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Abstract

JASON E. STREETER: Improved Techniques in Ultrasonic Molecular Imaging for
Evaluating Response to Cancer Therapy.

(Under the direction of Paul A. Dayton, Ph.D.)

Molecular imaging is a broad term for describing a technique designed to evaluate

molecular activity in biological systems. Recently, ultrasound has gained interest in

molecular imaging due to the practical advantages over traditional imaging modalities:

it is inexpensive, safe and portable.

The principle behind ultrasonic molecular imaging (USMI) is the selective target-

ing of acoustically active intravascular microbubbles to biomarkers expressed on the

endothelium. Once accumulated at the target site, the microbubbles enhance the acous-

tic backscatter from pathologic tissue that might otherwise be difficult to distinguish

from normal tissues. Since USMI has the potential to provide information prior to the

appearance of phenotypic changes, it is proposed that this method can facilitate early

assessment of disease progression. Pre-clinical imaging studies have demonstrated the

efficacy of USMI for applications including, but not limited to, assessment of tumor

angiogenesis, evaluation of cardiovascular disease, and imaging dysfunctional endothe-

lium, thrombus and inflammation.

Although significant advances in USMI have been made, there remain challenges

that need to be addressed as this technique advances toward clinical relevance. The

ultimate goal of USMI is to determine the degree to which biomarkers are expressed

by the target tissue. Therefore, it is essential that targeted microbubbles adhere in

quantities that produce backscattered intensities in greater magnitude than the signal
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from non-specific targeting. Given this requirement, research has primarily focused

on improving the sensitivity to bound microbubbles, improving the ability to quantify

biomarker expression, increasing the quantity of targeted microbubbles retained at the

site of pathology, and improving microbubble architecture to minimize the non-specific

retention of microbubbles and immunogenic response.

This dissertation supports the following hypotheses for in vivo USMI experiments:

1. Producing size-selected microbubbles increases detection sensitivity.

2. Implementing a 3-D ultrasound platform improves our ability to quantify biomarker

expression.

3. Using acoustic radiation force enhances microbubble targeting.

4. Creating buried-ligand microbubbles reduces immunogenic response and non-

specific targeting.

These improvements will ultimately provide a basis of methods, which we will draw

from to assess a tumor’s response to therapy and compare it to more traditional meth-

ods.
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CHAPTER 1

Hypotheses and Scope

1.1 Hypotheses

This dissertation supports the following hypotheses for in vivo ultrasonic molecular

imaging experiments:

1. Producing size-selected microbubbles increases detection sensitivity.

2. Implementing a three-dimensional ultrasound platform improves our ability to

quantify biomarker expression.

3. Using acoustic radiation force enhances microbubble targeting.

4. Creating buried-ligand microbubbles reduces immunogenic response and non-

specific targeting.

These improved techniques will ultimately provide a basis of methods, which we will

draw from to assess a tumor’s response to therapy and compare it to more traditional

methods.

1.2 Scope

This dissertation is organized in four main sections:

1. Overview and Introduction



2. Experimental Methods

3. Data Supporting the Hypotheses

4. Discussion and Conclusions

We begin in Chapter 2 where we discuss the motivation for this dissertation. This

is followed by a high-level overview of both molecular imaging and ultrasonic molecular

imaging in Chapter 3. In these chapters we emphasize current research and improve-

ments that are to be addressed in this dissertation.

The experimental methods section begins in Chapter 4 where we discuss microbub-

ble contrast agents, their role in ultrasound molecular imaging and their basic properties

utilized in diagnostic ultrasound. In addition, a detailed overview of the experimental

fabrication methods is presented. In Chapter 5 we discuss how microbubbles are de-

tected using ultrasound technology. We provide a detailed description of the clinical

imaging system and the 3-D platform in which experiments are performed through-

out this dissertation. This chapter concludes by describing the procedures that were

used in preparing animals for in vivo imaging. Chapter 6 provides an overview of the

diagnostic techniques that we will utilize for our supporting data.

Data supporting this dissertation’s hypotheses is provided in Chapter 7 through

Chapter 12. First, Chapter 7 explores the effect of repeated administration of targeted

microbubbles in molecular imaging experiments, which is a basis for the more advanced

studies supporting this dissertation. Next, in Chapter 8, we evaluate the improvement

in targeted microbubble sensitivity by using size-selected microbubbles. Chapter 9

focuses on improving our ability to comprehensively quantify biomarker expression

through three-dimensional molecular imaging methods. Our focus shifts in Chapter

10 as we provide data that supports an improvement in microbubble targeting by

utilizing acoustic energy to forcibly move microbubbles. Chapter 11 logically follows as

2



buried-ligand microbubbles are activated through acoustic radiation force and evaluated

in vivo for the reduction of both immunogenic response, and non-specific targeting.

Finally, in Chapter 12, we draw from our newly developed techniques to compare and

contrast three different methods for evaluating a tumor’s response to therapy: molecular

imaging, perfusion imaging and volume measurements.

This dissertation is concluded in Chapter 13 as we discuss the data supporting

our hypotheses in greater context. We will explore advantages of each technique, the

shortcomings, future directions and possibilities for clinical translation.
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CHAPTER 2

Overview of Cancer

2.1 Cancer Overview

Cancer is a disease that is characterized by the abnormal growth of cells, which is

caused by changes in gene expression [1; 2; 3; 4]. Ultimately, this leads to a shift in

the balance between cell proliferation and cell death, which may gradually evolve into

a population of cells that invade and metastasize [1; 2; 3; 4]. If the spread of these cells

is not controlled, then it can result in death [1; 2; 3; 4].

Cancer may be caused by environmental factors such as tobacco, chemicals, or

radiation. However, cancer may also be caused by internal factors such as mutations,

hormones, or immune conditions [1; 2; 3; 4]. Often, ten or more years may pass between

exposure to external factors and the detection of cancer [4]. Cancer is typically treated

with surgery, radiation, chemotherapy or some combination [4].

2.2 Cancer Statistics

Over the past 75 years, cancer death rates have steadily risen [1]. According to the

American Cancer Society, one in every four deaths in the United States may be at-

tributed to cancer, which is second only to heart disease [4]. In addition, it is estimated

that in 2013, approximately 580,000 Americans will die as a result of cancer, which is

almost 1,600 people per day [4]. Moreover, it is expected that in 2013 there will be

more than 1.7 million new cancer cases (Table 2.1). Due to the high mortality rates



linked to cancer, there is an obvious need to understand the disease progression for

better therapeutic options.

While the mortality rates are staggering, remarkable progress in drug discovery and

innovation for cancer therapy has been made in the last decade [5]. For instance, the

5-year survival rate for all cancers that have been diagnosed between 2002 and 2008 is

68% [4]. This number has clearly improved since the 1970’s when the same statistic was

49% [4]. However, there are certain types of cancer, like pancreatic adenocarcinoma, for

which therapeutic options are limited and mostly ineffective. With just a 6% survival

rate, most cancer patients that develop pancreatic cancer will die within the first year

of their diagnosis [4]. The lack of progress in primary prevention, early diagnosis, and

treatment for this type of cancer underscores the need for additional efforts in cancer

research and is the primary motivation behind this dissertation.
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2.3 Early Detection of Cancer

Discovering cancer at its earliest and most treatable stage provides patients with the

greatest chance of survival [4; 1]. For instance, the 5-year survival rate for localized

breast cancer is greater than 95%; however, this number drops to 78% for regional

spread, and 23% for metastatic disease [1]. Screening is known to reduce the mortality

for many types of cancer including breast, colon, rectum, and cervix [4; 1]. Further-

more, understanding any underlying changes in the breast or skin may result in the

detection of these tumors at earlier stages [4]. Anatomical imaging, which includes

computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound (US),

have greatly improved the accuracy of detecting and delineating tumors and play a key

in early diagnosis of many types of cancer [6].

2.4 Personalized Cancer Therapy

Early diagnosis and individualized therapy are essential for the improvement of cancer

therapy. Individualized therapy or personalized medicine is the tailoring of treatments

based on the responsiveness of each individual tumor to a particular form of therapy.

Standard cancer therapies typically suffer from low response rates and substantial side

effects that may cause systemic toxicity [7]. Thus, with personalized medicine, patients

are matched to the best drug for their disease, and doctors can avoid prescribing drugs

that might cause serious harm in the wrong patients [8]. If a patient is a non-responder

early in the course of therapy, this information can lead to better treatment efficacy.

For instance, early assessment of tumor response to therapy could allow physicians to

discontinue ineffective treatment and offer the patient more promising alternatives [9].
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2.5 Response to Cancer Therapy

Understanding tumor biology is critical to understanding and identifying targets in-

volved in tumor proliferation, invasion, and metastases, which are the motivating fac-

tors behind newly developed therapies. Therefore, it is critical to have tools that help

identify patients who might benefit from a particular form of treatment [9]. Typi-

cally, the response of tumors to cancer therapy is evaluated with CT or MRI through

anatomical imaging using the Response Evaluation Criteria in Solid Tumors (RECIST)

criteria [10; 11; 7; 12]. The RECIST criteria focuses on how the tumor volume changes

over time rather than evaluating the underlying molecular, cellular, and physiologic

processes that govern therapeutic receptiveness [10].

There are several fundamental and practical limitations with using anatomic volume

measurements as a means to gauge a tumor’s response to therapy [7]. First, some

cancers such as melanoma and renal cell carcinoma show no correlation between survival

rate and tumor volume [13]. Second, the volume measurement criteria for response to

therapy was designed primarily for cytotoxic agents, the efficacy of which is correlated

with tumor regression. Thus, volume measurements for new therapies that are not

cytocidal (cell killing) are typically not helpful when assessing early response to therapy

[12]. Gefitinib, erlotinib, and bevacizumab are examples of drugs in which there are

modest regressions or prolonged disease stability [12]. Furthermore, a phase III study

evaluating the response of non-small cell lung cancer to erlotinib showed a median

overall survival increase of 43% despite a volume response rate of less than 10% [14].

Finally, the application of using volume measurements clinically can be subjective. Due

to the difficulty in delineating between post-treatment scar tissue and residual tumor

mass, tumor volume can vary up to 100% for small tumors [15].

The limitations of using volume measurements has recently been overcome through

the use of imaging modalities like positron emission tomography (PET) that allow for

8



functional and metabolic changes to be detected early in response to drug therapy [10].

Nuclear medicine, which includes including single-photon emission computed tomogra-

phy (SPECT) and PET, offers a unique means to study cancer biology, thus improving

our approach to cancer treatment [9]. In addition, tissue spectroscopy has improved

the detection of gastrointestinal malignancies by evaluating relative changes in how

light interacts with tissue [16]. It is clear that for a personalized approach to cancer

therapy to be effective, underlying molecular, cellular, and physiologic processes that

govern therapeutic receptiveness must be identified. Currently, there is a shift in radia-

tion oncology towards a more biological and molecular approach to response evaluation

[16; 6; 17]. Molecular imaging, for instance, promises improvements in focused and

personalized therapy, and earlier treatment follow-up [18].
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CHAPTER 3

Molecular Imaging Overview

3.1 Molecular Imaging

As discussed in Chapter 2, there is a demand for new strategies that focus on early

disease detection through improved screening protocols as well as patient-specific treat-

ment selection and therapy monitoring [7]. As a consequence, much research has focused

on the development of new therapeutic strategies directed towards molecular biomark-

ers, an indicator for a particular disease state. With the development of these novel

therapeutics, molecular imaging has emerged as a method to monitor the effect of these

therapeutics through imaging techniques [5; 7].

Molecular imaging is a broad term for describing a technique designed to evaluate

cellular and molecular activity in biological systems [19]. As a new paradigm for disease

detection and response to therapy, the potential of molecular imaging is considerable.

First, the imaging of molecular probes tend to be closely associated with the expressed

phenotype of diseases, thus enabling direct associations between therapy and effect [11].

In addition, molecular imaging offers versatility for providing functional assessments of

response to therapy by offering snapshots of the bioactivity of drug compounds over

time [5]. Finally, molecular imaging provides assessments for response to therapy in

humans and non-humans alike, which is essential for translational research [5].

Traditionally, the modalities associated with molecular imaging have been PET,

SPECT and optical imaging [7]. A brief description of these techniques in the context



of molecular imaging of cancer are provided in the following subsections.

3.1.1 Metabolic Imaging with PET

PET is an imaging method which measures biochemical function of radio-labeled trac-

ers rather than anatomical structure [7]. Metabolic imaging with PET using the glucose

analog 18F-fluorodeoxyglucose is currently the only widely-used application in clinical

oncology [7]. This technique has the ability to quantify cellular metabolism and is pri-

marily used for tumor staging [7]. However, PET imaging with 18F-fluorodeoxyglucose

has also been used for differentiating between malignant and benign tumors and iden-

tifying tumor recurrence and potential metastatic lesions [7]. Typically, metabolic

imaging is regarded as a superior technique relative to anatomic-based imaging for

response to therapy characterization. However, this type of imaging is non-specific,

especially in inflamed areas, which limits its diagnostic efficacy [7]. While the applica-

tion of PET using FDG in measuring therapeutic response has shown promise, specific

clinical scenarios have not yet been standardized [7; 20; 21].

3.1.2 Imaging angiogenesis with PET

Tumor angiogenesis is the formation of capillaries and new blood vessels from surround-

ing host tissue to provide sufficient oxygen supply and nutrients to the tumor [1; 2].

VEGF and αvβ3 are integrins that are found in abundance on the surface of these

proliferating endothelial cells; thus, they are specific markers for ongoing angiogenesis

[1; 2]. αvβ3 has been the most thoroughly studied integrin due to the specificity of RGD

to this particular integrin [22; 7]. Haubner et al. developed the first radio-labeled RGD

peptide marker, which showed a strong affinity to angiogenic tumors [7; 23]. Initial

studies using RGD tracers have been promising and histological studies have confirmed

that there is good correlation between RGD uptake and αvβ3 expression making it a

11



good target for molecular imaging applications involving angiogenesis [7; 24; 25]. Cur-

rently, RGD as a PET tracer is not used for measuring therapeutic response, but the

technique shows promise in monitoring anti-angiogenic activity and may have clinical

relevance in the future [7].

3.1.3 Imaging angiogenesis with SPECT

SPECT is an imaging technique that detects low energy gamma rays that arise from

radioisotope decay [26; 27; 28]. One advantage that SPECT has over PET imaging is

the ability to detect multiple probes simultaneously [26; 27; 28]. Conversely, SPECT

has lower sensitivities and typically requires higher doses, which mean more ionizing

exposure for the patient [26; 27; 28]. In the context of clinical molecular imaging of

cancer, SPECT has shown promise in the diagnosis of both colorectal and lung cancers

[18]. Pre-clinically, SPECT has been used to investigate the VEGF-induced pathways

associated with angiogenesis by using Technetium-99m that was tagged with VEGF-C

[26; 29]. Furthermore, this particular technique has been successful in the pre-clinical

monitoring of VEGF expression in response to anti-angiogenic therapy in rat glioma

[26; 29]. While SPECT is used clinically for diagnosis, monitoring therapeutic response

is not currently available with this imaging modality [26; 18].

3.1.4 Optical Imaging

Optical imaging is an approach to molecular imaging that uses either luminescence or

fluorescence detection as a means for evaluating molecular events [26]. Clinical applica-

tions of optical imaging techniques are typically limited to the skin surface due to the

limited depth penetration through human tissue [18]. Raman spectrophotometry is an

emerging molecular imaging technique used clinically for monitoring atherosclerosis-

associated inflammation and imaging of porphyrin (blue fluorescence) accumulation

12



in highly-proliferating cancer cells [18; 30; 31]. However, due to the depth penetra-

tion restriction, optical imaging applications have primarily been pre-clinically oriented

through the evaluation of new molecular targets and pre-clinical drug evaluations [18].

Optical imaging is now a well-established methodology in pharmacology for evaluating

therapeutic effects on cancer cell lines treated with various compounds [26; 32; 33].

Since optical imaging typically requires less equipment and expertise, it is often more

cost-effective than technologies like PET and SPECT [26]. While this approach has

clinical limitations, it remains a valuable tool for preclinical evaluation of cancer ther-

apeutics due to its high specificity [26].

Clinical molecular imaging is typically performed with PET or SPECT [18]. Ul-

timately, it is hoped that one or all of these techniques will help doctors to visualize

the expression and activity of particular molecules, cells and biological processes that

influence the behavior of tumors [16]. The development of molecular imaging both clin-

ically and pre-clinically is in its infancy and could ultimately yield tremendous patient

benefit.

3.2 Ultrasonic Molecular Imaging Introduction

Medical US has long been used in clinical applications both as a primary modality

and as a supplement to other diagnostic procedures. The basis for US imaging is

the transmission of high frequency (megaHertz) sound waves that propagate through

tissue. These sound waves backscatter from the interfaces between tissue components

with different acoustic properties and are detected by the imaging system, allowing the

creation of images based on tissue characteristics and spatial location. Thus, traditional

US has focused primarily on the imaging of anatomical structures and analysis of blood

flow in large vessels. Until recently, there has been no mechanism by which US has

been able to detect changes at the cellular and molecular level.
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Over the past decade, US has gained interest in the area of molecular imaging due

to the practical advantages over traditional molecular imaging modalities: it is inexpen-

sive, safe (no ionizing radiation), portable (bedside support), and readily available with

fast acquisition times [19]. With ever growing health care costs, contrast-enhanced US

imaging is gaining momentum in the field of molecular cancer research as an alternative

to more expensive imaging modalities.

The ability to detect acoustically active microbubble contrast agents (MCA) de-

signed to selectively adhere to biomarkers expressed on the endothelium is the basis for

ultrasonic molecular imaging (USMI) [1; 7]. MCAs are intravascular, thus the specific

targets for molecular imaging must be present in the vascular space and are typically

expressed on the luminal vessel surface [34]. In USMI, targeted microbubbles accu-

mulate at the target location and enhance the areas of diseased tissue that are not

detectable with traditional US imaging. As an example of its utility, USMI can help

assess whether and to what extent a specific target (example: angiogenesis) is expressed

in tumor neovasculature [35]. This includes both the assessment of the presence of the

targets as well as their spatial distribution [35]. Since USMI has the potential to pro-

vide information prior to the appearance of gross phenotypic changes, it is proposed

that this method can facilitate early assessment of disease progression or response to

therapy [19].

Although significant advances in molecular imaging have been made over the last

decade, there are many challenges that must be addressed to advance the utility of

USMI. The ultimate goal of molecular imaging is to determine the degree to which

biomarkers are expressed by the target tissue. Therefore, it is essential that targeted

microbubbles adhere in quantities that produce backscattered intensities in greater

14



magnitude than the signal intensities from non-specific targeting. Given this require-

ment, research has primarily focused on improving the sensitivity to bound microbub-

bles, improving the ability to quantify biomarker expression, increasing the quantity

of targeted microbubbles retained at the site of pathology, and improving microbubble

architecture to minimize the non-specific retention of microbubbles and immunogenic

response.

3.2.1 Sensitivity Improvement

Targeted microbubbles in molecular imaging experiments typically have sub-optimal

retention. Rather than increase the number of microbubbles at the target location

through increased dose, many groups are evaluating the effect of increasing the backscat-

tered signal for each microbubble, thus improving the sensitivity of the system to tar-

geted agents.

Rayleigh-Scattering theory of sub-wavelength particles predicts an increase in US

backscatter intensity as a function of the scattering cross-section, a metric directly

related to the size of the microbubble scatterer [36; 37]. Due to the significance of

microbubble size in the acoustic response, recent interest has involved new production

and sorting methods for microbubbles including centrifugation techniques, microflu-

idics, and electrohydrodynamic atomization [38; 39; 40; 41; 42]. Each size-selection

method has resulted in a substantial improvement in acoustic response, which may

improve sensitivity to targeted microbubbles.

For over a decade, targeted imaging applications have primarily used mechanically

agitated MCAs with a relatively small mean diameter (∼1 µm). The resultant small

populations of adherent MCAs provide weak backscatter intensity and limit imaging

sensitivity in molecular imaging [19]. We hypothesize that the improvement of con-

trast sensitivity in molecular imaging applications can be achieved by increasing the
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mean diameter in MCA populations through centrifugation methods. To our knowl-

edge, there have been no molecular imaging studies that have incorporated size-selected

microbubbles to improve sensitivity to targeted agents.

3.2.2 Quantification Improvement

Perhaps the greatest challenge in USMI is the ability to quantify biomarker expression.

Even though the precise relationship between the number and distribution of retained

microbubbles and the resulting acoustic response is still unknown, there have been

significant advances in other areas of quantification. One of the limitations of pre-

clinical USMI is that it lacks a comprehensive field-of-view compared to other imaging

modalities.

Until recently, traditional brightness mode (b-mode), or non-targeted contrast imag-

ing, has been mainly two-dimensional (2-D). This has not been a limiting factor for

applications in which the user is imaging anatomical structures, because adjusting

the transducer manually can vary the image plane. Since molecular imaging with US

typically uses a more precise subtraction method for quantifying molecular marker ex-

pression, image acquisitions are obtained by placing the transducer in a fixed clamp

on an anesthetized animal [43; 44]. Therefore, it is nearly impossible to obtain volu-

metric molecular imaging information by manually translating the transducer as with

traditional b-mode applications.

Traditional 2-D USMI has provided valuable insight into the detection of biomolec-

ular markers. Unfortunately, it is difficult to achieve accurate quantitative information

of molecular changes in heterogeneous tissue with only a single 2-D image plane. Until

recently, three-dimensional (3-D) USMI has been unavailable due to the absence of

contrast agent detection strategies implemented in conjunction with 2-D arrays or with

elevational scanning of linear arrays. However, our unique setup allows us to obtain

16



volumetric acquisitions with a clinical US system in a contrast detection mode by me-

chanically scanning the transducer elevationally across the tumor, which is convenient

given the requirement of a fixed clamp setup. We hypothesize that using this novel

3-D approach may provide a more robust assessment of molecular marker expression

throughout the tumors than traditional 2-D US.

3.2.3 Improvement in Quantity of Targeted MCAs

The magnitude of the detected signal correlates well with the quantity of adherent

microbubbles. Prior studies assessing the adhesion of targeted microbubbles have ob-

served sub-optimal retention (∼several bubbles per mm3) [45; 44]. Thus, increasing

the quantity of targeted microbubbles may result in an increase in the detected signal

and may improve the ability to detect the pathology.

Over the past decade, in vivo USMI research has relied on passive targeting as

the basis for this technique. Passive targeting is microbubble adherence that does

not require any additional forces for binding. Unfortunately, passive targeting has

resulted in poor binding efficiency, which necessitates signal amplification in targeted

imaging applications. A transducer directing non-destructive energy perpendicular to

the blood flow can displace moving MCAs to the wall of the vessel opposite the sound

source, thus increasing the probability of microbubble-endothelium interactions [46].

Forcibly displacing MCAs to the wall of the vessel would make it possible to increase

the concentration of MCAs during USMI experiments, which has been hypothesized

but not demonstrated in vivo with a clinical US system [46; 47; 48]. Improved targeting

via acoustic radiation force (ARF) techniques have been observed in vivo acoustically

and with intravital microscopy [48; 49]. Due to the potential significant increases in

MCA adhesion, the application of ARF-enhanced USMI of angiogenesis in vivo with a

clinical US system is of great value.
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3.2.4 Immunogenic Response Minimization

In typical USMI experiments, the microbubble architecture utilizes a targeted ligand

that is exposed to the surrounding environment. This presents the threat of increased

interactions with plasma components that may lead to non-specific adhesion. In addi-

tion, there may be an increased risk in undesired immunogenic reactions. Ultimately,

the traditional exposed-ligand architecture (ELA) is easy to manufacture and use in a

molecular imaging experiment; however, the trade-off is a reduction in our ability to

specifically identify our target.

Minimizing the non-specific retention of microbubbles has recently been realized

using a buried-ligand architecture (BLA) scheme [50; 51; 52]. Microbubbles typically

consist of a lipid shell with a polyethylene glycol (PEG) brush to prevent surface ad-

sorption and improve solubility. ELA microbubbles for molecular imaging use this

architecture as a basis with a targeting ligand tethered to the PEG brush for sur-

face exposure. BLA microbubbles, however, use a more complex flexible PEG surface

mechanism for the purpose of hiding the ligand from the surrounding environment.

Buried-ligand microbubbles are introduced to the vascular system and subsequently

activated with an ARF pulse, which reveals the buried ligand to the target site. This

method has shown a significant improvement over conventional targeted microbubbles

in avoiding immunogenic responses and improving non-specific targeting [51; 52].

