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ABSTRACT 

CHRISTINA S. WON: Integrated Approaches to Identify and Predict Pharmacokinetic-Based  

Dietary Substance-Drug Interactions 

(Under the direction of Mary F. Paine) 

 

 The large variation in bioactive ingredient composition inherent to natural products, including 

dietary substances, can confound the design and interpretation of natural product-drug interaction 

studies. The purpose of this dissertation was to address this overlooked issue by developing a 

framework to evaluate pharmacokinetic-based dietary substance-drug interactions such that 

ultimately, firm clinical recommendations can be made. Fruit juices represent a diverse market of 

popular foods containing phytochemicals that can inhibit drug metabolizing enzymes and transporters 

in the intestine. The potential increase or decrease in systemic drug exposure could lead to adverse 

effects or therapeutic failure, respectively. A multi-experimental approach utilizing in vitro 

(bioactivity-guided fractionation), in vivo (clinical study), and in silico (modeling and simulation) 

methods was applied to the exemplar dietary substance grapefruit juice (GFJ). GFJ has been shown to 

inhibit oral absorption of certain drugs that require the uptake transporter family of organic anion 

transporting polypeptides (OATPs) located in the intestine. The inhibitory effects of GFJ and a unique 

food-grade GFJ devoid of two classes of candidate OATP inhibitors, furanocoumarins and 

polymethoxyflavones, on intestinal OATP activity were evaluated in OATP1A2- and OATP2B1-

transfected cells and in healthy volunteers. Results from the in vitro study were predictive of the in 

vivo study, demonstrating that furanocoumarins and polymethoxyflavones do not contribute to 

intestinal OATP inhibition. Bioactivity-guided fractionation of GFJ using estrone 3-sulfate as a probe 

substrate and OATP2B1-transfected cells yielded several potent groups of 
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OATP2B1 inhibitors. GFJ also has been shown to inhibit the metabolism of drugs that require the 

cytochrome P450 3A4 (CYP3A4) enzyme in the intestine. A population-based modeling and 

simulation program incorporating in vitro and in vivo data from the literature evaluated two 

furanocoumarins, 6’,7’-dihydroxybergamottin and bergamottin, as candidate marker compounds 

predictive of the GFJ effect on select CYP3A4 drug substrates. Results from the in silico study 

supported both furanocoumarins as potential marker compounds. These integrated approaches address 

the challenges of, and begin to establish best practices for, the study of dietary substance-drug 

interactions. Such research methods must be refined and reinforced as concomitant intake of new (and 

older) natural products and drugs continues to rise.  
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CHAPTER 1 

INTRODUCTION 

 

PROLOGUE 

The diet is an underappreciated modifiable environmental factor that influences human health 

status. Pharmaceutical agents have long overshadowed dietary interventions as primary modifiers of 

health outcomes and disease amelioration. Multi-drug regimens have become commonplace and are 

expected to continue and escalate, predisposing millions of people to adverse drug reactions, as well 

as drug-drug interactions. The public’s burgeoning interest in holistic, complementary, and alternative 

medicine has led to the adoption of additional practices to augment the effects of their drug therapies. 

Certain plant-derived chemicals (i.e., phytochemicals) consumed through foods and dietary 

supplements, including herbal preparations, have become viable therapeutic options used in 

conjunction with prescribed, as well as over-the-counter, medications. This growing shift in the 

practice of health care and maintenance may put patients at risk for additional types of drug 

interactions.   

Globalization has enhanced the opportunities for people to be exposed to a variety of exotic 

phytochemicals, as well as diverse medical practices, perceived to be beneficial to health. Innovative 

agricultural engineering and food fortification also have led to a rise in ‘superfoods’ and/or 

‘functional foods.’ Coupled with the dangers of polypharmacy, it is inevitable that these worlds will 

collide, with beneficial or detrimental results. Like drug-drug interactions, food-drug interactions can 

be associated with highly variable pharmacokinetics (PK) of the “victim” drug, which can lead to
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adverse events or therapeutic failure. Various food products have the potential to perturb the 

absorption, distribution, metabolism, and excretion of medications. The underlying mechanisms can 

be physicochemical (e.g., chelation), biochemical (e.g., inhibition of drug metabolizing enzymes 

and/or transporters), or physiologically-based (e.g., altered blood flow to intestine). 

 Plant-derived beverages, including fruit juices, are ubiquitous and represent a diverse market 

of food products. Aside from purported health benefits, fruit juices contain constituents that have 

been shown to inhibit drug metabolizing enzymes (e.g., cytochrome P450s) and transport proteins 

(e.g., organic anion transporting polypeptides) in the intestine, leading to altered PK of the victim 

drug. The clinical impact of such beverage-drug interactions is discussed in the following two parts. 

A review of the literature demonstrates challenges in designing, conducting, and interpreting clinical 

studies to assess dietary substance-drug interactions. Numerous in vitro and in vivo methods, similar 

to those used to bring a new chemical entity to market, are available to screen for drug interaction 

potential. However, results can be confounded by the between-brand variability in bioactive 

ingredient composition. Large variations, even within the same lot of the same brand, can contribute 

to varying magnitudes of effect on multiple substrates both in vitro and in vivo. A disregard for the 

phytochemical type and content can lead to lack of replication, as well as discrepancies between in 

vitro predictions and in vivo observations.  

An improved understanding of the causative bioactive components and PK mechanisms is 

needed to provide firm recommendations to both clinicians and consumers on how to manage food-

drug interactions. This critical, yet frequently overlooked, issue is the motivation for this dissertation 

project. The overall goal of the project was to develop a framework for how to conduct robust 

research on dietary substance-drug interactions utilizing in vitro, in vivo, and in silico strategies. 

Grapefruit juice was used as a model dietary substance due to the abundance of information amassed 

over the last two decades on the drug interactions caused by this dietary substance. Although the three 

approaches are discussed in the context of GFJ-drug interactions, the principles and methods can be 

applied to the study of drug interactions caused by botanicals intended for general human 
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consumption. A multi-experimental approach, which included a clinical study in healthy volunteers, 

in vitro studies with transporter-expressing cells, bioactivity-guided fractionation/isolation, and PK 

modeling and simulation, was utilized as outlined in the following specific aims:  

 

Aim 1: In vitro-in vivo approach to elucidate the molecular and cellular factors mediating 

dietary substance-drug interactions 

Evaluate the contribution of specific grapefruit juice (GFJ) components to the inhibition of 

intestinal organic anion transporting polypeptide (OATP) activity and consequent oral 

absorption of the transporter substrate by GFJ. 

Hypothesis: A food-grade GFJ devoid of certain classes of compounds (modified GFJ) can be used 

as a tool to identify or eliminate the contribution of specific classes of compounds to enteric OATP 

inhibition and reduction of oral absorption. 

1a. Evaluate the OATP inhibitory effect of GFJ and modified GFJ extracts in vitro using OATP1A2- 

and OATP2B1-transfected cell lines and estrone 3-sulfate and fexofenadine as substrates.   

1b. Compare the magnitude of effect of GFJ and modified GFJ to water on the systemic exposure to 

the OATP substrate fexofenadine in healthy volunteers. 

 

Aim 2: In vitro approach to identify the active ingredients responsible for the targeted 

bioactivity of dietary substances 

Identify and characterize enteric OATP inhibitors in GFJ. 

Hypothesis: A bioactivity-guided fractionation approach can be used to isolate enteric OATP 

inhibitors using an established stably transfected cell system and an OATP probe substrate.  

2a. Generate GFJ fractions by a series of solvent extractions and preparative high performance liquid 

chromatography. 
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2b. Identify potent OATP inhibitory fractions by evaluating the effects of generated GFJ fractions on 

OATP activity using Madin-Darby Canine Kidney II (MDCK II) cells stably transfected with 

OATP2B1 and estrone 3-sulfate as the probe substrate. 

2c. Determine the IC50 of individual  GFJ components towards OATP2B1 using MDCKII cells stably 

transfected with OATP2B1 and estrone 3-sulfate as the probe substrate. 

 

Aim 3: In silico approach to model in vivo drug disposition based on in vitro and human-derived 

parameters/data 

Evaluate select CYP3A4 inhibitors in GFJ as candidate marker substances predictive of the 

effect of GFJ on CYP3A4 substrate PK behavior. 

Hypothesis: In vitro data encompassing absorption, distribution, elimination, and physicochemical 

properties of substrates and GFJ inhibitors can be integrated into a PBPK model to determine the 

predictive nature of marker GFJ ingredients and to predict the magnitude and variability of GFJ-

drug interactions in humans. 

3a. Develop a whole-body human PBPK interaction model for select CYP3A4 substrates 

(midazolam, felodipine) and CYP3A4 inhibitors in GFJ (6’,7’-dihydroxybergamottin, 

bergamottin) using in vitro and in vivo data from the literature and commercially available 

software programs. 

3b. Compare predicted/simulated data with observed data and refine the PBPK model. 
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PART 1: INFLUENCE OF DIETARY SUBSTANCES ON  

INTESTINAL DRUG METABOLISM AND TRANSPORT 

OVERVIEW 

Successful delivery of promising new chemical entities via the oral route is rife with challenges, some 

of which cannot be explained or foreseen during drug development.  Further complicating an already 

multifaceted problem is the obvious, yet often overlooked, effect of dietary substances on drug 

disposition and response.  Some dietary substances, particularly fruit juices, have been shown to 

inhibit biochemical processes in the intestine, leading to altered pharmacokinetic (PK), and 

potentially pharmacodynamic (PD), outcomes.  Inhibition of intestinal CYP3A-mediated metabolism 

is the major mechanism by which fruit juices, including grapefruit juice, enhances systemic exposure 

to new and already marketed drugs.  Inhibition of intestinal non-CYP3A enzymes and apically-

located transport proteins represent recently identified mechanisms that can alter PK and PD.  Several 

fruit juices have been shown to inhibit these processes in vitro, but some interactions have not 

translated to the clinic.  The lack of in vitro-in vivo concordance is due largely to a lack of rigorous 

methods to elucidate causative ingredients prior to clinical testing.  Identification of specific 

components and underlying mechanisms is challenging, as dietary substances frequently contain 

multiple, often unknown, bioactive ingredients that vary in composition and bioactivity.  A 

translational research approach, combining expertise from clinical pharmacologists and natural 

products chemists, is needed to develop robust models describing PK/PD relationships between a 

given dietary substance and drug of interest.  Validation of these models through well-designed 

clinical trials would facilitate development of common practice guidelines for managing drug-dietary 

substance interactions appropriately.  

 
 
 
 
 
 
 



6 
 

INTRODUCTION 

Interpatient differences in response to therapeutic agents represent one of the most 

challenging complications in clinical practice.  Such complications can delay, even prevent, optimal 

treatment outcomes, which can negatively impact quality of life and health care costs.  Genetic, 

pathophysiologic, and environmental factors all contribute to variation in drug response, which is in 

part due to large interindividual differences in processing xenobiotics via absorption, distribution, and 

elimination.  Significant resources continue to be invested in delineating genetic factors associated 

with variation in drug disposition, and in turn drug response, with the promise of “personalized 

medicine” [1-3].  Comparatively less attention has been directed toward non-genetic factors, which 

are equally important in determining drug response [4], and whose contribution increases with age 

[5].  Because ingestion of dietary substances, as foods or supplements, undoubtedly constitutes the 

largest portion of environmental exposure to xenobiotics, evaluation of the influence of dietary 

substances on drug disposition is prudent to improving the understanding of interindividual 

differences in response to therapeutic agents.   

Dietary substances perhaps have the greatest impact on drug disposition processes in the 

intestine, as most drugs and dietary substances enter the body by the oral route and are absorbed 

subsequently by enterocytes.  Like hepatocytes, enterocytes express myriad metabolizing enzymes 

and transport proteins that influence, at least in part, the extent of systemic drug exposure [6, 7].  The 

clinical significance of the intestine as a contributor to drug disposition and as a site for drug-drug 

interactions (DDIs) is widely recognized.  Incorporation of intestinal biochemical processes in DDI 

prediction models is the topic of several recent reviews and original research articles [8-15].     

 Although dietary substances are regulated as food, bioactive compounds in these substances 

can act like drugs.  Presumed bioactive compounds often are extracted and sold as dietary or herbal 

supplements.  The ever-increasing popularity of certain foods and dietary supplements as a means to 

decrease health care costs via self-diagnosis and treatment is due in part to the widely held view that 

these products are safer, “natural” alternatives to prescription, as well as non-prescription, drugs [16, 
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17].  Evaluation of drug interaction liability of new drug candidates is strictly defined [18, 19], 

whereas that for foods and supplements is not.  Consequently, robust guidelines on the evaluation of 

potential drug-dietary substance interactions are essentially non-existent.  Lack of guidance in this 

area has led to a multitude of studies that often are difficult to compare, inconclusive, and fail to meet 

strict definitions required to make informed clinical and regulatory decisions.  The current review 

focuses on new findings and developments over the last two years in drug-dietary substance 

interaction research and addresses concerns regarding interpretation of associated studies. 

DRUG-DIETARY SUBSTANCE INTERACTIONS 

A drug-dietary substance interaction is defined as the result of a physical, chemical, 

physiologic, or pathophysiologic relationship between a drug and a nutrient(s) present in a food, 

nutritional supplement, or food in general [20].  Such an interaction manifests clinically as 

compromised nutritional status due to addition of a drug or altered pharmacokinetics (PK) and/or 

pharmacodynamics (PD) of a drug or dietary substance.  Like drugs, dietary substances can act as 

objects or precipitants [21], the latter of which can increase systemic drug exposure, augmenting the 

risk of adverse events and toxicity, or decrease systemic drug exposure, leading to therapeutic failure.  

These interactions are challenging to assess because, unlike most drug products, dietary substances 

are mixtures, composed of multiple, and usually unknown, bioactive ingredients.  A mechanistic 

understanding of the varied effects of dietary substances on drug disposition would form a basis for 

optimizing pharmacotherapy by minimizing potential unwanted effects. 

Clinical Considerations 

Dietary habits often are an overlooked topic of discussion during clinician visits, as well as 

during clinical trial design.  The general lack of awareness of clinicians to identify and properly 

manage drug-dietary substance interactions may predispose patients to unfavorable outcomes.  The 

risk of experiencing a significant event depends on several factors.  While a drug-dietary substance 

interaction may occur in any patient, those with weakened physiologic function, such as the elderly, 

immunocompromised, and critically ill, are at the highest risk of experiencing untoward effects [22].  
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Management of these relatively unexplored interactions is a challenge in clinical practice.  The 

clinician must identify short- and long-term consequences, determine the need for dosing and/or 

timing adjustments for the drug(s), and consider alternative treatment approaches [23].  

Understanding underlying mechanisms of the interaction and causative bioactive compounds will 

facilitate making the most appropriate decision.  However, prospective and systematic investigations 

on mechanisms and outcomes of many interactions are insufficient or lacking altogether.  Clinical 

interaction studies often do not support in vitro observations [24].  These in vitro-in vivo discordances 

raise questions about how research is conducted and interpreted.  Taken together, practical 

approaches in the management of these interactions are difficult to formulate.  Development of 

common practice guidelines to provide a consistent and comprehensive recommendation on avoiding 

or assessing drug-dietary substance  interactions can be achieved only by designing and conducting 

robust clinical studies. 

Dietary Substances as Precipitants of Altered Drug Exposure and Response 

Dietary substances as precipitants can alter drug absorption, distribution, and/or elimination 

via physicochemical and biochemical mechanisms.  Physicochemical mechanisms include 

inactivation of the drug by the dietary substance.  For example, enteral feeding formulas are 

physically incompatible with certain medications.  The antiepileptic agent, phenytoin, can bind to 

proteins and salts in enteral formulations, resulting in reduced phenytoin absorption, reduced serum 

concentrations, and potentially, inadequate seizure control [25].  Some tetracyclines and 

fluoroquinolones can bind to divalent cations in dairy products (e.g., calcium), resulting in reduced 

drug absorption and potential therapeutic failure [26, 27].  Biochemical mechanisms include 

alterations of gastroenterologic processes, interference with co-factor formation or function, and 

modification of drug metabolizing enzyme/transporter function by the dietary substance.  For 

example, high fat meals can increase drug absorption by improving solubility or stimulating 

gastrointestinal enzymes and bile flow [28].  The antifungal agent, griseofulvin, and antiviral agent, 

saquinavir, are recommended to be taken with such meals [29].  Food and beverages in general can 
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delay gastric emptying or change gastric pH, causing reduced absorption of some drugs, including 

penicillins and proton pump inhibitors [30].  Vitamin K-rich foods, such as dark green leafy 

vegetables, are examples of dietary substances that interfere with co-factor function [31].  These 

foods should be consumed cautiously with the anticoagulant, warfarin, as they can interfere with 

vitamin K metabolism and increase risk of bleeding or clot formation [32].  Fruit juices are examples 

of dietary substances that modify drug metabolism/transport and are the focus of this review.  Other 

examples of drug-dietary substance interactions are discussed comprehensively in several sources 

[33-36].   

MECHANISMS OF ALTERED SYSTEMIC DRUG EXPOSURE VIA INHIBITION OF 

INTESTINAL BIOCHEMICAL PROCESSES 

The gastrointestinal tract is exposed continuously to a variety of xenobiotics, the majority of 

which are components of the diet.  Fruit juices are touted frequently as healthy foods due to high 

antioxidant content, which is believed to slow onset of disease and aging [37].  These ubiquitous 

products are ready-made, easily obtained, and affordable.  They have become highly recommended 

supplements to routinely prescribed and over-the-counter drugs and/or as monotherapy for 

prevention, treatment, and maintenance of common diseases (e.g., hypercholesterolemia, 

hypertension, and diabetes mellitus).  The prevalence of these chronic conditions, and associated use 

of medications and fruit juices, is expected to rise [38-40]. 

Compared to drugs, less attention has been given to the possibility that dietary substances can 

influence drug disposition via modulation of drug metabolizing enzymes and transporters.  Fruit 

juices have been shown to inhibit metabolism and active apical efflux/uptake processes in the 

intestine [41].  Inhibition of metabolism and active efflux would be expected to increase, whereas 

inhibition of active uptake would be expected to decrease, systemic drug exposure.  These 

biochemical mechanisms of the intestine are highlighted in the current review. 
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Cytochrome P450 3A 

Cytochrome P450 (CYP) enzymes constitute the major catalysts of phase I drug 

biotransformation [42].  The CYP3A subfamily, consisting primarily of CYP3A4 and CYP3A5, is the 

most abundantly expressed in the intestine, representing, on average, approximately 80% of total 

immunoquantified CYP protein [43].  CYP3A is believed to be involved in the oxidative metabolism 

of over 50% of pharmaceutical agents [44].  Some fruit juices have been shown to inhibit enteric 

CYP3A, leading to clinical consequences [45].  Although several in vitro observations have translated 

to the clinic, generalizations about the effect of fruit juices on the metabolism of CYP3A substrates 

should be avoided since the effect may be substrate-dependent.   

Grapefruit Juice.  The grapefruit (Citrus  paradisi), particularly as juice, is one of the most 

extensively studied dietary substances shown to interact with an array of medications [46].  Grapefruit 

juice (GFJ) can enhance systemic drug exposure, by up to 1400%, by inhibiting CYP3A-mediated 

pre-systemic (first-pass) metabolism in the intestine [47].  Inhibition is localized largely in the gut, as 

reflected by a lack of effect on the PK of an intravenously administered substrate and on the 

elimination half-life of an orally administered substrate [48].  The increase in systemic drug exposure 

can be sufficiently large to produce untoward effects, including muscle pain with some HMG CoA 

reductase inhibitors (statins) and severe hypotension with some calcium channel antagonists [49].  

Accordingly, the package insert of more than 40 drugs, encompassing a range of therapeutic classes, 

carries a warning to avoid concomitant GFJ intake. 

The serendipitous observation of a PK/PD interaction between GFJ and the anti-hypertensive 

agent, felodipine [50], spurred numerous investigations of various drug-GFJ interactions.  Modes of 

intestinal CYP3A inhibition by GFJ include reversible and mechanism-based [51], as well as 

destruction of the protein [52].  A number of causal ingredients were examined over a span of 15 

years before a class of compounds, furanocoumarins, was established as a major mediator of the ‘GFJ 

effect’ in human subjects [53].  The discovery of the GFJ effect and subsequent investigations 

underscores the importance of the intestine as an organ of drug elimination and the possible 
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importance of other dietary substances as modifiers of drug performance.  Figure 1.1 highlights other 

key observations since the discovery of the felodipine-GFJ interaction in 1989 [54].  Table 1.1 

summarizes the design and major results of recent healthy volunteer and patient studies reporting 

modest to significant PK interactions with medications that are CYP3A substrates. 

Pomelo Juice.  The pomelo (Citrus maxima), or pummelo, is a large citrus fruit native to 

Asia and is consumed typically as the fresh fruit.  The grapefruit is believed to be an accidental hybrid 

of the pomelo and sweet orange (Citrus sinensis) [72].  Accordingly, it is reasonable to expect 

furanocoumarins are present in pomelos.  Indeed, juice prepared from some species of pomelo has 

been reported to contain furanocoumarins in concentrations comparable to those in GFJ [73].  Clinical 

interactions with tacrolimus [74] and cyclosporine [75] via enteric CYP3A inhibition, albeit modest, 

have been reported.  A clinical study of pomelo juice evaluated the extent of inhibition based on the 

species of pomelo [76].  Freshly prepared juices from two varieties of fruit (‘Guanximiyou’ and 

‘Changshanhuyou’) were given, on separate occasions, with felodipine (10 mg) to 12 healthy 

volunteers.  Each juice was measured for furanocoumarin content and tested for inhibition of CYP3A 

activity (testosterone 6β-hydroxylation) in human liver microsomes prior to clinical testing; at 2.5% 

juice (v/v), extents of inhibition were ~30% (Guanximiyou) and <5% (Changshanhuyou), relative to 

control.  The more potent juice increased both mean area under the curve (AUC) and maximum 

concentration (Cmax) of felodipine, by ~40% (p<0.05), whereas the less potent juice increased these 

values by ~15% (NS) relative to water.  Heart rate also was measured to determine effects on 

felodipine PD.  Neither juice altered mean heart rate significantly.  Unlike the tacrolimus and 

cyclosporine studies, the felodipine study acknowledged and attempted to account for PK variability 

with respect to furanocoumarin composition in the juice (see DISCORDANCE BETWEEN IN 

VITRO AND CLINICAL STUDIES). 

A clinical study of six healthy men showed a significant interaction between pomelo juice 

and sildenafil (50 mg), indicated for erectile dysfunction and pulmonary hypertension [77].  Since 

sildenafil undergoes extensive intestinal first-pass metabolism by CYP3A (oral bioavailability ~40%), 
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and pomelos contain furanocoumarins, an increase in systemic sildenafil exposure (relative to water) 

was expected.  However, the juice significantly decreased mean AUC and Cmax of sildenafil.  The 

authors speculated the mechanism was either a physicochemical interaction between sildenafil and 

components of the juice or inhibition of an intestinal uptake process (see Uptake Transport 

Proteins).  Unlike the aforementioned study with felodipine, furanocoumarins were not measured in 

the juice. 

Cranberry Juice.  The cranberry (Vaccinium macrocarpon) has long been considered a 

health food, touted for beneficial effects on diverse ailments [78].  More than 150 individual 

compounds have been identified [79].  As a rich source of phytochemicals, cranberries have shown 

anti-atherosclerotic and anti-proliferative properties, which may be protective in cardiovascular 

disease and certain cancers [80].  Cranberry juice (CBJ) continues to maintain popularity, largely as 

prophylaxis and treatment for urinary tract infections (UTIs) [81].  An in vivo study in rats given CBJ 

and the CYP3A/Cyp3a substrate, nifedipine, indicated that the juice inhibited enteric Cyp3a activity 

to an extent comparable to that by GFJ [82].  A subsequent clinical study involving 12 healthy 

volunteers given cyclosporine and a single 240-mL glass of CBJ indicated no interaction [83].  

However, use of cyclosporine as a CYP3A probe was not ideal since cyclosporine also is a substrate 

for the efflux transporter, P-glycoprotein (P-gp) (see Efflux Transport Proteins), and whether or not 

CBJ modulates intestinal P-gp activity is not known. 

Two clinical trials using midazolam as a CYP3A/non-P-gp probe showed conflicting results.  

The first study involved 10 healthy volunteers given a thrice daily regimen of a commercially 

available CBJ concentrate (diluted 1:4) for 10 days and a single dose of midazolam (0.5 mg on day 5) 

[84].  Relative to water, a change in midazolam PK was not detected.  The second study involved 16 

healthy volunteers given a single dose of midazolam (5 mg) and three 240-mL glasses of ‘double 

strength’ CBJ [85].  Prior to the clinical study, five brands of juice were tested in vitro to identify a 

product to test in vivo.  The most potent brand selected increased geometric mean AUC of midazolam 

significantly, by ~30% relative to water, with no effect on elimination half-life.  Another feature of 



13 
 

the second study was that in vitro bioactivity-guided fractionation was utilized to isolate and identify 

candidate CYP3A inhibitors.  The clinical test juice, a concentrate, was fractionated to generate 

hexane-, chloroform-, butanol-, and aqueous-soluble fractions.  The hexane- and chloroform-soluble 

fractions (50 μg/mL) inhibited CYP3A activity (midazolam 1’-hydroxylation) in human intestinal 

microsomes by ~80 and 60%, respectively, suggesting the CYP3A inhibitors resided in these more 

lipophilic fractions.  The juice was purified further until three triterpenes were isolated (maslinic acid, 

corosolic acid, ursolic acid) as candidate causative ingredients, with IC50 values ≤10 μM) [86].  The 

discrepancy between the two clinical studies may be explained by the difference in concentration of 

bioactive components.  Only one brand was tested in the first study [84], and various components 

(anthocyanins, flavonols, hydroxycinnamic acids, hydroxybenzoic acids, and catechins) were 

measured.  The most abundant was the flavonol, rutin, but CYP3A inhibition potency was not 

evaluated in vitro.  Recognizing the substantial variability of bioactive components in natural 

products, the second study [85] began with in vitro testing to inform selection of the most appropriate 

brand for clinical testing and to generate candidate enteric CYP3A inhibitors for further investigation.   

Although not intestinal CYP3A metabolism-based, the presumed warfarin-CBJ interaction 

via inhibition of hepatic CYP2C9 continues to be a topic of debate.  Case reports persist despite 

randomized clinical trials in healthy volunteers and stably anticoagulated patients demonstrating no 

evidence of a PK/PD interaction.  One exception is a three-arm, randomized crossover study 

involving 12 healthy men given a single dose of warfarin (25 mg) alone or with a commercially 

available garlic or cranberry product, the latter a capsule formulation of a cranberry juice concentrate 

[87].  Subjects were treated with cranberry (or garlic) daily for three weeks.  Warfarin was given after 

the second week.  Warfarin PK and PD were assessed; PD were measured by the International 

Normalized Ratio (INR), platelet aggregation, and clotting factor activity.  Compared to warfarin 

alone, cranberry increased area under the INR-time curve significantly, by 30%, but had no effect on 

warfarin PK, platelet aggregation, and clotting factor activity.  The increased area under the INR-time 

curve could have reflected the higher-than-average warfarin dose and/or “megadose” of cranberry, 
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which was equivalent to 57 g of cranberry fruit daily and was more than triple the UTI prophylaxis 

“dose” recommendation [88].  A review published in 2010 discussed studies to date (including the 

aforementioned sole finding) and concluded that moderate consumption of CBJ does not affect 

anticoagulation and that inclusion of precautionary warnings in warfarin product labeling should be 

re-examined [89].  Nevertheless, warfarin labeling continues to advise patients to avoid taking 

cranberry juice or cranberry products [90]. A more thorough understanding of the CBJ product in 

question is necessary to ascertain whether or not CBJ can enhance systemic exposure to clinically 

relevant CYP2C9, as well as CYP3A, substrates in humans. 

Pomegranate  Juice.  The pomegranate (Punica granatum) and associated by-products is one 

of the most popular superfoods on the market.  Like CBJ, pomegranate juice is a complex mixture of 

polyphenolic compounds with high antioxidant potency [91].  Human in vitro and rat in vivo studies 

suggested that pomegranate juice can inhibit enteric CYP3A/Cyp3a activity (carbamazepine 

expoxidation) [92].  However, a subsequent clinical study involving 13 healthy men given 240 mL of 

pomegranate juice and a single oral dose of midazolam (6 mg) suggested minimal interaction, despite 

inhibition of CYP3A activity (triazolam hydroxylation) in human liver microsomes [93].  Likewise, 

another study involving 12 healthy subjects given a single dose of simvastatin (40 mg) after treatment 

with a different brand of pomegranate juice (300 mL three times daily for three days) reported no 

interaction [94].  Generalizations about the enteric CYP3A inhibition potential of pomegranate juice 

are cautioned, as minimal to no information was provided about the test juices and their composition, 

precluding between-study comparisons.  In addition, neither clinical study provided a sample size 

justification.   

Recent anecdotal reports have suggested an interaction between pomegranate juice and 

warfarin, as assessed by an increase in INR [95, 96].  Although hepatic CYP2C9/enteric Cyp2c 

inhibition by pomegranate juice has been demonstrated in human liver microsomes and rats with the 

probe substrates diclofenac and tolbutamide [97], respectively, no clinical trials have been reported.  

One case report involving rosuvastatin, which undergoes minimal metabolism, described 
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rhabdomyolysis possibly due to an interaction with pomegranate juice [98].  This observation has yet 

to be investigated experimentally.  

Esterase 

Ester prodrugs are designed commonly to increase drug absorption [99].  Upon ester bond 

cleavage through hydrolysis or oxidation, active drug is released.  Major esterases that hydrolyze 

prodrugs include carboxylesterase, acetylcholinesterase, butyrylcholinesterase, paraoxonase, and 

arylesterase [100].  Esterases are localized in multiple tissues, particularly blood, liver, and intestine 

[101].  Esterase inhibition could lead to increased stability of the ester in the lumen and enterocytes, 

resulting in higher absorption of the ester and higher exposure to active metabolite via rapid 

hydrolysis in plasma.   

Grapefruit Juice.  Enalapril is a prodrug that is metabolized primarily by carboxylesterase to 

enalaprilat, an angiotensin converting enzyme inhibitor [102].  Lovastatin, indicated for 

hypercholesterolemia, is a prodrug that is hydrolyzed to the active acid by carboxylesterase, as well as 

oxidized to several inactive metabolites by CYP3A/Cyp3a; hydrolysis is considered the major 

metabolic pathway [103].  Lovastatin also has been suggested to be a weak substrate for P-gp [104].  

Effects on the apical-to-basolateral (absorptive) permeability and/or metabolism of enalapril and 

lovastatin by GFJ (diluted 1:3 from frozen concentrate) were evaluated in a human intestine-derived 

cell line (Caco-2) and human intestinal and liver S9 fractions [105].  Relative to 0% (v/v) juice 

(buffer), the permeability of enalapril (5 μM) in Caco-2 cells increased significantly, by 30-133%, 

over the range of juice concentrations tested (6.25-50%).  Cellular accumulation of enalapril at 1 h 

increased by 39-87%, while that of enalaprilat decreased by 12-32%.  Enalapril hydrolysis in both S9 

fractions was inhibited by <20% up to 40% juice.  The permeability of lovastatin (5 μM) increased in 

the presence of GFJ, by 40% and 22% at 6.25% and 12.5% juice, respectively, then decreased at the 

higher juice strengths (25% and 50%), possibly due to binding of drug to GFJ pulp in the apical 

compartment.  Cellular accumulation of lovastatin at 1 h decreased by 5-42%, and lovastatin acid 

formation decreased by 29-80%, over the range of juice concentrations tested (6.25-50%).  Lovastatin 
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hydrolysis was reduced by ~50% in human intestinal S9 fractions up to 40% juice.  Collectively, 

these in vitro observations suggested that GFJ inhibited enteric esterase activity, leading to increased 

prodrug stability.  

When GFJ concentrate (diluted 1:3) was administered orally to rats, before intravenous 

administration of enalapril or lovastatin (2 mg/kg), clearance and half-life of both prodrugs were 

unchanged relative to water, indicating that GFJ had no effect on hepatic esterase/Cyp3a activity 

[105].  After oral administration of enalapril (10 mg/kg) with water or GFJ concentrate (diluted 1:3, 

1:2, and undiluted), mean AUC of enalaprilat was increased, by 65, 70, and 16%, respectively, 

relative to water; prodrug was not measured.  The decreased exposure at the higher strength was 

attributed to binding of drug to GFJ pulp.  These results were consistent with observations with the 

esterase inhibitor, bis-p-nitrophenylphosphate.  After oral administration of lovastatin (10 mg/kg) 

with water or GFJ concentrate (diluted 1:3, 1:2, and undiluted), mean AUC of lovastatin acid was 

increased by 279, 157, and 170%, respectively, relative to water; prodrug was not measured.  Since 

lovastatin is a substrate for CYP3A/Cyp3a, the contribution of esterase inhibition was differentiated 

by measuring Cyp3a- and esterase-mediated metabolites in portal vein-cannulated rats pre-treated 

with GFJ (diluted 1:3).  Both Cyp3a and esterase inhibition by GFJ led to similar increases in 

exposure to lovastatin and the active acid, as well as unchanged CYP3A-mediated metabolites, 

suggesting equal contribution by Cyp3a and esterase to the interaction.  Taken together, these in vivo 

observations were consistent with enteric esterase inhibition by GFJ, leading to increased prodrug 

stability in enterocytes and higher exposure to active metabolite via hydrolysis in plasma. 

A follow-up in vitro study by the same investigators examined the esterase inhibition 

potential of 10 GFJ components toward p-nitrophenylacetate (PNPA) hydrolysis in human liver 

microsomes [106].  The flavonoids kaempferol, quercetin, and naringenin showed potent inhibition of 

PNPA hydrolysis, with IC50 values of 62, 43, and 30 µM, respectively.  The effect of kaempferol and 

naringenin on esterase-mediated hydrolysis of enalapril and lovastatin also were evaluated in Caco-2 

cells and in rats.  Compared to control (buffer), the absorptive permeability coefficient of enalapril 
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(20 µM) in Caco-2 cells was increased with kaempferol and naringenin (each at 250 μM) by 80% and 

~200%, respectively, whereas that of lovastatin (20 µM) was increased by ~65% with both 

flavonoids.  Intracellular concentrations of enalaprilat and lovastatin acid decreased by ~60% and 46-

70%, respectively, consistent with inhibition of esterase activity.  Oral administration of enalapril and 

lovastatin (both at 10 mg/kg) with naringenin (10 mg/kg) to rats increased active metabolite AUCs 

significantly, by 38% and 288%, respectively, relative to water.  Similarly, oral administration with 

kaempferol (10 mg/kg) increased metabolite AUCs by 109 and 246%, respectively.  Finally, in portal 

vein-cannulated rats, kaempferol (10 mg/kg) increased portal plasma exposure to lovastatin and 

lovastatin acid by 154% and 113%, respectively.  Collectively, these observations suggested some 

flavonoids as potential candidate enteric esterase inhibitors in GFJ.  However, more studies are 

needed to determine the clinical utility, as well as other causative ingredients, of this new type of 

drug-GFJ interaction.  

Sulfotransferase 

Conjugative enzymes generally increase hydrophilicity, facilitating elimination of 

endogenous substrates and xenobiotics [107].  Sulfotransferases (SULTs) catalyze the conjugation of 

3’-phosphoadenosine 5’-phosphosulfate with a number of endogenous low molecular weight 

compounds (e.g., steroids, catecholamines) and xenobiotics [108].  Three human SULT subfamilies 

have been identified, with at least 13 distinct members distributed in liver, brain, intestine, lung, 

kidney, and other tissues [109].  Some fruit juices have been shown to inhibit two members of the 

SULT1 family in vitro: SULT1A1 and SULT1A3, the latter of which is expressed only in 

extrahepatic tissues, including the intestine. 

Grapefruit Juice.  SULT1A1 and SULT1A3 inactivate 2-adrenergic agonists in the liver and 

intestine, respectively [110].  The bronchodilators albuterol and terbutaline undergo extensive first-

pass metabolism in both organs to sulfate conjugates [111].  An in vitro study using human 

recombinant SULT1A1 and SULT1A3 investigated the inhibitory effects of GFJ, orange juice, and 

various teas on SULT activity, as measured by p-nitrophenol and dopamine sulfation for SULT1A1 
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and SULT1A3, respectively [112].  GFJ, at a concentration of 10% (v/v), inhibited SULT1A1 and 

SULT1A3 by >90% and 50%, respectively, relative to control.  Specific juice components also were 

tested and included naringin, naringenin, quercetin, bergamottin, and 6’,7’-dihydroxybergamottin.  

Quercetin was the most potent, inhibiting by >90% (SULT1A1) and 50% (SULTA3), at a 

concentration of 10 μM.   

Orange Juice.  Orange juice was tested in the same manner as GFJ in the aforementioned in 

vitro study [112].  As observed with GFJ, orange juice (10%, v/v) inhibited both SULTs, by >95% 

(SULT1A1) and 20% (SULT1A3).  The orange juice components, tangeretin and nobiletin (both at 

10 μM), were the most potent single components, inhibiting SULT1A1 almost completely and 

SULT1A3 by ~20%.  As with GFJ, whether or not these observations translate to the clinic merits 

further investigation. 

Pomegranate Juice.  The effect of pomegranate juice on sulfoconjugation was evaluated in 

Caco-2 cells [113].  The extent of inhibition of 1-naphthol sulfation by pomegranate juice was both 

concentration- and cell culture time-dependent.  At the highest concentration tested (5%, v/v), the 

juice had no effect on SULT1A1 and SULT1A3 expression for up to 24 hours.  Punicalagin, the most 

abundant polyphenol in pomegranate juice, was isolated and shown to inhibit sulfoconjugation in the 

cells, with an IC50 of 45 M.  Clinical significance of these in vitro observations has not been 

reported.  

