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Abstract 

Rex E. Jeffries: An NMR-compatible Bioartificial Liver for Metabolomic Investigation of 
Drug Action 

(Under the direction of Jeffrey M. Macdonald, Ph.D.) 

 

NMR-compatible bioartificial liver (BAL) studies have been performed for thirty 

years and still have not been maintained beyond 8hrs. This doctoral work describes the 

engineering efforts in creating a long-term NMR-compatible BAL. Four general types of 

BALs have been reported: suspension, microcarrier, membrane, and entrapment. Reasons 

and efforts toward establishing a fluidized-bed entrapment bioreactor, which maintains 

hepatocytes entrapped in alginate for 30 hrs, and likely for long-term, are described. The 

electrostatically-encapsulated cells generate 1.5 mls of 500 µm diameter spherical 

encapsulates, containing about 10,000 cells each, in abou 5 minutes. These encapsultates 

containing entrapped cells are then incolulated into a 10 mm glass NMR tube and are 

percholate in the bottom of the glass tube forming the fluidized-bed.  

To demonstrate the power of the NMR-compatible BAL in toxicity studies using in 

vivo 31P and 13C NMR spectroscopy, a rat hepatoma cell line, JM1, was used. The 

encapsulated cells were maintained overnite (16hrs) with 3-13C-cysteine and u-13C-glucose 

replaced in the perfused media, and production rates for glutathione, the body’s primary 

antioxidant, and lactate, an anaerobic glycolytic end-product common in cancer, were 

determined. The next day (16-20 hrs) when [3-13C-cysteinyl]glutathione was at 13C isotopic 

steady-state and the JM1 cells were at metabolic steady-state, the effects of two doses of 
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bromobimane, a glutathione depleting agent, and three different doses of 

acetaminophen on the in vivo 31P and 13C NMR spectra were determined. The application 

of this time series data to toxicodyanamics and toxicokintetics is discussed. This is the first 

study demonstrating with 1 minute temporal resolution, the non-steady-state real-time 

toxicokinetics of glutathione.  

Once the NMR-compatible BAL was demonstrated with a relatively easy liver cell-

type to culture, a cell line (i.e., JM1), the fluidized-bed bioreactor was established with 

primary rat hepatocytes. Liver is exquisitely sensitive to oxygen tension and ranges from 8% 

to 3% across its capillary-bed, yet all previous NMR-compatible BAL studies have all 

gasified the perfusion media with 95% oxygen. Therefore, the effect of four oxygen 

concentrations (20%, 35%, 55%, and 95%) on viability was monitored by in vivo 31P NMR. 

Only the 35% and 55% oxygen treatments maintained hepatocytes viability for 28 hours and 

likely beyond with no change in ß-nucleotide triphosphate levels. Analysis of the in vivo 13C 

NMR data for the 55% oxygen treatment revealed synthetic rates for lactate and glutathione 

demonstrating differentiated functions were present and quantifying the function. This is the 

first demonstration of any primary hepatocyte culture being beyond 8 hrs in a NMR- 

compatible BAL. 
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1 Introduction 

1.1 In Vivo Nuclear Magnetic Resonance (NMR) Spectroscopy 

Nuclear magnetic resonance (NMR) is a physical phenomenon first described by Felix 

Bloch and Edward Mills Purcell in 1946. They shared the 1952 Nobel Prize for physics for 

their discovery. NMR is used as a spectroscopy technique to obtain physical, chemical, and 

electronic information about molecules. NMR is also the technology on which Magnetic 

Resonance Imaging (MRI) is based. NMR spectroscopy is based on the magnetic properties 

of nuclei.  Therefore it is feasible on any nucleus possessing a magnetic moment.  When 

placed in a strong, external magnetic field, the nuclei can be observed by the absorption and 

emission of electromagnetic radiation in the range of radiofrequencies, or megaHertz. This 

induced energy difference between nuclear spins states, known as Zeeman levels, is very 

small when compared with other forms of spectroscopy or imaging, and therefore NMR is a 

relatively insensitive technique.  However, this minimal perturbation of spins is what makes 

NMR ideal for in vivo measurements because it is noninvasive and nondestructive, unlike 

mass spectrometry (MS) or computer tomography (CT).  

For in vivo applications the most common and informative nuclei metabolically are 

proton (1H), carbon-13 (13C), phosphorus (31P) and sodium (23Na). Even though the number 

of relevant nuclei is limited a large number of metabolites can be detected simultaneously.  

1H NMR and magnetic resonance spectroscopic imaging (MRSI) allows the detection of a 

number of important metabolites associates with physiological function such as, 

neurotransmitters in brain (1), and biomarkers of cancer from the end product of glycolysis, 
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lactate, or lipid intermediates for membrane synthesis (2). Energetically important 

metabolites, intracellular and extracellular pH, magnesium concentration and reaction fluxes 

can be observed with 31P NMR (3,4).  Likewise, 13C NMR enables the noninvasive 

investigation of important metabolic pathways, like the tricarboxylic acid cycle (TCA), in 

vivo. 

The Larmor equation can be used to determine the amount of energy needed for a given 

nucleus to resonate. The equation describes the relationship between the strength of the 

magnetic field, B0, and the precessional (Larmor) frequency, ω0. 

ω0 = γB0  Eq. 1 

The gyromagnetic ratio, γ, is the ratio of the magnetic moment to the angular momentum of a 

particle, and is constant for a given nuclei. For example, 1H has γ = 4, 258Hz/G, or 26.751 

(x107rad/(T x s) and is used as a reference for all other nuclei, and is set to 1. The relative 

sensitivity of other nuclei can be determined by comparing their respective γ, and the natural 

abundance of the isotope of interest. The absolute sensitivities derived from gyromagnetic 

ratios and natural abundance of 1H, 31P, 23Na, and 13Care 1, 0.0925, 0.063, and, 0.000176, 

respectively, but only 13C is not 100% naturally abundant, it 1.1% naturally abundant, 

whereas 12C is 98.9%  abundant (http://www.pascal-man.com/periodic-

table/periodictable.html). If 13C were 100% fractionally enriched or abundance like 1H, 31P, 

13C, and 23Na its relative sensitivity would be 0.0159.  

 
1.1.1 Proton NMR (1H) 

In vivo 1H NMR is a powerful technique to observe, identify, and quantify a large 

number of biologically important biochemicals in intact tissue since nearly all biochemicals 

contain protons. Besides the low-abundance hydrogen isotope tritium, the proton nucleus is 
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the most sensitive nucleus for NMR both in terms of high natural abundance (>99%) and 

intrinsic NMR sensitivity (high gyromagnetic ratio). However, the application of 1H NMR to 

intact tissue in vivo is challenging for the following reasons: 

1. The water resonance (~55 M) is several orders of magnitude larger than the low 

concentration metabolites (~0.01 M) thereby making it difficult to detect them. 

2. Large lipid signals can overwhelm small metabolite signals. 

3. Heterogeneous magnetic field will significantly decrease the spectral resolution. 

These challenges must be addressed with water suppression and spatial localization 

techniques as well as methods to optimize the magnetic field homogeneity. In addition, the 

chemical shift range is only 8 ppm for nonexchangeable protons thereby making it difficult to 

separate and quantify a large number of overlapping metabolites. Hence, spectral editing 

techniques must be utilized to separate metabolites and spectral processing methods such as, 

baseline correction, phase/frequency adjustment, line shape correction and residual water 

removal are required for quantification of 1H NMR spectra.  

For NMR-compatible bioartificial liver (BAL) experiments, there is only report 

published using suspended hepatocytes with no perfusion, and investigated the effect of 

acetaminophen. The cells quickly became hypoxic as indicated by large lactate peaks and no 

visible antioxidants, such as glutathione (5).  1H NMR is mainly utilized to analyze the media 

and cell extracts in order to quantify various metabolites of interest, such as glucose, lactate 

and alanine. Figure 1.1 shows a typical 1H NMR spectrum acquired from the BAL perfusion 

media during an experiment using primary rat hepatocytes. Some of the main peaks are 

labeled. The large peak at 0 ppm is a chemical shift and concentration reference, 

trimethylsilyl[2,2’,3,3’ deutero]propionic acid (TSP), added to the samples. Relative 



 

abundance of aromatic (6-9 ppm) and aliphatic (0

determined from the spectrum b

represented by the respective

Figure 1
 

1.1.2 Phosphorus-31 NMR (

The 1D 31P NMR experiment is much less sensitive than 

13C. 31P is a medium sensitivity nucleus that yields sharp lines and has a wide chemical shift 

range. The relatively high sensitivity of phosphorus NMR (ca 7% of protons) along with a 

100% natural abundance enables the acquisition of high

chemical shift dispersion is relatively 

resonances. The 31P MR spectrum contains viability information by monitoring ß

time (7), which is approximately 80% adenine triphosphate (ATP) in liver 
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9 ppm) and aliphatic (0-6 ppm) compounds can quickly be 

determined from the spectrum by comparison of peak areas divided by the number protons 

nted by the respective (6). 

1-1 Proton NMR spectrum of BAL perfusion media 

31 NMR (31P) 

NMR experiment is much less sensitive than 1H but more sensitive than 

vity nucleus that yields sharp lines and has a wide chemical shift 

The relatively high sensitivity of phosphorus NMR (ca 7% of protons) along with a 

100% natural abundance enables the acquisition of high-quality spectra within minutes. 

relatively than 1H - about 30 ppm for the important 

P MR spectrum contains viability information by monitoring ß

, which is approximately 80% adenine triphosphate (ATP) in liver (8)

6 ppm) compounds can quickly be 

ivided by the number protons 

 

but more sensitive than 

vity nucleus that yields sharp lines and has a wide chemical shift 

The relatively high sensitivity of phosphorus NMR (ca 7% of protons) along with a 

quality spectra within minutes. The 

about 30 ppm for the important in vivo 

P MR spectrum contains viability information by monitoring ß-NTP over 

(8). 31P NMR is 



 

very useful in bioenergetics because it is capable of detecting all metabolites involved in 

energy metabolism, such as adenosine triphosphate (ATP), inorganic phosphate (Pi)

sugar phosphates, but also the phospholipid intermediates, phosphoryethanol

phosphorylcholine (PC), glycerophosphethanolamine (GPE), and glycerolphosphocholine 

(GPC). A representative in vivo 

cells (JM1) is shown in Figure 1.2

Figure 1-2 Representative 
compatible bioreactor.

 

1.1.2.1 Intracellular pH 

 Physiological parameters like intracellular pH and ionic (e.g. magnesium) strength 

have a direct effect on the exact chemical shift position of almost all resonances. Moon and 

Richards (9) used 31P NMR on intact red blood cells and showed how the intracellular pH 

can be determined from chemical shift dif

(Pi) is most commonly used because 1) its 

physiological range (pK A2 = 6.77), 2) it is readily observed in most tissues, and 3) its 
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because it is capable of detecting all metabolites involved in 

energy metabolism, such as adenosine triphosphate (ATP), inorganic phosphate (Pi)

but also the phospholipid intermediates, phosphoryethanol

phosphorylcholine (PC), glycerophosphethanolamine (GPE), and glycerolphosphocholine 

A representative in vivo 31P NMR spectrum of alginate encapsulated 

Figure 1.2. 

 

Representative 31P spectrum of JM1 cells after 9 hours in the NMR 
compatible bioreactor. 

Physiological parameters like intracellular pH and ionic (e.g. magnesium) strength 

have a direct effect on the exact chemical shift position of almost all resonances. Moon and 

P NMR on intact red blood cells and showed how the intracellular pH 

can be determined from chemical shift differences. The resonance of inorganic phosphate 

(Pi) is most commonly used because 1) its second exchangeable proton, or pK

= 6.77), 2) it is readily observed in most tissues, and 3) its 

because it is capable of detecting all metabolites involved in 

energy metabolism, such as adenosine triphosphate (ATP), inorganic phosphate (Pi) and the 

but also the phospholipid intermediates, phosphoryethanolamine (PE), 

phosphorylcholine (PC), glycerophosphethanolamine (GPE), and glycerolphosphocholine 

P NMR spectrum of alginate encapsulated rat hepatoma 

 

P spectrum of JM1 cells after 9 hours in the NMR 

Physiological parameters like intracellular pH and ionic (e.g. magnesium) strength 

have a direct effect on the exact chemical shift position of almost all resonances. Moon and 

P NMR on intact red blood cells and showed how the intracellular pH 

The resonance of inorganic phosphate 

pKA2, is in the 

= 6.77), 2) it is readily observed in most tissues, and 3) its 



 

chemical shift has a large dep

Henderson-Hasselbach relationship as

   

pH = pK

 
where δ is the observed chemical shift, 

and protonated forms of compound A and pK

the acid-base equilibrium between HA and A.

MCF-7 breast cancer cell line.  The pH is 

between phosphocreatine (PCr) and Pi.  However, PCr is completely absent in 

spectra of liver since creatine kinase is not 

used as an internal chemical shift reference (

 

Figure 1-3 Intracellular pH as determined by the chemical shift between Pi and 
reference resonance. 
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chemical shift has a large dependence on pH.  Hence, pH can be described by a modified 

Hasselbach relationship as: 

  

pH = pKA + log ((δ – δHA) / (δA – δ))  Eq. 1.1 

 is the observed chemical shift, δA and δHA are the chemical shifts of the unprotonated 

protonated forms of compound A and pKA the logarithm of the equilibrium constant for 

equilibrium between HA and A. Figure 1.3 shows a 31P NMR spectrum of an 

7 breast cancer cell line.  The pH is usually determined from the chemical shift 

between phosphocreatine (PCr) and Pi.  However, PCr is completely absent in 

since creatine kinase is not expressed (10), therefore the α-NTP resonance is 

used as an internal chemical shift reference (-7.50 ppm). 

Intracellular pH as determined by the chemical shift between Pi and 

Hence, pH can be described by a modified 

are the chemical shifts of the unprotonated 

the logarithm of the equilibrium constant for 

shows a 31P NMR spectrum of an 

the chemical shift 

between phosphocreatine (PCr) and Pi.  However, PCr is completely absent in 31P NMR 

NTP resonance is 

 

Intracellular pH as determined by the chemical shift between Pi and 
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1.1.3 Carbon-13 NMR (13C) 

Since almost all metabolically relevant compounds contain carbon, 13C NMR is in 

principle able to detect many metabolites, thus offering complementary information to that 

obtained with 1H/31P NMR. Although 1H and 31P NMR have been successfully utilized in 

numerous in vivo studies, they are still limited in that 1H NMR is hindered by the small 

chemical shift range and 31P NMR originates from only a small number of low molecular 

weight compounds.  13C NMR has a large spectral range (>200 ppm), narrow line widths and 

a relative low sensitivity, due to its 1.1% natural abundance and low gyromagnetic ratio 

(γ13C/γ1H) = 0.251, resulting in a absolute sensitivity of 0.000176, as described above.  The 

low sensitivity can, however, be overcome by polarization transfer, averaging, increasing 

number of nuclei by fractional enrichment thereby resulting in resonances with excellent 

spectral resolution and biochemical information.   

In fact, the power of 13C NMR lies in its low natural abundance, where is unique in 

that 13C-labeled precursors allow for the detection of metabolic fluxes.  For example, in 

animals and humans carbohydrate reserves are mainly stored as glycogen.  In fact, it is very 

abundant in muscle and liver, reaching concentrations up to 30-100 mmol kg-1 and 100-500 

mmol kg-1, respectively (11). A representative 13C NMR spectrum (nt=384) of encapsulated 

primary rat hepatocytes is shown in Figure 1.4. The spectrum illustrates glycogen synthesis 

resulting from U-13C-glucose consumption during hours 1-12 of infusion.  

 



 

Figure 1-4 13C glucose labeling of primary rat hepatocytes in NMR
bioreactor. (Blue spectra) Taken every hour following initial infusion of U
over 5 hours. (Red spetra
glucose. 

 

1.2 Metabolomics 

Metabolites are defined as low molecular weight compounds that are not genetically 

encoded but are produced and modified by cells under a given set of physiological conditions 

(12-15). The word metabolome

metabolites present in and derived from a given living organism 

several methods to quantify cell metabolites in o

interactions and levels influence phenotypes. 

the early days of biochemistry, only recently have attempts been made at detecting changes 

by simultaneously analyzing large number

spectrometry (MS) and nuclear magnetic resonance (NMR) 
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13C glucose labeling of primary rat hepatocytes in NMR-compatible
bioreactor. (Blue spectra) Taken every hour following initial infusion of U-13C
over 5 hours. (Red spetra) Cumulative spectra of 8 hours (time 6-12 hours) of U

Metabolites are defined as low molecular weight compounds that are not genetically 

encoded but are produced and modified by cells under a given set of physiological conditions 

metabolome has been coined to designate the entire ensemble of 

metabolites present in and derived from a given living organism (12). Metabolomics utilizes 

to quantify cell metabolites in order to determine how metabolite 

interactions and levels influence phenotypes. Although these methods have been in use since 

the early days of biochemistry, only recently have attempts been made at detecting changes 

by simultaneously analyzing large numbers of metabolites, mostly by methods based on mass 

spectrometry (MS) and nuclear magnetic resonance (NMR) (16).  Due to its integrated 
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measurement of cellular phenotype, metabolomics is highly suited to quantitative analysis 

and description.  It is considered to be more discriminatory than transcriptomics or 

proteomics because it is downstream, therefore changes in the metabolome are amplified 

relative to changes in the transcriptome or proteome.  This results in a more easily 

measureable change even when changes in metabolic fluxes are neglible (17).  

Currently, metabolomics is a hypothesis generation strategy, as there is limited 

knowledge of expected metabolic differences (15). Typically, metabolic profiling is used to 

detect a wide range of metabolites covering a number of different metabolic classes to 

provide as large an overview of metabolism as achievable. After a well-designed experiment 

is performed, the data is interrogated to define metabolic differences observed (18,19). The 

intracellular metabolome (endometabolome) and extracellular metabolome (exometabolome 

or ‘metabolic footprint’ (20,21)) can be studied, giving clues to metabolic pathways utilized 

within the cell and the effects cells may be having on their environment through released 

products (22,23). 

 

1.2.1 Analysis of Footprint (or media) 

It is important to differentiate between intracellular and extracellular metabolites 

because they can play different roles. Assessment of the intra-cellular metabolome requires 

technically demanding processes including: metabolic quenching, cell lysis and metabolite 

extraction. An alternative method is to study the extra-cellular metabolome which is easier to 

sample and analyse, and allows high-throughput investigations. This approach uses tissue or 

cell culture in a metabolite-complex medium, allowing the intra-cellular metabolism to be 

investigated by analysis of the extra-cellular metabolome – an approach termed ‘metabolic 
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footprinting’ (15). Metabolic footprinting as described relies not on the measurement of 

intracellular metabolites but on the monitoring of metabolites consumed from, and secreted 

into, the growth medium. To maximize the excretion of metabolites ‘overflow’ metabolism is 

stimulated by adding to the fully defined medium various carbon compounds that ‘probe’ 

metabolically active networks in the same way that an engineer might probe an electrical 

circuit (24).  

In an extracellular environment, any changes in the level of extracellular metabolites 

will directly reflect any modification of the environment caused by activities of the cells 

present in the system. For example, nutrients will be consumed and many extracellular 

metabolites are formed as byproducts from the activity of metabolism. Cells fine-tune their 

metabolism according to the environment to maximally exploit natural resources. Metabolic 

footprinting represents the effect of a particular cellular metabolism on the environment, 

leading to a direct and mutual relationship between the set and level of extracellular 

metabolites and the intracellular metabolism. The release of metabolites that are part of the 

central carbon metabolism (e.g. acetate and lactate) allows the cells to maintain biochemical 

balance, thereby assuring the optimal operation of the metabolism. Furthermore, the presence 

of metabolites that are not expected to be secreted or excreted by cells (e.g. 

phosphoenolpyruvate, pyruvate,..) can be used as a marker of cellular lysis, thereby 

providing information about particular growth conditions, such as pH and osmolarity, that 

might indicate cellular stress (25).  

