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Abstract
EDWARD RICHMOND: Recursive structures in the cohomology of flag

varieties
(Under the direction of Prakash Belkale)

Let G be a semisimple complex algebraic group and P be a parabolic subgroup of G and

consider the flag variety G/P . The ring H∗(G/P ) has interesting combinatorial structures

with respect to the additive basis of Schubert classes. For example, if G = SL(n) and P is

a maximal parabolic, then G/P is a Grassmannian and the structure constants of H∗(G/P )

with respect to the Schubert classes are governed by Schur polynomials and the Littlewood-

Richardson rule. We consider the flag varieties associated to the groups G = SL(n) and

Sp(2n) and take P to be any parabolic subgroup (not necessarily maximal). We find

that H∗(G/P ) exhibits Horn recursion on a certain deformation of the cup product. Horn

recursion is a term used to describe when non-vanishing products of Schubert classes in

H∗(G/P ) are characterized by inequalities parameterized by similar non-vanishing products

in the cohomology of “smaller” flag varieties. We also find that if a product of Schubert

classes is non-vanishing on this deformation, then the associated structure constant can be

written as a product of structure constants coming from induced maximal flag varieties.

We also look at a generalization of Horn recursion to the “branching” Schubert calculus

setting. Consider a semisimple subgroup G̃ ⊂ G and an induced embedding of flag varieties

G̃/P̃ ↪→ G/P. We construct a list of necessary Horn conditions to determine when the

pullback of a Schubert class is nonzero in H∗(G̃/P̃ ).

ii



Acknowledgements

I would like to thank my advisor Prakash Belkale for his patience, guidance and for

nurturing my interest in mathematics. I would like to thank my committee for useful

conversations and their support. I would also like to thank the UNC math department

for taking me in and giving me the opportunity to pursue my interests. I would like

to thank Patrick Eberlein and Shrawan Kumar for their inspiration and enthusiasm in

teaching graduate mathematics. I also want to thank my fellow grad students in my class

for being good friends through tough times. I would like to say thank you to my parents

and brother for loving me. I would like to thank my wife Andrea for her loving support and

encouragement.

iii



Contents

Chapter

1 Introduction 1

1.1 Results for type A flag varieties . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Results for type C flag varieties . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Remarks on Levi-movability . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Branching Schubert Calculus and Horn recursion . . . . . . . . . . . . . . . 12

2 Preliminaries on partial flag varieties 16

2.1 Levi-movability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 The special linear group SL(n) . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 The symplectic group Sp(2n) . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Tangent spaces of flag varieties 30

3.1 Some complex linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Tangent space of F`(a, n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Tangent space of IF(a, 2n) . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Horn recursion for (H∗(G/P ),�0) . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 A list of dimensional inequalities for F`(a, n) . . . . . . . . . . . . . . . . . 51

4 Structure coefficients 55

4.1 Induced Schubert varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 A formula for type A structure coefficients . . . . . . . . . . . . . . . . . . 57

4.3 A formula for type C structure coefficients . . . . . . . . . . . . . . . . . . 62

iv



5 Branching Schubert calculus and Horn recursion 65

5.1 Dominant weights and parabolic subgroups . . . . . . . . . . . . . . . . . . 65

5.2 Subgroups and the Weyl group . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Flag varieties and the statement of results . . . . . . . . . . . . . . . . . . 69

5.4 Tangent space analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Geometric Invariant Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Levi-movability and Branching Schubert Calculus . . . . . . . . . . . . . . 87

6 Examples of determining L-movability and structure coefficients 93

6.1 Type A example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Type C example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Examples in Branching Schubert calculus 99

7.1 The Symplectic group embedding . . . . . . . . . . . . . . . . . . . . . . . 99

7.2 The Even orthogonal group embedding . . . . . . . . . . . . . . . . . . . . 106

7.3 Examples from Representation Theory . . . . . . . . . . . . . . . . . . . . 112

Bibliography 119

v



CHAPTER 1

Introduction

Let G be a connected semisimple complex algebraic group and let P be a parabolic

subgroup containing some fixed Borel subgroup B and consider the homogeneous space

G/P . If W is the Weyl group of G, let WP be the set of minimal length representatives

of the coset space W/WP where WP denotes the Weyl group of P . For any w ∈ WP ,

define [Λw] to be the cohomology class of the Schubert variety Λ̄w := BwP ⊆ G/P . It

is well known that the elements of WP parameterize an additive basis of the cohomol-

ogy ring H∗(G/P ) = H∗(G/P,Z). The general problem we address is to determine the

product structure with respect to this basis. Let w1, w2, . . . , ws ∈ WP and assume that∑s
k=1 codim Λwk = dimG/P . Then

∏s
k=1[Λwk ] = c[pt] for some structure constant c ∈ Z≥0.

The two questions we ask are: Under what conditions is c 6= 0 and more specifically, can

we explicitly compute c? Equivalently, we can ask: When is the intersection of general

translates

g1Λw1 ∩ g2Λw2 ∩ · · · ∩ gsΛws

nonempty? and if so, how many points are in the intersection?

Horn’s conjecture [8] on the Hermitian eigenvalue problem provides an interesting an-

swer to the first question in the case where G = SL(n) and P is a maximal parabolic.

In this case, G/P is the standard Grassmannian Gr(r, n). The result is that a product

of such classes in H∗(Gr(r, n)) is non-vanishing if and only if the s-tuple (w1, w2, . . . , ws)

satisfies a certain list of linear inequalities called Horn’s inequalities. Remarkably, Horn’s



inequalities themselves are indexed by the non-vanishing of similar products in smaller

Grassmannians (Horn recursion). Hence s-tuples with nonvanishing structure constants

can be determined by a “cohomology free” algorithm. Horn’s conjecture was proved by the

work of Klyachko [11] and the saturation theorem of Knutson-Tao [12]. Belkale [2] later gave

a geometric proof of Horn’s conjecture set in the context of intersection theory. Purbhoo-

Sottile [15] have shown that any G/P where P is cominuscule (i.e. the associated simple

root to the maximal parabolic P occurs with coefficient 1 in the highest root) exhibits Horn

type recursion as well. A general discussion about the connection of Horn’s inequalities to

other topics can be found in [6, 7].

The second question on computing structure coefficients has also been studied. Classi-

cally, structure coefficients for the Grassmannian can be realized as Littlewood-Richardson

numbers [13,17] which have nice combinatorial formulas. There has been much work to pro-

duce analogues of Littlewood-Richardson rules for other flag varieties G/P . In particular,

a rule for isotropic Grassmannians (with respect to a symplectic or orthogonal form) was

proved by Stembridge in [20] and for general (co)minuscule flag varieties by Thomas-Yong

in [21].

In the first part this thesis we consider partial flag varieties G/P for the groups G =

SL(n) and Sp(2n). We find that G/P exhibits Horn recursion on a certain deformation of

the cup product and that the structure coefficients are a product of structure coefficients

coming from induced maximal flag varieties. This deformation can be described by the

notion of Levi-movability initially defined in [3]. Let L be the Levi subgroup of P ⊆ G. We

say (w1, w2, . . . , ws) is Levi-movable (or L-movable) if
∑s

k=1 codim Λwk = dimG/P and for

generic (l1, l2, . . . , ls) ∈ Ls the intersection
⋂s
i=1 li(w

i)−1Λwi meets transversally at the point

eP ∈ G/P . If (w1, w2, . . . , ws) is L-movable, then the associated structure coefficient c 6= 0,

however the converse is generally not true. The notion of L-movability defines a new product

on the cohomology of G/P denoted (H∗(G/P ),�0). This new product is commutative,
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associative and satisfies Poincaré duality. In the case of cominuscule flag varieties, the

usual product and new product coincide (see Section 2.1.2 for more details). We also briefly

consider the entire cohomology ring H∗(SL(n)/P ) and construct some necessary criteria

for all non-vanishing products of Schubert classes.

In the second part of this thesis, we generalize Horn recursion and Levi-movability to

branching Schubert calculus. Consider the following restatement of the original question

found the beginning of this chapter. Let G be a connected semisimple complex algebraic

group and consider the diagonal embedding of G ↪→ Gs. For any parabolic subgroup

P ⊆ G, we have the induced embedding φ : G/P ↪→ (G/P )s. If Λ̄w := (Λ̄w1 , Λ̄w2 , . . . , Λ̄ws)

is a Schubert variety of (G/P )s, we can ask: Under what conditions is

φ∗([Λw]) 6= 0?

This question is equivalent the original question: When is
∏s
k=1[Λwk ] 6= 0? Instead of the

diagonal embedding, consider the setting where G̃ is any semisimple algebraic subgroup of

G. Choose parabolic subgroups P̃ and P such that φ : G̃/P̃ ↪→ G/P . We can now ask

the same question: If w ∈ WP , under what conditions is φ∗([Λw]) 6= 0? The mathematics

addressing this more general setting is called “branching Schubert calculus”. In this thesis,

there are three main results on this topic. First, we construct a list of necessary inequalities

which generalizes Horn’s inequalities. Second, we generalize the notion of Levi-movability

and give a numerical condition to determine when w ∈ WP is Levi-movable given that

φ∗([Λw]) 6= 0. Finally, we construct a second list of necessary Horn inequalities which

generalizes the Levi-Horn recursion established in the first part of this thesis. Note that

these Horn inequalities are only necessary conditions. It is an interesting question to ask in

what cases are they sufficient.
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1.1. Results for type A flag varieties

The homogeneous space SL(n)/P corresponds to a partial flag variety F`(a, n) for some

set of integers a := {0 < a1 < a2 < · · · < ar < n} and the set WP can be identified with

Sn(a) := {(w(1), w(2), . . . , w(n)) ∈ Sn | w(i) < w(i+ 1) ∀ i /∈ a}

where Sn denotes the permutation group on [n] := {1, 2, . . . , n}. We denote type A Schubert

cells by Xw := Λw.

1.1.1. Horn recursion for F`(a, n)

Assume that the associated structure constant to (w1, w2, . . . , ws) ∈ Sn(a)s is nonzero

and for any i ∈ [r], consider the projection fi : F`(a, n) → Gr(ai, n). The expected

dimension of the intersection
⋂s
k=1 fi(Xwk) in Gr(ai, n) is nonnegative and hence for any

i ∈ [r], we have
s∑

k=1

ai∑
j=1

(
n− ai + j − wk(j)

)
≤ ai(n− ai). (1.1)

We find that F`(a, n) exhibits Horn recursion on the boundary where the inequalities (1.1)

are equalities. Before we state the first main result, we need the following definition of

induced permutations:

Definition 1.1.1. For any permutation w ∈ Sn, we define the associated permutation to

any ordered subset A = {ȧ1 < ȧ2 < · · · < ȧd} ⊆ [n] of cardinality d by the following:

Let wA(k) = #{ȧ ∈ A | w(ȧ) ≤ w(ȧk)} and define the permutation

wA := (wA(1), wA(2), . . . , wA(d)) ∈ Sd.
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Set a0 = 0 and ar+1 = n and let bi := ai−ai−1. Consider the subset Ai := {ai−1+1 < ai−1+

2 < · · · < ai}. For any w ∈ Sn(a) and {i < j} ⊆ [r + 1], define wi,j := wAi∪Aj ∈ Sbi+bj (bi).

Theorem 1.1.2. Let (w1, w2, . . . , ws) ∈ Sn(a)s be such that

s∑
k=1

codimXwk = dim F`(a, n). (1.2)

Then the following are equivalent:

(i)
∏s
k=1[Xwk ] = a nonzero multiple of a class of a point in H∗(F`(a, n)) and

s∑
k=1

ai∑
j=1

(
n− ai + j − wk(j)

)
= ai(n− ai) ∀ i ∈ [r]. (1.3)

(ii) The s-tuple (w1, w2, . . . , ws) is L-movable.

(iii)
∏s
k=1[Xwki,j

] = a nonzero multiple of a class of a point in H∗(Gr(bi, bi + bj)) ∀ {i <

j} ⊆ [r + 1].

(iv) For any {i < j} ⊆ [r + 1] the following are true:

(iva) The sum
∑s

k=1 codimXwki,j
= dim Gr(bi, bi + bj).

(ivb) For any 1 ≤ d < bi and any choice (u1, u2, . . . , us) ∈ Sd(bi)s such that
∏s
k=1[Xuk ] =

a nonzero multiple of a class of a point in H∗(Gr(d, bi)), the following inequality

is valid:
s∑

k=1

d∑
l=1

(
bj + uk(l)− wki,j(uk(l))

)
≤ dbj . (1.4)

Note that (iii)⇔ (iv) is immediate by Horn’s conjecture applied to the Grassmannians

Gr(bi, bi+bj). Hence we will prove Theorem 1.1.2 by focusing on (i)⇔ (ii) and (ii)⇔ (iii).

The main object we use in the proof is the tangent space TẼF`(a, n) at the standard partial

flag Ẽ. We find that the tangent subspaces of Schubert cells corresponding to a L-movable
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s-tuple decompose nicely with respect to a certain decomposition of the tangent space of

F`(a, n). Fix a splitting Q1 ⊕Q2 ⊕ · · · ⊕Qr+1 of Cn such that Eak = Q1 ⊕Q2 ⊕ · · · ⊕Qk.

Then there exists a natural decomposition

TẼF`(a, n) '
r+1⊕
i<j

Hom(Qi, Qj).

In Propositions 3.2.5 and 3.2.7, we show that for any l ∈ L and w ∈ Sn(a),

TẼ(lw−1Xw) '
r+1⊕
i<j

(
Hom(Qi, Qj) ∩ TẼ•(lw

−1Xw)
)
.

Hence (w1, w2, . . . , ws) is L-movable if and only if
⋂s
i=1 TẼ(li(wi)−1Xwi) is transversal in

each summand Hom(Qi, Qj) ⊆ TẼF`(a, n) for generic (l1, l2, . . . , ls) ∈ Ls.

1.1.2. Necessary conditions for the standard product on H∗(F`(a, n))

A natural question to ask is: Does the full product structure on H∗(F`(a, n)) exhibit

Horn recursion? The answer to this question at this point is unclear. We begin a discussion

on this question by constructing a new set of inequalities in which the inequality (1.1) is

a special case. The techniques used to produce these necessary inequalities are inspired

by the work of Purbhoo-Sottile in [15]. Consider the projection of TẼF`(a, n) onto any

vector space V . Indeed, if TẼF`(a, n) � V is a surjection of vector spaces, any transversal

intersection of subspaces in TẼF`(a, n) will be projected to a transversal intersection in

V . We apply this technique to the natural geometry of TẼF`(a, n) and construct a set of

necessary conditions. For any w ∈ Sn(a), let Ajw := {w(aj + 1), w(aj + 2), . . . , w(n)} and

define

pi,jw (l) := #{p ∈ Ajw | p ≤ wi(ai + wi(l)− l)}

6



where wi is the image of w under the map Sn(a)→ Sn(ai).

Theorem 1.1.3. For any (w1, w2, . . . , ws) ∈ Sn(a)s such that
∏s
k=1[Xwk ] 6= 0, we have

that
s∑

k=1

ai∑
l=1

(n− aj − pi,jwk(l)) ≤ ai(n− aj) ∀ {i ≤ j} ⊆ [r]. (1.5)

Note that if i = j, then pi,jw (l) = wi(l) − l and hence the inequalities (1.5) are exactly the

inequalities (1.1).

1.1.3. Computing structure coefficients for F`(a, n)

Let cvw,u be the structure coefficient defined by the product

[Xw] · [Xu] =
∑

v∈Sn(a)

cvw,u[Xv].

In the case of the Grassmannian, the coefficients cvw,u are Littlewood-Richardson numbers

which have several nice combinatorial formulas. However computing these coefficients for

F`(a, n) is much more difficult. We find that if cvw,u is associated to an L-movable 3-

tuple, then cvw,u is a product of Littlewood-Richardson numbers. It is well known that the

coefficient cvw,u is the number of points in a generic intersection of the associated Schubert

varieties if the intersection is finite. Consider the projection of f1 : F`(a, n) � Gr(a1, n).

For any Schubert cell Xw ⊆ F`(a, n) we have the induced Schubert cells Xw1 := f1(Xw) ⊆

Gr(a1, n) and Xwγ := Xw ∩ f−1
1 (V ) in the fiber over any point V ∈ Xw1 . The Weyl

group element w1 is the image of w under the map Sn(a) → Sn(a1). The fiber f−1
1 (V ) '

F`(aγ , n − a1) where aγ = {0 < a2 − a1 < · · · < ar − a1 < n − a1} and wγ = wA where

A =
⋃r+1
i=2 Ai under Definition 1.1.1. We now state the main result on type A structure

coefficients.
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Theorem 1.1.4. Let (w1, w2, . . . , ws) ∈ Sn(a)s be L-movable. If c, c1 and cγ are the struc-

ture coefficients:

s∏
k=1

[Xwk ] = c[Xe],
s∏

k=1

[Xwk1
] = c1[Xe],

s∏
k=1

[Xwkγ
] = cγ [Xe],

in H∗(F`(a, n)), H∗(Gr(a1, n)) and H∗(F`(aγ , n− a1)) respectively, then c = c1 · cγ .

In Proposition 4.2.3, we show that if the s-tuple (w1, w2, . . . , ws) is Levi-movable, then so

is (w1
γ , w

2
γ , . . . , w

s
γ). Hence we can once again use Theorem 1.1.4 to decompose cγ . Thus

computing L-movable structure coefficients completely reduces to computing these coeffi-

cients in the Grassmannians Gr(bi, n − ai−1) for i ∈ [r]. Note that these are not the same

Grassmannians found in Theorem 1.1.2 (iii).

1.2. Results for type C flag varieties

Fix C2n a 2n dimensional complex vector space with a nondegenerate skew-symmetric

form. The homogeneous space Sp(2n)/P corresponds to an isotropic partial flag variety

IF(a, 2n) for some set of integers a = {a1 < a2 < · · · < ar}. If a consists of a single integer

{r}, we will denote IF(a, 2n) by the isotropic Grassmannian IG(r, 2n) and if r = n, the

Lagrangian Grassmannian LG(n, 2n). The set WP can be identified with

SC2n(a) := {w ∈ S2n | w(2n+ 1− i) = 2n+ 1− w(i) ∀i ∈ [n] and w(i) < w(i+ 1) ∀ i /∈ a}.

We denote type C Schubert cells by Φw := Λw.

8



1.2.1. Horn recursion for IF(a, 2n)

In this section we state the analogue of Theorem 1.1.2 for IF(a, 2n). In this case, the

set a induces a natural partition of [2n]. Let āi := 2n+1−ai and set a0 = 0 and ā0 = 2n+1.

For any k ∈ [r], let

Ik := {ak−1 + 1, ak−1 + 2, . . . , ak}

Īk := {āk, āk + 1, . . . , āk−1 − 1}

Ĩ := {ar + 1, ar + 2, . . . , ār}.

Clearly [2n] = I1 t · · · t Ir t Ĩ t Īr t · · · t Ī1. Define the unions

Ik :=
k⋃
i=1

Ii and Īk :=
k⋃
i=1

Īi and Ĩk := [2n]\(Ik ∪ Īk).

For w ∈ S2n and any subset I ⊆ [2n], let w(I) := {w(i) | i ∈ I} ⊆ [2n]. Also for any two

sets I, J ⊆ [2n], define

|I > J | := #{(i, j) ∈ I × J | i > j}.

As in Section 1.1.1, let bi := ai − ai−1 (note that we still take ar+1 = n). For w ∈ SC2n(a)

consider the following induced permutations using Definition 1.1.1:

(i) For any {i < j} ⊆ [r], denote wi,j := wIi∪Ij ∈ Sbi+bj (bi)

(ii) For any {i < j} ⊆ [r], denote w̄i,j := wIi∪Īj ∈ Sbi+bj (bi)

(iii) For any i ∈ [r], denote w̃i := wIi∪Ĩ ∈ Sbi+2br+1(bi)

(iv) For any i ∈ [r], denote w̄i := wA ∈ S2ai(ai) where A = Ik ∪ Īk.

9



Similar to (1.1), we consider a necessary numerical condition where IF(a, 2n) exhibits Horn

recursion on the boundary of this condition. Let (w1, w2, . . . , ws) ∈ (SC2n(a))s be such

that the associated structure constant is nonzero. Let wi denote the projection of w in

SC2n(a)→ SC2n(ai). For any i ∈ [r], we have that

s∑
k=1

codimΦwki
+ codimΦw̄ki

≤ dim IG(ai, 2n) + dim LG(ai, 2ai) (1.6)

Note that the geometric interpretation of (1.6) is different compared to (1.1).

Theorem 1.2.1. Let (w1, w2, . . . , ws) ∈ (SC2n(a))s be such that

s∑
k=1

codim(Φwk) = dim IF(a, 2n). (1.7)

Then the following are equivalent:

(i)
∏s
k=1[Φwk ] = a nonzero multiple of a class of a point in H∗(IF(a, 2n)) and

s∑
k=1

|wk(Ĩi ∪ Īi) > wk(Ii)|+ |wk(Īi) > n| = ai(2n− ai + 1) ∀ i ∈ [r]. (1.8)

(ii) The s-tuple (w1, w2, . . . , ws) is L-movable.

(iii) The following are true:

(iiia) The products
∏s
k=1[Xwki,j

] and
∏s
k=1[Xw̄ki,j

] are nonzero multiples of a class of a

point in H∗(Gr(bi, bi + bj)), ∀ {i < j} ⊆ [r].

(iiib) The products
∏s
k=1[Xw̃ki

] and
∏s
k=1[Φw̄ki,i

] are nonzero multiples of a class of a

point in H∗(Gr(bi, bi + 2br+1)) and H∗(LG(bi, 2bi)) respectively, ∀ i ∈ [r].

Note that the LHS and RHS of numerical condition (1.8) are equal to the LHS and RHS

of equation (1.6) respectively. As in Theorem 1.1.2 (iv), we can apply Horn recursion to

10



the flag varieties in Theorem 1.2.1 (iii). Note that for (w̄1
i,i, w̄

2
i,i, . . . , w̄

s
i,i) in the second

part of (iiib), we need to apply Purbhoo-Sottile’s cominuscule recursion found in [15]. The

proof of Theorem 1.2.1 follows the same outline as the proof of Theorem 1.1.2 in that we

consider the tangent space TẼIF(a, 2n) with respect to a certain splitting of C2n. The

proof also relies on an important result of Belkale-Kumar from [4] in which they show that

maximal type A Schubert cells (Schubert cells in the regular Grassmannian) can be moved

to intersect properly by generic elements of Sp(2n) ⊆ SL(2n). In [19], Sottile shows that

this intersection can actually be made transverse. See Lemma 3.3.8 for a precise statement

of what is needed from their work to prove Theorem 1.2.1.

1.2.2. Computing structure coefficients for IF(a, 2n)

In this section, we give a formula to compute structure coefficients for IF(a, 2n). In-

stead of projecting IF(a, 2n) onto the first factor as in Section 1.1.3, consider the projection

fr : IF(a, 2n) � IG(ar, 2n) onto the last factor. In this case, the fiber over any point V ∈

IG(ar, 2n) is isomorphic to the type A flag variety F`(aCγ , n) where aCγ := {a1, a2, . . . , ar−1}.

As in Section 1.1.3, we find that if (w1, w2, . . . , ws) is L-movable, then the associated struc-

ture constant is a product of the induced structure constants coming from the projection

and fiber. For any w ∈ SC2n(a), let wr denote the projection of w in SC2n(a) → SC2n(ar) and

let wγ := wIr using Definition 1.1.1.

Theorem 1.2.2. Let (w1, w2, . . . , ws) be L-movable. If c, cr and cγ are the structure coef-

ficients:
s∏

k=1

[Φwk ] = c[Φe],
s∏

k=1

[Φwkr
] = cr[Φe],

s∏
k=1

[Xwkγ
] = cγ [Xe],

in H∗(IF(a, 2n)), H∗(IG(ar, 2n)) and H∗(F`(aCγ , ar)) respectively, then c = cr · cγ .

We show in Proposition 4.3.1 that if (w1, w2, . . . , ws) is Levi-movable, then so is (w1
γ , w

2
γ , . . . , w

s
γ).
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Hence we can apply Theorem 1.1.4 to write the constant c as a product of coefficients coming

from the isotropic Grassmannian IG(ar, 2n) and the regular Grassmannians Gr(bi, ar−ai−1).

1.3. Remarks on Levi-movability

We remark that L-movability has been used outside the context of determining co-

homology products. In particular, Belkale-Kumar [3] use L-movability to give a refined

solution to the generalized eigenvalue problem which was initially solved by Kapovich-

Leeb-Millson [9] following works of Klyachko [11], Belkale [1] and Berenstein-Sjamaar [5].

Let K ⊆ G be a maximal compact subgroup and let k denote the Lie algebra of K (note that

K is a real Lie group and k is a real Lie algebra). Consider the space k/K where K acts on

k by the adjoint representation. The goal of the “eigenvalue problem” is to determine which

k̄1, k̄2, . . . , k̄s ∈ k/K satisfy the condition that
∑s

i=1 ki = 0. Kapovich-Leeb-Millson [9]

proved that k̄1, k̄2, . . . , k̄s satisfy this condition if and only if they satisfy a certain list of

inequalities indexed by s-tuples of (WP )s with associated structure constant c = 1 where

P runs over all standard maximal parabolic subgroups of G. This initial list is known to

have redundancies for some groups G. Belkale-Kumar showed that it is sufficient to only

consider the subset of these inequalities indexed by L-movable s-tuples. In [16], Ressayre

shows that this list is in fact irredundant.

