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ABSTRACT 
 

Stephanie E. A. Gratton 

In vitro and in vivo studies of nanomolded PRINT particles of precisely controlled 
size, shape, and surface chemistry 

 
(Under the direction of Professor Joseph M. DeSimone) 

 
 

A novel method for the fabrication of polymeric particles on the order of tens 

of nanometers to several microns is described.  This imprint lithographic technique 

called PRINT (Particle Replication In Non-wetting Templates), takes advantage of 

the unique properties of elastomeric molds comprised of a low surface energy 

perfluoropolyether network, allowing the production of monodisperse, shape-specific 

nanoparticles from an extensive array of organic precursors.  This engineered nature 

of particle production has a number of advantages over the construction of 

traditional nanoparticles such as liposomes, dendrimers, and colloidal precipitates.  

The gentle “top down” approach of PRINT enables the simultaneous and 

independent control over particle size and shape, composition, and surface 

functionality, and permits the loading of delicate cargos such as small organic 

therapeutics and biological macromolecules.  Thus, this single tool serves as a 

comprehensive platform for the rational design and investigation of new nanocarriers 

in medicine, having applications ranging from therapeutics to advanced diagnostics. 
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Preliminary in vitro and in vivo studies were conducted, demonstrating the future 

utility of PRINT particles as delivery vectors in nanomedicine. 

The interaction of particles with cells is known to be strongly influenced by 

particle size, however little is known about the interdependent role that size, shape 

and surface chemistry have on cellular internalization and intracellular trafficking.  

The internalization of specially-designed, monodisperse hydrogel particles was 

examined using HeLa cells as a function of size, shape, and surface charge.  

Evidence of particle internalization was obtained using conventional biological 

techniques as well as transmission electron microscopy.  These findings suggest 

that HeLa cells readily internalize non-spherical particles with dimensions as large 

as 3 µm using several different mechanisms of endocytosis.  Moreover, it was found 

that rod-like particles enjoy an appreciable advantage when it comes to 

internalization rates, reminiscent of the advantage that many rod-like bacteria have 

for internalization in non-phagocytic cells. 
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NANOPARTICLES IN MEDICINE 
 

 

 

 

 

 

 

 

 

 

 

 

 



1.1 Nanoparticle therapeutics 
 
 Nanotechnology can be defined as technology that is developed at the atomic, 

molecular, or macromolecular scale, where at least one dimension is measured in 

the nanometer range [1].  This size range (from 1-1000 nanometers) allows for the 

creation and use of structures, systems and devices that have novel properties with 

atomic-level control.  The application of this type of fine control in the field of 

medicine is known as nanomedicine [2].  The development of nanoparticle 

therapeutics has given rise to an emerging modality in the diagnosis and treatment 

of cancer.    Currently, there are 24 nanoparticle therapeutics that have been 

approved for clinical use [3].  To date, clinical applications of nanoparticle 

therapeutics have been dominated by liposomal and polymeric platforms 

(Figure 1.1). 

 

            

Figure 1.1 Common nanoparticle-based therapeutics approved for clinical use.    
Adapted from [4]. 
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Liposomes, and more broadly, micelles, have been produced by a range of 

both natural and synthetic amphiphillic polymers leading to nano-scale structures.  

The use of liposomes in medical applications has received a great deal of attention 

in recent years.  These membrane structures, composed of a phospholipid bilayer 

surrounding an aqueous or hydrophilic core, show exceptional biocompatibility and 

thus a great potential for clinical use as pharmaceutical carriers, particularly in the 

treatment of cancer.  Indeed, several liposome-based drugs are already on the 

market such as Doxil®, AmBisome®, and DaunoXome® (Table 1.1).  Lipsomal 

delivery vehicles have several advantages over traditional cancer therapeutics in 

that they can encapsulate the therapeutic and/or diagnostic agent within the 

liposome core, thereby protecting the cargo from degradation.  One of the most 

crucial advantages of these types of carriers lies in their ability to deliver 

hydrophobic drugs, thereby overcoming drug solubility issues which are commonly 

associated with the most powerful small molecule chemotherapeutics known.  

Liposomal delivery agents can be functionalized with biocompatible polymers such 

as poly(ethylene glycol) (PEG) to facilitate increased circulation times in vivo [5,6].  

In this way, liposomes can take advantage of the enhanced permeability and 

retention (EPR) effect, a phenomenon that is a result of the leaky vasculature 

present in solid tumors arising from the rapid development of the tumor tissue [7,8].  

The EPR effect is observed with macromolecules as they pass through the leaky 

tumor vasculature and are retained in the tumor due to the poor, underdeveloped 

lymphatic drainage observed in that tissue.  Furthermore, the periphery of liposomes 

 3



can be modified with targeting ligands in an effort to increase the localization of 

these particles into the desired cells, tissues, and organs.   

  Additional directions in the search for the ideal organic nanoparticle include 

the design and synthesis of polymer conjugates.  Polymer–drug conjugates are 

hybrid structures that tend to be water soluble (due to the control of the chemical 

composition of the polymer), can be tumor specific via the EPR effect, and tumor 

targeting ligands can decorate the polymer portion of the conjugate.  These moieties 

have shown that they can be captured by cellular internalization [9,10]. The typical 

synthetic strategy for the fabrication of polymer-conjugates has involved the 

modification of polymer chain ends after polymerization to form reactive end groups.  

Several polymer conjugates have been approved for clinical use, such as Genexol-

PM®, Neulasta®, and Renagel® (Table 1.2). In addition to the traditional liposomal 

and polymeric nanoparticle-based therapeutics, there are a small number of other 

platforms that have made it to the clinic (Table 1.3). 
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Nanoparticle 
Therapeutic 
(Company) 

Platform Disease Administration 
 Route 

Abelcet 
(Enzon) 

Liposomal amphotericin B Fungal  
Infections 

 

i.v. 

AmBisome 
(Gilead Scieces) 

 

Liposomal amphotericin B Fungal and  
protozoal 
infections 

 

i.v. 

DepoCyt 
(SkyePharma) 

Liposomal cytarabine Malignant 
lymphomatous 

meningitis 
 

i.t. 

DaunoXome 
(Gilead 

Sciences) 
 

Liposomal daunorubicin HIV-related 
Kaposi’s sarcoma 

 

i.v. 

Myocet 
(Zeneus) 

Liposomal doxorubicin Combination 
therapy with 

cyclophosphamide 
in metastatic 
breast cancer 

 

i.v. 

Epaxal 
(Berna Biotech) 

 

Liposomal IRIV vaccine Hepatits A i.m. 

Inflexal V 
(Berna Biotech) 

 

Liposomal IRIV vaccine Influenza i.m. 

DepoDur 
(SkyePharma, 

Endo) 
 

Liposomal morphine Post-surgical 
analgesia 

Epidural 

Visudyne 
(QLT, Novartis) 

Liposomal Verteporfin Age-related 
macular 

degeneration, 
pathological 

myopia, ocular 
histoplasmosis 

 

i.v. 

Doxil/Caelyx 
(Ortho Biotech, 

Scehring-
Plough) 

Liposome-PEG doxorubicin HIV-related 
Kaposi’s sarcoma, 
metastatic breast 
cancer, metastatic 

ovarian cancer 
 

i.m. 

Estrasorb 
(Novavax) 

Micellular estradiol Menopausal 
therapy 

Topical 

 
Table 1.1 Clinically approved liposomal therapeutics.  Adapted from [3].  
[HIV, human immunodeficiency virus; i.m., intramuscular; IRIV, immunopotentiating reconstituted influenza virosome; i.t., 
intrathecal; i.v., intravenous; PEG, poly(ethylene glycol)]  
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Nanoparticle 
Therapeutic 
(Company) 

Platform Disease Administration  
route 

Copaxone 
(TEVA 

pharmaceuticals) 

L-Glutamic acid, L -
alanine, L -lysine, and L 

-tyrosine 
 

Multiple sclerosis s.c. 

Genexol-PM 
(Samyang) 

Methoxy-PEG-poly(D, L- 
lactide) 

Metastatic breast 
cancer 

 

i.v. 

Adagen 
(Enzon) 

PEG-adenosine 
deaminase 

Severe combined 
immunodeficiency 
disease associated 

with ADA 
deficiency 

 

i.m. 

Macugen 
(OSI 

Pharmaceuticals) 

PEG-anti-VEGF 
aptamer 

Age-related 
macular 

degeneration 
 

i.r. 

Pegasys 
(Nektar, Hoffman-

LaRoche) 
 

PEG-α-interferon 2a Hepatitis B, 
hepatitis C 

s.c. 

Neulasta 
(Amgen) 

PEG-GCSF Neutropenia 
associated with 

cancer 
chemotherapy 

 

s.c. 

Somavert 
(Nektar, Pfizer) 

 

PEG-HGF Acromegaly s.c. 

Oncaspar 
(Enzon) 

PEG- L -asparaginase Acute 
lymphoblastic 

leukemia 
 

i.v., i.m. 

Renagel 
(Genzyme) 

Poly(allylamine 
hydrochloride) 

End-stage renal 
disease 

Oral 

 
Table 1.2 Clinically approved polymeric therapeutics.  Adapted from [3].  
[ADA, adenosine deaminase; GCSF, granulocyte colony-stimulating factor; HGF, hepatocyte growth factor; i.m., intramuscular; 
i.r., intravitreous; i.v., intravenous; PEG, poly(ethylene glycol); s.c., subcutaneous; VEGF, vascular endothelial growth factor]  
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Nanoparticle 
Therapeutic 
(Company) 

Platform Disease Administration  
route 

Abraxane 
(Abraxis BioScience, 

AstraZeneca) 
 

Albumin-bound 
paclitaxel 

 

Metastatic breast 
cancer 

i.v. 

Emend 
(Elan, Merck)  

 

Nanocrystalline 
aprepitant 

Antiemetic Oral 

Tricor 
(Elan, Abbott) 

 

Nanocrystalline 
fenofibrate 

Anti-hyperlipedemic Oral 

Rapamune 
(Elan, Wyeth 

Pharmaceuticals) 

Nanocrystalline 
sirolimus 

Immunosuppressant Oral 

 
Table 1.3 Clinically approved nanoparticle-based therapeutics.  Adapted from [3].  
[i.v., intravenous]  
 
 
 
1.2  Development of optimal nanoparticles for therapeutic applications 

Beyond the ability of nanoparticles to take advantage of the EPR effect for 

passive tumor targeting, there are several additional features of nanoparticle 

therapeutics for cancer treatment that distinguish them from current approaches [4].   

 

1.2.1 Nanoparticle size 

Engineered nanoparticles allow for the careful control of size, shape and 

surface properties.  Altering any of these particle design parameters can have a 

dramatic effect on circulation half lives in vivo.  The ideal size of nanocarriers useful 

in nanomedicine is defined by several biological thresholds.  First the lower bound of 

~10 nm (diameter) is defined by renal filtration [11].  This is the threshold for first 

pass elimination by the kidneys.  The upper bound is not as clearly defined, and is 

likely tumor dependent.  Based on research looking into the EPR effect, it can be 
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estimated that the open interendothelial junctions are < 1 µm.  Some early work with 

liposomes and tumor xenograft models have suggested a cut-off of roughly 

400 nm [12].  Therefore, it can be estimated that the ideal nanocarrier should be 

between 10 and 400 nm in diameter.  An advantage of the large size of 

nanoparticles is that they have the ability to carry a large payload and protect that 

cargo from degradation while in circulation.  Moreover, the cargo is generally located 

inside the particle matrix, and thus does not affect the pharmacokinetics or 

biodistribution profile of the nanocarrier.  A new layer of sophistication can be 

designed into nanoparticles as they have the capacity to encapsulate multiple types 

of drug molecules.   

 

1.2.2 Nanoparticle shape 

 The majority of nanocarriers that have been approved for clinical use or are in 

clinical trials are spherical in shape.  Recent literature has suggested that spherical 

moieties may not be the optimal shape for nanomedicine [13-15].  Since the 

spherical shape of liposomes and polymer conjugates are determined by external 

forces, obtaining nanocarriers from these types of platforms that are non-spherical 

has proven difficult.  Discher et al. examined the in vivo properties of filamentous 

micelle structures, called filomicelles (diameter = 22-60 nm, length = 2 – 18 µm), and 

compared that to spherical micelles having similar chemisty [13].   They discovered 

that the non-sperical filomicelles persisted in vivo much longer than their spherical 

counterparts, and were effective at delivering paclitaxel to human-derived tumors in 

mice.  This study emphasized the role of vehicle geometry in nanomedicine.  The 
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role of shape has been further examined using theoretical approaches.  Decuzzi and 

co-workers have used theoretical models to determine the ideal shape of 

nanoparticles for use in medicine [16,17].  Here, it was found that spherical particles 

having a diameter of 100 nm show the lowest likelihood of encountering the 

conjugate antigen on the target endothelium.  Non-spherical particles are much 

more likely to be found near the capillary walls and adhere to the target cancer cells.  

In these studies, spherical particles showed the worst chance of penetrating 

vascular fenestrations, which is commonly exploited for tumor accumulation of 

nanoparticles via the EPR effect.  In addition, deviations from the typical spherical 

shapes towards disk and cylindrical particle shapes have the added advantage of 

being able to carry larger payloads.  These findings suggest that shape may play an 

important role in the efficiencies of nanoparticle therapeutics. 

 

1.2.3 Surface properties 

The addition of biocompatible polymers, such as PEG, on the surface of 

nanoparticles can function to add stability to the nanoparticle dispersions, and can 

also act to increase circulation times in vivo.  Moreover, nanoparticles have the 

ability to actively target tumor tissue through the covalent addition of multiple 

targeting ligands on the particle surface (Figure 1.2).  These targeting ligands 

selectively bind to cell-surface receptors predominantly seen on tumor cells.  One 

unique characteristic of nanoparticles is that they can contain multiple targeting 

ligands and have the ability to control the density of targeting ligands on their surface.  

Another advantage of using nanoparticles is that targeting ligands with low affinities 
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for their cell surface receptors can now be included, as the density of targeting 

ligands can be finely controlled to ensure overall high targeting efficiencies.  In 

addition, modern day nanoparticles allow for fine tuning of the matrix composition 

such that the release kinetics of the drug from the nanoparticles can be altered for 

optimal impact.  With all of these favorable characteristics, it is clear that 

nanoparticles are well suited for application in cancer therapeutics. 

 

 

Figure 1.2 Ligand-receptor interactions on cancer cells.  Molecular conjugates and 
multivalent particles are equally efficient at targeting when the surface density of the 
receptor is low.  However, targeted nanoparticles are much more efficient at 
targeting cancer cells with the surface density of the receptor on the cancer cell is 
high (for example, the transferrin receptor). Adapted from [4]. 
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1.3 Challenges with polymer conjugates as nanoparticle-based 

therapeutics 

 
  Polymer-conjugates offer additional alternatives in the field of 

nanomedicine but they also struggle with some challenges.  For example, the 

conjugates need to be comprised of a high molecular mass, biodegradable 

polymeric matrix so they can better exploit the EPR effect.  Also, the drugs to be 

delivered need to be covalently attached to the polymeric carrier, which 

sometimes requires a slight variant of the desired drug to facilitate such covalent 

conjugation.  In addition, the linker between the drug and the carrier needs to be 

degraded to release the drug at the right time or in the desired location in order to 

optimize the efficacy of the system [18,19].       

 

1.4 Challenges with liposomes as nanoparticle-based therapeutics 

  To date, liposomes have proven to be among the most successful 

therapeutic delivery agents. Despite the many advantages posed by these 

nanoparticle-based systems, some significant challenges still exist.  These 

include restricted payload size, lack of robustness, fast elimination from the 

blood, and accumulation in the liver.  Additionally, these self-assembled 

structures are limited to spherical shapes and offer limited control over size and 

dispersity. Although liposomal vectors exhibit promising in vitro transfection 

efficiencies when used in gene therapy applications, they often exhibit poor in 

vivo pharmacokinetics profiles and formulation instability.  The pharmacokinetics 

of the in vivo administration of cationic liposome–DNA complexes indicate that 
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the complexes are rapidly eliminated from plasma [20].  The elimination is 

triggered by serum opsonin protein binding to the vector followed by 

reticuloendothelial system uptake.  Covalent addition of hydrophilic flexible 

polymers, such as PEG, to the surface of liposomes decreases protein binding, 

thereby increasing the in vivo circulation times.  Many of these systems, however, 

still have unacceptable formulation stability.  In addition to these contemporary 

delivery systems, the ability to incorporate a variety of imaging beacons that are 

both shape and site specific, while simultaneously monodisperse, has proven to 

be unattainable [21].   

  Additionally, liposomal systems can be very misleading probes since they 

are dynamic, constantly equilibrating, self-assembled entities whose shape and 

surface chemistry is ill-defined especially when placed into the biological milieu 

where equilibration reactions occur with naturally occurring lipidic membranes.  

Beyond liposomes, most all other nanoparticle systems that have been reported 

have essentially no ability to control the size or shape of particles in a defined 

way, thus making it difficult to determine the design rules for biodistribution or 

cellular internalization and intracellular trafficking [22].  In addition, there is no 

ability with liposomes and many traditional nanoparticle systems to systematically 

hold particle size and shape constant and iterate on the range of surface 

characteristics such as ligand type, spatial distribution of ligands and the 

stoichiometry of the ligands so as to understand the issues of multifunctional or 

multiplexed particles.  On top of these shortcomings, there is certainly no way of 

using traditional particle or liposomal systems to better understand how a 
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deformable particle or object of precisely defined size, shape and surface 

chemistry can dynamically circumvent various biological barriers.  Understanding 

the role that mechano-biology plays as a function of size, shape and surface 

chemistry certainly lies at the core of how biological “particles” like neutrophils 

and red blood cells navigate the barriers that confront them [23].  Ascertaining 

definitive biodistribution maps by utilizing precisely defined particle probes 

containing appropriate imaging beacons useful for quantification will undoubtedly 

lead to a set of rules that will be of immense use to science and to the application 

of nanocarriers for improved human health, treatment and diagnosis.   

 

1.5 Imparting size, shape, and composition control of materials for 

nanomedicine 

 
In an effort to impart ultimate control over particle size and shape to optimize 

nanoparticles for therapeutic applications, lithographic techniques have been 

employed.  The top-down approach of imprint lithography offers an engineering 

alternative to produce monodisperse size- and shape-specific nanocarriers. 

However, the replication of submicron features is a challenging materials problem. 

The past few decades have witnessed the emergence of soft lithography as an 

important tool for low cost pattern replication on the micron and nanometer scale 

[24].  Imprint lithography refers to the patterning of materials such as polymers, 

organics, and biological molecules into continuous arrays of patterned features using 

molds made from either hard materials (quartz/glass, glassy polymers) or soft 

elastomeric materials to generate features that form on top of an interconnecting 
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flash layer [24-26].   The field of soft lithography describes the subset of imprint 

lithography where soft elastomeric materials are used as the stamping material.  Soft 

lithography has traditionally been dominated by the elastomer poly(dimethylsiloxane), 

or PDMS [27,28].  Despite the advantage of PDMS for use in soft lithography, it has 

been shown to suffer from serious drawbacks including swelling in common organic 

solvents, and is known to leave cyclic silicone derivatives on surfaces being molded 

or patterned [29].  A recent breakthrough by Rolland et al. exploits the excellent 

solvent resistance and the inherent release properties of highly fluorinated 

perfluoropolyether (PFPEs) elastomers as an exceptional molding material [30].  The 

unique range of material properties of PFPE-based elastomers—chemical 

resistance, extremely low surface energy, high gas permeability, solvent resistance, 

high elastic recovery and good mechanical strength—translates into the ability of 

PFPEs to mold most organic and aqueous liquids to generate useful materials in the 

form of isolated particles, arrays of particles and arrays of patterned features for a 

number of applications in nanomedicine. 

