150 

rpm. At given timepoints, disks were removed (n=3) and mass loss due to degradation and 

dissolution of leachables was determined. The soluble fraction was defined as the mass loss 

when disks were incubated with 2 mL of acetone for 24 hours. Mass loss was calculated 

according to (4.3). 

Mass Loss (%) = 1 −
%(

%,
×100 (4.3) 

PBS swelling of blank disks was measured using the 10 day timepoint of the degradation 

studies (section 4.2.8.2). Swelling was determined using the method presented previously in 

chapter 3 (section 3.2.6.1).  

To test for potential cytotoxicity of the leachable and degradation products, HUVEC and 

HeLa cells were seeded in 200 μL of media in a 96-well plate with 5000 cells per well. After 
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allowing 24 hours for cells to adhere, media was aspirated off, and 50 µL of the PBS extraction 

solution diluted with 150 µL of fresh medium was added to the well in triplicate for 72 hours. 

PBS kept at identical conditions to that of the extractions was used to ensure that no potential 

cytotoxic effect was due to the experimental set up. Fresh PBS was used as a negative control, 

and paclitaxel was used as positive control. Viability was assessed using the luminescence 

assay as presented in section 4.2.8.2. 

 

4.3 Results and Discussion 

4.3.1 Drug screen for UV and radical stability 

A primary concern when formulating pharmaceutical products is the stability of the API, 

and with respect to CLIP, exposure to UV light and reactive radicals can pose a threat to this 

stability. However, due to the potential for prolonged release kinetics achieved with 

encapsulation compared to that of drug-coated devices, it was of interest to explore the potential 

to incorporate drugs directly into the resins and thereby encapsulate them during the CLIP 

fabrication process. To determine whether small molecule, clinically relevant drugs could be 

encapsulated directly during the printing of a personalized device, we tested the UV stability of a 

panel of 12 small molecule drugs dissolved in photo-inert PEG resins. The formulation of photo-

inert resins was chosen to mimic the conditions experienced by an API dissolved in a CLIP 

formulation, such as drug concentration, viscosity, and radical presence, without facilitating 

crosslinking upon UV exposure. Thus, the liquid resin can be easily solubilized following UV 

exposure for analysis of the drug stability.  

All drugs presented were completely dissolved to make a transparent solution in the 

photo-inert resin. Stability was evaluated by comparing HPLC chromatographs (normalized by 

sample mass) of irradiated samples to samples that received no UV exposure. Representative 
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chromatographs for a UV stable and UV labile drugs are shown in Fig. 4.1 A and B, 

respectively. Further, when TPO radical initiator is included in the resin, peaks for both the 

photoinitiator and drug can be observed prior to UV exposure (Fig. 4.1 C and D). The 

disappearance of the peak for radical initiator upon UV exposure is evidence of the homolytic 

cleavage and generation of radicals. In resins containing stable drugs, only the drug is 

detectable following exposure, indicating stability towards the UV light and radical presence 

(Fig. 4.1 C).  Resins with unstable drugs have significantly reduced or no resolvable peak areas 

at the respective elution time following UV exposure (Fig. 4.1 D).  

Figure 4.1 Representative HPLC chromatographs for drugs that are UV stable and UV labile. 
Representative chromatograms of (A) UV stable drugs (Bicalutamide shown) and (B) the photo-induced 
degradation of UV-labile drugs (DexAc shown) demonstrating a relationship between extent of 
degradation and exposure time. HPLC chromatograms for DTXL (C) and DexAc (D) are shown as 
representative chromatograms for UV and radical stable and labile drugs, respectively. (+) and (-) indicate 
the presence or absence of TPO photoinitiator and UV exposure in an LED oven. 
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The results of the full stability screen can be seen in figure 4.2. Comparison of HPLC 

peak areas, normalized by sample mass, reveals a relative stability to the 365 nm LED light and 

radical initiator in all drugs tested except for the corticosteroids: hydrocortisone, progesterone, 

and dexamethasone-acetate (Fig. 4.2). The likely mechanism of degradation for  these drug 

compounds is the rearrangement of the conjugated ketone group, which occurs upon irradiation 

with 365 nm light [8]. 

Figure 4.2 Stability of a panel of clinically-relevant drugs to UV exposure and radical presence. 
Drugs were dissolved at 2 wt % in PEG-based UV-inert resins alone (top row) or with the presence of 
radical photoinitiator TPO (1 wt %) (bottom row) and exposed to UV light from a LED light source (left 
column) or mercury light source (right column). 

When the UV-inert resins were exposed to the broad wavelength of the mercury arc 

lamp, docetaxel and paclitaxel also showed an instability, which appears independent of radical 

initiator presence. This is likely a result of an instability when exposed to the higher energy and 

shorter wavelengths of the mercury lamp spectrum, demonstrating the potential positive impact 

of utilizing the narrow emission of LED-based UV light sources for printing and post-cure. 

Further, an application requiring the encapsulation of a steroid could still be potentially 
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developed by identifying and using an LED light source of a compatible wavelength and a 

complementary radical photoinitiator. 

Other factors that were tested included the presence of oxygen, as UV exposure is 

known to generate the highly reactive singlet state oxygen [9]. For resins containing DTXL, no 

difference in drug concentration between samples in an oxygen or nitrogen atmosphere was 

observed following UV irradiation (Fig. 4.3 A). Additionally, comparison between resins 

formulated from PEG-diol (PEG) and PEG-dimethyl ether (mPEG) indicates no effect of the 

terminal group of oligomeric resin component. An important note, however, is that these resins 

did not contain radical initiator, which would likely lead to a higher concentration of singlet state 

oxygen.  

 Drug resins were also irradiated for 10 minutes with a light source of 385 nm, the same 

wavelength used in the CLIP printer (Fig. 4.3 B). Results indicated less degradation in the 

steroids, DexAc and progesterone, compared to exposure from the 365 nm LED light or the 

broad wavelength of the Hg light source. Which supports the theory of ketone rearrangement, 

which occurs with exposure to 365 nm light, being the degradation pathway. However, these 

results should not be compared directly to those of the 365 nm exposure due to the 6-fold 

higher light intensity used in the 365 nm LED experiment (30 mW cm-2 and 180 mW cm-2). The 

goal of this experiment, rather, was to simulate the exposure and wavelength experienced 

during the CLIP process; whereas the high intensity light of the 365 nm LED is more 

representative of the postcure process.  
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Figure 4.3 Stability testing in additional conditions. (A) Stability of DTXL in UV-inert resins upon 
exposure to UV light in an oxygen and nitrogen environment. (B) Fraction of initial drug content of DexAc, 
Progesterone, and DTXL resins following irradiation with 385 nm LED light (30 mW cm-2) for 10 minutes  

 

4.3.2 Formulation and photokinetics of drug-loaded resins 

Five resin formulations were chosen to confirm the patterns observed for the release of 

RhB using clinically relevant drugs (DTXL and DexAc). Resins were formulated to observe the 

effect of material composition and crosslink density in PCL700-DMA based resins. PCL700-DMA 

was compared to PEG750-DMA of a similar molecular weight, as well as blends of PCL700-DMA 

with PEG750-DMA, PEG360-MA, and HEMA at 50 mol %. Although DexAc showed degradation 

during the UV stability screen, preliminary data indicated stability of DexAc in CLIP devices. 

Therefore, we sought to encapsulate DexAc using the entire CLIP process to further investigate 

potential stability compared to the panel screen. 

DTXL and DexAc both dissolved easily into each resin formulation containing 

photoinitiator to make a clear solution. Photocalorimetry was used to observe the effect of the 

addition of dissolved drugs on the extent and rate of polymerization in the CLIP resins. Max 

polymerization rate (Rp), time to reach max Rp (tmax), double bond conversion (DBC) at tmax, and 
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total DBC for each formulation can be seen in table 1. All five resins analyzed resulted in high 

total bond conversion of over 95 %. More highly crosslinked systems reached max Rp faster 

than those containing chain-extending diluents (PEG360-MA and HEMA), which is consistent 

with the differences in polymerization kinetics of monomethacrylate and dimethacrylate systems 

previously observed [10,11]. Overlaying the curves of the DTXL and DexAc-loaded resin with 

that of the base resin for each material indicates that the addition of drug did not appear to 

influence the rate or extent of polymerization (Fig. 4.4).  

Figure 4.4 Photocalorimetry thermal traces of blank and DTXL- and DexAc-loaded resins.  
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Table 4.3 Photocalorimetry results of blank and drug-loaded resins.  

 

These results indicate that the addition of DTXL or DexAc to a CLIP resin will not affect 

fabrication requirements, affording a plug-and-play approach in which the design and CLIP 

parameters for a device can be optimized without the use of drug, thus limiting the consumption 

of expensive therapeutics and reducing costs due to the handling and disposal of hazardous 

material. However, incorporation of higher concentrations of drug or different drugs that absorb 

at the wavelengths used in CLIP may require some fabrication parameter optimization.  

4.3.3 Encapsulation, extraction and release of docetaxel and dexamethasone-acetate 

from CLIP devices 

Drug-loaded disks were printed with API-loaded resins using the same parameters used 

for non-loaded resins. The encapsulated drug was then extracted using an acetonitrile/2-

propanol solution. All formulations of DTXL-loaded devices resulted in an actual drug loading 

close to the 2 wt % theoretical loading (Fig. 4.5 A). Despite the relative UV instability of DexAc 

observed during the stability study, the CLIP devices still contain close to 2 wt % of the active 

drug, although the loading shows variability between formulations (Fig. 4.5 A). This is likely due 

to the lower total irradiation experienced by the drug during the CLIP printing process compared 

No	
Drug

2	wt%	
DTXL

2	wt%	
DexAc

No	
Drug

2	wt%	
DTXL

2	wt%	
DexAc

No	
Drug

2	wt%	
DTXL

2	wt%	
DexAc

No	
Drug

2	wt%	
DTXL

2	wt%	
DexAc

PCL700-DMA 0.037 0.037 0.040 15.8 15.5 14.6 32.7% 32.7% 33.0% 91.2% 91.6% 92.1%

PEG750-DMA 0.046 0.048 0.044 14.9 14.9 15.8 38.6% 39.8% 38.3% 99.3% 101.8% 99.0%

PCL700-DMA / 
PEG750-DMA

0.041 0.042 0.042 16.6 15.8 15.5 37.0% 37.8% 37.2% 95.4% 97.9% 96.6%

PCL700-DMA / 
PEG360-MA

0.031 0.032 0.031 24.1 22.7 23.1 42.9% 43.5% 41.6% 99.0% 99.8% 97.2%

PCL700-DMA / 
HEMA

0.032 0.029 0.034 19.8 21.1 27.7 33.9% 34.0% 34.7% 93.9% 95.4% 94.8%

Formulation
Total	DBC	(%)DBC	at	tmax		(%)tmax	(s)Max	Rp	(s-1)



 

 122 

to what the drug experiences in the UV oven. During the printing process, devices printed at 3 

and 5 mW cm-2 are only exposed to a theoretical total of 432 and 720 mJ cm-2, respectively. 

