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Abstract 

Jenna Nicole Regan: Regulation of adventitia-resident progenitor cells 
(Under the direction of Mark W. Majesky) 

 
 

Far from the inert structural component that was the prevailing view for many years, 

the arterial adventitia is a region of active signaling that harbors Sca1+ vascular progenitor 

cells as well as many other cell types.  We have shown that a sonic hedgehog (Shh) 

signaling domain is restricted to the adventitial layer of artery wall beginning at embryonic 

day 15.5.  Hedgehog (Hh)-responsive cells, colocalize with a circumferential ring of Shh 

protein concentrated between the media and adventitia.  Furthermore, Sca1+ progenitor 

cells (AdvSca1 cells) reside within the Hh signaling domain and are reduced in number in 

Shh-/- mice.  As a population, AdvSca1 cells express transcription factors thought to be 

required for smooth muscle cell (SMC) differentiation, including serum response factor 

(SRF) and myocardin family members, yet the cells do not express SMC marker proteins in 

vivo.  However, upon removal of AdvSca1 cells from the adventitial environment, they 

readily differentiate to SMC-like cells in vitro.  Repression of SRF-dependent transcription 

may be mediated by SRF co-repressors such as Klf4, Msx1, and FoxO4, all of which are 

expressed by AdvSca1 cells in vivo.  Knockdown of Klf4 in AdvSca1 cells in vitro results in 

extensive down-regulation of Sca1 and defects in Sca1+ cell proliferation.  In vitro and in vivo 

experiments have shown that AdvSca1 cells possess the potential for SMC, pericyte/mural 

cell, adipogenic, ostogenic, endothelial, and macrophage differentiation.  Thus, AdvSca1 

cells are regulated, in part, by Hh signaling and the transcription factor Klf4 and function as 

progenitors for multiple cell types with physiological and pathological relevance to the artery 

wall.   
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Background 

 The mammalian hedgehog signaling pathway 

The hedgehog signaling network plays diverse roles in development.  Beginning with 

the identification of hedgehog and patch as Drosophila segment polarity mutants by 

Nüsslein-Volhard and Wieschaus in 1980 (1), investigation into the components and 

mechanisms of the hedgehog signaling network has drawn an increasingly complex and 

ever-evolving picture.  The components germane to this work will be briefly described, with 

mention of additional network components. 

Three mammalian homologues of the Drosophila hedgehog (Hh) gene have been 

identified:  Desert hedgehog, Indian hedgehog, and Sonic hedgehog (Dhh, Ihh, and Shh, 

respectively) (2).  Although all three proteins bind with similar affinity to Hh receptors, they 

vary in potency (3) and expression pattern (4), consistent with specialized functions during 

development.  Hh proteins undergo autocatalytic processing, resulting in an amino-terminal 

product with signaling activity.  The cleavage reaction also adds a cholesterol moiety to the 

amino-terminal domain (5, 6).   The amino-terminal signaling peptide is then further modified 

by the addition of a palmitoyl moiety, catalyzed by the acyltransferase Hhat in mammals.  

Together, these modifications contribute to the formation of soluble Hh protein multimers 

which, in turn, permit long-range Hh signaling (7, 8). 

Shh mutant mice exhibit a variety of defects, including brain, spinal cord, eye, 

skeletal, and limb development (9).  They also have abnormal neural crest cell development, 

leading to defects in arch artery and outflow tract patterning (10).  Only about half of the 

expected number of Shh-/- embryos survive to term, and none live past birth (11).  Similar 

survival rates are seen in Ihh-/- embryos, with about half dying around midgestation and the 

remainder perishing at birth due to respiratory failure.  Ihh-/- embryos exhibit pronounced 

skeletal defects, including forelimb and rib shortening, misshapen endochondral bones, and 

misformed joints (12).  In addition, Ihh signaling is critical for proper yolk sac angiogenesis, a 
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phenotype which will be further discussed below.  In contrast to the lethal phenotypes of 

Shh and Ihh knockouts, Dhh-/- mice are fully viable, although males are infertile due to 

defects in spermatogenesis (13). 

There are two mammalian homologues of the Hh receptor Patched, Ptc1 and Ptc2.  

Ptc proteins are 12-pass transmembrane proteins (14) with two large hydrophilic 

extracellular loops that mediate binding to Hh proteins (15).  In addition to functioning as 

receptors for Hh ligands, Ptc genes are also transcriptional targets of the Hh pathway and 

are thus upregulated in response to Hh signaling (14).  Therefore, Ptc expression is found in 

many tissues adjacent to the source of Hh signal.  Mouse Ptc2 protein shares 56% identity 

with Ptc1, with divergent regions including the intercellular amino- and carboxy-terminal 

sequences (16).  Although both Ptc proteins can bind Hh ligands, they do not function 

redundantly.  Their expression patterns only partially overlap (17, 18) and the knockout 

phenotype of Ptc1-/- mice is much more severe.  Ptc1-/- embryos die between embryonic day 

9 (E9.0) and E10.5, exhibiting an open neural tube, overgrown head folds, hindbrain, and 

spinal cord, and an abnormal heart (19).  In contrast, Ptc2-/- mice are viable, although they 

develop skin defects including alopecia and epidermal hyperplasia (20, 21).   

Although Ptc proteins serve as the receptors for Hh ligands, the downstream 

signaling is actually transduced by another transmembrane protein, Smoothened (Smo).  

Smo has seven transmembrane domains and bears some structural similarity to G protein-

coupled receptors (22, 23).  It is well-established that in the absence of Hh signaling, Ptc 

proteins exert a negative effect on Smo activity.  When Hh ligands bind to the Ptc receptors, 

it alleviates the repression and allows Smo to activate downstream signaling.  Exactly how 

Ptc exerts its repressive effects on Smo has been unclear for many years.  Most recent 

models favor a mechanism by which Ptc functions as a pump (the Ptc protein sequence 

shows some homology to the prokaryotic resistance-nodulation-division (RND) family of 

small-molecule pumps (24)).  The pumping action of Ptc may change the concentration or 
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localization of small molecules, such as oxysterols, which affect the activity of Smo (25-28).   

Smo knockout mice die by E9.5 with severe abnormalities, including failure to undergo 

embryonic turning, defects in closure of the ventral midgut and looping of the linear heart 

tube, ventral cyclopia, and holoprosencephaly (29). 

The ultimate effectors of Hh signaling in mice are the three Gli transcription factors 

(Gli1-3).  All three contain a series of five highly conserved C2H2 zinc fingers (30).  Like the 

Ptc genes, the Gli1 locus is also a transcriptional target of Hh signaling (31-33).  Gli1 

functions as a transcriptional activator, while Gli2 and Gli3 possess both activating and 

repressive domains.  However, the expression of Gli1 from the endogenous Gli2 locus 

rescues defects related to Shh signaling, suggesting that Gli2 functions primarily as an 

activator in vivo (34).  Although Gli3 seems to exert its strongest effects as a negative 

regulator of Hh-dependent gene expression (35), some evidence suggests that it has 

important activating functions as well (35-37).  In the absence of active Hh signaling, the 

Gli3 protein is proteolytically cleaved to an 83 kDa repressor form, and this process is 

inhibited in the presence of Hh ligand (38, 39).   

The combination of unique and redundant activities of the Gli factors makes it a 

challenge to interpret the phenotypes of knockout mice.  Surprisingly, mutant Gli1zfd/zfd mice 

(homozygous for a mutation that removes the Gli1 zinc finger domains, and thus the DNA 

binding activity) are viable and appear normal (40).  Gli2zfd/zfd mutants, however, exhibit 

perinatal lethality and have multiple developmental defects, including skeletal, neural, and 

lung malformations (36, 37, 40-42).  Spontaneous Gli3 mutants were originally designated 

Xt (or XtJ), for extra-toes, referring to the gross polydactyly and syndactyly phenotype 

observed in homozygotes (43).  In addition, Gli3-/- embryos display brain, skeletal, and lung 

defects, and none survive beyond postnatal day 2 (P2) (32, 37, 39, 43).   

Various genetic combinations of Gli alleles indicate some level of functional 

redundancy.  Despite the lack of a gross phenotype in Gli1zfd/zfd mice, the additional removal 
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of one copy of Gli2 (Gli1zfd/zfd;Gli2+/zfd) provokes phenotypes similar to Gli2zfd/zfd, although not 

as severe.  Gli1zfd/zfd;Gli3+/- double mutants phenotypically resemble Gli3-/- mice.  These 

results are consistent with Gli2, but not Gli3, compensating for loss of Gli1 function during 

development (40).  Mutations in Gli2 and Gli3 affect the development of many of the same 

systems/organs (skeletal, neural, lung).  Analysis of double mutants indicates that each has 

both shared and specific functions.  For example, Gli2 and Gli3 mutants both show 

disruptions in tooth and palate development, but otherwise affect different subsets of the 

skeletal system.  Gli2zfd/zfd;Gli3+/- mice show synergistic malformations in several skeletal 

elements, consistent with partially redundant functions of Gli2 and Gli3 during skeletal 

development (37).  Analogous synergistic effects have been observed in lung and foregut 

development (36). 

Multiple additional factors in the Hh signaling network which have been identified and 

described in the literature will not be discussed in detail here, as their specific significance to 

the work described herein is minimal.  However, any background on Hh signaling would be 

incomplete without at least a brief mention of the critical role of the primary cilium in pathway 

signal transduction.  The primary cilium is a non-motile structure that can be found on most 

cell types.  Cilium structure depends on a microtubule scaffold which is nucleated from the 

basal body and extends in a “9+0” configuration.  Proteins and vesicles are transported 

along the cilia by kinesin (anterograde) and dynein (retrograde) motors together with 

intraflagellar transport (IFT) complexes (44).  In 2003, a report by Huangfu et al first 

identified the requirement for IFT proteins in Hh signal transduction (45).  Recent work has 

shown that multiple Hh signaling pathway components are dependent on the primary cilium 

for proper regulation.  In the absence of Hh signaling, Ptc1 is localized to the membrane 

along the shaft and around the base of the cilium.  When Ptc1 binds Shh, it disappears from 

the cilium, whereupon Smo begins to localize and concentrate at the cilium (27, 46).  Other
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Figure 1.  Simplified schematic of mammalian hedgehog signaling.  When no hedgehog 
ligand is present, Ptc receptors are localized to the shaft and base of the primary cilium.  
Gli2 and Gli3 transcription factors are bound by suppressor of fused (Sufu), which prevents 
the proteins from being degraded (47).  In the absence of ligand stimulation, Gli3 undergoes 
limited proteolysis to the shorter repressor form (GliR), which blocks the transcription of Hh 
target genes.  When Hh ligands are produced, they undergo lipid modifications and 
aggregate into a multimeric protein complex.  Release of ligand from Hh-producing cells is 
assisted by Dispatched1 (Disp) (48, 49).  Hh binding to Ptc receptors causes them to move 
out of the primary cilium, whereupon Smo begins to localize and concentrate at the cilium.  
Downstream of activated Smo, activator forms of Gli transcription factors (GliA) enter the 
nucleus and regulate the expression of target genes. 
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Hh pathway components, such as Suppressor of Fused (Sufu) and the Gli transcription 

factors, are also found at the primary cilium.  Levels of Gli2 and Gli3 at the cilium increase 

following Hh ligand stimulation (47), and ciliary localization is required for proper activity of 

both the repressor and activator forms of Gli2 and Gli3 (50, 51).  Collection of pathway 

components at the cilium may therefore be a mechanism which a) facilitates Hh signal 

transduction by bringing pathway components into close proximity and b) provides an 

additional level of regulation by controlling the localization of specific factors. 

 

Hedgehog signaling in the vasculature 

As is evident from the variety of defects observed in mutant mice with disrupted Hh 

pathway function, proper Hh signaling is critical for multiple developmental processes.  

Among them, Hh signaling has been linked to both vasculogenesis and angiogenesis.  

Mouse embryos lacking Smo have severe defects in endothelial tube formation, despite 

normal numbers of angioblasts (52).   Ihh signaling is critical for proper yolk sac 

angiogenesis, involving assembly of endothelial cells and SMCs into functional channels.  

Ihh-/- yolk sacs display small, disorganized vessels at E10.5.  Smo-/- yolk sacs arrest at an 

even earlier stage, having failed to undergo any remodeling of the primitive vascular plexus 

(53).   

A relatively recent body of work indicates that Shh signaling also plays essential roles 

in the development and maintenance of the coronary vasculature.  Cells that comprise the 

coronary vessels (including endothelial cells, smooth muscle cells, and fibroblasts) are 

derived from the proepicardium during embryonic development.  When proepicardial cells 

contact the myocardium, they migrate as an epithelial sheet to form the epicardium, which 

covers the surface of the heart.  Myocardial-derived signals initiate epicardial epithelial-to-

mesenchymal transition (EMT) and the mesenchymal cells migrate through the matrix-rich 

subepicardial space, infiltrate the myocardial wall, and begin to assemble the coronary 
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plexus (54, 55).  Lavine et al. reported that Shh is expressed in the epicardium at E12.5 and 

E13.5, during a critical period of coronary plexus growth.  The Shh signal is received by 

perivascular and myocardial cells, which respond by upregulating Hh target genes, including 

Ptc1 and Vegf-A.  The production of VEGF ligands by perivascular and myocardial cells is 

necessary for proper development of the coronary arteries and veins, respectively (56, 57). 

Although vessels in adult mice do express components of the Hh signaling pathway, 

Ptc1-lacZ activity decreases by post-natal day 14 and is maintained at low levels through 

adulthood ((58) and Chapter II).  Remarkably, even this low level of signaling is critical for 

cardiac function in adult mice.  Concurrent genetic ablation of Hh signaling in 

cardiomyocytes and vascular smooth muscle cells caused severe cardiac dysfunction and 

loss of coronary microvasculature by five days (59).   The Shh signaling pathway can also 

be robustly upregulated in adult vasculature by the administration of exogenous Shh.  

Interestingly, the Shh-responsive cells in adult vessels have been identified as interstitial 

fibroblasts and adventitial cells.  In a mechanism similar to that observed in coronary 

development, the interstitial mesenchymal cells respond to Shh by upregulating angiogenic 

growth factors such as VEGF-1, angiopoietin-1, and angiopoietin-2 (58).  In mouse models 

of hind-limb ischemia, diabetic wound healing, and myocardial ischemia, delivery of Shh 

ligand promoted angiogenesis (58, 60, 61).   

 

Hedgehog signaling functions in progenitor cell maintenance and proliferation 

The involvement of Hh signaling in the establishment, survival, and proliferation of 

progenitor cells has been observed in multiple tissues both during development and in 

adulthood.  For example, progenitor cells in the adult liver can be identified by Ptc1 

expression.  When these cells are isolated and cultured, treatment with cyclopamine, which 

blocks Hh signaling, induces apoptosis (62).  There have also been reports linking Hh 

signaling to progenitor cell maintenance in the hippocampus and subventricular zone of the 
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brain (63), progenitor cell self-renewal in mammary epithelium (64), and progenitor cell 

proliferation in the gut (65), inner ear (66), and skin (67).  An elegant model was proposed 

by Yu et al. for regulation of smooth muscle cell (SMC) progenitors by Shh in the developing 

kidney and ureter.  They found that ureteral mesenchymal cells located immediately 

adjacent to a source of Shh protein were maintained in an undifferentiated state and that 

these cells were absent in mice that lacked Shh signaling in the ureter.  Furthermore, Shh 

also had a proliferative effect on SMC progenitors in the ureter, such that mice lacking 

ureteral Shh showed defective SMC differentiation (68). 

 

Vascular precursors during development 

The development of all blood vessels begins with a primitive vascular network that is 

assembled from endothelial cells (vasculogenesis), extended (angiogenesis), and 

extensively remodeled (69, 70).  Endothelial cells themselves arise from mesodermal 

progenitors known as angioblasts and hemangioblasts.  Multiple signaling pathways 

influence angioblast differentiation, including VEGF and basic fibroblast growth factor 

(bFGF) (69).  Endothelial cells undergo further differentiation, including the adoption of 

either an arterial or venous identity (70).   

A critical step in the maturation of nascent vessels is the addition of supporting mural 

cells.  Diffusible factors secreted by endothelial cells recruit nearby mesenchymal cells, 

which migrate toward and cluster around the endothelial tube.  Knockout mouse studies 

have shown that PDGF-B is critical for this process, as mice deficient in PDGF-B or 

PDGFRβ develop fatal hemorrhages due to mural cell deficits (71-73).  Mural cells have 

diverse embryonic origins, reflective of the local mesenchymal tissue from which they are 

recruited during development.  In vessels that develop into major arteries and veins, the 

mesenchymal cells differentiate into smooth muscle cells, which assemble into multiple 

layers around the vessel.  Mural cells known as pericytes associate with small vessels 
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(including arterioles, capillaries, and venules).  Pericytes usually form no more than a single, 

often discontinuous, layer around the endothelial tube (69, 74).   

   

Progenitors for cells of the postnatal vasculature 

In postnatal tissue, multiple triggers can elicit an angiogenic response.  Increasing 

evidence supports the idea that endothelial and mural cells incorporated during the growth 

of new vessels can derive not only from preexisting differentiated cells, but also from 

vascular progenitor cells found throughout the body.  Precursors for both endothelial cells 

and smooth muscle cells have been identified in the blood, bone marrow, and resident 

within tissues such as adipose, heart, skeletal muscle, and vessel wall (75).   

Endothelial progenitor cells (EPCs) were first isolated from the mononuclear cell 

fraction of adult peripheral blood on the basis of CD34 and Flk-1 expression (76).  

Circulating endothelial progenitor cells were subsequently found to be derived from 

mobilized bone marrow-resident progenitors (77).  Physiological stimuli such as exercise, as 

well as pathophysiological events like vascular injury and acute myocardial infarction, can 

provoke the mobilization of EPCs from the bone marrow (78).   In addition, there is evidence 

suggesting that non-bone marrow sources contribute substantial numbers of replacement 

ECs in transplant arteriosclerosis (79) and circulating EPCs in response to tissue ischemia 

(80).  In the latter study, liver and small intestine transplantation experiments indicated that 

these organs also harbor tissue-resident EPCs that can be mobilized into circulation, home 

to sites of ischemia, and contribute to tissue repair (80). 

Like EPCs, smooth muscle progenitor cells (SMPCs) have been identified both in the 

circulation and resident within tissue.  Unsurprisingly, the bulk of interest in SMPCs has 

centered on their contribution to disease states.  SMCs are a key component of vascular 

lesions in atherosclerosis, transplant arteriopathy, vein graft arterisclerosis, and restenosis 



 11 

after angioplasty (81).  However, the relative contribution of various sources of SMPCs 

remains controversial and may depend on the model in question (82). 

There have been several reports of putative SMPCs isolated from postnatal tissue 

according to various criteria.  Majka et al. isolated non-side population (SP) cells from 

skeletal muscle.  These non-SP cells had a spindle-shaped morphology and expressed 

smooth muscle α-actin, CD45, platelet derived growth factor (PDGF) receptor β, and 

variable levels of Sca1 and CD34, but did not express desmin.  The isolated cells 

differentiated to smooth muscle in vivo when transplanted into skeletal muscle undergoing 

injury-induced neovascularization.  A bone marrow transplantation assay indicated that the 

skeletal muscle non-SP cells were largely derived from bone marrow (83).  Progenitor cells 

with both endothelial and smooth muscle potential were isolated from the aortas of adult 

mice by Sainz et al.  In this study, the authors focused on SP cells isolated from the aortic 

media that expressed Sca1 and low levels of c-kit and CD34.  The arterial SP cells 

differentiated to SMCs in vitro in response to transforming growth factor β (TGF-β) or PDGF-

BB treatment and formed vascular-like structures when cultured on Matrigel (84).  There are 

reports of SMPCs resident within other tissues as well.  However, there is a general lack of 

consistency in the methods and criteria used to isolate tissue-resident SMPCs, consistent 

with some degree of heterogeneity among the different populations.   

 

The perivascular progenitor cell niche 

Recently, the model of a perivascular niche for various populations of progenitor cells 

has generated much interest and excitement.  Conceptually, it is an elegant design.  

Vessels penetrate all types of tissue throughout the body, thus progenitor cells positioned in 

a perivascular location would be perfectly positioned to move into the surrounding tissue, 

migrate along the “track” provided by the vessel, or enter the circulation for homing to a 

distant site.  Progenitor cells considered to reside in a perivascular niche may be found 
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closely apposed to the endothelial cells of the microvasculature or embedded within the 

multilayered wall of larger vessels.   

Pericytes, while traditionally considered a type of mural cell that closely associates 

with microvascular endothelial cells, are increasingly regarded as functional progenitors 

themselves.  Their differentiation potentials are strikingly similar to those reported for non-

bone marrow multipotent mesenchymal stromal cells (MSCs, also known as mesenchymal 

stem cells) (85).  Indeed, recent reports strongly support the idea that MSCs in multiple 

tissues localize to a perivascular region and may in fact be indistinguishable from pericytes 

(86-88).  Other types of tissue-resident progenitor cells have also been reported to reside 

within close proximity to blood vessels, including undifferentiated spermatogonia (89), 

muscle satellite cells (90), and self-renewing brain tumor stem cells (91).  In the latter two 

cases, depletion of capillary vessels reduced the number of progenitor cells, indicating that 

the perivascular region provides a critical niche environment for maintenance of normal 

progenitor cell function.  

