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ABSTRACT

SAM FLANDERS: Essays on Microeconomics
(Under the direction of Gary Biglaiser.)

This dissertation consists of three essays on applied microeconomic theory, focusing on

matching markets. The �rst two essays focus on �nding closed form solutions to matching

problems. Both generalize Gary Becker's well-known assortative matching results to more

general environments. Becker studied a frictionless one-to-one matching environment with

vertical or quality-based univariate preferences and found that, the higher one's type, the

higher the type of their match will be, an implication that has been extremely in�uential in

empirical work. The �rst paper generalizes this analysis to an environment where agents care

about many traits instead of just one and have more general preferences, rather than restrict-

ing attention to vertical preferences. The latter generalizes it to a univariate environment

where agents can have any ideal type and preference is decoupled from type, such that di�er-

ent agents of the same type can have di�erent preferences. Both papers provide closed-form

matching functions and make empirical predictions about the structure of matching. Theo-

retical and empirical interest in matching is currently shifting to richer settings where agents

have varied preferences and must make tradeo�s between various traits they care about, so

foundational work on the qualitative structure of sorting in these settings is necessary to

provide intuition for researchers and to direct empirical questions, and closed-form matching

functions can make theoretical models with embedded matching problems tractable.

In the third essay, I study a search model of online dating with nontransferable utility

where agents are vertically di�erentiated, self-report quality, and must go on costly dates to

verify a match's quality. We show that these per-date costs induce some agents to over-report

their type, consistent with the stylized facts of online dating platforms where users frequently

over-report characteristics like height and income, a phenomenon known as cat�shing. This

make agents less picky by preventing high types from rejecting some low types, and since

externalities in matching markets without transfers can make agents ine�ciently picky, these
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costs can improve total market surplus. A monopolist platform owner may also have an

incentive to increase per-date costs in order to increase pro�ts. Thus, inducing lying amongst

users can actually be optimal for a platform.
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CHAPTER 1

CATFISH: LYING IN MATCHING MARKETS WITH CHEAP TALK

1.1 Introduction

This paper studies matching markets with �cat�sh�, a neologism for someone who attempts

to attract matches on an online dating platform by lying about themselves. Online dating

has become a common component of dating and partnership formation, and is a fast growing

market, taking in $1.08 billion in revenue for dating sites and $572 million for dating apps in

2014.1 Lying is an important factor in search on these platforms; the distributions of reported

types for traits like income and male height tend to be shifted right on online dating platforms

relative to the broader population, suggesting misreporting,2 and one industry study found

that 20% of women and 33% of men admit to lying on their online dating pro�les.3 This

report also o�ers advice on how to account for such misreporting, advising women to �assume

the men you meet might not be quite as tall, as successful or as connected as they say they

are, and then decide whether you'd still consider dating them regardless�, suggesting that

misreporting is an important factor in agent search strategies. We study a stylized model

motivated by this issue, with a two sided (men and women) platform allowing agents to

search for matches on the other side4 where agents can misreport their type.

Speci�cally, we model a one-to-one nontransferable utility (NTU) matching market with

1http://www.wsj.com/articles/the-dating-business-love-on-the-rocks-1433980637

2http://blog.okcupid.com/index.php/the-biggest-lies-in-online-dating/

3http://www.ayi.com/dating-blog/ayi-top-online-dating-pro�le-lies/

4This analysis can easily be extended to a same-sex dating market.



random search5 and time discounting where agents pursue long term (permanent) matches.

Agents are vertically di�erentiated,6 are distributed over a continuum of types, and self-

report type. When agents meet, they see one another's reports and choose whether to enter

a type veri�cation phase (date) or to part and return to search. If they go on a date, they

see each other's true type. They then decide whether or not to match permanently.

Going on a date is costly, allowing some agents to pro�tably lie. Before a date, agents

weigh the expected payo� from continued searching against the bene�t of matching today

less the cost of the date, accepting a match if the latter is higher. However, after the date

this per-date cost is sunk and drops from the agent's decision, making them less selective.

That is, once you've already made the e�ort to meet and learn about someone you should be

less picky, since if you start your search over again you'll have to make a costly investment

in learning about the next person. Thus, some agents will be rejected for a date if they

truthfully report their type, but, if they get a date by pooling with more attractive peers,

they will be accepted after the date when standards are lower.