After printing, the solid polymeric network of the device may provide added protection from the 

irradiation dose of 27,000 mJ/cm-2 applied in the UV oven during the postcure process. 

Figure 4.5 Characterization of DTXL- and DexAc-loaded model devices. (A) Drug loading of devices 
as determined by extractions and HPLC analysis. (B) Theoretical MC and PEG content overlaid with PBS 
uptake for devices without drug. (C) Characterization of DTXL and DexAc release in vitro. 

Although the calculated %- values are similar for all formulations, when disks were 

incubated in pH 7.4 PBS the swelling was considerably greater in disks containing PEG-based 

monomers (Fig. 4.5 B). Comparison of disks formulated with PCL700-DMA/HEMA to PCL700-

DMA/PEG360-MA, both with identical molar ratios of crosslinking monomers to chain-extending 
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monomer and thus identical %- (as calculated in Chapter 3), exemplifies the importance of the 

role that pendant PEG moieties play in defining the characteristics of the polymer network.  

Release of DTXL and DexAc in vitro both follow the same trends observed in the release 

of RhB (Fig. 4.5 C). Devices fabricated with 100 % PEG750-DMA resulted in the fastest release 

of both drugs. As seen in the RhB release, the addition of HEMA to PCL700-DMA slowed the 

release of the therapeutics compared to the more highly crosslinked 100 % PCL700-DMA 

networks. Also, blends of PCL700-DMA with PEG750-DMA to PEG360-MA indicate a similar 

release profile. This is interesting because PEG360-MA has a functionality of 2 (non-crosslinking) 

and PEG750-DMA has a functionality of 4 (crosslinking), leading to half of the number of 

theoretical crosslinks in the network containing PEG360-MA. However, both formulations contain 

the same amount of hydrophilic PEG by weight, indicating that the solute release is at least as 

dependent on the hydrophilicity of the network as the crosslink density.  

Complete extraction of the drug remaining in the release samples was confirmed for 

each timepoint by carrying out the extraction for 2 weeks. The extraction solution was monitored 

by HPLC to determine the amount of drug remaining. It was observed that approximately 48 

hours was adequate for complete extraction of drug from the devices. (Fig. 4.6). 
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Figure 4.6 Analysis of progress of drug extraction from release study samples. Cumulative mass of 
DTXL (A) or DexAc (B) extracted from release disks at each timepoint plotted against extraction time. 
Extractions were carried out in 1:1 (v/v) acetonitrile/2-propanol solution at 37 °C and 150 rpm. At each 
time point, 400 µL was removed for HPLC analysis and replaced with fresh extraction solution.  
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4.3.4 Coating as a method for API incorporation 

Certain applications may require alternative methods for loading of an API. For example, 

post-loading may be desirable when an API is instable to the CLIP process or is reactive with a 

component of the resin. Additionally, methods like coating devices with drug can facilitate a 

rapid release effect of the API, which may be desirable for some applications. To demonstrate 

the ability to post-load CLIP devices, blank devices were coated with DTXL and DexAc. The 

drugs were dissolved in a PEG solution, into which the devices were dipped before drying in a 

vacuum oven. The inconsistent coating mass (Fig. 4.7 A) and drug loading (Fig. 4.7 B) is likely a 

result of the manual coating process. This proof of concept experiment could be improved 

through automated dipping, allowing more precise control of speed and duration, or a spray 

coating technique. Methods of coating devices using a molten liquid of a lower MW PEG were 

also attempted with a greater inconsistency in coating thickness (data not shown).  

Figure 4.7 Drug loading of coated disks (1mm thick, 5mm diameter). Coating mass (A) was calculated 
as the difference in mass before and after the PEG coating dried. Drug mass (B) was defined as the sum 
of the total mass released during dissolution studies and the subsequent acetonitrile / 2-propanol 
extraction.  

Dissolution results of the coated parts can be seen in figure 4.8. For both DTXL and 

DexAc coated devices, most of the drug was released within 24 hours, for all fully crosslinked 

systems. The ability to achieve similar release rates for devices regardless of the polymer 
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network is important if it is desirable to be able to modulate mechanical or thermal properties of 

a device while maintaining uniform release kinetics of a coated API. 

The resins with monomethacrylate reactive diluents (PEG360-MA and HEMA) only 

released approximately 50-70 % of the total loaded API. This is likely due to a higher level of 

swelling of the polymer network in the coating solution, leading to drug penetration into the 

device. If the desired outcome is to achieve adsorption on the outside only, this could likely be 

corrected by choosing a solvent for formulating the coating solution in which the device material 

will not swell. 

 Figure 4.8 Dissolution of DTXL and DexAc from drug-coated model disks.  

 

4.3.5 In vitro biocompatibility of CLIP materials 

Photopolymerizable and acrylate-based materials have been used in biomedical 

applications widely, including use as surgical glues, dental resins, and bone cements. However, 

these types of materials are also well known to have associated toxicities [12]. Many of the 

materials presented throughout this dissertation are derived from materials that are generally 

regarded as safe (GRAS) by the FDA. While GRAS materials have been extensively tested for 

medical and food use, modification of these materials to contain methacrylic and acrylic 

functional groups necessitates further characterization and toxicity testing.  
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4.3.5.1 Cytotoxicity screen of CLIP monomers 

During the CLIP process, monomers undergo polymerization, resulting in materials with 

a much lower toxicity compared to the starting materials [13]. However, a major concern with 

photopolymerization as a method of synthesizing biomaterials is the residual monomer that can 

leach out. Thus, it is important to characterize the toxicity of monomers. 

The results of a cytotoxicity screen of methacrylate and acrylate functionalized materials 

used to produce our drug loaded devices is shown in Fig. 4.9. Also presented is the toxicity of 

PCL530-diol, the starting material in the synthesis of PCL700-DMA. IC50 values for these materials 

are presented in table 4.4. Toxicity was the highest in AA, with an observed toxicity for all 

concentrations studied. All oligomeric dimethacrylate materials showed a similar toxicity, which 

was comparably lower than the low molecular weight dimethacrylate, EGDMA. However, when 

comparing relative to the molar concentration of methacrylate groups (Fig. 4.8 B), the difference 

is not as substantial. The mono-acrylate, HEA, showed a higher toxicity relative to all 

methacrylate materials. This agrees with previous observations of increased toxicity in acrylic 

monomers compared to methacrylic counterparts [12,14-16]. Comparison of the viability of cells 

treated with PCL530-diol and PCL700-DMA illustrates the effect of functionalizing a material with 

methacrylate groups.  
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Figure 4.9 Biocompatibility of monomers on 344SQ cells. Cell viability is presented as a fraction of 
the control and is plotted against (A) weight percent monomer (w/v) and (B) a molar concentration of the 
functional group (acrylate, methacrylate, or hydroxyl groups). 

 

Table 4.4 IC50 values for resin components in 344SQ cells. IC50 values were generated by fitting a 
nonlinear regression model with a variable slope using GraphPad PRISM  7.  Error is given in standard 
error (SE). 

 

Material # (type) of 
functional groups

MW per 
func. group 

(g mol-1)
IC50 ± SE
(wt%)

IC50 ± SE
(mmol L-1)

PEG350-DMA 2 (methacrylate) 175 0.093 ± 0.005 5.3 ± 0.3

PEG550-DMA 2 (methacrylate) 275 0.077 ± 0.004 2.8 ± 0.1

PCL700-DMA 2 (methacrylate) 350 0.057 ± 0.008 1.6 ± 0.2

PCL530-diol 2 (hydroxyl) 265 0.50 ± 0.05 18.9 ± 1.8

EGDMA 2 (methacrylate) 99.1 0.011 ± 0.002 1.1 ± 0.2

HEA 1 (acrylate) 116.2 0.0016 ± 0.0004 0.14 ± 0.03

AA 1 (acrylate) 72.1 < 1.28 x10-6 < 1.8 x10-7
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4.3.5.2 Degradation and cytotoxicity of CLIP devices 

When designing a long-acting, implantable drug release device, it is desirable to have 

that device be biodegradable and bioabsorbable, so as to eliminate the need for a follow up 

procedure for device removal. Numerous devices have been developed and FDA approved 

using linear aliphatic polyesters such as PLA, PGA, PLGA, PCL, and their copolymers [17]. 

These polyesters are hydrolytically- and enzymatically-labile and can display a wide range of 

degradation and release kinetics depending on parameters such as molecular weight, 

crystallinity and monomer ratios [18]. Here, we synthesized a photopolymerizable PCL oligomer 

to be used to form a network with degradable crosslinks. The PCL700-DMA used here is a free-

flowing liquid at room temperature and can be directly utilized as a resin without the addition of 

reactive or non-reactive diluents.  

Results of the degradation of a series of printed disks in pH7.4 PBS at 37 °C (Fig. 4.10 

A) indicate a slow degradation of devices containing PCL700-DMA. The degradation in PBS is 

expected to be slow, as PCL is a hydrophobic polymer and is known to exhibit a slow 

degradation profile [19,20]. The devices in this study are expected to degrade even slower due 

to the tight crosslinking further inhibiting water infiltration and erosion. Over the course of 6 

months the 100 % PCL700-DMA network showed a degradation weight loss of 15 % and the 

PCL700-DMA/HEMA disks lost 7.5 % by mass. The disks fabricated from 100 % PEG750-DMA 

showed no increased mass loss over the initial soluble fraction of the network, as expected with 

PEG750-DMA forming a non-degradable network. Disks formulated with PCL700-DMA blended 

with PEG360-MA or PEG750-DMA both show very slight mass loss over the initial release of the 

soluble fraction. The high soluble fraction in parts containing PEG360-MA is believed to be 

caused by the presence of unfunctionalized PEG in the starting material.  

A concern in the design and development of medical devices, especially implantables, is 

the cytotoxicity of leachables and degradation products. To test for this, solutions of pH7.4 PBS, 

which contain any leachable or degradation product released by the device during the 
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incubation time, were screened for cytotoxicity against an epithelial cell line (HeLa) and an 

endothelial cell line (HuVEC). Regardless of formulation or incubation time, no samples 

displayed cytotoxicity greater than 25 % in vitro (Fig. 4.10 B and C).  

Figure 4.10 (A) Mass loss from blank disks due to degradation and extraction of soluble content. 
Cytotoxicity of degradation products and extractables on (B) HeLa cells and (C) HUVEC cells. 

 

4.4 Conclusion and Future Work 

The work presented in this chapter outlines the investigations of the potential utility of 

CLIP in a clinical setting. A relatively simple screening method for small drug molecules to 

determine the potential stability towards the CLIP process was demonstrated. However, the use 

of DexAc as an example also indicated that drugs that show instability during the initial screen 

may in fact be able to be formulated into a device with a majority of the API intact. Further 

optimization of this screening method will be required to improve the accuracy of the ability to 
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predict drugs that will or will not be suitable for formulation directly into the liquid photopolymer 

resins.  

