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ABSTRACT
Bevan Emma Huang: Statistical Aspects of Haplotype-Based Association Studies

(Under the Direction of Danyu Lin)

A decade ago, genomewide association studies were proposed as a tool to unravel the

genetic basis of complex diseases. It is only now that they are becoming practical

realities due to improved technology and reduced genotyping costs. For such studies,

the issues of power and efficiency are crucial due to the quantity of markers genotyped

and the moderate effect sizes involved.

Haplotype-based analysis incorporates information from multiple markers, and so

is potentially more powerful than single-SNP analysis. Unfortunately, not only is

it computationally more intensive, but since haplotypes are not directly observed,

there exists a major analytical challenge with haplotype association analysis. Several

methods are available to infer individual haplotypes from unphased genotype data,

but using the inferred haplotypes in the ensuing association analysis can result in

biased estimates and reduced power. We investigate the situations for which the

disadvantages of the imputation process may outweigh its convenience. In addition,

we describe alternatives to imputation which result in efficient haplotype association

analysis.

For case-control studies, we develop methods for use in genomewide studies which

account for the correlation between SNPs in multiple test correction. Simulation

studies based on the HapMap data showed that the proposed method performs well

in realistic situations. We applied it to a case-control dataset of 2,300 SNPs to test

for association with rheumatoid arthritis.

For quantitative trait loci, we focus on gains in power which may be made via

selective genotyping designs, where only those individuals with extreme phenotypes

are genotyped. Because selection depends on the phenotype, the resulting data can-

not be properly analyzed by standard statistical methods. We provide appropriate
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likelihoods for assessing the effects of genotypes and haplotypes on quantitative traits

under such designs. We demonstrate that the likelihood-based methods are highly

effective in identifying causal variants, and are substantially more powerful than ex-

isting methods. We initially consider two practical designs, then extend the meth-

ods to a two-phase sampling design. Additionally, we provide methods to test for

haplotype-disease association in the presence of covariates. Simulations demonstrate

the effectiveness of these likelihood-based methods.
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Chapter 1

Introduction

1.1 Genetic Association Studies

Genetics research has undergone a dramatic transformation in the past decade as

improved technology and reduced cost have made high-throughput genotyping possi-

ble. Traditionally, linkage analysis has been used to localize disease genes, and has

been successful in the study of various Mendelian traits (Jimenez-Sanchez et al. 2001).

This methodology is well developed, but it does have some limitations. It is primar-

ily useful for diseases caused by rare variants with high penetrance, and has poor

power to detect common alleles with modest effects (Risch 2000; Hirschhorn and Daly

2005). This makes it difficult if not impossible to study complex traits, which may be

greatly influenced by common variants and may have complicated interactions with

environmental factors (Reich and Lander 2001; Wang et al. 2005).

Fine mapping, or association analysis, can more closely pinpoint the location of a

gene, but requires many more markers. Genomewide association studies were proposed

a decade ago as a potentially powerful tool to unravel the genetic basis of complex

diseases (Risch and Merikangas 1996). However, it is only now that they are becoming

practical realities. Genotyping costs have decreased greatly in recent years, to the

point where chips containing 100K SNPs, or even 250K have already been used in

various studies (Ozaki et al. 2002; Klein et al. 2005; Thomas et al. 2005; Maraganore



et al. 2005). While genomewide association studies are currently in wide proliferation,

the methodology to perform the analysis has not kept pace with the collection of data

(Thomas et al. 2005).

One resource in particular which has spurred the creation of new methodology is

the International HapMap Project, or HapMap (Gibbs et al. 2003; The International

Hapmap Consortium 2005), which has provided researchers with a dense SNP map

consisting of over 3.5 million validated SNPs. Containing information on location, al-

lele frequency, and linkage disequilibrium, this compilation of data has potential which

is yet to be fully realized. Already approaches have been suggested to use the data

to explore the distribution of linkage disequilibrium, construct simulation datasets

to accurately represent variation in the genome and select SNPs for genotyping in

association studies (The International HapMap Consortium 2005).

The promise for future research seems boundless, yet there are still limitations

inherent in the data. The HapMap project and current SNP platforms focus on

cataloging common SNPs, so single-SNP analysis is not capable of detecting rare

causative SNPs. An alternative is haplotype-based analysis, which may be able to

do so if the rare SNP is captured by a haplotype (De Bakker et al. 2005). An

important question in testing association between SNPs and disease is whether to

examine individual SNPs, or consider the haplotypes of multiple markers. The latter

is potentially more powerful due to the incorporation of information from multiple

markers (Collins et al. 1997; Akey et al. 2001; Morris and Kaplan 2002), but it is also

computationally more intensive.

Further, a major analytical challenge with haplotype association analysis is that

haplotypes are not directly measured. While this is theoretically possible, it remains

too expensive for use in large-scale association studies. Several methods are available

to infer individual haplotypes from unphased genotype data (Schaid et al. 2002;

Zaykin et al. 2002; Excoffier and Slatkin 1995; Stephens et al. 2001; Niu et al. 2002),

but using the inferred haplotypes in the ensuing association analysis can result in

biased estimates and reduced power (Kraft et al. 2005). This dissertation considers
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aspects of haplotype-disease association mapping. Chapter 2 lays out general notation

which will be utilized throughout this dissertation. The remaining chapters propose

efficient methods of analysis under a variety of study designs.

1.2 Association Mapping for Dichotomous Traits

Much interest centers on the etiology of complex diseases such as cancer, which

are affected by a multitude of genetic and environmental factors. For such traits the

case-control design, which is common in classical epidemiologic studies, is a popular

approach to studying the role of genes in influencing disease risk. In this case a

typical single-SNP analysis consists of comparing the frequency of the three possible

genotypes between cases and controls with a standard χ2 test. This is equivalent

to logistic regression upon the genotype. Once we consider latent covariates such as

multi-SNP haplotypes, however, more complex methodology is required.

In Chapter 3, we begin by illustrating problems with the simplistic approach of

using standard logistic regression on inferred haplotypes. We compare this with maxi-

mum likelihood methods, which properly account for phase uncertainty. This approach

involves maximization of the observed-data likelihood with respect to all relevant pa-

rameters (including haplotype frequencies and disease risks) simultaneously. Through

extensive simulation studies we investigate the types of scenarios for which the disad-

vantages of the imputation process may outweigh its convenience.

In Chapter 4 we consider genomewide scans for haplotype association. We de-

velop a statistically powerful and numerically efficient method for detecting haplotype-

disease association in genomewide studies by sliding windows of SNPs over the genome.

This consists of an algorithm to calculate a proper likelihood-ratio statistic for any

given window of SNPs, along with an accurate Monte Carlo procedure to adjust for

multiple testing. Simulation studies based on the HapMap data showed that the pro-

posed method performs well in realistic situations. We applied it to a real case-control

dataset of 2,300 SNPs to test for association with rheumatoid arthritis. Several loci
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were identified as having possible effects on the disease, none of which would have

been detected with existing methods.

1.3 Association Mapping for Quantitative Traits

While case-control studies are commonly used for genomewide association studies,

they are not the most efficient design when the trait of interest is continuous. Efficiency

and power are important concerns, since disease genes are unlikely to have very large

effects on quantitative traits. The need to adjust for multiple testing only adds to

the problem, and despite the continuing improvements in genotyping efficiency, it

is still highly expensive to genotype a large number of individuals in genomewide

association studies. A cost-effective strategy is to preferentially genotype individuals

whose trait values deviate from the population mean. Known as selective genotyping,

this approach can result in a substantial increase in power (relative to random sampling

with the same number of individuals) because much of the genetic information resides

in individuals with extreme phenotypes (Laitinen et al. 1997; Slatkin 1999; van Gestel

et al. 2000; Xiong et al. 2002; Chen et al. 2005; Cornish et al. 2005; Wallace et al.

2006).

In Chapter 5, we focus on continuous traits and the gains in power which may be

made via selective genotyping designs. Because selection depends on the phenotype,

the resulting data cannot be properly analyzed by standard statistical methods. We

provide appropriate likelihoods for assessing the effects of genotypes and haplotypes

on quantitative traits under such designs. We demonstrate that the likelihood-based

methods are highly effective in identifying causal variants, and are substantially more

powerful than existing methods.

In Chapter 6, we extend the results on selective genotyping to more general designs.

Complex traits may be greatly influenced by environment in addition to genetic vari-

ants, so it is essential to consider designs which allow for environmental covariates. We

consider a two-phase sampling design under a range of conditions, and provide algo-

4



rithms to maximize the corresponding likelihoods. Simulations show the effectiveness

of these likelihood-based methods in comparison to existing approaches.
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Chapter 2

Notation

We adopt the notation of Lin et al. (2005) in this dissertation, for both haplotype-

disease association analysis, and more complicated models which include other en-

vironmental variables. Suppose we have data on n individuals, each genotyped at

M biallelic SNPs. At each locus, the two possible alleles are denoted by 0 and 1.

Then each haplotype h is a binary word of length M . The total number of possible

haplotypes is L = 2M , although the actual number of haplotypes consistent with the

observed data is usually much smaller. For l = 1, . . . , L, let hl denote the lth possible

haplotype.

For each individual, the multi-SNP genotype is an ordered sequence of M elements

from the set {0, 1, 2}. Let H denote the individual’s diplotype, the pair of haplotypes

on the two homologous chromosomes, and let G be the corresponding (unphased)

genotype. Note that G is the sum of the two haplotypes, and as such codes the

number of ‘1’ alleles at each locus. We write H = (hk, hl) if the individual’s diplotype

consists of haplotypes hk and hl. We cannot exactly determine H on the basis of G

if the individual is heterozygous at more than one SNP or if any locus genotype is

missing.

Let Y be the phenotype of interest (either discrete or continuous), and let X be

a set of environmental variables or covariates. We are interested in estimating the

effects of H and possibly X on Y . This relationship can be characterized by the



conditional density function P (Y |X, H; θ) indexed by a set of parameters θ. There

are various choices for the association or disease model. Suppose that h∗ is the target

haplotype of interest. Then in the absence of covariates, we may employ a linear

predictor α + βI(hk = hl = h∗) under a recessive model, α + β[I(hk = h∗) + I(hl =

h∗) − I(hk = hl = h∗)] under a dominant model, or α + β[I(hk = h∗) + I(hl = h∗)]

under an additive model, where hk and hl are the pair of haplotypes in H, and I(A)

takes the value 1 or 0, dependent on whether the event A is true or false. We consider

all three models in our analyses, but focus on the additive model, since it is thought

that contributions to disease risk will often be roughly additive (Balding 2006).
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Chapter 3

The Use of Inferred Haplotypes in

Downstream Analyses

Marchini et al. (2006) provide a comprehensive description of phasing algorithms

for inferring individual haplotypes from unphased genotype data. The authors state

that an unresolved question is “whether and, if so, how best to use inferred haplo-

types in downstream analyses”. The question is important since knowing individual

haplotypes is rarely an end in itself. Rather, the aim is to approach the gold standard

of molecular haplotyping in accuracy, so that the phased haplotypes can be used in

further analysis. By treating inferred haplotypes as known quantities, standard statis-

tical methods and computer programs can easily be used for analysis. The convenience

of this approach makes it a tempting tactic for haplotype analysis; however, as this

chapter shows, there are downsides to simplicity.

3.1 Haplotype Phase Imputation

Phase ambiguity is a kind of missing data, and using inferred haplotypes in down-

stream analyses is a form of imputation. The voluminous statistical literature on

missing data casts light on the potential pitfalls of imputation. In the words of Demp-

ster and Rubin (1983):

The idea of imputation is both seductive and dangerous. It is seductive



because it can lull the user into the pleasurable state of believing that the
data are complete after all, and it is dangerous because it lumps together
situations where the problem is sufficiently minor that it can be legitimately
handled in this way and situations where standard estimators applied to the
real and imputed data have substantial bias.

Marchini et al. (2006) consider several phasing algorithms in their analysis. They point

out that all the phasing algorithms assume Hardy-Weinberg Equilibrium (HWE). Even

when the general population is in HWE, the case sample and the pooled case-control

sample may not be. Thus, the phasing algorithms may produce biased estimation of

haplotype distributions with case-control data. The influence of departures from HWE

on estimation accuracy depends on the directionality of the disequilibrium. Another

possible source of bias is the fact that the phasing algorithms do not acknowledge the

selective-sampling feature of the case-control design. Also, the phasing algorithms do

not take account of phenotype, which is potentially informative about phase.

The common practice of assigning the most likely diplotype (i.e., the pair of haplo-

types with the highest posterior probability) to each individual is intrinsically biased

because the most likely diplotype is not necessarily the true diplotype. Consider the

simple situation of two SNPs, with the minor and major alleles coded as 1 and 0,

respectively, at each SNP site. The genotype is defined as the numbers of minor

alleles at the two SNP sites. Haplotype ambiguity arises if and only if an individ-

ual is doubly heterozygous, i.e., has the 11 genotype. Both the (10, 01) and (00,

11) diplotypes produce the 11 genotype. There is obviously a problem if all doubly-

heterozygous individuals are assigned with the more likely (i.e., the more common)

of the two diplotypes, especially when the frequency of the less common diplotype is

similar to (although lower than) that of the more common one.

When there exist causal haplotypes, phasing algorithms may incorrectly assign

causal haplotypes to individuals without causal haplotypes or reconstruct causal hap-

lotypes as non-causal haplotypes. Consequently, treating inferred haplotypes as true

haplotypes in downstream association analyses tends to attenuate the estimated hap-

lotype effects and reduce the power for detecting causal variants. Incorrect haplotype
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Table 3.1: Effects of incorrectly assigned haplotypes on risk estimates.

Diplotype

A B C D

(a) True haplotypes

Cases 500 100 200 200

Controls 250 150 300 300

Odds ratio 3.0 1.0 1.0 —

(b) Inferred haplotypes

Cases 300 200 200 300

Controls 150 200 300 350

Odds ratio 2.3 1.2 0.8 —

assignments may also induce spurious association for non-causal haplotypes and thus

increase false positive results.

For illustration, we consider the diplotype distribution from a hypothetical case-

control study shown in Table 3.1(a). With diplotype D as the reference, the estimated

odds ratios for diplotypes A, B and C are 3, 1 and 1, respectively. Assume that, for

both cases and controls, 20% of the individuals truly with diplotype A are incorrectly

assigned with diplotype B, and another 20% are incorrectly assigned with diplotype

D, yielding the misclassified distribution shown in Table 3.1(b). Then the estimated

odds ratio for diplotype A is reduced from 3 to 2.3, and the estimated odds ratios for

diplotypes B and C are changed from 1 to 1.2 and 0.8, respectively. This example

demonstrates that treating inferred haplotypes as true haplotypes may bias the esti-

mated effects of causal haplotypes downward and may also bias the estimated effects

of non-causal haplotypes away from the null value in either direction. The distortions

can be more profound if the misclassification rates differ between cases and controls.
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Several simulation studies (Morris et al. 2002; Kraft et al. 2005; Cordell 2006;

French et al. 2006) showed that imputation can yield substantial bias of estimated

genetic effects, poor coverage of confidence intervals and significant inflation of type

I error, especially when the effects are large and phase uncertainty is high. Kraft

et al. (2005) compare the performance of several analytic strategies with matched

case-control data. These include the most likely haplotype assignment, expectation

substitution, and an improper version of multiple imputation. Cordell (2006) ex-

tends this list by weighted regression and consider estimation using either the pooled

case/control sample, or separately by disease status. They find multiple imputation

to be the easiest to implement and extend to more complex models.

French et al. (2006) focuses primarily on weighted logistic regression analysis.

They reported bias of the estimated log odds ratios in the range of -0.49 to 0.22,

actual type I error of 18% at the 5% nominal significance level and coverage of less

than 40% for 95% confidence intervals. Indeed, when the estimator is biased, the

coverage of the association confidence intervals will decrease toward 0% and the type

I error will increase toward 100% as the sample size increases.

Of the numerous phasing algorithms investigated in these papers, Marchini et al.

(2006) conclude that PHASE (v2.1) (Stephens et al. 2001; Stephens and Donnelly

2003; Stephens and Scheet 2005) is among the most accurate. It was also the method

chosen to produce haplotypes for the HapMap data, so we focus on its performance as a

standard for haplotype imputation. It is a Bayesian approach to haplotype inference

that uses coalescent based models to improve accuracy of haplotype estimates for

unrelated individuals. The algorithm attempts to cluster groups of similar haplotypes,

and recent versions incorporate recombination, so that the clustering may change as

one moves along the chromosome.
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3.2 Retrospective Likelihood Maximization

In recent years, researchers (Schaid et al. 2002; Epstein and Satten 2003; Spinka

et al. 2005; Lin et al. 2005; Lin and Zeng 2006) have developed maximum likelihood

methods to properly account for phase uncertainty in association analyses. This ap-

proach involves maximizing the observed-data likelihood with respect to all relevant

parameters (including haplotype frequencies and disease risks) simultaneously. We

compare the results from this method to those which first impute haplotypes with

PHASE and then treat the inferred haplotypes as known covariates in prospective

logistic regression.

We first estimate the frequencies for all possible haplotypes for cases and controls

separately by using the EM algorithm of Excoffier and Slatkin (1995). The number of

haplotypes is denoted by K. For k = 1, . . . , K, let hk denote the kth haplotype and

let πk denote the frequency of hk in the whole population. The observed data consist

of (Yi, Gi), i = 1, . . . , n, where Yi and Gi denote the disease status and genotype for

the ith subject. We fit a logistic regression model which takes the form:

Pr(Y = 1|H = (hk, hl)) =
eα+βT Z(hk,hl)

1 + eα+βT Z(hk,hl)
,

where α pertains to the intercept, β represents log-odd ratios, and Z(hk, hl) represents

the design matrix encoding additive haplotype effects. This model has been previously

described by Lin et al. (2005) to compare a single haplotype h∗ to all other haplotypes,

in which case Z(hk, hl) counts the number of copies of h∗ in a given diplotype. We

may also incorporate multiple haplotypes into our model by using

Z(hk, hl) =




I(hk = h1) + I(hl = h1)
...

I(hk = hr) + I(hl = hr)


 ,

where r is the number of haplotype effects in the model, and I(·) is the indicator

function. We use the most frequent haplotype as the reference group in the model

unless otherwise specified.
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The likelihood should take into account the phase uncertainty in the genotype data

as well as the biased sampling of the case-control design. Under the assumption of

rare disease and Hardy-Weinberg equilibrium, the likelihood
∏n

i=1 Pr(Gi|Yi) can be

shown to be
n∏

i=1

Σk,lI[(hk, hl) ∈ S(Gi)]e
YiβT Z(hk,hl)πkπl

Σk,leYiβT Z(hk,hl)πkπl

,

where S(G) denotes the set of haplotypes compatible with genotype G, and the sum-

mation of (k, l) is taken from 1 to K.

To incorporate the constraints that
∑K

k=1 πk = 1 and πk ≥ 0, k = 1, . . . , K, into

the calculations, we reparametrize the model by defining π∗
k = πk/πK and νk = log π∗

k,

k = 1, . . . , K. Write ν = (ν1, . . . , νK−1) and θ = (β, ν). Then the log-likelihood can

be written as

l(θ) =
n∑

i=1

log

[∑
k,l I [(hk, hl) ∈ S(Gi)] e

θT W (Yi,hk,hl)

∑
k,l e

θT W (Yi,hk,hl)

]
,

where

W (Yi, hk, hl) =




YiZ(hk, hl)

I(hk = h1) + I(hl = h1)
...