Previous in vitro studies with buried-ligand microbubbles have shown that it is

feasible to target cells with the application of ARF [52]. However, prior studies have

not demonstrated in vivo USMI with buried-ligand microbubbles. We hypothesize that

buried-ligand architectures, in conjunction with ARF, can be used for in vivo molecular

imaging of tumor neovasculature.
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3.3 Summary

Early studies indicate that USMI has significant diagnostic potential in the assessment

of disease progression and response to therapy. At the pre-clinical level, molecular

imaging has already led to a greater understanding of the pathophysiologic mechanisms

of various types of diseased tissue. In addition, USMI has shown much progress in

the area of pre-clinical drug efficacy evaluations, which could be expanded to more

efficient methods of cancer therapeutic development. For example, Pysz and colleagues

recently used microbubbles targeted to a kinase insert domain receptor to monitor

anti-angiogenic therapy (against Vascular Endothelial Growth Factor - VEGFR-2) in

human colon tumor-bearing mice [53]. In another study, USMI was successfully used to

monitor the effects of an anti-angiogenic treatment on the expression of both VEGFR-

2 and αvβ3 integrin in squamous cell carcinoma xenografts [54]. Molecular imaging

with US research is only in its infancy, but this type of imaging modality could yield

tremendous patient benefits in the form of earlier tumor detection, treatment response

monitoring, and an individualized approach to various forms of therapy.
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CHAPTER 4

Microbubble Contrast Agents Overview

4.1 Microbubble Contrast Agents

In general, blood is a weak US scatterer, thus vascular diagnostic applications (ex-

ample: echocardiography) can be challenging especially with larger patients where US

attenuation may dominate. Contrast agents help to improve on this shortcoming by

enhancing the visualization of blood flow, thus improving the quality of diagnostics.

The use of contrast agents for US was first reported in 1968 when Gramiak and Shah

discovered that there was an increased backscatter of US caused by injected microbub-

bles [37]. Comprehensively, this mechanism may be described with the Rayleigh-Plesset

model as well as Rayleigh scattering theory of a sub-wavelength spherical body [37].

Using these models, the microbubble oscillatory dynamics in an ultrasound field may

be described by mechanisms such as compressibility, density of the mediums, elasticity

of the shell, and viscosity of the shell [37; 36]. The behavior of the microbubble in an

ultrasound field is quite complicated and beyond the scope of this thesis. However, it

is important to illustrate that there are significant differences in density and compress-

ibility between a microbubble and the blood that surrounds it. Ultimately, this results

in ultrasound scattering that is several orders of magnitude different for a microbubble

relative to an equivalent volume of tissue or blood [37; 36].

Over the last several decades, there has been much effort in the research of contrast

media for ultrasound with emphasis on producing a stable and effective contrast agent



[37; 36]. Contrast agents typically used in US studies include perfluorocarbon emulsion

nanoparticles [55], echogenic liposomes [56; 57; 58], and MCAs [59; 60; 61], with the

most commonly used agent being the microbubble (Figure 4.1).

Figure 4.1: Microbubble Examples A: A polydisperse distribution of various sized mi-
crobubbles as viewed in a bright-field microscope. B: A recently agitated 3 mL vial
of microbubbles suspended in a mixed solution of PBS, propylene glycol, and glycerol.
C: A high-level illustration presenting the typical components of a lipid monolayer
microbubble.

4.1.1 Microbubbles for Perfusion Imaging

In order to take advantage of the contrast mechanism, microbubbles are composed of a

gas core that is typically encapsulated by phospholipid-based, albumin or polymer shell

[62; 63; 64; 36; 65]. A microbubble’s gas core is usually comprised of a high molecular
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weight gas (Example: decafluorobutane) in order to prevent the gas from diffusing out

of the microbubble [65; 66]. The minimization of dissolution allows the microbubble to

persist in the bloodstream for many minutes at a time, which is a requirement for most

diagnostic applications [36]. Finally, most lipid-based microbubbles are fitted with a

PEG brush to prevent microbubbles from coalescing into larger microbubbles and for

purposes of solubility [65; 66].

Microbubbles are inherently blood-pool agents, and thus are confined to the vas-

cular compartment. In the United States, the primary function of perfusion-based

microbubbles is in echocardiography where they help to delineate endocardial borders

for more accurate diagnosis of heart disease [67]. Microbubbles have been used in appli-

cations such as the assessment of systolic function and left ventricular volume, and for

identifying myocardial infarction and coronary artery stenoses [68; 69; 70; 71]. More

recently, perfusion-based contrast agents have been used to quantify blood flow metrics

in cancer research [72; 73; 74].

4.1.2 Microbubbles for Molecular Imaging

Targeted microbubbles are similar to microbubbles used for contrast-enhanced echocar-

diography in that they are composed of a gas core and are usually stabilized by a lipid,

protein or polymer shell. However, unlike these perfusion agents, targeted microbub-

bles contain high-affinity adhesion ligands (such as an antibody, peptide etc.), which are

specific for a particular disease epitope [65; 66]. In typical microbubble architectures,

these ligands are attached to the PEG brush and interact with the target biomarkers

away from the bubble surface [75].

Developments in USMI, which utilize targeted microbubbles, provide a range of new

applications for contrast-enhanced ultrasonography, including, but not limited to, the

diagnosis of myocarditis, evaluation of myocardial infarction, assessment of transplant
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rejection, ischemic memory imaging, and early-stage detection and treatment of solid

tumors [76; 77; 78].

4.2 Microbubble Safety

Microbubble contrast agents are typically smaller than red blood cells (< 8 µm) in order

to pass through the pulmonary capillary bed after intravenous injection [36]. After

the intravenous bolus injection, microbubbles are distributed uniformly throughout the

peripheral circulatory system [36]. After this preliminary phase, microbubbles typically

show uptake in the liver and spleen due to phagocytic cells of the reticuloendothelial

system [36]. The stabilizing components of microbubbles are filtered by the kidney and

eliminated by the liver with the phospholipids of the shell entering normal metabolism

[36]. Finally, the gas component of the microbubble contrast agents is expelled by the

lungs after the microbubbles have persisted for a period of time, typically a few minutes

[36].

Microbubble contrast agents are safe with a low incidence of side-effects [79; 80; 36].

Extensive studies investigating the use of perfusion-based microbubbles for echocardio-

graphy have concluded that adverse reactions in patients are rare [79; 80; 36]. However,

it should be noted that individual cases of dyspnea, chest pain, and nausea have been

reported [79; 80]. In addition, there have been reports of tingling, numbness and

dizziness after administration [79; 80]. Microbubbles are not inherently nephrotoxic or

cardiotoxic, but there have been cases of severe allergic reactions [79; 80]. In a 2008

study, over 200,000 patients were evaluated with the contrast agent Definity R© (Lan-

theus Medical Imaging, Billerica, MA). Of the 200,000 patients, 16 allergic reactions

were reported (∼0.3%), which is an incidence that is much lower than current CT-based

or MR-based contrast agents [79; 80; 36]. While there have been rare instances of side-

effects using microbubbles, it is clear that the potential clinical benefits outweigh the
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potential for adverse reactions.

4.3 Experimental Methods for MCA Fabrication

This section details the process in which lipid solutions were prepared for the experi-

ments described in this dissertation. Recipes for perfusion agents, non-targeted agents

(control) and targeted agents are presented and the manufacturing processes for ob-

taining various populations are discussed.

4.3.1 Perfusion Agent Recipe

MCAs for perfusion-based experiments were created using a 9:1 molar ratio of 1,2

Distearoyl - sn - Glycero - 3 - Phosphocholine (DSPC) (Avanti Polar Lipids, Alabaster,

AL) and 1,2 Distearoyl - sn - Glycero - 3 - Phosphoethanolmine - N - Methoxy - PEG

- 2000 (P2K) (Avanti Polar Lipids - Alabaster, AL) in a 90 mL buffer solution (Figure

4.2A). The buffer solution was comprised of 80% phosphate buffered saline (PBS), 15%

propylene glycol and 5% glycerol and the final lipid concentration was 1.0 mg
mL

.

4.3.2 Non-targeted Agent Recipe

Non-targeted (control) lipid solutions for molecular imaging experiments were created

using DSPC, P2K, and 1,2 Distearoyl - sn - Glycero - 3 -Phosphoethanolamine - N -

Maleimide (PEG)-2000 (MAL-P2K) cross-linked to a cRAD peptide (Cyclo-Arg-Ala-

Asp-D-Tyr-Cys) in a 18:1:1 molar ratio respectively with a total lipid concentration of

1.0 mg
mL

. Finally, the lipids were suspended in 90 mL of sterile PBS (Figure 4.2C).

4.3.3 Targeted Agent Recipe

Microbubbles designed to target αvβ3 integrins for molecular imaging experiments were

created with a 18:1:1 molar ratio of DSPC, P2K, and MAL-P2K cross-linked to a cRGD

peptide (Cyclo-Arg-Ala-Gly-Asp-D-Tyr-Cys) (Peptides International - Louisville, KY)

24



(Figure 4.2B). Similar to the perfusion and non-targeted agents, lipids were fabricated

with a total lipid concentration of 1.0 mg
mL

in a 90 mL buffer solution of sterile PBS. The

chosen cRGD peptide has previously been shown to target αvβ3-expressing vasculature,

which is characteristic of angiogenic tumors [22; 38; 81].

Figure 4.2: Illustrations of the various microbubble architectures used in this disserta-
tion. A: Perfusion-based microbubble architecture consisting of a DSPC lipid monolayer
and a P2K brush layer. B: Targeted microbubble architecture consisting of a DSPC
lipid monolayer, a P2K brush layer, and a cRGD peptide linked to a MAL-P2K. C:
Non-Targeted microbubble architecture consisting of a DSPC lipid monolayer, a P2K
brush layer, and a cRAD peptide linked to a MAL-P2K.

4.3.4 Lipid Preparation Procedure

Briefly, powdered lipids were measured to precise weights using a high precision bal-

ance (AB204-S, Mettler Toledo, Greifensee, Switzerland) with the previously described

recipes. The lipids were placed into a 100 mL glass vial with 2 mL of chloroform,

an organic compound in which lipids easily dissolve. Next, the lipids were thoroughly

agitated with a vortex mixer until all lipids were visibly dissolved in the chloroform.

Then, the chloroform was evaporated in the presence of slow-flowing nitrogen and si-

multaneous agitation with the vortex mixer. After the chloroform was removed from

the container, the dried lipids were added to an oven, under vacuum, at 55◦C for 30

minutes to remove any remaining chloroform from the container. Finally, the buffer
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solution was added to the lipid container and introduced to a sonication (Branson 2510,

Branson Ultrasonics, Danbury, CT) bath for 30 minutes at 55◦C for re-hydration.

4.3.5 Unsorted Microbubble Populations

Unsorted microbubbles were produced using mechanical agitation, which is the fabri-

cation method that is utilized for the FDA - approved contrast agent Definity R©. First,

1.5 mL of the appropriate lipid solution was transferred to a 3 mL serum vial. The

vial was stoppered and capped and decafluorobutane was exchanged with the air in the

vial headspace using a custom vacuum apparatus. The vial was shaken vigorously for

45 seconds at 4500 rotations per minute using a mixer (Vialmix, Bristol-Myers Squibb

Medical Imaging, North Billerica, MA) to produce the characteristic polydisperse dis-

tribution for perfusion-based in vivo experiments.

4.3.6 Sorted Microbubble Populations

The specific procedure for sorting microbubbles is presented in this section as an item-

ized list of steps and as a flow chart in Figure 4.4. The method used to create various

size distributions is based on differences in buoyancy forces for different microbubble

sizes and was recently described in detail by Feshitan and colleagues [41]. Using this

technique, sorted distributions with mean diameters of ∼1.0 µm, ∼1.6 µm, and ∼3.5

µm may be obtained (Figure 4.3). It is important to note that the mode of the distri-

bution is often larger than the mean diameter of the microbubble population. This is

due to imperfections of the technique, which limit the amount of small microbubbles

that are filtered during the isolation technique. Thus, the residual small populations

that remain after centrifugation typically reduces the mean of the size distribution to

a value that is less than the mode of the same distribution.
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Microbubble Production

A large quantity of lipid solution is required (typically 90 mL or more at a minimum

concentration of 1.0 mg
mL

) to yield the appropriate number of sorted microbubbles. This

lipid solution is prepared via the methods described in section 4.3.4. After the lipid

solution is prepared, different diameter distributions are preferentially selected using a

multi-step centrifugation procedure as follows:

1. Lipids are completely dissolved in the buffer solution by raising the solution tem-

perature to 55◦C.

2. The beaker of lipids is transferred to the sonic dismembrator apparatus. The

sonicator tip is placed such that it is ∼1 mm below the surface of the lipid

solution.

3. The sonic dismembrator is set to a power of 70% and a time of 15 seconds.

4. A large collection of microbubbles is generated via acoustic emulsification by

turning the sonicator on while flowing decafluorobutane over the surface of the

solution.

5. The resulting microbubbles (in solution) are collected using 30 mL syringes.

6. The 30 mL syringes are placed in a centrifuge for 10 minutes at 300 G.

7. After 10 minutes, a microbubble “cake” forms toward the plunger of the syringe.

The buffer solution is slowly pushed out of the syringe (everything but the mi-

crobubble “cake”) into a beaker for recycling.

8. Approximately 1 mL of buffer solution is added to the syringe containing the

microbubble “cake” for every 1 mL of microbubbles produced.
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9. Using the recycled lipid solution, steps 1 through 8 are repeated until at least 30

mL of microbubbles have been collected.

3.5 Micron Diameter Isolation

1. The well-mixed 30 mL syringe of microbubbles is placed into a centrifuge for 1

min at 30 G.

2. The resulting microbubble solution is slowly pushed out into another 30 mL

syringe and the microbubble “cake” is discarded.

3. Filtered PBS is added to the syringe containing the solution until there is a final

volume of 30 mL.

4. The 30 mL syringe of microbubbles is placed into a centrifuge for 1 min at 70 G.

5. The resulting microbubble solution is slowly pushed out into another 30 mL

syringe and the microbubble “cake” is discarded.

6. Filtered PBS is added to the syringe containing the solution until there is a final

volume of 30 mL.

7. The 30 mL syringe of microbubbles is placed into a centrifuge for 1 min at 160

G.

8. The resulting microbubble solution is slowly pushed out into another 30 mL

syringe for ∼1.0 µm and ∼1.6 µm selection.

9. The “cake” is transferred to a 5 mL syringe for the selection of ∼3.5 µm diameter

microbubbles.

10. Filtered PBS is added to the syringe until there is a final volume of 5 mL.

11. The 5 mL syringe is placed in centrifuge for 1 min at 120 G.

28



12. The resultant microbubble solution is slowly pushed out of the syringe while the

microbubble “cake” is retained.

13. Steps 10 through 12 are repeated until the resultant solution is completely clear.

14. The final microbubble population is stored in a 3 mL syringe with no headspace.

The size distribution is described in Figure 4.3C.

1.6 Micron Diameter Isolation

1. Using the resultant microbubble solution from step 8 above, the 30 mL syringe

is placed in the centrifuge for 1 min at 270 G.

2. The resulting microbubble solution is slowly pushed out into another 30 mL

syringe for ∼1.0 µm size-selection.

3. Filtered PBS is added to the syringe containing the microbubble “cake” until

there is a final volume of 30 mL.

4. The 30 mL syringe is placed in the centrifuge for 1 min at 270 G.

5. The resultant microbubble solution is slowly pushed out of the syringe and dis-

carded while the microbubble “cake” is retained.

6. Steps 3 through 5 are repeated until the resultant solution is completely clear.

7. The final microbubble population is stored in a 3 mL syringe with no headspace.

The size distribution is described in Figure 4.3B.

1.0 Micron Diameter Isolation

1. Using the resultant microbubble solution from step 2 above, the 30 mL syringe

is placed in the centrifuge for 10 min at 300 G.
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2. The resulting microbubble solution is slowly pushed out and discarded.

3. The microbubble “cake” is retained and stored in a 3 mL syringe with no headspace.

The size distribution is described in Figure 4.3A.
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Figure 4.4: MCA size-selection flow chart based on the procedures in 4.3.6.
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CHAPTER 5

Imaging and Animal Preparation

5.1 Imaging Contrast Agents

Lipid-encapsulated microbubbles oscillate in the presence of an acoustic wave [36; 82].

When a microbubble is insonified, it expands and contracts in rhythm with the negative

and positive pressure half cycles respectively. In general, the microbubble is analogous

to a spring-mass system where the balance of forces are governed by the restoring force

of the encapsulated gas and the inertia of the surrounding fluid pushing on the shell

surface [36].

Microbubbles respond non-linearly to acoustic pulses even at low energies, unlike

tissue [36]. The non-linear behavior of microbubbles allows for the use of various pulsing

and signal processing strategies to detect the signal backscattered from contrast agents

and segment it from tissue [36; 82]. Furthermore, these unique non-linear properties

enable imaging sensitivity on the order of a single microbubble [83]. This ultimately

provides a high contrast-to-noise ratio for use in a variety of advanced diagnostic pro-

cedures. This chapter describes common imaging techniques that are employed in US

systems to separate microbubble signals from tissue along with experimental details on

the imaging system and 3-D platform utilized herein.



5.1.1 Amplitude Modulation Imaging Overview

Amplitude modulation is a contrast agent imaging technique that utilizes the depen-

dence of the microbubble response on the amplitude of the transmitted pulse [36; 84].

A brief and generalized description of this technique is provided in this section (Figure

5.1). First, two different interrogation pulses are transmitted with different amplitudes,

but with the same frequency [36; 84]. Typically, the second pulse has an amplitude that

is twice the amplitude of the first pulse [36; 84]. The imaging system then stores the

backscattered intensity from the interrogated region for each of the two pulses. Post-

processing is then performed on the two signals. The first stored echo is multiplied by a

factor of two before it is subtracted from the second stored echo sequence [36; 84]. This

technique has two different outcomes for linear scatterers and non-linear scatterers.

For linear scatterers, or stationary tissue (at low pressure amplitudes), the second echo

will be equivalent to two times the first echo; therefore, the final subtracted signal will

equate to a zero value. In other words, the two-pulse technique will ultimately produce

zero signal for linear or tissue-like scatterers. For non-linear scatterers, however, echoes

produced by the two pulses will not subtract to zero. The residual signal created after

post-processing represents the non-linear signal produced by the interrogated MCAs.

The one disadvantage of this technique over conventional b-mode imaging is that the

frame rate is sacrificed due to the requirement of multiple transmit pulses, which may

sacrifice our ability to detect fast moving objects with this technique.

5.1.2 Pulse Inversion Imaging Overview

Pulse inversion is another common technique implemented in currently available US

systems (Figure 5.2). This technique is similar to amplitude modulation in that it

involves two transmit pulses and some additional processing. As with amplitude mod-

ulation, a two-cycle pulse is transmitted and the return echo is stored [36; 85; 82].
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Figure 5.1: High-level description of the amplitude modulation imaging technique. A:
Pictorial description of the setup to describe amplitude modulation. In this panel a
transducer interrogates both a tissue region and a microbubble region. At low pressure
amplitudes, the tissue will behave as a linear target and the microbubble will behave
non-linearly. B: A two-cycle pulse is transmitted at amplitude A and the return echo is
stored for both tissue and microbubbles. C: Again, a two-cycle pulse is transmitted only
this time the amplitude of the signal is 2A. The return echo is stored for both tissue
and microbubbles. D: The receive signal from the first pulse sequence is multiplied
by minus two and then added to the second receive signal. The final result for the
tissue region will be zero whereas the result for the microbubble region will equate to
a non-zero value.

Then, another two-cycle pulse is transmitted only this time it is inverted relative to the

initial transmitted pulse [36; 85; 82]. The echo from the inverted signal is stored and is

added to the received signal from the initial pulse [36; 85; 82]. Due to the non-linearity

of microbubbles, the echo from the inverted pulse will differ from echo from the initial

pulse, which will sum to a non-zero value. The linear scatterers, however, will behave

the same for both the first and inverted pulses and thus sum to zero.
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Figure 5.2: High-level description of the pulse inversion imaging technique. A: Pictorial
description of the setup to describe pulse inversion. In this panel, a transducer inter-
rogates both a tissue region and a microbubble region. At low pressure amplitudes,
the tissue will behave as a linear target and the microbubble will behave non-linearly.
B: A two-cycle pulse is transmitted and the return echo is stored for both tissue and
microbubbles. C: Again, a two-cycle pulse is transmitted only this time the signal is
inverted from B. The return echo is stored for both tissue and microbubbles. D: The
two receive signals for tissue are summed and equate to zero. The two microbubbles,
being non-linear, sum to a non-zero value.

5.1.3 CPS Imaging Overview

Cadence Pulse Sequence (CPS) imaging is a complex contrast-specific imaging tech-

nique that was developed by Siemens in the 1990’s [36; 86]. In general, this technique

uses both amplitude modulation and pulse inversion, the two previously described

techniques, to achieve separation of tissue and non-linear microbubbles. Employing

this technique provides high sensitivity for microbubble detection, but at the expense

of frame-rate due to the multi-pulse strategy (Figure 5.3). Finally, it is important to

note that this is a brief high-level description of CPS and that this imaging mode is
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much more complex in its implementation [36; 86].

Figure 5.3: Examples of both b-mode and CPS images output from the Siemens Sequoia
system. A: The grayscale b-mode image is a typical anatomical interrogation of a
subcutaneous fibrosarcoma tumor. B: An interrogation of the same tumor in the same
location, but using CPS mode, a non-destructive non-linear imaging technique, which
suppresses the signal from the tissue. The green signal is the receive signal from non-
linear targeted microbubbles within the tumor tissue.

5.1.4 Harmonic and Sub-Harmonic Imaging Overview

As previously mentioned, microbubbles behave similar to a spring-mass system [36].

Moreover, the oscillatory motion of the microbubble in an acoustic field may contain

harmonic and sub-harmonic energies relative to the fundamental transmit frequency,

f0 [82]. By utilizing these properties, it is possible to detect microbubbles through

harmonic and sub-harmonic imaging techniques [82; 87; 88].

Harmonic imaging is a method where the ultrasound system separates the second

harmonic frequency signal from the fundamental transmit frequency. Briefly, an ultra-

sound system generates a transmit pulse at a frequency f0 that is within the bandwidth

of the system. The microbubble oscillates and produces harmonic energies, which are

subsequently detected by the system at the second harmonic frequency, 2f0 [36; 82].

By using filtering techniques, the harmonic signals are separated from the fundamental
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frequency, which contains most of the energy detected from tissue. Unfortunately, at

high enough pressures, tissue may also generate harmonic signals [36; 82]. Therefore,

most of the systems that incorporate this technique are obscured by residual tissue

signal components, which cannot be completely separated from the microbubble signal

[36; 82]. Since this is not a multi-pulse imaging strategy, frame-rates are typically not

compromised when using this technique.

Under certain conditions, microbubble contrast agents also generate sub-harmonic

energy [87; 88; 89]. Sub-harmonic imaging is a technique that utilizes this behavior

as a means to separate the microbubble signal from the tissue signal. Sub-harmonic

imaging is similar to harmonic imaging; however in this detection scheme, the ultra-

sound system receives the scattered microbubble signal at 1
2
f0, rather than twice the

fundamental frequency [87; 88; 89]. Since the received signal is lower in frequency than

the fundamental, this technique does not suffer significantly from frequency-dependent

attenuation. Unfortunately, the resolution of the system worsens because of the lower

detected sub-harmonic frequencies. Similar to harmonic imaging, frame-rates are typi-

cally not affected when using this technique due to its single-pulse strategy.

While harmonic imaging and sub-harmonic imaging have been utilized successfully

in various applications, these imaging techniques were not inherent to our clinical ul-

trasound system, and thus not available as a comparison to CPS. Therefore, all in vivo

imaging throughout this dissertation was performed using CPS imaging.

5.2 Experimental Methods - Imaging System

5.2.1 System overview and capabilities

A Siemens US imaging system (Acuson Sequoia 512 Mountainview, CA) with a linear

array transducer (Model #:15L8) was used to acquire all US images described herein

(Figure 5.4). For molecular imaging experiments, b-mode images are required to obtain
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regions of interest for quantifying biomarker expression within a tumor. Thus, for

all experiments performed, b-mode US images of tumors were taken at 14 MHz in

spatial compounding mode. Another necessary component for quantifying biomarker

expression in molecular imaging experiments is the destruction of microbubbles. This

was achieved using the D Color function (Color Doppler) at 7 MHz with a maximum

mechanical index (MI) of 1.9. Prior studies utilizing a MI of 1.9 to destroy microbubbles

suggest no indication of bioeffects when higher frequencies (≥7 MHz) are utilized [90].

Figure 5.4: Images of the US scanner used for all of the studies described herein. A:
Siemens Acuson Sequoia with a 15L8 linear array transducer. B: Close-up of the 15L8
linear array transducer that was used in all US experiments. C: 3-D stage used for all
volumetric acquisitions. The transducer was positioned in a fixed clamp and digitally
stepped in the elevational direction using the linear motion stage shown in the image.
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5.2.2 Experimental Methods - CPS Imaging

MCAs were imaged in CPS mode, which is a non-destructive contrast-specific imaging

technique previously described in 5.1.3. CPS was implemented to provide a high con-

trast to tissue ratio while being minimally destructive to microbubbles [56; 60; 86]. For

all contrast imaging, the transducer was operating at a frequency of 7 MHz and a MI

of 0.18 with a dynamic range of 80 dB. In a preliminary experiment, the video intensity

of targeted agents in vivo was observed over 30 seconds using CPS at a MI of 0.18.