Further enhancements of this screening method may include implementation of high 

throughput techniques such as using microwell plates used in biomolecule purification for rapid 

sample prep, testing, filtration, and HPLC analysis. Optimization of a pre-screening technique 

may significantly reduce the effort and time required to find appropriate therapeutics to be 

applied with this CLIP technique. One area this approach may benefit is for the screening of 

proteins, of which a large portion would be expected to be instable to the UV light and radical 

chemistry of CLIP. Thus, a high throughput screen would reduce the time and cost necessary to 

identify a suitable candidate for an application.  

A goal of this chapter was to apply the principles established in Chapter 3 for controlling 

drug release formulation parameters using therapeutically relevant drugs. We successfully 

loaded 5 resins of varying crosslink density and polymer network compositions. We used CLIP 

to print model devices that with accurate loading and release kinetics that paralleled those 

observed for the release of RhB. Further, devices were loaded with drugs through coating with a 

PEG solution as an alternative method of loading, which was characterized by a rapid drug 

release. 

A logical next step in this development would be to pursue the loading of multiple drugs 

through the combination of the two loading methods discussed in this chapter. For example, a 

device can be fabricated to contain two drugs, drug A and drug B. Said device can be fabricated 

using a resin containing drug A dissolved, to achieve a prolonged release that will be dependent 

on the formulation of the network. Drug B can then be coated onto the device following 

fabrication, affording a rapid release of drug B independent of the device material and release 

kinetics of drug A.  

Future directions for drug loading in CLIP devices should include further exploration of 

drug loading methods, both traditional and novel. More sophisticated coating schemes would 



 

 132 

afford added control over the release kinetics of post-loaded drugs, including multilayered 

coatings for tuned release or sequential release of multiple drugs [21]. Incorporating multiple 

phases into the network through emulsions or particulate suspensions would provide another 

method of controlling drug release. Further, if the drug and the radical initiator are in separate 

phases, this approach may serve as a strategy to further protect the API from potential 

degradation. 

In addition to applying well-established methods of controlling drug release, methods 

such as conjugating the drugs into the network through cleavable linkers may serve as an 

interesting approach. For example, the use of asymmetric bifunctional silyl-ether (ABS) prodrug 

chemistry has been shown to be a viable method of controlling drug release in hydrogel 

nanoparticles (Fig. 4.11 A) [22]. Conjugation of the drug into the network would also allow for 

thorough washing steps to remove any unreacted monomers without the worry of extracting the 

loaded drug. Another interesting approach would be to conjugate the drug into the network 

during the washing procedure. One potential method of achieving this would be to use Click 

chemistry to react an azide-functionalized prodrug into a network containing pendant alkyne 

groups (Fig. 4.11 B) [23].  

Lastly, this chapter presented initial in vitro cytocompatibility towards any degradation 

product or leachable material through 175 days. Further work to demonstrate biocompatibility 

will require in vivo characterization of tolerability. Preliminary in vivo experiments are presented 

in Chapter 5. Collectively, this work serves as the foundational evidence for biocompatibility of 

CLIP devices and the suitability of the platform as a technique to fabricate drug loaded devices.  
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Figure 4.11 Theoretical approaches to functionalize drug into network using (A) asymmetric 
bifunctional silyl-ether prodrug strategy to incorporate API into the network during fabrication and (B) click 
chemistry as a method to conjugate the API into the network following fabrication., either following or as a 
step of the post-processing wash procedures.  
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CHAPTER 5: PRECLINICAL EVALUATION OF CLIP MEDICAL DEVICES 

Chapter goals 

This chapter presents preclinical characterization of two implantable devices fabricated 

with CLIP for the treatment of cancer. The first device is an intraoperative implant, which is a 

chemotherapeutic-eluting patch, which can be placed in a resection cavity during a surgical 

procedure to reduce tumor recurrence. The devices are characterized for in vitro drug release 

and in vivo efficacy in a mouse model for lung cancer recurrence. Due to the singularity of each 

tumor, no single resection cavity will be identical. Thus, this device is an example of a potential 

clinical application that would benefit from the ability of a surgeon to modify a design specifically 

for the patient’s anatomy. 

The second application is using CLIP to fabricate drug-loaded spacers to supplement 

brachytherapy, which is the placement of radioactive seeds locally into the tumor site for the 

treatment of prostate cancer. Preliminary in vivo efficacy studies are presented. Additionally, 

proof of concept studies demonstrating the potential of applying methods to modify drug release 

(as introduced in Chapter 3) to small devices like brachytherapy spacers is discussed.  

5.1 Introduction 

5.1.1 Lung cancer recurrence following surgical resection 

Lung cancer is the leading cause of cancer deaths in the world. In the United States 

alone, approximately 220,000 new cases of lung cancer are expected to be diagnosed in 2017, 

and an estimated 160,000 deaths will be caused by the disease [1-3]. In cases of non-small cell 

lung cancers (NSCLC), which makes up around 85 % of lung cancer diagnoses, surgical 

resection has been shown to provide the best possibility of cure and chance for survival [2,3]. 

However, post-resection recurrence remains a large challenge for treating NSCLC, with 
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between 30 and 70 % of patients, depending on the disease stage, suffering a recurrent tumor 

either locally or at a metastatic site [4]. In a study monitoring 1073 patients that underwent 

complete resections, 445 patients developed recurrent tumors with a 11.5 month median time 

between resection and recurrence and 8.1 month median survival following recurrence. 

One reason for this poor prognosis, even with early stage cancers, is due to the inability 

of many patients to undergo a local excision with wide negative margins. Surgical techniques 

that limit the resection area, such as wedge and segmentectomy, have been shown to have a 

worse survival outcome compared to more invasive lobectomy [5,6]. The use of multimodal 

approaches to treat NSCLC, such as combining resection with adjuvant chemotherapy or 

postoperative radiotherapy, have been shown to be beneficial in the reduction of tumor 

recurrence for stage II and some stage IB tumors [7]. However, with cisplatin-based dublet 

regimens serving as the standard of care for adjuvant chemotherapy, nephrotoxic and 

neurotoxic side effects can lead to lower quality of life for patients [8]. Further, the use of 

chemotherapy adjuvent is not indicated for patients with stage IA disease [7]. 

Local delivery of chemotherapeutics has been shown to limit systemic side effects, 

allowing for a higher exposure of the disease tissue to the active drug. Many forms of local 

delivery for cancer recurrence are being developed including films, particulate systems, and 

gels [9-14]. Due to the heterogeneous nature of each operation and resulting resection cavity, 

the use of a universal drug delivery device could be disadvantageous. The ability of 3D printing 

to fabricate a unique part would afford the production of customized drug delivery vehicles 

designed based on the anatomy of the individual patient.  Within this chapter, we aim to 

demonstrate the potential of implementing the CLIP technology to fabricate drug-eluting patches 

to prevent the lung cancer recurrence following resection. Parameter optimization and ability to 

print with paclitaxel and a cisplatin prodrug directly incorporated into the liquid resin are 

presented. The presented device was characterized for in vitro drug release and in vivo efficacy 

for reducing tumor recurrence in a non-small cell lung adenocarcinoma resection model. 
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5.1.2 Brachytherapy background 

Prostate cancer (PCa) is the most common non-skin cancer in men in the United States 

with over 180,000 new cases expected to be diagnosed in 2017 [1]. Fortunately, approximately 

90 % of PCa patients present with localized and curable disease where the main curative 

treatments are radiotherapy and surgery [15]. One of the key radiotherapy treatment approach 

is low dose rate (LDR) interstitial brachytherapy, where iodine-125 seeds are placed directly into 

the prostate. Localization of the radiation source limits exposure to surrounding healthy tissue 

and increases the dose to the primary tumor (Fig. 5.1).  

In several large studies, brachytherapy has been shown to be effective for the treatment 

of low to intermediate-risk PCa with disease-free survival rates comparable to that of surgery 

and external beam radiotherapy [16,17]. Further, results of the recent ASCENDE-RT trial [18] 

indicated that LDR brachytherapy plus external beam is the most effective treatment for high-

risk PCa with 9-year disease free rates of 83 %, unmatched by any other treatment regimens 

[19]. Despite the favorable characteristics of brachytherapy, it has several significant limitations. 

First, brachytherapy can cause significant urinary side effects, including dysuria, urinary 

frequency, urgency, and, in some cases, urinary obstruction [19]. These urinary side effects are 

caused by the post-procedural edema and limit brachytherapy from use in patients with prostate 

weights greater than 60 grams or less than 20 grams  [20]. Such size restrictions have kept 

many patients from pursuing brachytherapy. In addition, brachytherapy has been shown to be 

less effective as a sole treatment against intermediate- and high-risk PCa [21] [22]. Additional 

treatments may negate the simplicity of the single outpatient procedure of brachytherapy. Given 

the importance of brachytherapy, there is a high interest in the development of novel strategies 

to further improve its therapeutic index.  
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Figure 5.1 Brachytherapy schematic. Brachytherapy is a treatment is the placement (A) of radioactive 
seeds placed directly inside of the prostate gland. Spacers are devices that are placed between the 
seeds (B) to achieve the desired radiation dose and dosimetry. Figure (A) was used with permission of 
Mayo Foundation for Medical Education and Research.  All rights reserved. Photo (B) was courtesy of 
Nuclear Regulatory Council.   

One approach to improving brachytherapy is the addition of several therapeutics that 

have shown potential in either minimizing the side effects of brachytherapy or improving its 

efficacy. Dexamethasone (DEX), a corticosteroid, has been evaluated extensively in 

brachytherapy for mitigating urinary side effects by reducing edema [23]. However, systemic 

effects limit the prolonged use of DEX after brachytherapy and its use has not been widely 

adopted. Docetaxel (DTXL) is another therapeutic that has been shown to act synergistically 

with radiotherapy in treating high-risk PCa [24]. Clinical evaluation of concurrent administration 
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of DTXL with external beam radiotherapy for high-risk and locally advanced PCa have shown 

promising results [24-26]. Unfortunately, DTXL’s systemic side effect profile has been prohibitive 

to its incorporation into brachytherapy.  

A strategy to overcome the systemic side effects of the above-mentioned medications is 

to deliver these drugs locally in the prostate. Local drug delivery can minimize systemic side 

effects while achieving the desired therapeutic effect. To attain both sustained reduction in side 

effects and improvement in efficacy, an ideal release would occur in a controlled and prolonged 

fashion over the course of 2 months, which is equivalent to the half-life of iodine-125 decay. 