Two examples of progenitor cells residing within the vascular wall of large arteries 

were provided by Hu et al. and Zengin et al.  In work published in 2004, Hu et al. reported 

that the aortic root adventitia of ApoE-/- mice harbored a significant population of Sca1+ 

smooth muscle progenitor cells (92).  These cells, which we have termed adventitial Sca1+ 

progenitor cells (AdvSca1 cells) are further discussed in Chapters 2 and 3.  A 

complementary study by Zengin et al. reported that CD34+ EPCs can be isolated from 

human internal thoracic arteries.   Interestingly, these cells were localized in a specific 

region just outside the external elastic lamina, between the media and adventitia, that the 

authors termed a “vasculogenic zone”.   Progenitors from the vasculogenic zone formed 

capillary sprouts ex vivo and also displayed macrophage differentiation potential (93).  The 

degree of relationship between AdvSca1 cells and human CD34+ cells of the vasculogenic 
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zone is unclear.  However, these studies highlight the adventitial layer of large arteries as an 

important progenitor cell residence. 

 

Structure and cellular composition of arterial adventitia 

Surrounding the outside of major vessels is the adventitial layer, which is found 

immediately adjacent to the external elastic lamina.  The adventitia is commonly portrayed 

as a loosely organized, extracellular matrix-rich layer of the vessel wall composed primarily 

of fibroblasts.  However, multiple cell types in addition to fibroblasts reside within the 

adventitia of normal arteries.  In large muscular arteries, endothelial cells and pericytes 

 

Figure 2.  Structure of the artery wall and cell types within the adventitia.   

 

within the adventitia form a microvasculature network, the vasa vasorum, that penetrates 

and nourishes the medial and intimal layers of the artery wall (94-96).  The adventitia is also 
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home to perivascular nerves, lymphatic vessels, resident monocytes, macrophages, B and T 

lymphocytes, and dendritic cells (97, 98).  Peridadventitial adipose tissue is found closely 

surrounding and interspersed with the adventitia.   

In comparison to the intima and media, the adventitia has historically received 

relatively little attention, thus our knowledge about the developmental timing and origins of 

adventitial cells is limited.  A 1997 study by Lee et al reported that in developing chicken 

aortas, the ratio of the number of medial cells to adventitial cells gradually increases 

between days 6 and 16 of embryonic development.  The proliferation rate in the two 

compartments exhibits a similar trend, with a media:adventitia ratio of 1:2 from days 6-12 

and 3:2 after day 16 (99).  The authors used various antibodies against smooth muscle 

marker proteins to delineate the media, and any surrounding cells were considered 

adventitia.  Thus, much is yet unknown about the behavior of any particular cell type in the 

adventitia, or how this vessel layer assembles in mammalian systems. 

 

Adventitial response to vascular injury and contribution to neointima 

Adventitial cells play a key role in vascular wall growth, remodeling, and defense 

against infection (95, 97).  Experimental data shows that the adventitia responds rapidly and 

dramatically to vascular injury and stress.  One of the earliest vascular responses to multiple 

forms of vascular insult is an increase in adventitial cell proliferation leading to increased 

adventitial density and development of neoadventitia.  This type of adventitial response has 

been observed in hypertension (100, 101), pulmonary hypoxia (102), and various injury 

models, including arterial flow reduction (103) and overstretch (104, 105).   

Another common adventitial response, particularly to vascular injury, is the adoption 

of a “myofibroblast” phenotype.  In these instances, phenotypic changes may include the 

expression of SMC marker genes, increased migration, and increased production of 

extracellular matrix proteins such as collagen.  In a balloon injury model of porcine coronary 
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arteries, adventitial cells in uninjured vessels are negative for smooth muscle α-actin 

(SMαA) expression.  However, at 7 and 14 days after injury cells within the adventitia exhibit 

strong SMαA staining (104).  A similar pattern is observed in rabbit carotid arteries after a 

balloon injury that does not disrupt medial elastic laminae.  At 4 days after injury, adventitial 

cells expressing SM22α were localized primarily in the inner region of the adventitia (105).   

Changes in vascular structure following injury or during atherosclerotic plaque 

development include both geometric changes in actual vessel diameter and the 

development of a neointima.  It is logical that the adventitia, being the outermost layer of the 

vessel wall, would play an important role in regulating changes in vessel diameter.  Indeed, 

this is supported by experimental evidence from Labinaz et al, who found that neoadventitia 

development precedes arterial contracture in balloon-injured porcine coronary arteries (106).   

More controversial is the question of whether adventitial cells can participate in 

neointima formation.  In injury models that provoke neointimal development, the results have 

been mixed.  Following mild balloon injury (no disruption of elastic laminae) in rabbit carotid 

arteries, the authors observed some adventitia-derived cells capable of penetrating the 

adventitia-media boundary, but did not find evidence that they contributed to neointima 

formation (105).  However, adventitia to neointima migration was observed in a model of 

severe injury with a complete disruption of the medial layer and exposure of adventitial cells 

to the lumen (107).  Perhaps the most direct evidence of endogenous adventitial cell 

participation in neointima formation comes from a study by Siow et al in which they directly 

labeled adventitial cells with adenoviral lacZ.  Following balloon injury (without medial 

dissection) in rat carotid arteries, β-galactosidase-positive cells moved through the medial 

layer and were found in the neointima by 7 days after injury (108).  The variation in results 

between individual studies could be attributable to differences in the model organism, 

arterial bed, severity of vascular injury, and method of adventitial cell labeling/detection.  A 

common assumption is that the adventitial cells contributing to the neointima began as 
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fibroblasts that have undergone a transition to a “myofibroblast” phenotype in response to 

injury.  Yet the labeling methods used are not specific to any particular adventitial cell type, 

thus we can not say conclusively that “myofibroblasts” are the only adventitial cells 

participating in neointima formation.   

 

Transcriptional regulation of smooth muscle cell gene expression 

As cells differentiate to SMCs during development, they begin to express markers 

characteristic of a SMC phenotype.  Common SMC marker genes include SMαA, calponin, 

SM22α, smooth muscle γ-actin, and smooth muscle myosin heavy chain (SM-MHC) (109).  

SMαA is one of the first genes to be expressed during SMC differentiation.  It is highly 

abundant in SMCs (up to 40% of total protein) (110) but is also expressed by other SMC-like 

cell types and is not considered a marker specific to fully differentiated SMCs.  At the other 

end of the spectrum is SM-MHC, which is highly selective for actual SMCs (111).   

The transcription of most smooth muscle marker genes is controlled by one or more 

CArG elements (transcription factor binding sites with a “CC(A/T-rich)GG” motif) found within 

promoter and/or intronic sequences.  CArG elements are bound by homodimers of the 

transcription factor serum response factor (SRF).  Structurally, SRF shares homology with 

members of the MEF2 family of transcription factors.  All include an N-terminal MADS box 

comprised of a DNA-binding domain, a dimerization domain, and an interface for protein-

protein interactions (112).  SRF is widely expressed and can regulate cardiac and skeletal 

muscle genes as well as growth-responsive genes such as c-fos (113).  SRF-null mice 

display severe gastrulation defects and do not develop mesoderm, illustrating the 

widespread importance of this transcription factor (114). 

Because SRF is not intrinsically specific for SMC genes, additional mechanisms of 

regulation must be present in order to achieve specificity and precise control of SMC gene 

transcription.  There is a growing list of proteins that interact with SRF to modulate its 
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transcriptional activity.  These can act as co-activators or co-repressors with regards to SMC 

gene transcription.  Some, such as mHox (115) and Nkx3.1 (116), influence SRF binding to 

CArG elements.  Others associate with the SRF dimer through formation of a ternary 

complex to either augment (ex. myocardin family members (117) and Csrp1 and -2 (118)) or 

inhibit (ex. Elk1 (119), Msx1 and -2 (120)) the transcriptional activity of SRF.  In the case of 

myocardin family members MRTF-A (MAL) and MRTB-B, the actin cytoskeleton serves as 

an additional point of control.  MRTF-A and –B bind to actin and are released for nuclear 

translocation (and thus interaction with SRF) by actin treadmilling (121-123).   

Other factors have been shown to act indirectly to inhibit SRF-dependent SMC gene 

expression.  For example, Foxo4 strongly interacts with myocardin, repressing its ability to 

serve as an SRF co-activator (124).  The Krüppel-like factor Klf4 also potently inhibits 

myocardin-induced activation of SMC genes, both by inhibiting myocardin expression (125) 

and potentially by recruiting histone deacetylases to regulatory regions of SMC genes (126). 

 

 

 

Figure 3.  Serum response factor and cofactors.  SRF binds as a homodimer to the 
consensus CArG element in target gene promoters.  The transcriptional activity is modulated 
by the interaction of co-activators and co-repressors, many of which associate with SRF 
itself through protein-protein interactions with the MADS domain.  The crystal structure of 
the SRF MADS domain was adapted from Pellegrini et al. (127). 
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Introduction and Specific Aims 

This research was conducted towards the overall goal of identifying molecular 

mechanisms that contribute to formation and maintenance of SMC progenitors in the 

adventitia of artery walls.  These precursor cells, which we term AdvSca1 cells, have only 

recently been recognized as a novel source of SMCs in adult vessels.  We hypothesized 

that paracrine mechanisms which maintain these cells as SMC progenitors are active within 

a novel signaling domain in the adventitial layer of blood vessels in vivo.  We found that 

Sonic hedgehog (Shh) signaling is localized to this domain.  Moreover, AdvSca1 cells are 

significantly reduced in number in Shh knockout mice.  Wild-type AdvSca1 cells do not 

express SMC markers in vivo, yet they differentiate to SMC-like cells when removed from 

their native signaling environment in the artery wall.  Despite the absence of SMC marker 

expression, a subset of AdvSca1 cells express serum response factor (SRF) and myocardin, 

factors thought to be sufficient for expression of many SMC marker genes.  Unlike SMCs, 

AdvSca1 cells also express potent transcriptional repressors of SRF/myocardin-dependent 

transcription, including the Krüppel-like zinc finger factor Klf4.  These data are consistent 

with a model in which AdvSca1 cells in vivo are poised to become SMCs, but are kept in an 

undifferentiated state by transcriptional silencers that prevent the expression of SMC marker 

genes.  In addition, AdvSca1 cells are capable of propagating while maintaining a progenitor 

phenotype.  Thus, mechanisms regulating the self-renewal of AdvSca1 cells must also be 

present.  In addition to examining the role of Hh signaling in regulation of AdvSca1 cells, we 

have characterized their differentiation potential in vitro and in vivo and investigated the role 

of the transcriptional co-repressor Klf4 in regulating AdvSca1 self-renewal and SMC 

differentiation.   
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Specific Aim 1: Examine Shh signaling in the adventitia and test for a relationship 

between Shh signaling and the presence of adventitial Sca1+ progenitor cells. 

 

Specific Aim 2: Evaluate the progenitor potential and transcriptional regulation of 

AdvSca1 cells in vitro and in vivo. 

 

Specific Aim 3: Determine if maintenance of undifferentiated AdvSca1 cells depends 

on the transcriptional co-repressor Klf4. 
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A sonic hedgehog signaling domain in the arterial adventitia  
supports resident Sca1+ progenitor cells
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Introduction 

An adventitia surrounds most blood vessels where it functions as a dynamic 

compartment for cell trafficking into and out of the artery wall.  The adventitia is a site for 

formation and regression of microvessels that penetrate and nourish the medial and intimal 

layers of vessel wall (1-3).  The adventitia also contains perivascular nerves and lymphatic 

vessels and is an important domain for NAD(P)H oxidase activity in the vessel wall (4).  

Adventitial cells participate in vascular growth and repair and are important determinants of 

lumen size via control of inward or outward wall remodeling processes (2, 5).  Recent 

studies report unexpected roles for the adventitia insofar as it supports resident progenitor 

cells that can adopt both vascular and nonvascular fates (6-8).  Despite these important 

functional properties, the signals and environmental cues that confer such unique and 

dynamic properties to the adventitial layer remain largely unknown. 

Sonic hedgehog (Shh) is an essential morphogen and growth factor for many 

developing tissues (9).  In the vascular system, Shh signaling is important for specification of 

arterial-venous identity of endothelial cells (10), remodeling of yolk sac blood vessels (11), 

and recruitment of mural cells (12).  In adult blood vessels, Shh is angiogenic in ischemic 

hindlimb and corneal micropocket assays (13, 14), promotes perineural neovascularization 

in diabetic animals (15), and protects the myocardium against chronic ischemia (16).  Shh 

stimulates production of angiogenic factors, including VEGF-A and angiopoietin-1 by 

interstitial fibroblasts (13, 14), and promotes endothelial cell chemotaxis and tube formation 

(17, 18).  Therefore, Shh plays important roles in cell-cell communication during vascular 

development and adult wound repair. 

Hedgehog (Hh) proteins signal by binding to Patched-1 (Ptc1) or Patched-2 (Ptc2) 

receptors and Cdo/Boc accessory proteins at the cell surface, resulting in derepression of 

Smoothened (Smo) (19).  Ptc proteins are 12-transmembrane domain receptors that are 

structurally related to the resistance-nodulation-division (RND) family of bacterial membrane 
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permeases (20) and the Niemann-Pick C1-like1 cholesterol transporter (21).  Ptc proteins 

contain a conserved sterol-sensing domain, and recent studies suggest that Ptc1 represses 

Smo by transporting activating sterols out of the cell (22).  Hh binding to Ptc1 inhibits 

transporter activity, thereby allowing activating sterols to accumulate (19, 21).  Activated 

Smo traffics into the primary cilium where Hh signal mediators are concentrated (23, 24) and 

triggers phosphorylation of Gli factors that then move to the nucleus and stimulate gene 

transcription (25).  Among Hh target genes are Ptc1, Ptc2, and Gli1.  Therefore, Ptc1-lacZ, 

Ptc2-lacZ, and Gli1-lacZ activities are used as sensitive reporters of Hh signaling in 

transgenic mice (26-28). 

The origins and functions of the adventitia are poorly understood.  Hu et al. (6) 

reported that stem cell antigen-1 (Sca1)-positive cells with a potential to differentiate into 

smooth muscle cells (SMCs) were found in the aortic adventitia of adult ApoE-/- mice 

(AdvSca1 cells).  When transferred to the adventitial side of experimental vein grafts, 

AdvSca1-derived SMCs made up 30% of cells in the graft neointima after 4 weeks (6).   

The adventitia responds to balloon catheter injury with rapid increases in SMα-actin 

(SMαA) and SM22α expression (29, 30).  Endothelial progenitor cells are reported to cluster 

between the media and adventitia in human arteries (7, 8).  These cells formed capillary 

sprouts in ex vivo ring culture assays and were recruited by tumor cells for capillary vessel 

formation in vivo.  Given the role of Shh signaling in the maintenance of resident stem and 

progenitor cells in skin (31), nervous system (32), lymphoid tissue (33), and hematopoietic 

cells (34), we sought to test for similar roles for Hh signaling in the adventitial tissue 

surrounding blood vessels. 

 

Hypothesis 

Active Shh signaling in the adventitia contributes to the proper development of the 

adventitia and to maintenance of adventitial Sca1+ SMC progenitors. 
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Materials and Methods 

Animals Used:  All protocols were approved by the Institutional Animal Care and Use 

Committee at the University of North Carolina.  Mice used include Ptc1-lacZ (Ptch1tm1Mps, 

Jackson Laboratories; 003081, described in (26)), Ptc2-lacZ (Ptc2tm1Dgen; Jackson 

Laboratories; 005827), Gli1-lacZ (Gli1tm2Alj; Jackson Laboratories; 008211), Shhtm1Amc 

(Jackson Laboratories; 003318), 129/SvEvJ and C57BL/6J (Jackson Laboratories).  Noon 

on the day of vaginal plug was designated E0.5. 

β-Galactosidase Assay:  Embryos or tissues were fixed in fresh 0.2% glutaraldehyde 

and stained with a solution containing 5 mM potassium ferricyanide, 5 mM potassium 

ferrocyanide, and 1 mg/ml X-gal substrate at 37°C overnight.  Postfixation was performed in 

4% paraformaldehyde (PFA) at 4°C overnight.  For histological analysis, tissue was 

dehydrated, cleared (Histo-Clear; National Diagnostics), embedded in paraffin, sectioned, 

and counterstained with nuclear fast red (Vector Laboratories). 

Immunofluorescence Staining:  Tissues were fixed for 1 hr in freshly prepared 4% 

PFA, rinsed in PBS, saturated with 20% sucrose for cryoprotection, embedded in agar, and 

frozen in OCT.  Twelve-micrometer cryosections were fixed in methanol at room 

temperature for 5 min, permeabilized with 0.05% Tween-20 (in PBS) for 2 min, rinsed in 

PBS, then blocked in 2% normal goat serum (NGS) or normal donkey serum for 2–8 h.  

Sections were incubated with primary antibodies at 4°C overnight, rinsed twice in PBS + 

0.1% BSA, then incubated with secondary antibodies for 2–8 h at room temperature, 

protected from light.  Nuclei were counterstained with 10 μg/ml Hoechst 33258 in H2O and 

slides were mounted in Mowiol with 2.5% DABCO. 

Primary antibodies used for these studies included rabbit anti-β-galactosidase 

(1:500; MP Biomedical 55976), goat anti-Shh (1:100; R&D Systems AF445), rabbit anti-Dhh 

(1:100; Santa Cruz Biotechnology sc13089), rabbit anti-SM-MHC (1:100; Biomedical 
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Technologies BT-562), mouse anti-SMαA (1:100; Sigma A2547), rat anti-Sca1 (1:100; BD 

Pharmingen 553333), rabbit anti-Ihh (1:100; Santa Cruz Biotechnology sc13088), and rat 

anti-PECAM-1 (1:100; BD Pharmingen 550274).  All secondary antibodies were AlexaFluor-

conjugated (Invitrogen) and used at a dilution of 1:400 in PBS.  Immunofluorescence 

staining was visualized with a Leica BM IRB inverted epifluorescence microscope, with 

images captured by a QImaging Retiga 1300 digital camera.  Confocal images were 

obtained with a Zeiss LSM5 Pascal laser scanning confocal microscope and processed with 

Image J and Adobe Photoshop. 

RT-PCR Analysis:  Total cellular RNA was isolated by guanidinium isothiocyanate 

denaturation and phenol/chloroform extraction as described (35). Two-step RT-PCR was 

carried out with the GeneAmp RNA PCR kit (Applied Biosystems) according to the 

manufacturer’s instructions.  The sequences for primers used for RT-PCR analysis of gene 

expression are provided in Appendix B.  Unless otherwise indicated, primer sequences were 

designed for this study based on mouse genomic sequence available through Ensembl 

(release 45, June 2007; (36)). Primers were designed with the aid of Primer3 software (v. 

0.4.0) (37).   

AdvSca1 Cell Count from Shh-/- Embryos:  Embryos were isolated at E18.5.  The 

aorta was isolated and divided by anatomical region into ascending and descending portions 

(see schematic in Figure 11E).  Shh-/- embryos were pooled and matched to a control group 

comprised of an equal number of WT littermates.  Tissue was digested with 14 mg/ml 

collagenase type 2 (Worthington) and 0.75 mg/ml elastase (Roche) in HBSS for 2 h at 37°C 

with gentle rocking. The cell suspension was filtered (70 μm), and cells in the filtrate were 

pelleted at 300xg, rinsed in PBS+0.5% BSA, and counted. Sca1+ cells were isolated by 

using anti-Sca1 immunomagnetic MicroBeads and a MACS cell separation system 

(Miltenyi). The number of isolated Sca1+ cells was determined and compared with initial cell 
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counts to calculate the fraction of Sca1+ cells.  This experiment was repeated twice with 

similar results.  Error bars show standard error of the mean.   

Cyclopamine treatment of AdvSca1 cells in culture:  Sca1+ cells were isolated from 

the adventitia according to standard protocol.  Cells were cultured for 3 days to allow 

attachment and then cyclopamine (TRC, C988400) was added to a final concentration of 20 

μM.  Medium containing 0.4% DMSO was used as a vehicle control.  Cells were cultured for 

an additional 7 days, and 10 μM BrdU (BD Pharmingen, 550891) was added to culture 

medium 24 hrs before fixation.   

 

Results 

Hedgehog signaling in postnatal blood vessels 

We examined β-gal activity in blood vessels of Ptc1-lacZ, Ptc2-lacZ, and Gli1-lacZ 

knock-in mice at various developmental timepoints.  LacZ activity in the aortic root and 

coronary arteries was first detectable at embryonic day 15.5 (E15.5), with the strongest 

signal present at early postnatal timepoints.  In whole-mount hearts at postnatal day 2 (P2), 

lacZ activity was clearly present in coronary arteries, but not in myocardium or epicardium 

(Figure 4A-C).  The ascending aorta and pulmonary trunk were strongly positive at this time 

(Figure 4A-C).  Both Ptc1-lacZ and Ptc2-lacZ activities declined with age and were detected 

at low levels in coronary arteries and transverse aorta from adult mice (Figure 4D-E).  In 

contrast, Gli1-lacZ signal in coronary arteries, aorta, and pulmonary trunk remained robust 

into adulthood (Figure 4F). 
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Figure 4.  Hedgehog signaling in coronary and outflow tract arteries.  Whole hearts were 
isolated from Ptc1-lacZ (A, D), Ptc2-lacZ (B, E), or Gli1-lacZ (C, F) mice at either postnatal 
day 2 (P2; A-C) or adult (D-E) timepoints.  At P2, the aorta, pulmonary trunk, and coronary 
arteries exhibit strong β-galactosidase activity driven by all three promoters.  By adult 
stages, the number of cells with active Ptc1 and Ptc2 gene expression has decreased 
dramatically, while Gli1 continues to be expressed. 