In this experiment (data not shown), no loss in signal intensity was observed over the

evaluated time frame, indicating that our imaging parameters were non-destructive.

This conclusion was corroborated by Kaufmann and colleagues in a study performed

in 2010 evaluating the effect of power on microbubble adherence in molecular imaging

experiments in vivo [91].

5.2.3 Experimental Methods - 3-D Imaging Apparatus

To create 3-D data sets, the transducer was positioned in a fixed clamp and digitally

stepped in the elevational direction using a linear motion stage (Model UTS150PP,

Newport Irvine, CA) (Figure 5.4C). A custom LabView (National Instruments Austin,

TX) program was interfaced to both the motion stage and the US system. Using output

signals from the US system, the step-size of the motion stage was precisely positioned

while simultaneously triggering the capture of video data at every discrete step [81; 92].

The elevational beam width of the 15L8 transducer was calculated to be ∼800 µm.

5.2.4 Experimental Methods - ARF for MCA Translation

ARF was utilized in Chapters 10 and 11. ARF pulses were implemented using the

pulsed wave (PW) Doppler mode at a frequency of 7 MHz. Adjusting gate size, location

of the gate within the field, and blood velocity scale enabled us to achieve a 25%
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duty cycle with a pulse repetition frequency (PRF) of 25 kHz. The axial focus was

positioned deep into tissue (∼6 cm) to create an unfocused application of ARF. Finally,

the amplitude of the ARF pulses was modulated by using the power output dial of the

US system.

5.3 Animal Preparation and MCA Administration

In this section, we describe how animals were prepared and contrast agents were ad-

ministered for the studies in Chapters 7 through 11. All animal studies were conducted

in accordance with the protocols approved by the University of North Carolina School

of Medicine’s Institutional Animal Care and Use Committee.

In Chapters 7 through 11, rats of similar sizes (∼125 g) were used for all in vivo

studies. The tumor model used in all in vivo experiments was a rat fibrosarcoma (FSA)

[93]. In previous studies, this particular type of tumor has been shown to provide a

good model for αvβ3 targeted molecular imaging [38; 81]. It should be noted, however,

that an R3230 mammary carcinoma tumor model was also evaluated in Chapter 8.

5.3.1 Tissue Implantation

During the tumor tissue implantation procedure, the rats were anesthetized using 2%

inhaled isoflurane mixed with oxygen. The animal’s body temperature was maintained

at 37◦ through the use of a temperature-controlled heating pad. Next, the rat’s left flank

was shaved and disinfected and a 2 mm incision was made above the quadriceps muscle.

Finally, a small 1 mm3 piece of tumor tissue was positioned subcutaneously and allowed

to grow for approximately 2 weeks. Once the tumor had grown to approximately 1 cm

in diameter in the longest measurable axis, imaging was performed.
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5.3.2 Animal Preparation for Imaging

Rodents were anesthetized with 2% inhaled isoflurane mixed with oxygen. Once the

rat was sedated, the area to be imaged was shaved with small animal hair clippers and

further depilated using a chemical hair remover. A 24-gauge catheter was inserted into

the tail vein of the animal for the purpose of administering MCAs. The US transducer

used in the in vivo analysis was positioned in a fixed clamp and coupled to the animal

with US gel. Throughout the imaging procedure, the rodent’s body temperature was

maintained through the use of a temperature-controlled heating pad .

5.3.3 Contrast Administration

The sizes and concentrations of stock solutions for all microbubble types used in all

studies were measured prior to each imaging study using an Accusizer 780A laser light

obscuration and scattering device (Particle Sizing Systems, Santa Barbara, CA, USA).

For each injection, the appropriate volume of stock solution was added to the catheter

via a micropipette tip and flushed with sterile saline. Animals received less than 1.5

mL limit of total fluid volume through the tail vein within any 24-hour period.

Table 5.1 summarizes the animal study parameters for each experimental study

described in this dissertation.
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Table 5.1: Summary of Animal Study Parameters

Chapter Animal # Animals Imaging Tumor Imaging
Type Subject Type Type

7 Rat 13 Tumor FSA MI
8 Rat 9 Kidney NA Perfusion
8 Rat 3 Tumor FSA, R3230 MI
9 Rat 8 Tumor FSA MI
10 Rat 8 Tumor FSA MI
11 Rat 8 Tumor FSA MI
11 Rat 8 Tumor FSA Perfusion
12 Mouse 14 Tumor Panc. DCE-PI
12 Mouse 14 Tumor Panc. MI
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CHAPTER 6

Experimental Diagnostic Methods

This chapter describes the experimental diagnostic procedures utilized in this disser-

tation. Each section generally describes the method, how the data was obtained from

each method and its implementation herein.

6.1 Perfusion-Based Imaging and Methods

Tracking the transit of microbubbles after a bolus injection enables measurements of

the physiology of organs or tumors, which can provide diagnostic information regarding

disease [94]. The ability to accurately quantify tissue perfusion is essential for the

assessment of the physiological functionality and viability of a specific type of tissue [94].

For instance, when evaluating blood perfusion in the normal kidney, the arterial venous

transit is less than 4 seconds; however, in acute renal allograft rejection, it is much

longer [94; 95]. By using contrast-enhanced ultrasound, we can measure tissue perfusion

by monitoring the backscattered intensity from the microbubbles flowing through the

tissue of interest and make diagnostic decisions based on this data. Different parameters

related to tissue perfusion may be extracted from this sort of contrast-enhanced analysis

such as blood velocity, the volume of blood passing in a section of tissue per unit of

time, and the proportion of tissue volume occupied by blood [94].



6.1.1 Time-Intensity

In this dissertation, microbubble clearance from the circulatory system was measured

in vivo by observing the length of time that each type of microbubble persisted in the

tumor vasculature (or kidney in Chapter 8) after a bolus injection of MCAs. Briefly, the

linear array transducer was placed in a fixed clamp to maintain the same imaging plane

and the imaging system was set to a center frequency of 7 MHz in CPS mode. After

each bolus injection, the MCA wash-in was recorded at a 1 Hz sample rate using the

clip store function on the US system. Once there were no microbubbles visibly moving

in the vasculature, the video was stopped and analyzed offline. Figure 6.1 describes the

procedure of measuring the intensity of a region of interest over time for the purposes

of evaluating microbubble clearance.

Figure 6.1: Diagram that describes the mechanism for obtaining a time-intensity curve
for contrast-enhanced imaging. Persistence is measured as the time from the peak
intensity to the time that the video intensity of the ROI reached half of the peak
intensity.

Of note, only animal studies with contrast administration not requiring radiation

force were used to collect persistence data, because the volumetric administration of
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ARF interferes with our ability to observe the contrast agent wash-in. This is directly

related to data that was collected in Chapter 11.

Perfusion imaging videos in Digital Imaging and Communications in Medicine (DI-

COM) format were imported and analyzed using custom graphical user interface (GUI)

Matlab software (Mathworks, Natick, MA) (Figure 6.2). Pixel intensity was averaged

within the region of interest (ROI) for each video frame and normalized with respect

to the movie frame with the highest mean. Within each data set, the system receive

gain and transmit power were kept constant. The persistence time of the MCAs was

calculated by taking the time from the peak intensity to the time that the video inten-

sity of the ROI reached half of the peak intensity, which is an established metric for

this method of evaluation [51].
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6.1.2 Destruction-Reperfusion

Dynamic contrast-enhanced perfusion imaging (DCE-PI) is an US technique that is

used to non-invasively monitor the blood flow in both large vessels and in the capil-

lary microcirculation using non-targeted perfusion-based MCAs. This technique uses

a short, high-intensity pulse of US that causes rapid destruction of MCAs in the in-

terrogated region. This clearance pulse is immediately followed by a low-intensity

contrast-specific signal that does not fracture the microbubbles, but instead allows for

the pixel-by-pixel observation of blood flow rates as the MCAs enter back into the

tissue [71; 96]. Accordingly, changes in contrast enhancement over time can provide

information about tissue perfusion. Figure 6.3 illustrates the concept of DCE-PI.

Figure 6.3: Diagram describing the destruction-reperfusion approach to DCE-PI. MCAs
are destroyed and subsequently interrogated until the intensity reaches 20% of the
maximum.

In this dissertation, DCE-PI was performed by using the destruction-reperfusion

imaging technique previously described by Wei et al. and real-time motion correction

was performed as described by Pollard et al [71; 97]. The CPS capture software tool

was used to implement this technique. Briefly, non-targeted contrast agents were con-

tinuously infused at a rate of 15 µL
min

. After a wait period of one minute for complete
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tumor perfusion, a contrast-specific frame was collected and recorded by the system.

This was followed by a short, high-intensity pulse of US that causes rapid destruction

of MCAs in the 2-D imaging plane was introduced. This clearance pulse was immedi-

ately followed by a low-intensity, contrast-specific interrogation to monitor the MCAs

as they entered back into the tissue. When the monitored contrast signal reached 20%

(Time to 20% - TT20) of the system maximum, the time was recorded and displayed

as a color. Perfusion mapping occurred at the pixel level and the maximum perfusion

time window was set to be 20 seconds for all readpoints. Within each data set, the

system receive gain and transmit power were kept constant.

Video data from perfusion imaging experiments were acquired and saved in DICOM

format for offline analysis. Using the b-mode image data collected during the MCA

destruction sequence, ROIs were established around the perimeter of the tumor in each

image plane. With custom Matlab scripts, the mean pixel intensity, which is linearly

related to the time that it takes to reach 20% of the maximum system value, was

averaged for all voxels throughout the perfused volume of the treated tumor (Figure

6.4).
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6.2 Molecular Imaging and Methods

As previously discussed, USMI has the ability to non-invasively characterize biologic

processes at the cellular and molecular level [76; 98; 59]. The principle behind USMI

is the selective targeting of acoustically active intravascular MCAs to biomarkers ex-

pressed on the endothelium [99] (Figure 6.5). Once accumulated at the target site, the

MCAs enhance the acoustic backscatter from pathologic tissue that might otherwise

be difficult to distinguish from normal tissues. While USMI is still a developing field,

a wide variety of techniques are emerging such as assessment of tumor angiogenesis,

the diagnosis of myocarditis, the evaluation of transplant rejection, the evaluation of

cardiovascular disease, and the imaging of dysfunctional endothelium, and thrombus

[98; 100; 77; 101].

Figure 6.5: Diagram illustrating a targeted MCA. Targeted MCAs adhere to vascular
biomarkers, which can be detected with US.
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In this dissertation, in vivo molecular imaging was performed as follows. CPS

mode was used in all molecular imaging studies to image targeted microbubbles. Prior

to imaging tumors with targeted contrast agents, background data was taken in both

b-mode and CPS mode to optimize elevational scan length and to ensure the absence

of bubbles within the coupling gel. After the initial scans were performed, the system

was paused and a bolus injection of MCAs was administered through the catheter

followed by a sterile saline flush. After waiting for freely-circulating bubbles to clear

from the animal’s system, a 3-D imaging scan was acquired across the tumor in the

US system’s CPS mode. The bound microbubbles were then destroyed using a high

mechanical index b-mode (MI: 1.9) volumetric scan, and then the tumor was re-imaged

in CPS mode at the same elevational slice locations for a baseline measurement with no

targeted agents (Figure 6.6). It is important to note that prior studies utilizing a MI of

1.9 to destroy microbubbles suggest no indication of bioeffects when higher frequencies

(≥7 MHz) are utilized [90]. Within each imaging data set, the system receive gain and

transmit power were kept constant. The specifics involving the USMI procedure vary

for each study. Table 6.1 summarizes the imaging parameters for each experimental

study described in this dissertation.
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Table 6.1: Summary of Imaging Parameters

Chapter Imaging CPS Freq. CPS Gain Elev. Steps ARF Pres.
Type MI [MHz] [dB] [µm] [kPa]

7 MI 0.18 7 -10 400 NA
8 Perfusion 0.18 7 -5 NA NA
8 MI 0.18 7 -3 1000 NA
9 MI 0.18 7 -3 800 NA
10 MI 0.18 7 -10 400 4, 13 and 21
11 Perfusion 0.18 7 -12 NA NA
11 MI 0.18 7 -12 400 13
12 DCE-PI 0.18 7 -15 800 NA
12 MI 0.18 7 -15 400 NA

Video data from targeting experiments were acquired and saved in DICOM format

for offline analysis. Using b-mode image data collected prior to contrast administra-

tion, ROIs were established around the perimeter of the tumor in each image plane.

With custom Matlab scripts, the difference in mean pixel intensity between the pre-

destruction pulse image (the image with adherent MCAs) and the background image

was determined for each image plane as a measure of αvβ3 targeting, similar to previous

molecular imaging studies with US [38; 81] (Figure 6.7).
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CHAPTER 7

Repeated Administration of Targeted Contrast Agents

7.1 Introduction

Often, an USMI study requires multiple targeted microbubble injections within a single

imaging study to evaluate short-term biological changes, system parameters, or novel

microbubble formulations [102; 103; 104]. Targeted microbubbles are fitted with a lig-

and that allows binding to endothelial biomarkers. However, as endothelial receptors

are occupied by ligands from targeted bubbles, it is possible that these receptors would

no longer be available for future targeting. This might happen if 1) MCAs stay re-

tained at the target site, or 2) fragments of the MCAs are retained at the target site

after bubble destruction. Thus, if targeted microbubbles are injected multiple times

in a single animal study, it is possible that the quantity of available binding sites is

diminished over time. In the case where receptor ligands were sufficiently competitively

inhibited, it would bias the results of successive molecular imaging data where multiple

targeted microbubble injections are required.

We hypothesized that the amount of biomarker expression, relative to the amount

of receptors occupied by ligands from targeted bubbles, would be great enough to

c© 2013 Ivyspring International Publisher. Portions reprinted, from JE Streeter and PA Dayton.
“An In Vivo Evaluation of the Effect of Repeated Administration and Clearance of Targeted Contrast
Agents on Molecular Imaging Signal Enhancement” Theranostics, 2013; 3(2):93-98.



allow for multiple targeted microbubble injections for a single animal study without

discernible competitive inhibition effects. To test this hypothesis, we analyzed the in

vivo molecular imaging results from two groups of animals. The first group of animals,

a control group, received molecular imaging studies with microbubbles targeted to αvβ3

at time 0 and 60 minutes. The second group of animals was imaged at the same two

time points, but with three additional targeted microbubble injections at time 15, 30,

and 45 minutes (Figure 7.1). These time points were chosen to provide sufficient time

for microbubbles to clear circulation prior to successive injections. Molecular imaging

results were compared between groups at baseline and 60 minutes as an indication of

whether or not multiple serial injections have an effect on the outcome of an USMI

experiment.

Figure 7.1: The timelines for when bolus injections were given and the imaging read-
points for groups 1 and 2. Each bolus injection, for group 1 and group 2, consisted of
a contrast agent dose of 5 x 106 microbubbles.
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7.2 Materials and Methods

7.2.1 Microbubble Contrast Agents

Lipid solutions for MCAs designed to target αvβ3 integrins were created as described

in 4.3.3 and 4.3.4. MCAs with a large, preferentially-selected mean diameter (3.3 ± 1.9

µm) have been shown to produce greater backscatter intensities [38; 105; 42] in USMI

studies as compared to vial-shaken, unsorted, polydisperse distributions. Therefore, all

MCAs in this study were sorted as described in 4.3.6.

7.2.2 Animals and Tumor Models

A total of 13 Fischer 344 rats (Charles River Laboratories, Durham, NC, USA) of

similar sizes were used for all in vivo studies (Group 1 - N = 7, Group 2 - N = 6).

Tumors were implanted and animals were prepared for imaging as described in 5.3. For

each contrast agent injection, the appropriate volume of stock solution was added to

the catheter via a micropipette tip and flushed with 100 µL of sterile saline such that

a dose of 5 x 106 microbubbles was administered consistently with each injection.

7.2.3 Clinical Imaging System

The 3-D US imaging system along with the parameters used to acquire all images in

this chapter are as described in 5.2.1, 5.2.2 and 5.2.3. Within all imaging data sets,

the CPS gain (−10 dB) and transmit power (MI: 0.18) were kept constant, and the

transducer was stepped elevationally every 400 µm.

7.2.4 Molecular Imaging Protocol

Molecular imaging data was obtained after freely circulating microbubbles had visibly

cleared the animal’s system (typically 10 minutes). Once the microbubbles had cleared,

the molecular imaging procedure and analysis was followed as described in 6.2. We used
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Matlab’s two-sided Student’s t-test to assess the statistical significance of each group.

Significance between two different distributions were considered at a value of p < 0.05.

7.3 Results

Two different groups of animals were imaged with USMI to determine if multiple se-

rial injections affect the amount of adherent microbubbles detected in an individual

experiment. Intensity values for each animal’s readpoint were normalized to the value

at the baseline measurement or time 0. Injections and molecular imaging readpoints

were performed on the control group (Group 1) at time 0 and 60 minutes after the first

injection while Group 2’s injections were at times 0, 15, 30, 45 and 60 minutes with

readpoints at 0 and 60 minutes.

Figure 7.2: The percent change in volumetric targeted microbubble intensity for Groups
1 and 2, 60 minutes after baseline imaging. p = 0.93 for Group 1 relative to Group 2.

Group 1 showed a 6% increase (1.06 ± 0.27) in targeting relative to baseline while
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Group 2 showed an 8% increase (1.08 ± 0.34) in the amount of targeted microbubbles

determined through intensity measurements (Figure 7.2). Group 1 was not significantly

different from Group 2 after the 60-minute readpoint (p = 0.93), but rather had similar

targeting and similar variance. Figure 7.3 shows a 2 by 2 panel of a representative

Group 1 tumor and a representative Group 2 tumor at baseline and 60 minutes after.

The green color represents the targeted microbubble signal detected via Cadence Pulse

Sequencing mode in the experiment. The green pixels, correlated to the degree of αvβ3

expression, are overlaid onto a traditional b-mode image to illustrate the location of

the targeting relative to the tumor.

Figure 7.3: 2-D US images of a representative Group 1 and Group 2 tumor at baseline
and 60 minutes after initial imaging. The green color is the targeted microbubble signal
detected via CPS mode. The intensity of the green color is loosely correlated to the
degree of αvβ3 expression. The green signal is overlaid onto a traditional b-mode image
to illustrate the location of the targeting relative to the tumor. The white dotted line
illustrates the ROI selected for the quantification of biomarker expression.
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7.4 Discussion and Conclusion

In this study, we evaluated if successive injections of targeted microbubbles would re-

duce the ability of future injections of targeted bubbles to adhere to endothelial receptor

ligands. While the scope of this study was limited to a short time period as well as a spe-

cific tumor model and a specific microbubble dose, the results are encouraging. Given

the dose of cRGD-targeted microbubbles injected (which was appropriate for achieving

sufficient molecular imaging signal) and the inherent variability of the molecular imag-

ing procedure, there was no discernible statistical difference between injecting twice

and injecting five times. Ultimately, this suggests that the quantity of over-expressed

αvβ3 biomarkers present must be sufficiently greater than the available ligands so as

not to present competitive inhibition. Thus, preliminary data suggests that serial mul-

tiple injections in a single USMI study do not bias or compromise endothelial retention

of targeted microbubbles due to competitive inhibition from prior bound bubbles or

bubble fragments. What our study does not address is whether or not the adhesion of

targeted bubble ligands affects the tumor biology as might be anticipated with large

doses. Furthermore, we observed a slight increase in molecular targeting in both imag-

ing models, the mechanism for which is still unknown. Future studies beyond this pilot

should include larger animal numbers, different doses of contrast, different ligands, and

longer time points.
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CHAPTER 8

Improving Sensitivity in Ultrasonic Molecular Imaging

8.1 Introduction

For traditional USMI applications, backscatter intensity is relatively weak owing to

the small populations retained during targeting [56; 106; 107; 108; 109; 45]. This poor

binding efficiency necessitates signal amplification in USMI applications, thus providing

the motivation to maximize the sensitivity to bound MCAs [56; 76; 51].

Owing to the small percentage of bound MCAs at their target sites, research in

USMI has focused mainly on improvement of the contrast sensitivity through improved

ligands and adhesion schemes, detection methods, and contrast delivery mechanisms

[99; 110; 56; 51; 106; 48; 111; 112; 113; 114]. However, over the last several years, more

attempts have been made to improve contrast sensitivity by optimizing the echogenicity

of the contrast agents themselves.

In order to produce the most effective acoustic backscatter, the scattering cross-

section of the microbubble must be as large as possible. In accordance with the Rayleigh

scattering model, theory predicts an increase in US backscatter intensity as a function

of the microbubble scattering cross-section and therefore size:

c© 2010 BC Decker Inc. (mi.deckerpublishing.com) Portions reprinted, from JE Streeter, RC Gess-
ner, I Miles, and PA Dayton. “Improving Sensitivity in Ultrasound Molecular Imaging by Tailoring
Contrast Agent Size Distribution: In Vivo Studies” Mol Imaging, 2010 Mar/Apr; 9(2): 87-95.

http://mi.deckerpublishing.com


I =
Ioσ

4πz2
(8.1)

where Io is incident intensity, σ is the microbubble scattering cross-sectional area

with a 6th order dependence on radius, and z is the distance between the transducer

and the microbubble [36].

Like a mechanical system, the microbubble’s competing balance of forces can result

in a resonant frequency as it oscillates in an sinusoidal acoustic field. Thus, at the

resonant frequency, the microbubble has its largest cross-sectional area and produces

the most effective backscatter intensity. Based on the knowledge that microbubble size

and resonant frequency are intricately coupled, Talu and colleagues proposed that in-

creasing the monodispersity of a microbubble population to match the fixed frequency

output of an imaging system may improve contrast imaging sensitivity [106]. Moreover,

in an in vitro study of the acoustic response of monodisperse contrast agents, Kaya and

colleagues determined that signal amplitude could be increased both by matching the

imaging frequency to the bubbles’ resonant frequency and by increasing the diameter

of the microbubbles [105]. Finally, Sirsi and colleagues recently demonstrated improve-

ments in contrast to tissue ratio in the mouse kidney using high-frequency contrast

imaging by increasing the mean diameter of the microbubble population [42]. Because

of the significance of microbubble size in the acoustic response, recent interest has

involved new production and sorting methods for MCAs, including centrifugation tech-

niques, microfluidics, and electrohydrodynamic atomization [39; 41; 40; 115; 116; 117].

In addition to echogenicity, the bloodstream persistence of a microbubble is directly

correlated to the initial radius of a MCA by the dissolution behavior governing lipid-

shelled microbubbles. Also, accumulation of targeted MCAs in USMI experiments is

generally affected by circulation persistence [118; 119]. It should be noted, however,

that bloodstream persistence is a complex physiologic phenomenon that depends on
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other environmental factors that are not discussed in this article.

The contrast agent currently approved by the Food and Drug Administration (FDA),

Definity R©, has a polydisperse distribution with a mean diameter of around 1 µm (diam-

eter 1.0 ± 0.83 µm, as tested in this study) and a concentration of ∼1 x 1010 #
mL

[120].

This distribution is characteristic of many types of lipid-shelled microbubbles, which are

formed by sonic or mechanical agitation, two common formulation techniques for tar-

geted and non-targeted MCAs. For standard perfusion imaging, MCA size distribution

has not been a limitation, because billions of microbubbles are typically administered

intravascularly, thus providing plenty of image contrast. However, for USMI applica-

tions, relatively small populations of adherent MCAs remain, and thus, provide weak

backscatter intensity, which ultimately limits imaging sensitivity [56; 106; 108]. In this

chapter, we demonstrate in vivo that contrast sensitivity improvement in USMI and

perfusion imaging applications can be achieved by increasing the mean diameter in

microbubble populations.

8.2 Materials & Methods

8.2.1 Microbubble Contrast Agents

Various MCA size distributions were obtained and characterized for both molecular

imaging and perfusion imaging experiments. The method used to create the charac-

teristic size distributions is described in section 4.3. For the set of experiments in

this chapter, we chose to examine sorted distributions with mean diameters of 1.1 ±

0.43 µm and 3.3 ± 1.95 µm (see Figure 8.1), which were isolated using the described

centrifugation process (4.3.6). In addition, an unsorted polydisperse size distribution

(diameter: 0.9 ± 0.45 µm), similar to the FDA-approved contrast agent Definity R© (di-

ameter: 1.0 ± 0.83 µm), was used for molecular imaging and perfusion-based imaging

experiments (see Figure 8.1). Concentrations and size distributions of the MCAs were
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obtained using a laser light obscuration and scattering device.

Figure 8.1: Example MCA size distributions obtained during centrifugal size sorting.
Values were normalized to the maximum count for comparison.

Perfusion-based and non-targeted lipid solutions for size-selected microbubbles were

created as described in 4.3.1, 4.3.4 and 4.3.6. Similarly, unsorted perfusion-based and

non-targeted lipid solutions were created as described in 4.3.1, 4.3.4 and 4.3.5. Sorted

MCAs targeted to αvβ3 integrins were created as described in 4.3.3, 4.3.4 and 4.3.6.