1.4. Branching Schubert Calculus and Horn recursion

Let G̃ be a semisimple algebraic subgroup of G and choose parabolic subgroups P̃ and

P such that φ : G̃/P̃ ↪→ G/P . We ask the question: For which w ∈WP is φ∗([Λw]) 6= 0? In

this thesis, we consider a special choice of P̃ and P based on a fixed one parameter subgroup

of G̃ (ie. an algebraic homomorphism τ : C∗ → G̃, OPS for short). Fix a maximal torus

12



H̃ ⊆ G̃ such that H̃ = G̃ ∩H. Choose positive Weyl chambers h+, h̃+ in h, h̃ respectively

where h, h̃ denote the Lie algebras of H, H̃. Let B, B̃ be the Borel subgroups of G, G̃

corresponding to this choice of positive Weyl chambers.

Definition 1.4.1. For any one parameter subgroup τ of G we have the associated parabolic

subgroup of G defined

PG(τ) := {g ∈ G | lim
t→0

τ(t)gτ(t)−1 exists in G}.

We say τ is a dominant OPS if B ⊆ PG(τ). Fix τ to be a dominant OPS of G̃. Clearly

τ is also an OPS of G, however it may not dominant with respect to G. Choose v ∈ W

such that τv := v−1τ(t)v is dominant with respect to G. We will later see that we do not

need to consider all of W to make such a choice. In [5], Berenstein-Sjamaar define a certain

subset of W denoted Wrel which depends only on the choice of positive Weyl chambers h+,

h̃+ (see Definition 5.2.4). It is sufficient to only consider this subset when conjugating τ to

τv. Define the map

φτ,v : G̃/P G̃(τ) ↪→ G/PG(τv)

by φτ,v(gP G̃(τ)) := gvPG(τv). We will denote φτ,v, PG(τv), P G̃(τ) by φ, P , P̃ when the

choice of τ and v are clear. Let

φ∗ : H∗(G/P,Z)→ H∗(G̃/P̃ ,Z)

be the induced map on singular cohomology. In this thesis, we construct a list of necessary

conditions for any (τ, v, w) that satisfies φ∗([Λw]) 6= 0 which are generalizations of the Horn

conditions found in the case of the diagonal embedding. Abusing notation, let v ∈ NG(H)

be a representative of v ∈ Wrel and consider the twisted embedding of L̃ ↪→ L given

by l 7→ v−1lv ∈ L where L̃ and L denote the Levi subgroups of P̃ and P respectively.
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The necessary conditions come in the form of inequalities indexed by (λ, v̂, ŵ) ∈ OPS(L̃)×

(WL)rel×WL which satisfy a similar non-vanishing condition in H∗(L̃/Q̃(λ)) associated this

twisted embedding of Levi factors. Here Q̃(λ) := P L̃(λ) denotes the parabolic subgroup of

L associated to λ. This result is stated in Theorem 5.3.8. We remark that this result is

independent of the choice of representative of v ∈Wrel.

The statement and proof of Theorem 5.3.8 is a generalization of work by Belkale-Kumar

in [3, Theorem 29], in which they construct these inequalities in the case of the diagonal

embedding. For the diagonal embedding, every dominant OPS of G̃ is also dominant for

G̃s. Therefore v ∈Wrel can be taken to be the identity; in fact, Wrel = {1}.

1.4.1. Levi-movability and branching Schubert calculus

We generalize ideas of Levi-movability to branching Schubert Calculus. We say w ∈WP

is (L, φ)-movable if dim Λw = dimG/P −dim G̃/P̃ and the point eP̃ is scheme theoretically

isolated in φ−1(vlw−1Λw) for generic l ∈ L. As with usual Levi-movability, this condition

implies that φ∗([Λw]) 6= 0, however the converse is generally not true. There are two main

results on this topic. The first is a generalization of the numerical condition in Theorems

1.1.2 and 1.2.1 (i)⇔ (ii) and is stated in Theorem 5.6.3. The second is a generalization of

Theorem 1.1.2 (ii)⇒ (iv) and is stated in Theorem 5.6.7. We remark that Belkale-Kumar

in [2], establish these results for general G/P in the case of diagonal embedding. Their

results are stated in this thesis in Proposition 2.1.5 and Theorem 5.6.3.

1.4.2. Connections to representation theory

The study of branching Schubert calculus is motivated by its connections to repre-

sentation theory. Let µ ∈ h∗+ be an integral dominant weight such that the irreducible
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representation (of highest weight µ) Vµ of G contains a nonzero G̃-invariant vector. The

set of all such dominant weights generate a convex cone C in a certain real subspace of

h∗. In [5], Berenstein-Sjamaar describe C by a system of linear inequalities indexed by

(τ, v, w) ∈ OPS(G̃)×Wrel×WP which satisfy φ∗τ,v([Λw]) 6= 0. Part of this condition is that

τ is dominant with respect to G̃ and τv is dominant with respect to G. This result is stated

in Theorem 5.3.2. For the diagonal embedding, the corresponding picture is to characterize

the convex cone C generated by s-tuples of integral dominant weights (µ1, . . . , µs) of G̃ for

which Vµ1 ⊗ · · · ⊗ Vµs contains a nonzero G̃-invariant vector.
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CHAPTER 2

Preliminaries on partial flag varieties

Let G be a connected semisimple complex algebraic group. Fix a Borel subgroup B and

a maximal torus H ⊆ B. Let W := NG(H)/H denote the Weyl group of G where NG(H)

is the normalizer of H in G. Let P ⊆ G be a standard parabolic subgroup (P contains

B). Let L be the Levi (maximal reductive) subgroup of P . Denote the Lie algebras of

G,H,B, P, L by the corresponding frankfurt letters g, h, b, p, l. Let R ⊆ h∗ be the set of

roots and let R+ ⊆ R denote the set of positive roots. Let Rl denote the set of roots

corresponding to l and let R+
l denote the set of positive roots with respect to BL := B ∩L.

Let ∆ = {α1, α2, . . . , αn} ⊂ R+ be the set of simple roots and let {s1, s2, . . . , sn} ⊆ W

denote the corresponding simple reflections. Note that the set ∆ forms a basis for h∗ and

let {x1, x2, . . . , xn} be the dual basis to ∆ (i.e. αi(xj) = δi,j). Let ∆(P ) ⊂ ∆ denote

the simple roots associated to P (the simple roots that generate R+
l ). Let Pi denote the

maximal parabolic subgroup associated to the root {αi} = ∆\∆(Pi) and let R+
li

denote the

set of positive roots generated by ∆(Pi).

Let WP be the set of minimal length representatives of the coset space W/WP where

WP is the subgroup of W generated by {si | αi ∈ ∆(P )}. For any w ∈ WP , define the

Schubert cell

Λw := BwP/P ⊆ G/P.

The Schubert cells make up the Bruhat decomposition

G/P =
⊔

w∈WP

Λw.



We denote the cohomology class of the closure Λ̄w by [Λw] ∈ H∗(G/P,Z). The set

{[Λw] | w ∈WP } forms an additive basis for H∗(G/P ).

2.1. Levi-movability

The goal of this section is to reduce the problem of determining nonvanishing prod-

ucts in H∗(G/P ) to problems of determining tranversality on the tangent space of G/P .

Let X1, X2, . . . , Xs be smooth connected subvarieties of smooth variety X. We say an

intersection is transversal at a point x ∈
⋂s
i=1Xi, if

dim
( s⋂
i=1

TxXi

)
= dim(TxX)−

r∑
i=1

codim(TxXi).

Our analysis begins with the following important proposition on transversal intersections

on varieties with a transitive group action (see Kleiman [10]).

Proposition 2.1.1. Let G be a complex connected algebraic group that acts transitively

on complex variety X. Let X1, X2, . . . , Xr be smooth irreducible (not necessarily closed)

subvarieties of X. Then there exists a nonempty open subset of U ⊆ Gs such that for

(g1, g2, . . . , gs) ∈ U , the intersection
⋂s
i=1 giXi (possibly empty) is transverse at every point

in the intersection, and
⋂s
i=1 giXi is dense in

⋂s
i=1 giX̄i.

The following proposition is a basic fact on transversality and Schubert varieties. For a

proof see [3].

Proposition 2.1.2. Let (w1, w2, . . . , ws) ∈ (WP )s. The following are equivalent.

(i)
∏s
k=1[Λwk ] 6= 0 in H∗(G/P ).

(ii) There exist (g1, g2, . . . , gs) ∈ Gs such that the intersection
⋂s
k=1 gkΛwk is transverse

and nonempty.
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(iii) For generic (g1, g2, . . . , gs) ∈ Gs, the intersection
⋂s
k=1 gkΛwk is transverse and nonempty.

(iv) For generic (p1, p2, . . . , ps) ∈ P s, the intersection
⋂s
k=1 pk(w

k)−1Λwk is transverse at

eP .

Part (iv) of Proposition 2.1.2 gives motivation for the following definition found in [3].

Definition 2.1.3. The s-tuple (w1, w2, . . . , ws) ∈ (WP )s is Levi-movable or L-movable

if
s∑

k=1

codim Λwk = dimG/P (2.1)

and for generic (l1, l2, . . . , ls) ∈ Ls, the intersection
⋂s
k=1 lk(w

k)−1Λwk is transverse at the

point eP .

Note that if (w1, w2, . . . , ws) is L-movable, then
∏s
k=1[Λwk ] 6= 0. The converse of this

statement is generally not true.

2.1.1. A numerical condition for L-movability

The following character is used in [3] to give a numerical condition to determine when

(w1, w2, . . . , ws) is L-movable.

Definition 2.1.4. For any standard parabolic subgroup P and w ∈WP , define the character

χw =
∑

β∈R+\R+
l ∩w−1R+

β.

Proposition 2.1.5. For any (w1, w2, . . . , ws) ∈ (WP )s, the following are equivalent.

(a) (w1, w2, . . . , ws) is L-movable.

(b)
∏s
k=1[Λwk ] = a nonzero multiple of a class of a point in H∗(G/P ) under the usual
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cohomology product, and for every αi ∈ ∆\∆(P ), we have

(
(
s∑

k=1

χwk)− χ1

)
(xi) = 0. (2.2)

For the proof see [3, Theorem 15] (We remark that Theorem 5.6.3 in Chapter 5 also implies

Proposition 2.1.5). Let R− = {−α | α ∈ R+} denote the set of negative roots in R. The

following is an important lemma connecting the character χw to the geometry of G/P .

Lemma 2.1.6. For any w ∈WP , codim(Λw) = |R+\R+
l ∩ w

−1R+|.

Proof. Consider the following Cartan decompositions

g = h⊕
⊕
α∈R+

gα ⊕
⊕
α∈R+

g−α

p = h⊕
⊕
α∈R+

gα ⊕
⊕
α∈R+

l

g−α

b = h⊕
⊕
α∈R+

gα

Using these decompositions, we identify the tangent space of G/P at eP with

TeP (G/P ) =
⊕

α∈R+\R+
l

g−α.

Let w ∈ WP and consider the subgroup w−1Bw ⊆ G. Since the corresponding Lie algebra

is

w−1bw = h⊕
⊕

α∈w−1R+

gα,

the tangent space of w−1BwP ⊆ G/P can be identified with

TeP (w−1BwP ) =
⊕

α∈R+\R+
l ∩w−1R−

g−α.
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Since w−1R = w−1R+ t w−1R− = R, we have that

TeP (G/P )/TeP (w−1BwP ) =
⊕

α∈R+\R+
l ∩w−1R+

g−α.

2.1.2. Deformation of the cup product

In [3], Belkale-Kumar use the notion of L-movability to define a new cohomology prod-

uct �0 on H∗(G/P,Z). We state the definition and some basic facts on the new product.

For any u, v, w ∈WP , let cwu,v be the structure coefficient defined by the product

[Λu] · [Λv] =
∑

w∈WP

cwu,v [Λw].

For each αi ∈ ∆/∆(P ), consider an indeterminate τi and define

[Λu]� [Λv] :=
∑

w∈WP

( ∏
αi∈∆/∆(P )

τ
(χw−χv−χu)(xi)
i

)
cwu,v [Λw].

Extend this operation to a Z[τi]ai∈∆/∆(P )-linear product structure on H∗(G/P,Z)⊗Z Z[τ ]

where Z[τ ] = Z[τ1, τ2, . . . , τr]. The following are some properties of the product �. Proofs

for these properties can be found in [3, Section 6].

Proposition 2.1.7. The following are true:

(i) For any w, u, v ∈WP such that cwu,v 6= 0, (χw−χv−χu)(xi) ≥ 0 for each αi ∈ ∆/∆(P ).

(ii) The product � in H∗(G/P,Z)⊗Z Z[τi] is well defined, associative and commutative.
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(iii) For any (w1, w2, . . . , ws) ∈ (WP )s, the coefficient of [Λw] in [Λw1 ]� · · · � [Λws ] is

∏
αi∈∆/∆(P )

τ
(χw−

∑s
j=1 χwj )(xi)

i

times the coefficient of [Λw] in the usual cohomology product
∏s
k=1[Λwk ].

Definition 2.1.8. Define the product (H∗(G/P,Z),�0) by

[Λu]�0 [Λv] := [Λu]� [Λv]
∣∣∣
τ1=τ2=···=τr=0

Note that as Z-modules, (H∗(G/P,Z),�0) = H∗(G/P,Z). By Proposition 2.1.5, the new

product �0 has standard product structure with the additional condition of setting all non

L-movable structure constants to zero. We would also like to remark that �0 satisfies

Poincaré duality of the standard product structure.

Proposition 2.1.9. If P is cominuscule in G, then product structure of (H∗(G/P,Z),�0)

and H∗(G/P,Z) is the same.

For the proof see [3, Lemma 19]. We now consider the groups SL(n) and Sp(2n) in more

detail.

2.2. The special linear group SL(n)

Let SL(n) be the special linear group on the vector space Cn with standard basis

{e1, e2, . . . , en}. Let H ⊆ SL(n) be the standard maximal torus of diagonal matrices of

determinant 1 and let B denote the standard Borel subgroup of upper triangular matrices

(of determinant 1). Then the Lie algebra is

h = {t = diag(t1, t2, . . . , tn) |
n∑
i=1

ti = 0}
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and the set of roots is R = {εi − εj | i 6= j} ⊆ h∗ where εi(t) := ti. The set of positive

roots is R+ = {εi − εj | i < j} and the set of simple roots is ∆ = {αi := εi − εi+1}. It

is well known that the Weyl group W can be identified with Sn, the permutation group

on [n]. The simple reflections corresponding to ∆ are given by the simple transpositions

si = (i, i+1). The action of W on h∗ is given by wεi = εw(i). Let P be a standard parabolic

subgroup of SL(n) and let ∆\∆(P ) = {αa1 , αa2 , . . . , αar}. We associate P with the subset

a = {a1, a2, . . . , ar} ⊆ [n − 1]. The homogeneous space SL(n)/P is SL(n)-equivariantly

isomorphic to the space of partial flags

F`(a, n) := {V• = V1 ⊂ V2 ⊂ · · · ⊂ Vr ⊂ Cn | dim(Vi) = ai}.

Let E• denote the standard complete flag where Ei = Span{e1, . . . , ei} and denote the

standard partial sub-flag by

Ẽ := Ea1 ⊆ Ea2 ⊆ · · · ⊆ Ear .

It is easy to see that the map between SL(n)/P and F`(a, n) is given by

gP 7→ gẼ = gEa1 ⊆ gEa2 ⊆ · · · ⊆ gEar .

The set WP is equal to

Sn(a) := {(w(1), w(2), . . . , w(n)) ∈ Sn | w(i) < w(i+ 1) ∀ i /∈ a}

as subsets of Sn. Note that the length of any w ∈W is given by `A(w) := #{i < j | w(i) >

w(j)}. The dimension of F`(a, n) is equal to
∑r

i=1 ai(ai+1 − ai) where we set a0 = 0 and

ar+1 = n. If a = [n − 1], we denote the set of complete flags by F`(n). In general, if V
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is a complex vector space, let F`(V ) denote the complete flags on V . We will use script

letters F := (F 1
• , . . . , F

s
• ) ∈ F`(n)s to denote s-tuples of complete flags. For any complete

flag F• = F1 ⊂ F2 ⊂ . . . ⊂ Fn ∈ F`(n) and w ∈ Sn(a), we define the Schubert cell by

X◦w(F•) := {V• ∈ F`(a, n) | dim(Vi ∩ Fj) = #{t ≤ ai : w(t) ≤ j} ∀i, j}.

If F• = gE• for some g ∈ SL(n), then X◦w(F•) = gΛw. To see this, we consider the Bruhat

decomposition of SL(n)/P =
⊔
w∈Sn(a)BwP. If V• ∈ X◦w(E•) and b ∈ B, then

dim(bVi ∩ Ej) = dim(Vi ∩ b−1Ej) = dim(Vi ∩ Ej) ∀ i, j.

Hence X◦w(E•) is a union of B-orbits in F`(a, n). For each w ∈ Sn(a), we have that

wP 7→ wẼ• and wẼ• ∈ X◦w(E•). Thus X◦w(E•) can only consist of the single orbit BwP . It

is easy to see that the SL(n)-equivariant action on the Schubert cells is exactly gBwP =

gΛw = X◦w(gE•).

2.2.1. Proof of (i)⇔ (ii) in Theorem 1.1.2

In this section we prove (i)⇔ (ii) in Theorem 1.1.2 by showing that (2.2) is equivalent

to (1.3). For any w ∈ Sn(a), let wi be the image of w under the projection Sn(a)→ Sn(ai).

Lemma 2.2.1. Let w, ẇ ∈ Sn(a) and i ∈ [r]. If wi = ẇi ∈ Sn(ai), then the order of the

following sets are equal:

|R+\R+
li
∩ w−1R+| = |R+\R+

li
∩ ẇ−1R+|.
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Proof. If wi = ẇi, then

{w(1), w(2), . . . , w(ai)} = {ẇ(1), ẇ(2), . . . , ẇ(ai)}

and

{w(ai + 1), w(ai + 2), . . . , w(n)} = {ẇ(ai + 1), ẇ(ai + 2), . . . , ẇ(n)}

as unordered sets. Let A,B ⊆ [n] denote these sets respectively. Then for any α = εa−εb ∈

R+, we have

w−1α ∈ R+\R+
li
⇔ a ∈ A and b ∈ B ⇔ ẇ−1α ∈ R+\R+

li

since w−1(a), ẇ−1(a) ∈ {1, 2, . . . , ai} and w−1(b), ẇ−1(b) ∈ {ai + 1, ai + 2, . . . , n}. This

proves the lemma.

Proposition 2.2.2. For any w ∈ Sn(a) and i ∈ [r], we have that χw(xai) = codim(Xwi).

Proof. For any β ∈ R+\R+
l , the value β(xai) = 0 if β ∈ R+

li
and β(xai) = 1 otherwise.

Since R+\R+
li
⊆ R+\R+

l , it suffices to determine the size of R+\R+
li
∩w−1R+. By Lemmas

2.1.6 and 2.2.1, the order of this set is exactly equal to codim(Xwi).

By Proposition 2.2.2, for any i ∈ [r] we have

(
(
s∑

k=1

χwk)− χ1

)
(xai) =

s∑
k=1

codim(Xwki
)− dim Gr(ai, n)

=
( s∑
k=1

( ai∑
j=1

n− ai + j − wki (j)
))
− ai(n− ai) = 0.

Thus Proposition 2.1.5 proves (i)⇔ (ii) in Theorem 1.1.2.
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2.3. The symplectic group Sp(2n)

The same notation will be used to describe objects associated to Sp(2n) (i.e. H,B, P, . . .).

If the groups SL(2n) and Sp(2n) are considered in the same context, then we will use su-

perscripts HA, BA, PA, . . . to denote objects for SL(2n) and HC , BC , PC , . . . for Sp(2n).

Let C2n be a 2n dimensional complex vector space with basis {e1, e2, . . . , e2n}. We

define a skew-symmetric bilinear form 〈 , 〉 on C2n as follows:

〈ei, e2n+1−i〉 = 1 if i < 2n+ 1− i and 〈ei, ej〉 = 0 if j 6= 2n+ 1− i.

Define the symplectic group on C2n to be

Sp(2n) := {A ∈ SL(2n) | A leaves the form 〈 , 〉 invariant}.

Let H be the standard maximal torus of diagonal matrices in Sp(2n) and let B be the

standard Borel subgroup of upper triangular matrices in Sp(2n). The Lie algebra h is equal

to

h = {t = diag(t1, t2, . . . , tn,−tn,−tn−1, . . . ,−t1)}

and the set of roots is

R = {±(εi ± εj) | i < j} ∪ {±2εi | i ∈ [n]} ⊆ h∗

with positive roots

R+ = {εi ± εj | i < j} ∪ {2εi | i ∈ [n]} ⊆ R

where εi(t) = ti. Let ∆ := {α1, α2, . . . , αn} denote the set of simple roots, where αi :=
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εi − εi+1 for i < n and αn = 2εn. The Weyl group of Sp(2n) can be identified with the

following subset of S2n:

WC := {(w(1), w(2), . . . , w(2n)) ∈ S2n | w(2n+ 1− i) = 2n+ 1− w(i)}.

It is easy to see that any w ∈ W is uniquely determined by the set {w(1), w(2), . . . , w(n)}

and that under the inclusion W ⊆ S2n, the simple reflections corresponding to ∆ are

si := (i, i+ 1)(2n− i, 2n− i+ 1) for i < n and sn := (n, n+ 1). The action of any w ∈ W

on εi is given by

wεi = εw(i) if w(i) ≤ n and wεi = −εw(2n+1−i) if w(i) > n.

Let P be the standard parabolic subgroup of Sp(2n) corresponding to the set of simple

roots ∆\∆(P ) := {αa1 , αa2 , . . . , αar} for the set a := {a1 < a2 < · · · < ar} ⊆ [n]. The

homogeneous space Sp(2n)/P is Sp(2n)-equivariantly isomorphic to the isotropic partial

flag variety

IF(a, 2n) := {V• := V1 ⊆ V2 ⊆ · · · ⊆ Vr ⊆ C2n | dimVi = ai and Vr ⊆ V ⊥r }

where V ⊥ := {v ∈ C2n | 〈v, u〉 = 0 ∀ u ∈ V }. Observe that Vr ⊆ V ⊥r implies that Vi ⊆ V ⊥i

for all i ∈ [r]. Also note that for any subspace V ⊆ C2n, we have that dimV ⊥ = 2n−dim(V ).

Thus the maximum dimension of an isotropic subspace in C2n is n. The set WP is equal to

SC2n(a) := {(w(1), w(2), . . . , w(2n)) ∈WC | w(i) < w(i+ 1) ∀ i /∈ a}.

The length of w ∈ SC2n(a) is given by `C(w) := 1
2(`A(w)+|w(Ir) > n|). For any i ∈ [r], define

āi := 2n+ 1− ai and let ā := {ā1, . . . , ār}. The natural inclusion of WC ⊆ S2n gives a well
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defined injection SC2n(a) ↪→ SA2n(a) (there also exists a natural injection SC2n(a) ↪→ SA2n(a∪ā)).

Let

IF(2n) := {F• := F1 ⊆ F2 ⊆ · · · ⊆ F2n = C2n | dimFi = i and F2n−i = F⊥i ∀ i ∈ [n]}

denote the set of complete isotropic flags on C2n. Note that Sp(2n) acts transitively on

IF(2n). For any w ∈ SC2n(a) and F• ∈ IF(2n), define the Schubert cell in IF(a, n) as

Φ◦w(F•) := {V• ∈ IF(a, n) | dim(Vi ∩ Fj) = #{t ≤ ai : w(t) ≤ j} ∀i, j}.

If E• is the standard complete isotropic flag on C2n and F• = gE• from some g ∈ Sp(2n),

then

Φ◦w(F•) = gΛw.

This fact follows from the analogous result for type A Schubert cells since under the natural

inclusion IF(a, 2n) ↪→ F`(a, 2n), we have the scheme theoretic intersection

Φ◦w(F•) = X◦w(F•) ∩ IF(a, 2n).

2.3.1. Proof of (i)⇔ (ii) in Theorem 1.2.1

Similar to Section 2.2.1, we prove (i) ⇔ (ii) in Theorem 1.2.1 by showing that (2.2)

is equivalent to (1.8). For any w ∈ SC2n(a), let wi be the image of w under the projection

SC2n(a)→ SC2n(ai).

Lemma 2.3.1. Let w, ẇ ∈ WC ⊆ S2n and i ∈ [r]. If wi = ẇi ∈ SC2n(ai), then the order of
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the following sets are equal:

|R+\R+
li
∩ w−1R+| = |R+\R+

li
∩ ẇ−1R+|.

Proof. If wi = ẇi, then as unordered sets, we have

{w(1), w(2), . . . , w(ai)} = {ẇ(1), ẇ(2), . . . , ẇ(ai)}

{w(ai + 1), w(ai + 2), . . . , w(āi)} = {ẇ(ai + 1), ẇ(ai + 2), . . . , ẇ(āi)}

{w(āi + 1), . . . , w(2n)} = {ẇ(āi + 1), . . . , ẇ(2n)}.

Let A,B,C ⊆ [2n] denote these sets respectively and define

A+ := {u ∈ A| u ≤ n}, B+ := {u ∈ B| u ≤ n}, C+ := {u ∈ C| u ≤ n}.

The set R+ consists of roots of the form εa − εb or εa + εb. If α = εa − εb, then we have

w−1α ∈ R+\R+
li

if and only if one of the following are true:

• a ∈ A+ and b ∈ B+ ∪ C+

• a ∈ A+ ∪B+ and b ∈ C+

If α = εa + εb, then we have w−1α ∈ R+\R+
li

if and only if one of the following are true:

• a ∈ A+ and b ∈ A+ ∪B+

• a ∈ A+ ∪B+ and b ∈ A+

Since the same conditions hold for ẇ−1α ∈ R+\R+
li

, the lemma is proved.