The main program to which metabolic footprinting data will contribute strongly is the 

generation and testing of mathematical models of cell behavior, whose interleaving with 

‘wet’ experiments is the hallmark of systems biology (26,27). Therefore, measurement of the 
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metabolic footprint before, or as well as, measurement of the intracellular (or endo-) 

metabolome can provide a useful set of constraints for metabolic models. Searching 

parameter space to optimize a metabolic model that can reproduce experimental data is 

difficult (28). However, once the model can reproduce the exometabolome accurately, many 

of the parameters will be sufficiently well determined to provide good starting points for the 

fine-tuning with which they can also reproduce the endometabolome, first as steady-state 

‘snapshots’ (29) and then as time series. 

NMR analysis of media has determined that the TSP used as a concentration calibrant 

will bind to the proteins in the serum added to the media, but as long as appropriate pulse 

sequences and serum concentrations are less than 10%, as in this study, metabolite 

concentrations can be quantified (Seagle et al., 2008). In addition, the bioartificial liver 

permits the biosystem boundaries to be clearly defined and biochemical input ca be 

controlled, thereby a mass balance can be easily obtain as compared to a whole organism. 

Effectively, metabolic footprinting is what the classic metabo(n)omic studies do when 

the urine is analyzed, wherein the effects of toxins on target organ are identified by 

classifications by principle components analysis for correlating of urine metabolites to organ 

toxicity (30). Also, TCA intermediates in urine could come from just about any organ, so 

when differences in the levels of TCA intermediates were mutant mice versus the wild type 

(31), it is difficult to correlate that to an organ or metabolic mechanism.  The problem is that 

this is an indirect measure of what one would like to measure – the metabolome in the target 

organ(s) of interest. 
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1.2.2 Analysis of Fingerprint (or Tissue) 

Metabolomics offers some unique advantages over other –omics disciplines (15) and 

one of the main approaches of metabolomics for disease diagnostics is metabolic 

fingerprinting. Metabolic fingerprinting is the rapid classification of samples according to 

their origin or biological provenance (13) where it is not initially necessary or feasible to 

determine the levels of metabolites individually but to develop a high-throughput technique 

that enables a snap-shot of the metabolic composition at a given time. Changes from 

‘normality’ are detected and correlated with disease progression or remission; the latter may 

be surgical intervention, pharmacological or nutritional. The bottom line of metabolic 

fingerprinting is to obtain enough information to unravel (otherwise hidden) metabolic 

alterations, without aiming to get quantitative data for all biochemical pathways. Therefore, 

the resolution of the analytical devices must be high enough to handle critical information. 

Such devices as nuclear magnetic resonance, mass spectrometry, or Fourier transform 

infrared spectroscopy (FT-IR) provide this resolution.  

However, metabolic fingerprinting can easily be over-interpreted, since signals 

suitable for distinguishing among samples might not be biologically relevant, or might not be 

applicable when distinguishing among samples from other species (or situations). For 

example, Warne and others (32) studied metabolic effects by NMR after dosing earthworms 

with toxins. By pattern recognition, they noted elevated levels of glucose, citrate, and 

succinate as potential biomarkers for toxicity. The are clearly many situations where 

intermediates of the TCA cycle become elevated and generalizations about the suitability of 

this method for establishing the mechanism of toxic action should be avoided. For example, 

without 13C tracers and relying just on concentration it is impossible to determine whether 
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glucose, citrate, and succinate increased due to inhibition or an increase in metabolic activity 

of the glycolysis and the TCA cycle.  

In the realm of functional genomics, NMR was used to detect metabolic phenotypes 

in yeast mutants that did not show obvious visible phenotypes. However, the informative 

power of NMR was not sufficient in this instance to quantify individual metabolite levels; 

analysis of enzyme levels had to be applied additionally (17). This technique has since been 

extended to examine the structure of metabolic pathways and the network of metabolism in 

yeast (33).   Therefore, metabolic fingerprinting ultimately benefits from transcriptomics or 

targeted proteomics to identify enzyme levels, however, use of 13C-labeled nutrients and 

determination of flux within the metabolic fingerprint in combination with concentration, 

quantifies the real activities of these enzymes in vivo. In fact, quantifying enzyme activity in 

vivo is the ultimate goal of proteomics, which simply quantifies concentration. In summary, 

there are many technical challenges that need to be addressed in order to generate 

comprehensive metabolomic data, however, metabolic fingerprinting is gaining considerable 

interest across a wide variety of disciplines with biomarker discovery for disease prognosis, 

diagnosis and therapy monitoring, and the addition of flux is essentially in vivo proteomics 

and permits a comprehensive phenotype to be identified. 

 

1.3 NMR-compatible Bioartificial Liver (BAL)** 

 MRS studies of cell preparations permit the control of cell composition, and 

contributions from immune, endocrine, paracrine, and physico-chemical parameters not 

afforded in intact or perfused organ systems [for reviews (34-39)]. Since 1973, four 

                                                 
* Portions of Section 1.3 were selected from a review that was submitted to NMR in Biomedicine on March 31, 
2010, “Three Decades of NMR-compatible Bioaritificial Liver” by RE Jeffries and JM Macdonald. 
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categories of MR-compatible mammalian cell perfusion systems have evolved (9): (1) 

suspension (40), (2) entrapment (41-44), (3) microcarrier (37,45), and (4) membrane (46). 

Table 1-1 contains some MR and physiological metrics for comparison of these various 

bioreactor categories.  

 Although MR-compatible bioartificial livers (BALs) have been used for three decades 

(47,48), the lack of long-term cell viability and simplicity of bioreactor operation has 

hindered its widespread application in the pharmaceutical industry. Initially, MR-compatible 

bioreactors for hepatocytes, or bioartificial liver (BAL), used hepatocyte suspensions, but 

function and viability only persisted for several hours before hypoxia caused cell death 

(5,40,49,50). This is because suspension bioreactors are the only category in Table 1-1 

without perfusion, and therefore the mass transfer is the worse of all the categories. However, 

from an MRS standpoint, they easy to operate, have excellent the global density (i.e., the 

percent of sensitive volume in the coil filled by cells) leading to a superior signal-to-noise 

ratio, and can be packed in a 5 mm NMR tube, so standard high resolution NMR 

spectrometers can be used leading to superior resolution and sensitivity. 

 The goal of these early studies was not to maintain long-term viability, but to obtain 

short-term metabolic information, and a few hours is all that was required for this goal. This 

simple BAL evolved to perfusion systems where hepatocytes were entrapped in collagen 

threads (51-57), alginate spherical encapsulates (58-60), or inoculated into membrane 

bioreactors (7). The most widely applied method for metabolism studies is the entrapment 

technique whereby cells are immobilized in threads of agarose (61) or alginate (41,43). All 

early BAL studies used non-physiological concentrations of oxygen, typically 95:5 

oxygen:carbon dioxide (carbogen) (47) in order to overcome hypoxia, whereby in vivo, the 
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blood has hemoglobin to reduce the oxygen gradient across the liver (Table 1-1). Also, 

simple salt solutions or non-basal media solutions had been used (Table 1-1), which is not 

permissive for long-term cultures, and more typical of toxicology studies (Macdonald et al., 

2002). More recently, with the advent of tissue engineering, MRS and especially MRI have 

been used as tools to characterize the bioreactor with MRS focusing on 31P and viability 

(5,7,49-58), with no reported studies of 13C, 15N, 1H or 19F to characterize tissue engineered 

BAL function. Although recently dynamic nuclear polarization 13C MRS has been used to 

determine flux rates in alginate-encapsulated rat hepatoma cells perfused in a fluidized-bed 

BAL (62), this review will focus on primary hepatocytes. 1H MRI has been used to obtain 

inoculation efficiency and distribution, as well as quality assurance data (7), and velocity-

encoded MRI has been used to define the flow characteristics (63), while diffusion-weighted 

MRI or other forms have not yet been applied to a BAL. One reason for this lack of research 

is that conventional BAL systems do not fit in vertical bore magnets and require horizontal 

bore magnets, which typically do not have a second broadband channel and/or one does not 

have easy instructions on making BALs MRS- and MRI- compatible. This review will give 

an easy step-by-step approach to making any BAL MR-compatible and present examples of 

applying multinuclear MRS protocols to monitor viability and function of several BAL 

designs, as well as MRI applications to characterize inoculation efficiency and distribution in 

opaque materials, quality assurance, flow dynamics, and oxygen distribution.  

 Since suspension BALs were the first design attempted and are not feasible systems 

for long-term maintenance of liver cells in tissue engineering (Table 1-1), they will not be 

used for demonstration of MRS and MRI applications in this review. Rather, three 

bioreactors corresponding to membrane, microcarrier, and entrapment, which have been 
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MRS- and MRI- tested in the author’s laboratory, will be used to demonstrate the 

applications of MRS and MRI, while demonstrating the effects of various bioreactor 

parameters on hepatocyte viability, such as, diffusion distance, shear forces, channeling, and 

the effect of gelling or aggregation of hepatocytes. Figure 1-5 includes diagrams and photos 

of the three bioreactors that will be discussed as examples of three of the four categories 

outlined in Table 1-1: (1) the hollow fiber membrane bioreactor inoculated with 

microcarriers, (2) the membrane multi-coaxial hollow fiber bioreactor, and (3) the fluidized 

bioreactor consisting of alginate entrapped hepatocytes. 

 



 

Figure 1-5 The three BAL designs described in this review: 
hollow fiber membrane, and fluidized
details of their design (B) and flow patterns (
  

 A drawing of a generalized perfusion loop for 

various components. Everything present in a standard life

present in the MR-compatible system, except the perfusion lines are lengthened and the 

recommended heating and oxygenation are i

benefits to this: (1) the perfusion media can be maintained at room temperature inhibiting 

bacterial growth and degradation of media components, such as glutamine, and (2) there is no 

out-gassing in the bioreactor due to a change in solubility of oxygen caused by a drop in 
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The three BAL designs described in this review: hybrid hollow fiber-microcarrier, multicoaxial 
hollow fiber membrane, and fluidized-bed encapsulation bioreactors. Three photos of the bioreactors (

) and flow patterns (C). 
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recommended heating and oxygenation are in parallel and near the magnet. There are two 
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Figure 1-6 Generic bioreactor life
bioreactor loop showing the major components and with a gas exchange module that 
heat and oxygenates the media simultaneously (12) so that media can be maintained 
at room temperature. 
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has been described that solves these issues (64). It is very important to place a bubble trap 

just before the media line enters the bore at the top of the vertical-bore magnet. Bubbles can 

get trapped inside the BAL and destroy spectral quality due to enormous magnetic 
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concentration from the gas exchange module down the water-jacketed line to the bioreactor, 

since polyethylene tubing is extremely permeable to oxygen and will diffuse into the water-

jacket fluid, typically decreasing the oxygen concentration once entering the BAL. 

Autoclaveable FEPT tubing (0.0313” inner diameter) is recommended which is less oxygen 

permeable than polyethylene tubing. A 20% drop from 95% oxygen exiting the gas exchange 

module and traveling down a 3 foot length of tubing at 3 ml/min and 37˚ C to the bioreactor 

is not unexpected. Once this drop in oxygen concentration is measured and flow rate remains 

constant, then one could assume this value for the length of the experiment. Use of the 

fluidized-bed BAL (Fig. 1-5A and 1-5C), described below in the entrapment bioreactor 

category, fits inside a standard 10 mm NMR probe and is lowered from the top of the magnet 

as is typical for vertical bore magnets and uses the spectrometer VT system to help maintain 

the temperature [see (62)] (Fig. 1-6).  

 

Table 1-1: Comparison of bioreactor categories 

Type Ref. Species Media % O2 DurationBiomass
SNR 

NMR 
Resolution

Mass Transfer 

Suspension a Rat KHR 20% 4 hr Excellent Excellent Poor (30 mm) 
Microcarrier b Rat DMEM   20%/40% 20 hr Good Poor Poor (5 mm) 
Entrapment c Rat KHR 95% 6 hr Good Good Poor (0.5-1.5mm) 
Membrane d Rat KHR 95% 6 hr Poor Poor Excellent (0.2mm) 

a Cohen et al, 1978, 1979; Brooks et al, 1985, Nicholson et al, 1985; b This publication c Farghali et al, 
1991, 1993, 1996; Gasbarini et al, 1992a, 1992b, 1993, 1996; Capuani et al, 2000; Falasca et al, 2001; c 
Macdonald et al, 1998. 

 

1.3.1 Suspension 

As shown in Table 1-1 suspension BALs were the first attempted by Cohen and 

others at the end of the 1970s (Cohen et al, 1978, 1979), and later by Nicholson and others in the 

mid-1980s (Brooks et al, 1985, Nicholson et al, 1985). It became clear quickly that this BAL was 

not useful beyond several hours, since the hepatocytes were suspended in a 5mm NMR tube 
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and became hypoxic immediately. In fact, considering the relatively high oxygen demand of 

hepatocytes (Macdonald et al., 1999), it is amazing any physiologically relevant data was 

obtained from these studies. By the end of the 1980s, perfused BALs were introduced and 

suspension BALs became obselete. 

 

1.3.2 Entrapment Compared to Membrane BALs 

As mentioned above, the first 31P and 13C MRS of a MR-compatible BAL was 

published over three decades ago (49). The biolimiting nutrient has always been oxygen, and 

in order to overcome the large diffusion distances, higher concentrations of oxygen have 

been used for long-term viability. Although some attempts have been made to use oxygen 

carriers in the encapsulation matrix to increase oxygen (65), the incorporation of 

perfluorinated hydrocarbons to increase oxygen delivery to hepatocytes has been 

inconclusive. Perfluorinated hydrocarbons do not exhibit the Bohr effect associated with 

hemoglobin, and at lower oxygen tension, they do not release oxygen thereby leading to 

higher levels of hypoxia compared to their absence (66). Nevertheless, their use in media is 

advantageous, however, nearly 60% is required in perfused organs (67) and perfluorinated 

hydrocarbons have toxic side effects (68).  Therefore BAL studies have focused on 

modulating oxygen tension (69). Although membrane bioreactors typically have the best 

mass transfer because homogeneous diffusion distances can be maintained, they suffer from 

poor SNR due to insufficient global density, and often have significant bulk magnetic 

susceptibility that diminishes resolution (Table 1). 
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Inoculation of the Hybrid hollow-fiber bioreactors with hepatocytes 
mixed with microcarriers (A). Graphs of β-NTP/β-NTP from first spectrum from 
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regular flow configuration showing the increase in lactate dehydrogenase validating 

decrease in of β-NTP (C).  
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Figure 1-8 Comparison of in vivo 
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Comparison of in vivo 31P MR spectra from hollow fiber membrane 
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oxygen the hepatocytes recover from the hypoxic isolation process (Fig. 1-8B) and the 31P 

MRS spectrum (Fig. 1-8A) is similar to the 31P NMR spectrum from intact liver (7). Calcium 

was used for the other oxygen treatments since previous alginate encapsulated bioartificial 

livers systems more commonly used calcium (59,71), and potential barium toxicities could be 

avoided. Although calcium is an extremely potent intracellular secondary messenger, both 

calcium and barium have such high affinities for the carboxylate groups that they are 

relatively unavailable, or the encapsulate would lose integrity and disintegrate. Although the 

hepatocytes were maintained for 28 hours with little change in the ß-NTP peak area (Fig. 1-

8B), they exhibited a high degree of anaerobic glycolysis not typical in liver as indicated by 

the analysis of media (72) whereby 100% of the consumed glucose could be accounted for by 

the production rates of lactate and alanine. 

 

1.3.2.2 13C Metabolism 

Previous in vivo 13C MRS studies of MR-compatible BAL focused on the 

perturbation of intermediary metabolism due to xenobiotic exposure (5,48-50,73). With the 

advent of perfusion of bioreactors 13C signal from cells and media were distinguished by 

utilization of diffusion-weighted pulses (74). 13C studies were all performed in suspension 

bioreactors, primarily for metabolism studies as mentioned above. In fact, O’Leary and 

others (75) were the first to analyze the media stream in real time by putting the bioreactor 

loop through the 13C NMR probe. In fact, media is called the metabolomic footprint of cell 

culture and analyzed by itself as a measure of BAL performance (72). Figure 1-9A is 13C 

NMR of the fluidized-bed BAL containing alginate-encapsulated rat hepatocytes and 

perfused with u-13C-glucose showing the time course of 13C-glucose incorporation into C1 of 



 

glycogen (ca 102 ppm). The peak reach a steady

the rate of glycogen synthesis can be deterimined

Figure 1-9B is the same fluidized

The spectrum shows the various 

conformations of 2-13C-glucose. The inset 

lactate (ca 69 ppm) excreted from the hepatocyte cytosol into the media. In fact, 

the media and the cell extract at the end of the experiment established that this signal was 

almost entirely from the media. The rate of formation is linear and can be used to help 

determine the function of the hepatocytes. Normally rat hepatocytes should not produce 

lactate, since liver is involved in the Cori cycle for conversion of lactate derived fro

exercising muscle to glucose.

 

Figure 1-9 An in vivo 
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glycogen (ca 102 ppm). The peak reach a steady-state of incorporation by about 6 hrs, and 

the rate of glycogen synthesis can be deterimined by fitting the peak area to an exponential. 

is the same fluidized-bed BAL, but containing a rat hepatoma cell line, JM

The spectrum shows the various 13C resonances representing the alpha and beta 

glucose. The inset time course on the upper right is the C2 position of 

lactate (ca 69 ppm) excreted from the hepatocyte cytosol into the media. In fact, 

the media and the cell extract at the end of the experiment established that this signal was 

om the media. The rate of formation is linear and can be used to help 

determine the function of the hepatocytes. Normally rat hepatocytes should not produce 

lactate, since liver is involved in the Cori cycle for conversion of lactate derived fro

g muscle to glucose. 

An in vivo 13C MR spectrum of the fluidized-bed bioreactor immediately 
after inoculation with 500 µm diameter electrostatically-encapsulated alginate beads 

107 rat hepatocyte per ml and perfused with 25 mM u-13C
). The 18 hr time course of portion of the 13C NMR spectra containing C1-

at 102 ppm is inset to the left of the full spectrum. In vivo 13C MR spectrum of perfused 
15 hr time course of lactate above the spectrum (B). 

state of incorporation by about 6 hrs, and 
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bed BAL, but containing a rat hepatoma cell line, JM-1.  

C resonances representing the alpha and beta 

time course on the upper right is the C2 position of 

lactate (ca 69 ppm) excreted from the hepatocyte cytosol into the media. In fact, 1H NMR of 

the media and the cell extract at the end of the experiment established that this signal was 

om the media. The rate of formation is linear and can be used to help 

determine the function of the hepatocytes. Normally rat hepatocytes should not produce 

lactate, since liver is involved in the Cori cycle for conversion of lactate derived from 

 

bed bioreactor immediately 
encapsulated alginate beads 

C-glucose 
-glycogen 

C MR spectrum of perfused 



 25

Lactate production is typical of cancer cells, and thus was not detected in the 13C MR 

spectral time course of perfused primary rat hepatocyte shown in figure 1-9A, and is an ideal 

functional assay of BALs and especially for determining if the culture is hypoxic. In fact, this 

13C MRS assay is ideal for dynamically changing oxygen content of media as the cultures 

grow or depending on cell distribution within the bioreactor, since this could be performed in 

essentially real-time, while oxygen concentration is increased or decreased. 

 

1.3.3 Microcarrier 

Ugurbil and others (76) first introduced microcarrier beads whereby mouse embryo 

fibroblasts were grown on the surface of polymeric beads and placed in a MR-compatible 

perfusion chamber for study. With microcarriers and encapsulates, a packed bed is perfused. 