Finally, unsorted MCAs targeted to αvβ3 integrins were created as described in 4.3.3,

4.3.4 and 4.3.5.

8.2.2 Animal Preparation and Contrast Administration

Sprague-Dawley rats were used for perfusion imaging, whereas molecular imaging was

performed on both FSA and R3230 mammary carcinoma tumor models in Fischer 344

rats. Tumors were implanted and animals were prepared for imaging as described in 5.3.
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In all experiments, bolus injections of 150 µL were delivered followed by an immediate

flush of at least 100 µL sterile saline to clear any remaining MCAs from the catheter.

8.2.3 Imaging System

For each study, the transducer was positioned in a fixed clamp to maintain the same

imaging plane in each microbubble size experiment. The 3-D US imaging system along

with the parameters used to acquire all imaging data in this chapter are as described

in 5.2.1, 5.2.2 and 5.2.3. Within all perfusion imaging data sets, the CPS gain (−5 dB)

and transmit power (MI: 0.18) were kept constant. Within all molecular imaging data

sets, the CPS gain was set to −3 dB and the transmit power was maintained at a MI

of 0.18, a non-destructive acoustic pressure for microbubble imaging.

8.2.4 Perfusion Imaging

Both male and female albino Sprague-Dawley rats (N = 9) were used for non-targeted

US perfusion imaging studies in the rat kidney. The aforementioned MCA size dis-

tributions were administered in the perfusion experiments (sorted 1 µm, sorted 3 µm,

and unsorted polydisperse distributions). Each MCA size distribution was matched

in terms of concentration and administered with bolus injections. MCA size distribu-

tions and concentrations were measured before and after administration by sampling

the MCA storage container to ensure constancy over time for each subsequent animal

injection. Injected dose concentrations ranged between 3 x 107 #
mL

and 6 x 108 #
mL

. The

entire rat kidney was chosen as the ROI except in the cases where shadowing occurred

(attenuation), specifically the sorted 3 µm distributions at high concentrations (150 µL

at ∼ 6 x 108 #
mL

). In these cases, only regions above the shaded area were included in the

analysis; however, the same ROIs were compared for each individual distribution at the

given concentration. Time-intensity curves from perfusion experiments were acquired

using the Siemens Sequoia imaging system and analyzed as described in 6.1.1. We used
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Matlab’s two-sided Student’s t-test to assess the statistical significance between each

group. Significance between two different distributions were considered at a value of p

< 0.05.

8.2.5 Molecular Imaging

The relationship between MCA size and targeted agent sensitivity was assessed in three

different rats and 22 different independent imaging planes. The transducer was me-

chanically adjusted across the tumor with a stage micrometer in 1 mm steps to acquire

independent image planes with the use of fewer animals (independent planes were en-

sured as the −6 dB elevational beam width of the 15L8 in CPS mode is approximately

0.8 mm). Using control and αvβ3-targeted MCA populations at a dose concentration

of 9 x 108 #
mL

(150 µL bolus), the contrast sensitivity of unsorted and sorted 3 µm

distributions was evaluated in each imaging plane.

The procedure for performing molecular imaging experiments and the subsequent

analysis is described in 6.2. In this study, the time required for the MCAs to clear was

qualitatively determined to be on the order of 8 minutes for small size distributions

and ∼30 minutes for large distributions. We used Matlab’s two-sided Student’s t-test

to assess the statistical significance of each group. Significance between two different

distributions were considered at a value of p < 0.05.

8.3 Results

8.3.1 Perfusion Imaging (Intensity & Persistence)

Non-targeted perfusion imaging showed a strong correlation between backscatter inten-

sity and the size and concentration of the MCAs administered. Example images at the

peak intensities for three different diameter distributions at two different concentrations

are presented (Figure 8.2). At low concentrations (150 µL at ∼3 x 107 #
mL

), contrast
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circulation in the kidney from the sorted 1 µm and unsorted populations was barely

visible at the tested gain setting (−5 dB), in contrast to the sorted 3 µm distribution.

The normalized video intensity of sorted 3 µm MCAs was approximately 15 and 8 times

larger than mean video intensities of the sorted 1 µm (0.77 ± 0.02 vs. 0.05 ± 0.01; p<

0.05) and unsorted (0.77 ± 0.02 vs. 0.09 ± 0.01; p < 0.05) populations, respectively.

Figure 8.2: Example cadence pulse sequencing images of non-targeted kidney perfusion
data for sorted and unsorted microbubble distributions. Regions of interest are indi-
cated and constant for each concentration set. All images were taken at the peak mean
intensity.

At MCA concentrations greater than 2 x 108 #
mL

(dose: 150 µL), mean video inten-

sity produced by the various size distribution was not significantly different (sorted 3

µm: 0.94 ± 0.0005; sorted 1 µm: 0.80 ± 0.18; unsorted: 0.73 ± 0.30). In each case,

the contrast agent circulation in the kidney could be readily visualized. This similarity

in video intensity for different distributions at the higher concentration can likely be

attributed to the video intensity saturation effect at the higher concentration. Hence,
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there was no apparent difference in contrast enhancement as a function of MCA distri-

bution with a high enough concentration and sufficient system receive gain. The ability

of the sorted 3 µm MCA size distributions to clearly enhance the kidney microvascu-

lature with approximately 20 times less dose than the sorted 1 µm and unsorted size

distributions can be seen in Figure 8.3.

Figure 8.3: Mean normalized peak video intensity as a function of concentration for
non-targeted size-sorted perfusion studies. Mean peak values of intensity per region of
intensity were normalized across concentration data sets to the maximum average peak
intensity. Concentration values are a factor of baseline concentration (150 µL at 3 x
107 #

mL
). *p < 0.05 compared to sorted 1 µm and unsorted MCAs. †p < 0.05 compared

to sorted 1 µm and p < 0.07 compared to unsorted MCAs. ‡p < 0.25 compared to
sorted 1 µm and unsorted MCAs.

Persistence curves for the three different distributions (sorted 1 µm, sorted 3 µm,

and unsorted) at two different concentrations (150 µL at 3 x 107 #
mL

and 6 x 108 #
mL

)

are presented in Figure 8.4. These data show a direct relationship between MCA size

and in vivo persistence. Microbubble circulation times increase significantly with size
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(Figure 8.5), which is expected given the relationship of bubble dissolution to MCA

diameter [42; 118; 119]. The sorted 3 µm size distribution provides persistence times

that are approximately 3 times (178 ± 9.9 seconds vs. 52 ± 0.7 seconds: p < 0.05,

concentration: 3 x 107 #
mL

, dose: 150 µL) and approximately 9 times (455 ± 114 seconds

vs. 52± 7.8 seconds: p< 0.05, concentration: 6 x 108 #
mL

, dose: 150 µL) greater than the

persistence times of sorted 1 µm MCAs at the same concentrations. When comparing

the sorted 3 µm distributions to unsorted polydisperse distributions, the persistence is

approximately 3 times (178 ± 9.9 seconds vs. 55 ± 16 seconds: p < 0.05, concentration:

3 x 107 #
mL

, dose: 150 µL) and approximately 7 times (455 ± 114 seconds vs. 65 ± 23

seconds: p < 0.05, concentration: 6 x 108 #
mL

, dose: 150 µL) longer at low and high

concentrations, respectively, which suggests a significant increase in circulation time for

perfusion applications using larger MCAs.

8.3.2 Molecular Imaging

USMI studies showed a strong relationship between MCA size and targeted contrast

sensitivity in both tumor models. Analysis of USMI results includes data from both

FSA and R3230 tumor models combined because imaging data collected from each

tumor model showed similar video intensity enhancement (Table 8.1) with respect to

control populations.

Typical targeted CPS images overlaid onto the b-mode image of the rat tumor

illustrate the relatively high acoustic contrast associated with sorted 3 µm MCAs com-

pared to unsorted polydisperse distributions (Figure 8.6). At a CPS gain of −3 dB,

video intensity provided from retention of targeted contrast agents in the tumor tis-

sue was 17 times greater from the sorted 3 µm MCA distributions than from control

(non-targeted) 3 µm populations (1.0 ± 0.35 vs. 0.06 ± 0.06; p < 0.05) (Figure 8.7).

The unsorted targeted MCAs also produced statistically significant contrast sensitivity

70



Figure 8.4: Example persistence curves for non-targeted size-sorted and unsorted mi-
crobubble distributions. A, Example persistence curves at a concentration of 3 x 107 #

mL

(dose: 150 µL). B, Example persistence curves at a concentration of 6 x 108 #
mL

(dose:
150 µL).

improvement compared to unsorted control agents (0.05 ± 0.1 vs. 0.01 ± 0.02; p <

0.05). Although the molecular imaging enhancement produced by both unsorted and

sorted 3 µm targeted MCAs was statistically significant compared to that produced

by non-targeted control agents, the contrast enhancement provided by the sorted 3

µm MCAs yielded a substantial improvement (20-fold greater) over the enhancement

provided by the unsorted population (1.0 ± 0.35 vs. 0.05 ± 0.1; p < 0.05).

8.4 Discussion and Conclusion

Previous studies have demonstrated that small quantities of MCAs may be retained

at the target site [106; 107; 108; 45]. Without optimal sensitivity to all adherent

targeted contrast agents, sensitivity in USMI is compromised. Prior in vitro studies
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Figure 8.5: Mean persistence times as a function of concentration for non-targeted size-
sorted and unsorted perfusion studies. Persistence times were taken to be time from
the peak intensity to the time that the intensity reached half of the peak intensity. *p
< 0.05 compared to sorted 1 µm and unsorted MCAs. †p = 0.1 compared to sorted 1
µm and unsorted MCAs.

have indicated that optimizing size of the microbubbles may result in increased contrast

sensitivity [106; 105]. Data presented here confirm that increased contrast sensitivity

translates to the in vivo environment and that larger MCAs can increase signal in

molecular imaging applications.

Our perfusion imaging studies demonstrated that at low concentrations (150 µL at

3 x 107 #
mL

) and a −5 dB gain on the imaging system, sorted 3 µm MCAs produced well-

defined enhancement of the kidney microvasculature. At the same low concentration,

sorted 1 µm and unsorted MCAs offered no substantial contrast enhancement.

With the same system gain, and a concentration over a magnitude higher (6 x

108 #
mL

, dose: 150 µL), the mean peak video intensity for all MCA distributions was
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Table 8.1: Normalized Mean Targeted Video Intensity Comparison between FSA and
R3230 Tumor Models for Sorted 3 µm and Unsorted Populations (Targeted and Non-
targeted).

Normalized Mean Targeted Video Intensity
FSA Tumor Model R3230 Tumor Model

Sorted 3 µm Targeted 0.95 ± 0.31 1.11 ± 0.08
Sorted 3 µm Non-Targeted 0.03 ± 0.03 0.11 ± 0.08

Unsorted Targeted 0.07 ± 0.13 0.01 ± 0.02
Unsorted Non-Targeted 0.01 ± 0.02 0.00 ± 0.01

similar and not statistically different, indicating that there was no advantage to the

larger contrast agents at the higher concentration when a moderate (−5 dB) system

receive gain is used. This was likely due to saturation of the video intensity for both

MCA populations; consequently, we cannot accurately evaluate results at the higher

concentrations. It is likely that many researchers currently perform contrast imaging

at these higher concentrations; hence, there may be little benefit of size-optimized

bubbles if sufficient contrast agent dose and system gain can be used. However, the

focus of this study was to demonstrate the advantages of size optimization at low MCA

concentrations, such as those present in USMI.

Circulation persistence results indicated that sorted 3 µm MCAs produce at least

3 times greater circulation times than sorted 1 µm and unsorted MCA distributions at

all tested concentrations, which is relevant in both clinical and targeted applications.

These results are in agreement with data presented by Sirsi and colleagues, who il-

lustrated that persistence time increased with microbubble size in a mouse model, as

measured using high-frequency b-mode imaging [121]. In clinical practice, an increase

in bloodstream persistence increases the time for diagnosis and maintains a longer time

period during which the relative bubble concentration remains constant, which may

be important for quantitative techniques. Perhaps the most important conclusion from
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Figure 8.6: Example of image-subtracted targeted and non-targeted data for sorted
and unsorted microbubble distributions overlaid with their respective b-mode images.

these results, however, is that the time of image enhancement from larger microbubbles

is not necessarily limited by increased filtration from the bloodstream, as one might

hypothesize. Further studies will need to be performed to evaluate circulation time

of microbubbles as a function of diameter range to establish what size range provides

optimal enhancement while maintaining appropriate circulation times.

An increase in bloodstream persistence in USMI provides a unique method to in-

crease binding efficiency. Given that the probability of MCA adhesion is directly pro-

portional to the number of passes through the circulatory system, and sorted 1 µm and

unsorted size distributions have relatively short persistence times, sorted 3 µm MCA

size distributions are more likely to bind to targeted tissue with their increased circula-

tion times [108; 51; 36; 118; 119]. However, it is unclear from our targeted study what

effect, if any, persistence has on the binding population between sorted 3 µm and sorted
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Figure 8.7: Normalized mean video intensity for targeted and non-targeted large and
unsorted microbubble distributions. Mean video intensity was taken to be the difference
between the mean targeted ROI image section and the mean baseline ROI image section.
*p < 0.05 compared to unsorted targeted MCAs. †p < 0.05 compared to 3 µm control
MCAs. ‡p < 0.05 compared to unsorted control MCAs

1 µm MCA size distributions. The method for acoustically analyzing targeted agents

used in this chapter relies on clearing the freely circulating bubbles from the circula-

tory system. Given that larger MCA distributions have longer bloodstream persistence

times than smaller MCA size distributions, larger targeted MCAs have more time to

bind to the targeted tissue. Therefore, the amount of signal intensity related to in-

creased MCA size or increased binding efficiency is unknown. Ironically, this increased

circulation time also complicates current USMI techniques because of the need to wait

for free agent clearance prior to imaging adherent bubbles. It should also be noted that

there is most likely a tradeoff between wait time and binding efficiency. It is possible

that the increase in cross-sectional area of the targeted agent is more susceptible to

75



detachment owing to the increase in shear force by the circulatory system. However,

we hypothesize that new techniques will allow near-real-time differentiation of free and

adherent agents without waiting for clearance, which will alleviate this concern in the

future [111; 112; 122].

In this study, we used sorted 3 µm and unsorted MCA distributions to target angio-

genic tumors to determine the relationship between contrast sensitivity enhancement

and MCA size. USMI results showed a strong relationship between MCA size and tar-

geted contrast sensitivity with an observed 20-fold increase in video intensity provided

by sorted targeted 3 µm MCAs compared to unsorted targeted MCAs. Given the re-

sults of the presented perfusion studies and prior in vitro work, we assume that the

increased backscatter intensity from the targeted sorted 3 µm bubbles was the main

component in the sensitivity difference between large and small targeted populations

[41]. However, larger microbubbles have a larger surface area, and it is reasonable to

assume that they contain more binding ligands than small-diameter bubbles. There-

fore, it is possible that the larger MCAs would have a higher probability of binding

to a targeted site than smaller MCAs. In contrast, it is also likely that the larger mi-

crobubbles may detach faster than the smaller microbubbles owing to shear forces, as

mentioned above. We are currently unable to assess these variables in vivo, but these

aspects should be examined in future in vitro studies.

Data also showed that non-targeted sorted 3 µm MCAs had a video intensity com-

pared to baseline greater than that of the unsorted targeted agents. This discrepancy is

probably due to a small population of non-specifically bound MCAs in the circulatory

system at the time of microbubble destruction. It is reasonable to assume that both

sorted 3 µm and unsorted MCA control agents result in some non-specific contrast

adhesion; however, sorted 3 µm MCAs produce a larger backscatter intensity inadver-

tently creating higher values for control populations at a −3 dB gain setting. However,
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this small increase in signal from the 3 µm sorted control agents was minor compared to

the much larger increase in enhanced signal from the 3 µm targeted agents; therefore,

this did not detract notably from the achieved improvements in contrast sensitivity.

In this study, we have demonstrated that a several-fold improvement in contrast

sensitivity enhancement can be achieved by tailoring MCA size distributions. This

result is especially significant for USMI applications, where the amount of targeted

contrast agents retained is typically low, and maximum sensitivity to MCAs is desired.

Further work needs to be done to understand persistence effects and binding probabil-

ities related to increased microbubble diameter prior to further optimization of MCA

size distributions for use in USMI. Additionally, further in vivo studies need to be per-

formed to examine the optimization of the monodispersity of the bubble population and

relationship of the mean diameter to the imaging frequency, which are not considered

here.
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CHAPTER 9

3-D Ultrasonic Molecular Imaging of Angiogenesis

9.1 Introduction

One of the biggest limitations with US imaging, compared to other imaging modalities,

is that the field-of-view is less comprehensive [123]. Linear arrays, which are typically

used in US imaging are inherently 2-D. Recently, however, 3-D US imaging has become

available, largely for cardiac and obstetric applications [124; 125] and more recently for

contrast-enhanced perfusion applications [126; 127; 128]. However, molecular imaging

with US has traditionally been utilized only with 2-D image acquisition due to the

widespread use of one-dimensional linear array transducers and the lack of commercially

available US systems with high-resolution contrast-specific imaging modes implemented

on 3-D probes.

Our hypothesis is that the application of molecular imaging in 3-D space will provide

a more robust evaluation of disease progression than current methods. In this chapter,

we demonstrate the application and potential of 3-D USMI of angiogenesis in vivo

using a clinical US scanner with a custom mechanically scanned transducer system.

c© BC Decker Inc. (mi.deckerpublishing.com) Portions reprinted, with permission, from JE
Streeter, RC Gessner, J Tsuruta, S Feingold and PA Dayton. “Assessment of Molecular Imaging
of Angiogenesis with Three-Dimensional Ultrasonography” Mol Imaging, 2011 Nov/Dec; 10(6): 460-
468.

http://mi.deckerpublishing.com


Microbubble targeted images were fused with b-mode images in 3-D space to allow for

characterization and localization of αvβ3 molecular marker expression with respect to

tumor volume. Finally, a postmortem immunohistochemical (IHC) analysis performed

on multiple tissue slices was compared with the ultrasonic data.

9.2 Materials & Methods

9.2.1 Microbubble Contrast Agents

Lipid solutions for MCAs designed to target αvβ3 integrins were created as described

in 4.3.3 and 4.3.4. MCAs with a large preferentially-selected mean diameter (3.3 ± 1.9

µm) have been shown to produce greater backscatter intensities [38; 105; 42] in USMI

studies as compared to vial-shaken, unsorted polydisperse distributions. Therefore, all

MCAs in this study were sorted as described in 4.3.6. Initial concentrations and size

distributions of MCA solutions were determined using an Accusizer 780A. Using these

measurements, the MCAs were diluted with PBS to a concentration of 8.0 x 108 #
mL

prior to intravenous administration.

9.2.2 Animal Preparation and Contrast Administration

A total of 8 Fischer 344 rats of similar sizes were used for all in vivo studies. Tumors

were implanted and animals were prepared for imaging as described in 5.3. In all

experiments, bolus MCA injections of 100 µL were delivered followed by an immediate

flush of at least 200 µL sterile saline to clear any remaining MCAs from the catheter.

9.2.3 3-D Imaging Apparatus

The 3-D US imaging system along with the parameters used to acquire all images in

this chapter are as described in 5.2.1, 5.2.2 and 5.2.3. Within all imaging data sets,

the CPS gain (−3 dB) and transmit power (MI: 0.18) were kept constant and the
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transducer was stepped elevationally every 800 µm.

9.2.4 Image Acquisition

The procedure for performing molecular imaging experiments and its subsequent anal-

ysis is described in 6.2. In this study, twenty minutes was determined to be an adequate

length of time for this volume of freely circulating contrast agents to be cleared from an

animal’s system. This was done by examining perfusion wash-out curves for animals

with similar weights and given the same dose of MCAs (data not shown). We used

Matlab’s two-sided Student’s t-test to assess the statistical significance of each group.

Significance between two different distributions were considered at a value of p < 0.05.

9.2.5 Multi-slice IHC Analysis

Tissue Fixation, Processing, Embedding and Sectioning

After USMI was performed, the FSA tumors were extracted for IHC analysis staining

for neovessel angiogenesis using a CD31 antibody as previously discussed [43; 104].

Before extraction, the tumor was spot cauterized on the dorsal and left tumor surfaces

along the anterior to posterior axis (elevational direction) (Figure 9.1). These cauterized

marks were used to preserve the spatial orientation of the tumor after it was removed,

such that the tissue face would be perpendicular to the elevational scanning direction

(posterior to anterior) of the US transducer. Thus, when processed, the histology slides

would approximately correspond to the image displayed with the US system. After

extraction, the tumor was segmented into multiple 2 to 3 mm tissue blocks. Finally,

each segment was cauterized at a central dorsal position of the tissue face to preserve

the orientation of the tumor in later processing steps (Figure 9.1).

Tumor slices were fixed overnight with 4% paraformaldehyde (Electron Microscopy

Sciences - Hatfield, PA) in PBS. Fixed tissue was washed for 2 days in PBS prior to

being processed into paraffin. Tumor slices were embedded in paraffin blocks while
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Figure 9.1: 3-D tumor diagram illustrating the anatomical terminology and directional
orientation with respect to the transducer for multi-slice histological analyses.

preserving the orientation of the US scan using the cauterized marks. Lastly, tissue

sections were mounted on charged slides for histology and IHC processing.

Histology and Immunohistochemistry

Standard methods for histology and IHC were used. Briefly, tissue was deparaffinized

with toluene and re-hydrated through a graded series of ethanol and PBS. Nascent vas-

culature was localized using an antiserum against PECAM-1 (CD31, sc-1506) raised in

goat (Santa Cruz Biotechnology - Santa Cruz, CA) diluted 1:200 in normal rabbit serum

to a final concentration of 1 µg
mL

. The PECAM-1 IgG was detected using a biotinylated

rabbit anti-goat antiserum (BA-5000) (Vector Laboratories - Burlingame, CA) diluted

1:300 in normal rabbit serum to a final concentration of 5 µg
mL

. The anti-goat IgG

was localized using streptavidin-peroxidase and 3,3-diaminobenzidine tetrahydrochlo-

ride (DAB) (Zymed Laboratories - San Francisco, CA) according to manufacturer’s
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directions. Antibody incubations were for one hour at room temperature.

Photomicrographs were captured using a BX51 microscope (Olympus - Center Val-

ley, PA) equipped with a motorized 2-D stage driven by a ProScan II controller (Prior

Scientific - Rockland, MA). Individual fields were captured at 100x magnification with

a DP72 digital camera (Olympus) as 1360 by 1024 pixel Tagged Image File Format

(TIFF) files and were assembled into a final image using version 7.7.0.0 of MetaMorph

Basic software (Molecular Devices -Downingtown, PA). The original photomicrographs

were captured at a resolution of 1.02 µm per pixel. The final photomicrograph mon-

tages used for analysis were compressed using the Joint Photographic Experts Group

(JPEG) algorithm to reduce their file size and to facilitate their analysis with Matlab

software.

Neovascular Quantification

Due to the extremely large file sizes (∼250 MB), the high-resolution images of the

stained tissues were re-sized to 20 percent of the original image size. Subsequently,

the images were imported into a custom Matlab program for counting neovasculature.

First, a user-defined ROI was drawn within the perimeter of the tumor similar to the

USMI analysis. At random, ten non-overlapping 1 mm by 1 mm image blocks within

the ROI were displayed. Lastly, the stained blood vessels were manually counted in

each image. Mean and standard deviations corresponding to the number of new blood

vessels per unit area were evaluated and compared within each tumor segment as well

as between the multiple sections acquired across the tumor.
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9.3 Results

9.3.1 Intra-tumor Analysis

3-D molecular imaging analyses of 8 different animals demonstrated large variations in

slice-to-slice mean pixel intensities across different animals’ tumors (Animal 6: Mean

= 0.07, Spread = 0.04, Animal 5: Mean = 0.78, Spread = 0.68) (Figure 9.2). The

spread or the range in the data was calculated as the difference between the image with

the highest mean targeting intensity value minus the image with the smallest mean

targeting intensity.

Figure 9.2: Box plots of the mean pixel intensity distributions for each of the eight
animals imaged. All values were normalized to the 2-D acquisition with the most
MCA targeting. The x symbol represents imaging slices, which were outliers from the
distribution.

To further assess intra-tumor variation, mean pixel intensity, normalized to the 2-D

acquisition with the most MCA targeting, was plotted as a function of distance relative

to the tumor centers for two of the eight most dissimilar animals imaged (Animal

#5 = A, Animal #3 = B) (Figure 9.3) to illustrate how microbubble targeting varied
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spatially between the two. Mean video intensity (normalized to both tumors’ maximum

intensity) and standard deviations were 0.77 ± 0.18 and 0.71 ± 0.10 respectively.

Figure 9.3: Mean pixel intensity per 2-D slice acquisition demonstrating the spatial
MCA targeting variability within two different animals. All values were normalized to
the 2-D acquisition with the most MCA targeting in each of the two animals. Panel A
corresponds to Animal 5 and panel B corresponds to Animal 3.