 

Ptc1-, Ptc2-, and Gli1-lacZ activity was present throughout the body in large and 

medium-sized arteries, including mesenteric (Figure 5A-C), intercostal (Figure 5D-F) and 

femoral (Figure 5G-I) arteries.  In the mesenteric arcade, lacZ staining of arteries was more 

intense than that of veins (Figure 5A-C), whereas lymphatic vessels were negative.  In 

cross-sections of the aortic root and coronary arteries at P2, it is apparent that the majority 

of lacZ activity is restricted to the adventitia, with only an occasional positive cell found in the 

media or intima (Figure 6).  Thus, active Hh signaling is found in large and medium-sized 

arteries and veins in the perinatal period and is localized to the adventitia of these vessels.
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Figure 5.  Hedgehog signaling in other arterial beds.  Tissue was isolated from Ptc1-lacZ (A, 
D, G), Ptc2-lacZ (B, E, H), or Gli1-lacZ (C, F, I) mice at P2 and stained with X-gal.  All major 
arteries examined, including mesenteric (A-C), intercostal (D-F), and femoral (G-I), were 
positive for lacZ expression.  V, vein; A, artery; ica, intercostal artery; N, nerve. 
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Figure 6.  Hedgehog-responsive cells in the adventitia of major arteries.  Tissue from Ptc1-
lacZ (A, C, E) and Ptc2-lacZ (B, D, F) mice at P2 was isolated and stained with X-gal.  
Cross-sections through the aorta (A-B, E-F), pulmonary trunk (A-B), and coronary arteries 
(C-D) reveal that Hh-responsive lacZ+ cells are restricted to the adventitia during early 
postnatal development.  Staining patterns in Gli1-lacZ mice (not shown) were virtually 
identical.  PT, pulmonary trunk; Ao, aorta. 

 

Sonic hedgehog in the arterial adventitia 

Shh protein was localized to the interface between the media and adventitia in large 

and medium-sized arteries at 2 days after birth (Figure 7).  This pattern of Shh distribution 

colocalized with Ptc1-lacZ (Figure 7B, inset) and Ptc2-lacZ activities.  We could not detect 

Indian hedgehog (Ihh) in postnatal arteries and found only low levels of desert hedgehog 

(Dhh) in the endothelium (data not shown).  These results indicate that Ptc1-lacZ and Ptc2- 
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Figure 7.  Distribution of Shh and Sca1+ cells in the adventitia.  (A) Shh protein is found 
outside the aortic external elastic lamina (marked by green autofluorescence) at P2.  (B) 
Shh protein (red) is found between the media (SMα-actin, green) and adventitia of 
descending aorta.  (B, inset) Shh (red) is colocalized with β-gal in aortic sections from Ptc1-
lacZ mice.  (C) Sca1+ cells (red) reside outside the media (SMα-actin, green) in P2 aorta.  
(D) Sca1+ cells (green) are found in close proximity to Shh (red) and are embedded within a 
β-gal-positive domain (inset) in aortic adventitia from Ptc1-lacZ mice.  (E) Mesenteric 
vessels stained for SMα-actin (green) and Shh (red).  (F) Femoral arteries stained for SMα-
actin (green) and Sca1 (red).  Images are stacked Z-plane sections from confocal 
microscopy.  Adventitial localization of Sca1+ cells correlates with the distribution of Shh 
protein and active Shh signaling in vivo. 
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lacZ activities in the artery wall correlate with localized deposition of Shh protein in a 

circumferential ring in the extracellular matrix (ECM)-rich space between the media and 

adventitia. 

Despite the localization of Shh protein at the media/adventitia interface, Ptc1-, Ptc2-, 

and Gli1-lacZ activity suggests that only adventitial cells are Hh-responsive.  We tested the 

expression of Hh receptors and co-receptors in isolated adult medial or adventitial cells by 

RT-PCR (Figure 8).  The expression of Ptc1, Ptc2, Cdo, and Boc is significantly higher in 

adventitial cells than in media.   

 

Figure 8.  Expression of hedgehog pathway components in media and adventitia.  RNA was 
isolated from adult aortic media (M) or adventitia (A) and used for RT-PCR.  Key hedgehog 
signaling factors are more highly expressed in the adventitia. 

 

 

Sca1+ cells in the adventitia 

A previous report (6) described Sca1+ cells in the adventitia surrounding the aortic root 

in adult ApoE-/- mice.  One possible role of Shh may therefore be to maintain Sca1+ 

progenitor cells within this domain of artery wall.  To gain insight into the development of 

AdvSca1 cells in artery walls in vivo, we examined mice from embryonic day 12.5 (E12.5) to 
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Figure 9.  AdvSca1 cells in developing aorta.  (A–F) Tissues were obtained at the time 
points indicated.  Cross-sections through the aortic root were stained for Sca1 (red), SMα-
actin (green), and DAPI (blue).  In the adventitial space between the aorta and pulmonary 
trunk, AdvSca1 cells first appear between E16.5 and E17.5 (white arrow in B) and persist in 
this location into adulthood.  Ao, aorta; PT, pulmonary trunk.  
 

 

12 weeks after birth.  In the perivascular space between the ascending aorta and pulmonary 

trunk, AdvSca1 cells first appeared between E16.5 and E17.5 (Figure 9B, arrow).  This is 

well after the SMCs of the tunica media are established, which is evident by E15.5 (Figure 

9A).  AdvSca1 cells were present within the adventitia at the aortic root at all subsequent 
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time points examined, and they increased in number with postnatal growth of the artery wall 

(Figure 9C–F).  As shown in Figures 7 and 9, Sca1+ cells are restricted to the adventitia 

(AdvSca1 cells) and exhibit little or no overlap with SMα-actin-positive cells in the media.  A 

similar distribution was found in mesenteric and femoral arteries (Figure 7F and data not 

shown).  Close proximity was found between Shh protein and AdvSca1 cells (Figure 7D).  

Extensive overlap was observed between β-gal-positive cells and AdvSca1 cells in the aortic 

adventitia of Ptc1-lacZ mice (Figure 7D, inset).  These findings suggest that a zone of Shh 

signaling in the adventitia identifies a unique domain of artery wall within which resident 

Sca1+ vascular progenitor cells are found in vivo. 

AdvSca1 cells were isolated by immunoselection and examined for progenitor cell 

markers.  AdvSca1 cells exhibited a CD34+/c-kitlow/CD140b+ marker profile (Figure 10A) and 

were negative for CD45 and CD68 (data not shown), similar to the profile reported by Hu et 

al. (6).  Freshly isolated AdvSca1 cells consistently expressed markers of Shh signaling 

including Ptc1, Ptc2, Smo, Gli1, Gli2, and Gli3 (Figure 10B).  The distribution of Shh in the 

extracellular space is governed by multiple binding and transport proteins including 

hedgehog interacting protein-1 (Hhip1), Cdo, and Boc (reviewed in (19)), all of which are 

expressed by AdvSca1 cells (Figure 10B).  In addition, AdvSca1 cells contain mRNA for Shh 

and Dhh, with few, if any, transcripts detectable for Ihh (Figure 10B).  These results suggest 

that AdvSca1 cells both produce and respond to Shh, and that the restricted distribution of 

Shh in the artery wall is, in part, locally controlled by factors produced by AdvSca1 cells 

themselves. 
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Figure 10.  Expression profile of isolated AdvSca1 cells.  RT-PCR analysis of (A) common 
stem cell markers and (B) hedgehog pathway components in immunomagnetically isolated 
AdvSca1 cells from adult mice.  Components of a functional Hh signaling network are 
present in AdvSca1 cells.   

 
 

Analysis of AdvSca1 cells in Shh-/- mice 

To determine whether Shh was required for the formation or maintenance of 

AdvSca1 cells, we examined Shh-/- mice.  Two anatomically defined sites were studied at 

E18.5, as Shh mutants do not survive birth.  The presence of AdvSca1 cells at the aortic 

root, where they are abundant both during development and in adult mice (Figure 9 and (6)), 

was confirmed in wild-type mice (Figure 11A).  By contrast, we could not detect AdvSca1 

cells at the aortic root in Shh-/- embryos (Figure 11B).  A small number of AdvSca1 cells 

were found in the transverse portion of thoracic aorta (Figure 11F).  An absence of septation 

of the common truncus arteriosus in Shh-deficient embryos has been described (38).  
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AdvSca1 cells were present in the descending thoracic aorta of Shh-/- embryos, but always 

in reduced numbers (Figure 11D, F).   

 

 

 
Figure 11.  AdvSca1 cells in Shh-/- arteries.  (A–D) Aortic tissues from WT (A and C) and 
Shh-/- (B and D) embryos at E18.5.  Cross-sections through aortic root (A and B) and 
descending aorta (C and D) were immunostained for Sca1 (red), SMα-actin (green), and 
DAPI (blue).  (E) Solid lines indicate relative positions of sections in A–D.  (F) Dotted line 
boxes in E correspond to aortic segments shown here.  AdvSca1 cells are absent in aortic 
root, greatly reduced in ascending and transverse aorta (termed ascending), and diminished 
in descending aorta of Shh-/- embryos.   
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In addition to AdvSca1 cells, multiple other cell types within the adventitia may be 

dependent on active Hh signaling during early development for proper establishment, 

maintenance, and/or function.  In order to determine whether Shh-/- embryos exhibit a 

widespread defect in aortic adventitia development, we examined cross-sections through 

the aortic root.  In regions where AdvSca1 cells are absent in Shh-/- vessels, adventitial 

cells are present in numbers comparable to wild-type vessels (Figure 12, compare C and D).   

 

 

 
Figure 12.  Development of aortic adventitia in Shh-/- mice.  (A and C) Aortic root images 
from wild type mice at E18.5.  The boxed segment in A is shown at higher magnification in 
C. The adventitia is identified as DAPI-positive nuclei (blue, indicated by white arrows) 
outside the SMα-actin-positive medial layer (green).  Although the adventitial layer is still 
forming at E18.5, a similar number of DAPI-positive nuclei are found in the adventitia 
surrounding the aortic root in both WT (A and C) and Shh-/- mice (B and D).  wt, wild type; 
Ao, aorta; PT, pulmonary trunk 
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 The reduced numbers of AdvSca1 cells observed in Shh-/- vessels could be the 

result of defective recruitment of AdvSca1 cells from extravascular sites, a decrease in 

AdvSca1 cell proliferation within the adventitia, or a defect in AdvSca1 cell survival.  We 

used cyclopamine, a small-molecule inhibitor of Smo activity, to test the response of 

AdvSca1 cells to Hh signaling blockade in vitro.  Addition of cyclopamine to cell culture 

medium caused a drastic decrease in AdvSca1 cell numbers (Figure 13A-C).  The 

proliferation index of AdvSca1 cells in the presence of cyclopamine is decreased by ~50%, 

as measured by BrdU incorporation (Figure 13D).  There was no increase in apoptosis 

levels by TUNEL assay (data not shown).   

  

 

 
Figure 13.  Cyclopamine treatment of AdvSca1 cells in vitro.  (A-B) Isolated Sca1 cells were 
cultured under standard conditions (A) or with the addition of 20 μm cyclopamine (B).  
Immunofluorescence staining highlights the difference in overall cell numbers between 
culture conditions.  The change in cell number (C) can be attributed to a reduction in the 
proliferation of AdvSca1 cells, as measured by BrdU incorporation (D).   
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Discussion 

Hedgehog signaling in the artery wall 

Ptc1-lacZ and Ptc2-lacZ activities in the adventitia of large and medium-sized 

arteries were greatest between 1 and 10 days after birth.  Although the basic structure of 

major arteries is established at birth, substantial growth and remodeling occur in the 

perinatal period.  For example, the number of SMCs in rat aorta increases 2.5-fold, wall 

thickness doubles, and collagen and elastin contents increase ~3-fold in the first month after 

birth (39).  These changes in wall structure are adaptations to large perinatal increases in 

blood flow and blood pressure that are accompanied by corresponding increases in smooth 

muscle contractile protein mass (40).  After 3 months of age, growth of the artery wall is 

diminished, cell proliferation rates are low, and wall structure has reached an adult state.  

We found Ptc-lacZ activities and Shh protein levels were maintained at low levels in adult 

mouse arteries, suggesting that robust adventitial Shh signaling activity correlates with rapid 

postnatal growth and remodeling of the artery wall. 

At this time, we can only speculate about the mechanisms that maintain robust Gli1-

lacZ expression in the adventitia of adult arteries, at a time when Ptc1- and Ptc2-lacZ levels 

are at a low baseline.  A similar phenomenon was reported in a genetically-induced model of 

mouse prostate cancer.  During tumor progression from 6-16 weeks, the expression of both 

Shh and Ptc1 was significantly decreased.  In contrast, Gli1 expression was not significantly 

altered (41).  Further evidence supports the notion that Gli1 expression may differ from other 

Hh reporter genes, such as Ptc1 and Ptc2, due to regulation by Hh-independent 

mechanisms.  Nolan-Stevaux et al. generated mice with a genetic ablation of Smo in the 

pancreatic epithelium.  Surprisingly, the expression levels of Gli1 and Ptc1 in the pancreatic 

ducts were not significantly affected by the loss of Smo activity.  Based on a previous report 

that TGF-β signaling can induce the expression of Gli1 and Gli2 (42), the authors tested the 

effects of TGF-β treatment of Smo-/- cells in vitro.  Both Gli1 (4.5-fold) and Gli3 (>25-fold) 



 

48 

were upregulated in response to TGF-β.  However, Ptc1 expression was decreased by 40% 

under these conditions (43).  Given the marked upregulation of Gli3 and its known role as a 

transcriptional repressor, it is tempting to speculate that the differential response of Gli1 and 

Ptc1 promoters to TGF-β treatment may be attributed to Gli3 repression of Ptc1 expression.  

Yet each promoter contains a canonical Gli binding site, so it may be necessary to look 

beyond Gli-mediated mechanisms of regulation and conduct a more careful examination of 

the surrounding sequences in the promoter regions in a search for alternate transcription 

factor binding sites (44, 45) or regions of epigenetic regulation (46). 

 

Distribution of Shh in the adventitia 

Ptc1-lacZ and Ptc2-lacZ activities were colocalized with Shh protein that 

accumulates at the border between the media and adventitia.  Once secreted, movement of 

Hh proteins in the extracellular space is limited and regulated by multiple mechanisms which 

contribute to the formation of a prototypical morphogen gradient (47).  Covalent lipid 

modifications at both amino and carboxyl-terminal domains are required for the aggregation 

of Hh proteins into multimers, and thus for proper gradient formation and long-range 

signaling (48-53).  Secreted Hh protein multimers interact with heparan sulfate 

proteoglycans (HSPGs), which further regulates their movement (54, 55).  Chan et al. used 

mice carrying a mutation in the N-terminal Cardin-Weintraub motif of Shh to specifically 

investigate the requirement for Shh-proteoglycan interaction during development.  

Interestingly, disruption of Shh-proteoglycan interactions affected growth regulation in 

multiple organs but not tissue patterning.  Neural progenitor proliferation in the developing 

cerebellum, spinal cord, subventricular zone, and subgranular layer of the hippocampus was 

significantly impaired in mutant mice.  The authors further concluded that Shh-proteoglycan 

interactions are important both in delineating the progenitor cell niche and in modifying the 

response of individual cells to Shh ligand (56).  Finally, there are multiple mammalian 
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receptors that can bind Hh ligands at the cell surface, thus limiting ligand diffusion.  The 

expression of several of these receptors is regulated by Hh signaling, thus comprising a 

feedback mechanism.  Ptc1 and Hhip both bind and sequester Hh ligand at the cell surface, 

which causes a reduction in Hh ligand sensitivity of the individual Ptc1- and Hhip-expressing 

cell as well as reducing the availability of free ligand to neighboring cells.  Mice lacking Ptc1 

and Hhip exhibited multiple defects that were consistent with an increased magnitude and 

range of Shh signaling (57).   

Our data show that Shh protein is concentrated between the media and adventitia, 

outside the external elastic lamina.  The sequestration of high protein levels in this region 

may result from local synthesis, secretion, and retention of Shh multimers by ECM 

components, such as the HSPG perlecan (58), in the artery wall.  Ptc-lacZ-positive cells are 

located throughout the adventitia, whether directly adjacent to Shh protein at the media-

adventitia interface or several cell layers removed.  This suggests that Shh ligand is 

available throughout the adventitia, although it would be reasonable to expect a 

concentration gradient extending from the high protein levels found at the media-adventitia 

boundary.  The immunofluorescence staining methods that we use to visualize Shh protein 

localization may limit our ability to detect a subtle gradient in the artery wall.  Other data from 

our lab (not shown) suggests that multiple cell types throughout the adventitia both produce 

and respond to Shh ligand.  Therefore, it will be interesting to examine the specific 

localization of ECM components within the adventitia to determine if Hh-binding components 

such as HSPGs are preferentially concentrated near the media-adventitia border.   

 

Role of Shh signaling in establishing AdvSca1 niche 

The presence of residual AdvSca1 cells suggests that factors other than Shh are 

involved in homing and/or maintenance of these cells.  Because Dhh expression was 

detected in the aorta, low levels of Dhh may allow some of these cells to escape a 
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requirement for Shh in the artery wall.  As expected, we have found in preliminary 

experiments (not shown) that multiple other growth factor ligands, receptors, and pathway 

components are expressed in the adventitia.  One or more of these pathways may also 

partially compensate for the loss of Shh and permit some AdvSca1 cells to reside within the 

adventitia.   

Shh-deficient embryos do not form a septation complex in the truncus arteriosus 

(38).  We cannot at this time distinguish between direct effects caused by the loss of Shh 

signaling in AdvSca1 cells themselves versus indirect effects of Shh deficiency on the 

developing outflow arteries as the cause of the loss of AdvSca1 cells from the adventitia 

surrounding the vessels shown in Figure 11.  The lack of truncus arteriosus septation in 

Shh-/- outflow tracts is a result of defective migration of cardiac neural crest cells during 

early stages of cardiovascular development (38).  Lineage tracing experiments (see Chapter 

3) indicate that AdvSca1 cells are not themselves derived from neural crest.  However, this 

does not rule out the possibility that neural crest-derived cells secrete factors or ECM that is 

critical for the establishment of a functional adventitial niche.   

Hedgehog signaling has been shown to function cell-autonomously to regulate 

multiple aspects of progenitor cell behavior.  Progenitor cells in the adult liver can be 

identified by Ptc1 expression.  When these cells are isolated and cultured, treatment with 

cyclopamine, which blocks Hh signaling, induces apoptosis (59).  There have also been 

reports linking hedgehog signaling to progenitor cell maintenance in the hippocampus and 

subventricular zone of the brain (60) and to progenitor cell proliferation in the gut (61), inner 

ear (62), and skin (31).  Our data now points to a role for Hh signaling in promoting the 

proliferation of AdvSca1 cells.  In contrast to the robust effects of Hh pathway inhibition, we 

found that addition of exogenous Shh protein to AdvSca1 cells in vitro did not affect their 

differentiation or proliferation (Figure 19).  This suggests that AdvSca1 cells in culture are 

exposed to adequate concentrations of Hh factors, either through self-production and 
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secretion or as supplied by serum-containing medium.  Whether the effect of Hh pathway 

activity on AdvSca1 cell proliferation is cell-autonomous remains to be investigated and will 

likely require the development of genetic tools permitting in vivo cell-specific targeting of 

AdvSca1 cells (see Chapter 5).   
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CHAPTER 3 

Adventitial Sca1+ cells are maintained in an undifferentiated phenotype in vivo
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Introduction 

In many adult tissues, stem or progenitor cells are maintained locally and can be 

stimulated to participate in physiological and pathological tissue regeneration and repair.  

Vascular progenitor cells (including endothelial cell (EC) and smooth muscle cell (SMC) 

progenitors) have been identified in a variety of locations throughout the body, including 

blood, bone marrow, and adipose tissue (1).   

Stem cell antigen 1 (Sca1) is a glycosyl-phosphatidylinositol-anchored cell surface 

protein that was originally identified as an antigen upregulated on activated lymphocytes.  

Sca1 expression is commonly used as a method to identify and enrich hematopoietic stem 

cells, although it is also expressed by a variety of stem, progenitor, and differentiated cell 

types (2).  Defects observed in Sca1-null mice (which are viable) indicate that the protein 

does have a functional role in some cell types, including hematopoietic cells (3), 

mesenchymal stem cells (4), and myoblasts (5, 6).   

A novel population of Sca1+ progenitor cells was identified within the aortic adventitia 

of adult ApoE-/- mice by Hu et al. in 2004.  The adventitial Sca1+ (AdvSca1) cells also 

expressed the stem cell markers c-kit and CD-34.  Interestingly, bone marrow transplant 

experiments showed that AdvSca1 cells were not bone marrow-derived.  Isolated AdvSca1 

cells responded to platelet-derived growth factor BB (PDGF-BB) treatment in vitro by 

differentiating to SMCs.  AdvSca1 cells that were transferred to the adventitial surface of an 

irradiated vein graft in vivo underwent SMC differentiation and contributed to neointima 

formation (7). 