In the former, the global density is hindered due to the fact that cells only attach to the 

outside of the microcarrier, with microcarrier material void of cell signal the global density is 

low, and thus SNR is adversely affected (Table 1-1). Membrane bioreactors typically 

separate the cells from the flowing perfusion solution by permeable membranes, allowing 

diffusion of nutrients and waste, but restraining the cells in the bioreactor. A hollow-fiber 

bioreactor is a membrane system that consists of a bundle of permeable hollow fibers running 

axially (46) or radially (77) through the housing and are typically capped by epoxy or 

thermal welding, and media or gas typically travel through the fiber lumen (78). The hybrid 

hollow fiber-microcarrier bioreactor (Genespan Inc, Bothell, WA) is shown in figure 1-5A, 

wherein there is an annular ring of polyethylene oxygenation fibers (300 µm outer diameter) 

and a central bundle of nutrient delivery cellulose acetate hollow fibers (Fig. 1-5B and 1-5C), 

and microcarriers rest in between the two bundles and rotates 120˚ on a rocker bed. Figure 1-
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7A shows the bioreactor being inoculated via the side port with hepatocyte-coated dextran 

microcarriers, and in the three experiments presented in figure 1-7B a total of 500 million rat 

hepatocytes were inoculated in each bioreactor.  

1.3.3.1 Viability by 31P MRS and Effect of Diffusion Distance 

The first 31P MRS studies of hollow fiber were used not only to monitor cell viability, 

but cell growth within the opaque hollow fiber bioreactors (79,80). Gillies and others (34) 

subsequently refined the MR-compatible design to optimize global density (i.e, the percent of 

volume within the MR probe consisting of cell mass), and enabled cell culture for many 

months to reach tissue densities. The first MR-compatible hollow fiber BAL was published 

by Macdonald and others (7). As an example of how 31P MRS can be used in the 

development of BALs, data from experiments with a hybrid hollow fiber-microcarrier 

bioreactor with various oxygen concentrations and flow configuration were performed by Dr. 

Macdonald while a post-doctoral fellow in Dr. Reid’s laboratory. In general, oxygen is 

always the rate-limiting nutrient in BALs and typically a distance beyond ca 200 µm is 

considered hypoxic (81). In order to address this issue, the 10 cm space between oxygen and 

nutrient fibers (Fig. 1-5B) was affected by 30-60 Hertz 120˚ rotation on a rocking stand and 

microcarriers containing hepatocytes were inoculated into this space (Fig. 1-5C). 

Two oxygen concentrations were tested in the hybrid, hollow-fiber microcarrier BAL, 

20% and 40% oxygen in 5% carbon dioxide with the remainder in nitrogen. The 31P MRS 

spectra were obtained immediately after inoculation as shown in figure 1-7C. Figure 1-7B 

are time courses of the ß-NTP peak area relative to the ß-NTP peak area obtained in the first 

spectrum, and are expressed as the percent change. In all cases the ß-NTP decreased 

precipitously with 20% and 40% oxygen. Figure 1-7C display the results of analysis of 
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media components, showing the increase in LDH in both 20% and 40% oxygen treatment, 

confirming cell death. One of the main problems with hepatocytes is that the cell surface 

adhesion proteins, such as cadherin, cause the hepatocytes to aggregate and in fact, this is the 

mechanism by which liver spheroids are produced (82). Since the hepatocytes are on the 

surface of the collagen coated microcarriers, and even though the bioreactor is constantly 

rotated 120˚ on a rocker (Fig. 1-5A, bottom) at a period of 30 Hz, the hepatocytes still gel in 

the bioreactor. The gel was so solid that in a third experiment, the side port was perfused and 

a small portion of hepatocyte near the perfusion channel remained viable for three days (Fig. 

1-7B, bottom graph), completely eliminating the usefulness of the hollow fiber bioreactor. In 

fact, this gelling phenomenon makes it impossible to suspend hepatocyte-covered 

microcarriers in a fluidized-bed bioreactor without gelling (Table 1-1), and has required 

alginate encapsulation methods to be employed to avoid aggregation phenomena (see below). 

 

1.3.4 Membrane 

MRS and MRI in the field of tissue engineering have primarily studied membrane 

BALs, in the form of a hollow fiber bioreactor. Hollow fiber bioreactors typically have 

sufficient mass transfer, but relatively poor global densities and thus poor SNR for MRS 

(Table 1-1), because much of the sensitive volume within the MR probe is filled with 

bioreactor material. A coaxial hollow fiber bioreactor is composed of a fiber within a fiber 

and is shown in figure 1-5B and can replicated the dimension of the liver lobule (47). The 

first published MRIs of a hollow fiber bioreactor were of a coaxial design to investigate fiber 

concentricity and cell distribution (83). They found that although central fibers were 

constructed asymmetrically, the cell culture of a mouse hybridoma cell line apparently 
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centered the fiber. Since the bioreactor was opaque and composed of polypropylene, MRI 

was the only method to observe the soft tissue cultured cells in the annular space between 

fibers (Fig. 1-5B).



 

2 Bioreactor Development and Design Considerations 

2.1 Rationale and Goals 

Experiments were conducted with a focus on developing an electrostatic encapsulation 

matrix that could be used to provide a stable microenvironment for cellular growth, 

proliferation, and differentiation while shielding the contained cells from shear forces 

associated flow environments.  In addition, the diffusion of oxygen into encapsulates was 

studied with respect to diameter size and oxygen concentration. Electrostatic encapsulation 

technology is reproducible and controllable thus generating beads that are uniform in size, in 

contrast to emulsion techniques (that give particles of nanoscale dimension).  Organized in 

3D systems, such encapsulates were studied by measuring metabolites in the media and cell 

simultaneously within an NMR-compatible bioreactor. The encapsulations used in 

experiments described in this chapter were comprised of primary rat hepatocytes.  

 The metabolic energy status of the entrapped cells was monitored using in vivo 31P 

NMR spectroscopy.  Inorganic phosphate, ATP, sugar phosphates, phospholipid 

intermediates, and pH were measured to evaluate the efficiency of the bioreactor perfusion 

system.  In addition, custom Clark oxygen electrodes were fabricated to monitor the input 

and output oxygen concentration of the perfusion media.  Lastly, histology was performed, 

pre and post experiment, to assess cell viability and conditions within the encapsulate matrix. 

 The specific goals of this research were as follows: 
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1. Develop an encapsulation methodology and gelling agent to produce consistent 

diameters, maximum longevity of encapsulate integrity, and robust mass transfer 

of nutrients. 

2. Extend the time course of survival of encapsulated primary hepatocytes to days, 

which is well beyond the longest duration of 8-10 hours described in previous 

studies.  

3. Develop an NMR-compatible cell culture environment to enable real-time 

toxicodynamic and toxicokinetic observation. 

4. Establish an NMR metabolomic method for elucidating the toxic mechanisms of 

drug-induced liver injury. 

 

2.2 Electrostatic Encapsulation 

Electrostatic encapsulation is a proven technique for immobilization of various cell 

types, such as yeast cells (Serp et al 2000) and mammalian cells (Chandrasekaran et al 2006). 

It is a first choice for immobilization in medicine due to its advantages. One of which is that 

it can produce alginate microbeads down to 100 or even 50 µm in diameter (Manojlovic et al 

2004) in comparison with other extrusion techniques. Smaller beads offer many advantages, 

such as better mass transfer of nutrients and oxygen (84).  Further, the technique is easy to 

use under sterile conditions.  

The production process is performed under mild stress conditions without the use of 

any organic solvents that can inhibit cell activity and cause serious damaging effects. It has 

been proven that the application of high electric potential does not damage cells. Therefore, 

no loss in cell activity or viability occurs after immobilization. The rate of production of the 



 

technique is high enough to produce microcapsules in the scale needed for bioreactor 

applications. In addition, the electrostatic extrusion technique has been shown to have high 

entrapment efficiency with almost no loss in cells during proce

  Electrostatic droplet generation 

to disrupt a liquid filament at the capillary

droplets (Woods et al 1999). It is a complex process involving a 

as applied electrostatic potential, needle diameter, electrode distance and geometry, polymer 

solution flow rate, as well as properties including surface tension, density, and viscosity 

(Zhang et al 2009). The addition of a cell s

matters by affecting both polymer properties and the extrusion process (i.e. micro

hydrodynamics within the capillary via electrostatic and physical interactions of the cells 

(Manojlovic, 2006; Seagle, 2007)

encapsulation system (Fig. 2-

 

 

Figure 2-1 Electrostatic bead spray design 
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technique is high enough to produce microcapsules in the scale needed for bioreactor 

applications. In addition, the electrostatic extrusion technique has been shown to have high 

entrapment efficiency with almost no loss in cells during processing.  

Electrostatic droplet generation (Fig. 2-1A) is based on the use of electrostatic forces 

disrupt a liquid filament at the capillary–needle tip and form a charged stream of small 

droplets (Woods et al 1999). It is a complex process involving a number of parameters such 

as applied electrostatic potential, needle diameter, electrode distance and geometry, polymer 

solution flow rate, as well as properties including surface tension, density, and viscosity 

(Zhang et al 2009). The addition of a cell suspension within the polymer further complicates 

matters by affecting both polymer properties and the extrusion process (i.e. micro

hydrodynamics within the capillary via electrostatic and physical interactions of the cells 

(Manojlovic, 2006; Seagle, 2007).  Experiments were conducted with the electrostatic 

-1B) developed by Seagle (85). 

Electrostatic bead spray design (A) and open-front encapsulation setup 

technique is high enough to produce microcapsules in the scale needed for bioreactor 

applications. In addition, the electrostatic extrusion technique has been shown to have high 

is based on the use of electrostatic forces 

needle tip and form a charged stream of small 

number of parameters such 

as applied electrostatic potential, needle diameter, electrode distance and geometry, polymer 

solution flow rate, as well as properties including surface tension, density, and viscosity 

uspension within the polymer further complicates 

matters by affecting both polymer properties and the extrusion process (i.e. micro-

hydrodynamics within the capillary via electrostatic and physical interactions of the cells 

Experiments were conducted with the electrostatic 

 

front encapsulation setup (B). 
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2.2.1 Encapsulate Diameters 

Encapsulations may provide stable microenvironments for cellular growth, 

proliferation, and differentiation while shielding the contained cells from shear forces 

associated flow environments and may provide an immuno-protective barrier to recipients of 

cells implanted in encapsulated form. Organized in 3D systems, such encapsulates can be 

studied by measuring metabolites in the media effluents from traditional culture plates and 

bioreactors. In these studies, encapsulation of the cells was utilized for maintaining large 

numbers of cells within a confined hydrogel architecture which would provide protection 

from shear forces while still allow for diffusion into and out of the construct. The guidelines 

for encapsulation materials and geometry were initially established as the following: 

1. Matrix material should be biocompatible. No materials should be used that would 

be toxic to contained cells or tissues that encapsulations may be implanted 

into/onto. 

2. Encapsulation geometry should be spherical. Spherical geometry should allow for 

encapsulations to stack in regular patterns while providing space between adjacent 

encapsulations for media flow. 

3. Encapsulate radius should be no greater than maximal gas diffusion distance into 

the encapsulation. This standard should prevent necrotic and apoptotic products 

resulting from an anoxic or hypoxic core from affecting more superficial viable 

cells in the encapsulation. 

One of the inherent difficulties in the development of bioartificial organs is designing 

structures that provide environments that mimic in vivo conditions. Diffusion distance in 
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bioartificial tissues and systems is one such challenge. While scalability of a system is often 

viewed as one of the success measures in tissue engineering, size and scalability, are often 

restricted by the maximum distance that nutrients can diffuse or penetrate into tissue or 

matrix from a media flow. The nutrient possessing the smallest diffusion coefficient, 

therefore, determines the maximum measurement available for determining distances 

between cells and nutrient sources in a bioartificial tissue or organ design. In the case of the 

liver, natural architecture reveal that convective flow channels are separated by a distance of 

no more than 100 microns (µm) (86). This relatively tight packing of hepatocytes in a highly 

channeled structure ensures adequate blood flow to the liver which is essential when 

considering that in rats, for example, the liver uses between 1/5 and 1/3 of total body oxygen 

consumption (87).  

Historically, the problem presented by the oxygen diffusion coefficient has resulted in 

bioreactor designs with distance suitable to provide appropriate oxygen concentrations to 

cells but challenged where scalability is concerned. A possible solution that provides 

reasonable proximity between cells and nutrient rich media, while also allowing for greater 

ease of scalability, utilizes spherical encapsulations of cells in permeable hydrogels 

superfused with media. Such a system would employ uniformly sized spheres such that a 

three-dimensional array of spheres would allow for media flows to pass through the spaces 

created between adjacent spheres. As is the case with any bioartificial system with a linearly 

flowed media system, nutrient concentrations drop as media traverses over or through the 

matrix. This most certainly would occur in a stacked sphere system. The rate at which 

nutrient depletion would occur is directly related to the number of cells per unit volume that 

reside in the spheres. A unique difference exists for systems that use spherical 
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encapsulations. Because the cells are contained within the hydrogel rather than loaded on the 

surface, cells are not subjected to the shear forces presented by the moving flow of media. 

Because of this isolation from flow, encapsulated systems may utilize higher flow rates than 

those employed by superficially mounted cell systems. Higher flow rates would allow for 

higher nutrient concentrations at all distances from the flow source as compared to traditional 

low flow of stagnant systems. 

The electrostatic encapsulator design, mentioned above, was used with the following 

parameters: 1) power supply voltage = 3.5 kV, 2) syringe pump speed = .714 mL/min, 3) 

150mL of CaCl2 gelling bath in a 250 mL beaker, and 4) distance from syringe tip to surface 

of gelling bath = 2.5 cm. These parameters produced sodium alginate encapsulated 

hepatocytes with uniform spherical radii of 250 µm, the limit of oxygen diffusion in BALs 

(McClelland, 2003), which is a function of its diffusion coefficient and consumption rate 

(Figure 2-2A, 2-2B). 

 

 

Figure 2-2 Confocal images of 10 µm thick slices through a 500 µm diameter alginate 
encapsulate containing 3.5x107 rat hepatocytes/ml (A) and 2.0x107 rat hepatocytes/ml 
(B). The distribution of hepatocytes in red, shows that they are tightly packed. 
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2.2.2 Calcium Chloride (CaCl2) as a Gelling Agent 

Polyelectrolyte complex systems have often been used as gel materials. Among them, 

calcium alginate is the most commonly employed system for its easiness in gel formation. 

Upon contact with polycation (Ca2+), liquid alginate solutions immediately transform into gel 

by binding between guluronic acid blocks in alginate and Ca2+. The chains in alginate 

polymers can be described as a varying sequence of regions termed M blocks, G blocks, and 

MG blocks, with no regular repeat unit. In the presence of divalent ions, water solutions of 

polysaccharides form hydrogels via ionic interactions between acid groups on G blocks and 

the chelating ions, generally Ca2+  (Eiselt et al 2000).  

 Therefore the mechanical properties of these physically cross-linked, calcium alginate 

gels are dependent on the proportion and length of the G blocks in a given alginate chain 

(Gombotz and Wee 1998). There is a hypothesis that calcium ions bind only between G 

blocks of more than 20 units, and at high calcium concentrations, multiple cross-linking 

among alginate chains is possible, thus forming a polymer network (Kong et al 2003). The 

network structure of these viscoelastic solids have been described by the “egg-box” model 

(Grant et al 1973).  Gelation kinetics and mechanical properties of final Ca-alginate 

microbeads can also be influenced by the presence of cells. Although most studies of alginate 

bead production have been carried out in an excess of hardening solution (ie, CaCl2) over 

prolonged times in order to ensure complete gelation (Martinsen et al 1989), immobilization 

of highly sensitive mammalian cells (eg, primary hepatocytes) can require minimal exposure 

to CaCl2 solution. Assessment of gelation kinetics can be therefore essential for optimization 

of immobilization techniques for these cells in order to prevent toxic damage. 



 

 Initial encapsulation experiments utilized a bead gelling bath consisting of 150mM 

CaCl2 in deionized water (dH

500 µm and resulted in successful

duration, with primary rat hepatocytes.  H

bioreactor inoculation revealed that the cells were bursting inside the encapsulate

significant amount of debris as shown in 

as reflected by the dark nuclei and vibrant color of the cytoplasm. However, this bursting 

reduced the overall cell density within the bioreactor as 

suboptimal NMR spectra. 

 

 

 Subsequent encapsulations were performed with 150 mM C

solution consisting of HEPES, NaCl, KCl and NaOH.  This ensured that the cells would no 

longer burst and also resulted in more consistent, uniformly spherical beads.
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Initial encapsulation experiments utilized a bead gelling bath consisting of 150mM 

in deionized water (dH2O). This produced spherical beads with an average diameter of 

m and resulted in successful bioreactor perfusion experiments of up to 13.5 hours in 

th primary rat hepatocytes.  Histology of 9 µm sections of the beads prior to 

bioreactor inoculation revealed that the cells were bursting inside the encapsulate

significant amount of debris as shown in figure 2-3.  The cells that did not burst were viable 

as reflected by the dark nuclei and vibrant color of the cytoplasm. However, this bursting 

reduced the overall cell density within the bioreactor as well as the SNR resulting in 

 

Figure 2-3  A 9 µm cryostat slice of an 
encapsulate stained with H&E stain (60x 
magnification). 

Subsequent encapsulations were performed with 150 mM CaCl2 in S&M, which is a 

solution consisting of HEPES, NaCl, KCl and NaOH.  This ensured that the cells would no 

longer burst and also resulted in more consistent, uniformly spherical beads. 

Initial encapsulation experiments utilized a bead gelling bath consisting of 150mM 

O). This produced spherical beads with an average diameter of 

bioreactor perfusion experiments of up to 13.5 hours in 

the beads prior to 

bioreactor inoculation revealed that the cells were bursting inside the encapsulate, leaving a 

.  The cells that did not burst were viable 

as reflected by the dark nuclei and vibrant color of the cytoplasm. However, this bursting 

well as the SNR resulting in 

in S&M, which is a 

solution consisting of HEPES, NaCl, KCl and NaOH.  This ensured that the cells would no 
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2.2.3 Barium Chloride (BaCl2) 

As noted in the literature, BaCl2 concentrations >10 mM can be toxic to hepatocytes if 

exposed for 24hrs.  Therefore the initial encapsulation work was performed with a gelling 

bath of 10 mM BaCl2 in S&M. However, the resulting beads were not formed very well with 

most of them experiencing significant distortion.  Subsequent encapsulations were performed 

with a 150 mM BaCl2 bath that generated spherical beads more consistently than that of the 

150 mM CaCl2 treatment mentioned earlier. As can be seen in figure 2-4, this method 

resulted in beads containing cells as viable as those of the CaCl2 method. The toxicity issue 

was addressed by only leaving the newly formed beads in the gelling bath for <3 minutes and 

immediately removing them, then rinsing with DMEM to dilute the BaCl2 to a nominal 

concentration.  The Ba-Alginate bonds began to break when the beads were perfused with 

DMEM causing the barium to be dissolved into the media causing encapsulates to fall apart.  

To combat this mass balance effect, 10 mM BaCl2 was added to the DMEM, but likely due to 

the bicarbonate that is in the stock DMEM media as a CO2-CO3
-2-HCO3

-1-H2CO3 pH buffer, 

BaCO3 precipitated out of solution making the DMEM cloudy and reducing the effect 

concentration. 
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Figure 2-4  A 9 µm cryostat slice of 
encapsulated rat hepatocytes using 150  
mM BaCl2. 