In addition to slice-to-slice analysis, the degree to which a single imaging plane could

misrepresent the entire volume of tissue was determined by calculating the discrepancy

between the mean targeted intensity value at the center of the tumor and the mean

intensity across all slices in the tumor. This discrepancy was plotted as a percent

difference (Figure 9.4) with respect to the mean targeted intensity value at the center

of the tumor. Our data indicate that volumetric microbubble targeting could have been

underestimated by 28% or overestimated by as much as 16% if only the center slice was

acquired.

Lastly, an example 3-D rendering of a heterogeneous tumor (Animal 5) qualitatively

illustrates the spatial variation of angiogenic marker expression (Figure 9.5). Panel A

shows 3-D isosurfaces of the tumor divided at various locations to illustrate the tar-

geting variation in each user-defined region. Panel B shows each associated targeted
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Figure 9.4: Percent difference between mean pixel intensity at center of tumor and
mean pixel intensity for all 2-D slices of the same tumor relative to the center value.

acquisition overlaid onto the corresponding b-mode image (traditional 2-D representa-

tions).

9.3.2 Inter-tumor Analysis

The distributions of intensity values for all 2-D acquisitions across each animal are

compared to each other in the form of box plots normalized to the acquisition with

the most microbubble targeting (Figure 9.2). The variance of the mean pixel intensity

for the most heterogeneous (Animal 5) and least heterogeneous (Animal 6) tumors was

0.032 and 0.0001 respectively.

Animals 2 and 7 had video intensities that were similar at the center location of each

respective tumor (0.10 in Animal 2 versus 0.09 in Animal 7). It is important to note

that although the mean targeted intensity values were similar at the center position,

the range in targeting between the two different animals were significantly different (p

< 0.05).

85



Figure 9.5: A 3-D rendering of an angiogenic tumor with targeted contrast overlaid on
b-mode images. This image was created in Matlab by forming an isosurface from the
user-defined regions of interest in each 2-D acquisition plane.

9.3.3 Approximating Error in Analogous 2-D Study

In this study, we estimated the magnitude of potential misalignment error in applica-

tions where the transducer is moved from a fixed clamp and repositioned. The potential

error was obtained by calculating the absolute value of the difference in mean targeting

between all adjacent imaging planes relative to the volumetric mean of the tumor, as

indicated by the following equation:

RLV =
1

Im

N−1∑
i=1

∣∣∣∣Ii+1 − Ii
N

∣∣∣∣ (9.1)

where Im is the mean targeted bubble intensity throughout the entire tumor and

N is the number of 2-D acquisitions. This quantity, designated as the “Relative Local

Variability” (RLV), determines how much variability there is between adjacent slices

along the elevational scanning direction. The RLV between adjacent planes for all tu-

mors was 13.4%. The animal with the most relative variability between adjacent image
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slices, and thus the highest likelihood of error resulting from a transducer repositioning,

was 32.1% (Animal 4) while the animal with the least likelihood of error had an RLV

of 6.8% (Animal 5) (Figure 9.6).

Figure 9.6: Relative Local Variability (RLV), or average slice-to-slice variation, ex-
pressed as a percentage of the volumetric mean MCA targeting. Error bars are standard
deviations of the adjacent slice relative differences.

9.3.4 Multi-slice IHC Analysis

CD31 staining was performed on three different FSAs to corroborate the conclusion

drawn from the USMI data that tumor tissue is heterogeneous. The number of CD31

stained blood vessels per unit area for each segment was compared to the US data

(Table 9.1). All histological data was normalized to the segment that contained the

largest mean blood vessel density. All US molecular imaging data was normalized to

the mean pixel intensity of the acquisition with the most MCA targeting. The data

shows that there is large variation in neovasculature in intra- and inter-tumor analyses.

IHC data demonstrates that there is a large variation in quantity of neovasculature

and that it roughly correlates to the amount of microbubble targeting in the USMI
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Table 9.1: Blood vessel density (mean and standard deviation) for each tumor segment
for each tumor as compared with the corresponding targeted intensity obtained with
USMI. All values were normalized to the maximum blood vessel density for each tumor.

Histology Ultrasound

Animal #
Approx. Dist.
From Tumor
Center [mm]

Norm. Mean Blood Vessel
Density [Count/Unit Area]

Norm. Mean
Targeting Intensity

[Intensity/Unit
Area]

-3.8 0.52 ± 0.12 0.13
-1 0.51 ± 0.28 0.28

1 1.4 0.27 ± 0.38 0.26
4.1 0.44 ± 0.38 0.21
5.3 0.29 ± 0.27 0.11

Total Mean 0.40 0.20
-2.1 0.52 ± 0.24 0.74

2 1.9 1.0 ± 0.56 1.00
5.9 0.58 ± 0.34 0.28

Total Mean 0.70 0.67
-1.8 0.59 ± 0.44 0.65

3 3.6 0.70 ± 0.27 0.58
4 0.97 ± 0.34 1.00

Total Mean 0.75 0.75

data (Figure 9.7). Data shows that the normalized mean pixel intensity of the US

acquisitions has a similar trend as the histological analysis. Furthermore, targeted

MCA overlays on b-mode images illustrate the variability in microbubble targeting

to αvβ3 along with representative images of the stained histology. Exact alignment

and orientation between the tumor segments and the USMI data was unattainable due

to the difficulty of perfectly registering histology and image data, and thus a more

rigorous and quantitative correlation between US and histology was not attempted and

considered to be outside of the scope of this project.

88



Figure 9.7: Upper Left Panel: Distributions of new blood vessel density at each tumor
segment in boxplot format. The data was normalized to the slice B mean so that the
scales were similar to the corresponding USMI analysis. The approximate elevational
distance from the tumor center is indicated below the distribution. Upper Right Panel:
Normalized mean pixel intensity per 2-D slice acquisition for USMI analysis. Data
was normalized to the 2-D acquisition with the most targeting. Bottom Panel: The
top images are targeted overlays on b-mode images illustrating microbubble targeting
to αvβ3.The bottom images are representative of the stained histology samples at the
approximate locations specified. Dark red color indicates neovasculature stained with
CD31 antibodies.

9.4 Discussion and Conclusion

Until recently, traditional b-mode has been predominantly 2-D. This has not been a

limiting factor for applications in which the user is imaging anatomical structures,
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because adjusting the transducer manually can vary the image plane. Since molecular

imaging with US typically uses a more precise subtraction method for quantifying

molecular marker expression, image acquisitions are obtained by placing the transducer

in a fixed clamp on an anesthetized animal [43; 44; 60; 61; 108; 114]. For over a decade,

this 2-D molecular imaging method has provided valuable insight into the detection of

biomolecular markers for numerous applications previously mentioned. In this chapter,

we illustrate the advantages of molecular imaging in 3-D.

Data illustrated that 3-D USMI presents a more robust assessment of molecular

marker expression throughout the tumors than standard 2-D US. In the case of non-

homogeneous tumors (which is common [129]), it is easy to incorrectly assess the tu-

mor characteristics based on only a single cross sectional US slice. An example 3-D

tumor rendering (Figure 9.5) illustrated this point through visualization of four differ-

ent targeted imaging planes with unique spatial distributions of αvβ3 expression. In a

traditional 2-D analysis, it is possible that any one of these acquisitions would be used

to assess the angiogenesis throughout the entire tumor. However, it is evident that the

mean MCA targeting in that single plane is not the same in all areas of the tumor,

which was confirmed by the relatively large variations in targeting across the tumors

of each of the 8 different animals. The importance of a 3-D targeted imaging approach

was further corroborated by the analysis of the percent difference between targeting at

the center of the tumor relative to the overall mean targeting throughout the tumor.

This analysis, which approximates the error between the mean targeting of a 2-D and

a 3-D molecular imaging study, indicates that quantification of angiogenesis can be sig-

nificantly underestimated or overestimated by 2-D imaging. Therefore, implementing a

3-D system for molecular imaging with US provides comprehensive details that would

otherwise be missed with a traditional 2-D analysis.

In this chapter we also compared traditional 2-D USMI and its effectiveness by
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analyzing the variation in angiogenic biomarker expression in individual tumors. We

showed that some tumors had similar mean targeting values over the volume of the

tumor while the range and variance of targeting for the tumor was significantly dissim-

ilar. Consequently, a single-slice 2-D targeting analysis could lead to conclusions based

on incomplete data when comparing two different tumors due to the large targeting

variations between them, and therefore incur additional error.

To further examine the error potentially caused by undersampling in 2-D molecular

imaging with US, we analyzed the RLV in MCA targeting between all adjacent imaging

planes. In 2-D serial studies, slice position and orientation is essential in maintaining

a consistent sequential study. Therefore, using the RLV metric, we quantified the

potential error associated with applications in which the transducer is removed from a

fixed clamp and repositioned. In this study, the RLV was approximately 13%. While

this approximated error may seem low, a 3-D analysis would inherently include all

microbubble targeting, thus eliminating the possibility for this type of error.

In this study, we performed a multi-slice immunohistological analysis on three dif-

ferent tumors. This data corroborated our conclusion that the angiogenesis within our

tumors was heterogeneous, necessitating a more comprehensive volumetric analysis for

adequate characterization. Similar to USMI, variation in mean blood vessel density was

considerable in some locations and modest in others, thus reaffirming our conclusion. It

is important to note that, although we see a general trend between molecular imaging

and histology, it was too difficult to correlate directly. This is due to several factors.

First, although CD31 and αvβ3 expression are biomarkers for neovasculature, they are

not equivalent. Substitution for CD31 instead of αvβ3 immunohistology was chosen

due to the challenge of obtaining specific antibodies directed against rat αvβ3 [130].

Second, it was not possible to exactly match the imaging plane of the histological sam-

ple to the US dataset due to the complex orientation and alignment issues, and tissue
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deformations associated with extraction. Regardless, the histology results lead us to

the same conclusion as the USMI analyses: a single-slice 2-D analysis of neovasculature

could easily misrepresent the true value exhibited by the entire volume of the tumor.

In this chapter, we demonstrated the potential of 3-D USMI of angiogenesis in

vivo. While other clinically relevant applications were not explored, the extension of

molecular imaging with US to 3-D provides an opportunity to improve the quality of

data collected as well as the accuracy of conclusions drawn from these studies. Based

on these demonstrated advantages, we hypothesize that 3-D molecular imaging will

become more commonplace as high-resolution 3-D transducers with non-linear contrast

imaging capability become more widely available on commercial US systems.
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CHAPTER 10

ARF - Enhanced Ultrasonic Molecular Imaging

10.1 Introduction

10.1.1 Background

Over the past decade, in vivo USMI research has relied on passive targeting as the

basis for this technique. Passive targeting is microbubble adherence that does not

require any additional forces for binding. Unfortunately, passive targeting in USMI

experiments has resulted in poor binding efficiency, which limits its advancement in

many applications that require greater numbers of targeted microbubbles.

ARF can produce a force on particles suspended in liquids such as microbubbles

[46]. A transducer directing non-destructive energy perpendicular to the blood flow can

displace moving MCAs to the wall of the vessel opposite the sound source increasing

the probability of microbubble-endothelium interactions as illustrated in Figure 10.1

[46]. Forcibly displacing MCAs to the wall of the vessel would make it possible to

increase the concentration of targeted MCAs during USMI experiments, which has

been hypothesized but not demonstrated in vivo with a clinical US system [46; 47; 48].

c© 2012 Elsevier. Portions reprinted, from RC Gessner∗, JE Streeter∗, R Kothadia, S Feingold,
and PA Dayton. “An In Vivo Validation of the Application of Acoustic Radiation Force to Enhance
the Diagnostic Utility of Molecular Imaging Using 3-D Ultrasound” Ultrasound Med Biol, 2012; 38(4):
651-660. *Equal Contributers



Figure 10.1: Example of Acoustic Radiation Force-Enhanced Targeting. A: Illustration
of targeted microbubbles flowing through a vessel that expresses a particular biomarker.
B: When the transducer directs non-destructive energy perpendicular to the blood flow,
the energy can displace moving MCAs to the wall of the vessel opposite the sound
source. C: There is a higher probability of microbubble-biomarker interactions, thus
an increase in targeting.

10.1.2 ARF and Molecular Imaging

Since early observations of ARF on MCAs in vivo, researchers have speculated about the

utility of this force to push populations of microbubbles in a direction normal to their

flow in a patient’s vasculature, thereby guiding them out of circulation and against the

wall of a vessel [46]. It has been hypothesized that increasing ligand-receptor proximity

and reducing the velocity of flowing microbubbles would greatly increase the amount

of targeted microbubble adhesion in molecular imaging studies [131; 48; 47; 110; 51].

In vitro studies of ARF on microbubbles have demonstrated the ability to increase

the quantity of microbubble adhesion over 100 fold compared to molecular targeting

without ARF [47]. In vivo observations performed by intravital microscopy have also

demonstrated between four and twenty-fold increases (depending on the vascular en-

vironment) in the amount of targeted microbubbles retained in microvasculature after

ARF pulses [48]. Similarly, with the development of acoustically-active drug delivery

vehicles, it has been hypothesized that ARF could be a mechanism to increase vehicle
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and drug concentration at the desired target site via US. Researchers have shown the

utility of ARF to mediate the concentration of several types of potential therapeutic

delivery vehicles [132; 133; 134].

It has also been proposed that ARF might play a role in pulse sequences designed

to enhance the detection of targeted contrast agents in molecular imaging. Many

current molecular imaging studies involve the use of a waiting period, typically 5 to

20 minutes, for free (unbound) microbubbles to clear the circulation before imaging of

adherent targeted agents can be performed [135]. This limitation makes USMI a slow

process and likely results in loss of detected signal as bound microbubbles can detach

or degrade over the waiting period. It has been shown that rapid increase in adhesion

of targeted microbubbles using ARF can be utilized to help delineate signal from free

and bound contrast agents [136; 112].

To date, literature demonstrating the application of ARF in vivo to improve mi-

crobubble targeting has been scarce. This is likely due to a disparity between the types

of acoustic pulses used for imaging by clinical and pre-clinical imaging systems, and the

acoustic regime over which ARF-induced microbubble displacement is most efficient.

Microbubble translation is maximized near the bubble’s resonant frequency. For most

efficient translation, a large duty cycle is required, and the MI must be low enough to

avoid microbubble destruction [131]. A long duty cycle and low MI are typically not

parameters beneficial for US imaging, and thus it is likely that the paucity of in vivo

ARF-enhanced molecular imaging data is due to the fact that these pulse sequences

are not intuitively available on commercial US equipment.

In this chapter, we describe the implementation of a widely-used clinical US sys-

tem, the imaging parameters of which we have adjusted in order to produce ARF of a

magnitude substantial enough to cause non-destructive bubble translation. Following

the ARF pulses used to enhance contrast targeting, we utilize contrast-specific imaging
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pulse sequences for molecular imaging. This study uses a FSA tumor model to illus-

trate the effect of ARF-enhanced molecular imaging compared to conventional passive

molecular imaging. Additionally, we investigate the effect on non-specific adhesion

caused by the intentional push of microbubbles away from the center of the lumen

toward the distal walls within tumor vasculature. Results from preliminary in vitro

studies are also presented which suggest that the pressure of the ARF pulse sequence

is a significant factor in promoting lasting bond kinetics between molecularly targeted

microbubbles and their target integrins, and that one must balance detrimental over-

pushing with ineffective under-pushing to achieve the optimal ARF-enhanced molecular

imaging protocol.

10.2 Materials & Methods

10.2.1 Microbubble Contrast Agents

All microbubbles used in our studies were formulated as previously described in 4.3.3,

4.3.4, and 4.3.6. Briefly, targeted agents were fitted with a cRGD peptide known to bind

to αvβ3, an integrin over-expressed on angiogenic endothelium [22; 38]. Likewise, non-

targeted microbubbles were produced with a similar lipid formulation, but without the

targeting ligand as described in 4.3.2, 4.3.4, and 4.3.6. Both targeted and non-targeted

bubbles were of a diameter size distribution centered at 1.6 µm.

10.2.2 Imaging System

The 3-D US imaging system along with the parameters used to acquire all images in

this chapter are as described in 5.2.1, 5.2.2 and 5.2.3. Within all imaging data sets, the

CPS gain (−10 dB) and transmit power (MI: 0.18) were kept constant. The elevational

step-size used in this study was 400 µm.

For volumetric radiation force administration and imaging, the transducer was swept
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in the elevational direction by a computer-controlled motion stage interfaced through

LabView to a desktop computer as previously described in 5.2.4. The amplitude of

the ARF pulses was modulated by using the power output dial of the US system. The

output dial to pressure amplitude relationship used in this study was as follows: −7

dB = 4 kPa, −3 dB = 13 kPa, 0 dB = 21 kPa.

10.2.3 Calibration

Acoustic pressure measurements were determined by a calibrated needle hydrophone

(model: HNA-0400, Onda - Sunnyvale, CA) in a water tank. The acoustic pressures

produced by the linear array transducer in PW Doppler mode at the previously men-

tioned parameters were measured at 100 µm increments in a 2.2 cm x 0.4 cm area in

front of, and parallel to, the aperture using the needle hydrophone. This region of the

acoustic pressure field was mapped at 0.5, 1, 1.5, and 2 cm distances from the aperture,

for seven different power output settings. The peak negative pressure was measured at

each spatial location and power output setting. These pressures were between 8 and 28

kPa for the system output setting studied, and the pressure field deviated by less than

10% at the locations between 0.5 and 2 cm from the aperture face (in the water tank).

10.2.4 In Vitro Studies: Effect of ARF Pressure

In order to assess the relationship between output pressure and microbubble translation

efficiency, an optical-acoustical system was constructed to enable visualization of mi-

crobubble translation during pulsing. A Photron high-speed camera (Model APX-RS

San Diego, CA) was fitted with a 60x water immersion objective lens (LUMPlanFI/w,

Olympus - Melville, NY) through a single-tube microscope (Edmund Optics, Barring-

ton, NJ). The objective was inserted through a latex seal into the water tank and

aligned confocally with and at 90 degrees to the linear array transducer (Figure 10.2A).
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A 200 µm acoustically and optically transparent cellulose tube (Spectrum Labs, Ran-

cho Dominguez, CA) was placed at the mutual focus, and a fiber optic illuminator was

used as a light source for the camera. A dilute concentration of contrast agents was

pumped through the tube and ARF pulses were applied perpendicularly to both the

flow direction and microbubble buoyancy. Videos were acquired of the contrast agents

as they were pushed by the ARF pulses across the diameter of the tube. Data were

analyzed offline and the spatial locations of the contrast agents were mapped through-

out their translation using a custom-designed program in Matlab. Bubble motion was

tracked at each of the pressure outputs, yielding a relationship between ARF-induced

translational bubble velocity and acoustic pressure amplitude.

Figure 10.2: Experimental diagrams for the in vitro characterizations of the effects of
radiation force on microbubbles. A: System used to determine the relationship between
microbubble translational velocity and output pressure from the transducer. B: System
used to examine the effects of secondary radiation force on contrast agents after making
contact with the tube wall. In panel A, the optical axis is along the x direction, the
acoustic axis is along the z direction and the microbubble flow axis is along the y
direction. Similarly, in panel B, the optical axis and the acoustic axis are along the z
direction and the microbubble flow axis is along the y direction.

A second study was performed in which the axial dimension of the transducer was
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aligned with the optical axis, and ARF pulses were used to push contrast agents to-

ward the wall of the tube closest to the lens (Figure 10.2B). The purpose of this study

was to visualize the behavior of microbubbles at the tube wall after initial ARF pulses

had successfully pushed them to the boundary, and thereby quantify conditions where

“over-pushing” occurred. We define over-pushing as any ARF setting that caused mi-

crobubble destruction, or aggressive lateral motion along the wall (i.e. motion that

would likely cause adherent microbubbles in vivo to be knocked free and thus be detri-

mental to molecular imaging studies). Since our bubbles were not targeted to the tube

wall, it was possible to observe their motion as an indication of both the lateral com-

ponent of primary and secondary radiation forces acting on them at the liquid-tube

interface. Videos of the bubbles were acquired for several seconds as they were pushed

into the wall by ARF pulses, and analyzed later offline. Data were processed with a

pixel-wise standard deviation projection through the time axis, thereby quantifying the

lateral movement of the bubbles after hitting the wall.
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10.2.5 In Vitro Studies: Estimating Optimal In Vivo Study Parameters

It is known that the amount of ARF experienced by a defined population of microbub-

bles is a function of the acoustic pressure and the exposure time in the acoustic field.

Prior to in vivo studies, we estimated optimal experimental parameters for administer-

ing ARF to a volume of tissue in which targeted contrast agents were circulating. We

chose to utilize a fixed translational speed of 1 mm
s

for the mechanically scanned trans-

ducer, as well as a fixed duty cycle for all ARF administration. The optimal pressure,

Po, was necessarily a balance between efficient bubble translation and non-detrimental

bubble-wall interactions. Our goal was to design an experimental protocol in which

ARF was applied uniformly across a volume of tissue. Due to the effects of tissue at-

tenuation, Po was not constant through the entire depth of tissue. This necessitated a

compromise between over-pushing in shallower regions of tissue, and under-pushing at

deeper regions of tissue (Figure 10.3).

The optimal setting was estimated by computing a cumulative error-function (CEF)

defined as

CEF =

∫ D

| Po − P (z) | dz (10.1)

where P (z) was the pressure of the radiation force beam derated for attenuation at

depth z into the tumor with an axial diameter D. Compensating for tissue attenuation

is achieved via the formula

P (z) = Pie
−αz (10.2)

where α is the attenuation coefficient for the tissue [137]. A constant tissue atten-

uation of 0.6 Np
cm

was assumed for the tumors used in the in vivo portion of the study,

as this falls within the range of attenuation values previously measured [138; 139]. The
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units of equation 10.1 are in kPa, though the true values returned by the equation are

less important than the relative values between different power output settings. We

computed the CEF for each of the output settings on the US system as a method for

estimating the optimal ARF pressure amplitude for a given tumor diameter. Similarly,

we could estimate the axial distance travelled by microbubbles, Da, within a volume of

tissue as a result of the ARF pulses by computing

Da(z) = (velocity) · (time) = (m · P (z)) · (wb
vT

) (10.3)

where m is the slope of the curve for velocity of microbubbles as a function of

pressure (determined by the in vitro experiments with the schematic seen in Figure

10.2A, with units m
s·kPa , P (z) is the pressure of the ARF beam at depth z, wb is the

elevational width of the ARF beam, and vT is the elevational sweep velocity of the

transducer during the application of ARF. Thus, the first term in parenthesis will yield

the average velocity of the microbubbles exposed to ARF, and the second term will yield

the amount of time they are traveling. This calculation assumes an infinite potential

path length (i.e. no tube wall to prevent the bubble from being steadily translated).

10.2.6 In Vivo Experiments

A total of 8 Fischer 344 rats were used for studies of ARF-enhanced and conventional

molecular imaging (hereafter called “passive targeting” studies, i.e. those not imple-

menting ARF). Tumors were implanted and animals were prepared for imaging as

described in 5.3. The appropriate volume of stock solution was added to the catheter

via a micropipette tip and flushed with 100 µL of sterile saline such that a contrast

dose of 2 x 108 bubbles was administered consistently. Because of the dose limitations

with the injected volume of saline and contrast into the animals, two different types

of studies were performed over several days to examine (a) the effect of ARF pulse
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amplitude on microbubble targeting efficiency relative to passive targeting, and (b) the

effect of ARF at promoting non-specific adhesion in control bubbles relative to targeted

bubbles also exposed to ARF.

For study type (a), each animal underwent four distinct injection and ARF proto-

cols in the following order: (1) passive targeting (no application of ARF) using targeted

microbubbles (2) application of ARF with a pressure of 4 kPa using targeted microbub-

bles (3) application of ARF using a pressure of 13 kPa with targeted microbubbles (4)

application of ARF with a pressure of 21 kPa using targeted microbubbles. After each

of these four imaging protocols, there was a minimum wait time of 10 minutes to ensure

that there were no circulating microbubbles remaining. Similarly for study type (b),

each animal underwent distinct injection and ARF protocols in the following order: (1)

passive targeting with control microbubbles (2) application of ARF with a pressure of

13 kPa with control microbubbles (3) passive targeting with targeted microbubbles (4)

application of ARF with a pressure of 13 kPa with targeted microbubbles. Between

each type (b) experiment, there was a minimum wait time of 10 minutes to ensure

that there were no circulating microbubbles remaining in the tumor vasculature. In

order to compare type (a) and type (b) experiments, data were normalized to the mean

image intensity within the volumetric passive targeting image data (using targeted mi-

crobubbles without application of ARF) in each animal because this imaging protocol

occurred in both type (a) and type (b) studies.

Before the bolus injection, the system was set to the ARF parameters described in

5.2.4. Then, the transducer was swept at a constant speed of 1 mm
s

across the tumor

volume after contrast agents were administered to the animal, for a total of 10 passes af-

ter the injection. After waiting approximately 10 minutes for freely-circulating bubbles

to clear from the animal’s system, the procedure for molecular imaging experiments

and its subsequent analysis was performed as described in 6.2. The number of animals
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imaged at each setting were as follows: 4 kPa: N = 5, 13 kPa: N = 7, 21 kPa: N

= 5). During passive targeting studies, ARF pulses were not administered (N = 4).