  Embossing is the process of creating a three-dimensional image or design 

in paper and in ductile materials. It is typically accomplished with a combination 

of heat and pressure.  Unlike embossing, PFPE-based molding opens up unique 

approaches that exploit wetting, partial wetting and non-wetting phenomena 

instead of relying on heat and pressure associated with traditional embossing 

approaches.  The performance of PFPEs in soft lithography was first 

demonstrated using replica molds generated from master templates created at 

IBM’s Almaden Research Center in California that had features with a width of 

 14

http://en.wikipedia.org/wiki/Paper
http://en.wikipedia.org/wiki/Ductile
http://en.wikipedia.org/wiki/Heat
http://en.wikipedia.org/wiki/Pressure


140 nm, a depth of ~50 nm and a separation of 70 nm.  The molds cast using the 

PFPE-based fluoroelastomer materials maintained preservation of the nanoscale 

features of the patterned silicon wafer master. The features on the PFPE-based 

mold as determined by AFM had an average height of 51 nm, which was in 

excellent agreement with measured 54 nm height of the features in the silicon 

master [30].  As a result of the very low surface energy and high gas permeability 

of PFPE-based fluoroelastomers, materials are able to be molded by exploiting 

the ability to “dead end” fill recessed cavities in PFPE molds with a wide range of 

organic liquids.  Depending on the exact details of how the filling process is 

completed (Figure 1.3), including the exact nature of the liquid to be molded, 

isolated particles, arrays of particles and arrays of patterned features can be 

uniquely fabricated using a combination of cavity filling and free meniscus coating 

concepts.   
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Figure 1.3 Schematic illustration of the PRINT process and traditional embossing 
processes: (A) Silicon master template; (B) mold release from master template; (C) 
mold filling via capillary fill with counter sheet having a higher surface energy than 
the PFPE mold.  Depending on the exact nature of the liquid to be molded and the 
details of the process, (D) one can fill the cavities only and not wet the land area 
around the cavities or (D’) one can fill the cavities and have a thin layer of liquid on 
the land area around the cavities.   The thickness of the layer of connecting flash 
layer liquid is determined from the principles associated with free meniscus coating 
processes with the resulting (E and E’) pattern transfer to substrate; (F and F’) mold 
release from array of isolated features; and (G) dissolution of the harvesting film to 
yield free particles. As an alternative to PRINT, one can use PFPEs using traditional 
embossing processes where pressure and heat are applied (H and I) to form an 
embossed film (J) after the mold is removed.   
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 In addition to the unprecedented resolution enabled by the use of PFPE-

based materials in molding processes, recessed cavities within the PFPE molds can 

be filled with most organic and aqueous liquids without wetting the land area 

between the cavities (Figure 1.3).  As such, once the liquid contained in the cavities 

is solidified, discrete objects in the mold can be achieved without the formation of the 

ubiquitous “flash” or “scum” layer.  The flash layer is common to traditional 

embossing or soft lithography techniques where applied forces are used [22,30-32].  

With PFPE–based molds, harvestable, flash-free objects, or particles can be 

fabricated using a process called PRINT (Particle [or Pattern] Replication In Non-

wetting Templates).  The PRINT process begins with the formation of a master 

template, typically an etched silicon wafer formed using advanced lithographic 

techniques (Figure 1.3A), which is coated with a photocurable liquid PFPE that is 

evenly distributed across the surface of the master template.  Once the liquid 

fluoropolymer has completely wet the master template, it is photochemically 

crosslinked and subsequently peeled away to generate a precise mold having 

nanoscale cavities (Figure 1.3B). For the fabrication of 2-dimensional arrays of 

particles or free particles, the PFPE mold is filled with an appropriate liquid via 

capillary filling without wetting the land area around the cavities (Figure 1.3C).  The 

liquid in the mold cavities is then converted to a solid using a wide range of methods 

including curing chemistries, evaporation, lyophlization, or liquid to solid phase 

transitions (Figure  1.3E, E`).  The resultant particles can be removed from the mold 

and transferred to another surface to generate a 2-dimensional array or to yield free 

particles (Figure 1.3F, F`, G).  The key to making uniform particles of a specific 
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shape using PRINT is to have robust master templates that contain the repetitive 

features of interest.  Currently, the repetitive features have sizes ranging anywhere 

from 70 nm to 500 μm, where the length can be varied in all three dimensions.  The 

features are placed far enough apart so that sufficient room is left in between them 

in order to ensure enough space is available to manage excess liquid in the final 

PRINT process.  This is also balanced with the goal of closely packing as many 

features into an area as possible to increase the throughput of PRINT.  Using 

PRINT, features ranging in size from 2 nm to tens of microns have been fabricated, 

demonstrating the ability to accurately mold and replicate nanometer-scale features 

with a resolution of 0.4 nm [33].   

PRINT is unique over the imprint lithography techniques promulgated by 

Whitesides et al.  in that PRINT uses elastomeric fluoropolymers instead of silicones 

which results in three important distinctions:  i) perfluoropolyether elastomers have a 

lower surface energy which enables the selective filling of nanoscale cavities in the 

mold with almost any organic liquid without wetting the land area around the cavities, 

enabling distinct objects or particles to be formed even at the micro- and nanoscale;  

ii) organic liquids do not swell fluoropolymers like they do silicones, allowing for the 

fabrication of a wide range of organic particles with desired attributes (surface 

chemistries, degradation characteristics, deformability) and iii) the TeflonTM-like 

characteristics of the fluoropolymer mold allow the resultant organic particles to be 

easily harvested or removed from the mold [24,27,34]. 

  To demonstrate the scale-up possibilities with the PRINT process, a 

permanently etched master was made by transferring a repetitive, uniform shape 
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from an epoxy based resist onto a silicon wafer using conventional 

photolithography and reactive ion etching processes.   The pattern, now 

permanently etched into the wafer with well resolved entities (Figure 1.4A), can 

be used repeatedly to make a large number of identical elastomeric PFPE replica 

molds by photochemically curing the dimethacrylate functionalized PFPE 

oligomer (Figure 1.4B) [30].  The PFPE replica molds were used to fabricate 

individual, monodisperse particles using the PRINT process (Figure 1.4C), which 

were then harvested to produce colloidal suspensions. 

 

 

Figure 1.4 A) Atomic force micrograph of a 160nm post master; B) scanning 
electron micrograph of an unused, empty PFPE mold with 160 nm features 
(aspect ratio = 1: 1); and C) a scanning electron micrograph of harvested PEG-
composite particles on the medical adhesive sacrificial layer. 
 
 
 
  To date, monodisperse particles from a wide range of particle matrix 

materials have been fabricated using PRINT. PRINT can be used to make such 

particles from poly (D-lactic acid) (PLA) and derivatives thereof such as 

poly(lactide-co-glycolide) (PLGA).  It is well known that PLA and PLGA have had 

a considerable technological impact on the drug delivery and medical device 

industries because they are bioabsorbable and non-toxic [35].  Monodisperse 
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PLGA PRINT particles were fabricated by melt filling pre-formed PGLA polymers 

into 200 nm cavities of the PFPE mold (Figure 1.5).   

  Additionally, monodisperse, shape-specific 200 nm trapezoidal particles 

from poly(pyrrole) (Ppy) were generated. Ppy has been used in a variety of 

applications, ranging from electronic devices and sensors to cell-scaffolds [36].  

The Ppy particles were fabricated in a one-step polymerization by placing a drop 

of a 1:1 v/v solution of THF: pyrrole and perchloric acid into the molding 

apparatus, followed by vacuum evaporation of the solvent. Monodisperse 200 nm 

Ppy trapezoidal particles were fabricated and harvested in an array (Figure 1.5).   

 

Figure 1.5 SEM micrographs of 200 nm monodisperse, shape-specific particles 
made from a wide range of materials; bioabsorbable, biocompatible, proteins and 
active pharmaceuticals. 
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   As stated previously, PEG is a material of tremendous interest to the 

biotechnology community due to its commercial availability, non-toxic nature, and 

biocompatibility (Figure 1.5).  PRINT can be used to produce monodisperse, 

nanometer and larger scale PEG particles in a wide range of compositions (e.g. 

with various crosslink densities of the hydrogel, with incorparation of cationically 

charged monomers, linking groups, etc.) by molding PEG-diacrylate liquid 

monomer followed by room temperature photopolymerization. Because the 

morphology of the particles is controlled by the master, it is possible to generate 

any of the aformentioned monomer systems into particles on a variety of length 

scales (Figure 1.6). 
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Figure 1.6 PRINT particles varying in size, shape, surface chemistry and 
deformability.  The particle composition for all of these particles was approximately 
the same and included PEG (bulk of the matrix), a cross-linker, and a linker group 
for conjugation of stabilizing groups (such as PEG) or targeting ligands (such as 
peptides, antibodies, etc). A) Scanning Electron Micrograph (SEM) of cubic-shaped 
particles with a cube side length = 5 µm;  B) SEM of cylindrical nanoparticles having 
diameter = 110 nm and height = 35 nm; C) SEM of cylindrical nanoparticles having 
diameter = 200 nm and height = 200 nm; D) SEM of rod-like PRINT particles having 
diameter = 100 nm, height = 300 nm; E) SEM of 3 µm “hex nut” particles; F) 
Cylindrical PRINT particles containing a covalently attached red fluorophore that 
have been functionalized on one face with a generic linker group (green fluorophore) 
that will allow the conjugation of targeting peptides, antibodies and aptamers region-
specifically onto the particle probes; G) and H)  Particles for mechano-biology 
studies having approximately the same dimensions as red blood cells (cylinders with 
a diameter = 7 μm and a height of 1.7 μm made from (G) a non-deformable, highly 
cross-linked hydrogel; and (H) lightly cross-linked, deformable hydrogel.    
 
 
 
  By taking advantage of the delicate nature of PRINT, it is possible to 

incorporate a myriad of materials into the precursor PRINT solution prior to 

particle formation, including imaging contrast agents (superparamagnetic iron 

oxide particles), therapeutics (doxorubicin / paclitaxel / bortezomib), organic dyes 

(rhodamine), antibodies, proteins, and/or nucleic acids.  These cargos may be 

encapsulated within the matrices of the PRINT particles and locked inside the 

particles once the particles are cured, or they can be pre-mixed with polymers 
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and incorporated into the particle matrix using the gentle, non-reactive methods 

for forming particles via solvent evaporation.   

  PRINT methodology is a versatile and flexible method for the direct 

fabrication and harvesting of monodisperse, shape-specific nano-biomaterials.  

Unlike other particle fabrication techniques, PRINT is delicate and general 

enough to be compatible with a variety of important next generation cancer 

therapeutic, detection and imaging agents, including various cargos (e.g. DNA, 

proteins, chemotherapy drugs, biosensor dyes, radio-markers, contrast agents), 

targeting ligands (e.g. antibodies, cell targeting peptides) and functional matrix 

materials (e.g. bioabsorbable polymers, stimuli responsive matrices, etc).  PRINT 

is the first general, singular method capable of forming particles that: i) are 

monodisperse in size and uniform shape; ii) can be molded into any shape; 

iii) can be comprised of essentially any matrix material; iv) can be formed under 

extremely mild conditions; v) are amenable to post functionalization chemistry for 

the bioconjugation of targeting ligands; vi) and which initially fabricates particles 

in an addressable array (which opens up combinatorial approaches since the 

particles can be “bar-coded” using methods similar to DNA array technologies).  

In contrast to the present methods that utlize microfluidics techniques for particle 

fabrication, PRINT has the ability for more breadth of sizes (>100 nm) and is 

more amenable to scalability. 
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1.6 The future of nanomedicine 

  Nanomedicine will be extensively exploited in the clinic once a nanoparticle 

system  attains  targeted delivery of a therapeutic agent as well as localization of 

the therapeutic agent within the cell.  Indeed, great progress has already been 

made toward this goal.  For example, liposomal nanocarriers such as Doxil®, 

AmBisome®, and DaunoXome® are already in clinical use in lieu of their free-drug 

counterparts in part because they offer enhanced effectiveness and lower side 

effects. 

  As with any newly emerging technology, there are important questions that 

must be addressed as this technology progresses.  For example, “what role does 

size and shape play on the biodistribution of these nanoparticles?” and, “how can 

size, shape and/or composition influence the efficacy of nanocarriers in vivo?”  

Perhaps most importantly, the questions regarding the safety of delivery of 

nanoparticles in vivo need to be investigated thoroughly due to the fact of 

complete control over dispersity in size and shape is now possible.  Industry-

wide, this need has been recognized as indicated by the formation of a voluntary 

program which aims at collecting data on existing nanomaterials and 

subsequently assessing their risks [37].  Strategies are being discussed to fully 

and consistently characterize all aspects of nanoparticles such as size, shape, 

dispersity, composition, surface chemistry and more [38].  Not only does such a 

strategy need to be reliably implemented, but researchers from across the 

scientific spectrum, from materials and engineering to pharmacology and 
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toxicology must fully collaborate to evaluate the safety and efficacy of these 

nanomaterials.   

  Nanotechnology brings exciting new possibilities to the field of medicine. 

One can envision nanocarriers that can be targeted to a specific tissue or cells to 

simulataneously detect and diagnose diseases as well as to treat them through 

the delivery of therapeutics.  It is our expectation that nanomedicine will lead to 

more effecacious detection, diagnosis, and treatment of disease strategies than 

traditional methods in use today.  The ideal nano-carrier will be one that is size- 

and shape-specific, has the ability to encapsulate fragile cargos, and has the 

flexibility to be functionalized with surface targeting ligands.  Bottom-up 

approaches intrinsic to the synthesis of organic materials lack precise control 

over shape but offers excellent control over functionality.  The top-down approach 

of microfluidics and photolithography can offer some shape control but with 

limited opportunities for shapes below 1 micron in size.  Alternatively, the new 

emerging technique, PRINT combines some of the best elements from both 

bottom-up and top-down synthesis strategies, offering a highly versatile method 

for the production of isolated, monodisperse organic particles of nearly any size 

and shape that can contain delicate organic functional agents.  The ability to 

exploit such control over nanoparticle properties makes these particles extremely 

promising for optimizing and manipulating therapeutics for a variety of disease 

applications. 
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2.1  Introduction 
 

Definitive biodistribution maps that establish the interdependency of the size, 

shape and surface chemistry of nanoparticles in vitro and in vivo over length scales 

ranging from cells to tissues to the entire organism are needed by many different 

research communities.  Environmental regulators, pulmonologists, oncologists, 

pharmaceutical scientists, toxicologists, cell biologists and dermatologists all need 

definitive answers related to particle biodistribution, particle permeability and 

transport using “calibration quality” particles. For example, fungal and bacterial 

pathogens are first and foremost recognized by their form or shape, however the 

complete understanding of the role and significance of that form and shape is largely 

lacking. Indeed, some rod-like bacterial pathogens, including the gram-negative 

bacteria Salmonella, Shigella, and Yersinia and the gram-positive bacterium Listeria 

monocytogenes can induce their entry into non-phagocytic mammalian cells [1].  As 

such, nanofabricated tools (e.g. precisely defined particles) hold significant promise 

to provide insight into the fundamentals of cellular and biological processes.  These 

tools can also yield essential insights into the design of effective vectors for use in 

nanomedicine, especially for the design of nanoparticles for use as targeted 

therapeutics and imaging agents.  Indeed, very little is known how the 

interdependency of size, shape and surface chemistry can influence the 

biodistribution, cellular internalization, and intracellular trafficking of micro- and 

nanoparticles.   

The exploration and utilization of nanocarriers for the delivery of therapeutics 

in vivo has led to dramatic improvements in the efficacy of various therapies. Over 
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the past few years, intense research and development of novel platforms has 

resulted in drug delivery vehicles such as polymeric nanoparticles, micelles, 

immunoconjugates, DNA-polymer conjugates, dendrimers and liposomes [1-18].  

These different vehicles have opened new avenues in the development of site-

specific targeted drug delivery [4-6, 8-11, 19, 20].  Clinically, the success of these 

carriers has been limited by the lack of control over size, chemical composition, 

uniformity, cell targeting and ability to consistently load and release known amounts 

of cargo [14, 21, 22].  Additional challenges faced by liposomal and micellular 

structures include the fact that they are dynamic “assemblies” (they are not stable 

objects) and there is little control over size and shape, especially over time in the 

biological milieu [19, 23, 24].  In addition, there are many other naturally occurring 

lipidic membranes present in vivo which lead to fusion and membrane reorganization 

and therefore leakage of cargo. Moreover, it is difficult to dial in the amount of cargo 

that one can kinetically trap or encapsulate in liposomes and it is even more difficult 

to have a series of liposomal structures that can release the cargo at will in a 

controlled time frame.  Indeed most liposomal systems do not allow one to 

systematically vary the percentage of the cargo that can be encapsulated.  As a 

result, in order to study dose dependencies with liposomal systems, researchers are 

forced to accomplish such critical experiments by physically blending liposomes 

containing cargo with cargoless liposomes in order to vary the dose of drug at 

constant liposomal dosing.  Controlling the composition, size, shape, functionality 

and stability both in vitro and in vivo of nanocarriers is critical to the design of a fully 

realized delivery vehicle. 

31 



Elucidating the mechanisms by which organic particles of controlled size, 

shape, site-specific surface chemistry, tunable particle matrix composition and 

tunable modulus undergo endocytosis is of great importance.  Understanding the 

interdependent roles that size, shape and surface and matrix composition have is 

particularly important.   Once mechanisms of internalization are established, it is 

then possible to use these findings to better engineer the intracellular release of 

specific cargos. This information, in combination with ongoing efforts to understand 

the biodistribution of shape controlled particles [25], will help to establish rules 

towards the rational design of nanocarriers for the effective in vivo delivery of various 

cargos, especially those cargos that need to be internalized into cells such as siRNA 

and antisense oligonucleotides. The major endocytic pathways used by cells, for 

example, clathrin-mediated, caveolae-mediated, or macropinocytosis play prominent 

roles in the uptake and intracellular trafficking of organic particles. Several reports 

have addressed the role of shape and size on cellular internalization, however, no 

particle fabrication techniques currently available have the ability to independently 

alter one variable at a time, and monitor the effect of each variable [10, 13].  These 

studies focus on extending emerging “top-down” fabrication techniques  from the 

microelectronics industry for the facile synthesis of readily tailorable nanofabricated 

tools or particles that can allow for the attainment of detailed knowledge of the 

interdependent effect that key particle variables (such as size, shape, chemical 

composition and surface charge) have on cellular entry [14-16].  This study utilizes 

polymer and organic chemistry, biochemistry, and cell biology to investigate these 

mechanisms using a novel particle fabrication method called PRINT (Particle 
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Replication In Non-wetting Templates, Figure 2.1) [22, 26].  PRINT takes advantage 

of the unique properties of elastomeric molds comprised of a low surface energy 

perfluoropolyether network, allowing for the production of monodisperse, shape-

specific particles from an extensive array of organic precursors [22, 25, 27].  Herein, 

we report the utilization of recent breakthroughs in the nanofabrication of polymeric 

particles to develop an effective platform delivery system for use in nanomedicine.   