 The process of smooth muscle differentiation has important implications in both 

developmental and disease processes.  The transcription of most smooth muscle marker 

genes is controlled by one or more CArG elements found within promoter and/or intronic 

sequences.  CArG elements are bound by dimers of the transcription factor serum response 

factor (SRF).  However, SRF is not intrinsically specific for SMC genes; it is widely 
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expressed and can also regulate cardiac and skeletal muscle genes, as well as growth 

responsive genes such as c-fos (8).  In order to achieve specificity and precise control of 

SMC gene transcription, additional mechanisms of regulation must be present.  Several SRF 

cofactors have been shown to modulate its transcriptional activity (see Chapter 1).  These 

co-activators and co-repressors can augment or inhibit SRF transcriptional activity through 

physical association, modulating SRF-CArG binding, or indirectly inhibiting SRF-dependent 

gene expression. 

 During development, the smooth muscle cells and pericytes that are recruited by 

developing vessels arise from diverse embryonic origins (9).  Studies in avian and mouse 

systems have shown that there are at least four distinct populations contributing medial 

SMCs to the aorta, including cells derived from secondary heart field (10, 11), cardiac neural 

crest (12, 13), somites (14-16), and a transient population of SMCs originating from 

splanchnic mesoderm (17).  Cells from the proepicardial, serosal, and pleural mesothelia 

contribute SMCs to coronary, mesenteric, and pulmonary vessels, respectively (18-20).  

Several studies have suggested that SMCs of different developmental origins may also 

exhibit functional disparities.  For example, avian neural crest-derived SMCs responded very 

differently to TGF-β1 treatment in vitro than did mesoderm-derived SMCs (21).   

For years, investigations into the origin of SMCs in vascular disease were based on 

the idea that new SMCs arise from preexisting SMCs via dedifferentiation (22).  There have 

been multiple recent reports, however, that suggest new SMCs can also arise from adult 

progenitors which are found within the vessel wall itself (7, 23-27).  Resident progenitor cells 

within the arterial adventitia are perfectly poised to respond to local inductive signals and 

undergo smooth muscle differentiation to participate in vessel wall repair or disease 

processes.  Therefore, we have more closely examined the regulation of smooth muscle 

differentiation in AdvSca1 cells.   
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Hypothesis 

AdvSca1 cells in vivo express a “pre-SMC” phenotype that is poised for signal-

responsive SMC differentiation.  While normally maintained as progenitors within the vessel 

wall, AdvSca1 cells will respond to differentiation stimuli by upregulation of SMC marker 

genes and differentiation to a mural cell phenotype.   

 

Materials and Methods 

Animals Used:  All protocols were approved by the Institutional Animal Care and Use 

Committee at the University of North Carolina.  Mice used include Wnt1-cre (Tg(Wnt1-

cre)11Rth Tg(Wnt1-GAL4)11Rth/J; Jackson Laboratories; 003829), Nkx3.2-cre (gift of 

Warren Zimmer, Texas A&M University, described in (28)), WT1-cre (gift of John Burch, Fox 

Chase Cancer Center), Tie2-cre (Tek-cre1Ywa/J; Jackson Laboratories; 008863), Rosa26-

reporter (B6.129S4-Gt(ROSA)26Sortm1Sor/J; Jackson Laboratories; 003474), Ptc1-lacZ 

(Ptch1tm1Mps, Jackson Laboratories; 003081, described in (29)), Ptc2-lacZ (Ptc2tm1Dgen; 

Jackson Laboratories; 005827), Rosa26 (B6.129S7-Gt(ROSA)26Sor/J; Jackson 

Laboratories; 002192), SM22α-lacZ (gift of Li Li, Wayne State University, described in (30)), 

VE-cadherin-cre (B6.Cg-Tg(Cdh5-cre)7Mlia/J; Jackson Laboratories; 006137), tdTomato 

(B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J; Jackson Laboratories; 007676), and 

C57BL/6J (Jackson Laboratories).  Noon on the day of vaginal plug was designated E0.5. 

β-Galactosidase Assay:  Embryos or tissues were fixed in fresh 0.2% glutaraldehyde 

and stained with a solution containing 5 mM potassium ferricyanide, 5 mM potassium 

ferrocyanide, and 1 mg/ml X-gal substrate at 37°C overnight.  Postfixation was performed in 

4% paraformaldehyde (PFA) at 4°C overnight.  For histological analysis, tissue was 

dehydrated, cleared (Histo-Clear; National Diagnostics), embedded in paraffin, sectioned, 

and counterstained with nuclear fast red (Vector Laboratories). 
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Immunofluorescence Staining:  Tissues were fixed for 1 hr in freshly prepared 4% 

PFA, rinsed in PBS, saturated with 20% sucrose for cryoprotection, embedded in agar, and 

frozen in OCT.  Twelve-micrometer cryosections were fixed in methanol at room 

temperature for 5 min, permeabilized with 0.05% Tween-20 (in PBS) for 2 min, rinsed in 

PBS, then blocked in 2% normal goat serum (NGS) or normal donkey serum for 2–8 h.  

Sections were incubated with primary antibodies at 4°C overnight, rinsed twice in PBS + 

0.1% BSA, then incubated with secondary antibodies for 2-8 h at room temperature, 

protected from light.  Nuclei were counterstained with 10 μg/ml Hoechst 33258 in H2O and 

slides were mounted in Mowiol with 2.5% DABCO. 

For cells in culture, cells were fixed by incubating in freshly prepared 4% PFA for 15 

min at room temperature, then permeabilized with 1:1 methanol/acetone for 1 min.  Cells 

were blocked in 2% NGS for 1-4 h at 4°C, then incubated with primary antibodies at 4°C 

overnight.  After two rinses in PBS + 0.1% BSA, cells were incubated with secondary 

antibodies 1-4h at room temperature protected from light.  Nuclei were counterstained with 

10 μg/ml Hoescht 33258 in H20.  For BrdU dual-labeling experiments, cells were first 

incubated with other primary and secondary antibodies, then postfixed in 4% PFA for 15 min 

at room temperature.  To access BrdU antigen, DNA was denatured in 2M HCl for 5 min at 

room temperature.  Cells were rinsed twice with PBS to neutralize residual acid, and then 

stained according to standard protocol. 

Primary antibodies used for these studies included rabbit anti-β-galactosidase 

(1:500; MP Biomedical 55976), mouse anti-BrdU (1:400; BD Pharmingen 555627), rabbit 

anti-SM-MHC (1:100; Biomedical Technologies BT-562), mouse anti-SMαA (1:100; Sigma 

A2547), rat anti-Sca1 (1:100; BD Pharmingen 553333), rabbit anti-SRF (1:100; Santa Cruz 

Biotechnology sc335), and rat anti-PECAM-1 (1:100; BD Pharmingen 550274).  All 

secondary antibodies were AlexaFluor-conjugated (Invitrogen) and used at a dilution of 

1:400 in PBS.  Immunofluorescence staining was visualized with a Leica BM IRB inverted 
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epifluorescence microscope, with images captured by a QImaging Retiga 1300 digital 

camera.  Confocal images were obtained with a Zeiss LSM5 Pascal laser scanning confocal 

microscope and processed with Image J and Adobe Photoshop. 

AdvSca1 Cell Isolation and Culture:  Mice were sacrificed by cervical dislocation and 

perfused through the left ventricle with PBS.  The thoracic aorta was cut at the diaphragm 

and periadventitial fat was cleared from around the vessel.  The aorta was gently lifted away 

from the dorsal body wall, with intercostal arteries trimmed even with aortic wall.  In arch 

region, the superior vena cava and pulmonary artery were cleared and branching arteries 

and ductus arteriosus were trimmed even with the aortic wall.  At the junction with the 

myocardium, the aorta was cut flush with the ventricular wall and placed in HBSS at 37ºC.  

Before digesting, any remaining fat and coagulated blood were cleared from the tissue. 

Whole aortas were briefly digested in 0.4 mg/mL collagenase in HBSS at 37°C for 6 

min.  Tissue was immediately removed and placed in fresh HBSS at 37°C.  Adventitia was 

gently separated from the media of each aorta by peeling the layer up and over the vessel.  

Adventitias were placed in the second digestion solution of 15 mg/mL collagenase II 

(Worthington, 4176) and cut into small pieces.  Tissue was digested for 2-2.5 hrs at 37°C 

with constant rocking to achieve a single-cell suspension, which was then passed through a 

30 μm pre-separation filter (Miltenyi, 130-041-407).  Filtrate was collected and cells were 

pelleted at 300xg then rinsed in PBS + 0.5% BSA.  Aortic Sca1+ cells were isolated using 

anti-Sca1 immunomagnetic MicroBeads (Miltenyi ) and a MACS cell separation system 

(Miltenyi ) according to manufacturer’s instructions.  Cells were passed over two consecutive 

columns to increase purity of the isolation.  Isolated Sca1+ cells were cultured in DMEM 

(Sigma) plus 10% FBS (HyClone) and 1x antibiotic/antimycotic solution (Gibco) at 37°C, 5% 

CO2.  Cells were seeded in 48-well tissue culture plates at a density of 8x103-1.5x104 cells 

per well, depending on the assay.  
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Growth factor treatments and induction of adipocyte differentiation:  In some 

experiments, isolated AdvSca1 cells were treated with growth factors, including recombinant 

human BMP2 (PeproTech, 120-02); recombinant human PDGF-BB (R&D Systems, 220-

BB); recombinant mouse Sonic hedgehog (C25II) N-terminus (R&D Systems, 464-SH); 

recombinant human TGF-β1 (R&D Systems, 240-B); and recombinant human FGF-basic 

(Peprotech, 100-18B). 

For adipocyte differentiation, AdvSca1 cells were grown to confluency under 

standard conditions.  Cells were then treated with MDI induction medium (11.5 μg/mL 

isobutylmethylxanthine (Sigma, I7018); 1 μg/mL insulin (Sigma, I5500); 1 μM 

dexamethasone (Sigma, D4902) in DMEM + 10% FBS) for two days followed by treatment 

with 1 μg/mL insulin in DMEM + 10% FBS for two days.  Cells were then incubated under 

standard conditions for an additional four days before Oil Red O staining. 

RT-PCR Analysis:  Total cellular RNA was isolated by guanidinium isothiocyanate 

denaturation and phenol/chloroform extraction as described (31). Two-step RT-PCR was 

carried out with the GeneAmp RNA PCR kit (Applied Biosystems) according to the 

manufacturer’s instructions.  The sequences for primers used for RT-PCR analysis of gene 

expression are provided in Appendix B.  Unless otherwise indicated, primer sequences were 

designed for this study based on mouse genomic sequence available through Ensembl 

(release 45, June 2007; (32)). Primers were designed with the aid of Primer3 software (v. 

0.4.0) (33).   

Cell Proliferation and Differentiation Assays:  For experiments to determine whether 

AdvSca1 cells can express SMC differentiation markers in the absence of cell proliferation, 

AdvSca1 cells were isolated by immunoselection with magnetic microbeads and a MACS 

cell separation system (Miltenyi Biotech) and cultured for 5 days in DMEM + 10% FBS + 1x 

antibiotic/antimycotic (Sigma) to allow cells to attach and spread on the culture substrate.  At 

5 days, cell proliferation was arrested by the addition of 50 μM aphidicolin (in DMSO; Sigma 
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A0781) or 8 mM hydroxyurea (in H2O; Sigma, H8627) and cells were cultured for an 

additional 10 days. To verify growth arrest, 25 μM BrdU (BD Pharmingen 550891) was 

added to each well with or without inhibitors. 

Histological Staining:  Alizarin red S and von Kossa staining procedures were similar 

to those described (34).  For alizarin red staining, cultures were washed three times in 

150mM NaCl, then fixed in ice-cold 70% ethanol for 1 h. Cells were rinsed with ddH20, 

incubated with alizarin red staining solution (2% alizarin red in H2O, pH 4.3) at room 

temperature for 10 min, then washed five times in ddH2O and photographed.  For von Kossa 

staining, cultures were rinsed twice in ddH2O then incubated in 1% (wt/vol) silver nitrate 

under UV illumination for 45 min.  After two rinses in ddH2O, cells were treated with 3% 

(wt/vol) sodium thiosulfate to remove unreacted silver.  Cells were then rinsed once in 

ddH2O, counterstained in van Gieson solution (0.6% picric acid, 0.0375% acid fuchsin in 

H20) for 5 min, then washed in 70% ethanol, dried, and photographed.   

For Oil Red O staining of lipids, medium was removed from cultured cells and cells 

were fixed in 10% formalin in PBS for 5 min at room temperature.  The solution was 

changed to fresh 10% formalin, and cells were incubated 1 hr.  Formalin was removed, and 

wells were rinsed with ddH2O.  All liquid was removed from wells, and cells were incubated 

in 3.5 mg/mL Oil Red O (Sigma, O0625) in isopropanol for 10 min.  After removing Oil Red 

O solution, cells were immediately rinsed 5x in ddH2O and photographed. 

Matrigel plug assay:  AdvSca1 cells were isolated according to standard procedure 

and counted.  Aliquots of 1.5x105-2x105 cells were resuspended in ice-cold Matrigel (growth-

factor-reduced, phenol red-free; BD Biosciences, 356231) with or without growth factors, as 

indicated in text.  Matrigel solution was drawn into a pre-chilled 1 mL syringe fitted with a 23-

gauge needle and kept on ice.  Under isoflurane anesthesia, female C57BL/6J mice, aged 

8-16 weeks, were shaved in two patches on the upper dorsal area, just lateral to the midline.  

Matrigel was injected subcutaneously on either side of the midline, and mouse was revived.  
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At the indicated timepoints, host mice were sacrificed, and the Matrigel plugs were carefully 

dissected from the subcutaneous connective tissue.  Depending on the experiment, plugs 

were processed for X-gal staining according to standard protocol or fixed for one hour in 

fresh 4% PFA and then processed for cryo-embedding according to standard protocol.   

Carotid ligation surgery:  Blood flow reduction in the left common carotid artery  was 

performed as previously described (35, 36).  Briefly, Ptc2-lacZ mice aged 3-4 months were 

anesthetized with isoflurane and maintained at 37°C on a heating pad.  Using sterile 

technique, connective tissue was gently separated to expose ~0.5-mm lengths of the left 

external carotid artery distal to the thyroid artery and the left internal carotid/occipital artery 

pair.  The internal and external carotid arteries were ligated with 6-0 silk suture and the area 

was rinsed with anti-bacterial 0.9% saline solution before closure.  Sham operations 

followed the same procedure, but artery ligation was omitted.  Mice received antibiotic (50 

mg/kg cephazolin) and analgesic (10 mg/kg im Pentazocine) and were monitored for one 

week post-surgery.   

 

Results 

Developmental origins of AdvSca1 cells 

 Following multiple lineage tracing studies in both avian and mouse systems, the 

developmental origins of smooth muscle cells can be plotted on a lineage map with some 

confidence (Figure 15A, reviewed in (9)).  In contrast, however, very little is known about the 

embryonic origins of adventitial cells, including adventitial Sca1+ progenitor cells (AdvSca1 

cells).  Hu et al. performed bone marrow reconstitution experiments in which an irradiated 

adult mouse received a transplant of isolated AdvSca1 that were genetically marked by 

constitutive β-galactosidase expression.  After six months, no Sca1+β-gal+ cells were 

identified in the adventitia, indicating that AdvSca1 cells were not renewed by marrow-

derived cells within this time period (7).   
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Based on the proximity of AdvSca1 cells to underlying medial SMCs, we 

hypothesized that AdvSca1 cells may derive from the same embryonic origin.  Cells of 

neural crest origin are responsible for establishing the septation between the aorta and 

pulmonary trunk during midgestation (12) and populate portions of the pulmonary trunk and 

ascending and transverse aorta.  We used Wnt1-cre transgenic mice (13) to label cells of 

neural crest origin.  Wnt1-cre-activated β-gal reporter (R26R) labeled neural crest-derived 

SMCs in proximal aorta, pulmonary trunk, common carotid arteries, and ductus arteriosus, 

but did not label the adventitial layer or AdvSca1 cells in these vessels (Figure 14B-C, 

Figure 15).  Distal to the segment of aortic media labeled by Wnt1-cre, SMCs of sclerotome 

origin are β-gal+ in Nkx3.2-cre/R26R mice (37) (Figure 14D).  Somite-derived SMCs are also 

found in the outer layers of the aortic media and within the pulmonary trunk at the level of 

the aortic root, but adventitial cells are β-gal- (Figure 14E).  Wilms tumor 1 (WT1) is a 

marker of mesothelial cells (38) and Tie2 (TEK) is expressed by endothelial cells and 

hematopoietic stem cells (39).  Both populations represent reasonable sources of AdvSca1 

cells, yet neither WT1-cre/R26R nor Tie2-cre/R26R mice display significant adventitial 

staining in areas where AdvSca1 cells are known to be abundant (Figure 14F-G).  Tie2-cre 

does label scattered SMCs in the pulmonary trunk and occasional adventitial cells (Figure 

14G).  However, regions known to harbor abundant AdvSca1 cells at this stage, such as the 

adventitia between the aorta and pulmonary trunk, are negative for Tie2-cre-labeled cells.  

Thus, the developmental origins of AdvSca1 cells differ from their neighboring SMCs and 

are as of yet unknown.   
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Figure 14.  Lineage tracing of arterial cells.  (A) Schematic of known embryonic origins for 
vascular smooth muscle cells, adapted from Majesky, 2007 (9).  In the aortic region where 
AdvSca1 cells are abundant, adjacent SMCs are derived from cardiac neural crest (CNC), 
anterior heart field, somites, and proepicardium.  (B,D,F)  Whole-mount images of mice 
carrying cre under the (B) Wnt1, (D) Nkx3.2, or (F) Wilms tumor-1 (WT1) promoters.  When 
crossed with Rosa26-reporters (R26R), cells of the (B) cardiac neural crest, (D) sclerotome, 
or (F) proepicardial lineages are identified by expression of β-galactosidase, as revealed by 
X-gal staining (blue cells).  (C,E,G) Cross-sections of X-gal stained tissue from the aortic 
root region, counterstained with nuclear fast red.  (B-C) In proximal aorta and pulmonary 
trunk, subsets of SMCs are derived from CNC.  SMCs in the aortic root region are β-
galactosidase-positive (blue) while adventitial cells are negative (C).  (D-E) Labeling of cells 
derived from the Nkx3.2-expressing splanchnic mesoderm lineage.  Note that positive cells 
are found primarily in the outer layers of medial smooth muscle in the aorta, complementary 
to the pattern of CNC-derived SMCs (compare C and E).  However, the majority of 
adventitial cells in the aortic root region are still negative.  (F) A scattering of SMCs (but not 
adventitial cells, data not shown) in the proximal aortic root are derived from a WT1-cre-
expressing lineage.  (G) Tie2-cre labels endothelial and hematopoietic cells.  Note: the large 
β-galactosidase+ clusters on the outside of the pulmonary trunk are areas of coagulated 
blood that persisted through dissection and tissue preparation.  While some adventitial cells 
appear positive, the region between the aorta and pulmonary trunk where AdvSca1 cells are 
particularly abundant is negative, indicating that most, if not all, AdvSca1 cells originate from 
a different source during development.  Ao, aorta; PT, pulmonary trunk; d.Ao, descending 
aorta. 
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Figure 15.  Analysis of β-galactosidase and Sca1 expression in Wnt1-cre/R26R vessels.  
(A) Cross-section of X-gal-stained aortic root from a Wnt1-cre/R26R mouse at 4 wks.  
Dashed box indicated general region shown in B-D.  (B-D) Cryosections of Wnt1-cre/R26R 
vessels, with aorta to the top/left and pulmonary trunk to the bottom/right.  
Immunofluorescence staining is as indicated.  Note the lack of overlap between β-
galactosidase and Sca1 (C), confirming that AdvSca1 cells in this region are not derived 
from cardiac neural crest.  Ao, aorta; PT, pulmonary trunk. 
 
 
 

Analysis of isolated AdvSca1 cells 

 To characterize the properties of AdvSca1 progenitor cells, we used 

immunomagnetic beads to isolate Sca1+ cells from aortic adventitial tissue (see Materials 

and Methods).  AdvSca1 cells in vivo do not express markers of a differentiated phenotype 

(Figure 16A).  However, when isolated cells were cultured in DMEM containing 10% serum, 

many AdvSca1 cells (~30–50%) lost expression of Sca1, gained expression of SMα-actin, 

SM22α, calponin, and SM-MHC, and adopted an elongated, mesenchymal cell shape 

(Figure 16B).  
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Figure 16.  Differentiation of AdvSca1 cells in vitro.  (A) In a cross-section through the adult 
aorta, Sca1+ cells (red) are evident in the adventitia, distinct from SMα-actin-expressing cells 
(green) of the media.  (B) After 8 days in culture, a subset of AdvSca1 cells has lost Sca1 
expression and upregulated SMα-actin.  When removed from the adventitia and cultured, 
AdvSca1 cells upregulate SMC markers without additional exogenous treatment.  M, media; 
A, adventitia. 
 

 

 To rule out the possibility that up-regulation of SMC markers resulted from expansion 

of a pool of medial SMCs carried over in the AdvSca1 cell isolation, we repeated our 

experiments in the presence of aphidicolin or hydroxyurea, inhibitors of cell proliferation.  