The statistical significance of our comparisons between the mean microbubble target-

ing measured by the different imaging study settings was assessed by using Matlab to

implement a two-sided Student’s t-test assuming equal variances. Significance between

two different distributions were considered at a value of p < 0.05.

10.3 Results

10.3.1 In Vitro Studies: Effect of ARF Pressure

The positions of multiple bubbles (4 ≤ N ≤ 10) were tracked through space and time

and a linear relationship (R2 = 0.953) between velocity and radiation force amplitude

was observed with a slope of ∼5.0 µm
s·kPa (Figure 10.4A). For this linear curve fit, the

y-intercept was set to 0 (corresponding with a velocity of zero for microbubbles not

exposed to ARF).

At each acoustic pressure setting tested between 8 and 28 kPa, the ARF pulses were

able to force the microbubbles out of the center of the cellulose tube and against the

wall. As the pressure was increased, the aggressiveness of the lateral bubble movement

and aggregation due to secondary radiation force increased (Figure 10.4B). It was hy-

pothesized that the secondary radiation force at pressures greater than 10 kPa would

not facilitate lasting ligand-integrin bond kinetics. Thus, Po was estimated to be 10

kPa, as this setting would provide the best compromise between efficient bubble trans-

lation (∼50 µm
s

) and minimization of lateral movement after contact with the vessel

wall.
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Figure 10.4: Results from optical observations of in vitro radiation force on microbub-
bles. A: The translational velocity of contrast agents as a function of radiation force
pressure amplitude. B: Images of standard deviation projections of microbubble lateral
translation along the tube wall during radiation force pulsing at high (19 kPa) and low
(8 kPa) pressures. As the pressure is increased, lateral motion along the wall caused
by secondary radiation force can be clearly visualized as non-spherical trails. Note: the
displayed images are negatives of the actual projections - large values appear dark in
these images.

10.3.2 In Vitro Studies: Estimating Optimal In Vivo Study Parameters

The CEF computations demonstrated that there was no single pressure appropriate

for all tumor sizes. A 2-D surface plot of the CEF values illustrates how error can be

minimized by modulating initial ARF pressure (Figure 10.5A). The optimal initial ARF

pressure to maximize targeting efficiency through the tumor volume was determined

by taking the minimum value of the CEF for any given tumor size. The CEF predicted

that the 13 kPa pressure setting would be the most effective in vivo protocol for a 1 cm

tumor. A 4 kPa and a 21 kPa setting were also tested in vivo to compare the relative

targeting efficiencies to the 13 kPa setting predicted by the CEF model.

The calculations of Da, the expected distance microbubbles would translate in vivo

along the ARF beam’s propagation axis, revealed that both the initial push pressure
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and the depth into tissue determined whether a contrast agent would be sufficiently

pushed out of circulation to the luminal wall (Figure 10.5B). In a previous histological

analysis of vessels within xenografted tumors, 100 µm was the upper bound on the range

of vessel diameters [140]. It was predicted that the three pressure settings tested in vivo

would provide sufficient microbubble translation (Da ≤ 50 µm) at tissue depths less

than 3.12 cm, 2.4 cm, and 0.51 cm for the 21 kPa, 13 kPa and 4 kPa ARF amplitudes

respectively.

Figure 10.5: The CEF plotted as a function of initial ARF push pressure and tumor
diameter. Minimizing the CEF at a given tumor diameter provides the basis for esti-
mating the optimal push protocol for an in vivo study (white dashed line). The X’s
illustrate the three output settings that were tested and compared in the in vivo vali-
dation studies. B: Simulations predicting the distance a microbubble would be pushed
by ARF pulses for the three different initial pressure amplitudes as a function of depth
into tissue.

10.3.3 In Vivo Results

Microbubbles targeted to angiogenic vasculature were used to compare ARF-enhanced

targeting to conventional passive targeting (Figure 10.6). Of the tested ARF pulsing

schemes, the maximum increase in microbubble targeting, as measured by mean pixel
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Table 10.1: A summary of the percentage of animals (top) and percentage of 2-D
image slices (bottom) that exhibited a greater degree of microbubble targeting in the
ARF-enhanced targeting studies relative to the passive targeting studies.

RF-4/cRGD+ RF-13/cRGD+ RF-21/cRGD+

% of Animals Exposed to
ARF with Volumetric

Targeting > Volumetric
Passive Targeting

80% 100% 60%

% of Slices Exposed to
ARF with Mean Targeting

> Passive Targeting
65% 91% 51%

intensities, was achieved using ARF pulses with a 13 kPa amplitude and a cRGD tar-

geted bubble (nomenclature: “RF-13/cRGD+”). In all of the animals that were tested,

the volumetric targeted intensity was greater using RF-13/cRGD+ than with passive

targeting (nomenclature: “RF-0/cRGD+”). Notably, there was improved microbubble

retention in 91% of all 2-D image slices of RF-13/cRGD+ data collected when com-

pared to the RF-0/cRGD+ studies (Table 10.1). In the remaining 9% of 2-D image

slices (in which the passive targeting images were brighter than the RF-13/cRGD+

images), there was less than 1 dB difference between the mean pixel intensity of RF-

13/cRGD+ data as compared to the RF-0/cRGD+ case. Also of note, of the 9% of 2-D

image slices in which RF-13/cRGD+ was not as bright as the passive targeting run,

80% of these were within the same animal.
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The increase in average retained contrast intensity across all animals was 77.8%

higher with the RF-13/cRGD+ over the RF-0/cRGD+ case: 11.40 ± 6.97, compared

to 6.41 ± 4.81 respectively. The values represent baseline-subtracted pixel intensities,

and thus the units are dB. The error in these values is the standard deviation of the

baseline-subtracted pixel intensities. Similarly, both the RF-4 (8.80 ± 7.88) and RF-20

(8.78 ± 6.96) settings produced a statistically significant increase in targeting of cRGD+

bubbles relative to the RF-0/cRGD+ case. Of note, the RF-13/cRGD− case suggested

a slight increase in non-specific microbubble adhesion relative to the RF-0/cRGD−

case; however, differences were not significant (p = 0.15). The histograms created from

the amalgamation of all unnormalized data show that, in general, the adherent bubble

concentration was higher for both ARF-enhanced and passive targeting studies (Figure

10.6B) compared to non-targeted controls. Furthermore, these histograms show that

the RF-13/cRGD+ studies produced the greatest number of enhanced pixels. Figure

10.7 illustrates an example of ARF-enhanced targeted imaging and conventional passive

targeting. In this image, the tumor volume is presented with a conically-stratified

hinged cutaway, wherein elliptical regions of interest were drawn such that they did not

follow the tumor border but instead cut into the interior of the tumor. This allows for

microbubble targeting from within the tumor margins to be visualized on the rendered

3-D surface, which we found was useful in visualizing 3-D molecular imaging data.
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10.4 Discussion and Conclusion

10.4.1 Optimizing Radiation Force: In Vitro Predictions and In Vivo Re-

sults

Using ARF to facilitate molecular targeting of microbubbles to integrins expressed

on diseased endothelium is an intuitive approach to improving the sensitivity of this

diagnostic imaging methodology, but its application is non-trivial. Our in vitro studies

allowed us to observe the behavior of microbubbles exposed to ARF pulses both during

their translation and after making contact with the wall of a vessel-mimicking phantom.

These analyses allowed us to tune parameters to predict the optimal settings for in vivo

studies.

The calculation of the CEF demonstrated that because of the effects of tissue atten-

uation, there is no single setting for ARF amplitude that is universally appropriate to

increase molecular imaging sensitivity at all tissue depths. Our CEF model predicted

that ARF pulses with 13 kPa pressure amplitude to be the most effective of the three

amplitudes tested in our in vivo study. The model suggestions were supported by the

in vivo study, as the 13 kPa pulses had the highest microbubble targeting efficiency.

The CEF predictions for the two other pressure amplitudes tested (4 and 20 kPa) were

similar, which was also reflected in the in vivo data, as these pressures resulted in sim-

ilar increases in microbubble targeting, and were both less effective than the 13 kPa

ARF pulses. This CEF model assumed a constant attenuation of 0.6 Np
cm

throughout the

depth of the tumor, which did not take into account the attenuation provided by the

scatter of microbubbles in the tissue. Moreover, our method of tuning ARF pressure

via the CEF assumes that a uniform density of integrin expression exists throughout

the entire tumor volume. While this is likely not true in the highly heterogeneous

microenvironment of tumors, unless the heterogeneity is known, the best strategy for

improving molecular targeting is one which maximizes the probability of microbubble
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bond formation at all locations within the tumor.

Our in vivo studies demonstrated an average increase in microbubble targeting of

nearly 80% relative to traditional passive targeting studies. It is important to emphasize

that 91% of all the 2-D image slices within the ARF-enhanced datasets exhibited greater

microbubble targeting than the corresponding image frames taken from the passive

targeting data. Of the remaining slices that exhibited greater microbubble adhesion

in the passive targeting case, most were outliers found in a single animal that showed

poor microbubble targeting in all experiments. This, along with the rest of the data

summarized in Table 10.1, makes a compelling argument that ARF can improve the

diagnostic utility of USMI studies.

In control microbubble experiments, non-specific targeting was observed. In some

animals, the targeting with control microbubbles was similar to the targeting with

targeted microbubbles, which is a detriment to the technique. The ultimate goal of

molecular imaging is to determine the degree to which biomarkers are expressed by the

target tissue. Therefore, it is essential that targeted microbubbles adhere in quantities

that produce backscattered intensities in greater magnitude than the signal intensities

from non-specific targeting of control microbubbles. Given this requirement, and the

significant increases in microbubble adhesion with ARF, the application of ARF to

improve targeting in vivo is of great value for applications in which there is substantial

non-specific targeting.

10.4.2 Comparing This In Vivo Study To Previous Work

A persistent question surrounding the usefulness and applicability of ARF to in vivo

molecular imaging studies is whether pushing populations of bubbles away from the

proximal walls of vessels could actually be detrimental to maximizing the number of

microbubble-integrin bonds. While microbubble targeting on proximal vessel walls
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is likely negligible during the application of ARF pulses, after the pulses stop, these

binding sites are free to be populated by the passive targeting of bubbles circulating

through the vasculature. Regardless, based on our in vitro observations, the amount

of increased bubble adhesion due to ARF substantially outweighs any loss of targeting

on the proximal vessel walls. Another concern is whether acoustically forcing bubbles

into vessel walls will cause an increase in non-specific adhesion and thereby increase

the rate of false-positive diagnoses. This was not observed in our study, as there was

no significant difference in targeting efficiency between the control bubble with ARF

application compared to the control bubble with no ARF (Figure 10.6). However, we

suggest that this would need to be re-evaluated for different adhesion ligands and tumor

types.

Previous in vitro work studying the increase in targeting efficiency of ARF-enhanced

studies relative to passive targeted bubbles adhesion has demonstrated a large depen-

dence on microbubble concentration. There was approximately 3 times more adhesion

in passive targeting experiments without an appreciable difference in ARF efficiency

when the bubble concentration was increased from 2.5 x 106 to 25 x 106 #
mL

[47]. This

suggests that a larger difference in microbubble targeting effectiveness will be appar-

ent if a lower concentration of microbubbles is used, though these studies have yet to

be performed in vivo. Additionally, since the magnitude of radiation force is highest

at the resonant frequency of a microbubble [131], the frequency of our radiation force

pulses could have been a source of reduction in expected targeting effectiveness. We

were pulsing at 7 MHz, which was slightly higher than the resonance frequency of our

bubbles (∼6 MHz, as calculated using the method described in [36]). Finally, secondary

radiation force is known to create aggregates of multiple microbubbles after contacting

vessel walls [46; 47; 141] (Figure 10.4B). If these aggregates form lasting bonds with

integrin targets, they will contribute to the image signal intensity differently than a
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single bubble would. This could have contributed to the variability observed in our in

vivo studies.

In prior in vivo molecular imaging studies implementing ARF, Rychak et al. (2007)

optically observed a > 20 fold increase in microbubble adhesion in vivo using intravital

microscopy in both the femoral artery and vein of a mouse model for inflammation;

although, this study relied on optically counting microbubbles through invasive intrav-

ital microscopy to quantify retention rather than using US imaging. Thus, a direct

correlation between Rychak’s data and the data presented herein is not possible. Gess-

ner et al. (2009) previously demonstrated the administration of ARF and acoustic

detection of the targeted bubbles using a prototype high-resolution probe and custom

pulse sequences, with an average microbubble targeting improvement of 13 dB across

all image slices when ARF was used compared to passive targeting. There were many

differences between that study and this one, including the ARF parameters, and the

imaging techniques’ contrast sensitivities, which could account for the differences be-

tween the reported increase in sensitivity facilitated by radiation force in that paper

relative to this one.

10.4.3 Limitations and Future Directions

It was beyond the scope of the in vitro study of observations of contrast agents inter-

acting with the tube wall to quantify the motion and trajectories of the bubbles after

contacting the tube wall. This was because the aggregates of multiple contrast agents

continually formed clusters of bubbles in an erratic fashion due to secondary radiation

forces, and thus made tracking individual contrast agents very difficult. The lack of

this analysis notwithstanding, the standard deviation projections seen in Figure 10.4B

demonstrate this effect and suggest that higher pressures would reduce the likelihood

of lasting ligand-integrin bond formations. A more thorough analysis of this lateral
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motion would help define Po more accurately than our coarse ability to adjust the

amplitude of the ARF pulses permitted.

As mentioned previously, the best strategy for improving targeting is one that max-

imizes the probability of microbubble adhesion throughout the tumor. Due to attenua-

tion effects, it was not possible in our in vivo studies to apply ARF uniformly at all axial

depths. One potential strategy to apply a more homogeneous ARF profile to multiple

depths within tissue (not examined in these studies) would be to sweep through mul-

tiple pressures at each spatial location. If at first a high pressure is used, it facilitates

microbubble targeting deeper into tissue (due to attenuation) while simultaneously

over-pushing at shallow depths. If the pressure is steadily reduced, microbubbles at

shallower depths will be pushed at a more appropriate pressure without negatively af-

fecting the targeted bubbles deeper in the tissue, since the pressure at these depths will

have been reduced and thus the secondary radiation force effects minimized. Of note,

over-pushing targeted contrast agents only would be detrimental to molecular imaging

studies in which the lasting integrity of the microbubble’s bond is critical, whereas this

is less important for therapeutic delivery studies in which the ultimate goal is rapid

and efficient localization and release of a microbubble’s payload.

The time window over which radiation force is applied may also affect the increase

in microbubble adhesion; if radiation force is administered continuously over several

minutes as microbubbles circulate through the animal, more bubbles will be pushed

against the endothelium, though this increased microbubble traffic at the vessel wall

could be counterproductive if it causes previously adherent agents to become dislodged.

The experiments performed in this manuscript were done on a widely used clini-

cal scanner without any additional customization of the software or pulse sequences;

although, we suggest that improved results would be obtained if dedicated optimized

pulse sequencing and beam focusing/defocusing were available. Our approach did rely
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on mechanical scanning of the transducer to uniformly apply ARF pulses from the 1-D

linear array across the volume of tumor tissue; however, this would be unnecessary if a

2-D matrix array probe were available for high-resolution contrast imaging.

The studies presented herein provide validation of ARF applied with a clinical US

system as a mechanism to enhance molecular imaging. In all in vivo studies, the

average targeted microbubble signal throughout the 3-D tumor volume was greater

when using ARF (at 13 kPa) when compared with passive targeting studies. Our 3-D

imaging results demonstrate an improvement in sensitivity of 77.8% over conventional

passive molecular imaging without a corresponding loss in specificity. Furthermore,

experiments suggest that for volumetric administration of radiation force, there exists

an optimal pressure for ARM-enhanced targeting, which is a compromise between effi-

cient bubble translation and adhesion-disruptive secondary radiation force and lateral

translation effects.
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CHAPTER 11

USMI with Buried-Ligand Microbubbles

11.1 Introduction

The current microbubble architecture, with exposed surface targeting ligands, presents

the hazard of non-specific interactions with plasma components that may lead to non-

specific adhesion. One additional concern for clinical application of exposed-ligand

microbubbles is complement activation, which may affect the targeting specificity of the

ligand, stimulate an undesired immune response, change the underlying physiology and,

in more severe cases, result in complement activation-related pseudo-allergy (CARPA)

[142]. Thus, it is necessary to avoid complement fixation and activation by the targeting

ligand on the microbubble surface.

To address the problems of immunogenicity and specificity in USMI, we engineered

microbubbles with a BLA in which a hydrated PEG brush on the microbubble surface

consists of two tiers: the ligand is attached to a short PEG tether surrounded by longer

PEG chains that forms an overbrush (Figure 11.1) [51; 75]. The brush self-assembles

as the underlying lipids adsorbs and condenses into a monomolecular encapsulation

during microbubble fabrication. Shielding of the ligand by the methoxy-terminated

c© 2013 BC Decker Inc. (mi.deckerpublishing.com) Portions reprinted, from MA Borden, JE
Streeter, SR Sirsi, and PA Dayton. “In Vivo Demonstration of Cancer Molecular Imaging with
Ultrasound Radiation Force and Buried-Ligand Microbubbles.” Mol Imaging, 2013.

http://mi.deckerpublishing.com


PEG overbrush was shown to inhibit complement activation and increase circulation

persistence in non-tumor bearing rodents [51; 52; 50; 143].

Figure 11.1: The MCA is approximately 4.0 µm in diameter filled with decafluorobutane
gas and coated with a lipid monolayer shell. A side view of the lipid shell shows the
buried-ligand architecture, which comprises a shorter (2000 Da) PEG tethered to cRGD
peptide surrounded by a longer (5000 Da) PEG overbrush [51; 75; 52; 50; 143].

The buried-ligand architecture is designed to be activated by ARF, a phenomenon

in which momentum is transmitted from the acoustic wave to the microbubble and

which is amplified near microbubble resonance [51; 52]. The combination of a normal

force pressing the microbubble against the endothelium and lateral surface dilatation

and contraction via oscillation, allows the ligand and receptor molecules to penetrate

the longer PEG overbrush for binding. In previous in vitro studies, we found that

microbubbles with the BLA can be targeted to cells with the application of ARF

[52]. However, prior studies have not demonstrated in vivo USMI with buried-ligand

microbubbles.

To test the functionality of the BLA, we elected to target the vasculature with the

cRGD peptide, which has been shown to target tumor vasculature through binding to
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αvβ3 integrin that is over-expressed in tumor vasculature [22]. While cRGD may also

bind to other integrins of the β3 family, such as platelet integrin αIIbβ3, the specific

activation of the buried-ligand microbubbles through ARF of tumor tissues is expected

to limit non-specific background. Comparison of in vivo results from exposed-ligand

and buried-ligand microbubbles allowed an assessment of this approach for molecular

imaging.

11.2 Materials and Methods

11.2.1 Microbubble Contrast Agents

All exposed-ligand microbubbles used in our studies were formulated in a 2 mg
mL

lipid

solution as previously described in 4.3.3, 4.3.4, and 4.3.6. Briefly, targeted agents were

fitted with a cRGD peptide known to bind to αvβ3, an integrin over-expressed on

angiogenic endothelium [22; 38]. Likewise, non-targeted exposed-ligand microbubbles

were produced with a similar lipid formulation, but with a cRAD peptide (control) as

described in 4.3.2, 4.3.4, and 4.3.6. Both targeted and non-targeted microbubbles had

a mean diameter around 4.0 µm.

All buried-ligand microbubbles used in our studies were formulated similar to the

exposed-ligand protocol described in 4.3.3, 4.3.4, and 4.3.6 with the exception that

the untethered - DSPE - PEG2000 lipid was replaced with a longer DSPE - PEG5000

overbrush.

11.2.2 Animals and Tumor Models

A total of 8 Fischer 344 rats of similar sizes (∼125 g) were used for all in vivo studies.

Tumors were implanted and animals were prepared for imaging as described in 5.3. For

each injection, the appropriate volume of stock solution was added to the catheter via

a micropipette tip and flushed with 100 µL of sterile saline such that a contrast agent
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dose of 5 x 106 microbubbles was administered consistently with each injection.

11.2.3 Clinical Imaging System

11.2.4 Imaging System

The 3-D US imaging system along with the parameters used to acquire all images in

this chapter are as described in 5.2.1, 5.2.2 and 5.2.3. Within all imaging data sets,

the CPS gain (−12 dB) and transmit power (MI: 0.18) were kept constant and the

transducer was stepped elevationally at 400 µm increments across the tumor.

For volumetric radiation force administration and imaging, the transducer was swept

in the elevational direction by a computer controlled motion stage interfaced through

LabView to a desktop computer as previously described in 5.2.4. The amplitude of

the ARF pulses was set to be 13 kPa, which provided the best ARF enhancement in a

previous study [102].

11.2.5 Contrast Agent Persistence Protocol

Microbubble clearance from the circulatory system was measured in vivo by observing

the length of time that each type of microbubble persisted in the tumor vasculature.

Thus, prior to obtaining molecular imaging data, microbubble persistence times in the

tumor vasculature were obtained at the cross-sectional center of the tumor using only

one 2-D image plane. Data were collected and analyzed using the procedure outlined in

6.1.1. We used Matlab’s two-sided Student’s t-test to assess the statistical significance

of our comparison between microbubbles with an exposed ligand to microbubbles with

a buried ligand. Significance between two different distributions were considered at a

value of p < 0.05.
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11.2.6 Molecular Imaging Protocol

Before the bolus injection, the system was set to the ARF parameters described in 5.2.4.

Then, the transducer was swept at a constant speed of 1 mm
s

across the tumor volume

after contrast agents were administered to the animal, for a total of 10 passes after

the injection. Then, molecular imaging data was obtained and analyzed after freely

circulating microbubbles had visibly cleared the animal’s system as described in 6.2.

Again, we used Matlab’s two-sided Student’s t-test to assess the statistical significance

of our distributions. Significance between two different distributions were considered

at a value of p < 0.05.

11.3 Results

11.3.1 Contrast Agent Persistence In Vivo

After intravenous administration of MCAs, the mononuclear phagocyte system rapidly

works to remove these foreign particles from the bloodstream [144]. It is hypothesized

that microbubbles with targeting ligands may trigger complement activation in this

system, thus decreasing the persistence time relative to microbubbles without a target-

ing ligand [50]. The goal of our first experiment was to analyze the persistence times

of microbubbles with and without targeting ligands to validate our hypothesis.

We first investigated whether burying cRGD by the PEG overbrush can increase

the circulation persistence of the microbubbles in tumor-bearing rats with an intact

complement system. The persistence of US contrast enhancement was measured as a

function of time in the tumor midsection for buried-ligand cRGD microbubbles, and

the results were compared to those for microbubbles carrying exposed cRGD (i.e., not

buried by PEG) microbubbles. Representative time-intensity curves and their in vivo

images are provided for reference (Figure 11.2).

We observed that the US contrast half-life in the tumor was over threefold higher
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Figure 11.2: A: Representative normalized time-intensity curves showing maximum and
half-amplitudes. B: Representative US images showing a 2-D image plane with color
contrast from microbubble signals overlay onto grayscale b-mode images.

(96 ± 27 s vs. 298 ± 76 s, p < 0.001) for the pooled buried-ligand microbubbles when

compared to the pooled exposed ligand microbubble persistence times. Moreover, the

individual persistence times from each of the buried-ligand microbubble groups (cRGD

and cRAD) were significantly different from each of the exposed-ligand microbubble

types (BLA-cRAD: 273 ± 83, BLA-cRGD: 336 ± 48 vs. ELA-cRAD: 87 ± 21, ELA-

cRGD: 105 ± 31, p < 0.001) (Figure 11.3). The microbubbles were of similar size

and concentration, and therefore the increase in circulation persistence indicated a

functional decrease in non-specific interactions between the ligand and mononuclear

phagocyte system.

11.3.2 Molecular Imaging In Vivo

The overall goal of our study was to reduce the level of complement activation in molec-

ular imaging experiments by shielding the targeting ligand from the immune system

using a PEG overbrush. Consequently, it was essential that our buried-ligand archi-

tecture, not only reduces complement activation, but also behaves in a manner that is

suitable for molecular imaging experiments. Thus, buried-ligand microbubbles targeted
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Figure 11.3: Analysis of total US contrast persistence in the tumor volume without
ARF showed that buried-ligand (BLA) microbubbles circulated approximately three-
fold longer than exposed-ligand (ELA) microbubbles (cRGD, p < 0.001, N ≥ 5, cRAD,
p < 0.001, N ≥ 5) indicating avoidance of the mononuclear phagocyte system by the
buried-ligand architecture.

to αvβ3 (cRGD) were evaluated in vivo relative to non-targeted (cRAD) buried-ligand

microbubbles with and without radiation force. The contrast signal from targeted mi-

crobubbles was registered to the tumor anatomy by overlaying the bound-microbubble

signal in green to the background grayscale b-mode image (Figure 11.4). This method

produced a noticeable increase in targeting for cRGD-microbubbles exposed to ARF in

comparison to controls. To our knowledge, this is the first time that US has been used

to activate targeting specificity for in vivo molecular imaging. All imaging procedures

were performed using a commercially available clinical US system.