 

Other studies of hepatocytes utilized HEPES as a pH buffer in the DMEM perfusion 

media in the bioreactors, which has does not use the bicarbonate pH buffering system. With 

that in mind, various gelling bath and perfusion media combinations were prepared to 

determine the most reliable solution to this dilemma.  Two concentrations of BaCl2 and 

CaCl2 were used as well as two perfusion medias, DMEM and HEPES.  Beads were formed 

without cells and placed into various 15 mL centrifuge tubes containing a combination of 

solutions mentioned above.  Table 2-1 illustrates the outcome of this study. There was a low 

degree of precipitation into the media when utilizing a 10 mM BaCl2 gelling bath and a high 

degree of precipitation with the 150 mM BaCl2 treatment. In contrast, is the 10 mM CaCl2 

treatment resulting in no precipitation and the 150 mM CaCl2 treatment with low 

precipitation.  However, in all cases, the beads eventually fell apart due to the dissolution of 

the cations out of the alginate into the perfusion.  This phenomenon was addressed by adding 

5 mM CaCl2 to the perfusion media.  The final encapsulation protocol utilized a 150 mM 
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CaCl2 in the gelling bath to stay consistent with the literature, and 5 mM CaCl2 added to the 

DMEM perfusion media. 

 

Table 2-1: Results of two alginate gelling solutions containing the divalent cations of barium and calcium. 

Conc 
(mM) 

BaCl2 CaCl2 
DMEM HEPES DMEM HEPES 
With 
Beads 

Without 
Beads 

With 
Beads 

Without 
Beads 

With 
Beads 

Without 
Beads 

With 
Beads 

Without 
Beads 

10 
^ ^ ^ ^ - - - - 
+ + + + - - - - 

150 
^ ^ ^ ^ ^ ^ ^ ^ 

+++ +++ +++ +++ + + + + 
Degree of precipitation: -, none; +, low; ++, medium; +++, high 
Time to precipitation: -, no delay; ^, delayed 

 

 

2.2.4 Oxygen Concentrations 

Encapsulation devices are often hindered by the inability to achieve sufficient oxygen 

levels for sustaining long-term cell survival both in vivo and in vitro. A successful device 

depends on permeability, mechanical properties, immune protection, and biocompatibility 

(88,89). Metabolic functionality is controlled by the transport of nutrients and oxygen, with 

oxygen availability the primary dominant limitation (88,90). Maintenance of sufficient 

oxygen levels in the encapsulation device is critical to avoid local domains of necrotic and/or 

hypometabolic cells. There are significant limitations with most cell encapsulation devices 

due to internal oxygen mass transfer limitations (91). 

In vivo studies measured rat hepatocyte physiological oxygen concentrations from 

13% (v/v) arterial to 4% (v/v) hepatovenous, which modulate carbohydrate metabolism 

(92,93). Oxygen tension also plays a significant role in gluconeogenesis and glycolytic 

activity of hepatocytes (94,95). The cell microenvironment is dependent on both nutrient and 
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oxygen availability within the encapsulation device and the surrounding medium. Oxygen 

supply and transport can be enhanced through several means including medium sparging 

(96), perfusing oxygen through silicone tubing (97), minimizing encapsulation geometry 

(98), or using oxygen-rich membranes (99,100). Despite research efforts in these areas, 

oxygen transport remains one of the main limitations in maintaining cell viability and 

functionality. 

All of the studies performed in this research were conducted with the use of a 

previously developed (44) gas exchange module (GEM) to oxygenate the perfusion media 

(Figure 2-5). It utilizes silastic tubing to enable the diffusion of oxygen into the media 

stream. Custom flow-through oxygen probes were also fabricated by Dr. Andrey Tikunov 

(University of North Carolina) and placed in-line with both the input and output media 

streams.  This provided real time oxygen measurements to characterize the actual 

performance of the perfusion system. 

 

 

Figure 2-5  Gas exchange module (GEM) 
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Although the concentration of oxygen at the output of the GEM would reconcile with 

that of the oxygen being perfused in the GEM, it was not the concentration in the bioreactor. 

It was discovered that the three foot length of waterjacketed perfusion tubing extending from 

the GEM to the bioreactor was permeable to oxygen and affected the final oxygen 

concentration in the bioreactor. Initial experiments were conducted with 95% oxygen, 5% 

carbon dioxide as this was the prevalent gas mixture used in all of the previous studies of 

hepatocytes in perfused NMR-compatible bioreactors. Air, or 20% oxygen, or a mixture of 

75% nitrogen, 20% oxygen and 5% carbon dioxide was used as was a third oxygen treatment 

using 65% nitrogen, 35% oxygen and 5% carbon dioxide.  In each case the oxygen 

concentration was determined in the bioreactor. The various types of tubing material tested 

are given below. The Cole-Parmer catelog gives a nice summary of tubing gas 

permeabilities, but as will be described, those that list impermeable to oxygen, actually are 

permeable to some degree. Bev-a-line seems to be one that is truelly impermeable. 

 

2.3 Iterative Design Toward the Final Fluidized-Bed Design 

2.3.1 Gondola (packed-bed) 

The majority of perfused NMR-compatible bioreactors are configured with both an 

upper and sometimes lower baffle to constrain the cells within a known region.  This design 

has certain drawbacks, one of which is difficulty in inoculating the bioreactor with cells.  The 

first baffle must be inserted into the NMR tube just enough to leave room above it for 

loading of the cells.  However, when the cells are loaded and the second baffle is slid down 

to seal the cells within the NMR tube, the cells begin to blow past the second baffle before it 

can seal off the volume of cells. 



 

This issue was addressed by Dr. Michael 

with an NMR-compatible bioreactor design, called the 

cylindrical, boat-like enclosure that is sealed on both ends with baffles, but has a small 

length-wise opening to enable loading of

polyethylene tubing that is secured to the baffles on each end with heat

a tight seal.  This allows the bioreactor to be inoculated prior to sliding it into the NMR

thereby preventing any cell (bead) 

constructed using this design and several trials were executed.  

bioreactor, in that the gondola is fully loaded with cells to maximize the density and i

the SNR.  Unfortunately, channeling

allowing the media to take the path of least resistance through the packed

encapsulated cells, which caused

 

Figure 2-6: The gondola design of Dr. 
problem of loading the bioreactor.
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This issue was addressed by Dr. Michael Gamcsik (North Carolina State University) 

bioreactor design, called the ‘Gondola’.  This design incorporates a 

like enclosure that is sealed on both ends with baffles, but has a small 

wise opening to enable loading of cells (Figure 2-6).  The enclosure consists of 

lyethylene tubing that is secured to the baffles on each end with heat-shrink tubing to form 

a tight seal.  This allows the bioreactor to be inoculated prior to sliding it into the NMR

(bead) blowout.  An 8 mm NMR-compatible bioreactor was 

constructed using this design and several trials were executed.  This is a packed

bioreactor, in that the gondola is fully loaded with cells to maximize the density and i

the SNR.  Unfortunately, channeling of media occured upon perfusion with culture media, 

allowing the media to take the path of least resistance through the packed-bed 

caused heterogeneous distribution of nutrients and oxygen.

The gondola design of Dr. Gamcsik alleviated the 
problem of loading the bioreactor. 

North Carolina State University) 

.  This design incorporates a 

like enclosure that is sealed on both ends with baffles, but has a small 

The enclosure consists of 

shrink tubing to form 

a tight seal.  This allows the bioreactor to be inoculated prior to sliding it into the NMR-tube, 

le bioreactor was 

a packed-bed 

bioreactor, in that the gondola is fully loaded with cells to maximize the density and in turn, 

n perfusion with culture media, 

bed of 

distribution of nutrients and oxygen. 

 



 

2.3.2 Perforated polyethylene plug

A modification of the gondola design was fabricated to alleviate t

channeling of media. The lower baffle and gondola we

polyethylene heat-shrink tubing forming a small, cylindrical cavity that is an extension of the 

upper baffle whose ports have been enlarged to allow an increased rate of media flow

(Figure 2-7).  Then a porous polyethylene 

and inserted to prevent the beads from flowing through the larger ports of the modified upper 

baffle. This acted as a flow distributor, typical of packed

channeling (Macdonald et al.,

 

Figure 2-7: The addition of polyethylene plug acting as a flow 
distributor. 

 

 Although this design modification solved the channeli

form of perfusion constraint.  The beads began to pack u

creating a semi-packed bed and eventually clogged most of the pours in the plug
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Perforated polyethylene plug 

A modification of the gondola design was fabricated to alleviate the packed

. The lower baffle and gondola were replaced with a short piece of 

shrink tubing forming a small, cylindrical cavity that is an extension of the 

whose ports have been enlarged to allow an increased rate of media flow

rous polyethylene rod was cut the same length as that of the cavity 

and inserted to prevent the beads from flowing through the larger ports of the modified upper 

This acted as a flow distributor, typical of packed-bed BALs, which eliminated 

Macdonald et al., 1998). 

The addition of polyethylene plug acting as a flow 

Although this design modification solved the channeling issue, it introduced another 

usion constraint.  The beads began to pack up against the polyethylene plug, 

and eventually clogged most of the pours in the plug

he packed-bed and 

re replaced with a short piece of 

shrink tubing forming a small, cylindrical cavity that is an extension of the 

whose ports have been enlarged to allow an increased rate of media flow 

s cut the same length as that of the cavity 

and inserted to prevent the beads from flowing through the larger ports of the modified upper 

bed BALs, which eliminated 

 

issue, it introduced another 

p against the polyethylene plug, 

and eventually clogged most of the pours in the plug increasing 
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pressure and affecting outlet flow.  This resulted in uneven and insufficient perfusion of 

media, causing both bead damage and eventual cell death due to the lack of oxygen and 

nutrients.  

 

2.3.3 Fluidized-bed 

The previous design attempts and experiments provided the data to fabricate a 

bioreactor based on a fluidized-bed principle that would allow for uniform and sufficient 

media flow with maximized mass-transfer of oxygen and nutrients. All heat-shrink tubing 

was eliminated from the design and an upper baffle was milled with outer fins and 300 µm 

ports (Figure 2-8). This allowed the beads to percolate as the perfusion media flowed from 

the bottom of the NMR tube to the top.  The media flow pushes the beads up near the upper 

baffle before they begin to fall back down toward the bottom of the tube, resulting in a 

continuous motion of beads thus ensuring that each bead receives maximum exposure to the 

media. A closed loop system was used whereby only one pumphead was used to generate the 

media flow, and o-ring were incorporated into the cap design to guard against leaks. 

 



 

Figure 
just a top baffle and percolating beads.

 

2.3.4 Flow rates 

Previous studies of NMR

from 2-20 mL/min (44,101), 

conducted with 10 mm NMR tubes were usually performed with flo

mL/min, but these were typically packed

Therefore, the initial studies in this research were also conducted at a media flow rate of 8 

mL/min. This consistently resulted in disintegration of 

forces, and subsequent blowing of bead debris through the ports in the baffle

the flow rate to anywhere between 4

there was still the channeling

For the fluidized-bed design, flow rates between 2

differing degrees of success with the resulting degree of success being more dependent on 

oxygen concentration than flow rate. 
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Figure 2-8: The final fluidized-bed design with 
just a top baffle and percolating beads. 

studies of NMR-compatible bioreactors utilized media flow rates ranging 

 depending on the diameter of the bioreactor tube.  Studies 

conducted with 10 mm NMR tubes were usually performed with flow rates around 8 

but these were typically packed-bed or mesh type bioreactor (Gamsick, Macuso…). 

the initial studies in this research were also conducted at a media flow rate of 8 

mL/min. This consistently resulted in disintegration of the beads, due to excessive shear 

blowing of bead debris through the ports in the baffle

the flow rate to anywhere between 4-6 mL/min remedied the shear force issue, however, 

ng problem (packed-bed designs) regardless of the flow rate.

bed design, flow rates between 2-5 mL/min were utilized with 

differing degrees of success with the resulting degree of success being more dependent on 

concentration than flow rate.  In addition, an interesting phenomenon was observed 

compatible bioreactors utilized media flow rates ranging 

depending on the diameter of the bioreactor tube.  Studies 

w rates around 8 

bed or mesh type bioreactor (Gamsick, Macuso…). 

the initial studies in this research were also conducted at a media flow rate of 8 

due to excessive shear 

blowing of bead debris through the ports in the baffle.  A reduction in 

6 mL/min remedied the shear force issue, however, 

the flow rate.   

5 mL/min were utilized with 

differing degrees of success with the resulting degree of success being more dependent on 

n interesting phenomenon was observed 
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when modifications were made to the length of the bioreactor insert.  A shorter insert 

translates to a greater distance between the end cap and the bottom of the NMR tube, which 

then enables increased media flow rates. Therefore maximum allowable flow rate is dictated 

by the height of the end cap.  Optimum configuration allows for minimal bead volume while 

ensuring sufficient media flow for maximum mass transfer of oxygen and nutrients.  

 

2.3.5 Materials 

The NMR-compatible bioreactor is made up of several types of tubing that have 

different attribute requirements, depending on its use in the bioreactor. One of those uses is 

for the delivery of media without loss of oxygen, meaning that the tubing must be oxygen 

impermeable. Polyethylene (PE) has long been recognized as an engineering plastic that 

exhibits a high degree of inertness, making it attractive for use in markets such as food and 

beverage, laboratories, and chemical processing where leaching or permeability would 

present risks. Polyethylene is also one of the lower-cost plastic materials and satisfies many 

requirements that call for inexpensive, lightweight tubing.  Initial NMR-compatible 

bioreactors were constructed with PE tubing, however it presented several problems during 

bioreactor fabrication and use.  It is one of the more pliable tubing products used in 

laboratories and therefore occasionally became stretched and narrowed to the point where 

media would no longer flow through it.  In addition, it was easily crimped during repeated 

usage of the bioreactor. Also, it cannot be autoclaved and must be sterilized by ethanol or 

ethylene oxide. These problems called for a more robust tubing product that was also 

impermeable to oxygen. 
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 Fluorinated Ethylene Propylene (FEP) tubing is a semi-rigid product that holds up 

well to usage and repeated autoclaving, in addition to having the next lowest oxygen 

permeability with respect to that of PE tubing. Both the input and output lines were replaced 

with this tubing product and various studies were conducted, with and without hepatocytes, 

to characterize its usage in the NMR-compatible bioreactor. Of most interest was its oxygen 

permeability therefore several oxygen experiments were conducted to determine the actual 

oxygen concentration at several points within the perfusion system, such as 1) the GEM 

output, 2) inside the NMR tube, and 3) bioreactor output.  This enabled a true determination 

of potential oxygen concentration drops throughout the bioreactor loop. 

 A third tubing was test that was comparable to FEP, Teflon or PTFE. It too was listed 

as being impermeable to oxygen.  Although minimal oxygen permeability was detected with 

FEB and PTFE compared to PE, both exhibited some decrease of permeability, and must be 

considered in conjunction with flow rate and tubing length from the GEM to the bioreactor 

for accurate oxygen concentration for the perfused cells. 

 

2.3.6 Open vs Closed System 

Initial experiments were conducted with an open-system configuration, meaning that 

there was not a continuous loop throughout the bioreactor perfusion system.  Basically, a 

pump head was dedicated to each of the media lines, input and output, to operate in a push-

pull fashion.  Various combinations of tubing sizes and pump speeds were trialed to 

determine the optimum parameters.  The original bioreactor loop configuration consisted of 

equally sized, inside diameter (ID) and outside diameter (OD), media perfusion lines.  With 

both pump speeds set the same, the beads packed under the upper end cap and eventually 
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blew through its ports.  A similar action was observed when the output line pump speed was 

set both higher and lower than the input line pump speed. 

This open-system was abandoned for a closed-system configuration for the basic 

reasoning that if the system was truly closed, the media could be pushed through the loop 

with only one pump. The first attempt at this configuration proved disastrous as described 

above. The experiment began with observing the loop outside the NMR magnet and 

everything appeared to be just fine, the media was flowing through the system effortlessly 

and the output line was taking up the media as it flowed upward in the NMR tube. Therefore 

the bioreactor was placed into the NMR magnet and an overnight acquisition was setup and 

initiated. Upon returning to the lab the next morning, a pool of media was discovered directly 

beneath the probe of the magnet.  Apparently the media had flowed completely to the top of 

the NMR tube and began dripping down the outside of the tube and inside the probe.  

Unfortunately the 400 MHz 10 mm NMR probe had been damaged beyond repair and was 

destroyed – a $5K experiment. My advisor was very unhappy. Further investigation of the 

loop revealed that the system was not truly closed afterall.  The top of the NMR tube was not 

sealed completely therefore air was escaping, allowing the media to rise without being 

exported through the output line. A subsequent design change that incorporated two o-rings 

around the top cap of the NMR tube remedied this problem and all of the remaining studies 

were ran without any overflow issue. Several iterations of input/output line sizes and pump 

speeds were tried before coming up with the final closed-system design, described in the next 

section. This made for a more convenient, streamline perfusion system to be used, with just 

one one pump head with associated tubing used to generate the perfusion. 
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2.4 Concluding Remarks and Final Design 

NMR-compatible bioreactor experiments enable the detection of intracellular 

metabolites. This is of particular importance because some charged species can not pass from 

the cytoplasm into the extracellular space thereby preventing detection in media-only 

analysis – or footprinting. The media analysis can demonstrate viability and functionality but 

a more complete understanding of metabolic outcomes will require NMR analysis of in vitro 

cell extract preparations. 

The final NMR-compatible, fluidized-bed bioreactor consists of a 10-mm NMR tube 

with a milled DelrinTM fixture containing an end cap with 300 µm ports that retain the 

encapsulated cells. The top cap is sealed with two o-rings and is connected to two water-

jacketed (norprene) lines with internal FEP or PTFE tubing that is maintained at 37º C via a 

water bath. FEP or PTFE tubing provides input of media, which extends to the bottom of the 

NMR tube and a second FEP tube is used to remove the media as it reaches the top portion of 

the NMR tube. 



 

 

3 NMR-compatible Bioartificial Liver for Real-Time Toxicokinetics and 

Toxicodynamics 

The difference between pharmaco- and toxico- dynamics/kinetics is one of dose. 

Conventional approaches to determine the pharmaco- or toxico- kinetics of drugs consists of 

the use of body fluids (urine, plasma) and tissue to obtain drug and metabolite 

concentrations.  These concentrations can be measured using HPLC, GC/MS and NMR 

(102).  However, it requires samples to be collected at pre-determined intervals and often 

sacrifice of the animals (103).  In vivo NMR enables the noninvasive monitoring of 13C-

labeled xenobiotics to determine the pharmaco-kinetics and/or toxico-kinetics of drug action 

(104).  This can be accomplished with the use of surface coils for in vivo measurements in rat 

(82,105).   However, this technique is limited by coil positioning and signal detection depth.  

The use of NMR-compatible bioartificial livers (BALs) provides a controlled environment of 

cell culture that allows for greater SNR.  Unfortunately there are limitations on longevity 

(~2hrs) due to non-physiological conditions (25°C) and the temporal resolution (~33min) is 

not frequent enough to capture dynamic toxicokinetic activity (49).  Subsequent designs have 

improved on the longevity and temporal resolution, however these improvements are still not 

sufficient enough to capture real-time toxico-kinetics over the entire course of drug activity.  

We have developed an NMR-compatible BAL that sustains primary rat hepatocytes in 

physiological conditions for at least 28 hours, with a cell density of 3.5x107cells/mL (see 

Chapter 4). 
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 In this study, a rat hepatoma cell line (JM1) was utilized to observe real-time 

toxicodynamics and toxicokinetics of bromobimane (BrBi) and acetaminophen (APAP).  

Glutathione (GSH) is a tripeptide (γ-glutamyl-cysteinyl-glycine) as shown in Figure 3-1A, 

wherein cysteine is the rate-limiting amino acid for GSH synthesis. Glutathione is a primary 

anti-oxidant, protecting cells from toxicants (i.e. free radicals) and is also the major non-

protein thiol in many biological systems. Bromobimane is a highly reactive compound used 

as a derivatizing agent in HPLC analysis of glutathione.  Figure 3-1B illustrates the 

conjugation of BrBi with GSH. Once GSH is depleted beyond 70% of steady-state levels, 

BrBi attacks proteins inactivating enzymes essential for normal cellular function, and 

ultimately will kill the cell. Glutathione has been shown to be a key component of drug 

resistance in cancer (106).  Isotope-labeled, [3,3’-13C2]cystine was utilized in the perfusion 

media to follow the accumulation of GSH, then various doses of BrBi were administered to 

the cells to observe its effect on GSH and GS-Bi conjugates.  Previous 13C NMR studies of 

GSH metabolism in cancer cells were conducted with 41-min temporal resolution (107). Our 

study reports the first time a 1-min temporal resolution has been achieved with 13C NMR for 

toxicokinetic and toxicodynamic studies.  This model will have significant impact on 

predictive toxicology experiments, as it will enable the real-time observation of drug activity 

and metabolism that has been previously undetectable.  