We focus on an equilibrium with a minimal amount of pooling, which we term the �Lim-

ited Pooling� equilibrium. In this equilibrium, agents self partition into �classes�, where each

agent only matches within their class. Classes will typically be larger�and thus agents less

choosy�when per-date costs are higher, since these costs allow lower quality agents to pool

with and match to higher types who would like to reject them ex-ante.

We study how a strategic platform charging a single �xed fee7 can utilize per-date costs

to improve �rm pro�ts or maximize surplus as a social planner. We �rst consider the case

where per-date costs are prices (for example, a price to communicate with an individual

you're interested in). Externalities endemic to NTU search markets make agents too picky.

In particular, agents don't care about their match's payo�, or the payo� of other agents in

the market, only their own. Without transfers, other agents have no way of making them

5Over time, agents receive random draws from the set of agents on the other side of the market.

6Each type is characterized by a level of quality, and all agents prefer higher quality matches to lower
quality matches.

7We discuss a schedule of �xed fees in Appendix 1.6.1.
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internalize these costs. Thus agents will chase after high quality matches, ignoring the fact

that if they get a high quality match, someone else must get a low quality match, so their

gain is another's loss. Thus the social planner will want agents to be less picky, since choosy

behavior results in surplus loss due to time discounting and bene�ts the social planner much

less than it does the individual. Thus, per-date costs can counter this excessive pickiness,

and we �nd that a social planner will utilize positive per-date prices to make agents less

picky and increase total surplus.

A pro�t seeking monopolist 8platform will also charge positive per-date prices.9 In this

environment, the platform fully extracts surplus from the lowest quality agent who joins,

while leaving rents to all higher class agents due to the lack of price discrimination. By

forcing higher types to match to lower types they'd like to reject, per-date costs can be

interpreted as inducing a transfer from high types to low types, which allows the platform

to extract more surplus from agents by making the indi�erent agent better o� (and willing

to pay more) at a cost to the rents of high type agents, which the platform does not value.

We also consider the case where per-date costs are frictions, and a platform has access

to technology that can lower per-date frictions at a cost to the platform. Some online

dating platforms in fact o�er technologies such as video-chat and ID veri�cation to lower

informational frictions. Even in this case, we �nd that a monopolist platform often prefers

high per-date costs, despite their great cost to agents. Per-date costs can again be interpreted

as inducing a transfer from high types to low types, increasing the �xed fee the platform can

charge. With appropriately chosen per-date costs, this bene�t o�sets the direct surplus losses

due to per-date frictions. Thus, in this environment platforms often do not have an incentive

to induce truth-telling or informative reporting, and in fact may bene�t from inducing lying

if lowering frictions is even slightly costly. A social planner will generally prefer to lower

8A platform with signi�cant market power may be a reasonable approximation of the online dating market
as the market is fairly concentrated and the fact and much of the market outside of the two largest �rms,
IAC and eHarmony, is highly di�erentiated niche platforms like JDate and ChristianMingle.

9Explicit per-date prices are currently uncommon in dating platforms, though some platforms, like Ashley
Madison and It's Just Lunch, have utilized them. More common are contracts that limit the number of
contacts one can make in a given period of time and charge a premium for unlimited contacts, which has
qualitatively similar e�ects but is less tractable to model.

3



per-date frictions to zero if the cost to the platform of this technology is su�ciently low, but

there are special cases where even a social planner will prefer higher per-date frictions.

In the broader set of equilibria, the ability to freely report type allows for many forms

of pooling, including highly non-monotonic reporting where, for example, agents in a high

type class and a low type class make the same report while agents in an intermediate quality

class make reports that uniquely identify their class. However, we �nd that, regardless of

reporting strategies, equilibria are characterized by a class partition where, after going on

a date, agents will only match to draws whose true type is within their class. Hence, this

paper contributes to the literature by extending the coarse, class based form of positively

assortative matching (PAM)10 found previously in NTU search models like Macnamara and

Collins (1990) and Burdett and Coles (1997) to an environment with cheap talk and costly

type veri�cation.

It also contributes to the literature on two-sided platforms�speci�cally, the literature on

strategic matching platforms. In particular, we show how informational frictions can be

pro�tably used by a strategic platform to counteract externalities in matching markets. A

recent survey of the search and matching literature by Chade, Eeckhout, and Smith (2015)

identi�ed the nature and implications of externalities in matching markets as one of the major

open questions in the �eld, so this analysis addresses an important hole in the literature.