In addition, the effect of the application of ARF enhancement was evaluated. This

parameter was determined by taking the ratio of the contrast-to-tissue ratios for tumors

with and without exposure to ARF for a given microbubble architecture, and therefore
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Figure 11.4: Images show the extent of buried-ligand microbubble binding (green con-
trast) within the tumor and surrounding tissue.

are normalized by circulation persistence to give an accurate value for stimulus respon-

siveness. Exposure to ARF more than doubled the volumetric targeted intensity for

cRGD-microbubbles (BLA-cRGD-ARF: 3.7 ± 1.5 vs. BLA-cRGD-No ARF: 1.6 ± 0.6,

p < 0.01) (Figure 11.5). No such increase was observed for control cRAD-microbubbles

in the same animals (BLA-cRAD-ARF: 1.3 ± 0.8 vs. BLA-cRAD-No ARF: 1.5 ± 1.0,

p > 0.05). A comparison of the ARF enhancement between brush architectures showed

a twofold increase for the buried ligand compared to the exposed ligand (BLA-cRGD:

2.3 ± 0.7 vs. ELA-cRGD: 1.2 ± 0.3 , p < 0.01) (Figure 11.6).

11.4 Discussion and Conclusion

Application of ARF with buried-ligand microbubbles was used for USMI of tumor

neovasculature in vivo. Our data show that the PEG overbrush had the necessary
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Figure 11.5: Analysis of the volumetric average contrast intensity indicated a signifi-
cant increase in cRGD-microbubble adhesion to neovasculature when exposed to ARF,
showing that US was effective in triggering ligand-receptor mediated adhesion (N ≥
7). Control cRAD-microbubbles experienced significantly less adhesion than cRGD-
microbubbles when stimulated with ARF, showing specificity (N ≥ 5).

barrier properties to avoid competitive interactions between the ligand and plasma

components en route to the tumor. Our data also show that the buried-ligand surface

architecture is sufficiently dynamic to achieve firm adhesion to the tumor endothelium,

even with no applied radiation force.

This molecular imaging method was able to detect angiogenic tumor regions with

high sensitivity. The methodology allowed on-demand spatiotemporal control over mi-

crobubble adhesion, providing enhanced specificity to the targeted tumor tissue. Molec-

ular specificity for αvβ3 integrin was shown by comparing the targeted contrast signal

from microbubbles expressing the adhesion ligand versus the non-targeted control, in

the same tumors. Finally, the utility of the technique was shown through the use of a

widely available clinical scanner.
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Figure 11.6: Analysis of ARF enhancement for ELA vs. BLA (N ≥ 7). Enhance-
ment was significantly greater for the buried-ligand architecture, showing that these
microbubbles provide enhanced specificity to spatiotemporal targeting through appli-
cation of radiation force.

This work paves the way for a new generation of US imaging systems that provide

greater target sensitivity and adaptive user control for increased safety and accuracy.

While these studies are encouraging, we note that the FSA tumor model tested here

is known to exhibit active angiogenesis over the tumor volume. This allowed quantifi-

cation through volumetric averaging of the contrast signal to produce a sensitive and

specific readout of tumor neovasculature. Clinical translation, however, would require

further testing of the methodology in tumors ranging in size, shape and tissue depth

and exhibiting variable degrees of angiogenesis. Additionally, clinical translation will

require additional studies to assess diagnosis of tumor physiology in large-animal models

exhibiting genetically derived and spontaneous tumors. The in vivo demonstration of

the technique using a clinical scanner provides strong rationale to pursue such studies.
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CHAPTER 12

Evaluating Techniques for Response to Therapy

12.1 Introduction

12.1.1 Aurora-A Kinase Inhibition

Aurora kinase, a type of serine/threonine kinase, is part of a family of enzymes related

to cell proliferation [145]. In the mid 1990’s, it was discovered that aurora kinase defects

led to mitotic abnormalities [146]. Disruption of the functional process involving aurora

kinase can result in mitotic spindle apparatus deficiencies, chromosome segregation

abnormalities and eventually apoptosis [147]. The discovery that aurora kinases are

highly expressed in many tumor cell lines, including pancreatic adenocarcinoma [148],

has led to the development of a variety of aurora kinase inhibitors, such as MLN8237,

for tumor research [149; 150; 151]. MLN8237, an orally administered aurora-A kinase

inhibitor is currently in clinical trials for patients with advanced solid tumors; emerging

data suggests that it may be active in some adult solid tumors [152; 153].

c© 2013 Adenine Press. Portions reprinted, with permission, from JE Streeter, SG Herrera-Loeza,
NF Neel, JJ Yeh and PA Dayton. “A Comparative Evaluation of Ultrasound Molecular Imaging,
Perfusion Imaging, and Volume Measurements in Evaluating Response to Therapy in Patient-Derived
Xenografts” TCRT, Jan 25, 2013. Epub ahead of print.



12.1.2 Response to therapy

Anatomic measures of solid tumors have been the “gold standard” by which therapy

effectiveness is evaluated [7]. The disadvantage to using size measurements to analyze

response is that although the tumor volume may not have changed significantly, there

may be considerable changes in tumor activity and necrosis [154; 155]. In many in-

stances, there may be a significant delay or lag time between the time of treatment and

any change in tumor size [7]. Thus, new early imaging response techniques are sought

after to non-invasively predict treatment response both clinically and pre-clinically.

USMI and DCE-PI are two attractive alternatives.

12.1.3 Ultrasonic Molecular Imaging

MCAs are inherently blood pool agents, thus USMI is restricted to analysis of biologi-

cal events located within the vascular system. This particular characteristic makes this

imaging modality an attractive non-invasive technique for the detection of molecular

processes on vascular endothelial cells, and more specifically, tumor angiogenesis. Tu-

mor angiogenesis is the formation of capillaries and new blood vessels from surrounding

host tissue to provide sufficient oxygen supply and nutrients to the tumor [129]. As

cancer cells proliferate, more oxygen and nutrients are needed for cell survival. Thus,

at the onset of hypoxia after cell proliferation, tumors will assemble vasculature by

releasing chemotactic signals to recruit endothelial precursor cells [129]. Presumably,

any impairment of tumor growth and apoptosis has a downstream effect on angiogene-

sis and therefore angiogenic integrins (VEGFR-2, αvβ3, etc.) expressed on endothelial

cells in proximity to the tumor [156; 157].

In recent years, targeted agents have been successfully used for non-invasive 2-D

in vivo imaging of tumor angiogenesis [45; 44; 158; 43; 78], and more recently USMI

has been demonstrated in 3-D [81; 38]. This breakthrough has allowed USMI to be
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used for quantifying the efficacy of anti-angiogenic drugs such as bevacizumab (VEGF

inhibitor) in murine models [43; 159; 54].

12.1.4 Dynamic Contrast-Enhanced Perfusion Imaging

As previously mentioned (6.1.2), ultrasound DCE-PI is a method that is used to non-

invasively monitor the blood flow in both large vessels and in the capillary microcircu-

lation using non-targeted MCAs. This technique uses a short high-intensity pulse of US

that causes rapid destruction of MCAs in the interrogated region. This clearance pulse

is immediately followed by a low-intensity contrast specific signal that does not frac-

ture the microbubbles, but instead, allows for the pixel-by-pixel observation of blood

flow rates as the MCAs enter back into the tissue [71; 96]. Accordingly, changes in

contrast enhancement over time can provide information about tissue perfusion. This

method has previously been utilized to assess perfusion in the myocardium, kidney,

and other tissues [71; 96; 97]. Furthermore, it is hypothesized that tissue perfusion

correlates to tumor micro vessel density (MVD) [160; 161], a known prognostic factor

in many cancer types [162; 163], which has been the motivation for the development of

this technique in cancer assessment. Thus, it is proposed that in vivo measures using

DCE-PI may also predict therapeutic response to agents that target and disrupt the

tumor microvasculature.

It is unknown as to what method provides the best opportunity for successful pre-

clinical evaluations, though our hypothesis predicts that USMI will provide information

earlier in the treatment schedule than both DCE-PI and volume measurements. A re-

cent study by Sirsi et al., which aimed to evaluate both molecular imaging and perfusion

imaging in a response to therapy study (VEGF Inhibition in SK-NEP-1 tumor line),

supports our hypothesis [72]. Although this study was performed only with 2-D US, it
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was highly significant in suggesting the potential of DCE-PI and USMI in the evalua-

tion of a tumor’s response to therapy. As recent studies have illustrated that 3-D US

DCE-PI and 3-D USMI provide more accurate data regarding tissue blood flow and

biomarker distribution than 2-D US, it is crucial to validate these technologies with

volumetric imaging [81; 92; 73]. Thus, the aim of this study is to further validate the

potential of USMI and DCE-PI in characterizing a tumor’s response to therapy using

3-D US.

To test our hypothesis, we use USMI of angiogenesis and DCE-PI, both implemented

in 3-D, to evaluate the effect of MLN8237 in patient-derived xenografts (PDX) of pan-

creatic cancer. PDX models of solid tumors have recently emerged as an innovative

platform for the study of novel therapeutics for pancreatic cancer [164]. This model,

where actual human tumors are grafted into mice, has been shown to be a better pre-

dictor of response to therapies in patients compared to traditional cell line xenografts

[165]. We use a Siemens Sequoia US system (Mountain View, CA) in CPS mode for

both perfusion and molecular imaging studies. In addition, with the use of a custom

computer-controlled motion stage interfaced to the US system, we perform volumetric

imaging by scanning the transducer elevationally at controlled intervals for a more ro-

bust evaluation of therapy effectiveness [81; 92]. Finally, we compare and elucidate the

strength of each technique as a tool to identify responders and non-responders and to

characterize how a tumor will respond to therapy over time in our PDX models.

12.2 Materials and Methods

12.2.1 Microbubble Contrast Agents

All microbubbles used in our studies were formulated as previously described in 4.3.3,

4.3.4, and 4.3.6. Briefly, targeted agents were fitted with a cRGD peptide known to bind
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to αvβ3, an integrin over-expressed on angiogenic endothelium [22; 38]. Likewise, non-

targeted microbubbles were produced with a similar lipid formulation, but without the

targeting ligand as described in 4.3.2, 4.3.4, and 4.3.6. Both targeted and non-targeted

bubbles were of a diameter size distribution centered at 3.9 µm. Unsorted non-targeted

MCAs for perfusion imaging were created with a similar lipid formulation, but without

the targeting ligand as described in 4.3.1, 4.3.4 and 4.3.5.

12.2.2 Animal Preparation and Contrast Administration

Two PDXs were chosen for this study, one with known response to MLN8237 (PDX-R)

and one with no response (PDX-NR) to MLN8237 based on tumor size measurements

and long term growth curves in previous studies. Each PDX (PDX-R and PDX-NR)

was expanded into 14 nude mice (PDX-R and PDX-NR: Mean Volume ∼0.2 ± 0.1 cm3).

Seven mice were then assigned to drug treatment or vehicle groups for both USMI and

DCE-PI experiments. During US imaging studies, animals were anesthetized with ∼2%

inhaled isoflurane anesthesia with oxygen and their body temperature was maintained

at 37◦C through the use of a temperature-controlled heating pad. The area to be imaged

was coupled to the US transducer using a water-based acoustic coupling gel devoid of

any air bubbles. A 27-gauge catheter was inserted into the tail vein of the animal for

the administration of MCAs. In all USMI experiments, bolus MCA injections of 50 µL

(Concentration: 1 x 108 MCAs
mL

were delivered followed by an immediate flush of at least

50 µL sterile saline to clear any remaining MCAs from the catheter. For all DCE-PI

experiments, non-targeted MCAs were continuously infused at a rate of 15 µL
min

using a

PHD-2000 syringe pump (Harvard Apparatus - Holliston, MA).

12.2.3 Therapy

A total of 28 nude mice with (N=14 PDX-R and N=14 PDX-NR’s) were used for USMI

and DCE-PI experiments. Animals were either treated with 30 mg
kg

of MLN8237 or a
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vehicle control daily by oral gavage each day over a 14-day period (treated group) while

the remaining seven animals were provided a control vehicle (untreated group). For all

experiments, USMI and DCE-PI data were taken on day 0, day 2, day 7, and day 14

during the treatment period in the same animals.

12.2.4 3-D Imaging Apparatus

The 3-D US imaging system along with the parameters used to acquire all images in

this chapter are as described in 5.2.1, 5.2.2 and 5.2.3. Within all imaging data sets for

molecular imaging and perfusion imaging studies, the CPS gain (−15 dB) and transmit

power (MI: 0.18) were kept constant. For molecular imaging studies, the transducer was

stepped elevationally every 400 µm for each image acquisition. However, for perfusion

imaging studies, the transducer was stepped elevationally every 800 µm for each image

acquisition due to the continuous infusion of microbubbles and the restriction on total

volume injected into an animal.

12.2.5 Ultrasonic Molecular Imaging

The procedure for performing molecular imaging experiments and its subsequent anal-

ysis is described in 6.2. In this study, 15 minutes was determined to be an adequate

length of time for this volume of freely circulating contrast agents to be cleared from

an animal’s system. The axial focus was positioned in the center of the tumor for

each animal’s readpoint. In addition, at each readpoint, the amount of microbubble

targeting was normalized to the value obtained at baseline (day 0). Finally, we used

Matlab’s two-sided Student’s t-test to assess the statistical significance of each group.

Significance between two different distributions were considered at a value of p < 0.05.
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12.2.6 Dynamic Contrast-Enhanced Perfusion Imaging

The DCE-PI imaging procedures and analysis for this set of studies are as previously

described in 6.1.2. Perfusion imaging studies required approximately 10 minutes per

animal. In addition, at each readpoint, the volumetric perfusion time was normalized

to the value obtained at baseline (day 0). Significance between treated and untreated

distributions was analyzed in Excel using a two-sided Student’s t-test with unequal

variance. Significance between distributions were considered at a value of p < 0.05.

12.2.7 Volume Measurements

Volume measurements for each tumor were obtained using the b-mode images acquired

during USMI experiments in conjunction with the elevational step size. The measured

volume at each readpoint was normalized to the value obtained at day 0 for comparison

with other groups. Significance between treated and untreated distributions was ana-

lyzed in Excel using a two-sided Student’s t-test with unequal variance. Significance

between distributions were considered at a value of p < 0.05.

12.3 Results

12.3.1 Ultrasonic Molecular Imaging

PDX-R

Day 2 was the earliest readpoint at which there was a statistical difference between the

untreated and treated populations when using USMI. On day 2, the mean volumetric

targeted microbubble intensity in treated animals decreased by 51% from the baseline

measurement at day 0 compared to an 20% increase in targeting for untreated animals

(Untreated: 1.20 ± 0.53 vs. Treated: 0.49 ± 0.40; p < 0.05) (Figure 12.1A). On Day

7, the same trend was observed (Untreated: 0.70 ± 0.31 vs. Treated: 0.08 ± 0.09; p

< 0.05), however, by day 14, there were no discernible differences between treated and
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Figure 12.1: A) The percent change in volumetric targeted microbubble intensity for
treated and untreated animals before and after therapy in a tumor type that responds to
MLN8237 (N=7). B) The percent change in volumetric targeted microbubble intensity
for treated and untreated animals before and after therapy in a tumor that does not
respond to MLN8237 (N=7). *p < 0.05 for treated group relative to untreated group.

untreated populations.

Volumetric US images of a representative treated and a representative untreated

PDX-R at baseline and 48 hours after treatment are illustrated in Figure 12.2. Axial

and lateral axes are displayed on each 3-D image to orient the reader to the plane of

the US transducer. In addition, 2-D cross sections, as registered by these section axes,

illustrate the level of targeting at each day for the treated and untreated animal. The

green color overlay illustrates the microbubble adherence to αvβ3 where the brightness

is assumed to be correlated with the degree of molecular marker expression.

PDX-NR

In the PDX-NR cohort, there were no significant differences between treated and un-

treated populations at any readpoint in the 14-day study (Figure 12.1B). For clarity,

Table 12.1 provides the volumetric USMI data for both the PDX-R and PDX-NR co-

horts at all readpoints.
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Table 12.1: Summary of the normalized volumetric USMI data for both treated and
untreated animals in the PDX-R and PDX-NR cohorts. This data is supplementary to
the plots in Figure 12.1.

USMI
Day 0 Day 2 Day 7 Day 14

Treated 1.00 ± 0.0 0.49 ± 0.4 0.08 ± 0.1 0.08 ± 0.1
PDX-R Untreated 1.00 ± 0.0 1.20 ± 0.5 0.70 ± 0.3 0.08 ± 0.1

p 0.03 0.01 1.00
Treated 1.00 ± 0.0 0.77 ± 0.3 0.30 ± 0.3 0.17 ± 0.2

PDX-NR Untreated 1.00 ± 0.0 1.37 ± 0.8 0.89 ± 1.0 0.76 ± 0.9
p 0.08 0.16 0.15

12.3.2 Dynamic Contrast-Enhanced Perfusion Imaging

PDX-R

Day 14 was the earliest readpoint at which there was a statistical difference between

the untreated and treated populations when using DCE-PI (Figure 12.3A). Of note, by

day 2 there was an increase in mean volumetric TT20 values relative to day 0. While

there was not a significant difference between treated and untreated populations at this

readpoint, there was an increasing difference between treated and untreated population

until day 14. As will be shown in the following subsection, this trend was not observed

in the PDX-NR cohort. On day 14, the mean volumetric TT20 value increased by 31%

from baseline in treated animals compared to a 6% decrease in the TT20 for untreated

animals (Untreated: 0.94 ± 0.23 vs. Treated: 1.31 ± 0.22; p < 0.05).

PDX-NR

There were no significant differences between treated and untreated populations at

any readpoint with the PDX-NR cohort (Figure 12.3B). Table 12.2 provides the raw

volumetric DCE-PI values for each group at each readpoint.
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Figure 12.2: 3-D US images of a representative treated and a representative untreated
tumor (PDX-R). A (axial) and L (lateral) axes are displayed to orient the reader to the
traditional US b-mode image plane. 2-D cross sections as registered by these section
axes are displayed in the central region of each panel. The green color overlay illustrates
the microbubble adherence to αvβ3, an angiogenic biomarker. The brightness of the
green image overlay is assumed to be correlated with the degree of molecular marker
expression.

12.3.3 Volume Measurements

PDX-R

In the PDX-R cohort of animals, there was no statistical difference between treated

and untreated populations when measuring the volume of the tumor at any readpoint

(Figure 12.4). However, the difference in tumor volume between treated and untreated

animals began to increase starting at day 7, as would be expected in this PDX-R, since

it is characterized by known response to MLN8237 treatment. This trend was not
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Figure 12.3: A) The average volumetric perfusion times before and after therapy for
treated and untreated animals in a tumor type that responds to MLN8237 (N=7).
B) The average volumetric perfusion times before and after therapy for treated and
untreated animals in a tumor type that does not respond to MLN8237 (N=7). *p <
0.05 for treated group as compared to untreated group.

observed in the PDX-NR cohort.

PDX-NR

As with the PDX-R group, there was no observed statistical difference between treated

and untreated populations when measuring the volume of the tumor at any readpoint.

Table 12.3 summarizes the volume data collected for the responder and non-responder

groups.

12.4 Discussion and Conclusion

In this study, USMI of angiogenesis showed a statistical difference between treated and

untreated PDX-R populations after 48 hours of treatment. In contrast, there was no

significant difference between treated and untreated groups at the same readpoints in

the PDX-NR cohort. Thus, our USMI study clearly illustrates the viability of the

technique for monitoring the response to therapy and identifying and characterizing

tumors as responders and non-responders in pre-clinical evaluations where comparison
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Table 12.2: Summary of the normalized volumetric DCE-PI data for both treated and
untreated animals in the PDX-R and PDX-NR cohorts. This data corresponds to the
plots in Figure 12.3.

DCE-PI
Day 0 Day 2 Day 7 Day 14

Treated 1.00 ± 0.0 1.21 ± 0.2 1.26 ± 0.2 1.31 ± 0.2
PDX-R Untreated 1.00 ± 0.0 0.98 ± 0.2 1.02 ± 0.3 0.94 ± 0.2

p 0.07 0.19 0.04
Treated 1.00 ± 0.0 1.03 ± 0.1 1.11 ± 0.3 1.19 ± 0.2

PDX-NR Untreated 1.00 ± 0.0 1.07 ± 0.1 1.12 ± 0.2 1.05 ± 0.2
p 0.52 0.93 0.22

with a baseline untreated control is available. In addition, this imaging method used

for monitoring biomarker expression was the earliest of the three tested techniques in

detecting a change, as reflected by the time at which change was detected (48 hours)

and the statistical significance between groups (p = 0.03) in the PDX-R cohort.

Data illustrate that the degree of αvβ3 expression decreased at a faster rate for

treated animals as compared to untreated animals in the PDX-R group, which was the

observed trend over a 7-day window (-12% vs. -5%). Likewise, the PDX-NR group also

experienced this trend, though the treated group was not significantly different from

the untreated group (-4% vs. -2%, p = 0.08). This data may suggest that the PDX-NR

group partially responded to the therapy, which would explain why we were unable to

differentiate between the treated responder group and the treated non-responder group.

DCE-PI, which is a measurement of vascular perfusion and thus MVD, showed

statistical significance on day 14 between treated and untreated populations in the

PDX-R cohort. Thus, USMI provided information about therapy response prior to

DCE-PI for the PDX-R group. This result was not unexpected, as changes in the

microvasculature are likely preceded by a corresponding change in biomarker expression.

Furthermore, it was predicted that healthy vasculature would have faster perfusion
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Figure 12.4: A) The tumor volume as measured by regions of interest from US b-mode
for treated and untreated animals in a tumor known to respond to MLN8237 (N=7).
B) The tumor volume as measured by regions of interest from US b-mode for treated
and untreated animals in a tumor known not to respond to MLN8237 (N=7).

times relative to unhealthy microvasculature, which was the observed outcome in the

DCE-PI study [166; 167]. Data illustrated that the perfusion times increased at a faster

rate during treatment compared to untreated tumors, which was observed in our study

(2% vs. 0%). Based on our results, DCE-PI appears to be a viable alternative to

volume measurements in terms of identification and characterization of responder and

non-responder cohorts for pre-clinical evaluations.

Using volume measurements for therapeutic pre-clinical mouse model studies is

rapid, non-invasive and inexpensive; however, it is also high in variability, which is

an impediment as a means for monitoring the response to therapy [168; 169]. In this

study, volume measurements obtained with US did not show any significant differences

between treated and untreated groups on any day for either the PDX-R or PDX-NR

cohorts. In contrast, USMI and DCE-PI both demonstrated their ability to detect

changes between treated and untreated populations in the responder group at earlier

time points than with volume measurements. As with the DCE-PI technique, the

volume curves for the treated and untreated treatment populations of the PDX-NR
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Table 12.3: Summary of the normalized volumetric data for both treated and untreated
animals in the PDX-R and PDX-NR cohorts. This data corresponds to the plots in
Figure 12.4.

Volume
Day 0 Day 2 Day 7 Day 14

Treated 1.00 ± 0.0 1.27 ± 0.2 1.68 ± 0.3 2.09 ± 0.8
PDX-R Untreated 1.00 ± 0.0 1.24 ± 0.4 2.41 ± 0.8 3.14 ± 1.1

p 0.88 0.09 0.12
Treated 1.00 ± 0.0 1.17 ± 0.1 1.66 ± 0.3 2.50 ± 0.6

PDX-NR Untreated 1.00 ± 0.0 1.12 ± 0.1 1.68 ± 0.4 2.40 ± 0.7
p 0.39 0.91 0.80

cohort during the time period of the imaging study provided no evidence to support

that there was a partial response to therapy.

There are a number of factors that could have impacted how the evaluated tech-

niques performed in this study. For instance, the strength of the evaluated therapeutic

may favor one method over the other in terms of the measured effect. The stronger the

therapeutic, the more likely the method may detect a change at earlier time points. An

increase in dose was not evaluated in this study. Secondly, the readpoint sampling may

have contributed to the observed performance of the DCE-PI study. If imaging was

performed more frequently between day 2 and day 14, then more observed days with

a significant difference between populations might have been observed prior to day 14.

The tumor type may also have contributed to the performance of each technique. In

the pancreatic adenocarcinoma tumor model that was used in this study, necrosis was

observed to increase throughout the length of the study. As a tumor becomes more

necrotic, it also becomes less vascular, which ultimately makes the untreated groups

look similar to the treated groups. For instance, the untreated populations (PDX-R

group) in our USMI study showed a gradual decrease in αvβ3 expression. This de-

crease over time can mean one of two things. Either the vessels are not expressing the
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angiogenic biomarker or there is not a vessel there to express the biomarker, which is

more likely given that areas of necrosis were also observed in the DCE-PI study. Thus,

as the untreated tumor becomes more naturally necrotic over time, it confounds the

ability of the technique to distinguish between the treated and untreated groups. In

future studies, for both USMI and DCE-PI, each of these factors must be explored.