Efflux Transport Proteins 

The influence of efflux transporters is considered integral to drug disposition [114].  Similar 

to inhibition of enzymes, inhibition of efflux transporters can lead to altered systemic and local drug 

concentrations.  The most well-characterized efflux transporter, P-gp, shares tissue distribution and 

substrate specificity with many CYPs, especially CYP3A [115].  Due to the apical (lumenal) location 

on membranes of enterocytes, P-gp functions to extrude substrates back into the intestinal lumen, 

lowering systemic drug concentrations.  Thus, as with enteric CYP3A, inhibition of enteric P-gp 

would be expected to enhance systemic drug exposure. 
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Grapefruit Juice.  Whether or not GFJ modulates intestinal P-gp activity remains 

controversial [110].  One reason for the inconsistency is use of P-gp substrates that also are CYP3A 

substrates [116].  The contribution by P-gp and CYP3A is difficult to distinguish.  Cyclosporine, a 

commonly used immunosuppressant with a narrow therapeutic window, is one such dual CYP3A4/P-

gp substrate shown to interact with GFJ [117].  The increase in cyclosporine AUC ranges from 20 to 

60%, relative to water or orange juice [47].  To assess whether furanocoumarins mediate the 

cyclosporine-GFJ interaction, a randomized crossover study involving 18 healthy volunteers 

compared the effects of GFJ, a “furanocoumarin-free” GFJ (prepared from the GFJ), and orange juice 

(control) on oral cyclosporine PK [63].  Median dose-corrected cyclosporine AUC with GFJ was 

significantly higher (by ~38%) than that with orange juice.  In contrast, relative to orange juice, 

furanocoumarin-free GFJ had no consistent effect, with a median concentration-time profile that was 

indistinguishable from that with orange juice.  Complementary in vitro studies with Caco-2 cell 

monolayers showed that, relative to vehicle, diluted extracts derived from GFJ and orange juice, as 

well as two purified furanocoumarins (bergamottin and 6’,7’-dihydroxybergamottin), partially 

increased cyclosporine apical-to-basolateral translocation, whereas the furanocoumarin-free GFJ 

extract had no effect.  These observations supported furanocoumarins as candidate P-gp inhibitors in 

GFJ.  Furanocoumarins were concluded to mediate, at least partially, the cyclosporine-GFJ interaction 

in vivo through inhibition of enteric CYP3A and possibly enteric P-gp.   

Recent studies in rats evaluated potential interactions with the anti-gout agent colchicine and 

antiemetic domperidone, both of which are dual CYP3A/P-gp substrates.  The effect of a GFJ 

concentrate on colchicine intestinal permeability was evaluated in Caco-2 cell monolayers and in the 

in situ rat intestinal perfusion model [118].  With Caco-2 cells, at the highest concentration of GFJ 

tested (10%, v/v), colchicine apical-to-basolateral translocation was increased by 75%, and 

basolateral-to-apical translocation was decreased by 45%, relative to control (transport buffer).  In 

addition, GFJ (10%, v/v) increased colchicine ileal and jejunal permeability by 2- and 1.5-fold, 

respectively, in the in situ perfused intestine.  These data were consistent with inhibition of enteric   
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P-gp by GFJ.  The effect of a commercially available GFJ extract was evaluated on domperidone 

exposure in rats [119].  Domperidone (10 mg/kg) was administered orally, two hours after GFJ 

extract (2 mL/kg).  The sum of partial AUCs (0-0.25 h, 0-2 h, 4-8 h) with GFJ extract was 16% 

greater than that with water, albeit the difference was not significant (p>0.05).  As with cyclosporine, 

interpretation of the underlying mechanism of the colchicine- and domperidone-GFJ interactions is 

confounded by the dual CYP3A/P-gp nature of these substrates.  However, unlike cyclosporine, 

clinical relevance has not been established. 

  The inconclusive results of studies utilizing dual CYP3A/P-gp substrates could be resolved 

using P-gp substrates that undergo negligible metabolism.  Although GFJ has been shown to inhibit 

translocation of such substrates in vitro, observations have not translated to the clinic.  For example, 

GFJ had a negligible effect on systemic exposure to digoxin, as evidenced by a <10% increase in 

mean AUC0-24 relative to water [120].  Other minimally metabolized substrates, including the 

antihistamine fexofenadine and the -blockers talinolol and celiprolol, also have been tested.  

Unexpectedly, healthy volunteer studies showed a significant decrease in mean AUC of these three 

drugs when taken with GFJ, by 13-63% relative to water [59, 121, 122], prompting investigations of 

this newly identified mechanism underlying drug-fruit juice interactions (see Uptake Transport 

Proteins).  

 Orange Juice.  Pravastatin, which undergoes minimal metabolism, is a substrate for P-gp and 

two other apically-located efflux transporters, multi-drug resistance-associated protein 2 (MRP2) and 

breast cancer-resistance protein, as well uptake transporters (organic anion transporting polypeptides) 

(OATPs/Oatps) [123].  A clinical study involving 14 healthy volunteers given a single dose of 

pravastatin (10 mg) and multiple glasses of commercially available orange juice (reconstituted from 

concentrate) given over 195 min (total volume, 800 mL) showed a 50% increase in mean AUC of 

pravastatin relative to water [124].  The authors speculated upregulation of pravastatin absorption in 

the intestine by orange juice, as a similar study in rats showed an increase in intestinal Oatp1 and 

Oatp2 mRNA and protein expression.  Net inhibition of efflux by orange juice also may explain this 
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interaction.  Naringin and some polymethoxyflavones have been shown to inhibit P-gp and MRP2 in 

vitro and may represent candidate causative ingredients [125, 126]. 

Uptake Transport Proteins  

Organic anion transporting polypeptides (OATPs) are transmembrane transporters that 

facilitate uptake of a number of endogenous compounds and drugs [127].  These transporters are 

gaining attention as important determinants of drug disposition [128].  The human OATP family 

consists of 11 members, with OATP1A2, OATP1B1, OATP1B3 and OATP2B1 as the most 

characterized [129].  Of these, OATP1A2 and OATP2B1 have been reported to be expressed on 

apical membranes of enterocytes [130].   

Grapefruit Juice.  The initial clinical study examining effects of fruit juices, including GFJ, 

on enteric P-gp activity using fexofenadine as a probe substrate showed an unforeseen mean decrease 

in fexofenadine AUC, by 63% relative to water (see Efflux Transport Proteins).  Mean elimination 

half-life was unchanged.  This atypical interaction was attributed to inhibition of an apically located 

intestinal uptake transporter [59].  Subsequent clinical and in vitro studies substantiated GFJ as an 

inhibitor of enteric OATP activity [131-134].  Reduced exposure could lead to reduced effect.  

Indeed, the package insert for fexofenadine (Allegra
®
) notes that the size of histamine-induced skin 

wheal and flare was significantly larger when fexofenadine was taken with GFJ (or orange juice) than 

when taken with water [135].  Based on these PK and PD outcomes, the manufacturer recommends 

taking fexofenadine with water.  In addition to fexofenadine, GFJ has been shown to decrease mean 

AUC of other OATP substrates, including talinolol [121], celiprolol [122], acebutolol [136], 

etoposide [137], and L-thyroxine [138], by 11 to 56% relative to water.  Only two of these studies 

(celiprolol and L-thyroxine) assessed PD outcomes and reported no effect, albeit in healthy 

volunteers.  Clinical significance for the remaining substrates has not been established.  Nevertheless, 

inhibition of enteric OATPs is recognized as an additional mechanism of altered drug disposition by 

GFJ.  That is, GFJ can decrease, significantly, systemic exposure to OATP substrates, with a 
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consequent potential for reduced efficacy.  This relatively new type of mechanism is discussed in 

detail in two recent reviews [139, 140]. 

OATP1A2 and the flavonoid, naringin, have been proposed as the major transporter and 

causative ingredient involved in the interaction between GFJ and fexofenadine, as well as talinolol.  

In vitro studies with OATP-transfected human epithelial cervical cancer (HeLa) cells supported a role 

for OATP1A2 in uptake of both drugs [59, 61, 141].  One in vitro study assessed the uptake activity 

of several OATPs, and showed OATP1A2 as the only enteric OATP capable of taking up 

fexofenadine [133].  A clinical study investigating the impact of GFJ on intestinal transporter 

expression showed no difference in OATP1A2 protein (and P-gp) expression between GFJ and water 

in duodenal biopsies obtained from healthy volunteers, suggesting GFJ may not destroy transport 

proteins via mechanism-based inhibition [133].  That is, the mechanism of inhibition of enteric 

transporter activity by GFJ may differ from that of enteric CYP3A activity.  Unlike OATP2B1-

transfected HeLa cells, a separate study with OATP2B1-transfected human embryonic kidney (HEK) 

293 cells demonstrated fexofenadine as a substrate for OATP2B1 [142].  GFJ and components 

(including naringin) have been shown to inhibit uptake of the OATP substrate estrone-3-sulfate in 

OATP2B1-transfected HEK293 cells, by up to 80% [134], but additional studies are needed to 

determine whether GFJ/components inhibit OATP2B1-mediated uptake of fexofenadine, as well as to 

clarify differences in fexofenadine uptake between transfected cell lines. 

Naringin has been implicated as a major causative enteric OATP inhibitor in GFJ.  Healthy 

volunteers (n=12) were given fexofenadine (120 mg) with GFJ (300 mL), an aqueous solution of 

naringin at the same concentration as that in GFJ (1200 µM), or water [61].  Relative to water, GFJ 

and naringin decreased fexofenadine mean AUC by 42% and 22%, respectively. The authors 

concluded that naringin most likely inhibited enteric OATP1A2, resulting in decreased fexofenadine 

bioavailability.  The 50% difference in fexofenadine AUC between GFJ and naringin suggested other 

ingredients contribute to the fexofenadine-GFJ interaction.          
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 A recent in vitro study involving the leukotriene receptor antagonist, montelukast, and a clinical 

trial involving the renin-inhibiting antihypertensive agent, aliskiren, added two potential drugs to the 

growing list of enteric OATP-mediated drug-GFJ interactions [143, 71].  In vitro studies with Caco-2 

cells and OATP2B1-transfected Madin-Darby canine kidney cells demonstrated that montelukast 

undergoes carrier-mediated transport by OATP2B1.  GFJ at 5% and 10% (v/v), and orange juice at 

10%, reduced montelukast permeability significantly (p<0.05), by ~30% relative to control (buffer).  

Clinical relevance of these interactions has not been examined.  Aliskiren is a substrate for 

OATP2B1, as well as CYP3A and P-gp.  Healthy volunteers (n = 11) were administered single-

strength GFJ (200 mL) three times daily for 5 days, and aliskiren (150 mg) was given on the third 

day.  Relative to water, GFJ significantly reduced mean aliskiren AUC and Cmax, by 61% and 81%, 

respectively.  Mean elimination half-life remained essentially unchanged.  Net inhibition of enteric 

OATP-mediated uptake by GFJ could account for the reduced exposure.  Other potential mechanisms 

included a physicochemical interaction between GFJ and aliskiren or an alteration of physiologic 

conditions in the gut by GFJ.  Follow-up in vitro and clinical studies are needed to clarify the role of 

OATP in the aliskiren-GFJ interaction, as well as effect on PD outcomes.  

 Orange Juice.  Orange juice contains trace amounts of furanocoumarins and has minimal 

enteric CYP3A inhibitory effect [126, 144].  As such, orange juice has been used as a control juice, 

rather than water, in some clinical studies.  However, orange juice has been shown to reduce systemic 

exposure, significantly (by 22-83%), to fexofenadine [59], atenolol [145], and celiprolol [146].  

Decreased mean AUC (up to 38%) also has been observed for the fluoroquinolones ciprofloxacin 

[147] and levofloxacin [148] with calcium-fortified and non-fortified orange juice.  Any or all of 

these interactions could involve inhibition of enteric OATP by orange juice, as fexofenadine, 

levofloxacin, and celiprolol, have been shown to be substrates for OATP in vitro [59, 149, 150].  

 Hesperidin, a major component of orange juice, is a flavonoid glycoside with a molecular 

structure similar to that of naringin [151].  Hesperidin has been shown to inhibit OATP1A2-mediated 

uptake of fexofenadine in vitro, with an IC50 of 2.7 µM [61], similar to that of naringin (3.6 µM).  
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However, hesperidin produced only 60% maximum inhibition at the highest tested concentration (100 

µM).  A study in rats duodenally administered celiprolol (5 mg/kg) and orange juice or aqueous 

solution of hesperidin (208 µg/mL or 340 µM, the same concentration as that in the orange juice) 

showed a mean AUC decrease of 75% and 78%, respectively, relative to water.  The AUC in the 

hesperidin group was not significantly different than that of the orange juice group, suggesting 

hesperidin contributes to the celiprolol-orange juice interaction.  Studies with other OATP substrates 

would clarify the in vivo significance of hesperidin.     

Pomelo Juice.  The previously mentioned clinical study of six healthy male volunteers showed a 

significant decrease (by ~60%) in mean AUC and Cmax of sildenafil after ingestion of a 240-mL glass 

of fresh-squeezed pomelo juice [77] (see Cytochrome P450 3A).  One possible explanation was 

inhibition of intestinal uptake (e.g., by OATP) of sildenafil by the juice.  No follow-up studies 

examining sildenafil as an OATP substrate have been reported.   

 Apple Juice.  The effect of apple juice on fexofenadine uptake also was evaluated in the initial 

fexofenadine-GFJ interaction study [59].  The OATP-mediated uptake of [
14

C]fexofenadine was 

examined in the presence and absence of increasing concentrations (0-5%, v/v) of apple juice in 

OATP1A2-transfected HeLa cells.  The highest concentration of juice inhibited activity by >85% 

relative to water.  Clinical study results also were significant, as apple juice decreased mean AUC of 

fexofenadine by ~70% compared to water.  To the authors’ knowledge, no follow-up in vitro and 

clinical studies involving apple juice per se have been published.  However, a recent in vitro study 

investigated the effect of three flavonoids (apigenin, kaempferol, quercetin) on OATP activity in 

OATP1A2- and OATP2B1-transfected HEK293 cells using fexofenadine and bromosulfophthalein as 

substrates [152].  Quercetin, known to be present in apples (Malus x domestica) and apple juice [153], 

inhibited OATP1A2-mediated fexofenadine uptake, with an IC50 of 13 μM.  Quercetin also inhibited 

OATP1A2- and OATP2B1-mediated bromosulfophthalein uptake, with Ki values of 22 and 8.7 μM, 

respectively.  Further studies are needed to determine if quercetin is a major causative ingredient in 

apple juice in vivo.   



25 
 

DISCORDANCE BETWEEN IN VITRO AND CLINICAL STUDIES 

  Although a number of fruit juices have been shown to inhibit several intestinal CYPs and 

transporters in vitro, some of the interactions have not translated to the clinic.  Fruit juices clearly 

inhibit intestinal metabolism and transport, but the magnitude of change in Cmax and/or AUC often is 

insignificant, unpredictable, and highly variable, which cannot be explained adequately.  These in 

vitro-in vivo discordances may be due to a lack of sufficient information to determine a positive 

interaction.  A deficiency common to most drug-fruit juice interaction studies is a limited or non-

existent chemical description of the juice.  Although several reasons account for discrepancies 

between in vitro and clinical studies [24, 154], one explanation is that the concentration of inhibitors 

in the juice might not be sufficient to inhibit metabolism/transport in vivo.  The sources and 

complexity of a plant’s chemical constituents are underappreciated.  Concentrations of bioactive 

compounds in a natural food product vary depending on ecological conditions, manufacturing 

process, storage conditions, and a host of other environmental factors [155].  Thus, testing a random 

juice product in vitro and in vivo without understanding the chemical makeup provides no basis for 

comparison between studies.  One of the most fundamental solutions to establishing meaningful 

physiological dose-response relationships for dietary substances is to characterize the product prior to 

use. 

Few in vivo drug-fruit juice interaction studies reported concentrations of bioactive 

constituents in the clinical test juice.  Since the establishment of furanocoumarins as unequivocal 

mediators of enteric CYP3A-based interactions in 2006 [53], only a handful of clinical studies 

involving CYP3A substrates reported furanocoumarin content in the test juice (Table 1.2).  

Furanocoumarins have been studied to the extent that they can be considered ‘marker’ compounds, 

defined as compounds unique to a dietary substance [156].  Characterization of a given juice in terms 

of furanocoumarin content could be used to predict the likelihood and magnitude of an interaction.  

For example, likelihood of an interaction can be predicted by the presence of furanocoumarins, and 

effect size can be correlated to the amount of marker compound(s).  Between-study comparisons also 
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can be made.  Indeed, 6′7′-dihydroxybergamottin was used in a recent PK modeling study 

investigating the impact of CYP3A-based inhibition on drug disposition [157].  In addition to 

grapefruit and related citrus juices, furanocoumarins are present in substantial amounts in 

umbelliferous vegetables (e.g., parsnips, celery, parsley) and are not destroyed by normal cooking 

procedures [158].  Furanocoumarins also are present in Kampo extract medicines, which originated in 

Japan and are used widely in Asia [159].  A similar strategy could be applied to predict likelihood and 

magnitude of interactions between these foods/natural medicines and traditional medications. 

APPLICATIONS: NEW TWISTS ON OLD INTERACTIONS 

Mechanisms and causative ingredients underlying enteric CYP3A inhibition by GFJ have 

been studied for more than two decades [160].  The information gained has been used by different 

groups to their advantage.  For example, the potential for GFJ to increase systemic drug 

concentrations, and consequent PD effect, of certain opiates is a widely discussed topic among 

recreational users in online forums [161, 162].  The scientific community also has attempted to 

exploit enteric CYP3A inhibition for pharmacoeconomic and therapeutic purposes.  Intentional 

manipulation of enteric CYP3A by GFJ and individual components is of particular interest in the 

cancer treatment and organ transplantation areas [137, 163-166].  For example, inhibition of enteric 

CYP3A by GFJ could improve oral bioavailability of some agents without GFJ exerting additional 

adverse effects.  In addition, the cost and side effect severity of these multi-drug and toxic regimens 

could be reduced through dose and/or dosing frequency reduction by coadministration with GFJ, 

possibly improving adherence.  However, several drugs in these therapeutic classes have a narrow 

therapeutic range and require close monitoring.  Without thorough characterization of the juice 

product, these practices are at best ineffective, and at worst, place the patient at risk for unfavorable 

outcomes. 

An in vivo study of wild-type and humanized CYP3A4 transgenic mice orally administered 

the anticancer agent, erlotinib, and BAS 100, a spiro-ortho-ester mechanism-based CYP3A4 inhibitor 

isolated from GFJ, demonstrated a 2.1-fold increase in erlotinib AUC, relative to control (saline) 
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[163].  Results illustrated the potential of BAS 100 to “boost” systemic drug exposure, and decrease 

associated variability, of erlotinib in cancer patients.  The erlotinib study is one of the first attempts to 

test the strategy of deliberate inhibition of intestinal first-pass metabolism. 

A clinical trial investigating the effect of GFJ on sirolimus PK in advanced solid tumor 

patients is ongoing [167].  Initial results showed no effect, possibly due to insufficient 

furanocoumarin content in the GFJ product selected [168].  This approach is unsettling because GFJ 

was chosen as a ‘boosting’ agent for a narrow therapeutic index drug but was not characterized before 

administration.  A more ‘potent’ GFJ containing inhibitory concentrations of furanocoumarins (not 

reported) given subsequently to the subjects significantly increased plasma concentrations of 

sirolimus, by up to 400% relative to water [164].  A daily glass of GFJ (240 mL) was projected to 

lower sirolimus costs by 50% [169].  The same investigators have suggested ‘GFJ boosting’ to reduce 

dose and cost for the tyrosine kinase inhibitor, lapatinib [165].  One 250-mg lapatinib tablet, 

accompanied by food and/or GFJ, was speculated to increase systemic exposure comparable to that of 

five 250-mg tablets on an empty stomach, resulting in a total cost savings of 80%. 

The strategy of using GFJ to lower drug costs also has been considered in the management of 

immunosuppression.  Approximately 20 years ago, it was proposed that a compound which inhibits 

pre-systemic metabolism of cyclosporine without causing systemic effects could have clinical value 

[170, 171].  GFJ would seem an ideal candidate since it has been shown to increase cyclosporine 

exposure [172].  The efficacy and cost effectiveness of GFJ-boosted cyclosporine therapy were 

determined in a prospective clinical study evaluating the effect of two commercially available GFJ 

products on tacrolimus PK in liver transplant recipients [173].  After administration of GFJ (250 mL 

twice daily) for one week, mean trough tacrolimus concentration was enhanced significantly, by ~10 

ng/mL compared to baseline.  The dose of tacrolimus was decreased by ~2 mg per day, which 

amounted to a savings in drug costs of ~$9 per day.  The safety and pharmacoeconomic benefit of a 

GFJ boosting strategy have not been evaluated sufficiently to change disease management.  As with 

the anti-cancer agents, promising conclusions are unwarranted due to insufficient data on the PK-PD 
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relationship between the causative ingredients in GFJ (e.g., furanocoumarins) and tacrolimus, as well 

as the large interindividual variability in response, making therapeutic outcomes virtually 

unpredictable.   

 It seems tempting to take advantage of the effects of a natural product like GFJ to boost 

systemic drug exposure and decrease inter-/intraindividual variability in PK, and ideally PD, 

outcomes.  The dose and dosing schedule of certain drugs could be reduced to lower drug costs and 

improve patient compliance.  However, further research is required on the mechanisms of action, 

causative ingredients, and PK-PD relationship with respect to individual juice components and the 

drug of interest.  Given the possibility of using GFJ and/or individual constituents as a ‘drug-sparing 

agent,’ a standardized approach to investigating interaction potential is imperative.  Early evaluation 

of CYP and transporter inhibition properties of new chemical entities is routine during drug 

development.  A similar approach could be adopted for dietary substances.  However, information 

providing a systematic approach for the study, prediction, and management of drug-dietary substance 

interactions is lacking.  Ideal management approaches would be those developed based on well-

designed in vitro studies.  Information gained from rigorous in vitro studies, combined with that 

gained from in silico methods, could optimize clinical study design and clarify the clinical 

significance of an interaction.  Robust PK/PD models could then be used to determine potential risks 

of long-term inhibition of intestinal metabolism/transport by a given dietary substance on 

pharmacotherapeutic outcomes. 

CONSIDERATIONS FOR IMPROVED RESEARCH PRACTICES 

Dietary substances in the United States, which include supplements/herbal 

remedies/nutraceuticals, are regulated under the same framework as foods, separate from the 

regulation of drugs.  Individuals representing multiple sectors (science, clinical practice, public) have 

argued both for and against this policy, which is unlikely to change in the foreseeable future.  As 

such, it is unrealistic to expect the U.S. Food and Drug Administration (FDA) to require high-quality 

scientific evidence from the relevant industries [174].  It also is unlikely that the FDA will require 
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more extensive drug-dietary substance interaction studies other than those recommended.  However, 

legislation need not be passed to undertake sound scientific research.  Several approaches can be 

adopted for rigorous evaluation of potential drug-dietary substance interactions.  Practices regarding 

peer review of the drug interaction liability of a dietary substance should be the same as those for a 

drug, particularly with respect to reproducibility.  If the dietary substance is not described in detail, 

then other investigators will be unable to reproduce one or more facets of the study. 

Since dietary substances contain multiple, often unknown, bioactive ingredients that vary in 

composition between batches and manufacturers, characterization of causative ingredients and 

mechanisms of action is essential.  Identification of components responsible for these interactions can 

be challenging.  Generally, biologic action is not determined by a single active compound.  A set of 

‘marker’ compounds that can be applied for definitive authentication of the test material would serve 

as an indicator of quality and potency.  The selected markers should be unique to the selected species 

and represent health-relevant principles [156].  The identity of constituent(s) should be confirmed 

initially by in vitro methods that screen for potential interactions.  Such experiments provide 

mechanistic information about inhibitory capacities, as well as specific enzymes and/or transporters 

involved.   

Reporting of the characterization of dietary substances used in clinical trials must be 

improved.  Many clinical studies lack basic information about the test material.  Considering the 

requirements for a drug investigated clinically, the disconnect becomes obvious.  A substance derived 

from a “natural source” does not imply that the rigors of reproducibility should be abandoned.  At 

minimum, for commercially available products, the brand name, manufacturer, lot number, 

ingredients, preparation directions, manufacturing process, and origins of growth and production 

should be stated.  For freshly prepared test material, scientific name, quantity, plant part used, site of 

collection, preparation procedures, and storage conditions should be documented [175-177].  If a 

marker compound has been identified or suspected, quantitative analysis by analytical chemistry 

techniques should be conducted to determine the presence and/or quantities of relevant constituents.  
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Since administration of ‘standardized’ fruit juices is not possible, it would be more realistic to 

quantify a particular known/suspected component, or group of components, prior to use.  This 

practice would enable some degree of between-study comparison. 

Stringent methods for evaluating potential drug-dietary substance interactions are critical as 

new products enter the market.  However, the aforementioned tasks do not rely solely on one 

discipline.  Rigorous investigations of complex botanical products require collaboration from many 

areas, including clinical pharmacology, pharmacognosy/natural products chemistry, and botany [178].  

Specific botanical expertise, combined with knowledge of appropriate assays and other experimental 

tools for testing compounds, would improve greatly the deficiency in the characterization of natural 

products used in clinical trials.  A multidisciplinary, translational research approach is necessary to 

explain fully these relatively unexplored types of drug interactions.   

SUMMARY AND PERSPECTIVE 

Interactions between medications and dietary substances, as foods or supplements, remain a 

relatively understudied, likely underreported, and generally misunderstood area of pharmacotherapy.  

Growing impatience over the slow introduction of innovative drugs on the market, combined with 

rising health care costs, has contributed to the ever-increasing obsession by consumers with quick-fix, 

“all-natural” remedies.  Concurrent with the increasing use of dietary supplements and so-called 

‘superfoods’, including fruit juices, is the upward trend of polypharmacy, all hindering optimal 

therapeutic outcomes.  Discovery of the effect of GFJ on felodipine PK and PD launched renewed 

interest in the study of drug-dietary substance interactions.  Although inhibition of enteric CYP3A has 

been studied extensively, questions still remain.  Additional mechanisms involving inhibition of 

enteric active uptake transporters have been identified.  In vitro studies have added to the list of drugs 

that may interact with dietary substances in vivo, but well-designed, proof-of-concept clinical studies 

are limited.  Numerous other potential drug-dietary interactions are anticipated to emerge as new 

supplements and different types of foods (e.g., organic, functional, genetically modified, fortified) are 

created.  The complexity of dietary substances and lack of adequate characterization preclude 
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between-study comparisons, as well as accurate predictions of drug interaction liability.  Ongoing 

challenges involve systematic investigations of underlying mechanisms, causative ingredients, and 

PK-PD relationships with respect to individual juice components and drugs of interest.  The ultimate 

goal is to develop common practice guidelines to provide a consistent approach in managing drug-

dietary substance interactions appropriately.    
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Table 1.1.  Controlled clinical drug-grapefruit juice (GFJ) interaction studies reported since 2008 

Subjects 

(n) 

Drug Tested 

and Dosage 

GFJ Product (Manufacturer) 

and Administration Regimen 

Change in  

Mean AUC 

Reference 

 

Healthy 

volunteers 

(20) 

 

Itraconazole 

200 mg (20 mL 

oral solution) 

(day 3) 

 

Concentrate: diluted to single 

strength  

(Kroger Brand; The Kroger Co., 

Cincinnati, Ohio)  

240 mL tid x 2d 

200 mL x 2 (day 3) 

 

↑ 30% 

(women) 

(p = 0.01) 

 

↑ 11% 

(men) 

(p = 0.27) 

 

62 

 

Healthy 

volunteers 

(18) 

 

Cyclosporine 

5 mg/kg x 1 

 

Concentrate: diluted to single 

strength   

(NSP) 

 

FC-free: single strength
*
  

240 mL x 1 

 

↑ 38%
§
 

(p < 0.01) 

 

↓ 1.8%
§
 

(p > 0.70) 

 

63 

 

Healthy 

volunteers 

(19) 

 

Dextromethorphan 

10 mg (dissolved 

in 50 mL water) x 

1 

 

Concentrate: diluted to 0.25x, 

0.5x, 1x, 2x strength 

(Mainfrucht GmbH & Co. KG, 

Gochsheim, Germany)  

200 mL x 1 

 

↓ excretion 

of CYP3A-

dependent 

metabolite 

(MOM) by 

1x and 2x 

strength
†
 

(p < 0.05) 

 

64 

 

Healthy 

men 

(8) 

 

Budesonide 

3 mg (as ER) x 1 

(day 4) 

 

Freshly squeezed  

(AstraZeneca R&D, Lund, 

Sweden) 

200 mL tid x 3d 

200 mL x 1 (day 4) 

 

↑ 129%  

 

 

65 

 

Healthy 

volunteers 

(8) 

 

Sertraline 

75 mg x 1 (day 6) 

 

Concentrate: diluted to single 

strength 

(Tropicana; Kirin, Tokyo, Japan) 

250 mL tid x 5d 

250 mL x 1 (day 6) 

 

↑ 51%  

(p = 0.002) 

 

66 

 

Liver 

transplant 

recipients 

(30, 

equally 

divided 

into 

groups A, 

B, and C) 

 

Tacrolimus 

NSP 

 

Concentrate: diluted to 0.125x 

strength  

(Guangdong Foshan Co., China) 

(group B) 

Single strength  

(Tianjin Chengbao Fresh 

Grapefruit Juice Co., China) 

(group C)  

250 mL bid x 1 week
 

 

↑ 22%  

(p < 0.01) 

 

 

↑ 110%  

 (p < 0.001) 

 

67 
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Healthy 

men 

(21) 

 

 

Nilotinib  

400 mg x 1 

 

 

Concentrate: diluted to 2x 

strength 

(Kroger Brand; The Kroger Co., 

Cincinnati, Ohio)  

240 mL x 1 

↑ 29%  

(p = 0.004) 

 

 

68 

 

 

 

 

Cancer 

patients 

(8) 

 

Sunitinib  

25/37.5/50
‡
 mg qd 

(6-week treatment 

cycle: 4 weeks on, 

2 weeks off) 

 

NSP 

200 mL tid x 3d (day 25, 26, 27) 

 

 

↑ 11%  

(p < 0.05) 

 

69 

 

Healthy 

volunteers 

(12) 

 

Oxycodone  

10 mg x 1 (day 4) 

 

Single strength  

(Greippi Täysmehu; Valio Ltd., 

Helsinki, Finland) 

200 mL tid x 5d 

 

↑ 67%  

(p < 0.001) 

 

70 

 

Healthy 

volunteers 

(11) 

 

Aliskiren 

150 mg x (day 3) 

 

Normal strength 

(Valio Greippitäysmehu; Valio 

Ltd., Helsinki, Finland) 

200 mL tid x 5d 

 

↓ 81% 

(p < 0.001) 

 

71 

* 
Manufactured from concentrate  

§ 
Median AUC  

† 
CYP3A- and CYP2D6-dependent metabolites measured in urine only  

‡ 
Dose depends on type of cancer   

GFJ, grapefruit juice; AUC, area under the curve; FC, furanocoumarin; MOM, 3-

methoxymorphinan; ER, extended release; tid, three times daily; d, days; NSP, not specified; bid, 

two times daily; qd, daily 
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Table 1.2.  Clinical drug-citrus juice interaction studies since 2006 in which candidate causative 

ingredients in the test juice were quantified 

Juice Drug Tested Confirmed or Suspected 

Active Constituent 

Constituent 

Concentration 

in Test Juice(s) 

(M) 

Reference 

 

Grapefruit 

 

Fexofenadine  

 

Cyclosporine  

 

 

 

 

 

 

 

 

 

 

 

Dextromethorphan 

 

 

 

 

 

Sunitinib  

 

Naringin 

 

GFJ/FC-free GFJ/OJ
*
 

DHB 

BG 

Narirutin   

Naringin  

Hesperidin   

Neohesperidin   

Didymin  

Poncirin  

Nobiletin 

Tangeretin 

 

DHB 

BG 

Naringin 

Naringenin 

 

 

DHB 

BG 

 

1200 

 

 

11.5/0.08/ND 

9.5/0.03/ND 

149/104/ND  

440/331/ND 

8/5/ND 

15/8/ND 

15/2/ND 

30/9/ND 

0.56/0.01/7.66 

0.15/0.02/1.95 

 

37 

27 

850 

0.82 

 

 

2.7, 5.7
† 

33, 24
†
 

 

61 

 

63 

 

 

 

 

 

 

 

 

 

 

 

64 

 

 

 

 

 

69 

 

 

Pomelo 

 

Felodipine 

 

Guanximiyou/Changshanhuyou
§
 

DHB 

BG 

Paradisin A 

Paradisin B 

Paradisin C 

 

 

1.3/ND 

8.2/ND 

1/ND 

0.1/ND 

3.5/ND 

 

76 

*
 Units are ppm 

†
 A second lot of the same brand was used for the last two patients due to expiration date.  

§ 
Two varieties of pomelo fruit 

DHB, 6’,7’-dihydroxybergamottin; BG, bergamottin; FC, furanocoumarin; OJ, orange juice; NS, not 

significant; ND, not detected 
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PART 2: MECHANISMS UNDERLYING FOOD-DRUG INTERACTIONS: 

INHIBITION OF INTESTINAL METABOLISM AND TRANSPORT 

Overview 

Food-drug interaction studies are critical to evaluate appropriate dosing, timing, and formulation of 

new drug candidates. These interactions often reflect prandial-associated changes in the extent and/or 

rate of systemic drug exposure. Physiologic and physicochemical mechanisms underlying food 

effects on drug disposition are well-characterized. However, biochemical mechanisms involving drug 

metabolizing enzymes and transport proteins remain underexplored. Several plant-derived beverages 

have been shown to modulate enzymes and transporters in the intestine, leading to altered 

pharmacokinetic (PK) and potentially negative pharmacodynamic (PD) outcomes. Commonly 

consumed fruit juices, teas, and alcoholic drinks contain phytochemicals that inhibit intestinal 

cytochrome P450 and phase II conjugation enzymes, as well as uptake and efflux transport proteins. 

Whereas myriad phytochemicals have been shown to inhibit these processes in vitro, translation to the 

clinic has been deemed insignificant or undetermined. An overlooked prerequisite for elucidating 

food effects on drug PK is thorough knowledge of causative bioactive ingredients. Substantial 

variability in bioactive ingredient composition and activity of a given dietary substance poses a 

challenge in conducting robust food-drug interaction studies. This confounding factor can be 

addressed by identifying and characterizing specific components, which could be used as marker 

compounds to improve clinical trial design and quantitatively predict food effects. Interpretation and 

integration of data from in vitro, in vivo, and in silico studies require collaborative expertise from 

multiple disciplines, from botany to clinical pharmacology (i.e., plant to patient). Development of 

more systematic methods and guidelines is needed to address the general lack of information on 

examining drug-dietary substance interactions prospectively. 
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1. Introduction 

The impact of food on successful delivery of promising new drug candidates via the oral 

route poses a major challenge during drug development. The influence of dietary substances on drug 

disposition depends on numerous variables, ranging from physicochemical properties of the drug to 

postprandial changes in the gastrointestinal (GI) tract [1, 2]. Components of the diet that modulate 

intestinal cytochrome P450 and phase II conjugation enzymes, as well as uptake and efflux transport 

proteins, constitute increasingly recognized contributors to food effects on drug disposition [3]. Many 

dietary substances or food ingredients derived from botanical sources have been shown to inhibit 

these processes in vitro, but translation to the clinic has been inconclusive or considered irrelevant 

[4]. Understanding the mechanisms by which these dietary substances alter drug PK and PD 

outcomes is critical to assess clinical significance and management.  

Prediction of PK properties of new drug candidates entering clinical trials can be an arduous, 

sometimes elusive, task. The added complexity of food effects increases such difficulty. Robust 

guidelines on the evaluation of potential dietary substance-drug interactions are lacking [5]. Clinical 

studies often are difficult to compare, inconclusive, and/or fail to meet strict criteria required to make 

definitive clinical and regulatory recommendations. Commercially available modeling and simulation 

software can be a valuable tool to evaluate and predict, quantitatively, potential dietary substance-

drug interactions. A key contributing factor to predictive success is a thorough knowledge of the 

causative ingredient(s) contained in the dietary substance. Identification, characterization, and 

validation of specific bioactive components as marker compounds can guide appropriate clinical trial 

design. Such studies enable development and validation of PK-PD models describing the relationship 

between a given dietary substance and drug of interest. The current review provides an update on 

dietary substance-drug interaction research, addresses challenges and potential solutions regarding the 

conduct and interpretation of associated studies, and discusses in silico strategies for predicting food 

effects. 
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2. Food-drug interactions 

2.1. Definition 

A food-drug interaction is the consequence of a physical, chemical, or physiologic 

relationship between a drug and a product consumed as food or a nutrient present in a botanically-

derived food or dietary supplement [6, 7]. Such an interaction may manifest clinically as 

compromised health status due to altered PK and/or PD of the drug or dietary substance. Although 

dietary substances are regulated as food or dietary/herbal supplements, bioactive constituents in these 

substances can act like “perpetrator” drugs. That is, a dietary substance can increase systemic 

“victim” drug exposure (AUC), increasing the risk of adverse events and toxicity, or decrease 

systemic victim drug exposure, leading to therapeutic failure [6]. A lack of an interaction may be due 

to insufficient concentration(s) of causative ingredients at the enzyme or transporter active site, 

metabolism of causative ingredients to inactive products, or transport of causative ingredients out of 

target cells (e.g., enterocyte, hepatocyte). Underlying mechanisms by which food exerts such effects 

generally include physiologic, physicochemical, and/or biochemical processes [8]. Elucidation of 

these processes in relevant organ systems is essential to resolve issues related to formulation, dosing 

schedule, and optimal pharmacotherapeutic strategies [9-11].  

2.2. Regulatory guidelines 

Potential clinically significant implications of food-drug interactions are recognized by 

worldwide regulatory agencies, each with specific guidelines. A guidance issued by the United States 

Food and Drug Administration (FDA) in 2002 provided recommendations on the design and conduct 

of food effect and fasted/fed state studies (http://www.fda.gov/regulatoryinformation/guidances). 

High-calorie (~800-1000 calories) and high-fat (~50% of total caloric content) test meals represent 

the ‘worst-case scenario’ and are expected to alter maximally GI physiology and subsequent systemic 

drug availability. Although examination of the effects of food consumption on the PK of drugs is 

standard practice, the issue has become greater than “take with or without food” since a variety of 

specific dietary substances has been shown to alter systemic drug availability. Evaluation of the 
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underlying mechanism(s) can ultimately lead to firm conclusions required to make informed clinical 

and regulatory decisions or guidelines. 