Proposition 2.3.2. For any w ∈ SC2n(a) and i ∈ [r], we have that

χw(xai) = codim(Φwi) + codim(Φw̄i).
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Proof. For any β ∈ R+\R+
l , the value β(xai) = 0 if β ∈ R+

li
and β(xai) = 1 or 2 otherwise.

Define

R2(ai, w) := {α ∈ R+\R+
li
∩ w−1R+ | α(xai) = 2}.

By Lemmas 2.1.6 and 2.3.1, we have that

χw(xai) = codim(Φwi) + |R2(ai, w)|.

Observe that α(xai) = 2 if and only if α = εa + εb where a ≤ b ≤ ai. Hence we can

identify R2(ai, id) with the set of positive roots associated to the Lagrangian Grassmannian

Sp(2ai)/Pai ' LG(ai, 2ai) (i.e. the positive roots of Sp(2ai) where α(xai) 6= 0). The

root α ∈ R2(ai, w) ⊆ R2(ai, id) if and only if w−1(a), w−1(b) ∈ {1, 2, . . . , ai}. Note that

it suffices to know the values {w(1), . . . , w(ai)} in order to determine if α ∈ R2(ai, w).

Applying Lemma 2.1.6 to LG(ai, 2ai), we have that R2(ai, w) = codim(Φw̄i).

Proposition 2.3.2 together with Proposition 2.1.5 immediately implies (i)⇔ (ii) in Theorem

1.2.1.
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CHAPTER 3

Tangent spaces of flag varieties

In this chapter we complete the proofs of Theorems 1.1.2 and 1.2.1 by showing (ii)⇔

(iii) in both cases. In the first section, we first give some preliminary facts on the linear

algebra of complex vector spaces. In the second and third section, we prove Theorems 1.1.2

and 1.2.1. In Section 3.4, we look at the connections of Theorem 1.1.2 to a question asked by

Belkale-Kumar in [3]. Finally, in Section 3.5 we prove Theorem 1.1.3 which provides some

necessary criteria for non-vanishing products of Schubert classes in the usual cohomology

ring H∗(F`(a, n)).

3.1. Some complex linear algebra

Lemmas 3.1.1 and 3.1.2 are basic facts about complex vector spaces.

Lemma 3.1.1. Let X =
⊕r

i=1Xi be a complex vector space. Let t = {t1, t2, . . . , tr} be a

set of distinct positive integers. Define the action of t on X by t(
∑r

i=1 xi) =
∑r

i=1 tixi. Let

V be a subspace of X. Then t(V ) = V if and only if V =
⊕r

i=1(V ∩Xi).

Proof. Assume t(V ) = V . Then X can be expressed as the direct sum of t-invariant

subspaces X = V ⊕ V ⊥ with respect to some inner product. Since the action of t on X is

diagonal, it is also diagonal on V and V ⊥. Therefore V is a direct sum of its eigenspaces and

each eigenspace is contained in an eigenspace of X. The reverse implication is trivial.

Lemma 3.1.2. Let X =
⊕r

i=1Xi be a complex vector space. Let Y 1, Y 2, . . . , Y s be vector



subspaces such that Y k =
⊕r

i=1 Y
k
i with Y k

i ⊆ Xi for all i ∈ [r]. If

dim
( s⋂
k=1

Y k
)

= dim(X)−
s∑

k=1

codim(Y k) = 0

then

dim
( s⋂
k=1

Y k
i

)
= dim(Xi)−

s∑
k=1

codim(Y k
i ) = 0

for each i ∈ [r].

Proof. By the assumption, we have that

dim
( s⋂
k=1

Y k
)

= dim
( s⋂
k=1

r⊕
i=1

Y k
i

)
=

r∑
i=1

dim
( s⋂
k=1

Y k
i

)
= 0.

Hence, for each i ∈ [r], we have that dim
(⋂s

k=1 Y
k
i

)
= 0. We also have that

dim(X)−
s∑

k=1

codim(Y k) =
s∑

k=1

dim(Y k)− (s− 1) dim(X)

=
s∑

k=1

( r∑
i=1

dim(Y k
i )
)
− (s− 1)

r∑
i=1

dim(Xi)

=
r∑
i=1

( s∑
k=1

dim(Y k
i )− (s− 1) dim(Xi)

)
= 0.

For any vector subspaces, it is always true that

s∑
k=1

dim(Y k
i )− (s− 1) dim(Xi) ≤ dim

( s⋂
k=1

Y k
i

)
.

Thus
∑s

k=1 dim(Y k
i )− (s− 1) dim(Xi) = 0 and hence, for each i ∈ [r], we have

dim
( s⋂
k=1

Y k
i

)
= dim(Xi)−

s∑
k=1

codim(Y k
i ) = 0.
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3.2. Tangent space of F`(a, n)

Consider the injective map from F`(a, n) to the product
∏r
i=1 Gr(ai, n) given by

V• 7→ (V1, V2, . . . , Vr).

It is well known that the tangent space of Gr(ai, n) at the point Vi is canonically isomorphic

with Hom(Vi,Cn/Vi). This induces an injective map on tangent spaces

TV•F`(a, n) ↪→
r⊕
i=1

Hom(Vi,Cn/Vi).

Let ij : Vj ↪→ Vj+1 and ρj : Cn/Vj � Cn/Vj+1 denote the naturally induced maps from the

flag structure of V• and let φ = (φ1, φ2, · · · , φr) denote an element of
⊕r

i=1 Hom(Vi,Cn/Vi).

For any i ∈ [r + 1], let Qi := Span{eai−1+1, eai−1+2, . . . , eai}. This defines a splitting of

Cn = Q1 ⊕Q2 ⊕ · · · ⊕Qr+1. (3.1)

Proposition 3.2.1. The tangent space of F`(a, n) at the point V• is given by

TV•F`(a, n) ' {φ ∈
r⊕
i=1

Hom(Vi,Cn/Vi) | ρj ◦ φj = φj+1 ◦ ij ∀j ∈ [r − 1]}. (3.2)

In other words, the set of φ ∈
⊕r

i=1 Hom(Vi,Cn/Vi) such that the following diagram com-

mutes:

V1
� � i1 //

φ1

��

V2
� � i2 //

φ2

��

· · · � � ir−1 // Vr

φr
��

Cn/V1 ρ1
// // Cn/V2 ρ2

// // · · ·
ρr−1

// // Cn/Vr

Proof. Since both sides of the equation (3.2) are vector subspaces of
⊕r

i=1 Hom(Vi,Cn/Vi)
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of the same dimension, it suffices to show the LHS ⊆ RHS. Since F`(a, n) is homogeneous,

without loss of generality we can assume V• = Ẽ•. Fix the splitting of Cn given in (3.1).

We have that

Hom(Eai ,C
n/Eai) ' Hom(Q1 ⊕Q2 ⊕ · · · ⊕Qi, Qi+1 ⊕Qi+2 ⊕ · · · ⊕Qr+1).

For any φ ∈
⊕r

i=1 Hom(Eai ,C
n/Eai) and i ∈ [r] define

V φ
i := 〈e1 + φi(e1), e2 + φi(e2), . . . , eai + φi(eai)〉.

It is easy to see that up to first order we have that

TẼ•F`(a, n) ' {φ ∈
r⊕
i=1

Hom(Eai ,C
n/Eai) | V

φ
1 ⊆ V

φ
2 ⊆ · · · ⊆ V

φ
r }.

Therefore any φ ∈ TẼ•F`(a, n) must satisfy the commuting conditions given in (3.2).

If we consider the splitting (3.1) together with the commuting conditions in (3.2), we have

the following simplification of the tangent space of F`(a, n) at the point Ẽ:

TẼF`(a, n) '
r⊕
i=1

Hom(Qi, Qi+1 ⊕Qi+2 ⊕ · · · ⊕Qr+1) '
r+1⊕
i<j

Hom(Qi, Qj). (3.3)

Note that Hom(Qi, Qj) is canonically isomorphic to the tangent space TQi(Gr(bi, Qi⊕Qj)).

We now describe the tangent space of a Schubert cell X◦w(F•) ⊆ F`(a, n). To do this we need

the notion of induced flags. For any complete flag F• ∈ F`(n) and any subspace V ⊆ Cn, we

have the induced complete flags on V and Cn/V given by the intersection of V with F• and

the projection Cn � Cn/V of F•. We denote these induced flags by F•(V ) and F•(Cn/V )

respectively. Consider the following description of the tangent space of a Schubert cell in

the Grassmannian. For the proof see [18, Section 2.7].
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Lemma 3.2.2. Let r < n and w ∈ Sn(r) and let F• ∈ F`(n). For any V ∈ X◦w(F•) ⊆

Gr(r, n), the tangent space of the Schubert cell at the point V is given by

TVX
◦
w(F•) = {φ ∈ Hom(V,Cn/V ) | φ(Fj(V )) ⊆ Fw(j)−j(C

n/V ) ∀ j ∈ [r]}.

We generalize this description to Schubert cells on the partial flag variety F`(a, n). For any

i ∈ [r] and w ∈ Sn(a), let wi denote the image of w under the projection Sn(a) � Sn(ai).

Proposition 3.2.3. The tangent space of the Schubert cell X◦w(F•) at the point V• is given

by

TV•X
◦
w(F•) = {φ ∈ TV•F`(a, n) | φi(Fj(Vi)) ⊆ Fwi(j)−j(C

n/Vi) ∀ i, j}. (3.4)

Proof. Similarly to Proposition 3.2.1, both sides of the equation (3.4) are vector subspaces

of TV•F`(a, n) of the same dimension and therefore suffices to show the LHS ⊆ RHS. Fix

i ∈ [r] and consider the map f : F`(a, n)→ Gr(ai, n) given by f(V•) = Vi. Clearly this map

is surjective and induces a surjective map f∗ on the tangent spaces at the point V• given

by f∗(φ) = φi. By Lemma 3.2.2, it suffices to show that f∗(TV•X◦w(F•)) = TViX
◦
wi

(F•).

However this is true since f(X◦w(F•)) = X◦
wi

(F•).

Consider the point Ẽ ∈ F`(a, n) and choose F• such that Ẽ ∈ X◦w(F•). We find that if

F• = lw−1E• for some l ∈ L, then the space TẼX
◦
w(F•) decomposes “nicely” with respect

to the decomposition (3.3).
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3.2.1. Proof of Theorem 1.1.2

Consider the Levi subgroup L ⊆ P . It is easy to see that L decomposes into the

product

L ' {(g1, . . . , gr+1) ∈ GL(Q1)× · · · ×GL(Qr+1) |
r+1∏
i=1

det(gi) = 1}. (3.5)

Definition 3.2.4. For any partial flag variety F`(a, n) and w ∈ Sn(a), define

F`L,w(n) := {F• ∈ F`(n) | F• = lw−1E• for some l ∈ L}.

Proposition 3.2.5. With respect to equation (3.3), if F• ∈ F`L,w(n), then

TẼX
◦
w(F•) =

r+1⊕
i<j

(
Hom(Qi, Qj) ∩ TẼX

◦
w(F•)

)
.

Proof. Let t = {t1, t2, . . . , tr+1} be a set of distinct positive integers. Let t act on Cn by

scalar multiplication with respect to the splitting (3.1). Since F• = lw−1E• for some l ∈ L,

each Fj(Eai) is fixed by the t action. By Lemma 3.1.1, we have

Fj(Eai) =
i⊕

m=1

(Fj(Eai) ∩Qm)

and

Fwi(j)−j(C
n/Eai) =

r+1⊕
m=i+1

(Fwi(j)−j(C
n/Eai) ∩Qm).

Therefore, for any φ = (φ1, φ2, . . . , φr) ∈ TẼX
◦
w(F•), the map φi can be written as the sum

φi =
∑

0<m1≤i
i<m2≤r+1

φm1,m2 where φm1,m2(Fj ∩Qm1) ⊆ Fwi(j)−j ∩Qm2 . (3.6)
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Note that φm1,m2 ∈ Hom(Qm1 , Qm2). Let t′ = {ti,j}i<j be a set of distinct positive integers

and let t′ act on TẼF`(a, n) by

t′
( r+1∑
i<j

φi,j
)

=
r+1∑
i<j

ti,jφi,j

under the direct sum given in (3.3). By equation (3.6), we have that t′
(
TẼX

◦
w(F•)

)
=

TẼX
◦
w(F•). Thus by Lemma 3.1.1, the proposition is proved.

Lemma 3.2.6. Let w ∈ Sn(a) and {i < j} ⊆ [r + 1]. Choose m such that i ≤ m < j and

let

M− = {w(1), w(2), . . . , w(am)} and M+ = {w(am + 1), w(am + 2), . . . , w(n)}.

Let

p−k := #{α ∈M− | α ≤ w(ai−1 + k)} and p+
k := #{α ∈M+ | α ≤ w(aj−1 + k)}.

Then for any k ∈ [bi] and l ∈ [bj − 1], we have

wi,j(k) = k + l ⇔ p+
l ≤ w(ai−1 + k)− p−k < p+

l+1

and

wi,j(k) = k + bj ⇔ p+
bj
≤ w(ai−1 + k)− p−k .

Proof. By the definition of wi,j , wi,j(k) = k + l if and only if w(ai−1 + k) is greater than

exactly l elements in the set {w(aj−1 +1), w(aj−1 +2), . . . , w(aj−1 +bj)}. This is equivalent

to

w(aj−1 + l) < w(ai−1 + k) < w(aj−1 + l + 1)
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which reduces to

p+
l + p−k ≤ w(ai−1 + k) < p+

l+1 + p−k .

In the case that l = bj , we have that wi,j(k) = k+bj if and only if w(ai−1+k) is greater than

every element in the set {w(aj−1 + 1), w(aj−1 + 2), . . . , w(aj−1 + bj)}. This is equivalent to

p+
bj

+ p−k ≤ w(ai−1 + k).

Proposition 3.2.7. For any {i < j} ⊆ [r+ 1], identify TQiGr(bi, Qi⊕Qj) ' Hom(Qi, Qj).

If F• ∈ F`L,w(n), then

Hom(Qi, Qj) ∩ TẼX
◦
w(F•) = TQiX

◦
wi,j (F•(Qi ⊕Qj))

where F•(Qi ⊕Qj) is the complete flag on Qi ⊕Qj induced from F•.

Proof. For any (φ1, φ2, · · · , φr) ∈ TẼF`(a, n) write

(φ1, φ2, · · · , φr) =
r+1∑
i<j

φi,j

under the decomposition (3.3). Fix {i < j} ⊆ [r + 1] and choose m such that i ≤ m < j.

Then we have

φm =
∑

0<m1≤m
m<m2≤r+1

φm1,m2 . (3.7)

Observe that φi,j is included in the above summation (3.7). If (φ1, φ2, · · · , φr) ∈ TẼX
◦
w(F•),

then

φm(Fl(Q1 ⊕Q2 ⊕ · · · ⊕Qm)) ⊆ Fwm(l)−l(Qm+1 ⊕Qm+2 ⊕Qr+1) ∀ l ∈ [am].
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Define the set M := {w(1), w(2), . . . , w(am)} and for any k ∈ [bi], let

pk := #{α ∈M | α ≤ w(ai−1 + k)}.

Observe that wm(pk) = w(ai + k) and that M = M− and pk = p−k in Lemma 3.2.6.

Since F• ∈ F`L,w(n), we have that pk is the smallest number such that the flag Fpk(Q1 ⊕

Q2 ⊕ · · · ⊕ Qm) induces the flag Fk(Qi) on Qi. By Lemma 3.2.6, we have that the flag

Fwm(pk)−pk(Qm+1⊕Qm+2⊕· · ·⊕Qr+1) induces the flag Fl(Qj) on Qj if and only if wi,j(k) =

l + k . Hence the map φi,j in the sum (3.7) of φm satisfies

φi,j(Fk(Qi)) ⊆ Fwi,j(k)−k(Qj) (3.8)

Note that this result is independent of choice of m ∈ {i, i+ 1, . . . , j − 1}. This implies that

Hom(Qi, Qj) ∩ TẼX
◦
w(F•) ⊆ TQiX◦wi,j (F•(Qi ⊕Qj)).

To see the reverse containment, let φi,j ∈ TQiX
◦
wi,j (F•(Qi ⊕ Qj)). We realize φi,j as an

element of TẼF`(a, n) by setting φm = φi,j under the sum (3.7) if m ∈ {i, i+ 1, . . . , j − 1}

and φm ≡ 0 otherwise. It is easy to see that

φ = (φ1, φ2, · · · , φr) ∈ Hom(Qi, Qj) ∩ TẼX
◦
w(F•)

Proof of (ii) ⇒ (iii) in Theorem 1.1.2: If (w1, w2, . . . , ws) is L-movable, then for a

generic s-tuple (l1, l2, . . . ls) ∈ Ls we have

dim
( s⋂
i=k

TẼX
◦
wk(F k• )

)
= dim F`(a, n)−

s∑
k=1

codim(X◦wk(F k• )) = 0
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where F k• = lk(wk)−1E•. By Proposition 3.2.5 and 3.2.7,

s⋂
k=1

(
TẼX

◦
wk(F k• )

)
=

r+1⊕
i<j

( s⋂
k=1

TQiX
◦
wki,j

(F k• (Qi ⊕Qj))
)
.

Hence by Lemma 3.1.2, for each {i < j} ⊆ [r + 1] we have

dim
( s⋂
k=1

TQiX
◦
wki,j

(F k• (Qi ⊕Qj))
)

=

dim(Hom(Qi, Qj))−
s∑

k=1

codim
(
TQiX

◦
wki,j

(F k• (Qi ⊕Qj))
)

= 0.

Thus Proposition 2.1.2(ii) proves (ii)⇒ (iii) in Theorem 1.1.2. 2

Proof of (iii)⇒ (ii) in Theorem 1.1.2: Assume that
∏s
k=1[Xwki,j

] = a nonzero multiple

of a class of a point in H∗(Gr(bi, bi+bj)) for all {i < j} ⊆ [r+1]. Since dim(Qi⊕Qj) = bi+bj ,

we can identify the homogeneous space Gr(bi, bi + bj) with SL(Qi ⊕ Qj)/Pi,j where Pi,j

denotes the stabilizer of Qi ⊆ Qi ⊕Qj . Since Pi,j is maximal, by Proposition 2.1.9 we have

that (w1
i,j , w

2
i,j , . . . , w

s
i,j) is Li,j-movable. Hence for generic Fi,j ∈

∏s
k=1 F`Li,j ,wki,j (Qi⊕Qj),

we have

dim
( s⋂
k=1

TQiX
◦
wki,j

(F ki,j•)
)

= dim(Hom(Qi, Qj))−
s∑

k=1

codim(Xwki,j
(F ki,j•)) = 0 (3.9)

for each i < j. By Lemma 3.2.8 below, for every i < j, there exists a non-empty open set

Ui,j ⊆
∏s
k=1 F`L,wk(n) such that for every Fi,j ∈ (ψw1 , ψw2 , . . . , ψws)(Ui,j), equation (3.9)

is satisfied. Choose H ∈
⋂r+1
i<j Ui,j . Then by Proposition 3.2.7,

dim
( s⋂
k=1

TẼ•X
◦
wk(Hk

• )
)

=
r+1∑
i<j

dim
( s⋂
k=1

TQiX
◦
wki,j

(Hk
• (Qi ⊕Qj))

)
= 0.

By the codimension condition (1.2), the intersection of the Schubert cells X◦
wk

(Hk
• ) is trans-

verse at the point Ẽ•. Thus Proposition 2.1.2 proves (iii)⇒ (ii) in Theorem 1.1.2. 2
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Lemma 3.2.8. Fix {i < j} ⊆ [r + 1]. Let Li,j be the Levi subgroup of the parabolic

Pi,j ⊆ SL(Qi ⊕Qj) which stabilizes the space Qi. Then for any w ∈ Sn(a), the map

ψw : F`L,w(n)→ F`Li,j ,wi,j (Qi ⊕Qj)

given by ψw(F•) = F•(Qi ⊕Qj) is well defined and surjective.

Proof. Let l = (g1, g2, . . . , gr+1) ∈ L with respect to equation (3.5). By the definition of

wi,j , we have ψw(lw−1E•) = (gi, gj)w−1
i,j E•(Qi ⊕ Qj). Thus ψw is well defined. Since ψw

is L-equivariant and L acts transitively on F`Li,j ,wi,j (Qi ⊕ Qj), we also have that ψw is

surjective.

3.3. Tangent space of IF(a, 2n)

We now describe the tangent space of IF(a, 2n) at some point V•. Since IF(a, 2n) ↪→

F`(a, 2n), we have a natural injection of tangent spaces

TV•IF(a, 2n) ↪→ TV•F`(a, 2n) ↪→
r⊕
i=1

TViGr(ai, 2n).

There is also a natural embedding of IF(a, 2n) ↪→
∏r
i=1 IG(ai, 2n). This embedding induces

another map on tangent spaces:

TV•IF(a, 2n) ↪→
r⊕
i=1

TViIG(ai, 2n) ↪→
r⊕
i=1

TViGr(ai, 2n).

Let φ = (φ1, φ2, . . . , φr) ∈
⊕r

i=1 Hom(Vi,C2n/Vi). We have the following characterization

of the tangent space of TV•IF(a, 2n) with respect to the above two embeddings:
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Proposition 3.3.1. For any V• ∈ IF(a, 2n), the tangent space

TV•IF(a, 2n) ' {φ ∈ TV•F`(a, 2n) | φi ∈ TViIG(ai, 2n)}.

In other words

TV•IF(a, 2n) ' TV•F`(a, 2n) ∩
r⊕
i=1

TViIG(ai, 2n) ⊆
r⊕
i=1

Hom(Vi,C2n/Vi).

Proof. We have that IF(a, 2n) = F`(a, 2n) ∩
∏r
i=1 IG(ai, 2n) as subschemes of

∏r
i=1 Gr(ai, 2n)

and hence the proposition is true for generic V• ∈ IF(a, 2n). Since IF(a, 2n) is homogeneous,

the proposition holds for all V• ∈ IF(a, 2n).

We now take a closer look at TV IG(d, 2n) for d ≤ n. Consider the map ψ : Hom(V,C2n/V )→

Hom(V, V ∗) where

ψ(φ)(v) = 〈φ(v), ∗〉.

The proof of the following lemma can be found in [4].

Lemma 3.3.2. For any V ∈ IG(d, 2n), we have

TV IG(d, 2n) ' ψ−1(sym2V ∗)

where sym2V ∗ ⊆ Hom(V, V ∗) is the space of symmetric bilinear forms on V . Equivalently,

we have

TV IG(d, 2n) ' {φ ∈ Hom(V,C2n/V ) | 〈v, φ(v′)〉 = 〈v′, φ(v)〉 ∀ v, v′ ∈ V }. (3.10)

Recall the definitions of Ii, Īi and Ĩ found in Section 1.2.1. For any i ∈ [r], let

Qi = Span{ek | k ∈ Ii} and Q̄i = Span{ek | k ∈ Īi}
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and

Q̃ = Span{ek | k ∈ Ĩ}.

Clearly Q̄i = V/Q⊥i = Q∗i and we have the splitting:

C2n = Q1 ⊕Q2 ⊕ · · · ⊕Qr ⊕ Q̃⊕ Q̄r ⊕ · · · ⊕ Q̄2 ⊕ Q̄1. (3.11)

Proposition 3.3.3. With respect to the splitting (3.11), we have the following description

of the tangent space of IF(a, 2n) at the standard partial isotropic flag Ẽ• = Ea1 ⊆ Ea2 ⊆

· · · ⊆ Ear :

TẼ•IF(a, 2n) '
r⊕
i<j

(
Hom(Qi, Qj)⊕Hom(Qi, Q̄j)

)
⊕

r⊕
i=1

(
Hom(Qi, Q̃)⊕ sym2Q∗i

)
. (3.12)

Proof. Since TẼ•IF(a, 2n) ⊆ TẼ•F`(a, 2n), we have that

TẼ•IF(a, 2n) ⊆
r⊕
i<j

Hom(Qi, Qj)⊕
r⊕
i 6=j

Hom(Qi, Q̄j)⊕
r⊕
i=1

(
Hom(Qi, Q̃)⊕Hom(Qi, Q̄i)

)
.

If φ = (φ1, φ2, . . . , φr) ∈ TẼ•IF(a, 2n), the condition that φi ∈ TEai IG(ai, 2n) gives that

〈v, φi(v̂)〉 = 〈v̂, φi(v)〉 ∀ v, v̂ ∈ Eai .

With respect to (3.11), write

v = q1 + q2 + · · ·+ qi and v̂ = q̂1 + q̂2 + · · ·+ q̂i

and

φi =
i∑

j=1

(
φ̃j +

r∑
k=i+1

φj,k +
r∑

k=1

φ̄j,k

)

where φj,k ∈ Hom(Qj , Qk), φ̄j,k ∈ Hom(Qj , Q̄k) and φ̃j ∈ Hom(Qj , Q̃). By Lemma 3.3.2,
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we have that
i∑

j=1

r∑
k=1

φ̄j,k ∈ sym2E∗ai

and hence φ̄j,k = φ̄∗k,j . Thus φi is completely determined by the sum

i∑
j=1

(
φ̃j + φ̄j,j +

r∑
k=i+1

(φj,k + φ̄j,k)
)
.