I(hk = hK−1) + I(hl = hK−1)




.

The corresponding score function is

U (θ) =
n∑

i=1

[∑
k,l I [(hk, hl) ∈ S(Gi)]W (Yi, hk, hl)e

θT W (Yi,hk,hl)

∑
k,l I [(hk, hl) ∈ S(Gi)] eθT W (Yi,hk,hl)

−
∑

k,l W (Yi, hk, hl)e
θT W (Yi,hk,hl)

∑
k,l e

θT W (Yi,hk,hl)

]
,

and to obtain the maximum likelihood estimate θ̂, we solve the score equation U(θ) = 0

by using the Newton-Raphson method. We set the initial value of θ to θ̃ = (0, ν̃),

where ν̃ is the maximum likelihood estimate of ν in the pooled sample obtained by

the EM algorithm. We test for haplotype-disease association using Wald statistics

for individual haplotype effects, which have approximately the χ2 distribution with 1

degree of freedom.

13



3.3 Simulation Studies

The maximum likelihood estimators for haplotype effects are unbiased and statis-

tically efficient, which implies that maximum likelihood is the most powerful among

all valid methods (Lin and Zeng 2006). The question we seek to address is how much

more powerful it is relative to imputation. We performed several simulation studies

to assess bias in estimates and standard error, coverage probability, and power when

phase is imputed in case-control studies.

We start with the simple case of a two-locus model where there is only one ambigu-

ous genotype, and examine effects of changing linkage disequilibrium between SNPs.

The two SNPs were generated with frequencies of 0.3 and 0.4, with values of LD

ranging from D′ = 0 to 1. Haplotype 11 was assumed to be causative under both

additive and dominant modes of inheritance, with odds ratios of 1.0, 1.3, 1.5, 1.8 and

2.0. Based on 10,000 simulated datasets of 1,000 cases and 1,000 controls, with no

missing data, we confirmed several of the observations from previous studies. Notably,

the imputation method had increasing bias, and decreasing coverage probability for

the 95% confidence interval as the odds ratio increased. These trends were more pro-

nounced for lower values of LD, where there was more uncertainty in imputation. The

maximum-likelihood method was virtually unbiased and had appropriate coverage un-

der all simulation scenarios. In spite of the issues with bias and coverage, the power

for the imputation method was very similar to the maximum-likelihood method as

long as D′ was larger than 0.2.

Our second study mimicked the two-locus model Mul3 of Cordell (2006). We

assumed that haplotypes 01 and 10 had odds ratios of 1.2 and 1.4 in reference to

haplotypes 00 and 11 with additive mode of inheritance, and we tested whether locus

2 had an effect while allowing an effect at locus 1. Based on 10,000 simulated data sets

of 1,000 cases and 1,000 controls with 10% randomly missing genotypes, we obtained

power of 65%, 40% and 17% at nominal significance levels of 5%, 1% and 0.1% for the

maximum-likelihood method, as compared to 41%, 20% and 6% for the imputation

14



Table 3.2: Common haplotypes and population frequencies for AGTR1 (French et al.
2006)

Designation Haplotype Frequency

A (Reference) 000100000000 0.223

B 110000000000 0.029

C 110000111110 0.051

D 001010000000 0.027

E 001010000001 0.090

F 000100001001 0.029

G 000100000001 0.188

H 010011000000 0.038

I 010011000001 0.032

method.

Most studies contain more than two SNPs, so in our third study, we considered the

type I angiotensin receptor (AGTR1) gene of French et al. (2006), for which 12 SNPs

were genotyped, with 9 “common” haplotypes listed in Table 3.2. The average pairwise

D′ (standardized linkage disequilibrium coefficient) is 0.9. We generated case-control

data under the third model in their Table III, but we used the more moderate odds

ratios of 2.5, 2, 1.5 and 2 for haplotypes D, F, G, and H, respectively. We assigned

disease status under the additive mode of inheritance such that the disease prevalence

was approximately 2%, and we selected 800 subjects with 3 controls per case. The

power of the maximum-likelihood method to detect the effects of haplotypes D, F, G

and H was estimated based on 10,000 simulated data sets with 2% randomly missing

SNPs. In this study, approximately 75% of individuals had unambiguous diplotypes,

and approximately 82% had highest posterior probabilities greater than 0.75. As can

be seen in Table 3.3, the maximum-likelihood methods had substantially higher power

than imputation for individual haplotypes. This difference is only amplified by the
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Table 3.3: Type I error/Power of maximum likelihood (ML) compared to imputation
with PHASE. The nominal significance level is 1%.

Haplotype Odds Ratio ML PHASE

D 2.5 62% 50%

E 1.0 1% 2%

F 2.0 49% 39%

G 1.5 42% 24%

H 2.0 50% 32%

fact that using inferred haplotypes resulted in inflated type I error. Thus the power

estimates are higher than they would be when scaled down to correct type I error.

The phasing algorithms reviewed by Marchini et al. (2006) are often used to phase

larger regions, so it is of interest to assess the performance of the imputation method

when testing for haplotype-disease association on a small set of SNPs that is phased

within a larger genomic context. To this end, we generated 100 SNPs according to

the allelic frequencies and pairwise linkage disequilibrium coefficients of the first 100

SNPs on chromosome 18 of the CEU sample in the HapMap genome-wide data. We

performed haplotype analysis on SNPs 60-64. The most common haplotypes of the 5

SNPs are 00000, 00001, 00010, 00100, 00101, 01101, 10000, 10001, 10010, 10100, and

10101 with frequencies of 4.6%, 8.8%, 11.0%, 7.4%, 7.2%, 7.0%, 6.6%, 6.8%, 8.6%,

7.4% and 8.4%, respectively. We assumed that the disease risk was influenced by

haplotype 00000 only, with an odds ratio of 3 under the additive mode of inheritance.

The overall disease prevalence was set to approximately 5%, and we selected 300

cases and 300 controls. We assessed the haplotype-disease association on those 5 SNPs,

which were phased together with the other 95 SNPs by the PHASE algorithm. It was

not computationally feasible to phase 600 subjects all together on 100 SNPs. Thus,

we randomly divided the 600 subjects into 6 groups of 50 cases and 50 controls. (We

found that phasing cases and controls together provided much better control of type I

16



Table 3.4: Standardized LD Coefficients (D′) for Two Sets of SNPs on Chromosome
18 of the HAPMAP CEU Sample

(a) SNPs 60-64 (b) SNPs 95-99

61 62 63 64 96 97 98 99

60 1.0 .86 .28 .68 95 1.0 1.0 1.0 .96

61 .86 1.0 .84 96 .83 .95 .94

62 .55 .73 97 .95 .77

63 .51 98 .94

error than phasing cases and controls separately.) Recently a new modification to the

algorithm, fastPHASE (Scheet and Stephens 2006), was released, for which phasing

larger groups of SNPs and subjects may be possible. However, this program has lower

accuracy than the version we used, so the results presented here would also apply.

We simulated 1000 datasets with 2% randomly missing SNP values. We found

that at the nominal significance level of 1%, the imputation method had 63% power

to detect the causal haplotype 00000 and type I error of 5%, 3%, 4% and 7% for null

haplotypes 00001, 00010, 00100, and 10000 respectively. The maximum-likelihood

method, in contrast, had 72% power to detect the causal haplotype, and type I error

close to the nominal level. The maximum likelihood estimates had little bias, whereas

the imputation method produced bias of –0.33, 0.27, 0.21, 0.26, and 0.30 for the log

odds ratios of haplotypes 00000, 00001, 00010, 00100 and 10000, respectively.

In the above study, the LD among the 5 SNPs was not particularly strong; see Table

3.4(a). In a related study, we considered SNPs 95-99, which had very high LD; see

Table 3.4(b). The most common haplotypes of SNPs 95-99 are 00000, 00001, 01000,

01001, 01100, 01111, 10000, and 10001, with frequencies of 39.7%, 20.8%, 2%, 1.3%,

1.8%, 13.8%, 12.9%, and 5.4%, respectively. We assumed that 10001 is the causal

haplotype with an odds ratio of 2.5 under the additive mode of inheritance. The

rest of the simulation set-up was the same as in the previous study. The imputation
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method had 83% power to detect the causal haplotype and type I error of 2% and

4% for null haplotypes 00001 and 10000 at the nominal significance level of 1% and

produced bias of –0.15, 0.12, and 0.14 for the log odds ratios of haplotypes 10001,

00001, and 10000. On the other hand, the maximum-likelihood method had 92%

power to detect the causal haplotype and provided accurate control of type I error

and unbiased estimates of haplotype effects.

3.4 Discussion

Our studies obviously do not encompass all possible scenarios. Thus, the results

do not imply that imputation is always bad, but rather that it can be considerably

less powerful than maximum likelihood while providing biased estimates of genetic

effects and poor control of type I error in practical situations. The problems tend to

be more severe when there is greater uncertainty in reconstructed haplotypes.

Our simulation studies were focused on single imputation, which is the most com-

mon practice. Some alternative procedures have been proposed, including multiple

imputation, expectation substitution, and weighted logistic regression (Kraft et al.

2005; Cordell 2006; French et al. 2006). Those procedures are not theoretically valid

either (for many of the reasons mentioned previously) and may perform poorly. In

particular, the versions of multiple imputation that have been proposed are improper

because they fail to account for phenotype and case-control sampling. Proper multiple

imputation would provide a good approximation to maximum likelihood.

Mensah et al. (2007) consider corrections to haplotype imputation to account

for the uncertainty in inference. They compare the performance of three methods:

(1) treating the PHASE-inferred haplotypes as known quantities; (2) weighting each

haplotype pair by its posterior probability; and (3) considering each sampled recon-

struction as being an imputation of the true unknown haplotypes, and constructing

an estimate based on multiple reconstructions. They show that the latter two can re-

duce bias and improve coverage probabilities over the first approach when haplotypes
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are inferred separately for cases and controls. When haplotypes are inferred for the

combined sample, though, the three approaches are equivalent. These improvements

to the haplotype imputation process are promising, yet Mensah et al. (2007) admit

that they consider only a very limited set of simulations, and provide no discussion

of power. Indeed, no method can be more powerful than maximum likelihood while

providing the same control of type I error, although some methods may approximate

maximum likelihood well under certain circumstances.
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Chapter 4

Detecting Haplotype Effects in

Genomewide Association Studies

In the previous chapter, we considered haplotype association analysis for a small

set of markers. However, as genomewide association studies are becoming widespread

in practice, the more relevant question is that of analysis in large-scale association

studies. Genotyping costs have decreased greatly in recent years, to the point where

chips containing 100K SNPs, or even 250K have already been used in various studies

(Ozaki et al. 2002; Klein et al. 2005; Thomas et al. 2005; Maragenore et al. 2005),

and investigations of larger numbers of SNPs loom in the near future. However, the

methodology to perform the analysis has not kept pace with the collection of data

(Thomas et al. 2005).

A major analytical challenge is that haplotypes are not directly measured. Several

methods are available to infer individual haplotypes from unphased genotype data

(e.g., Excoffier and Slatkin 1995; Stephens et al. 2001; Niu et al. 2002). As seen in the

previous chapter, using the inferred individual haplotypes in the ensuing association

analysis can result in biased estimates and reduced power. A few methods have been

proposed to properly account for phase uncertainty in the association analysis (Zhao

et al. 2003; Stram et al. 2003; Epstein and Satten 2003; Lin et al. 2005), but these

are all focused on the analysis of a single candidate gene.



In this chapter, we provide a computationally efficient and statistically powerful

method for detecting haplotype-disease association in genomewide studies. We con-

sider sliding windows of adjacent SNPs; see Mathias et al. (2006) and the references

therein. Within each window, we use an efficient and stable algorithm to calculate a

likelihood-ratio test statistic that properly accounts for phase uncertainty and case-

control sampling. The windows may be overlapping or non-overlapping, and the win-

dow sizes may be fixed or variable. We allow exhaustive testing, which considers all

possible windows up to a certain size and thus encompasses single-SNP analysis.

The number of tests can be very large, particularly in the case of exhaustive test-

ing. It is common to use the Bonferroni correction to adjust for multiple testing, but

this is overly conservative, especially for overlapping windows and exhaustive testing.

Holm (1979) has proposed a step-down procedure which is more liberal, but when

the number of hypotheses is large, it is nearly as conservative as the Bonferroni pro-

cedure. A popular alternative is permutation resampling (Westfall and Young 1993;

Ge et al. 2003). This method shuffles the phenotypes of the study subjects a large

number of times in order to create permuted data sets from the null distribution of

no genotype-phenotype association. Computing the test statistic for each of these

permuted datasets generates the empirical joint distribution and adjusted p-values for

which the actual data structure is incorporated in the multiple test correction.

While this is an improvement over the Bonferroni correction, it has limitations.

Permutation is computationally demanding, since it entails repeating possibly exten-

sive analyses many times in order to generate the empirical joint distribution. Recent

developments have decreased the time (Dudbridge and Koeleman 2004) required for

permutation. However, the computation of complex test statistics for many hypothe-

ses such as is required in genomewide association studies may still be overwhelming.

In addition, permutation requires complete exchangeability under the null hypothesis,

so may not be applicable when there are covariates or nuisance parameters (Lin 2005).

We propose a computationally efficient method to properly adjust for multiple

testing in large-scale association studies. This method can be used to control the
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probability of k (≥ 1) or more false positives, denoted by k-FWER (Lehmann and

Romano 2005). They derive the Bonferroni k-FWER adjustment procedure as re-

jection of a p-value if it is below the threshold of kα/m, where there are m total

hypotheses being tested at a nominal significance level α. The corresponding Holm

stepdown procedure is to reject the ith smallest p-value if it is less than αi, where αi

is given by: αi = kα/m if i ≤ k and αi = kα/(s + k − i) if i > k. As in the case of

k = 1, though, both of these procedures are overly conservative.

The basic strategy of the proposed method is to ascertain the joint distribution

of the test statistics among windows and to evaluate this joint distribution by an

efficient Monte Carlo procedure. By properly accounting for the correlations of the

test statistics, the proposed method avoids the conservativeness of the Bonferroni

approach. Our Monte Carlo procedure reduces the computational burden by orders

of magnitude in comparison to permutation. Simulation studies with the phased

haplotypes of the Caucasian HapMap population showed that the proposed method

provides accurate control of the traditional FWER as well as the more general k-

FWER with various choices of window. It is substantially more powerful than the

Bonferroni correction and the k-FWER version of Lehmann and Romano (2005).

We applied the new method to a case-control study of association between rheuma-

toid arthritis and 2,300 SNPs in a region of interest on chromosome 18. Previous

studies had shown mild evidence for linkage in this region (Merriman et al. 2001)

as well as possible links of this region to a variety of other auto-immune diseases

such as type I diabetes and multiple sclerosis. The single-SNP analysis did not find

any significant results (after adjusting for multiple comparisons), and neither did the

haplotype-based analysis with the Bonferroni correction. The use of the proposed

method revealed several areas that merit further investigations.
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4.1 Methods

Our strategy for testing haplotype effects in case-control data can be broken up

into three main steps: selecting a set of windows, assessing association within each

window, and adjusting for multiple comparisons across windows. We first consider

a windowing framework. In general, this will consist of all windows of S adjacent

SNPs which overlap by anywhere from 0 to S − 1 SNPs. The window size S may be

chosen based on prior knowledge of a haplotype size, or exhaustive testing of a range

of values for S may be performed. Within a given window, then, we first estimate

the frequencies of all possible haplotypes for cases and controls separately by using

the EM algorithm (Excoffier and Slatkin 1995). To improve stability and speed up

computation, we remove the haplotypes with estimated frequencies < cf in the control

group, where cf is a very small number, say 1/n or 2/n, and n is the total number

of subjects in the study. The remaining number of haplotypes is denoted by K.

Individuals whose genotypes are not compatible with the remaining set of haplotypes

are dropped from the data.

As in the previous chapter, for k = 1, . . . , K, let hk denote the kth haplotype and

let πk denote the frequency of hk in the whole population. We fit a logistic regression

model with additive haplotype effects for all haplotypes with estimated frequencies

> ce in both cases and controls, where ce is a small number, say 5/n or 10/n. We

use the most frequent haplotype as the reference group in the model. The haplotypes

with estimated frequencies less than the threshold ce are also included in the reference

group. It would be difficult to detect separate effects of such rare haplotypes. The

number of haplotype effects in the model is denoted by r.

The observed data consist of (Yi, Gi), i = 1, . . . , n, where Yi and Gi denote the

disease status and genotype for the ith subject. With H representing the pair of

haplotypes for a subject, the logistic regression model takes the form:

Pr(Y = 1|H = (hk, hl)) =
eα+βT Z(hk,hl)

1 + eα+βT Z(hk,hl)
,
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where α pertains to the intercept, β represents log-odd ratios,

Z(hk, hl) =




I(hk = h1) + I(hl = h1)
...

I(hk = hr) + I(hl = hr)


 ,

and I(·) is the indicator function. The simplifications to the likelihood made in the

previous chapter under the assumptions of rare disease and HWE apply to this model

as well. The primary difference from the previous chapter and from Lin et al. (2005)

in this setup is that we focus on an overall test for the effects of all the haplotypes,

rather than tests for individual effects of haplotypes.

To incorporate the constraints that
∑K

k=1 πk = 1 and πk ≥ 0, k = 1, . . . , K, into

the calculations, we reparametrize the model by defining π∗
k = πk/πK and νk = log π∗

k,

k = 1, . . . , K. Write ν = (ν1, . . . , νK−1) and θ = (β, ν). Then the log-likelihood can

be written as

l(θ) =

n∑

i=1

log

[∑
k,l I [(hk, hl) ∈ S(Gi)] e

θT W (Yi,hk,hl)

∑
k,l e

θT W (Yi,hk,hl)

]
,

where

W (Yi, hk, hl) =




YiZ(hk, hl)

I(hk = h1) + I(hl = h1)
...

I(hk = hK−1) + I(hl = hK−1)




.

The corresponding score function and information matrix are

U (θ) =

n∑

i=1

[∑
k,l I [(hk, hl) ∈ S(Gi)]W (Yi, hk, hl)e

θT W (Yi,hk,hl)

∑
k,l I [(hk, hl) ∈ S(Gi)] eθT W (Yi,hk,hl)

−
∑

k,l W (Yi, hk, hl)e
θT W (Yi,hk,hl)

∑
k,l e

θT W (Yi,hk,hl)

]
,

and

Σ(θ) =

n∑

i=1



∑

k,l W (Yi, hk, hl)
⊗2eθT W (Yi,hk,hl)

∑
k,l e

θT W (Yi,hk,hl)
−
{∑

k,l W (Yi, hk, hl)e
θT W (Yi,hk,hl)

∑
k,l e

θT W (Yi,hk,hl)

}⊗2


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−
n∑

i=1

[∑
k,l I [(hk, hl) ∈ S (Gi)] W (Yi, hk, hl)

⊗2eθT W (Yi,hk,hl)

∑
k,l I [(hk, hl) ∈ S (Gi)] eθT W (Yi,hk,hl)

−
{∑

k,l I [(hk, hl) ∈ S (Gi)] W (Yi, hk, hl)e
θT W (Yi,hk,hl)

∑
k,l I [(hk, hl) ∈ S (Gi)] eθT W (Yi,hk,hl)

}⊗2

 ,

where a⊗2 = aaT . To obtain the maximum likelihood estimate θ̂, we solve the score

equation U(θ) = 0 by using the Newton-Raphson method. We set the initial value of

θ to θ̃ = (0, ν̃), where ν̃ is the maximum likelihood estimate of ν in the pooled sample

obtained by the EM algorithm.