Currently, brachytherapy seeds are implanted into tissue along with biologically inert spacers, 

which simply serve as a mechanism to separate radioactive seeds. Thus, we sought to 

incorporate therapeutics into spacers. This chapter will present preliminary studies on the use of 

CLIP to engineer drug-eluting brachytherapy spacers with controlled release properties. We 

sought to implement geometric design strategies demonstrated in Chapter 3 on the scale of 

brachytherapy spacers (cylinders with 0.75 mm diameter, 5 mm length). We also investigated 

controlling network crosslink density through manipulation of light intensity and exposure during 

the print process. Uses of such strategies would provide a platform for production of precisely 

engineered spacers with tunable drug release kinetics. Such devices would be designed to 

minimize the urinary side effects as well as improve therapeutic efficacy of brachytherapy and 

ultimately translate into better quality of life and improved survival. 

 

5.2 Materials and Methods 

5.2.1 Materials 

Poly(ethylene glycol) dimethacrylate Mn = 550 g mol-1 (PEG550-DMA), 2-hydroxyethyl 

methacrylate (HEMA), diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO), and UV-
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absorber 2-tert-Butyl-6-(5-chloro-2H-benzotriazol-2-yl)-4-methylphenol (BLS 1326) were 

purchased from Sigma Aldrich. Ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate, sometimes 

referred to as lucirin TPO (LTPO), was purchased from Combi-Blocks. Polycaprolactone-

dimethacrylate Mn = 700 g mol-1 (PCL700-DMA) was synthesized as described in Chapter 2. 

Phosphate buffered saline (PBS), chloroform, 2-propanol, acetonitrile, dimethyl sulfoxide 

(DMSO), diethyl ether, and water were purchased from Fisher Scientific. Solvents used for 

HPLC analysis were all HPLC grade purity or higher. Docetaxel (DTXL) and Paclitaxel (PTX) 

were purchased from LC Labs. Cisplatin (CDDP) was purchased from sigma and octanoic 

anhydride was purchased from TCI America. Clinical formulations of DTXL, PTX, and CDDP 

were purchased from the University of North Carolina Hospital pharmacy. All materials were 

stored as directed by the supplier and used as received. 

CPP was synthesized according to well described methods elsewhere [27-30]. Briefly, 

CDDP was oxidized to the Pt(IV) complex, Pt(NH3)2Cl2(OH)2 by stirring with a tenfold excess of 

hydrogen peroxide in water at 50 °C for 1 hour. The suspension was cooled to room 

temperature and the Pt(IV) complex was recollected via crystallization and washed with DI 

water (2x), cold ethanol, and cold diethyl ether. The complex was then acetylated with octanoic 

anhydride in DMSO overnight. An equal volume of water was added to precipitate the prodrug, 

which was subsequently recollected via filtration. Residual water was removed by dissolving in 

acetonitrile followed by removal of the water and acetonitrile azeotrope through rotary 

evaporation.  

5.2.2 Cell culture 

344SQ cells were a gift from the University of Texas M.D. Anderson Cancer Center (Jon 

Kurie Lab). LNCaP cells and PC3 cells were purchased from ATCC. 344SQ and LNCaP cells 

were cultured in RPMI (Gibco) medium and PC3 cells were cultured in F12-DMEM (Gibco). 
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Both media were supplemented with 10 % fetal bovine serum. All cells were maintained in a 

humidified atmosphere of 5 % CO2 at 37 °C.  

5.2.3 Experimental Animals 

All experiments involving animals were performed in accordance with the National 

Research Council’s Guide to Care and Use of Laboratory Animals (1996), under an animal use 

protocol approved by the University of North Carolina Institutional Animal Care and Use 

Committee. All animals used were supplied by the University of North Carolina Animal Studies 

Core. All mouse procedures were performed with the help of the UNC Animal Studies Core 

staff. 

5.2.4 Methods for Intraoperative needles to reduce cancer recurrence  

5.2.4.1 Optimization of CLIP parameters for the fabrication of intraoperative devices 

Devices were fabricated using a formulation with and without UV absorber. The resins 

were formulated with 48.5 parts PEG550-DMA, 48.5 parts HEMA, 2.5 parts UV initiator LTPO. 

0.5 parts BLS 1326 was added as UV absorber to the UV-absorber resin. Resins were mixed in 

a planetary centrifugal mixer (Thinky USA, Inc.) for 5 minutes at 2000 rpm to produce a 

transparent solution. All prints were carried out on a S1 prototype CLIP printer (Carbon). Print 

parameters were optimized by first finding an appropriate speed to print the backing without 

major defects due to resin flow. Then with print speed held constant, the light intensity was 

systematically decreased until the resolution was appropriate for an accurate fabrication or 

when structural integrity of the part was compromised. The optimal parameters where achieved 

with the UV absorber containing resin (48.5 parts PEG550-DMA, 48.5 parts HEMA, 2.5 parts 

LTPO, and 0.5 parts BLS 1326). The print parameters were found to be 10 mm hr-1 and 10 mW 

cm-2. These parameters were used for fabrication of devices in all subsequent experiments for 

studying intraoperative devices.  
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The post-processing protocol was established by visual comparison of implants that had 

been washed using a custom fabricated apparatus to hold the printed implant in a wash solution 

that is under constant stirring on a magnetic stir plate. A short wash (5 seconds) in 2-propanol 

was compared to a longer wash (30 seconds) in DI water. It was found that the water wash 

followed by quickly dipping the part into acetone removed residual resin. The final post 

processing protocol was as follows: 

1. 30 seconds in DI water (in 100 mL Thinky brand disposable mixing cup, with 2 cm stir 
bar and Cimarec Barnstead Thermolyne stir plate set to level 8) 

2. 1 second dip into acetone 

3. Remove surface acetone with compressed air canister 

4. 5 minute postcure in UV LED oven 

This wash protocol was used for the remainder of the studies for intraoperative devices. 

5.2.4.2 Fabrication of drug-loaded intraoperative devices 

Drug-loaded resins were formulated by adding either 5 wt % PTX or 4 wt % CPP to the 

base resin containing UV absorber established in Sect. 5.2.4.1. Drug was mixed into the resins 

under magnetic stirring in amber vials. PTX was completely soluble and resulted in a 

transparent solution. CPP was in soluble and resulted in an opaque yellow-white solution. Drug-

loaded spacers were fabricated using the optimized parameters and wash protocol described in 

Sect. 5.2.4.1 above. If devices were to be used in an in vitro cell culture or in vivo mouse 

experiment, an extra step of exposing to the germicidal UV light of a biological hood for 10 

minutes and handled aseptically for all future procedures. Parts were imaged by scanning 

electron microscope (SEM) with a Hitachi S-4700 SEM. Prior to imaging, parts were coated with 

2 nm of a palladium-gold alloy using a Cressington 108 sputter coater. 

5.2.4.3 In vitro drug release studies 

Drug release studies were carried out using model devices that were designed to have 

the same surface area to volume (SA/V) ratio as the intraoperative devices. The model disks 
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were printed and post-processed using identical parameters to the implants. Drug release was 

studied by placing a single, pre-weighed disk into microcentrifuge filter units with no filter in 

place (Corning). Filter units containing the devices were inserted into floating racks and placed 

into a 15 L bath of pH 7.4 PBS, which was kept under constant stirring at 37 °C using a 

immersed circulating heating unit. At given time points, devices were removed (n=5) and the 

remaining drug was extracted in 10 mL of a solution of 1:1 acetonitrile:2-propanol for 3 days 

under constant oscillation in an incubated shaker at 150 rpm and 37 °C. Mass of the extracted 

drug was quantified using an Agilent 1260 series HPLC equipped with a Zorbax Eclipse C-18 

reverse phase column at 40 °C and a constant flow rate of 1 mL min-1. Both PTX and CPP 

samples were analyzed using a gradient mobile phase composed of solvents A (water) and B 

(acetonitrile). The mobile phase was changed from 50 % to 100 % B over 10 minutes, washed 

with a 5-minute isocratic hold of 100 % B, and followed by 5 minutes of 50 % B to equilibrate the 

column prior to the next sample. Absorbance was measured at 227 nm and concentration of the 

extraction solution was determined by comparing peak integrations to a standard curve of 

known concentrations. PTX elution time was observed at 4.6 minutes and CPP eluted at 6.0 

minutes. 

5.2.4.4 In vivo tumor recurrence model 

Female athymic nude mice between 6-8 weeks of age and weighing between 20-30g 

were inoculated with luciferase-expressing 344SQ cells into the right flank (106 cells in 100 µL in 

50 % v/v complete medium and Matrigel®). When tumors reached 7 mm in the longest 

dimension, mice were anesthetized by inhalation with 2 % isoflurane and tumors were resected 

through a small 1 cm incision. Mice were randomized into one of eight treatment groups, which 

was administered immediately following resection: (1) resection only, (2) blank implant, (3) PTX 

implant, (4) CPP implant, (5) PTX/CPP implant, (6) 100 µL I.V. PTX (18 mg/kg), (7) 100 µL I.V. 

CDDP (5 mg/kg), (8) 100 µL I.V. PTX/CDDP (18 mg/kg, 5 mg/kg). For mice receiving no 
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additional treatment or I.V. administration, the incision was closed with wound clips and the I.V. 

treatment was administered via tail vein injection.  For mice treated with an implant, the implant 

was placed in the resection cavity prior to closing the incision with wound clips. Tumor volumes 

were monitored via physical measurements using calipers. Tumor volume was calculated using: 

L x W 2/2, where L is longer than W. Bioluminescence was monitored by intraperitoneal injection 

of luciferin followed by imaging using an IVIS Lumina system (Caliper Inc.) and analyzed using 

ROI analysis of total radiance (photons/s/cm2/sr) using the Living Image analysis program 

(Caliper Life Sciences). Tumor measurements were taken every Monday, Wednesday, and 

Friday. Mice were humanely sacrificed using CO2 inhalation when tumors reached 2 cm in the 

largest dimension or if tumors became ulcerated.  

5.2.4.5 Clinical chemistry and histopathological analysis 

Blood was drawn via submandibular bleeds on the day of tumor resection, 4 days 

following, and 8 days following resection and treatment. Complete blood counts and a metabolic 

activity panel including aspartate aminotransferase (AST), alanine aminotransferase (ALT), 

blood urea nitrogen (BUN), and creatinine (Crea) were carried out by the UNC clinical chemistry 

core. At the end of the study, tumors were harvested and fixed in 10 % neutral buffered formalin 

for at least 7 days at room temperature and transferred to the Animal Histopathology Core in the 

UNC School of Medicine for H&E and Masson’s trichrome staining.  

5.2.5 Methods for CLIP brachytherapy spacers 

5.2.5.1 CLIP brachytherapy spacers for in vitro toxicity and in vivo efficacy 

Brachytherapy spacers with no drug and spacers containing 2 wt % DTXL were tested 

for cytotoxicity in vitro and efficacy in vivo. The base resin was formulated by dissolving TPO at 

a concentration of 1 wt % in PCL700-DMA under magnetic stirring at room temperature 

overnight. Drug-loaded resins were formulated by dissolving DTXL into the base resin at 2 wt % 

with an additional night stirring at room temperature. Spacers were fabricated using a CLIP7 
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prototype printer equipped with a 365 nm UV LED light source (Carbon) using a light intensity of 

2.35 mW cm-2 and a continuous speed of 75 mm hr-1. Spacers were washed by dipping the build 

platform into a bath of acetonitrile three time for ~2 seconds each. Spacers were then dried with 

compressed air and then further under reduced pressure in a vacuum oven overnight (room 

temperature). Spacers receiving a post cure were placed in a UV oven equipped with a mercury 

arc lamp for 3 minutes (ELC-4001 equipped with UVA lamp, Electro-lite Corporation) prior to 

being placed in the vacuum oven.  