After verifying growth arrest, we observed up-regulation of SMC marker proteins over a 

similar time course and to a similar extent as seen in the absence of cell cycle inhibitors 

(Figure 17).  We conclude that AdvSca1 cells can directly differentiate into SMC-like cells, 

and that this differentiation does not require cell proliferation. 
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Figure 17.  AdvSca1 cell differentiation in the absence of cell division.  (A-C) Isolated 
AdvSca1 cells were cultured in serum-containing medium in the presence of 10μM BrdU.  
Proliferating cells are identified by BrdU immunostaining (red nuclei).  The addition of 50μM 
aphidicolin (B) or 8 mM hydroxyurea (C) strongly inhibited cell proliferation, as indicated by 
the absence of BrdU staining.  The up-regulation of SMα-actin (green) in AdvSca1 cells 
does not require cell proliferation. 
 

We tested the response of isolated AdvSca1 cells to treatment with factors 

commonly associated with the modulation of smooth muscle differentiation, including 

transforming growth factor β1 (TGF-β) and platelet-derived growth factor BB (PDGF-BB).  In 

contrast to results from Hu et al, we did not observe a significant response of AdvSca1 cells 

to PDGF-BB treatment, as assessed by immunostaining for Sca1 and SMα-actin or by semi-

quantitative RT-PCR (Figure 18B,E).  Following TGF-β treatment, we consistently observed 

a dramatic downregulation of Sca1 expression, indicating that AdvSca1 cells are TGF-β-

responsive.  Since AdvSca1 cells reside within a Shh-responsive environment in the 

adventitia and are at least partially dependent on Shh signaling for proper development (see 

Chapter 2), we also tested for an in vitro response to exogenous Shh ligand.  No changes in 

Sca1 or SMα-actin expression were induced by Shh treatment (Figure 18C and data not 

shown).  These results suggest that Shh signaling may not be critical for regulating AdvSca1 

differentiation, but do not rule out other roles, such as regulation of proliferation (see 

Chapter 2).   
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Figure 18.  AdvSca1 cell response to growth factor treatments in vitro.  (A-D) Isolated 
AdvSca1 cells were cultured for 6 days to allow attachment, then treated with (A) no 
additional factors, (B) 10 ng/mL PDGF-BB, (C) 1 μg/mL Shh(C25Il)-N, or (D) 5 ng/mL TGF-β 
for an additional 8 days.  Cells were fixed and stained for SMα-actin and Sca1.  (E)  In a 
separate experiment, isolated AdvSca1 cells were cultured for 6 days to allow attachment 
and then treated with TGF-β (0, 5, or 20 ng/mL) or PDGF-BB (0, 10, or 50 ng/mL) for 48 hrs.  
RNA was collected, and the expression of SMα-actin and Sca1 was evaluated by RT-PCR.  
β-actin was used as a loading control.  Treatment of established AdvSca1 cultures with 
TGF-β induces downregulation of Sca1, but PDGF-BB does not provoke a robust response.  
 
 



72 

Multipotent adult mesenchymal stem cells have been characterized by several 

criteria, including the capacity to differentiate to bone, cartilage, and adipose tissue (40).  

Having established the inclination of AdvSca1 cells to differentiate to SMC-like cells when 

placed in culture, we sought to test whether AdvSca1 cells also harbored the potential for 

other mesenchymal cell types.  When isolated AdvSca1 cells were incubated with BMP2 (50 

ng/ml, 20 days), colonies formed that stained with alizarin red or von Kossa’s stain (~1

 

 

Figure 19.  Other possible mesenchymal fates of AdvSca1 cells in vitro.  Isolated AdvSca1 
cells were cultured in medium without (A-C) or with the addition of BMP2 (50 ng/ml, 20 days) 
(D-E) or adipogenic induction factors (8 days total, see Materials and Methods) (F).  (A,D) 
Alizarin red forms a red-orange complex with calcium ions indicating the formation of 
calcified nodules (black arrows in D).  (B,E) Von Kossa staining indicates the presence of 
mineralized colonies by the formation of silver salts, which are reduced to black metallic 
silver (green arrows in E).  (C,F) Oil Red O stains lipid droplets produced by adipogenic cells 
(blue arrows in F).  The overall frequencies of AdvSca1 differentiation to either osteogenic or 
adipogenic fates upon appropriate treatment were at least 10-fold lower than that observed 
for differentiation to SMα-actin-positive cells in standard AdvSca1 cultures. 
 
 
colony per 400 cells plated), consistent with differentiation of a subset of AdvSca1 cells to 

osteogenic cells (Figure 19D-E).  Under conditions commonly used to promote adipogenic 

differentiation (see Materials and Methods), oil red O staining revealed lipid-rich clusters in 
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AdvSca1 cultures (~1 colony per 700 cells plated, Figure 19F).  AdvSca1 cells as a 

population are thus multipotent and have the capacity to differentiate to other mesenchymal 

cell types, although at a much lower frequency than that observed for SMC differentiation. 

 

AdvSca1 cells regulate the expression of smooth muscle genes 

 AdvSca1 cells do not express SMC marker proteins in vivo (Figures 9 and 16).  

However, they contain mRNAs for transcription factors involved in SMC differentiation, 

 

 

 
Figure 20.  Analysis of AdvSca1 gene regulation during in vitro differentiation. (A) Freshly 
isolated AdvSca1 cells (red) contain SRF (green) colocalized with DAPI-stained nuclei (blue) 
(arrows).  (B) Freshly isolated AdvSca1 cells (red) contain Klf4 (green) colocalized with 
DAPI-stained nuclei (blue) (arrows).  (C) RT-PCR analysis of AdvSca1 cells cultured for 0, 
12, or 28 days.  M is total RNA from aortic media used as a positive control for SMC 
markers.  This analysis was performed three times with similar results.  (D) AdvSca1 cells 
cultured in serum-containing medium for 9 days. Many cells down-regulate ScaI (red) and 
up-regulate SM α-actin (green).  As AdvSca1 cells differentiate in vitro, repressors of SMC 
gene expression are downregulated and activators become more highly expressed. 
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including serum response factor (SRF), myocardin family members, and cysteine-rich LIM 

proteins Csrp1 and Csrp2 (Figure 20C).  In addition, a subset of freshly isolated AdvSca1 

cell nuclei were immunopositive for SRF protein (Figure 20A).  However, AdvSca1 cells also 

express potent silencers of SRF-dependent transcription, including Msx1, Klf4, and FoxO4 

(Figure 20C and data not shown).  Each of these factors can inhibit SRF and myocardin-

dependent SMC gene expression (41-43), and they are down-regulated as AdvSca1 cells 

acquire SMC markers and increase SRF co-activator expression (Figure 20C).  Therefore, a 

subset of AdvSca1 cells may be maintained as SMC progenitors by expression of silencers 

of SRF-dependent transcription. 

 

Cells derived from AdvSca1 progenitors contribute to vascular structures in Matrigel 

plugs 

 Our results indicate that a subset of AdvSca1 cells readily differentiates to SMCs and 

SMC-like cells in vitro.  To evaluate the behavior of isolated AdvSca1 cells in vivo, we 

suspended the cells in Matrigel containing basic fibroblast growth factor (FGF2) and 

implanted them subcutaneously into a host mouse.  The combination of Matrigel and FGF2 

is known to promote neovascularization within the plug (44).  We found that the presence of 

AdvSca1 cells in the Matrigel plugs promoted a greater degree of organized vascularization 

compared to plugs without cells added (Figure 21, compare A and B).  Using AdvSca1 cells 

isolated from mice that constitutively express β-galactosidase from the Rosa26 promoter 

reveals that AdvSca1-derived cells integrate into the microvascular network (Figure 21C,D).  

Cross-sections did not offer enough resolution to differentiate between AdvSca1-derived 

endothelial cells and mural cells (Figure 21D), so we took advantage of genetically modified 

mice to label endothelial cells and SMC-like cells.   
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Figure 21.  Participation of AdvSca1cells in Matrigel plug angiogenesis.  (A-B) Hematoxylin 
and eosin staining of 12-day Matrigel plugs with 0.5 µg/mL human FGF2 containing no 
added cells (A) or freshly isolated AdvSca1 cells (B).  The presence of AdvSca1 cells 
promotes the organization and assembly of cells within the Matrigel plug into vascular 
structures.  (C-D) 10-day Matrigel plug with AdvSca1 cells from Rosa26 mice (constitutive 
expression of β-galactosidase in all tissues) and 0.2 µg/mL human FGF2.  (C) X-gal staining 
permits visualization of an organized vascular network in a whole-mount view.  (D) A cross-
section through the plug reveals β-gal+ cells associated with functional, lumenized 
microvessels.  The presence of red blood cells (arrowhead) indicates connection with the 
host systemic circulation.  (E) AdvSca1 cells were isolated from SM22-lacZ mice and 
incubated in a Matrigel plug with 0.5 µg/mL human FGF2 and 60 U/mL heparin for 14 days.  
Scattered β-gal+ cells indicate that a subset of AdvSca1 cells differentiate to SM22+ mural 
cells.  (F)  AdvSca1 cells were isolated from VE-cadherin-cre/R26R mice and incubated in a 
Matrigel plug with 0.5 µg/mL human FGF2 and 60 U/mL heparin for 10 days.  β-gal+ cells 
within the newly formed microvessels indicate that a subset of AdvSca1 cells differentiate to 
endothelial cells. 
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LacZ expression in SM22α-lacZ transgenic mice recapitulates the arterial smooth 

muscle expression pattern of SM22α transcripts but does not label visceral and venous 

SMCs during development (30).   From previous reports, it appears that the pattern of 

SM22α expression in pericytes varies according to developmental stage and anatomic 

location, with evidence that capillary pericytes at E10.5 do not express SM22α (45) while 

postnatal retinal capillaries are SM22α-positive (46).  When AdvSca1 cells from SM22α-lacZ 

mice (30) were implanted in Matrigel plugs, we observed scattered β-gal+ cells associated 

with vascular structures after 14 days of incubation (Figure 21E).  These results suggest that 

AdvSca1 cells have the potential to undergo differentiation to SMC-like cells in vivo and 

reside in a perivascular location.  The VE-cadherin-cre transgene targets cre recombinase 

expression to vascular endothelium, including quiescent adult vasculature (47).  In Matrigel 

plugs containing AdvSca1 cells isolated from VE-cadherin-cre/R26R mice, we observe lacZ+ 

cells within the newly formed microvascular network (Figure 21F), indicating that AdvSca1 

cells also have endothelial differentiation potential.   

In order to expand our analysis of AdvSca1 in vivo differentiation potential, we 

isolated cells from mice expressing a membrane-targeted tdTomato fluorescent protein 

constitutively expressed in all tissues (48).  Analysis of Matrigel plugs by confocal 

microscopy reveals AdvSca1-derived cells contributing to extensive vascular networks after 

14 days of incubation (Figure 22A).  Importantly, vessels surrounded by tdTomato-positive 

cells contained Ter119-positive erythroid cells inside the lumen, with no apparent leaking of 

red blood cells into the perivascular space (Figure 22B), suggesting the tdTomato-positive 

cells contribute to vascular wall stability and maturation.  Immunostaining of cross-sections 

through the Matrigel plugs showed co-labeling of tdTomato-positive cells with several 

pericyte markers, including SMα-actin, PDGFR-β, and chondroitin sulfate proteoglycan 4 

(Cspg4 or NG2) (Figure 23).  Together with the perivascular localization of tdTomato- 
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Figure 22.  Analysis of a Matrigel plug vascular network derived from AdvSca1 cells.  
Freshly isolated AdvSca1 cells from tdTomato mice were incubated with 0.5 µg/mL human 
FGF2 and 60 U/mL heparin.  (A) At 14 days an extensive network is evident.  Vessels are 
functional by 10 days (B) with TER119-positive red blood cells found within the lumens.  
AdvSca1 cells contribute to an extensive, functional vascular network in Matrigel plugs. 
 
 
 

positive cells, these results demonstrate that AdvSca1 cells have the potential to 

differentiate to functional mural cells in Matrigel plugs in vivo. 

Based on the mural cell differentiation of AdvSca1 cells in vivo, we checked for 

expression of common pericyte markers.  Freshly isolated AdvSca1 cells express RGS5, 

Cspg4 (NG2), and PDGFR-β but not desmin (Figure 24A).  Moreover, when cultured 

AdvSca1 cells were treated with 50 ng/mL PDGF-BB for 24 hrs, they adopted an elongated 

morphology reminiscent of cultured tumor-derived perivascular progenitor cells as reported 

by Song et al. (49).  Together, these results suggest that AdvSca1 cells share some 

features of pericytes, including responsiveness to PDGF-BB signaling, and can differentiate 

to perivascular mural cells in vivo.   
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Figure 23.  Expression of pericyte markers in perivascular mural cells derived from AdvSca1 
cells.  Isolated AdvSca1 cells expressing membrane-localized tdTomato fluorescent protein 
were incubated in Matrigel plugs with 0.5 µg/mL human FGF2 and 60 U/mL heparin for 10 d.  
Single confocal Z-sections indicate tdTomato co-localization with SMα-actin (arrowheads, 
A), PDGFR-β (arrowheads, B), and NG2 (arrowheads, C).  PECAM staining (A,C) marks 
endothelial cells.  AdvSca1 cells in Matrigel plugs differentiate to mural cells and express 
pericyte markers.   
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Figure 24.  Pericyte marker RT-PCR and PDGF treatment of AdvSca1 cells in vitro.  (A) 
RNA from freshly isolated AdvSca1 cells was screened for expression of common pericyte 
markers by RT-PCR.  (B-C) Treatment of AdvSca1 cells in vitro with 50 ng/mL PDGF-BB for 
24 hr induces morphology changes (C) compared to untreated cells (B).  AdvSca1 cells 
share some markers with pericytes and readily adopt an elongated morphology in response 
to PDGF-BB stimulation. 
 

AdvSca1 behavior during flow-induced neoadventitia formation 

In the mouse model of flow-induced carotid artery remodeling described by 

Korshunov and Berk, the left internal and external carotid arteries are ligated, thus restricting 

blood flow to the occipital artery (Figure 25A).  Immediately after ligation, blood flow is 

reduced by ~90% in the left common carotid artery (LCA) and increased by ~70% in the 

right carotid artery (RCA).  Over the course of 4 weeks following ligation, the LCA exhibits a 

characteristic sequence of vascular remodeling events, culminating in significant neointima 

formation and decrease in lumen volume (35).   
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One of the earliest responses to flow reduction is significant adventitial thickening, 

which can be observed by one week post-ligation.  Indeed, adventitial proliferation is an 

early response to several forms of vascular injury, as discussed in Chapter 1.  However, to 

our knowledge, no study has investigated which cell types within the adventitia exhibit this 

early proliferative response.  Thus, we examined Sca1 expression in the adventitia of carotid 

arteries at one and two weeks post-ligation.  In the ligated group, the left internal and 

external carotid arteries of 4 month-old Ptc2-lacZ mice were ligated as described (36) 

(Figure 25A).  In sham controls, the surrounding tissue was gently separated to expose the 

vessel, but no ligature was placed.   

In order to determine whether hedgehog signaling is altered during neoadventitia 

formation, we stained segments of the common carotid arteries with X-gal.  At one week 

post-ligation, the time at which the greatest adventitial response had previously been 

observed (35), the number of lacZ-positive cells appears grossly unchanged when ligated 

LCAs are compared to either sham controls or contralateral RCAs (Figure 25B).  Similar 

results were observed at two weeks post-ligation.   

Upon examination of carotid artery cross-sections, we observe an increase in 

adventitial area and the number of AdvSca1 cells in ligated vessels at one week post-

ligation (Figure 25C).  However, by two weeks post-ligation there is no observable difference 

between ligated vessels and sham controls, suggesting that the adventitial response to flow 

reduction occurs early in the remodeling process, well before neointimal development at 2-4 

weeks post-ligation.  The increase in AdvSca1 cells in response to flow-reduction could 

result from the proliferation of resident cells or the recruitment of circulating Sca1+ cells.  To 

begin to address this question, we stained one-week cross-sections with the mitotic marker 

phospho-histone H3.  Mitotic AdvSca1 cells, while not abundant, are present in the 

adventitia at one week post-ligation (Figure 26).  These results suggest that the expansion
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Figure 25.  Adventitial response to carotid flow-reduction.  (A) Schematic showing 
placement of ligations of left internal and external carotid arteries, just distal to the vessel 
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bifurcation.  Adapted from Korshunov and Berk, 2003 (35).  (B) Adult Ptc2-lacZ mice were 
used for surgery.  Vessels were isolated at one or two weeks post-ligation, and segments of 
the common carotid artery were stained with X-gal to reveal hedgehog-responsive cells.  (C) 
Sections of the common carotid artery stained with SM α-actin (green), Sca1 (red), and 
DAPI. 
 

 

of AdvSca1 cells results from proliferation of cells already present, as opposed to 

recruitment of new cells from distal sites.  Additional experiments at earlier timepoints will be 

necessary to thoroughly address both the regulation of Hh signaling during neoadventitial 

formation and the proliferation of resident AdvSca1 cells (see Future Directions).   

 

 

 
Figure 26.  AdvSca1 cells proliferate in response to flow-reduction.  (A) Cross-section of 
ligated LCA at one week post-ligation, stained for phospho-histone H3 (green), Sca1 (red), 
and DAPI (blue).  Elastin layers in the media are visible by green autofluorescence.  (B) 
Higher magnification confocal image of mitotic (pH3-positive) AdvSca1 cells.   
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Discussion 

Development of the adventitia 

The origins of AdvSca1 cells are unclear.  We investigated this question for aortic 

AdvSca1 cells by using genetically modified mice to mark cells of lineages known to 

contribute to local SMC populations.  Crossing Wnt1-cre transgenic mice to Rosa26-reporter 

mice generates offspring in which β-gal is permanently expressed in neural crest-derived 

cells (13).  Migrating neural crest cells are responsible for aorticopulmonary septation (12), 

which occurs at ~E10.5 during mouse development (50).  The neural crest population is 

known to contribute SMCs to the aortic root, a region with numerous AdvSca1 cells in the 

adventitia.  However, our results show that AdvSca1 cells directly adjacent to Wnt1-cre-

positive aortic SMCs did not express the neural crest marker when evaluated by either lacZ 

histochemical staining or by anti-β-galactosidase immunostaining (Figure 15C).  Moreover, 

our developmental time course studies indicate that AdvSca1 cells do not appear in aortic 

arch arteries until between E16.5 and E17.5 (Figure 9), much later than the migration of 

neural crest-derived SMC progenitors into the aortic arch complex.  Lineage tracing using 

Nkx3.2-cre mice (paraxial somitic mesoderm labeling) and WT1-cre mice (mesothelial cell 

labeling) also failed to mark AdvSca1 cells in the aortic root.  We did not test the other 

lineage which contributes SMCs to the aorta and other great vessels, anterior heart field 

(AHF).  Lineage-specific cre mice such as Mef2c-AHF-cre (51, 52) could be used for this 

purpose.  Based on our results with other SMC lineages, it would be very surprising to find 

that AdvSca1 cells in the aortic root are AHF-derived.  Like neural crest cells, AHF-derived 

cells populate the outflow tract beginning much earlier in embryonic development than the 

late stage at which we first observe Sca1 signal (52).  Furthermore, AHF contribution is 

localized to the immediate proximal outflow tract region, whereas AdvSca1 cells are found 

within the adventitia along the entire length of the ascending, transverse, and thoracic 

descending aorta.   
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The experimental results from Hu et al. (7) verified that AdvSca1 cells in adult mice 

do not represent a transient population of bone marrow-derived progenitors that reside 

within the adventitia.  However, the turnover rate of resident AdvSca1 cells within the adult 

adventitia has not been investigated.  Therefore, we can not rule out the possibility that bone 

marrow-derived cells contribute to the initial AdvSca1 colonization of the adventitia and that 

the cells self-renew in situ thereafter.  The primary site of hematopoietic stem cell (HSC) 

activity in the developing mouse embryo migrates from the fetal liver to the bone marrow 

and spleen between E15 and E17.5 (53).  The idea that AdvSca1 cells may be deposited in 

the adventitia during this migration is intriguing.  However, the lack of labeling in Tie2-cre 

lineage tracing experiments suggests that AdvSca1 cells are not of HSC origin.  It remains 

possible that AdvSca1 cells are generated in situ by Shh signaling within the resident 

embryonic adventitial cell population beginning ~E16.5.   

 

Fibroblasts vs multipotent mesenchymal stromal cells vs pericytes: can AdvSca1 cells 

be categorized? 

Fibroblasts are widely distributed connective tissue cells of mesenchymal origin that 

synthesize a variety of extracellular matrix components.  They are considered to typically 

show a flat, spindle-shaped morphology with multiple cellular processes (54).  Multipotent 

mesenchymal stromal cells (MSCs, previously termed mesenchymal stem cells but also 

known variously as mesenchymal stromal cells, bone marrow stromal cells, marrow-isolated 

adult multipotent inducible cells, and multipotent adult progenitor cells (55)) have been 

described as multipotent, plastic-adherent cells with a fibroblast-like appearance that can 

differentiate to various connective tissue lineages (56).  Pericytes have traditionally been 

identified as perivascular cells with an extensively branched morphology that establish 

intimate contact with underlying endothelial cells in order to provide support to the 
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microvessels (57, 58).  Yet beneath these simplistic definitions lie multiple studies 

attempting to characterize these cell types, often with overlapping observations. 