 

 

Figure 2.1 Illustration of PRINT.  Fabrication of the silicon master template (box, 
upper left); Wetting of the silicon master with (green) liquid fluoropolymer, followed 
by curing (top row);  PFPE elastomeric mold produced with nanoscale features from 
the master (upper right);  Confining (red) organic liquid to cavities by applying 
pressure between mold and a PFPE surface (middle row);  Removal of organic 
particles from mold with adhesive layer (bottom left);  Dissolution of adhesive layer 
producing free particles (bottom right). 
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2.2  Experimental 

 

2.2.1  Materials 

FluorocurTM, the perfluoropolyether used as the molding material in the 

PRINT process, was purchased from Liquidia Technologies (Product # 2M-140).  

Trimethylolpropane ethoxylate triacrylate (Mn = 428 g/mol) (Aldrich), was passed 

through a short plug of alumina prior to use to remove inhibitor.  Poly(ethylene 

glycol) monomethyl ether monomethacrylate (Mn = 1,000 g/mol) (Polysciences), 

fluorescein-o-acrylate (Aldrich), 2-aminoethyl methacrylate hydrochloride (Aldrich) 

and 2,2-diethoxyacetophenone (Aldrich) were used as received without further 

purification. Polyethylene sheeting was purchased from American Plastics Company.  

Solvents used in the fabrication and purification of PRINT particles (2-propanol, and 

acetone) were filtered before use through a 0.22 µm PTFE syringe filter.  Borax 

buffer was obtained from Ricca Chemical Company.  HeLa, NIH 3T3 and RAW 

264.7 cell lines were obtained from ATCC.  The Lineberger Cancer Center Tissue 

Culture Facility, at the University of North Carolina Chapel Hill supplied the MCF-7 

and OVCAR-3 cell lines.  All cell culture media (MEM, OptiMEM) were purchased 

from the Lineberger Cancer Center Tissue Culture Facility at the University of North 

Carolina at Chapel Hill.    Invitrogen supplied the GlutaMAX-I.    Cell Titer 96® 

AQueous One Solution Cell Proliferation Assay was purchased from Promega.  The 

1.5G cover slips were obtained from MatTek Corporation, and DRAQ5 was 

purchased from Biostatus, Ltd..  Molecular Probes supplied the Alexa Fluor-555 

labeled wheat germ agglutinin, and Polysciences supplied the Polybed 812 epoxy 
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resin.  Nocodazole, methyl-β-cyclodextrin, Genistein, chlorpromazine, cytochlasin D, 

and sodium azide were obtained from Sigma-Aldrich.  Dynasore was obtained from 

ChemBridge Corporation. 

 

2.2.2 PRINT particle preparation 

Briefly, 15 mL of FluorocurTM resin (Liquidia Technologies) containing 0.1% 

(w/w) of 2,2-diethoxyacetophenone was poured onto the silicon master template 

inside an enclosed UV chamber.  The chamber was degassed with nitrogen for 2 

minutes, then the coated wafer was exposed to UV irradiation (λ = 365 nm, power > 

20 mW/cm2) for 2 minutes to cure the FluorocurTM resin.  The elastomeric mold was 

then removed from the master template by gently peeling it away from the silicon 

surface. 

 In these experiments, the PRINT particles were derived from a mixture 

composed of 67 wt % trimethyloylpropane ethoxylate triacrylate (MW = 428 g/mol), 

20 wt % poly(ethylene glycol) monomethylether monomethacrylate 

(MW = 1,000 g/mol), 10 wt % 2-aminoethylmethacrylate hydrochloride (AEM·HCl), 

2 wt % fluorescein-o-acrylate, and 1 wt % 2,2-diethoxyacetophenone (Figure 2.2, 

Table 2.1).  A 10% (w/v) solution of this mixture in 2-propanol was prepared and 

then sprayed onto a FluorocurTM patterned mold using an air brush.  A 

poly(ethylene) sheet (American Plastics Co.) was then placed over mold and peeled 

back at a rate of approximately 2.5 cm/min.  Following this, the mold was placed in a 

UV curing chamber, purged with nitrogen for 2 minutes and UV irradiation was 

applied (λ = 365 nm, power > 20 mW/cm2) for 2 minutes. 
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Figure 2.2 Chemical structures of monomers and a partial structure of the PRINT 
particles. 
 
 
 

Monomer Function Wt %
PEG428 triacrylate Cross-linking agent 67 

PEG1000 monomethylether monomethacrylate Biocompatibility, 
Stability 

20 

2-Aminoethyl methacrylate hydrochloride Chemical handle 10 
Fluorescein-o-acrylate Fluorophore 2 

2,2-diethoxyacetophenone Initiator 1 
 
Table 2.1 Particle composition 
 
 
 
 A physical means for harvesting the particles was utilized by placing a 2 mL 

aliquot of acetone (filtered through a 0.22 μm PTFE filter) on the particle-filled mold.  

This drop of acetone was gently moved along the surface of the mold using a glass 

slide, facilitating release of the particles from the mold.  The suspended particles 

were collected in a 50 mL Falcon tube, centrifuged using a IEC CENTRA CL2 

Centrifuge (Thermo Electron Corporation), and rinsed with fresh acetone four times.  

The particles were then transferred to a tarred Eppendorf tube, and centrifuged in a 

microfuge (Fisher Scientific) for 20 minutes.  The supernatant was removed, the 
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pellet was dried in a vacuum oven overnight, massed, and dispersed in the 

appropriate amount of sterile water to make a 10 mg/mL dispersion of particles. 

 

2.2.3 Particle size analysis of PRINT particles using scanning electron 

microscopy  

The size of PRINT particles was analyzed via scanning electron microscopy 

(Hitachi model S-4700).  Particle dispersions were prepared at concentrations of 

0.5 mg/mL, and a drop of this solution was placed on a glass slide.  The drop was 

then allowed to dry, and the glass slide was coated with 1.5 nm of Pd/Au alloy using 

a Cressington 108 auto sputter coater (Cressington Scientific Instruments Ltd.).  The 

Pd/Au coated glass slide was then adhered to the sample holder using double-sided 

adhesive tape, and placed inside the vacuum chamber of the SEM and observed 

under low vacuum (10-3 Torr).  

 

2.2.4 Zeta potential measurements 

The zeta potential of PRINT particles was measured using a ZetaPlus Zeta 

Potential Analyzer (Brookhaven Instruments Corporation).  The particles were 

dispersed in water at a concentration of 0.3 mg/mL and the zeta potential was 

measured. 

 

2.2.5 Cell lines and maintenance 

HeLa cells were maintained in MEM supplemented with 10% FBS, 2 mM L-

Glutamine, 1 mM sodium pyruvate and non-essential amino acids. NIH 3T3 and 
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RAW 264.7 cells were maintained in DMEM with 10% FBS, 4.5g/L glucose, 2 mM L-

glutamine, and 110 mg/L sodium pyruvate. MCF-7 cells were grown in RPMI 1640 

with 10% FBS, 2 mM L-glutamine, 1 mM sodium pyruvate, non-essential amino 

acids, and 10ug/mL insulin. OVCAR-3 cells were grown in RPMI 1640 supplemented 

with 10% FBS, 2 mM L-glutamine, 1 mM sodium pyruvate, 10 mM HEPES, 4.5g/L 

glucose, and 10 µg/mL human recombinant insulin.  

 

2.2.6 Cell uptake and cytotoxicity assay – The effect of charge using 1 µm 

(AR = 1) particles 

 HeLa, MCF-7, OVCAR-3 and NIH 3T3 cells were seeded in 96 well plate at 

2×104 per well, and RAW 264.7 cells were seeded at 5×104 per well. Cells were 

allowed to attach to the plate overnight at 37°C. The next day, 1 µm particles were 

vortexed and diluted in OPTI-MEM with GlutaMAX-I. Cells were briefly washed using 

OPTI-MEM with GlutaMAX-I and then dosed with particles for 4 hours (50 µL/well). 

The particles were removed at the end of dosing. For uptake assays, cells were 

washed with DPBS and trypsinized. Cells were then treated with 0.1% trypan blue at 

room temperature for 10 min to quench the extracellular fluorescence from non-

internalized particles.[28]  Finally, cells were washed and resuspended in DPBS and 

analyzed on a Cyan flow cytometer (DakoCytomation) with Summit 4.3 software. For 

the cytotoxicity assays, 100 µL of complete growth medium was replaced in each 

well, and 20 µL of Cell Titer 96® AQueous One Solution Cell Proliferation Assay 

reagent was added and incubated at 37°C until color was well developed. The 

adsorptions at 490 nm were taken for analysis.     
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2.2.7 In vitro cytotoxicity – The effect of size and shape 

HeLa cells were seeded in 100 μL of media [Minimum Essential Medium 

(MEM) containing Earle’s salts and supplemented with 1 mM sodium pyruvate and 

non-essential amino acids] at a density of 5 x 103 cells per cm2 into a 96-well 

microtitre plate.  Cells were allowed to adhere for 24 h before MEM was replaced 

with Opti-MEM (90 μL per well) and the particle preparation (10 μL per well in PBS).  

HeLa cells were incubated with the PRINT particles for 4 h or 72 h at 37 °C in a 

humidified 5% CO2 atmosphere.  After the incubation period, negative controls were 

prepared by the addition of 2 μL of lysis solution to a few wells containing cells only.  

After 2 minutes, the MTS assay solution was added (20 μL per well) into each well.  

The cells were then incubated for an additional 1 h at 37 °C in a humidified 5% CO2 

atmosphere.  The optical density at 492 nm was measured using a BioRad Model 

3550 microplate reader (BioRad Laboratories).  The viability of the cells exposed to 

PRINT particles was expressed as a percentage of the viability of cells grown in the 

absence of particles. 

 

2.2.8  Uptake experiments – The effect of size and shape 

The HeLa cell line was employed to investigate the uptake of 5 µm, 3 µm, 

2 µm cubic particles and 1 µm, 0.5 µm [aspect ratio (AR) = 2], 0.2 µm (AR = 1), 

0.15 µm (AR = 3), and 0.1 µm (AR = 3) cylindrical particles. Particles were incubated 

with cells over a time course ranging from 15 minutes to 4 hours (37°C, 5% CO2). 

Following cell/particle incubation, the cells were washed and detached by 

trypsinization. After centrifugation, cells were resuspended in a 0.4% trypan blue 
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(TB) solution in Dulbecco’s Phosphate Buffers Saline solution (DPBS) to quench the 

extracellular FITC fluorescence [17].  This assay is based on the observation that 

the vital dye TB, while quenching the FITC fluorescence of a non-internalized 

particle, causes them to fluoresce red while an internalized particle will fluoresce 

green. Cells were then centrifuged, the TB solution was removed, the cell pellet was 

resuspended in DPBS, and sample was analyzed by flow cytometry (CyAn ADP, 

Dako), for green and red fluorescence. There were 10,000 cells measured in each 

sample. 

 

2.2.9  Confocal laser scanning microscopy 

HeLa cells (50,000) were seeded in a T-25 flask for 24 hours (37°C, 5% CO2).  

Cells were washed once with D-PBS followed by MEM with supplements containing 

1% fetal bovine serum (low serum).  Cells were then incubated for 4 hours (37°C, 

5% CO2) with low serum MEM (2 mL) containing 15 µg/ml FITC-labeled PRINT 

nanoparticles. The cells were then washed by detachment with trypsin, resuspended 

in complete MEM containing 10% FBS, replated onto 2 35 mm2 glass bottom dishes 

with 1.5G cover slips (MatTek Corporation) and allowed to adhere over night at 37°C.   

Nuclei were stained with 2.5 µM DRAQ5 (Biostatus Ltd) in complete MEM following 

the manufacturer’s protocol.  DRAQ5 is a DNA specific dye with far-red fluorescent 

properties (Ex: 647 nm, Em: 670 nm) [18]  AlexaFluor-555 labeled WGA in D-PBS 

(2.5 µg/ml; Molecular Probes) was used to visualize plasma membranes.  Cells were 

then fixed with 4% paraformaldehyde.  Microscopy was carried out on an Olympus 

FV500 confocal laser scanning microscope (Olympus Co Ltd) located in the 
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Microscopy Laboratory Services, a core facility of the Department of Pathology and 

Laboratory Medicine within the UNC School of Medicine. Z stacks were collected 

and used for 3D reconstruction and visualization of intracellular particle localization. 

 

2.2.10 Transmission electron microscopy (TEM) 

TEM was carried out to further visualize the intracellular internalization and 

localization of PRINT nanoparticles.  ~ 5 ×105 HeLa cells were seeded in 60 mm2 

polystyrene dishes overnight.  The following day, cells were treated with either 

200 nm × 200 nm, 1 µm × 1 µm, or 150 nm × 450 nm particles (15 µg/mL in reduced 

serum MEM) for times indicated in the figure legend.   Cell monolayers were rinsed 

with D-PBS and fixed in 2% paraformaldehyde/2.5% glutaraldehyde/0.15M sodium 

phosphate, at pH 7.4, for several hours or overnight. Following three rinses with 

sodium phosphate buffer, the monolayers were postfixed for 1 hour in 1% osmium 

tetroxide/1.25% potassium ferrocyanide/0.15M sodium phosphate buffer.  After 

rinsing in deionized water, the cells were dehydrated using increasing 

concentrations of ethanol (30 %, 50 %, 75 %, 100 %, 100 %, 10 minutes each) and 

embedded in Polybed 812 epoxy resin (Polysciences, Inc.).   The monolayers were 

sectioned parallel and perpendicular to the substrate at 70 nm using a diamond 

knife.  Ultrathin sections were collected on 200 mesh copper grids and stained with 

4% aqueous uranyl acetate for 15 minutes, followed by Reynolds’ lead citrate for 

7 minutes. Samples were viewed using a LEO EM910 transmission electron 

microscope operating at 80kV (LEO Electron Microscopy Inc.) located at the 

Microscopy Laboratory Services Core Facility.  Digital images were acquired using a 
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Gatan Orius SC1000 CCD Digital Camera and Digital Micrograph 3.11.0 (Gatan, 

Inc.). 

 

2.2.11 Inhibitor studies 

HeLa cells (5 × 104) were seeded in a T-25 flask were treated with 0.1% 

NaN3/ 50 mM 2-deoxyglucose, cytochalasin D (5 µg /mL), Dynasore (80 µM), or 

genistein (200 µM) in serum-free MEM for one hour prior to incubation of particles 

(15 µg/mL) with inhibitor in the fresh media for one hour at 37ºC/5% CO2.   For the 

inhibitors methyl-β-cyclodextrin (mβcd)  and chlorpromazine, cells were pre-

incubated serum-free MEM containing either in 5 mM mβcd or 10 µg/mL 

chlorpromazine for 15 minutes at 37ºC/5% CO2.  The media was then changed to 

fresh media containing the inhibitors plus particles (15 µg/mL) and further incubated 

for 30 min at 37ºC/5% CO2.  Following exposure to particles and inhibitors for the 

desired time, the cells were washed with D-PBS and then trypisinized and 

processed for flow cytometry as described in the Uptake Experiments. All inhibitors 

were obtained from Sigma-Aldrich except for Dynasore which was obtained from 

ChemBridge Corporation. 

 

2.3  Results and discussion 

In the PRINT (Particle Replication In Non-wetting Templates) process (Figure 

2.1), the permanent silicon master template is fabricated using advanced 

lithographic techniques.  The liquid PFPE fluoropolymer is then added to the surface 

of the master template.  A positive spreading coefficient allows the 
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perfluoropolyether to wet the nanoscale features of the master template with 

extremely high fidelity.  After the fluoropolymer has wet the master template it is 

photochemically cross-linked and peeled away to generate a precise mold having 

nanoscale cavities.  The low surface energy and high gas permeability of the PRINT 

mold enables the organic liquid precursor to the drug carrier particles to fill the 

cavities through capillary action, but it does not form an inter-connecting “flash” layer 

of liquid wetting the land area between the cavities.  Such specific wetting and filling 

enables the fabrication of freestanding and harvestable particles that have the same 

precise shape of the silicon master template from which they were derived.  Once 

the liquid in the mold cavities is converted to a solid using a wide range of gentle 

chemistries, the array of organic particles can be removed from the mold either by 

physical methods or by bringing the mold in contact with an adhesive layer (e.g. 

surgical adhesive/water soluble excipient layer).  PRINT particles generally display a 

meniscus on one side of the particles, which is a direct result of the PRINT process 

where capillary action is used to fill the perfluoropolyether molds.  Once the liquid in 

the PRINT molds is polymerized, the meniscus becomes a permanent part of the 

particle shape.   