5.2.5.2 In vitro cytotoxicity of CLIP brachytherapy spacers 

LNCaP prostate cancer cells were plated at a density of 5000 cells cm-2 in a 24-well 

plate and allowed 24 hours to adhere. Cells were then incubated with fresh culture medium (2 

mL) and a transwell insert containing 1, 2, or 4 brachytherapy spacers. Four spacer types were 

screened: (1) blank spacers without postcure, (2) blank spacers with postcure, (3) DTXL 

spacers without postcure, and (4) DTXL-spacers with postcure. Spacers were incubated with 

cells for 72 hours, at which point culture medium was aspirated off and 150 µL of Cell Titer-

Glo® reagent (Promeaga) and 150 µL of fresh medium was added. Cells were then incubated 

for 2 minutes at 37 °C, placed on a shaker for 2 minutes, and stored in the dark at room 

temperature for 5 minutes to allow the luminescence signal to stabilize. Solution was then 

transferred to an opaque 96-well plate and the luminescence signal was recorded using a 

SpectraMax M5 plate reader (Molecular Dynamics). Viability was expressed as a percentage of 

the signal compared to cells treated with PBS. 

5.2.5.3 In vivo efficacy of CLIP brachytherapy spacers 

Male athymic nude mice between 20-30 g body weight and 6-8 months of age were 

inoculated in the subcutaneous region of the right flank with 1x106 luciferase expressing PC3 

human prostate cancer cells in 100 µL of 50 % v/v Matrigel® (Corning) in FBS-free F12-DMEM 

medium. Tumors were allowed to grow until they reached 80-150 mm3, at which point they were 
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randomized into four groups (n=8 for each) to be treated by: (1) CLIP DTXL spacers, (2) CLIP 

blank spacer, (3) I.V. Docetaxel (10 mg/kg), and (4) no treatment. I.V. treatments were 

administered via tail vein injections. For mice receiving spacers, two spacers were placed 

directly into the tumor using an 18-gauge needle and a custom fabricated plunger.  Spacers 

were placed into the tumor parallel to each other to cover the most area as possible. Tumor 

volumes and bioluminescence was monitored as described above in Sect. 5.2.4.4.  

5.2.5.4 Solvent uptake in brachytherapy spacers printed with different overall light exposures 

Solvent uptake was determined for brachytherapy spacers printed with a range of print 

speeds at constant light intensity. 25 brachytherapy spacers were arrayed onto a 1mm thick 

backing in a 5x5 array. A model was also generated of the backing alone. The models were 

printed on a CLIP7 prototype printer equipped with a 365 nm LED light source (Carbon). A light 

intensity of 1.75 mW cm-2 was used for all prints and three speeds (45, 67.5, and 90mm hr-1) 

were used.  The bases were printed at the same intensity and speed regardless of the speed 

used for the spacer region of the model. 

Parts were dried in the vacuum oven, massed and placed in chloroform for 24 hours.  

Swollen parts were collected by pouring over a gravity filter, massed, and dried in the vacuum 

oven. At that point in the experiment, spacer models and the base without spacers was weighed 

to calculate the mass of the spacers alone according to (5.1). 

%;1 = %16<: − %=6;> (5.1) 

Where Msp is is the mass of the spacers, Mpart is the mass of the entire printed part including the 

base, and Mbase is the average mass of three bases printed without any spacers arrayed on the 

model. Solvent uptake was then defined according to (5.2).: 

Degree of swelling in spacers	(%) =
%;,;1 − %,,;1

%,,;1
	×	100 (5.2) 

Where Ms,sp is the swollen mass of the spacers only and M0,sp is the initial mass of the spacers 

only. A relative dosage was calculated for each set of prints using (5.3).  
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9< =
D
E

(5.3) 

Where Dr is relative light dosage (mJ cm-3), I is light intensity (mW cm-2), and S is print speed 

(cm s-1). 

 

5.2.5.5 DTXL release from brachytherapy spacers printed with different overall light exposures 

DTXL-loaded spacers were printed using the CLIP7 prototype printer at a constant 

speed of 75 mm hr-1 and a range of light intensity (7.7, 5.3, and 2.4 mW cm-2). A spacer was 

also fabricated using a continuous linear gradient of intensity between 7.7 and 2.4 mW cm-2 

over the course of the print. The post-process was carried out as described in Sect. 5.2.5.1.  

In vitro drug release was characterized by placing 45 spacers for each study arm in a 2 

mL Slide-A-LyzerTM MINI dialysis cassette with the bottom of the conical tube cut off (Fig. 5.2). 

The cassettes were then inserted into foam floating racks and placed into 2 Lof pH 7.4 PBS, 

which was under constant stirring on a magnetic stir plate in an incubator set to 37 °C. The PBS 

release medium was changed every 3 days to ensure sink conditions were maintained. At each 

designated timepoint, 3 spacers were removed and the drug remaining was extracted from the 

spacers in acetonitrile for 2 weeks at 37 °C under constant shaking. The drug concentration in 

the extraction solution was quantified using HPLC analysis as stated in Sect. 5.2.4.3.  
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Figure 5.2 Modified Slide-a-lyzersTM MINI dialysis cassettes for in vitro release studies. 45 
replicates of each type of spacer was added to individual cassettes (one cassette per study arm) and 
floated in a 2 L bath of pH 7.4 PBS, which was changed regularly to maintain sink conditions. 

5.2.5.6 Printing complex geometries on the scale of brachytherapy spacers 

The ability to print complex geometries on the scale of brachytherapy spacers was 

demonstrated using a resin formulated from 1 wt % TPO initiator and 0.05 wt % BLS1326 UV 

absorber dissolved into PEG550-DMA. Models were generated in Magics Structures (Materilise) 

by arraying rhombic, diamond unit cells (0.75 x 0.75 x 0.375 mm) to fill 1mm tall cylinders (0.75 

mm diameter) on a backing slab. A second model was generated by arraying diamond unit cells 

(0.75 x 0.75 x 0.75 mm) vertically to fill cylinders of 1, 2.5, and 5 mm in length both with and 

without a solid shell surrounding the cylindrical structure. Parts were fabricated at a speed of 50 

mm hr-1 and a light intensity of 3 mW cm-2 using a CLIP S1 prototype printer equipped with a 

385 nm UV LED light source. Parts were subsequently washed with 2-propanol, dried and 

subjected to a 5 minutes postcure under a mercury UV lamp. 
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5.3 Results and Discussion 

5.3.1 Intraoperative implants to reduce cancer recurrence 

5.3.1.1 Optimization of CLIP parameters and processing for fabrication of intraoperative device 

A model device was designed to be used in a mouse model of cancer recurrence 

following surgical resection (Fig. 5.3). Various backing thicknesses were tested, and the optimal 

thickness was found to be 0.75 mm. Thicker backings were bulky and would likely cause 

discomfort to the mice, and thinner backings were not structurally suitable to support the 

needles. A barbed arrowhead design was used to allow insertion, while subsequently resisting 

the elastic nature of soft tissue to remain embedded following placement 

Figure 5.3 Intraoperative implant model  

CLIP parameters and processing methods were first established using the base resin 

alone, with plans to eventually incorporate PTX and CPP. Devices were fabricated using a resin 

that contained equal parts (by mass) of HEMA and PEG550-DMA. This formulation was chosen 

because of the additional rigidity that the increased Tg provides when HEMA is blended with a 

low Tg oligomer resins such as PEG550-DMA (see Fig. 3.21 in Chapter 3). Further, previous 

studies indicated that HEMA increased solubility of taxane-based drugs such as PTX (data not 

shown). LTPO was used as the UV radical initiator (2.5 wt %) and the UV absorber BLS 1326 

was added to a concentration of 0.5 wt % to serve to improve resolution during fabrication. The 
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effect of the addition can be seen in figure 5.4, where the devices fabricated using resins with 

no additional UV absorber have poor resolution of the undercut arrowhead in the z-dimension. 

This is the result of increased UV light penetration and a deeper cure depth. 

Figure 5.4 Effect of UV absorber on resolution of needle arrowhead resolution. Difference in 
resolution of barbed arrowhead needle structure fabricated using a resin with no additional absorber (A) 
and with a resin containing 0.5 wt % UV absorber, BLS 1326 (B) 

The depth of cure in photopolymer systems is often described using equations derived 

from the Beer-Lambert law, and is a function of two factors: the total light dosage and 

absorption coefficient of the resin [31,32]. Light dosage is a measure of the overall light 

exposure and is defined as the product of light intensity and exposure time. In CLIP, the light 

intensity can be modulated through the software interface and the exposure time can be 

controlled through the print speed, with exposure time being inversely related to print speed. 

The absorption coefficient of a resin can be manipulated through the addition of UV absorbing 

molecules, including both photo-reactive initiators and inert UV absorbers. 

Without the addition of UV absorber, the minimum exposure values necessary to 

maintain structural integrity resulted in unresolved arrowheads (Fig. 5.4 A). However, both part 

integrity and arrowhead resolution was achieved upon the incorporation of BLS 1326 as a UV 

absorber (Fig 5.4 B). Optimal accuracy was achieved using a light intensity of 10 mW cm-2 and 

printing at a speed of 10 mm hr-1. A relatively slow build rate was required to print the implant 

base’s large surface area without major defects. 

A centrifugation process, like that used for the removal of residual resin from the pores 

of geometrically complex devices (Chapter 3), resulted in sheering of the needle tips, and was 



 

 152 

thus unsuitable for use with this design. Residual resin removal can typically be achieved 

through simple solvent rinses; however, a high level of procedural control needed to be 

developed to ensure uniformity among devices, sufficient removal of residual resin, and 

maintain a high and consistent drug loading. To that end, an apparatus was fabricated (using a 

CLIP M1 printer) to hold the device in a beaker containing a wash solution under constant 

magnetic stirring. The design featured a hook to hold the apparatus at a uniform depth (Fig. 5.5 

A) and a slot with a keyed orientation to ensure identical alignment of the device for each wash 

(Fig. 5.5 B).  

To avoid substantial removal of drug, two wash conditions were tested: a 5 second 

exposure to 2-propanol and a 30 second exposure to water. The short wash was necessary 

when using 2-propanol to avoid solubilizing the PTX and CPP, but resulted in incomplete resin 

removal (Fig. 5.5 C). While the resin is not as soluble in the water, the longer exposure and 

rapid stirring facilitated mechanical removal of the unpolymerized surface resin (Fig. 5.5 D). 