3. Underlying mechanisms of food effect on drug exposure and response 

3.1. Physiologic and physicochemical mechanisms 

  Dietary substances can alter drug absorption, distribution, metabolism, and/or excretion 

(ADME) via physiologic and physicochemical mechanisms. Physiologic/mechanical mechanisms 

include delayed gastric emptying, stimulated/increased bile or splanchnic blood flow, and GI pH or 

flora changes. Alterations of such processes can lead to reduced absorption of some drugs (e.g., 

penicillins, angiotensin-converting enzyme inhibitors) [12]. Physicochemical mechanisms include 

binding of the drug by the food. For example, enteral nutrition formulas are incompatible with the 

antiepileptic agent, phenytoin, which can bind to proteins and salts in enteral formulations, resulting 

in reduced phenytoin absorption and potentially inadequate seizure control [13]. Some tetracyclines 

and fluoroquinolones can bind to divalent cation-containing products (e.g., calcium in dairy), 

resulting in reduced drug absorption [14, 15] and potential therapeutic failure. High fat meals can 

increase drug absorption by improving solubility, such as with some antiretroviral protease inhibitors 

(e.g., saquinavir, atazanavir) [16, 17]. Other examples are discussed comprehensively in several 

sources [18-22]. 

3.2. Biochemical mechanisms 

Biochemical mechanisms include interference with co-factor formation or function, 

potentiation of drug PD, and modification of drug metabolizing enzyme/transporter function by the 

dietary substance [23]. For example, vitamin K-rich foods interfere with co-factor function and 

should be consumed cautiously with the anticoagulant, warfarin, as they can disrupt vitamin K 

metabolism and increase risk of bleeding or clot formation [24]. Isoniazid and monoamine oxidase 

inhibitors, used to treat tuberculosis and depression, respectively, inhibit the breakdown of 

endogenous and dietary amines; a tyramine-rich diet can potentiate a hypertensive crisis [25, 26]. 

Foods consumed as beverages account for a very high proportion of dietary antioxidant intake [27]. 
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Growing evidence supporting cardioprotective benefits promotes moderate consumption as part of a 

healthy lifestyle [28, 29]. However, certain beverages contain substances that can influence drug 

disposition via modulation of drug metabolizing enzymes and transporters in the intestine.  

Several studies have assessed the effect of wine, beer, fruit juices, tea, and specific 

constituents therein on CYP activity in vitro, but clinical studies are limited. These beverages have 

become highly recommended supplements to routinely prescribed and over-the-counter drugs and/or 

as monotherapy for prevention, treatment, and maintenance of common diseases. Some ingredients 

identified in fruit juices, teas, and alcoholic beverages have been shown to inhibit intestinal 

metabolism and active apical efflux/uptake processes in vitro and in vivo. Inhibition of metabolism 

and active efflux would be expected to increase, whereas inhibition of active uptake would be 

expected to decrease, systemic drug exposure. These biochemical mechanisms, specifically with 

respect to the intestine, are highlighted in the current review. Examples of other dietary substance-

drug interactions are detailed in several sources [18-22]. 

4. Inhibition of intestinal biochemical processes 

The clinical significance of the intestine as a barrier to drug absorption and as a site for drug-

drug interactions (DDIs) is recognized widely [30]. Successful delivery of an oral drug to the target 

site encompasses a complex multifactorial process, requiring the identification of factors and 

mechanisms involved in optimal formulation design and the subsequent effects of interactions with 

the GI environment. A prime hindrance to drug absorption is the variety of drug metabolizing 

enzymes and transport proteins in the enterocyte that detoxify, bioactivate, and shuttle xenobiotics 

(Figure 1.2). Environmental variables such as polypharmacy and diet add to the challenge of 

achieving therapeutic efficacy while avoiding toxicity or treatment failure [31]. 

Purported health benefits of certain botanical products have led to their promotion as 

complements (or alternatives) to drug therapy [32]. The popular consumption of fruit juices, teas, and 

alcoholic drinks is attributed not only to taste and nutritive value but also to increased awareness of 

the pharmacologic (e.g., antioxidant) effects of specific constituents [33]. However, in parallel, a 
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growing number of in vitro and in vivo studies have demonstrated inhibitory, potentially detrimental, 

effects on enzymes and transporters involved in drug disposition, particularly those in the intestine, 

the primary portal for drugs and dietary substances [34]. The proceeding sections describe the latest 

findings in beverage-drug interaction research. 

4.1. Phase I metabolism 

4.1.1. Cytochrome P450 3A 

 The cytochromes P450 (CYPs) are the predominant phase I enzymes involved in drug 

metabolism [35]. Of the CYPs expressed in the intestine, the CYP3A subfamily is the most abundant 

and has been established to influence drug disposition in vivo [36, 37]. CYP3A is composed largely 

of CYP3A4 and CYP3A5 in adults.  Enteric CYP3A4 is located primarily in the villous tips of the 

enterocytes lining the upper and middle third of the intestine (duodenum to distal jejunum) [38]. 

CYP3A is responsible for the oxidative metabolism of more than half of pharmaceutical agents on the 

market [39]. The effects of several fruit juices on CYP3A expression and activity have been studied 

extensively in vitro and in human participants. Specific inhibitory ingredients in some fruit juices 

have been identified and characterized. In contrast, data on enteric CYP3A inhibition by teas and 

alcoholic beverages (e.g., wine, beer) are less abundant and the clinical significance remains to be 

determined.     

 Grapefruit juice (GFJ). Juice prepared from grapefruit (Citrus x paradisi Macfad.) is one of 

the most exhaustively studied dietary substances shown to inhibit enteric metabolism of numerous 

CYP3A substrates [40-42]. GFJ can enhance systemic drug exposure by inhibiting CYP3A-mediated 

pre-systemic (first-pass) metabolism in the intestine [43]. Inhibition is localized primarily in the gut, 

as demonstrated by a lack of effect on the elimination half-life of orally administered substrates and 

on the PK of intravenously administered substrates [44]. The increase in systemic drug exposure can 

be sufficient to produce adverse events, such as muscle pain with some statins and severe hypotension 

with some calcium channel blockers [45]. Compounds known as furanocoumarins (e.g., 6’,7’-

dihydroxybergamottin, bergamottin), in aggregate, have been established as major mediators of the 
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‘GFJ effect’ in humans [43]. Modes of intestinal CYP3A inhibition include reversible and 

mechanism-based [46-48], as well as degradation of the protein [49]. Research on the impact of GFJ 

on drug disposition and response is reported and updated frequently. Table 1.3 summarizes the design 

and results of GFJ-drug clinical studies since the authors’ previous review published in 2010 [50]. 

 Two unusual case reports on the effect of GFJ on CYP3A substrates administered 

intravenously were reported recently. One involved a 52 year-old Caucasian woman diagnosed with a 

locally advanced unresectable esophageal squamous cell carcinoma [57]. She began a docetaxel-

containing (40 mg/m
2
 biweekly) chemotherapy regimen. After the first treatment cycle, the AUC of 

docetaxel was higher (65%) compared to typical values. In parallel, hematologic toxicity, particularly 

a decrease in neutrophil count (by 71%), was observed. After interviewing the patient and reviewing 

her medication history, the investigators concluded that GFJ was responsible for the decrease in 

docetaxel clearance. She reported drinking GFJ (250 mL) daily for more than three months. Two 

weeks after she was advised to cease drinking GFJ, docetaxel was administered. Relative to the first 

cycle, docetaxel AUC was reduced by 60%, approximating the AUC target value. The other case 

involved an 83-year-old woman with a history of acute myocardial infarction and paroxysmal atrial 

fibrillation [58]. She presented to the emergency department with postprandial syncope and 

palpitations. Pharmacologic cardioversion was initiated by administering intravenous amiodarone 

(300 mg loading dose). Following administration, the electrocardiogram showed marked QT 

prolongation associated with ventricular arrhythmias, including an episode of torsade de pointes 

requiring immediate electrical cardioversion. When questioned about her eating habits, the patient 

reported regular GFJ consumption (≥ 1-1.5 L/day). After she was advised to cease drinking GFJ, the 

patient recovered and was discharged four days later. These two case reports are consistent with 

inhibition of hepatic CYP3A by GFJ when consumed regularly in copious atypical volumes [59]. 

 Seville orange juice. Juice prepared from the Seville (sour or bitter) orange (Citrus x 

aurantium L.) has been reported to contain furanocoumarins at concentrations comparable to GFJ [60, 

61]. Seville orange juice has been shown to inhibit enteric CYP3A4 in vitro and in healthy subjects 
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[60-64]. Colchicine is an oral CYP3A substrate used to prevent gout flares and relieve subsequent 

gout attack pain [65]. The toxicities from colchicine-CYP3A inhibitor interactions can lead to 

multiple-organ system failure. The effect of Seville orange juice on colchicine PK was examined in 

healthy volunteers [54]. A single dose of colchicine (0.6 mg) was administered after a four day 

regimen of undiluted Seville orange juice (240 mL given twice daily). Unexpectedly, Seville orange 

juice decreased mean AUC of colchicine by 20% and delayed tmax by one hour (p < 0.0001) relative to 

water. The reduced exposure may be explained by inhibition of uptake in the intestine (see Section 

4.3); however, colchicine has not been evaluated as a substrate for any uptake transport protein. This 

interaction is not likely to be of clinical concern, as the Seville orange is rarely consumed raw, even 

as juice, because of the extremely sour taste. The greatest use of Seville oranges as food is in the form 

of marmalade [43], but no controlled clinical studies on the effects of Seville orange marmalade 

consumption on drug disposition have been reported. 

 Pomegranate juice. The pomegranate (Punica granatum L.) continues as a popular 

‘superfood’ touted for having high antioxidant content and disease prevention properties [66]. The 

effect of pomegranate juice on CYP3A-mediated carbamazepine metabolism was studied in human 

liver microsomes and in rats; results suggested pomegranate juice inhibited intestinal, but not hepatic, 

CYP3A activity [67]. A clinical study involving 13 healthy men given pomegranate juice (240 mL) 

and a single oral dose of midazolam (6 mg) suggested lack of clinical significance [68]. A more 

recent study involving 16 healthy Japanese volunteers evaluated the effect of repeated pomegranate 

juice consumption on the CYP3A-mediated metabolism of midazolam [69]. Each subject was 

randomized to receive either water or a commercially available normal strength pomegranate juice 

(200 mL) twice daily for two weeks. On day 14, midazolam (15 µg/kg) was administered orally with 

pomegranate juice or water. Relative to water, pomegranate juice did not significantly alter 

midazolam PK (p = 0.40). Repeated consumption of pomegranate juice may not cause a clinically 

relevant interaction with midazolam. However, like previous clinical studies with pomegranate juice, 
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no information was provided about the composition of the test juice. Therefore, generalizations about 

the enteric CYP3A inhibition potential of pomegranate juice are premature. 

  Tomato juice. The tomato fruit (Solanum lycopersicum L.) is consumed in many ways – raw, 

cooked, and in drinks. The antioxidant potency and purported anticancer properties are attributable to 

the rich content of lycopene, a carotene and carotenoid pigment. A recent in vitro study using 

recombinant CYP3A4 showed that tomato juice contains one or more mechanism-based and 

competitive inhibitor(s) of CYP3A4 [70]. Ethyl acetate extracts of three commercially available, 

additive-free tomato juices (A, B, and C) and homogenized fresh tomato were evaluated as inhibitors 

of testosterone 6β-hydroxylase activity in recombinant CYP3A4. Relative to control (absence of 

extract), all four extracts at 1.5% (3.75 µL extract in 250 µL of incubation mixture) inhibited activity 

by ~70-85%; tomato juice C also inhibited nifedipine oxidation and midazolam 1’-hydroxylation 

activities by 80 and 63%, respectively. The tomato juice C extract showed irreversible dose- and 

time-dependent, as well as partial nicotinamide adenine dinucleotide phosphate-dependent, inhibition 

of testosterone 6β-hydroxylation. Lycopene was tested at a concentration corresponding to that in 

tomato juice C (110 µg/mL of juice) but had a modest, insignificant effect (28% inhibition). The 

clinical significance of CYP3A4 inhibition by tomato juice has not been determined. Interestingly, 

tomato juice has been studied as a ‘vehicle’ for administering granules of the proton pump inhibitor 

lansoprazole [71]. Lansoprazole is metabolized by CYP2C19 and CYP3A. A randomized, four-period 

crossover study involving 20 healthy volunteers compared the relative oral bioavailability of 

lansoprazole granules administered in two juices (orange juice and tomato juice, 180 mL each) and a 

soft food (strained pears, 15 mL) with that of the intact capsule (30 mg) administered with water (180 

mL). No differences between treatments were observed, probably because the study was not designed 

to evaluate the inhibitory effect of tomato juice on CYP3A.  That is, lansoprazole is not an established 

CYP3A probe substrate, and the tomato juice product was not characterized prior to use. The 

possibility of a food-drug interaction between tomato juice and appropriate CYP3A substrates 

warrants further examination in vivo. 
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Tea. Tea is the most widely consumed beverage in the world, second only to water [72, 73]. 

The processing technique for the leaves of the tea plant (Camellia sinensis (L.) Kuntze) dictates the 

level of fermentation and type of tea – white, green, black, oolong, etc. [74]. Green tea undergoes 

minimal oxidation during processing, ensuring high polyphenol content [75]. The predominant 

polyphenolic compounds are catechins, which are presumed to prevent and/or treat cancer, 

cardiovascular disease, and obesity [76]. In addition to conventional tea infusion, concentrated green 

tea extract prepared in oral capsule form is sold as a dietary supplement and has become a popular 

option for consumers. The majority of controlled clinical studies to date evaluating the effect of 

repeated green tea administration (given as extract) on CYP activity has not demonstrated clinically 

significant interactions [77, 78]. However, a recent case report described a ~two-fold increase in 

tacrolimus levels observed in a 58 year-old kidney transplant recipient who ingested green tea while 

receiving tacrolimus [79]. Levels decreased to within the therapeutic range after discontinuation of 

the tea. In vitro and clinical studies investigating further this potential interaction have not been 

published. A study in rats evaluating the effect of daily green tea consumption on 5-fluorouracil PK 

showed green tea (50 mg/kg for four weeks) increased the AUC of 5-fluorouracil by ~425% relative 

to saline [80]. Larger clinical studies are needed to determine the clinical significance of these 

observations. 

Alcoholic beverages. Growing evidence supporting cardioprotective benefits promotes 

moderate alcohol consumption as part of a healthy lifestyle. Alcoholic drinks such as wine and beer 

can alter CYP activity via mechanisms that are independent of ethanol [81]. Wine and beer are rich in 

flavonoids and other polyphenols that have antioxidant properties [82]. Red wine. A handful of 

clinical drug interaction studies with red wine made from the common grape (Vitis vinifera L.) have 

been reported, but results have been inconsistent or clinically insignificant [83]. The magnitude of 

effect of red wine on the PK of CYP3A substrates may depend on both the amount and type of red 

wine consumed. Differentiating the effects of ethanol and wine components also poses a challenge. 

The red wine components trans-resveratrol [84] and gallic acid [85] have been shown to inhibit 
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hepatic CYP3A in vitro in a mechanism-based and non-competitive, reversible manner, respectively. 

However, studies on enteric inhibition are lacking. Beer. Beer contains many classes of compounds, 

including phenolic acids, α- and β-hop acids, and prenylflavonoids [86]. Some of these compounds 

have been detected in the flowers of the hops plant (Humulus lupulus L.), which are used primarily 

for flavoring and preserving beer [87]. Due to the resemblance to other plant-derived antioxidants and 

ability to inhibit CYPs that activate carcinogens, hops constituents have been studied for their 

chemopreventive properties. The prenylflavonoids isoxanthohumol and 8-prenylnaringenin, as well as 

the prenylated chalcone xanthohumol, were weak inhibitors (at a concentration of 10 µM) of 

nifedipine oxidase activity in recombinant CYP3A4 (data not shown in publication) [88]. The 

inhibitory effect of a wide range of ales, lagers, specialty beers, ciders, and non-alcoholic lagers 

representative of Canadian and international markets was evaluated using recombinant CYP systems 

[89, 90]. Major α-hop acids (e.g., cohumulone, humulone, adhumulone) and β-hop acids (e.g., 

colupulone, lupulone, adlupulone) were measured in each product, and a wide variation in contents of 

alcohol and hop acids was detected. Two porter ale products (10 µL in 200 µL incubation mixture, 

stock concentration not specified) inhibited CYP3A4-mediated dibenzylfluorescein metabolism by up 

to 78%. A definitive relationship between inhibition and hops constituent levels could not be 

established. Further studies with individual compounds are warranted to support clinical evaluation. 

4.1.2. Esterase 

Esterases are essential to prodrugs (e.g., enalapril, lovastatin) requiring activation via 

hydrolytic cleavage of the ester bond to form the active species [91, 92]. Major esterases include 

carboxylesterase, acetylcholinesterase, butyrylcholinesterase, paraoxonase, and arylesterase. 

Inhibition of enteric esterase activity by GFJ in rats has been shown to increase stability of the ester in 

the lumen and enterocytes, resulting in higher absorption of the ester and higher exposure to active 

metabolite via rapid hydrolysis in plasma [93]. The clinical significance of esterase inhibition by GFJ 

is under investigation.  
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Grapefruit juice. Clopidogrel is an oral antiplatelet prodrug that is transformed in vivo to 

both an inactive metabolite via esterases and an active form through a series of reactions mediated by 

CYP1A2, CYP2B6, CYP2C9, CYP2C19, and CYP3A4 [94]. Clopidogrel is hydrolyzed by esterases 

to an inactive carboxylic acid derivative that accounts for 85% of circulating metabolites in plasma 

[95]. An ongoing clinical study (ClinicalTrials.gov Identifier: NCT00817999) is evaluating the 

impact of GFJ on clopidogrel loading and maintenance doses on platelet aggregation inhibition in 

healthy volunteers. This randomized two-way crossover study requires subjects to receive either 

water or single strength GFJ (325 mL) two hours prior to the loading dose (300 mg) of clopidogrel. 

Subjects return six hours after the loading dose to have platelet inhibition measured. A two-week 

washout period allows for platelet aggregation to return to baseline. The study was projected to be 

completed in January 2012; results await publication. 

4.2.  Phase II conjugation 

4.2.1. Uridine diphosphate glucuronosyltransferase  

Human glucuronosyl transferases (UGTs) facilitate elimination of endogenous substrates and 

xenobiotics by increasing hydrophilicity via formation of glucuronide conjugates [96]. In general, the 

UGTs are bound to the endoplasmic reticulum, and substrate binding sites are exposed to the lumen 

[97, 98].  UGTs are divided into two families, UGT1 and UGT2, which encompass more than 20 

enzymes [99]. The identification of UGTs in human small intestine has been studied using a variety 

of approaches at different biochemical levels, from mRNA to protein to enzymatic activity. The 

expression of a relatively small number of UGTs has been confirmed in multiple laboratories using 

the same or different approaches – UGT1A1, UGT1A3, UGT1A8, UGT1A10, and UGT2B7 [100]. In 

contrast, analyses of several other UGTs (e.g., -1A4, -1A6, -1A7, -1A9, -2B4, -2B10, -2B15) have 

produced conflicting results, which require further study to be resolved. The emergence of liquid 

chromatography-tandem mass spectrometry methods for absolute protein quantification may fill in 

the knowledge gap [101]. Intestinal UGTs can act to limit the oral bioavailability of many 

botanically-derived products. Although clinical beverage-drug interactions mediated by intestinal 
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UGTs have not been reported to date, the effect of diet on UGT activity in humans is discussed, as 

evidence supports dietary and genetic effects on UGT activity in humans [102-104].  

UGT1A1 glucuronidates bilirubin, estrogens, and several dietary carcinogens [105]. Cancer 

chemoprevention from dietary substances occurs partly through up-regulation of UGTs. Serum 

bilirubin, a marker of UGT1A1 activity, was shown previously to be lower among individuals 

homozygous for the UGT1A1*28 variant alleles (7/7) when randomized to a high fruit and vegetable 

diet [104]. In a follow-up study, healthy men (n = 146) and women (n = 147) provided blood samples 

for genotyping and bilirubin measurements [106]. Multiple linear regression was used to assess 

relationships among UGT1A1 genotype, bilirubin concentrations, and foods known to induce UGT 

activity (e.g., cruciferous vegetables, citrus fruits, soy foods) based on three-day eating records. A 

significant interaction of UGT1A1 genotype and citrus consumption among women was observed. 

Women with the 7/7 genotype who consumed ≥0.5 daily servings of citrus fruit had ~30% lower 

serum bilirubin than those with the same genotype who consumed less. These results suggested that 

citrus consumption may increase UGT1A1 activity among women with the 7/7 genotype, potentially 

improving clearance of certain carcinogens and influencing cancer susceptibility. 

 Chemoprevention by isothiocyanates from cruciferous vegetables occurs partly through 

induction of UGTs. In a randomized, controlled, crossover feeding trial in humans (n = 70), three test 

cruciferous-based diets were compared to a fruit-and-vegetable-free basal diet [107]. Subjects were 

genotyped (*1/*1, *1/*28, *28/*28), and serum bilirubin was measured to assess UGT1A1 activity. 

Aggregate bilirubin response to all cruciferous-containing diets was lower compared to the basal diet 

(p < 0.03 for all). For the UGT1A1*28/*28 genotype, lower bilirubin concentrations were noted in all 

cruciferous-containing diets compared to baseline (p < 0.02 for all). These results may have 

implications for altering metabolism of both carcinogens and drugs through dietary intervention, 

particularly among UGT1A1*28/*28 individuals. 

Acetaminophen (APAP) glucuronidation is believed to occur mainly by UGT1A. Evidence 

suggests that UGT2B15 also may be important. A feeding trial was conducted to assess UGT1A6 and 
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UGT2B15 polymorphisms and acetaminophen conjugation in response to a randomized, controlled 

diet of selected fruits and vegetables known to induce UGTs (e.g., cruciferous, soy, and citrus) [108]. 

Subjects were genotyped for UGT1A1*28, UGT1A6*2, and UGT2B15*2. Healthy adults (n = 66) 

received APAP (1 g) on days 7 and 14 of each two-week feeding period. Saliva and urine were 

collected over 12 hours. A modest relationship between UGT1A6, diet, and APAP conjugation was 

observed. Although the effect of the UGT2B15*2 polymorphism on APAP glucuronidation was 

statistically significant, differences in APAP glucuronidation between genotypes in response to diet 

were small. Although larger than previous controlled feeding studies designed to evaluate effects of 

diet on glucuronidation, the sample size was not powered to detect genotype-diet interactions.  

The inhibitory effects of commonly used herbal extracts on UGT1A4, 1A6, and 1A9 

activities were evaluated in human liver microsomes [109]. The green tea constituent epigallocatechin 

gallate (EGCG), extracted from a green tea product, inhibited UGT1A4 activity (IC50 = 33.8 ± 3.1 

µg/mL). UGT1A4 has been detected in the intestine [110], but green tea has not been evaluated as an 

intestinal UGT1A4 inhibitor in vitro and in humans. Further studies are warranted.   

4.2.2. Sulfotransferase 

Sulfotransferases (SULTs) catalyze the sulfation of a multitude of xenobiotics, hormones 

(i.e., thyroid, estrogens), and neurotransmitters via conjugation with 3’-phosphoadenosine 5’-

phosphosulfate [111]. Three human SULT subfamilies have been identified and detected in liver, 

brain, intestine, lung, kidney, and other tissues [112]. SULT1As are critical protectants from 

xenobiotics and ingested catecholamine precursors [113]. Molecules such as tyrosine and dopamine 

are sulfated preferentially by SULT1A3. Grapefruit and orange juices, as well as green tea, have been 

shown to inhibit two members of the SULT1 family in vitro, SULT1A1 and SULT1A3, the latter of 

which is expressed only in extrahepatic tissues, including the intestine [114-116]. SULT1A inhibition 

prevents normal catecholamine deactivation. Like the UGTs, clinical food-drug interactions mediated 

by intestinal SULTs have not been reported to date, but the effect of SULT inhibitors in the diet (e.g., 

flavonoids in citrus fruits, wine, tea, chocolate) on circulating catecholamines has been explored. A 
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recent analysis of 19 published human studies showed that ingestion of SULT1A inhibitors, such as 

coffee (including decaffeinated), tea, chocolate, bananas, and citrus fruits can elicit catecholamine 

increases, blood pressure changes, migraine headaches, and/or atrial fibrillation in susceptible 

individuals [117]. Although diet-induced SULT1A inhibition has been shown to have serious health 

consequences, the impact of concomitant drug intake on this complex interaction is unknown. 

Controlled clinical studies with appropriate SULT substrates are needed. 

4.3.  Transporter-mediated efflux and uptake 

4.3.1.  P-glycoprotein 

Inhibition of efflux transporters can lead to altered systemic and local drug concentrations. 

Due to the location of the efflux transporter P-glycoprotein (P-gp) on the apical (lumenal) membrane 

of enterocytes (Figure 1.2), substrates are extruded back into the intestinal lumen, lowering systemic 

drug concentrations [118]. Thus, as with CYP3A, inhibition of enteric P-gp would be expected to 

increase systemic drug exposure. In vitro studies have demonstrated inhibition of P-gp activity by 

citrus juices, but the clinical relevance of enteric P-gp is dubious. Whether GFJ inhibits intestinal P-

gp activity in vivo has not been fully established, largely because an ideal P-gp probe substrate has 

not been identified. Several drugs transported by P-gp are metabolized by CYP3A as well [119], 

making it difficult to determine causality when plasma levels of a dual CYP3A/P-gp substrate are 

elevated post-GFJ ingestion. 

4.3.2.  Organic anion transporting polypeptide 

 The attempt to establish an in vivo probe for P-gp activity inadvertently gave rise to a new 

area of food-drug interaction studies. The initial clinical study examining effects of fruit juices on 

enteric P-gp activity using fexofenadine as a probe substrate showed an unexpected 63% decrease in 

fexofenadine AUC relative to water [120]. Mean elimination half-life was unchanged. This atypical 

interaction was attributed to inhibition of an apically located intestinal uptake transporter. Organic 

anion transporting polypeptides (OATPs) are transmembrane transport proteins that facilitate uptake 

of a number of endogenous compounds (e.g., bile acids, hormones) and drugs [121]. Of the 11 human 
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OATP family members, OATP1A2 and OATP2B1 have been reported to be expressed on apical 

membranes of enterocytes [122] (Figure 1.2). Fruit juice inhibition of intestinal uptake transport has 

been reviewed [123, 124], but new studies have been reported.     

Grapefruit juice. Aliskiren is a direct renin inhibitor indicated for the treatment of 

hypertension. A clinical study of 11 healthy volunteers administered GFJ (200 mL single-strength 

three times daily for five days) and aliskiren (150 mg on day 3) showed that relative to water, GFJ 

significantly reduced mean aliskiren AUC by 61% with no change in half-life, consistent with 

inhibition of intestinal but not hepatic OATPs [125]. A similar study with 28 healthy subjects 

receiving 300 mg aliskiren and either water or grapefruit juice (300 mL) showed a mean AUC 

decrease of 38% by GFJ [126]. Accompanying in vitro studies in human embryonic kidney 293 cells 

expressing OATP1A2 and OATP2B1 demonstrated that aliskiren was not taken up in OATP2B1-

expressing cells, indicating aliskiren is not a substrate for OATP2B1. However, uptake of [
14

C]-

aliskiren was linear in OATP1A2-expressing cells and was reduced by the citrus fruit flavonoid 

naringin. The IC50 averaged 75 μM, which is well below the reported range of concentrations in 

grapefruit juice (170 μM - 6.5 mM) [127-131], supporting naringin as a candidate inhibitor of 

intestinal OATP. The clinical impact of the GFJ-aliskiren interaction may be minimal in view of 

interim results of the Aliskiren Trial in Type 2 Diabetes Using Cardio-Renal Endpoints (ALTITUDE) 

[132]. Safety warnings recommending discontinuation of aliskiren in patients with type 2 diabetes, 

renal impairment, and/or cardiovascular disease have been issued due to potential risks of renal and 

cardiac adverse events (http://www.pharma.us.novartis.com). 

 Celiprolol is a cardioselective β-adrenergic receptor blocker that has been shown to interact 

with GFJ [133]. One of the explanations for the observed 85% decrease in mean AUC was inhibition 

of celiprolol absorption in the intestine by GFJ. An uptake study in Xenopus laevis oocytes injected 

with either OATP1A2 or OATP2B1 cRNA showed that celiprolol was a substrate of OATP1A2 but 

not OATP2B1 [134]. In contrast, the authors of a more recent clinical interaction study hypothesized 

that celiprolol was transported by intestinal OATP2B1 [135], partly because the intestinal expression 
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of OATP2B1 is higher than that of other OATP isoforms [136, 137]. Before the human study was 

initiated, the authors performed an in vitro study in OATP2B1-expressing oocytes, demonstrating that 

celiprolol was transported by OATP2B1. The potential importance of pharmacogenomics led the 

authors to evaluate the contribution of SLCO2B1 polymorphisms to celiprolol PK and to investigate 

the interaction between celiprolol and GFJ. Healthy men (n = 30) ingested 200 mL of GFJ three times 

daily for two days. On day 3, celiprolol (100 mg) was administered with 200 mL of GFJ. Additional 

GFJ (200 mL) was administered at 30 minutes and 1.5 hours thereafter. The mean AUC of celiprolol 

was 50% lower in SLCO2B1*3/*3 (n = 4) than in *1/*1 (n = 5) individuals but was not deemed 

significant (p = 0.10). GFJ reduced mean AUC of celiprolol by up to 86% (p < 0.01) compared to 

water, but SLCO2B1*3 genotype-dependent differences in the PK profiles of celiprolol disappeared in 

the interaction phase. Although a population PK analysis showed SLCO2B1 status to be a statistically 

significant predictor of celiprolol PK, a larger trial is needed to confirm the clinical impact of the 

SLCO2B1*3 polymorphism. 

The clinical significance of the SLCO2B1*3 polymorphism has been investigated for the 

leukotriene receptor antagonist montelukast, which is prescribed to control asthma symptoms in 

adults [138] and children [139]. In vitro experiments with Madin-Darby Canine Kidney Type II cells 

stably expressing OATP2B1 and Caco-2 cell lines showed that montelukast was a substrate for both 

OATP1A2 and OATP2B1 [138]. The PK and PD of a single dose of montelukast with and without 

GFJ were evaluated in adolescents and young adults (15-18 years old) with asthma [139]. The 

SLCO2B1*3 polymorphism was expected to be associated with reduced absorption of montelukast, 

and co-ingestion of GFJ was hypothesized to decrease absorption of montelukast through inhibition 

of OATP2B1. Study volunteers (n = 26) were given montelukast (10 mg) with 240 mL of either 

Gatorade
®
 (control), 4X concentrated GFJ, normal-strength GFJ, or normal-strength orange juice. A 

majority of the volunteers were SLCO2B1*3/*3 (n = 21), while the remainder was SLCO2B1*1/*3 (n 

= 5). GFJ, 4X GFJ, and orange juice decreased montelukast mean AUC by 7%, 8%, and 20%, 

respectively, compared to control. The reduction in mean AUC with orange juice co-ingestion in 
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SLCO2B1*3/*3 individuals was considered significant (p = 0.032). SLCO2B1*1/*3 individuals 

showed a mean AUC reduction of 37% (p = 2 × 10
-5

) compared to the *1/*3 group, independent of 

treatment. Despite significant PK findings, neither genotype nor co-ingestion of citrus juice had an 

effect on montelukast PD (data not shown in publication). However, the sample size was not justified, 

so the study design may have lacked sufficient power to detect an interaction. The interpretation of 

montelukast-SLCO2B1 studies has been questioned by the manufacturer (Merck & Co., Inc.) [140]. A 

series of in vitro OATP2B1-related transport experiments demonstrated that there was no direct 

evidence indicating that montelukast is a substrate of OATP2B1 or that a SLCO2B1 polymorphism 

alters montelukast uptake. OATP1A2-mediated uptake of montelukast was not discussed. Based on 

the conflicting evidence, conclusions on the direct involvement of OATP2B1 in the absorption of 

montelukast are premature, and larger trials are needed to demonstrate reproducibility of the clinical 

observations. 

Orange juice. The sweet orange (Citrus x sinensis (L.) Osbeck) is considered fairly 

innocuous due to the lack of CYP3A-inhibiting furanocoumarins in the fruit. However, clinical 

studies with fexofenadine, certain β-blockers, and fluoroquinolones have demonstrated that orange 

juice can reduce systemic exposure by up to 83% [120, 141-144]. Some of these interactions have 

been shown in vitro to involve inhibition of enteric OATP by orange juice [120, 134, 145]. The effect 

of orange juice on aliskiren PK and PD has been investigated [146]. In a randomized crossover study, 

12 healthy volunteers ingested 200 mL of orange juice, apple juice, or water three times daily for five 

days. On day 3, they ingested a single 150 mg dose of aliskiren. Orange juice reduced aliskiren 

geometric mean AUC by 62% relative to water while having no effect on elimination half-life. 

Plasma renin activity was increased significantly (p = 0.037) in the juice phase, but changes in blood 

pressure and heart rate were not detected. The subjects were genotyped for SLCO2B1 polymorphisms, 

but no differences in aliskiren PK between the groups were observed. As discussed previously, 

aliskiren is not a substrate of OATP2B1. The effect of orange juice on OATP1A2-mediated aliskiren 
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transport has not been examined in vitro, but naringin, an ingredient in orange juice (and other citrus 

fruits), has been shown to reduce aliskiren uptake [126].  

Apple juice. The consumption of apples (Malus x domestica Borkh.) has been linked to 

reduced risk of some cancers, cardiovascular disease, asthma, and diabetes [147]. Main structural 

classes of apple constituents include hydroxycinnamic acids, dihydrochalcones, flavan-3-ols, 

flavonols, and triterpenoids. While there have been no in vitro and clinical studies investigating the 

effect of apple juice on drug metabolism, evidence exists that apple juice inhibits OATP activity in 

vitro [148] and in human volunteers [120]. The following clinical studies involving apple juice 

address growing attempts to elucidate the pharmacogenomic impact of drug transport proteins. 

The effects of the SLCO2B1*3 variant (c.1457C>T) and concomitant apple juice intake on 

fexofenadine and midazolam oral PK were evaluated in a randomized crossover study of 14 healthy 

volunteers [149]. Individuals were divided based on genotype – CC (n = 5), CT (n = 5), TT (n = 4). 

Fexofenadine (60 mg) and midazolam (5 mg) were administered with 300 mL of either water or 

normal-strength apple juice (reconstituted from concentrate). Additional juice was administered post-

dose (150 mL every 30 minutes for 3 hours; total volume = 1.2 L). When the genotyped groups were 

stratified in the water phase, subjects with CT and TT alleles showed a 37% decrease (p < 0.05) in 

fexofenadine mean AUC compared to those with CC alleles. Regardless of genotype, apple juice 

decreased fexofenadine mean AUC by 79% (p < 0.05) relative to water. Neither the genotype nor the 

apple juice showed significant effects on the PK of midazolam, indicating that apple juice had 

minimal effect on CYP3A activity. OATP-mediated uptake of fexofenadine was evaluated in 

Xenopus laevis oocytes expressing OATP2B1 and was shown to be three-fold higher (p < 0.05) than 

that by water-injected oocytes, indicating that fexofenadine was a substrate of OATP2B1. Some 

studies have shown that fexofenadine is transported by OATP2B1 [135, 138, 150], but others have 

not [151, 152]. Although the clinical study results are consistent with previous findings, the impact of 

the OATP2B1 polymorphism is uncertain given the small sample size. 
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A recently reported clinical study demonstrated that apple juice, like orange juice [141], 

reduced plasma concentrations of the β-blocker atenolol [153]. The effect of apple juice, as well as 

SLCO2B1 c.1457C>T polymorphism, on atenolol PK was determined by a three-way crossover study 

of 12 healthy volunteers. Individuals were divided based on genotype – CC (n = 6) and TT (n = 6). 

Subjects ingested atenolol (50 mg) with either water or apple juice (300 mL) in the first phase and 

additional apple juice in the second (900 mL) and third (300 mL) phases. Blood pressure and heart 

rate were measured up to 48 hours after dosing. Apple juice (1.2 L) reduced atenolol mean AUC by 

up to 86% (p < 0.001). Genotype did not affect atenolol PK. No significant differences were observed 

in the hemodynamic variables. The mechanism of this interaction has not been elucidated. Atenolol 

has been identified as a substrate of OATP1A2 in an in vitro study of Xenopus laevis oocytes [134], 

but the effect of apple juice (and orange juice) has not been assessed. Although no changes in PD 

outcomes were observed in healthy volunteers, the apple juice-atenolol interaction may be significant 

in cardiovascular disease patients. 

 Tea. Green tea is characterized by high concentrations of catechins, including EGCG, 

epicatechin (EC), epigallocatechin (EGC), and epicatechin gallate (ECG). The predominant catechin, 

EGCG, has been studied extensively for purported health benefits [154]. The effects of the four 

catechins on OATP1A2 and OATP2B1 activity have been evaluated in vitro. Both EGCG and ECG at 

100 µM inhibited OATP2B1-mediated estrone-3-sulfate uptake by ~70% [155, 156], with ECG 

showing higher potency than EGCG (IC50 of 36 vs. 100 μM) [156]. EGCG and ECG (both at 100 

µM) also inhibited OATP1A2-mediated estrone-3-sulfate uptake by ~75%, with ECG again showing 

higher potency than EGCG (IC50 of 10 vs. 55 µM) [156]. ECG and EGCG concentrations in brewed 

green tea average 450 µM and 430 µM, respectively, with maximum concentrations of each catechin 

in the low millimolar range (http://www.nal.usda.gov). Consumption of a cup (e.g., 240-300 mL) or 

two of green tea would result in intestinal concentrations of ECG and EGCG within the range that 

inhibits OATP activity. However, the clinical significance of intestinal OATP inhibition by green tea 

has not been investigated. 
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5.  Challenges in establishing clinical significance 

  A number of botanically-derived beverages have been shown to inhibit several intestinal 

CYPs and transporters in vitro, but many of the interactions have not translated to the clinic. These in 

vitro-in vivo discordances may be due to a lack of sufficient and/or quality data to determine a true 

positive interaction (Table 1.4). Although this review is focused on beverage-drug interactions and 

associated mechanisms, the proceeding concepts and recommendations for how to advance research 

strategies and standards in this field can be applied, in general, to any botanically-derived product-

drug interactions. 