A series of particles were designed having varying sizes and shapes at a 

constant chemical composition (i.e. at a constant surface charge) using PRINT [17-

19].  The PRINT micro- and nanoparticles were made from cationic, crosslinked 

poly(ethylene glycol) hydrogels and were designed to study the interdependent 

effect of size, shape and surface charge (zeta potential) on their internalization by 

human cervical carcinoma epithelial (HeLa) cells.  Three distinct series of cationic 
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poly(ethylene glycol)-based particles were fabricated, a micron-sized series of cubic-

shaped particles (cube side length = 2 µm, 3 µm, and 5 µm, Figure 2.3A-F), a 

micron-sized cylindrical series with identical heights but varying diameters 

(diameter = 0.5 µm, aspect ratio (AR) = 2 (Figure 2.3G), or diameter = 1 µm, AR = 1 

(Figure 2.3H), and finally, a cylindrical-shaped nanoparticle series 

(diameter = 200 nm, AR = 1 (Figure 2.3I), diameter = 100 nm, AR = 3 (Figure 2.3J), 

diameter = 150 nm, AR = 3 (Figure 2.3K)).  A characterization of the particle size (by 

SEM) and surface charge (by zeta potential) can be found in Table 2.2.  
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Particle Size Height (µm) Width (µm) Zeta  

Potential (mV) 

5 µm Cubes 4.60 ± 0.07 4.67 ± 0.20 +26 ± 3 

3 µm Cubes 2.50 ± 0.10 2.63 ± 0.09 +21 ± 3 

2 µm Cubes 1.56 ± 0.09 1.86 ± 0.04 +21 ± 3 

1 µm Cylinders (AR=1) 0.58 ± 0.05 0.90 ± 0.01 +22 ± 3 

0.5 µm Cylinders (AR=2) 0.38 ± 0.02 0.77 ± 0.09 +32 ± 3 

0.2 µm Cylinders (AR=1) 0.217  ±  0.006 0.159  ±  0.007 +42 ± 3 

0.15 µm Cylinders (AR=3) 0.479  ±  0.026 0.134 ±  0.026 (top) 

0.159 ±  0.012 (bottom) 

+35 ± 3 

0.1 µm Cylinders (AR=3) 0.277  ±  0.014 0.075 ±  0.003 (top) 

0.118 ±  0.005 (bottom) 

+41 ± 3 

Table 2.2 Particle size and surface charge characterization as determined by 
scanning electron microscopy and zeta potential measurements (respectively).  
Particle labels describe master cavity size. 
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Figure 2.3 Micrographs of PRINT particles varying in both size and shape.  Top 
Row (A-C) Scanning electron micrograph of the cubic series of particles {Diameters 
equal to 2 µm (A), 3 µm (B), and 5 µm (C)}.  Second Row (D-F) fluorescence 
micrographs of the cubic series of particles {Diameters equal to 2 µm (D), 3 µm (E), 
and 5 µm (F)}.  Third Row (G,H) Scanning electron micrographs of the cylindrical 
series of microparticles having the same height (1 μm), but varying diameters 
(Diameter = 0.5 µm (G) and 1 µm (H).  Last Row (I-K) Scanning electron 
micrographs of a series of cylindrical nanoparticles {Diameter = 200 nm, Height = 
200 nm (I), diameter = 100 nm, height = 300 nm (J), diameter = 150 nm, height = 
450 nm (K)}.  Scale bars = 20 µm (A-F), 1 µm (G-K). 
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 The cellular internalization of the three sets of particles was examined using 

HeLa cells, with particles being dosed at a constant particle mass (15 µg/mL). The 

kinetics of particle internalization were evaluated using a flow cytometry method in 

which internalized particles were differentiated from membrane-bound particles with 

a trypan blue fluorescence quench [17].  The time course of particle internalization 

was studied from 15 minutes to 4 hours (Figure 2.4).  Cellular internalization of 

PRINT particles exhibited a strong dependence on particle size and shape. No 

significant internalization of the cubic particles with side lengths of 3 and 5 µm was 

seen in contrast to cubic particles with a side length equal to 2 um which were 

significantly internalized by a large fraction of the cells.  Cylindrical particles having 

diameters equal to 500 nm and 1 µm, both having heights of 1 µm, displayed similar 

internalization profiles, internalizing particles at a higher percentage (~75 %) than 

cubic shaped 2 µm particles (~ 45 %).  
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Figure 2.4 Internalization profile of PRINT particles with HeLa cells over a 4 hour 
time period at 37°C. Legend depicts the particle diameter/particle volume. 
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It was found that HeLa cells internalized all three nanoparticle shapes in the 

cylindrical series to a very high degree, however the kinetics of internalization were 

quite varied among the members of this series.  While the low aspect ratio cylindrical 

particles having a diameter = 200 nm and a height = 200 nm and the high aspect 

ratio cylindrical particles having a diameter = 150 nm and a height = 450 nm have 

similar volumes (6.3 x 10-3 µm3 and 7.9 x 10-3 µm3 respectively), their rates of 

internalization were quite different. The high aspect ratio particles (d = 150 nm, h = 

450 nm) were internalized by HeLa cells approximately 4 times faster than the more 

symmetric low aspect ratio particles (d = 200 nm, h = 200 nm) (5.2 % of the cell 

population/min versus 1.2 % of the cell population/min).  Cylindrical particles having 

a diameter of 100 nm, an aspect ratio of 3, and a volume of 2.4 x 10-3 µm3 were 

internalized to a lesser extent than the larger cylindrical particles having a diameter 

of 150 nm with the same aspect ratio.  The internalization kinetics of the 

nanoparticles by HeLa cells thus appears to be dependent not only on the effective 

rod-like character (aspect ratio) but also on the absolute size and/or volume of the 

particle.  A possible explanation for this behavior could be attributed to the 

multivalent cationic interactions with cells that are available with the higher aspect 

ratio particles due to larger surface areas in contact with the cell membrane.  

High molecular weight, positively charged polyelectrolytes such as poly(lysine)  

are known to exhibit cytotoxicity in vitro due to interactions between the 

polyelectrolytes and cell membrane phospholipids resulting in disruption of the 

cellular membrane structure [19, 20].  Therefore, the cytotoxicity of each particle 
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series was determined using the MTS cell viability assay (Figure 2.5).   No toxicity 

was evident from the assays suggesting that cationic PRINT particles used in this 

study were non-toxic at the concentration ranges used in the study.  Furthermore, as 

nanoparticles are likely candidates for in vivo studies, we evaluated the low aspect 

ratio cylindrical particles (d = 200 nm, h = 200 nm) for long term cytotoxic effects 

(72 h) (Figure 2.5) [21].  Even under extended incubation times, PRINT 

nanoparticles exhibited no cytotoxicity. 

0

20

40

60

80

100

120

15 ug/mL 150 ug/mL (-) Control

Particle Dosing

%
 C

el
l V

ia
bi

lit
y

200 nm (AR=1)
100 nm (AR=3)
150 nm (AR=3)
0.5 um (AR=2)
1 um (AR=2)
2 um
3 um
5 um
200 nm (AR=1), 72 h

 

Figure 2.5 MTS Assay showing the cytotoxicity of all particles under investigation.  
All experiments were carried out with a 4 h incubation with HeLa cells, except the 
final bar, where the 200 nm particles were tested for cytotoxicity out to 72 hours. 
 
 
 

The effect that charge has on cellular internalization pathways has been 

studied [32].  It has been shown that positively charged D,L-poly(lactide) particles are 

internalized into HeLa cells using clathrin-mediated pathways whereas negatively 

charged D,L-poly(lactide) particles do not utilize the clathrin-mediated endocytotic 
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pathway.  Despite this study, little is known about the mechanism of the endocytotic 

machinery involved with internalized non-spherical particles, especially as a function 

of size, as well as the intracellular trafficking that takes place with non-spherical 

particles.  Dependence of surface charge on cellular internalization of PRINT 

nanoparticles was investigated using rapidly internalized high aspect ratio cylindrical 

nanoparticles (d = 150 nm, h = 450 nm).  These particles were treated with acetic 

anhydride to passivate the surface amine groups, thereby changing the zeta 

potential from + 34.8 ± 3.0 mV to - 33.7 ± 2.3 mV upon conversion of the protonated 

surface amine groups to amides (Figure 2.6).  Here, the negatively charged particles 

have retained the exact shape of the positively charged particles used in these 

studies, which showcases the ease of transformations of the surface chemistry on 

PRINT particles.  The charge effect on cellular internalization was dramatic.  

Positively charged nanoparticles were  internalized in 84 % of cells after a 4 h 

incubation period whereas the identically shaped negatively charged particles were 

not internalized to any significant amount (< 5 %), thus strongly suggesting that 

surface charge plays an important  role in the cellular internalization of PRINT 

particles (Figure 2.6).  
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Figure 2.6 Effect of charge on cellular internalization.  A) The chemical 
transformation, leading to changes in surface charge, B) Particle internalization after 
4 hours of incubation with HeLa cells with positively charged particles C) Particle 
internalization after 4 hours of incubation with HeLa cells with negatively charged 
particles 
 
 
 

  To further elucidate the effect of charge on cellular internalization, a focused 

study on was conducted using 1 µm particles and multiple different types of cells.  

Treating the surface amine groups of the positively charged particles with acetic 

anhydride in Borax buffer changed the zeta potential from + 22 ± 3 mV to -19 ± 3 mV.    

In order to determine the effect of charge in multiple different cell lines, both 

positively and negatively charged 1µm PRINT particles were dosed onto HeLa 

(human epithelial carcinoma), NIH 3T3 (mouse embryonic fibroblast), OVCAR-3 

(human ovarian carcinoma), MCF-7 (human breast adenocarcinoma), and RAW 

264.7 (mouse leukaemic monocyte macrophage) cells.  Following several rinsing 

steps attempting to remove any membrane-bound or non-internalized particles, the 
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percent of cells with internalized particles was measured on a Dako flow cytometer.  

In these experiments, HeLa, NIH 3T3, OVCAR-3, and MCF-7 cells all displayed a 

decreased rate of endocytosis with the negatively charged particles when compared 

to the identically sized and shaped positively charged particles at all particle 

concentrations tested (up to 360 µg/mL, Figure 2.7).  In contrast, the RAW 264.7 

macrophage cells showed no preferential uptake of positively charged particles over 

the negatively charged particles.  Specifically, it was found that at a particle 

concentration of 100 µg/mL, positively charged were internalized into ~ 100 % of all 

the HeLa cells being analyzed, whereas only ~ 60 % of the negatively charged 

particles were internalized at similar concentrations.  When NIH 3T3 cells were 

investigated at the same particle concentration, a larger discrepancy was seen 

between the positively and negatively charged PRINT particles.  Here, the positively 

charged particles were internalized by ~ 100 % of the cells, while the negatively 

charged particles were only internalized by ~ 40 % of the cells.  In contrast, OVCAR-

3 cells seemed to be less discriminatory, with ~ 100 % of cells possessing an 

internalized positively charged particle, and ~ 80 % of cells having an internalized 

negatively charged particle, both at particle concentrations of 100 µg/mL.  An 

additional cancer cell line was examined, MCF-7 cells, which showed a more 

pronounced preference for the positively charged particles.  In this case, at 

100 µg/mL, ~ 80 % of cells contained an internalized positively charged particle, 

whereas only ~ 40 % of cells contained an internalized negatively charged particle.  

Finally, the macrophage cell line showed little, if any, effect of charge on particle 

internalization at all particle concentrations.  For example, at 100 µg/mL ~ 85 % of 
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cells contained an internalized positively charged particle, and ~ 75 % of cells 

contained an internalized negatively charged particle. 

In this series of experiments, both 1 hour and 4 hour particle incubation times 

were examined, with little difference in cellular internalization observed with 

increased incubation times.  These results suggest that a targeted particle therapy 

could be achieved at the appropriate particle dosing levels (~ 15 µg/mL) using 

negatively charged particles with a targeting ligand thereby avoiding non-specific 

uptake and increasing targeting efficiencies into the desired cells. 
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Figure 2.7 Internalization of 1 µm PRINT particles by various cell lines. Cells were 
dosed with various concentrations of particles for 4 h at 37°C. (A) Cellular 
internalization profiles; (B) Cytotoxicity of particles. Red circles represent positively 
charged particles; blue circles represent negatively charged particles. The data 
shown were representative of more than three separate experiments. 
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Since it is known that positively charged particles can induce cytotoxic effects, 

all particles used in this study were examined for cytotoxicity.  It is thought that 

positively charged particles can disrupt the cellular membrane through electrostatic 

interactions with the cell membrane phospholipids [33, 34].  Therefore, the 

cytotoxicity of the PRINT particles used herein was evaluated using HeLa, NIH 3T3, 

OVCAR-3, MCF-7, and RAW 264.7 cells after 4 hours of incubation with both 

positively and negatively charged 1 µm PRINT particles.  In all five cell lines tested, 

no significant amount of cytotoxicity was observed (Figure 2.7).  Moreover, no 

observable cell death was seen for particles having either positive or negative zeta 

potentials.  However, several cells lines showed a slight decrease in cell viability with 

an increase in particle concentration, while remaining relatively non-toxic.  For 

example, HeLa cells show a ~12 % decrease in cell viability once both positively and 

negatively charged particle concentrations were increased to 200 µg/mL and RAW 

264.7 cells showed a decrease in cell viability (~13 %) for both charged particles at 

concentrations of 125 µg/mL. For the remaining cell lines, i.e. NIH 3T3, OVCAR-3 

and MCF-7, both surface charges showed no observable cell death at particle 

concentrations as high as 200 µg/mL.  For all cell lines, cytotoxicity tests were 

performed with extended times (out to 72 hours), with no significant amount of cell 

death observed.   

Further insight into the cellular internalization of the cationic hydrogel particles 

based on size and shape was gained by confocal microscopy (Figure 2.8).  

Monitoring particle internalization by confocal microscopy gave a more complete 

understanding of particle intracellular localization. Confocal micrographs revealed 
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that all internalized PRINT particles consistently migrated to the perinuclear region of 

the cells over time.  Z series images were obtained and used to construct 3-D 

representations which clearly show that PRINT particles as large as 3 µm are 

internalized by HeLa cells, and that the particles ultimately translocate to the 

perinuclear region of the cell. These data are consistent with intracellular 

translocation of either endosomal and/or lysosomal vesicles from the plasma 

membrane along microtubules in the minus direction toward the 

centrosome/microtubule organizing center of the cell [23].   
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Figure 2.8 Confocal laser scanning microscopy images of HeLa  cells after a 1 h 
incubation period at 37°C with A) 3µm cubes, B) 2 µm cubes, C) 1 µm (AR = 1) 
cylinders, D) 200 nm (AR = 1) cylindrical particles {scale bar = 10 µm}. 
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Transmission electron microscopy (TEM) was used to gain additional 

understanding of the mechanism of PRINT particle internalization by HeLa cells 

(Figure 2.9).  Cylindrical PRINT particles having a diameter of 200 nm (AR = 1) were 

readily internalized by HeLa cells through multiple modes of non-specific 

endocytosis (Figures 2.9B-D).  TEM micrographs of the low aspect ratio cylindrical 

particles (d = 200 nm, h = 200 nm) clearly shows that the internalization of these 

particles occurs and that internalization is by a combination of mechanisms most 

notably energy-dependent phagocytosis and a clathrin-mediated mechanism.  At 

early times both mechanisms are observed.  A clathrin-coated pit is clearly 

associated with an internalized particle as seen in Figure 2.9B and Figure 2.9C.  

Internalization at the surface is associated with actin rearrangement near the plasma 

membrane and extension into the extracellular space (Figure 2.9B).    Furthermore, 

high aspect ratio nanoparticles (d = 150 nm, h = 450 nm) were rapidly internalized 

into HeLa cells and translocated close to the nuclear membrane (Figures 2.9E-F).  

At 1 hour, these rod-like particles had traversed significantly further into the cells 

when compared to both the low aspect ratio cylindrical nanoparticles (d = 200 nm, 

h = 200 nm) and the 1 µm (AR =1) cylindrical particles at similar times.  This 

observation qualitatively supports the rate data obtained using flow cytometry. 

Figures 2.9G-I clearly show the internalization and translocation of cylindrical 1 µm 

(AR = 1) PRINT particles deep within the cell over the time frame examined.   
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Figure 2.9 Transmission electron microscopy images of HeLa cells at 37°C 
(incubation times in parenthesis) with B-D) 200 nm x 200 nm cylindrical particles 
(AR = 1) (B,C – 15 minutes, D - 4 hours), E-F) 150 nm x 450 nm cylindrical particles 
(E-F – 1 hour), G-I) 1 µm cylindrical particles (G – 1 hour, H,I – 4 hours) 

 
 
 
To more clearly delineate the role of specific endocytotic pathways involved in 

PRINT particle cellular internalization, HeLa cells were treated with known 

biochemical inhibitors of energy-dependent processes, clathrin-mediated processes, 

caveolae-mediated processes, and macropinocytotic endocytosis (Figure 2.10).  To 

investigate energy-dependence, cells were pre-incubated in the presence of NaN3/2-

deoxyglucose (NaN3/DOG) and then treated with PRINT particles.  NaN3/DOG, 

which blocks cellular ATP synthesis, resulted in a marked decrease in the cellular 

internalization of all particle sizes (68-84 % compared to non-treated cells) indicating 
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that internalization is an energy dependent process, with the smaller PRINT particles 

showing a slightly higher tendency for energy dependence (78 % for 200 nm 

(AR = 1); 84 % for 150 nm (AR = 3) than the larger 1 um (AR = 1) (68 %)).  

Complete inhibition was not seen and is most likely due to the presence of 

exogenous ATP and glucose in the serum-free media.  Similarly, internalization of 

the smaller PRINT particles was markedly decreased in the presence of 

cytochalasin D (63 % and 77 % for 200 nm and 150 nm, respectively), an inhibitor of 

actin polymerization as compared to the larger 1 µm particles (24 %). While 

cytochalasin D is generally classified as an inhibitor of 

macropinicytosis/phagocytosis, both clathrin- and caveolae-mediated pathways have 

recently been shown to require actin for formation and invagination of both coated 

pits and caveosomes [24].  Due to the fact that HeLa cells are considered as non-

phagocytosing cells, the inhibition of particle internalization by cytochalasin D may 

reflect inhibition of either clathrin-mediated or caveolae-mediated pathways, or a 

combination of the two.  Indeed, comparison of the cytochalasin inhibition to the 

inhibiton of clathrin-mediated endocytosis using the dynamin-GTPase inhibitor 

Dynasore and inhibition of caveolae-mediated endocytosis with the natural 

isoflavone tyrosine kinase inhibitor genistein shows an almost identical inhibition 

pattern [25].  The importance of actin involvement is also demonstrated in TEMs of 

all three sizes of particles (Figure 2.10).   Surprisingly, chlorpromazine, a cationic 

amphipathic drug also used to probe clathrin-mediated endocytosis, showed 

significant inhibition when compared to internalization in the presence of Dynasore 

with the 200 nm (AR = 1) and 1 µm (AR = 1) particle sizes being inhibited by 92 % 
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compared to ~ 60 % and 87 % compared to ~ 36 %, respectively.  No change was 

observed between the two inhibitors for the 150 nm (AR = 3) particles.  Due to the 

amphipathic nature of the drug, chlorpromazine is readily capable of incorporating 

into the lipid bilayer of the plasma membrane increasing lipid fluidity which in turn 

may inhibit or block the formation of membrane invaginations thus leading to a 

decrease in particle internalization.   Nonetheless, both chlorpromazine and 

Dynasore demonstrated the importance of the clathrin-mediated pathway for the 

internalization of the 150 nm (AR = 3) and 200 nm (AR = 1) cylindrical PRINT 

particles, where ~ 70 % inhibition of internalization was seen for the 150 nm (AR = 3) 

particles, and ~ 60 % inhibition was seen for the 200 nm (AR = 1) particles.  The 

exact role of this pathway in the internalization of 1 µm (AR =1) cylindrical PRINT 

particles is not clearly delineated since only ~ 35 % of internalization was inhibited in 

the presence of Dynasore but more than 85 % was observed with chlorpromazine. 