We can test the haplotype-disease association by using the likelihood ratio statistic

2[l(θ̂) − l(θ̃)], the score statistic, or the Wald statistic. All three test statistics have

approximately the χ2 distribution with r degrees of freedom. In deriving the joint

distribution of the test statistics over different windows, it is convenient to work with

the score statistic. We partition the score function and information matrix to conform

with the partition of β and ν in θ, i.e.,

U(θ) =


 Uβ(θ)

Uν(θ)


 ,

and

Σ(θ) =


 Σββ(θ) Σβν(θ)

Σνβ(θ) Σνν(θ)


 .

Also, let Uβ,i(θ) and Uν,i(θ) denote the contributions from the ith subject to Uβ(θ)

and Uν(θ). The score statistic can then be written as

T = Uβ(θ̃)T V −1Uβ(θ̃),

where V =
∑n

i=1 UiU
T
i and Ui = Uβ,i(θ̃) − Σβν(θ̃)Σ

−1
νν (θ̃)Uν,i(θ̃).

We approximate the joint distribution of the test statistics over windows through

a Monte Carlo simulation procedure. Specifically, we construct T̃ = ŨT V −1Ũ , where

Ũ =
∑n

i=1 UiXi, and Xi, i = 1, . . . , n, are independent standard normal random

variables. Suppose that we have a total of m windows, which may or may not be

overlapping and which covers the whole region one is scanning. Let Tj and T̃j denote
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the values of T and T̃ in the jth window. The same set of Xi, i = 1, . . . , n, is

used for all m simulated statistics T̃1, . . . , T̃m. By the arguments of Lin (2005), the

joint distribution of (T1, . . . , Tm) can be approximated by the joint distribution of

(T̃1, . . . , T̃m). We obtain realizations from the latter distribution by generating the

normal samples (X1, . . . , Xn) while fixing the genotype and phenotype data at their

observed values.

While the simulated statistics are based on the score test, the above Monte Carlo

approximation is valid whether the observed T1, . . . , Tm are the likelihood ratio, score

or Wald statistics. Our simulation studies revealed that the approximation tends to

be more accurate for the likelihood-ratio statistics than the score and Wald statistics

although the differences are generally very small. The numerical results reported in

this article pertain to the likelihood ratio.

In the standard multiple-testing framework (Westfall and Young, 1993; Lin, 2005),

the m test statistics have the same degrees of freedom. In our setting, the test statistics

have different degrees of freedom because the number of haplotype effects tested varies

among windows. Thus, we propose a step-down multiple-testing procedure which

orders the p-values of the test statistics rather than the actual values of the test

statistics. This is similar to Algorithm 2.8 in Westfall and Young (1993), which uses

resampling rather than Monte Carlo methods to simulate p-values.

For j = 1, . . . , m, let pj be the (observed) p-value associated with the test statistic

Tj, which is obtained from the χ2 distribution with rj degrees of freedom, where

rj is the number of haplotype effects tested in the jth window. Let p(1) ≤ p(2) ≤
. . . ≤ p(m) be the ordered p-values, and let H(1), . . . , H(m) be the corresponding null

hypotheses. In addition, let T̃(1), . . . , T̃(m) be the simulated test statistics associated

with H(1), . . . , H(m), and let p̃(1), . . . , p̃(m) be the corresponding simulated p-values.

The adjusted p-value for testing H(j) (i.e., the smallest significance level at which H(j)

would be rejected by the multiple testing procedure) is determined by

Pr

(
min

j≤l≤m
p̃(l) ≤ p(j)

)
.
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We estimate this probability with 5,000 realizations of p̃(1), . . . , p̃(m), which are ob-

tained by repeatedly generating the normal samples (X1, . . . , Xn) while holding the

observed data fixed. To control the traditional family-wise error rate at α, one would

reject only those hypotheses whose adjusted p-values are less than α.

The traditional family-wise error rate (FWER) may be too stringent in massive-

scale hypothesis testing. Thus, we extend Lehmann and Romano’s (2005) idea of

controlling k-FWER, which is the probability of rejecting greater than or equal to k

true hypotheses. To obtain the Monte Carlo adjusted p-values on the basis of k-FWER,

we simply replace the minimum p-value in the above formula by the kth smallest p-

value. The adjusted p-values based on the Bonferroni correction, as suggested by

Lehmann and Romano, are p(j)m/k, j = 1, . . . , m. Only k = 1 and 2 were used in our

calculations in this article, although a larger value of k may be desirable for increased

quantities of markers.

4.2 Simulation Studies

We simulated data from the 120 phased haplotypes of Caucasians in the Phase I

HapMap data. We considered two regions on chromosome 18: the ENCODE region,

which consists of 796 SNPs, and the full set of 32,177 SNPs for the chromosome.

We selected a pair of haplotypes randomly from the HapMap data for each subject

and then added the two haplotypes to give the subject’s genotype. We generated

disease according to an additive-effect logistic model with an overall disease rate of

five percent.

Figures 4.1 and 4.2 display the locations of the two HapMap regions and the linkage

disequilibrium (LD) among the SNPs. The SNPs in the ENCODE region show much

higher levels of LD than the full set of SNPs. This reflects the fact that the density

of SNPs in the ENCODE region is higher than elsewhere.

We used the ENCODE data to assess the performance of the proposed Monte Carlo

method and Bonferroni correction for different window sizes, and overlapping versus
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non-overlapping windows. We set cf = 2/n and ce = 10/n. We considered both the

FWER and 2-FWER, denoted by Bon and Bon-2 for the Bonferroni correction and

by MC and MC-2 for the proposed Monte Carlo (MC) method. The results of these

studies for windows of three and four SNPs are presented in Table 4.1. For both size

windows, the causative haplotype began at the 601st SNP and had frequency of .14.

The type I error pertains to the probability of declaring any disease-causing SNPs

when no effect exists, while the power is the same quantity when one haplotype is in

fact causative. Both MC and MC-2 provide accurate control of the type I error in

all cases, whereas both Bon and Bon-2 are severely conservative and thus much less

powerful than MC and MC-2. As expected, MC-2 is considerably more powerful than

MC. The power of MC is similar to and often higher than that of Bon-2. Using the

proposed method, a sample size of 2,000 subjects is sufficient to detect an odds ratio of

1.5 with high power, and even a sample size of 1,000 provides power > .8 for an odds

ratio of 1.7. Non-overlapping windows appear to have higher power than overlapping

windows.

We can compare these results to single-SNP analysis of data generated using the

same causal haplotypes, to see how much additional power one gains by looking at

haplotypes relative to a single locus using the Monte Carlo procedure. For a sample

size of 1000, and an odds ratio of 1.5, there is a reduction in power of about 3% for both

window sizes of 3 and 4. This is not substantial, primarily due to the simulation setup,

where we have a fairly common causal haplotype. The haplotype analysis will have

increased improvement in power when there is a rare causative SNP which is captured

by a rare haplotype, but not actually measured in the data. This has been mentioned

previously (de Bakker et al. 2005), and we have also performed simulations in this

vein, and, depending upon SNP frequency and level of linkage disequilibrium, seen

improvements in power of up to 25% for the haplotype analysis over the single-SNP

analysis (results not shown).

For the full set of 32,177 SNPs, we used non-overlapping windows of size 3, and

the results are presented in Table 4.2. The causative haplotype began at the 637th
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SNP, and had frequency .18. As expected, the larger magnitude of data in this setting

leads to lower all around power as compared to the ENCODE data. The decline in

power, however, is not drastic in view of the fact that the number of tests is increased

by a factor of 40.

In the above two sets of studies, causative haplotypes had the same length as

the window size used for analysis, so the power would be higher than what might

be expected in a real study, where the length of the disease-predisposing haplotype

is unknown. Thus, we considered exhaustive testing of non-overlapping windows of

one to four SNPs in the ENCODE data. The results are presented in Table 4.3.

The increase in the multiplicity of tests seems to cause only a slight loss of power in

comparison to the non-overlapping windows of a fixed size.

We conducted another set of simulation studies to assess the sensitivity of our

method to various assumptions. To increase genetic diversity, we generated data from

the full set of SNPs on chromosome 18 according to the algorithm of Durrant et al.

(2004). The causative haplotype had a frequency of .18 and was located at the same

window of SNPs as in the previous studies using the full set of SNPs, which started at

the 637th SNP. We generated haplotypes under the following form of Hardy-Weinberg

disequilibrium:

πkl =





π2
k + ρπk(1 − πk), k = l,

(1 − ρ)πkπl, k 6= l,

where ρ = .02 (Lin et al. 2005). We increased the overall disease rate to 10% and

decreased thresholds cf and ce to 1/n and 5/n, respectively. We considered 10,000

windows of 5 SNPs, each overlapping by 3 SNPs. The results are presented in Table

4.4. The Monte Carlo method continues to have correct type I error while the Bon-

ferroni correction remains conservative. The relative power of Bon, Bon-2, MC and

MC-2 has the same trend as in the previous studies.
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4.3 Rheumatoid Arthritis Dataset

Study subjects were taken from the North American Rheumatoid Arthritis Con-

sortium (NARAC). Numerous studies (Plenge et al. 2005; Jawaheer et al. 2004) have

used data from this source, and details of enrollment procedures have been previously

published (Jawaheer et al. 2001). Detailed clinical and marker data are available on

the NARAC website (http://www.naracdata.org). Families in this consortium satis-

fied the following requirements: two or more siblings fulfilled the American College of

Rheumatology (ACR) 1987 criteria for rheumatoid arthritis (RA) (Arnett et al. 1998);

at least one sibling had documented erosions on hand radiographs; and at least one

sibling had disease onset between the ages of 18 and 60 years. Families with any other

disease associated with similar articular symptoms, such as psoriasis or inflammatory

bowel disease, were excluded. A total of 460 cases were chosen from throughout the

United States, and confirmation of RA diagnosis was obtained from patients’ rheuma-

tologists. Radiographs of the hands and wrists were also obtained to document the

presence and extent of joint involvement. A total of 460 unrelated controls from Long

Island were matched to the cases on the basis of age and sex. All subjects are non-

Ashkenazi Caucasians. Informed consent was obtained from all subjects, and approval

of the local institutional review board was secured at every recruitment site prior to

enrollment.

The SNPs were a custom set selected from dbSNP “double hit” SNPs on the

basis of their distribution and favorable assay design characteristics. The 2297 SNPs

represent the SNPs successfully typed with minor allele frequency greater than 5%

out of the 3072 SNPs attempted in a region of chromosome 18; the region is shown in

Figure 4.1 (a). The assumption of Hardy-Weinberg equilibrium (HWE) was examined

for single markers using the exact test implemented in Merlin. Several were identified

with significant deviations from HWE, even though neighboring markers often showed

good coincidence between observed and expected genotype frequencies. Because some

significant deviations from HWE are expected by chance even when the assumption
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holds and departures from HWE may be caused by association between the marker

alleles and disease susceptibility, we did not exclude any markers from the analysis.

We applied the proposed Monte Carlo method as well as the Bonferroni and per-

mutation methods to this study, and considered both FWER and 2-FWER. We set

cf = 1/n and ce = 10/n. The results for non-overlapping windows of size 4 are sum-

marized in Table 4.5; only the windows with adjusted MC-2 p-values of less than .25

are shown. The last two windows, D and E, in the table merit special attention, as

their MC-2 p-values are less than .1. As expected, the MC and MC-2 adjusted p-values

are much smaller than their Bonferroni counterparts. Indeed, the Bonferroni adjusted

p-values are two to three fold of their MC counterparts. For this study, permutation

was computationally feasible (although very slow) and yielded similar results to those

of the MC method. Table 4.6 identifies the SNPs and the most significant haplotypes

in the 5 windows with MC-2 adjusted p-values of less than .25.

There were no significant SNPs in the single-SNP analysis, whether with the simple

Bonferroni correction or the more powerful MC method. The lowest adjusted p-value

for any single SNP was a MC-2 p-value of 0.16. The single-SNP analysis yielded

unadjusted p-values of .621, .554, .077, and .151 for the 4 SNPs in window E, which

has an unadjusted p-value of .0005 for the overall haplotype test and an unadjusted

p-value of .0025 for the effect of haplotype 1111. Thus, the haplotype analysis provides

much stronger evidence for genetic effects than the single-SNP analysis in this study.

We also performed exhaustive testing of non-overlapping windows of sizes one

through four, which did not produce any significant SNPs or windows. This is not

surprising, as this procedure entails more than eight times as many tests as the analysis

of non-overlapping windows of size 4, which had only mildly significant results. In this

study, the gain in power from looking at different size windows did not compensate

for the extra quantity of tests.

In summary, the proposed MC-2 method produced two adjusted p-values of less

than .1. This degree of significance was achieved because the analysis made use of

haplotypes and 2-FWER. No adjusted p-value would be less than .1 if the analysis
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was based on individual SNPs, traditional FWER, or Bonferroni correction.

4.4 Discussion

The proposed method incorporates several new ideas: (1) a stable and efficient

algorithm was constructed to calculate a proper statistic for testing haplotype-disease

association for a given window of SNPs; (2) the joint distribution of such test statistics

over different windows was derived; (3) the concept of k-FWER was adopted; (4) an

accurate Monte Carlo procedure for multiple testing was developed. The concept of

k-FWER is useful in genomewide association studies even if one is not interested in

haplotype analysis.

Like Epstein and Satten (2003) and Lin et al. (2005), our statistic for testing

haplotype-disease association for a set of SNPs is based on the retrospective likelihood,

which properly reflects the case-control sampling. The calculation of our test statistic

makes use of a novel parameterization, which lends itself to a simple Newton-Raphson

algorithm that is more efficient and more reliable than the EM-algorithms used by

the previous authors. More important, this article deals with haplotype analysis

in association scans rather than candidate genes, and demonstrates improvement in

power over the single SNP Monte Carlo analysis considered in Lin (2005). As noted

previously, single SNP analysis may also have reduced power to detect rare causative

SNPs.

Caution must be used in interpreting odds ratios from windows selected by the

proposed method, given that any genomewide scan consists of selecting for the most

extreme statistics. Garner (2007) discusses this point in detail for simple single SNP

test statistics, and concludes that it is possible to achieve unbiased odds ratio estimates

with large enough sample size. This warrants further investigation to determine the

sample size necessary for more powerful methods. Meanwhile, it is important to be

aware of the bias inherent in effect estimation from genomewide studies, and of the

necessity for replication studies.
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Our analysis of the rheumatoid arthritis study suggested loci for further investi-

gations. Our collaborators at the North American Rheumatoid Arthritis Consortium

are currently genotyping an additional 667 cases and 662 controls in the regions shown

in Table 4.6. Furthermore, an independent set of cases and controls from Europe will

be used for confirmation.

The selection of model parameters and window framework for the suggested pro-

cedure requires some thought. The values of cf and ce determine the level at which

rare haplotypes are either removed completely from the dataset, or omitted from ef-

fects testing. Lower values for both thresholds permit greater characterization of rare

haplotypes and their association with disease; however, overly low values will desta-

bilize the algorithm. We have presented analyses using a range of thresholds which

perform well in practice. An alternative is to incorporate the haplotype clustering

methods of Tzeng et al. (2006) into the test for haplotype-disease association within

a window. As these methods are formulated in terms of the score test of Schaid et

al. (2002), multiplied by an allocation matrix, they could be used within the Monte

Carlo framework described here.

The number of windows to be used must be balanced against the degree of penalty

for multiple testing. It may be more powerful to focus on non-overlapping windows

than to consider every possible adjacent group of SNPs. One compromise is to use

exhaustive testing with non-overlapping windows. The level of LD in the region of

causative SNPs will also affect the power. A lower level of LD will create a greater

number of common haplotypes, and thus will reduce the power to detect a true effect.

In regions of high LD, non-overlapping windows will certainly have high power even

if the causative haplotype happens to be out of phase with the windows. A longer

causative haplotype will not be as well detected by windows of 4 or 5 SNPs as by

a larger window. Testing for larger windows increases the computational intensity

greatly, because of the increase in the numbers of haplotypes. The need for testing

with large windows can be alleviated by using tag SNPs. If a few SNPs encode much

of the variation in a region, then a small set of tag SNPs can capture the effect of a
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long haplotype.

We have selected windows without considering the actual LD patterns. An al-

ternative approach is to select windows in such a way that the SNPs are in strong

LD within windows and in low LD between windows. A simple approach would be

to select non-overlapping windows based on a definition of haplotype blocks, such as

all SNPs within the block having pairwise correlation > .8. This allows for variable

length blocks in analysis; however, it is not without its own problems, such as the

somewhat arbitrary definition of haplotype blocks. Li et al. (2007) implement an

alternate procedure in which the maximum size of a sliding window is determined by

local haplotype diversity and sample size. It would be worthwhile to investigate the

performance of such strategies.

Finally, the choice of k for controlling the k-FWER will affect the interpretation of

results. It is clear that using the k-FWER results in higher power, as a consequence of

relaxing the significance threshold. However, this increase in power is accompanied by

an increased expected number of false positives. An alternative would be to increase

the alpha level for k = 1. For Bonferroni, these two procedures are equivalent, since

doubling the alpha level has the same effect as computing the 2-FWER adjusted

p-values. In general, though, it is not clear what significance threshold for k = 1 is

equivalent to controlling the 2-FWER at the .05 level. Chen and Storey (2006) discuss

a similar measure, GWER-k, for linkage analysis, where the GWER-k is equivalent

to the (k + 1)-FWER. In their simulations, controlling the GWER-1 at the .05 level

resulted in GWER-0 rates which ranged from .13 to .34. Considering different values

of k may thus be more practical than attempting to achieve the same increase in power

by increasing the threshold for k = 1.

This chapter is focused on genetic effects. In some studies, investigators are in-

terested in gene-environment interactions. By incorporating the profile likelihood ap-

proach of Lin et al. (2005), we can extend the proposed method to detect haplotype-

environment interactions in genomewide association studies. In addition, we may

accommodate Hardy-Weinberg disequilibrium as in Lin et al. (2005).
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The proposed Monte Carlo procedure is substantially more powerful than the con-

ventional Bonferroni correction while providing accurate control of the type I error.

The Monte Carlo procedure requires nearly a thousandth the computing time of the

permutation procedure (with 1,000 permuted data sets) and thus can be used for

studies involving large quantities of SNPs. This differential is due to the fact that

the time necessary to generate the simulated statistics is negligible compared to that

necessary to calculate the observed test statistics. Hence permutation, which performs

the latter procedure 1000 times, is much more time consuming than the Monte Carlo.

For the rheumatoid arthritis study, it took about 320 seconds on an IBM BladeCenter

HS20 machine to carry out the Monte Carlo procedure for non-overlapping windows

of 4 SNPs, as opposed to 39 hours for permutation. Exhaustive testing for windows

ranging from 1 SNP to 4 SNPs required 1225 seconds. It would be more difficult to

use permutation if one is interested in testing gene-environment interactions.