Since C2n/Q⊥j = Q̄j , we have that

〈v, φi(v̂)〉 =
r∑
j=1

〈qj , φ̄j,j(q̂j)〉 =
r∑
j=1

〈q̂j , φ̄j,j(qj)〉 = 〈v̂, φi(v)〉.

The commuting conditions in (3.2) give that 〈qj , φ̄j,j(q̂j)〉 = 〈q̂j , φ̄j,j(qj)〉 for each j ∈ [r].

Hence if we identify Hom(Qi, Q̄j) ' Hom(Qj , Q̄i) by the dual map, we have

TẼ•IF(a, 2n) ⊆
r⊕
i<j

(
Hom(Qi, Qj)⊕Hom(Qi, Q̄j)

)
⊕

r⊕
i=1

(
Hom(Qi, Q̃)⊕ sym2Q∗i

)
.

Since the dimensions of these vector spaces are equal, we have an isomorphism.

We now look at tangent space of the Schubert cell Φ◦w(F•) ⊆ IF(a, 2n). For any i ∈ [r] and

w ∈ SC2n(a), let wi denote the image of w under the projection SC2n(a) � SC2n(ai).

Proposition 3.3.4. Let w ∈ SC2n(a) and let F• ∈ IF(2n). Let V• ∈ Φ◦w(F•) ⊆ IF(a, 2n).

The tangent space of the Schubert cell Φ◦w(F•) at the point V• is given by

TV•Φ
◦
w(F•) = {φ ∈ TV•IF(a, 2n) | φi(Fj(Vi)) ⊆ Fwi(j)−j(C

2n/Vi) ∀i, j}. (3.13)

Proof. As schemes, we have that Φ◦w(F•) = X◦w(F•) ∩ IF(a, 2n) ⊆ F`(a, 2n). Therefore

TV•Φ
◦
w(F•) = TV•X

◦
w(F•) ∩ TV•IF(a, 2n).
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Since the values {wi(1), . . . , wi(ai)} for any w ∈ SC2n(a) are fixed under the projection

SC2n(ai)→ S2n(ai), the proposition is proved.

3.3.1. Proof of Theorem 1.2.1

For any w ∈ SC2n(a) and F• ∈ IF(2n) such that Ẽ ∈ Φ◦w(F•), let

Hi,j(w,F•) := Hom(Qi, Qj) ∩ TẼ•Φ
◦
w(F•)

H̄i,j(w,F•) := Hom(Qi, Q̄j) ∩ TẼ•Φ
◦
w(F•)

H̃i(w,F•) := Hom(Qi, Q̃) ∩ TẼ•Φ
◦
w(F•)

Si(w,F•) := sym2Q∗i ∩ TẼ•Φ
◦
w(F•)

with respect the decomposition (3.12). The Levi subgroup of PC = P is isomorphic to

LC ' GL(Q1)×GL(Q2)× · · · ×GL(Qr)× Sp(Q̃). (3.14)

Note that the action of LC on TẼ•IF(a, 2n) fix the subspaces in Proposition 3.3.3. Similar

to Definition 3.2.4, we have

Definition 3.3.5. For any isotropic partial flag variety IF(a, 2n) and w ∈ SC2n(a), define

IFL,w(2n) := {F• ∈ F`(n) | F• = lw−1E• for some l ∈ LC}

The following two propositions are the analogues of Propositions 3.2.5 and 3.2.7 for IF(a, 2n).

Proposition 3.3.6. If F• ∈ IFL,w(2n), then

TẼ•Φ
◦
w(F•) =

r+1⊕
i<j

(
Hi,j(w,F•)⊕ H̄i,j(w,F•)

)
⊕

r⊕
i=1

(
H̃i(w,F•)⊕ Si(w,F•)

)
. (3.15)
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Proof. The proof is exactly analogous to the proof of Proposition 3.2.5 where instead of

using the splitting (3.1) of Cn, we use the splitting (3.11) of C2n.

Proposition 3.3.7. If F• ∈ IFL,w(2n), then for any i < j, we have the following:

(i) Hi,j(w,F•) = TQiX
◦
wi,j (F•(Qi ⊕Qj))

(ii) H̄i,j(w,F•) = TQiX
◦
w̄i,j (F•(Qi ⊕ Q̄j))

(iii) H̃i(w,F•) = TQiX
◦
w̃i

(F•(Qi ⊕ Q̃))

(iv) Si(w,F•) = TQiΦ
◦
w̄i,i(F•(Qi ⊕ Q̄i))

Proof. Recall that ā := {ā1, . . . , ār} where āi := 2n + 1 − ai and consider the inclusion

IF(a, 2n) ↪→ F`(a ∪ ā, 2n) which maps

V1 ⊆ · · · ⊆ Vr 7→ V1 ⊆ · · · ⊆ Vr ⊆ V ⊥r ⊆ · · · ⊆ V ⊥1 .

Using the natural inclusion of SCn (a) ⊆ SA2n(a∪ ā), it is easy to see that Φ◦w(F•) ↪→ X◦w(F•).

Since LC ⊆ LA, for any F• ∈ IFL,w(2n) we can apply Proposition 3.2.7 to X◦w(F•). This

gives

Hi,j(w,F•) = Hom(Qi, Qj) ∩ TẼ•Φ
◦
w(F•)

⊆ Hom(Qi, Qj) ∩ TẼ•X
◦
w(F•)

= TQiX
◦
wi,j (F•(Qi ⊕Qj)).

Similarly, we have the inclusions

H̄i,j(w,F•) ⊆ TQiX◦w̄i,j (F•(Qi ⊕ Q̄j)) and H̃i(w,F•) ⊆ TQiX◦w̃i(F•(Qi ⊕ Q̃))
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and

Si(w,F•) ⊆ TQiX◦w̄i,i(F•(Qi ⊕ Q̄i)).

Note that by definition, Si(w,F•) ⊆ sym2Q∗i . Hence

Si(w,F•) ⊆ TQiX
◦
w̄i,i(F•(Qi ⊕ Q̄i)) ∩ sym2Q∗i

= TQiX
◦
w̄i,i(F•(Qi ⊕ Q̄i)) ∩ TQiLG(bi, Qi ⊕ Q̄i)

= TQiΦ
◦
w̄i,i(F•(Qi ⊕ Q̄i)).

Calculating dimensions we have

dim Φw = dimXwi,j + dimXw̄i,j + dimXw̃i + dim Φw̄i,i .

By Proposition 3.3.6, the above inclusions must be isomorphisms.

Proof of (ii)⇒ (iii) in Theorem 1.2.1: The proof is the same as the proof of Theorem

1.1.2 (ii)⇒ (iii) only we use Proposition 3.3.6 and Proposition 3.3.7. 2

Before we prove (iii)⇒ (ii) in Theorem 1.2.1 we need the following two lemmas which

serve as analogues of Lemma 3.2.8. The first is a technical lemma which is a consequence

of recent work by Belkale-Kumar. For proof see [4, Theorem 34]. For any i ∈ [r] and

w ∈ SAbi+2br+1
(bi) , consider the set

F (w, i) := {gw−1E•(Qi ⊕ Q̃) | g ∈ GL(Qi)× Sp(Q̃)}

Lemma 3.3.8. Let (w1, w2, . . . , ws) ∈ (SAbi+2br+1
(bi))s, then the following are equivalent

(i)
∏s
k=1[Xwk ] 6= 0 in H∗(Gr(bi, bi + 2br+1))

(ii) For generic (F 1
• , F

2
• , . . . , F

s
• ) ∈

∏s
k=1 F (wk, i), the intersection

⋂s
k=1X

◦
wk

(F k• ) is trans-
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verse at Qi ∈ Gr(bi, Qi ⊕ Q̃).

For any {i < j} ⊆ [r], consider the following Levi factors with respect to the root system

of Sp(2n):

(i) Let Li,j be the Levi subgroup of the parabolic Pi,j ⊆ SL(Qi ⊕ Qj) which stabilizes

the space Qi.

(ii) Let L̄i,j be the Levi subgroup of the parabolic P̄i,j ⊆ SL(Qi ⊕ Q̄j) which stabilizes

the space Qi.

(iii) Let L̄i be the Levi subgroup of the parabolic P̄i ⊆ Sp(Qi ⊕ Qi) which stabilizes the

space Qi.

Lemma 3.3.9. For any w ∈ SC2n(a), the following maps are surjective:

(i) IFL,w(2n)→ F`Li,j ,wi,j (Qi ⊕Qj) given by F• 7→ F•(Qi ⊕Qj).

(ii) IFL,w(2n)→ F`L̄i,j ,w̄i,j (Qi ⊕Qj) given by F• 7→ F•(Qi ⊕ Q̄j).

(iii) IFL,w(2n)→ IFL̄i,w̄i,i(Qi ⊕Qi) given by F• 7→ F•(Qi ⊕Qi).

(iv) IFL,w(2n)→ F (w̃i, i) given by F• 7→ F•(Qi ⊕ Q̃).

Proof. Consider the Levi subgroup LC as in (3.14). Clearly LC acts transitively on all the

range sets in items (i)− (iv). Hence the maps are surjective.

Proof of (iii) ⇒ (ii) in Theorem 1.2.1: We follow a similar outline to the proof of

(iii)⇒ (ii) in Theorem 1.1.2. Assume part (iii) in Theorem 1.2.1. Since Gr(bi, bi + bj) and

LG(bi, 2bi) are cominuscule flag varieties, by Proposition 2.1.9, the s-tuples (w1
i,jw

2
i,j , . . . , w

s
i,j),

(w̄1
i,j , w̄

2
i,j , . . . , w̄

s
i,j) and (w̄1

i,i, w̄
2
i,i, . . . , w̄

s
i,i) are Levi-movable. By Lemmas 3.3.8 and 3.3.9
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and Proposition 3.3.7, we can find a F ∈
∏s
k=1 IFL,wk(2n) such that

dim
( s⋂
k=1

TẼ•Φ
◦
wk(F k• )

)
=

r∑
i<j

(
dim

s⋂
k=1

Hi,j(wk, F k• ) + dim
s⋂

k=1

H̄i,j(wk, F k• )
)

+
r∑
i=1

(
dim

s⋂
k=1

H̃i(wk, F k• ) + dim
s⋂

k=1

Si(wk, F k• )
)

= 0.

By the codimension condition (1.7), the Schubert cells Φ◦
wk

(F k• ) intersect transversally at

Ẽ. Thus Proposition 2.1.2 proves (iii)⇒ (ii) in Theorem 1.2.1. 2

3.4. Horn recursion for (H∗(G/P ),�0)

In [3], Belkale-Kumar give a list of necessary Horn-type inequalities which they call

character inequalities satisfied by L-movable s-tuples. We state this result below in Theorem

3.4.2. They ask if these inequalities are sufficient to determine if a s-tuple is L-movable.

Theorem 1.1.2 answers this question affirmatively for all type A flag varieties.

3.4.1. Refined inequalities for the new product

For any G/P , let c be any algebraic group homomorphism Z(L)→ C∗, where Z(L) denotes

the center of the Levi subgroup L ⊆ P . We will call any such map a central character of L.

Definition 3.4.1. For any w ∈WP and central character c, define the character

χcw =
∑

β∈R(w,c)

β.

where

R(w, c) := {β ∈ R+\R+
l ∩ w

−1R+ | eβ|Z(L)
= c}
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Note that

χw =
∑
c

χcw

where the sum runs over all central characters of L such that χc1 6= 0. Belkale-Kumar

obtained the following result in [3, Thm 32].

Theorem 3.4.2. Let (w1, w2, . . . , ws) ∈ (WP )s be L-movable. Then the following two

conditions are satisfied:

(i) For any central character c of L such that χc1 6= 0,

s∑
i=1

|R(wi, c)| = |R(1, c)| (3.16)

where | · | denotes the cardinality of the enclosed set.

(ii) For any maximal standard parabolic QL of L and any choice (u1, u2, . . . , us) ∈ (WQL)s

such that
s∏

k=1

[Λuk ] 6= 0

in H∗(L/QL) and any central character c of L such that χc1 6= 0, the following in-

equality is satisfied for any αp ∈ ∆(P )\∆(QL):

s∑
k=1

χcwk(ukxp) ≤ χc1(xp) (3.17)

3.4.2. Horn recursion for (H∗(F`(a, n)),�0)

We show that Theorem 1.1.2 implies that the conditions of Theorem 3.4.2 (i), (ii) are

sufficient to determine when (w1, w2, . . . , ws) is L-movable for SL(n)/P . Recall that with
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respect to the splitting (3.1), we have the decomposition of L given in (3.5). Hence

Z(L) ' {(z1, z2, . . . , zr+1) ∈ Cr+1 |
r+1∏
k=1

zbkk = 1}.

For any {i < j} ⊆ [r + 1], define the central character of L

ci,j(z1, z2, . . . , zr+1) = zi · z−1
j .

If β = εa − εb ∈ R+\R+
l , then eβ|Z(L)

= ci,j if and only if ai−1 < a ≤ ai and aj−1 < b ≤ aj .

Also, all central characters of L such that χc1 6= 0 are of the form ci,j for some i < j. By

Lemma 2.1.6, we have that

|R(w, ci,j)| = codim(Xwi,j )

and hence the equations in (3.16) are equivalent to the equations given in Theorem 1.1.2

(iva). For any i ∈ [r + 1] and any d ∈ [bi], let Pi,d be the stabilizer of the subspace

Span{eai−1+1, eai−1+2, . . . , eai−1+d} ⊆ Qi in the group GL(Qi) . Consider the parabolic

subgroup of L:

QL := {(g1, . . . , gr+1) ∈ GL(Q1)× · · · × Pi,d × · · · ×GL(Qr+1) |
r+1∏
i=1

det(gi) = 1}.

The homogenous space L/QL ' GL(Qi)/Pi,d ' Gr(d, bi). Observe that the set ∆(P )\∆(QL)

consists of the single root αai−1+d. Calculating the action of u ∈ Sd(bi) on xai−1+d with

respect to the positive roots in R(1, ci,j), we have that

β(uxai−1+d) =
{

1 if a− ai−1 ∈ {u(1), u(2), . . . , u(d)}
0 otherwise.

where β = εa − εb ∈ R(1, ci,j). By counting the number of positive roots that are sent

to R(1, ci,j) under the action of w−1, we find that for any w ∈ Sn(a) and u ∈ Sbi(d), the

50



character

χ
ci,j
w (uxai−1+d) =

d∑
l=1

(
bj + u(l)− wi,j(u(l))

)
.

In particular, we have that χci,j1 (uxai−1+d) = dbj . Hence the character inequalities (3.17)

are the same as the inequalities (1.4).

Corollary 3.4.3. Conditions (i) and (ii) in Theorem 3.4.2 are sufficient to determine when

(w1, w2, . . . , ws) ∈ (WP )s is L-movable for G = SL(n) and P is any standard parabolic

subgroup.

Remark 3.4.4. Theorem 1.2.1 does not prove the analogue of Corollary 3.4.3 for the group

Sp(2n) since the Horn recursion requires the Purbhoo-Sottile inequalities in [15] for the

Lagrangian Grassmannians found in Theorem 1.2.1 (iiib).

Question 3.4.5. Are conditions (i) and (ii) in Theorem 3.4.2 sufficient to determine L-

movable s-tuples in the case of the Lagrangian Grassmannian?

If the answer is yes, then Theorem 1.2.1 would imply that (i) and (ii) in Theorem 3.4.2 are

sufficient to determine L-movable s-tuples in all type C flag varieties.

3.5. A list of dimensional inequalities for F`(a, n)

In this section we consider the entire cohomology H∗(F`(a, n)) and prove Theorem

1.1.3. We start by considering the following lemma which gives an equivalent condition for

a transversal intersection.

Lemma 3.5.1. Let X1, X2, . . . , Xs be smooth subvarieties of a smooth variety X and let

x ∈
⋂s
k=1Xk. Then X1, X2, . . . , Xs intersect transversally at x if and only if the induced

map of vector spaces ψ : TxX →
⊕s

k=1 TxX/TxXk is surjective.
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Proof. Note that ker(ψ) '
⋂s
k=1 TxXk ⊆ TxX. Then ψ surjective gives the short exact

sequence

0 // ker(ψ) // TxX
ψ //

s⊕
k=1

TxX/TxXk // 0

and therefore dim(
⋂s
k=1 TxXk) = dim(TxX)−

∑s
k=1 codim(TxXk).

3.5.1. Proof of Theorem 1.1.3:

For any V• ∈ F`(a, n), consider the projection fi : TV•(F`(a, n)) � TViGr(ai, n) '

Hom(Vi,Cn/Vi) given by (φ1, φ2, · · · , φr) 7→ φi. Using the proof of Proposition 3.2.3, for

any w ∈ Sn(a) and F• ∈ F`(n), the image of the subspace TV•(X◦w(F•)) is equal to

fi(TV•X
◦
w(F•)) = TViX

◦
wi(F•) ⊆ TViGr(ai, n).

For any j ≥ i define the map fi,j : TV•(F`(a, n))→ Hom(Vi,Cn/Vj) by composing the map

fi with the map ρi,j : Cn/Vi � Cn/Vj . In other words, for any v ∈ Vi, we have

fi,j((φ1, φ2, · · · , φr))(v) = ρi,j ◦ φi(v).

Note that the map fi,j is surjective since the map fi is surjective. For any (w1, w2, . . . , ws) ∈

Sn(a)s and F ∈ F`(n)s, we have the corresponding commuting diagram:

TV•F`(a, n)
ψ //

fi,j

����

s⊕
k=1

TV•F`(a, n)/TV•X
◦
wk(F k• )

f̄si,j����

Hom(Vi,Cn/Vj)
ψi,j //

s⊕
k=1

Hom(Vi,Cn/Vj)/fi,j(TV•X
◦
wk(F k• ))

where ψ and ψi,j are diagonal embeddings and f̄si,j coordinate wise projection of fi,j . If
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(w1, w2, . . . , ws) ∈ Sn(a)s satisfies the condition
∏s
k=1[Xwk ] 6= 0, then by Proposition 2.1.2

and Lemma 3.5.1, we can choose F ∈ F`(n)s such that the map ψ is surjective. Therefore,

by the commutativity of the diagram, we have that ψi,j is surjective and the images under

fi,j of TV•X◦wk(F k• ) ⊆ Hom(Vi,Cn/Vj) intersect transversally at the point fi,j(V•). Lemma

3.5.2 below completes the proof of Theorem 1.1.3 by computing the codimension of the

space fi,j(TV•X◦w(F•)) ⊆ Hom(Vi,Cn/Vj). 2

Let w ∈ Sn(a) and {i < j} ⊆ [r]. Let the set Ajw := {w(aj +1), w(aj +2), . . . , w(n)}. Define

pi,jw (l) := #{p ∈ Ajw | p ≤ wi(ai + wi(l)− l)}

where wi is the image of w under the map Sn(a)→ Sn(ai).

Lemma 3.5.2. Let w ∈ Sn(a) and {i < j} ⊆ [r]. If we denote p(l) := pi,jw (l), then

fi,j(TV•X
◦
w(F•)) = {φ ∈ Hom(Vi,Cn/Vj) | φ(Fl(Vi)) ⊆ Fp(l)(Cn/Vj)}. (3.18)

Proof. If φ = fi,j((φ1, φ2, · · · , φr)) ∈ fi,j(TV•(X◦w(F•))), by the definition of p(l) we have

φ(Fl(Vi)) ⊆ ρi,j(Fwi(l)−l(C
n/Vi)) ⊆ Fp(l)(Cn/Vj) ∀ l ∈ [ai].

This shows that the LHS ⊆ RHS in equation (3.18). Let φ ∈ Hom(Vi,Cn/Vj) be such that

φ(Fl(Vi)) ⊆ Fp(l)(Cn/Vj) ∀ l ∈ [ai]. We construct (φ1, φ2, · · · , φr) ∈ TV•(X◦w(F•)) such that

fi,j((φ1, φ2, · · · , φr)) = φ. Choose a splitting of

Cn = Q1 ⊕Q2 ⊕ · · · ⊕Qr+1

such that Vk = Q1 ⊕Q2 ⊕ · · · ⊕Qk and identify Cn/Vk = Qk+1 ⊕Qk+2 ⊕ · · · ⊕Qr+1 ∀ k ∈

[r]. Then for any k ∈ [r], the map φ induces a map φk : Vk → Cn/Vk by the following
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construction.

If k ≤ i, then for any k̃ ∈ [k], define φk on Qk̃ by φk(Qk̃) := φ(Qk̃).

If k > i, then for any k̃ ∈ [k], define φk on Qk̃ by

φk(Qk̃) := φ(Qk̃)
∣∣∣
Qk+1⊕Qk+2⊕···⊕Qr+1

for k̃ < i

φk(Qk̃) := 0 for k̃ ≥ i.

It is easy to see that (φ1, φ2, . . . , φr) ∈ TV•X◦w(F•) and that fi,j(φ1, φ2, . . . , φr) = φ. There-

fore equation (3.18) is satisfied.

By Lemma 3.5.2, the codimension of fi,j(TV•X◦w(F•)) ⊆ Hom(Vi,Cn/Vj) is given by

codim(fi,j(TV•X
◦
w(F•))) = ai(n− aj)−

ai∑
l=1

pi,jw (l) =
ai∑
l=1

(n− aj − pi,jw (l))

which completes the proof of Theorem 1.1.3.
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CHAPTER 4

Structure coefficients

Kleiman’s transversality theorem [10] says that for generic (g1, . . . gs) ∈ Gs, the intersec-

tion
⋂s
k=1 gkΛwk is transverse and dense in the intersection

⋂s
k=1 gkΛ̄wk . If (w1, w2, . . . , ws) ∈

(WP )s are such that
∏s
k=1[Λwk ] = c[Λe] for some positive integer c, then for generic

(g1, . . . gs) ∈ Gs, we have ∣∣∣∣∣
s⋂

k=1

gkΛwk

∣∣∣∣∣ =

∣∣∣∣∣
s⋂

k=1

gkΛ̄wk

∣∣∣∣∣ = c.

Let (w1, w2, . . . , ws) ∈ (WP )s be L-movable. The goal of this chapter is prove Theorems

1.1.4 and 1.2.2 which give a formula for the structure coefficient c as a product of structure

coefficients coming from induced maximal flag varieties in the type A and C cases. Since

the proof in each of these cases is similar, we will go over the type A case in detail and refer

back to this case when needed in the type C case.

4.1. Induced Schubert varieties

Let Pi be the standard maximal parabolic of G containing P associated to the root

αai ∈ ∆\∆(P ) and let Li denote the Levi subgroup of Pi. Let UPi be the unipotent radical

of Pi and observe that Pi = Li · UPi . Since P ⊆ Pi, there exists a standard parabolic

subgroup Qi ⊆ Li (Qi contains BLi := B ∩ Li) such that Qi = P ∩ Li and P = Qi · UPi .



Consider the projection f : G/P � G/Pi. This gives rise to the fibration diagram

Li/Qi = Pi/P // G/P

f
����

G/Pi

In particular, for any g ∈ G, we have f−1(gPi) = {gpP | p ∈ Pi} ' gLi/Qi. For any

w ∈ WP , there exist wi ∈ WPi and wγ ∈ WQi
Li

such that w = wi · wγ . Since w,wi, wγ are

minimal length, this product is unique [15]. Clearly the image f(Λw) = Λwi .

Lemma 4.1.1. For any gPi ∈ Λwi, we have that f−1(gPi) ∩ Λw ' gΛwγ .

Proof. Write g = bwi for some b ∈ B. We have that

f−1(gPi) ∩ Λw = (bwiPi ∩Bwγwi)P = bwi(Pi ∩ w−1
i Bwiwγ)P.

Since wi ∈WPi , the Borel BLi = Li ∩w−1
i Bwi. Hence, under the identification f−1(gPi) '

gLi/Qi, we have the above expression equal to

bwi(Li ∩ w−1
i Bwiwγ)Qi = bwi(Li ∩ w−1

i Bwi)wγQi = bwiBLiwγQi = gΛwγ .

In the next two sections, we show that if (w1, . . . , ws) is L-movable, then the associated

structure constant is a product of the structure constant coming from (w1
i , . . . , w

s
i ) and

(w1
γ , . . . , w

s
γ) for certain i ∈ [r].
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4.2. A formula for type A structure coefficients

In this section we focus on the case where G/P = F`(a, n) and i = 1. Hence the

projection we consider is f : F`(a, n) � Gr(a1, n). The techniques used in this section

are inspired by techniques used by Belkale in his proof of Horn’s conjecture in [2]. Recall

Definition 1.1.1 of induced permutations. Define γ := {a1 + 1 < a1 + 2 < · · · < n} ⊆ [n]

and for any w ∈ Sn(a), consider the induced permutation wγ ∈ Sn−a1 . For any point

V ∈ Gr(a1, n), the fiber f−1(V ) is isomorphic to F`(aγ , n − a1) where aγ = {a2 − a1 <

a3 − a1 < · · · < ar − a1}. Applying Lemma 4.1.1, for any w ∈ Sn(a) and F• ∈ F`(n) such

that V ∈ f(X◦w(F•)), we have that

X◦w(F•) ∩ f−1(V ) ' X◦wγ (F•(Cn/V )).

Let (w1, w2, . . . , ws) ∈ Sn(a)s and let F ∈ F`(n)s be such that
⋂s
k=1X

◦
wk1

(F k• ) is not empty.