We'll now describe some additional salient features of the online dating market. It features

signi�cant concentration, with eHarmony taking in $310 million in revenue in 2014 and

platforms owned by the IAC (Match, Tinder, OkCupid, etc.) taking in $601 million, almost

all of which was from dating websites, where total dating site revenue was $1.08 billion. 11.

Membership is slightly less concentrated, with IAC platforms serving 21% of users in 2014

and eHarmony serving 13% 12. The remainder of the market is composed of small platforms,

many of which are niche dating sites, and recent dating app entries. Platforms typically either

10Higher types match with higher types, lower types match with lower types.

11http://www.washingtonpost.com/news/business/wp/2015/04/06/online-datings-age-wars-inside-
tinder-and-eharmonys-�ght-for-our-love-lives/

12http://www.wsj.com/articles/the-dating-business-love-on-the-rocks-1433980637
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o�er a single service at a positive price, or a free, ad-supported service and a premium paid

service with additional amenities, such as unlimited messaging, better search options, and

video chat. Many platforms engage in second degree price discrimination, o�ering signi�cant

discounts for longer contracts. Typical contract lengths are 1, 3, 6, or 12 months. Few major

platforms engage in overt demographic based price discrimination, although Tinder prices

based on age.

While this paper focuses on an application to online dating markets, matching markets

with search and costly type veri�cation�and thus an incentive for lower quality agents to

pool with higher quality agents�appear in a variety of contexts, notably in job search. While

the NTU assumption is less palatable for job search, as wages are often bargained over and

can be set �exibly by the employer, there are also often limits to the degree of transferability.

Among other things, �rms may have their wage setting abilities constrained by regulations

like minimum wages, and progressive taxation makes larger transfers more costly. Hence,

the e�ciency and pro�tability of positive per-date frictions we �nd assuming NTU may

extend�perhaps with some attenuation�to partially transferable utility (PTU) environments

that may more credibly model applications like job search. Additionally, in some job search

applications like the market for medical residents, wage o�ers are extremely compressed due

to the market structure, making NTU a reasonable assumption. While the National Resident

Matching Program ends with a one-shot assignment game based on rankings reported by each

side, hospitals and students meet in time consuming and costly interviews before reporting

their preferences, suggesting a search model like the present may capture some stylized

characteristics of such markets.

The remainder of this paper is organized as follows: Section 1.2 discusses the related lit-

erature and this paper's place within it. Section 1.3 lays out the basic theoretical framework

this paper uses, characterizes the set of equilibria in this environment, and provides equilib-

rium selection arguments. Section 1.4 incorporates a strategic platform that can change the

magnitude of the per-date costs. Section 1.5 concludes. Section 1.6 is the appendix, which

includes proofs for many of the propositions in the paper, as well as analysis of the model

with alternative assumptions, such as di�erent matching technologies.
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1.2 Related Literature

This paper follows a rich literature on search and matching. In particular, it �ts within the

literature on search and matching with NTU. McNamara and Collins (1990) �rst studied

the NTU search environment with a continuum of types and found the distinctive partition

or class equilibrium common in this literature, where agents in each class only match within

their class. Burdett and Coles (1997) extended this analysis to a steady state environment

with exogenous in�ows of agents and endogenous out�ows. The present paper is closely

related to this strand of the literature. In particular, the constant returns to matching model

can be interpreted as Burdett and Coles with an additional reporting stage. Eeckhout (1999)

extends this result to multiplicatively separable preferences, and Chade (2001) extends it

to �xed search costs. Smith (2006) looks at even more general preferences, situating the

partition result in a larger class of equilibria where partitioning does not necessarily hold.

There is a parallel literature for the transferable utility (TU) assumption, with Shimer and

Smith (2000) studying equilibria in the analogous TU environment. Generally, TU makes

characterizing equilibria, payo�s and agent behavior more di�cult.