Lin et al. (2004) considered exhaustive testing of haplotype-disease association over

all possible windows of segments, and used a computationally efficient permutation

procedure to assess the significance of the correlated tests. Their approach is based

on a version of the transmission disequilibrium test and is applicable to family data

only. Our approach can also be extended to family studies.
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a.

b.

Figure 4.1: Locations of SNPs in two regions of interest on chromosome 18: (a)
2300 SNPs from the rheumatoid arthritis case-control study; (b) 796 SNPs from the
HapMap ENCODE region
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a.

b.

Figure 4.2: Patterns of LD, as measured by the squared correlation coefficient r2

between pairs of markers, in two HapMap regions on chromosome 18: (a) 796 SNPs
in the ENCODE region; (b) first 1000 SNPs in the full set of SNPs
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Table 4.1: Type I error/power of haplotype tests at the .05 nominal significance level
based on the ENCODE data.

Odds Sample Overlapping windows Non-overlapping windows

ratio size Bon Bon-2 MC MC-2 Bon Bon-2 MC MC-2

Windows of 3 SNPS

1.0 1000 .014 .016 .041 .041 .015 .017 .054 .055

2000 .009 .015 .041 .049 .016 .010 .047 .039

1.5 1000 .369 .455 .488 .557 .371 .447 .509 .611

2000 .754 .798 .880 .914 .798 .853 .876 .931

1.7 1000 .693 .741 .843 .899 .725 .786 .829 .900

Windows of 4 SNPS

1.0 1000 .007 .009 .038 .043 .023 .018 .046 .040

2000 .013 .013 .049 .053 .017 .009 .040 .036

1.5 1000 .286 .356 .481 .572 .397 .480 .512 .631

2000 .735 .791 .876 .907 .813 .863 .879 .935

1.7 1000 .676 .736 .821 .867 .743 .808 .845 .907

Note: The total sample size is given; there are equal numbers of cases and controls.

Bon and Bon-2 pertain to the FWER and 2-FWER based on the Bonferroni correction,

and MC and MC-2 to the FWER and 2-FWER based on the Monte Carlo procedure.

Each entry is based on 1,000 simulated datasets.
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Table 4.2: Type I error/power of haplotype tests with non-overlapping windows of 3
SNPs at the .05 nominal significance level based on the full set of SNPs on chromosome
18 of the HapMap data for studies with 500 cases and 500 controls.

Odds ratio Bon Bon-2 MC MC-2

1.0 .022 .015 .039 .046

1.5 .221 .296 .292 .477

1.7 .577 .649 .646 .761

Note: Bon and Bon-2 pertain to the FWER and 2-FWER based on the Bonferroni

correction, and MC and MC-2 to the FWER and 2-FWER based on the Monte Carlo

procedure. Each entry is based on 1,000 simulated datasets.
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Table 4.3: Type I error/power of the exhaustive testing with non-overlapping windows
of 1-4 SNPs based on the ENCODE data when the causative haplotype contains 4
SNPs.

Odds ratio Sample size Bon Bon-2 MC MC-2

1.0 1000 .016 .010 .051 .057

2000 .011 .016 .057 .060

1.5 1000 .308 .388 .480 .567

2000 .755 .818 .877 .920

1.7 1000 .677 .747 .822 .890

Note: The total sample size is given; there are equal numbers of cases and controls.

Bon and Bon-2 pertain to the FWER and 2-FWER based on the Bonferroni correction,

and MC and MC-2 to the FWER and 2-FWER based on the Monte Carlo procedure.

Each entry is based on 1,000 simulated datasets.

40



Table 4.4: Type I error/power of haplotype tests with partially overlapping windows
of 5 SNPs at the .05 nominal significance level under Hardy-Weinberg disequilibrium
and common disease based on the full set of SNPs on chromosome 18 of the HapMap
data for studies with 500 cases and 500 controls.

Odds ratio Bon Bon-2 MC MC-2

1.0 .021 .016 .035 .050

1.5 .108 .157 .137 .271

1.7 .434 .492 .473 .628

Note: Bon and Bon-2 pertain to the FWER and 2-FWER based on the Bonferroni

correction, and MC and MC-2 to the FWER and 2-FWER based on the Monte Carlo

procedure. Each entry is based on 1,000 simulated datasets.
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Table 4.5: The adjusted p-values for the 5 most significant non-overlapping windows
of 4 SNPs in the rheumatoid arthritis study.

Window Bon Bon-2 MC MC-2 Perm Perm-2

A .694 .347 .334 .137 .341 .145

B 1.000 .580 .470 .225 .479 .242

C 1.000 .553 .455 .217 .465 .234

D .467 .234 .248 .087 .262 .090

E .289 .144 .163 .049 .162 .047

Note: Bon and Bon-2 pertain to the FWER and 2-FWER based on the Bonferroni

correction, MC and MC-2 pertain to the FWER and 2-FWER based on the Monte

Carlo procedure, and Perm and Perm-2 pertain to the FWER and 2-FWER based on

permutation.
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Table 4.6: Estimated haplotype effects for the 5 most significant non-overlapping windows of 4 SNPs in the rheumatoid
arthritis study.

Window SNPs Haplotype Frequency Odds ratio Unadjusted p-value

A (377, 378, 379, 380) 0110 .052 .46 .00052

B (685, 686, 687, 688) 0110 .032 1.94 .021

1011 .147 .70 .0096

C (1097, 1098, 1099, 1100) 0110 .280 1.43 .0006

D (1101, 1102, 1103, 1104) 0100 .305 1.41 .00083

E (1141, 1142, 1143, 1144) 1111 .030 2.54 .0025

0001 .053 .67 .061
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Chapter 5

Efficient Association Mapping of

Quantitative Trait Loci with

Selective Genotyping

Case-control studies are a popular design, particularly for genomewide association

studies. However, mapping genes associated with quantitative traits is an important

step toward genetic dissection of complex human diseases. Disease genes are unlikely

to have very large effects on quantitative traits, so power is a major concern in as-

sociation studies, especially with the need to adjust for multiple testing. Despite the

continuing improvements in genotyping efficiency, it is still highly expensive to geno-

type a large number of individuals, particularly in genomewide association studies.

A cost-effective strategy is to preferentially genotype individuals whose trait values

deviate from the population mean. Known as selective genotyping, this approach can

result in a substantial increase in power (relative to random sampling with the same

number of individuals) because much of the genetic information resides in individuals

with extreme phenotypes (Laitinen et al. 1997; Slatkin 1999; van Gestel et al. 2000;

Xiong et al. 2002; Chen et al. 2005; Cornish et al. 2005; Wallace et al. 2006).



5.1 Selective Genotyping and Outcome Dependent

Sampling

Selective genotyping designs are a subclass of outcome-dependent sampling (ODS).

Such designs can be defined as retrospective sampling schemes where one observes the

exposure/covariates with a probability which depends on the outcome variable. The

main idea is to concentrate resources where there is the greatest amount of information

(Zhou et al. 2002). The case-control design is a well-known example, where cases are

sampled with a greater frequency than in the general population in order to increase

the available information in the sample.

The retrospective nature of ODS designs adds complexity to analysis. Prentice and

Pyke (1979) showed that the prospective analysis ignoring selection, and retrospective

analysis, result in the same estimators for the logistic regression in case-control studies.

While this is true in some situations (Chen 2003), it does not hold for general ODS

designs. Indeed, we compare the prospective analysis with proper maximum likelihood

estimation under two selective genotyping designs, and show that the prospective

analysis is biased and has reduced power.

Recently, semiparametric methods have been developed for several different ODS

designs (Zhou et al. 2002; Lawless et al. 1999). Lawless et al. (1999) consider the situ-

ation where the observation of trait and covariates depends on which of a finite number

K of strata the trait belongs to. They develop semi-parametric maximum likelihood

and pseudolikelihood estimation for two-phase designs. Zhou et al. (2002) consider

a semiparametric empirical likelihood inference procedure in which the underlying

distribution of covariates is treated as a nuisance parameter and is left unspecified.

The ODS design in this study includes a simple random sample from the population,

supplemented by samples drawn from particular regions of the outcome space. While

these designs are useful for a broad class of designs, the methods developed are not

applicable in haplotype-based selective genotyping designs, since haplotypes are not

directly observed.
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Selective genotyping has recently developed into a class of designs distinct from

general ODS designs due to the special nature of haplotypes and genotypes. Slatkin

(1999) suggested genotyping a selected sample of individuals with unusually high

values of the quantitative trait, together with a random sample from the study pop-

ulation. Because selection depends on the phenotype, standard statistical methods

(e.g., t-test and ANOVA), which assume random sampling, are inappropriate. Slatkin

(1999) developed two tests: one comparing the allele frequencies between the selected

sample and random sample, and one comparing the mean trait values among individ-

uals with different genotypes in the selected sample. The two tests are approximately

independent, so their p-values can be combined to form an overall test. Slatkin (1999)

used simulation to show that his tests are more powerful than the simple t-test (when

the latter is applied to a random sample with the same number of individuals). Chen

et al. (2005) recommended replacement of the random sample with a selected sample

of individuals with unusually low trait values and described two sampling schemes to

obtain the selected samples. They demonstrated through a simulation study that, us-

ing Slatkin’s three tests, their designs are more efficient than Slatkin’s original design.

In a recent Science report on obesity (Herbert et al. 2006), one of the replication

studies genotyped individuals from the 90th to 97th percentile of the BMI distribution

and those from the 5th to 12th percentile, and another replication study genotyped

individuals from the top and bottom quartiles. In both studies, the individuals with

high and low BMI values were treated as cases and controls, respectively, and case-

control methods (i.e., testing for allele-frequency differences between the two selected

groups) were used for analysis.

Case-control methods disregard the actual trait values and are thus inefficient.

Slatkin’s (1999) tests do not make full use of the available data either — individuals

who are homozygous for the minor allele are discarded, and the trait values in the

random sample or the low-trait-value sample are not used at all. Recently, Wallace

et al. (2006) proposed a Hotelling’s T 2 test for normal traits, which they showed

through simulation has increased power over Slatkin’s tests. Wallace et al.’s (2006)
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test, which is essentially the standard t-test in the case of a single marker, ignores

the biased sampling nature of the selective-genotyping design and thus may be inef-

ficient. Furthermore, none of the existing methods deal with haplotype-based testing

or estimation of genetic effects.

In this chapter, we show how to properly and efficiently map quantitative trait loci

(QTLs) with selective genotyping. We derive appropriate likelihoods which make full

use of the available data and which properly reflect trait-dependent sampling. The

corresponding inference procedures are valid and efficient. Our methods can be used

to perform both genotype-based and haplotype-based association analyses.

5.2 Designs and Likelihoods

We consider two very general selective-genotyping designs. Under design 1, the

quantitative trait is measured on a random sample of N individuals from the study

population, and a subset of n individuals is selected for genotyping; the selection

probabilities depend on the trait values. Under design 2, a random sample of n

individuals whose trait values fall into certain regions are selected for genotyping, and

the trait values are retained only on those individuals. Thus, the main difference

between the two designs is that the trait values on those individuals who are not

selected for genotyping are retained under design 1, but not under design 2. Under

design 2, it is not necessary to specify N or to ascertain the individuals outside the

selection regions.

Let Yi be the trait value of the ith individual and Gi be the corresponding multi-

locus genotype denoting the number of minor alleles at each SNP site. The association

between Gi and Yi is characterized by the conditional density function P (Yi|Gi; θ)

indexed by a set of parameters θ. In the special case of a single locus under the

additive mode of inheritance, P (Yi|Gi; θ) may take the familiar form of the linear

regression model

Yi = α + βGi + εi, (5.1)
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where εi is zero-mean normal with variance σ2. In this case, θ = (α, β, σ2). Under the

dominant (or recessive) mode of inheritance, Gi in (5.1) is replaced by the indicator

of whether or not the ith individual has at least one minor allele (or, for the recessive

model, two minor alleles). If there are multiple loci, then βGi in (5.1) is replaced by

an appropriate linear combination of individual genotype scores and (possibly) their

cross-products. We denote the probability function of the genotype by P (G; γ), where

γ represents the (multi-locus) genotype frequencies.

Under design 1, the data consist of (Yi, Gi) (i = 1, . . . , n) and Yi (i = n+1, . . . , N).

(Without loss of generality, the data are so arranged that the first n records pertain to

the n individuals who are selected for genotyping and the remaining (N − n) records

to the unselected individuals.) The data for design 1 can be written as (Yi, Ri, RiGi)

(i = 1, . . . , N), where Ri indicates, by the values 1 versus 0, whether the ith indi-

vidual is selected for genotyping. The likelihood function
∏N

i=1 P (Yi, Ri, RiGi) can be

expressed as
∏N

i=1 P (Yi, Ri)P (RiGi|Yi, Ri) or
∏N

i=1 P (Yi)P (Ri|Yi)P (Gi|Yi)
Ri , which is

proportional to
∏N

i=1 P (Yi, Gi)
RiP (Yi)

1−Ri , because the selection probabilities P (Ri|Yi)

are constants. Thus we can write the likelihood for θ and γ which corresponds to this

design as
n∏

i=1

P (Yi|Gi; θ)P (Gi; γ)

N∏

i=n+1

∑

G

P (Yi|G; θ)P (G; γ), (5.2)

where the summation over G is taken over all possible genotypes.

Under design 2, the data consist only of (Yi, Gi) (i = 1, . . . , n), which are a random

sample from all the individuals whose trait values belong to a particular set C. We

can use the likelihood for θ and γ

n∏

i=1

P (Yi, Gi|Yi ∈ C) =

n∏

i=1

P (Yi|Gi; θ)P (Gi; γ)∑
G P (Yi ∈ C|G; θ)P (G; γ)

(5.3)

or the likelihood for θ

n∏

i=1

P (Yi|Gi, Yi ∈ C) =
n∏

i=1

P (Yi|Gi; θ)

P (Yi ∈ C|Gi; θ)
. (5.4)

If only the individuals whose trait values are less than the lower threshold cL or larger
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than the upper threshold cU are selected for genotyping, then under model (5.1),

P (Yi ∈ C|Gi; θ) = 1 − Φ

(
cU − α − βGi

σ

)
+ Φ

(
cL − α − βGi

σ

)
,

where Φ is the cumulative distribution function of the standard normal distribution.

We refer to (5.2) as the full likelihood and (5.3) and (5.4) as the conditional like-

lihoods. These likelihoods properly reflect the selective-genotyping designs and use

all the available data. Under design 1, one may disregard the trait values of those

individuals who are not selected for genotyping and use the conditional likelihoods

provided that the genotyped individuals are a random sample from the set C. The

maximum likelihood estimators can be obtained by the usual Newton-Raphson algo-

rithm. By likelihood theory, the maximum likelihood estimators are approximately

unbiased, normally distributed and statistically efficient. Association testing can be

performed by using the familiar likelihood-ratio, score, or Wald statistics.

To show that the maximizations of (5.3) and (5.4) yield the same estimator of θ, it

suffices to show that the profile likelihood for θ – that is, the maximum of expression

(5.3) over γ for fixed θ – is equivalent to equation (5.4). By defining γg = P (G =

g; γ), ng =
∑n

i=1 I(Gi = g), and Pg(θ) = P (Yi ∈ C|G = g; θ), we can write the

logarithm of expression (3) as
∑n

i=1 log P (Yi|Gi; θ) +
∑

g ng log γg − n log
∑

g γgPg(θ).

It then follows from simple algebraic manipulations that the profile log-likelihood for

θ is
∑n

i=1 log P (Yi|Gi; θ) −
∑

g ng log Pg(θ) +
∑

g ng log(ng/n), which is exactly the

logarithm of expression (5.4) up to the constant
∑

g ng log(ng/n).

The above description pertains to the analysis of genotype-phenotype association.

It is also desirable to assess haplotype-phenotype association (Schaid et al. 2002; Lin et

al. 2005). Let Hi denote the diplotype of the ith individual. The effects of haplotypes

on the trait are characterized by the conditional density function P (Yi|Hi; θ) indexed

by a set of parameters θ. If we are interested in assessing the effect of a particular

haplotype h∗, then P (Yi|Hi; θ) may take the following form

Yi = α + βZ(Hi) + εi, (5.5)

where Z(Hi) is the number of occurrences of h∗ in Hi under the additive mode of
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inheritance, the indicator of whether or not Hi contains at least one h∗ under the

dominant mode of inheritance, and the indicator of whether or not Hi contains two

copies of h∗ under the recessive mode of inheritance. One may also define P (Yi|Hi; θ)

in such a way that multiple haplotypes are compared to a reference in a single model

(Lin et al. 2005).

Because haplotypes are not directly observed, it is necessary to impose some re-

strictions, such as Hardy-Weinberg equilibrium (HWE), on the diplotype distribution.

For k = 1, . . . , K, let hk denote the kth possible haplotype in the population and

let πk denote the population frequency of hk. Under HWE, P (Hi = (hk, hl)) = πkπl

(k, l = 1, . . . , K). We denote the diplotype probability function by P (Hi; γ), where

γ = (π1, . . . , πK).

Inference on haplotype effects must properly account for phase ambiguity. Note

that P (Yi, Gi) =
∑

H∈S(Gi)
P (Yi|H; θ)P (H; γ), where S(Gi) is the set of diplotypes

compatible with the observed genotype Gi (Lin et al. 2005). Thus, the full likelihood

and conditional likelihood analogous to (5.2) and (5.3) are

n∏

i=1

∑

H∈S(Gi)

P (Yi|H; θ)P (H; γ)

N∏

i=n+1

∑

H

P (Yi|H; θ)P (H; γ) (5.6)

and
n∏

i=1

∑
H∈S(Gi)

P (Yi|H; θ)P (H; γ)
∑

H P (Yi ∈ C|H; θ)P (H; γ)
, (5.7)

where the second summation in (5.6) and the summation in the denominator of (5.7)

are taken over all possible diplotypes. The maximizations of (5.6) and (5.7) can

be carried out by the EM algorithm or the Newton-Raphson algorithm presented in

the next sections. The maximum likelihood estimators are approximately unbiased,

normally distributed and statistically efficient.

Note that β pertains to genetic effect in (5.1) and to haplotype effect in (5.5). If

we are concerned with one SNP at a time, then models (5.1) and (5.5) are the same.

In that case, likelihoods (5.6) and (5.7) differ from (5.2) and (5.3) in that the former

impose HWE and allow missing genotype values whereas the latter do not impose
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HWE and exclude subjects with missing genotype values. Thus, the former yield

more efficient analyses provided that HWE is a reasonable assumption.