Unfortunately, one characteristic common to fibroblasts, MSCs, and pericytes is the 

inability to phenotypically “define” the cell type.  Many of the criteria used currently refer to 

the behavior of isolated cells in vitro, which is obviously not ideal for tracing the activity and 

responses of the cells in vivo.  Fibroblasts are often identified by the absence of markers for 

other cell lineages (59), yet they can also adopt a myofibroblast phenotype which shares 

features of smooth muscle differentiation.  Recent reviews have highlighted a more 

standardized basic set of marker criteria for each cell type, which is listed in Table 1. 

 

Myofibroblasts (60) Multipotent mesenchymal 
stromal cells (61) Pericytes (58) 

Vimentin positive CD73+ Smooth muscle α-actin 

Smooth muscle α-actin 
positive CD90+ (Thy1) Desmin 

Smooth muscle myosin 
negative CD105+ (endoglin) NG2 (chondroitin sulfate 

proteoglycan 4) 

Non-muscle myosin positive CD45-  PDGF receptor β 

Virtually no desmin CD34- Regulator of G-protein 
signaling 5 (RGS5) 

Fibronectin positive CD14- or CD11b-  
 CD19- or CD79α-  
 HLA-DR-  

 

Table 1.  Criteria for cellular classification based on marker expression. 
 

The heterogeneity of the cell populations referred to as fibroblasts, MSCs, or 

pericytes adds to the difficulty in establishing generally applicable classification criteria.  

Moreover, there is considerable overlap between the localization and differentiation potential 

of these cell types.  For example, Song et al. characterized the perivascular cells in mouse 



86 

pancreatic islet tumors.  By sorting first on the basis of PDGFRβ expression, they found that 

only a subset (14-15%) of the PDGFRβ+ perivascular cells expressed markers of “mature” 

pericytes, including desmin, NG2, or SMαA.  Moreover, some mature pericytes did not 

express PDGFRβ.  The authors suggest that the PDGFRβ+ perivascular cells in the tumor 

actually represent a population of progenitors with the capacity to differentiate to desmin, 

NG2, and SMαA-positive pericytes (49).  MSCs are increasingly considered to reside within 

a perivascular niche (reviewed in (57)) and there have been some reports of MSCs that 

express pericyte markers (62).  In addition, at least subsets of pericytes retain mesenchymal 

multipotentiality.  Fibroblasts/myofibroblasts are among the potential differentiation fates that 

pericytes can adopt in vitro (63). 

Cells such as AdvSca1 cells or the PDGFRβ+ perivascular cells characterized by 

Song et al. do not fit neatly into one particular category.  Given the considerable overlap 

between fibroblasts, MSCs, and pericytes, it may be more conceptually straightforward to 

envision a spectrum of cell identity with multiple intermediate phenotypes.  AdvSca1 cells 

share many characteristics with MSCs and pericytes, including the ability to differentiate 

along adipogenic and osteogenic lines.  Indeed, our results from the Matrigel plugs suggest 

that differentiation to a mature pericyte is one potential fate of AdvSca1 cells in vivo.  Are 

AdvSca1 cells then distinct from the “adventitial fibroblasts” so frequently mentioned in the 

literature?  Lacking a more specific definition of a fibroblast, it is difficult to draw a definitive 

conclusion.  However, several observations argue against the characterization of AdvSca1 

cells as typical connective tissue fibroblasts.  Sca1+ cells can be identified in the aortic 

adventitia only at ~E17.5 and later (Figure 9).  Yet vessel cross sections from earlier 

timepoints, as well as sections from Shh-/- vessels, indicate that there are adventitial cells 

present even in the absence of AdvSca1 cells (Figure 12 and data not shown).  When 

AdvSca1 cells are isolated and cultured, ~20-30% of the cells lost Sca1 expression but did 

not upregulate SMC markers.  Although there is no direct evidence, it is reasonable to 
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hypothesize that at least a subset of those cells adopt a more typical fibroblast phenotype 

under in vitro culture conditions.  Finally, AdvSca1 cells have the potential to become fully 

differentiated SMCs in vitro, as evident from the expression of SM-MHC (Figure 20).  

Myofibroblasts express some SMC marker genes such as SMαA but do not fully 

differentiate.   

 

AdvSca1 growth factor response in vitro and in vivo 

When we treated AdvSca1 cultures with PDGF-BB, we did not observe a robust 

change in Sca1 or SMαA expression (Figures 18 and 24).  These results contrast with data 

reported by Hu et al. in which PDGF-BB treatment induced large increases in the expression 

of SMαA, calponin, and SM-MHC (7).  There are a couple of methodology differences that 

could account for the variation.  In order to isolate AdvSca1 cells, Hu et al. first explanted 

adventitial tissue from the aortic arch and root, allowing cellular outgrowth in a stem cell 

medium containing leukemia inhibitory factor (LIF) and β-mercaptoethanol.  Cells grown out 

from the explant were then dispersed with trypsin and immunomagnetically selected for 

Sca1 expression.  Sca1+ cells were expanded through at least one passage before use in 

experiments (7). 

In contrast, we used immunomagnetic selection to isolate Sca1+ cells from a 

suspension of aortic adventitial cells.  Isolated cells were placed in culture and used without 

passage.  In our hands, culturing AdvSca1 cells in media containing LIF and β-

mercaptoethanol did not alter the proportion of cells that lost the Sca1+ phenotype and 

upregulated SMαA (data not shown).  The behavioral differences in the cells isolated by 

these two methods may indicate an interesting heterogeneity in the population of adventitial 

cells selected by Sca1 expression.  By isolating Sca1+ cells from explant cultures, Hu et al. 

may have excluded a subset of AdvSca1 cells that are more prone to in vitro differentiation, 
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which we observe as cells that upregulate SMαA without any additional exogenous 

treatment.  The potential heterogeneity of AdvSca1 cells is further discussed below.   

One other important difference is that Hu et al. were isolating AdvSca1 cells from 

ApoE-/- mice, whereas the cells in our studies were from wild-type mice.  In follow-up work 

to the initial characterization of AdvSca1 cells, Mayr et al. compared the proteomes of 

ApoE+/+ and ApoE-/- SMCs to SMCs derived from adult ApoE-/- AdvSca1 cells.  Unlike 

Sca1+ progenitors derived from embryonic stem cells, ApoE-/- AdvSca1 cells proteomically 

resembled ApoE-/- SMCs following PDGF-BB treatment.  Notably, there were distinct 

differences from wild-type SMCs (64).  However, a functional or proteomic comparison of 

AdvSca1 cells from wild-type versus ApoE-/- mice has yet to be performed.   

Basic fibroblast growth factor (FGF2) is a mitogen for both endothelial cells and 

mural cells (65) and has been shown to promote angiogenesis in Matrigel plugs as well as 

other in vivo models (66).  FGF2 mRNA is found almost ubiquitously throughout tissues, 

including all cells of the artery wall (67, 68), yet the protein itself is often localized to the 

extracellular matrix (69, 70).  Injury to the vessel wall, however, causes the increase of 

FGF2 expression (71) and the release of FGF2 protein (72).  Significantly, Cuevas et al. 

found that infusion of FGF2 onto the adventitia of rat carotid arteries induced extensive cell 

proliferation and a robust (>10-fold) expansion of the vasa vasorum.  The expanded 

microvasculature had capillaries and sinusoids with vessel walls composed of endothelial 

cells, pericytes, and in some cases multiple layers of SMCs (68).  In our evaluation of 

AdvSca1 differentiation in the in vivo Matrigel plug assay, we used FGF2 to create an 

angiogenic environment.  Under these conditions, AdvSca1 cells differentiated to mural cells 

and contributed to the formation of a vascular network.  At the moment, we do not know 

whether FGF2 acts directly on AdvSca1 cells or if they respond to other signals within the 

angiogenic environment.  It would be very interesting to test whether AdvSca1 cells in the 

intact adventitia respond to injury or FGF2 infusion by contributing to the expansion of vasa 



89 

vasorum microvessels.  The release of FGF2 may be one factor that promotes neoadventitia 

formation following vessel injury.  It will therefore be important to evaluate the effect of FGF2 

on AdvSca1 cell proliferation as well as mural cell differentiation. 

 

Transcriptional regulation of the AdvSca1 progenitor phenotype 

AdvSca1 cells do not express SMC marker proteins in vivo.  It was intriguing, 

therefore, to find that AdvSca1 cells contained transcripts for SRF and myocardin family 

members and were immunopositive for SRF when examined immediately after isolation from 

the artery wall.  These transcription factors are strong activators of SMC gene expression 

(22, 73-75) and are necessary for vascular SMC differentiation in vivo.  Yet SRF also 

interacts with potent transcriptional corepressors, and it is the competition between 

coactivators and corepressors that determines whether SRF-dependent target genes are 

transcribed (74-78).  Indeed, we found that the transcriptional corepressors Msx1, Klf4, and 

FoxO4 were also expressed by AdvSca1 cells.  Msx1 forms a ternary complex with SRF and 

myocardin and inhibits binding of SRF-myocardin to CArG box motifs in SMC target genes 

(41).  Klf4 is a zinc finger-containing protein that binds to a GC-rich element (TCE) and 

inhibits SRF-dependent transcription of multiple SMC marker genes (77).  The forkhead 

transcription factor FoxO4 interacts with myocardin and inhibits its coactivator function for 

SRF-dependent SMC gene expression (43).  

These results are reminiscent of a report by Matsuura et al. (79), showing that Sca1+ 

cells from adult mouse hearts express Nkx2.5 and GATA4, two transcription factors 

important for cardiac myocyte differentiation, yet they do not express markers of 

differentiated myocardial cells.  Heart-derived Sca1+ cells differentiate to beating 

cardiomyocytes when exposed to oxytocin in vitro, thus confirming their cardiogenic 

potential (79).  These findings in heart and artery wall suggest a model in which Sca1+ 

progenitor cells in postnatal tissues are specified for certain cell fates by expression of 
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transcription factors that are required for those fates.  The maintenance of a SMC progenitor 

phenotype may therefore critically depend on expression of transcriptional corepressors that 

block SRF-dependent transcription and recruit chromatin remodeling complexes to silence 

gene expression. 

 

The Matrigel plug assay as a test of AdvSca1 in vivo differentiation potential 

Matrigel is solubilized basement membrane that is prepared from Engelbreth-Holm-

Swarm mouse sarcoma.  Laminin is the major component, followed by collagen IV, heparin 

sulfate proteoglycans, and entactin/nidogen (80).  In growth factor-reduced preparations, 

FGF2 (0-0.1 pg/mL), epidermal growth factor (<0.5 ng/mL), insulin-like growth factor 1 (5 

ng/mL), PDGF (<5 pg/mL), nerve growth factor (<0.2 ng/mL), and TGF-β (1.7 ng/mL) are 

also present.  The Matrigel plug angiogenesis assay (44) is commonly used to test the 

angiogenic (or antiangiogenic) potential of growth factors and chemical compounds, as well 

as to evaluate the behavior of cells suspended in the plug.  As an in vivo assay to test 

AdvSca1 behavior and differentiation potential, Matrigel plugs offer both advantages and 

disadvantages.  By isolating AdvSca1 cells for the Matrigel plugs from genetically labeled 

mice, we can easily differentiate AdvSca1-derived cells in the plug from host-derived cells.  

The AdvSca1 cells are incubated in an in vivo environment, as opposed to the highly 

artificial conditions in a culture dish.  The implantation procedure is relatively non-invasive 

and does not induce a robust inflammatory response.  Finally, the possibility that AdvSca1 

cells actively participate in angiogenic events in the adventitia holds great developmental 

and pathological relevance (see further discussion in Chapter 5).  Thus, it is logical to test 

AdvSca1 behavior in a well-established angiogenesis assay.   

There are several factors that are important to keep in mind when interpreting the 

Matrigel plug results.  Foremost, the Matrigel environment is going to differ from the 

adventitia in multiple ways.  The adventitia is generally considered to have a collagen-rich 
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extracellular matrix (81), while the primary component of Matrigel is laminin.  The thickness 

and subcutaneous location of a Matrigel plug may also result in substantial differences in 

oxygen levels compared to the arterial adventitia.  The availability and concentrations of 

growth factors are almost certainly going to differ between the adventitia and the Matrigel 

plug.  Finally, the AdvSca1 cells in the Matrigel plug are initially suspended at a 

concentration that would not promote cell-cell contact or readily allow diffusion of secreted 

factors between cells.  Each individual AdvSca1 cell is thus initially influenced only by 

autocrine signaling and factors available from the Matrigel itself.   

Bearing in mind the potential differences between the adventitia and the Matrigel, we 

can nonetheless draw valuable insight from the in vivo transplant assay.  The FGF2 in the 

plugs provides an angiogenic signal that induces cells from the host tissue to infiltrate the 

Matrigel and assemble into vascular structures, a process which can not easily be 

duplicated in a culture dish.  AdvSca1-derived cells integrate into the microvessels (Figures 

21-23) and may also promote efficient vascular assembly in the early stages by secreting 

additional proangiogenic factors.  We observed differentiation of AdvSca1 cells to mural 

cells (Figure 23), which supports our in vitro data demonstrating differentiation to SMC-like 

cells.  Furthermore, our preliminary data suggest that AdvSca1 cells also have the in vivo 

potential to differentiate to macrophages and adipocytes (Supplemental Figure 1 in 

Appendix A), two cell types extremely relevant to adventitial and periadventitial tissue.  

While additional models will certainly be required to fully explore the behavior of AdvSca1 

cells in vivo, the participation of AdvSca1 cells in Matrigel plug angiogenesis gives us a 

valuable clue to a potential role for the cells in the adventitia in general and in remodeling of 

the vasa vasorum microvasculature in particular. 
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AdvSca1 self-renewal versus differentiation 

Sca1 is a cell surface marker commonly associated with stem/progenitor 

populations, but it is expressed by multiple cell types (2).  Morphologically, Sca1+ cells in the 

adventitia in vivo appear grossly uniform, having a slightly flattened and elongated shape 

(see Supplemental Figure 2 in Appendix A).   Yet none of our data rules out the possibility 

that there are intrinsic differences between adventitial cells which both express Sca1.  When 

AdvSca1 cells are directly isolated from the adventitia and placed in culture, a subset of the 

cells differentiates to SMC-like cells that express SMαA (Figure 16).  Whether an individual 

cell differentiates or retains Sca1 expression under these conditions might be a stochastic 

choice, or alternatively the fate of each cell may be influenced by the differential expression 

of factors such as growth factor receptors or SRF cofactors.   In support of the latter 

possibility, culturing AdvSca1 cells in conditions promoting adipogenic or osteogenic 

differentiation also induces only a fraction of the cells to adopt those fates (Figure 19).  An in 

vitro clonal assay would begin to address the question of whether each individual AdvSca1 

cell has the potential for self-renewal as well as SMC, adipogenic, and osteogenic 

differentiation.  It will be critical, however, to first gain a better understanding of the 

environment to which the cells are exposed within the adventitia in vivo.   When isolated for 

culture, AdvSca1 cells are removed from the influence of cell-cell contacts, extracellular 

matrix interactions, growth factor and cytokine exposure, and other potentially important 

elements of the adventitial environment.  Any or all of these components may be critical for 

regulating AdvSca1 phenotype and the balance between self-renewal and differentiation.  

Using culture conditions that reproduce important elements of the in vivo environment will 

lead to a better understanding of AdvSca1 behavior in the artery wall.   

During flow-induced carotid artery remodeling, one of the earliest responses is 

proliferation within the adventitial layer, resulting in neoadventitia formation by one week 

post-ligation.  Our results indicate that AdvSca1 cells proliferate during this time period 
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without undergoing significant differentiation to a myofibroblast or SMC phenotype (Figures 

25 and 26).  More extreme responses have been observed in other models of arterial injury, 

particularly balloon overstretch models which mimic angioplasty (82-86).  It seems 

reasonable to draw a correlation between the severity of the arterial injury and the degree of 

adventitial response.  Balloon injuries, which circumferentially distend the vessel and often 

denude the endothelial layer, are far more damaging to the vessel wall than the initial 

increase in pulsatile pressure in the flow-reduction.  It would be informative to compare the 

early arterial response to balloon injury versus flow-reduction with regards to changes in 

signaling factors and adventitial gene expression.  Factors that are altered by balloon injury 

but not flow-reduction may be candidates for provoking AdvSca1 differentiation in vivo.  

Likewise, any differences between flow-reduced vessels and uninjured vessels may play a 

role in promoting AdvSca1 proliferation. 
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CHAPTER 4 

Krüppel-like factor 4 contributes to repression of smooth muscle genes and helps 
maintain the capacity for self-renewal in AdvSca1 cells  
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Introduction 

Krüppel-like factors (Klf) are transcriptional regulators that play diverse roles in 

differentiation, development, proliferation, and apoptosis (1, 2).  Klf family members have 

three highly homologous zinc fingers at the carboxy terminus of the protein that mediate 

binding to DNA, and as a result, family members bind very similar consensus DNA sites.  In 

contrast, the non-DNA binding regions of the Klf proteins are highly divergent (3).  Many 

family members can function as both transcriptional repressors and activators.   

 Murine knockouts of individual Klf family members result in diverse phenotypes (4).  

Notably, KLF2-/- mice die between E12.5 and E14.5 from severe intra-embryonic and intra-

amniotic hemorrhaging.  They display normal vasculogenesis and angiogenesis, but fail to 

properly recruit and organize supporting SMCs and pericytes (5).  KLF5 knockout 

blastocysts fail to implant, resulting in early embryonic lethality (6, 7).  Furthermore, Klf5 may 

play an essential role in the maintenance of pluripotent embryonic stem (ES) cells by 

suppressing the expression of differentiation-related genes (7).  KLF5 heterozygous mice 

are viable but display vascular defects, including abnormal thinning of the aortic media and 

adventitia and abrogated response to vessel injury (6).    

 KLF4 knockout mice die shortly after birth from dehydration as a result of defective 

skin barrier formation (8).  No obvious cardiovascular defects were reported in the germline 

knockout mice, but several studies have implicated Klf4 in the regulation of SMC gene 

expression in smooth muscle cells undergoing phenotypic modulation (9-14).  Most recently, 

Yoshida et al reported that KLF4 expression is induced in medial SMCs following carotid 

artery ligation.  Mice with a conditional depletion of Klf4 showed a delay in the repression of 

SMC marker genes, consistent with the reported role of Klf4 as a co-repressor of SRF-

dependent SMC gene expression (13). 

 Coexpression of Klf4 along with Oct4, Sox2, and c-Myc or UTF1 dramtically 

reprograms fully differentiated adult somatic cells to pluripotent embryonic stem cells (15, 
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16).  Klf4 has therefore been referred to as a pluripotency factor, although it clearly has a 

number of important functions in adult cell types, including monocytes (17), sertoli cells (18), 

and epidermal cells (8).  The roles played by Klf4 in cellular reprogramming involve 

transcriptional control pathways for key pluripotency target genes such as Oct4 and Nanog 

(19, 20).  Jiang et al recently reported that Klf2, 4, and 5 function within a Klf-dependent 

transcriptional network to regulate self-renewal in ES cells, and that they display some 

degree of functional redundancy in the control of pluripotency (19).   

 

Hypothesis 

Sca1+ smooth muscle progenitor cells within the arterial adventitia self-renew and 

maintain a “pre-SMC” progenitor phenotype that is poised for signal-responsive SMC 

differentiation.  The transcription factor Klf4 regulates the maintenance of AdvSca1 cells as 

progenitors within the vessel wall by controlling one or both of these processes. 

 

Materials and Methods 

Animals Used:  All protocols were approved by the Institutional Animal Care and Use 

Committee at the University of North Carolina.  KLF4 mice were a gift of Julie Segre, 

National Human Genome Research Institute, and are described in Segre et al. (8). 

Immunofluorescence Staining:  Tissues were fixed for 1 hr in freshly prepared 4% 

PFA, rinsed in PBS, saturated with 20% sucrose for cryoprotection, embedded in agar, and 

frozen in OCT.  Twelve-micrometer cryosections were fixed in methanol at room 

temperature for 5 min, permeabilized with 0.05% Tween-20 (in PBS) for 2 min, rinsed in 

PBS, then blocked in 2% normal goat serum (NGS) or normal donkey serum for 2–8 h.  

Sections were incubated with primary antibodies at 4°C overnight, rinsed twice in PBS + 

0.1% BSA, then incubated with secondary antibodies for 2-8 h at room temperature, 
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protected from light.  Nuclei were counterstained with 10 μg/ml Hoechst 33258 in H2O and 

slides were mounted in Mowiol with 2.5% DABCO. 

For cells in culture, cells were fixed by incubating in freshly prepared 4% PFA for 15 

min at room temperature, then permeabilized with 1:1 methanol/acetone for 1 min.  Cells 

were blocked in 2% normal serum for 1-4 h at 4°C, then incubated with primary antibodies at 

4°C overnight.  After two rinses in PBS + 0.1% BSA, cells were incubated with secondary 

antibodies 1-4h at room temperature protected from light.  Nuclei were counterstained with 

10 μg/ml Hoescht 33258 in H20.  For EdU labeling experiments, cells were incubated with 10 

µM EdU (Invitrogen C10340) for one hour then fixed and stained with the Click-iT Edu 

Imaging Kit according to manufacturer instructions.  After washing in PBS, standard protocol 

was followed to stain with additional primary and secondary antibodies. 