For any V ∈
⋂s
k=1X

◦
wk1

(F k• ), we have

s⋂
k=1

X◦wk(F k• ) ∩ f−1(V ) '
s⋂

k=1

X◦wkγ
(F k• (Cn/V )). (4.1)

Note that set (4.1) could possibly be empty. We will show later in Proposition 4.2.6, that

if (w1, w2, . . . , ws) is L-movable, then we can choose F ∈ F`(n)s “generic” enough so that

(4.1) is nonempty for all V ∈
⋂s
k=1X

◦
wk1

(F k• ). We first show that an L-movable s-tuple

induces a Levi-movable s-tuple in the projection and fiber of f . We have the following

relationships between the lengths of w,wγ , and w1.

Remark 4.2.1. For any w ∈ Sn(a), we have

`A(wγ) = `A(w)− `A(w1) (4.2)
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and for any i ∈ [r − 1],

`A((wγ)i) = `A(wi+1)− `A(w1) +
i∑

k=1

`A(w1,k). (4.3)

For any V ∈ Gr(a1, n) and w ∈ Sn(a1), define

Y w
V := {F• ∈ F`(n) | V ∈ X◦w(F•)}.

Lemma 4.2.2. For any V ∈ Gr(a1, n) and w ∈ Sn(a1), the map Y w
V → F`(Cn/V ) given by

F• 7→ F•(Cn/V ) is surjective.

Proof. Let GV := {g ∈ SL(n) | gV = V }. It is easy to see that the map Y w
V → F`(Cn/V )

is GV -equivariant. Since GV acts transitively on F`(Cn/V ), the map is surjective.

Using notation at the beginning of this chapter, we can identify F`(aγ , n− a1) = L1/Q1 '

P1/P . Let LQ denote the Levi-subgroup of Q1 in L1.

Proposition 4.2.3. If (w1, w2, . . . , ws) is L-movable, then the following are true:

(i) The s-tuple (w1
1, w

2
1, . . . , w

s
1) is L1-movable.

(ii) The s-tuple (w1
γ , w

2
γ , . . . , w

s
γ) is LQ-movable.

Proof. Since (w1, w2, . . . , ws) is L-movable, for generic F ∈ F`(n)s the intersection
⋂s
k=1X

◦
wk1

(F k• )

is nonempty. By the numerical conditions (1.3), the expected dimension of the set
⋂s
k=1X

◦
wk1

(F k• )

is zero. Hence the set
⋂s
k=1X

◦
wk1

(F k• ) is finite and transverse. Since this is an intersection of

Schubert cells in a Grassmannian, by Proposition 2.1.9, it is also L1-movable. This proves

part (i).

For part (ii), fix V ∈ Gr(a1, n) and consider
∏s
k=1 Y

wk1
V ⊆ F`(n)s. By part (i) and the

assumption, for generic F ∈
∏s
k=1 Y

wk1
V , the intersections

⋂s
k=1X

◦
wk1

(F k• ) and
⋂s
k=1X

◦
wk

(F k• )

are nonempty and transversal. Since f(
⋂s
k=1X

◦
wk

(F k• )) is contained in
⋂s
k=1X

◦
wk1

(F k• ), we
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can further assume that there exists a V• ∈
⋂s
k=1X

◦
wk

(F k• ) such that f(V•) = V . By equa-

tion (4.1),
⋂s
k=1X

◦
wkγ

(F k• (Cn/V )) is nonempty and finite and by Lemma 4.2.2, the induced

flags F(Cn/V ) are generic in F`(Cn/V )s. Hence the intersection
⋂s
k=1X

◦
wkγ

(F k• (Cn/V )) is

transverse. By Proposition 2.1.2, we have that
∏s
k=1[Xwkγ

] is a nonzero multiple of a class

of a point in H∗(F`(aγ , n − a1)). By Theorem 1.1.2, it suffices to check that the s=tuple

(w1
γ , w

2
γ , . . . , w

s
γ) satisfies the numerical conditions for LQ-movability. Since (w1, w2, . . . , ws)

is L-movable, we have the following numerical conditions (Note that (4.5) requires Theorem

1.1.2 (iii)):

s∑
k=1

(
ai(n− ai)− `(wki )

)
= ai(n− ai) (4.4)

s∑
k=1

(
a1(ai − ai−1)− `(wk1,i)

)
= a1(ai − ai−1). (4.5)

for any i ∈ [r]. For any i ∈ {2, 3, . . . , r} rewrite the dimension of Gr(ai − a1, n− a1) as

dim(Gr(ai − a1, n− a1)) = ai(n− ai)− a1(n− a1) +
i∑

k=1

a1(ak − ak−1) (4.6)

Combining (4.3),(4.4),(4.5) and (4.6) shows that (w1
γ , w

2
γ , . . . , w

s
γ) satisfies the numerical

conditions for LQ-movability in Theorem 1.1.2 (i).

Alternate proof of Proposition 4.2.3 (ii): Consider the list of products given in Theo-

rem 1.1.2 (iii). Applying Theorem 1.1.2 again to a certain subset of these products implies

that (w1
γ , w

2
γ , . . . , w

s
γ) is LQ-movable. 2

We now fix (w1, w2, . . . , ws) to be L-movable and show that for generic F ∈ F`(n)s,

the intersection
⋂s
k=1X

◦
wkγ

(F k• (Cn/V )) is nonempty for every V ∈
⋂s
k=1X

◦
wk1

(F k• ). Define
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the variety Y ⊆ Gr(a1, n)× F`(n)s by the following:

Y := {(V,F) | V ∈
s⋂

k=1

X◦
wk1

(F k• )}.

Note that the variety Y is irreducible and smooth. See [2, Section 8] for a similar example

of this result.

Definition 4.2.4. For any (V,F) ∈ Y , we say that (V,F) has property P1 if the intersec-

tion
⋂s
k=1X

◦
wkγ

(F k• (Cn/V )) is transverse and
⋂s
k=1X

◦
wkγ

(F k• (Cn/V )) =
⋂s
k=1Xwkγ

(F k• (Cn/V )).

Note that if (V,F) has property P1, then
⋂s
k=1X

◦
wk

(F k• ) ∩ f−1(V ) is not empty.

Proposition 4.2.5. Property P1 is an open condition on Y .

Proof. Consider Y as a fiber bundle on Gr(a1, n) with fiber
∏s
k=1 Y

wk1
V over the point V ∈

Gr(a1, n). Let Z be the quotient flag bundle on Gr(a1, n) with fiber F`(Cn/V )s over the

point V ∈ Gr(a1, n). By Lemma 3.2.8, the fiber bundle map η : Y � Z given by F 7→

F(Cn/V ) is surjective. Choose an open set U ⊆ Gr(a1, n) such that fiber bundle Z is trivial.

Over the set U , choose a local trivialization

Z|U ' U × F`(Cn−a1)s.

Since (w1
γ , w

2
γ , . . . , w

s
γ) is LQ-movable, there exists an open subset O ⊂ F`(Cn−a1)s such that

for every H ∈ O,
⋂s
k=1X

◦
wkγ

(Hk
• ) is transverse and

⋂s
k=1X

◦
wkγ

(Hk
• ) =

⋂s
k=1Xwkγ

(Hk
• ). More-

over, we can choose O to be SL(n−a1)-invariant under the diagonal action on F`(Cn−a1)s.

Consider the fiber bundle η−1(O) over U . Since O is SL(n− a1)-invariant, η−1(O) is inde-

pendent of choice of local trivialization. It is easy to see that η−1(O) is an open set of Y

and every (V,F) ∈ η−1(O) satisfies property P1.

Proposition 4.2.6. Let Õ ⊆ Y be an open subset of Y such that every point in Õ has
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property P1. Let g : Y � F`(n)s be the projection of Y onto its second factor. For generic

F ∈ F`(n)s, the set g−1(F) ⊆ Õ.

Proof. The fiber of g over any point F is isomorphic to
⋂s
k=1X

◦
wk1

(F k• ). Choose an open

subset of U̇ ⊆ F`(n)s such that for every F ∈ U̇ , the set g−1(F) is finite. Let Ỹ be the

closure of g(Y \Õ) in F`(n)s. Since Y is irreducible, we have dim(Y \Õ) ≥ dim(Ỹ ). Since g

is generically finite to one, we have that dim(F`(n)s) > dim(Ỹ ) and hence there exists an

open subset Ü ⊆ F`(n)s\Ỹ . For any F ∈ U̇ ∩ Ü , we have g−1(F) ⊆ Õ.

4.2.1. Proof of Theorem 1.1.4

Proof. Chose F ∈ F`(n)s generically so that,

∣∣∣∣∣
s⋂

k=1

X◦
wk1

(F k• )

∣∣∣∣∣ = c1 and

∣∣∣∣∣
s⋂

k=1

X◦wk(F k• )

∣∣∣∣∣ = c.

By Proposition 4.2.6, the flags F can also be generically chosen so that for any V ∈⋂s
k=1X

◦
wk1

(F k• ) the point (V,F) satisfies property P1. Therefore the map

f :
s⋂

k=1

X◦wk(F k• ) �
s⋂

k=1

X◦
wk1

(F k• )

is surjective. Since the number of points in each fiber f−1(V ) is exactly cγ , we have that

c = c1 · cγ .

Let w0 be the longest element in W and wP be the longest element in WP . For any

w ∈ Sn(a), define w∨ := w0wwP . Note that w∨ ∈ Sn(a).

Corollary 4.2.7. Let (w, u, v∨) be L-movable. Then cvw,u = cv1w1,u1
· cvγwγ ,uγ .

Proof. Since the Poincaré pair (w,w∨) is L-movable, by Proposition 4.2.3, we have that

(w1, (w∨)1) and (wγ , (w∨)γ) are Levi-movable. Hence (w1)∨ = (w∨)1 and (wγ)∨ = (w∨)γ .
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Apply Theorem 1.1.4 to the triple (w, u, v∨).

Recall that Proposition 4.2.3 says that if (w, u, v∨) is L-movable then (wγ , uγ , v∨γ ) is LQ-

movable. Hence we can apply Theorem 1.1.4 to (wγ , uγ , v∨γ ). This process gives an inductive

way to write cvw,u as a product of Littlewood-Richardson coefficients coming from the Grass-

mannians Gr(bi, n− ai−1) where i ∈ [r].

Corollary 4.2.8. The non-zero structure coefficients of (H∗(F`(n),Z),�0) are all equal to

1.

Proof. Since F`(n) is the complete flag variety, we have bi = ai − ai−1 = 1 for all i ∈ [n].

Hence Gr(bi, n−ai−1) is projective space where all structure coefficients are equal to 1.

Remark 4.2.9. Analogues of Theorem 1.1.4 exist for any projection fi : F`(a, n) �

Gr(ai, n) and fiber

f−1
i (V ) ' F`((a1, . . . , ai−1), ai)× F`((ai+1 − ai, . . . , ar − ai), n− ai).

with corresponding induced coefficients. The proof is similar to that of Theorem 1.1.4. Com-

paring these formulas gives many interesting relations between type A structure coefficients.

4.3. A formula for type C structure coefficients

The arguments in this section are very similar to those in the previous section. We

focus on the case where G/P = IF(a, 2n) and i = r. Consider the projection f : IF(a, 2n) �

IG(ar, 2n). Clearly, the image f(Φ◦w(F•)) = Φ◦wr(F•). For any V ∈ IG(ar, 2n), the fiber

f−1(V ) = F`(aCγ , V ) ' F`(aCγ , ar) where aCγ := {a1 < a2 < · · · < ar−1}. If V ∈ f(Φ◦w(F•)),

then

Φ◦w(F•) ∩ f−1(V ) ' X◦wγ (F•(V ))
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where wγ := wIr (Recall the definition of wIr in Section 1.2.2). Analogous to Proposition

4.2.3, we show that Levi-movable s-tuples induce Levi-movable s-tuples in the projection

and fiber of f . Let LQ denote the Levi subgroup of Qr in Lr under the identification

F`(aCγ , ar) ' Lr/Qr. Note that for any w ∈ SCn (a), the length `C(w) = `A(wr) + `C(wγ).

Proposition 4.3.1. If (w1, w2, . . . , ws) ∈ (SCn (a))s is L-movable, then the following are

true:

(i) The s-tuple (w1
r , w

2
r , . . . , w

s
r) is Lr-movable.

(ii) The s-tuple (w1
γ , w

2
γ , . . . , w

s
γ) is LQ-movable.

Proof. Note that part (ii) of the proposition is an immediate consequence of applying the

results in Theorem 1.2.1(iiia) to Theorem 1.1.2. To prove part (i), note that the s-tuple

(w1
r , w

2
r , . . . , w

s
r) satisfies the numerical condition in Theorem 1.2.1(i) since (w1, w2, . . . , ws)

is L-movable. It suffices to show that (w1
r , w

2
r , . . . , w

s
r) satisfies the codimension condi-

tion (1.7). To see this, we combine the codimension conditions of (w1
γ , w

2
γ , . . . , w

s
γ) and

(w1, w2, . . . , ws).

Fix (w1, w2, . . . , ws) to be L-movable. We show that for generic F ∈ IF(2n)s, the

intersection
⋂s
k=1X

◦
wkγ

(F k• (V )) is nonempty for every V ∈
⋂s
k=1 Φ◦

wkr
(F k• ). Define the variety

Y C ⊆ IG(ar, 2n)× IF(2n)s by the following:

Y C := {(V,F) | V ∈
s⋂

k=1

Φ◦wkr (F k• )}.

Definition 4.3.2. For any (V,F) ∈ Y C , we say that (V,F) has property P2 if the inter-

section
⋂s
k=1X

◦
wkγ

(F k• (V )) is transverse and
⋂s
k=1X

◦
wkγ

(F k• (V )) =
⋂s
k=1Xwkγ

(F k• (V )).

Note that if (V,F) has property P2, then
⋂s
k=1 Φ◦

wk
(F k• ) ∩ f−1(V ) is not empty.

Proposition 4.3.3. Property P2 is an open condition on Y C .
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Proof. The proof is exactly analogous to the proof of Proposition 4.2.5. Here we use the fact

that (w1
γ , w

2
γ , . . . , w

s
γ) is LQ-movable and that the map Y C |V → F`(V )s given by (V,F) 7→

F(V ) is surjective.

Proposition 4.3.4. Let Õ ⊆ Y C be an open subset of Y C such that every point in Õ has

property P2. Let g : Y � IF(2n)s be the projection of Y C onto its second factor. For

generic F ∈ IF(2n)s, the set g−1(F) ⊆ Õ.

Proof. This follows from the proof of Proposition 4.2.6 and the fact that the map g is

generically finite to one.

4.3.1. Proof of Theorem 1.2.2

Proof. Once again, this follows from the previous section using the proof of Theorem 1.1.4

replacing Proposition 4.2.6 with Proposition 4.3.4.
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CHAPTER 5

Branching Schubert calculus and Horn recursion

In this chapter we address a more general version of the original question found at

the beginning of Chapter 1. Let G̃ be a semisimple algebraic subgroup of G and choose

parabolic subgroups P̃ and P such that φ : G̃/P̃ ↪→ G/P . If [Λw] is a Schubert class in

H∗(G/P ), we can ask: Under what conditions is φ∗([Λw]) 6= 0? In [3, Theorem 29], Belkale-

Kumar construct a list of necessary criteria in the form of inequalities in the case of the

diagonal embedding G̃/P̃ ↪→ G/P = (G̃/P̃ )s. We find that their work generalizes to the

setting where G is any semisimple algebraic group containing G̃. In this thesis, the choice of

P̃ and P are dependant on a fixed one parameter subgroup of G̃. In the first three sections

we give background information for this problem. In the last three sections we state and

prove the main results.

5.1. Dominant weights and parabolic subgroups

We reestablish many of the objects associated to G initially defined in Chapter 2. Fix

a torus H ⊆ G and let R ⊆ h∗ be the root system of G and choose a set of positive roots

R+. Choose a set of simple roots ∆ ⊆ R+. For any α ∈ R+, let tα ∈ h denote the unique

element such that α(t) = (tα, t) for all t ∈ h where (, ) denotes the Killing form on h. Define

E := R{tα | α ∈ ∆} ⊆ h be the real span of the tα. Let h+ := {x ∈ E | α(x) ≥ 0 ∀α ∈ ∆}

denote the corresponding positive Weyl chamber in E. Let B denote the Borel subgroup

with respect to the choice of positive roots R+ and let W denote the Weyl group of G. Let

τ ∈ OPS(G) (i.e. an algebraic group homomorphism τ : C∗ → G) and define the associated



tangent vector in g to be

τ̇ :=
dτ

dt
(1) ∈ g.

Observe that if τ ∈ OPS(H), then τ̇ ∈ E ⊆ h. We say τ is dominant with respect to G if

τ̇ ∈ h+. Let PG(τ) be the associated parabolic subgroup defined by:

PG(τ) := {g ∈ G | lim
t→0

τ(t)gτ(t)−1 exists in G}.

We say that PG(τ) is standard if B ⊆ PG(τ).

Proposition 5.1.1. Let τ ∈ OPS(H). The parabolic subgroup PG(τ) is standard if and

only if τ is dominant with respect to G.

Proof. Consider the map exp : b → B. Since B is generated by exp(b), it suffices to show

τ is dominant if and only if limt→0 τ(t) exp(X)τ(t)−1 exists for all X ∈ b. To do this, we

show the limit exists for a basis of b. Consider the Cartan decomposition

b = h⊕
⊕
α∈R+

gα.

If X ∈ h we have that τ(t) exp(X)τ(t)−1 = exp(X) since τ ∈ OPS(H) and hence the limit

above exists. If X ∈ gα, then

τ(t) exp(X)τ(t)−1 = exp(Ad(τ(t))(X)).

Observe that τ(t) = exp(τ̇ ln t). By a simple calculation, we have

Ad(τ(t))(X) = Ad(exp(τ̇ ln t))(X) = exp(ad(τ̇ ln t)(X)) = tα(τ̇)X .

Thus limt→0 τ(t) exp(X)τ(t)−1 exists if and only if α(τ̇) ≥ 0. This proves the proposition.
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Note that if PG(τ) is standard, then its Lie algebra p corresponds to the set of simple roots

∆(PG(τ)) := {α ∈ ∆ | α(τ̇) = 0}.

5.2. Subgroups and the Weyl group

In this section we give a brief survey of [5, Section 2.2], in which Berenstein-Sjamaar

determine the relative Weyl set Wrel. The only difference is that we do not require 1 ∈Wrel.

We provide basic proofs of the statements needed in this thesis. Let G̃ be semisimple

algebraic subgroup of G and let f : G̃ ↪→ G denote the embedding of G̃ into G. Fix a torus

H̃ such that H̃ = H ∩ G̃ and let R̃ be the root system of G̃ with respect to H̃. Consider the

induced map f∗ : h̃ ↪→ h. Note that f∗(Ẽ) ⊆ E since R̃ ⊆ f∗(R). Choose a set of positive

roots R̃+ and simple roots ∆̃ ⊆ R̃+. Since W acts on the space E, we can ask: How does

this action affect h̃+ ⊂ Ẽ ⊆ E?

Definition 5.2.1. Define

Wcom := {v ∈W | dim h̃+ = dim(h̃+ ∩ vh+)}

to be the compatible subset of W .

Let B̃ be the Borel subgroup of G̃ with respect to R̃+.

Proposition 5.2.2. If v ∈Wcom, then B̃ = vBv−1 ∩ G̃.

Proof. By the assumption, choose λ such that λ̇ ∈ h̃◦+ ∩ vh+. This implies that B̃ = P G̃(λ)

and B ⊆ PG(v−1λv) = v−1PG(λ)v. Therefore, we have B̃ ⊆ vBv−1∩G̃ and thus vBv−1∩G̃

is a standard parabolic of G̃. To show that B̃ = vBv−1 ∩ G̃, it suffices show that the Lie

algebra of vBv−1∩G̃ contains no negative root spaces of the Lie algebra of G̃. Let β ∈ R̃ be

any root corresponding to a root space of the Lie algebra of vBv−1 ∩ G̃. Since R̃ ⊆ f∗(R),
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there exists an α ∈ R+ such that β = vf∗(α). For any x ∈ h̃◦+ ∩ vh+, we have

β(x) = vf∗(α)(x) = vα(x) = α(v−1x) ≥ 0

since v−1x ∈ h+. Thus β cannot be a negative root.

Define hv := h̃+ ∩ vh+ and note that h̃+ =
⋃
v∈Wcom

hv. The set Wcom may be over

determined in the sense that there may exist u, v ∈Wcom such that hu = hv. Define

W := NZG(H̃)(H)/H ⊆ NG(H)/H = W

where ZG(H̃) is the centralizer of H̃ in G. Note that W is well defined since H ⊆ ZG(H̃).

Proposition 5.2.3. The right action of W on W fixes the subset Wcom.

Proof. Let w ∈Wcom and let w̄ ∈W . Then h̃+ ∩ w̄wh+ = w̄−1h̃+ ∩ wh+. Hence, it suffices

to show that W fixes the space h̃+. In fact, we will show that W acts trivially on h̃+.

Let h ∈ h̃+ and choose λ ∈ OPS(H̃) such that λ̇ = h. Let w̄0 ∈ NZG(H̃)(H) denote any

representative of w̄ ∈W . We have that

w̄h =
d

dt
(w̄0λ(t)w̄−1

0 )
∣∣
t=1

=
d

dt
λ(t)

∣∣
t=1

= h.

This proves the proposition.

We consider the orbit space of Wcom with respect to the action of W . There exists a unique

element in each orbit of minimal length which leads to the following definition.

Definition 5.2.4. Define Wrel be the set of minimal length representatives in Wcom of the

orbit space W\Wcom.

The following are some basic properties of the set Wrel. For the proof see [5].
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Proposition 5.2.5. The following are true:

(i) h̃+ =
⋃

v∈Wrel

hv.

(ii) If h◦v ∩ hu 6= ∅ for some v, u ∈Wrel, then v = u.

(iii) |Wrel| = 1 if and only if h̃+ ⊆ h+.

5.3. Flag varieties and the statement of results

Fix τ ∈ OPS(H̃) to be dominant with respect to G̃. Clearly, we have that τ ∈

OPS(H), although it may not be dominant with respect to G. Choose v ∈ Wrel such that

τv := v−1τv is dominant with respect to G. By Proposition 5.1.1, PG(τv) is a standard

parabolic subgroup of G. We simplify notation by denoting P G̃(τ) and PG(τv) by P̃ and

P respectively. Note that P̃ = vPv−1 ∩ G̃. Let

φτ,v : G̃/P̃ ↪→ G/P

be the G̃-equivariant map defined by mapping φτ,v(gP̃ ) = gvP . We will denote φτ,v by φ

when the choice of τ and v are clear.

Lemma 5.3.1. The map φ is well defined and injective.

Proof. Let g1, g2 ∈ G̃ be such that g1P̃ = g2P̃ . Abusing notation, let v ∈ NG(H) be a

representative of v ∈ Wrel. Then there exists a p′ = vpv−1 such that p′ ∈ P̃ , p ∈ P , and

g1 = g2p
′. Hence

g1v = g2p
′v = g2vpv

−1v = g2vp.

Since P contains H, the map φ not depend on the choice of v ∈ NG(H). Thus φ is well

defined. Now suppose g1, g2 ∈ G̃ are such that φ(g1P̃ ) = φ(g1P̃ ). Then there exists a p ∈ P
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such that g1v = g2vp. Hence g−1
2 g1 = vpv−1. Therefore g−1

2 g1 ∈ (vPv−1 ∩ G̃) = P̃ . This

proves that φ is injective.

Consider the induced map on cohomology

φ∗ : H∗(G/P )→ H∗(G̃/P̃ ).

For any w ∈WP , we are interested in constructing a list of necessary conditions given that

φ∗([Λw]) 6= 0. (5.1)

It is sufficient to consider only the case where

φ∗([Λw]) = c[Λe] for some c 6= 0. (5.2)

To see this we consider the diagonal embedding

φ̄ : G̃/P̃ ↪→ G/P × G̃/P̃

given by gP̃ 7→ (φ(gP ), gP̃ ). If (5.1) is satisfied, then

φ∗([Λw]) =
∑
u∈W̃ P̃

cuw[Λu]

where cuw ∈ Z≥0. If cuw 6= 0, then we have that

φ̄∗([Λ(w,u∨)]) = φ∗([Λw]) · [Λu∨ ] = cuw[Λ̄e]

where u∨ ∈ W̃ P̃ is the Poincaré dual of u ∈ W̃ P̃ . Hence determining (5.1) is equivalent

to determining when φ̄∗([Λ(w,u∨)]) is a nonzero multiple of a class a point. By replacing G
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with G× G̃, and φ with φ̄, we see that determining (5.1) is equivalent to determining (5.2).

5.3.1. Applications to Representation Theory

The motivation for studying the pullbacks (5.1) comes from representation theory. Let

χ ∈ h∗+ be an integral dominant weight of G and let Vχ denote the corresponding irreducible

representation of G of highest weight χ. We ask the question: For which χ does Vχ contain

a nonzero G̃-invariant vector? In [5], Berenstein-Sjamaar give an answer to the asymptotic

version of this question.

Theorem 5.3.2. Let χ ∈ h+ be an integral dominant weight of G. Then there exists an

integer N ∈ Z≥0 such that VNχ contains a nonzero G̃-invariant vector if and only if for

every (τ, v, w) ∈ OPS(G̃) ×Wrel ×WP such that φ∗([Λw]) 6= 0, the following inequality is

satisfied:

f∗(vw−1χ)(τ̇) ≤ 0. (5.3)

What the above theorem says is that the set of such dominant weights generate a convex

cone in h∗+, in which the walls are indexed by the triples (τ, v, w) which satisfy (5.1).

5.3.2. Levi subgroups

For any parabolic P = PG(τ), we define the Levi subgroup of P by

L = LG(τ) := {g ∈ G | lim
t→0

τ(t)gτ(t)−1 = g}.