5.3 EM Algorithm to Maximize (5.6)

We present an EM algorithm for the maximization of (5.6) by treating the Hi as

missing data. The complete-data log-likelihood is

N∑

i=1

∑

k,l

I{Hi = (hk, hl)}{log P (Yi|(hk, hl); θ) + log P ((hk, hl); γ)},

where I(·) is the indicator function. Define pikl = P (Hi = (hk, hl)|Yi, Gi), where Gi is

unknown for i = n + 1, . . . , N . Then

pikl =
I{(hk, hl) ∈ S(Gi)}P (Yi|(hk, hl); θ)P ((hk, hl); γ)∑
k,l I{(hk, hl) ∈ S(Gi)}P (Yi|(hk, hl); θ)P ((hk, hl); γ)

,

where S(Gi) is the set of all possible diplotypes when Gi is unknown. In the E-step

of the EM algorithm, we evaluate the pikl at the current estimates of θ and γ. In the

M -step, we solve the following equations for θ and γ:

N∑

i=1

∑

k,l

I{(hk, hl) ∈ S(Gi)}pikl∂ log P (Yi|(hk, hl); θ)/∂θ = 0,

N∑

i=1

∑

k,l

I{(hk, hl) ∈ S(Gi)}pikl∂ log P ((hk, hl); γ)/∂γ = 0.

The linear regression model specifies that, conditional on Hi = (hk, hl), the quan-

titative trait Yi is normally distributed with mean βTZ(hk, hl) and variance σ2, where

Z(hk, hl) is a specific function of hk and hl, and β is the corresponding set of re-

gression parameters. If we are interested in comparing a particular haplotype h∗ to

all others, then Z(hk, hl) = [1, I(hk = h∗) + I(hl = h∗)]T under the additive model,

Z(hk, hl) = [1, I(hk = h∗)+I(hl = h∗)−I(hk = hl = h∗)]T under the dominant model,

and Z(hk, hl) = [1, I(hk = hl = h∗)]T under the recessive model. In this case,

pikl =
I{(hk, hl) ∈ S(Gi)} exp[−{Yi − βTZ(hk, hl)}2/(2σ2)]πkπl∑
k,l I{(hk, hl) ∈ S(Gi)} exp[−{Yi − βT Z(hk, hl)}2/(2σ2)]πkπl

,
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and the M -step has explicit solutions

β =

{
N∑

i=1

∑

k,l

piklZ(hk, hl)Z(hk, hl)
T

}−1{ N∑

i=1

Yi

∑

k,l

piklZ(hk, hl)

}
,

σ2 = N−1

N∑

i=1

∑

k,l

pikl{Yi − βT Z(hk, hl)}2,

πk = N−1
N∑

i=1

K∑

l=1

pikl.

5.4 Newton-Raphson Algorithm to Maximize (5.7)

Under the linear regression model with thresholds cL and cU , (5.7) becomes

n∏

i=1

∑
(hk,hl)∈S(Gi)

(2πσ2)−1/2 exp
{
−(Yi − βT Z(hk, hl))

2/(2σ2)
}

πkπl

∑
k,l

[
1 − Φ

(
cU−βT Z(hk,hl)

σ

)
+ Φ

(
cL−βT Z(hk,hl)

σ

)]
πkπl

.

To incorporate the constraints that
∑K

k=1 πk = 1 and πk > 0 (k = 1, . . . , K) into

the calculations, we define π∗
k = πk/πK and ηk = log π∗

k. For notational convenience,

denote σ2 as v. Let η = (η1, . . . , ηK−1) and ϑ = (β, v, η). Then the log-likelihood is

`(ϑ) = −n

2
log v +

n∑

i=1

log
∑

(hk,hl)∈S(Gi)

exp
{
−(2v)−1(Yi − βTZ(hk, hl))

2 + ηT W (hk, hl)
}

− n log
∑

k,l

eηT W (hk,hl)

{
1 − Φ

(
cU − βT Z(hk, hl)√

v

)
+ Φ

(
cL − βT Z(hk, hl)√

v

)}
,

where

W (hk, hl) =




I(hk = h1) + I(hl = h1)
...

I(hk = hK−1) + I(hl = hK−1)


 .

Let

Qikl(ϑ) = exp
{
−(Yi − βT Z(hk, hl))

2/(2v) + ηT W (hk, hl)
}

,

RL
kl(ϑ) = {cL − βT Z(hk, hl)}/

√
v,

RU
kl(ϑ) = {cU − βT Z(hk, hl)}/

√
v,

S(ϑ) =
∑

k,l

{
1 − Φ

(
RU

kl(ϑ)
)

+ Φ
(
RL

kl(ϑ)
)}

eηT W (hk,hl).
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Also, let a⊗2 = aaT and let φ be the standard normal density function. Then

∂`(ϑ)

∂v
= − n

2v
+

n∑

i=1

∑
(hk ,hl)∈S(Gi)

Qikl(ϑ) (Yi−βT Z(hk,hl))
2

2v2∑
(hk ,hl)∈S(Gi)

Qikl(ϑ)

−
n
∑

k,l

{
φ
(
RU

kl(ϑ)
)
RU

kl(ϑ) − φ
(
RL

kl(ϑ)
)
RL

kl(ϑ)
}

eηT W (hk,hl)

2v

S(ϑ)

∂`(ϑ)

∂β
=

n∑

i=1

∑
(hk ,hl)∈S(Gi)

Qikl(ϑ)
v

(Yi − βT Z(hk, hl))Z(hk, hl)∑
(hk,hl)∈S(Gi)

Qikl(ϑ)

−
n
∑

k,l

{
φ
(
RU

kl(ϑ)
)
− φ

(
RL

kl(ϑ)
)} Z(hk,hl)√

v
eηT W (hk,hl)

S(ϑ)

∂`(ϑ)

∂η
=

n∑

i=1

∑
(hk,hl)∈S(Gi)

Qikl(ϑ)W (hk, hl)∑
(hk,hl)∈S(Gi)

Qikl(ϑ)

−
n
∑

k,l

{
1 − Φ

(
RU

kl(ϑ)
)

+ Φ
(
RL

kl(ϑ)
)}

eηT W (hk,hl)W (hk, hl)

S(ϑ)

∂2`(ϑ)

∂v2
=

n

2v2
+

n∑

i=1



∑

(hk,hl)∈S(Gi)
Qikl(ϑ)

{
(Yi−βT Z(hk,hl))

4

4v4 − (Yi−βT Z(hk,hl))
2

v3

}

∑
(hk,hl)∈S(Gi)

Qikl(ϑ)

−
{∑

(hk,hl)∈S(Gi)
Qikl(ϑ) (Yi−βT Z(hk,hl))

2

2v2∑
(hk,hl)∈S(Gi)

Qikl(ϑ)

}2



− n



∑

k,l

{
φ(RU

kl(ϑ))
((

RU
kl(ϑ)3

)
− 3RU

kl(ϑ)
)}

eηT W (hk,hl)

4v2

S(ϑ)

−
∑

k,l

{
φ(RL

kl(ϑ))
((

RL
kl(ϑ)3

)
− 3RL

kl(ϑ)
)}

eηT W (hk,hl)

4v2

S(ϑ)

−





∑
k,l

(
φ(RU

kl(ϑ))RU
kl(ϑ) − φ(RL

kl(ϑ))RL
kl(ϑ)

)
eηT W (hk,hl)

2v

S(ϑ)





2

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∂2`(ϑ)

∂v∂β
=

n∑

i=1



∑

(hk,hl)∈S(Gi)
Qikl(ϑ)Z(hk, hl)

{
(Yi−βT Z(hk,hl))

3

2v3 − (Yi−βT Z(hk,hl))
v2

}

∑
(hk,hl)∈S(Gi)

Qikl(ϑ)

−
{∑

(hk,hl)∈S(Gi)
Qikl(ϑ) (Yi−βT Z(hk,hl))

2

2v2∑
(hk,hl)∈S(Gi)

Qikl(ϑ)

}

{∑
(hk,hl)∈S(Gi)

Qikl(ϑ) (Yi−βT Z(hk,hl))Z(hk ,hl)
v∑

(hk,hl)∈S(Gi)
Qikl(ϑ)

}]

− n



∑

k,l

{
φ(RU

kl(ϑ))
(
RU

kl(ϑ)2 − 1
)
− φ(RL

kl(ϑ))
(
RL

kl(ϑ)2 − 1
)}

eηT W (hk,hl)

2v3/2 Z(hk, hl)

S(ϑ)

−





∑
k,l

(
φ(RU

kl(ϑ))RU
kl(ϑ) − φ(RL

kl(ϑ))RL
kl(ϑ)

)
eηT W (hk,hl)

2v

S(ϑ)





{∑
k,l

(
φ(RU

kl(ϑ)) − φ(RL
kl(ϑ))

)
eηT W (hk,hl) Z(hk,hl)√

v

S(ϑ)

}]

∂2`(ϑ)

∂(ββT )
=

n∑

i=1



∑

(hk,hl)∈S(Gi)
Qikl(ϑ)

{
(Yi−βT Z(hk,hl))

2

v2 − v−1
}

Z⊗2

∑
(hk,hl)∈S(Gi)

Qikl(ϑ)

−
{∑

(hk,hl)∈S(Gi)
Qikl(ϑ) (Yi−βT Z(hk,hl))Z(hk ,hl)

v∑
(hk,hl)∈S(Gi)

Qikl(ϑ)

}⊗2



− n




∑
k,l

{
φ(RU

kl(ϑ))RU
kl(ϑ) − φ(RL

kl(ϑ))RL
kl(ϑ)

}
eηT W (hk,hl)

(
Z(hk,hl)√

v

)⊗2

S(ϑ)

−
{∑

k,l

(
φ(RU

kl(ϑ)) − φ(RL
kl(ϑ))

)
eηT W (hk,hl) Z(hk,hl)√

v

S(ϑ)

}⊗2


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∂2`(ϑ)

∂v∂η
=

n∑

i=1

[∑
(hk ,hl)∈S(Gi)

Qikl(ϑ)W (hk, hl)
(Yi−βT Z(hk,hl))

2

2v2∑
(hk,hl)∈S(Gi)

Qikl(ϑ)

−
{∑

(hk,hl)∈S(Gi)
(Yi−βT Z(hk,hl))

2

2v2 Qikl(ϑ)
∑

(hk,hl)∈S(Gi)
Qikl(ϑ)

}{∑
(hk,hl)∈S(Gi)

Qikl(ϑ)W (hk, hl)∑
(hk,hl)∈S(Gi)

Qikl(ϑ)

}]

− n



∑

k,l

{
φ
(
RU

kl(ϑ)
)
RU

kl(ϑ) − φ
(
RL

kl(ϑ)
)
RL

kl(ϑ)
}

eηT W (hk,hl)

2v
W (hk, hl)

S(ϑ)

−





∑
k,l

{
φ
(
RU

kl(ϑ)
)
RU

kl(ϑ) − φ
(
RL

kl(ϑ)
)
RL

kl(ϑ)
}

eηT W (hk,hl)

2v

S(ϑ)





{∑
k,l

{
1 − Φ

(
RU

kl(ϑ)
)

+ Φ
(
RL

kl(ϑ)
)}

eηT W (hk,hl)W (hk, hl)

S(ϑ)

}]

∂2`(ϑ)

∂β∂ηT
=

n∑

i=1

[∑
(hk,hl)∈S(Gi)

Qikl(ϑ) (Yi−βT Z(hk,hl))Z(hk ,hl)
v

W (hk, hl)
T

∑
(hk,hl)∈S(Gi)

Qikl(ϑ)

−
{∑

(hk,hl)∈S(Gi)
Qikl(ϑ) (Yi−βT Z(hk,hl))Z(hk ,hl)

v∑
(hk,hl)∈S(Gi)

Qikl(ϑ)

}{∑
(hk,hl)∈S(Gi)

Qikl(ϑ)W (hk, hl)∑
(hk,hl)∈S(Gi)

Qikl(ϑ)

}T



− n

[∑
k,l

{
φ
(
RU

kl(ϑ)
)
− φ

(
RL

kl(ϑ)
)} Z(hk,hl)√

v
eηT W (hk,hl)W (hk, hl)

T

S(ϑ)

−
{∑

k,l

{
φ
(
RU

kl(ϑ)
)
− φ

(
RL

kl(ϑ)
)} Z(hk,hl)√

v
eηT W (hk,hl)

S(ϑ)

}

{∑
k,l

{
1 − Φ

(
RU

kl(ϑ)
)

+ Φ
(
RL

kl(ϑ)
)}

eηT W (hk,hl)W (hk, hl)

S(ϑ)

}T



∂2`(ϑ)

∂(ηηT )
=

n∑

i=1

[∑
(hk,hl)∈S(Gi)

Qikl(ϑ)W (hk, hl)
⊗2

∑
(hk,hl)∈S(Gi)

Qikl(ϑ)

−
{∑

(hk,hl)∈S(Gi)
Qikl(ϑ)W (hk, hl)∑

(hk,hl)∈S(Gi)
Qikl(ϑ)

}⊗2



− n

[∑
k,l

{
1 − Φ

(
RU

kl(ϑ)
)

+ Φ
(
RL

kl(ϑ)
)}

eηT W (hk,hl)W (hk, hl)
⊗2

S(ϑ)

−
{∑

k,l

{
1 − Φ

(
RU

kl(ϑ)
)

+ Φ
(
RL

kl(ϑ)
)}

eηT W (hk,hl)W (hk, hl)

S(ϑ)

}⊗2


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5.5 Simulation Studies

We conducted extensive simulation studies to assess the performance of the pro-

posed methods. We considered both designs 1 and 2. Specifically, we generated a

random sample of N = 5,000 individuals from the joint distribution of the trait value

and genotype and identified the subset of all the individuals whose trait values are

less than cL or larger than cU . We then selected a random sample of n = 500 indi-

viduals from that subset. By setting the genotypes of the unselected individuals to

missing, we obtained the data under design 1; by deleting the unselected individuals

altogether, we obtained the data under design 2. We evaluated both the full-likelihood

and conditional-likelihood methods. These evaluations provided information about the

relative efficiency of using full likelihood versus conditional likelihood under design 1

or equivalently the relative efficiency of design 1 versus design 2.

For comparison, we also evaluated the standard methods, which are based on

the prospective likelihoods. For genotype-based analysis, the prospective likelihood

is simply
∏n

i=1 P (Yi|Gi; θ); (Wallace et al. 2006) for haplotype-based analysis, the

prospective likelihood is the first term in (5.6) (Schaid et al. 2002).

In our first study, we generated the trait values from model (5.1) with α = 0,

σ2 = 1 and β = 0, 0.1, 0.2, 0.3, 0.4 and 0.5. The potential causal variant was the

minor allele. Under β = 0, the thresholds of −2.0, −1.5, −1.0, −0.5, 0.5 and 1.0

correspond approximately to the 2nd, 7th, 16th, 31st, 69th and 84th percentiles of the

trait distribution, respectively. We considered three modes of inheritance: additive,

dominant and recessive, and various values of the minor allele frequency (MAF). The

genotypes were generated under HWE, and the analyses were performed both with and

without this assumption. The results without the HWE assumption are summarized

in Table 5.1. The results with HWE are similar and thus omitted.

Both the full and conditional likelihoods provide (virtually) unbiased estimators of

the genetic effect and correct type I error. The standard error estimators accurately

reflect the true variations, and the confidence intervals have proper coverages. The
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conditional likelihood has nearly the same power as the full likelihood. As expected,

the power is substantially higher under the additive and dominant models than under

the recessive model (given the same MAF and the same effect size). The power

increases as selection becomes more extreme. Also, the power tends to be higher

when cL and cU are of the same distance from the population mean (as opposed to

unequal distances). In practice, the population mean may be unknown or it may be

easier to recruit subjects with high trait values than those with low trait values or

vice versa. Thus, it may not be feasible to set cL and cU the same distance from the

population mean.

In the presence of a causal variant, both the estimator of the genetic effect and

the standard error estimator based on the prospective likelihood are biased upwards,

and the coverages of the confidence intervals may be substantially below or above

the desired levels. The prospective likelihood appears to preserve the type I error.

The power of the prospective likelihood tends to be lower than that of the full and

conditional likelihoods, especially when (cL, cU) = (−2, 1) and under the recessive

mode of inheritance. When (cL, cU) = (−2, 1), the full and conditional likelihoods

have power of approximately 75% to detect effect size of 0.3 under the additive and

dominant models with MAF=0.05 and power of approximately 80% to detect effect

size of 0.5 under the recessive model with MAF=0.2. By contrast, the prospective

likelihood has less than 70% power in those two cases. The results in Table 5.1

pertain to likelihood-ratio tests. The results for Wallace et al.’s (2006) test, which is

the score test based on the prospective likelihood, are virtually identical to those of

the likelihood-ratio test (data not shown).

In the second study, we generated data in the same way as in the first study,

but performed the analysis at a marker that is in linkage disequilibrium (LD) with

the potential causal SNP. The results are shown in Table 5.2. The conclusions are

essentially the same as in the first study. As expected, the power is decreased when

testing is performed at a marker than at the candidate locus.

The third study was concerned with haplotype effects. We considered two SNPs
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with varying degrees of LD. The 11 haplotype, i.e., the haplotype consisting of the

minor allele at each site, had a potential effect on the trait value. Trait values were

generated from model (5.5) with α = 0, σ2 = 1 and β = 0, 0.1, 0.2, 0.3, 0.4 and 0.5.

We considered three modes of inheritance: additive, dominant and recessive. HWE

was assumed in both the data generation and the analysis. Two types of analyses were

performed: the first analysis compared the 11 haplotype to the other three haplotypes,

and the second analysis compared haplotypes 11, 10, and 01 to haplotype 00. Some

of the testing results are displayed in Figures 5.1 and 5.2.

The full and conditional likelihoods provide (virtually) unbiased estimators of hap-

lotype effects. The standard error estimators are very accurate and the confidence

intervals have correct coverages. The two methods have proper control of the type I

error and very similar power. Not surprisingly, the power increases as LD becomes

higher and as selection becomes more extreme. The prospective likelihood yields bi-

ased estimation of haplotype effects and inappropriate confidence intervals. As shown

in Figure 5.1, the prospective likelihood is less powerful than the full and conditional

likelihoods, especially under recessive mode of inheritance. Furthermore, the prospec-

tive likelihood yields inflated type I error for testing null haplotypes. The inflation of

the type I error becomes more severe as the effect of the causal haplotype increases,

as illustrated in Figure 5.2.

5.6 Discussion

The two designs considered in this chapter are quite general and flexible. Since the

simulation studies indicated that conditional likelihoods are nearly as efficient as full

likelihoods, one may simply adopt design 2 and retain the trait values for the geno-

typed individuals only. The choices of the selection thresholds do not require precise

knowledge of the trait distribution, although the efficiency of the design will depend

on which percentiles the thresholds correspond to. The likelihoods presented here can

be easily modified to include a random sample, as in the original Slatkin’s design, or
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to allow several selection regions with different sampling probabilities. Although we

have focused on normally distributed traits, our methods can be applied to any trait

distributions.

Wallace et al. (2006) state that their test, which is the score test for a normal trait

based on the prospective likelihood, is asymptotically equivalent to the score test based

on the retrospective likelihood
∏n

i=1 P (Gi|Yi) under the null hypothesis of no causal

variant. The proof given in their Appendix A requires that the average trait value

of the selected individuals is an unbiased estimator of the population mean α. This

assumption holds only when the upper and lower thresholds are of the same distance

from the population mean and the low-trait value and high-trait value samples are of

the same size. Even under such conditions, β and σ2 cannot be estimated from the

retrospective likelihood.

We have focused on the analysis of a single marker or a small set of markers.