There is also a small literature on strategic matching platforms with search. Bloch

and Ryder (2000) study a monopolist platform environment that can o�er frictionless NTU

matches for a �xed fee or a �xed proportion of match surplus, with an outside option of

NTU search. Damiano and Li (2007) study vertically di�erentiated agents and a monopolist

that creates a continuum of platforms and sets prices to induce agents to join their assigned

platform and match with identical agents. Given the simplicity of observed contracts in this

market and the potential frictional costs of partitioning agents into many small platforms,

our paper instead considers what a less ambitious platform can do in an environment where

draw rates proportional to the mass of agents on a platform make in�nite partition of the

space into measure zero platforms ine�cient. Damiano and Li (2008) study competition

between matching markets.

This paper also relates to the literature on cheap talk and information transmission. The

cheap talk literature was pioneered in Crawford and Sobel (1982). Applications of cheap talk,

signaling, and information transmission to matching markets include Hoppe et al. (2009) and
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Hopkins (2012), who study matching with signaling. Bilancini and Boncinelli (2013) address

a similar NTU environment but assume only one side has unobservable types and consider a

binary choice between type certi�cation and full information matching and hiding one's type

and matching randomly. The present paper di�ers from these works by focusing on a cheap

talk environment. Ko and Konishi (2010) study a pro�t-maximizing platform matching

�rms and workers in a many-to-one environment, where �rms and workers report match-

speci�c wage o�ers and desired wages, respectively. They �nd that manipulating reporting

by curtailing the message space can improve pro�ts. A current working paper, Hagenbach

et al. (2015), studies an environment very similar to ours, with an initial reporting stage

and a costly type veri�cation stage before permanent matching in a search environment

with vertical di�erentiation and NTU. However, they consider a two point type distribution,

while our analysis focuses on the class structure that only appears non-degenerately in a

model with a continuum of types. We also study strategic platforms, while they focus on a

nonstrategic platform.

This paper also relates to the literature on two-sided platforms, pioneered in Rochet and

Tirole (2003, 2006) and Armstrong (2006). More recent work includes Weyl (2010), Bedre-

Defolie and Calvano (2013), and Lee (2013). In contrast to the majority of this literature,

which takes advantage of simple, exogenous speci�cations for network externalities, this

paper explicitly models the special case of network e�ects induced by a search model of

matching.

1.3 Model

1.3.1 Preliminaries

We model a heterosexual market on an online dating platform and denote the two sides men

(m) and women (w). Agents are characterized by a single vertical characteristic representing

quality or attractiveness, where every agent strictly prefers higher quality matches. Quality

for side j is distributed over [q
j
, qj], qj > 0.13 When agents join the platform, the platform

13If q = 0 there can be in�nitely many classes, which poses di�culties for certain aspects of the analysis.
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solicits a report on their true type q̂ ∈[q
j
, qj], representing their online dating pro�le. On the

platform, agents engage in bilateral search for partners in continuous time, with a discount

rate of r ∈ (0,∞). Agents receive random draws from from the endogenous distribution of

agents on the other side Gj(q, t) according to a Poisson process with arrival rate α, where

Gj is continuous14

When they meet, each agent observes the other's report, and they make an ex-ante

decision whether or not to propose a date. If both propose a date, they pay a per-date

cost,15 learn each other's true type, and make an ex-post decision whether to propose a

match. If both propose a match they marry forever. If either rejects in the �rst stage

they part costlessly, while if either rejects after the date they part having paid the per

date cost. In�ow into the platform is exogenous and time invariant, with the cumulative

distribution given by Fj(q), where Fj is twice di�erentiable and has full support on [q
j
, qj].

The corresponding density is given by fj(q). The total mass of in�ow is equal for both sides

and normalized to 1. Out�ow is determined endogenously by the rate of acceptances and

the mass on the platform. The mass of agents on the platform is given by N .

Total match surplus is given by a function u(qm, qw) ≡ ψm(qm)φm(qw) + ψw(qw)φw(qm),

where each agent's payo� is multiplicatively separable into an own type component ψ and a

match's type component φ. Both are weakly increasing twice di�erentiable positive functions,

with φ is strictly increasing. We assume non-transferable utility (NTU), where uw(qm, qw) ≡

ψw(qw)φw(qm) and um(qm, qw) ≡ ψm(qm)φm(qw). This means that agents cannot bargain

over the apportionment of surplus, perhaps due to social norms, which may be plausible

in some matching markets such as dating markets. NTU, along with the multiplicative

separability of each agent's own type and match type in their payo�, ensures the very simple

and tractable class structure common to this literature. Per-date cost for an agent of type

qj on side j is ψj(qj)c. This is a strong assumption, but it is also necessary to preserve the

14We'll prove this later.