Primary antibodies used for these studies included mouse anti-SMαA (1:100; Sigma 

A2547), rat anti-Sca1 (1:100; BD Pharmingen 553333), mouse anti-FLAG (1:500; Sigma 

F1804), and chicken anti-GFP (1:1000; Abcam ab13970).  All secondary antibodies were 

AlexaFluor-conjugated (Invitrogen) and used at a dilution of 1:500 in PBS.  

Immunofluorescence staining was visualized with a Leica BM IRB inverted epifluorescence 

microscope with images captured by a QImaging Retiga 1300 digital camera or a Olympus 

IX 81-ZDC Inverted Fluorescence Microscope with images captured by a Hammatsu ORCA 

RC camera.  Confocal images were obtained with a Zeiss LSM710 spectral confocal laser 

scanning microscope and processed with Zeiss LSM Image Browser and Adobe Photoshop. 

AdvSca1 Cell Isolation and Culture:  Mice were sacrificed by cervical dislocation and 

perfused through the left ventricle with PBS.  The thoracic aorta was cut at the diaphragm 

and periadventitial fat was cleared from around the vessel.  The aorta was gently lifted away 

from the dorsal body wall, with intercostal arteries trimmed even with aortic wall.  In arch 

region, the superior vena cava and pulmonary artery were cleared and branching arteries 

and ductus arteriosus were trimmed even with the aortic wall.  At the junction with the 
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myocardium, the aorta was cut flush with the ventricular wall and placed in HBSS at 37ºC.  

Before digesting, any remaining fat and coagulated blood were cleared from the tissue. 

Whole aortas were briefly digested in 0.4 mg/mL collagenase in HBSS at 37°C for 6 

min.  Tissue was immediately removed and placed in fresh HBSS at 37°C.  Adventitia was 

gently separated from the media of each aorta by peeling the layer up and over the vessel.  

Adventitias were placed in the second digestion solution of 15 mg/mL collagenase II 

(Worthington, 4176) and cut into small pieces.  Tissue was digested for 2-2.5 hrs at 37°C 

with constant rocking to achieve a single-cell suspension, which was then passed through a 

30 μm pre-separation filter (Miltenyi, 130-041-407).  Filtrate was collected and cells were 

pelleted at 300xg then rinsed in PBS + 0.5% BSA.  Aortic Sca1+ cells were isolated using 

anti-Sca1 immunomagnetic MicroBeads (Miltenyi ) and a MACS cell separation system 

(Miltenyi ) according to manufacturer’s instructions.  Cells were passed over two consecutive 

columns to increase purity of the isolation.  Isolated Sca1+ cells were cultured in DMEM 

(Sigma) plus 10% FBS (HyClone) and 1x antibiotic/antimycotic solution (Gibco) at 37°C, 5% 

CO2.  Cells were seeded in 48-well tissue culture plates at a density of 8x103-1.5x104 cells 

per well, depending on the assay.  

Adenovirus infection:  Purified adenovirus expressing GFP was purchased from the 

UNC Gene Therapy Center Virus Vector Core Facility.  Adenovirus expressing FLAG-KLF4 

under control of the CMV promoter was a gift from Gary Owens, University of Virginia.  

AdvSca1 cells were isolated according to standard procedure and incubated overnight in 

DMEM +10% FBS + 1x antibiotic/antimycotic.  The next day, adenovirus was added to 300 

MOI with 1.2 µg/mL polybrene (Sigma H9268).  Cells were incubated for 5 d with virus and 

then fixed for immunostaining.   

RT-PCR Analysis:  Total cellular RNA was isolated by guanidinium isothiocyanate 

denaturation and phenol/chloroform extraction as described (21). Two-step RT-PCR was 

carried out with the GeneAmp RNA PCR kit (Applied Biosystems) according to the 
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manufacturer’s instructions.  The sequences for primers used for RT-PCR analysis of gene 

expression are provided in Appendix B.  Unless otherwise indicated, primer sequences were 

designed for this study based on mouse genomic sequence available through Ensembl 

(release 45, June 2007; (22)). Primers were designed with the aid of Primer3 software (v. 

0.4.0) (23).   

siRNA Transfection:  AdvSca1 cells were isolated and cultured according to standard 

protocol until cells reached 60-70% confluency.  Medium was replaced with DMEM + FBS 

(no antibiotics) and cells were incubated overnight.  The following day, cells were 

transfected with Dharmafect4 transfection reagent (0.02 µL per 100 µL transfection medium; 

Thermo Scientific) and siGENOME SMARTpool siRNAs (100 nM; Thermo Scientific).  An 

siRNA that does not target known mouse genes was used as a negative control 

(AAUAGAUGAGAGACACACAGCTT, 100 nM; MWG Biotech).  Cells were incubated for 48-

72 h, as indicated.   

 

Results 

Knockdown of Klf4 in vitro causes loss of Sca1 expression 

KLF4 is highly expressed in AdvSca1 cells, downregulated as the cells differentiate 

in culture, and expressed only at extremely low levels in SMCs of the aortic media (Figure 

20).  Based on its known functions as a co-repressor of SRF-dependent SMC gene 

transcription and as a regulator of self-renewal in embryonic stem cells (ESCs), we sought 

to test whether AdvSca1 cells rely on Klf4 activity to maintain their status as SMC progenitor 

cells.  We used a siRNA-mediated approach in vitro to evaluate the effects of loss of Klf4 

activity.  At 72hrs after siRNA transfection, KLF4 mRNA expression is >90% reduced 

(Figure 27F).  Klf4 knockdown decreases Sca1 mRNA expression (Figure 27F) as well as 

reducing the number of Sca1-positive cells, as evaluated by immunofluorescence staining 

(Figure 27 B,D).   While there appears to be an increase in SMα-actin mRNA expression 
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(Figure 27F), the percentage of total cells that exhibit SMα-actin-positive staining in a 

definite cytoplasmic stress fiber filament pattern did not increase upon Klf4 knockdown 

(Figure 27E).  This may suggest that SMα-actin expression remains repressed in a subset of 

AdvSca1 cells in spite of Klf4 knockdown, perhaps due to the activity of other SRF co-

repressors.  Alternatively, the 72 hr time point used for these experiments may be too short 

to see nascent SMα-actin protein incorporated into cytoplasmic filaments.  Increased levels 

of SMα-actin mRNA (Figure 27F) would argue that Klf4 knockdown produced a 

corresponding increase in SMC marker expression.  However, evaluation of SMα-actin 

mRNA and protein expression at additional time points will be necessary to solidify these 

conclusions. 

Work by Jiang et al. suggests that Klf4 plays a role in regulating the self-renewal 

capacity of pluripotent stem cells (19).  We used EdU (an analog of BrdU) to examine the 

proliferation index in siRNA-treated AdvSca1 cultures.  At 72 hrs after siRNA transfection, 

we found ~90% reduction in proliferating Sca1+ cells compared to control samples (Figure 

27G).  In comparison to the ~73% reduction predicted by the overall decrease in the number 

of Sca1+ cells, these results are consistent with loss of Klf4 activity causing a defect in the 

ability of AdvSca1 cells to proliferate while maintaining a Sca1+ progenitor phenotype.  

Additional experiments will be required to substantiate a role for Klf4 in the regulation of true 

AdvSca1 self-renewal. 

Klf2 and Klf5 can functionally substitute for Klf4 activity in the maintenance of ESC 

self-renewal (19), therefore we also tested whether knockdown of multiple Klf’s would 

synergistically promote AdvSca1 differentiation or self-renewal defects.  While KLF5 

expression was also reduced following siRNA treatment, we did not observe any additive 

effects upon simultaneous knockdown of Klf4 and Klf5 (Figure 27).  We were unable to 

achieve knockdown of Klf2 using these methods.  Overall, these results suggest that Klf4 

plays an important role in the maintenance of AdvSca1 progenitor phenotype.  Based on
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Figure 27.  Effects of Klf4 knockdown on AdvSca1 cells in vitro.  Cultured AdvSca1 cells 
were transfected with siRNAs targeting KLF2, KLF4, or KLF5, as indicated, and evaluated 
72 hrs after siRNA transfection.  (A-C) Representative images from treated cultures with 
immunostaining for SMα-actin (green), Sca1 (red), and DAPI (blue).  (D) Sca1-positive and 
(E) SMα-actin-positive cells from each treatment group were counted and normalized to total 
cell numbers.  (F) RNA was collected from treated cells and RT-PCR used to evaluate 
knockdown efficiency and changes in Sca1 and SMα-actin gene expression.  (G) Cell 
proliferation was evaluated by EdU incorporation and co-staining for Sca1.  Values are 
expressed as percent of total EdU-positive cells expressing Sca1.  Overall, Klf4 knockdown 
decreases Sca1-positive cells in AdvSca1 cultures. 
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these preliminary findings, these effects are specific to Klf4, as the presence or absence of 

Klf2 and Klf5 did not impact the observed changes in Sca1 expression or the number of 

SMα-actin-positive cells.   

 

Overexpression of Klf4 prevents AdvSca1 differentiation to smooth muscle cells 

AdvSca1 cells differentiate to SMC-like cells in vitro, a change accompanied by 

downregulation of KLF4.  Whether the decrease in KLF4 expression during these initial 

changes in cell phenotype is a cause or effect of AdvSca1 differentiation is unclear.  Since 

knockdown of Klf4 promoted the loss of a Sca1+ progenitor phenotype, we also tested 

whether overexpression of Klf4 in AdvSca1 cells in vitro would prevent their differentiation.  

Cells overexpressing adenovirus-driven FLAG-KLF4 were co-stained with SMα-actin or 

Sca1 (Figure 28) as markers of cellular identity.  GFP adenovirus was used as a 

 
 

 

Figure 28.  Evaluation of SMα-actin and Sca1 expression in cells overexpressing Klf4.  
Cultured AdvSca1 cells were infected with adenovirus expressing GFP (control) or FLAG-
KLF4.  After 5 d, cells were fixed, stained for SMα-actin (SMA) or Sca1, and evaluated for 
adenovirus co-expression.  Values are expressed as fraction of adenovirus-positive cells 
expressing either SMα-actin or Sca1, normalized to control.  Klf4 overexpression decreases 
the number of SMα-actin-positive cells but does not prevent or reverse the downregulation 
of Sca1. 
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control for comparison.  If Klf4 is functioning as a co-repressor of SRF-dependent 

transcription in AdvSca1 cells, we would predict that the expression of SMC marker genes 

such as SMα-actin would be blocked by overexpression of Klf4.  Indeed, our results indicate 

that the number of cells co-expressing FLAG-KLF4 and SMα-actin was significantly reduced 

compared to control virus (Figure 28).  Interestingly, however, we did not observe an 

increase in the number of cells co-expressing FLAG-KLF4 and Sca1, as would be expected 

if overexpression of Klf4 was sufficient to maintain AdvSca1 cells as Sca1+ progenitors in 

vitro.  While not conclusive, these results suggest that Klf4 overexpression in AdvSca1 cells 

can block the expression of SRF-dependent marker genes but that additional factors are 

required to maintain a Sca1+ progenitor phenotype when AdvSca1 cells are removed from 

their native adventitial environment. 

 

 

Discussion 

Role of Klf4 in regulation of smooth muscle gene expression 

 KLF4 was initially identified as a gene that is highly expressed in growth-arrested 

NIH 3T3 cells but nearly undetectable in exponentially proliferating cells (24).  Klf4 was first 

connected to SMC gene transcription in work by Adam et al, where they found that Klf4 

bound to a GC-rich transforming growth factor β (TGF-β) control element in the SM22α 

promoter, repressing its activity (9).  Subsequent work suggests that Klf4 may actually have 

multiple mechanisms for repression of SMC genes.  SMCs overexpressing Klf4 in vitro 

displayed decreased expression of myocardin (11) and distinct reductions in histone H4 

acetylation at the SMα-actin and SM-MHC promoters (25). 

 The striking reduction in Sca1 expression upon knockdown of Klf4 in AdvSca1 cells 

is reminiscent of the effect of treating cultured AdvSca1 cells with TGF-β (Figure 19), which 

also causes a loss of Sca1 expression.  There is a plausible link between these two 
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observations.  The TGF-β control element (TCE) found in the promoters of SMC genes such 

as SMα-actin and SM22α is critical for expression of these genes in vitro and in vivo (9, 26).  

Klf4 has been shown to bind to the TCE and exert repressive effects on TGF-β-stimulated 

gene expression (9, 10, 26).  Initially, TGF-β treatment was observed to decrease KLF4 

gene expression (9) but recently, Kawai-Kowase et al. reported that the inductive effects of 

TGF-β on SMα-actin gene expression are mediated through the SUMO E3-ligase PIAS1.  

The authors went on to show that PIAS1 promotes the degradation of Klf4, which requires 

the SUMO E3-ligase activity (27).  Klf4 can activate its own promoter (28), potentially 

explaining the observed reduction in KLF4 gene expression following TGF-β stimulation.  It 

will be interesting to further investigate a possible link between TGF-β, Klf4, and 

differentiation of AdvSca1 cells. 

  

AdvSca1 cells depend on Klf4 to maintain a progenitor phenotype 

 Drawing a distinction between loss of the capacity for self-renewal and promotion of 

differentiation can be conceptually challenging.  EdU incorporation reveals fewer 

proliferating Sca1+ cells in Klf4 knockdown cultures, consistent with a decreased ability of 

dividing AdvSca1 cells to maintain their progenitor phenotype.  Yet the possibility remains 

that loss of Klf4 may simply remove a block preventing differentiation rather than 

representing the loss of a factor that actively promotes the expression of genes that 

maintain the progenitor phenotype.  Knockdown of Klf4 followed by challenging the cells 

with factors that promote the adoption of cell fates other than smooth muscle may be useful 

in determining if loss of the progenitor phenotype makes AdvSca1 cells vulnerable to other 

instructive cues or whether Klf4 knockdown promotes only the smooth muscle fate.   

Studies into the mechanisms controlling self-renewal of other adult progenitor cells 

such as hematopoietic stem cells and myogenic satellite cells have illustrated the critical 

interplay between the external niche environment and transcription factors controlling cell-
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type-specific gene expression (reviewed in (29-31)).  In muscle satellite cells, the paired box 

7 (Pax7) gene appears to be a critical regulator of both cell fate and self-renewal.  Quiescent 

satellite cells express Pax7 (32), and levels of the myogenic regulatory factor MyoD are very 

low or undetectable (33).  When satellite cells are activated, MyoD is rapidly induced and 

Pax 7 levels begin to decrease.  The activity of MyoD is regulated at multiple levels (34), 

including repression by Pax7 itself (35).  Thus, one could consider Pax7 as a central factor 

in a network of muscle satellite cell transcriptional regulation, with roles in both repression of 

differentiation and control of self-renewal.  None of our results rule out such a dual role for 

Klf4 in AdvSca1 cells, with functions in the regulation of both self-renewal and repression of 

SMC gene expression.   
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Summary of results 

1) Beginning at E15.5 and persisting into adulthood, active Hh signaling in the artery wall 

is restricted to the adventitial compartment, as demonstrated by Ptc1-, Ptc2-, and Gli1-

lacZ reporter mice.  Hh-responsive adventitia is found throughout the arterial system, 

including the aorta, pulmonary trunk, coronary, femoral, mesenteric, and intercostals 

arteries.  Shh protein is concentrated at the border between the media and adventitia.   

2) Sca1+ vascular progenitor cells (AdvSca1 cells) reside within the adventitia beginning 

between E16.5 and E17.5 and persisting through adulthood.  RT-PCR analysis 

demonstrates that AdvSca1 cells express multiple Hh signaling pathway components.  

In Shh-/- mice, AdvSca1 cells are drastically reduced in number, and in vitro 

experiments using cyclopamine to inhibit Hh pathway activity suggest that Shh 

signaling plays an important role in promoting the proliferation of AdvSca1 cells. 

3) Lineage tracing analyses demonstrate that AdvSca1 cells are derived from different 

embryonic origins than their neighboring medial SMCs.  AdvSca1 cells were also not 

labeled by Tie2-cre expression, indicating that they are not of hematopoietic stem cell 

origin. 

4) AdvSca1 cells do not express SMC markers in vivo, yet a subset of isolated AdvSca1 

cells in culture loses Sca1 expression and upregulates SMC marker genes.  RT-PCR 

analysis indicates that AdvSca1 cells express SRF and SRF cofactors thought to be 

sufficient for SMC differentiation, but the presence of SRF co-repressors, which are 

also expressed in vivo, may prevent the expression of SMC marker genes.  As 

AdvSca1 cells differentiate in vitro, the expression levels of co-repressors are 

decreased and levels of co-activators are increased. 

5) In vitro and in vivo experiments indicate that AdvSca1 cells have SMC and mural cell 

differentiation potential.  In addition, evidence suggests that at least some AdvSca1 
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cells can produce osteogenic cells in vitro, endothelial cells and possibly macrophages 

in vivo, and adipogenic cells both in vitro and in vivo.  In Matrigel plugs in vivo, 

AdvSca1 cells localize to the perivascular region of newly formed microvessels and 

express markers commonly associated with perictyes.   

6) Knockdown of Klf4 in vitro drastically decreases the number of AdvSca1 cells that 

retain a Sca1+ progenitor phenotype, causes defects in Sca1+ cell proliferation, and 

increases SMα-actin mRNA levels.  Conversely, overexpression of KLF4 blocks SMα-

actin expression.   
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Figure 29.  Working model of AdvSca1 regulation.  Shh protein concentrated at the border 
between the arterial media and adventitia signals to multiple cell types within the adventitia.  
Resident within this Hh-responsive zone are Sca1+ vascular progenitor cells with the 
capacity for self-renewal and differentiation to multiple vascular cell types.  The transcription 
factor Klf4 is highly expressed in AdvSca1 cells and may serve as a central factor in a 
regulatory network controlling the expression of cell-type specific genes and progenitor cell 
self-renewal.   
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Future directions 

 

Hedgehog signaling and development of the artery wall 

The developmental localization of Hh signaling and Shh protein to the adventitia is 

striking.  While Shh is clearly important for the proper establishment of AdvSca1 cells, this 

role is likely to be secondary to other functions for Shh signaling in the vasculature.  Indeed, 

other data from our lab demonstrate that multiple adventitial cell types are Hh-responsive at 

early postnatal timepoints, including macrophages, adipocytes, and perineural cells.  

Experiments are currently underway to evaluate the production of Shh ligand by different 

adventitial cell types to determine if Hh-responsive cells also synthesize ligand.  These 

studies use Shh-EGFP mice in which enhanced green fluorescent protein is knocked into 

the endogenous Shh gene locus, replacing the first 35 base pairs of exon one following the 

ATG (1), and results will be verified by in situ hybridization for Shh mRNA.   

Hedgehog signaling could be critical for the development and/or function of any of 

the responsive cell types.  In addition to its roles in progenitor cell maintenance, 

proliferation, and survival, Shh has been demonstrated to have chemoattractive qualities for 

neural progenitor cells (2) and monocytes (3) and influences the migration of several other 

cell types (4).  Therefore, one possible role of Shh expression in the adventitia during 

development is to recruit and assemble the various cell types that are integral to a functional 

adventitial compartment.  Genetic tools will be useful in targeting Hh pathway activation or 

knockout in specific cell types such as SMCs, macrophages, and adipocytes.  Cell type-

specific cre mice used in combination with floxed-Smo (5) or mice that conditionally express 

a constitutively active form of Smo (6) will allow evaluation of the effects of Hh signaling 

deletion or constitutive activation, respectively.   

The role of Hh signaling in SMC differentiation is intriguing.  Preliminary data from 

our lab suggest that multiple Hh pathway components are downregulated as cells undergo 
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SMC differentiation (see Supplementary Figure 3 in Appendix A), indicating that mature 

vascular SMCs may have limited or no ability to respond to Hh ligands.  This parallels the 

observations of Yu et al. in the kidney and ureter, where SMC progenitors, but not 

differentiated SMCs, respond to paracrine Shh signaling (7).   

Another possible role for Shh signaling in the adventitia is to promote and regulate 

the development of the vasa vasorum.  Angiogenic effects of Shh are mediated through 

interstitial fibroblasts, which upregulate VEGF, angiopoietin-1, and angiopoietin-2 in 

response to Shh treatment (8).  The development of the vasa vasorum has not been well 

characterized in mice; therefore it will be very interesting to conduct a detailed analysis of 

the timing and construction of the vascular plexus in both wild-type and Shh-/- embryos.  

These studies could then be further extended to test for a link between the formation of the 

vasa vasorum and the appearance of AdvSca1 cells in the adventitia.  Pericytes depend on 

endothelial-derived PDGF-B for proper recruitment and function (9, 10) and given the strong 

expression of PDGFR-β by AdvSca1 cells, it is logical to speculate that PDGF signaling is 

also important in their regulation.  Colonization of the adventitia by AdvSca1 cells only after 

vasa vasorum establishment may also provide an explanation for the appearance of 

AdvSca1 cells relatively late in embryonic development.   