Further the low solubility of PTX and CPP in water ensures minimal drug extraction during the 

wash procedure. Subsequent drying of the water-rinsed parts, however, revealed crystallization 

of the UV absorber on the surface of the part (Fig. 5.5 E). An additional 1 second dip of the part 

in acetone eliminated the observed precipitation (Fig. 5.5 F) and further accelerated the drying 

process for the final devices (Fig. 5.5 G). 
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Figure 5.5 Optimization of parameters for the post-processing of intraoperative implants to ensure 
uniformity of fabricated devices. (A) CAD model of implant washing apparatus in a beaker. (B) 
Intraoperative implant in place in the wash apparatus demonstrating the only orientation the the device 
can be relative to the flow of the wash solution. (C) Incomplete removal of residual resin when devices 
were washed for 5 seconds with 2-propanol. (D) The mechanical removal of residual resin during a 30 
second wash using DI water was sufficient to remove unpolymerized resin. (E) crystallization of UV 
absorber following water wash alone. (F) No precipitate is observed when device is exposed to a one 
second dip in acetone. (G) Light microscope image of the needle array in drug-free HEMA/PEG550-DMA 
devices. 

 

5.3.1.2 Fabrication and characterization of drug loaded intraoperative devices  

Drug-loaded resins were formulated to contain 5 wt % and 4 wt % PTX or CPP, 

respectively. An additional resin was also formulated to contain both drugs at the same total 

concentration. PTX was found to be soluble in the resin up to 8 wt %, but 5 wt % was used to 

avoid any potential saturation concerns. Originally, the acetylated cisplatin prodrug (CPP) was 

synthesized in hopes of improving the solubility in the resins. Ultimately, the CPP was not 

soluble in the chosen resin formulation; however, it did show an improvement in stability of the 

drug suspension. Cisplatin alone was observed to crash out of suspension within minutes, while 

CPP remained in suspension on the order of weeks to months.  
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Figure 5.6 Visible light image of blank, PTX, CPP, and PTX/CPP intraoperative implants (left to 
right). 

 Blank devices (no drug) and devices with PTX resulted in transparent parts, while the 

CPP and CPP/PTX resin yielded an opaque device that was the same light-yellow color as the 

synthesized CPP powder (Fig. 5.6). The effect that the suspended drug has on the surface 

finish of the final part can be seen when comparing the SEM micrographs of the parts printed 

with no drug, PTX, and CPP (Fig. 5.7). Devices with soluble drug look similar to those with no 

drug loaded (Fig. 5.7 A and B), while there is a noticeable texture on the surface of the devices 

containing CPP in suspension (Fig. 5.7 D).  
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Figure 5.7 SEM imaging of intraoperative devices fabricated to with (A) no drug, (B) PTX, (C) CPP. (D) 
Expanded view of the texture of the device fabricated with CPP in suspension.    

 

Regardless of the drug content, the backing of the device had patterning that was likely 

an artifact of the resin flow during the CLIP process. These patterns are notable in the visible 
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light photographs as well as the SEM images (Fig. 5.8). Further optimization of CLIP fabrication 

parameters and reduction of resin viscosity would help improve these visible defects. 

Figure 5.8 SEM micrographs of intraoperative devices (no drug) showing surface texture of 
implant backings, which is an artifact of resin flow during CLIP.  

For the in vitro drug release study presented here, the amount of drug released at each 

time point was determined by analysis of the amount of drug remaining in the device after a 

given time in a pH 7.4 PBS bath. With a n=5 for each timepoint, a full study required upwards of 

50 total devices. For that reason, the release study was carried out using model disks with a 

lower volume to conserve resin and drug. Due to the implications of the surface to volume 

(SA/V) ratio on drug release kinetics, as discussed in Chapter 3, the model device was 

designed to have the same SA/V ratio as the intraoperative implants (Fig. 5.9 A). In vitro release 

analysis indicates a very consistent drug release profile of PTX over the course of 28 days (Fig. 

5.9 B). Release of CPP was much more variable compared to PTX (Fig. 5.9 C). The mean 

coefficient of variance for the mass of drug extracted at each timepoint was 6.9 % and 17.4 % 

for PTX release and CPP release, respectively. The higher variability of drug release is likely a 

result of the CPP being suspended in the resin in comparison to the isotropic solution of PTX in 

the resin. 
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Figure 5.9 In vitro release of PTX and CPP from PEG550-DMA/HEMA resins. (A) Model disks were 
designed to have the same surface area to volume ratio as the intraoperative implant (1 mm thick, 5mm 
outer radius, 1.1 mm inner radius). Release results for of PTX (B) and CPP (C).  

5.3.1.3 Preliminary characterization of in vivo resection and recurrent tumor models 

Preliminary tumor studies were carried out to characterize the resection and recurrence 

model using a murine lung adenocarcinoma cell line, 344SQ, and a human ovarian cancer cell 

line, OVCAR5 (Fig. 5.10). Flank subcutaneous tumors were resected when tumors reached 7 

mm in the longest dimension, which occurred 7 and 20 days after inoculation for 344SQ and 

OVCAR5, respectively. 344SQ tumors resulted in recurrence within a few days following 

resection, while OVCAR5 tumors recurred after approximately 25 days. 2 mice with 344SQ 

tumors were euthanized early due to ulceration of the recurrent tumor.  

Figure 5.10 Tumor volume curves for preliminary characterization of recurrent tumor model with 
344SQ lung cancer and OVCAR5 ovarian cancer flank tumors. 
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A second preliminary study was carried out to establish the tolerability of the device at 

the level of drug loading (4 wt % CPP and 5 wt % PTX). After implanting drug-loaded devices 

into tumor-free mice (Fig. 5.11 A), the devices did not appear to hinder normal movement or 

cause discomfort in mice. Over the course of 2 weeks, the body weight of mice remained at or 

above the body weight measured at the time of treatment (Fig. 5.11 B). Following two weeks, 

devices were removed and the amount of drug remaining in the device was extracted and used 

as a measure of the amount of drug released over the two week period. Both PTX and CPP 

implants appeared to release over half of the loaded drug cargo in vivo (Fig. 5.11 C).  

Figure 5.11 Results of preliminary tolerability study. PTX and CPP implants were placed in the 
subcutaneous region of non-tumor bearing mice (A) and body weight was monitored (B). After termination 
of the experiment, devices were recollected and the drug remaining was extracted (C). 
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5.3.1.4 In vivo efficacy of intraoperative devices against tumor recurrence 

7 days following inoculation, 344SQ flank subcutaneous tumors were resected and mice 

were treated with placement of an implant containing PTX, CPP, or a combination PTX/CPP; a 

single I.V. treatment of PTX, CDDP, or a combination PTX/CDDP; or no additional treatment. 

Tumor volume measurements and bioluminescent imaging of luciferase-expressing cells 

indicate a rapid tumor recurrence in mice receiving I.V. PTX, blank implants or no additional 

treatment following resection (Fig. 5.12). While the blank implant does appear to delay 

recurrence in the physical tumor measurements, the rapid increase in bioluminescence signal 

may indicate that the implant may slightly interfere with the physical measurement of the tumor.  

Although placement of PTX and CPP implants was tolerated up to 14 days in non-tumor 

bearing mice during preliminary experiments, all mice treated with drug-loaded implants in the 

resection model resulted in skin lesions above the implant. Treatment arms were monitored until 

50 % of the initial treatment group was euthanized. Due to the rapid development of skin lesions 

in mice treated with CPP and PTX/CPP implants, no usable tumor data was collected. Thus, 

only PTX related treatment groups are presented. Tumor data is only shown out to 28 days 

post-inoculation, when >50 % of mice treated with PTX implants had developed skin lesions.  
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Figure 5.12 Tumor inhibition effects of PTX implants compared to I.V. PTX, blank implants, and 
resection only. (A) Tumor volume curves. (B) Bioluminescence of tumors. (C) Representative 
bioluminescence images of mice with recurrent tumors for each treatment group.  

 

Due to the variable nature of resection and recurrence, each treatment group resulted in 

mice with recurrent tumors and mice in remission. The tumor growth curves for individual mice 

can be seen in figure 5.13. The symbols at the end of each tumor volume curve corresponds to 

the reason for euthanasia of that mouse. For mice receiving a resection only (n=8), three mice 

were observed to be in remission and five resulted in recurrent tumors. Of mice that were 

treated with a blank implant (n=10), one was euthanized for abdominal distension prior to 

recurrence, three were in remission, five had locally recurrent tumors, and one mouse had no 

recurrence in the primary site but developed a secondary tumor on the ipsilateral shoulder. In 
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the treatment group receiving a single I.V. PTX dose following tumor resection (n=8) seven mice 

had recurrent tumors. In mice treated with PTX implants, all mice were euthanized due to 

development of skin lesions. Some mice began having tumor regrowth while others developed 

lesions prior to a physically measurable tumor recurring.  

Figure 5.13 Individual tumor volume curves for each treatment arm. The endpoint for each 
experimental animal is indicated with a symbol, which corresponds to a reason for euthanasia indicated in 
the legend. 

Histological analysis of the site of tumor recurrence in mice receiving resection only and 

I.V. PTX indicated wide cancer growth and a necrotic core, typical in large tumors (Fig. 5.14 A-

B). Cross sections of the implant needle can be seen in the tumor sections taken from mice 
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treated with intraoperative implants. Blank devices are seen surrounded by cancer tissue, 

though the immediate surrounding tissue appears necrotic (Fig. 5.14 C). In sections taken from 

mice treated with PTX implants, no tumor is observed (Fig. 5.14 D). A granuloma is observed 

the proximity of the implant. Trichrome staining reveals dispersed and seemingly random 

collagen distribution in the cancer tissue (Fig. 5.14 E). However, the tissue at the interface of the 

blank device is characterized by an orderly collagen structure, indicating a fibrotic response to 

the implant (Fig. 5.14 G). Trichrome staining of tissue with a PTX implant shows no fibrosis at 

the interface of the device and tissue (Fig. 5.14 F). This is in agreeance with the proliferation-

inhibiting mechanism of PTX. For this reason, PTX is used clinically in drug-eluting stents and 

implants to mitigate the fibrotic response [33,34].  

A metabolic activity panel and complete blood count did not indicate hematological, 

hepatic, or renal toxicity at the day of resection and treatment and 4 and 9 days following (Fig. 