Association studies typically involve many markers, so a large number of tests may be

performed. Adjustments for multiple testing can be made by permutation or Monte

Carlo methods (Lin 2005).
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Figure 5.1: Empirical power for 2-SNP models as a function of linkage disequilibrium
(D’) between SNPs. The red curves correspond to a dominant model with effect size
β = .2, and the blue curves correspond to a recessive model with β = .3. Solid curves
pertain to the conditional analysis, while dotted curves pertain to the prospective
analysis. The MAFs for the two SNPs are .3 and .4; cL = −2 and cU = 1. The
nominal significance level is .05.
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Figure 5.2: Empirical type I error for null haplotype 10 in a 2-SNP additive model
as a function of effect size. The MAFs for the two SNPs are .3 and .4; the linkage
disequilibrium (D’) between the SNPs is 0.75. The red curves correspond to the case
where cL = −2 and cU = 1, while the blue curves correspond to cL = −1 and cU = 1.
Solid curves pertain to the conditional analysis, and dotted curves pertain to the
prospective analysis. A solid black reference line is drawn at the nominal significance
level of 0.05.
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Table 5.1: Bias, standard error (SE), standard error estimate

(SEE), coverage probability of the 95% confidence interval

(CP) and power at the 0.05 nominal significance level. Each

entry is based on 10,000 simulated datasets. cL and cU in-

dicate the selection cutoffs for the sample of 500 genotyped

subjects, out of a population of size 5,000. (a) Simulations

from 1-SNP additive model with MAF of 0.05. (b) Simula-

tions from 1-SNP dominant model with MAF of 0.05. (c)

Simulations from 1-SNP recessive model with MAF of 0.2.

Hardy-Weinberg equilibrium is not assumed.

(a)

Full Likelihood Conditional Likelihood Prospective Likelihood

β cL cU Bias SE SEE CP Power Bias SE SEE CP Power Bias SE SEE CP Power

0 -0.5 0.5 0.001 0.12 0.12 95.3 5.0 0.001 0.12 0.12 95.2 5.0 0.002 0.18 0.18 95.0 4.9

-1.0 1.0 0.001 0.09 0.09 95.3 5.0 0.001 0.09 0.09 95.3 5.0 0.003 0.23 0.23 95.0 5.0

-1.5 0.5 0.009 0.12 0.12 95.4 5.1 0.010 0.12 0.12 95.2 5.1 0.001 0.19 0.19 95.0 4.9

-2.0 1.0 0.014 0.11 0.11 95.8 5.3 0.015 0.12 0.11 95.6 5.3 0.002 0.20 0.20 95.2 4.8

.20 -0.5 0.5 0.001 0.12 0.12 95.0 40.9 0.003 0.12 0.12 95.0 40.9 0.111 0.18 0.18 91.1 40.6

-1.0 1.0 0.003 0.10 0.10 95.0 59.0 0.004 0.10 0.10 95.3 59.0 0.291 0.22 0.23 75.6 58.6

Continued on Next Page. . .
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Table 5.1 (a) – Continued

Full Likelihood Conditional Likelihood Prospective Likelihood

β cL cU Bias SE SEE CP Power Bias SE SEE CP Power Bias SE SEE CP Power

-1.5 0.5 0.011 0.13 0.13 95.0 40.0 0.014 0.13 0.13 94.8 40.0 0.079 0.15 0.17 95.8 35.8

-2.0 1.0 0.016 0.13 0.13 95.0 42.2 0.020 0.13 0.13 94.9 42.2 0.084 0.14 0.18 97.1 34.5

.30 -0.5 0.5 0.002 0.12 0.12 95.2 72.9 0.004 0.12 0.12 95.5 73.0 0.159 0.17 0.18 86.1 72.8

-1.0 1.0 0.003 0.10 0.10 95.4 90.3 0.004 0.10 0.10 95.3 90.2 0.403 0.20 0.22 55.7 90.0

-1.5 0.5 0.010 0.13 0.13 94.6 70.7 0.014 0.14 0.13 94.7 70.6 0.084 0.14 0.17 96.2 66.5

-2.0 1.0 0.016 0.14 0.14 94.7 75.2 0.022 0.14 0.14 95.0 75.1 0.076 0.12 0.17 98.5 68.6

.40 -0.5 0.5 0.003 0.12 0.12 94.8 92.8 0.005 0.12 0.12 95.2 92.8 0.199 0.17 0.18 80.9 92.7

-1.0 1.0 0.007 0.10 0.10 95.1 99.0 0.009 0.11 0.10 95.0 98.2 0.500 0.19 0.22 33.5 99.0

-1.5 0.5 0.008 0.14 0.13 94.3 91.4 0.013 0.14 0.14 94.6 91.4 0.074 0.13 0.16 97.6 89.5

-2.0 1.0 0.015 0.14 0.14 94.2 93.3 0.021 0.15 0.14 94.3 93.4 0.048 0.11 0.16 99.3 90.4
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(b)

Full Likelihood Conditional Likelihood Prospective Likelihood

β cL cU Bias SE SEE CP Power Bias SE SEE CP Power Bias SE SEE CP Power

0 -0.5 0.5 0.001 0.12 0.12 95.3 5.0 0.002 0.12 0.12 95.2 4.9 0.002 0.19 0.19 95.1 4.9

-1.0 1.0 0.001 0.10 0.10 95.3 5.0 0.001 0.10 0.10 95.3 5.0 0.003 0.24 0.24 95.1 4.9

-1.5 0.5 0.010 0.12 0.12 95.3 5.2 0.010 0.12 0.12 95.1 5.2 0.001 0.20 0.19 95.0 5.0

-2.0 1.0 0.014 0.12 0.11 95.8 5.2 0.015 0.12 0.12 95.6 5.2 0.002 0.21 0.21 95.2 4.8

.20 -0.5 0.5 0.001 0.12 0.12 94.9 38.4 0.003 0.12 0.12 94.9 38.5 0.112 0.19 0.19 90.9 38.3

-1.0 1.0 0.002 0.10 0.10 95.3 55.6 0.003 0.10 0.10 95.3 55.6 0.292 0.23 0.24 76.9 55.1

-1.5 0.5 0.009 0.13 0.13 95.2 36.8 0.012 0.13 0.13 95.0 36.8 0.080 0.16 0.18 95.6 33.2

-2.0 1.0 0.016 0.14 0.13 94.9 40.1 0.021 0.14 0.13 95.0 40.0 0.090 0.15 0.18 96.9 32.9

.30 -0.5 0.5 0.002 0.12 0.12 94.7 69.9 0.004 0.12 0.12 94.9 69.8 0.162 0.18 0.19 86.3 69.7

-1.0 1.0 0.004 0.10 0.10 95.2 88.2 0.006 0.10 0.10 95.3 88.2 0.417 0.22 0.23 56.3 88.0

-1.5 0.5 0.009 0.14 0.14 94.7 67.6 0.013 0.14 0.14 94.7 67.5 0.091 0.15 0.18 95.7 63.4

-2.0 1.0 0.018 0.14 0.14 94.7 72.0 0.024 0.15 0.14 95.1 72.0 0.090 0.13 0.17 98.1 65.5

.40 -0.5 0.5 0.006 0.12 0.12 94.9 91.3 0.008 0.13 0.13 95.0 91.3 0.209 0.18 0.19 80.2 91.2

-1.0 1.0 0.006 0.10 0.10 95.2 98.9 0.007 0.11 0.11 95.3 98.9 0.519 0.20 0.23 35.2 98.8

-1.5 0.5 0.009 0.14 0.14 94.5 89.4 0.014 0.14 0.14 94.9 89.3 0.086 0.13 0.17 96.9 87.2

-2.0 1.0 0.016 0.15 0.15 94.3 91.3 0.023 0.15 0.15 94.5 91.3 0.065 0.12 0.17 99.1 88.2
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(c)

Full Likelihood Conditional Likelihood Prospective Likelihood

β cL cU Bias SE SEE CP Power Bias SE SEE CP Power Bias SE SEE CP Power

0 -0.5 0.5 -0.001 0.19 0.19 95.3 5.4 -0.001 0.19 0.19 95.3 5.4 -0.002 0.29 0.29 94.7 5.2

-1.0 1.0 0.005 0.15 0.15 95.9 4.9 0.005 0.15 0.15 95.9 4.9 0.011 0.37 0.37 95.2 4.7

-1.5 0.5 0.024 0.20 0.19 95.4 5.5 0.026 0.20 0.19 95.4 5.5 -0.000 0.30 0.30 94.9 5.1

-2.0 1.0 0.041 0.20 0.19 96.0 5.4 0.043 0.20 0.19 95.8 5.5 0.004 0.32 0.32 95.5 4.5

.30 -0.5 0.5 0.005 0.19 0.19 95.1 37.6 0.008 0.20 0.19 95.4 37.7 0.160 0.28 0.29 91.9 37.1

-1.0 1.0 0.011 0.16 0.16 96.0 54.6 0.014 0.16 0.16 95.8 54.6 0.417 0.33 0.36 79.0 53.7

-1.5 0.5 0.028 0.21 0.21 95.0 36.6 0.035 0.22 0.21 95.0 36.5 0.095 0.22 0.27 98.0 28.9

-2.0 1.0 0.041 0.22 0.22 94.6 39.0 0.050 0.23 0.22 94.7 38.9 0.089 0.19 0.27 99.4 25.1

.40 -0.5 0.5 0.005 0.20 0.19 94.5 58.1 0.009 0.20 0.19 95.0 58.0 0.201 0.27 0.28 90.2 57.3

-1.0 1.0 0.018 0.17 0.16 95.5 79.0 0.022 0.17 0.17 95.6 79.0 0.524 0.31 0.35 67.9 78.2

-1.5 0.5 0.024 0.22 0.22 93.9 56.6 0.031 0.22 0.22 94.4 56.5 0.087 0.20 0.26 98.8 48.2

-2.0 1.0 0.037 0.23 0.23 94.0 60.2 0.048 0.23 0.23 94.2 60.1 0.066 0.17 0.25 99.7 46.0

.50 -0.5 0.5 0.010 0.20 0.19 94.6 77.7 0.014 0.20 0.20 95.2 77.7 0.242 0.26 0.28 88.3 77.1

-1.0 1.0 0.021 0.17 0.17 95.6 93.5 0.026 0.18 0.17 95.6 93.4 0.600 0.28 0.34 57.1 93.1

-1.5 0.5 0.018 0.22 0.22 94.2 74.9 0.027 0.22 0.22 94.5 74.7 0.068 0.18 0.25 99.2 68.0

-2.0 1.0 0.027 0.22 0.23 94.1 79.0 0.039 0.23 0.23 94.4 78.9 0.027 0.15 0.24 99.8 68.0
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Table 5.2: Type I error and power of marker SNP in LD

(D’=0.9) with causal SNP in a 2-SNP model. The additive

and dominant models have causal and marker SNPs with

MAFs of .05 and .06; the recessive model has SNPs with

MAFs of .2 and .25. Hardy-Weinberg equilibrium is not as-

sumed.

Additive Dominant Recessive

cL cU β Full Cond Pros β Full Cond Pros β Full Cond Pros

-0.5 0.5 0.0 5.3 5.2 5.2 0.0 5.2 5.3 5.3 0.0 5.1 5.1 5.0

-1.0 1.0 5.2 5.2 5.1 5.2 5.2 5.2 5.7 5.7 5.6

-1.5 0.5 4.7 4.6 4.7 4.5 4.5 4.7 5.4 5.4 5.0

-2.0 1.0 5.5 5.5 5.5 5.3 5.4 5.5 5.1 5.2 4.5

-0.5 0.5 0.2 29.4 29.5 29.3 0.2 28.0 28.1 27.9 0.3 20.2 20.2 20.0

-1.0 1.0 42.7 42.7 42.3 40.1 40.1 39.9 29.1 29.1 28.8

-1.5 0.5 28.2 28.1 24.9 26.0 26.0 23.1 19.5 19.4 15.4

-2.0 1.0 29.5 29.6 24.0 28.1 28.1 23.3 19.8 19.7 13.6

-0.5 0.5 0.3 55.3 55.3 55.1 0.3 51.9 51.8 51.6 0.4 30.2 30.3 30.0

-1.0 1.0 76.0 76.0 75.8 72.7 72.7 72.3 45.0 45.0 44.4

-1.5 0.5 54.0 54.0 49.9 49.9 50.0 46.3 29.5 29.4 24.5

-2.0 1.0 56.2 56.2 49.5 52.4 52.3 46.1 31.7 31.5 23.5
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-0.5 0.5 0.4 79.4 79.4 79.1 0.4 75.6 75.7 75.5 0.5 44.1 44.1 43.8

-1.0 1.0 93.7 93.7 93.5 92.0 92.0 91.8 63.3 63.3 62.6

-1.5 0.5 75.8 75.7 72.5 72.6 72.7 69.7 42.0 41.8 36.5

-2.0 1.0 78.8 78.7 73.8 75.8 75.7 71.1 45.1 45.0 35.8

Note: Each entry is based on 10000 simulated datasets. cL and cU indicate the selection cutoffs for the sample of 500

genotyped subjects, out of a population of size 5,000. Full, Cond., and Pros. stand for full, conditional, and prospective

likelihood analysis respectively.
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Chapter 6

Association Mapping of QTLs with

General Two-Phase Designs

In the previous chapter, we discussed the use of selective genotyping designs to re-

duce cost and improve efficiency for genetic association studies. We mentioned meth-

ods for various selective genotyping designs (Slatkin 1999; Chen et al. 2005; Wallace

et al. 2006) and noted the general loss of information for many of the approaches.

The maximum-likelihood methods we proposed were shown to have numerous advan-

tages over the alternatives, including negligible bias, increased power, and appropriate

coverage of confidence intervals.

As selective genotyping designs are a subclass of ODS designs, we can generalize

our approach to some commonly discussed ODS designs. Two-phase sampling has

been discussed in Lawless et al. (1999) and Scott and Wild (2000), who demonstrated

that computation of maximum likelihood estimators under semiparametric regression

models was feasible for a wide range of designs. Breslow et al. (2003) extend these

results by providing asymptotic theory for these estimators. Lawless et al. (1999)

consider semiparametric methods which treat the marginal distribution of covariates

nonparametrically. These are directly applicable to testing for genotype-disease as-

sociation; however, this is not true when testing haplotypes, which are not directly

measured.



A further important extension is the inclusion of environmental factors in our

models. This is vital in association studies of complex quantitative traits, which are

influenced by a combination of many environmental and genetic factors. Incorporat-

ing covariates into appropriate likelihoods for selective genotyping designs involves a

higher degree of complexity, however, due to the presence of the covariate distribution.

None of the previous selective genotyping methods are formulated to be applicable to

studies which include covariates.

In this chapter, we extend the approach of the previous chapter to more general

selective-genotyping designs, including those which allow for environmental covariates.

Designs 1 and 2 from the previous chapter selected samples from the two tails of

the distribution with equal selection probabilities. We generalize this to the two-

phase design of Lawless et al. (1999), which allows for more strata, and arbitrary

selection probabilities. We modify it for haplotype-disease association mapping, and

then further extend it to test for both haplotype and covariate associations.

The likelihoods derived here make full use of the available data and properly re-

flect the selection process. The corresponding inference procedures are valid and effi-

cient. For designs including covariates, we profile the observed-data likelihoods over

the (possibly infinite-dimensional) nuisance parameter of the covariate distribution.

When covariates and genotypes are independent, the resulting profile likelihoods are

shown to satisfy conditions similar to those presented in Breslow et al. (2003) and

hence the maximum likelihood estimators are asymptotically normal and efficient.

The properties of the proposed estimators and their advantages over other approaches

are demonstrated through simulation studies.

6.1 Two-Phase Selective Genotyping Design

As in Chapter 5, we are interested in characterizing the relationship between a

response Y and haplotype (and covariates) by using maximum likelihood methods.

We consider a more general selective genotyping design than previously by allowing
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for multiple strata. This two-phase sampling design is described in Lawless et al.

(1999). In the previous chapter we discuss the characterization of both genotype and

haplotype association. The methods discussed in Lawless et al. (1999) cover the

case of genotype association, so we focus on haplotype association here. We begin

by examining the case with no covariates to give the basic setup; the extension to

covariates is described later.

We sample N observations from the population. Let Yi denote the trait value

of the ith individual, and Gi is the corresponding genotype denoting the number of

minor alleles at each locus. The range of Y is partitioned into J strata C1, C2, . . . , CJ .

We assume that not all subjects are fully observed, and define Ri = 1 if (Yi, Gi) is

fully observed, and 0 if some information on (Yi, Gi) is missing. If Ri = 0 then the

only information retained is the identity of the stratum that Yi is in. The number of

subjects in stratum Cj is written as Nj, and the number of fully observed subjects is

nj, with N =
∑

j Nj and n =
∑

j nj.

Observations are selected for genotyping, and hence fully observed, according to a

variable probability sampling scheme. Subjects are inspected sequentially, and their

stratum is identified. When the trait value Yi of an individual falls into Cj, that

individual is selected for genotyping (Ri = 1) with specified probability pj. There are

two possibilities for stopping rules under this sampling scheme, namely, to either fix

N or n beforehand, and inspect units until this cutoff is reached. We focus on the

latter case, as it is more applicable to genetic association studies, where the budget

may be allocated to genotype a prespecified number of subjects. In this situation the

number of subjects genotyped in each stratum, nj, is random.

While the genotype and trait values constitute the observed data for individu-

als who are fully observed, we are interested in testing for association between the

diplotype H and Y of an individual. This is characterized by the conditional density

function P (Yi|Hi; θ) indexed by a set of parameters θ. P (Yi|Hi; θ) may take the form

of the linear regression model

Yi = α + βZ(Hi) + εi, (6.1)
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where εi is zero-mean normal with variance σ2. The function Z(Hi) is a haplotype

score and will depend on the mode of inheritance; for a specific haplotype in an additive

model, it would be the number of occurrences of the haplotype for each individual. In

this model, θ = (α, β, σ2). Let S(G) denote the set of diplotypes compatible with a

given genotype G.

Because haplotypes are not directly observed, it is necessary to impose some re-

strictions, such as Hardy-Weinberg Equilibrium (HWE), on the diplotype distribution.

For k = 1, . . . , K, let hk denote the kth possible haplotype in the population and let

πk denote the population frequency of hk. Under HWE, P [Hi = (hk, hl)] = πkπl

(k, l = 1, . . . , K). We denote the diplotype probability function by P (Hi; π), where

π = (π1, . . . , πK).

Under this design, the data consist of (Yi, Gi) (i = 1, . . . , n) and Nj (j = 1, . . . , J).