 
 

Genetic targeting of AdvSca1 cells 

 Further investigation into the mechanisms and factors that regulate AdvSca1 self-

renewal and differentiation will have important implications for vascular disease and 

development.  Examination of AdvSca1 phenotype in global knockout mice provides useful 

information regarding the development of the cells when the factor of interest is 

constitutively absent.  However, these models are often limited by other phenotypes that 

cause severe defects or embryonic lethality, complicating the interpretation of the effect on 

AdvSca1 cells and limiting the time window in which they can be examined.   
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One strategy that has been used to more specifically target adventitial cells is the 

direct application of adenovirus or plasmid vector to the adventitial surface of the artery wall 

(11-13).  Control experiments using reporter genes confirmed that exogenous gene delivery 

was limited to adventitial cells and indicated that gene expression persists for at least 14d 

following application.  This method is best suited to gene overexpression rather than 

removal of gene function, although it could be adapted for delivery of chemical inhibitors 

such as cyclopamine or TGF-β receptor kinase inhibitors.   Due to the inherently invasive 

nature of exposing the arterial adventitia for direct application of factors, it is a good choice 

for use in combination with surgical vascular injury models such as carotid artery flow-

reduction (see below).  

For gene deletion, a genetic approach using mice with conditionally expressed cre 

recombinase in combination with a floxed gene of interest would be optimal.  This will 

require the identification of an appropriate promoter that can be used to drive cre expression 

in AdvSca1 cells.  Sca1 itself is a risky choice because it is expressed in multiple different 

cell types (14).  For example, Sca1 expression by hematopoietic cells and adipose stromal 

cells could complicate labeling experiments and increase the possibility of deleterious side-

effects of targeted gene knockout that are unrelated to AdvSca1 functions.  An unbiased 

screen for genes expressed by AdvSca1 cells would reveal candidates.  The ideal factor will 

be as specific as possible to AdvSca1 cells and should not be expressed in SMCs or other 

arterial cells.  A transgenic construct in which cre expression is driven by the promoter of 

interest in an inducible fashion will further help to minimize effects on non-AdvSca1 cells.  A 

transgenic mouse with cre expression in AdvSca1 cells would be a valuable tool that could 

be used in combination with existing flox lines, giving us the ability to evaluate the effects of 

Hh pathway deletion, constitutive activation, and deletion of one or more Krüppel family 

members without the complications of embryonic lethality and effects on other cell types.  
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Furthermore, inducible cre expression would allow us to genetically mark AdvSca1 cells and 

follow their fate during postnatal development and adventitial response to vascular injury. 

 

AdvSca1 cell differentiation potential 

 In the course of these studies, we have observed isolated AdvSca1 cells differentiate 

to SMCs and osteogenic cells in vitro, pericytes, endothelial cells, and macrophages in vivo, 

and adipocytes both in vitro and in vivo.  As discussed above, all of these cell types are 

relevant to the adventitia and artery wall.  Whether an individual AdvSca1 cell is capable of 

differentiating to all the cell types we observed or if the AdvSca1 population is 

heterogeneous with respect to differentiation potentials is not yet entirely clear.  In addition, 

the extent to which the assay environment determines the cell types that are produced by 

AdvSca1 cells needs to be carefully considered.  It will be important to expand our in vivo 

analysis of AdvSca1 potential using models that complement the Matrigel plug assay.  To 

this end, the methods used for the Matrigel plug assay could easily be adapted to test the 

behavior of AdvSca1 cells in other matrices.  Collagen is an abundant component of the 

adventitial extracellular matrix, so testing the differentiation behavior of AdvSca1 cells 

suspended in purified collagen may be a relevant alternative to Matrigel.  Fibrin, which has 

been used in ex vivo aortic ring assays (15) and in vitro endothelial tube formation (16), is 

another possibility.  It would be interesting to extend these studies by analyzing the actual 

ECM composition in the adventitia of normal and diseased arteries.  Knowing the relative 

levels of different matrix components, one could tailor an assay to better mimic the in vivo 

adventitial environment where AdvSca1 cells normally reside. 

 Other angiogenesis assays such as the corneal micropocket assay, the chick 

chorioallantoic membrane assay, and the rodent mesentery angiogenesis assay have both 

advantages and disadvantages (17, 18).  Given the range of mesenchymal cell potentials 

observed from AdvSca1 cells, it makes sense to move beyond an angiogenic environment 
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for additional in vivo assays.  The kidney capsule transplantation assay and denatured 

collagen sponge implant would be appropriate choices for testing AdvSca1 behavior in 

different environments.  In the kidney capsule transplantation model, cells or tissues are 

implanted in the subcapsular region of the kidney and allowed to differentiate.  The kidney is 

highly vascularized, and the capsule can physically accommodate a variety of tissue and 

cell types (19).  This system has the advantage of being unbiased towards a particular cell 

fate, as cells are not treated with exogenous factors.  Differentiation to tissues as diverse as 

bone and bone marrow (20), pancreatic beta-cells (21), and neural tissue (22) have been 

found in different uses of kidney capsule transplantation.  In contrast, the collagen sponge 

implant assay would be most useful for directed differentiation of AdvSca1 cells towards an 

osteogenic fate, which we have not yet observed in vivo.  In this model, isolated AdvSca1 

cells would be treated with BMP2 and mounted on a collagen sponge, which is implanted 

subcutaneously into a host mouse (23).  Both the kidney capsule and collagen sponge 

assays can be used with 106 or fewer cells and do not require prior cell culture, which is 

necessary for AdvSca1 cell assays.  

 

Hedgehog signaling and AdvSca1 regulation in vascular injury models 

 In our preliminary studies using the carotid artery flow reduction model of vascular 

injury and remodeling, we observed an expanded adventitial compartment at one week 

post-ligation, as has been previously reported (24).  The neoadventitia included expanded 

numbers of AdvSca1 cells, some of which were positive for the mitotic marker phospho-

histone H3 (pH3).  Hh pathway activity, as evaluated by X-gal staining for Ptc2-lacZ 

expression, was unchanged in the adventitia of flow-reduced vessels compared to sham 

controls.   These experiments will need to be expanded and refined, particularly to include 

earlier timepoints.  Godin et al. performed complete ligation of the common carotid artery 

and evaluated the proliferation index by BrdU incorporation at 1, 3, 7, 14, and 28 days.  At 
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one day post-ligation, they observed >20% BrdU-positive cells in the adventitia.  The rate of 

proliferation decreased sharply thereafter and reached baseline by one week (25).  It is 

likely, therefore, that we have missed the peak of adventitial cell proliferation by conducting 

our examination at one week post-ligation.  Furthermore, our data suggest that Shh 

signaling plays an important role in regulating AdvSca1 proliferation.  Analyzing gene 

expression changes at early timepoints, particularly with respect to Hh pathway 

components, will be a more reliable method of evaluating Hh pathway activation.   

 One area that has not been addressed in prior studies is whether the development of 

neoadventitia in vascular injury models is accompanied by a concomitant expansion of the 

vasa vasorum.  Non-diseased arteries in mice are generally thought to have an extremely 

limited vasa vasorum (26) yet our lab has been able to visualize adventitial microvessels 

using immunostaining and whole-mount confocal microscopy.  Several studies have 

reported that the vasa vasorum is greatly expanded in mouse models of atherosclerosis 

(26).  The vasa vasorum network functions to supply oxygen and nutrients to cells in the 

outer layers of the artery wall (27).  Expansion of the vasa vasorum following vascular injury 

could be a response to angiogenic factors released as a result of mechanical stress in the 

vessel wall or a reaction to hypoxia induced by increased artery wall thickness.  While an 

extensive investigation of these questions is not directly relevant to the concepts presented 

in this work, it is worth considering the possibility that any increases in adventitial Hh 

signaling following vascular injury may also promote vasa vasorum angiogenesis.  

Therefore, if Hh pathway activation is observed following carotid flow reduction or balloon 

injury, an evaluation of vasa vasorum density should also be conducted.  These 

experiments could be further expanded to include adventitial treatment with cyclopamine 

suspended in pluronic gel, in order to observe alterations in adventitial response to vascular 

injury when Hh pathway activation is blocked.   
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Regulation of the progenitor phenotype by Klf4 

 The results of our experiments involving Klf4 knockdown in AdvSca1 cells strongly 

suggest that Klf4 plays a critical role in regulating the progenitor phenotype.  However, it 

remains unresolved whether Klf4 actively promotes progenitor cell self-renewal, blocks the 

expression of smooth muscle genes, or both.  As we expand the scope of these 

experiments, gaining a better understanding of what constitutes the “progenitor phenotype” 

of AdvSca1 cells will be critical for interpreting experimental results.  Sca1 is an extremely 

useful marker for AdvSca1 cells, as it is a cell-surface protein not expressed by other 

adventitial cell types.  We currently isolate and evaluate the progenitor status of AdvSca1 

cells based on the presence or absence of Sca1 protein and gene expression.  

Nevertheless, the validity of this approach needs to be verified by examining other aspects 

of the AdvSca1 phenotype.  For example, as Sca1 expression is lost in response to Klf4 

knockdown, are other progenitor cell markers such as CD34 also downregulated?  A more 

extensive analysis of gene expression changes following Klf4 knockdown will not only be 

informative in giving us a wider view of global changes in the phenotype of AdvSca1 cells, 

but may provide clues as to the particular function of Klf4.   

 An evaluation of the AdvSca1 phenotype in KLF4 mutant mice will be a critical 

supplement to our in vitro experiments.  KLF4 knockout mice have been generated and 

characterized, and no obvious vascular defects were detected.  KLF4-/- mice are born in 

normal Mendelian ratios, but die within 15 hours after birth due to loss of skin barrier 

function (28).  These mice will be useful for basic analyses of AdvSca1 phenotype to identify 

abnormalities such as delayed appearance, reduced numbers, or altered distribution.  If 

AdvSca1 cells are present, they can be isolated for gene expression analysis and tested for 

in vitro and in vivo differentiation behavior.   

The siRNA experiments represent an acute loss of Klf4 expression, while the KLF4-/- 

mutant mice exhibit a constitutive absence of Klf4 function.  It will be interesting to compare 
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the effects of these two models on AdvSca1 cell phenotype.  In addition, evaluation of acute 

loss of Klf4 in vivo can be achieved through the use of floxed-KLF4 mice (29).  Until the 

development of an appropriate cre mouse to genetically target AdvSca1 cells, experiments 

would rely on conditional expression of globally-expressed cre.  Nonetheless, it would be 

informative to investigate the behavior of Klf4-deficient AdvSca1 cells in vivo without 

removing them from the native adventitial environment.  These experiments could be further 

expanded to analyze the response of Klf4-deficient AdvSca1 cells to various forms of 

vascular insult, including vascular injury models or genetic susceptibility to atherosclerosis.   

 To our knowledge, there have been no reports directly connecting Klf4 activity and 

signaling through the Hh pathway, although both have been linked to adipogenesis.  

Through a screen in Drosophila, Pospisilik et al. identified the Hh signaling pathway as an 

important regulator of adipocyte differentiation.  When suppressor of fused (Sufu) was 

deleted in adipose tissue, thus activating the Hh pathway, mutant mice displayed defective 

white adipocyte differentiation and a significant reduction in white adipose tissue (30).  In 

contrast, Klf4 has been reported to function as an immediate early regulator of adipogenesis 

through the direct transcriptional activation of C/EBPβ (31).  It will be interesting to evaluate 

any direct relationship between the Hh pathway and Klf4 in AdvSca1 cells, although it is 

important to consider that reciprocal regulatory effects may be mediated by cross-talk 

between multiple other signaling pathways. 

 

Additional modes of progenitor cell regulation 

 It is important to keep in mind that multiple other factors are likely to play significant 

roles in regulating the progenitor phenotype of AdvSca1 cells in situ.  Therefore, I will 

conclude with a brief discussion of two additional candidate regulators.   

Hypoxia:  Little has been reported regarding oxygen levels in normal arterial 

adventitia.  In animal models, hypoxic exposure induces rapid and dramatic changes in 



129 

adventitial architecture of pulmonary vessels.  These include adventitial fibroblast 

proliferation and changes in ECM protein synthesis (32).  Fibroblasts isolated from the main 

pulmonary artery adventitia upregulate SMα-actin when cultured in a hypoxic environment 

(33).  As with all previous literature addressing the behavior of adventitial “fibroblasts”, we 

question whether the observed cellular response is attributable to AdvSca1 cells, fibroblasts, 

or both.   

There have been numerous reports in the literature of environmental oxygen content 

modulating the behavior of different progenitor cell types.  Notably, Berthelemy et al. 

observed differential fates of circulating mononuclear cells when cultured under normoxic or 

hypoxic conditions.  Under normoxia, the cells displayed the morphology and markers of 

endothelial cells, while hypoxia induced expression of SMC markers (34).  Adipose stromal 

cells also modulate various aspects of their phenotype in response to hypoxia (35-37).  

Interestingly, Sims et al. reported that Shh expression is upregulated following 

ischemic/hypoxic insult the brain, inducing neural progenitor cell proliferation (38).  Given 

these precedents, it would be very interesting to compare AdvSca1 behavior when cultured 

under standard conditions versus hypoxia.  Our preliminary data indicates AdvSca1 cells 

express key members of the hypoxia-inducible factor family, including HIF1α, HIF2α, and 

ARNT (HIF1β) (data not shown).  Observing changes in AdvSca1 proliferation or 

differentiation at different oxygen concentrations would suggest that oxygen levels are an 

important regulator of progenitor cell behavior in the adventitia. 

Chromatin conformation:  Previous studies have suggested that histone 

modifications such as acetylation play a role in the regulation of SMC gene transcription (39-

43).  The ability of SRF to activate transcription of SMC marker genes depends on its ability 

to recognize and bind CArG box elements found in promoter and intronic locations.  Histone 

tail modifications can change the structure of chromatin, thus impacting the ability of 

transcription factors to recognize and bind target sites.  Chromatin structure and accessibility 
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of target genes are regulated by the opposing activities of histone acetyltransferases (HATs) 

and histone deacetylases (HDACs).  Chromatin immunoprecipitation (ChIP) analysis in 

cultured SMCs has shown that acetylated histones H3 and H4 are associated with the 

SMαA, SM22α, and SM-MHC gene regulatory regions (39, 40).  McDonald et al showed 

enrichment of the activating modifications H3K4dMe, H3K79dMe, H3K9Ac, and H4Ac at 

CArG box chromatin in SMCs versus other cells types, including embryonic stem cells, 

endothelial cells, and undifferentiated A404 cells (42).  Currently, however, little is known 

about the epigenetic regulation of SMC progenitors in vivo and how histone modifications 

may be altered as these cells differentiate and express SMC marker genes for the first time.  

Our preliminary data indicates that AdvSca1 cells express HDACs 1, 2, and 5 (data not 

shown), histone modifying enzymes which are known to interact with Klf4 (42, 44, 45).  

Given that AdvSca1 cells express SRF and known co-activators of SMC marker gene 

transcription, it will be very interesting to evaluate the status of CArG elements in AdvSca1 

cells.  Coimmunoprecipitation and ChIP techniques can be used to address the status of 

SRF-CArG occupancy, SRF-Klf4 interaction, Klf4-HDAC interaction, and CArG element 

histone modifications in AdvSca1 cells before and after in vitro differentiation. 
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Appendix A:  Supplementary Figures 
 
 
 

 
 

 
Supplemental Figure 1.  Other potential fates of AdvSca1 cells in vivo.  Isolated AdvSca1 
cells expressing membrane-localized tdTomato fluorescent protein were incubated in 
Matrigel plugs with 0.5 µg/mL human FGF2 and 60 U/mL heparin for 10 d.  Single confocal 
Z-sections indicate tdTomato co-localization with PECAM (arrowheads, A), perilipin, a 
marker of adipocytes (B), and CD68, a marker of macrophages (C).   
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Supplemental Figure 2.  Whole-mount views of AdvSca1 cells in the artery wall.  The left 
carotid artery of a wild-type mouse was stained for Sca1 expression and evaluated by 
confocal microscopy.  Views from different angles (A-C) show AdvSca1 cells localized to the 
adventitia, where they display a slightly flattened morphology.  Data shown was generated 
by Virginia Hoglund.   
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Supplemental Figure 3.  Downregulation of Hh pathway components during SMC 
differentiation.  The A404 cell line was developed from P19 mouse embryonal carcinoma 

cells as described by Blank et al. (1).  Treatment with retinoic acid (RA) induces SMC 
differentiation.  RNA was isolated from undifferentiated (U) cells, cells at day 3 (D3), and 
cells at day 5 (D5) of RA-induced SMC differentiation and the expression of SMC marker 
genes and Hh pathway components was evaluated by RT-PCR.  As A404 cells undergo 
SMC differentiation, multiple Hh pathway components are downregulated.  A similar trend 
was observed during the ex vivo differentiation of proepicardial cells (data not shown).  Data 
shown was generated by Chang Su.   
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Appendix B:  List of Primer Sequences 
 

Gene Forward Primer Reverse Primer Product 
Size Reference 

β-actin TGTTACCAACTGGGACGACA CTCTCAGCTGTGGTGGTGAA 393 (1) 

Boc CCCAGAAGCTCCAGACAGAC TGTCCCCTTCTACCATGTCC 500  

Calponin CACCAACAAGTTTGCCAG TGTGTCGCAGTGTTCCAT 213 (2) 

CD140b 
(PDGFR-
β) 

AGCTACATGGCCCCTTATGA GGATCCCAAAAGACCAGACA 367  

CD34 TTGACTTCTGCAACCACGGA TAGATGGCAGGCTGGACTTC 300 (3) 

Cdo AGGGGAGAGTGAGTTCAGCA CCTGGTCAGGGAGTTTGTGT 493  

Csrp1 AGTCTCTGGGCATCAAGCAT CCGCTGATGAAAAGCTTAGG 376  

Csrp2 GCATGGTTTGCAGGAAAAAT CCCACACCTGGAACACTTCT 260  

Dhh ATGCCCAATTGACAGGAGAG GGCCTTCGTAGTGGAGTGAA 500  

Disp1 CAAGAGGGACCACGATAGGA GTGCCGTTTTGGTAGTGCTT 505  

Flk1 TCTGTGGTTCTGCGTGGAGA GTATCATTTCCAACCACCCT 270 (3) 

Foxo4 TGTAACAGGTCCTCGGAAGG GACAGACGGCTTCTTCTTGG 394  

Gli1 TGGAAGGGGACATGTCTAGC ATGGCTTCTCATTGGAGTGG 501  

Gli2 CCTCCAACCTCAACAAGAGC CTGCAGGAGGGAGAAAACTG 403  

Gli3 CCGTTCAAAGCCCAGTACAT TCTTCACCTGGAGGCACTCT 505  

Hhip CCGTGGATCGACATCCTACT GGGCAGGTTGAACTGTGACT 498  

Ihh GGCCATCACTCAGAGGAGTC ATATTGGCCTGGTTGCACAT 501  

Kit GGCTCATAAATGGCATGCTC CTTCCATTGTACTTCATACATG 400 (3) 

Klf2 ACCAAGAGCTCGCACCTAAA CAGAACTGGTGGCAGAGTCA   

Klf4 ATTAATGAGGCAGCCACCTG GGAAGACGAGGATGAAGCTG 400  

Klf5 GTCTGCGGTTTAAAGGATGG GCCAGTTAATTCGCCAACTC   

MRTF-A CCAGGCTGGCTGATGACCTCAATG CTGTGATTTCTCGCTGGCAGACTTG 473 (2) 

MRTF-B ACCCCAGCAGTTTGTTGTTC TGGAATGACTCAGCAAGTCG 488  

Msx1 GCTGGAGAAGCTGAAGATGG AGGGGTCAGATGAGGAAGGT 391  

Msx2 AGACATATGAGCCCCACCAC GGGAGCACAGGTCTATGGAA 365  

Myocardin ATGCACCAAACACACCTCAA GCTGCCAAAGTGGTAGAAGC 384  
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Ptc1 CATTGGCAGGAGGAGTTGAT CCTGAGTTGTCGCAGCATTA 499  

Ptc2 TCCCCCAGAGCTCTTCTACA GGGATGGCACTCAGTTTGAT 501  

Sca1 CTCGAGGATGGACACTTCT GGTCTGCAGGAGGACTGAGC 400  

Shh TCTGTGATGAACCAGTGGCC GCCACGGAGTTCTCTGCTTT 241 (4) 

SM α-
Actin 

ACGGCCGCCTCCTCTTCCTC GCCCAGCTTCGTCGTATTCC 415  

SM-MHC GACAACTCCTCTCGCTTTGG GCTCTCCAAAAGCAGGTCAC 201 (5) 

SM22α TCCAGTCCACAAACGACCAAGC GAATTGAGCCACCTGTTCCATCTG 328 (6) 

Smo GGCTGGAGTAGTCTGGTTCG TGGCTTGGCATAGCACATAG 500  

SRF CTACCAGGTGTCGGAATCTGA CCAGACGGTGCTGTCAGGAACA 651 (2) 

Sufu CAAAGGCATTGAGACAGACG GCATACGGGTGTTCCTCAGT 507  
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Appendix C:  List of Antibodies 
 

 
Antigen Supplier (Catalog #) Method Notes (as differ from text) 

β-galactosidase MP Biomedical (55976)  

Shh R&D Systems (AF445)  

SM-MHC Biomedical Technologies 
(BT-562)  

SMαA Sigma (A2547) best with methanol or methanol/acetone 
fixation/permeabilization 

Sca1 BD Pharmingen (553333) does not require permeabilization, not 
compatible with Triton X-100 treatment 

PECAM-1 BD Pharmingen (550274)  

BrdU BD Pharmingen (555627)  

SRF Santa Cruz Biotechnology 
(sc335)  

FLAG Sigma (F1804) requires permeabilization 

GFP Abcam (ab13970)  

 

 