To discern any role that caveolae-mediated endcytosis may play in nanoparticle 

uptake two inhibitors, genistein, a tyrosine kinase inhibitor, and methyl-β-

cyclodextrin, a cyclic heptasaccharide known to sequester and alter cholesterol-rich 

domains within the plasma membrane were used.  For both inhibitors, caveolae-

mediated endocytosis was observed to be a prominent internalization pathway for 

the 150 nm (AR = 3) and 200 nm (AR = 1) cylindrical PRINT particles (~ 60 % 

inhibition seen with both particles with both inhibitors) with very little inhibition 

detected with the larger 1 µm (AR = 1) PRINT particles (~ 10-25 %).  These data are 

consistent with the current view that caveolae generally can only endocytose 

nanoparticles in the range of 50-100 nm [26].   All of these experiments strongly 
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suggest that clathrin-mediated, and caveolae-mediated endocytosis and to a much 

lesser extent macropinocytosis are involved with both the nano- and microparticles 

internalization, but these mechanisms play a larger role with the internalization of the 

smaller (150 nm (AR = 3) and the 200 nm (AR = 1)) PRINT nanoparticles.  It should 

be noted that none of the specific chemical inhibitors led to greater than 95 % 

inhibition of internalization.  This observation is most likely indicative of the role of 

non-clathrin, non-caveolae mediated pathways for internalization.  Interestingly, the 

rapidly internalizing 150 nm (AR = 3) particles utilize all internalization pathways to a 

large extent, possibly pointing to the reason why these particles are internalized to 

such a high degree relative to the other shapes. 
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Figure 2.10 Probing the mechanisms of cellular internalization using inhibitors of 
endocytosis.  HeLa cells were incubated with the indicated inhibitors in the graph as 
outlined in the experimental methods.  Percent internalization was normalized to 
particle internalization in the absence of inhibitors. 
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2.4 Conclusions 

The biochemical inhibitory studies, the confocal microscopy data, the TEM 

data, and the flow cytometry analysis of the precisely defined and shaped PRINT 

particles reveal a number of interesting results and a couple of surprises.  First, 

current scientific thought is that the upper limit of the size of any nanoparticle 

internalized into non-phagocytotic cells by means of non-specific endocytosis is 

150 nm; thus any particle larger than 150 nm would be excluded from cellular 

internalization altogether [27-29].  The results suggest that this upper size limit 

convention needs to be raised significantly as we clearly see the internalization of 

3 µm, 2 µm and 1 µm sized particles.  To the best of our knowledge this is the first 

report of the intracellular uptake and transport of biologically-relevant nanoparticles 

greater than 200 nm into non-phagocytic mammalian cells. Second, our data reveals 

that internalized PRINT particles of any size appear to follow multiple pathways into 

the cell.  Third, there was a significant diminution of particle internalization in cells 

when the particles had a negative zeta potential versus particles that had a positive 

zeta potential.  The dramatic switch in the internalization of particles with the sign of 

the zeta potential points to a potential strategy for enhancing the specificity of 

particle targeting to cells of interest.  It will be interesting to conjugate ligands 

capable of stimulating specific receptor mediated endocytosis to particles having a 

negative zeta potential as a strategy to enhance the specificity of cell targeting 

objectives. Fourth, it was surprising to find that the internalization of the rod-like, high 

aspect ratio nanoparticles (d = 150 nm, h = 450 nm) occurs much more rapidly and 

efficiently than would be expected based on size considerations alone, suggesting a 
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special role associated with the shape of the particles.  Specifically, these high 

aspect ratio, rod-like PRINT particles were internalized faster than their more 

symmetric 200 nm (AR = 1) cylindrical particle counterpart, even though both 

particles are substantially equal in volume.  Furthermore, rod-like nanoparticles 

having the same aspect ratio and smaller dimensions (cylindrical particles with 

d = 100 nm and h = 300 nm vs cylindrical particles with d = 150 nm and h = 450 nm) 

did not increase the amount of particles internalized into HeLa cells.   Thus the 

interplay between particle shape and size at constant surface chemistry will 

undoubtedly play a role in numerous areas of interest including particle targeting 

strategies in therapeutic applications, environmental fate of nanoparticles, and may 

even shed some light on the rationale behind bacterial pathogen sizes and shapes.     
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3.1 Introduction 
 
 Despite continued progress in the identification, characterization, and 

synthesis of advanced therapeutics, the full potential of such innovations can only be 

achieved with the concomitant realization of in vivo profiles ideal for pharmacological 

intervention.  In the realm of drug discovery, the hindrance to obtaining such a profile 

may be as simple as poor solubility in biological media.  For instance, it has been 

reported that ten percent of marketed drugs suffer from solubility problems, over a 

third of pipeline drugs are poorly soluble, and almost two-thirds of drugs coming from 

early pre-clinical development have low solubility [1].  As such, almost forty percent 

of all possible drug targets fail early due to poor solubility characteristics.  More 

complex problems with drug candidates may include unfavorable pharmacokinetics, 

and high systemic toxicity.  Particular attention must also be given when considering 

the delivery of biochemically labile substances such as siRNA and other 

oligonucleotides for gene therapy, as these sensitive cargos need to be protected 

during circulation.  In addition, they need to be delivered to the appropriate tissue or 

organ, and released intracellularly into the cytosol or nucleus to be effectively used 

as therapeutics.  Finally, the efficient delivery of detection and imaging agents is an 

extremely important step in the early diagnosis and treatment of disease.   

 The development and utilization of nanocarriers in response to many of the 

aforementioned problems encountered in vivo has led to dramatic improvements in 

the biological profile of important therapies.  Intense research in drug delivery over 

the past few decades has seen the design and construction of valuable nanocarriers 

such as liposomes, micelles, dendrimers, polymer particles, and colloidal 
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precipitates [2-9].  However, only a handful of drugs and imaging agents delivered 

using these classical approaches have made it into the clinic [1,2].  One underlying 

reason for the delayed development is that none of these approaches offers the 

ability to comprehensively, simultaneously, and independently address several 

different design criteria.  The ability to meet such demanding parameters is 

quintessential to the design of effective delivery vectors and has been the focus of 

intense research in our laboratory.  In this report, the first in vivo study of PRINT 

particles administered intravenously into healthy mice is described.  The promising 

biodistribution profile and blood pharmacokinetics of 200 nm non-targeted 

radiolabeled PEG-based nanogels fabricated using PRINT methodology are 

discussed. 

 

3.2  Experimental 

 

3.2.1 Materials 

 FluorocurTM, the perfluoropolyether used as the molding material in the 

PRINT process, was purchased from Liquidia Technologies (Product # 2M-140).  

Trimethylolpropane ethoxylate triacrylate (Mn = 428 g/mol) (Aldrich), was passed 

through a short plug of alumina prior to use to remove inhibitor.  Poly(ethylene 

glycol) monomethyl ether monomethacrylate (Mn = 1,000 g/mol) (Polysciences), 

para-hydroxystyrene (Alfa Aesar, 10% (w/w) in propylene glycol) and 2,2-

diethoxyacetophenone (Aldrich) were used as received without further purification.  

Iodogen® pre-coated tubes were purchased from Pierce Biotechnology, Inc., and 
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radioactive iodine (Na125I) was purchased from Perkin Elmer Life and Analytical 

Sciences, Inc. as 100 mCi/mL in 10-5 M NaOH.  HeLa cells and all cell culture media 

(MEM, OptiMEM) were purchased from the tissue culture facility at The University of 

North Carolina at Chapel Hill.  CellTiter 96* AQueous One Solution Cell Proliferation 

Assay (MTS) was purchased from Promega Corporation.  The lysis agent used for 

negative controls in in vitro viability studies with HeLa cells was 9% w/v solution of 

Triton® X-100 in water.  Silicon templates used as masters were obtained from 

Benchmark Technologies.  C57BL/6J mice were purchased from The Jackson 

Laboratory.  Ketamine HCl (100 mg/mL) was purchased from Abbott Laboratories.  

Cholesterol and 1,2-Distearoyl-sn-Glycero-3-Phosphocholine (DSPC) were 

purchased from Avanti Polar Lipids, Incorporated. All animal experiments were 

conducted in accordance with guidelines set forth by The University of North 

Carolina at Chapel Hill, and approval was obtained for the completion of these 

experiments. 

 

3.2.2 Preparation of PRINT nanoparticles 

The fabrication of patterned FluorocurTM molds has been described 

elsewhere [3].  Briefly, 20 mL of FluorocurTM resin containing 0.1% (w/w) of 2,2-

diethoxyacetophenone was pooled in the center of an 8 inch patterned master (with 

feature sizes of 200 nm) which was set up inside an enclosed UV chamber.  Ten 

minutes was allowed to pass so that the FluorocurTM resin was spread out over the 

entire 8 inch wafer.  The entire system was then purged with nitrogen for 3 minutes.  

Following this, the coated wafer was exposed to UV irradiation (λ = 365 nm, power > 
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20 mW/cm2) for 2 minutes to cure the FluorocurTM resin.  The elastomeric mold was 

then removed from the master template by gently peeling it away from the silicon 

surface. 

 In these experiments, the PRINT particles were derived from a mixture 

composed of 78% (w/w) PEG428 triacrylate, 20% (w/w) PEG1000 monomethyl ether 

monomethacrylate, 1% (w/w) 2,2-diethoxyacetophenone, and 1% (w/w) para-

hydroxystyrene.  A 10% (w/v) solution of this mixture in 2-propanol (filtered through a 

0.22 μm PTFE filter) was prepared.  This solution (1 mL) was then sprayed onto a 

FluorocurTM patterned mold using an air brush and residual 2-propanol was allowed 

to evaporate over 10 minutes.  A poly(ethylene) sheet (American Plastics Co.) was 

then placed over the 8 inch (diameter) mold ensuring that the entire active area was 

covered.  This poly(ethylene) sheet was then peeled back at a rate of approximately 

2.5 cm/min.  Following this, the mold was placed in a UV curing chamber.  The 

chamber was purged with nitrogen for 3 minutes and UV irradiation was applied 

(λ = 365 nm, power > 20 mW/cm2) for 2 minutes. 

 

Monomer Function Wt % 
PEG428 triacrylate Cross-linking agent 78 

PEG1000 monomethylether monomethacrylate Biocompatibility, Stability 20 
para-hydroxystyrene Chemical handle 1 

2,2-diethoxyacetophenone Initiator 1 
 
Table 3.1 Particle composition 
 
 
 
 To facilitate removal of the particles from the mold, a physical means for 

harvesting the particles was utilized.  Specifically, a 2 mL aliquot of acetone (filtered 
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through a 0.22 μm PTFE filter) was placed on the particle-filled mold and this drop of 

acetone was gently moved along the surface of the mold using a glass slide.  The 

movement of the glass slide facilitated release of the particles from the mold.  The 

suspended particles were collected in a 50 mL Falcon tube and diluted to the 50 mL 

mark with filtered acetone after particle collection was complete.  The suspension 

was vortexed for 10 minutes and was centrifuged at 3200 rpm for 30 minutes using a 

IEC CENTRA CL2 Centrifuge (Thermo Electron Corporation).  The supernatant was 

removed via aspiration and the particle pellet was redispersed in 50 mL of fresh 

acetone by vortexing for 10 minutes followed by centrifugation for an additional 

30 minutes.  This process was repeated once more and after aspiration the particles 

were redispersed in 5 mL of distilled water by sonicating the dispersion for 15 

minutes.  The particle dispersion was filtered through a 20 μm filter into a fresh 

50 mL Falcon tube, and diluted to the 50 mL mark with acetone.  This particle 

suspension was then centrifuged for one hour.  The supernatant was removed via 

aspiration and the particle pellet was redispersed in 50 mL of fresh acetone by 

vortexing for 10 minutes followed by centrifugation for an additional 30 minutes.  

This washing process was repeated once more (with acetone) and after aspiration 

the particles were redispersed in a minimal amount of acetone, transferred to a 

tarred Eppendorf tube, and centrifuged in a microfuge (Fisher Scientific) for 20 

minutes.  The supernatant was removed and the pellet was dried in a vacuum oven 

overnight, massed, and dispersed in the appropriate amount of sterile water to make 

a 10 mg/mL dispersion of particles. 
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3.2.3 Preparation of liposomes 

 Lipids (DSPC:Cholesterol, 55:45 mol) were dissolved in chloroform and 

evaporated to dryness in a rotary evaporator under reduced pressure at 50 °C.  After 

leaving the lipid film overnight under reduced pressure, the film was hydrated with 

PBS at pH 7.0.  Unilamellar liposomes were formed by extrusion with 20 passes 

through a double-stacked polycarbonate membrane (Whatman Nucleopore) with a 

pore size of 200 nm, resulting in a liposome diameter of 177 nm with a polydispersity 

of 0.026 as determined by dynamic light scattering [4,5]. 

 

3.2.4 Particle size analysis of PRINT nanoparticles using scanning electron 

microscopy (in the dry state)  

The size of PRINT nanoparticles was analyzed via scanning electron 

microscopy (Hitachi model S-4700).  Particle dispersions were prepared at 

concentrations of 0.5 mg/mL, and a drop of this solution was placed on a glass slide.  

The drop was then allowed to dry, and the glass slide was coated with 1.5 nm of 

Pd/Au alloy using a Cressington 108 auto sputter coater (Cressington Scientific 

Instruments Ltd.).  The Pd/Au coated glass slide was then adhered to the sample 

holder using double-sided adhesive tape, and placed inside the vacuum chamber of 

the SEM and observed under low vacuum (10-6 Torr).  
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3.2.5 Particle size analysis of PRINT nanoparticles, and liposomes, using 

dynamic light scattering (in suspension)  

The size and polydispersity of PRINT nanoparticles was analyzed via 

dynamic light scattering (DLS) using a 90Plus Particle Size Analyzer (Brookhaven 

Instruments Corporation).  The particles were dispersed in PBS at a concentration of 

0.5 mg/mL and measured without filtration at 25 °C and 37 °C. The DSPC:CHOL 

liposomes were diluted with PBS to a concentration of 0.5 mg/mL, and were 

measured under the same conditions as PRINT particles.   

 

3.2.6 Zeta potential measurements 

The zeta potential of PRINT nanoparticles was measured using a ZetaPlus 

Zeta Potential Analyzer (Brookhaven Instruments Corporation).  The nanoparticles 

were dispersed in water at a concentration of 0.3 mg/mL and the zeta potential was 

measured. 

 

3.2.7 Radiolabeling of PRINT nanoparticles with 125I 

PRINT nanoparticles were radiolabeled using IodogenTM solid phase oxidant 

in the presense of Na125I. Briefly, 10 mg of PRINT particles in 1 mL of H2O, 53 μL of 

phosphate buffered saline, and 1 mCi of Na125I in 10 μL of 10-5 M NaOH were added 

to an IodogenTM pre-coated tube (50 μg of IodogenTM reagent) and the tube was 

swirled every other minute for 15 minutes.  The radiolabeled particle solution was 

then transferred to a pre-weighed 1.5 mL Eppendorf tube.  The original reaction tube 

was rinsed with one 20 μL portion of 1 mM KI and with two 100 μL portions of water 
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and the rinsing solutions were added to the tube containing radiolabeled particles 

followed by the addition of NaHSO3 (1 μmol/10 μL).  The particle dispersion was 

then centrifuged for 10 minutes at 15,000 x g using an Eppendorf centrifuge 5415 D 

(Eppendorf).  The supernatant was removed and the particles were washed with four 

500 μL portions of water (until the radiation in the supernatant was no greater than 

the background, ensuring complete removal of non-specifically bound 125I) and 

evaporated to dryness in a SpeedVac SC100 (Savant Instruments).  The total mass 

recovered was 9.45 mg.  The specific activity was measured with a Beckman 

Gamma 5500B gamma counter (Laboratory Technologies) and found to be 

5.5 μCi/mg PRINT particles. 

 

3.2.8 In vitro cytotoxicity 

HeLa cells were seeded in 100 μL of media [Minimum Essential Medium 

(MEM) containing Earle’s salts and supplemented with 1 mM sodium pyruvate and 

non-essential amino acids] at a density of 5 x 103 cells per cm2 into a 96-well 

microtitre plate.  Cells were allowed to adhere for 24 h before MEM was replaced 

with Opti-MEM (90 μL per well) and the particle preparation (10 μL per well in PBS).  

Positive controls contained PBS alone.  HeLa cells were incubated with the PRINT 

particles for 4 h at 37 °C in a humidified 5% CO2 atmosphere.  After the 4 h 

incubation period, negative controls were prepared by the addition of 2 μL of lysis 

solution to a few wells containing cells only.  After 2 minutes, the MTS assay solution 

was added (20 μL per well) into each well.  The cells were then incubated for an 

additional 1 h at 37 °C in a humidified 5% CO2 atmosphere.  The optical density at 
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450 nm was measured using a BioRad Model 3550 microplate reader (BioRad 

Laboratories).  The viability of the cells exposed to neutral PRINT particles was 

expressed as a percentage of the viability of cells grown in the absence of particles. 

 

3.2.9 Biodistribution of [125I]-labeled PRINT particles   

C57Bl/6J mice were housed under specific pathogen-free conditions for one 

week and were used at 8 weeks of age (~18 g).  Animals were injected intravenously 

via bolus tail vein administration with 0.32 mg of [125I]-labeled PRINT particles with a 

specific activity of 4.3 μCi/mg in 100 μL of PBS (phosphate buffered saline, Sigma-

Aldrich).  At 10 min, 30 min, 1, 3, and 8 h after dosing, groups of four mice were 

anesthetized by intraperitoneal injection of 100 μL of ketamine HCl solution in PBS 

(50 mg/mL).  Blood was collected via cardiac puncture.  Samples of blood and 

organs harvested (liver, kidneys, spleen, lungs, and heart) were weighed and 

counted to determine the total radioactivity in a Beckman Gamma 5500B gamma 

counter (Laboratory Technologies).  An additional four animals were kept in a 

metabolic cage after injection of the [125I]-labeled PRINT nanoparticles.  At 24 h 

post-injection, the accumulated urine and feces were collected for radioactivity 

measurements.  After these animals were sacrificed (as described above) the blood 

as well as the organs were removed, weighed, and assayed for radioactivity. 

 

3.3 Results and discussion 

 The particle composition was engineered to produce biologically relevant 

delivery vectors. Several monomers were added to introduce specific functionality 
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into the hydrogel nanoparticles: poly(ethylene glycol) triacrylate, poly(ethylene 

glycol) monomethyl ether monomethacrylate, and p-hydroxystyrene (PHS) (Figure 

3.1).  Poly(ethylene glycol) derivatives have long been known to impart 

biocompatibility, solubility, stability, and increased circulation times to proteins, 

liposomes, and particles [6-10].  The phenol-containing monomer, PHS, was 

selected as a chemical handle so that gentle radioiodination of the particles was 

possible.  Since mPEG1000 monomethacrylate is a solid, 2-propanol was used to 

obtain a homogeneous solution of the monomer precursors, so that a thin film of 

monomer mixture could be sprayed onto the PFPE mold.  To this point, any solvent 

(or combinations of solvents) can be used in the PRINTing process, as long as the 

contact angle of the resultant solution onto the PFPE mold is less than 90°.  

Alternatives to this method include a melt PRINT process, where the monomers are 

heated to above their melting point, and the PRINT process is carried out, allowing a 

solvent-free process.   

 

 
 
Figure 3.1 Chemical structures of monomers and a partial structure of the PRINT 
nanogel. p-Hydroxystyrene was introduced for radioiodination at 1% (w/w).  
Throughout the present study, it is assumed that iodinated PRINT nanogels behave 
the same as unmodified particles. 
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The uniformity of size and shape of the hydrogels was confirmed using 

scanning electron microscopy (SEM, Figure 3.2).  The micrographs show the 

isolation of thousands of virtually identical cylindrical particles, thus verifying 

PRINT’s ability to copy the nanoscale features of a patterned wafer with high 

precision.  The diameter of the particles in the dry state was determined from the 

scanning electron micrographs to be 201 ± 10 nm and the height was determined to 

be 155 ± 10 nm.  A dry sample is required for SEM and thus the micrographs 

obtained do not represent the dispersion the particles have once in solution. 

 

 

Figure 3.2 Scanning electron micrographs of 200 nm PRINT particles used in the 
present study 

 
 
 

Method Parameter 
SEM 

 
Height: 155 ± 10 nm 
Width: 201 ± 10 nm 

 
DLS Diameter: 234 ± 12 nm 

 
Zeta Potential -30.4 ± 1.5 mV 

 
Table 3.2 Particle characterization 
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 The nanocarriers used most frequently today for the delivery of therapeutics 

in the clinic can best be classified under the general heading of self-assembled 

structures.  Nanovectors fitting this description include micelles, liposomes, and 

protein aggregates.  As a result of their inherent dynamic nature, these nanoparticles 

derived from the self-assembly of small molecules would be expected to undergo 

structural changes once in vivo.  As such, it is difficult to make a direct connection 

between the particle formulation prior to administration and the therapeutic outcome.  