5.1.  Methods to improve research practices 

Clinical dietary substance-drug interaction studies can be confounded easily by the 

documented variability of specific constituents (known and unknown) in individual foods. Some in 

vitro-in vivo discrepancies can be addressed simply by improved documentation of the botanical 

source material’s origin(s); others may require more rigorous experimental investigation (e.g., 

discerning additive, synergistic, or inhibitory effects of constituents). Many clinical studies in the 

literature are incomplete, flawed, or superficial. Strict peer review of relevant manuscripts is essential 

to promoting best practices. A checklist of recommended questions to consider when evaluating 

submitted research articles or already published literature is listed in Table 1.5. Robust, systematic 

methods for evaluating potential dietary substance-drug interactions are critical, as one of the ultimate 

goals is to establish a framework for the quantitative prediction of food-drug interactions. 

5.1.1. Identification and characterization of causative ingredients 

A fundamental deficiency common to most dietary substance-drug interaction studies is 

limited or no descriptions of the chemical composition of the food product. The concentration of 

putative ingredients might not be sufficient to inhibit metabolism/transport in vivo [4]. Since 

beverages are derived from single or multiple botanical sources, they are composed of complex 

mixtures of numerous phytochemical entities [158]. The sources and complexity of a plant’s chemical 

constituents can contribute to batch-to-batch inconsistency, as concentrations of bioactive compounds 
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can be affected by ecology, cultivation and manufacturing practices, storage conditions, and other 

environmental factors [129]. Thus, testing a random product in vitro and in vivo without evaluating 

the chemical makeup provides no basis for comparison between studies. Documentation and reporting 

of dietary substance characterization must be improved because many clinical studies lack thorough 

information about the test product. For commercially available products, the brand name, 

manufacturer, lot number, ingredients, preparation directions, and manufacturing process should be 

stated at minimum [159]. For freshly prepared material, scientific name, quantity, plant part used, 

collection site, preparation procedures, and storage conditions should be noted. Following verification 

of the test material, identification of components responsible for metabolism- or transport-mediated 

interactions poses the next challenge.  

Thorough characterization of constituents is a difficult but essential task, and advances in 

analytical detection technologies have improved the efficiency and sensitivity with which active 

constituents have been identified. The resulting ‘marker’ compound(s) can be used to authenticate the 

test product, serving as an indicator of quality and potency in terms of standardization [160]. Since 

administration of ‘standardized’ foods is not possible, it would be more realistic to quantify a 

particular known/suspected component, or group of components, prior to clinical use. This practice 

would allow some degree of between-study comparison, as terms such as ‘normal,’ ‘regular,’ ‘single,’ 

‘double’ strength have little meaning. For drug metabolism/transport purposes, a marker compound 

need not be unique to a particular product. The identity of constituent(s) should be confirmed by in 

vitro methods that screen for potential interactions. Selection of bioassay systems and associated 

protocols to quantify activity should be determined by the drug(s) and relevant phytochemical species 

of interest [161]. Such experiments provide mechanistic information about inhibitory capacities, as 

well as specific enzymes and/or transporters involved. Two examples illustrating the aforementioned 

approach as it applies to drug metabolism and transport are discussed [162, 163]. 

  Conflicting results from an in vivo rat study [164] and a clinical study [165] examining the 

interaction between CYP3A substrates and cranberry juice (CBJ) prompted a systematic in vitro-in 
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vivo approach to identify a CBJ product capable of inhibiting enteric CYP3A in human volunteers 

[166]. The effects of five CBJ products (blinded for in vitro experiments) were evaluated on 

midazolam 1'-hydroxylation activity in human intestinal microsomes. Each juice brand (ranging from 

concentrate to fresh pressed preparations) inhibited CYP3A activity in a concentration-dependent 

manner but with differing extents of inhibition, demonstrating that one brand is not representative of 

the broad marketplace. The most potent of these juices, CBJ ‘E’, was tested next in a proof-of-

concept clinical study involving 16 healthy volunteers. Each volunteer was administered juice E 

(double-strength) or water (240 mL x 3, separated by 15 min intervals) and midazolam (5 mg) with 

the third glass of juice/water. Relative to water, CBJ increased the geometric mean AUC of 

midazolam by ~30% (p < 0.001) while having no effect on geometric mean terminal half-life, 

suggesting inhibition of intestinal CYP3A activity. 

 A common approach used in the natural products field to isolate therapeutically active 

ingredients, bioactivity-guided fractionation, was used to identify the CYP3A inhibitors present in the 

clinical test CBJ [162]. The juice was partitioned into hexane-, chloroform-, butanol-, and water-

soluble fractions. Each fraction was evaluated as an inhibitor of midazolam 1’-hydroxylation in 

human intestinal microsomes. The hexane- and chloroform-soluble fractions at 50 μg/mL were the 

most potent, inhibiting activity by 77 and 63%, respectively, suggesting that the CYP3A inhibitors 

resided in these more lipophilic fractions. A series of bioactivity-guided fractionation studies with 

whole cranberry (Vaccinium macrocarpon Ait.) were initiated next to identify potential specific 

enteric CYP3A inhibitors in cranberry [162]. Using human intestinal microsomes and recombinant 

CYP3A4, three triterpenes (maslinic acid, corosolic acid, ursolic acid) were isolated. IC50 values 

ranged from 2.8 (maslinic acid) to <10 μM (ursolic acid). Results suggested that these triterpenes may 

have contributed to the CBJ-midazolam interaction observed clinically. The overall approach 

substantiated that in vitro characterization of dietary substances is required before initiation of clinical 

dietary substance-drug interaction studies, one brand of a given dietary substance is not predictive of 
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all brands, and bioactivity-guided fractionation can be used to identify specific causative bioactive 

ingredients. 

 A bioassay-directed isolation approach was applied to the subtropical shrub aratiku (Rollinia 

emarginata Schlecht) to identify OATP modulators [163]. The stem barks of the shrub have been 

used in combination with yerba mate (Ilex paraguayensis St. Hilaire) as a migraine treatment and as a 

relaxant. Initial screening identified aratiku extract as a modulator of OATP-mediated transport. 

Fractions of the extract were screened in Chinese hamster ovary cells stably transfected with 

OATP1B1 or OATP1B3. Potential effects on OATP1B1- and OATP1B3-mediated uptake of the two 

model substrates, estradiol-17β-glucuronide and estrone-3-sulfate, were evaluated. Although the in 

vitro experiments were intended for liver-specific OATPs, to the best of the authors’ knowledge, the 

approach is the only one published to date that utilized bioactivity-guided fractionation to isolate 

modulators of drug uptake transporters. Ursolic acid, oleanolic acid, and 8-trans-p-coumaroyloxy-α-

terpineol significantly inhibited estradiol-17β-glucuronide uptake by OATP1B1 (~70% of DMSO 

control) but not OATP1B3. The IC50 values for ursolic acid and oleanolic acid were ~15 μM and ~4 

μM, respectively. Ursolic acid and oleanolic acid modestly inhibited estrone-3-sulfate uptake by both 

OATPs (by up to 40% of control). Quercetin 3-O-α-L-arabinopyranosyl(1→2) α –L-

rhamnopyranoside strongly inhibited OATP1B1- and OATP1B3-mediated uptake of estradiol-17β-

glucuronide (by > 95%). However, OATP1B3-mediated uptake of estrone-3-sulfate was stimulated. 

The thorough descriptions of the starting material, preparation procedures, analytical methods, and 

bioassay system protocols were strengths of the work. The overall method illustrated the efficiency of 

bioassay-guided isolation to identify selective transporter modulators in a botanical that has not been 

studied clinically. Interestingly, ursolic acid also was identified in the CBJ product mentioned 

previously. Such information permits assumptions about which drugs may interact with a food 

containing ursolic acid (e.g., apple, cranberry, pear, plum, olives) [167-170].  

  Identification and thorough characterization of a particular dietary substance does not change 

immediately certain research practices. Since the establishment of furanocoumarins in GFJ as 
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unequivocal mediators of enteric CYP3A-based interactions in 2006 [37], only a handful (n ~ 5) of 

clinical studies involving CYP3A substrates have reported furanocoumarin content in the test juice. 

Furanocoumarins have been studied to the extent that they can be considered marker compounds. 

Characterization of a given GFJ in terms of furanocoumarin content could be used to predict the 

likelihood and magnitude of an interaction (see Section 5.1.4). Between-study comparisons also can 

be made. A basic, yet overlooked, solution to establishing meaningful physiological dose-response 

relationships for dietary substances is to characterize the product prior to use. The information gained 

will inform the nature and extent of follow-up in vitro and in vivo interaction studies. 

5.1.2. Appropriate design of in vitro and in vivo food-drug interaction studies 

  The regulation (or lack thereof) of dietary substances in the United States is different from 

drugs. Although dietary substances are regulated as food [5], bioactive compounds in these 

substances can act like drugs (i.e., cure, mitigate, treat, or prevent disease). Since it is unlikely that 

legislation will change to require more intense drug-dietary substance interaction studies, individuals 

in the field can take a cue from the pharmaceutical industry and adopt some or all recommendations 

made in the FDA’s guidance on drug-drug interaction studies (http://www.fda.gov/cder/guidance) to 

create a more consistent evaluation approach. Methods and decision trees in the guidance on botanical 

drug products [171] pale in comparison. As stated previously, the experimental design aimed to 

quantify activity of a dietary substance should be determined by the drug(s)/probe substrate(s) and 

relevant phytochemical constituent(s) of interest. Data generated from well-designed in vitro studies 

(e.g., Km, Vmax, Ki, IC50 determinations), combined with clinical PK information, may serve as a 

screening mechanism to rule out the need for additional in vivo studies, or provide a mechanistic basis 

for proper design of clinical studies using a modeling and simulation approach (see Section 5.1.4). 

5.1.3. Development and validation of PK-PD relationships 

Pharmacodynamic consequences of dietary substance-drug interactions are underexplored 

aspects of controlled clinical PK studies. Selection of one or more clinically relevant PD measures 

begins with a drug of interest for use in a target patient population. Most PD endpoints are surrogates 
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that correlate with clinical efficacy and are assessed in multiple dosing studies conducted over a 

period of more than one week or months. For example, antihypertensive drug trials measure blood 

pressure, antihistamine studies measure skin wheal formation, antiviral agent studies measure viral 

load, and opioid analgesic trials record pain scores (efficacy) and pupil diameter (toxicity) [172]. 

Depending on the therapeutic drug category, some PD measures have been validated over time and 

are well-accepted surrogates for drug efficacy and toxicity. Most food-drug interaction trials involve 

single dosing of healthy volunteers, who may exhibit different PK and PD outcomes compared to 

diseased patients. More studies in patient populations are needed to determine the short- and long-

term responses to dietary substance-drug interactions.  

A recent study with GFJ and atorvastatin demonstrated the importance of measuring PD 

outcomes and cautious extrapolation of conclusions from short term, healthy subject trials to the 

actual clinical setting of drug-treated patients [55]. Previous healthy volunteer studies have shown 

that large quantities (200-250 mL three times daily for ≥ two days) of GFJ increase exposure to 

atorvastatin by up to three-fold [173-175]. The Grapefruit Effect on Atorvastatin Therapy (GREAT) 

trial evaluated the effects of a typical daily single ‘dose’ of GFJ on plasma concentrations and lipid-

lowering effects of atorvastatin in hyperlipidemic patients on a stable atorvastatin regimen (>90 days) 

[55]. Patients receiving extended treatment with atorvastatin (10, 20 or 40 mg daily) at a stable dose 

were randomized to two arms and received normal strength GFJ (300 mL daily) for 90 days. One 

cohort (Arm A, n = 60) continued on their current dose of atorvastatin; the other cohort (Arm B, n = 

70) reduced the daily dose by half to confirm the need for atorvastatin dosage reduction while on 

GFJ. Serum atorvastatin, lipid profile, liver function, and creatine phosphokinase (to monitor for 

muscle toxicity) were measured at baseline and at 30, 60, and 90 days after starting GFJ. A 

statistically significant increase (19-26%) in median serum atorvastatin concentration was observed in 

Arm A, but changes in lipid profile were negligible. No adverse effects in liver or muscle were 

evident. Arm B showed a decrease (12-25%) in median serum atorvastatin with a small but 

statistically significant unfavorable serum lipid profile (i.e., increased cholesterol, triglycerides, low-
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density lipoprotein). No adverse effects on liver function tests or creatine phosphokinase were 

observed. Although the study results suggested chronic GFJ co-ingestion with atorvastatin is safe, 

several considerations should be noted. First, the lipid profile of the study population at baseline (i.e., 

already on stable dose of atorvastatin) was reasonably controlled, so the addition of GFJ might have 

been minimally effective. Patients newly prescribed atorvastatin may have a different outcome; that 

is, concomitant GFJ may improve the lipid profile more rapidly and/or to a greater extent than in 

patients stabilized on atorvastatin. Second, the lack of effect on lipids may have been due to 

insufficient furanocoumarin content in the test juice; the increase in atorvastatin exposure was 

modest. Furanocoumarin content in the test GFJ was not reported, and whether it was measured is 

unclear. Third, the 100% Florida GFJ used in the study was from one lot and was tested for 

uniformity and nutritional content (e.g., sugar, total carbohydrate, vitamin C). It is possible that the 

daily intake of carbohydrate and sugar in the GFJ offset some of the clinical benefit.  

The aforementioned study highlights the importance of designing clinical studies that reflect 

typical eating/drinking habits. The study also draws attention to the potential use of dietary substances 

as ‘PK boosters.’ Indeed, deliberate inhibition of enteric CYP3A by GFJ consumption and/or 

individual components has been used by the scientific community for both therapeutic and 

pharmacoeconomic purposes. For example, this strategy has been evaluated and suggested to be 

beneficial to patients undergoing treatment for cancer and organ transplantation. Oral bioavailability 

would be increased without GFJ itself exerting additional adverse effects. Costs and side effect 

severity of these multi-drug and toxic regimens could be reduced through dose and/or dosing 

frequency reduction by coadministration with GFJ. The tyrosine kinase inhibitor imatinib, as well as 

the immunosuppressants sirolimus and tacrolimus, have been investigated clinically [56, 176, 177]. A 

deficiency common to all the studies is the lack of phytochemical analysis of the juice. The clinical 

trial investigating the effect of GFJ on sirolimus PK in advanced solid tumor patients initially showed 

no effect of GFJ, which was attributed to insufficient furanocoumarin content in the selected GFJ. A 

more ‘potent’ GFJ containing (unreported) inhibitory concentrations of furanocoumarins increased 
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plasma sirolimus concentrations by up to 400% relative to water. The clinical study evaluating the 

effect GFJ on imatinib PK in Japanese men diagnosed with chronic myelogenous leukemia showed 

no effect; furanocoumarin content in the GFJ was not measured. The lack of effect in the imatinib 

study could be attributed to the same reason a lack of effect was observed initially in the sirolimus 

study. A recent study in rats suggested that GFJ may be equally effective as ritonavir in increasing the 

bioavailability of the HIV protease inhibitor lopinavir [178]. Again, like the aforementioned studies, 

the GFJ was not analyzed for furanocoumarin content. In addition, translation of this interaction to the 

clinical setting has not been determined. Phytochemicals (e.g., green tea catechins) capable of 

inhibiting efflux transporters have been studied with anti-tumor agents as multidrug resistance-

reversing co-therapies [179, 180]. Long-term safety and pharmacoeconomic impact of combining 

drugs and dietary substances have not been evaluated sufficiently to change current disease 

management.  

PD-related conclusions are unwarranted due to insufficient data on the PK relationship 

between the causative ingredient(s) and the drug(s). A rigorous evaluation of a PK-PD relationship 

can be achieved by applying in silico methods to in vitro and in vivo data. Modeling and simulation 

techniques permit the prediction of a potential interaction, but extensive in vitro data (e.g., 

physicochemical properties, ADME parameters) and clinical PK information (including external 

datasets for validation) are imperative. 

5.1.4. Prediction of food-drug interactions  

PK-PD modeling and simulation have become powerful, integral tools for improving the 

efficiency of the drug development process, and the value of these approaches has been championed 

in several reviews [181-184]. The (patho)physiology of biological systems and the pharmacology of 

treatments acting on these systems can be modeled to predict quantitatively the dose-response 

relationship. Similar principles can be applied to dietary substances, especially in relation to how they 

interact with drugs. A quantitative analysis of both in vitro and clinical PK data is accomplished by a 

variety of algorithms and models (e.g., basic, mechanistic, static, or dynamic) [185]. The application 
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of physiologically-based pharmacokinetic (PBPK) modeling to drug development has evolved over 

the past 10 years, reflecting significant advances in the predictability of key PK parameters from in 

vitro and in vivo data and in the availability of specialized software (e.g., GastroPlus, Simcyp, 

Berkeley-Madonna, MATLAB-simulink) [186-190]. Framing the right question and capturing key 

assumptions are essential to delivering meaningful results. For the purpose of this review, modeling 

and simulation strategies as they apply to the quantitative prediction of CYP3A-mediated oral DDIs 

are discussed. Lessons from these approaches can be applied to dietary substance-drug interactions to 

establish a framework for the quantitative prediction of such interactions (Table 1.6). 

 The utility and accuracy of in vitro CYP inhibition data in the prediction of in vivo DDIs has 

been examined in numerous works with varying degrees of success [191-206]. Most of the cited 

predictive models are related to hepatic CYP3A-mediated interactions since they are well-

characterized and >50% of marketed pharmaceutical agents are CYP3A substrates, allowing for 

validation. However, models have been modified to incorporate the contribution from the intestine, as 

studies demonstrated that inhibition of both hepatic and intestinal metabolism was needed for an 

improved DDI prediction [207-215]. PBPK modeling is used extensively, and such a data-driven 

method relies on extensive information on the victim and precipitant drugs – physicochemical 

properties, intestinal permeability, organ clearance processes, etc. The difficulty with dietary 

substances is the paucity of research on their oral bioavailability, metabolic mechanisms, human PK, 

and concentrations achieved at the site(s) of action. Despite the challenges, evaluation of a suspected 

dietary substance-drug interaction is possible, and one particularly relevant to this discussion is 

described [216]. 

Furanocoumarins in GFJ have been studied extensively over the past two decades as 

inhibitors of CYP3A4 (intestinal and hepatic, although the latter is less relevant). Bergamottin and 

6’,7’-dihydroxybergamottin (DHB) are typically the most abundant furanocoumarins present in GFJ 

and have been proposed as major intestinal CYP3A4 inhibitors contributing to GFJ-drug interactions 

[47, 48]. These compounds have been characterized to the extent that they can be considered ‘marker’ 
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compounds. Quantification of a given juice in terms of furanocoumarin content could be used to 

predict the likelihood and magnitude of an interaction with a CYP3A substrate and make between-

study comparisons. Modeling and simulation can be used to validate one or more marker 

furanocoumarins as predictors of an interaction. As discussed previously, given the possibility of 

using GFJ and/or individual constituents as a ‘drug-sparing, PK-boosting agent,’ a standardized 

approach to evaluate quantitatively GFJ-drug interactions is imperative for the proper clinical 

management of patients.  

A PBPK modeling approach was used to predict the impact of inhibiting intestinal and 

hepatic metabolism on human PK of CYP3A substrates [216]. One of the inhibitors of interest was 

DHB, which was given in the form of GFJ in two clinical studies [44, 217]. The objective was to 

predict the PK of simvastatin and midazolam in the presence of DHB in humans. A model was 

developed (software not specified) to account for absorption (gut), distribution, and hepatic clearance 

of the substrates and DHB. An important set of data to calculate parameters related to those processes 

is physicochemical properties of the drugs and DHB. Molecular structure, solubility, and permeability 

properties have been used to develop in silico models that allow the early estimation of several 

ADME properties. Commercial ADME software programs are reviewed elsewhere [218]. Inhibitory 

parameters of DHB (i.e., Ki and kinact) measured in human intestinal microsomes and unbound DHB 

concentration in human intestinal microsomes were incorporated into the model. Because no plasma 

concentration-time profile of DHB was available (or detectable), the concentration of DHB in the gut 

membrane was simulated using the PBPK model. For the simulations, the authors assumed a DHB 

amount of 43 µmol. Interestingly, DHB was not measured in either of the GFJs used in the clinical 

studies. Nevertheless, the resulting profile was used to predict the inhibitory effect of GFJ on 

midazolam and simvastatin PK.  

AUC and maximum plasma concentration (Cmax) were predicted successfully within a two-

fold error range either in the absence or presence of DHB. This PBPK study was the first to 

investigate the impact of an inhibitory food ingredient on drug PK. Additional studies with other 
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substrates would validate this approach. Once validated, the techniques can be applied to other food 

ingredients. Although the aforementioned study was specific to CYP3A, it is important to note that 

food and substances in food can inhibit both uptake and efflux transporters in the intestine; the final 

result on drug bioavailability will depend on the more important contributor to absorption. 

Furthermore, the interplay between CYPs and transporters in dietary substance-drug interactions is 

recognized [219]; thus, incorporation of more complex processes will require more detailed data. 

Literature examples for modeling/predicting intestinal transporter-mediated interactions are few [201, 

220]. 

In summary, whole body physiology is described by a series of linked mathematical 

equations with model parameters corresponding to measurable quantities, such as blood flow rates 

and tissue volumes. In vitro data relevant to drug absorption, distribution, metabolism, and excretion 

are scaled to in vivo scenarios. The new FDA guidance on DDI studies emphasizes the use of 

modeling and simulation to streamline the development process. Although such an approach is not 

required of those in the food/dietary supplement industries, modeling and simulation of new drug 

candidates and known dietary ingredients should be undertaken. This approach may rectify a 

considerable amount of work that may otherwise be inconsistent, contradictory, and irreproducible. 

6.   Conclusions 

Interactions between medications and dietary substances, as foods or supplements, remain a 

relatively understudied and misunderstood area of pharmacotherapy. The upward trend of 

polypharmacy and ever-increasing consumer perception, rather misconception, of “all-natural” (i.e., 

safe) remedies from dietary supplements and so-called ‘superfood’ sources has contributed to the 

potential for dangerous interactions. Although significant progress has been made in understanding 

mechanisms of intestinal inhibition by CYPs and efflux/uptake transport proteins, questions remain. 

Results from in vitro studies have not always translated to the clinic; these in vitro-in vivo 

discordances may be due to a lack of well-designed, proof-of-concept studies that control for as many 

confounding factors as possible. The complex nature of dietary substances and lack of adequate 
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characterization preclude between-study comparisons, as well as accurate predictions of drug 

interaction liability. 

Since no ‘standard’ system exists to predict the effect of dietary substances on drug 

disposition, researchers in the field can model their scientific approach after that used in drug 

development. Integration of data from in vitro, in vivo, and in silico studies can optimize study 

designs and clarify potential risks of inhibition of intestinal metabolism/transport by a given dietary 

substance on pharmacotherapeutic outcomes. Such an aggressive assessment requires a 

multidisciplinary collaboration of experts from several fields, including clinical pharmacologists, 

pharmacognosists/natural products chemists, and botanists [159, 221]. The ultimate goal is to develop 

practice guidelines to provide a consistent approach in managing drug-dietary substance interactions 

appropriately.    
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Figure 1.2.  Schematic representation of enterocytes. Like drugs, dietary substances can alter 

systemic “victim” drug exposure by inhibiting enteric transporter-mediated uptake and/or efflux, as 

well as phase I and II metabolism. BCRP: breast cancer resistance protein, CYP: cytochrome P450, 

MRP: multidrug resistance-associated protein, OATP: organic anion-transporting polypeptide, P-gp: 

P-glycoprotein, SULT: sulfotransferase, UGT: UDP-glucuronosyltransferase. 
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Table 1.3.  Summary of recent* controlled clinical studies involving CYP3A-mediated citrus juice-

drug interactions 

Citrus 

Juice 

Subjects (n) Administration Regimen of Drug and 

Juice Product (Manufacturer) 

Change in 

Mean 

AUC 

Reference 

 

Grapefruit 

 

Healthy 

volunteers 

(12) 

 

S-ketamine 0.2 mg/kg x 1 on Day 5   

  

Normal strength (Greippi Täysmehu; Valio 

Ltd., Helsinki, Finland)  

Pre-treament: 200 mL tid x 4 days 

Day 5: 150 mL with  S-ketamine,  

200 mL x 2 per pre-treatment schedule 

 

 

↑ 185%
†
  

(p < 0.001) 

 

 

51 

 Addison’s 

disease patients 

(17) 

Cortisone acetate
#
 6.3 to 25 mg bid or tid 

per patient’s prescribed regimen 

 

Normal strength (Meierienes Premium Rosa 

Grapefruktjuice; Tine SA, Oslo, Norway) 

200 mL tid with cortisone acetate x 2 days 

Day 3: 200 mL with cortisone acetate 

 

Cortisol:  

↑ 19%
‡
  

(p < 0.05) 

 

Cortisone:  

↑ 8.6%
‡
  

(NS) 

52 

 Healthy 

volunteers 

(20) 

Tolvaptan 60 mg x 1  

 

Single strength (NSP) 

240 mL x 1 with tolvaptan 
 

↑ 73%
§
 

(NC) 

53 

 Healthy 

volunteers 

(21) 

Colchicine 0.6 mg x 1 on Day 4 

 

“Undiluted” (NSP) 

Pre-treatment: 240 mL bid x 3 days 

Day 4: 240 mL with colchicine, 240 mL x 1 

per pre-treatment schedule 

 

↑ 2.7%
†
  

(NS) 

54 

 Hyperlipidemic 

patients (130; 

Arm A: 60, 

Arm B: 70) 

Atorvastatin 10 to 40 mg daily per patient’s 

prescribed regimen (Arm A) 

Atorvastatin 5 to 20 mg daily per patient’s 

prescribed regimen (Arm B) 

Normal strength (NSP, Florida) 

300 mL with atorvastatin x 90 days 

 

Arm A:  

↑ 19%
^
 

(p < 0.05) 

 

Arm B:  

↓ 26%
^ 

(p<0.001) 

 

55 

 Chronic 

myelogenous 

leukemia 

patients (4) 

Imatinib 400 mg daily 

 

Normal strength (Tropicana; Kirin, Tokyo, 

Japan) 

250 mL with imatinib x 7 days 

 

↑ 1.6%
¶ 

(p = 0.715) 

56 
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*published since August 2010 

†
geometric mean AUC 

#
Cortisone acetate administered orally is converted to cortisol by hepatic 11β-hydroxysteroid 

dehydrogenase type 1. Circulating cortisol and cortisone are metabolized mainly by 5α/β-reductases, 

but CYP3A4 also may contribute. 

‡
median AUC 

§
n = 15 

^
median serum concentration at Day 90 relative to baseline 

¶
median peak concentration 

tid, three times a day; bid, two times a day; NS, not statistically significant; NSP, not specified; NC, 

not calculated; SS, statistically significant as reflected by 90% confidence interval outside 80-125% 

range (i.e., no interaction range) 

 

 

 

 

 

 

 

 

 

 

 

Seville 

Orange 

 

Healthy 

volunteers 

(23) 

 

Colchicine 0.6 mg x 1 on Day 4 

 

“Undiluted” (NSP) 

Pre-treatment: 240 mL bid x 3 days 

Day 4: 240 mL with colchicine, 240 mL x 1 

per pre-treatment schedule 

 

↓ 21%  

(SS) 

 

54 
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Table 1.4.  Potential explanations for lack of concordance between in vitro and in vivo dietary 

substance-drug interaction studies 

  

 Lack of authentication and/or misidentification of source material 

 Inadequate description of raw materials 

 Commercially available: brand name, manufacturer, lot number, ingredients, preparation 

directions, manufacturing process, origins of growth and production 

 Freshly prepared: scientific name, quantity, plant part used, site of collection, preparation 

procedures, storage conditions 

 Adulteration of product (e.g., contamination with other substances) 

 Use of inconsistent product brand and lots 

 Insufficient analysis (e.g., physicochemical properties, biochemical activity, in vivo PK) of active 

constituents and/or metabolites in each batch being studied by a validated analytical method 

 Species differences in metabolism and transport pathways 

 Pharmacogenetic variations 

 Poorly designed in vitro experiments related to cell systems, assay conditions (e.g.,  

enzyme/transport protein probe substrate(s), negative and positive controls, proper concentrations 

of inhibitors and/or inducers), analytical methods 

 Suboptimal clinical trial design related to adequate number of subjects (to achieve statistical 

power), dietary restriction(s) prior to and/or during study participation, randomization, blinding, 

placebo, positive controls, selection of enzyme/transport protein probe substrate, inhibitor and/or 

inducer dose(s) and dosing schedule, sampling times 

 Scarce information on PK-PD relationship of dietary substance or specific active ingredients 

 Extrapolation of conclusions based on one preparation 

Adapted from [4] and [157] 
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Table 1.5.  Questions to consider when reviewing clinical dietary substance-drug 

interaction studies 

 

1. For a commercially available product, were the following provided – brand name, 

manufacturer, lot number, ingredients on label, preparation and storage directions, 

manufacturing process, origin(s) of growth and production? 

2. Were any relevant/suspected bioactive constituent(s) measured by a validated 

analytical method? 

3. Was the sample size justified by a power calculation? 

4. If assay sensitivity was not an issue, were the sampling times appropriate (i.e., full 

PK profile captured)? 

5. For single or multiple dosing of the drug or dietary substance, was the given dose a 

typically consumed/recommended/prescribed dose (i.e., reflective of ‘real world’ 

situations)? 

6. Were dietary restrictions imposed on the subjects during the study period? Was a 

diet history taken prior to and/or during the study period? 

7. Was pharmacogenetics considered as a source of variability?  
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Table 1.6.  General framework for quantitative prediction of dietary substance-drug interactions 

involving CYP inhibition as a major underlying mechanism 

 

PBPK 

Modeling 

Tools* 

 

 

acslX, MATLAB-simulink, ADAPT, Berkeley-Madonna, MCSIM, SAAM II, 

GastroPlus, PK-Sim, Simcyp 

1. Characterization of physicochemical properties
†
 of drug and 

phytochemical inhibitor  

             

 

2. Identification and quantification of clearance pathway(s) based 

on in vitro and/or in vivo studies  

- liver/intestine/kidney/etc.: CYP, non-CYP, transport 

 

3. Model-building based on information from Steps 1 and 2 

 

 

 

 

 

 

4. Simulation of plasma concentration-time profile(s) of drug  

 

5. Comparison of simulated plasma concentration-time profile(s) 

with observed in vivo PK data 

 

6. Model refinement based on comparison of estimated 

parameters with those obtained from in vivo PK 

             -   Conduct sensitivity analysis if necessary 

 

7. Simulation of plasma concentration-time profile(s) of 

phytochemical inhibitor 

 

8. Comparison of simulated plasma concentration-time profile(s) 

with observed in vivo PK data
‡
 

 

9. Model refinement based on comparison of estimated 

parameters with those obtained from in vivo PK 

 

10. Simulation of plasma concentration-time profile(s) of drug 

with phytochemical inhibitor 

pKa, log P, fu plasma, B/P ratio, 

Peff
#
, solubility

#
 

 

 

Km, Vmax, Clint, Ki 

fm 

kinact, kdeg, ksyn 

 

Physiological parameters: organ 

blood flows, tissue partition 

coefficients (Kp)
†
 

 

Scaling factors (microsomes, 

primary cells  organ) 
 

 

Cmax, AUC, Cl, Cl/F 

 
Visual predictive checks 

Prediction fold-error 

 

 

 

 

 

Cmax, AUC, Cl, Cl/F 

 

 

Visual predictive checks 

Prediction fold-error 

 

 

 

 

Drug: AUCi/AUC 

*Not all-inclusive list 

#
BCS/BCDDS classification 

†
Measured experimentally or predicted using software 

‡
Not always measurable 
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B/P, blood to plasma ratio; Clint, intrinsic clearance; fm, fraction metabolized; fu, fraction unbound in 

plasma; Peff, effective intestinal permeability; kdeg, rate of degradation, kinact, rate of inactivation; ksynth, 

rate of synthesis; Cl/F, apparent oral clearance; AUCi/AUC, ratio of drug AUC in presence of 

inhibitor to AUC without inhibitor 
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This chapter has been submitted to The Journal of Clinical Pharmacology and is presented in the style of the journal. 

CHAPTER 2 

A MODIFIED GRAPEFRUIT JUICE ELIMINATES FURANOCOUMARINS AND 

POLYMETHOXYFLAVONES AS CANDIDATE MEDIATORS OF THE FEXOFENADINE-

GRAPEFRUIT JUICE INTERACTION IN HEALTHY VOLUNTEERS 

OVERVIEW 

The grapefruit juice-fexofenadine interaction involves inhibition of intestinal organic anion 

transporting polypeptide (OATP)-mediated uptake. Only naringin has been shown clinically to inhibit 

intestinal OATP; other constituents have not been evaluated. Effects of a modified grapefruit juice 

devoid of furanocoumarins (~99%) and polymethoxyflavones (~90%) on fexofenadine disposition 

were compared to effects of the original juice. Extracts of both juices inhibited estrone 3-sulfate and 

fexofenadine uptake by similar extents in OATP-transfected cells (~50% and ~25%, respectively). 

Healthy volunteers (n=18) were administered fexofenadine (120 mg) with water, grapefruit juice, or 

modified grapefruit juice (240 ml) by randomized, three-way crossover design. Compared to water, 

both juices decreased fexofenadine geometric mean AUC and Cmax by ~25% (p≤0.008 and p≤0.011, 

respectively), with no effect on terminal half-life (p=0.11). Similar effects by both juices on 

fexofenadine pharmacokinetics indicate furanocoumarins and polymethoxyflavones are not major 

mediators of the grapefruit juice-fexofenadine interaction. 
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INTRODUCTION 

 The drug interaction liability of grapefruit juice (GFJ) and individual constituents has been 

studied extensively for more than 20 years [1, 2]. GFJ-drug interactions can manifest clinically as 

increased systemic drug exposure and subsequent adverse reactions due to mechanism-based 

inhibition of cytochrome P450 3A (CYP3A)-mediated metabolism in the intestine by GFJ [3, 4]. A 

class of constituents, furanocoumarins, was established as major mediators of this effect [4-6]. A 

different GFJ-type interaction was reported in 2002, when the non-sedating, minimally metabolized 

antihistamine fexofenadine was used as a probe substrate for examining the effect of GFJ on the 

efflux transporter, P-glycoprotein (P-gp), in the intestine [7]. Healthy volunteers administered 

fexofenadine with GFJ exhibited an unexpected mean 63% decrease in fexofenadine exposure. This 

seemingly paradoxical effect was observed consistently in four independent clinical studies reported 

over the subsequent five years [8-11]. The underlying mechanism was postulated to involve inhibition 

of fexofenadine active uptake in the intestine by organic anion transporting polypeptides (OATPs). 

Three clinical studies demonstrated that the size and flare of histamine-induced skin wheals were 

increased after administration of fexofenadine with GFJ or orange juice but not water [12]. Population 

pharmacokinetic analysis of the combined data from these studies and a bioequivalence study showed 

that the oral availability of fexofenadine was reduced by 36% [12]. Due to the potential for reduced 

therapeutic efficacy, the labeling of all fexofenadine products recommends taking the drug with water 

[12]. 

 Constituents in GFJ have been identified as OATP inhibitors in vitro [11, 13] but the 

flavanone, naringin, is the only single constituent tested clinically [11]. Relative to water, GFJ and an 

aqueous solution of naringin at the same concentration as that in GFJ (~1,200 μmol/l) decreased 

fexofenadine mean exposure by 42 and 22%, respectively. A suspension of a particulate fraction of 

GFJ containing three one-hundredths the concentration of naringin (34 μmol/l) had no effect on 

fexofenadine exposure. The investigators concluded that naringin was a major causative ingredient 

inhibiting enteric OATP. However, the ~50% difference in fexofenadine exposure between GFJ and 
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naringin suggests other constituents contributed to the interaction.  

 The furanocoumarins, bergamottin and 6’,7’-dihydroxybergamottin (DHB), and the 

polymethoxyflavones,  tangeretin and nobiletin, have been reported to inhibit human enteric OATP 

activity in vitro [13]. Whether these observations translate to the clinic is not known. Based on the 

cumulative data, these two classes of GFJ constituents were evaluated as candidate OATP inhibitors 

by comparing the effect of a GFJ devoid of furanocoumarins and polymethoxyflavones (i.e., modified 

GFJ, mGFJ) with that of the original GFJ on fexofenadine disposition in both OATP-transfected cells 

and healthy volunteers. 
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MATERIALS, SUBJECTS, AND METHODS 

Materials and chemicals 

 [
3
H]E1S ammonium salt (54.3 Ci/mmol) was purchased from Perkin Elmer (Waltham, MA). 

[
3
H]Fexofenadine (6 Ci/mmol), originally a gift from GlaxoSmithKline (Research Triangle Park, NC) 

and custom synthesized by Amersham Life Sciences (Piscataway, NJ), was provided by Dr. Dhiren 

Thakker (Eshelman School of Pharmacy, Chapel Hill, NC). E1S potassium salt, verapamil (VER), 

bromosulfophthalein (BSP), BG, DHB, naringin, hesperidin, tangeretin, and nobiletin were purchased 

from Sigma-Aldrich (St. Louis, MO). Fexofenadine was obtained from Tocris Bioscience 

(Minneapolis, MN). Methanol, ethyl acetate, acetonitrile, calcium chloride, D-glucose, magnesium 

sulfate heptahydrate, potassium chloride, potassium phosphate monobasic, sodium chloride, sodium 

hydroxide, Triton X-100, 2-(N-morpholino)ethanesulfonic acid hydrate (MES), and scintillation 

cocktail were purchased from Fisher Scientific (Pittsburgh, PA). CV-1 (simian) origin SV40 virus 

(COS-1) and human embryonic kidney 293T/17 (HEK 293T/17) cells were obtained from American 

Type Culture Collection (Manassas, VA). Cell culture plates were purchased from Corning Life 

Sciences (Tewksbury, MA). Phosphate-buffered saline; fetal bovine serum; trypsin-EDTA; penicillin; 

streptomycin; Opti-MEM; DMEM containing 4.5 g/L D-glucose, 2 mM L-glutamine, and 110 mg/L 

sodium pyruvate; and Lipofectamine2000 were purchased from Invitrogen (Carlsbad, CA). X-

tremeGENE 9 was purchased from Roche Applied Science (Indianapolis, IN). Human OATP1A2 

(variant 1; accession number NM_134431.1) and OATP2B1 expression plasmids were obtained from 

Origene Technologies (Rockville, MD). Plasmids for mock-transfected cells pEYFP-C1 and 

pcDNA3.1/Hygro(+) were purchased from Clontech (Mountain View, CA) and Invitrogen, 

respectively. Madin-Darby canine kidney type II (MDCKII) parental cells and stably transfected 

MDCKII-OATP2B1 cells were obtained by material transfer agreement from Dr. Markus Grube 

(Ernst-Moritz-Arndt University, Greifswald, Germany). 