5.15). There does appear to be a drop in red blood cell counts following the surgical procedure, 

but never outside of the normal range (as defined in [35]). 
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Figure 5.14 Histopathology of tumor tissue. 5 µm slices were made parallel to the implant backing and 
perpendicular to the needles. H&E staining was used to observe histopathology of tumor tissue from mice 
treated with resection only (A), I.V. PTX (B), blank implant (C), and PTX implant (D). White circles are 
cross-sections of the implant needles, which were fixed in place along with the tumor tissue. Trichrome 
staining of tumor tissue with (E) blank implant shows dispersed collagen throughout the tumor tissue. (G) 
The tissue directly surrounding the implant needle has organized collagen structure more indicative of 
fibrosis. (F) Trichrome staining of PTX implants in the tumor lack collagen. (A,B: 20X, scale = 2 mm; 
B,C,F: 40X, scale = 1 mm; E: 100X, scale = 500 µm; G: 400X, scale = 100 µm) 
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Figure 5.15 Results of complete blood count and serum biochemical analysis of hematological, 
hepatic, and renal toxicity. Dotted lines represent normal range for nude mice (normal range referenced 
from [35]) 

5.3.1.5 Future directions for development of intraoperative implants 

While the PTX implants outperformed blank implants, I.V. PTX, and resection only 

treatment approaches, the toxicity to the skin of mice required termination of the study without 

the opportunity to observe any potential long-term benefits against tumor recurrence. Future 

work should focus on selectively loading drug into the device in a way that ensures drug will 

elute out of the device primarily in the direction of the resection cavity and reduce exposure to 

the dermis. One approach that we have tried is through fabricating a Janus device, where one 

resin containing a drug (in this case a drug surrogate, rhodamine) is used for the fabrication of 

the needles and another for the backing (Fig. 5.16). This spatially-specific loading may also be 
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achieved through selectively applying a drug-loaded coating to the needle side of the device, 

leaving the dermal-facing surface of the device free of drug. Additionally, applying a 

biocompatible drug-free coating to the dermal facing surface, would limit the contact between 

the chemotherapeutic and the skin. This would allow the production of the device without the 

need to optimize new parameters for CLIP. 

Figure 5.16 Janus-style intraoperative devices can serve as a potential approach to mitigating the 
dermal toxicity caused by the cytotoxic drug in the device backing. 

5.3.2 Brachytherapy spacers 

5.3.2.1 In vitro cytotoxicity of CLIP brachytherapy spacers 

Brachytherapy spacers fabricated with PCL700-DMA were tested for in vitro cytotoxicity in 

LNCaP prostate cancer cells (Fig. 5.17). When 1, 2 or 4 postcured, drug-free brachytherapy 

spacers were incubated in a transwell insert above LNCaP cells, no cytotoxicity is observed. No 

significant difference in viability was observed between cells incubated with drug-free spacers 

that were unpostcured. All spacers containing docetaxel were cytotoxic to LNCaP cells. 
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Figure 5.17 In vitro cytotoxicity of brachytherapy spacers. Brachytherapy spacers were incubated 
above a monolayer of LNCaP prostate cancer cells in a transwell insert for 72 hours. Drug-free spacers 
show a greater cytocompatibility compared to DTXL-loaded spacers, with postcured spacers showing the 
lowest toxicity.  

5.3.2.2 In vivo efficacy of DTXL-loaded brachytherapy spacers 

Brachytherapy spacers containing 2 wt % DTXL were implanted into flank xenograft 

tumors using an 18-gauge needle and a custom fabricated plunger. Results of the tumor growth 

inhibition study can be seen in figure 5.18. I.V. DTXL outperformed the intratumorally implanted 

brachytherapy spacers. This is thought to be a result of too low of a dose of DTXL being 

released by the spacer in the appropriate period, which is the result of a combination of 

insufficient drug loading and too slow of drug release.  

Figure 5.18 In vivo efficacy of DTXL-loaded brachytherapy spacers. (A) Tumor volumes and (B) 
bioluminescence intensity 
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5.3.2.3 Photopolymerization kinetics as a method to control drug release 

In chapter 2, the effect that light intensity can have on the resulting polymer network 

bond conversion was presented. In Chapter 3 the crosslink density of the polymer network was 

shown to have important impacts on the release kinetics of dissolved drugs. Thus, we sought to 

co-opt the effects of the photopolymerization kinetics to try to control the drug release through 

manipulation of light exposure during the printing process.  

First, we sought to demonstrate that the use of different light exposures during the CLIP 

process results in parts with different network properties. To do this, solvent swelling in 

chloroform was used as a measure of crosslink density. Spacers were arrayed and printed on a 

1mm backing. Printing spacers onto a backing allowed for the solvent uptake study to be carried 

out on parts with a larger mass, while keeping the part dimensions similar to a brachytherapy 

spacer. The larger part mass reduces the error associated with weight measurements in the 

swelling experiment. Three parts printed at a range of speeds resulted in solvent swelling that 

was inversely related to the relative dosage of the print (Fig. 5.19). The greater solvent uptake in 

parts printed with a lower relative dosage is indicative of a less dense crosslinked network, 

which agrees with the observations made during the photocalorimetry experiments presented in 

Chapter 2.  
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Figure 5.19 Characterization of CLIP brachytherapy spacers fabricated using different overall light 
exposures.  

 

To observe the effect these changes to the polymer network have on drug release, 

docetaxel-loaded spacers were fabricated using a range of light intensities. However, the DTXL 

release does not appear to be greatly affected by the light intensity used during fabrication (Fig. 

5.20). This study does reveal, however, the effect that the post processing has on the release 

kinetics. There was a significant difference in extent of release between spacers receiving a 

postcure and those that did not.  

While changing the light intensity does not appear to be a sufficient method to modify 

drug release from PCL-based networks, there are useful insights gained from this experiment. 

Notably, DTXL is released in a prolonged fashion over the course of 70 days, which meets the 

desired criteria to match the 2 half-lives of the iodine-125 isotopes in the brachytherapy seeds. 

Further, for many applications the fact that drug release is not affected by changes in CLIP 

fabrication parameters will be a benefit. For example, when printing various geometries, the 

overall exposure may need to be manipulated to achieve the desired resolution. In the case of 

this network and drug, altering the print parameters would not affect the release kinetics.  
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Figure 5.20 In vitro DTXL release from spacers printed at different light intensities. All spacers were 
printed at 75 mm hr-1. High, medium, and low spacers were printed at 7.7, 5.3, and 2.4 mW cm-2. Gradient 
spacers were printed with a continuous linear gradient of intensity between 7.7 and 2.4 mW cm-2 over the 
course of the print. Samples that received a postcure, were postcured under a mercury UV lamp for 3 
minutes.  

5.3.2.4 Complex geometries on the scale of brachytherapy spacers 

The benefit of using complex geometries to control the diffusion distance, and thus the 

drug release rate, was presented in Chapter 3. Implementation of the same design strategy for 

devices on the scale of a brachytherapy spacer (750 µm diameter) can be challenging. Proof of 

concept studies were carried out to demonstrate the potential of printing complex geometries on 

this small scale. As seen in figure 5.21, complex geometries were printed on the scale of 

brachytherapy spacers. SEM images of complex geometries from above (Fig. 5.21 A) indicate 

resolution in the x- and y-dimensions of less than 100 µm for both void volumes and solid 

features. When printing different lengths of geometrically complex spacers the ability to resolve 

details in the z-dimension is apparent (Fig. 5.21 B). A potential problem, which is highlighted by 

tendency for the full-length spacer to bend, is the lack of stability in scaffolds printed with this 

small of a feature size. This may cause a problem for implementation as brachytherapy spacer, 

in that they may not provide the rigidity required to serve the purpose of keeping radioactive 

seeds at the appropriate location in the needle. However, the addition of a solid shell 

surrounding the complex scaffold did improve the structural integrity of the spacer. 
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Figure 5.21. Complex geometries printed on the scale of brachytherapy spacers. Spacers were 
printed with a PEG550-DMA resin. Various unit cells were arrayed to demonstrate the ability to resolve 
features smaller than 100 µm. (A) 1 mm tall cylinders filled with a single diamond and rhombic unit cells 
(left and right, respectively). (B) 1, 2.5 and 5 mm long cylinders filled with diamond unit cells with and 
without a shell.  
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5.4 Conclusions and future directions 

The work outlined in this chapter is the first investigation of CLIP-fabricated devices in 

preclinical in vivo animal models. In an in vivo mouse model, a CLIP intraoperative implant 

loaded with paclitaxel was able to lower the extent of recurrence following tumor resection. 

However, observed dermal toxicities, caused by contact with the backing of the drug-loaded 

implant, indicate a complication for the evaluation of the efficacy of the device in a preclinical 

model. This highlights the need for further development of novel approaches to load drugs in a 

spatially controlled way. 

Additionally, further material development to expand the range of usable mechanical and 

physical properties will be important for continued improvement of these implants. For example, 

the ability to print with an elastomeric backing and rigid needles will be beneficial for application 

of this approach to resection from tissues that are flexible, like skin or the gastrointestinal tract. 

Future work should also include demonstration of the potential for customizing the implant to the 

resection cavity, whereas the described patch was simply a generic shape for preclinical testing. 

This should involve all steps that would be necessary in a clinical setting, starting with the 

scanning of a resection cavity, conversion of the 3D data to a CAD model with a needle surface, 

and successful CLIP fabrication. 

The use of CLIP to produce drug-loaded brachytherapy spacers was also presented. 

CLIP was used to fabricate a spacer using a methacrylated polycaprolactone that was capable 

of prolonged release of docetaxel over the course 60 days. This met the criteria for extended 

release for two half-lives of the iodine-125 used in the radioactive seeds. However, a mouse 

xenograft model of prostate cancer did not indicate any benefit from the implantation of 

docetaxel-loaded spacers. Further work for this application should focus on developing 

biodegradable materials that exhibit a faster release rate for testing on the time scale of the 

mouse cancer model.  
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Additional methods of drug incorporation, including methods to independently control 

release of multiple drugs from the same device would be valuable to the development of 

devices for numerous applications, including brachytherapy. One strategy could be covalent 

attachment to the network using cleavable linkers of varying degradation kinetics. This potential 

approach was further discussed in the conclusion of Chapter 4 (Sect. 4.4). Another approach 

could be to incorporate a secondary phase like nano- or microparticles containing drug, which 

would add another level of control to modify release kinetics. Techniques like these will be 

imperative if 3D printing, and CLIP, is to be used to design and fabricate personalized therapies 

with bespoke drug release profiles. 

  



 

 173 

REFERENCES 

[1] R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2017, CA Cancer J Clin. 67 (2017) 
7–30. doi:10.3322/caac.21387. 

[2] D.E. Midthun, Overview of the initial evaluation, treatment and prognosis of lung cancer, 
UpToDate, 2017. 

[3] H. Sugimura, F.C. Nichols, P. Yang, M.S. Allen, S.D. Cassivi, C. Deschamps, et al., 
Survival After Recurrent Nonsmall-Cell Lung Cancer After Complete Pulmonary 
Resection, The Annals of Thoracic Surgery. 83 (2007) 409–418. 
doi:10.1016/j.athoracsur.2006.08.046. 

[4] N. Hanna, Adjuvant systemic therapy in resectable non-small cell lung cancer, 
UpToDate, 2017. 