As an example of this behavior, the size and polydispersity of liposomes and PRINT 

particles in water were investigated via dynamic light scattering at room temperature 

(25 °C) and then at physiological temperature (37 °C) over the course of several 

hours (Figure 3.3).  At 25 °C both liposomes and PRINT particles have a low 

polydispersity immediately upon formation or dispersion.  Upon heating to 37 °C, the 

mean diameter and polydispersity of liposomes changes dramatically as a function 

of time. Over the time course of 6 h at physiological temperature, the PRINT 

particles remain stable as observed by a steady size and polydispersity 

(234 ± 12 nm, PDI = 0.005).  This could be an important attribute in the design of 

nanocarriers, since it is expected that the size and polydispersity of dynamic 

structures may change even more rapidly once in the serum.  The zeta potential of 

these PRINT nanoparticles was measured to be -30.4 ± 1.5 mV. 
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Figure 3.3 A time-dependent study of the mean diameter, polydispersity and stability 
of PRINT particles (top), and liposomes (bottom) using dynamic light scattering 
  
 
 
 The cytotoxicity of the PRINT nanoparticles was assessed in a cursory 

manner using a MTS cell viability assay [11].  This particular assay is a colorimetric 

evaluation that determines the number of living cells by quantifying the amount of 

formazan product present, which is directly proportional to the number of viable cells.  

Figure 3.4 shows high viability relative to the negative control, supporting the non-

toxic nature of the nanoparticles, even at high concentrations (100 µg/mL is 

equivalent to 800,000 particles/cell).  Based on the toxicity data obtained, the PRINT 

nanoparticles appear biocompatible and suitable for future in vivo studies. 
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Figure 3.4 MTS assay depicting the non-toxic nature of 200 nm PRINT particles 
incubated with HeLa cells. Approximately 103 cells were plated per 1 cm2.  Cells 
were exposed to varying concentrations of PRINT particles in 0.1 mL media for 4 h 
at 37 °C before the MTS assay was performed. Control wells, where the cells were 
exposed to only PBS serve as 100% in normalization. Vertical bars stand for one SD 
with n = 5 

 
 
 

 In this study, 200 nm [125I]-labelled PRINT particles were administered into 

healthy C57BL/6J mice via tail vein bolus injection at a dose of 20 mg/kg.  The 

particles were radiolabeled using Iodogen® following the procedure recommended 

by the supplier (Pierce).  The tissue distribution was monitored using a gamma 

counter, and the percent recovery of injected dose was calculated from the 

measured radioactivity.  Figure 3.5 shows the tissue distribution of 200 nm PRINT 

nanoparticles at 10 min, 30 min, 1 h, 3 h, 8 h, and 24 h post-injection.  Throughout 

the time-course of the study, the 200 nm PRINT particles were distributed mainly in 

the liver and spleen.  The total recovery from these two organs amount to as much 

as 30% over the 24 h study period.  This observation is consistent with the fact that 

the sinusoidal walls of these organs are lined with discontinuous endothelium that 

allows for passive entrapment of foreign particulates [12,13].  Although the present 
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study does not provide any direct evidence for or against it, it is likely that these 

particles are eventually taken up by the resident macrophages possibly subsequent 

to opsonization with serum proteins [14]. 

 

0

10

20

30

40

50

Serum Liver Kidney Spleen Lung Heart Tail Bone
Marrow

Thyroid

P
er

ce
nt

 In
je

ct
ed

 D
os

e

10 min
30 min
1 h
3 h
8 h
24 h

 

Figure 3.5 Biodistribution of 200 nm [125I]-labeled PRINT particles in healthy mice 
subsequent to bolus tail vein injection at a dose of 20 mg/kg.  The organ 
accumulation is expressed as a percent of injected dose after animals were 
sacrificed at 10 min, 30 min, 1, 3, 8, and 24 h post-intravenous injection.  The organ 
data is presented as the mean ± SD with n = 4. The recovery found in the blood 
assumes a blood volume of 2.18 mL/25 g mouse [15]. 
 
 
 

The particle accumulation was not significant in other organs harvested, often 

~ 1% of the injected dose was found in the kidneys, heart, and lungs. The extent of 

particle accumulation reported in these organs may slightly over-represent the actual 

accumulation since the organs were not thoroughly rinsed to remove residual blood.  

Tails were collected in an effort to monitor the amount of nanoparticles that were 
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retained at the injection site.  A significant amount of injected particles were found in 

the tail, especially during the initial 3 h period. This may be due to the rupture of 

blood vessels upon rapid injection of a large number of fine particles in a short 

period of time (< 5 seconds), creating endothelial gaps for particle retention.  Finally, 

a trace but significant amount of radioactivity was observed in thyroid gland, possibly 

indicating the biodegradation of particles, yielding radioactive I2.   Production of 

iodine from biochemical degradation of iodinated proteins or peptides is not 

uncommon and is also consistent with the observation that total recovery decreased 

steadily over the 24 h period studied (vide infra) [16].  

Total recovery of the radioiodinated particles was found to decrease with time, 

beginning with an 81 ± 6 % recovery at 10 minutes post-injection and ending with a 

24 ± 7 % recovery after 24 h (data not shown).  Here, the total recovery was 

calculated from radioactivity measured only from the blood, liver, kidneys, spleen, 

lungs, heart, tail, bone marrow, and thyroid.  In an effort to achieve a full mass 

balance, four mice were kept in metabolic cages for 24 h so that urine and feces 

could be collected and analyzed.  For these mice, additional tissues and body parts 

such as fat, muscle, head, legs, intestines, and the remainder of the body were also 

analyzed for additional radioactivity.  It was found that with these additional 

measurements, the total recovery at 24 h post-injection improved from 24 ± 7 %, 

with the main organs only, to 58 ± 4 %. The appearance of radioactivity in the thyroid 

gland throughout the study period (approximately 1% of injected dose) and in urine 

24 h after dosing (as much as 8.6%) may suggest particle degradation [17].  This is 

also consistent with a hypothesis that loss of volatile radioactive iodine via the lungs 
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could have contributed to the time-dependent decrease in total recovery of 

radioactivity observed.  

 

Figure 3.6 Blood pharmacokinetic profile of PRINT particles in healthy C57BL/6J 
mice. At given time intervals, four animals were sacrificed and blood was collected 
via cardiac puncture. Radioactivity observed was converted to particle concentration 
using the specific radioactivity measured and assuming a total blood volume of 
2.18 mL/25 g mouse [15].  The data was subject to two-compartmental analysis 
(WinNonlin) resulting in pharmacokinetic parameters discussed in the text. For 
simplicity, data obtained 24 h post-injection are not shown in the figure or used for 
PK parameter determination.   

 
 
 

As shown in Figure 3.6, the disappearance of PRINT particles from circulation 

was bi-exponential.  The data set was fitted to a two-compartmental pharmacokinetic 

model with reversible distribution between central and peripheral compartments and 

with elimination from the central compartment.  The pharmacokinetic parameters 

obtained using WinNonLin 5.0.1 (Pharsight Corporation) show the initial phase of 

rapid distribution with an apparent t1/2 of 17 min. The rapid distribution is not 

surprising considering that the steric coat on the PRINT particles is only a low 

molecular weight PEG chain (9 mol %, 20% w/w of 1-kDa PEG monomethyl ether).  

It has been suggested that the optimal coating for the creation of long-circulating 
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liposomes is 3-7 mol % of 2-5 kDa PEG [18].   The shorter PEG chains used in the 

current particle formulation may not offer a radius of protection that is sufficient to 

effectively block the adsorption of opsonic proteins.  The subtle nuances that both 

the degree of PEG incorporation and the molecular weight of PEG play in prolonging 

the circulatory t1/2 are well documented for other types of nanocarriers [18-20]. 

Volumes of distribution of central and peripheral compartments were found to 

be 3 and 5 mL, respectively.  Considering the blood volume of approximately 

1.7 mL/20 g mouse, liver of 0.8 g, and spleen < 0.1 g, these values appear to be 

somewhat exaggerated, however, they certainly rule out any significant 

extravasation. Since the stability of the radiolabel is not well established in the 

present study and since it is the radioactivity that is monitored, it is difficult to 

unambiguously interpret the slow phase of radioactivity decay in the later time-points 

with an apparent t1/2 of 3.3 h.  The appearance of radioactivity in urine strongly 

suggests that these PRINT particles and/or their degradation products must be 

cleared rapidly from the blood. Thus, the slow elimination phase may well represent 

slow re-distribution of particles or particle remnants between the blood and 

organs/tissues.   

The AUC, a measure of total availability of particles in the circulation for organ 

distribution extrapolated to infinite time, was determined to be 191 µg⋅h/mL.  

Unmodified, conventional liposomes show dose-dependent pharmacokinetic 

parameters, including AUC upon i.v. administration. A liposome dose equivalent to 

the dose in the present study, 20 mg/kg, shows AUC values of approximately 70 to 
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700 µg⋅h/mL.  Thus,  the present data are certainly in agreement with that reported 

for liposomes [21]. 

 

3.4 Conclusions 
 

This paper is concerned with the characterization of nanofabricated particles 

that are monodisperse in size and shape. It includes the first pharmacokinetic 

evaluation of PRINT-derived cylinders of 200 nm.  PRINT allows for powerful 

realizations regarding pharmacokinetics of nanoparticles since intersubject variation 

can be ascribed fully to the subject and not to variations of the nanocarrier.  This is a 

significant step in pharmacokinetic analysis since it eliminates the effect that 

polydisperse samples can have on biodistribution. This in turn allows us to be able to 

precisely demonstrate the effect of size, composition, the addition of cargo, modulus, 

and functionalization on biodistribution, which has never been possible until now.  

Current efforts are focused on the creation of long-circulating PRINT particles for the 

eventual use in engineered drug therapies.  Results will be reported in due course. 

PRINT is the first general, singular method capable of forming organic 

nanoparticles in which critical design parameters can be precisely and independently 

tailored bringing a greater understanding of cause-and-effect to the field of 

nanomedicine.  With the unprecedented ability of PRINT technology to control 

particle size, shape, composition, modulus, cargo, and surface properties, questions 

such as “what interrelated role does shape, size and mechano-chemico functionality 

play on the biodistribution of carriers in vivo?” and, “how can this understanding 

translate into more efficacious detection, diagnosis, therapeutic and prevention 
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strategies?” can finally begin to be answered.  As such, PRINT is a significant 

scientific and technological breakthrough, which will allow the fabrication of 

heretofore inaccessible populations of nanobiomaterials which are poised to 

revolutionize and accelerate our translational understanding, detection, and 

treatment of disease. 
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EXPLOITING THE ENHANCED PERMEABILITY AND RETENTION 
EFFECT FOR TUMOR TARGETING 

 

 

 

 

 

 

 

 

 

 

 

 



4.1 Introduction 
 
 Cancer is the second most common cause of death in the United States, and 

accounts for one of every four deaths [1].  Since cancer remains a major threat to 

human life, major research efforts have been undertaken for both cancer treatment 

and prevention.  Despite the last 50 years of research, the standard treatment is not 

always successful due to the fact that conventional chemotherapy delivers the 

anticancer agents indiscriminately to both normal and tumor tissue, resulting in 

severe negative side effects [2].  Therefore, there is a need for cancer therapeutics 

to target tumor tissue, minimize interaction with normal tissue and thereby avoid any 

undesirable side effects.  One of the most promising ways of avoiding these 

undesirable side effects is to deliver the anticancer drug selectively to the tumor 

tissue by taking advantage of the unique anatomical and pathophysiological 

characteristics of tumor vasculature that are not observed in normal tissue [3,4]. 

Tumor abnormalities are particularly evident within the tumor vasculature, which 

displays hypervasculaturisation, aberrant architecture, extensive production of 

vascular permeability factors stimulating extravasation within tumor tissues, and a 

lack of lymphatic drainage [5].  This phenomenon is referred to as the enhanced 

permeability and retention (EPR, Figure 4.1) effect was first described by Matsumura 

and Maeda [6-8].   
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Figure 4.1 Passive tumor targeting of PRINT nanoparticles by EPR effect.  Adapted 
from [9]. 
 
 
 

Macromolecular delivery vehicles, including micelles, liposomes, polymer 

conjugates and polymeric particles have taken advantage of the EPR effect as a 

means to passively target tumor tissue [10-12].  Extensive research is now being 

conducted to look at the effects of targeted delivery of nanoparticles, in the hopes 

that targeted delivery will decrease the negative side effects seen on normal tissue, 

simplify administration protocols, and reduce the cost of the therapies and drug 

quantities.  Currently there are several nanocarriers in the clinic that take advantage 

passively targeting tumor tissue using the EPR effect, including Doxil® and 

DaunoXome®, both  PEGylated liposomes [13].  In the current studies, the EPR 
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effect was exploited using cylindrical 200 nm (AR = 1) PRINT particles and a Ramos 

(Human Burkitt's lymphoma cell line) xenograft model.   

 

4.2  Experimental 

 

4.2.1 Materials 

  Ramos cells were obtained from the Lineberger comprehensive cancer 

center tissue culture facility at the University of North Carolina at Chapel Hill.  Cell 

culture media (RPMI 1640) was purchased from GIBCO.  CellTiter 96* AQueous One 

Solution Cell Proliferation Assay (MTS) was purchased from Promega Corporation.  

The lysis agent used for negative controls in in vitro viability studies with Ramos 

cells was 9% w/v solution of Triton® X-100 in water.  Nude mice were purchased 

from The Jackson Laboratory (nu/nu, stock # 002019).  DyLight 800 NHS ester was 

purchased from Pierce.  All animal experiments were conducted in accordance with 

guidelines set forth by The University of North Carolina at Chapel Hill, and approval 

was obtained for the completion of these experiments. 

 

4.2.2 Preparation of surface-functionalized PRINT nanoparticles 

PRINT nanoparticles (diameter = 200 nm, height = 200 nm) were obtained 

from Liquidia Technologies, Inc. on raw poly(ethylene terephthalate) (PET) sheeting 

(50 feet).  To facilitate removal of the particles from the raw PET sheet, a physical 

means for harvesting the particles was utilized.  Specifically, a 200 µL aliquot of 

water (filtered through a 0.22 μm Durapore PVDF Membrane) was placed on the 
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PET sheet and this drop of water was gently moved along the surface of the PET 

sheet using a cell scraper (Sarstedt cell scraper, 25 cm handle length).  The 

movement of the cell scraper facilitated release of the particles from the PET 

sheeting.  The suspended particles were collected in a Eppendorf tube and spun 

down on a mini centrifuge (Fisher Scientific) until a particle pellet was visible.  After 

each centrifugation step, the supernatant was removed via aspiration and the 

particle pellet was redispersed in 1.5 mL of fresh filtered water by vortexing for 10 

minutes followed by centrifugation for an additional 30 minutes.  This process was 

repeated once more, then following aspiration, the particles were redispersed in 

0.2 mL of anhydrous dimethyl formamide (DMF) by sonicating the dispersion for 5 

minutes on a Branson 2510 sonicator (Fisher Scientific).  In total, seventeen feet of 

cylindrical 200 nm (AR =1) particles on raw PET was harvested, yielding 17.51 mg of 

200 nm particles in 15 Eppendorf tubes.     

 

 
Monomer Function Wt %

PEG700 diacrylate Cross-linking agent 78 
2-Aminoethyl methacrylate 

hydrochloride 
Chemical handle 20 

Fluorescein-o-acrylate Fluorophore 1 
1-Hydroxycyclohexyl phenyl ketone Initiator 1 

 

 

 

Table 4.1 Particle composition 
 
 
 

All of the particle dispersions were collected into one 20 mL scintillation vial, 

using 0.1 mL of anhydrous DMF to rinse the Eppendorf tubes, facilitating optimal 

transfer between vials.  Next, 0.6 mL of triethylamine was added to the particle 
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dispersion.  Separately, a solution of methoxypolyethylene glycol 5000 succinate N-

succinimidyl ester (NHS-PEG 5K) was prepared by the addition 60.2 mg of NHS-

PEG 5K to 2 mL of anhydrous DMF.  This NHS-PEG 5K solution was added to the 

particle dispersion (total volume of DMF = 6.5 mL), and the solution was placed in 

the dark on the vortex overnight.  The following morning, 0.6 mL of NHS-DyLight 800 

(1 mg/mL in anhydrous DMF) was added to the particle dispersion.  The particles 

were then covered in aluminum foil (to protect the fluorophores from photobleaching), 

placed back on the vortex, and allowed to react for an additional 6 hours.   

The particles were purified by transferring the contents of the scintillation vial 

to 4 Eppendorf tubes.  The particle dispersions were spun down on a mini centrifuge 

for 15 minutes.  After each centrifugation step, the supernatant was removed via 

aspiration and the particle pellet was redispersed in 1.5 mL of fresh filtered acetone 

by vortexing for 10 minutes followed by centrifugation for an additional 10 minutes.   

The final two rinses were done with filtered water, in place of the filtered acetone.  At 

this stage, the particle concentration was determined using the thermogravimetric 

analyzer Pyris 1 TGA (Perkin Elmer) and 10 µL of the particle dispersion.  Finally, 

the particles were diluted such that the final concentration of particles was 3 mg/mL 

in PBS with 5 wt % dextrose and 0.1 wt% Pluronic F108. 

 
 

4.2.3 Particle size analysis of PRINT nanoparticles using scanning electron 

microscopy (in the dry state)  

The size of PRINT nanoparticles was analyzed via scanning electron 

microscopy (Hitachi model S-4700).  Particle dispersions were prepared at 
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concentrations of 0.5 mg/mL, and a drop of this solution was placed on a glass slide.  

The drop was then allowed to dry, and the glass slide was coated with 1.5 nm of 

Pd/Au alloy using a Cressington 108 auto sputter coater (Cressington Scientific 

Instruments Ltd.).  The Pd/Au coated glass slide was then adhered to the sample 

holder using double-sided adhesive tape, and placed inside the vacuum chamber of 

the SEM and observed under low vacuum (10-6 Torr).  

 

4.2.4 Particle size analysis of PRINT nanoparticles using dynamic light 

scattering (in suspension)  

The size and polydispersity of PRINT nanoparticles was analyzed via 

dynamic light scattering (DLS) using a 90Plus Particle Size Analyzer (Brookhaven 

Instruments Corporation).  The particles were dispersed in PBS at a concentration of 

0.5 mg/mL and measured without filtration at 25 °C.  

 

4.2.5 Zeta potential measurements 

The zeta potential of PRINT nanoparticles was measured using a ZetaPlus 

Zeta Potential Analyzer (Brookhaven Instruments Corporation).  The nanoparticles 

were dispersed in water at a concentration of 0.3 mg/mL and the zeta potential was 

measured. 