 



 

Figure 3-1  (A) Glutathione, a tripeptide (
reactive compound. 

 
 

 The new fluxomic method that is non

applied to study acetaminophen

events (Figure 3-2). Cytochrome P450 enzyme activity is required for NAPQI formation 

from APAP and there are no previous reports of P450 in JM1s. 

tested, 10, 20, and 40 mM dissolve

metabolome analyzed to determine the sub

toxic biochemical events were elucidated from the difference in the uptake curves of u

glucose between controls and

cells were extracted and analyzed by high resolution 1D 

spectroscopy to determine if P450 activity was triggered by the toxic dose of APAP.
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Glutathione, a tripeptide (γ-glutamyl-cysteinyl-glycine). (B) Bromobimane, a highly 

The new fluxomic method that is non-invasively and dynamically obtained was also

ed to study acetaminophen (APAP) toxicity and the APAP-induced cascade of toxic 

). Cytochrome P450 enzyme activity is required for NAPQI formation 

from APAP and there are no previous reports of P450 in JM1s. Three APAP doses were 

tested, 10, 20, and 40 mM dissolved in the culture media, and the the fluxome and 

metabolome analyzed to determine the sub-lethal effects of APAP toxicity. The cascade of 

toxic biochemical events were elucidated from the difference in the uptake curves of u

between controls and the different APAP doses. At the end of the experiment, the 

cells were extracted and analyzed by high resolution 1D 1H and 2D 1H-{ 13C} HSQC NMR 

to determine if P450 activity was triggered by the toxic dose of APAP.

 

) Bromobimane, a highly 

and dynamically obtained was also 

cade of toxic 

). Cytochrome P450 enzyme activity is required for NAPQI formation 

Three APAP doses were 

d in the culture media, and the the fluxome and 

lethal effects of APAP toxicity. The cascade of 

toxic biochemical events were elucidated from the difference in the uptake curves of u-13C-

the different APAP doses. At the end of the experiment, the 

C} HSQC NMR 

to determine if P450 activity was triggered by the toxic dose of APAP. 



 

Figure 3-2
 

3.1.1 Acetaminophen (APAP)

 APAP is one of the most commonly used nonprescription analgesics in the United 

States.  Of the 76% of Americans that reported using nonprescription products in the Third 

National Health and Nutrition Examination Survey (NHANES II

APAP (108).  An estimated 2,000 cases of acute liver failure occ

most common identifiable cause.  Although spontaneous recovery is highest with APAP 

caused morbidity compared to other drugs and other causes of acute liver failure, the 

mortality from APAP induced severe hepatotoxicity remains 

transplantation.  Thus, despite high rates of spontaneous recovery and the availability of an 

antidote (N-acetylcysteine) APAP induced liver failure remains an important healthcare 

problem.  The nutritional status of cysteine i

prodrug of the antioxidant, glutathione (GSH).  Fasting exacerbates APAP toxicity by 

depleting GSH that is required for detoxication of APAP
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2  Acetaminophen metabolism and toxicity pathways. 

(APAP) 

is one of the most commonly used nonprescription analgesics in the United 

States.  Of the 76% of Americans that reported using nonprescription products in the Third 

National Health and Nutrition Examination Survey (NHANES III), 36% reported using 

.  An estimated 2,000 cases of acute liver failure occur per year and APAP is the 

most common identifiable cause.  Although spontaneous recovery is highest with APAP 

caused morbidity compared to other drugs and other causes of acute liver failure, the 

mortality from APAP induced severe hepatotoxicity remains at 20% and 10% require liver 

transplantation.  Thus, despite high rates of spontaneous recovery and the availability of an 

acetylcysteine) APAP induced liver failure remains an important healthcare 

problem.  The nutritional status of cysteine is important to investigate because it is a nutrient 

prodrug of the antioxidant, glutathione (GSH).  Fasting exacerbates APAP toxicity by 

depleting GSH that is required for detoxication of APAP-derived reactive metabolites

 

is one of the most commonly used nonprescription analgesics in the United 

States.  Of the 76% of Americans that reported using nonprescription products in the Third 

I), 36% reported using 

ur per year and APAP is the 

most common identifiable cause.  Although spontaneous recovery is highest with APAP 

caused morbidity compared to other drugs and other causes of acute liver failure, the 

at 20% and 10% require liver 

transplantation.  Thus, despite high rates of spontaneous recovery and the availability of an 

acetylcysteine) APAP induced liver failure remains an important healthcare 

s important to investigate because it is a nutrient 

prodrug of the antioxidant, glutathione (GSH).  Fasting exacerbates APAP toxicity by 

derived reactive metabolites (109).  
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3.1.2 Fluxomics 

 Metabolism is dynamic and can be characterized by mass balance equations, which 

depend on the flux rates and concentration of the various metabolites, defined by the 

boundary conditions of the biological system. The comprehensive measurement of the flux 

rates is fluxomics. Intermediary metabolism is the first detector of change with a 

phosphorylation-driven reaction during signaling with consumption of ATP, or a toxic 

inhibitor of specific reactions blocking flux, and therefore, is very sensitive to non-lethal 

effects of drugs. In addition, most flux rates are determined at steady-state, while most 

toxicants, by definition, affect metabolism and perturb steady-state. In fact, the mechanism of 

toxic action of xenobiotics is defined by a cascade of pathological events leading to cell 

death. This can be comprehensively elucidated using fluxomics, non-invasively, in real-time. 

 

3.1.3 Methods 

 NMR supplies were obtained from multiple vendors. Sodium alginate, calcium 

chloride, perchloric acid, sodium citrate, sodium chloride, potassium chloride, magnesium 

sulfate, HEPES, bovine serum albumin, and 3-(trimethylsily)propionic-2,2,3,3-d4 acid (TSP) 

were purchased from Sigma Chemical company (St. Louis, MO). Mono and dibasic 

phosphate, and barium chloride was purchased from Mallinckrodt (Paris, KY). DMEM, 

insulin, penicillin, streptomycin, and fetal bovine serum was purchased from Invitrogen 

(Carlsbad, CA). The 10 mm NMR tubes were purchased from Wilmad Labglass Inc. 

(Miamisburg, OH), while Norprene™ and Silastic™ tubing, tube connector, peristaltic 

pump, were from Cole Parmer (Vernon Hills, Illinois). The water bath and 500 ml Gibco™ 

reservoir culture bottles were from Fisher (Pittsburgh, PA).  Bioreactor end pieces were 
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manufactured from Delrin™ and assembled as previously described (110). Materials for the 

bioreactor life support units were previously described in earlier work (44). 

 

3.1.4 JM1 Cell Culture 

 JM1 rat hepatoma cells (Michalopoulos Lab, University of Pittsburg) were cultured in 

DMEM medium (Invitrogen, 3 g/L glucose) supplemented with 10% fetal calf serum, 100 

units/mL penicillin and 100 µg/mL streptomycin (Invitrogen). Cells were grown in T150-

flasks  (Fisher) at 37°C in a 95% air/5% CO2 incubator.  For bioreactor experiments, cells 

were trypsinized, washed in PBS and electrostatically encapsulated. 

 

3.1.5 Encapsulation 

 Cells were encapsulated using an electrostatic bead generation apparatus described 

previously (111) with modifications (110).   Briefly, JM1 cells at density of 1 x 109 cells/ml 

were suspended in 2% sodium alginate solution at a 1:1 ratio. The resulting 1% alginate 

solution containing 5 x108 cells/ml was put in a 1cc syringe fitted with a 24 gauge 

angiocatheter. The angiocatheter was pierced at the hub with a 27-gauge needle, which 

served as the positive electrode for the electrostatic casting process. The syringe was placed 

in a syringe pump (Braintree Scientific BS-8000, Braintree, MA) and arranged such that as 

droplets were ejected from the angiocatheter they would fall orthogonally into the 150mM 

CaCl2 or BaCl2 saline solution bath (6.7 mM KCl, 142 mM NaCl, HEPES 10 mM at pH 7.4) 

at 4°C.  Encapsulates were transferred to culture media within two minutes to avoid 

excessive exposure to calcium. The distance from the angiocatheter tip to the surface of the 

CaCl2 or BaCl2 solution was fixed at 2.5 cm. Pump flow rates were set within the range of 
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0.75 to 1.5 mL/min.  A grounded electrode was immersed in the CaCl2 receiving bath. When 

the syringe pump was turned on, in the presence of the high electrostatic potential (ca 4-6 

kV), the sodium alginate solution was pulled away from the angiocatheter tip as tiny 

droplets that polymerized into solid calcium alginate immediately upon contact with the 

CaCl2 saline solution.   

 

3.1.6 In Vivo 31P and 13C NMR Spectroscopy 

 In vivo 31P and 13C NMR experiments of the JM1 cells were performed on a narrow-

bore 14.1T Varian INOVA equipped with a 10mm broadband probe (Venus Probes, 

Livermore, CA).  The receiver frequency of the probe was tuned to 31P at 242.78 MHz and 

13C at 150.92 MHz.  31P time courses were acquired before and after the drug treatment using 

a TR=2s, nt=2028 and a 90° flip angle. 31P spectra were zero filled to 40,000 points and line 

broadened 15 Hz using Gauss-Lorentz apodization.  NMR data was processed off-line with 

ACD/Specmanager software (ACD/Labs, Toronto, Ontario, Canada).  31P metabolites were 

identified using α-NTP (-7.5 ppm) as an internal reference. 13C time courses at 1.2 min 

temporal resolution were acquired during the drug treatment using a TR=2s, nt=256 and a 

90° flip angle. 

 

3.1.7 Drug Treatment 

 A 2 mM solution of bromobimane was prepared by bringing 45 mg of BrBi into 

solution with 500 µl of DMSO.  100µl of BrBi was added to 50ml of perfusion media to 

produce a 400 µM dose (50 µM in figures).  A 2M dose (500 µM in figures) was prepared in 

50ml of media in a similar fashion by adding the appropriate amount of 2mM BrBi solution.  



 

Figure 3-3 illustrates the experimental protocol whereby an initial 15

spectrum was acquired to determine the viabili

spectra while glutathione was synthesized overnight.

acquired, prior to the drug treatment

stream was switched from the non

switched back to the non-drug media.  

throughout the dosing time period, up to 2 hours total

temporal resolution, afterwards a final 

effects of the drug treatment.

 

Figure 3-3 Experimental
nite for 15 hrs followed by
(bottom spectral time course)

  

APAP experiments were conducted with three doses, 2.5

1 M solution of APAP was prepared by bringing 302

2 ml of DMSO.  The 2.5 mM dose was produced by adding 18.75

of DMSO to 75 ml of DMEM, resulting in a 0.5% DMSO concentration.  The other two 

doses, 25 mM and 50 mM, were prepared in a similar fashion.  
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illustrates the experimental protocol whereby an initial 15-min 31

to determine the viability of the JM1 cells, followed by 30

while glutathione was synthesized overnight. Another 15-min 31P NMR spectrum was 

acquired, prior to the drug treatment to ensure the cells were still viable, then the

the non-drug media to the BrBi-dosed media for 10 minutes 

drug media.  13C NMR spectra were obtained, at 1-

ime period, up to 2 hours total acquisition of the time course with this 

, afterwards a final 31P NMR spectrum was acquired to determine the 

effects of the drug treatment. 

Experimental protocol (top): 30-min spectra obtained over 
for 15 hrs followed by 1-min drug treatment temporal resolution

(bottom spectral time course). 

experiments were conducted with three doses, 2.5 mM, 25 mM, and 50

M solution of APAP was prepared by bringing 302 mg of acetaminophen into solu

mM dose was produced by adding 18.75 µl of APAP and 357.25

ml of DMEM, resulting in a 0.5% DMSO concentration.  The other two 

mM, were prepared in a similar fashion.  The experiments pro

P NMR 

ty of the JM1 cells, followed by 30-min 13C 

P NMR spectrum was 

n the input media 

dosed media for 10 minutes then 

-min resolution, 

acquisition of the time course with this 

P NMR spectrum was acquired to determine the 

 

obtained over 
min drug treatment temporal resolution 

mM, and 50 mM.  A 

mg of acetaminophen into solution with 

l of APAP and 357.25 µl 

ml of DMEM, resulting in a 0.5% DMSO concentration.  The other two 

The experiments protocol 



 

(Figure 3-4) was similar to that of the bromobimane experimen

protocols were concatenated one behind the other, over the course of three days. 

was administered in 75 ml of perfusion media for 3 hours then the perfusion 

back to the non-drug media to allow the glutathione to reach steady state before 

administering the next dose of APAP.

 

Figure 3-4 Three doses of acetaminophen drug treatment with 
31P and 13C NMR acquisitions.

  

3.2 Results 

 The bioreactor is inoculated with encapsulated JM1 cells and perfused with media 

containing L-[3,3’-13C2]cystine.  The 

bromobimane-glutathione conjugation

constants. Glutathione is synthesized in two adenosine triphosphate

� First, gamma-glutamylcysteine is synthesized from L

the enzyme gamma

GCL). This reaction is the rate
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) was similar to that of the bromobimane experiment except three dosing 

protocols were concatenated one behind the other, over the course of three days. 

ml of perfusion media for 3 hours then the perfusion 

drug media to allow the glutathione to reach steady state before 

administering the next dose of APAP. 

 

Three doses of acetaminophen drug treatment with 
NMR acquisitions. 

The bioreactor is inoculated with encapsulated JM1 cells and perfused with media 

C2]cystine.  The metabolic model of glutathione synthesis and 

glutathione conjugation is shown in figure 3-5, along with the

Glutathione is synthesized in two adenosine triphosphate-dependent steps:

glutamylcysteine is synthesized from L-glutamate and 

the enzyme gamma-glutamylcysteine synthetase (a.k.a. glutamate cy

GCL). This reaction is the rate-limiting step in glutathione synthesis.

t except three dosing 

protocols were concatenated one behind the other, over the course of three days. Each dose 

ml of perfusion media for 3 hours then the perfusion was switched 

drug media to allow the glutathione to reach steady state before 

 

The bioreactor is inoculated with encapsulated JM1 cells and perfused with media 

glutathione synthesis and 

the various rate 

dependent steps: 

glutamate and L-cysteine via 

glutamate cysteine ligase, 

limiting step in glutathione synthesis. 



 

� Second, glycine is added to the C

enzyme glutathione synthetase.

 

Figure 3-5 The
conjugation and excretion showing the various rate constants 
involved. GSH, glutathione; K1b, GSH synthetic rate; K1b 
resynthesis, K2, GS
BrBi dose, AUC.

  

 The toxicodynamics for the two doses of bromobimane (50

Figure 3-6. A 15 min 31P spectrum is obtained prior 

media to 13C-cystine and bromobimane (BrBi) showing that the cells are still viable after the 

overnight perfusion. A subsequent

drug treatment and as can be seen for the 50

not changed, indicating that the 50

significant change in ATP and a little change in glycerophosphocholine (GPC)

reflects the lipids of the cell membrane. 

results in significant cell death as represented 
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Second, glycine is added to the C-terminal of gamma-glutamylcysteine via the 

enzyme glutathione synthetase. 

 

The metabolic model of bromobimane-glutathione 
conjugation and excretion showing the various rate constants 
involved. GSH, glutathione; K1b, GSH synthetic rate; K1b 
resynthesis, K2, GS-Bi conjugation rate, K3, GS-Bi excretion; 
BrBi dose, AUC. 

for the two doses of bromobimane (50 µM, 500 µM) 

P spectrum is obtained prior (pre-dose) to switching the perfusion 

bromobimane (BrBi) showing that the cells are still viable after the 

A subsequent 15 min 31P spectrum is also acquired after (post

and as can be seen for the 50 µM drug treatment, the viability of the cells has 

not changed, indicating that the 50 µM BrBi dose is non-lethal. The bar graph shows no 

significant change in ATP and a little change in glycerophosphocholine (GPC)

reflects the lipids of the cell membrane. However, the toxicity of the 500 µM BrBi dose 

results in significant cell death as represented its post-dose spectrum. The x-NTP peaks are 

glutamylcysteine via the 

 

µM) is shown in 

to switching the perfusion 

bromobimane (BrBi) showing that the cells are still viable after the 

after (post-dose) the 

the viability of the cells has 

bar graph shows no 

significant change in ATP and a little change in glycerophosphocholine (GPC), which 

µM BrBi dose 

NTP peaks are 



 

no longer visible, thus indicatin

bar graph and the change in GPC indicate

 

Figure 3-6  
each bromobimane treatment. Bar graphs illustrate change in 
metabolites. 

 

 The 13C spectra are obtained at 30 min intervals to observe the uptake of L

13C2]cystine, a precursor to glutathione (GSH), which reached 

no change in 13C fractional enrichment) 

figure 3-7. The differential equations 

change in metabolite concentrations)

equation. The uptake curve, K

GSH-k1a = 0.4263h-1 ±  0.785 

equivalent media concentrations are used in

is shown in figure 3-7 and the associated curve fit from which the kinetic parameter, K

obtained. Unfortunately the 500 
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no longer visible, thus indicating that the 500 µM dose is lethal.  This is also reflected in the 

bar graph and the change in GPC indicates there is major cell membrane damage.

 

  Experimental protocol and 31P NMR spectra of 
each bromobimane treatment. Bar graphs illustrate change in 

 

C spectra are obtained at 30 min intervals to observe the uptake of L

glutathione (GSH), which reached 13C isotopic steady

C fractional enrichment) in 7 hrs during overnight perfusion as shown in 

. The differential equations (107) are solved for metabolic steady-state

change in metabolite concentrations) resulting in the 13C labeled GSH concentration 

The uptake curve, K1, is therefore fit with the equation y = (1-e-kt), 

±  0.785 for both time courses used in the 50 µM BrBi doses 

equivalent media concentrations are used in both experiments. A representative time course 

and the associated curve fit from which the kinetic parameter, K

Unfortunately the 500 µM dose had a decrease in GSH signal after a plateau was 

M dose is lethal.  This is also reflected in the 

s there is major cell membrane damage. 

 

C spectra are obtained at 30 min intervals to observe the uptake of L-[3,3’-

steady-state (i.e., 

as shown in 

state (i.e., no 

C labeled GSH concentration 

 resulting in 

doses since 

A representative time course 

and the associated curve fit from which the kinetic parameter, K1 was 

M dose had a decrease in GSH signal after a plateau was 



 

reached and was not used. This rate constant can then be utilized to determine the flux, which 

is reported in µM/h/106 cells.

determined from this experimental protocol as the study would ha

GSH reached steady-state, to obta

would not permit the entire dosing phase of the protocol (

[GSH]T shown was previously determined for JM1 cells 
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This rate constant can then be utilized to determine the flux, which 

cells.  The total glutathione concentration, [GSH]T, could not be 

determined from this experimental protocol as the study would have to be terminated once 

state, to obtain the cell extracts, which is a destructive process

would not permit the entire dosing phase of the protocol (Fig. 3-5, top) to be performed

shown was previously determined for JM1 cells (62), however it was conducted with 

a 2D cell culture which does not translate to the 3D perfusion environment of the fluidized

bed bioreactor utilized in the present experiment. 

Overnight 13C timecourse and equations utilized to fit the 
uptake curve of of L-[3,3’-13C2]cystine and its subsequent 
incorporation into [3-13C-cysteinyl]glutathione (GSH). 