We remark that L is a maximal reductive subgroup of P . Define the L-dominant chamber

of h by

hL+ := {x ∈ E | α(x) ≥ 0 ∀α ∈ ∆(P )}.
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Observe that h+ ⊆ hL+. We say τ ∈ OPS(G) is L-dominant if τ̇ ∈ hL+. Let BL := B ∩ L

denote the Borel subgroup of L. We say a subgroup Q ⊆ L is a standard parabolic

subgroup if BL ⊆ Q. Let R+
l ⊆ R

+ denote the set of positive roots generated by ∆(P ).

Proposition 5.3.3. Let L be the Levi subgroup of a standard parabolic P ⊆ G. A subgroup

Q ⊆ L is a standard parabolic if and only if Q = PL(λ) for some L-dominant λ ∈ OPS(H).

Proof. Since P is standard, we have that the Lie algebra of L is equal to

l = h⊕
⊕
α∈R+

l

gα ⊕
⊕
α∈R+

l

g−α

and that the Lie algebra of BL is equal to

bL = h⊕
⊕
α∈R+

l

gα.

Following the proof of Proposition 5.1.1, the parabolic subgroup Q contains BL if and only

if α(λ) ≥ 0 for all α ∈ ∆(P ).

For the rest of this chapter, we fix L := LG(τv) ⊆ P and L̃ := LG̃(τ) ⊆ P̃ .

Lemma 5.3.4. L̃ = vLv−1 ∩ G̃.

Proof. Let g ∈ vLv−1 ∩ G̃. We have that

lim
t→0

v−1τ(t)vv−1gvv−1τ(t)−1v = lim
t→0

v−1τ(t)gτ(t)−1v = v−1gv.

Thus limt→0 τ(t)gτ(t)−1 = g and g ∈ L̃. The reverse argument is the same.
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5.3.3. Admissibility of one parameter subgroups

The proofs of the results in this chapter require techniques from Geometric Invariant

Theory (GIT). Since the groups we consider are not necessarily reductive and varieties

are not necessarily projective, we will need the notion of an admissible one parameter

subgroup. Consider the variety P/BL.

Definition 5.3.5. Let λ ∈ OPS(P̃ ). We say λ is P -admissible or admissible if the limit

lim
t→0

v−1λ(t)vpBL

exists in P/BL for all p ∈ P .

This definition is a generalization of the definition of admissibility given by Belkale-Kumar

in [3] where P/BL = (P̃ /B̃L̃)s and v is taken to be the identity. We now give a characteri-

zation of P -admissible λ ∈ OPS(H̃). Consider the cone

CP := {λ̇ ∈ Ẽ | vβ(λ̇) ≥ 0 ∀β ∈ R+\R+
l } ⊆ Ẽ.

Lemma 5.3.6. Let λ ∈ OPS(H̃). Then λ is P -admissible if and only if λ̇ ∈ CP .

Proof. Let P = U · L be the Levi decomposition of P and let λv := v−1λ(t)v. If λ is

P -admissible, then the limit

lim
t→0

λv(t)pBL = lim
t→0

λv(t)uλv(t)−1λv(t)lBL

exists in P/BL. Since L/BL is compact, λ is P -admissible if and only if the limit

lim
t→0

λv(t)uλv(t)−1
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exists in G . This is equivalent to β(λ̇v) ≥ 0 for all β ∈ R+\R+
l .

Lemma 5.3.7. If λ ∈ OPS(P̃ ) is P -admissible, then λ0 := p̃λp̃−1 is P -admissible for any

p̃ ∈ P̃ .

Proof. For any p ∈ P , we have the limit

lim
t→0

v−1λ0(t)vpBL = lim
t→0

v−1p̃λ(t)p̃vpBL = lim
t→0

v−1p̃vv−1λ(t)vv−1p̃vpBL.

Since v−1p̃v ∈ P and λ is P -admissible, the above limit exists.

5.3.4. The main result on necessary Horn conditions

By an abuse of notation, we fix v ∈ NG(H) to be a representative of v ∈Wrel. There is

no loss of generality in the final results by making such a choice. Let hL+ and h̃L̃+ denote the

corresponding dominant chambers of h and h̃ with respect to L and L̃ and let WL = WP be

the Weyl group of L. We now construct an L̃-equivariant embedding of Levi flag varieties

given a L̃-dominant OPS λ. By Lemma 5.3.4, we can define (WL)rel as in Section 5.2. The

only difference is that we must consider the roots v−1R̃l. Let λ ∈ OPS(H̃) be L̃-dominant

and choose v̂ ∈ (WL)rel such that λ̇ ∈ h̃L̃+∩vv̂hL+. Consider the standard parabolic subgroups

Q̃(λ) := P L̃(λ) and Q(λv̂) := PL(λv̂) where λv̂ := (vv̂)−1λvv̂. Define

φLλ,v̂ : L̃/Q̃(λ) ↪→ L/Q(λv̂)

to be the L̃-equivariant map which takes φLλ,v̂(lQ̃(λ)) = v−1lvv̂Q(λv̂).

Let R̃+
l ⊆ R̃+ denote the set of roots generated by the simple roots ∆̃(P̃ ). We define
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characters similar to the one in Definition 2.1.4. For any w ∈WP , define the character

χw :=
∑

β∈R+\R+
l ∩w−1R+

β.

Also define the character

χ̃ :=
∑

β∈R̃+\R̃+
l

β.

We now state the first main result of this chapter.

Theorem 5.3.8. Let w ∈ WP be such that φ∗([Λw]) = a nonzero multiple of a class of

a point in H∗(G̃/P̃ ). Then for any admissible, L̃-dominant λ ∈ OPS(H̃) and (ŵ, v̂) ∈

W
Q(λv̂)
L × (WL)rel such that λ̇ ∈ h̃L̃+ ∩ vv̂hL+ and (φLλ,v̂)

∗([Λŵ]) 6= 0 in H∗(L̃/Q̃(λ)), the

following inequality holds:

(f∗(vv̂ŵ−1χw)− χ̃)(λ̇) ≤ 0. (5.4)

In particular, we can choose λ = τ ∈ OPS(H̃). By definition, τ is P -admissible and

L̃-dominant, and τv is L-dominant. Hence τ ∈ h̃L̃+ ∩ vhL+.

Corollary 5.3.9. For any w ∈ WP such that φ∗([Λ̄w]) = a nonzero multiple of a class of

a point in H∗(G̃/P̃ ), we have that

(f∗(vχw)− χ̃)(τ̇) ≤ 0.

Proof. Observe that Q̃(τ) = L̃ and Q(τv) = L. Thus ŵ is the identity in Theorem 5.3.8.

Since τv is L-dominant, v̂ is also the identity.

The inequality in the above corollary is important since we will later see in Section 5.6

that the condition that w is (L, φ)-movable is characterized by when this inequality is an

equality.
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Remark 5.3.10. Theorem 5.3.8 together with Corollary 5.3.9 generalizes [3, Theorem 29]

where Belkale-Kumar prove this result in the case of the diagonal embedding.

Question 5.3.11. In what cases are the inequalities (5.4) sufficient to determine when

φ∗([Λw]) 6= 0 in Theorem 5.3.8?

If the inequalities (5.4) are sufficient, then by Theorem 5.3.2, determining when φ∗([Λw]) 6=

0 would be equivalent to solving a certain asymptotic representation theory restriction

problem with respect to the embedding v−1L̃v ⊆ L.

Considering all admissible, L̃-dominant λ in Theorem 5.3.8 produces a highly redundant

list of inequalities. The conclusion can be replaced by an equivalent statement involving

only finitely many λ ∈ OPS(H̃). By Proposition 5.2.5, there exists a cubicle division of the

L̃-dominant chamber of h̃

h̃L̃+ =
⋃

v̂∈(WL)rel

hL̃v̂

where hL̃v̂ := h̃L̃+ ∩ vv̂hL+. Consider the intersection h̃L̃+ ∩ CP . Since CP is closed, we can

choose a finite collection of admissible, L̃-dominant λ1, . . . , λs ∈ OPS(H̃) such that the

appropriate sub-collection span the cubicles hL̃v̂ ∩ CP . Fix v̂1, . . . , v̂s ∈ (WL)rel such that

each (vv̂k)−1λkvv̂k is L-dominant. For every k ∈ [s], let Q̃k denote the standard parabolic

subgroups of L̃ associated to λk and let Qk denote the standard parabolic subgroups of L

associated to (vv̂k)−1λkvv̂k. For each k ∈ [s], we also have the induced L̃-equivariant map

on flag varieties

φk : L̃/Q̃k ↪→ L/Qk

which sends φk(lQ̃k) = v−1lvv̂kQk and the induced map φ∗k on cohomology.

Theorem 5.3.12. Let w ∈WP be such that φ∗([Λw]) = a nonzero multiple of a class of a

point in H∗(G̃/P̃ ). Then for all k ∈ [s] and ŵ ∈WQk
L such that φ∗k([Λŵ]) 6= 0 the following
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inequality is satisfied:

(f∗(vv̂kŵ−1χw)− χ̃)(λ̇k) ≤ 0.

5.3.5. Proof of Theorem 5.3.8 ⇔ Theorem 5.3.12

Clearly Theorem 5.3.8 implies Theorem 5.3.12, so we focus on the reverse implication.

Let λ be admissible and L̃-dominant. Then λ̇ ∈ h̃L̃+ ∩ CP and therefore lies in one of the

cubicles hL̃v̂ ∩ CP . Choose v̂ ∈ (WL)rel such that λ̇ ∈ hL̃v̂ ∩ CP and write

λ̇ =
∑

akλ̇k

where the sum runs over the λ̇k which span hL̃v̂ ∩CP and ak ≥ 0. For fixed ŵ, the functional

f∗(vv̂kŵ−1χw) − χ̃ is linear on hL̃v̂ ∩ CP since χw and χ̃ are linear. Hence Theorem 5.3.12

suffices to prove Theorem 5.3.8. 2

5.4. Tangent space analysis

The proof of Theorem 5.3.8 relies on the Hilbert-Mumford numerical criterion for

semistability in which we consider certain P̃ -equivariant line bundles on the space P/BL.

These line bundles are derived by analyzing the tangent spaces of G/P and G̃/P̃ at the

points vP and eP̃ respectively. By an abuse of notation we let Λw := w−1BwP denote

the Schubert cell shifted by w−1. Consider a generic translate gΛw ⊆ G/P . Since G/P

is homogeneous, without loss of generality, we can assume that this translate contains the

point vP ∈ G/P . Note that we still fix v ∈ NG(H) to be a representative of v ∈Wrel.

Lemma 5.4.1. Suppose vP ∈ gΛw for some g ∈ G, then there exists a p ∈ P such that

gΛw = vpΛw.
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Proof. By the assumption, there exist p ∈ P and b ∈ B such that v = gw−1bwp−1. Hence

g = vpw−1b−1w and gΛw = vpw−1b−1wΛw = vpΛw.

By the above lemma, the assumption in Theorem 5.3.8 is equivalent to the condition that

dim(TeP̃ (φ−1(vpΛw))) = 0

for generic p ∈ P . Let

φ∗ : TeP̃ (G̃/P̃ )→ TvP (G/P )

be the induced map between tangent spaces at the points eP̃ and vP . For any p ∈ P and

w ∈ WP , consider the subspace TvP (vpΛw) ⊆ TvP (G/P ). Analogous to Proposition 2.1.2,

the following proposition in a basic fact that relates nonvanishing cohomology to tangent

spaces.

Proposition 5.4.2. Let w ∈WP be such that

dim Λw = dimG/P − dim G̃/P̃ . (5.5)

Then the following are equivalent.

(i) φ∗([Λw]) = a nonzero multiple of a class of a point in H∗(G̃/P̃ ).

(ii) For generic p ∈ P , the induced map

φ∗ : TeP̃ (G̃/P̃ )→ TvP (G/P )/TvP (vpΛw)

is an isomorphism.

Observe that part (ii) of Proposition 5.4.2 is equivalent to saying the point eP̃ is scheme

theoretically isolated in φ−1(vpΛw) for generic p ∈ P .

78



5.4.1. P̃ -equivariant bundles

In this section, we define several vector bundles on the variety P/BL. Recall that

v−1P̃ v ⊆ P and define the P̃ -equivariant product bundle

T̃ := P/BL × TeP̃ (G̃/P̃ )

on P/BL where the P̃ action is given by the diagonal action p̃(pBL, l) = (v−1p̃vpBL, p̃l).

Note that while the vector bundle structure of T̃ is trivial, the action of P̃ is nontrivial.

Consider the conjugated action of P on G/P given by

p(gP ) = vpv−1gP. (5.6)

Clearly this action of P fixes the point vP and thus the vector space TvP (G/P ) is a P -

module. Define

T ′ := P/BL × TvP (G/P )

be the P -equivariant vector bundle on P/BL where the action of P acts diagonally (Note

that the action on the first factor is not conjugated). The map φ∗ induces a P̃ -equivariant

map Θ : T̃ → T ′ given by (pBL, l) 7→ (pBL, φ∗(l)). Since TvP (G/P ) is a P -module, is it

also a BL-module. Hence we can define the P -equivariant bundle

T := P ×BL TvP (G/P )

where (pb, l) ∼ (p, bl). We now show that T ′ and T are P -equivariantly isomorphic. Define

ξ : T ′ → T by mapping (pBL, l) 7→ (p, p−1l).

Lemma 5.4.3. The map ξ is a well defined P -equivariant isomorphism of vector bundles
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on P/BL.

Proof. We first show ξ is well defined. For any b ∈ BL, we have that

ξ((pbBL, l)) = (pb, (pb)−1l) = (p, bb−1p−1l) = (p, p−1l)

and hence ξ is well defined. Since T ′ and T are vector bundles of the same rank, it suffices

to show that ξ is injective and P -equivariant. To show that ξ is injective, suppose p, p′ ∈ P

are such that ξ((pBL, l)) = ξ((p′BL, l)). Then there exists a b ∈ BL such that p = p′b. This

implies that ξ is injective. The following calculation shows that ξ is P -equivariant:

ξ(p′(pBL, l)) = (p′p, p−1p′−1p′l) = (p′p, p−1l) = p′(p, p−1l) = p′ξ((pBL, l)).

Observe that for any w ∈WP , the action of BL on G/P given in (5.6) fixes the space vΛw

and hence, TvP (vΛw) is a BL-module. Define

Tw := P ×BL TvP (vΛw)

be the corresponding P -equivariant vector bundle on P/BL. Note that Tw is a sub-bundle

of T and that ξ−1(Tw)
∣∣
pBL

= pBL × TvP (vpΛw). Consider the P̃ -equivariant map

ξ ◦Θ : T̃ → T /Tw.

If equation (5.5) is satisfied, then the rank of the vector bundles T̃ and T /Tw is the same.

Consider the determinant map of line bundles

θ : det(T̃ )→ det(T /Tw)
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induced from the map ξ ◦Θ. The map θ can be viewed as a P̃ -invariant section of the space

H0(P/BL, det(T̃ )∗ ⊗ det(T /Tw)). (5.7)

We now have the following addition to Proposition 5.4.2:

Proposition 5.4.4. Let w ∈WP be such that

dim Λw = dimG/P − dim G̃/P̃ .

Then the following are equivalent.

(i) φ∗([Λw]) = a nonzero multiple of a class of a point in H∗(G̃/P̃ ).

(ii) For generic p ∈ P , the induced map

φ∗ : TeP̃ (G̃/P̃ )→ TvP (G/P )/TvP (vpΛw)

is an isomorphism.

(iii) For generic p ∈ P , the section θ ∈ H0(P/BL, det(T̃ )∗⊗det(T /Tw))P̃ does not vanish

at pBL.

Note that part (iii) of Proposition 5.4.4 is equivalent to θ(pBL) 6= 0 for some p ∈ P .

5.5. Geometric Invariant Theory

We review some basic properties of Geometric Invariant Theory. Let S be a complex

algebraic group acting on a variety X and let L be a S-equivariant line bundle on X. The

following definition is for Mumford’s numerical measure of instability:
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Definition 5.5.1. Let λ ∈ OPS(S) be such that for any x ∈ X, the limit limt→0 λ(t)x

exists. Let x0 ∈ X denote this limit. Then the fiber over x0 in L is fixed under the action

of λ(t). In particular this action λ is given by some character z 7→ zr. Define

µL(x, λ) := r

The following are some basic properties of µL(x, λ) (see [14] for details):

Proposition 5.5.2. Suppose x ∈ X and λ ∈ OPS(S) are such that the limit limt→0 λ(t)x

exists in X. Let L,L′ be S-equivariant line bundles on X. Then:

(i) µL(gx, gλg−1) = µL(x, λ) for all g ∈ S.

(ii) µL⊗L
′
(x, λ) = µL(x, λ) + µL

′
(x, λ).

(iii) If there exists a σ ∈ H0(X,L)S such that σ(x) 6= 0, then µL(x, λ) ≥ 0.

(iv) If µL(x, λ) = 0, then any element of H0(X,L)S which does not vanish at x, does not

vanish at limt→0 λ(t)x as well.

We apply the above proposition to the situation in Proposition 5.4.4 (iii). Let L :=

det(T̃ )∗⊗det(T /Tw) denote the P̃ -equivariant line bundle on P/BL. If φ∗([Λw]) = a nonzero

multiple of a class of a point, then Propositions 5.4.4 and 5.5.2 imply that µL(pBL, λ) ≥ 0

for any P -admissible λ ∈ OPS(P̃ ) and generic p ∈ P . We prove Theorem 5.3.8 by de-

termining µL(pBL, λ) explicitly for certain cases. By Proposition 5.5.2 (ii), it suffices to

consider det(T̃ )∗ and det(T /Tw) separately.

5.5.1. Computing Mumford’s number

Since det(T̃ )∗ is a trivial line bundle on P/BL, the action of P̃ on the fiber is inde-

pendent of the base point. Hence we only need to consider how P̃ acts on det(TeP̃ (G̃/P̃ ))∗.
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Let χ : P̃ → C∗ be the character such that the action of P̃ is given by pl = χ(p)l for any

vector l ∈ det(TeP̃ (G̃/P̃ ))∗. If λ is P -admissible and L̃-dominant, then

µdet(T̃ )∗(pBL, λ) = dχ(λ̇).

Since the tangent vector λ̇ ∈ h̃, it suffices to consider dχ
∣∣
h̃
. Recall in Section 5.3, we defined

χ̃ :=
∑

β∈R̃+\R̃+
l

β.

Lemma 5.5.3. The character dχ
∣∣
h̃

= χ̃.

Proof. Consider the Cartan decomposition of TeP̃ (G̃/P̃ ) =
⊕

β∈R̃+\R̃+
l

g−β. Hence h̃ acts

on det(TeP̃ (G̃/P̃ )) by −χ̃. Thus h̃ acts on the dual space by χ̃.

We now consider the line bundle det(T /Tw) on P/BL. Recall that the P̃ -equivariant

structure of det(T /Tw) is the restriction of its P -equivariant structure under the action

P̃ ⊆ vPv−1. Hence we can compute µdet(T /Tw)(pBL, λ) with respect to the P action and

then consider the restriction to P̃ . For any character ν : H → C∗ (note that any character

on H uniquely extends to a character on BL), we have the corresponding P -equivariant line

bundle L(ν) := P ×BL Cν where

(p, c) ∼ (pb, ν(b)c).

Since any P -equivariant line bundle on P/BL can be realized by this construction, there

exists a character χw : H → C∗ such that

det(T /Tw) ' L(χw)

as a P -equivariant line bundles.
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Lemma 5.5.4. The character dχw =
∑

β∈R+\R+
l ∩w−1R+

β.

Proof. Consider the untwisted line bundle det(v−1T /v−1Tw) on P/BL where

v−1T := P ×BL TeP (G/P ) and v−1Tw := P ×BL TeP (Λw).

By [3, Lemma 6], we have that det(v−1T /v−1Tw) ' L(χ̂w). Where

dχ̂w =
∑

β∈R+\R+
l ∩w−1R+

β.

Since P acts on det(T /Tw) through conjugated group vPv−1, we have that the character

χ̂w = χw.

For any P -admissible, L̃-dominant λ ∈ OPS(H̃), choose v̂ ∈ (WL)rel ⊆ WL such that

λv̂ := (vv̂)−1λvv̂ is L-dominant. Let Q = PL(λv̂) ⊆ L denote the standard parabolic

associated to λv̂ and let P = U ·L be the Levi-decomposition of P (U denotes the unipotent

radical of P ).

Proposition 5.5.5. For any P -admissible, L̃-dominant λ ∈ OPS(H̃) and p = ul ∈ P , we

have

µdet(T /Tw)(pBL, λ) = −f∗(vv̂ŵ−1χw)(λ̇)

where ŵ ∈WQ
L is determined by v̂ ∈ lBLŵQ ⊆ L.

Proof. Let v̂ ∈ NL(H) be a representative of v̂ ∈ WL. We remark that the conclusions of

this lemma are independent of this choice. We analyze the action of λ on a generic fiber

(p, c) of the line bundle L(χw). We have that

λ(t)(p, c) = (λv(t)ul, c) = (λv(t)uλv(t)−1λv(t)l, c).
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Write l = v̂qŵ−1b, where q ∈ Q and b ∈ BL. Since Q = PL(λv̂) = v̂−1PL(λv)v̂, there exists

a q′ ∈ PL(λv) such that q = v̂−1q′v̂. Thus

λv(t)l = λv(t)q′v̂ŵ−1b = λv(t)q′λ−1
v (t)λv(t)v̂ŵ−1b.

Define b(t) ∈ OPS(BL) by b(t) := b−1ŵλ−1
v̂ (t)ŵ−1b. Combining the above expressions, we

get

λ(t)(p, c) = (λv(t)uλv(t)−1λv(t)q′λ−1
v (t)λv(t)v̂ŵ−1bb(t), χw(b(t))c).

Since λ is P -admissible and q′ ∈ PL(λv), we get the limit of the expression in the first factor

exists in P . Finally, we write out

χw(b(t)) = χw(ŵλ−1
v̂ (t)ŵ−1) = vv̂ŵ−1χw(λ−1(t)).

Thus

µdet(T /Tw)(pBL, λ) = −f∗(vv̂ŵ−1χw)(λ̇).

5.5.2. Proof of Theorem 5.3.8

Proof. Let w ∈ WP be such that φ∗([Λw]) = a nonzero multiple of a class of a point in

H∗(G̃/P̃ ). This implies that

dim Λw = dimG/P − dim G̃/P̃

and by Proposition 5.4.4, the section θ ∈ H0(P/BL,L)P̃ is not identically zero. Hence,

there exists an open subset Zθ ⊆ P such that θ(pBL) 6= 0 for all p ∈ Zθ.
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Let λ ∈ OPS(H̃) be admissible and L̃-dominant and assume (ŵ, v̂) ∈WQ(λv̂)
L ×(WL)rel

satisfy the conditions that λ ∈ h̃L+ ∩ vv̂hL+ and (φLλ,v̂)
∗([Λŵ]) 6= 0. We abbreviate φLλ,v̂ by

simply φλ. For generic l ∈ L, we have that

φ−1
λ (lBLŵQ) 6= ∅.

Let π : P → L denote the projection of P onto L induced by the Levi decomposition U ·L.

Since π is surjective, there exists an open subset Zλ ⊆ P such that for every p ∈ Zλ, we

have φ−1
λ (π(p)BLŵQ) 6= ∅. Define

Z := Zθ ∩ Zλ

Clearly Z is an open subset of P . Choose p0 ∈ Z and let p0 = u0l0 under the Levi

decomposition. Now choose l ∈ L̃ such that φλ(lQ̃) ∈ l0BwQ and consider λ0 := lλl−1 ∈

OPS(P̃ ). By Lemma 5.3.7, λ0 is P -admissible. By Proposition 5.5.2 (i), we have that

µdet(T̃ )∗(p0BL, λ0) = µdet(T̃ )∗(v−1l−1vp0BL, λ) = χ̃(λ̇).

By Lemma 5.3.4, we have that v−1l−1v ∈ L. Since L normalizes U , we have that u′ :=

v−1l−1vu0v
−1lv ∈ U and

v−1l−1vp0 = v−1l−1vu0l0 = u′v−1l−1vl0.

If we let l′ = v−1l−1vl0 ∈ L, then the Levi decomposition of v−1l−1vp0 = u′l′. Note that

v̂ ∈ l′BLŵQ, since v−1lvv̂ ∈ l0BLŵQ. By Proposition 5.5.5, we have that

µdet(T /Tw)(p0BL, λ0) = µdet(T /Tw)(v−1l−1vp0BL, λ) = −f∗(vv̂ŵ−1χw)(λ̇).
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Finally, since p0 ∈ Z and by Proposition 5.5.2 (ii) and (iii), we have

uL(p0BL, λ0) = (χ̃− f∗(vv̂ŵ−1χw))(λ̇) ≥ 0.

5.6. Levi-movability and Branching Schubert Calculus

In this section we generalize ideas of Levi-movability to branching Schubert calculus.

The main results are generalizations of Proposition 2.1.5 and Theorem 3.4.2 both initially

established by Belkale-Kumar in [3]. Once again, we fix v ∈ NG(H) to be a representative

of v ∈Wrel in this analysis.

Definition 5.6.1. We say w ∈ WP is (L, φ)-movable if dim Λw = dimG/P − dim G̃/P̃

and for generic l ∈ L, the point eP̃ is scheme theoretically isolated in φ−1(vlΛw).