 

4.2.6 In vitro internalization 

Ramos cells were seeded in 96 well plate at 2×105 per well in serum-free 

RPMI 1640.  Following this, 200 nm PRINT particles were vortexed and diluted in 
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serum-free RPMI 1640. Cells were then dosed with particles at the desired 

concentrations for 4 hours (50 µL/well). At the end of dosing cells were spun down at 

1200 rpm for 4 minutes and the medium was aspirated off the cells. For uptake 

assays, cells were treated with 0.1% trypan blue at room temperature for 3 min to 

quench the extracellular fluorescence from non-internalized particles [14]. Finally, 

cells were washed and resuspended in DPBS and analyzed on a Cyan ADP flow 

cytometer (DakoCytomation).  Data were analyzed with Summit 4.3 software.  

 

4.2.7 In vitro cytotoxicity 

Ramos cells were seeded in 25 μL of serum-free media RPMI 1640 at a 

density of 2 x 105 cells per well into a 96-well microtitre plate.  The particle 

dispersions, at the appropriate concentrations, were added to the wells (25 μL per 

well in PBS with 5 wt% dextrose and 0.1 wt % Pluronic F108).  Ramos cells were 

incubated with the PRINT particles for 4 h at 37 °C in a humidified 5% CO2 

atmosphere.  After the incubation period, cells were spun at 1200 rpm for 4 minutes 

and the medium was replaced with complete growth medium (RPMI 1640 with 10% 

fetal bovine serum, Penicillin/streptomycin, and 2mM L-Glutamine).  The cells were 

incubated for another 72 hours at 37 °C in a humidified 5% CO2 atmosphere.  For 

the MTS assay, 100 µL of fresh complete growth medium was added to replace the 

old medium, then the MTS assay solution (Cell Titer 96® AQueous One Solution Cell 

Proliferation Assay reagent) was added (20 μL per well) into each well.  The cells 

were then incubated at 37°C in a humidified 5% CO2 atmosphere until color was well 

developed.  The optical density at 490 nm was measured using a BioRad Model 
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3550 microplate reader (BioRad Laboratories).  The viability of the cells exposed to 

the cylindrical 200 nm PRINT particles was expressed as a percentage of the 

viability of cells grown in the absence of particles.  

 

4.2.8 Hemolysis assay using 200 nm PEGylated PRINT particles 

The hemolysis assay used has been described elsewhere [15,16].  Briefly, 

blood from was collected in Li-heparin tubes to prevent coagulation.    The blood 

was centrifuged for 15 minutes at 800 g, and the supernatant was collected and 

used to determine the plasma free hemoglobin content (PFB).  This assay includes 

both a positive (Triton X-100, 1 wt % in sterile, distilled water) and negative control 

(poly(ethylene glycol), MW = 8000 g/mol, 40 wt % in sterile, distilled water).  

Particles incubated with blood, and particles incubated with PBS were added to the 

96 well plate. Next, a calibration curve was measured using prepared hemoglobin 

standards having concentrations ranging from 0.025 to 80 mg/mL.  All of the 

aforementionned samples were repeated such that n=4.  The absorbance at 540 nm 

was measured and used to determine the hemoglobin concentration.  The amount of 

hemoglobin present in the particle samples was compared to those obtained for the 

positive and negative controls, and expressed as a percent of hemolysis. 

 

4.2.9 Biodistribution of fluorescently-tagged 200 nm PEGylated PRINT 

particles   

Athymic mice were housed under specific pathogen-free conditions for a total 

of 3 weeks and were used at 9 weeks of age (~18 g).  Mice were given 8 days to 
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acclimate to the new housing environment, at which point the animals were injected 

with 1 x 107 Ramos cells subcutaneously in the right flank of the mice.  After 14 days, 

and when the tumors reached ~ 60 - 100 mm3, mice (n=4) were injected 

intravenously via bolus tail vein administration with 0.3 mg of DyLight 800-labeled 

PRINT particles in 100 μL of PBS (phosphate buffered saline, Sigma-Aldrich) with 5 

wt % dextrose and 0.1 wt % Pluronic F108.  At 10 min, 1 h, and 6 h after dosing, 

groups of four mice were anesthetized by isofluorane, and imaged on the IVIS-100 

Xenogen imaging system (Xenogen Corporation, Caliper Life Sciences).  Images 

were collected with the field of view set to ‘B’ (where one animal is visible at a time) 

using a 30 second exposure, with medium binning, the f/stop set to 4, and the ICG 

filter set (excitation λ = 710 – 760 nm, emission λ = 810 – 875 nm).  A background 

scans was acquired in the absence of mice, but with all of the appropriate settings.  

Blood was collected using a submandibular bleed.  Samples of blood and organs 

harvested (tumor, liver, kidneys, spleen, lungs, and heart) were counted to 

determine the total fluorescence using the IVIS-100 Xenogen imaging system.  Total 

fluorescence was calculated on images using the Living Image® 3.0 software, by 

selecting an area, depicted the region of interest, taking the measurement (under 

ROI tools), and recording the total photons in that region (in p/sec/cm2/sr).  Photons 

are the unit of choice, as they are a calibrated measurement of the photon emission 

from the subject. 
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4.2.10 Dosing study using fluorescently-tagged 200 nm PEGylated PRINT 

particles   

The dosing study was completed with the same procedures as above, except 

particle injections were made via bolus tail vein administration with 0.6 mg of DyLight 

800-labeled PRINT particles in 200 μL of PBS with 5 wt % dextrose and 0.1 wt % 

Pluronic F108. 

 

4.3 Results and Discussion 

 In these studies, the particle composition was engineered to produce 

biologically relevant delivery vectors with the ability to post-functionalize the surface. 

2-Aminoethyl methacrylate hydrochloride (AEM) was chosen as a chemical handle 

for surface modification.  Here, both NHS-PEG 5K and NHS-DyLight 800 were 

added to the particles’ surface.  The approach used was to react the surface AEM 

groups with NHS-PEG 5K, then to add to NHS-DyLight 800 to quench any remaining 

amine groups that remained on the particle surface.  The PEG moiety was added to 

impart biocompatibility and increase circulation times in vivo, and the DyLight 800 

was added so that visualization by fluorescence was possible.  Using a wavelength 

in the near-infrared proved to be optimal for avoiding high autofluorescence signals 

that occur when measuring living systems at < 800 nm.  Specifically, a near-infrared 

dye was chosen since it is known that the absorption of light through tissue is low in 

that region yielding superior signal to noise ratios [17]. Further sensitivity was gained 

by feeding the mice a low-chlorophyll diet to reduce autofluorescence that was 

observed in the intestinal region.   
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For these experiments, post-functionalization was completed in a sequential 

fashion, such that PEG 5K was reacted with the surface amines, then NHS-DyLight 

800 was added to the reaction mixture to react with any remaining amines on the 

particle surface.  This strategy proved useful for many reasons: i) by adding the PEG 

reagent first, a maximum number of amine groups can be conjugated to the PEG 

moiety, ii) particles used for in vivo studies should possess a negative zeta potential, 

therefore any remaining surface amine groups must be quenched, and in this 

chemistry, the remaining amines are quenched with NHS-DyLight 800, iii) this 

chemistry allows for a sufficient number of fluorophores to bind to the particles 

surface, such that the particles are visible in vivo. 

 

 
 
Figure 4.2 Scanning electron micrograph of 200 nm PRINT particles used in the 
present study 
 

 101



The 200 nm (AR = 1) particles were characterized by SEM, DLS, and zeta 

potential (Table 4.2).  SEM characterization revealed particles with a height of 146 ± 

17 nm, and a width of 199 ± 16 nm (Figure 4.2).  Dynamic light scattering showed 

similar sizes, with a mean diameter of 225 nm, and a polydispersity of 0.005 (Figure 

4.3).  The surface charge of these particles, after PEGylation and reaction with 

DyLight 800 was found to be - 26 ± 2 mV.  The zeta potential measured before post-

functionalization was 33 ± 3 mV (Figure 4.4). 

 

Figure 4.3 Dynamic light scattering of 200 nm PRINT particles that have been post-
functionalized with PEG 5K and DyLight 800.  The mean diameter was measured at 
225 nm, with a polydispersity of 0.005. 
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Figure 4.4 Zeta potential analysis of 200 nm PRINT particles. A) Purified particles 
before any post-functionalization (zeta potential = 33 ± 3 mV).  B) Purified particles 
that have been post-functionalized with PEG 5K and DyLight 800 
(zeta potential = - 26 ± 2 mV).   
 
 
 

Method Parameter 
SEM Width: 199 ±16 nm 

Height: 146 ± 17 nm 
DLS Diameter: 225 ± 11 nm 

Zeta Potential Before post-reactions: 33 ± 3 mV 
After post-reactions: -26 ± 2 mV 

 

 

 

Table 4.2 Particle characterization  
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The in vitro internalization and cytotoxicity of 200 nm (AR = 1) PEGylated 

PRINT particles was examined using Ramos (Human Burkitt's lymphoma) cells 

(Figure 4.5).  These suspension cells did not appear to internalize the 200 nm 

particles to any high extent.  Two control particles were synthesized, a batch of 

positively charged particles and a batch of negatively charged particles.  The 

positively charged particles are simply unfunctionalized particles with the surface 

amines left unreacted (Figure 4.4A), and the negatively charged particles are the 

acetylated version of these particles (zeta potential = -24 ± 4 mV).  As reported 

previously, the positively charged particles were internalized to the highest extent, 

the negatively charged particles were internalized less than the positively charged 

particles, and the PEGylated particles were internalized showing similar trends as 

the negatively charged particles [18,19].  This follows the expected outcome since 

the PEGylated particles are negatively charged particles possess a negative zeta 

potential.   
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Figure 4.5 In vitro internalization profiles of PEGylated 200 nm particles with a 
negative zeta potential using Ramos cells.  Both the positively charged particle and 
negatively charged particle controls are included.  Overall, the internalization of all 
particle sets was low. 
 
 
 

The cytotoxicity of the 200 nm (AR = 1) particles was tested in vitro (Figure 

4.6) and was found to be low.  A very small amount of cell death was observed at 

high particle concentrations (200 µg/mL, which is equal to 1.5 x 105 particles/Ramos 

cell).  Since these particles proved to be non-toxic at concentrations used for in vivo 

studies, whole animal fluorescent studies could be conducted. 
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Figure 4.6 In vitro cytotoxicity profiles (MTS Assay) of PEGylated 200 nm particles 
with a negative zeta potential using Ramos cells.   
 
 
 
 Analyzing the hemolytic properties of nanoparticles is an alternative method 

for measuring their toxicity.  The hemolysis assay is commonly used for preclinical 

evaluation of nanoparticles used in medical applications [16].  Hemolysis is defined 

as the destruction of red blood cells.  Measuring the hemolytic properties begins to 

illustrate how nanoparticles interact with blood components.    In these studies, 

Triton-X 100 was used as a positive control since it is known to hemolytic [20], and 

PEG (average molecular weight of 8000 g/mol) was used as the negative control, as 

it is known to be biocompatible.  The hemolysis assay conducted with PRINT 

particles used mouse blood, and showed favorable results (Figure 4.7).  The 200 nm 

post-PEGylated PRINT particles showed hemolytic properties similar to that of PEG, 

the negative control.  This indicates that the particles are not causing any rupturing 
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of the red blood cells once introduced in vivo.  In addition, positively charged 

particles (base particle, unfuntionctionalized) and negatively charged particles (base 

particles with all the surface amine groups acetylated) were tested for their hemolytic 

properties.  All three PRINT particles examined showed little to no hemolysis of red 

blood cells.   
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Figure 4.7 In vitro hemolysis assay of PEGylated 200 nm particles with a negative 
zeta potential using human blood.  Here, the positive control is Triton-X 100, which is 
known to lyse red blood cells, and the negative control is poly(ethylene glycol) 
(MW = 8000 g/mol). 

 
 
 

Whole animal imaging was conducted using an IVIS-100 Xenogen imaging 

system (Figure 4.8).  Nude mice bearing Ramos tumors were administered with 

200 nm (AR = 1) PRINT particles via a bolus tail vein injection of 20 mg/kg (300 µg 

of particles in 100 µL of PBS with 5 wt % dextrose and 0.1 wt% pluronic F108).  The 

mean tumor size at the time of particle injection was 0.72 cm3 (Figure 4.9, range: 0.2 

– 1.2 cm3).   
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Figure 4.8 Whole animal imaging on the IVIS-100 Xenogen imaging system.  
200 nm PRINT particles were injected via the tail vein in nude mice bearing Ramos 
tumors.  The major organs of accumulation (i.e. the liver and spleen) were visible as 
early as 10 minutes. 
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Figure 4.9 Tumor growth rate as a function of time.  107 cells were injected 
subcutaneously into the right flank of nude mice.  Experiments were conducted at 
day 14 post-inoculation, where the average tumor volume was 0.72 cm3. 
 
 
 
 The particle accumulation was measured as a percent of recovered dose at 

10 min, 1 h, and 6 h post-intravenous injection (Figure 4.10).  The 200 nm (AR = 1) 
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particles were mainly distributed in the clearance organs (i.e. liver and spleen) 

throughout the time course of the study.  Organ distribution values were obtained 

from total photon counts calculated from excised organs.  Figure 4.11 shows the 

fluorescence observed from organs removed from a mouse at 6 h post-injection 

(Figure 4.11A).  In addition, organs were removed from a mouse injected with PBS 

(with 5 wt% dextrose and 0.1 wt% pluronic F108) and were used as a control (Figure 

4.11B).  The rapid accumulation of the particles in the liver and the spleen indicates 

that after intravenous administration, the particles were quickly recognized as foreign 

and removed from systemic circulation by the reticuloendethelial system (RES). The 

particles used in the present study possess a PEG coating, with a molecular weight 

of 5000 g/mol.  From the breadth of liposomal literature, it is known that in order for a 

coating on a particle to provide stealth properties, it is not only the molecular weight 

of the PEG coating, but also the density [21,22].  Since this was the first in vivo study 

of a post-PEGylated particle, it is not surprising that the steric coat on the PRINT 

particles provided was not sufficient for long-circulating particles. It has been 

suggested that the optimal coating for the creation of long-circulating liposomes is 2-

5 kDa PEG [23,24].  It should be noted that these cylindrical 200 nm PRINT particles 

are very different from liposomal carriers, and more attention should be given to 

coatings on the particles’ surface in the design and eventual realization of long-

circulating particles.  The current particle PEG coating may not offer a radius of 

protection that is sufficient to effectively block the adsorption of opsonic proteins. 

Once opsonization occurs, the particles are destined to be cleared by Kupffer cells in 

the liver and splenic macrophages.   
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Figure 4.10 Biodistribution of 200 nm PRINT particle in nude mice bearing Ramos 
tumors.  The organ accumulation is expressed as a percent of recovered dose after 
animals were sacrificed at 10 min, 1 h, and 6 h post-intravenous injection.  The 
organ data is presented as a mean ± SD with n=4. 

 
 
 

 The particle accumulation seen in the lungs is likely due to capillary trapment 

of particle aggregates found in the bloodstream upon injection.  Nanoparticles will 

naturally tend to agglomerate into larger particles that are micron in size, and this 

can occur both prior to injection and also once injected into the bloodstream.  The 

micron sized aggregates tend to get trapped in the vasculature of the lung.  It should 

be noted that if opsonisation occurs on the surface of the particles, this signals to 

phagocytic macrophages to internalize the particles.  The net result of this process is 

the accumulation of particles in the liver, spleen, and to a lesser extent the lungs (i.e. 

the reticuloendothelial system (RES) clearance organs) [25].  Therefore, the lung 

accumulation is likely due to a combination of the macrophage accumulation of 

particles as well as the particle aggregation and subsequent trapping of the 
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aggregates in the lung vasculature.  The clearance of particles by the RES has the 

effect of decreasing the circulation time of the nanoparticles in vivo and lessens the 

chances of the particle reaching its target. 

 Dectectable fluorescent signals were not observed in the tumor region based 

on whole animal imaging profiles.  However, once the major organs were excised 

from the animals, it became apparent that the tumor tissue did indeed produce an 

observable signal (Figure 4.11).  This is probably due to the fact that the signals 

obtained from the RES clearance organs were so intense that they diminished any 

signal from being observed from tissues with only a fraction of the accumulation.  At 

any point examined (from 10 minutes to 6 hours), the tumor tissue possessed 

~ 3.5-6.5 % of the recovered dose.  This finding reinforces the EPR effect of 

nanoparticles, with PEGylated 200 nm (AR = 1) PRINT particles accumulating in the 

highly vascularized tumor tissue. 

 

Figure 4.11 Organ distribution of 200 nm (AR = 1) PRINT particles (A) versus the 
PBS control (B).  Organs were excised from both animal groups at 6 h post-injection. 
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The organ accumulation observed was similar to previous results obtained 

from a healthy mouse biodistribution study [26].  In our previous work, the particle 

matrix as well as the surface properties were slightly modified from those presented 

here, however the distribution remains the same.  The healthy mouse biodistribution 

was performed on particles with 20% (w/w) PEG1000 monomethyl ether 

monomethacrylate mixed into the particle matrix, whereas the EPR studies were 

completed with particles that had been post-functionalized on the surface with PEG 

5K.  These results may suggest that the current size of the particle does not allow for 

multiple passes through the body and gets trapped in the liver within the initial 

passes, where fenestrae can be as large as 150 nm [23,27].  This may be 

independent of particle matrix composition and surface properties, at this size.  

However, both particle compositions and surface properties were quite similar, and 

therefore a more in depth examination of size, matrix composition and surface 

chemistry must be brought forth before any conclusions can be drawn. 

A second study was completed to determine the effects of doubling the 

particle dose.  In the previous study, an injection of 300 µg of particles in 100 µL of 

PBS with 5 wt % dextrose and 0.1 wt% pluronic F108 was made.  The dosing study 

examined the effect of injecting 600 µg of particles in 200 µL of PBS with 5 wt % 

dextrose and 0.1 wt% pluronic F108, a dosing of 40 mg/kg.  The results at 6h post-

injection are described in Figure 4.12-4.14.  When comparing the two dosages as a 

function of percent recovered dose, the relative organ accumulation appears to be 

similar, however, if the data are compared as a function of total fluorescence, a 

higher than expected accumulation was observed in the lungs, heart, tumor and 
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kidneys (Figure 4.13, Table 4.3).  This observation was an exciting one, as the 

amount of particle accumulation in the heart, and tumor did not scale linearly with 

the amount of particles injected, pointing to particles that are remaining in circulation 

longer and are therefore reaching their target (the tumor tissue) more effectively.  

Again, the tumor localization is mainly dependent on the EPR effect.  In this study, a 

tumor accumulation of ~ 3.5-5 % of the recovered dose was observed.  The non-

linear accumulation in the lungs may point to particle aggregation once in the 

bloodstream, as the same particle solution was injected at the higher dosage, it was 

simply twice the volume.  Unfortunately, the dosing study was only done with 2 mice 

at the higher dose (40 mg/kg, and n=4 at the 20 mg/kg dose), and therefore a more 

thorough investigation needs to be completed to assess the effect of dosing on 

tumor accumulation. 
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Figure 4.12 The effect of dosage as a function of percent recovered dose at 6 h 
post-injection. 