15We assume agents cannot match sight-unseen. This seems consistent with most marriage/partnership
formation, where some amount of quality veri�cation precedes commitment. Even arranged marriages typi-
cally involve reconnaissance by relatives.
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class structure of the equilibrium.16 When ψ = 1, as in the commonly assumed case where

utility is simply match's type, per-date costs can be thought of as either a price imposed by

the platform or the opportunity or e�ort cost of going on a date. When ψ 6= 1, per date costs

should be thought of as opportunity costs that are increasing in type. 17 Unless otherwise

noted, agents have an outside option of zero, such that every possible match is preferable to

remaining unmatched.

We'll focus on stationary equilibria where

• Assumption 1 (STN) : Each agent believes Gj(q, t) = Gj(q).

Further assume stationary agent strategies, where a strategy is an agent's ex-ante date

decision for each reported type and ex-post match decision for each true type. Let µi(q̂) be

agent i's belief about the distribution of q given a report q̂. Following Burdett and Coles

(1997) and extending the de�nition to a game of incomplete information, we utilize the

following de�nition:

De�nition 1 Given (Gm, Gw), a Bayesian perfect partial equilibrium (BPPE) is a strategy

pro�le and beliefs µ where STN is satis�ed, agents maximize utility subject to their belief about

other agents' types and actions and follow sequential rationality, and beliefs are consistent

with Bayes rule wherever possible.18

This de�nition identi�es a set of candidates for a steady state equilibrium, which we will

later winnow down by requiring that in�ows equal out�ows.

We can now establish several useful properties of the agents' strategies and payo�s. First,

we'll establish that agents follow cuto� strategies:

16We'll relax this assumption in numerical simulations in Appendix 1.6.1.

17Note that, if φw = φm, we can de�ne a new trait x′ = φ(x) and �nd a distribution H such that
F (φ−1(x′)) = H(x′). Thus, when we assume symmetric payo�s it will su�ce to consider φ(x) = x. However,
when we make distributional assumptions we must note that they will change when types are mapped back
into the original distribution.

18Also assume agents reject ex-post matches when indi�erent and accept ex-post matches they strictly
prefer to continued search when they believe the probability of beign accepted is zero.
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Lemma 1 In a BPPE each agent x accepts all draws above some cuto� q
x
ex-post and rejects

all draws below. Each agent x accepts all draws with expected discounted match quality above

a cuto� ex-ante and rejects all draws below. Each agent accepts a strictly positive measure

of ex-post matches in equilibrium.

Proof. After true type is revealed, an agent chooses between a continuation value indepen-

dent of current draw and the value of the draw. Accepting is costless, so they must accept if

the utility of the draw exceeds the continuation value and reject otherwise. Before true type

is revealed, agents choose between a continuation value independent of the current report

and the expected discounted match quality associated with that report.

Accepting a zero measure of dates or matches yields a continuation value of zero. Ac-

cepting any agent yields a strictly positive payo� ex-post, thus agents must have a cuto�

below the maximal type on the other side.

Let Uw(q|q̂) denote woman q′s expected discounted lifetime utility when reporting q̂.

qwE(q|q̂) ≡ Uw(q|q̂)/ψw(q) is then the expected discounted match quality. Given symmetric

de�nitions for men, we can easily show that higher type agents get matches of weakly better

discounted quality (and thus higher utility) and that agents with higher quality matches

must have weakly higher types:

Lemma 2 If an agent is of type x > x′, qjE(x|q̂x) ≥ qjE(x′|q̂x′). If qjE(x|q̂x) > qjE(x′|q̂x′),

x > x′.

Proof. Given Lemma 1, any agent that will accept x' ex-post must accept x and x can

always mimic the x' strategy. Thus an x agent can always obtain at least as high expected

match quality as an x' agent.

We will make one of two assumptions about the rate of draws agents face. Speci�cally,

we'll assume they face linear returns to matching (LRM) in the main body of the paper, and

consider the case of constant returns to matching (CRM)

19 in Appendix 1.6.2.