[5] R.R. Veluswamy, N. Ezer, G. Mhango, E. Goodman, M. Bonomi, A.I. Neugut, et al., 
Limited Resection Versus Lobectomy for Older Patients With Early-Stage Lung Cancer: 
Impact of Histology, JCO. 33 (2015) 3447–3453. doi:10.1200/JCO.2014.60.6624. 

[6] A. El-Sherif, H.C. Fernando, R. Santos, B. Pettiford, J.D. Luketich, J.M. Close, et al., 
Margin and Local Recurrence After Sublobar Resection of Non-Small Cell Lung Cancer, 
Ann Surg Oncol. 14 (2007) 2400–2405. doi:10.1245/s10434-007-9421-9. 

[7] J.-P. Pignon, H. Tribodet, G.V. Scagliotti, J.-Y. Douillard, F.A. Shepherd, R.J. Stephens, 
et al., Lung Adjuvant Cisplatin Evaluation: A Pooled Analysis by the LACE Collaborative 
Group, JCO. 26 (2008) 3552–3559. doi:10.1200/JCO.2007.13.9030. 

[8] A. Bezjak, C.W. Lee, K. Ding, M. Brundage, T. Winton, B. Graham, et al., Quality-of-Life 
Outcomes for Adjuvant Chemotherapy in Early-Stage Non–Small-Cell Lung Cancer: 
Results From a Randomized Trial, JBR.10, JCO. 26 (2008) 5052–5059. 
doi:10.1200/JCO.2007.12.6094. 

[9] H. Brem, S. Piantadosi, P.C. Burger, M. Walker, R. Selker, N.A. Vick, et al., Placebo-
controlled trial of safety and efficacy of intraoperative controlled delivery by 
biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain 
Tumor Treatment Group, Lancet. 345 (1995) 1008–1012. 

[10] J.B. Wolinsky, Y.L. Colson, M.W. Grinstaff, Local drug delivery strategies for cancer 
treatment: Gels, nanoparticles, polymeric films, rods, and wafers Journal of Controlled 
Release. 159 (2012) 14–26. doi:10.1016/j.jconrel.2011.11.031. 

[11] J.A. Kaplan, R. Liu, J.D. Freedman, R. Padera, J. Schwartz, Y.L. Colson, et al., 
Prevention of lung cancer recurrence using cisplatin-loaded superhydrophobic 
nanofiber meshes, Biomaterials. 76 (2016) 273–281. 
doi:10.1016/j.biomaterials.2015.10.060. 

[12] S.M. Azouz, J. Walpole, S. Amirifeli, K.N. Taylor, M.W. Grinstaff, Y.L. Colson, 
Prevention of local tumor growth with paclitaxel-loaded microspheres, The Journal of 
Thoracic and Cardiovascular Surgery. 135 (2008) 1014–1021. 
doi:10.1016/j.jtcvs.2007.12.011. 



 

 174 

[13] R. Liu, J.B. Wolinsky, J. Walpole, E. Southard, L.R. Chirieac, M.W. Grinstaff, et al., 
Prevention of Local Tumor Recurrence Following Surgery Using Low-Dose 
Chemotherapeutic Polymer Films, Ann Surg Oncol. 17 (2009) 1203–1213. 
doi:10.1245/s10434-009-0856-z. 

[14] J.B. Wolinsky, R. Liu, J. Walpole, L.R. Chirieac, Y.L. Colson, M.W. Grinstaff, Prevention 
of in vivo lung tumor growth by prolonged local delivery of hydroxycamptothecin using 
poly(ester-carbonate)-collagen composites, Journal of Controlled Release. 144 (2010) 
280–287. doi:10.1016/j.jconrel.2010.02.022. 

[15] T.J. Wilt, R. MacDonald, I. Rutks, T.A. Shamliyan, B.C. Taylor, R.L. Kane, Systematic 
review: comparative effectiveness and harms of treatments for clinically localized 
prostate cancer, Ann. Intern. Med. 148 (2008) 435–448. 

[16] W.J. Morris, M. Keyes, D. Palma, I. Spadinger, M.R. McKenzie, A. Agranovich, et al., 
Population-based study of biochemical and survival outcomes after permanent 125I 
brachytherapy for low- and intermediate-risk prostate cancer, Urology. 73 (2009) 860–
5– discussion 865–7. doi:10.1016/j.urology.2008.07.064. 

[17] E.Y. Shapiro, S. Rais-Bahrami, C. Morgenstern, B. Napolitano, L. Richstone, L. Potters, 
Long-Term Outcomes in Younger Men Following Permanent Prostate Brachytherapy, 
The Journal of Urology. 181 (2009) 1665–1671. doi:10.1016/j.juro.2008.11.122. 

[18] W.J. Morris, S. Tyldesley, S. Rodda, R. Halperin, H. Pai, M. McKenzie, et al., Androgen 
Suppression Combined with Elective Nodal and Dose Escalated Radiation Therapy (the 
ASCENDE-RT Trial): An Analysis of Survival Endpoints for a Randomized Trial 
Comparing Low-Dose-Rate Brachytherapy Boost to Dose-Escalated External Beam 
Boost for High- and Intermediate-risk Prostate Cancer, Radiation Oncology Biology. 98 
(2017) 275–285. doi:10.1016/j.ijrobp.2016.11.026. 

[19] J.L. Gore, L. Kwan, S.P. Lee, R.E. Reiter, M.S. Litwin, Survivorship Beyond 
Convalescence: 48-Month Quality-of-Life Outcomes After Treatment for Localized 
Prostate Cancer, JNCI Journal of the National Cancer Institute. 101 (2009) 888–892. 
doi:10.1093/jnci/djp114. 

[20] J.H. Petit, C. Gluck, W.S. Kiger, D. Laury Henry, C. Karasiewicz, J.A. Talcott, et al., 
Androgen deprivation-mediated cytoreduction before interstitial brachytherapy for 
prostate cancer does not abrogate the elevated risk of urinary morbidity associated with 
larger initial prostate volume, Brachytherapy. 6 (2007) 267–271. 
doi:10.1016/j.brachy.2007.08.007. 

[21] D.A. Wattson, M.-H. Chen, J.W. Moul, B.J. Moran, D.E. Dosoretz, C.N. Robertson, et 
al., The number of high-risk factors and the risk of prostate cancer-specific mortality 
after brachytherapy: implications for treatment selection, Int. J. Radiat. Oncol. Biol. 
Phys. 82 (2012) e773–9. doi:10.1016/j.ijrobp.2011.11.023. 

[22] A.V. D'Amico, R. Whittington, S.B. Malkowicz, D. Schultz, Biochemical outcome after 
radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy 
for clinically localized prostate cancer, Jama. (1998). 

 



 

 175 

[23] D.E. Sacco, M. Daller, J.A. Grocela, R.K. Babayan, A.L. Zietman, Corticosteroid use 
after prostate brachytherapy reduces the risk of acute urinary retention, BJU 
International. 91 (2003) 345–349. doi:10.1046/j.1464-4096.2003.04082.x. 

[24] R.C. Chen, J.G. Rosenman, L.G. Hoffman, W.-K. Chiu, A.Z. Wang, R.S. Pruthi, et al., 
Phase I study of concurrent weekly docetaxel, high-dose intensity-modulated radiation 
therapy (IMRT) and androgen-deprivation therapy (ADT) for high-risk prostate cancer, 
BJU International. 110 (2012) E721–E726. doi:10.1111/j.1464-410X.2012.11536.x. 

[25] M. Bolla, J.M. Hannoun-Levi, J.-M. Ferrero, P. Maingon, J. Buffet-Miny, A. Bougnoux, et 
al., Concurrent and adjuvant docetaxel with three-dimensional conformal radiation 
therapy plus androgen deprivation for high-risk prostate cancer: preliminary results of a 
multicentre phase II trial, Radiother Oncol. 97 (2010) 312–317. 
doi:10.1016/j.radonc.2010.08.012. 

[26] M. Perrotti, T. Doyle, P. Kumar, D. McLeod, W. Badger, S. Prater, et al., Phase I/II trial 
of docetaxel and concurrent radiation therapy in localized high risk prostate cancer 
(AGUSG 03-10), Urol. Oncol. 26 (2008) 276–280. doi:10.1016/j.urolonc.2007.04.003. 

[27] J. Tian, Y. Min, Z. Rodgers, X. Wan, H. Qiu, Y. Mi, et al., Nanoparticle delivery of 
chemotherapy combination regimen improves the therapeutic efficacy in mouse models 
of lung cancer, Nanomedicine. 13 (2017) 1301–1307. doi:10.1016/j.nano.2016.11.007. 

[28] Y.-R. Zheng, K. Suntharalingam, T.C. Johnstone, H. Yoo, W. Lin, J.G. Brooks, et al., 
Pt(IV) Prodrugs Designed to Bind Non-Covalently to Human Serum Albumin for Drug 
Delivery, J. Am. Chem. Soc. 136 (2014) 8790–8798. doi:10.1021/ja5038269. 

[29] S. Dhar, F.X. Gu, R. Langer, O.C. Farokhzad, S.J. Lippard, Targeted delivery of 
cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG 
nanoparticles, Proc. Natl. Acad. Sci. U.S.a. 105 (2008) 17356–17361. 
doi:10.1073/pnas.0809154105. 

[30] M.D. Hall, C.T. Dillon, M. Zhang, P. Beale, Z. Cai, B. Lai, et al., The cellular distribution 
and oxidation state of platinum(II) and platinum(IV) antitumour complexes in cancer 
cells, Journal of Biological Inorganic Chemistry. 8 (2003) 726–732. doi:10.1007/s00775-
003-0471-6. 

[31] J.R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A.R. Johnson, D. 
Kelly, et al., Continuous liquid interface production of 3D objects, Science. 347 (2015) 
1349–1352. doi:10.1126/science.aaa2397. 

[32] J.H. Lee, R.K. Prud'Homme, I.A. Aksay, Cure depth in photopolymerization: 
Experiments and theory, Journal of Materials Research. 16 (2001) 3536–3544. 
doi:10.1557/JMR.2001.0485. 

[33] L. Choritz, J. Grub, M. Wegner, N. Pfeiffer, H. Thieme, Paclitaxel inhibits growth, 
migration and collagen production of human Tenon's fibroblasts—potential use in drug-
eluting glaucoma drainage devices, Graefes Arch Clin Exp Ophthalmol. 248 (2009) 
197–206. doi:10.1007/s00417-009-1221-4. 

 



 

 176 

[34] M.R. Bennett, In-stent stenosis: pathology and implications for the development of drug 
eluting stents, Heart. 89 (2003) 218–224. 

[35] L. Miao, S. Guo, J. Zhang, W.Y. Kim, L. Huang, Nanoparticles with Precise Ratiometric 
Co-Loading and Co-Delivery of Gemcitabine Monophosphate and Cisplatin for 
Treatment of Bladder Cancer, Adv. Funct. Mater. 24 (2014) 6601–6611. 
doi:10.1002/adfm.201401076. 

 

 