The flux is fit from the growth and decay curves depicted in figure 3-8
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determine the toxicokinetics of diffusion of the toxicant, bromobimane, bromobimane dose, 

glutathione-bimane conjugation, and gluthione

under the curve (AUC) was utilized to calculate the 50

concentrations of 114 and 418

diffusion of BrBi into the bioreactor and the bead taking about 6 mins to fully react with all 
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the growth equation, y = 1- e

found experimentally and represents the export of the 

fitting the curve with the same decay equation, y =

L-[3,3’-13C2]cystine label is taken up again as illustrated by GSH

with the previous growth equation, y = 1

faster than the initial rate of growth, GSH

500 µM dose resulted in cell death therefore

for that experiment. 

Figure 3-8  Toxicokinetics
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kinetics of diffusion of the toxicant, bromobimane, bromobimane dose, 

bimane conjugation, and gluthione-bimane excretion in real-time.  The area 

under the curve (AUC) was utilized to calculate the 50µM and 500µM BrBi dosage 

concentrations of 114 and 418, respectively.  The reaction is spontaneous and represents the 

on of BrBi into the bioreactor and the bead taking about 6 mins to fully react with all 

M dose the decay curve, k2, is fit with the equation y = e

whereas the glutathione-bromobimane conjugation curve, k

e-kt, resulting in GS-Bi- k3a = 2.74h-1.  The decay curve, k

found experimentally and represents the export of the GSH conjugate from the cells and 

itting the curve with the same decay equation, y = e-kt, results in GS-Bi-k3b = 1.1469h

C2]cystine label is taken up again as illustrated by GSH-k1b.  This curve was fit 

previous growth equation, y = 1-e-kt, resulting in GSH-k1b = 1.3501h

of growth, GSH-k1a, by a factor of 3.  As indicated previously the 

M dose resulted in cell death therefore none of the subsequent rates can be 

Toxicokinetics of bromobimane drug treatments. 
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dosage 
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 For the acetaminophen study, the 

and perfused with media containing L

study. However, the experimental results are in dark contrast to that of the bromobimane 

experiment. Figure 3-10 shows the 31P NMR spectra for all three dosing regimes, 

B) 25 mM and C) 50 mM. As 

is no effect for the 2 mM APAP treatment and little effect for both the 25 mM and 50 mM 

APAP treatments (Fig. 3-10B,C

bit after dosing. 
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Figure 3-9  Summary of toxicokinetics study 

acetaminophen study, the bioreactor is inoculated with encapsulated JM1 cells 

and perfused with media containing L-[3,3’-13C2]cystine just like that of the bromobimane 

However, the experimental results are in dark contrast to that of the bromobimane 

shows the 31P NMR spectra for all three dosing regimes, 

50 mM. As seen in the pre-dose and post-dose spectra (Fig. 3

is no effect for the 2 mM APAP treatment and little effect for both the 25 mM and 50 mM 

10B,C).  For the latter two treatments x-NTP concentrations drop

 

bioreactor is inoculated with encapsulated JM1 cells 

just like that of the bromobimane 

However, the experimental results are in dark contrast to that of the bromobimane 

shows the 31P NMR spectra for all three dosing regimes, A) 2 mM, 

Fig. 3-10A), there 

is no effect for the 2 mM APAP treatment and little effect for both the 25 mM and 50 mM 

NTP concentrations drop a 



 

Figure 3-10
B) 25 mM and C) 50 mM.

 

 Figure 3-11 illustrates the 

acetaminophen treatments.  Sinc

[3,3’-13C2]cystine, what is shown is the washout of the 

are with respect to GSH synthesis and conjugation

(NAPQI).  The GS-NAPQI conjugate 

enzyme activity. Since there is no P450 activity, the rate constant, K

therefore the rate of 13C-labeled

incorporation. An interesting observation is the sinusoidal dampened oscillation of the 

washout that is attributable to either the peristaltic motion of the perfusion pump or 

homeostasis.  However, the oscillation was still present after stopping the pump therefore a 

future investigation into homeostatis of GSH synthesis is warranted.
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10  31P NMR spectra pre/post APAP dosing, A) 2 mM, 
B) 25 mM and C) 50 mM. 

illustrates the 13C NMR toxicokinetics of glutathione during the various 

acetaminophen treatments.  Since the APAP treatment media contains 12C-cys

, what is shown is the washout of the 13C-labeled [GSH].  The equations 

are with respect to GSH synthesis and conjugation with N-acetyl-p-benzoquinone imine 

conjugate will only be formed if there is cytochrome P450 

Since there is no P450 activity, the rate constant, K3, is negligible and 

labeled[GSH] washout is equal to the rate, K1, of 12C

interesting observation is the sinusoidal dampened oscillation of the 

washout that is attributable to either the peristaltic motion of the perfusion pump or 

homeostasis.  However, the oscillation was still present after stopping the pump therefore a 

investigation into homeostatis of GSH synthesis is warranted. 

 

C NMR toxicokinetics of glutathione during the various 

cystine and not L-

The equations 

benzoquinone imine 

will only be formed if there is cytochrome P450 

, is negligible and 

C-cysteine 

interesting observation is the sinusoidal dampened oscillation of the 

washout that is attributable to either the peristaltic motion of the perfusion pump or 

homeostasis.  However, the oscillation was still present after stopping the pump therefore a 



 

Figure 3-11  Toxicokinectics of APAP 
representing GSH

 

 The aim of this study is to

activity to metabolize APAP through its toxic pathways. Several pathways are targeted as 

shown in figure 3-12 to determine how JM1s a

the media with 1H NMR indicates that t

P450 activity.  The effect of NAPQI

spectra (Fig. 3-10) indicating no dro

feedback on glucose that would then be converted to pyruvate, ultimately feeding into the 

TCA cycle to produce more ATP.  However this doe

pyruvate is converted to lactate

are determined from the 13C NMR spectra of the bioreactor during drug treatment.

 

65

Toxicokinectics of APAP drug treatment and equations 
representing GSH-NAPQI conjugation. 

The aim of this study is to determine if JM1 hepatoma cells have sufficient P450 

activity to metabolize APAP through its toxic pathways. Several pathways are targeted as 

to determine how JM1s are metabolizing acetaminophen. Analysis of 

indicates that the toxic reaction, #1, does not occur implying

NAPQI on the TCA cycle, #2, is negligible as shown in the 

) indicating no drop in ATP.  A drop in ATP would result in 

would then be converted to pyruvate, ultimately feeding into the 

TCA cycle to produce more ATP.  However this does not occur during APAP dosing and 

pyruvate is converted to lactate instead.  Glucose consumption and lactate production rates 

C NMR spectra of the bioreactor during drug treatment.

 

determine if JM1 hepatoma cells have sufficient P450 

activity to metabolize APAP through its toxic pathways. Several pathways are targeted as 

re metabolizing acetaminophen. Analysis of 

does not occur implying no 

on the TCA cycle, #2, is negligible as shown in the 31P 

in a positive 

would then be converted to pyruvate, ultimately feeding into the 

s not occur during APAP dosing and 

Glucose consumption and lactate production rates 

C NMR spectra of the bioreactor during drug treatment. 



 

Figure 3-12  
 

The media is also analyzed for the APAP

during non-toxic metabolism of APAP

APAP control media.  The single peak represents the 1 proton of 

whereas the two peaks represent the 2 protons of APAP (7.8 mM).  Of interest is the 

glucuronide peak that is due to the effect of albumin binding as a result of 

bovine serum (FBS) in the media

concentration, as seen in figure 3

APAP.  There is also a delayed washout of 

This is unexpected and could be due to APAP binding somewhere in the 

system. 
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  Targeted pathways of acetaminophen metabolism. 

The media is also analyzed for the APAP-Glucuronide conjugate that is formed 

toxic metabolism of APAP.  Figure 3-13A is a 1H NMR spectrum of the 

media.  The single peak represents the 1 proton of β-glucose (22.5 mM), 

whereas the two peaks represent the 2 protons of APAP (7.8 mM).  Of interest is the 

is due to the effect of albumin binding as a result of the 10% fetal 

in the media (112).  There is no increase in the glucuronide 

figure 3-13B, thus indicating there is no measureable metabolism of 

There is also a delayed washout of APAP (~ 1hr) when switching to non

This is unexpected and could be due to APAP binding somewhere in the bioreactor perfusion 

 

hat is formed 

H NMR spectrum of the 50 mM 

glucose (22.5 mM), 

whereas the two peaks represent the 2 protons of APAP (7.8 mM).  Of interest is the 

the 10% fetal 

There is no increase in the glucuronide 

measureable metabolism of 

APAP (~ 1hr) when switching to non-drug media.  

bioreactor perfusion 



 

Figure 3-13  Media analysis of APAP metabolites by 
 

The glucose consumption and lactate production rates are determined by fitting the 

plots shown in figure 3-14A.  

be fairly equal and opposite to the slopes of 

be no significant difference in rates between the three APAP treatments.  The actual rates, 

given in figure 3-14B, confirm that the la

the sum of the two glucose consumption 

in alignment with that found in a previous study 
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Media analysis of APAP metabolites by 1H NMR. 

The glucose consumption and lactate production rates are determined by fitting the 

.  Of initial notice is that the slope of the lactate plot appears to 

be fairly equal and opposite to the slopes of α-glucose and β-glucose.  There also appears to 

be no significant difference in rates between the three APAP treatments.  The actual rates, 

, confirm that the lactate production rates are approximately equal to 

the sum of the two glucose consumption rates for each of the treatments.  These rates are 

in alignment with that found in a previous study of JM1 cells (62).  

 

The glucose consumption and lactate production rates are determined by fitting the 

Of initial notice is that the slope of the lactate plot appears to 

glucose.  There also appears to 

be no significant difference in rates between the three APAP treatments.  The actual rates, 

approximately equal to 

.  These rates are also 
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3.3 Discussion 

 The before and after 31

are viable and their biochemistry has not changed over the course of the experiment (~28hrs).   

The JM1s were just as viable at 28hrs as they were at the beginning of the experiment, which 

indicates that subsequent drug

The toxicokinetics obtained from the 

rate to be 7hrs, whereas the bromobimane 

1hr, respectively.  The glutathione synthesis rate of the 

of the 50µM experiment whereas the bromobimane conjugation rate was approximately twice 

as fast (3mins).  However, the toxic effects of the 500

shown by the 31P spectra, wher

could not be determined. The ATP/ADP concentration in 

pharmacodynamic measure in toxicology, because it allows for the direct observatio

bioenergetics over the course of the drug dose experiment.
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Figure 3-14  Glucose consumption and lactate production 

31P NMR spectra of the 50µM BrBi dose indicate that the cells 

are viable and their biochemistry has not changed over the course of the experiment (~28hrs).   

The JM1s were just as viable at 28hrs as they were at the beginning of the experiment, which 

indicates that subsequent drug-dose studies could have been conducted with the same cells.  

The toxicokinetics obtained from the 13C NMR spectra determined the glutathione synthesis 

rate to be 7hrs, whereas the bromobimane conjugation and GS-Bi export rates are 7mins and 

The glutathione synthesis rate of the 500µM experiment is the same as that 

experiment whereas the bromobimane conjugation rate was approximately twice 

he toxic effects of the 500µM dose resulted in cell death as is 

P spectra, where the ATP is no longer visible, therefore the GS

The ATP/ADP concentration in 31P NMR spectra is a major 

pharmacodynamic measure in toxicology, because it allows for the direct observatio

bioenergetics over the course of the drug dose experiment. For the first time, the 

 

indicate that the cells 

are viable and their biochemistry has not changed over the course of the experiment (~28hrs).   

The JM1s were just as viable at 28hrs as they were at the beginning of the experiment, which 

could have been conducted with the same cells.  

determined the glutathione synthesis 

Bi export rates are 7mins and 

experiment is the same as that 

experiment whereas the bromobimane conjugation rate was approximately twice 

M dose resulted in cell death as is 

e the ATP is no longer visible, therefore the GS-Bi export rate 

P NMR spectra is a major 

pharmacodynamic measure in toxicology, because it allows for the direct observation of cell 

For the first time, the metabolism 
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of a xenobiotic, bromobimane is determined with 1 minute temporal resolution, sufficient to 

determine the toxicokinetics of diffusion of the xenobiotic doses, and glutathione-bimane 

conjugation and excretion in real-time. The study shows previously uncaptured, non-steady-

state kinetics of the glutathione feedback mechanism that rapidly repletes the glutathione 

pool. Within the same study, pharmacokinetic parameters of adenosine charge, intracellular 

pH indicative and sugar phosphates indicative of glycolysis, and phospholipids intermediates 

indicative of membrane synthesis are obtained as toxicodynamic parameters quantifying 

metabolic effects of the xenobiotics. This biotechnology will permit rapid discovery of 

toxicology in a realistic model of liver toxicology.



 

4 Effect of Oxygen in a NMR-compatible Fluidized-bed Bioartificial Liver 

4.1 Introduction 

 NMR studies of cell preparations permit the monitoring of cell composition, and 

contributions from immune, endocrine, paracrine, and physico-chemical parameters not 

afforded in intact or perfused organ systems [for reviews (34-39)]. Since 1973, four 

categories of NMR-compatible mammalian cell perfusion systems have evolved (9): (1) 

suspension (40), (2) entrapment (41-43), (3) microcarrier (37,45), and (4) membrane (46). 

The most widely applied method is the entrapment technique whereby cells are immobilized 

in threads of agarose (61) or alginate (41,43). Initially, NMR-compatible bioreactors for 

hepatocytes, or bioartificial liver (BAL), used hepatocyte suspensions, but function and 

viability only persisted for several hours before hypoxia caused cell death (5,40,49,50). This 

simple BAL evolved to perfusion systems where hepatocytes were encapsulated in collagen 

threads (51-57), alginate spherical encapsulates (58-60), or inoculated into membrane 

bioreactors (7).  All early BAL studies used non-physiological concentrations of oxygen, 

typically 95:5 oxygen:carbon dioxide (carbogen) (47) in order to overcome hypoxia, whereby 

in vivo, the blood has hemoglobin, acting as an oxygen buffer,  to reduce the oxygen gradient 

across the liver. 

 Although NMR-compatible BALs have been used for three decades (47,48), the lack 

of long-term cell viability and simplicity of bioreactor operation has hindered its widespread 

application. In this work, a simple fluidized-bed NMR-compatible bioreactor is described 

containing sodium alginate encapsulated hepatocytes with a uniform spherical radii of 250 
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µm, the limit of oxygen diffusion in BALs (113), which is a function of its diffusion 

coefficient and consumption rate. In previous studies, diffusion distances were on the order 

of 500-1000 µm (51-60)and entrapped cells were in a stationary packed-bed, which is subject 

to channeling causing heterogeneous perfusion and oxygenation (47). Channeling is 

eliminated in the fluidized-bed bioreactor where encapsulates are in constant free fall similar 

to the NMR-compatible spheroid bioreactor (73). Percolating the encapsulates and 

minimizing the diffusion distance insures homogenous perfusion achieving robust nutrient 

mass transfer. 

 In this study, an existing life support system, and bioreactor (107) were modified by 

inoculating with alginate-encapsulated hepatocytes.  Four oxygen treatments were tested for 

maintaining viability: (1) carbogen, (2) 75:20:5 nitrogen:oxygen:carbon dioxide, (3) 60:35:5 

nitrogen:oxygen:carbon dioxide and (4) 2 hr carbogen  followed by 25 hr  of 75:20:5 

nitrogen:oxygen:carbon dioxide. In vivo 31P NMR spectroscopy non-invasively monitored ß-

NTP levels, a direct measure of viability (39), which were also validated by histology. Lastly, 

in silico modeling predicted the profile of oxygen concentration across the encapsulate, and 

oxygen concentrations were empirically determined for each treatment using oxygen 

electrodes placed inside the bioreactor. The goal of the present study is to maintain 

hepatocyte viability for at least 24 hr, which is longer than the 8 hr that is currently the 

longest published time of survival (114). In addition, hepatocytes are exquisitely tuned to 

oxygen tension, induced to produce erythropoietin in low oxygen, and overproducing 

reactive oxygen species in the mitochondria at higher oxygen tensions. Therefore, in vivo 13C 

NMR labeled nutrient included in the media was used to characterize metabolism once the 

optimum oxygen tension was determined. 
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4.2 Methods 

 NMR supplies were obtained from multiple vendors. Sodium alginate, calcium 

chloride, perchloric acid, sodium citrate, sodium chloride, potassium chloride, magnesium 

sulfate, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), bovine serum 

albumin, and 3-(trimethylsily)propionic-2,2,3,3-d4 acid (TSP) were purchased from Sigma 

Chemical company (St. Louis, MO). Mono and dibasic phosphate, and barium chloride were 

purchased from Mallinckrodt (Paris, KY). Dulbeco’s modified Eagle’s medium (DMEM), 

insulin, penicillin, streptomycin, and fetal bovine serum were purchased from Invitrogen 

Corp. (Carlsbad, CA). Gibco Inc., a subsidiary of Invitrogen Corp., also made custom 

DMEM media for the 13C NMR studies, without glucose, glutamine, glycine, and phenol red, 

which also has no alanine in the standard formulation (formulation No. 07-5058EB; Cat. No. 

12100-046). For the Clark electrode, saturated potassium chloride solution was purchased 

from Mettler Toledo AG (Schwerzenbach Switzerland), and silver and platinum wire were 

purchased from Goodfellow Corp. (Oakdale, PA). The 2+1 channel PC digital oscilloscope 

(DS1M12 "Stingray") with accompanying software was purchased from USB Instruments 

(Hillsboro, OR). Deuterium oxide was from Cambridge Isotope Laboratories (Andover, 

MA). The 5 and 10 mm NMR tubes were purchased from Wilmad Labglass Inc. 

(Miamisburg, OH), while Norprene™ and Silastic™ tubing, tube connector, peristaltic 

pump, were from Cole Parmer (Vernon Hills, Il). The water bath and 500 mL Gibco™ 

reservoir culture bottles were from Fisher (Pittsburgh, PA).  Bioreactor end pieces were 

manufactured from Delrin™ and assembled as previously described (110). Materials for the 

bioreactor life support units were previously described in earlier work (44). 
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4.2.1 Bioreactor Design and Life Support System 

 Alginate-encapsulated hepatocytes were perfused in a 10-mm screw-cap NMR tube  

(Fig. 1). A DelrinTM fixture provided aseptically-sealed input and output ports. The 

encapsulated cells were retained in the BAL by a fabricated finned baffle with 300 µm holes. 

FEP Teflon® tubing (0.8 mm I.D. x 1.6 mm O.D.; Cole Parmer, Vernon Hills, IL) was used 

to transport medium to the bottom of the NMR tube. A second FEP Teflon® line (1.6 mm 

I.D. x 3.2 mm O.D) was used to remove the medium above the end piece. To maintain the 

temperature at 37º C, both the input and output lines were water-jacketed with Norprene® 

tubing (9.525 mm I.D. x 15.875 mm O.D.; Cole Parmer, Vernon Hills, IL).  

Perfusion media oxygenation was provided with a previously described (44) gas 

exchange module (GEM). Clark electrodes for dissolved oxygen measurements were 

fabricated from DelrinTM using platinum and silver wire contained in a solution of saturated 

potassium chloride position behind a semi-permeable membrane. Two electrodes were 

located in the inlet and outlet lines and interfaced to a laptop computer through a 2+1 channel 

PC digital oscilloscope, DS1M12 "Stingray" analog to digital converter.  The recorded 

oxygen measurements were utilized to calculate the oxygen concentration in the various 

oxygen treatments. Culture medium was re-circulated at 3 mL/min through the encapsulated 

cells with a peristaltic pump (Masterflex, Cole Parmer, Vernon Hills, IL). 