 
 
 

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

3.50E+09

4.00E+09

4.50E+09

Liver Lungs Spleen Kidneys Heart Tumor

Fl
uo

re
sc

en
ce

 In
te

ns
ity

20 mg/kg
40 mg/kg

 

Figure 4.13 The effect of dosage as a function of total fluorescence intensity at 6 h 
post-injection. 
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Figure 4.14 Whole animal imaging on the IVIS-100 Xenogen imaging system as a 
function of dosage. 
 
  
 

Tissue Relative 
Increase 

Liver 1.8 
Lungs 3 
Spleen 1.8 
Kidneys 2.8 
Heart 3.8 
Tumor 2.6 

 

 

 

 

Table 4.3 The effect of dosing at 6 h post-injection.  In these experiments, it was 
found that not all organ accumulations scaled linearly with a doubling of dose (i.e. 
lungs, kidneys, heart, and tumor). 

 
 
 
4.4 Conclusions 

 In vivo fluorescent imaging is a powerful tool for detecting the location of 

fluorescently labeled 200 nm (AR = 1) PRINT particles.  Unfortunately, only the 
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major organs of accumulation were observed based on whole animal imaging.  Once 

organs of interest were excised from the animals, then a total photon count per 

organ could be quantified.  In this work, tumor accumulation due to the EPR effect 

was observed (~3.5-6.5 % of the recovered dose) using a Ramos tumor model.  

Based on these results, further studies are required in the search for RES-evading 

long-circulating PRINT nanoparticles. 
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SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS FOR 
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5.1 Summary of conclusions 
 

 Establishing the interdependency of the size, shape, deformability and 

surface chemistry of micro- and nanoparticles in vitro and in vivo over length scales 

ranging from cells to tissues to the entire organism are needed by many different 

research communities including environmental regulators, pulmonologists, 

oncologists, pharmaceutical scientists, toxicologists, cell biologists and 

dermatologists.  There is a need for definitive answers related to particle 

biodistribution maps based on changes in particle size, shape, deformability, and 

surface chemistry using “calibration quality” particles. These nanofabricated tools 

(e.g. precisely defined particles) hold significant promise to provide insight into the 

fundamentals of cellular and biological processes as they can yield essential insights 

into the design of effective vectors for use in nanomedicine.  Beyond understanding 

the biodistribution of particles delivered via parenteral routes, particle size, shape, 

deformability and surface chemistry should play a very significant role in 

understanding the mechanisms associated with particle inhalation, either 

intentionally for use as a therapeutic or during environmental exposure.   

 

5.1.1 Cellular uptake mechanisms of non-targeted organic PRINT particles   

By taking advantage of the versatility of the PRINT process, calibration quality 

particles can be fabricated with complete control over the surface charge, size, and 

shape and their internalization can be monitored to determine the impact these 

parameters have on the mechanism of cellular internalization [1].  Several studies 

have addressed the role of shape and size on cellular internalization [2-4].    Using 
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commercial poly(styrene) microspheres and murine B16F10 melanoma cells Rejman 

and co-workers have shown that spheres with a diameter less than 200 nm utilized a 

clathrin-mediated mechanism for cellular internalization whereas particles greater 

than 500 nm were endocytosed using a caveolae-mediated mechanism [3].  No 

internalization was not observed with particle sizes greater than 1 µm. Furthermore, 

surface charge was shown to affect particle uptake with net cationically charged 

particles being internalized by clathrin-coated pits while anionic particles were 

endocytosed via caveolae when added to HeLa cells [5].  Thus size and charge play 

critical roles in determining which endocytic pathway is used for particle 

internalization. Few studies have been conducted examining the intracellular 

internalization of non-spherical organic nanoparticles [6-8]. 

Given this, a series of PRINT particles were fabricated to characterize the 

cellular internalization mechanisms of non-targeted organic nanoparticles as a 

function of size, shape, and surface charge (cationic, anionic) in HeLa cells.  It was 

found that particle shape greatly affects cellular internalization.  Particles with a 

diameter of 200 nm and a height of 200 nm (200 nm, AR = 1) were taken up at a 

slower rate (1.2 % of the cell population/minute) than its non-symmetrical rod-like 

150 nm x 450 nm counterpart (5.2 % of the cell population/minute).  A strong 

dependence on surface charge was observed, where after 4 hours of incubation with 

the HeLa cells, positively charged particles were internalized by 84 % of cells and 

negatively charged particles were not internalized to any significant amount (< 5%).  

All particles tested possessed minimal toxicity, even at long incubation times (72 
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hours).  Transmission electron microscopy (TEM) clearly showed clathrin-mediated 

endocytosis as one of many methods of endocytosis for these particles.  

The most commonly accepted belief for cellular internalization in the literature 

suggests that particles larger than 200 nm will not be internalized by non-phagocytic 

cells; however, using a range of techniques, it was observed that cylindrical PRINT 

particles as large as 1 µm were internalized into HeLa cells [9-11].  This was the first 

report of the intracellular uptake and transport of biologically-relevant nanoparticles 

greater than 200 nm into non-phagocytic mammalian cells. In addition, it was found 

that rod-like, high aspect nanoparticles can be internalized into non-phagocytic cells 

much more rapidly and efficiently than would be expected based on size 

considerations alone, suggesting a special role associated with the shape of the 

particles.  It is hypothesized that the interplay between particle shape and size at 

constant surface chemistry will undoubtedly play a role in particle targeting 

strategies and may even shed some light on the rationale behind bacterial pathogen 

sizes and shapes.     

 

5.1.2   Preliminary biodistribution studies of PRINT particles 

 Preliminary in vivo studies of PRINT particles have now been conducted. 

Monodisperse 200 nm (AR = 1) PEG-based PRINT particles were fabricated and 

characterized via scanning electron microscopy, dynamic light scattering, and zeta 

potential analysis [12].  Incubation with HeLa cells showed no cytotoxicity, even at 

high particle concentrations. The biodistribution and pharmacokinetics of 125I labeled 

particles were studied following intravenous (i.v.) administration in non-tumor 
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bearing C57BL/6J mice.  The 200 nm (AR = 1) PRINT particles were distributed 

mainly in clearance organs (i.e. liver and spleen) throughout the time-course of the 

study. The degree of particle accumulation reported in the kidneys, heart, and lungs 

may over represent the actual accumulation since the mice were not perfused to 

clear these organs of blood. The decline in PRINT particle concentration in serum as 

a function of time followed a biexponential decay, showing characteristic distribution 

(half-life = 17 minutes) and elimination phases (half-life = 200 minutes). The rapid 

accumulation of the particles in the liver and the spleen as well as the relatively short 

elimination half-life indicates that after i.v. administration the particles were quickly 

recognized as foreign and removed from systemic circulation by the 

reticuloendethelial system (RES). This is not surprising considering that the steric 

coat on the PRINT particles was only a 1000 Da poly(ethylene glycol) (PEG) 

monomethylether. It has been suggested that the optimal coating for the creation of 

long-circulating liposomes is 2-5 kDa PEG [13,14].  The shorter PEG chains used in 

the current particle formulation may not offer a radius of protection that is sufficient 

to effectively block the adsorption of opsonic proteins. Once opsonization occurs, the 

particles are destined to be cleared by Kupffer cells in the liver and splenic 

macrophages.   

 

5.1.3  Taking advantage of the enhanced permeability and retention effect  

In these studies, PRINT nanoparticles were successfully conjugated to a 

near-infrared fluorophore useful for Xenogen imaging systems. This material allowed 

for whole animal imaging of 200 nm (AR = 1) PRINT particles in mice bearing a 
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Ramos tumor. In order to conduct imaging experiments, particles with amine 

handles were designed for the covalent conjugation of both DyLight 800 NHS ester, 

as well as PEG 5000 g/mol ligands.  These experiments were performed using a 

PEG ligand density of ~ 105 PEG chains/200 nm particle. The whole animal images 

suggest a relatively short half-life with most of the particles sequestered in the liver.  

Once the organs were removed from the animals, and imaged as isolated entities, it 

was apparent that ~3.5-6.5 % of the recovered dose was found in the tumor tissue.  

The tumor accumulation was likely due to the enhanced permeability and retention 

(EPR) effect, seen in most solid tumors.  This study was the first examination of the 

EPR effect of nanoparticles in Ramos tumors. 

 

5.2 Recommendations for future work 

 A complete understanding of the molecular mechanisms involved for the 

internalization of particles into cells, as well as their fate once internalized, is crucial 

to the development of successful particle therapies.  Obtaining knowledge on the 

endocytic pathway used from calibration quality particles should lead to crucial 

information required for not only enhancing specific cellular internalization, but also 

manipulating the intracellular location of particles, and minimizing cytotoxic effects.  

Future in vitro and in vivo studies should fully explore the interdependent roles of 

size, shape, surface chemistry, and modulus on multiple cell types, preferably ones 

that are clinically relevant.  With all of these design parameters available in the 

engineering of the ideal nanocarrier for medicine, the future of PRINT technology 

looks very promising and fulfilling.  There are a significant amount of studies 
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required to look at the various fundamental aspects of particles such as their size, 

shape, modulus, surface chemistry and to optimize those particle design criteria for 

each target application. 

 

5.2.1 Engineering unique particle shapes and the in vitro and in vivo 

implications  

 Recent progress in fabrication of new master templates has yielded features 

with very unique sizes and shapes.  Hexagonal particles or hex nut particles 

(diagonal diameter = 3 µm) have been fabricated and were used in preliminary in 

vitro studies using HeLa cells.  The hex nut particles had the following composition: 

67 wt % trimethyloylpropane ethoxylate triacrylate (MW = 428 g/mol), 20 wt % 

poly(ethylene glycol) monomethylether monomethacrylate (MW = 1,000 g/mol), 

10 wt % 2-aminoethylmethacrylate hydrochloride (AEM·HCl), 2 wt % fluorescein-o-

acrylate, and 1 wt % 2,2-diethoxyacetophenone.  This particle is unique because it is 

an unfamiliar shape for cells.  In vitro internalization of these particles was observed 

by confocal microscopy (Figure 5.1) and confirmed by TEM analysis (Figure 5.2).    

Additional studies aimed at examining the mode of internalization of these hex nut 

particles from outside the cells by SEM were performed (Figure 5.3).  It was 

observed that the HeLa cells were using pseudopods to grab the hex nut particles 

and internalized them within the cells.  The TEM microscopy indicated that 

endosomes form around the hex nut particles, in a hex nut shape.  This is due to the 

endosome forming tightly around the particles.   
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 This is a very unique shape for an endosome to take on and brings about 

some interesting fundamental questions, such as whether the pH inside an 

endosome of that size and shape would behave the same as an endosome around a 

200 nm particle.  These types of findings could help better engineer the ideal carrier 

for nanomedicine. 

 

 

Figure 5.1 In vitro internalization of cationically charged hex nut PEG hydrogel 
particles by confocal microscopy 
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Figure 5.2 In vitro internalization of cationically charged hex nut PEG hydrogel 
particles by transmission electron microscopy 
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Figure 5.3 In vitro examination of cationically charged hex nut PEG hydrogel 
particles by scanning electron microscopy 
 
 
 
5.2.2 Imparting superior control over particle surface chemistry  

 Advances in the field of nanotechnology, especially as it pertains to the 

design of particles, have allowed for the fabrication of very sophisticated 

moieties [15,16].   Controlling the distribution of matter along the surface of particles 

allows for an extra parameter in the design process beyond the fundamental size 

and shape considerations.  In the field of life science, specifically where particle 

technologies are utilized, the particles produced are generally spherical in shape and 

very few examples exist where the particles contain anisotropy [17-23].  In the 

limited number of examples where the particles being examined in vitro or in vivo are 

non-spherical and hence contain shape anisotropy, to the best of our knowledge, 
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there are no examples of anisotropic particles with regards to shape where the 

particles also contain anisotropy in terms of their surface chemistry.   Preliminary 

experiments examined labeling the exposed side of 2 µm (AR = 3) rectangular 

prisms and 3 µm hex nut particles while still in the mold.  The particles were 

subsequently harvested, and purified, yielding particles with one side that have been 

post-functionalized.  In these studies, particles were post-functionalized on one end 

with a fluorophore, to help visualize the process and for proof of principles purposes. 

For the end-functionalized 2 µm (AR = 3) particles, AEM was used as a 

chemical handle for post-functionalization of the particle surface and was reacted 

with NHS-rhodamine to yield end-labeled particles.  Filled molds with polymerized 

particles were inverted and placed in a large Petri dish containing 2 x10-3 mg/mL 

NHS-rhodamine in borax buffer (pH = 8).  The particles were allowed 90 seconds to 

react, washed with copious amounts of water, and then were subsequently 

harvested from the mold using a medical adhesive.  Once the mold was removed, 

the adhesive film was transferred to a vial, where the adhesive was dissolved and 

washed away from the particles, leaving purified particles in solution (Figure 5.4).  

From our previous work, the matrix composition chosen yields particles with a 

positive zeta potential, however once a reaction of the surface amine groups occurs 

with acetic anhydride, the zeta potential switches to a negative potential [1].  

Therefore, it was hypothesized that the end-functionalized particles described herein 

posses a positive surface charge where the particles appear to be green fluorescent 

due to the unreacted surface amine groups, and a negative zeta potential where the 
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surface amine groups have been reacted with NHS-rhodamine and now possess a 

red fluorescence (Figure 5.4).   
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Figure 5.4 Fluorescent micrographs of 2 µm (AR = 3) PEG hydrogel end-
functionalized particles.   These particles contain fluorescein-o-acrylate in the 
particle matrix, and have been end-functionalized with NHS-rhodamine. A) Particles 
coming off the sacrificial adhesive layer, and B) Purified particles dispersed in an 
aqueous solution. 
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This concept was tested by performing some in vitro screens of the 

2 µm (AR = 3) PEG hydrogel end-functionalized particles.  In all cases observed, the 

2 µm (AR = 3) PEG hydrogel end-functionalized particles associated with the cellular 

membrane of human cervical carcinoma epithelial (HeLa) cells such that the 

positively charged surfaces (green) were membrane-bound and the negatively 

charged surface (red) was the furthest surface from the cellular membrane (Figure 

5.5).  This electrostatic interaction was expected since it is known that the cell 

membrane has a negative charge due to the proteoglycans on the surface.  

Complete internalization of the 2 µm (AR = 3) PEG hydrogel end-functionalized 

particles was not seen most likely due to the large size of the particles.  In these 

studies, the larger anisotropic 2 µm (AR = 3) particles were chosen to facilitate 

microscopy studies where the visualization of individual particles was possible. 
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Figure 5.5 Confocal micrographs of 2 µm x 2 µm x 6 µm PEG hydrogel end-
functionalized particles interacting with HeLa cells.   These particles contain 
fluorescein-o-acrylate in the particle matrix, and have been end-functionalized with 
NHS-rhodamine.  In all cases observed, the positively charged end of the particle 
interacted with the negatively charged membrane of the cells. 

 
 
 

The end-functionalization process was extended to another size and shape, 

hex nut particles (Figure 5.6).  In these experiments, hex nut particles were 

fabricated, and once polymerized in the mold, the one exposed surface was reacted 

with NHS-rhodamine such that end-functionalized particles were produced.    
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Figure 5.6 Fluorescent micrographs of hex nut PEG hydrogel end-functionalized 
particles.   These particles contain fluorescein-o-acrylate in the particle matrix, and 
have been end-functionalized with NHS-rhodamine. A) Particles coming off the 
sacrificial adhesive layer, and B) Purified particles dispersed in an aqueous solution. 
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The ability to functionalized particles in a controlled site-specific manner adds 

a new level of control for the design of effective carriers in nanomedicine for the 

treatment of disease.  Early in vitro results suggested an enhanced internalization of 

rod-like nanoparticles over a more symmetrical nanoparticle, having identical particle 

matrix compositions and roughly equal particle volumes [1].  Moreover, it was found 

that PRINT particles use multiple pathways of endocytosis for internalization into a 

cell and that a significant reduction of particle internalization occurred when the 

particles had a negative zeta potential versus particles that having positive zeta 

potential [1,24]. From our earlier work, a potential strategy arose for enhancing the 

specificity of particle targeting to cells of interest by utilizing negatively charged 

particles with targeting ligands conjugated to the outside of the particles [1].  With 

this new control over surface chemistry, a new design parameter has unfolded – 

beyond size and shape – allowing for more in depth studies to be conducted to 

monitor the effect of directed end-on internalization of anisotropic particles to learn 

the effects of controlled entry into cells on both targeting efficiencies as well as the 

modes of endocytosis. 

 

5.2.3 Actively targeting cancer cells using a targeting ligand 

 The majority of in vivo studies conducted thus far have looked at the 

biodistribution of 200 nm (AR = 1) particles.  It is clear that these particles have a 

relatively short half-life and are predominantly sequestered by the Kupffer cells in the 

liver.  Further studies are required to fully explore the effect of particle matrix, size, 

shape, surface chemistry, and modulus.  By altering these design parameters, 
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nanoparticles should provide truly engineered materials that circulate for extended 

times in vivo.  Future projects should focus on engineering non-spherical particles 

with a degradable matrix such that the cargo release rate can be tailored for a 

specific application.  Additional levels of sophistication can be designed into the 

particles through the covalent attachment of targeting ligands to facilitate receptor 

mediated endocytosis, whether it be in a controlled fashion on one end of the 

particles, or all over its surface.  Determining both spacer length to the targeting 

ligand, as well as ligand density will require a substantial amount of work, however, 

these types of studies will allow for the realization of a truly optimized nanocarrier. 

 

5.2.4 Examining the effect of modulus on in vivo circulation times  

 Preliminary in vivo experiments were conducted to examine the effect of 

modulus on 7 µm particles (AR = 0.25) (Figure 5.7).  Here, red-blood cell mimics 

were fabricated in the hopes that these flexible 7 µm particles would behave similarly 

to red blood cells in their ability to navigate the barriers that confront them in the 

body [27].  It is known that red blood cells have circulation half-lives of 120 days and 

are able to circulate for extended times due to their ability to deform and pass 

through tight junctions [27].  In these experiments a non-crosslinkable PEG moiety 

(PEG 550 g/mol) was mixed into the monomer matrix (acting as a porogen) in 

varying amounts to determine if the flexibility of particles would affect circulation 

times in vivo.  Early results suggest that highly flexible particles could indeed persist 

in vivo for longer times than their rigid counterpart, however these particles 

maintained a high amount of accumulation in the lungs (Figure 5.7B and D).  The 
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particles accumulation was measured using a fluorescent detection method at 

488 nm, which was not the ideal mode of quantification due to the high amount of 

autofluorescence that occurs at that wavelength.  Future experiments should look 

into more flexible particles and quantify the in vivo distribution based on a more 

quantitative method (Iodine-125 or fluorescence detection at a higher wavelength to 

avoid the high background signal obtained from the mouse autofluorescence).  The 

ideal carrier in this case would be a long circulating degradable particle optimal for 

slow, continual release of a cargo over an extended period of time. 

 

 

Figure 5.7 The effect of modulus on circulating artificial red blood cells. A) SEM 
micrograph of rigid 7 µm particles (AR = 0.25, no porogen), B) the biodistribution of  
rigid 7 µm particles (AR = 0.25, no porogen), C) SEM micrograph of flexible 7 µm 
particles (AR = 0.25, 50 wt% porogen), D) the biodistribution of  flexible 7 µm 
particles (AR = 0.25, 50 wt% porogen) 
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