We consider a likelihood corresponding to the full semiparametric likelihood described

in Lawless et al. (1999). This is defined as LF (θ, π) and given by:

J∏

j=1




nj∏

i=1

∑

H∈S(Gi)

P (Yi|H; θ)P (H; π)




∑

G

∑

H∈S(G)

P (Y ∈ Cj|H; θ)P (H; π)




Nj−nj

(6.2)

Alternately, if stratum values are not retained for the subjects who are not genotyped,

we can write down the conditional likelihood

LC(θ, π) =
∏

i:Ri=1

P (Yi, Gi|Ri = 1) (6.3)

where Ri is the indicator for whether an individual is genotyped or not. If we let

pj = P (Ri = 1|Yi ∈ Cj) and δij = I(Yi ∈ Cj), then this conditional likelihood can

further be written as

n∏

i=1

∑J
j=1 δijpj

∑
H∈S(Gi)

P (Yi|H; θ)P (H; π)
∑J

j=1

∑
G

∑
H∈S(G) pjP (Yi ∈ Cj|H; θ)P (H; π)

(6.4)

These likelihoods can be maximized using Newton-Raphson algorithms, for which

details are given in the next two sections.
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6.2 Newton-Raphson Algorithm to Maximize (6.2)

Under the linear regression model with strata defined as (Lj, Uj), the log-likelihood

corresponding to (6.2) is, up to a constant,

J∑

j=1




nj∑

i=1

log
∑

(hk,hl)∈S(Gi)

(2πσ2)−1/2 exp
{
−(Yi − βT Z(hk, hl))

2/(2σ2)
}

πkπl

+(Nj − nj) log
∑

k,l

[
Φ

(
Uj − βTZ(hk, hl)

σ

)
− Φ

(
Lj − βT Z(hk, hl)

σ

)]
πkπl

]
.

For notational convenience, denote σ2 as v. Let

Qikl(θ) = exp
{
−(Yi − βTZ(hk, hl))

2/(2v)
}

,

RL
klj(θ) = {Lj − βTZ(hk, hl)}/

√
v,

RU
klj(θ) = {Uj − βTZ(hk, hl)}/

√
v,

Sj(θ, π) =
∑

k,l

{
Φ
(
RU

klj(θ)
)
− Φ

(
RL

klj(θ)
)}

πkπl.

Also, let a⊗2 = aaT and let φ be the standard normal density function. Then

∂`F (θ, π)

∂v
= − n

2v
+

n∑

i=1

∑
(hk,hl)∈S(Gi)

Qikl(θ)πkπl
(Yi−βT Z(hk,hl))

2

2v2∑
(hk,hl)∈S(Gi)

Qikl(θ)πkπl

−
J∑

j=1

(Nj − nj)

∑
k,l

{
φ
(
RU

klj(θ)
)
RU

klj(θ) − φ
(
RL

klj(θ)
)
RL

klj(θ)
}

πkπl

2v

Sj(θ, π)

∂`F (θ, π)

∂β
=

n∑

i=1

∑
(hk,hl)∈S(Gi)

Qikl(θ)
v

(Yi − βTZ(hk, hl))Z(hk, hl)∑
(hk ,hl)∈S(Gi)

Qikl(θ)πkπl

−
J∑

j=1

(Nj − nj)

∑
k,l

{
φ
(
RU

klj(θ)
)
− φ

(
RL

klj(θ)
)} Z(hk,hl)√

v
πkπl

Sj(θ, π)

∂`F (θ, π)

∂π
=

n∑

i=1

∑
(hk,hl)∈S(Gi)

Qikl(θ)D
kl
π∑

(hk,hl)∈S(Gi)
Qikl(θ)πkπl

+

J∑

j=1

(Nj − nj)

∑
k,l

{
Φ
(
RU

klj(θ)
)
− Φ

(
RL

klj(θ)
)}

Dkl
π

Sj(θ, π)
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Let ∆ij be the Kronecker delta which is 1 if i = j and 0 otherwise. Here we

define Dkl
π as the vector of derivatives of πkπl with respect to π which has as its mth

element πk(∆lm −∆lK) + πl(∆km −∆kK). This takes into account the constraint that
∑

k πk = 1. Also define Mkl
ππ as the matrix of second derivatives of πkπl. This has as

its mnth element (∆lm − ∆lK)(∆kn − ∆kK) + (∆ln − ∆lK)(∆km − ∆kK).

∂2`F (θ, π)

∂v2
=

n

2v2
+

n∑

i=1



∑

(hk,hl)∈S(Gi)
Qikl(θ)

{
(Yi−βT Z(hk,hl))

4

4v4 − (Yi−βT Z(hk,hl))
2

v3

}

∑
(hk,hl)∈S(Gi)

Qikl(θ)πkπl

−
{∑

(hk,hl)∈S(Gi)
Qikl(θ)

(Yi−βT Z(hk,hl))
2

2v2∑
(hk,hl)∈S(Gi)

Qikl(θ)πkπl

}2



−
J∑

j=1

(Nj − nj)



{∑

k,l

(
φ(RU

klj(θ))R
U
klj(θ) − φ(RL

klj(θ))R
L
klj(θ)

)
πkπl

2v

Sj(θ, π)

}2

+

∑
k,l

{
φ(RU

klj(θ))
((

RU
klj(θ)

3
)
− 3RU

klj(θ)
)}

πkπl

4v2

Sj(θ, π)

−
∑

k,l

{
φ(RL

klj(θ))
((

RL
klj(θ)

3
)
− 3RL

klj(θ)
)}

πkπl

4v2

Sj(θ, π)

]

∂2`F (θ, π)

∂v∂β
=

n∑

i=1



∑

(hk,hl)∈S(Gi)
Qikl(θ)Z(hk, hl)

{
(Yi−βT Z(hk,hl))

3

2v3 − (Yi−βT Z(hk,hl))
v2

}

∑
(hk ,hl)∈S(Gi)

Qikl(θ)πkπl

−
{∑

(hk,hl)∈S(Gi)
Qikl(θ)

(Yi−βT Z(hk,hl))
2

2v2∑
(hk ,hl)∈S(Gi)

Qikl(θ)πkπl

}

{∑
(hk,hl)∈S(Gi)

Qikl(θ)
(Yi−βT Z(hk,hl))Z(hk ,hl)

v∑
(hk,hl)∈S(Gi)

Qikl(θ)πkπl

}]

−
J∑

j=1

(Nj − nj)

[{∑
k,l

(
φ(RU

klj(θ))R
U
klj(θ) − φ(RL

klj(θ))R
L
klj(θ)

)
πkπl

2v

Sj(θ, π)

}

{∑
k,l

(
φ(RU

klj(θ)) − φ(RL
klj(θ))

)
πkπl

Z(hk,hl)√
v

Sj(θ, π)

}

+

∑
k,l

{
φ(RU

klj(θ))
(
RU
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2 − 1

)
− φ(RL

klj(θ))
(
RL

klj(θ)
2 − 1

)}
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2v3/2 Z(hk, hl)
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]
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∂2`F (θ, π)

∂(ββT )
=

n∑

i=1



∑

(hk,hl)∈S(Gi)
Qikl(θ)

{
(Yi−βT Z(hk,hl))

2

v2 − v−1
}

Z⊗2

∑
(hk ,hl)∈S(Gi)

Qikl(θ)πkπl

−
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

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(
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)
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v

Sj(θ, π)

}⊗2

+

∑
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{
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U
klj(θ) − φ(RL

klj(θ))R
L
klj(θ)

}
πkπl
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Z(hk,hl)√

v

)⊗2

Sj(θ, π)




∂2`F (θ, π)

∂v∂π
=

n∑

i=1

[∑
(hk ,hl)∈S(Gi)

Qikl(θ)D
kl
π

(Yi−βT Z(hk,hl))
2

2v2∑
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Qikl(θ)πkπl

−
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(hk,hl)∈S(Gi)
(Yi−βT Z(hk,hl))
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kl
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}]

+
J∑
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φ
(
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klj(θ)
)
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(
RL
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)
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klj(θ)
}

πkπl
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Sj(θ, π)

}

{∑
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{
Φ
(
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)
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(
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Dkl
π

Sj(θ, π)

}

−
∑
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φ
(
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)
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(
RL
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klj(θ)
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π
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]
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∂2`F (θ, π)

∂β∂πT
=

n∑

i=1

[∑
(hk,hl)∈S(Gi)

Qikl(θ)
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kl
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−
∑
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]

∂2`F (θ, π)
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
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kl
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
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+
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{
Φ
(
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klj(θ)
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− Φ

(
RL

klj(θ)
)}

Mkl
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Sj(θ, π)

−
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k,l

{
Φ
(
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klj(θ)
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− Φ

(
RL

klj(θ)
)}

Dkl
π

Sj(θ, π)

}⊗2



6.3 Newton-Raphson Algorithm to Maximize (6.4)

Under the linear regression model with strata of the form (Lj, Uj), (6.4) becomes

n∏

i=1

∑J
j=1 δijpj

∑
(hk,hl)∈S(Gi)

(2πσ2)−1/2 exp
{
−(Yi − βTZ(hk, hl))

2/(2σ2)
}

πkπl

∑J
j=1 pj

∑
k,l

[
Φ
(

Uj−βT Z(hk,hl)

σ

)
− Φ

(
Lj−βT Z(hk,hl)

σ

)]
πkπl

.

To incorporate the constraints that
∑K

k=1 πk = 1 and πk > 0 (k = 1, . . . , K) into

the calculations, we define π∗
k = πk/πK and ηk = log π∗

k. For notational convenience,

denote σ2 as v. Let η = (η1, . . . , ηK−1) and ϑ = (β, v, η). Then the log-likelihood is,
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up to a constant,

`C(ϑ) = −n

2
log v +

n∑

i=1

log
∑

(hk,hl)∈S(Gi)

exp

{
−(Yi − βTZ(hk, hl))

2

2v
+ ηT W (hk, hl)

}

−
n∑

i=1

log
J∑

j=1

pj

∑

k,l

eηT W (hk,hl)

{
Φ

(
Uj − βTZ(hk, hl)√

v

)
− Φ

(
Lj − βT Z(hk, hl)√

v

)}
,

where

W (hk, hl) =




I(hk = h1) + I(hl = h1)
...

I(hk = hK−1) + I(hl = hK−1)


 .

Let

Qikl(ϑ) = exp
{
−(Yi − βT Z(hk, hl))

2/(2v) + ηT W (hk, hl)
}

,

RL
klj(ϑ) = {Lj − βT Z(hk, hl)}/

√
v,

RU
klj(ϑ) = {Uj − βT Z(hk, hl)}/

√
v,

S(ϑ) =
J∑
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pj

∑

k,l

{
Φ
(
RU

klj(ϑ)
)
− Φ

(
RL

klj(ϑ)
)}

eηT W (hk,hl).

Also, let a⊗2 = aaT and let φ be the standard normal density function. Then

∂`C(ϑ)
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= − n

2v
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∑
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∑
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6.4 Two-Phase Selective Genotyping with Environ-

mental Factors

The likelihoods described above can be further generalized to incorporate covariate

effects. Suppose we now have a set of covariates Xi which are observed only for the

n genotyped individuals, along with response Yi and genotype Gi. We can modify

P (Yi|Hi, Xi; θ) by including covariate effects in the regression model in (6.1)

Yi = α + βZ(Hi) + γXi + εi, (6.5)

so that θ now consists of (α, β, γ, σ2).
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The likelihoods given in (6.2) and (6.4) then become

LF (θ, π) =

J∏

j=1




nj∏

i=1

∑

H∈S(Gi)

P (Yi|Xi, H; θ)P (H; π)P (Xi|Gi)





∑

X,G

∑

H∈S(G)

P (Yi ∈ Cj|X, H; θ)P (H; π)P (X|G)




Nj−nj

(6.6)

and
n∏

i=1

∑J
j=1 δijpj

∑
H∈S(Gi)

P (Yi|H; θ)P (H; π)P (Xi|Gi)
∑J

j=1

∑
X,G

∑
H∈S(G) pjP (Yi ∈ Cj|H; θ)P (H; π)P (X|G)

(6.7)

respectively.

The covariate distribution may be an infinite-dimensional nuisance parameter in

the case of a continuous covariate. In this case, we construct the profile likelihood

for θ, maximizing over P (X|G) using the methods of Scott and Wild (1997). Let

xg,1, . . . , xg,ng be distinct observed covariate values with G = g. Let ζgk be the prob-

ability of X = xgk given that G = g for k = 1, . . . , ng. Write ngk as the number of

individuals with X = xgk and G = g, and let ng+ be the total number of individuals

with a given genotype. Finally, define

ηj(x, g; θ, π) =
∑

H∈S(g)

P (Y ∈ Cj|x, H; θ)P (H; π).

Then the log-likelihood corresponding to (6.7) is

`F (θ, π) =
J∑

j=1





nj∑

i=1

log


 ∑

H∈S(Gi)

P (Yi|Xi, H; θ)P (H; π)


+

nj∑

i=1

log P (Xi|Gi)

+ (Nj − nj) log


∑

X,G

∑

H∈S(G)

P (X|G)ηj(X, G; θ, π)







which can be rewritten as

`F (θ, π) =

n∑

i=1

log


 ∑

H∈S(Gi)

P (Yi|Xi, H; θ)P (H; π)


+

∑

g

ng∑

k=1

ngk log ζgk

+

nj∑

j=1

(Nj − nj) log

[
∑

g

ng∑

k=1

ηj(xgk, g; θ, π)ζgk

]
. (6.8)
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We introduce Lagrange multipliers λg for the constraint that
∑ng

k=1 ζgk = 1, and

take the derivative with respect to ζgk. Then {ζgk} which maximize the log-likelihood

satisfy

ngk

ζgk
+

J∑

j=1

(Nj − nj)ηj(xgk, g; θ, π)∑
g

∑ng

k=1 ηj(xgk, g; θ, π)ζgk

+ λg = 0.

If we multiply through by ζgk and sum over k, then we can solve for λg:

λg = −
(

ng +
J∑

j=1

(Nj − nj)µgj∑
g µgj

)

where µgj =
∑ng

k=1 ηj(xgk, g; θ, π)ζgk. Then

ζgk =
ngk

ng +
∑J

j=1
(Nj−nj)(µgj−ηj(xgk,g;θ,π))

P

g µgj

.

Plugging this back into (6.12) gives us the profile log-likelihood

`FP (θ, π, {µgj}) =
n∑

i=1

log


 ∑

H∈S(Gi)

P (Yi|Xi, H; θ)P (H; π)


+

∑

g

ng∑

k=1

ngk log ngk

−
∑

g

ng∑

k=1

ngk log

[
ng +

J∑

j=1

(Nj − nj)(µgj − ηj(xgk, g; θ, π))∑
g µgj

]

+

nj∑

j=1

(Nj − nj) log
∑

g

µgj

or, up to a constant,

`FP (θ, π, {µgj}) =

n∑

i=1

log


 ∑

H∈S(Gi)

P (Yi|Xi, H; θ)P (H; π)




−
n∑

i=1

∑

g

I(Gi = g) log

[
ng +

J∑

j=1

(Nj − nj)(µgj − ηj(Xi, Gi; θ, π))∑
g µgj

]

+

nj∑

j=1

(Nj − nj) log
∑

g

µgj. (6.9)

Using a similar derivation, we can profile (6.8) over P (X|G) to get (up to a con-
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stant)

`CP (θ, π, {µgj}) =
n∑

i=1

log




J∑

j=1

δijpj + log
∑

H∈S(Gi)

P (Yi|Xi, H; θ)P (H; π)




−
n∑

i=1

∑

g

I(Gi = g) log

[
n
∑J

j=1 pjηj(Xi, Gi; θ, π)
∑J

j=1

∑
g pjµgj

− ng +
n
∑J

j=1 pjµgj∑J
j=1

∑
g pjµgj

]

− n log
J∑

j=1

pjµgj . (6.10)

These likelihoods can be maximized using Newton-Raphson algorithms, and the co-

variance can be estimated with sandwich estimators.

If we assume that X and G are independent, then the log-likelihoods for the full

and conditional likelihoods respectively are:

`F (θ, π) =

n∑

i=1

log


 ∑

H∈S(Gi)

P (Yi|Xi, H; θ)P (H; π)


+

n∑

i=1

log P (Xi)

+
J∑

j=1

(Nj − nj) log

[
∑

X,G

P (X)ηj(X, G; θ, π)

]

and

`C(θ, π) =
n∑

i=1


log

J∑

j=1

δijpj +
∑

H∈S(Gi)

P (Yi|Xi, H; θ)P (H; π) + log P (Xi)




− n log

J∑

j=1

∑

X,G

∑

H∈S(G)

pjηj(X, G; θ, π)P (X).

Suppose X takes K distinct observed values xk, with probability ζk. Let n+k denote

the number of times xk is observed in the dataset. Then we can rewrite `F as

`F (θ, π) =
n∑

i=1

log


 ∑

H∈S(Gi)

P (Yi|Xi, H; θ)P (H; π)


+

K∑

k=1

n+k log ζk

+

J∑

j=1

(Nj − nj) log

[
K∑

k=1

∑

g

ηj(xk, g; θ, π)ζk

]
.
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By taking the derivative with respect to ζk and introducing a Lagrange multiplier λ

for the constraint that
∑

k ζk = 1, we obtain

n+k

ζk
+

J∑

j=1

(Nj − nj)

∑
g ηj(xk, g; θ, π)

∑K
k=1

∑
g ηj(xk, g; θ, π)ζk

+ λ = 0.

If we then multiply by ζk and sum over k we find that λ = −N . Define µj =
∑

k

∑
g ηj(xk, g; θ, π)ζk. Then

ζk =
n+k

∑J
j=1

[
Nj − (Nj − nj)

P

g ηj(xk,g;θ,π)

µj

]

and plugging this back into the log-likelihood we see that the objective function, up

to a constant, to be maximized is:

`FP (θ, π, {µj}) =
n∑

i=1


log

∑

H∈S(Gi)

P (Yi|Xi, H; θ)P (H; π)

− log

J∑

j=1

{
Nj − (Nj − nj)

∑
H P (Yi ∈ Cj|Xi, H; θ)P (H; π)

µj

}]
+

J∑

j=1

(Nj − nj) log µj.

(6.11)

In this situation, a similar derivation to that presented in Breslow et al. (2003) will

show that the observed profile information is a consistent and efficient estimator of

the covariance. They require pj, the strata selection probabilities, to be nonzero for

all strata for their Proposition 2.2 which derives the efficient score. The requirement

is primarily to ensure invertibility of matrices. This derivation is based on results

of Robins et al. (1995); however, they give an alternate explicit computation of

the scores which does not have this requirement. Otherwise we simply substitute

P (Y, G|X; θ) =
∑

H∈S(G) P (Y |H, X; θ)P (H; π) for f(y|x; θ) in their derivation in order

to get the desired result. Calculations for a Newton-Raphson algorithm to maximize

the profile likelihood, and to compute the observed profile information matrix are

given in the next section.