Preparation of whole and modified grapefruit juice 

A commercial GFJ concentrate for manufacture was obtained from a Florida processing 
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facility and prepared as described previously [6, 14]. Briefly, the concentrate was diluted with 

distilled water to yield single strength juice or was processed with a series of food-grade solvents and 

absorption resins to remove furanocoumarins (99%) and polymethoxyflavones (97%) but retain 

flavonones (70%). The original GFJ and modified GFJ (mGFJ) were pasteurized at 91°C for 8 s, 

cold-filled in containers sanitized with a 95°C water rinse, divided into 300-mL aliquots, and frozen 

to -20°C in 480-mL glass bottles. Due to the >5-y storage period between the most previous [14] and 

current clinical study, the GFJ and mGFJ aliquots were re-pooled, re-pasteurized at 71.7°C for 6 s, 

poured into sterilized bottles, and stored at -20°C until use. Representative compounds from the 

flavonone, furanocoumarin, and polymethoxyflavone classes were re-measured by HPLC as 

described previously [6, 14]. 

Preparation of whole and modified grapefruit juice extracts 

Concentrated extracts of GFJ and mGFJ were prepared by adding 20 ml ethyl acetate to a 50-

ml conical polypropylene tube containing 25 ml juice. Contents were shaken vigorously for 30 s and 

centrifuged (2500 x g for 30 min at 25 °C). The resulting organic layer was transferred to a 250-ml 

round-bottom glass flask. The extraction procedure was repeated twice, with each resultant organic 

layer combined in the flask. Organic layers were evaporated in vacuo. The residue was transferred to 

a 2-ml vial using methanol as a rinse and evaporated to dryness under air. The dried material was 

resuspended with 500 µl methanol, yielding a 200-fold concentrated extract of the starting juice 

volume (100 ml). 

Transient transfection of OATP1A2 and OATP2B1 into COS-1 and HEK293T/17 cells 

Human OATP1A2 and OATP2B1 expression plasmids were verified by DNA sequencing 

prior to use. COS-1 cells were maintained, seeded, and transfected transiently as described previously 

[15]. HEK293T/17 cells were cultured and maintained in DMEM supplemented with 10% fetal 

bovine serum at 37°C and 5% CO2. Cells were seeded on Day 0 onto 100-mm dishes and transfected 

on Day 1 using the X-tremeGENE9 transfection reagent per manufacturer instructions. Transfection 

efficiency was assessed on Day 2 with fluorescence microscopy by estimating the percentage of cells 
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expressing EYFP (mock). On Day 3, transfected cells were trypsinized, seeded onto 24-well plates, 

and incubated for approximately 48 h before commencing the uptake assays. 

Uptake and inhibition assays 

On Day 4 or 5, cells were washed and preincubated for 30 min at 37°C in uptake buffer (pH 

6) [15]. Buffer was replaced, and cells were incubated with a dosing solution (200 μl) consisting of 

radiolabeled (plus unlabeled) E1S (total: 5 μmol/l) or fexofenadine (total: 5 μmol/l) in the presence of 

vehicle (1% methanol), VER (250 μmol/l) and/or BSP (250 μmol/l), or diluted juice extract (1:200, 

2:200). After 3 (E1S) or 30 (fexofenadine) min, cells were washed three times with ice-cold 

phosphate-buffered saline and lysed with either 0.1 N NaOH (COS-1 cells) or 1% Triton X-100 in 

phosphate-buffered saline (HEK293T/17 cells). Liquid scintillation cocktail (5 ml) was added to 200-

µl aliquots of the cell lysates, and radioactivity was counted. Protein concentrations were determined 

with a BCA assay kit (Thermo Fisher Scientific, Waltham, MA). Uptake was linear over the selected 

times for each substrate (data not shown). 

Clinical study protocol 

The study protocol was reviewed and approved by the University of North Carolina 

Biomedical Institutional Review Board and Clinical and Translational Research Center (CTRC) 

Committee. All subjects provided written informed consent prior to participation. Healthy volunteers 

(9 women, 9 men) were enrolled. The median age (range) of the women and men was 30 (23-54) and 

37 (23-60) y, respectively. Participants were self-identified as Caucasian (7 women, 5 men), African-

American (2 women, 2 men), Asian (1 man), or Hispanic (1 man). Concomitant medications included 

oral/vaginal ring contraceptive therapy (2 Caucasian women), hydrochlorothiazide (1 Caucasian 

woman), low-dose aspirin (1 African-American man), multivitamin, calcium, folate, and ω-3 fatty 

acid supplements (3 women, 3 men). Prior to enrollment, each volunteer underwent a medical history, 

physical examination, and laboratory tests (i.e., liver function tests, basic metabolic panel, complete 

blood count). All women underwent a serum pregnancy test. Subjects were instructed to abstain from 

all fruit juices for ≥7 d prior to and during the study and to abstain from alcohol and caffeine-
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containing beverages the evening before each admission. Each subject was assigned randomly to 1 of 

6 treatment sequences: ABC, CAB, BCA, CBA, BAC, or ACB (A = water, B = GFJ, C = mGFJ). 

Eligible volunteers were admitted to the CTRC the evening prior to each of three study 

phases, which were separated by ≥10 d. All women underwent a repeat serum pregnancy test on the 

evening of each admission. Following an overnight fast beginning at midnight and placement of an 

indwelling venous catheter in an antecubital vein, each subject ingested two 60 mg fexofenadine 

tablets (Prasco Laboratories, Mason, OH) with 240 ml water, GFJ, or mGFJ. Blood (7 ml) was 

collected by venipuncture into EDTA-containing tubes (Becton-Dickinson, Franklin Lakes, NJ) 

before and 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, 10, 12 h after fexofenadine administration. Subjects continued 

to fast until after the 4-h blood collection, after which meals and snacks, devoid of fruit juices and 

caffeinated beverages, were provided. Vital signs were recorded at baseline and monitored 

periodically. Subjects were discharged after the 12-h blood collection and returned for outpatient 

blood draws at 24, 36, 48, and 72 h post-fexofenadine administration. Plasma was separated from 

blood cells by centrifugation within 1 h of collection, transferred into cryovials, and stored at -80°C 

pending analysis for fexofenadine. 

Analysis of plasma for fexofenadine 

Plasma collections were processed by transferring 50 µl to a 96-well plate insert and 

precipitating proteins with 150 µl of methanol containing fexofenadine-d6 (1 nmol/l) as internal 

standard (Toronto Research Chemicals Inc., Toronto, ON, Canada). The mixtures were vortex-mixed 

for 5 min and centrifuged (3000 x g for 10 min at 4°C). Calibration solutions (0.0012-7.2 µmol/l) and 

quality controls (1, 0.5, 0.1, 0.05, 0.005 µmol/l) were prepared similarly using fexofenadine and 

multiple-donor pooled plasma (Biological Specialty Corporation, Colmar, PA). Plasma was analyzed 

for fexofenadine by HPLC-tandem mass spectrometry using an API 4000 triple quadrupole with 

TurboIonSpray interface (Applied Biosystems/MDS Sciex, Concord, ON, Canada) as described [16]. 

Briefly, 5 µl were injected, and fexofenadine and fexofenadine-d6 were eluted from an Aquasil C18 

column (2.1 x 50 mm, particle diameter = 5 µm; Thermo Fisher Scientific, Waltham, MA) using a 
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mobile phase gradient (A: 0.1% formic acid in water; B: 0.1% formic acid in methanol) at a flow rate 

of 0.75 ml/min. The mass spectrometer was operated in positive-ion mode. Multiple reaction 

monitoring was used to detect fexofenadine (502 → 466 m/z) and fexofenadine-d6 (508 → 472 m/z). 

The lower limit of quantification was 0.0012 μmol/l; inter- and intra-day coefficients of variation 

were 12 and <15%, respectively, for the quality controls. 

Data analysis 

OATP1A2- and OATP2B1-mediated uptake, in the absence or presence of inhibitor, was 

normalized for protein content. Net uptake was determined by subtracting the uptake in mock-

transfected cells from that in OATP1A2- and OATP2B1-expressing cells incubated under parallel 

conditions. 

Fexofenadine pharmacokinetics were evaluated by non-compartmental methods using 

WinNonlin (v 5.2, Pharsight Corp., Mountain View, CA). The terminal elimination rate constant (λz) 

was estimated by log-linear regression of at least the last three data points in the terminal phase of the 

plasma concentration-time profile. The terminal half-life (t½) was calculated as 0.693/λz. The 

maximum concentration (Cmax), time to reach Cmax (tmax), and the last measurable concentration (Clast) 

were determined visually from the concentration-time profile. AUC0-last was calculated using the 

trapezoidal rule with linear up/log down interpolation. AUC from zero to infinite time (AUC0-∞) was 

calculated as the sum of AUClast and Clast/λz. Apparent oral clearance (Cl/F) was calculated as 

Dose/AUC0-∞. Below limit of quantification concentrations were excluded from data analysis.  

Statistical analysis 

Statistical analysis employed SigmaPlot (v 11, Systat Software, Inc., San Jose, CA). In vitro 

data are presented as means  SD of triplicate incubations. Two-way analysis of variance (ANOVA) 

followed by Tukey’s test was used to test for differences between vehicle and inhibitor treatments. 

Student’s unpaired t-test was used to test for differences between mock- and OATP-transfected cells. 

A p-value < 0.05 was considered statistically significant. 

Pharmacokinetic outcomes (t½, Cmax, AUC0-∞, Cl/F) are reported as geometric means with 
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coefficients of variation (CV%). Medians and ranges are reported for tmax. The Wilcoxon signed-rank 

test was used to compare tmax.  Pharmacokinetic outcomes, expressed as the ratio of GFJ to water or 

GFJ to mGFJ, are reported as geometric means with 90% confidence intervals. Comparisons using 

one-tailed paired Student’s t-tests with Bonferroni correction (i.e., 0.05/2) were used to detect 

differences between water and GFJ and between GFJ and mGFJ treatments. A p-value ≤ 0.025 was 

considered statistically significant. Based on the method proposed by Lauzon and Caffo [17], for the 

primary pharmacokinetic measure of interest, AUC, a minimum of 18 subjects who completed all 

treatment phases was deemed adequate for this study, assuming a within-subject CV of 23% for 

fexofenadine determined from a previous study [11]. The randomization scheme was generated using 

SAS (v 9.2, SAS Institute Inc., Cary, NC). 

 

 

 

 

 

 

 

 

 

 

 

 



118 
 

RESULTS 

Representative furanocoumarin, polymethoxyflavone, and flavanone concentrations in 

grapefruit juice and modified grapefruit juice 

Due to the >5-y lapse since last use [6, 14], GFJ and mGFJ were re-analyzed for 

representative compounds from each of three phytochemical classes shown to inhibit intestinal OATP 

activity in vitro (Table 2.1). Relative to GFJ, the representative furanocoumarins DHB and 

bergamottin in mGFJ were reduced by >99% and 95%, respectively. The representative 

polymethoxyflavones nobiletin and tangeretin were reduced by 95 and 73%, respectively. The 

representative flavanones naringin, narirutin, and hesperidin were reduced by ~30, 32, and 44%, 

respectively. Mean (±SD) aggregate representative furanocoumarins, polymethoxyflavones, and 

flavanones measured in GFJ (48 ± 0.3, 0.48 ± 0.03, and 1,064 ± 10.4 μmol/l, respectively) and in 

mGFJ (0.6 ± 0.09, 0.05 ± 0.02, and 727 ± 14 μmol/l, respectively) were consistent with those 

measured initially (GFJ: 59 ± 2.1, 0.71 ± 0.03, and 1,012 ± 24.1 μmol/l; mGFJ: 0.3 ± 0.006, 0.03 ± 

0.007, and 787 ± 68.6 μmol/l) [6, 14]. The net loss of ≤3% indicated negligible degradation over the 

>5-y storage period. 

Effects of grapefruit juice and modified grapefruit juice extracts on estrone 3-sulfate and 

fexofenadine uptake in OATP-transfected cells 

Ethyl acetate extracts of GFJ and mGFJ were evaluated as inhibitors of OATP1A2- and 

OATP2B1-mediated uptake in COS-1 and HEK 293T/17 cells using the probe substrate estrone 3-

sulfate (E1S) to assess functional activity of the juices prior to clinical study conduct. Both juice 

extracts inhibited E1S uptake in COS-1 cells by at least 50% relative to vehicle (Figure 2.1A and 

2.1B). Single-strength GFJ and mGFJ extracts inhibited OATP1A2-mediated uptake by 70 and 80%, 

respectively; double-strength extracts inhibited uptake by 84 and 50%, respectively (Figure 2.1A). 

Single-strength GFJ and mGFJ extracts inhibited OATP2B1-mediated uptake by 78 and 61%, 

respectively; double-strength extracts inhibited uptake by 52 and 74%, respectively (Figure 2.1B). 

Both juice extracts inhibited E1S uptake in HEK293T/17 cells by at least 45% relative to vehicle 
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(Figure 2.1C and 2.1D). Single-strength GFJ and mGFJ extracts inhibited OATP1A2-mediated 

uptake by 90 and 62%, respectively; double-strength extracts inhibited uptake by 80 and 74%, 

respectively (Figure 2.1C). Single-strength GFJ and mGFJ extracts inhibited OATP2B1-mediated 

uptake by 74 and 59%, respectively; double-strength extracts inhibited uptake by 60 and 45%, 

respectively (Figure 2.1D). Bromosulfophthalein (BSP), a non-specific OATP inhibitor, inhibited 

uptake by >80% in all cell systems.   

COS-1 cells transiently overexpressing OATP1A2 were employed initially to gain 

mechanistic insight into inhibition of fexofenadine uptake by GFJ and mGFJ. Due to high uptake 

activity in mock (EYFP)-transfected cells with the juice extracts and BSP (Figure 2.2A), OATP1A2 

was expressed transiently in HEK293T/17 cells, in which uptake in mock-transfected cells was more 

consistent (Figure 2.2B). Relative to vehicle-treated OATP1A2-transfected cells, both single- and 

double-strength GFJ extract inhibited fexofenadine uptake by ~27%. Both single- and double-strength 

mGFJ extract inhibited uptake by ~40%. Because BSP did not inhibit fexofenadine uptake, verapamil 

(VER) was used as an alternate OATP1A2 inhibitor, inhibiting by ~50%. 

OATP2B1-mediated uptake of fexofenadine was evaluated in transiently transfected COS-1 

and stably transfected MDCKII cells (Figure 2.3). Due to the possibility of cell line-dependent 

expression/uptake, OATP2B1 was expressed in HEK293T/17 cells. Fexofenadine uptake was not 

observed with any cell line. 

Effects of grapefruit juice and modified grapefruit juice on fexofenadine pharmacokinetics in 

healthy volunteers 

The effects of GFJ and mGFJ on fexofenadine pharmacokinetics were compared in 18 

healthy participants. None of the participants withdrew from the study. Each treatment was well 

tolerated by all participants. No side effects were reported.  

The geometric mean concentration-time profiles of fexofenadine in the presence of GFJ and 

mGFJ were nearly superimposable (Figure 2.4). The percentage of fexofenadine AUC extrapolated to 

infinite time (AUC0-∞) was <10% in all subjects and in all phases. Relative to water, GFJ and mGFJ 
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decreased geometric mean AUC0-∞ by ~25% (Table 2.2). The geometric mean AUC0-∞s were similar 

between GFJ and mGFJ (Figure 2.5). Both juices increased geometric mean Cl/F by ~33% (Table 

2.2). Relative to water, both juices decreased geometric mean Cmax by ~23% (Table 2.2). The 

geometric mean terminal t½ and median tmax did not differ between treatments (Table 2.2).  
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DISCUSSION 

Since discovery of the fruit juice-OATP interaction, candidate inhibitors of OATP isoforms 

such as OATP1A2 and OATP2B1 have been proposed and evaluated for effects on both hepatic and 

intestinal drug uptake [20-22]. The GFJ and mGFJ tested in the current work were compared 

previously in two clinical studies involving the CYP3A substrate felodipine [6] and the dual 

CYP3A/P-gp substrate cyclosporine [14]. The felodipine study established furanocoumarins, in 

aggregate, as major inhibitors of enteric CYP3A. The cyclosporine study further substantiated 

furanocoumarins as major inhibitors of enteric CYP3A, and likely P-gp; in addition, 

polymethoxyflavones were ruled out as inhibitors of enteric P-gp. Based on these observations, this 

unique GFJ-mGFJ combination permitted both in vitro and clinical evaluation of the collective impact 

of furanocoumarins and polymethoxyflavones on the absorption of a growing class of drugs whose 

enteric uptake depends on OATPs. Because no “clean” OATP substrates suitable for human use have 

been identified, coupled with prior knowledge of the GFJ-fexofenadine interaction [7-11], 

fexofenadine was selected as a third prototypic probe substrate to test with this GFJ and mGFJ.    

Before clinical testing, mGFJ was characterized further by comparing to the original GFJ as 

an enteric OATP inhibitor in OATP1A2- and OATP2B1-overexpressing cell systems using the probe 

substrate E1S. Compared to vehicle, both juice extracts inhibited both OATP isoforms by >50% in 

COS-1 and HEK293T/17 cells. Inhibition of E1S uptake by both extracts also was observed in stably 

transfected MDCKII-OATP2B1 cells (data not shown) and is consistent with previous observations 

with stably transfected HEK293 cells and dilutions of whole GFJ [3]. The similar extents of OATP 

inhibition by the two extracts in HEK293T/17 cells predicted that systemic fexofenadine exposure in 

the clinical study would be comparable between juice treatments.  

As anticipated, relative to water, GFJ decreased the geometric mean systemic exposure 

(AUC, Cmax) to fexofenadine. This observation, coupled with the lack of an effect on geometric mean 

terminal half-life, was consistent with inhibition of uptake in the intestine by GFJ. The decrease in 

AUC (~25%) was near the low end compared to previous GFJ-fexofenadine studies (31 to 67%) [7-
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11], which could be attributed to the highly variable concentrations of bioactive ingredients among 

commercial brands and batches of GFJ [23, 24]. The modest decrease in AUC reflects considerable 

interindividual variability in magnitude of effect, which ranged from -68 to +57% among the 18 

subjects. This variability could be attributed in part to polymorphisms in the genes that encode for 

OATP (SLCO), as well as P-gp (MDR1); however, genotyping for relevant polymorphisms was 

beyond the scope of this study.  

As predicted by the enteric OATP-transfected cells using E1S as the probe substrate, mGFJ 

decreased geometric mean systemic fexofenadine exposure to a similar extent as GFJ. The nearly 

identical effects by both juices on fexofenadine pharmacokinetics indicated furanocoumarins and 

polymethoxyflavones are not major mediators of the GFJ-fexofenadine interaction. Elimination of 

furanocoumarins as major in vivo inhibitors of enteric OATPs is consistent with the single clinical 

study involving 12 healthy volunteers administered fexofenadine (120 mg) and an aqueous 

suspension (300 ml) of a particulate fraction of GFJ, which contained mostly furanocoumarins 

(measurements not provided) and a relatively trivial concentration (34 µmol/l) of the flavanone 

naringin [11]. Fexofenadine AUC in the presence of the particulate fraction was similar to that in the 

presence of water. Naringin also was tested in the same clinical study [11] at the same concentration 

as that in whole GFJ (~1,200 μmol/l); the single constituent explained only half of the reduction in 

fexofenadine exposure caused by GFJ, indicating other constituents, possibly other flavanones (e.g., 

narirutin, hesperidin), contribute to the interaction. 

 As aforementioned, fexofenadine is not a clean OATP substrate. Numerous investigators 

have shown that fexofenadine also is a P-gp substrate [25-30]. Accordingly, the diluted extracts of the 

clinically administered juices were tested as inhibitors of fexofenadine uptake in various OATP1A2- 

or OATP2B-transfected kidney-derived cell lines. Initial optimization studies with COS-1 cells 

demonstrated that fexofenadine was a weak substrate for OATP1A2. Low fexofenadine uptake by 

OATP1A2, coupled with high background activity, rendered difficulty in ascertaining the effects of 

the juice extracts. However, unlike COS-1 cells, the juice extracts did not significantly alter 
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fexofenadine uptake in mock-transfected HEK293T/17 cells. Due to higher fexofenadine uptake 

activity in OATP1A2-transfected HEK293T/17 cells, comparable inhibition by both juice extracts 

was demonstrated. In addition to P-gp and OATP, apical and basolateral efflux mediated by 

multidrug resistant protein (MRP) 2 and MRP3, respectively, have been shown to contribute to 

fexofenadine transport in vitro [31]. Studies with transiently transfected COS-1 and HEK293T/17 

cells, as well as stably transfected MDCKII cells, demonstrated that fexofenadine is not a substrate 

for OATP2B1. Conflicting in vitro data have been reported regarding OATP2B1-mediated transport 

of fexofenadine. Fexofenadine uptake in transiently transfected HeLa and stably transfected HEK293 

cells either was not evident or was weak [10, 32, 33]. However, an independently generated 

MDCKII-OATP2B1 cell line showed an ~3-fold difference in fexofenadine uptake compared to 

mock-transfected cells [31]. Fexofenadine has been shown to be a substrate of OATP2B1 in a 

Xenopus laevis oocyte system [34]. The discrepancy between in vitro experiments with fexofenadine 

may be attributed to multiple binding sites on OATP2B1 with different affinities, but to date, 

substrate-dependent binding has been demonstrated only with transfected oocytes [35]. 

In summary, current in vitro and clinical observations collectively indicate that 

furanocoumarins and polymethoxyflavones are not major mediators of the GFJ-fexofenadine 

interaction. Flavanones are likely candidate inhibitors of enteric OATPs in vivo. A bioactivity-guided 

fractionation approach similar to that used to identify intestinal CYP3A inhibitors in cranberry [36] 

and hepatic OATP inhibitors in Rollinia emarginata [37] can be used to identify specific causative 

ingredients. Identification of such OATP inhibitors would permit evaluation and prediction of the 

interaction liability of GFJ and other foods containing the same compounds with other existing and 

potential OATP substrates, including some fluoroquinolones, beta-blockers, and statins [38]. Finally, 

confirmation of causative mediators could impact food manufacturing practices, leading to advances 

designed to minimize interference with drugs, including removal of compounds via chemical 

processing or plant gene engineering [39-40]. 
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Table 2.1.  Concentrations of representative furanocoumarins, polymethoxyflavones, and flavanones 

in grapefruit juice (GFJ) and modified GFJ (mGFJ) 

 
Mean Concentration (µmol/l) 

(SD) 

Constituent GFJ mGFJ 

Furanocoumarins 
  

   DHB 38.8 

(0.27) 

0.13 

(0.01) 

   Bergamottin 9.07 

(0.04) 

0.50 

(0.08) 

Polymethoxyflavones   

   Nobiletin 0.37 

(0.02) 

0.02 

(0.005) 

   Tangeretin  0.11 

(0.01) 

0.03 

(0.01) 

Flavanones   

   Naringin 770 

(5.24) 

531 

(7.86) 

   Narirutin 271 

(3.98) 

183 

(5.43) 

   Hesperidin 24.6 

(1.16) 

14.7 

(0.57) 

DHB, 6’,7’-dihydroxybergamottin 
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Table 2.2.  Pharmacokinetics of fexofenadine (120 mg) in 18 healthy volunteers after administration 

with 240 ml of water, grapefruit juice (GFJ), or modified GFJ (mGFJ) 

Outcome 
Geometric Mean 

(CV%) 

Geometric Mean Ratio 

(90% CI) 

 Water GFJ
 

mGFJ GFJ/Water GFJ/mGFJ 

 
AUC0-∞ (µmol/l ·h) 4.22 

(40) 

3.22
a
 

(33.5) 

3.15 

(28.6) 

0.76 

(0.3-1.4) 

0.98 

(0.4-1.5) 

 

Cl/F (l/h) 52.8 

(40) 

69.3
b
 

(33.5) 

70.9 

(29.6) 

1.31 

(0.7-1.92) 

1.02 

(0.45-1.6) 

 

Cmax (µmol/l) 0.57 

(52.2) 

0.45
c
 

(43.7) 

0.44 

(32.4) 

0.78 

(0.17-1.39) 

0.97 

(0.35-1.6) 

 

t½ (h) 11.9 

(36.5) 

10.3
d
 

(37.6) 

10.3 

(29.7) 

0.86 

(0.28-1.45) 

1.01 

(0.43-1.58) 

 

tmax (h)  

[median (range)] 

2.69 

(1-6) 

3.23
e
 

(1.5-5) 

3.54 

(2-6) 

 

 
 

 

AUC0-∞, area the curve from time zero to infinity; Cl/F, apparent oral clearance;  

Cmax, maximum concentration; t½, terminal half-life; tmax, time to Cmax  

Statistical comparisons for all outcomes except tmax were made between water and GFJ  

using a one-tailed paired Student’s t-test with Bonferroni correction. 

a
 p = 0.008 

b
 p = 0.023 

c
 p = 0.011 

d
 p = 0.11 

e
 p = 0.135 (Wilcoxon signed-rank test) 
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FIGURE LEGENDS 

Figure 2.1.  Inhibitory effects of grapefruit juice extracts (GFJ, mGFJ) on estrone 3-sulfate (E1S) 

uptake in COS-1 (A, B) and HEK293T/17 (C, D) cells overexpressing human OATP1A2 (A, C) or 

OATP2B1 (B, D). Cells were transiently transfected with human OATP1A2 (black bars), OATP2B1 

(black bars), or mock (EYFP) plasmids (gray bars). Cells were incubated for 3 min in pH 6.0 buffer at 

37ºC with 0.05 μmol/l [
3
H]E1S in the presence of  vehicle (1% methanol) or GFJ and mGFJ extracts 

at single-strength (1X) or double-strength (2X). Bromosulfophthalein (BSP) (250 μmol/l) was used as 

a positive control inhibitor. E1S mean net uptake by OATP1A2 in the presence of vehicle was 17.5 ± 

3.2 and 17.3 ± 1.13 pmol/mg protein/3 min, for COS-1 and HEK293T/17 cells, respectively. E1S 

mean net uptake by OATP2B1 in the presence of vehicle was 42.7 ± 3.0 and 17.7 ± 3.5 pmol/mg 

protein/3 min for COS-1 and HEK293T/17 cells, respectively. Bars and error bars denote means and 

SDs, respectively, of triplicate incubations. *p < 0.05 versus vehicle (Two-way ANOVA followed by 

Tukey’s test), 
#
p < 0.05 versus GFJ 1X (Two-way ANOVA followed by Tukey’s test), 

†
p < 0.05 

versus GFJ 2X (Two-way ANOVA followed by Tukey’s test), 
‡
p < 0.05 versus mGFJ 1X (Two-way 

ANOVA followed by Tukey’s test). 

Figure 2.2.  Inhibition of fexofenadine uptake by grapefruit juice extracts (GFJ, mGFJ) in 

OATP1A2-transfected cells. COS-1 (A) and HEK293T/17 (B) cells were transiently transfected with 

human OATP1A2 (black bars) or mock (EYFP) plasmids (gray bars). Cells were incubated for 30 

min in pH 6.0 buffer at 37ºC with 0.5 μmol/l [
3
H]fexofenadine in the presence of vehicle (1% 

methanol) or GFJ and mGFJ extracts at single-strength (1X) or double-strength (2X).  

Bromosulfophthalein (BSP) and verapamil (VER) (250 μmol/l) were used as positive control 

inhibitors. Fexofenadine mean net uptake by OATP1A2 in the absence of juice extracts was 12.8 ± 

1.1 and 39.4 ± 4.8 pmol/mg protein/30 min, for COS-1 and HEK293T/17 cells, respectively. Bars and 

error bars denote means and SDs, respectively, of triplicate incubations. *p < 0.05 versus mock-

transfected cells (Student’s unpaired t-test). 
#
p < 0.05 versus vehicle-treated OATP1A2-transfected 

cells (Two-way ANOVA followed by Tukey’s test). 
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Figure 2.3.  Fexofenadine uptake in OATP2B1-transfected cells. Transiently transfected COS-1 cells 

and HEK293T/17 cells and stably transfected MDCKII cells were incubated for 30 min in pH 6.0 

buffer at 37ºC with 0.5 μmol/l [
3
H]fexofenadine. Estrone 3-sulfate (E1S) was used as a positive 

control; fold-difference between control and transfected cells was 4, 5, and 20 for COS-1, MDCKII, 

and HEK293T/17 cells, respectively. Black bars represent OATP-mediated uptake. Gray bars 

represent mock-transfected (COS-1, HEK293T/17) or parental cell uptake (MDCKII). Bars and error 

bars denote means and SDs, respectively, of triplicate incubations. 

Figure 2.4.  Geometric mean plasma fexofenadine concentration-time profile following 

coadministration with 240 ml of water, grapefuit juice (GFJ), or modified GFJ (mGFJ) for 18 healthy 

volunteers. Symbols and error bars denote geometric means and upper limits of the 90% confidence 

interval, respectively. Inset depicts the 0 to 72 h profile. The 2-h time point of the water phase 

represents the geometric mean of 17 subjects. Open circles, closed squares, and closed triangles 

denote water, GFJ, and mGFJ, respectively. 

Figure 2.5.  Fexofenadine AUC changes in 18 healthy volunteers administered fexofenadine with 240 

ml water, GFJ, and mGFJ. Open symbols and solid lines denote individual values. Closed symbols 

and dashed lines denote geometric means. 
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Figure 2.1                  
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Figure 2.2 
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Figure 2.3 
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Figure 2.4 
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Figure 2.5 

       

 

 

 

 

 

                                

                                         

                                        

 

 

 

 

 

  

 

0

2

4

6

8

10

Water GFJ mGFJ

Treatment 

A
U

C
0
-∞

 (
µ

m
o

l*
h

/L
) 



133 
 

REFERENCES 

[1]     Mertens-Talcott SU, Zadezensky I, De Castro WV, Derendorf H, Butterweck V. Grapefruit- 

drug interactions: can interactions with drugs be avoided? J Clin Pharmacol 

2006;46(12):1390-1416. 

 

[2]     Hanley MJ, Cancalon P, Widmer WW, Greenblatt DJ. The effect of grapefruit juice on drug  

disposition. Expert Opin Drug Metab Toxicol 2011;7(3):267-286. 

 

[3]     Lown KS, Bailey DG, Fontana RJ, et al. Grapefruit juice increases felodipine oral availability  

in humans by decreasing intestinal CYP3A protein expression. J Clin Invest 

1997;99(10):2545-2553. 

 

[4]     Schmiedlin-Ren P, Edwards DJ, Fitzsimmons ME, et al. Mechanisms of enhanced oral  

availability of CYP3A4 substrates by grapefruit constituents. Decreased enterocyte CYP3A4 

concentration and mechanism-based inactivation by furanocoumarins. Drug Metab Dispos 

1997;25(11):1228-1233. 

 

[5]     Guo LQ, Fukuda K, Ohta T, Yamazoe Y. Role of furanocoumarin derivatives on grapefruit  

juice mediated inhibition of human CYP3A activity. Drug Metab Dispos 2000;28(7):766-

771. 

 

[6]     Paine MF, Widmer WW, Hart HL, et al. A furanocoumarin-free grapefruit juice establishes  

furanocoumarins as the mediators of the grapefruit juice-felodipine interaction. Am J Clin 

Nutr 2006;83(5):1097-1105. 

 

[7]     Dresser GK, Bailey DG, Leake BF, et al. Fruit juices inhibit organic anion transporting  

polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin 

Pharmacol Ther 2002;71(1):11-20. 

 

[8]     Banfield C, Gupta S, Marino M, Lim J, Affrime M. Grapefruit juice reduces the oral  

bioavailability of fexofenadine but not desloratadine. Clin Pharmacokinet 2002;41(4):311-

318. 

 

[9]     Dresser GK, Kim RB, Bailey DG. Effect of grapefruit juice volume on the reduction of  

fexofenadine bioavailability: possible role of organic anion transporting polypeptides. Clin 

Pharmacol Ther 2005;77(3):170-177. 

 

[10]   Glaeser H, Bailey DG, Dresser GK, et al. Intestinal drug transporter expression and the impact  

of grapefruit juice in humans. Clin Pharmacol Ther 2007;81(3):362-370. 

 

[11]   Bailey DG, Dresser GK, Leake BF, Kim RB. Naringin is a major and selective clinical  

inhibitor of organic anion-transporting polypeptide 1A2 (OATP1A2) in grapefruit juice. Clin 

Pharmacol Ther 2007;81(4):495-502. 

 

[12]   Allegra [package insert]. Bridgewater, NJ: sanofi-aventis; 2008 Dec. 

 



134 
 

[13]   Satoh H, Yamashita F, Tsujimoto M, et al. Citrus juices inhibit the function of human organic  

anion-transporting polypeptide OATP-B. Drug Metab Dispos 2005;33:518-523. 

 

[14]   Paine MF, Widmer WW, Pusek SN, et al. Further characterization of a furanocoumarin-free  

grapefruit juice on drug disposition: studies with cyclosporine. Am J Clin Nutr 

2008;87(4):863-871. 

 

[15]   Lan T, Rao A, Haywood J, et al. Interaction of macrolide antibiotics with intestinally expressed  

human and rat organic anion-transporting polypeptides. Drug Metab Dispos 

2009;37(12):2375-2382. 

 

[16]   Zhao R, Kalvass JC, Yanni SB, Bridges AS, Pollack GM. Fexofenadine brain exposure and the  

influence of blood-brain barrier P-glycoprotein after fexofenadine and terfenadine 

administration. Drug Metab Dispos 2009;37(3):529-535. 

 

[17]   Lauzon C, Caffo B. Easy multiplicity control in equivalence testing using two one-sided tests.  

Am Stat 2009;63(2):147-154. 

 

[18]   Greenblatt DJ. Analysis of drug interactions involving fruit beverages and organic anion- 

transporting polypeptides. J Clin Pharmacol 2009;49(12):1403-1407. 

 

[19]   Bailey DG. Fruit juice inhibition of uptake transport: a new type of food-drug interaction. Br J  

Clin Pharmacol 2010;70(5):645-655. 

 

[20]   Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol  

2009;158(3):693-705. 

 

[21]   Hagenbuch B, Gui C. Xenobiotic transporters of the human organic anion transporting  

polypeptides (OATP) family. Xenobiotica 2008;38(7-8):778-801. 

 

[22]   König J. Uptake transporters of the human OATP family: molecular characteristics, substrates,  

role in drug-drug interactions, and functional consequences of polymorphisms. Handb Exp 

Pharmacol 2011;(201):1-28. 

 

[23]   Ho PC, Saville DJ, Coville PF, Wanwimolruk S. Content of CYP3A4 inhibitors, naringin,  

naringenin and bergapten in grapefruit and grapefruit juice products. Pharm Acta Helv 

2000;74(4):379-385. 

 

[24]   De Castro WV, Mertens-Talcott S, Rubner A, Butterweck V, Derendorf H. Variation of  

  flavonoids and furanocoumarins in grapefruit juices: a potential source of variability in  

  grapefruit juice-drug interaction studies. J Agric Food Chem 2006;54(1):249-255. 

 

[25]   Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB. OATP and P-glycoprotein  

transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos 

1999;27(8):866-871. 



135 
 

[26]   Dagenais C, Ducharme J, Pollack GM. Uptake and efflux of the peptidic delta-opioid receptor  

agonist. Neurosci Lett 2001;301(3):155-158. 

 

[27]   Perloff MD, von Moltke LL, Greenblatt DJ. Fexofenadine transport in Caco-2 cells: inhibition  

with verapamil and ritonavir. J Clin Pharmacol 2002;42(11):1269-1274. 

 

[28]   Tannergren C, Petri N, Knutson L, Hedeland M, Bondesson U, Lennernäs H. Multiple transport  

mechanisms involved in the intestinal absorption and first-pass extraction of fexofenadine. 

Clin Pharmacol Ther 2003;74(5):423-436. 

 

[29]   Petri N, Tannergren C, Rungstad D, Lennernäs H. Transport characteristics of fexofenadine in  

the Caco-2 cell model. Pharm Res 2004;21(8):1398-1404. 

 

[30]   Tahara H, Kusuhara H, Fuse E, Sugiyama Y. P-glycoprotein plays a major role in the efflux of  

fexofenadine in the small intestine and blood-brain barrier, but only a limited role in its 

biliary excretion. Drug Metab Dispos 2005;33(7):963-968.  

 

[31]   Ming X, Knight BM, Thakker DR. Vectorial transport of fexofenadine across Caco-2 cells: 

involvement of apical uptake and basolateral efflux transporters. Mol Pharm 2011;8(5):1677-

1686. 

 

[32]   Shimizu M, Fuse K, Okudaira K, et al. Contribution of OATP (organic anion-transporting  

polypeptide) family transporters to the hepatic uptake of fexofenadine in humans. Drug 

Metab Dispos 2005;33(10):1477-1481.  

 

[33]   Nozawa T, Imai K, Nezu J, Tsuji A, Tamai I. Functional characterization of pH-sensitive  

organic anion transporting polypeptide OATP-B in human. J Pharmacol Exp Ther 

2004;308(2):438-445. 

 

[34]   Imanaga J, Kotegawa T, Imai H, et al. The effects of the SLCO2B1 c.1457C>T polymorphism  

and apple juice on the pharmacokinetics of fexofenadine and midazolam in humans. 

Pharmacogenet Genomics 2011;21(2):84-93. 

 

[35]   Shirasaka Y, Mori T, Shichiri M, Nakanishi T, Tamai I. Functional pleiotropy of organic anion  

transporting polypeptide OATP2B1 due to multiple binding sites. Drug Metab 

Pharmacokinet 2012;27(3):360-364.  

 

[36]   Kim E, Sy-Cordero A, Graf TN, Brantley SJ, Paine MF, Oberlies NH. Isolation and  

identification of intestinal CYP3A inhibitors from cranberry (Vaccinium macrocarpon) using 

human intestinal microsomes. Planta Med 2011;77(3):265-270. 

 

[37]   Roth M, Araya JJ, Timmermann BN, Hagenbuch B. Isolation of modulators of the liver- 

specific organic anion-transporting polypeptides (OATPs) 1B1 and 1B3 from Rollinia 

emarginata Schlecht (Annonaceae). J Pharmacol Exp Ther 2011;339(2):624-632. 

 



136 
 

[38]   de Lima Toccafondo Vieira M, Huang SM. Botanical-drug interactions: a scientific perspective. 

  Planta Med 2012;78(13):1400-1415.   