 

4.2.2 Hepatocyte Isolation Procedure 

 All animals were humanely housed and treated in accordance with guidelines set by 

the Institutional Animal Use and Care Committee of the University of North Carolina. 
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Sprague Dawley rats (Charles Rivers, Frederick, Md) were housed with a 12 hr dark cycle 

and allowed water and food ad libitum. The rats were anesthetized with Nembutal (0.5 µg/g 

body weight), and the hepatocytes were isolated following a two-step collagenase perfusion 

of the liver (115). After isolation, the hepatocytes were incubated at 37° C in Krebs-Ringer-

HEPES (KRH) (116 mM NaCl, 5mM KCl, 1mM KH2PO4, 2.5 mM MgSO4, 2.5 mM CaCl2, 

25 mM HEPES, 1% BSA, pH 7.4) for 10 min.  While at 37° C, the cells were gently mixed 

every 2 min.  Next, the hepatocytes were settled for 15 min on ice and the top layer was 

removed.  Lastly, the cells were washed in KRH and pelleted at 50 x g three times.  After the 

final spin the hepatocytes were resuspended in KRH and cell number and viability was 

assessed by trypan blue exclusion. 

 

4.2.3 Encapsulation Methods 

 Cells were encapsulated using an electrostatic bead generation apparatus described 

previously (111) with modifications (110).   Briefly, rat hepatocytes at density of 7 x 107 

cells/mL were suspended in 2% sodium alginate solution at a 1:1 ratio. The resulting 1% 

alginate solution containing 3.5 x107 cells/mL was put in a 1cc syringe fitted with a 24 gauge 

angiocatheter. The angiocatheter was pierced at the hub with a 27 gauge needle which served 

as the positive electrode for the electrostatic casting process. The syringe was placed in a 

syringe pump (Braintree Scientific BS-8000, Braintree, MA) and arranged such that as 

droplets were ejected from the angiocatheter they would fall orthogonally into the 150mM 

CaCl2 or BaCl2 saline solution bath (6.7 mM KCl, 142 mM NaCl, HEPES 10 mM at pH 7.4) 

at 4°C. Use of barium rather than calcium in cross-linking the carboxylate groups of alginate, 

results in stronger and firmer encapsulates (116). This was tested to investigate if 
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encapsulates would maintain structure better over the 28hr period. Ultimately CaCl2 was 

used. Encapsulates were transferred to culture media within two minutes to avoid excessive 

exposure to calcium or barium. The distance from the angiocatheter tip to the surface of the 

CaCl2 or BaCl2 solution was fixed at 2.5 cm. Pump flow rate were set within the range of 

0.75 to 1.5mL/min.  A grounded electrode was immersed in the CaCl2 or BaCl2 receiving 

bath. When the syringe pump was turned on, in the presence of the high electrostatic 

potential (ca 6 kV), the sodium alginate solution was pulled away from the angiocatheter tip 

as tiny droplets that polymerize into solid calcium alginate immediately upon contact with 

the CaCl2 or BaCl2 saline solution. 

 

4.2.4 In Vivo 31P and 13C NMR Spectroscopy and BAL Operation 

 The 10 mm NMR tube and loop was autoclaved or sterilized with ethanol and laid out 

to dry in a laminar flow hood. The entire loop volume is 50 ml and about three volumes, or 

150 ml, of DMEM were rinsed through the entire loop prior to inoculation of 1.5 ml of 

encapsulates. The cell density is 3.5 x 107 hepatocytes/ml of encapsulate and perfused at 3 

ml/min. The waterbath for the GEM and water-jacketed lines, and the temperature of the air-

heated NMR probed were set to 37° C, and the spinner and the 10 mm NMR tube containing 

encapsulates was inserted into a 10 mm fiberglass spinner and lowered into the magnet. A 1H 

one-pulse was used to shim on water and line widths of typically 25 Hz were routinely 

achieved prior to start of in vivo 31P NMR spectroscopy. The 13C media contained 25 mM 2-

13C-glucose, 4 mM U-13C-glutamine, and 2 mM 2-13C-glycine, and was switched with the 

12C media after 20 hrs of 31P NMR monitoring, and in vivo 13C NMR spectroscopy was 
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acquired for 3.5 hrs prior to ending the study and extracting the hepatocytes for high 

resolution NMR analysis. 

In vivo 31P NMR experiments of the primary rat hepatocytes were performed on a narrow-

bore 14.1T Varian INOVA NMR spectrometer equipped with a 10mm broadband probe 

(Venus Probes, Livermore, CA).  The receiver frequency of the probe was tuned to 31P at 

242.78 MHz. A one-pulse sequence with a sweep width of 10,000 Hz and 16K complex data 

points, using a calculated Ernst angle of 77° (22µs) and a 2 s repetition time.  NMR data were 

processed off-line with ACD/Specmanager software (ACD/Labs, Toronto, Ontario, Canada).  

The signal-to-noise function in ACD software was used to calculate the signal-to-noise ratio 

of the ß-NTP peak in the various in vivo 31P NMR spectra. 31P metabolites were identified 

using α-NTP (-7.5 ppm) as an internal reference.  Spectra were peak-fitted using the Gauss-

Lorentz apodization and plotted as ratios of their absolute peak area at each time point 

relative to total 31P peak area or relative other individual peak area in the 31P spectrum for 

each given time point. The chemical shift of inorganic phosphate (Pi) relative to α-NTP was 

used to calculate intracellular pH (117). 

For the optimal oxygen concentration, in vivo 13C NMR studies were performed for 

3.5 hrs, after 18 hrs of in vivo 31P NMR monitoring of viability, in order to characterize 

metabolism. The 10 mm broadband NMR probe was tuned to 150 MHz, the 13C frequency, 

and a 90 degree flip angle with WALTZ 1H decoupling during acquisition with a 50% duty 

cycle. That is, acquisition time was 1s and interpluse delay was 1s, resulting in a 2s repletion 

time.  
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4.2.5 High Resolution 1H NMR Spectroscopy  

 1H NMR of the metabolomic footprint was performed as previously described (72) 

using a 14.1 T INOVA NMR spectrometer equipped with a 5 mm inverse detection probe 

(Nalorac Corp., Martinez, CA). The samples were prepared with 540 µl of media and 60 µl 

of deuterium oxide containing a final concentration of 1.43 mM TSP. A one-pulse sequence 

with a 1.5 s presaturation pulse was used with a sweep width of 8192 Hz and 32K complex 

data points, resulting in an acquisition time of 4 s. This sequence used a 90º flip-angle with 

an 11 s inter-pulse delay, and therefore a total repetition time of 15 seconds with 32 

transients.  The FIDs were processed with a 0.5 Hz exponential, zero-filled to 64K 

datapoints, and Fourier transformed into the frequency domain. Absolute sample 

concentrations were determined using Chenomx NMR processing software (Alberta, Canada) 

using TSP as the concentration reference.  Consumption and production rates were calculated 

as the millimolar difference between the beginning and end of the experimental time 

resulting in units of mM/hr/106 cells. 

 

4.2.6 Histology In Vivo 31P NMR Spectroscopy 

 Encapsulated hepatocytes were fixed for 24 h at 4 ºC in 1.5% paraformaldehyde in 

phosphate buffer (30 mM NaH2PO4, 45 mM Na2HPO4). After fixation, the encapsulated 

hepatocytes were washed twice with PBS (137 mM NaCl, 2.7 mM KCl, 8.10 mM Na2HPO4, 

2 mM KH2PO4 , 0.49 mM MgSO4 and a pH of 7.4) followed by three washes with 70% 

ethanol, 95% ethanol, and 100% ethanol.  Lastly, the encapsulated hepatocytes were washed 

for 45 min with toluene.  After transferring the encapsulated hepatocytes to small open-ended 

metal containers in a warming box, paraffin wax was added to the metal container, and 
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allowed to sit for 15 min at 55 ºC. The melted wax was aspirated and fresh paraffin was put 

into the metal container. After 15 min, the encapsulates were put into a plastic mold which 

was refilled with paraffin wax. After cooling to room temperature, the wax block was 

removed from the mold and cut into 9 µm sections and put onto charged slides.    

 The slides were regressively stained by hemotoxylin and eosin. Briefly, the slides were 

washed twice for 10 min in toluene, twice for 3 min in 100% ethanol, twice for 3 min in 95% 

ethanol, and once in 70% ethanol for 3 min.  After rinsing the slides for 3 min in water, they 

were put for 3 min into Gil's 1x Hemotoxylin and rinsed twice in an acid-alcohol solution (10 

mM HCl in 70% ethanol). The slides were rinsed for 5 min in water, and soaked for 1 minute 

in ammonium hydroxide (35 mM). After a brief rinse in water, the slides were stained for 1 

min with picro eosin (1.6 g Eosin Y in 144 80% ethanol with 16 mL of saturated 1.22% 

picric acid) for 1 min. Lastly, slides were dipped twice in 70% ethanol, twice in 95% ethanol, 

once in 100% ethanol, and soaked for 6 min in xylenes.  A cover slip was added with 

permount glue.  

 

4.2.7 Oxygen Electrode Construction and Measurement  

 An improved Clark micro-electrode (118,119) was constructed using materials 

described above. Continuous recording of oxygen tensions was conducted by polarography 

(118,119), which is effective especially for oxygen measurement in slow-flowing liquids. 

The size of Pt-Ag sensor was reduced to 1 mm in diameter, and the chamber was filled with 

saturated KCI electrolyte and covered with a latex membrane, instead of Teflon. Examined 

liquid flowed through a tiny gap (~0.5 mm); the sensor’s latex membrane was integrated in 

one wall of this gap. The flow rate (3 mL/min) was fast enough to equilibrate diffusion of 
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oxygen through the membrane into the electrolyte. To eliminate failures, we used two 

consecutive sensors and averaged outputs. Oxygen micro-electrode calibration was 

performed before each experiment using 95% and 20% oxygen mixes and nitrogen as the 

calibrate for 0% oxygen. The same procedure was repeated after each experiment and the 

averaged data was used as the calibration. Several experiments were conducted, without 

cells, to determine the actual oxygen concentration of the input media.  This was achieved by 

placing the oxygen micro-electrode in-line at the end of the input media line to measure 

oxygen concentrations where the media is first delivered to the beads.  Temperature was 

controlled at 37°C and the oxygen micro-electrodes were insulated to prevent a drop in 

temperature. Results of these measurements indicated that the media contained 20%, 35%, 

and 95% oxygen concentration upon delivery to the beads for the respective experiments.  

 

4.2.8 Modeling of Oxygen Gradients in the Encapsulates 

 To make a steady state approximation of the oxygen diffusion, the one-dimensional 

heat equation was fit by Dr. Kayvan Keshari (University of California at San Francisco) 

using Matlab 7.5 (Mathworks) using the equation below (113): 

∂C

∂t
= Dnormal

∂2C

∂x 2

 

 
 

 

 
 − q  Eq. 4 

Where Dnormal is the diffusion coefficient and assumed to be 0.6 x 10-9 m2/s (47) and q is 

the cellular utilization rate assumed to be 0.4 nmols/s/106 cells (87), assuming for liver, 1 

cm3 is equivalent to 2.5 x 108 liver cells (47).  Although consumption rates in 2D hepatocyte 

cultures have ranged from 0.2 to 0.7 nmols/s/106 cells, 0.4 nmols/s/106 (87) has been used in 

previous in silico studies to derive oxygen profiles (47) in 3D bioreactors (113). Cell volume 

was obtained knowing the number of cells per encapsulate volume in the bioreactor. These 
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were plotted versus time and diffusion distance for each of the three conditions (20%, 35%, 

and 95% oxygen). 

 

4.3 Results  

Encapsulates are suspended in the bioreactor (Figure 1-6) and perfused with 

oxygenated cell culture media. In this suspension, encapsulates are perfused at a rate that 

causes them to percolate to avoid stagnation and then future channeling. Encapsulates are 

kept in a fixed volume and a closed system, so the fluidization results from the density 

difference between the encapsulates and the fluid. The downward pressure from the closed 

system and gravity is counter to the upward velocity of the laminar fluid flow causing a 

convective motion of encapsulates. 

Figure 4-1 depicts stack plots of the in vivo 31P NMR spectral time courses of 

encapsulated rat hepatocytes perfused with 20%, 35%, 55%, and 95% oxygen from t=0 

(bottom) to t=28hr or until the β-NTP resonance was undetectable.  The signal-to-noise ratios 

(SNR) of β-NTP from the first spectrum of the series are 4.9, 5.9, 7.2, and 6.9 for 20%, 35%, 

55%, and 95%, respectively. With 20 % oxygen (Figure 4-1A), the hepatocytes never 

recovered from the hypoxic shock of isolation and β-NTP was not visible at 10 hr as shown 

in the graph of β-NTP in figure . Interestingly, the intracellular Pi peak decreased over time 

(Figure 4-1A) and a plot of intracellular Pi versus extracellular Pi (Figure 4-3A) paralleled 

the β-NTP time course (Figure 4-2A) suggesting that this is also a measure of cell viability. 

The beginning of the β-NTP time course shows a period of increased signal intensity 

indicative of recovery to hypoxic shock as a result of the isolation procedure. In addition, 

anaerobic glycolysis likely increased due to lack of  



 

 

Figure 4-1  Stack plot of in vivo 31

20% from 0 to12 hr (A), 35% from 0 to 27hr (
(D). 
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31P NMR spectra time course of encapsulated rat hepatocytes perfused with 
), 35% from 0 to 27hr (B), 55% from 0 to 20 hr (C) and 95% oxygen from 0 to t=12hr 

 

P NMR spectra time course of encapsulated rat hepatocytes perfused with 
) and 95% oxygen from 0 to t=12hr 



 82

oxygen as supported by the relatively low intracellular pH of ca 7.0 (Figure 4-4A) resulting 

from lactic acid accumulation. The decrease of intracellular Pi over time  (Figure 4-3A) 

indicates cell death without recovery from the hypoxic insult during the isolation process 

(Figure 4-2A). The relatively high sugar phosphate peak area can also be a measure of 

anaerobic glycolysis since sugar phosphates are used in glycolysis (120), and was highest in 

the 20% treatment (Figure 4-1A).  

 

Figure 4-2  Graphs of β-NTP/Pi from hepatocytes perfused with media subjected to 20%, 35%, and 55% 
oxygen (A), and 95% oxygen (B) treatments. Note that “95%, #1” and “95%, #2” are hepatocytes that were 
encapsulated using barium rather than calcium. 
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 With 95% oxygen (Figure 4-1D), the hepatocytes gave a robust β-NTP signal, and the 

spectral SNR was superior to the other treatments. The beginning of the β-NTP time course 

shows that the cells had already recovered from the hypoxic isolation process, and in fact, β-

NTP was still increasing (Figure 4-1D). The cells were perfused with a media volume of 500 

mL, and there were minimal nutrient concentration variations over the course of the 

experiment as verified by 1H NMR analysis of the media samples. However, the cells 

abruptly died by 11 hrs as shown in figure 4-2B indicated by a dramatic drop in β-NTP 

levels starting at the 7 hr time point. Overall, there was no difference in the 31P NMR time 

courses between BaCl2 and CaCl2. To avoid possible toxicity that would not be detected by 

31P NMR, CaCl2 was used with the other oxygen treatments, although it has been suggested 

that the chelated barium in alginate encapsulates is not available to the cells due to its 

relatively high affinity for the carboxylates in alginate (116). In addition, unlike the 20% 

oxygen treatment where the intracellular Pi peak was always present, one appeared at 5 hrs 

(Figure 4-1D) and the intracellular Pi versus extracellular Pi peak area ratio tracked the β-

NTP time course after 5 hrs, indicating cell death as in the 20% treatment (Figure 4-2B). The 

intracellular pH was initially similar to that of the media, pH 7.4, but shifted to pH 7.1 at 5 

hrs (Figure 4-4B), and paralleled the trend of intracellular Pi versus extracellular Pi peak 

area ratio (Figure 4-3B). Interestingly, there was a relatively large sugar phosphate peak area 

initially during recovery from isolation, which decreased until 7 hrs when it reversed and 

increased until the end of the experiment (Figure 4-1D). This same pattern was also seen in 

the two studies of barium encapsulates. This indicates that glycolysis initially was high due 

to the hypoxic isolation process as indicated by the high sugar phosphate peak area (Figure 

4-1D), but rapidly recovered its normal pH by the first spectrum, and maintained normal pH 
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(7.4) for 5 hrs when it shifted to pH 7.1 (Figure 4-4B). The glucose, pyruvate, and glutamine 

consumption rates and lactate and alanine production rates (72) in the calcium encapsulates 

were 46.7, 13.1, and 24.0, and 28.4 and 5.9 pM/s/106 cells, respectively, demonstrating that 

only 37% of glucose formed the anaerobic glycolytic end-products, lactate and alanine.  This 

data suggests that aerobic metabolism was prominent during the first 7 hrs and minimal 

lactate and alanine was formed. Then, hepatocytes switched to anaerobic glycolysis, and 

ultimately by 11 hrs, even glycolysis was not sufficient to maintain viability. The SNR of β-

NTP in the 31P NMR spectra (Figure 4-1D) was higher than the 35% treatment (Figure 4-

1B) suggesting a higher energy charge per unit cell in the first 7 hr of perfusion with 95% 

oxygen perhaps due to a higher mitochondrial metabolic rate resulting in higher levels of  β-

NTP. 

 



 

Figure 4-3  Graph of Pi(int)/Pi(ext) from hepatocytes perfused with media subjected to
(A), and 95% oxygen (B) treatments. Note that “95%, #1” 
encapsulated using barium rather than calcium.
 

 The second best oxygen treatment for maintaining viability was 35%. The 

signal-to-noise ratio (SNR= 5.9) was similar to that of the 95% oxygen treatment (SNR=6.9), 

by comparing the first few spectra from 

course proved that 35% oxygen treatment achieved our goal of maintaining hepatocyte 

viability for 24 hrs and the trend was linear and could have gone longer. 
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Graph of Pi(int)/Pi(ext) from hepatocytes perfused with media subjected to 20
treatments. Note that “95%, #1” and “95%, #2” are hepatocytes that

rather than calcium. 

best oxygen treatment for maintaining viability was 35%. The 

noise ratio (SNR= 5.9) was similar to that of the 95% oxygen treatment (SNR=6.9), 

first few spectra from Figure 4-1B and Figure 4-1D. The β

course proved that 35% oxygen treatment achieved our goal of maintaining hepatocyte 

viability for 24 hrs and the trend was linear and could have gone longer.  

20% and 35% oxygen 
patocytes that were 

best oxygen treatment for maintaining viability was 35%. The β-NTP 

noise ratio (SNR= 5.9) was similar to that of the 95% oxygen treatment (SNR=6.9), 

. The β-NTP time 

course proved that 35% oxygen treatment achieved our goal of maintaining hepatocyte 



 

Figure 4-4  Graph of intracellular 
(A), and 95% oxygen (B) treatments. Note that “95%, #1” 
encapsulated using barium rather than calcium.
 

The intracellular Pi to extracellular Pi peak area ratio decreased, and eventually becomes 

indistinguishable from the extracellular peak suggesting a full recovery from the 

procedure by 12 hrs (Figure 

similar to that of the 20% treatment (pH 7.0) becoming 

4A). In addition, there is a relatively high sugar phosphate peak that decreases over time 

paralleling the decrease in intracellular pH (
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Graph of intracellular pH of hepatocytes perfused with media subjected to 20
treatments. Note that “95%, #1” and “95%, #2” are hepatocytes that

rather than calcium. 

r Pi to extracellular Pi peak area ratio decreased, and eventually becomes 

indistinguishable from the extracellular peak suggesting a full recovery from the 

Figure 4-3A). The intracellular pH of the 35% treatment was initiall

similar to that of the 20% treatment (pH 7.0) becoming normal (pH 7.4) by 8 hrs (

). In addition, there is a relatively high sugar phosphate peak that decreases over time 

ease in intracellular pH (Figure 4-1B). These data indicate an initial 

 

media subjected to 20% and 35% oxygen 
and “95%, #2” are hepatocytes that were 

r Pi to extracellular Pi peak area ratio decreased, and eventually becomes 

indistinguishable from the extracellular peak suggesting a full recovery from the isolation 

). The intracellular pH of the 35% treatment was initiall y 

normal (pH 7.4) by 8 hrs (Figure 4-

). In addition, there is a relatively high sugar phosphate peak that decreases over time 

dicate an initial 



 87

reliance on glycolysis, which dissipates by 8 hrs. The glucose, pyruvate, and glutamine 

consumption rates and lactate and alanine production rates (72) were 24.6, 15.5, and 4.7, and 

48.0 and 4.6 pM/s/106 cells respectively. This is a lower glucose consumption rate compared 

to 95% oxygen (46.7 pM/s/106 cells), suggesting that 95% oxygen treatment results in a 

higher metabolic rate with more oxygen availability. Both values of glucose consumption are 

within the normal range for hepatocyte cultures (Macdonald et al., 1999). In the 95% oxygen 

treatment, lactate and alanine production was about half that of the 35% oxygen treatment. 