For the conditional likelihood, using the same notation of xk and ζk, we find that
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taking the derivative under the constraint of
∑

k ζk = 1 gives us the following equation

n+k

ζk
−

n
∑J

j=1

∑
g pjηj(xk, g; θ, π)

∑J
j=1 pjµj

+ λ = 0,

where µj is defined in the same way as for the previous case. Solving as before leads

to

ζk =
n+k

∑J
j=1 pjµj

n
∑J

j=1 pj

∑
g ηj(xk, g; θ, π)

and a profile likelihood of

`CP (θ, π) =

n∑

i=1


log

J∑

j=1

δijpj + log
∑

H∈S(Gi)

P (Yi|Xi, H; θ)P (H; π)

− log
J∑

j=1

pj

∑

g

ηj(Xi, g; θ, π)

]
. (6.12)

which, up to a constant, is equivalent to the likelihood:

n∏

i=1

∑J
j=1 pjδij

∑
H∈S(Gi)

P (Yi|Xi, H; θ)P (H; π)
∑J

j=1 pj

∑
H P (Yi ∈ Cj|Xi, H; θ)P (H; π)

=
n∏

i=1

P (Yi, Gi|Xi, Ri = 1). (6.13)

Since this takes the form of another conditional likelihood, the covariance matrix of the

maximum likelihood estimators can be estimated by the inverse information matrix for

this profile likelihood. In order to maximize the likelihood in (6.14) we use a Newton-

Raphson algorithm similar to that presented for the maximization of (6.4). Note that

the only difference in these two likelihoods is the presence of Xi in the conditional

density function P (Yi|Xi, H; θ). Define β̃ = (β, γ), Z̃i(hk, hl) = (Z(hk, hl), Xi), and

ϑ̃ = (β̃, v, η). Then we can directly apply the algorithm outlined in Section 6.3 to

maximize this likelihood by replacing β, Z(hk, hl), and ϑ by these new versions.
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6.5 Newton-Raphson Algorithm to Maximize (6.12)

Under the linear regression model with strata defined as (Lj, Uj), the profile log-

likelihood corresponding to (6.12) is

n∑

i=1


log

∑

(hk,hl)∈S(Gi)

(2πσ2)−1/2 exp
{
−(Yi − βTZ(hk, hl) − γXi)

2/(2σ2)
}

πkπl

− log

J∑

j=1


Nj −

(Nj − nj)
∑

k,l

[
Φ
(

Uj−βT Z(hk,hl)−γXi

σ

)
− Φ

(
Lj−βT Z(hk,hl)−γXi

σ

)]
πkπl

µj






+
J∑

j=1

(Nj − nj) log µj.

For notational convenience, denote σ2 as v and write ϑ = (β, γ, v, π). Combine β and

γ into Γ = (β, γ) and correspondingly write Bi(hk, hl) = (Z(hk, hl), Xi). Let

Qikl(ϑ) = exp
{
−(Yi − ΓT Bi(hk, hl))

2/(2v)
}

,

RL
iklj(ϑ) = {Lj − ΓT Bi(hk, hl)}/

√
v,

RU
iklj(ϑ) = {Uj − ΓT Bi(hk, hl)}/

√
v,

Si(ϑ) =
J∑

j=1

[
Nj − (Nj − nj)

∑
k,l

{
Φ
(
RU

iklj(ϑ)
)
− Φ

(
RL

iklj(ϑ)
)}

πkπl

µj

]
.

Also, let a⊗2 = aaT and let φ be the standard normal density function. Then

∂`FP (ϑ)

∂v
= − n

2v
+

n∑

i=1

∑
(hk ,hl)∈S(Gi)

Qikl(θ)πkπl
(Yi−ΓT Bi(hk,hl))

2

2v2∑
(hk,hl)∈S(Gi)

Qikl(θ)

−
n∑

i=1

∑J
j=1

[
Nj − (Nj − nj)

∑
k,l

{
φ
(
RU

iklj(ϑ)
)
RU

iklj(ϑ) − φ
(
RL

iklj(ϑ)
)
RL

iklj(ϑ)
}

πkπl

2vµj

]

Si(ϑ)

∂`FP (ϑ)

∂Γ
=

n∑

i=1

∑
(hk ,hl)∈S(Gi)

Qikl(ϑ)
v

(Yi − ΓT Bi(hk, hl))Bi(hk, hl)∑
(hk ,hl)∈S(Gi)

Qikl(ϑ)πkπl

−
n∑

i=1

∑J
j=1

[
Nj − (Nj − nj)

∑
k,l

{
φ
(
RU

iklj(ϑ)
)
− φ

(
RL

iklj(ϑ)
)} Bi(hk ,hl)√

vµj
πkπl

]

Si(ϑ)
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∂`FP (ϑ)

∂π
=

n∑

i=1

∑
(hk ,hl)∈S(Gi)

Qikl(ϑ)Dkl
π∑

(hk,hl)∈S(Gi)
Qikl(ϑ)πkπl

+
n∑

i=1

∑J
j=1

[
Nj − (Nj − nj)

∑
k,l

{
Φ
(
RU

iklj(ϑ)
)
− Φ

(
RL

iklj(ϑ)
)}

Dkl
π

]

Si(ϑ)

and for m = 1, . . . , K,

∂`FP (ϑ)

∂µm

= −
n∑

i=1

(Nm − nm)
∑

k,l

{
Φ
(
RU

iklm(ϑ)
)
− Φ

(
RL

iklm(ϑ)
)}

πkπl/µ
2
m

Si(ϑ)

+
Nm − nm

µm

.

As in Section 6.3, let ∆ij be the Kronecker delta and define Dkl
π and Mkl

ππ, the first

and second derivatives of πkπl as before. Then we can compute the observed profile

information matrix by taking the negative of the following second derivatives:

∂2`FP (ϑ)

∂v2
=

n

2v2
+

n∑

i=1



∑

(hk,hl)∈S(Gi)
Qikl(ϑ)

{
(Yi−ΓT Bi(hk,hl))

4

4v4 − (Yi−ΓT Bi(hk ,hl))
2

v3

}

∑
(hk,hl)∈S(Gi)

Qikl(ϑ)πkπl

−
{∑

(hk,hl)∈S(Gi)
Qikl(ϑ) (Yi−ΓT Bi(hk,hl))

2

2v2∑
(hk ,hl)∈S(Gi)

Qikl(ϑ)πkπl

}2



−
n∑

i=1



∑J

j=1

[
Nj − (Nj − nj)

∑
k,l

{
φ(RU

iklj(ϑ))
((

RU
iklj(ϑ)3

)
− 3RU

iklj(ϑ)
)}

πkπl

4v2µj

]

Si(ϑ)

−
∑J

j=1

[
Nj − (Nj − nj)

∑
k,l

{
φ(RL

iklj(ϑ))
((

RL
iklj(ϑ)3

)
− 3RL

iklj(ϑ)
)}

πkπl

4v2µj

]

Si(ϑ)

−





∑J
j=1

[
Nj − (Nj − nj)

∑
k,l

(
φ(RU

iklj(ϑ))RU
iklj(ϑ) − φ(RL

iklj(ϑ))RL
iklj(ϑ)

)
πkπl

2vµj

]

Si(ϑ)





2


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∂2`FP (ϑ)

∂v∂Γ
=

n∑

i=1



∑

(hk ,hl)∈S(Gi)
Qikl(ϑ)Bi(hk, hl)

{
(Yi−ΓT Bi(hk,hl))

3

2v3 − (Yi−ΓT Bi(hk,hl))
v2

}

∑
(hk ,hl)∈S(Gi)

Qikl(ϑ)πkπl

−
{∑

(hk,hl)∈S(Gi)
Qikl(ϑ) (Yi−ΓT Bi(hk ,hl))Bi(hk ,hl)

v∑
(hk ,hl)∈S(Gi)

Qikl(ϑ)πkπl

}

{∑
(hk ,hl)∈S(Gi)

Qikl(ϑ) (Yi−ΓT Bi(hk,hl))
2

2v2∑
(hk,hl)∈S(Gi)

Qikl(ϑ)πkπl

}]

−



∑J

j=1

[
Nj − (Nj − nj)

∑
k,l

{
φ(RU

iklj(ϑ))
(
RU

iklj(ϑ)2 − 1
)}

πkπl

2v3/2µj
Bi(hk, hl)

]

Si(ϑ)

−
∑J

j=1

[
Nj − (Nj − nj)

∑
k,l

{
φ(RL

iklj(ϑ))
(
RL

iklj(ϑ)2 − 1
)}

πkπl

2v3/2µj
Bi(hk, hl)

]

Si(ϑ)

−





∑J
j=1

[
Nj − (Nj − nj)

∑
k,l

(
φ(RU

iklj(ϑ))RU
iklj(ϑ) − φ(RL

iklj(ϑ))RL
iklj(ϑ)

)
πkπl

2vµj

]

Si(ϑ)









∑J
j=1

[
Nj − (Nj − nj)

∑
k,l

(
φ(RU

iklj(ϑ)) − φ(RL
iklj(ϑ))

)
πkπl

Bi(hk,hl)√
vµj

]

Si(ϑ)








∂2`FP (ϑ)

∂(ΓΓT )
=

n∑

i=1



∑

(hk,hl)∈S(Gi)
Qikl(ϑ)

{
(Yi−ΓT Bi(hk,hl))

2

v2 − v−1
}

B⊗2
i∑

(hk,hl)∈S(Gi)
Qikl(ϑ)πkπl

−
{∑

(hk,hl)∈S(Gi)
Qikl(ϑ) (Yi−ΓT Bi(hk,hl))Bi(hk,hl)

v∑
(hk,hl)∈S(Gi)

Qikl(ϑ)πkπl

}⊗2



−
n∑

i=1




∑J
j=1

[
Nj − (Nj − nj)

∑
k,l φ(RU

iklj(ϑ))RU
iklj(ϑ)πkπl

µj

(
Bi(hk,hl)√

v

)⊗2
]

Si(ϑ)

−

∑J
j=1

[
Nj − (Nj − nj)

∑
k,l φ(RL

iklj(ϑ))RL
iklj(ϑ)πkπl

µj

(
Bi(hk,hl)√

v

)⊗2
]

Si(ϑ)

−





∑J
j=1

[
Nj − (Nj − nj)

∑
k,l

(
φ(RU

iklj(ϑ)) − φ(RL
iklj(ϑ))

)
πkπl

Bi(hk,hl)√
vµj

]

Si(ϑ)





⊗2


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∂2`FP (ϑ)

∂v∂πT
=

n∑

i=1

[∑
(hk,hl)∈S(Gi)

Qikl(ϑ)(Dkl
π )T (Yi−ΓT Bi(hk,hl))

2

2v2∑
(hk,hl)∈S(Gi)

Qikl(ϑ)πkπl

−
{∑

(hk ,hl)∈S(Gi)
(Yi−ΓT Bi(hk,hl))

2

2v2 Qikl(ϑ)
∑

(hk,hl)∈S(Gi)
Qikl(ϑ)πkπl

}{∑
(hk,hl)∈S(Gi)

Qikl(ϑ)(Dkl
π )T

∑
(hk ,hl)∈S(Gi)

Qikl(ϑ)πkπl

}]

−
n∑

i=1







∑J
j=1

[
Nj − (Nj − nj)

∑
k,l φ

(
RU

iklj(ϑ)
)
RU

iklj(ϑ)πkπl

2vµj

]

Si(ϑ)

−
∑J

j=1

[
Nj − (Nj − nj)

∑
k,l φ

(
RL

iklj(ϑ)
)
RL

iklj(ϑ)πkπl

2vµj

]

Si(ϑ)









∑J
j=1

[
Nj − (Nj − nj)

∑
k,l

{
Φ
(
RU

iklj(ϑ)
)
− Φ

(
RL

iklj(ϑ)
)}

Dkl
π

µj

]

Si(ϑ)





T

+

∑J
j=1

[
Nj − (Nj − nj)

∑
k,l

{
φ
(
RU

klj(θ)
)
RU

klj(θ) − φ
(
RL

klj(θ)
)
RL

klj(θ)
} (Dkl

π )T

2vµj

]

Si(ϑ)
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6.6 Simulation Studies

We investigated the performance of the proposed methods under a variety of se-

lective genotyping designs through simulation studies. We considered all the designs

studied in this chapter; namely, designs both with and without covariates, and both

with and without stratum information retained. In accordance with the two-phase

design described earlier, we generated individuals from the joint distribution of the

trait value, genotype, and covariates, and selected a subset of 500 for genotyping

based on selection probabilities for three strata. The covariates were discarded for a

subset of simulations, and by either retaining or discarding the stratum information

for all individuals, we could apply the full and conditional likelihood methods. Sim-

ilarly to the previous chapter, this provided information about the relative efficiency

of the two methods. These methods were compared to standard methods based on

the prospective likelihood which is equivalent to (6.7) when Nj = nj, ∀j.

The first study was concerned with the performance of the two-phase study de-

sign when no covariates were measured. Trait values were generated for a single SNP

model under model (6.1) with α = 0, σ2 = 1, and β = 0, 0.1, 0.2 and 0.3. The potential

causal variant was the minor allele, which was generated with frequency 0.1 for the

additive mode of inheritance and 0.3 for the recessive mode of inheritance. In the pre-

vious chapter we saw very little difference between the additive and dominant models,
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hence our focus on the additive and recessive modes of inheritance. To evaluate the

differences in performance due to the more general design, we considered effects of

varying selection cutpoints and probabilities. The effects of varying MAF and effect

size were already well characterized and carry over to the two-phase design.

As we would expect from the results in Chapter 5, both the full and conditional

likelihoods provide unbiased estimates of the haplotype effect and correct type I error.

The standard error estimates agree with the true variation, and the confidence intervals

have correct coverage. The conditional likelihood has negligible loss of power and

nearly identical results to the full likelihood, so we present only the results for the

full likelihood here. The prospective likelihood preserves the Type I error, and has

similar power to the proposed methods when selection occurs symmetrically. However,

many of the aspects noted earlier, such as high bias, low coverage, and reduced power

for asymmetric sampling, apply under the new design. Figure 6.1 shows the drastic

drop in coverage probability for the prospective method as the haplotype effect size

increases. This is due to increasing bias in haplotype effect estimation.

We consider a design with three strata, which is comparable to the previous re-

sults when the selection probability is zero for the middle stratum. The two cutpoints

for this design correspond to cL and cU from the previous chapter. In Figure 6.2

we demonstrate the reduction in power for the prospective method as we increase

asymmetricity in the cutpoints, and fix the selection probabilities to be equal in the

two tails, and zero otherwise. The additive model has much higher power than the

recessive model, but there is relatively little difference between the full and prospec-

tive likelihoods for this mode of inheritance. In contrast, for the recessive mode of

inheritance, there can be as much as a 25% drop in power.

For this design, we also consider the effects of varying the selection probabilities,

while keeping the cutpoints fixed. We would expect this to have a similar effect to

changing the cutoffs, since in both situations we genotype a larger sample from one

tail than the other. The choice in practice of which parameter to modify will depend

on prior information about the population and ease of recruitment for a given strategy.
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Figure 6.3 shows the additive and recessive models, and again the most obvious feature

is the reduced power for the prospective analysis relative to the full analysis under the

recessive model.

With multiple strata, however, we may allow for positive selection in all strata

rather than only in the tails. This results in decreased power for all methods, since

the selection is not as extreme; it may be necessary in practice if it is impossible to

sample sufficient individuals from some strata. Figure 6.4 illustrates this reduction in

power for the full likelihood method. We compare a three strata model with selection

probabilities of 0.5, 0.05, and 0.5, when the cutpoints are balanced at -1 and 1, to

a model with zero selection probability for the middle stratum. The drop in power

is relatively low and stays below 6% as the haplotype effect size increases. As the

proportion of individuals selected from the stratum increases, the design approaches

a simple random sample, and we see this effect in Figure 6.1 with the coverage proba-

bility. The prospective likelihood has reduced bias and improved coverage when there

is positive sampling from all strata, although the coverage is still far below nominal

levels.

The second study considers the scenario where a single binary covariate is mea-

sured. Genotypes and trait were generated as in the first study. We assume indepen-

dence between covariates and genotypes, and generate X according to a Bernoulli dis-

tribution with probability 0.1. The conclusions are essentially the same as described

previously, with the addition that the results for the prospective method regarding

haplotype effects generalize to the covariate effect as well. The full and conditional

methods estimate the covariate effect without bias and with similar power.

6.7 Discussion

We present several new methods for use in selective genotyping designs in this

chapter. The designs considered are more general than have been previously studied,

and the proposed full and conditional likelihoods are shown to work well under a range
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of conditions. In theory, the full likelihood for design 1 from Chapter 5 is applicable

to the two-phase setup. This incorporates additional information by retaining actual

trait values rather than stratum information for individuals who are not genotyped.

However, in both this and the previous chapter we saw that there is very little loss of

efficiency between the full and conditional approaches, so in practice one may simply

use the conditional likelihood and discard both the additional trait and stratum values.

Lawless et al. (1999) suggest that there are situations in which the stratum sizes

may contain substantial additional information; this was not observed in our simula-

tions. Maximum likelihood performs well in all their simulations, but increasing the

number of strata appears to slow down achievement of asymptotic optimality. These

are issues which we intend to explore further. Our simulations obviously do not en-

compass all practical situations, but illustrate properties of the methods when varying

some basic features of association studies.

The designs considered here may be extended further. We assume that the only

information observed if a subject is not genotyped is the stratum containing that sub-

ject’s trait value. In practice, however, covariates may be observed for an individual

even if they are not genotyped, since the cost of measuring environmental factors is

generally much less than for genotyping. Lawless et al. (1999) state that the full likeli-

hood cannot be maximized exactly when both the trait and covariates are continuous.

However, Robins et al. (1995) propose an adaptive semiparametric efficient estimator

when the vector of covariates has at most two continuous components. Extending

their methods would allow us to consider designs where the trait values and covariates

are measured on the full set of N individuals from the population, as well as on the

subset of n genotyped individuals.

Finally, in the near future we intend to present theoretical justification for using

the observed profile information matrix to compute standard errors when covariates

and genotype are not assumed to be independent. For this we need to show that the

design satisfies the conditions of Murphy and van der Vaart (2000), as is done for the

general two-phase design in Breslow et al. (2003).
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Figure 6.1: Empirical coverage probability for the 95% confidence interval for a 3-
strata, 1-SNP model as a function of the haplotype effect size. All curves are gener-
ated under an additive model with MAF=0.1. The red curves correspond to selection
probabilities of 0.5, 0.05, and 0.5, and the blue curves correspond to selection proba-
bilities of 0.5, 0.05, and 0.5. Solid curves pertain to the full likelihood analysis, while
dotted curves pertain to the prospective analysis. The cutpoints for the strata are -1
and 1. All values are based on 10,000 iterations.
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Figure 6.2: Empirical power for a 3-strata, 1-SNP model as a function of the absolute
ratio of the lowest cutpoint to the highest cutpoint. The highest cutpoint is set at 0.4.
The red curves correspond to an additive model with MAF=0.1, and the blue curves
correspond to a recessive model with MAF=0.3. All models had effect size β = .3.
Solid curves pertain to the full likelihood analysis, while dotted curves pertain to the
prospective analysis. The selection probabilities for the three strata are .5, 0 and .5
respectively. All values are based on 10,000 iterations.
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Figure 6.3: Empirical power for a 3-strata, 1-SNP model as a function of the ratio of
selection probabilities for the highest to the lowest strata. The selection probability for
the lowest stratum is set at 0.1, and the middle stratum has zero selection probability.
The red curves correspond to an additive model with MAF=0.1, and the blue curves
correspond to a recessive model with MAF=0.3. All models had effect size β = .3.
Solid curves pertain to the full likelihood analysis, while dotted curves pertain to the
prospective analysis. The cutoffs for the strata are -1 and 1. All values are based on
10,000 iterations.
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Figure 6.4: Empirical power for a 3-strata, 1-SNP model as a function of the haplotype
effect size. The red curves correspond to an additive model with MAF=0.1, and the
blue curves correspond to a recessive model with MAF=0.3. All results pertain to the
full likelihood analysis. Solid curves are for selection probabilities of 0.5, 0, and 0.5,
while dotted curves are for selection probabilities of 0.5, 0.05 and 0.5. The cutpoints
for the strata are -1 and 1. All values are based on 10,000 iterations.
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