 

[39]   Chen C, Cancalon P, Haun C, Gmitter Jr. F. Characterization of furanocoumarin profile and  

inheritance toward selection of low furanocoumarin seedless grapefruit cultivars. J Amer Soc 

Hort Sci 2011;136(5):358-363. 

 

[40]   Greenblatt DJ, Zhao Y, Hanley MJ, et al. Mechanism-based inhibition of human cytochrome  

P450-3A activity by grapefruit hybrids having low furanocoumarin content. Xenobiotica 

2012; 42(12):1163-1169. 



A portion of this chapter will be submitted to Drug Metabolism and Disposition as a Short Communication and is presented in the style of 

the journal. 

CHAPTER 3 

BIOACTIVITY-GUIDED FRACTIONATION OF GRAPEFRUIT (Citrus  paradisi Macfad.) 

JUICE AND EVALUATION OF REPRESENTATIVE COMPONENTS AS INHIBITORS OF AN 

INTESTINAL ORGANIC ANION-TRANSPORTING POLYPEPTIDE 

OVERVIEW 

The grapefruit juice (GFJ)-mediated decrease in drug absorption via inhibition of intestinal 

organic anion transporting polypeptides (OATPs) is one of the most widely studied transporter-based 

dietary substance-drug interactions. Such interactions have been shown to be clinically relevant, 

manifesting as a decrease in systemic drug exposure. Some compounds in GFJ have been evaluated 

as OATP inhibitors in vitro, but myriad others remain unassessed. The complex composition of GFJ 

poses many challenges, and bioactivity-guided isolation can be used to identify OATP inhibitors in a 

systematic manner. Organic-soluble fractions generated from an extract of a commercially available 

GFJ product, designated as A-M, were evaluated as inhibitors of OATP2B1-mediated uptake using 

stably transfected Madin-Darby canine kidney type II (MDCKII) cells and estrone 3-sulfate as the 

probe substrate. Fractions A, B, K, and M were the most potent, inhibiting OATP2B1 activity by ≥ 

80% at 10 or 50 μg/mL compared to vehicle control (1.7% methanol). Three subfractions generated 

from fraction M (m3, m4, m5) inhibited activity by ~60-100% at 10 μg/mL. The most potent pools (3 

and 4) from subfractions m4 and m5 inhibited activity by > 85% at 2 μg/mL. A partial structure 

containing a furanocoumarin moiety was identified in subfraction m3. However, complete structure 

characterization of this compound and further fractionation of other active pools was not possible due 

to insufficient starting material. Accordingly, IC50s were determined for known compounds 

representative of three classes to demonstrate subsequent experiments that would have been initiated 

had adequate material been available. The compounds tested were the flavanones naringin,
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naringenin, and hesperidin; the furanocoumarins bergamottin and 6’,7-dihydroxybergamottin (DHB); 

and the polymethoxyflavones nobiletin and tangeretin. Nobiletin was the most potent, with an IC50 < 

5 μM. DHB, naringin, naringenin, and tangeretin were moderately potent, with IC50s ~20-50 μM. 

Bergamottin and hesperidin were the least potent, with IC50s > 300 μM. IC50s below or within the 

reported range of concentrations in GFJ support all compounds except bergamottin as candidate 

inhibitors of intestinal OATP. 
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INTRODUCTION 

The influence of phytochemicals on pharmacologic activity of drugs via modulation of 

absorption and/or elimination processes mediated by metabolizing enzymes and transport proteins is 

becoming increasingly recognized [1-3]. Grapefruit juice (GFJ) is an extensively studied 

phytochemical mixture inhibiting both drug metabolism and transport. When consumed in typical 

volumes, GFJ acts predominately in the intestine, as exemplified by lack of an effect on the 

pharmacokinetics of intravenously administered drugs or a lack of an effect on elimination half-life of 

orally administered drugs [4-9]. Despite confinement of the “GFJ effect” to the intestine, GFJ can 

alter systemic drug exposure significantly, which in turn can lead to serious adverse effects. Examples 

include rhabdomyolysis with statins, nephrotoxicity with immunosuppressants, and hypotension with 

calcium channel blockers [10]. Consequently, numerous drug package inserts carry cautionary 

statements about concomitant intake with GFJ. 

The most rigorously studied mechanism underlying the GFJ effect is inhibition of the 

prominent intestinal drug metabolizing enzyme cytochrome P450 (CYP) 3A. Although the CYP3A 

inhibitors in GFJ (furanocoumarins) have been established [11-14], the process by which these 

compounds were identified was neither systematic nor efficient, demonstrated by the > 15-year span 

between the first report of a GFJ effect [15] and the pivotal clinical study involving a 

“furanocoumarin-free” GFJ [16]. A more recently discovered mechanism underlying the GFJ effect is 

inhibition of organic anion-transporting polypeptides (OATPs) located on the apical membrane of 

enterocytes, resulting in decreased systemic exposure of drug substrates (e.g., fexofenadine, 

fluoroquinolones, beta-blockers) [17-19]. Since the pioneering report of the GFJ-fexofenadine 

interaction [20] individual constituents in GFJ have been evaluated as OATP inhibitors. These 

compounds can be grouped into classes: flavanones, furanocoumarins, or polymethoxyflavones. The 

flavanone naringin is the only clinically tested compound [21]. Relative to water, GFJ and an aqueous 

solution of naringin at the same concentration as that in GFJ (~1200 μM) decreased fexofenadine 

mean systemic exposure by ~40 and ~20%, respectively, in 12 healthy volunteers. The authors 
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concluded that naringin was a major enteric OATP inhibitor, but the 50% difference in fexofenadine 

exposure between GFJ and naringin suggested other constituents contributed to the interaction. Such 

constituents include the flavanone hesperidin, which inhibited fexofenadine uptake in OATP1A2-

transfected cervical cancer cells (HeLa) [21], with an  IC50 (2.7 μM) that was well within 

concentrations measured in different brands of GFJ (0.2-117 μM) [22-25]. The furanocoumarins 

bergamottin and 6’,7’-dihydroxybergamottin (DHB) and the polymethoxyflavones tangeretin and 

nobiletin have been shown to inhibit uptake of estrone 3-sulfate in OATP2B1-transfected human 

embryonic kidney (HEK) 293 cells [26]. IC50s for the furanocoumarins and polymethoxyflavones 

(~10 μM) were within concentrations measured in GFJ (0.22-53.5 and 0-78 μM, respectively) [14, 

27-30]. Although the tested compounds may contribute to the OATP inhibitory effect, as with the 

identification of CYP3A inhibitors, a limitation to these independent studies is that seemingly 

arbitrary constituents were tested. 

Identification of bioactive compounds from natural products poses a challenge, as such 

products are complex mixtures of phytochemical compounds [31]. Bioactivity-directed fractionation 

is routinely used in natural products drug discovery to isolate novel, active compounds of interest [32, 

33]. This established systematic procedure was used to identify enteric CYP3A inhibitors in cranberry 

[34] and hepatic OATP modulators in the stem bark of the aratiku shrub [35]. The purpose of this 

work was to use a similar approach to screen and identify OATP inhibitors in GFJ, as well as to 

determine the IC50s of known GFJ constituents representative of three classes using stably transfected 

Madin-Darby canine kidney type II cells and the probe substrate estrone 3-sulfate. 
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METHODS 

Materials and chemicals. [
3
H]Estrone 3-sulfate ammonium salt (54.3 Ci/mmol) was 

purchased from Perkin Elmer (Waltham, MA). Estrone 3-sulfate potassium salt, bromosulfophthalein 

(BSP), D-glucose, DHB, bergamottin, naringin, hesperidin, tangeretin, and nobiletin were purchased 

from Sigma-Aldrich (St. Louis, MO). Hanks’ balanced salt solution (HBSS) with calcium and 

magnesium was purchased from Mediatech Inc. (Hendon, VA). Phosphate-buffered saline (PBS), 

fetal bovine serum, trypsin-EDTA, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), and 

Dulbecco's Modified Eagle Medium (DMEM) containing 4.5 g/L D-glucose, 2 mM L-glutamine, and 

110 mg/L sodium pyruvate were purchased from Invitrogen (Carlsbad, CA). Methanol, ethyl acetate, 

chloroform, n-butanol, hexane, scintillation cocktail, sodium hydroxide, and sodium dodecyl sulfate 

(SDS) 10% solution were purchased from Fisher Scientific (Pittsburgh, PA). Cell culture plates were 

purchased from Corning Life Sciences (Tewksbury, MA). Madin-Darby canine kidney type II 

(MDCKII) parental cells and stably transfected MDCKII-OATP2B1 cells were provided by Dr. 

Markus Grube (Ernst-Moritz-Arndt University, Greifswald, Germany). 

Juice extraction and fractionation. Preliminary evaluation of not-from-concentrate (fresh-

squeezed, no added water, sugar, or preservatives) GFJ brands included inhibitory potency and ease 

of access to sufficient commercially available quantities. Five cartons of Florida’s Natural
®
 Original 

Ruby Red 100% Pure Florida Grapefruit Juice (1.75 L each, 8.75 L total) were purchased from a local 

grocery store. Each carton of juice was divided evenly between six 500-mL polypropylene bottles, 

with approximately 292 mL of juice in each bottle. After adding 200 mL of ethyl acetate, the bottles 

were shaken vigorously and centrifuged (5000 × g for 10 min at 25 °C). The upper organic layer was 

transferred to a 5-L round bottom flask. This extraction process was repeated two more times for a 

total of three extractions for each carton. The ethyl acetate extract was dried in vacuo and dissolved in 

2 L of a 4:1:5 chloroform:methanol:water (chloroform:methanol:water, v/v/v) mixture and stirred for 

1 hour. Both layers were dried in vacuo. The dried aqueous layer was resuspended in 1 L of water and 

shaken with an equal volume of n-butanol. Both of these layers were dried in vacuo, producing an 
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organic fraction, an aqueous fraction, and a butanol fraction of the original ethyl acetate extract. The 

organic fraction was separated into 13 fractions (designated A through M) via normal-phase flash 

column chromatography and tested in the MDCKII-OATP2B1 system. Fractions considered “active” 

(i.e., ≥ 50% inhibition of estrone 3-sulfate uptake) were selected for further fractionation via 

preparatory high pressure liquid chromatography (HPLC) and tested in the MDCKII-OATP2B1 

system. Subsequent active fractions were selected for further fractionation via preparatory HPLC. All 

fractions were resuspended in methanol to yield a stock solution of 2 or 15 mg/mL prior to testing. 

Chromatography and isolation. The flash column chromatography separation utilized a 

Teledyne ISCO CombiFlash Rf System (Teledyne-Isco, Lincoln, NE) equipped with a photodiode 

array detector (PDA), an evaporative light scattering detector (ELSD), and a 40 g Silica Gold silica 

gel column (Teledyne-Isco). The mobile phase (hexane, chloroform, and methanol) was run as 

follows at a linear gradient with a flow a rate of 40 mL/min: 100% hexane to 70% chloroform over 12 

min, then increased to 100% chloroform over 10.8 min and maintained for 8.6 min. While hexane 

remained at 0%, methanol was increased to 1% over 11.6 min then to 5% in 6.2 min, followed by an 

increase to 10% in 6.3 min, then 20% in 3.8 min. Methanol was increased to 100% over 2.7 min and 

held for 12 min. 

 HPLC separations were accomplished via a Varian HPLC system equipped with an 

autosampler, PDA, and ELSD; data were collected and analyzed using Galaxie Workstation software 

(Varian, Inc., Palo Alto, CA). All mobile phases consisted of methanol (A) and water (B). Separation 

of fractions A, B, and K utilized a YMC ODS-A C18 preparatory-scale column (250 mm × 20 mm 

i.d., 5 µm; Waters, Milford, MA). The mobile phase (7 mL/min) began with 40% A, was increased 

linearly to 100% A over 30 min, then was held for an additional 30 min. Separation of fraction M 

utilized a Phenomonex Synergi-Max C-12 preparatory-scale column (250 mm × 21.2 mm i.d., 4 µm; 

Phenomenex, Inc., Torrance, CA). The mobile phase (13 mL/min) began with 50% A, was increased 

linearly to 100% A over 15 min, then was held for an additional 15 min. Separation of subfractions 

m4 and m5 utilized a Phenomonex Synergi-Max C-12 semiprep-scale column (250 mm × 10 mm i.d., 
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4 µm). The mobile phase (4 mL/min) for separation of m4 began at 70% A, was increased linearly to 

100% A over 15 min, then was held for an additional 5 min. The mobile phase (4 mL/min) for 

separation of m5 began with 80% A, was increased linearly to 100% A over 15 min, then was held for 

an additional 15 min. 

Partial identification of OATP2B1-inhibitory constituent in m3. The partial structure of a 

major constituent in subfraction m3 was characterized by ultraviolet (UV) absorption, nuclear 

magnetic resonance (NMR), and high-resolution mass spectrometry (HRMS). UV was determined 

using a Waters Acquity ultrahigh pressure liquid chromatography (UPLC) system equipped with a 

PDA and ELSD. NMR spectra were generated using a JEOL ECA-500 NMR (JEOL USA, Inc., 

Peabody, MA) operating at 500 MHz. High resolution mass spectra were generated using a Thermo 

LTQ Orbitrap XL mass spectrometer (ThermoFisher, Breman, Germany) equipped with an 

electrospray ionization source and coupled to a Waters Acquity UPLC system (Milford, MA) 

equipped with a PDA.  

Cell culture conditions. Parental MDCKII and stably transfected MDCKII-OATP2B1 cells 

were cultured and maintained in DMEM supplemented with 10% fetal bovine serum at 37°C and 5% 

CO2 as described previously [36]. Cells were seeded onto 48-well (for screening assays) or 24-well 

(for IC50 determinations) plates at a density of 5 × 10
4
 cells per well and grown to confluence for 2-3 

days prior to experimentation. 

Screening of GFJ fractions and subfractions for OATP2B1 inhibitory activity. Cells were 

washed and preincubated for 30 min at 37°C in uptake buffer (HBSS supplemented with 25 mM D-

glucose and 10 mM HEPES, pH 7.4). Initial screening was run at pH 7.4 as a baseline condition. 

Buffer was replaced with a dosing solution (200 μL) consisting of radiolabeled plus unlabeled estrone 

3-sulfate (total concentration, 0.5 μM) and GFJ fraction (2, 10, 50, or 250 μg/mL), the OATP 

inhibitor BSP (250 μM), or vehicle (0.5-2.5% methanol). After 2 minutes at 37°C, cells were washed 

three times with ice-cold PBS and lysed with 0.1 N sodium hydroxide/0.1% SDS. Liquid scintillation 

cocktail (5 mL) was added to 200-µL aliquots of the cell lysates, and radioactivity was measured by 
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scintillation counting. Protein concentrations were determined with a BCA assay kit (Thermo Fisher 

Scientific, Waltham, MA). Estrone 3-sulfate uptake was linear over the 2-min incubation (data not 

shown). 

IC50 determination. Cells were washed and preincubated for 30 min at 37°C in uptake buffer 

(125 mM NaCl, 48 mM KCl, 5.6 mM D-glucose, 1.2 mM CaCl2, 1.2 mM KH2PO4, 12 mM MgSO4, 

and 25 mM MES, pH 6). Experiments were run at pH 6 to reflect the characteristic microenvironment 

at the intestinal brush-border membrane and reports of higher OATP transport activity at acidic 

extracellular pH [37-39]. Buffer was replaced, and cells were treated at 37°C with a dosing solution 

(200 μL) consisting of radiolabeled plus unlabeled estrone 3-sulfate (total concentration, 1 μM) and 

GFJ constituent (0 to 316 μM). After 3 minutes, cells were washed three times with ice cold PBS and 

lysed with 0.1 N sodium hydroxide/0.1% SDS. The lysates were processed further as described above 

for the screening assays. 

Data analysis. Calculation of net uptake activity. Uptake was normalized with respect to 

protein content. OATP2B1-mediated net uptake was calculated by subtracting uptake in parental cells 

from that in OATP2B1-expressing cells incubated under parallel conditions. The percent of control 

OATP activity was calculated by dividing net uptake from experiments in the presence of inhibitor by 

net uptake from experiments in the presence of vehicle and multiplying by 100. Apparent IC50 

determination. Initial estimates of apparent IC50s were determined from linear regression of net 

uptake activity vs. natural logarithm of GFJ constituent concentration data. IC50s were determined by 

fitting either the inhibitory Emax model equation 1 or 2 with untransformed data using WinNonlin 

(v5.2.1, Pharsight, Mountain View, CA) and assessing appropriatness of fit from visual check of 

observed and predicted data, distribution of residuals, Akaike information criteria, and standard 

errors. 
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where E and Eo are maximum and baseline effects, respectively; Imax is the maximum inhibitory 

effect; C is inhibitor concentration; and γ is the Hill coefficient. 

Statistical analysis. Data are presented as means ± standard deviations of triplicate determinations. 

IC50s are presented as estimates ± standard error of the estimates. 
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RESULTS 

 Screening of grapefruit juice fractions as inhibitors of OATP2B1-mediated uptake. 

Screening consisted of five rounds of testing (Fig. 3.1). The organic-soluble fraction yielded 13 active 

pools (Fig. 3.2A). Four fractions (A, B, K, M) were the most potent, inhibiting estrone 3-sulfate 

uptake activity by 77-80% and 81-88% at 10 and 50 μg/mL, respectively, relative to control (Fig. 

3.2B). Fraction A produced 9 subfractions, designated a1 to a9; fraction B generated 8 subfractions, 

designated b1 to b8; fraction K yielded 4 subfractions, designated k1 to k4; and fraction M produced 

6 subfractions, designated m1 to m6 (Fig. 3.1). Subfractions considered to be potent were a6, b5, b6, 

k4, m3, m4, and m5, all of which inhibited estrone 3-sulfate uptake by ≥ 50% at 10 μg/mL (Fig. 

3.2C). The remaining subfractions inhibited activity up to 20% or stimulated activity up to 600% of 

control at 2 μg/mL. Subfractions m3, m4, and m5 inhibited OATP2B1 activity by ~60-100% at 10 

μg/mL (Fig. 3.2C). m4 and m5 were available in sufficient quantities for further fractionation via 

preparatory HPLC (Fig. 3.2C). m4 produced 4 pools; pools 3 and 4 inhibited activity by 69 and 86%, 

respectively, at 2 μg/mL (Fig. 3.2D). m5 produced 6 pools; pools 3 and 4 inhibited activity by 85 and 

80%, respectively, at 2 μg/mL (Fig. 3.2D).  

Partial identification of an OATP2B1 inhibitor in a selected grapefruit juice 

subfraction. Subfraction m3 inhibited estrone 3-sulfate uptake by ~60% at 10 μg/mL (Fig. 3.2C). In 

contrast to the more potent m4 and m5 subfractions, m3 was relatively pure (70%) and consisted 

primarily of one compound (Fig. 3.3A). Thus, structure elucidation studies were pursued. UV 

absorption, NMR, and HRMS studies yielded the partial structure of an inhibitory constituent residing 

in m3. The UV absorption spectrum of m3 (Fig. 3.3B) exhibited maxima at or near 200, 250 (with a 

shoulder at ~265), and 310 nm, similar to those in the UV spectrum of DHB, indicating the presence 

of a furanocoumarin moiety (Fig. 3.3C). The 
1
H NMR spectrum of m3 showed peaks (red dots) 

diagnostic of the furanocoumarin structure (Fig. 3.3D). The peaks in the spectrum of m3 (red and 

green dots) agreed with the peaks in the spectrum of DHB, suggesting that the constituent in m3 is 

composed of one or more compounds with DHB structures (Fig. 3.3C). Mass spectrometry analysis 
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revealed that the presumed molecular mass [M-H]
- 
of m3 is 1113.4, equivalent to 3× the mass of 

DHB (371.1) minus several protons (Fig. 3.3E). A peak at m/z 201 in m3 corresponded to a 

furanocoumarin moiety and had appeared in all furanocoumarin standards analyzed using the 

Orbitrap MS (data not shown). 

IC50 determination for representative compounds in grapefruit juice. IC50s for 

representative GFJ constituents were determined in OATP2B1-transfected cells (Fig. 3.4). Nobiletin 

was the most potent, with an IC50 of < 5 μM (Fig. 3.5G). Naringenin was moderately potent, with an 

IC50 of ~20 μM (Fig. 3.5D). DHB (Fig. 3.5A), naringin (Fig. 3.5C), and tangeretin (Fig. 3.5F) were 

approximately equipotent, with IC50s ranging from ~34 to 40 μM. Bergamottin (Fig. 3.5B) and 

hesperidin (Fig. 3.5E) were the least potent, with IC50s > 300 μM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



148 
 

DISCUSSION 

An increasing number of intestinal (and hepatic) OATP modulators have been identified in 

botanically-derived foods and supplements [35, 40-43], creating a rich source of potentially novel 

OATP inhibitors. Although bioactivity-guided isolation is used primarily to identify new therapeutics 

from natural sources, this approach was used in the current work with the goal of isolating and 

identifying compounds in GFJ that inhibit an intestinally expressed drug uptake transport protein, 

specifically OATP2B1. An extract of GFJ was separated into discrete fractions, which were tested in 

a relevant in vitro biosystem. A limitation of this approach is loss of less potent OATP-inhibitory 

compounds whose effects might be masked in the early stages of fractionation due to the large 

number of compounds in each fraction. However, early elimination of weak OATP inhibitors 

increases the efficiency of this method. Fraction M contained potent subfractions (m4 and m5), which 

inhibited OATP2B1-mediated uptake of estrone 3-sulfate by > 80% at the lowest concentration tested 

(2 μg/mL), indicating the presence of strong OATP inhibitors in GFJ. Subfraction m3 also was 

reasonably potent, inhibiting estrone 3-sulfate uptake by ~60% at 10 μg/mL. The mechanism(s) by 

which OATP2B1 activity was altered is (are) not known but may involve competitive inhibition, 

multiple binding sites, steric hindrance, or changes in expression due to transcriptional regulation or 

post-translational modifications. Although identification of OATP inhibitors was the primary 

objective, some fractions at low concentrations stimulated estrone 3-sulfate uptake, by as much as 

600%. OATP stimulation has been observed with other natural product ingredients [35, 42, 44] and 

has been suggested as a strategy to enhance drug uptake by OATP-expressing cancer cells [35].  

 Unexpectedly, due to insufficient juice material, further fractionation, complete structure 

characterization, and kinetic evaluations of the substractions were not feasible. Adequate quantity of 

starting material is a pragmatic issue in the fractionation of natural products. The starting material for 

fractionation is usually the whole plant, which is freeze-dried and combined with solvents [33]. Since 

the amount and nature of bioactive compounds in fruit can change as a result of 

processing/manufacturing into juice [45, 46], GFJ was selected as the starting material to reflect the 
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‘real world’ product that typically is consumed and clinically tested. A GFJ volume exceeding 100 L, 

preferably from the same lot, might have been sufficient, but obtaining such a volume might not be 

possible or efficient. Juice is not ideal material for fractionation due to high content of water, sugar, 

and preservatives, as well as possible contamination with juices of other fruits [34]. As such, dried 

whole grapefruit (~ 1 kg) should be considered in future studies. 

Subfraction m3 inhibited estrone 3-sulfate uptake by ~60% at 10 μg/mL. A series of UV, 

NMR, and MS studies of this subfraction revealed a structure with a molecular mass of 1113 g/mol 

containing a furanocoumarin moiety. The structure may contain additional furanocoumarin moieties. 

However, as aforementioned, complete structure characterization of m3 was not possible due to 

insufficient material. Nevertheless, a potent compound was isolated after four rounds of testing. 

Because the furanocoumarins DHB and bergamottin have been shown to inhibit OATP2B1 activity in 

vitro [26], the activity of the furanocoumarin-containing structure in m3 is not unexpected.  

Had sufficient GFJ been available for fractionation and isolation, subsequent procedures 

would have included purification/scaling up or purchase (if commercially available) of select isolated 

compounds(s). The kinetic properties of each compound would be characterized in a relevant in vitro 

system. Since such experiments were not feasible with the current work, IC50s of known GFJ 

constituents were determined in OATP2B1-transfected MDCKII cells. IC50s for most of the 

constituents, except bergamottin, were up to ~1.5-fold higher than results from inhibition studies in 

which two concentrations of each constituent (1 and 10 μM in 0.5% dimethyl sulfoxide) were tested 

in HEK293 cells stably expressing OATP2B1 [26]. The higher values may be due to differences in 

cell systems (MDCKII vs. HEK293) and/or solvents (methanol vs. dimethyl sulfoxide). The 

discordant IC50 of bergamottin between the current work and previous report (> 300 vs. ~10 μM) also 

could be explained by the different cell systems and/or solvents used. Another explanation is 

nonspecific binding to the culture plate or protein binding to components in culture medium. The 

“stickiness” of bergamottin has been demonstrated in human intestinal microsomal studies in which 

the unbound fraction could not be recovered due to extensive binding to the ultrafiltration device, 



150 
 

even in the absence of microsomal protein [47]. Binding to protein or cellular components in the 

culture medium is possible, but cells were washed twice and preincubated in serum-free buffer before 

initiating uptake experiments. The current work reports hesperidin as a weak OATP2B1 inhibitor 

(IC50 > 300 μM). However, hesperidin has been shown to inhibit uptake of estrone 3-sulfate in 

OATP2B1-expressing Xenopus laevis oocytes at a much lower concentration (IC50 1.92 µM) [48]. 

The striking difference in IC50s of hesperidin again could be due to different cell systems (MDCKII 

vs. oocyte). The interaction liability may be minimal for an OATP2B1 substrate, as hesperidin 

concentrations in GFJ up to 117 μM have been reported [22, 24, 25]. However, interactions with 

orange juice are still possible, as hesperidin is present in concentrations up to ~2 mM [49]. As with 

naringin, clinical studies are needed to determine in vivo effects. 

Comparison of the IC50s to the reported concentrations in GFJ supported DHB, naringenin, 

nobiletin, and tangeretin as additional candidate inhibitors (to naringin) of intestinal OATP (Table 

3.1) [16, 21, 22, 24, 27-29, 50-54]. However, comparing inhibitor concentrations in GFJ with 

concentrations at the site of transport is more appropriate, albeit more challenging, to evaluate in vivo 

interaction potential. If such an approach is to be used to streamline subsequent clinical studies, 

further in vitro and/or animal studies are needed to determine the concentration of each inhibitor 

present at the site of intestinal uptake. 

 The prospective and retrospective application of bioactivity-guided fractionation described in 

two recent reports has important implications for the design and interpretation of botanical-drug 

interaction studies. The first report is the only one published to date that utilized bioactivity-guided 

fractionation to isolate modulators of drug uptake transporters. Fractions of the extract from Rollinia 

emarginata were screened in a high throughput manner in Chinese hamster ovary cells stably 

transfected with OATP1B1 or OATP1B3 to identify hepatic OATP modulators [35, 55]. Inhibitory 

potencies of isolated compounds were determined, which ranged from 4.2-130 μM. Whether or not 

these observations translate to the clinic remains to be determined. The second report used a 

bioactivity-guided fractionation approach to select an appropriate cranberry juice for clinical testing 
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since one brand does not represent the entire market. Five cranberry juice products ranging from 

concentrate to fresh pressed preparations were evaluated as inhibitors of CYP3A activity (midazolam 

1’-hydroxylation) in human intestinal microsomes. The most potent cranberry juice product (brand E) 

was selected to test in a proof-of-concept clinical study. Indeed, brand E inhibited intestinal CYP3A 

activity, as demonstrated by a 30% increase in midazolam systemic exposure (AUC) with no change 

in half-life [56]. Candidate intestinal CYP3A inhibitors were identified subsequently by fractionating 

whole cranberry fractions and testing against CYP3A activity in human intestinal microsomes and 

recombinant CYP3A4 [34]. The relatively potent IC50s (< 10 μM) of the resulting isolated triterpenes 

(maslinic acid, corosolic acid, ursolic acid) suggested that these compounds may have contributed to 

the cranberry juice-midazolam interaction observed clinically, although the relative concentration in 

various products prevent generalizations. Collectively, these two studies demonstrated the efficiency 

and utility of bioassay-guided isolation to identify, either prospectively or retrospectively, selective 

drug metabolizing enzyme and transport protein inhibitors in established and newly discovered 

botanicals. 

Efficient, systematic isolation of inhibitory bioactive constituents could lead to the 

establishment of marker compounds that would improve the study of dietary substance-drug 

interactions, allowing between-study comparisons, standardization, and robust clinical trial design. To 

the authors’ knowledge, the current work is the first report of bioactivity-guided fractionation used to 

isolate inhibitors of an intestinal uptake transporter from GFJ. The potency of isolated fractions 

indicated that GFJ contains constituents in addition to naringin that decrease the absorption of orally 

administered substrates of OATP. Future studies could extend to other OATP substrates, other fruit 

juices, and other botanical products of interest.  
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Fig. 3.3.  HPLC chromatogram of subfraction m3 (A); UV absorption spectra of DHB (upper panel) 

and m3 (lower panel) (B); furanocoumarin moiety and structure of DHB (C); NMR spectrum of m3 

(upper panel) and DHB (lower panel) (D); and HRMS of m3 (upper panel) and DHB (lower panel) 

(E). ●●, peaks diagnostic of furanocoumarin moiety.  
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Furanocoumarins 
 

  
 

A 6’,7’-Dihydroxybergamottin  B Bergamottin  

  

Flavanones 
 

  
 

C Naringin    D Naringenin 

 

    

 
 

E Hesperidin 

 
Polymethoxyflavones 
 

         
 

F Tangeretin     G Nobiletin 

 

Fig. 3.4.  Structures of constituents (A-G) from representative classes of compounds in grapefruit 

juice 
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Fig. 3.5.  IC50 curves for grapefruit juice constituents representative of three compound classes (A-G). 

Symbols and error bars denote means and standard errors, respectively, of triplicate determinations. 

Curves denote nonlinear least-squares regression of observed values. 
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Table 3.1 

IC50 and concentration of representative flavanones, furanocoumarins, and polymethoxyflavones in 

grapefruit juice (GFJ) 

Constituent IC50 (µM) IGFJ (µM)
a
 Reference 

 

Flavonoids    

   Naringin 

   Naringenin 

   Hesperidin 

36 

22 

>300 

6540 

595 

117 

Brill et al., 2009 

Ho et al., 2000 

Uckoo et al., 2012 

Furanocoumarins    

   6’,7’-dihydroxybergamottin 

Bergamottin 

34 

>300 

52.5 

36.3 

De Castro et al., 2006 

De Castro et al., 2006 

Polymethoxyflavones    

   Nobiletin 

   Tangeretin 

3.7 

39 

28.4
b
 

78.4
b
 

Nogata et al., 2006 

Rouseff and Ting, 1979 

 
a
 IGFJ, highest concentration in GFJ reported 

b
 Concentration in flavedo (i.e., peel) 
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This chapter will be submitted to Pharmaceutical Research and is presented in the style of the journal. 

CHAPTER 4 

EVALUATION OF SELECT GRAPEFRUIT JUICE CONSTITUENTS AS MARKER 

COMPOUNDS PREDICTIVE OF THE GRAPEFRUIT JUICE EFFECT ON DRUG DISPOSITION 

OVERVIEW 

Purpose: Evaluate the furanocoumarins 6’,7’-dihydroxybergamottin (DHB) and bergamottin as 

candidate marker compounds predictive of CYP3A4-mediated grapefruit juice (GFJ)-drug 

interactions. 

Methods: In vitro-, in vivo-, and in silico-derived parameters associated with the absorption, 

distribution, metabolism, and excretion of select CYP3A4 substrates (midazolam, felodipine), DHB, 

and bergamottin were obtained from the literature. Physiologically-based pharmacokinetic (PBPK) 

models were developed using commercially available software. Interactions with DHB alone or DHB 

plus bergamottin were simulated and compared with observed data. 

Results: DHB alone predicted the magnitude of effect of GFJ on systemic exposure to midazolam 

and felodipine (AUCGFJ/AUCcontrol) within two-fold of observed effects. The addition of bergamottin 

improved prediction of midazolam exposure to within 10% of the observed AUC ratio. However, 

felodipine exposure was overpredicted by > two-fold of the observed AUC ratio in five of six cases.  

Conclusions: The CYP3A4 substrate and DHB models performed fairly well, predicting AUCs and 

AUC ratios within two-fold of observed data. However, improvements in predicting absolute 

concentrations of substrates and inhibitors depend on further studies, especially those evaluating the 

pharmacokinetics of DHB and bergamottin and determining whether the contribution of bergamottin 

to the GFJ effect is substrate-dependent. Nevertheless, based on currently available data, PBPK 

modeling and simulation support continued evaluation of DHB as a marker compound predictive of 

CYP3A4-mediated GFJ-drug interactions. 
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INTRODUCTION 

The prediction and evaluation of dietary substance-drug interactions are pragmatic concerns 

that can pose challenges for newly approved, and existing, drugs [1-4]. Grapefruit juice (GFJ) is one 

of the most extensively studied and clinically relevant dietary substances, acting as a perpetrator of 

drug interactions. GFJ is mentioned specifically in guidances issued by international regulatory 

agencies [5, 6], as well as in more than 40 drug package inserts [7]. Since the first report of both a 

pharmacokinetic (PK) and pharmacodynamic (PD) interaction with the calcium channel blocker 

felodipine [8], GFJ has been shown to enhance the systemic exposure of myriad drugs, all of which 

undergo significant first-pass metabolism in the intestine by the prominent drug metabolizing enzyme 

CYP3A4. 

GFJ enhances systemic exposure (AUC, Cmax) to a broad spectrum of oral medications, 

including several anti-infectives, cardiovascular agents, immunosuppressants, and statins [9, 10]. 

When consumed in usual volumes, GFJ inhibits intestinal – but not hepatic – CYP3A4 activity, as 

evidenced by unaltered clearance and half-life of intravenously administered drugs [10]. The lack of 

an effect on hepatic CYP3A4 may be due to dilution of the causative ingredients to concentrations 

below effective inhibitory concentrations, and/or extensive binding of the causative ingredients to 

plasma proteins, in portal blood [10]. Despite the localized inhibition of CYP3A4 by GFJ, the 

magnitude of effect can be sufficient to elicit adverse reactions [11]. The primary underlying 

mechanism is associated with reduced intestinal CYP3A4 protein without a decrease in mRNA, 

indicating accelerated degradation of the enzyme subsequent to mechanism-based inactivation [12]. 

Since irreversible loss of CYP3A4 requires de novo synthesis to restore enzyme activity, this ‘GFJ 

effect’ lasts approximately three days [13, 14].  

As with natural products in general, GFJ is a mixture composed of several hundred bioactive 

ingredients, of which a handful has been studied rigorously. Furanocoumarins in GFJ have been 

established as potent reversible and mechanism-based inhibitors of CYP3A4 activity in vitro [16-20]. 

A definitive clinical study involving a GFJ devoid of furanocoumarins and the model CYP3A4 
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substrate felodipine demonstrated furanocoumarins, in aggregate, as major mediators of the 

felodipine-GFJ interaction [15]. Bergamottin and 6’,7’-dihydroxybergamottin (DHB) are two 

extensively studied, and typically abundant, furanocoumarins present in GFJ. Each has been shown to 

inhibit CYP3A4 activity and to degrade CYP3A4 protein in the human intestine-derived cell line 

Caco-2 [20]. Effects on CYP3A4 protein mimicked the relatively rapid (within four hours) ~50% 

decrease in CYP3A4 protein expression observed in duodenal biopsies obtained from a healthy 

volunteer after GFJ ingestion [16]. 

The effect of GFJ in vivo varies widely among GFJ brands and is volume-, frequency-, and 

preparation-dependent [5]. Clinically tested GFJ products administered to human subjects are 

described as ‘single’ or ‘double’ strength; GFJ warnings in drug labels caution against ‘excessive 

consumption (> 1.2 L per day)’. Given the highly variable profile of constituents in different GFJ 

products [21], such descriptions are ambiguous and misleading when attempting to interpret results 

from clinical interaction studies and to classify GFJ as a ‘strong’ versus ‘moderate’ CYP3A4 

inhibitor. DHB and bergamottin have been investigated to the extent that they can be considered 

‘marker’ compounds. If these compounds are validated as ‘marker’ compounds for CYP3A4 

inactivation by GFJ, quantification of one or both compound(s) in GFJ could be sufficient to make 

between-study comparisons, as well as to predict the likelihood and magnitude of an interaction of 

whole juice with a given substrate. 

Various methods have been developed to predict the magnitude of GFJ-drug interactions. 

Two studies involved similar approaches in which a predictive model for select CYP3A4 inhibitory 

GFJ ingredients was developed by establishing a correlation between GFJ ingredient concentration 

and in vitro CYP3A4 inhibitory activity [22, 23]. Both studies determined furanocoumarins (DHB, 

bergamottin, dimeric spiroesters) to be the most significant variables for CYP3A4 inhibition. 

However, the correlations could have been driven by a few samples having high furanocoumarin 

content and high inhibitory activity. A different approach involving modeling and simulation was 

used in two other studies. A compartmental PK/PD model based on irreversible enzyme inactivation 



169 
 

was developed in the first study to describe the GFJ-felodipine interaction [24]. A physiologically-

based pharmacokinetic (PBPK) model was developed in the second study to predict the PK of the 

CYP3A4 substrates midazolam and simvastatin in the presence of DHB [25]. A limitation shared by 

both studies is a lack of information on DHB, as well as bergamottin, concentration in the clinically 

administered GFJs. Taken together, a more robust strategy for evaluating one or more marker 

furanocoumarins as a predictor of a GFJ interaction is necessitated. 

PBPK modeling and simulation for drug development purposes has been increasingly 

accepted in recent years by the the pharmaceutical industry and regulatory bodies to help streamline 

and expedite decision-making during both pre-clinical and clinical phases of development [26-28]. 

Significant advances in the predictability of key PK parameters from in vitro and in vivo data and in 

the availability of specialized software have improved the utility and accuracy of this approach [29, 

30]. Modeling and simulation are not applied routinely to the study of dietary substance-drug 

interactions, mostly because dietary substances are not regulated in the same manner as drugs, but 

also due to the complex bioactive ingredient composition of the dietary substance and associated 

difficulties in modeling such behavior. However, robust knowledge of major ingredients implicated in 

the effect of a dietary substance would facilitate investigation of the PBPK modeling approach as a 

viable tool.  