However, 37% and 100% of the glucose consumed in hepatocytes from the 95% and 35% 

oxygen treatments, respectively, resulted in anaerobic glycolytic end-products. This suggests 

that the majority of 35% oxygen treated encapsulates were hypoxic even though the 

intracellular pH returned to normal, 7.4, by 11hrs (Figure 4-4A).  

 Figure 4-5 is a representative 15 minute in vivo 13C NMR spectrum after 30 min of 

perfusion in A. This is the second spectrum of the time series shown in B. The large signal 

from media are shown in figure 4-5B, but one can observe the increase of two peak, 2-13C-

lactate (~69ppm) and [2-13C-glycyl]glutathione peaks, resulting from 2-13C-glucose and 2-

13C-glycine, respectively. Figure 4-5C shows how the lactate production rate is obtained 

from the time series. The peak is referenced to the 25 mM glucose peaks (α and β) and the 

slope is then multipled by two since two moles of lactate (one labeled that we observed, and 

another unlabeled that we do not observe) are produced from one mole of 2-13C-glucose, but 

the 13C NMR only detects the 13C labeled lactate, not the mole of 12C-labeled lacate. 

 



 

Figure 4-5
perfused with DMEM containing
13C-Glutamine, and 2 mM 2
the respective 
(~69ppm) and [2
3.5 hrs  (B
area (C). 

 

Figure 4-6 shows the histological sections of a representative encapsulate perfused with 

media at 35% (A) and 95% (B) oxygen concentration demonstrating the difference in 
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5 Representative 13C NMR spectrum of rat hepatocytes 
perfused with DMEM containing 25 mM 2-13C-Glucose, 4 mM U-

Glutamine, and 2 mM 2-13C-Glycine at time = 30 min (A), and 
the respective time series uptake showing primarily 2-13C-lactate 
(~69ppm) and [2-13C-glycyl]glutathione peaks increasing ober the 

B). The lactate production rate is derived from fitted peak 
 

shows the histological sections of a representative encapsulate perfused with 

media at 35% (A) and 95% (B) oxygen concentration demonstrating the difference in 

and 

glycyl]glutathione peaks increasing ober the 
derived from fitted peak 

shows the histological sections of a representative encapsulate perfused with 

media at 35% (A) and 95% (B) oxygen concentration demonstrating the difference in 



 

appearance and viability of the cells. One can observe cellular debris and some blebs in the 

encapsulates treated with 95% oxygen (

hepatocytes in Figure 4-6A treated with 35% oxygen revealed nicely stained nuclei with 

some dividing, punctate mitochondria, and bleb

 

hepatocytes. Hepatocytes were similar in appearance to other viable hepatocytes in 

histological images of collagen

bioartificial liver (99,121,122)

µm diameter.  

Figure 4-6 The histology of the encapsulates with 35% (A) and 95% (B) oxygen treatments 
demonstrating the appearance of the cells, and the distribution of viable cells. Note the abundance of cell 
debris in the 95% treatment. 
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appearance and viability of the cells. One can observe cellular debris and some blebs in the 

treated with 95% oxygen (Figure 4-6B). Higher magnification of the 

treated with 35% oxygen revealed nicely stained nuclei with 

some dividing, punctate mitochondria, and bleb-free cell membranes on nearly all the 

hepatocytes. Hepatocytes were similar in appearance to other viable hepatocytes in 

histological images of collagen-encapsulated hepatocytes in long-term culture inside a 

(99,121,122). Also, both encapsulates are spherical and approximately 500 

The histology of the encapsulates with 35% (A) and 95% (B) oxygen treatments 
demonstrating the appearance of the cells, and the distribution of viable cells. Note the abundance of cell 

appearance and viability of the cells. One can observe cellular debris and some blebs in the 

n of the 

treated with 35% oxygen revealed nicely stained nuclei with 

free cell membranes on nearly all the  

 

hepatocytes. Hepatocytes were similar in appearance to other viable hepatocytes in 

term culture inside a 

. Also, both encapsulates are spherical and approximately 500 

 

The histology of the encapsulates with 35% (A) and 95% (B) oxygen treatments 
demonstrating the appearance of the cells, and the distribution of viable cells. Note the abundance of cell 



 

 Figure 4-7 shows the difference in the in silico oxygen concentration out 

1 mm for 20%, 35%, and 95% oxygen.

 

parameters, such as the Theile moduli 

encapsulates of different diffusion distances, this presentation of oxygen concentration 

profiles versus time relates two
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the difference in the in silico oxygen concentration out 

1 mm for 20%, 35%, and 95% oxygen.  Rather than presenting standard dimensionless 

parameters, such as the Theile moduli (47), to illustrate the oxygen mass transfer in 

encapsulates of different diffusion distances, this presentation of oxygen concentration 

profiles versus time relates two points important for the study: (1) the time to oxygen 

 

Figure 4-7 The in silico oxygen 
concentrations for 20% (A), 35% 
(B), and 95% (C) across the 
encapsulates showing the radius in 
mm along the x axis and time along 
the y-axis. 

the difference in the in silico oxygen concentration out to a radius of 

esenting standard dimensionless  

, to illustrate the oxygen mass transfer in 

encapsulates of different diffusion distances, this presentation of oxygen concentration 

points important for the study: (1) the time to oxygen 
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equilibration in the encapsulate, and (2) the oxygen concentration for a given diffusion 

distance. The y-axis is time and the x-axis is distance with 10% oxygen having a 

concentration of 0.1 mM. Immediately one observes a major difference in the time required 

to reach a steady oxygen concentration. For example, for 0.5 mm and 1 mm distance in the 

95% oxygen treatment (Figure 4-7C) requires 200 s  (3.7min), and 1000 s (16.7 min), 

respectively, for a stable 35% oxygen concentration to be reached. However, the primary 

point of these graphs is to compare the three different oxygen concentrations at 0.25 mm, the 

diffusion distance of encapsulates used in this study. For example, at 200 s, the oxygen 

concentration for 20%, 35%, and 95% at 0.25mm is 7%, 15%, 60%, respectively. For this 

study the radius was 0.25 mm, and one can see that the estimation of oxygen concentration 

gradient for the 95% oxygen treatment results in a toxic level of oxygen throughout the bead 

or hyperoxic, whereas the 20% oxygen treatment may become hypoxic in the center of the 

encapsulate. This in silico model of oxygen concentration across encapsulates supports the 

empirical data, which demonstrate 95% oxygen causes hyperoxic and toxic oxygen 

concentrations resulting in hepatocyte death. The model shows it takes about two minutes for 

the oxygen levels to reach a fairly steady plateau throughout the encapsulate. 

 

4.4 Discussion  

 Although NMR-compatible BAL technology was first introduced three decades ago, 

there is still no report of a long-term device, longer than 8 hr (58-60), for primary 

hepatocytes.  The primary reason for this is insufficient oxygenation of the hepatocytes.  

Hepatocytes require relatively high amounts of oxygen.  The oxygen buffering capacity of 

hemoglobin, which increases oxygen concentration nearly two orders-of-magnitude, 
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maintains an oxygen gradient across the acinus of 8% to 3% where blood exits the liver (47).   

To date, there is no publication on a NMR-compatible BAL describing the viability and 

longevity of cells with systematic increments of oxygen concentration in the perfusate. All 

studies report durations of 8 hr or less after inoculation in the BAL. 

 According to our data, these cells likely would have died at ca 10 hr after inoculation 

in the bioreactor due to hyperoxemia (Figure 4-2). Our data suggests that during the first 5 hr 

of perfusion with 95% oxygen the hepatocytes recover from the hypoxic isolation process 

(Figure 4-2B and Figure 4-3B) and the 31P NMR spectra (Figure 4-1D) are similar to 31P 

NMR spectra from intact liver (7). However, by 8 hrs the ß-NTP decreases (Figure 4-2B), 

while the intracellular pH decreases (Figure 4-4B) and sugar phosphates increases (Figure 

4-1D) indicating an increase in anaerobic glycolysis. This increase in anaerobic glycolysis is 

likely due to oxidative damage to mitochondria affecting aerobic metabolism, and the 

hepatocyte then turns to cytosolic production of ATP. This is supported by the appearance of 

an intracellular Pi peak at pH 7.0 at 5 hrs (Figure 4-3B) that increased relative to Pi from 

media. Our in silico model (Figure 4-7C) and others (87,123) predict hyperoxemia 

throughout the encapsulate with 95% oxygen. Also supportive of the initial aerobic 

metabolism is the finding that only 37% of the glucose consumed formed the anaerobic 

glycolytic end-products, lactate and alanine 

 One interesting finding was that there was no clear evidence that barium encapsulation 

is toxic to the hepatocytes as supported by the fact that there was no difference between the 

ß-NTP (Figure 4-2B) or pH (Figure 4-4B) time courses of barium or calcium encapsulates, 

and both treatments survive the perfusion for the same period of time. Calcium was used for 

the other oxygen treatments since previous alginate encapsulated bioartificial livers systems 
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more commonly used calcium (59,71), and potential barium toxicities could be avoided. 

Although calcium is an extremely potent intracellular secondary messenger, both calcium 

and barium have such high affinities for the carboxylate groups that they are relatively 

unavailable, or the encapsulate would lose integrity and disintegrate. 

 Many extracorporeal bioartificial liver systems use 95% oxygen, and hepatocytes are 

purported to have survived for weeks (20,47,124). This is likely due to the larger diffusion 

distances of these bioreactors and the ability for the hepatocytes that survive the initial 

hyperoxic stress and move within the bioreactors to a region of optimal oxygen 

concentration, as it is well known that hepatocytes can move via philopodia (125). For 

example, rat hepatocytes grown in a multicoaxial bioreactor (63), were shown to migrate and 

form organoid structures at an optimal distance from the oxygen sources after several days of 

culture (121).  Although the NMR-compatible coaxial bioreactor design maintains a 

homogeneous diffusion distance and has been shown to maintain hepatocyte viability for 

weeks (121), the amount of biomass is much less than the encapsulation and suspension 

bioreactors and therefore, the temporal NMR spectral resolution will never match that of the 

fluidized-bed bioreactor (7) and therefore, generates inferior kinetic data (Table 1).  

 The suspension bioreactor suffers the worse mass transfer being packed in a 5 mm 

NMR tube with a diffusion distance of ca 30 mm from the cell mass surface to the bottom of 

the NMR tube (5,40,49,50).  However, the suspension BAL has the most biomass resulting in 

the best signal-to-noise ratio and excellent spectral resolution and lineshape (Table 1). In 

addition, these have utilized air, or 20% oxygen. From our results, 20% oxygen did not 

permit full recovery of the ß-NTP.  In addition, reports of bioartificial liver surviving with 

20% oxygen require diffusion distances less than 200 µm (99,121,122). There has never been 
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a NMR-compatible bioreactor published that utilizes liver cells with microcarriers. This is 

most likely due to aggregation of cells caused by cell-to-cell surface binding through 

calcium-dependent adhesion molecules causing channels to form between aggregates and 

resulting in large diffusion distance (unpublished results). In fact, liver spheroid cultures 

depend on this aggregation effect to be formed (63), and to avoid this, spheroids (44) and 

microcarrier (45) are typically immobilize in a packed-bed bioreactor. Similar to this study, 

the agarose thread encapsulation BAL (51-57) and a packed-bed bioreactor (58-60) gave a 

sufficient 31P NMR signal with 15 min temporal and similar spectral resolution as shown in 

figure 2C. However, channels can form with gel threads and a packed-bed bioreactor (47)and 

in addition, the diffusion distance was about 0.5 mm (52) and 1 mm (59). The NMR-

compatible BAL study, using a coaxial membrane bioreactor, compared two bioreactors with 

0.2 and 0.5 mm diffusion distance and found that only the former bioreactor maintained 

viability (7). The maximum diffusion distance for a BAL was found to be about 0.2 mm 

(126). Therefore, due to the excessive diffusion distance, it may have been necessary to use 

95% oxygen with these NMR-compatible gel thread and packed-bed bioreactors (Table 1), 

but then hyperoxemia causing oxygen toxicity ultimately limits long-term use. 

 The fluidized-bed BAL described herein has enough biomass to yield a sufficient 

signal-to-noise ratio in 30 min (Figure 4-1B), yet maintains the maximum diffusion distance 

of ca 0.2 mm resulting in the best characteristic of the various bioreactor types (Table 1). 

The oxygen studies showed that use of 35% or 55% oxygen was required to maintain 

viability for the duration of the study, 28 hrs (Figure 4-1B and Figure 4-2B), and likely 

beyond. The bioreactor is versatile and designs have been constructed to fit conventional 5 

mm NMR probes, although a 10 mm NMR tube was used in this study. The life support 
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system (44) and oxygen electrode permit defined gas concentrations and in-line monitoring, 

similar to other systems (45). 

 Although the hepatocytes were maintained for 28 hours with little change in the ß-

NTP peak area (Figure 4-2B), they exhibited a high degree of anaerobic glycolysis not 

typical in liver. For example, the intracellular pH (Figure 4-4A) and sugar phosphates 

(Figure 4-1B) were relatively similar to the 20% oxygen treatment rather than the 95% 

oxygen treatment. Also, 100% of the consumed glucose could be accounted for by the 

production rates of lactate and alanine. The in silico oxygen concentration model confirmed 

that the core of the encapsulates would be hypoxic with 35% oxygen (Figure 4-7B). The use 

of oxygen carriers incorporated into the alginate matrix would likely permit the use of a 

lower oxygen concentration closer to the 8% found in vivo (47), and eliminate the hypoxic 

core of the encapsulate. However, the hepatocytes were viable for 28hr, suggesting sufficient 

oxygenation. Higher concentrations of oxygen, such as 55%, was tested and would result in a 

higher level of oxygen toxicity than the 35% treatment, but still lactate was produced (Fig. 4-

5C), indicating anaerobic glycolysis and hypoxia is still prevalent, or hepatocytes are acting 

more undifferentiated.  

 In short, this is the first comprehensive study of oxygen treatment with NMR-

compatible BALs to determine conditions for long-term cultures. Soluble factors and oxygen 

carriers will likely help extend the viability and function of the hepatocytes, however, 

certainly the diffusion distance is optimum with the fluidized-bed bioreactor. This NMR-

compatible BAL will be an ideal model to test soluble and insoluble factors for toxicology 

testing and regenerative medicine.



 

5 Conclusions 

5.1 Future Studies 

5.1.1 Problems and changes to existing hardware (APAP sticking) 

Of particular interest during the acetaminophen experiments was that of the effect, or 

lack thereof, of the three doses.  Normally a concentration of 25-50 mM is extremely toxic to 

rat hepatocytes and although JM1 cells have not previously been known to have significant 

cytochrome P450 activity, some degree of APAP metabolism was expected.  However, there 

were no signs of hepatotoxicity or xenobiotic metabolism in any of the APAP treatments.  

Further investigation of the media revealed that the actual concentration of the 50 mM 

control dose was only 7.8 mM.  This was mainly due to binding with albumin that is present 

in the fetal bovine serem that is added to the media.   In addition, the concentration of APAP 

upon exiting the gas exchange module and was even less (0.5 mM).  A possible reason for 

this significant reduction in concentration could be attributed to acetaminophen binding to 

the silastic tubing in the GEM, just as the silica tubing in HPLC columns has been known to 

react with xenobiotics causing them to bind.  Future xeniobiotic studies will incorporate a 

drug injection port directly between the GEM and bioreactor loop.  This will enable the 

bypass of the silastic tubing inside the GEM and ensure the full desired concentration of 

xenobiotic to be administered to the cells within the bioreactor. 
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5.1.2 Pulse sequence and elimination of media signal (Software) 

Another factor introduced by perfusion of media in the fluidized-bed bioreactor is 

motion, both that of the media and that of the percolating beads.  NMR samples are usually 

comprised of urine, serum, proteins and other stationary mediums.  These are prepared with a 

known concentration of a standard such as TSP and then sealed within an NMR tube.  The 

NMR tube is then inserted into the probe and spun to ensure a homogenous magnetic field is 

obtained.  This is not the case with NMR-compatible bioreactors because the sample cannot 

be spun and media is also being constantly perfused within the NMR tube.  This constant 

motion causes problems during the acquisition of the signal coming from the bioreactor, such 

as reduced resolution and loss of signal.  One of the ways to address this issue is to utilize 

custom pulse sequences to provide a gradient that will suppress the effect of the motion.  

Moment nulling gradient waveforms can accomplish refocussing of spins moving with 

constant velocity, acceleration, and/or higher orders of motion.  Futher investigation into 

modified pulse sequences and their effect on the motion experienced in the NMR-compatible 

fluidized-bed BAL will be conducted to improve the resulting NMR spectra. 

 

5.1.3 Calibration of in vivo data (Extracts) 

As mentioned previously, a known concentration of a standard is usually utilized to 

determine the actual concentration of the metabolites of interest in an NMR sample.  The 

NMR-compatible fluidized-bed BAL does not utilize a standard therefore the determination 

of metabolite concentrations is not straightforward.  A means of obtaining the concentrations 

is provided by analyzing the cell extracts from the experiment however this is a destructive 

process therefore this cannot be conducted until the experiment has been terminated.  Cell 
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extracts were obtained from the experiments conducted in this research project and will 

therefore be processed to back calculate the actual in vivo concentrations of the various 

metabolites of interest.  This data will be provided in a future publication of this research. 

 

5.1.4 Data analysis and metabolic model 

 One of the main benefits of a fluidized-bed bioreactor is that it attains maximum mass 

transfer of nutrients compared to the other types of NMR-compatible bioreactor.  Questions 

regarding mass transfer in encapsulations in this form of bioreactor should be further 

explored through modeling.  The toxicokinetic experiments of Chapter 3 demonstrate the 

power of the fluidized-bed BAL in that this is the first time 1-min temporal resolution has 

ever been attained with real-time, in-vivo NMR.  This resolution enabled the capture of the 

dynamic feedback mechanism of glutathione regulation and the increased flux rate of its 

resynthesis after a toxic reduction with bromobimane.  Mathemathetical modeling of one-

carbon metabolism of glutathione has been conducted by Reed et al. (127) consisting of the 

transsulfuration pathway, and glutathione synthesis, transport, and breakdown. The model is 

based on known properties of the enzymes and the regulation of those enzymes by oxidative 

stress. They explored the half-life of glutathione, the regulation of glutathione synthesis, and 

its sensitivity to fluctuations in amino acid input.  As is usually the case with most 

mathematical models, numerous assumptions had to be made due to the lack of experimental 

data to validate the model.  However, this is no longer the case as the experimental data from 

the bromobimane experiment can now be utilized to validate the model and in turn, the 

model can provide ‘what-if’ scenarios that truly reflect the biological mechanisms of 

glutathione regulation.  A future collaboration with Dr. Reed and Dr. Nijhout will also enable 
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additional experiments to be designed and simulated to predict outcome with significantly 

increased accuracy prior to conducting the study.
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