Finally, significance of this study was limited due to its short-term observation period.

Future work will need to include larger subject numbers and longer time scales to more

thoroughly validate our preliminary observations.

In order to evaluate the sensitivity of each technique’s ability to identify a respon-

der over a non-responder in a clinical situation, we evaluated the significance between

treated groups at each readpoint. None of the evaluated techniques showed a sta-

tistically significant difference between treated groups (PDX-R treated vs. PDX-NR

treated) at any readpoint. For this type of evaluation, normalization relative to the

untreated groups is necessary. However, since normalization would not be relevant in

a clinical situation, the methods as described here would not be clinically translatable

without further improvement. Nevertheless, USMI and DCE-PI have illustrated sub-

stantial potential in pre-clinical response to therapy studies. Furthermore, it is very

possible that these techniques still may be clinically significant without normalization in

different tumor models or with therapeutic approaches, or after further improvements

in imaging and contrast agent technology.

In conclusion, we showed that we could successfully identify a tumor as a responder

or a non-responder with both USMI (day 2 and day 7) and DCE-PI (day 14) and

at earlier time points than with volume measurements (∼4 weeks). Second, we were

able to characterize how the PDX-R and PDX-NR groups would respond over a 14-

day period, which is an essential component in understanding the pathophysiologic

141



mechanisms of a particular type of cancer and it is an evolutionary step for a clinical-

type application. Based on our results, we feel that characterization of a tumor in

pre-clinical evaluations using USMI may allow for more effective drug development and

an improvement in pharmacodynamic monitoring through reduced cycle times. Finally,

since a volumetric approach has been shown to provide more accurate data than an

equivalent 2-D analysis, we have succeeded in illustrating the strengths of 3-D USMI

and 3-D DCE-PI for characterizing a tumor’s response to therapy in pre-clinical studies.
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CHAPTER 13

Discussion and Conclusion

13.1 Introduction

For molecular imaging to be effective in cancer treatment, underlying molecular, cellu-

lar, and physiologic processes that govern therapeutic receptiveness must be identified

and quantified. USMI has emerged as a modality that may achieve this qualification by

providing cellular and molecular information prior to any phenotypic changes precisely

for applications such as response to therapy, disease identification and target delivery

of therapeutics. USMI has made significant advances over the past decade, but has

lacked advancement in many areas that are explored in this dissertation. To assess the

validity of our hypotheses, we explored improvements to USMI techniques and utilized

these techniques in the context of a response to cancer therapy application.

First, in Chapter 7, we explored what effect multiple targeted microbubble injec-

tions would have on the remaining number of biomarker receptors available for future

targeting. The outcome showed that serial multiple injections in a USMI study do not

bias or compromise the retention of targeted microbubbles due to competitive inhibi-

tion from previously bound MCAs. This conclusion was essential in confirming the

validity of the data collected in subsequent chapters, which relied on multiple serial

injections.

In Chapter 8, we evaluated what effect, if any, that the size of the microbubble had

on both the persistence time and the sensitivity in an USMI study. We discovered that,



by increasing the mean diameter of the MCA population, a several-fold improvement

in contrast sensitivity could be achieved. Next, in Chapter 9, we described how we

could improve our ability to quantify biomarker expression by obtaining volumetric

readings. We illustrated the necessity of volumetric molecular imaging by quantifying

the variability in angiogenesis across a tumor. Data illustrated that 3-D USMI presents

a more robust assessment of molecular marker expression throughout the tumors than

standard 2-D US.

In Chapter 10, we demonstrated in an in vivo proof of concept, that we could

enhance the quantity of adherent microbubbles in an USMI study. In all in vivo ex-

periments, the volumetric targeted signal was greater when using ARF than with a

traditional passive targeting approach without any loss in specificity. Chapter 11 logi-

cally followed and illustrated how we could selectively activate targeted microbubbles

using ARF. Our data showed that, by incorporating a PEG overbrush in the microbub-

ble shell architecture, we could create a pseudo-barrier in order to avoid competitive

interactions between the ligand and plasma components. Ultimately, with this bubble

architecture, we maintained specificity and prevented unwanted immunogenic reactions

in an in vivo proof of concept.

Finally, we evaluated how well pancreatic adenocarcinoma responded to a novel

aurora-A kinase inhibitor using improved USMI techniques, perfusion imaging and

volume measurements. We showed that we could successfully identify a tumor as a

responder or a non-responder with USMI and at earlier time points than with traditional

volume measurements. While monitoring volumetric changes in response to therapy is

the “gold standard” for pre-clinical studies, our data suggests that USMI may be used

to earlier identify and robustly characterize tumor response.
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13.2 Discussion - Improved USMI Techniques

In this section we discuss our hypotheses in greater context. We will explore the ad-

vantages of each technique described in this dissertation, the shortcomings, and future

directions. Finally, we will assess the possibilities for clinical translation of USMI in

the context of response to therapy.

13.2.1 Repeated Injections in an USMI Study

In this study, we explored how multiple serial injections of targeted MCAs affect future

targeting. Our preliminary data suggests that multiple serial injections do not bias or

compromise the MCA adherence in an USMI study. While the scope of this project

was constrained to one tumor type and one dose, the outcome is encouraging. There

are many instances where multiple targeted microbubble injections are required for

comparison such as the assessment of acoustic radiation force to enhance targeting and

the evaluation of the buried-ligand architecture. Since these studies used the same

tumor model and similar MCA doses, our analysis of repeated serial injections helps

solidify our conclusions and paves the way for future USMI studies.

While the results of this study are promising, the scope was limited and based mainly

on parameters utilized throughout this dissertation. First, the study only utilized one

tumor type. Future studies on this topic should incorporate various cancer types,

preferably known to have various degrees of αvβ3 expression. This would allow a more

thorough analysis of whether or not, multiple MCA injections block a quantity of target

sites that would be detrimental to the analysis. Second, the dose and size distribution

of microbubbles were limited. It would be advantageous to know if concentration and

the size of the microbubble played any role in competitive inhibition.

Another question that arises is whether or not using a mechanical index of 1.9
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damages the adjacent vessel walls when clearing the targeted microbubbles after re-

peated injections. Any vessel damage would confound our ability to accurately assess

biomarker expression. A previous study has shown that clearing bubbles with a higher

MI at higher frequencies, such as the 7 MHz utilized in our studies, does not seem to

cause detectable vessel damage [90]. However, since insonation frequency and MCA

resonance are intricately coupled, in future studies it would be of great interest to vary

the frequency and pressure along with microbubble size to determine if there are any

increased bioeffects that may affect our ability to utilize multiple serial injections in

USMI.

Finally, it is clear that the quantity of over-expressed αvβ3 integrin is greater than

the number of injected microbubbles. For example, in a typical human umbilical vein

endothelial cell (HUVEC), there are up to 5 x 105 αvβ3 receptors per cell [170; 171].

The average HUVEC cell size is approximately 17 µm, which makes the surface area

∼900 µm2 assuming a spherical cell. This equates to ∼550 receptors per square micron.

The average size the MCAs used in this experiment were approximately 4 µm, thus

we would clearly not expect all of the receptors in this area to be populated. Upon

cursory examination, there are many more receptors than microbubbles, which supports

our findings. Based on this examination, if MCAs are not populating all of the target

receptors, can this technique be used to accurately determine the quantity of biomarker

expression? Ultimately, in any USMI application, our technique is only as sensitive as

our ability to detect the target biomarker expression. Thus, in the greater context of

using USMI to quantify disease progression, this must be explored.

13.2.2 Size-Selection for Sensitivity Improvement

Preferential selection of the microbubble size improved our ability to sensitively de-

tect targeted microbubbles in USMI. We demonstrated a several-fold improvement in
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contrast enhancement by tailoring MCA size distributions using centrifugation. This

is significant in instances where the microbubble targeting is low and maximum sensi-

tivity is required. For instance in a response to therapy study, as animals are treated

over time and biomarker expression is diminished, it is imperative to have low-level

sensitivity to targeted MCAs. In addition, we discovered that we could achieve greater

contrast sensitivities with fewer injected microbubbles. Of course, this is advantageous

for minimizing the exposure to foreign particles. Finally, size-selection has assisted in

our ability to generate images by illustrating spatial distribution of targeting well above

the noise floor.

While microbubble size-selection has proved to be invaluable in pre-clinical studies,

there are still limitations and obstacles that must be overcome for clinical advancement.

First, it must be noted that centrifugation offers a substantial improvement in produc-

tion yields and MCA stability over techniques such as microfluidics. Unfortunately,

only a few size distributions may be extracted by using the centrifugation technique.

Thus, in applications where matching the resonant frequency to the microbubble diam-

eter is important, there is limited flexibility. Though, in my experience, the scattering

cross-section may be more significant than matching the resonant frequency to the

microbubble diameter, which should be explored in future characterization studies.

Another detriment to the centrifugation method for sorting is that the process is time-

consuming and the yield (resultant number of microbubbles) is relatively low, though

better than other methods. Finally, mass-production for clinical implementation may

be difficult due to handling issues and maintaining a sterile environment.

Ideally, a monodisperse population of microbubbles is desired for a number of rea-

sons. This includes an improvement in our ability to quantify biomarkers, better pre-

dictability for in vivo MCA persistence, and exactly matching the resonant frequency

of the system to the size of the MCA. Unfortunately, the resultant size distribution
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with centrifugation is not monodisperse. Thus, any future desire to correlate intensity

to the number of microbubbles (or biomarkers) will be challenging. However, since

backscatter is related to the insonation frequency, it may be possible to determine size

related information by scanning the targeted microbubbles at various frequencies and

implementing a compounding technique. Finally, since maximum translation of mi-

crobubbles using ARF is at the resonant frequency, a wide range of microbubble sizes

makes ARF-enhanced molecular imaging less efficient and less predictable.

As mentioned previously, large microbubbles may be more susceptible to detach-

ment than smaller microbubbles, due to greater in vivo shear forces. Thus, larger

microbubbles may attach and subsequently detach within the time that we wait for

free-flowing MCAs to clear the circulation. Currently, our USMI procedure does not

account for this situation. However, real-time approaches to USMI are being evaluated

to determine receptor expression over time for a more accurate evaluation.

13.2.3 3-D for Improved Quantification

In Chapter 9, we used volumetric USMI to illustrate the heterogeneity of αvβ3 in a

tumor, thus emphasizing the necessity of a 3-D approach. Furthermore, we showed

that a traditional 2-D USMI study may misrepresent the angiogenic expression by as

much as 28%. Moreover, 2-D USMI studies that evaluate biomarker expression over

time are susceptible to error. Maintaining the exact 2-D slice position and orienta-

tion are essential for these types of studies. Thus, error increases substantially when

the transducer is removed from a fixed clamp and repositioned. A volumetric USMI

approach, however, eliminates the possibility for this type of error.

Volumetric USMI is clearly the more effective way to quantify biomarker expression

as compared to an equivalent 2-D study. The setup that was used in our study was

a 1-D linear array that was positioned in a fixed clamp and scanned elevationally
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to produce a stacked volume of images. This implementation was a requirement for

pre-clinical studies due to the way in which we quantify the targeted MCAs at each

discretized step. Unfortunately, the implementation of this type of setup in a clinical

environment would be very difficult, if not impossible. Thus, due to the lack of clinical

3-D ultrasound probes with contrast detectability, clinical translation of volumetric

USMI may not be feasible, which limits its integration to pre-clinical studies. As 3-

D contrast-enhanced clinical probes become more prevalent, this will no longer be an

impediment.

As 3-D clinical probes become available with contrast-enhanced detection schemes,

it will be important to evaluate the sensitivity of 3-D USMI relative to a 2-D approach.

For instance, due to the increased number of transducing elements in the elevational

direction, 3-D probes have the ability to focus and steer in both the lateral and eleva-

tional directions. While the resolution of the transducer in the elevational direction is

greatly improved, the sensitivity in detecting larger number of microbubbles may be

compromised due to the smaller beam that interrogates the contrast agents. However,

due to the improvement in sensitivity by size-selecting microbubbles, this may be a

non-issue. Regardless, there may be a trade-off between resolution and sensitivity to

large populations of microbubbles moving from a 2-D to 3-D USMI approach, which

must be explored as 3-D probes become available for USMI.

13.2.4 ARF-Enhanced USMI for Improved Adherence

In this study, we presented the first non-invasive in vivo validation of ARF-enhanced

USMI with an unmodified clinical system. By utilizing ARF, we were able to demon-

strate an ∼80% increase in targeted microbubble intensity relative to a traditional

passive targeting approach. Furthermore, ARF did not significantly increase image

contrast when applied to non-targeted MCAs, suggesting that ARF did not increase
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non-specific adhesion.

This particular technique yielded an appreciable increase in microbubble adherence

over passive targeting. While ARF-enhanced targeting is significant in merit, and could

yield tremendous benefits, there are drawbacks with its current implementation. First,

the volumetric application of ARF is not trivial. The current implementation uses an

imprecise mechanism for controlling the time in which ARF is administered, which

may inadvertently increase secondary radiation force effects or over-pushing. Thus,

it is difficult to maintain accuracy and consistency for longitudinal studies. In future

studies, consistency of the method in a particular animal and tumor should be evalu-

ated. Second, due to attenuation effects, and therefore axial administration deficiencies,

application of ARF may be different for various-sized tumors. This is a deleterious con-

sequence for any response to therapy study that evaluates biomarker expression as the

tumor volume changes over time. Moreover, the inconsistent axial administration of

ARF would be exacerbated in a clinical environment where human subjects exhibit

increased attenuation in much deeper tissues. Also, to further expound on clinical

translation of this technique, each patient may have a different size tumor. Therefore,

standardization of the technique may be difficult, which is burdensome for radiologists

and physicians who rely on robust techniques for diagnosis. These deficiencies were the

primary reason for not utilizing this technique in our pre-clinical response to therapy

evaluation.

In order to advance ARF-enhanced targeting technique to a more clinically-suited

method, a system must be created to overcome the previously described deficiencies.

A clinical system that allows precise control over power (applied pressure amplitude),

depth of administration, pulse length and timed-delivery is ideal for ARF-enhanced

targeting. Implementation of this type of system would allow for strategies in which
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a more homogeneous administration of ARF is achieved. For instance, a higher pres-

sure may be used first to facilitate microbubble targeting deeper into tissue (due to

attenuation) while simultaneously over-pushing at shallow depths. Steadily reducing

the pressure would allow microbubbles at shallower depths to be pushed at a more

appropriate pressure without negatively affecting the targeted bubbles deeper in the

tissue. A system with this type of flexibility and dedicated support is essential for the

advancement of the technique beyond pre-clinical experiments.

For future pre-clinical evaluations, it will be important to evaluate the importance

of matching the MCA size to the system frequency. Since maximum MCA translation

is achieved at the resonant frequency of the microbubble, optimal retention may not

yet be realized. Furthermore, the time of ARF administration needs to be examined

along with an evaluation of using a bolus injection over a continuous infusion of MCAs

throughout the administration time-window. Finally, for traditional passive targeting,

increasing the dose of microbubbles directly correlates with an increase in MCA tar-

geting. However, with ARF-enhancement, sufficient targeting may be achieved with a

reduction in MCA dose. Thus, in the context of ARF-enhanced targeting, evaluating

the quantity of injected MCAs to achieve maximum targeting should be evaluated.

13.2.5 BLA for Reduced Immunogenic Response

In this in vivo proof of concept, we successfully created a microbubble that was designed

to shield a targeting ligand from plasma components that may lead to non-specific

adhesion and potentially stimulate an undesired immunogenic response. Not only did

we maintain our targeted specificity for αvβ3 integrin, we provided evidence that the

PEG overbrush had the necessary barrier properties to avoid competitive interactions

between the ligand and plasma components in circulation. In addition, this technique

allowed us to administer targeted agents at the tumor site providing enhanced specificity
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while reducing the possibility of targeting elsewhere, thus minimizing undesired side-

effects. This body of work is the most relevant to the discussion of clinical translation

as avoiding stimulating immunogenic reactions is imperative for user safety. Finally,

this work paves the way for the advancement of clinical US systems that incorporate

user-controlled ARF functionality.

To our knowledge, this was the first time that US has been used to activate tar-

geting specificity for in vivo molecular imaging. While this is a breakthrough, due to

its dependence on ARF, this technique has the same drawbacks that were considered

in section 13.2.4. Additionally, most pre-clinical studies utilize microbubbles that in-

corporate a (biotin-streptavidin)-based structure tethered to a biotinylated antibody

for targeting various biomarkers. While this MCA architecture is well-suited for flexi-

bility, streptavidin is immunogenic, and therefore, these types of microbubbles cannot

be used in humans. Thus, the assorted targeted MCAs that are currently available for

pre-clinical USMI could not be used clinically. This is due to the physical length of the

PEG structure and its inability to shield the longer biotin-streptavidin-biotin-antibody

complex from the plasma components. Antibodies and other targeting mechanisms

must be small enough to be shielded by the PEG barrier for functional efficacy, which

is not always the case. Novel targeted MCAs (not including αvβ3 integrin) with a more

advanced chemistry need to be developed for clinical advancement such as BR55, the

VEGF-targeted microbubble recently developed by c©Bracco [159].

13.3 Discussion - Response to Therapy

Predicting response to cancer therapy has been a central motivation for the development

and advancement of USMI. In general, with a response to therapy study, there are two

interesting questions that arise. First, “does a particular tumor respond to a given

therapy?” More specifically, can we identify a tumor as a responder or a non-responder,
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and additionally, at what point in time may we determine this information? This may

be resolved, as we did in our response to therapy study, by evaluating one type of

tumor with and without treatment over time. By analyzing when the response curves

significantly diverge, we can determine how well and when, a particular tumor type

responds to therapy relative to the non-treated control. This type of assessment is ideal

for pre-clinical research and drug evaluations. For example, if a novel drug is evaluated

for its efficacy in a particular type of cancer, then early information will lead to fast

decision-making in the framework of drug development cycle times and responder/non-

responder identification. Naturally, this would yield a benefit with respect to managing

resources and saving costs. Unfortunately, this type of evaluation is ill-suited for clinical

translation, because there would never be a situation where patients were not treated.

If in the course of pre-clinical research, a unique response curve was established that

did not require normalization to the untreated populations, then response to therapy

with USMI may be clinically viable.

This particular scenario brings us to a more clinically relevant question: “can we

determine if a tumor is responding to therapy over time with no additional informa-

tion?” For instance, if a patient with a particular form of cancer started treatment,

can we predict if that patient is responding to treatment by only monitoring the re-

sponse to therapy over time relative to historical data (not an untreated control)? By

historically and statistically evaluating the response (Treated Responder vs. Treated

Non-Responder) that many patients have to a particular form of therapy, it is possi-

ble to answer the question; however, the response must be statistically well-behaved.

Namely, there must be a clear delineation between a tumor that responds to therapy

over time or does not respond to therapy. Unfortunately, there may be some tumors

that marginally respond to the therapy, which confounds our ability for diagnosis with-

out having a control for a reference.
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Table 13.1: Response to Therapy Example Scenario

Day 0 Day 7 Day 14
Responder-Treated 1.0 1.1 1.2

Responder-Not Treated 1.0 1.5 2.4
Non-Responder-Treated 1.0 1.1 1.2

Non-Responder-Not Treated 1.0 1.2 1.4

The downside to not having an untreated control may be illustrated in the following

what-if scenario. Suppose there were two patients with tumors of the same type. One

patient’s tumor is more aggressive in its growth rate relative to the other patient’s tumor

(Table 13.1). At Day 14, the two treated groups have the same value. This comparison

does not accurately reflect the significance of the data. The significance emanates from

the fact that the treated responder had half the value of the tumor that was not treated,

and thus clearly affirming the efficacy of treatment. Since the growth rates between

the two untreated groups are different, it is not accurate to only compare the treated

groups without some form of normalization. For the most effective evaluation, we must

have an untreated control group for the purpose of normalization, which is not possible

in the clinical application. Thus, for clinical viability, a well-behaved tumor that either

responds or does not respond to therapy is essential for successful translation.

In our response to therapy study, we showed that volumetric USMI may be used

to earlier identify and robustly characterize tumor response. First, we showed that

we could label a tumor as responder or non-responder earlier than with volume mea-

surements. Second, we were able to characterize how the responder and non-responder

cohorts would respond over a 14-day period. As previously mentioned, this type of char-

acterization is an essential component in understanding the underlying mechanisms of

a particular type of cancer. Furthermore, it is an evolutionary step for a pre-clinical

drug development and clinical translation. Finally, we succeeded in illustrating the
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strengths of 3-D USMI (versus a 2-D study) for characterizing a tumor’s response to

therapy in pre-clinical studies.

Our study illustrated that USMI, at least for this tumor type and therapy, allows us

to identify and characterize a tumor in a pre-clinical setting where untreated controls

are available for comparison. Additionally, we can determine whether or not a tu-

mor will respond to therapy at earlier time points than with traditionally used volume

measurements. Unfortunately, none of the evaluated techniques showed a statistically

significant difference between treated groups (Treated Responder vs. Treated Non-

Responder) at any readpoint. Thus, we do not have a sensitive enough technique to

distinguish between a tumor that responds well and a tumor that marginally responds

to this form of therapy, which is the ideal case for clinical translation. For a clini-

cally viable USMI technique, a well-behaved tumor that either responds or does not

respond to therapy is needed. A responder would follow one unique response to therapy

curve while a non-responder would have a much different response curve. As previously

discussed, this is because the only comparison to be made is relative to the first imag-

ing readpoint, not an untreated control. Thus, having a historical and statistically

significant response curve for many patients is the foundation for successful clinical

translation. In conclusion, we were successful in determining a tumor’s response to

therapy using USMI; however, at this time, this type of evaluation may be best suited

for pre-clinical studies.

13.4 Discussion - Clinical Translation

For successful clinical translation of USMI for response to therapy evaluations, it is

important to identify suitable niches where the modality adds needed information that

cannot be easily obtained by other methods. Thus, in the future, different tumor types

need to be evaluated with various therapeutic strategies to statistically identify the
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most suitable candidates for clinical translation. Moreover, it would be invaluable to

compare this type of USMI study to a metabolic assessment using PET/CT imaging

(or other proven modalities) to evaluate the effectiveness relative to a clinically appli-

cable technique. If PET imaging offers physicians a more reliable molecular imaging

approach to diagnosis relative to USMI, then clinical translation of USMI may not be

appropriate. However, due to its portability, no associated ionizing radiation, and real-

time capabilities, there is a clear advantage for USMI if a suitable niche is discovered.

To date, USMI has not been used clinically, which is largely related to the lack of

FDA-approved targeted MCAs. It is likely that the main reason for the delay is the

concern by pharmaceutical companies regarding user safety and the size of the mar-

ket for molecularly targeted agents. As mentioned earlier, there is a small niche that

must be established in order to be clinically viable. If there is little to no demand for

the product (targeted microbubbles), then pharmaceutical companies will be hesitant

to invest in that particular business model. In addition to needing an FDA-approved

targeted microbubble, there are other considerations for clinical translation of USMI.

First, well-done clinical trials of the application must be accomplished with a clear

understanding of the procedure and analysis. This includes having a large number of

patients for statistical relevance. One critical aspect in the context of clinical trials is

test and retest reproducibility. Incorporating test and retest assessments into clinical

trials serves as a useful quality control measure especially for USMI, which is quite

computational. Also, interpretation of the images is operator-dependent; therefore,

future pre-clinical USMI evaluations should include more rigorous analysis-based as-

sessments. Moreover, it is important to train physicians and clinicians regarding new

techniques, which can be quite difficult given the complexity of USMI. Last, there must

be readily available clinical ultrasound systems that are capable of detecting MCAs and

separating them from tissue. There are numerous systems that have this capability,
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but unfortunately, they do not all utilize the same MCA detection scheme; therefore,

repeatability and standardization across platforms may be difficult. While there remain

significant near-term challenges in clinical translation of USMI, the long-term benefits

of an ultrasound-based approach are considerable and must be explored.

13.5 Conclusion

Molecular imaging with ultrasound is an exciting new field that offers the potential to

detect pathology before phenotypic changes occur using inexpensive and portable ul-

trasound systems without ionizing radiation. Although, significant advances have been

made, the technologies enabling molecular imaging are still in development. Com-

mercial imaging systems are still being optimized for molecular imaging, and targeted

contrast agents for clinical and veterinary use are still not widely available. Although

molecularly targeted contrast agents have been used in animal studies for nearly two

decades, the safety and clinical utility of using ultrasound molecular imaging in humans

is in its infancy.

While significant progress has been made in USMI techniques over the past decade,

there remain challenges that need to be addressed as this technique proceeds toward

clinical relevance. This dissertation provides improved techniques towards the advance-

ment of USMI with respect to sensitivity, specificity, and quantification. Moreover, we

utilized these improvements to successfully assess a tumor’s response to therapy and

compare it to more traditional methods. While the current implementation of USMI

is best suited for pre-clinical evaluations, considering the potential advantages of this

technique, it is reasonable to expect that ultrasonic molecular imaging may have a place

in the clinic in the future.
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