Clearly, if w is (L, φ)-movable, then φ∗([Λw]) 6= 0, however the converse is not true in

general. Consider the restriction of the line bundle L = det(T̃ )∗ ⊗ det(T /Tw) on P/BL to

L/BL. Since v−1L̃v ⊂ L, we can view det(T̃ )∗ and det(T /Tw) as L̃-equivariant line bundles

on L/BL. Let θ̂ denote the restriction of the section θ ∈ H0(P/BL,L)P̃ defined in Section

5.4.1 to L/BL. By Proposition 5.4.4, the following proposition is immediate

Proposition 5.6.2. We have that w ∈WP is (L, φ)-movable if and only if the section

θ̂ ∈ H0(L/BL, L)L̃

does not vanish for some l ∈ L.
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5.6.1. Generalized Proposition 2.1.5: A numerical condition for

(L, φ)-movability

The following theorem is a numerical criterion for (L, φ)-movability which generalizes

the condition stated in Proposition 2.1.5.

Theorem 5.6.3. Let w ∈ WP be such that dim Λw = dimG/P − dim G̃/P̃ . Then w is

(L, φ)-movable if and only if φ∗([Λw]) 6= 0 in H∗(G̃/P̃ ) and (f∗(vχw)− χ̃)(τ̇) = 0.

By Corollary 5.3.9, for any w ∈WP such that φ∗([Λw]) 6= 0, we have (f∗(vχw)− χ̃)(τ̇) ≤ 0.

Hence (L, φ)-movability is still a boundary condition to a linear inequality as in the case of

the diagonal embedding. Recall equations (1.1) and (1.6) in Chapter 1 for examples. Before

we can prove Theorem 5.6.3, we need the following lemma.

Lemma 5.6.4. The image of τ is contained in Z(L̃), the center of L̃.

Proof. By definition, l ∈ L̃ if and only if limt→0 τ(t)lτ−1(t) = l. Hence for any s ∈ C∗, we

have that

τ(s)lτ−1(s) = τ(s)(lim
t→0

τ(t)lτ−1(t))τ−1(s) = lim
t→0

τ(ts)lτ−1(ts) = l.

Hence τ(s)l = lτ(s) for all l ∈ L̃.

Note that by the same argument, we have that τv is contained in Z(L), the center of L.

Proof of Theorem 5.6.3: If w is (L, φ)-movable, then θ̂ is non-vanishing inH0(L/BL, L)L̃.

Hence the center of L̃ acts trivially on L. By Lemma 5.6.4, the OPS τ is in the center of L̃

and thus uL(lBL, τ) = 0 for generic l ∈ L. By Corollary 5.3.9, we have that

uL(lBL, τ) = (f∗(vχw)− χ̃)(τ̇) = 0.
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Now assume that φ∗([Λw]) 6= 0 and (f∗(vχw)− χ̃)(τ̇) = 0. The first assumption implies that

for some p ∈ P , the section θ(pBL) 6= 0. If we write p = ul with the respect to the Levi

decomposition P = U · L, then

lim
t→0

τv(t)pBL = lim
t→0

τv(t)uτ−1
v (t)τv(t)lpBL.

Since τv is L-dominant, we get

lim
t→0

τv(t)uτ−1
v (t) = 1.

Hence limt→0 τv(t)pBL = lBL ∈ L/BL. Since τv is central in L and by the second assump-

tion, for generic p ∈ P we have that

uL(pBL, τ) = (f∗(vχw)− χ̃)(τ̇) = 0.

By Proposition 5.5.2 (iv), we have that θ(lBL) = θ̂(lBL) 6= 0 since θ(pBL) 6= 0. By

Proposition 5.6.2, w is (L, φ)-movable. 2

5.6.2. Generalized Theorem 3.4.2: Horn recursion for (L, φ)-movability

In Theorem 3.4.2, Belkale-Kumar construct a list of necessary Horn inequalities which

are partly indexed by central characters c : Z(L̃)→ C∗. In the branching Schubert calculus

setting we consider a different subgroup of L̃. Recall that L̃ ⊆ vLv−1 and consider the

subgroup

Z := Z(vLv−1) ∩ L̃ ⊆ vLv−1

where Z(vLv−1) denotes the center of vLv−1. Clearly we have that Z ⊆ Z(L̃) and note

that in the case of the diagonal embedding, we have that Z = Z(L̃).
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Definition 5.6.5. For any character c : Z → C∗ and w ∈WP , define

R̃(c) := {β ∈ R̃+\R̃+
l : eβ

∣∣
Z

= c}.

and

R(c, w) := {β ∈ R+\R+
l ∩ w

−1R+ : e(vβ)
∣∣
Z

= c}.

Definition 5.6.6. For any character c : Z → C∗ and w ∈WP , define the characters

χcw :=
∑

β∈R(c,w)

β and χ̃c :=
∑

β∈R̃(c)

β.

Theorem 5.6.7. Let w ∈WP be (L, φ)-movable. Then the following are true:

(i) For any character c of Z such that χ̃c 6= 0, we have

|R̃(c)| = |R(c, w)|

where | · | denotes cardinality of the enclosed set.

(ii) For any L̃-dominant λ ∈ OPS(H̃) and (ŵ, v̂) ∈ W
Q(λv̂)
L × (WL)rel such that λ ∈

h̃L+ ∩ vv̂hL+ and (φLλ,v̂)
∗([Λŵ]) 6= 0 in H∗(L̃/Q̃(λ)) and for any character c of Z such

that χ̃c 6= 0, the following inequality holds:

(f∗(vv̂ŵ−1χcw)− χ̃c)(λ̇) ≤ 0.

Observe that there is no need for P -admissibility in the above theorem since L/BL is a

projective variety. To prove Theorem 5.6.7, we follow the same setup and proof of Theorem
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5.3.8. For any character c of Z define

T̃ c := {m ∈ TeP̃ (G̃/P̃ ) | t ·m = c(t)m, ∀t ∈ Z}.

Since Z ⊆ Z(L̃), for any character c of Z, the action of L̃ fixes T̃ c ⊆ TeP̃ (G̃/P̃ ). As in

Section 5.4.1, we can define the L̃-equivariant bundle T̃ c := L/BL× T̃ c on L/BL. Similarly,

define

T c := {m ∈ TvP (G/P ) | t ·m = c(t)m, ∀t ∈ Z}

and note that the vLv−1 action fixes T c since Z ⊆ Z(vLv−1). Let T c := L/BL × T c

denote the corresponding L-equivariant vector bundle on L/BL. Observe that T c is also a

BL-module and hence we can define (T c)′ := L×BL T c. Note that the vector bundle T c is

L-equivariantly isomorphic to (T c)′. Finally, for any w ∈WP , define

T cw := {m ∈ TvP (vΛw) | t ·m = c(t)m, ∀t ∈ Z}

and the corresponding sub-bundle T cw := L×BL T cw ⊆ T c. Consider the tangent space map

φ∗ : TeP̃ (G̃/P̃ )→ TvP (G/P ).

Since φ∗ is P̃ -equivariant, it is also L̃-equivariant and hence φ∗(T̃ c) ⊆ T c.

Proof of Theorem 5.6.7 (i): If w is (L, φ)-movable, then the induced map

φ∗ : TeP̃ (G̃/P̃ )→ TvP (G/P )/TvP (vlΛw)

is an isomorphism for generic l ∈ L. Consider the decompositions

TeP̃ (G̃/P̃ ) =
⊕
c

T̃ c, TvP (G/P ) =
⊕
c

T c and TvP (vlΛw) =
⊕
c

lT cw
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as c ranges over all characters of Z such that R̃(c) 6= ∅. Note that there are only a finite

number of such c and that this condition is equivalent to χ̃c 6= 0. Since φ∗(T̃ c) ⊆ T c, we

have that

φ∗|T̃ c : T̃ c → T c/lT cw

is also an isomorphism. By Lemma 2.1.6, the rank of T̃ c is equal to |R̃(c)| and the rank of

T c/T cw is equal to |R(c, w)|. This proves Theorem 5.6.7 (i). 2

Consider the induced map on vector bundles over L/BL

Θc : T̃ c → T c/T cw.

As in Section 5.4.1, let θc : det(T̃ c) → det(T c/T cw) denote the determinant map of Θc.

Observe that we can view θc as a L̃-invariant section of the line bundle

det(T̃ c)∗ ⊗ det(T c/T cw).

Proof of Theorem 5.6.7 (ii): If w is (L, φ)-movable, the map Θc is an isomorphism over

an open set of L/BL. This implies that θc(lBL) 6= 0 for generic l ∈ L. Following the proof of

Theorem 5.3.8 we have that for any L̃-dominant λ ∈ OPS(H̃) and (ŵ, v̂) ∈WQ(λv̂)
L ×(WL)rel

satisfying the conditions in Theorem 5.6.7, the following inequality is valid:

(f∗(vv̂ŵ−1χcw)− χ̃c)(λ̇) ≤ 0.

This completes the proof. 2
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CHAPTER 6

Examples of determining L-movability and structure coefficients

In this chapter we give a summary of the induced Weyl groups elements used throughout

this thesis and basic examples of applying Theorems 1.1.2 and 1.1.4 on type A flag varieties

and Theorems 1.2.1 an 1.2.2 on type C flag varieties. There are two major types of induced

Weyl group elements. The first type is by simply taking the image under the projection

WP → WPi for any maximal parabolic subgroups Pi which contains P . We always denote

the image of w as wi. The second uses Definition 1.1.1 which gives an induced permutation

associated to a subset of [n] or [2n].

6.1. Type A example

6.1.1. Type A permutations

For F`(a, n), we identify WP with

Sn(a) := {(w(1), w(2), . . . , w(n)) ∈ Sn | w(i) < w(i+ 1) ∀ i /∈ a}.

Consider the example when n = 8 and a = {2, 5}. We have the following splitting found in

equation (3.1):

C8 = Q1 ⊕Q2 ⊕Q3.



For the following induced permutations, we use short lines “p” to indicate the breaks cor-

responding to the set a = {2, 5} and framed boxes to indicate the relevant parts of the

permutation. Let

w = (3, 7 p 1, 4, 5 p 2, 6, 8) ∈ S8({2, 5}).

Theorem 1.1.2 (iii) uses the following induced permutations:

w = ( 3, 7 p 1, 4, 5 p 2, 6, 8 ) → w1,2 = (2, 5 p 1, 3, 4) ∈ S5(2)

w = ( 3, 7 p 1, 4, 5 p 2, 6, 8 ) → w1,3 = (2, 4 p 1, 3, 5) ∈ S5(2)

w = ( 3, 7 p 1, 4, 5 p 2, 6, 8 ) → w2,3 = (1, 3, 4 p 2, 5, 6) ∈ S6(3)

Theorem 1.1.4 uses the following induced permutations:

w = ( 3, 7 p 1, 4, 5 p 2, 6, 8 ) → w1 = (3, 7 p 1, 2, 4, 5, 6, 8) ∈ S8(2)

w = ( 3, 7 p 1, 4, 5 p 2, 6, 8 ) → wγ = (1, 3, 4 p 2, 5, 6) ∈ S3(6).

The proof of Theorem 1.1.2 (i)⇔ (ii) uses the following induced permutations:

w = ( 3, 7 p 1, 4, 5 p 2, 6, 8 ) → w1 = (3, 7 p 1, 2, 4, 5, 6, 8) ∈ S8(2)

w = ( 3, 7 p 1, 4, 5 p 2, 6, 8 ) → w2 = (1, 3, 4, 5, 7 p 2, 6, 8) ∈ S8(5).

6.1.2. Example

Let n = 7 and a = {1, 4} and consider the flag variety F`({1, 4}, 7). Let

w1 = w2 = (7, 2, 4, 6, 1, 3, 5), w3 = (1, 3, 5, 7, 2, 4, 6).
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We apply Theorem 1.1.2 (iii) to show that the 3-tuple (w1, w2, w3) is L-movable. The

induced Grassmannians are Gr(1, 3), Gr(1, 3) and Gr(2, 4). We have that

w1
1,2 = w2

1,2 = (4, 1, 2, 3) w3
1,2 = (1, 2, 3, 4)

w1
1,3 = w2

1,3 = (4, 1, 2, 3) w3
1,3 = (1, 2, 3, 4)

w1
2,3 = w2

2,3 = w3
2,3 = (2, 4, 6, 1, 3, 5)

Since the structure constants associated to these induced 3-tuples are nonzero, we have that

(w1, w2, w3) is L-movable. Note that if an induced 3-tuple’s associated structure constant

is unknown, we can apply Theorem 1.1.2 (iv).

We now apply Theorem 1.1.4 to compute the associated structure constant. Consider

the projection f : F`({1, 4}, 7) → Gr(1, 7). The fiber f−1(V ) is isomorphic to the Grass-

mannian Gr(3, 6). We have that

w1
1 = w2

1 = (7, 1, 2, 3, 4, 5, 6) w3
1 = (1, 2, 3, 4, 5, 6, 7)

w1
γ = w2

γ = w3
γ = (2, 4, 6, 1, 3, 5)

Hence c = c1 · cγ = 1 · 2 = 2

6.2. Type C example

6.2.1. Type C permutations

For IF(a, 2n), we identify WP with

SC2n(a) := {w ∈ S2n | w(2n+ 1− i) = 2n+ 1− w(i) ∀i ∈ [n] and w(i) < w(i+ 1) ∀ i /∈ a}.

Consider the example when n = 6 and a = {2, 5}. We have the following splitting found in

equation (3.11):

C12 = Q1 ⊕Q2 ⊕ Q̃⊕ Q̄2 ⊕ Q̄1.
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Let

w = (3, 6 p 1, 8, 11 p 4, 9 p 2, 5, 12 p 7, 10) ∈ SC12({2, 5}).

Theorem 1.2.1 (iii) uses the following induced permutations:

w = ( 3, 6 p 1, 8, 11 p 4, 9 p 2, 5, 12 p 7, 10 ) → w1,2 = (2, 3 p 1, 4, 5) ∈ S5(2)

w = ( 3, 6 p 1, 8, 11 p 4, 9 p 2, 5, 12 p 7, 10 ) → w̃1 = (1, 3 p 2, 4) ∈ S4(2)

w = ( 3, 6 p 1, 8, 11 p 4, 9 p 2, 5, 12 p 7, 10 ) → w̄1,2 = (2, 4 p 1, 3, 5) ∈ S5(2)

w = ( 3, 6 p 1, 8, 11 p 4, 9 p 2, 5, 12 p 7, 10 ) → w̄1,1 = (1, 2 p 3, 4) ∈ SC4 (2)

w = ( 3, 6 p 1, 8, 11 p 4, 9 p 2, 5, 12 p 7, 10 ) → w̃2 = (1, 3, 5 p 2, 4) ∈ S5(3)

w = ( 3, 6 p 1, 8, 11 p 4, 9 p 2, 5, 12 p 7, 10 ) → w̄2,2 = (1, 4, 5 p 2, 3, 6) ∈ SC6 (3).

Theorem 1.2.2 uses the following induced permutations:

w = ( 3, 6 p 1, 8, 11 p 4, 9 p 2, 5, 12 p 7, 10 )→

w2 = (1, 3, 6, 8, 11 p 4, 9 p 2, 5, 7, 10, 12) ∈ SC12(5)

w = ( 3, 6 p 1, 8, 11 p 4, 9 p 2, 5, 12 p 7, 10 )→ wγ = (2, 3 p 1, 4, 5) ∈ S5(2).
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The proof of Theorem 1.2.1 (i)⇔ (ii) uses the following induced permutations:

w = ( 3, 6 p 1, 8, 11 p 4, 9 p 2, 5, 12 p 7, 10 )→

w1 = (3, 6 p 1, 2, 4, 5, 8, 9, 11, 12 p 7, 10) ∈ SC12(2)

w = ( 3, 6 p 1, 8, 11 p 4, 9 p 2, 5, 12 p 7, 10 )→

w2 = (1, 3, 6, 8, 11 p 4, 9 p 2, 5, 7, 10, 12) ∈ SC12(5)

w = ( 3, 6 p 1, 8, 11 p 4, 9 p 2, 5, 12 p 7, 10 )→ w̄1 = (1, 2 p 3, 4) ∈ SC4 (2)

w = ( 3, 6 p 1, 8, 11 p 4, 9 p 2, 5, 12 p 7, 10 )→

w̄2 = (1, 3, 5, 7, 9 p 2, 4, 6, 8, 10) ∈ SC10(5).

6.2.2. Example

Let n = 4 and a = {2, 3} and consider the flag variety IF({2, 3}, 8). Let

w1 = (1, 7, 6, 4, 5, 3, 2, 8), w2 = (3, 8, 4, 2, 7, 5, 1, 6), w3 = (6, 8, 5, 2, 7, 4, 1, 3).

We apply Theorem 1.2.1 (iii) to show that the 3-tuple (w1, w2, w3) is L-movable. The

induced Grassmannians are Gr(2, 3), Gr(2, 3), Gr(2, 4), Gr(1, 3), LG(2, 4) and LG(1, 2). We

have that

w1
1,2 = (1, 3, 2) w2

1,2 = (1, 3, 2) w3
1,2 = (2, 3, 1)

w̄1
1,2 = (1, 3, 2) w̄2

1,2 = (1, 3, 2) w̄3
1,2 = (2, 3, 1)

w̃1
1 = (1, 4, 2, 3) w̃2

1 = (2, 4, 1, 3) w̃3
1 = (2, 4, 1, 3)

w̃1
2 = (3, 1, 2) w̃2

2 = (2, 1, 3) w̃3
2 = (2, 1, 3)

w̄1
1,1 = (1, 3, 2, 4) w̄2

1,1 = (2, 4, 1, 3) w̄3
1,1 = (3, 4, 1, 2)

w̄1
2,2 = (2, 1) w̄2

2,2 = (2, 1) w̄3
2,2 = (1, 2)
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It is easy to see that the structure constants associated to these induced 3-tuples are nonzero

and hence (w1, w2, w3) is L-movable.

We now apply Theorem 1.2.2 to compute the associated structure constant. Consider

the projection f : IF({2, 3}, 8) → IG(3, 8). The fiber f−1(V ) is isomorphic to the Grass-

mannian Gr(2, 3). We have that

w1
2 = (1, 6, 7, 4, 5, 2, 3, 8) w2

2 = (3, 4, 8, 2, 7, 1, 5, 6) w3
2 = (5, 6, 8, 2, 7, 1, 3, 4)

w1
γ = (1, 3, 2) w2

γ = (1, 3, 2) w3
γ = (2, 3, 1)

It is easy to see that cγ = 1. To compute the structure constant associated to (w1
2, w

2
2, w

3
2)

we fix generic complete isotropic flags F•, G•, H• ∈ IF(8) and consider the intersection

Φ◦w1
2
(F•) ∩ Φ◦w2

2
(G•) ∩ Φ◦w3

2
(H•).

If we consider the corresponding type A Schubert cells in Gr(3, 8) with respect to generic

type A complete flags, we have that the only point in the intersection is the 3 dimensional

vector space V := Span{F1, G6 ∩H4}. It suffices to check that if F•, G•, H• are isotropic,

then V is isotropic. Let v1 = f1 +h1 and v2 = f2 +h2 where v1, v2 ∈ V and f1, f2 ∈ F1 and

h1, h2 ∈ H4 ∩ V . Then

〈v1, v2〉 = 〈f1, f2〉+ 〈f1, h2〉+ 〈h1, f2〉+ 〈h1, h2〉 = 〈f1, h2〉+ 〈h1, f2〉

since F1 and H4 are isotropic. Since V ∈ Φ◦
w1

2
(F•), we have that V ⊂ F7 = F⊥1 . Hence

〈f1, h2〉+ 〈h1, f2〉 = 0

since h1, h2 ∈ V and thus V is isotropic. This implies that the structure constant c2 = 1.

By Theorem 1.2.2, the structure constant associated to (w1, w2, w3) is c = c2 · cγ = 1.
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CHAPTER 7

Examples in Branching Schubert calculus

In this chapter, we work out some examples regarding Theorem 5.3.8 on branching

Schubert calculus. The embeddings we consider are Sp(2n) ⊆ SL(2n), SO(2n) ⊆ SL(2n)

and SL(n) ⊆ SL(V ) where V is an irreducible representation of SL(n).

7.1. The Symplectic group embedding

Let C2n be a 2n dimensional complex vector space with a skew-symmetric bilinear

form. Consider the groups G̃ = Sp(2n) and G = SL(2n) × Sp(2n) and consider the

diagonal embedding

f : Sp(2n) ↪→ SL(2n)× Sp(2n)

induced from the natural inclusion Sp(2n) ⊆ SL(2n). Please refer to Chapter 2 for details

on these groups. We fix the following objects associated to G̃ = Sp(2n) and G = SL(2n)×

Sp(2n).

H̃ = {diag(t1, t2, . . . , tn, t−1
n , t−1

n−1, . . . , t
−1
1 )}

h̃ = {diag(t1, t2, . . . , tn,−tn,−tn−1, . . . ,−t1)}

h̃+ = {t ∈ h̃ | ti ∈ R and t1 ≥ t2 ≥ · · · ≥ tn ≥ 0}

H = {t = diag(t′1, t
′
2, . . . , t

′
2n) |

2n∏
i=1

t′i = 1} × H̃

h = {t’ = diag(t′1, t
′
2, . . . , t

′
2n) |

2n∑
i=1

t′i = 0} × h̃

h+ = {t’ ∈ h | t′i ∈ R and t′1 ≥ t′2 ≥ · · · ≥ t′2n} × h̃+



Immediately, we see that f∗(h̃+) ⊆ h+ and hence the relative Weyl set Wrel = {1}. We now

work out some examples with respect to certain choices of τ ∈ OPS(H̃).

7.1.1. The Isotropic Grassmannian embedding

Fix r ≤ n and choose the dominant τ ∈ OPS(H̃) defined as

τ(t) := diag(t, . . . , t, 1, . . . , 1, t−1, . . . , t−1)

where the value of the first r entries is t and the value of the next n− r entries is 1. Clearly,

τ viewed as an OPS of SL(2n)× Sp(2n) gives

f(τ(t)) = diag(t, . . . , t, 1, . . . , 1, t−1, . . . , t−1)× diag(t, . . . , t, 1, . . . , 1, t−1, . . . , t−1).

Since Wrel = {1}, the OPS τ is also dominant for SL(2n)×Sp(2n). The parabolic subgroup

of Sp(2n) with respect to τ is the maximal parabolic PSp(2n)(τ) = PCr and the parabolic

subgroup of SL(2n) × Sp(2n) is the product of parabolics PSL(2n)×Sp(2n)(τ) = PA × PCr

where ∆\∆(PA) = {αr, α2n−r}. Hence the map of flag varieties is

φ : IG(r, 2n) ↪→ F`({r, 2n− r}, 2n)× IG(r, 2n)

given by V 7→ (V ⊆ V ⊥, V ). The Levi subgroup of PCr is

L̃ = GL(r)× Sp(2n− 2r)

100



and the Levi subgroup of PA × PCr is

L = {(g1, . . . , g5) ∈ GL(r)3 ×GL(2n− 2r)× Sp(2n− 2r) |
∏

i=1,2,4

det gi = 1}.

Note that we identify the second GL(r) factor with its anti-diagonal transpose. For the

Levi dominant chambers, we have

h̃L̃+ = {t ∈ h̃ | ti ∈ R and t1 ≥ · · · ≥ tr and tr+1 ≥ · · · ≥ tn ≥ 0}

hL+ = {t’ ∈ h | t′i ∈ R and t′i ≥ t′i+1 ∀ i 6= r, 2n− r} × h̃L̃+.

Since f∗(h̃L̃+) ⊆ hL+, the relative Weyl set (WL)rel = {1}. The map L̃ ↪→ L is given by

(g1, g2) 7→ (g1, g
−1
1 , g1, g2, g2). We consider a particular set of admissible, L̃-dominant one

parameter subgroups. For any d1 ∈ [r−1] and d2 ∈ [n− r], let λd1,d2 ∈ OPS(H̃) be defined

by

λd1,d2(t) := diag(tm1 , tm2 , . . . , tmn , t−mn , . . . , t−m2 , t−m1)

where

mi :=


3 if 1 ≤ i ≤ d1

2 if d1 < i ≤ r
1 if r < i ≤ r + d2

0 if r + d2 < i ≤ n

It is easy to see that λd1,d2 is both L̃ dominant and L-dominant. Since PSp(2n)(τ) ⊆

PSp(2n)(λd1,d2), we have that λd1,d2 is also admissible. The flag varieties

L̃/Q̃(λd1,d2) ' Gr(d1, r)× IG(d2, 2n− 2r)

and

L/Q(λd1,d2) ' Gr(d1, r)3 ×Gr(d2, 2n− 2r)× IG(d2, 2n− 2r).
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We analyze the map

L̃/Q̃(λd1,d2) ↪→ L/Q(λd1,d2)

on each factor of L̃/Q̃(λd1,d2). This map breaks up into the diagonal embeddings

φ1 : Gr(d1, r) ↪→ Gr(d1, r)3

and

φ2 : IG(d2, 2n− 2r) ↪→ Gr(d2, 2n− 2r)× IG(d2, 2n− 2r).

Let (w, w̃) ∈WP ' SA2n({r, 2n− r})× SC2n(r) be such that

dim Λ(w,w̃) = dimG/P − dim G̃/P̃ = dim F`({r, 2n− r}, 2n) = 4nr − 3r2.