The objective of this work was to evaluate the utility of DHB alone and DHB 

plusbergamottin as (a) marker compound(s) predictive of CYP3A4 substrate-GFJ interactions. A 

population-based PBPK software program was used to predict single oral dose PK of select CYP3A4 

substrates (midazolam, felodipine) in the presence of intestinal CYP3A4 inhibition (by DHB alone 

and DHB plus bergamottin) in healthy volunteers. Predictions were compared with observations from 

clinical GFJ-drug interaction studies in which the concentrations of each furanocoumarin were 

measured in the test juice.  
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METHODS 

Software (Simcyp
®
 Population-based ADME Simulator) 

The population-based PBPK software Simcyp
®
 (version 12, Release 1, Simcyp Ltd., Sheffield, United 

Kingdom) was used for model development and simulations. This simulator is a platform and 

database for mechanistic modeling and simulation of the absorption, distribution, metabolism, and 

excretion (ADME) of drugs and drug candidates [28]. The program combines in vitro data with 

demographic, physiologic, and genetic information on different populations to extrapolate to in vivo 

scenarios. 

The software ADMET Predictor
™

 (version 6.0, Simulations Plus, Inc., Lancaster, CA) is used to 

estimate biopharmaceutically relevant molecular descriptors related to ADME and toxicity of 

chemical substances based on molecular structures [31]. The program predictions were utilized as 

inputs for Simcyp
®
. 

Selection of Clinical GFJ-Drug Interaction Studies 

Clinical GFJ-CYP3A4 substrate interaction studies were identified by searching articles published 

between January 1989 to June 2012 in the PubMed electronic database. Studies to be included met the 

following criteria: 

 Substrate metabolism mainly by CYP3A4 

 Availability of in vitro data 

 Availability of human oral PK information (i.e., trial design, concentration-time profile of 

substrate administered alone and with GFJ) 

 Measurement of DHB and/or bergamottin concentration in serving size of test GFJ  

 Healthy volunteers 

Plasma concentration-time data from the included studies (Table 4.1) were obtained from the 

principal investigators or were digitized using GetData Graph Digitizer (version 2.24, 

http://www.getdata-graph-digitizer.com) and superimposed onto simulations. 
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Model Development: Substrate and Inhibitor Files 

Chemical structures of midazolam, felodipine, DHB, and bergamottin were imported as “.mol” files, 

created with ChemDraw (version 11.0.1, CambridgeSoft, Cambridge, MA), into ADMET Predictor
™

 

to calculate physicochemical properties describing ionization, partitioning, protein binding, and 

permeability parameters (Fig. 4.1). The required inputs for midazolam were supplied by Simcyp
®
 

software; default values were verified against those reported in the literature and accepted (Table 4.2). 

Compound files for felodipine, DHB, and bergamottin were created in the Simcyp
®
 library using 

physicochemical properties, in vitro biochemical data, and clinical PK parameters obtained from the 

literature or ADMET Predictor
™

 (Tables 4.2 and 4.3). Enzyme kinetic parameters characterizing 

DHB and bergamottin elimination were estimated using ADMET Predictor
™

 and clinical studies that 

reported plasma concentrations of DHB and/or bergamottin [32, 33].  

Simulations of Clinical Studies 

Simulations/predictions employed trial designs consistent with the selected clinical interaction studies 

with respect to healthy volunteers, age, weight, number of subjects, and proportion of women (Table 

4.1). Dosing regimens of midazolam, felodipine, DHB, and bergamottin were set according to clinical 

protocol (i.e., single dose, fasted state) (Table 4.1). Simulations proceeded for the reported length of 

biological sample collection time (i.e., 8, 12, or 24 h). The number of trials for each study simulation 

was set at 10 to assess variability across subject groups. 

Data Analysis 

The simulated group mean or median AUCs and AUC ratios (DHB/Control, 

DHB+BG/Control) of midazolam or felodipine in the absence and presence of DHB or DHB plus 

bergamottin were reported directly from the software. The mean of AUC ratios from the 10 simulated 

trials was compared to observed ratios. Comparisons were made visually to determine if observed 

data lay between the 5th and 95th percentiles of the predicted concentration-time profiles. A 

prediction error was calculated from the difference between each simulated and observed AUC ratio 

using the following:  
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(|Simulated – Observed|/Observed) × 100. Observed AUC values were plotted against 

simulated values to visualize accuracy of the predictions (i.e., within two-fold boundary). Standard 

deviations or standard errors were reported for all observed AUCs.   

Parameter Sensitivity Analysis 

Parameter sensitivity analysis was performed for CYP3A substrate input parameters (e.g., 

dissolution constant, solubility, absorption rate constant, gastric emptying rate, intestinal transit rate, 

steady-state volume of distribution). Sensitivity analysis also was performed to assess the influence of 

DHB and bergamottin input parameters (e.g., blood/plasma ratio, fraction unbound in plasma, fraction 

unbound in enterocytes, fraction absorbed, absorption rate constant, steady-state volume of 

distribution, Vmax, Km) on CYP3A4 substrate systemic exposure. The effect of each parameter of 

interest on AUC ratio was evaluated over a wide range of values (0.01 – 100-fold).  
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RESULTS 

One GFJ-midazolam study (out of nine) and six GFJ-felodipine studies (out of 17) met 

inclusion criteria (Table 4.1). The mean (± SD) concentration of DHB and bergamottin in the serving 

size of GFJ from all studies was 24.6 ± 16.1 μM and 24.5 ± 5.6 μM, respectively. The mean (± SD) 

amount of DHB and bergamottin was 2.2 ± 1.6 mg and 2.1 ± 0.6 mg, respectively.  

The Simcyp
®
 library model for midazolam (Table 4.2) underpredicted mean plasma 

concentrations over the time-range (mean AUCs within 23% error) (Fig. 4.2, Table 4.4). Simulated 

mean midazolam AUCs in the presence of DHB (0.75 mg) alone and with bergamottin (2.94 mg) 

were within 46% and 16% of observed AUCs, respectively. The simulated mean AUC ratio when 

bergamottin was added to DHB increased from 1.14 to 1.79 (within 8.5% error of 1.65).  

The observed AUC for felodipine in the various clinical studies ranged from 39 to 64 nM·h 

and from 75 to 130 nM·h in the absence and presence of GFJ, respectively (Table 4.5). The model 

developed for felodipine using input parameters listed in Table 4.2 generally underpredicted median 

or mean plasma concentrations over the -time ranges (median and mean AUCs within 54% and 25-

60% error, respectively) (Fig. 4.3a-f) (Table 4.5). Simulated mean felodipine AUCs in the presence of 

DHB (0.75-3.75 mg) alone were between 6% and 73% error. The simulated mean AUC ratios in the 

presence of DHB alone were within 2-fold error (Figure 4.4a). Simulated mean felodipine AUCs with 

the addition of bergamottin (0.016-2.94 mg) ranged between 11% and 96% error. The simulated mean 

AUC ratios in the presence of DHB and bergamottin were two- to four-fold higher than observed 

AUCs (Figure 4.4b). Although the simulated oral lineshape/profiles were consistent with observed 

data, the maximum plasma concentrations (Cmax) were underpredicted, and the time to reach Cmax 

(tmax) occurred one to two hours earlier. 

Due to insufficient/conflicting experimental information and/or lack of confidence in certain 

parameters, particularly those related to DHB and bergamottin, a parameter sensitivity analysis was 

performed on felodipine, DHB, and bergmottin input parameters. Felodipine systemic exposure was 

sensitive to dissolution constant, solubility, permeability/absorption rate constant, gastric emptying 
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rate, and intestinal transit rate. Solubility and absorption rate constant affected felodipine AUC. 

Permeability/absorption rate constant showed the largest effect, with approximately two-fold lower 

AUC when permeability/absorption rate constant was decreased by two orders of magnitude.  

Sensitivity analysis showed that AUC ratio was influenced by DHB and bergamottin input 

parameters – fraction unbound in plasma, fraction unbound in enterocytes, and Km. AUC increased 

five-fold when Km was increased from 0.1 to 25 μM. AUC increased two-fold as the fraction unbound 

in plasma increased from 0.1 to 1.  
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DISCUSSION 

PBPK modeling and simulation, facilitated by a population-based simulator, was used to 

examine the well-studied furanocoumarins, DHB and bergamottin, as marker compounds predictive 

of the GFJ effect on the disposition of CYP3A4 substrates. Interaction studies between select 

CYP3A4 substrates and one or both furanocoumarins were simulated and compared to observed data 

meeting inclusion criteria. Since the discovery of the “GFJ effect” in 1989, nearly 70 GFJ-drug 

interaction studies have been evaluated with drugs from a broad spectrum of therapeutic classes. 

However, the limiting factor in collecting a large sample size of studies was the lack of reporting on 

the concentration of DHB and/or bergamottin in the clinical test GFJ. The paucity of studies was 

unexpected given that furanocoumarins were long suspected as the CYP3A4 inhibitors and have been 

established as the perpetrators in human subjects for more than five years [15]. The highly variable 

bioactive ingredient composition between manufacturers (and even lots) is recognized as a 

confounder to clinical study interpretations [21]. Despite these acknowledgements, investigators 

generally fail to measure just one ingredient in the clinical test GFJ. 

PBPK modeling and simulation showed that midazolam and felodipine systemic exposures 

under control conditions (water or orange juice) were underpredicted. Although the oral 

pharmacokinetic profile shapes of felodipine were consistent with those of observed plasma 

concentration-time profiles, felodipine exposures were underpredicted by two-fold, and tmax occurred 

earlier in most cases. This discrepancy may be due to the extended-release formulation of felodipine. 

The success of an extended-release dosage form depends upon the interaction of drug parameters, 

such as drug-release rate and gastrointestinal transit time, coupled with physiological parameters 

including absorption rates in the various sections of the small and large intestine [51]. The ADAM 

model in Simcyp is used for solid dosage forms, whereas the first-order absorption and ACAT models 

assume that the drug is in solution at all times. Parameters related to formulation properties (e.g., 

solubility, degradation constants) likely need further refinement and/or use of a more specialized 

program (i.e., GastroPlus) may be required.  
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DHB alone underpredicted (46% error) the effect of whole GFJ on the systemic exposure of 

midazolam, whereas the addition of bergamottin significantly improved the prediction (16% error). In 

contrast, DHB alone predicted (6-73% error) the effect of whole GFJ on the systemic exposure of 

felodipine in all studies but one [36], whereas the addition of bergamottin overpredicted the AUC 

ratio by two-fold or more in all cases. These simulations with bergamottin are inconsistent with 

clinical reports speculating that bergamottin does not contribute significantly to the GFJ effect [32, 

50]. An in vitro comparison of the time-dependent inhibitory properties of DHB and bergamottin in 

Caco-2 cells demonstrated a marked difference in both the rate of cell entry and time to onset of 

CYP3A4 inhibition [20]. The more lipophilic bergamottin had a slower rate of entry and a delayed 

onset of inhibition compared to DHB, suggesting CYP3A4 is maximally inhibited by DHB before 

bergamottin has an opportunity to act. Clearly, even though DHB and bergamottin belong to the same 

furanocoumarin class, the compounds behave differently. The inhibition model in Simcyp
®
 allows up 

to three inhibitors, utilizing an additive equation for multiple inhibitors (with the same mechanism). 

Although bergamottin exhibits more potent inhibition than DHB in vitro [49], the net effect of both in 

vivo is unknown. It is also possible that other furancoumarin derivatives (e.g., dimers) may be more 

appropriate marker compounds [52]. However, the insufficient in vitro data and unknown in vivo 

inhibitory potential of these compounds preclude the proposal of new marker candidates at this time. 

The prediction errors could be attributed to several other factors. The accuracy of input 

parameters that are not derived experimentally is a common limitation in modeling and simulation. 

Physicochemical properties related to solubility, permeability, and lipohilicity of natural products are 

not determined routinely, although attempts to classify these products based on intestinal permeability 

and solubility (akin to the Biopharmaceutical Classification System for pharmaceutical drugs) have 

been undertaken [31]. Clinically relevant metabolism and transport interaction studies are appearing 

more frequently in the literature. However, in vitro studies still lack evaluations critical to the 

precision and accuracy of natural product-drug interaction models, such as the fraction unbound in 

plasma and enzyme kinetic parameters (specifically those describing the metabolism of the natural 
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product ingredients per se). The fraction unbound in plasma, Km, and Vmax for DHB and bergamottin 

were estimated based on structure and physicochemical properties, with some verification using 

sparse clinical data in which plasma concentrations of DHB were reported [32, 33]. The Km and Vmax 

for DHB were deemed adequate, as simulations of a GFJ-felodipine study in which a “serum” made 

from GFJ containing DHB (3.41 mg) and a low amount of bergamottin (0.016 mg) were consistent 

with observed data [38]. In contrast, simulations with the addition of bergamottin slightly 

overpredicted systemic exposures of midazolam (8%) but substantially overpredicted those of 

felodipine (up to 270%). This discordance may be due to different CYP3A4 substrate-

DHB/bergamottin interactions. Substrates and modifiers of CYP3A4 can have differential effects, 

which have been attributed to the existence of multiple binding domains within the CYP3A4 active 

site [53]. Such complex interactions can confound the prediction of in vivo interactions from in vitro 

data. A series of in vitro studies demonstrated that representative prototypes of the CYP3A4 substrate 

subgroups (midazolam, testosterone, and nifedipine) show distinct kinetic properties [53]. Felodipine, 

a structural analog of nifedipine, showed different effects than nifedipine, indicating the possibility of 

different binding domains on CYP3A4 for these substrates despite similar chemical structures. Based 

on this information, it is possible that DHB and bergamottin are predictive for midazolam subgroup-

GFJ interactions, whereas DHB alone is sufficient to predict felodipine subgroup-GFJ interactions. 

This hypothesis requires verification by in vitro inhibition and binding studies utilizing human 

intestinal microsomes, felodipine, DHB, and bergamottin. A more likely reason for the overprediction 

of felodipine by bergamottin is the (inaccurate) estimation of the fraction unbound in plasma and gut, 

Km, and Vmax for bergamottin based on structure and physicochemical properties. Simulations of 

clinical studies in which felodipine and bergamottin capsules or bergamottin-rich lime juice were 

administered to healthy volunteers also were overpredicted by > two-fold [32, 50] (data not shown). 

Although sparse plasma concentration-time data for bergamottin was available [32, 33], attempts to 

retrieve reliable estimated values for bergamottin were unsuccessful. Additional in vitro experiments 

and full pharmacokinetic profile characterization of the inhibitors (i.e., DHB and bergamottin), along 
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with the substrates, are needed to discern the impact of one or both. The increasing sensitivity of 

bioanalytical methods should permit such a characterization in the near future. 

Another possibility for the prediction errors is that the model did not account for bergamottin 

conversion/metabolism to DHB. It has been shown that incorporation of active metabolite (of the 

inhibitor) data improves drug-drug interaction predictions [54]. A recent report showed that 

inactivation of CYP3A4 by bergamottin results in formation of a modified apoprotein-CYP3A4 and a 

reactive metabolite (DHB plus one oxygen atom) [55]. This reactive DHB covalently binds to a 

glutamine residue (Gln273) and contributes to the mechanism-based inactivation of CYP3A4 by 

bergamottin. DHB also has been speculated to be further metabolized to another furanocoumarin, 

bergaptol, and excreted in urine [56]. The metabolic pathways of bergamottin and DHB are not well 

characterized in vitro and in vivo, highlighting a critical deficiency of natural product-drug (and drug-

drug) interaction prediction assessment. The pharmacokinetic profile of the perpetrator is not 

routinely characterized in clinical studies, despite that the information is vital to the successful 

prediction of an interaction. Although the AUC ratio predictions were within two-fold of observed 

values, the model requires further refinement, mostly related to DHB and bergamottin. Remarkably, 

even though ketoconazole has been commercially available for nearly 30 years and is used as a 

prototypic CYP3A inhibitor, little information existed about routes of elimination until recently [57].   

An additional explanation for the prediction errors could be the difference in observed 

clinical study and Simcyp
®
 virtual healthy volunteer populations. The study design conditions and 10 

trials per study were duplicated and simulated to address such issues. However, CYP3A5 expressers 

in the virtual population were excluded from simulations. Although not genotyped, some subjects in 

the selected GFJ studies could have been CYP3A5 expressers, who presumably would be less 

sensitive to inhibition [58]. Simcyp contains a number of population libraries with corresponding 

genotype frequencies for various CYPs, UGTs, and transporters. Subsequent simulations can 

incorporate CYP3A5 expressers in the virtual population. 
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To the author’s knowledge, this work is one of two PBPK modeling approaches used to 

predict the effect of GFJ on the pharmacokinetics of CYP3A4 substrates [25]. Although a previous 

study aimed to predict (retrospectively) midazolam and simvastatin pharmacokinetics using DHB as 

an inhibitor, a major drawback to the study was the lack of information on DHB concentration in the 

clinically administered GFJs. An atypical DHB “concentration” of 43 μmoles (~16 mg DHB) was 

assumed, and the two modeled clinical interaction studies did not report concentrations of DHB 

and/or bergamottin. Since furanocoumarin composition is thought to be an index to predict GFJ-drug 

interactions mediated by CYP3A4 inhibition, the in silico approach in this work takes this important 

factor into account. The strategy provides a framework for identifying and evaluating causative 

ingredients that would lead ultimately to predicting and informing clinical trial design of other 

CYP3A4 substrate-GFJ interactions.  

Concomitant intake of drugs and foods/supplements perceived as healthy and complementary 

to health is increasing steadily. In addition, use of naturally-derived “pharmacokinetic boosters” (i.e., 

GFJ) has been proposed to decrease the cost of drugs through improved bioavailability and dose 

reduction in some patients. For example, GFJ interactions with immunosuppressants and anti-cancer 

agents have been studied [59-62]. Since GFJ presumably lacks systemic adverse effects that could be 

encountered with other CYP3A4 inhibitors (e.g., erythromycin, cimetidine, ketoconazole), GFJ has 

been proposed as an ideal substance. Due to highly variable concentrations of furanocoumarins in 

GFJ, concomitant intake with a random GFJ product off the grocery store shelf is not recommended. 

DHB has been marketed as a dietary supplement capable of “enhancing absorption naturally” of other 

concomitantly ingested supplements. A product with a known, consistent quantity of DHB and/or 

other potent GFJ inhibitors may be more acceptable. A modeling approach could be useful in 

predicting pharmacokinetics and assessing the clinical utility of these products in combination with 

drug therapy. 

Despite a massive accumulation of research on GFJ, many questions remain. PBPK modeling 

and simulation can inform the design of future in vitro and in vivo studies to predict interactions 
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prospectively or elucidate possible underlying mechanisms. Although several limitations and 

knowledge gaps are acknowledged, the approach described in this work underscores the need for 

appropriate strategies to investigate not just GFJ but other less understood natural products 

increasingly used as therapeutic agents in combination with drugs. 
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Table 4.1  Summary of Eligible Clinical Interaction Studies 

 

CYP3A4 

Substrate 

No. 

of 

Subjects 

Proportion  

of 

Women 

Age 

Range 

(years) 

Weight 

Range 

(kg) Ethnicity 

Substrate 

Dose 

(mg) 

GFJ 

Volume 

(mL) 

DHB  

in GFJ 

(μM) 

DHB 

“Dose” 

(mg) 

BG  

in GFJ 

(μM) 

BG 

“Dose” 

(mg) 

Reference 

Midazolam 25 0.16 20-46 NR NR 6 300
a
 6.7 0.75 29 2.94 14 

Felodipine 18 0.50 
M: 24-63 

W: 22-53 

M: 60-101 

W: 57-129 

AA: 

1 M, 2W 
10 240 30.8 2.75 28.0 2.27 15 

 

12 0 18-40 NR Caucasian 10 250 26 2.45
b
 NM -- 33 

 

12 0.17 
M: 18-20 

W: 20-40 
NR NR 10 250 42 3.91 28 2.36 34 

 

12 0 20-27 51-78 
Han 

Chinese 
10 250 1.0 0.093 18.8 1.59 35 

 

10 0.50 21-32 NR NR 10 240 23 2.05 16 1.29 36 

 

5 0.60 20-37 65-77 NR 10 240 43 3.75 27 2.18 38 

GFJ, grapefruit juice; DHB, 6’,7’-dihydroxybergamottin; BG, bergamottin; NM, not measured; NR, not reported (assumed to be 70 kg or 

Caucasian); M, men; W, women; AA, African American 

a
 GFJ administered 2 h before substrate. GFJ ingested with substrate in all other studies 

b
 Combined DHB concentration in supernatant (1.85 mg) and particulate (0.6 mg) 

1
8
1
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Table 4.2   Input Data for Substrate Files in Simcyp
®
 

 

Property Midazolam
a
 

Felodipine (Method  

or Reference) 

Physicochemical   

   Molecular weight (g/mol) 325.8 384.26 (ADMET Predictor) 

   LogP 3.53 4.81 (ADMET Predictor) 

   Compound type Ampholyte Neutral 

   pKa 1 

   pKa 2 

10.95 

6.2 
 

   B/P 0.603 0.70 (39, 40) 

   fu,plasma 0.032 0.0048 (41, 42) 

Absorption   

   Model type Advanced 

Compartmental 

Absorption & Transit 

(ACAT) 

Advanced Dissolution, 

Absorption & Metabolism 

(ADAM) 

   fu,gut 1 1
c
 

   fa 1 1 (43)  

   ka (h
-1

) 2.5  3.3 (13) 

   Permeability (×
 
10

-6
 cm/s) 

    Caco-2 cells 

 

213 

 

22.9 (44) 

Distribution   

   Model type Full PBPK Full PBPK 

   Vss (L/kg) 4.6
b
 17

b
 

Elimination   

   Pathway 1 

   Vmax, CYP3A4 (pmol/min/pmol rCYP) 

   Km, CYP3A4 (µM) 

   fu,inc, CYP3A4 

1’-Hydroxylation 

5.23 

2.16 

1 

Dehydrogenation 

36.8 (47) 

0.94 (47) 

1 

   Pathway 2 

   Vmax, CYP3A4 (pmol/min/pmol rCYP) 

   Km, CYP3A4 (µM) 

   fu,inc, CYP3A4 

4-Hydroxylation 

5.2 

31.8 

1 

 

   Additional clearance Intestine Intestine 

   Cl,int (µL/min/pmol rCYP3A) 6.8
d
 (40) 23.4 (40)

d
 

a
 Simcyp

®
 provided (Sim-Midazolam file) except Cl,int 

b
 Predicted using Method 2: Rodgers and Rowland [46, 47] 

c
 Assumed [43] 

d
 Human intestinal microsomes prepared by enterocyte elution 

LogP, logarithm of the octanol-water partition; pKa, acid dissociation constant; B/P, blood to plasma 

partition ratio; fu,plasma, unbound fraction of substrate in plasma; fu,gut, unbound fraction of substrate in 

enterocytes; fa, fraction available to be absorbed from dosage form; ka, first-order absorption rate 
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constant; Vss, volume of distribution at steady state using tissue volumes for a population 

representative of healthy volunteers; Vmax, maximum rate of metabolite formation; rCYP, recombinant 

CYP; Km, Michaelis-Menten constant; fu,inc, unbound fraction in incubation; Clint, intrinsic clearance 

(uncorrected for fu, inc) 
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Table 4.3   Input Data for Inhibitor Files in Simcyp
®
 

 

Property DHB (Method or Reference) 
Bergamottin (Method or 

Reference) 

Physicochemical   

   Molecular weight (g/mol) 372.42 (ADMET Predictor) 338.41 (ADMET Predictor) 

   LogP 2.79 (ADMET Predictor) 5.44 (ADMET Predictor) 

   Compound type Diprotic Acid Neutral 

   pKa 1 

   pKa 2 

13.58 

12.80 

(ADMET Predictor) 

 

   B/P 0.61 (ADMET Predictor) 0.59 (ADMET Predictor) 

   fu,plasma 0.062 (ADMET Predictor) 0.01
a
  

Absorption    

   Model type Advanced Compartmental 

Absorption & Transit (ACAT) 

First-Order Absorption 

   fu,gut 1
b
 0.1

c
 

   fa 1
a
  0.82

a
 

   ka (h
-1

) 2.55
a
  0.57

a
 

   Permeability (×
 
10

-6
 cm/s) 

    Caco-2 cells 

 

64 (20) 7.4 (20) 

Distribution   

   Model type Full PBPK Minimal PBPK 

   Vss (L/kg) 1.69
d
 184.2

d
 

Elimination   

   Vmax, rCYP (pmol/min/rCYP) 

   Km, rCYP (µM) 

   fu,inc 

9 (Estimated) 

2 (Estimated) 

1 

11 (Estimated) 

6 (Estimated) 

0.01
c
 

Interaction type   

   Competitive Inhibition    

    Ki, CYP3A4 (µM) 

    fu,inc, CYP3A4 

CYP3A4 

0.5
e
 (49) 

 0.48 (49) 

CYP3A4 

6.1
e
 (49) 

 0.01
c
 (49) 

   Mechanism-Based Inhibition       

    Kapp, CYP3A4 (µM) 

    kinact, CYP3A4 (h
-1

) 

    fu,inc, CYP3A4 

CYP3A4 

1.1 (49) 

24.6 (49)
 

0.48 (49) 

CYP3A4 

0.7 (49) 

42 (49) 

0.01
c
 (49) 

a
 Simcyp predicted

 

b
 Assumed [43] 

c
 Assumed 

d
 Predicted using Method 2: Rodgers and Rowland [46, 47] 

e
 Inhibition kinetics of DHB and bergamottin toward midazolam 1’-hydroxylation activity in 

recombinant CYP3A4  



185 
 

DHB, 6’,7’-dihydroxybergamottin; LogP, logarithm of the octanol-water partition; pKa, acid 

dissociation constant; B/P, blood to plasma partition ratio; fu,plasma, unbound fraction of substrate in 

plasma; fu,gut, unbound fraction of substrate in enterocytes; fa, fraction available from dosage form; ka, 

first-order absorption rate constant; Vss, volume of distribution at steady state using tissue volumes for 

a population representative of healthy volunteers; Vmax, maximum rate of metabolite formation; rCYP, 

recombinant CYP; Km, Michaelis-Menten constant; fu,inc, unbound fraction in incubation; Ki, 

concentration of inhibitor required to achieve half maximal inhibition; Kapp or KI, concentration of 

mechanism-based inhibitor associated with half maximal inactivation rate;  kinact, inactivation rate of 

enzyme  
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Table 4.4   Comparison of Observed and Predicted Systemic Midazolam Exposure 
 

                       AUC0-8h (nM·h) 

 

Predicted Observed 

 

Mean 

(SD) 

Mean Ratio 

(SD) 

Mean 

(SE) 

Mean Ratio 

(SE) 

 

 

DHB/Control
 

DHB+BG/Control
 

GFJ/Control 

  Control
a
 

  

  DHB 0.75 mg 

       

  + BG 2.94 mg 

154 

(63.2) 

176 

(73.7) 

274 

(119) 

1.14 

(0.02) 

 

 

 

 

1.79 

(0.34) 

199 

(22.1) 

328 

(37.1) 

 

 

1.65 

(0.04) 

 

SE, standard error; SD, standard deviation; DHB, 6’,7’-dihydroxybergamottin; BG, bergamottin; +, 

DHB plus BG; AUC0-8, area the curve from time zero to 8 h 

a
 Greenblatt et al., 2003 [14] 
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Table 4.5   Comparison of Predicted and Observed Systemic Felodipine Exposure 

 

                       AUC (nM·h) 

 

Predicted Observed 

 

Mean 

(SD) 

Mean 

Ratio 

(SD) 

Mean 

(SE) 

Mean 

Ratio 

(SD) 

Reference 

  Treatments 

 

DHB/Control
 

DHB+BG/Control
 GFJ/Control 

 

Paine et al., 2006 (15)  

  Control
a
 

  

  DHB 2.75 mg 

       

  + BG 2.27 mg 

 

 

25
b, c

 

(5-100)
d
 

67
b, c

 

(8-238)
d
 

186
b, c

 

(36-765)
d
 

 

 

2.18
c
 

(1.43-3.46)
d
 

 

 

 

 

 

 

7.45
c
 

(2-24)
d
 

 

 

54
b, c

 

(29-150)
d
 

110
b, c

 

(58-270)
d
 

2.03 

Bailey et al., 1998 (34) 

  Control 

 

  DHB 2.45 mg 

 

22 

(13) 

43 

(30) 

 

 

 

1.93 

(0.22) 

 

 

--- 

 

53
e
 

(7) 

130
e
 

(15) 

 

 

2.45 

Bailey et al., 2000 (35) 

  Control 

 

  DHB 3.91 mg 

 

  + BG 2.36 mg 

 

18 

(11) 

51 

(32) 

106 

(58) 

 

2.76 

(0.43) 

 

 

 

 

 

6.39 

(2.1) 

 

25
f
 

(5) 

54
f
 

(8) 

2.16 

Guo et al., 2007 (36) 

  Control 

 

  DHB 0.093 mg 

 

  + BG 1.59 mg 

 

33 

(17) 

34 

(18) 

112 

(56) 

 

1.03 

(0.01) 

 

 

 

 

 

3.42 

(0.7) 

 

64
e
 

(27)
f
 

126
e
 

(48)
f
 

1.97 

Malhotra et al., 2001 (37) 

  Control
a
 

 

  DHB 2.05 mg 

 

  + BG 1.29 mg 

 

29 

(18) 

54 

(39) 

123 

(82) 

 

1.80 

(0.19) 

 

 

 

 

 

4.27 

(1.0) 

 

38.6
b
 

(5.5) 

74.7
b
 

(8.8) 

1.93 

Kakar et al., 2004 (38) 

  Control
a
 

   

  DHB 3.75 mg 

 

  + BG 2.19 mg 

25 

(14) 

70 

(39) 

154 

(80) 

 

 

2.80 

(0.47) 

 

 

 

 

 

6.65 

(2.2) 

 

39.1
h
 

(20.4)
g 

99.5
h
 

(49.4)
g
 

 

 

 

 

 

 

4.0 

(4.1)
j
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AUC, area the curve; SD, standard deviation; SE, standard error; DHB, 6’,7’-dihydroxybergamottin; 

BG, bergamottin; GFJ, grapefruit juice; +, DHB plus BG; NR, not reported  

a
 Control = Orange juice (OJ) 

b
 AUC0-24, area the curve from time 0 to 24 h 

c
 Median  

d
 Range 

e
 AUC0-12, area the curve from time 0 to 12 h 

f
 AUC0-8, area the curve from time 0 to 8 h 

g
 SD 

h
 AUC0-last, area the curve from time 0 to time corresponding to last measurable concentration 

i
 Aqueous extract of GFJ (serum)  

j
 AUC ratio GFJ/OJ   
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a      b 

             

 

 

 

c      d 

  

 

Fig. 4.1.  Structures of midazolam (a), felodipine (b), 6’,7’-dihydroxybergamottin (c), and bergamottin 

(d). 
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Fig. 4.2.   Observed midazolam plasma concentration-time profile following administration of water (●) 

and GFJ (●) and simulated midazolam plasma concentration-time profiles following administration of 

DHB (―) and DHB plus BG (―) (a) and same profiles in semi-log scale (b). Data points denote 

observed mean values extracted from a published clinical study (13). Solid lines and dashed lines denote 

the mean profile and 90% confidence intervals of 10 trial simulations (n = 25 per trial, n = 250 total). 
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         a             Paine et al., 2006                  b                Bailey et al., 1998        c                  Bailey et al., 2000 

 

                   

      d            Guo et al., 2007      e Malhotra et al., 2001   f Kakar et al., 2004 
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                         g        Paine et al., 2006         h                Bailey et al., 1998              i                  Bailey et al., 2000 

 

                     

                  j    Guo et al., 2007        k        Malhotra et al., 2001              l   Kakar et al., 2004 
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Fig. 4.3. Observed felodipine plasma concentration-time profile following administration of water or orange juice control (●) and GFJ (●) 

and simulated felodipine plasma concentration-time profile following administration of DHB (―) and DHB plus BG (―) (a-f) and same profiles 

in semi-log scale (g-l). Data points denote observed mean values extracted from published clinical studies. Solid lines and dashed lines denote the 

mean profile and 90% confidence intervals of 10 trial simulations (a, n = 180 total; b, c, d, n = 120 total each; e, n = 100 total; f, n = 50 total). 
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Fig. 4.4.  Comparison of observed and simulated mean AUC ratios of selected clinical GFJ-drug 

interaction studies. DHB was given alone (a) then with BG (b) in the simulations. Symbols and 

denote mean AUC ratios. Horizontal and vertical error bars denote standard deviations of observed 

and simulated mean AUC ratios, respectively, of clinical studies (■, midazolam; ▲, felodipine). 

Numbers denote reference number. Solid line denotes line of unity. Dashed lines denote two-fold 

boundaries. 
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CHAPTER 5 

CONCLUSIONS 

 The daily act of consuming food is integral to how the body responds to foreign substances 

such as environmental toxins and pharmacologic agents. The activity of drugs and dietary substances 

can be linked, as they share the same processes of absorption, distribution, metabolism, and excretion 

[1]. Since most of the drugs used in pharmacotherapy are administered orally, the bioavailability and, 

ultimately, efficacy and safety of these compounds can be influenced by transport and metabolism in 

the intestine, a critical barrier that must be overcome. Fruit juices, an extensively marketed food 

product, have been shown to contain constituents that modulate intestinal drug metabolizing enzymes 

(e.g., cytochrome P450s) and transport proteins (e.g., organic anion transporting polypeptides), 

leading to altered pharmacokinetics of victim drugs. Fruit juice-drug interactions have become 

increasingly recognized for both new and established medicines.  Thus, improvements, and eventual 

standards, in experimental design and interpretation of such interaction studies are needed to evaluate 

clinical relevance. Although robust in vitro and in vivo methods (such as those used in drug 

development) are available to screen for interaction liability and to elucidate underlying mechanisms, 

cited interactions (or lack thereof) purported to occur are of questionable validity, as highly variable 

components can contribute to various magnitudes of effect on multiple drugs. Such a “one-brand-fits-

all” approach is inappropriate, as complex bioactive ingredient composition undoubtedly contributes 

to the lack of replication and discrepancies between in vitro predictions and in vivo observations. 

 The overall goal of this dissertation project was to develop a framework for how to conduct 

research on dietary substance-drug interactions using in vitro, in vivo, and in silico methods. These 

three approaches were discussed in the context of grapefruit juice (GFJ), which was used as a model 
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dietary substance. Although GFJ has been studied for more than 20 years, new insights continue to be 

uncovered. The majority of GFJ-drug interactions to date have focused on those mediated by 

intestinal cytochrome P450 3A4 (CYP3A4), but a more recently discovered mechanism involving 

inhibition of organic anion-transporting polypeptides (OATPs) has been identified for several 

clinically important drugs [2]. In vitro and in vivo methods were applied to the study of this 

mechanism. The ‘GFJ effect’ mediated by CYP3A4 was revisited using in silico methods. Major 

observations, novelties, limitations, and future studies of each application are discussed. 

In Vivo: Evaluation of Furanocoumarins and Polymethoxyflavones as Major Mediators 

of the GFJ-Fexofenadine Interaction in Healthy Volunteers 

Evaluation of the inhibitory effects of specific juice components on intestinal OATP activity 

in vivo can pose a challenge in the clinical setting. Although specific constituents can be administered 

as a single phytochemical entity [3] or mixture of select entities, one or a few candidate(s) is(are) 

unlikely to explain fully the collective activity of hundreds of other potential inhibitors. Select GFJ 

flavonoids (naringin, naringenin, hesperidin, hesperetin, quercetin, tangeretin, nobiletin) and 

furanocoumarins (6’,7’-dihydroxybergamottin, bergamottin) have been identified as OATP inhibitors 

in vitro [3-5]. Only naringin, given as a single entity in aqueous solution form, has been shown to 

contribute, in part, to the interaction in vivo. Taken together, the causative ingredients mediating the 

OATP-mediated GFJ-fexofenadine interaction in humans were investigated in Chapter 2. 

A food-grade GFJ devoid (> 97-99%) of furanocoumarins and polymethoxyflavones (mGFJ) 

was used to evaluate these compounds as inhibitors of enteric OATP-mediated uptake of 

fexofenadine in 18 healthy volunteers and OATP-transfected cells. Compared to water, both mGFJ 

and GFJ decreased fexofenadine geometric mean AUC and Cmax, by ~25%, with no effect on terminal 

half-life. Furanocoumarins and polymethoxyflavones have been identified as OATP inhibitors in vitro 

[3, 4]. Similar effects by both juices on fexofenadine pharmacokinetics indicated that 

furanocoumarins and polymethoxyflavones are not major mediators of the GFJ-fexofenadine 

interaction in vivo. The GFJ used in this in vivo approach provided a unique tool that allowed 
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assessment of particular GFJ compounds in aggregate. The clinical study was designed to address 

common limitations encountered in most fruit juice-drug interaction studies: relevant/suspected 

bioactive constituent(s) not measured by a validated analytical method, sample size not justified by a 

power calculation, blood sampling times not appropriate, and/or a dosing regimen not reflective of 

‘real world’ scenarios. The effects of mGFJ and GFJ extracts on OATP1A2 and OATP2B1 uptake 

activity were compared in transfected cells using estrone 3-sulfate and fexofenadine as probe 

substrates. If possible, in vitro experiments mirroring the clinical situation should be conducted before 

initiating a clinical study. Such investigations can provide predictive and mechanistic insight. 

Preliminary in vitro studies with estrone 3-sulfate mimicking clinical conditions showed similar 

OATP1A2/2B1 inhibitory behavior between both juices (~50% inhibition vs. vehicle). Follow-up in 

vitro experiments with fexofenadine mimicking the clinical setting showed similar extents of 

OATP1A2 (but not OATP2B1) inhibition by both juices (~25%) compared to that observed in 

healthy volunteers (~25%). The in vitro and in vivo results agreed in this case, but even if they had 

not, at least the aforementioned study limitations could be eliminated as possible confounding factors. 

The following future directions are recommended based on the implications of these studies: 

a. Results of the GFJ-mGFJ-fexofenadine clinical study suggest other flavonoids as enteric 

OATP inhibitors. Naringin, naringenin, quercetin, and hesperidin have been shown to inhibit 

intestinal OATP activity in vitro [3, 4]. Only naringin has been shown to contribute (partly) to 

the GFJ-fexofenadine interaction in vivo [3]. GFJ contains other flavonoids (e.g., narirutin, 

didymin, poncirin) [6] that may have inhibitory potential toward OATPs but remain 

unexplored in vitro and in vivo. The effect of a GFJ devoid of flavonoids or a mixture of 

select purified flavonoids in various combinations (prepared in concentrations equivalent to 

that present in selected GFJ) on fexofenadine could be compared in healthy volunteers. 