This condition reduces to `A(w) + `C(w̃) = 4nr − 3r2. Assume that φ∗([Λ(w,w̃)]) 6= 0, then

by Theorem 5.3.8, for any

u = (u1, . . . , u5) ∈ SAr (dr)3 × SA2n−2r(d2)× SC2n−2r(d2)

such that

φ∗1(Λ(u1,u2,u3)) = [Xu1 ] · [Xu2 ] · [Xu3 ] 6= 0 ∈ H∗(Gr(d1, r))

and

φ∗2(Λ(u4,u5)) 6= 0 ∈ H∗(IG(d2, 2n− 2r))

have that

(f∗(u−1χ(w,w̃))− χ̃)(λ̇d1,d2) ≤ 0.
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7.1.2. The Lagrangian embedding

We consider the special case where r = n in the previous section in more detail.

Consider the one parameter subgroup

τ(t) := diag(t, . . . , t, t−1, . . . , t−1)

where the value of the first n entries is t. The parabolic subgroup of Sp(2n) with respect to

τ is the maximal parabolic PSp(2n)(τ) = PCn and the parabolic subgroup of SL(2n)×Sp(2n)

is the product of maximal parabolics PSL(2n)×Sp(2n)(τ) = PAn ×PCn . Hence the map of flag

varieties is

φ : LG(n, 2n) ↪→ Gr(n, 2n)× LG(n, 2n).

The Levi subgroup of PCn is L̃ = GL(n) and the Levi subgroup of PAn × PCn is

L = {(g1, g2, g3) ∈ GL(n)3 | det g1 · det g2 = 1}.

The map L̃ ↪→ L is given by g 7→ (g, g−1, g). Since n = r, we consider a different set of

L̃-dominant one parameter subgroups which serve as an analogue of the OPS λd1,d2 found

in the previous section. For any d ∈ [n− 1], let λd ∈ OPS(H̃) be defined by

λd(t) = diag(t2, . . . , t2, t, . . . , t, t−1, . . . , t−1, t−2, . . . , t−2)

where the value of the first d entries is t2 and the next n − d entries is t. It is easy to see

that

λ̇d := diag(2, . . . , 2, 1, . . . , 1,−1, . . . ,−1,−2, . . . ,−2)
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and that λd is both L̃ dominant and L-dominant. Since PSp(2n)(τ) ⊆ PSp(2n)(λd), we have

that λd is also admissible. The flag varieties L̃/Q̃(λd) ' Gr(d, n) and L/Q(λd) ' Gr(d, n)3

and the map

Gr(d, n) ↪→ Gr(d, n)3

is the diagonal embedding.

Let (w, w̃) ∈WP ' SA2n(n)× SC2n(n) be such that

dim Λ(w,w̃) = dimG/P − dim G̃/P̃ = dim Gr(n, 2n) = n2.

Assume that φ∗([Λ(w,w̃)]) 6= 0, then by Theorem 5.3.8, for any u = (u1, u2, u3) ∈ Sn(d)3

such that

[Xu1 ] · [Xu2 ] · [Xu3 ] 6= 0

we have that

(f∗(u−1χ(w,w̃))− χ̃)(λ̇d) ≤ 0.

We explicitly calculate the action of u on λ̇d. To do this, we consider the action of u on any

t’× t ∈ h. Denote t’ with the following twisted index

t’ = diag{t′1, t′2 . . . , t′n, t′n+n, . . . , t
′
n+2, t

′
n+1}

and denote t by its first n terms t = diag{t1, t2, . . . , tn}. Then u(t’× t) =

diag{t′u1(1), t
′
u1(2) . . . , t

′
u1(n), t

′
n+u2(n), . . . , t

′
n+u2(2), t

′
n+u2(1)} × diag{tu3(1), tu3(2), . . . , tu3(n)}.

Hence if we write λ̇d = λ̇′d × λ̇d viewed as a vector in h, then

(f∗(u−1χ(w,w̃))− χ̃)(λ̇d) = χAw((u1, u2)λ̇′d) + χCw̃(u3λ̇d)− χ̃(λ̇d).
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The character

χAw :=
∑

β∈R+\R+
l ∩w−1R+

β

where R denotes the roots of SL(2n) and

χCw̃ :=
∑

β∈R+\R+
l ∩w−1R+

β

where R denotes the roots of Sp(2n).

Example 7.1.1. Let n = 2 and consider

φ : LG(2, 4) ↪→ Gr(2, 4)× LG(2, 4).

There are five pairs (w, w̃) ∈ SA4 (2)× SC4 (2) which satisfy `A(w) + `C(w̃) = 4:

(3, 4, 1, 2)× (1, 2, 3, 4) (2, 4, 1, 3)× (1, 3, 2, 4) (2, 3, 1, 4)× (2, 4, 1, 3)

(1, 4, 2, 3)× (2, 4, 1, 3) (1, 3, 2, 4)× (3, 4, 1, 2)

The map on Levi factors is SL(2) ↪→ SL(2)3. The OPS λ1 induces the embedding of Levi

factors Gr(1, 2) ↪→ Gr(1, 2)3. Hence there are 4 inequalities coming from the following

3-tuples in S2(1)3:

((2, 1), (2, 1), (1, 2)), ((2, 1), (1, 2), (2, 1)), ((1, 2), (2, 1), (2, 1)), ((2, 1), (2, 1), (2, 1)).

It turns out that all five pairs satisfy these inequalities.

Example 7.1.2. Let n = 3 and consider

φ : LG(3, 6) ↪→ Gr(3, 6)× LG(3, 6).

There are 19 pairs (w, w̃) ∈ SA6 (3) × SC6 (3) which satisfy `A(w) + `C(w̃) = 9. The map
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on Levi factors is SL(3) ↪→ SL(3)3. The OPS λ1 induces the embedding of Levi factors

Gr(1, 3) ↪→ Gr(1, 3)3 and the OPS λ2 induces the embedding Gr(2, 3) ↪→ Gr(2, 3)3. Each

OPS gives a list of 10 inequalities for a total of 20 between λ1 and λ2. Of the 19 pairs

(w, w̃), we find that 11 of them violate some inequality with respect to λ1 or λ2 and hence

φ∗([Λ(w,w̃)]) = 0 for these pairs. These are listed below:

(3, 5, 6, 1, 2, 4)× (1, 2, 4, 3, 5, 6) (3, 4, 6, 1, 2, 5)× (1, 3, 5, 2, 4, 6)

(2, 5, 6, 1, 3, 4)× (1, 3, 5, 2, 4, 6) (2, 4, 6, 1, 3, 5)× (1, 4, 5, 2, 3, 6)

(1, 5, 6, 2, 3, 4)× (1, 4, 5, 2, 3, 6) (2, 3, 5, 1, 4, 6)× (3, 5, 6, 1, 2, 4)

(1, 4, 5, 2, 3, 6)× (3, 5, 6, 1, 2, 4) (1, 3, 6, 2, 4, 5)× (3, 5, 6, 1, 2, 4)

(2, 3, 4, 1, 5, 6)× (4, 5, 6, 1, 2, 3) (1, 3, 5, 2, 4, 6)× (4, 5, 6, 1, 2, 3)

(1, 2, 6, 3, 4, 5)× (4, 5, 6, 1, 2, 3)

Corollary 7.1.3. Consider the pair (w, w̃) = (2, 3, 4, 1, 5, 6) × (4, 5, 6, 1, 2, 3) ∈ SA6 (3) ×

SC6 (3). Since φ∗([Λ(w,w̃)]) = 0, we have that a generic 4 dimensional subspace of C6 does

not contain a 3 dimensional isotropic subspace.

7.2. The Even orthogonal group embedding

Let C2n be a 2n dimensional complex vector space with a symmetric bilinear form with

basis {e1, e2, . . . , e2n} such that

〈ei, e2n+1−i〉 = 1 and 〈ei, ej〉 = 0 if j 6= 2n+ 1− i.

Let G̃ = SO(2n) be the special orthogonal group with respect to this form and let G =

SL(2n)× SO(2n). Consider the diagonal embedding

f : SO(2n) ↪→ SL(2n)× SO(2n)
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induced from the natural inclusion SO(2n) ⊆ SL(2n). Note that the objects H̃, h̃ and H, h

have the exact same description as for the embedding Sp(2n) ↪→ SL(2n)×Sp(2n). However,

the positive Weyl chambers h̃+ and h+ are different. We have that

h̃+ = {t ∈ h̃ | ti ∈ R and t1 ≥ t2 ≥ · · · ≥ tn−1 ≥ |tn|}

h+ = {t’ ∈ h | t′i ∈ R and t′1 ≥ t′2 ≥ · · · ≥ t′2n} × h̃+.

The set of roots of SO(2n) is

RD = {±(εi ± εj) | 1 ≤ i < j ≤ n} ⊆ h̃∗

with positive roots (R+)D = {(εi ± εj) | 1 ≤ i < j ≤ n} where εi(t) = ti. Let ∆D :=

{α1, α2, . . . , αn} denote the set of simple roots where αi := εi − εi+1 for i < n and αn :=

εn−1 + εn. Denote the Weyl group of SO(2n) by

WD := {w ∈ S2n | w(2n+ 1− i) = 2n+ 1− w(i) and #{w(i) > n | i ∈ [n]} is even}.

Under the inclusion WD ⊆ S2n, the reflections corresponding to ∆D are si := (i, i+1)(2n−

i, 2n− i+ 1) for i < n and sn := (n− 1, n+ 1)(n, n+ 2).

Observe that f∗(h̃+) * h+ and hence the relative Weyl set is nontrivial. We have

that Wrel = {1, v} ⊆ W = WA × WD where v is the simple transposition (n, n + 1) in

the first factor WA. We now work out some examples with respect to certain choices of

τ ∈ OPS(H̃).
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7.2.1. The orthogonal Grassmannian embedding

Choose the dominant τ ∈ OPS(H̃) defined as

τ(t) := diag(t, . . . , t, t−1, . . . , t−1)

where the value of the first n entries is t. The parabolic subgroup PSO(2n)(τ) = PDn−1 where

∆D\∆D(PDn ) = {αn−1}. The flag variety

SO(2n)/PDn−1 ' OG+(n, 2n)

where OG+(n, 2n) is the connected set of n-dimensional isotropic subspaces which contains

the standard isotropic flag E+ := Span{e1, . . . , en}. The OPS τ is also dominant with

respect to SL(2n)× SO(2n). The parabolic

PSL(2n)×SO(2n)(τ) ' PAn × PDn−1

and the flag variety

SL(2n)× SO(2n)/PAn × PDn−1 ' Gr(n, 2n)×OG+(n, 2n).

The map

φ : OG+(n, 2n) ↪→ Gr(n, 2n)×OG+(n, 2n)
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is simply the diagonal embedding. Similarly to the Lagrangian Grassmannian, the Levi

subgroup of PDn−1 is L̃ = GL(n) and the Levi subgroup of PAn × PDn−1 is

L = {(g1, g2, g3) ∈ GL(n)3 | det g1 · det g2 = 1}.

The map L̃ ↪→ L is given by g 7→ (g, g−1, g). For the Levi dominant chambers, we have

h̃L̃+ = {t ∈ h̃ | ti ∈ R and t1 ≥ · · · ≥ tn}

hL+ = {t’ ∈ h | t′i ∈ R and t′i ≥ t′i+1 ∀ i 6= n} × h̃L̃+.

Since the Levi factors and Levi dominant chambers are the same as they are for the La-

grangian embedding, we have that (WL)rel is trivial and for any d ∈ [n− 1], we can define

the admissible, L̃-dominant λd ∈ OPS(H̃) as in the previous section. The flag varieties

L̃/Q̃(λd) ' Gr(d, n) and L/Q(λd) ' Gr(d, n)3 and the map

Gr(d, n) ↪→ Gr(d, n)3

is the diagonal embedding. Let (w, w̃) ∈WP ' SA2n(n)× (WD)P
D
n−1 be such that

dim Λ(w,w̃) = dimG/P − dim G̃/P̃ = dim Gr(n, 2n) = n2.

Assume that φ∗([Λ(w,w̃)]) 6= 0, then by Theorem 5.3.8, for any u = (u1, u2, u3) ∈ Sn(d)3

such that

[Xu1 ] · [Xu2 ] · [Xu3 ] 6= 0

we have that

(f∗(u−1χ(w,w̃))− χ̃)(λ̇d) ≤ 0.
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7.2.2. The twisted orthogonal Grassmannian embedding

In this section, we choose a τ ∈ OPS(H̃) which is dominant with respect to G̃ =

SO(2n) but not dominant with respect to G = SL(2n) × SO(2n). Choose the dominant

τ ∈ OPS(H̃) defined as

τ(t) := diag(t, . . . , t, t−1, t, t−1, . . . , t−1)

where the value of the first n−1 entries is t and the value of the nth entry is t−1. The OPS

τ is not dominant with respect to SL(2n)×SO(2n), however τv := v−1τv is dominant. The

parabolic subgroup PSO(2n)(τ) = PDn where ∆D\∆D(PDn ) = {αn} and the flag variety

SO(2n)/PDn ' OG−(n, 2n)

where OG−(n, 2n) is the connected set of n-dimensional isotropic subspaces which contains

the isotropic flag E− := Span{e1, . . . , en−1, en+1}. The parabolic

PSL(2n)×SO(2n)(τv) ' PAn × PDn

and the flag variety

SL(2n)× SO(2n)/PAn × PDn ' Gr(n, 2n)×OG−(n, 2n).

The map

φ : OG−(n, 2n) ↪→ Gr(n, 2n)×OG−(n, 2n)
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is twisted embedding gE− 7→ (gvE−, gE−) = (gE+, gE−) where g ∈ SO(2n). Note that

Imφ = OG+(n, 2n)×OG−(n, 2n).

As with the standard embedding, the Levi factors are L̃ = GL(n) and

L = {(g1, g2, g3) ∈ GL(n)3 | det g1 · det g2 = 1}.

Note that v−1L̃v is the Levi factor of PDn−1 and that map L̃ ↪→ L is given by g 7→

(v−1gv, v−1g−1v, g). For the Levi dominant chambers, we have

h̃L̃+ = {t ∈ h̃ | ti ∈ R and t1 ≥ · · · ≥ tn−1 ≥ −tn}

hL+ = {t’ ∈ h | t′i ∈ R and t′i ≥ t′i+1 ∀ i 6= n} × h̃L̃+.

Note that f∗(h̃L̃+) ⊆ vhL+ and hence (WL)rel is again trivial. The one parameter subgroups

λd ∈ OPS(H̃) are still L̃-dominant, however the parabolic subgroup Q̃(λd) is not maximal

in L̃. The flag varieties

L̃/Q̃(λd) ' F`({d, n− 1}, n)

and

L/Q((λd)v) ' F`({d, n− 1}, n)3

and the map

F`({d, n− 1}, n) ↪→ F`({d, n− 1}, n)3

is the diagonal embedding. To generate the same Grassmannians as in the untwisted em-

bedding in the previous section consider λ′d ∈ OPS(H̃) defined by

λ′d(t) = diag(t2, . . . , t2, t, . . . , t, t−1, t, t−1, . . . , t−1, t−2, . . . , t−2)
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where the value of the first d entries is t2 and the next n − d − 1 entries is t and the nth

entry is t−1. It is easy to see that L̃/Q̃(λ′d) ' Gr(d, n) and L/Q((λ′d)v) ' Gr(d, n)3.

7.3. Examples from Representation Theory

There are many interesting examples arising from representation theory. We remark

that the examples in this section are inspired by examples worked out in [5]. Let V be a

faithful N -dimensional representation of SL(n). Since SL(n) is a simple Lie group, we have

an embedding

f : SL(n) ↪→ SL(V ).

Fix the standard objects H̃, h̃ and h̃+ for G̃ = SL(n). Let

V =
⊕
µ∈h̃∗

Vµ

denote the weight space decomposition of V and let m(µ) denote the dimension of Vµ

(Clearly,
∑

µm(µ) = N). Choosing a maximal torus H in SL(V ) reduces to choosing a

basis for the weight spaces Vµ. Fix

Bµ = {eµ1 , e
µ
2 , . . . , e

µ
m(µ)}

a basis for Vµ and choose H ⊆ SL(V ) to be the maximal torus which is diagonal with

respect to the basis B :=
⋃
µ∈h̃∗ B

µ of V . It is easy to see that H̃ = H ∩ SL(n) and that

the embedding f∗ : h̃ ↪→ h is given by

f∗(t) =
∑
µ

m(µ)∑
i=1

µ(t)eµi .
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The root system of SL(V ) is given by the set

R = {εµk − ε
ν
l | (µ, k) 6= (ν, l)}

where εµk
(∑

(ν,l) e
ν
l

)
:= eµk . Choosing a positive Weyl chamber in h reduces to fixing an

ordering of the basis B. Fix an ordering µ ≺ ν on the weights of V and an ordering k ≤ l

on each set Bµ. So (µ, k) ≤ (ν, l) if µ ≺ ν and (µ, k) ≤ (µ, l) if k ≤ l. Then the positive

Weyl chamber is

h+ = {t’ ∈ h | t′i ∈ R and εµk − ε
ν
l (t’) ≥ 0 ∀ (µ, k) ≤ (ν, l)}

and the set of positive roots is

R+ = {εµk − ε
ν
l | (µ, k) ≤ (ν, l)}.

Let τ ∈ OPS(H̃) be dominant with respect to SL(n). Then τ is dominant with respect to

SL(V ) if and only if

εµk − ε
ν
l (τ̇) = µ(τ̇)− ν(τ̇) ≥ 0 ∀ µ ≺ ν.

Hence the relative Weyl set Wrel ⊆ W ' SN is only dependant on the choice of ordering

µ ≺ ν. We now look at some specific examples in more detail.

7.3.1. The representation sym2(C3) of SL(3)

Let n = 3 and let V = sym2(C3) be the second symmetric power of the standard

representation of SL(3). The representation V is 6 dimensional with weights

{(εi + εj) | 1 ≤ i ≤ j ≤ 3}.
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Since all the weight spaces are one dimensional, we only need to fix an ordering on the

weights of V to determine a positive Weyl chamber. Fix the following ordering on the

weights of V :

µ1 = 2ε1 µ2 = ε1 + ε3 µ3 = 2ε2

µ4 = ε2 + ε3 µ5 = 2ε3 µ6 = ε1 + ε3

If t = diag(t1, t2, t3) ∈ h̃, then

f∗(t) =
6∑
i=1

µi(t)eµi = diag(2t1, t1 + t2, 2t2, t2 + t3, 2t3, t1 + t3) ∈ h.

The condition that t ∈ h̃+ is that t1 ≥ t2 ≥ t3 and ti ∈ R. Hence f∗(h̃+) ∩ h+ = {0} and

the relative Weyl set Wrel does not contain the identity. If W ' S6 is the Weyl group of

SL(V ), then Wrel = {s5s4, s5s4s3} where si is the simple transposition (i, i+ 1).

Choose the dominant τ ∈ OPS(H̃) defined by τ(t) := diag(t2, t−1, t−1). Then τv is

dominant for SL(V ) where v = s5s4s3. We have that

τ̇ = diag(2,−1,−1) and τ̇v = (4, 1, 1,−2,−2,−2).

It is easy to see that

SL(3)/PSL(3)(τ) ' Gr(1, 3) and SL(V )/PSL(V )(τv) ' F`({1, 3}, 6).

The twisted embedding

φ : Gr(1, 3) ↪→ F`({1, 3}, 6)

is quite mysterious. Naively, one might suspect that Imφ is equal some fiber over the

projection ψ : F`({1, 3}, 6) � Gr(3, 6). However this is not true since it would imply that

f(SL(3)) stabilizes a 3 dimensional subspace of V , and V is an irreducible representation.
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Consider the Levi-factors

L̃ = {(g1, g2) ∈ GL(1)×GL(2) | det g1 · det g2 = 1}

and

L = {(g1, g2, g3) ∈ GL(1)×GL(2)×GL(3) |
∏

i=1,2,3

det gi = 1}.

Unfortunately, the twisted embedding L̃ ↪→ L is also mysterious which makes applying

Theorem 5.3.8 in a practical way unclear.

Consider the “straightened” embedding φ̄ : Gr(1, 3) ↪→ F`({1, 3}, 6) where we identify

Gr(1, 3) with the fiber ψ−1(E) ⊆ F`({1, 3}, 6) over some fixed 3 dimensional vector space

E ⊆ V . Then Gr(1, 3) is equal to the Schubert variety X̄(3,1,2,4,5,6)(F•) ⊆ F`({1, 3}, 6) where

F3 = E. Hence, for any w ∈ S6({1, 3}) such that

dimXw = dim F`({1, 3}, 6)− dim Gr(1, 3) = 9,

we have that φ̄∗([Xw]) = c[pt] ∈ H∗(Gr(1, 3)) where c is given by

[Xw] · [X(3,1,2,4,5,6)] = c[pt] ∈ H∗(F`({1, 3}, 6)).

Therefore the structure constant c = 1 if w = (4, 5, 6, 1, 2, 3), the Poincaré dual of (312456),

and c = 0 otherwise. This fact is supported by Theorem 5.3.8. Consider the one parameter

subgroup λ := diag(t, t, t−2) ∈ OPS(H̃). The OPS λ generates a single inequality which is

violated by all w ∈ S6({1, 3}) such that dimXw = 9 and w 6= (4, 5, 6, 1, 2, 3).

Question 7.3.1. Does the cohomology class [Imφ] = [X(3,1,2,4,5,6)] in H∗(F`({1, 3}, 6)) in

the above example? If so, then the twisted embedding φ : Gr(1, 3) ↪→ F`({1, 3}, 6) is invariant

at the level of cohomology.
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Remark 7.3.2. The “straightened” embedding in the above example corresponds to choosing

G̃ to be a Levi subgroup of G = SL(V ). Let E = Span{eµ1 , eµ2 , eµ3} in the above example.

Define G̃ ⊆ SL(V ) to be the Levi factor of the stabilizer subgroup of the vector space

E. It is easy to see that G̃ ' {(g1, g2) ∈ GL(3)2 | det g1 · det g2 = 1}. The embedding

φ̄ : Gr(1, 3) ↪→ F`({1, 3}, 6) corresponds to the embedding

G̃/P G̃(τ) ↪→ SL(V )/PSL(V )(τ)

where τ(t) := diag(t3, 1, 1, t−1, t−1, t−1).

We now consider a different example with G = SL(V ) where V = sym2(C3). Choose

the τ ∈ OPS(H̃) defined by τ(t) := diag(t, t, t−2). Then τv is dominant for SL(V ) where

v = s4s5. We have that

τ̇ = diag(1, 1,−2) and τ̇v = (2, 2, 2,−1,−1,−4).

It is easy to see that

SL(3)/PSL(3)(τ) ' Gr(2, 3) and SL(V )/PSL(V )(τv) ' F`({3, 5}, 6).

Once again, the twisted embedding

φ : Gr(2, 3) ↪→ F`({3, 5}, 6)

is quite mysterious and we consider the corresponding “straightened” embedding

φ̄ : Gr(2, 3) ' X̄(1,2,3,5,6,4)(F•) ↪→ F`({3, 5}, 6).
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It is easy to see that the Schubert variety X̄(1,2,3,5,6,4)(F•) = ψ−1(F3) where ψ denotes the

projection ψ : F`({3, 5}, 6) � Gr(3, 6). For any w ∈ S6({3, 5}) such that

dimXw = dim F`({3, 5}, 6)− dim Gr(2, 3) = 9,

we have that φ̄∗([Xw]) = [pt] ∈ H∗(Gr(1, 3)) if w = (4, 5, 6, 1, 2, 3), the Poincaré dual of

(1, 2, 3, 5, 6, 4), and φ̄∗([Xw]) = 0 otherwise. We ask the same question as in Question 7.3.1.

Question 7.3.3. Does the cohomology class [Imφ] = [X(1,2,3,5,6,4)] in H∗(F`({3, 5}, 6))?

7.3.2. The adjoint representation

Finally, we give an example where the weight spaces of V are not all one dimensional.

Let n = 3 and let V = sl(3) denote the adjoint representation of SL(3). Note that V is an

8 dimensional representation with weights

{0,±(ε1 − ε2),±(ε2 − ε3),±(ε1 − ε3)}.

The only two dimensional weight space is the 0 weight (ie. the Cartan subalgebra of sl(3)).

Let

e0
1 = diag(1,−1, 0) and e0

2 = diag(0, 1,−1)

be a basis for V0. Fix the following ordering on the weights of V :

µ1 = ε1 − ε2 µ2 = ε1 − ε3 µ3 = ε2 − ε3 µ4 = 0

µ5 = −ε1 + ε2 µ6 = −ε1 + ε3 µ7 = −ε2 + ε3

If t = diag(t1, t2, t3) ∈ h̃, then

f∗(t) =
7∑
i=1

µi(t)eµi = diag(t1 − t2, t1 − t3, t2 − t3, 0, 0, t2 − t1, t3 − t1, t3 − t2) ∈ h.
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As with the representation sym2C3, we have that f∗(h̃+) ∩ h+ = {0} and the relative Weyl

set Wrel does not contain the identity. We have that

Wrel = {s1s7, s1s6s7, s1s2s7, s1s2s6s7} ⊆W = S8

where si is the simple transposition (i, i+ 1). The since the analysis of the next example is

similar to that of the examples in the previous section, we only construct the embedding.

Choose the dominant τ ∈ OPS(H̃) defined by τ(t) := diag(t2, t−1, t−1). Then τv is

dominant for SL(V ) where v = s1s6s7. We have that

τ̇ = diag(2,−1,−1) and τ̇v = diag(3, 3, 0, 0, 0, 0,−3,−3).

The flag varieties

SL(3)/PSL(3)(τ) ' Gr(1, 3) and SL(V )/PSL(V )(τv) ' F`({2, 6}, 8).

Hence we have the twisted embedding φ : Gr(1, 3) ↪→ F`({2, 6}, 8).
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