Screening in vitro inhibition studies and analysis of flavonoid content in GFJs should be 

conducted before and/or during clinical investigations.  
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b. Although fexofenadine was used as an OATP probe substrate in the current study, the in vivo 

effect of furanocoumarins, polymethoxyflavones, and other flavonoids on other currently 

marketed OATP substrates (e.g., celiprolol, talinolol, atenolol, levofloxacin, ciprofloxacin, 

aliskiren, statins) has not been investigated in healthy (or diseased) populations. For some of 

the drugs, clinical GFJ interaction studies have not been conducted or reproduced; reported 

studies have involved orange juice. After establishing a clinical pharmacokinetic effect of 

whole GFJ in humans, a similar approach described in Chapter 2 for the aforementioned 

drugs could be applied to identify causative ingredients. 

c. The mGFJ has potential utility as a tool to discern the effects of causative ingredients on drug 

disposition. The mGFJ has been used to investigate other mechanisms underlying the ‘GFJ 

effect’ (i.e., CYP3A4-mediated, P-gp-mediated) [7, 8]. GFJ has been shown to inhibit other 

drug metabolizing enzymes in vitro and in rats such as esterases [9, 10] and sulfotransferases 

[11, 12]. The mGFJ could be used to evaluate the causative ingredients of these non-CYP-

mediated mechanisms if a clinically relevant drug has been identified (e.g., esterase – 

lovastatin, enalapril, clopidogrel).  

In Vitro: Bioactivity-Guided Fractionation of GFJ and Evaluation of Representative 

Components as Inhibitors of an Intestinal Organic Anion-Transporting Polypeptide 

Despite the abundance of knowledge on GFJ amassed over two decades, the various 

components that comprise this beverage continue to reveal new information, demonstrating effects on 

critical mechanisms needed to eliminate drugs from the body. The GFJ-mediated decrease in drug 

absorption via inhibition of intestinal organic anion transporting polypeptides (OATPs) is one of the 

most widely studied transporter-based dietary substance-drug interactions. However, only a handful 

of GFJ constituents capable of inhibiting OATP have been assessed in vitro (and even less in vivo). In 

Chapter 2, other flavonoids retained in the mGFJ represent candidate enteric OATP inhibitors. 

However, hundreds of compounds are in this class. The difficulty in identifying inhibitors arises from 

the complex composition of GFJ. The “cherry-picking” approach to studying individual causative 
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ingredients contributed to the >15 years elapsed to establish furanocoumarins, in aggregate, as 

CYP3A inhibitors in vivo [7]. The in vitro studies in Chapter 3 were designed to streamline the 

process. A method routinely used in the natural products field, bioactivity-guided isolation, was used 

to identify, systematically, OATP inhibitors in GFJ. Organic-soluble fractions generated from an 

extract of a commercially available GFJ product were evaluated as inhibitors of OATP2B1-mediated 

uptake using stably transfected Madin-Darby canine kidney type II (MDCKII) cells and estrone 3-

sulfate as the probe substrate. Advanced rounds of fractionation of active pools and subsequent 

complete structure characterization were not possible due to inadequatematerial. A starting volume of 

>100 L of the same lot of grapefruit juice would have been sufficient but was impractical to obtain. 

Such a limitation demonstrated that juice is not ideal material for fractionation due to high content of 

water, sugar, and preservatives, as well as possible contamination with juices of other fruits [13]. As a 

consequence, dried whole grapefruit should be used in future studies, as such a material is less 

cumbersome analytically and can be vouchered, permitting verification (a common problem in natural 

products research) of the identity of the specific plant used in a study. Nevertheless, the in vitro 

approach taken in Chapter 3 was, to the author’s knowledge, the first to fractionate juice material 

(GFJ in this case) to identify intestinal OATP inhibitors (OATP2B1 in particular) using an 

overexpressing cell system. A similar approach was taken to identify CYP3A inhibitors in cranberry 

and liver OATP1B1/1B3 inhibitors in Rollinia emarginata [13, 14]. These examples illustrate that 

bioactivity-guided isolation assays can be designed according to the mechanism, appropriate cell 

system, and probe(s) of interest. Given the lack of individual isolated compounds from the 

fractionation procedure, known GFJ constituents were evaluated for OATP2B1 inhibitory potency in 

vitro. This assessment should be routine in combination with bioactivity-guided isolation. The 

ultimate goal of this isolation procedure is to 1) remove inhibitory ingredients (similar to mGFJ) to 

test clinically, 2) select individual/combinations of purified ingredients to test clinically, and/or 3) 

discover new juice manufacturing techniques (heat, microbial additives, plant engineering) to produce 

low amounts of one or more ingredients [15].  
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Additional future directions are recommended as a follow-up to these studies: 

a. Although estrone 3-sulfate was used as the probe substrate in the isolation and potency 

assays, other, clinically relevant drugs could be tested (e.g., celiprolol, talinolol, atenolol, 

levofloxacin, ciprofloxacin, aliskiren, some statins), as a particular OATP substrate may yield 

a different set of OATP inhibitors. Although OATP2B1 was the focus of the assays in 

Chapter 3, OATP1A2 is another intestinal OATP of emerging interest. The role of OATP1A2 

in the transport of the aforementioned drugs has not been elucidated fully. Thus, for a given 

OATP substrate, the set of inhibitors for OATP1A2 versus OATP2B1 may be different. 

b. Orange and apple juice have been shown to inhibit intestinal OATP in vitro and in vivo [16]. 

Although candidate causative ingredients in orange (hesperidin) and apple (phloridzin, 

phloretin) juices have been identified, the list is not comprehensive. Other juices studied as 

potential perpetrators of drug interactions include cranberry and pomegranate juices 

(Appendix B and C), which have not been evaluated as OATP inhibitors in vivo. Bioactivity-

guided isolation could be used to identify intestinal OATP inhibitors in these non-grapefruit 

juices. 

c. Although the “GFJ effect” (initially defined as CYP3A-mediated interactions) has been 

expanded over the years to include esterases, sulfotransferases, P-glycoprotein, OATP, and 

multidrug resistance-associated protein (MRP) 2, other mechanisms such as those mediated 

by intestinal breast cancer resistance protein (BCRP), organic solute transporter (OST) α/β, 

and other MRPs could be evaluated. Due to the availability of stably transfected systems 

expressing the aforementioned transporters, the effect of GFJ and individual compounds can 

be examined in vitro.   

In Silico: Evaluation of Select GFJ Constituents as Marker Compounds Predictive of 

the GFJ Effect 

Dietary substances are complex mixtures of multiple bioactive ingredients and may not 

always produce similar, reproducible results. An increased understanding of the causative bioactive 
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components and pharmacokinetic mechanisms is required to provide firm recommendations on how 

to manage food-drug interactions. The first step is rigorous in vitro characterization of a given dietary 

substance prior to conducting statistically powered human studies designed to evaluate drug 

interaction liability. Ultimately, the in vivo scenario is of the greatest concern. How does this leap 

from in vitro data to in vivo evaluation occur? In silico tools can provide an early, as well as 

retrospective, assessment of drug interaction potential based on in vitro and in vivo data. Several 

physiologically-based pharmacokinetic (PBPK) models, including a description of intestinal 

processes, have been applied for predicting oral pharmacokinetics [17]. The commercially available 

software platform Simcyp
®
 was used to evaluate the furanocoumarins 6’,7’-dihydroxybergamottin 

(DHB) and bergamottin as candidate marker substances predictive of CYP3A4-mediated GFJ-drug 

interactions. In vitro, in vivo, and in silico-derived parameters describing absorption, distribution, 

metabolism, and excretion properties of the model oral CYP3A4 substrates midazolam and felodipine 

and the candidate furanocoumarins were collected from literature and implemented in Simcyp
®
. DHB 

alone was predictive of midazolam and felodipine mean AUC ratios (within two-fold) compared to 

observed clinical data. The addition of bergamottin overpredicted felodipine mean AUC ratios (two- 

to four-fold), highlighting a deficiency in the understanding of bergamottin behavior. Nevertheless, 

the in silico approach taken in Chapter 4 to evaluate GFJ ingredient-drug interactions is one of the 

few to take GFJ ingredient composition into account and the first to incorporate actual, realistic 

amounts of DHB and bergamottin intake into a PBPK interaction model [18-20]. 

A number of future directions are recommended by the results of these studies: 

a. Enzyme kinetics describing metabolism of DHB and bergamottin were estimated from 

software and sparse clinical data. The Km and Vmax of DHB and BG should be determined 

experimentally to improve accuracy of the model. 

b. Inhibitory kinetics of DHB and bergamottin specific to felodipine should be determined 

experimentally in human intestinal microsomes and recombinant CYP3A4. 
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c. The effect of DHB and bergamottin has not been elucidated in CYP3A5 expressers in vitro 

and in vivo. In vitro studies with DHB and bergamottin using CYP3A5-expressing human 

intestinal microsomes and recombinant CYP3A5 could be performed. The effect of DHB, 

bergamottin, and/or whole GFJ could be evaluated in humans who have been genotyped for 

CYP3A5 variant alleles (e.g., CYP3A5*3).  

d. If sufficient in vitro and in vivo data become available, other potent furanocoumarins (e.g., 

furanocoumarin dimers) could be evaluated as other GFJ effect predictors.  

e. Given the abundance of other GFJ-CYP3A substrate interactions studied clinically, 

retrospective analysis using the validated model could be performed. For example, the 

Simcyp
®
 substrate library contains a number of CYP3A substrates. Once DHB and 

bergamottin inhibitor files are confirmed, a virtual trial could be conducted. One drawback is 

that most clinical studies did not report the concentration of DHB and/or bergamottin in the 

test GFJ. Because the range of concentrations in commercial GFJs is known, it may be 

possible to input a range of DHB and/or bergamottin “doses”, compare the substrate 

exposures, and  back-calculate a possible concentration (range) in the clinical test juice.   

f. Assuming sufficient in vitro and in vivo data have been collected for a previously unassessed 

CYP3A substrate, a potential GFJ-CYP3A substrate interaction could be prospectively 

predicted and inform anticipated clinical studies. 

g. Predicting the impact of GFJ on dual CYP3A/P-gp and P-gp/OATP or OATP substrates (e.g., 

talinolol, cyclosporine, loperamide) could be evaluated using modeling and simulation. 
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EPILOGUE 

A substance intended for use in the diagnosis, cure, mitigation, treatment, or prevention of 

disease is defined as a drug and subjected to a battery of regulatory reviews. Natural products 

continue to provide a basis for health care and medicine to approximately 80% of the world 

population [21], even though the scientific evidence supporting their use has been weak, scant, or 

nonexistent. Today’s myriad foods are laden with “wellness aids” (i.e., the latest touted superfoods) 

or marketed heavily to reduce the risk of disease. Some food ingredients have been formulated as 

solid dosage forms and are sold alongside conventional over-the-counter medications, leading to 

misconceptions that these dietary supplements are therapeutic substitutes. Regular consumption of 

botanically-derived foods and supplements has fueled a global, multibillion-dollar industry, which is 

largely unregulated. The majority of phytochemicals is untested, and, coupled with the steadily 

increasing trend of polypharmacy, the population is at risk for dietary substance-drug interactions. 

Given the conservative nature of the current scientific and economic climate, efficient and robust 

research methodologies are needed to sustain the rise in consumer demand for these products and 

clinicians’ concerns for patient safety monitoring. 

 This dissertation project specifically addressed fruit juices as perpetrators of dietary 

substance-drug interactions. The critical confounding factor of constituent composition in the context 

of interactions involving intestinal OATPs and CYP3A was the focus. The global objective of this 

research was to develop a framework (and establish some basic, required guidelines) for how to 

conduct research on dietary substances so that ultimately, associated risks can be better predicted, 

assessed, and managed. Results also highlighted the challenges that face scientists when trying to 

predict dietary substance-drug interactions. The aforementioned framework involves the adaptation of 

some guidelines for drug-drug interaction investigations [22], integrating data obtained from in vitro 

systems, in silico models, and clinical studies in an integrated manner to predict prospectively (and 

retrospectively) interactions. The intent is to ensure the same degree of confidence in quality and 

clinical utility as for drugs [23] but recognizing and accounting for the unique composition of natural 
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products. Based on the lessons gleaned from this dissertation and in light of the existing literature, a 

draft summary of recommendations and strategies relevant to inhibition-based interactions is 

presented in Figure 5.1 and Table 5.1.  

The importance of food-drug interactions has been gaining more attention, and researchers 

are trying to answer emerging concerns about the impact of food on drug metabolism/transport. 

Investigations of complex botanical products require collaboration from experts in botany, 

pharmacognosy/natural products chemistry, (clinical) pharmacology on the bench end and health care 

providers (e.g., prescribers, pharmacists, dietitians) on the beside end [24]. A multidisciplinary, 

translational research approach is necessary to explain fully these relatively unexplored types of drug 

interactions.   
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Figure 5.1. Considerations for the evaluation, interpretation, and conduct of natural product-drug 

interaction studies. 

Botanical 

Product 

 
Dietary 

Supplement 

 

What is the intended use? 

 Cosmetic 

 

Food  Drug 

 

Was the product subjected to analytical testing prior to use? 

Proof-of-concept 

clinical study 
Table 5.1.C 

 

Bioactivity-guided 

fractionation 

IC50 (or Ki) studies of 

individual compounds 

No 

Do the clinical 

and in vitro 

findings for the 

same interaction 

agree? 

Yes 

Has/Have the 

inhibitory 

constituent(s) 

been identified?  

 
Mechanistic in 

vitro studies 
Table 5.1.A 

Yes No 

See Table 5.1.A 

 

Verify product content via 

analytical methods (e.g., 

HPLC, MS) and confirm 

with product label. 

Mechanistic in 

vitro studies 

Does analysis of 

product content 

explain observed 

clinical/in vitro 

findings? 

Yes No 

Characterized? 

Clinical Observation Model-based (in 

silico) Prediction 

Start with in 

vitro, clinical, 

or in silico 

approach. 

See Table 5.1. 

Yes No 

Clinical 

AUC ratio ≥ 1.25 

In Vitro Observation 

Inhibition ≥ 50% 

of control activity 

Theoretical 

Evidence 

 

In Vitro 

Yes No 

Modeling and 

simulation 
Table 5.1.B 

See Table 5.1.A.a 

 

Yes No 

See Table 5.1.B 

 

See Table 5.1.C 

 

No 

Yes End 
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Table 5.1 

Minimum recommended requirements for conducting in vitro, clinical, and in silico studies 

For all studies, provide sufficient product information.  

 Commercially available: brand name, manufacturer, lot number, ingredients, preparation 

directions, manufacturing process, origins of growth and production 

 Freshly prepared: scientific name, quantity, plant part used, site of collection, preparation 

procedures, storage conditions 

 

A.   In Vitro Studies 

1. Use relevant cell system(s) based on mechanism(s) of interest (e.g., transfected cell line 

for transporters, pooled microsomes for metabolizing enzymes). 

2. Choose appropriate probe substrate(s) and concentration. 

3. Test negative and positive control inhibitors. 

 

   a.   Bioactivity-guided fractionation 

 1.  Obtain ≥ 1 kg of plant material
†
 or ≥ 100L of liquid material

‡
 (e.g., juice). 

 2.  Choose appropriate range of inhibitor concentrations.  

 

B. Clinical Studies 

1. Administer the same product brand and lot/batch to all subjects. 

2. Measure any relevant/suspected bioactive constituent(s) via a validated analytical method 

(including custom-synthesized product/plant).  

3. Justify sample size with power calculation. 

a. If pharmacogenetics is a variable, justify sample size. 

b. Randomize, blind (if possible), and administer a placebo. 

4. Establish appropriate sampling times for substrate and inhibitor(s). 

5. Impose dietary restrictions on the subjects during the study period. 

 

C. In Silico Studies 

1. Select appropriate program to execute model equations and perform simulations (e.g., 

acslX, MATLAB-simulink, Berkeley-Madonna, GastroPlus, Simcyp). 

2. Obtain observed plasma concentration-time profile(s). 

3. Elucidate physicochemical properties of substrate and product constituents. 
†
 vouchered specimen 

‡
 same lot/batch 
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APPENDICES 

 

APPENDIX A: PILOT STUDY EVALUATING POMEGRANATE JUICE AS AN INHIBITOR OF 

CYP3A ACTIVITY IN HEALTHY VOLUNTEERS 

 

METHODS 

Materials and chemicals. Pomegranate juice (brand D) was obtained from a local grocery store; 

brand D was selected based on results from preliminary studies [1] involving multiple brands of 

pomegranate juice (designated A-D), human intestinal microsomes, and midazolam 1’-hydroxylation 

as an index of CYP3A activity. Midazolam syrup was purchased from Roxane Laboratories, Inc. 

(Columbus, OH) and dispensed by the Department of Pharmacy’s Investigational Drug Services at 

the University of North Carolina Hospitals. Methanol, water, acetic acid, ammonium hydroxide, and 

acetonitrile were of the highest grade and purchased from Fisher Scientific, Inc. (Fair Lawn, NJ). 

Midazolam, 1’-hydroxymidazolam, and alprazolam were purchased from Sigma-Aldrich (St. Louis, 

MO). Blank human plasma used to prepare calibration standards and quality controls was purchased 

from Biological Specialty Corporation (Colmar, PA). 

Human Volunteer Study 

Study protocol and subjects. The study protocol was reviewed and approved by the University of 

North Carolina Office of Human Research Ethics/Biomedical Institutional Review Board and Clinical 

Research Advisory Committee. Written informed consent was obtained prior to participation. Three 

healthy men and three non-pregnant women were enrolled. The men were between 35 and 58 years-

old, and the women between 25 and 53 years-old. The participants were self-identified as white (2 

men, 3 women) and African American (1 man). Prior to enrollment, each participant underwent a 

medical history, physical exam, liver function tests, basic metabolic panel, and complete blood count. 

Each woman also underwent a pregnancy test. None of the participants were taking drugs known to 
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modulate of CYP3A activity, except for 1 woman (white) who was taking oral contraceptives. Other 

concomitant medications included hydrochlorothiazide (1 white woman) and multivitamin (1 white 

woman). All participants were non-smokers.  

Preparation of pomegranate juice (brand D). The selected pomegranate juice was fresh pressed 

and did not require reconstitution. The juice for each subject was dispensed from one 946 mL bottle 

of juice from the same lot. 

Study design. Eligible subjects participated in a prospective, randomized, crossover, open-label study 

conducted at the UNC General Clinical Research Center (GCRC). The participants were instructed to 

abstain from all fruit juices one week prior to and during the study and from alcohol and caffeinated 

beverages the evening prior to each study day. Participants were admitted to the GCRC the evening 

prior to each of two study phases, which were separated by at least one week. Following an overnight 

fast, each subject was administered three 240-mL glasses of water or pomegranate juice, each 

separated by a 15-min interval. The subject ingested 5 mg midazolam syrup with the third glass. 

Blood (7 mL) was collected by venipuncture from an indwelling catheter at the following times: pre-

dose, 0.25, 0.5, 1, 1.5, 2, 3, 4, 6, 8, and 12 h post-dose. Vital signs (blood pressure, temperature, 

pulse, respiration rate, and oxygen saturation) were obtained at baseline and monitored periodically. 

Participants returned for an outpatient blood draw at 24 h post-dose. Blood was centrifuged within 

one hour of collection; plasma was drawn into cryovials and stored at -20°C pending analysis for 

midazolam and 1’-hydroxymidazolam.  

Analysis of human plasma for midazolam and 1’-hydroxymidazolam. Concentrations of 

midazolam and 1’-hydroxymidazolam were determined using a modified, validated reverse-phase 

high-pressure liquid chromatography method with mass spectrometric detection [2, 3].  

Pharmacokinetic analysis. The pharmacokinetics of midazolam and 1’-hydroxymidazolam were 

evaluated by non-compartmental methods using WinNonlin (v 5.0.1, Pharsight Corp., Mountain 

View, CA). The terminal elimination rate constant (λz) was estimated by log-linear regression of at 

least three data points in the terminal phase. The terminal half-life (t½) was calculated as 0.693/λz. The 



219 
 

maximum concentration (Cmax) and time to reach Cmax (tmax) were obtained directly from the 

concentration-time profile. The AUC from time zero to 12 hours (AUC0-12) was determined using the 

trapezoidal rule with linear up/log down interpolation. The AUC from time zero to infinity (AUC0-∞) 

was determined by adding AUClast and Clast/λz. The apparent oral clearance of midazolam (Cl/F) was 

calculated as the ratio of dose to AUC0-∞. Below limit of quantification (BLQ) concentrations were 

excluded from the data analysis.  

Statistical analysis. The primary aim of the pilot clinical study was to calculate a point estimate and 

confidence interval of the difference (Δ) between water and pomegranate juice with respect to the 

disposition of midazolam. The study was exploratory in nature, and the sample size for the clinical 

study (n = 6) was deemed adequate. A two one-sided testing procedure, as recommended by the FDA 

Guidance for Industry regarding drug interaction studies, was utilized for testing [4]. Results are 

reported as 90% confidence intervals about the geometric mean ratios of the two observed 

pharmacokinetic measures, AUC0-∞ and Cmax. For juice and water comparisons, midazolam + 

pomegranate juice was considered the test agent (numerator) and midazolam + water as the reference 

standard (denominator). The treatment groups were considered “bioequivalent” if the 90% confidence 

intervals around the estimated geometric mean ratios of the observed AUC and Cmax were entirely 

within the 0.8 and 1.25 interval. Medians and ranges are reported for tmax. Geometric means and 

coefficients of variation are presented for Cmax, AUClast, AUC0-∞, Cl/F, and terminal t½. 
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RESULTS 

The effects of pomegranate juice D, a fresh pressed juice, were compared to water on the 

pharmacokinetics of midazolam in 6 healthy volunteers. Relative to water, the selected clinical test 

juice decreased the geometric mean Cmax of midazolam by 32% and increased median tmax (by 1.5-

fold).  The geometric mean AUC of midazolam was decreased minimally (by ~10%). The terminal 

half-life was unchanged (Fig. A.1, Table A.1). The ratio of the point estimates of Cmax and AUC did 

not meet bioequivalence acceptance limits.  
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Fig. A.1  Geometric mean concentration-time profile of midazolam (MDZ) and 1’-

hydroxymidazolam (1’-OH MDZ) for 6 healthy volunteers administered three 240-mL glasses of 

water or fresh pressed pomegranate juice brand D (POM) and a single dose of oral midazolam syrup 

(5 mg). Symbols and error bars denote geometric means and upper limits of the 90% confidence 

interval, respectively. The 6-h time point for MDZ during the water phase represents the geometric 

mean of 5 subjects.  
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Table A.1 

Pharmacokinetics of midazolam and 1’-hydroxymidazolam in six healthy volunteers 

 

Measure Treatment   

 

Water POM POM/Water Ratio 

 

 Geometric Mean (CV %) (90% CI) 

 

Midazolam 

  tmax (h) [median(range)] 1 (0.25-1) 1.5 (0.5-2) 

   Cmax (nM) 80.7 (42) 53.1 (18) 0.66 (-0.37-1.68) 

  AUClast (nM ·h) 213 (36) 228 (19) 1.07 (0.09-2.05) 

  AUC0-∞ (nM ·h) 236 (32) 255 (20) 1.08 (0.10-2.06) 

  t½ (h) 3.2 (29) 3.7 (32) 1.14 (0.57-1.70) 

  Cl/F (L/h) 65.1 (32) 60.1 (20) 0.92 (-0.06-1.90) 

1’-Hydroxymidazolam 

     tmax (h) [median(range)] 1 (0.5-1) 1.25 (0.5-2) 

   Cmax (nM) 30.0 (41) 13.8 (39) 0.46 (-1.01-1.93) 

  AUClast (nM ·h) 59.7 (30) 51.6 (37) 0.86 (-0.41-2.14) 

Metabolite/parent AUC ratio 

     (AUCm/AUCp)last 0.28 (8.5) 0.23 (12) 

 POM, pomegranate juice; tmax, time to maximum concentration (Cmax); AUClast, area under the curve 

from time zero to last measurable concentration; AUC0-∞, area the curve from time zero to infinity; t½, 

terminal half-life; Cl/F, apparent oral clearance  

Due to lack of sensitivity to measure concentrations of 1’-hydroxymidazolam at later time points and 

subsequent insufficient capture of the terminal phase, t½ and AUC0-∞ for 1’-hydroxymidazolam and 

(AUCm/AUCp)0-∞ were not calculable. 
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APPENDIX B: INHIBITION OF AN INTESTINAL ORGANIC ANION-TRANSPORTING 

POLYPEPTIDE BY ORANGE (Citrus  sinensis (L.) Osbeck), APPLE (Malus  domestica Borkh), 

AND POMEGRANATE (Punica granatum L.) JUICES  

 

METHODS 

Materials and chemicals. See Chapter 3. 

Juice extraction. A variety of orange, apple, pomegranate, and cranberry juice brands were 

purchased from a local grocery store. For each juice, two 50-mL polypropylene tubes were filled with 

~20 mL of juice. After adding ~20 mL of ethyl acetate to each tube, the tubes were shaken vigorously 

and centrifuged (5000 × g for 10 min at 25 °C). The upper organic layer was transferred to disposable 

glass tubes. This extraction process was repeated two more times for a total of three extractions for 

each juice. The ethyl acetate extract was dried under air and resuspended in methanol (500 μL) to 

yield a stock solution of 200X prior to testing. 

Cell culture conditions. See Chapter 3 

Screening of whole juice extracts for OATP2B1 inhibitory activity. See Chapter 3. Dosing 

solution (200 μL) consisted of radiolabeled plus unlabeled estrone 3-sulfate (total concentration, 0.5 

μM) and juice extract (1X, ‘single-strength’), the OATP inhibitor BSP (250 μM), or vehicle (2% 

methanol). Select whole juice extracts were tested at least three times on separate occasions to assess 

reproducibility. 

Data analysis. Uptake values were corrected for protein content. OATP2B1-mediated net uptake was 

calculated by subtracting uptake values in parental cells from those in OATP2B1-expressing cells 

incubated under parallel conditions. The percent of control OATP activity was calculated by dividing 

values from experiments in the presence of inhibitor by values from experiments in the presence of 

vehicle and multiplying by 100. 

Statistical analysis. Data are presented as means ± standard deviations of triplicate determinations. 
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RESULTS 

Extracts of orange, apple, pomegranate, and cranberry juices inhibited OATP2B1-mediated estrone 3-

sulfate uptake activity by up to 98% at 1X, relative to control (Fig. B.1). Orange juice brands A and B 

inhibited estrone 3-sulfate uptake by >98%. Apple juice brands A and B inhibited OATP2B1 activity 

by 56-86%. Pomegranate juice brand A inhibited estrone 3-sulfate activity by 86-100%. Cranberry 

juice brand A inhibited estrone 3-sulfate uptake activity by 65-86%.  
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Fig. B.1  Effects of orange, apple, pomegranate, and cranberry juice extracts (‘single-strength’, 1X) 

on OATP2B1-mediated uptake of estrone 3-sulfate in stably transfected MDCKII cells on three 

separate occasions (A-C). Control activities for A, B, and C were 12.2 ± 3.0, 13.3 ± 0.8, and 9.5 ± 2.2 

pmol/mg protein/2 min, respectively. * denotes juice used in a previous clinical study (pomegranate: 

Appendix A; cranberry: [3]). Bars and error bars denote means and SDs, respectively, of triplicate 

determinations. Bromosulfophthalein (BSP, 250 µM) and grapefruit juice extract (1X) were used as 

positive controls. 
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APPENDIX C: BIOACTIVITY-GUIDED FRACTIONATION OF ORANGE (Citrus  sinensis (L.) 

Osbeck), APPLE (Malus  domestica Borkh), AND POMEGRANATE (Punica granatum L.) 

JUICES TO IDENTIFY INHIBITORS OF ORGANIC ANION-TRANSPORTING POLYPEPTIDE 

2B1 
 

METHODS 

Materials and chemicals. See Chapter 3. 

Juice extraction. See Chapter 3. 

Cell culture conditions. See Chapter 3. 

Screening of juice fractions for OATP2B1 inhibitory activity. See Chapter 3. Dosing solution (200 

μL) consisted of radiolabeled plus unlabeled estrone 3-sulfate (total concentration, 0.5 μM) and juice 

fraction (10, 50, or 100 g/mL), the OATP inhibitor BSP (250 μM), or vehicle (0.5-1% methanol).  

Data analysis. Uptake values were corrected for protein content. OATP2B1-mediated net uptake was 

calculated by subtracting uptake values in parental cells from those in OATP2B1-expressing cells 

incubated under parallel conditions. The percent of control OATP activity was calculated by dividing 

values from experiments in the presence of inhibitor by values from experiments in the presence of 

vehicle and multiplying by 100. 

Statistical analysis. Data are presented as means ± standard deviations of triplicate determinations. 

 

 

 

 

 

 

 

 

 

 



228 
 

RESULTS 

The orange juice organic fraction contained the most active subfractions (A, G-J), which inhibited 

estrone 3-sulfate uptake by > 60% at 50 µg/mL (Fig. C.1). The butanol fraction inhibited estrone 3-

sulfate uptake by ~80% at 50 µg/mL. The organic, aqueous, and butanol fractions of apple juice 

inhibited estrone 3-sulfate uptake by ≥ 80% at 50 µg/mL (Fig. C.2). The organic fraction contained 

two active subfractions (D, E), which inhibited estrone 3-sulfate uptake by > 60%. The organic 

fraction of pomegranate juice was the most potent, inhibiting estrone 3-sulfate uptake by ≥ 40% at 10 

µg/mL (Fig. C.3). The butanol fraction inhibited estrone 3-sulfate uptake by ~40 and 75% at 50 and 

100 µg/mL, respectively. Further fractionation of the organic and butanol fractions yielded two and 

four active fractions, respectively. Organic subfractions (A, E) inhibited estrone 3-sulfate uptake by > 

60% at 50 µg/mL. Subfraction E inhibited by > 50% at 10 and 50 µg/mL. Butanol  subfractions (D-

G) inhibited estrone 3-sulfate uptake by ≥ 70 at 50 µg/mL. Subfractions E, F, and G inhibited by ≥ 

60% at 10 and 50 µg/mL. In general, concentration-dependent OATP2B1 inhibition within each 

treatment for each juice was observed. 
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A 

 

 

 

B 

 

 

 

 

Fig. C.1   Separation scheme for bioactivity-guided fractionation of orange juice extracts (A) and 

effects of juice extracts and fractions on OATP2B1-mediated uptake of estrone 3-sulfate in stably 

transfected MDCKII cells (B). Numbers in parentheses are weights in mg. Aq, aqueous; BuOH, 

butanol; Org, organic (ethyl acetate). Bars and error bars denote means and SDs of triplicate 

incubations. Control activity was 11.3 ± 1.4 pmol/mg protein/2 min. Bromosulfophthalein (BSP, 250 

µM) was used as a positive control and inhibited by 97%. 
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Fig. C.2   Separation scheme for bioactivity-guided fractionation of apple juice extracts (A) and 

effects of juice extracts and fractions on OATP2B1-mediated uptake of estrone 3-sulfate in stably 

transfected MDCKII cells (B). Numbers in parentheses are weights in mg. Aq, aqueous; BuOH, 

butanol; Org, organic (ethyl acetate). Bars and error bars denote means and SDs of triplicate 

incubations. Control activity was 100 ± 16 pmol/mg protein/2 min. Bromosulfophthalein (BSP, 250 

µM) was used as a positive control and inhibited by 98%. 
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Fig. C.3   Separation scheme for bioactivity-guided fractionation of pomegranate juice extracts (A) 

and effects of juice extracts and fractions on OATP2B1-mediated uptake of estrone 3-sulfate in stably 

transfected MDCKII cells (B). Numbers in parentheses are weights in mg. Aq, aqueous; BuOH, 

butanol; Org, organic (ethyl acetate). Bars and error bars denote means and SDs of triplicate 

incubations. Control activities in Rounds 1 and 2 were 5 ± 0.9 pmol/mg protein/2 min and 15.4 ± 2.4 

pmol/mg protein/2 min, respectively. Bromosulfophthalein (BSP, 250 µM) was used as a positive 

control and inhibited by 87 and 96%, respectively, in Rounds 1 and 2. 
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APPENDIX D: EVALUATION OF ATENOLOL AND CIPROFLOXACIN AS SUBSTRATES 

AND INHIBITORS OF ORGANIC ANION-TRANSPORTING POLYPEPTIDE 2B1 

METHODS 

Materials and chemicals. See Chapter 3. [2-
14

C]Ciprofloxacin (15 mCi/mmol) and [ring-
3
H]atenolol 

(5.1 Ci/mmol) were purchased from Moravek Radiochemicals (Brea, CA). Atenolol, ciprofloxacin, 

bromosulfophthalein (BSP), and D-glucose were purchased from Sigma-Aldrich (St. Louis, MO). 

Hanks’ balanced salt solution (HBSS) with calcium and magnesium was purchased from Mediatech 

Inc. (Hendon, VA).  

Cell culture conditions. See Chapter 3 

Transport assays in stably transfected MDCKII cells. Inhibition of estrone 3-sulfate by 

ciprofloxacin and atenolol. Dosing solution (200 μL) consisted of radiolabeled plus unlabeled estrone 

3-sulfate (total concentration, 0.5 μM) and ciprofloxacin or atenolol (5, 10, or 500 µM), the OATP 

inhibitor BSP (250 μM), or vehicle (0.04% methanol). Concentrations of atenolol and ciprofloxacin 

were chosen based on the only published information available, which were previous studies 

involving OATP1A2 and Oatp1a5 [5-7]. Cells were incubated for 2 min in pH 7.4 buffer at 37°C. 

Determination of OATP2B1 involvement in ciprofloxacin and atenolol uptake. Dosing solution (200 

μL) consisted of radiolabeled plus unlabeled ciprofloxacin (10 μM total) or atenolol (5 and 50 μM 

total). Cells were incubated over select time points up to 30 min in pH 6 and 7.4 buffer at 37°C.   

Data analysis. Uptake values were corrected for protein content. OATP2B1-mediated net uptake was 

calculated by subtracting uptake values in parental cells from those in OATP2B1-expressing cells 

incubated under parallel conditions. The percent of control OATP activity was calculated by dividing 

values from experiments in the presence of inhibitor by values from experiments in the presence of 

vehicle and multiplying by 100. 

Statistical analysis. Data are presented as means ± standard deviations of triplicate determinations. 
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RESULTS 

Ciprofloxacin and atenolol at 5, 10, and 500 µM did not inhibit OATP2B1-mediated estrone-3-sulfate 

uptake. Uptake studies with ciprofloxacin at pH 7.4 showed a 1.7-fold difference between OATP2B1-

transfected and parental MDCKII cells at 1 min. Amounts of ciprofloxacin decreased progressively 

thereafter over 30 min. Uptake studies with atenolol showed amounts decreasing progressively in all 

conditions after 1-2 min. Initial uptake studies with atenolol 5 and 50 μM at pH 6.0 showed a 1.4- and 

1.3-fold difference, respectively, between OATP2B1-transfected and parental MDCKII cells at 2 min. 

Uptake studies with atenolol 5 and 50 μM at pH 7.4 showed a 2.4- and 4.8-fold difference, 

respectively, between OATP2B1-transfected and parental MDCKII cells at 2 min. The (modified) 

repeat of one of the initial uptake studies with atenolol 5 and 50 μM (pH 7.4 only) showed no and a 

1.4-fold difference, respectively, between OATP2B1-transfected and parental MDCKII cells at 1 min.  
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Fig. D.1   Structures of atenolol (A) and ciprofloxacin (B) 
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Fig. D.2   Inhibition of estrone 3-sulfate uptake by ciprofloxacin and atenolol in stably transfected 

MDCK II cells. Control activity was 17.4 ± 2.9 pmol/mg protein/2 min. Bars and error bars denote 

means and SDs, respectively, of triplicate determinations. Bromosulfophthalein (BSP, 250 µM) was 

used as a positive control.  
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Fig. D.3   Uptake of ciprofloxacin (A) and atenolol (B) in stably transfected and parental MDCKII 

cells. Bars and error bars denote means and SDs, respectively, of triplicate determinations, except for 

10 min time point for atenolol 5 μM at pH 6 (n=2). * Uptake = 90.9 ± 21.2 pmol/mg protein/min.
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APPENDIX E: INTERDAY VARIABILITY OF ESTRONE 3-SULFATE TRANSPORT IN 

TRANSFECTED MDCKII CELLS EXPRESSING ORGANIC ANION-TRANSPORTING 

POLYPEPTIDE 2B1 

METHODS 

Materials and chemicals. See Chapter 3. 

Cell culture conditions. See Chapter 3. 

Uptake assay in stably transfected MDCKII cells. See Chapter 3. Cells were incubated for 2 min in 

pH 7.4 buffer at 37°C. 

Data analysis. Uptake values were corrected for protein content. OATP2B1-mediated net uptake was 

calculated by subtracting uptake values in parental cells from those in OATP2B1-expressing cells 

incubated under parallel conditions. The percent of control OATP activity was calculated by dividing 

values from experiments in the presence of inhibitor by values from experiments in the presence of 

vehicle and multiplying by 100. 

Statistical analysis. Data are presented as means ± standard deviations of triplicate determinations. 
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Table E.1    

Interday variability of OATP2B1-mediated estrone 3-sulfate uptake 

OATP2B1-MDCKII Cells 

Date  Methanol 

(%) 

Estrone 3-sulfate Uptake BSP Estrone 3-sulfate Uptake 

    (pmol/mg protein/2min)    (pmol/mg protein/2min)  

5/5/2011 2 12.2 ± 3.0 

250 

0.13 ± 0.1 

5/8/2011 1.7 13.3 ± 0.8 1.12* 

5/28/2011 0.5 9.5 ± 2.2 0.2 ± 0.2 

5/28/2011 1.7 10.9 ± 0.8 0 ± 0.2 

7/1/2011 1 3.08 ± 0.9 0.4 ± 0.1 

8/8/2011 0.5 15.1 ± 2.4 0.6 ± 1.0 

8/11/2011 0.5 98.8 ± 16 2.5 ± 0.8 

8/13/2011 0.5 10.7 ± 1.4 0.3 ± 0.1 

 

Values are means ± SDs. 

* Fruit juice testing in Appendices B and C. 

†
 n=2 

Bromosulfophthalein (BSP, 250 µM) was a positive control. 
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