19Note that LRM is sometimes referred to as a quadratic search technology, owing to the quadratic nature
of the total number of draws in the market as a function of the number of agents, and CRM is sometimes
referred to as a linear search technology based on the linear rate of total draws in the market as a function
of the total number of agents.
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• Assumption 2A (LRM) : Agents receive a rate of draws α proportional to the mass

of agents on the platform, normalized to N .

• Assumption 2B (CRM) : Agents receive a constant rate of draws α, normalized to

1.

Linear returns to matching means that the frequency of draws is proportional to the mass

of agents on the platform and that thick markets make search faster. Most past work on

search with NTU has focused on the constant returns to matching environment, and this

may be more appropriate for traditional forms of partner search where �nding potential

matches is time consuming and these frictions put an upper bound on the number of draws

an agent can consider, regardless of the size of the market. However, on an online dating

platform, we'll argue that linear returns may be more realistic. With easy search, �ltering,

and detailed information available with a single click, it's plausible that more agents on the

platform means more draws, since one may quickly exhaust a small list of potential matches

by paring it down to a handful of likely matches.

In fact, the linear returns environment is signi�cantly more tractable than the constant

returns one: since there are no per-draw costs in this model, having to eliminate more agents

outside of your acceptance region imposes no cost, and thus changes in the mass of agents

outside your class has no e�ect on your optimization problem. This can be motivated by the

nearly costless �ltering out of undesired matches that may be achieved on a search platform.

With CRM, by contrast, more agents in other classes means it will take longer to get a draw

from your class, making behavior in each class dependent on behavior in every other class.

De�ne λ ≡ Pr[match|q, q̂] and γ ≡ Pr[date|q, q̂]. Given that the continuation value of a

woman of type q reporting q̂ (and the case for men is symmetric) is their lifetime expected

utility, Uw(q|q̂), and is also equal to the ex-post cuto� draw qwl(q, q̂), the dynamic program

for this environment gives us the following optimization condition ex-post for a small time

period dt:

Uw(q|q̂) =
Uw(q|q̂)(1− λαdt) + λαdtE[φw(q′)ψw(q)|q, q̂,match]− γαdtψw(q)c

(1 + rdt)
(1.3.1)
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Where c does not appear on the left-hand side (LHS) because the per-date cost has

already been paid when the ex-post match decision is being made. Taking the limit as

dt→ 0, we have

Uw(q|q̂) =
(αλE[φw(q′)|q, q̂,match]− αγc)ψw(q)

λα + r
(1.3.2)

and applying the equality between continuation and cuto� acceptance utility,

φw(qwl(q, q̂))ψw(q) =
(αλE[φw(q′)|q, q̂,match]− αγc)ψw(q)

λα + r
(1.3.3)

Notice that this speci�cation for the cuto� means that the way one's own type enters

the utility function doesn't a�ect agent behavior, and thus only matters when one considers

welfare or adds prices to the model.

Because the continuation value is the same for both the ex-post and ex-ante decisions,

but ex-ante the per-date cost is not sunk, the ex-ante cuto� is simply φ−1
w (φw(qwl(q, q̂)) + c)

if type is certain or expected discounted match quality equal to the same.

Lemma 3 Ex-post cuto�s and optimal strategies are independent of ψj.

Proof. Direct inspection of 1.3.3.

1.3.2 The Set of Equilibria

Ex-Post matching structure

We can now analyze ex-post matching behavior. While the structure of reporting can be

quite complex, ex-post matching behavior is simple and highly consistent with previous

research on NTU search models with observable types. In particular, Proposition 1 shows

that agents will partition themselves into classes in equilibrium. First, we'll formally de�ne

the terminology:

De�nition 2 We'll call an interval of types a class if every agent with a type in that class

accepts any type from that interval ex-post and only forms ex-post matches with types within

the class. De�ne the lower bound of a class n on side j qj(n).
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Note that this is a condition on the second stage where type has been revealed. Agents in a

given class may reject agents within their class ex-ante, and accept dates from agents outside

their class depending on the reporting structure.

Proposition 1 The distribution of agents on each side is partitioned by intervals (or classes)

of agents where, for each class n, men(women) in class n will accept any woman(man) in

their corresponding class n ex-post, will reject any woman(man) below class n, and will be

rejected by any woman(man) above class n.

Proof. Consider a qm man. qm men are accepted by every woman ex-post and must accept

women above a cuto� strictly below qw by Lemma 1. Thus, there is a nontrivial interval

over which every qm man accepts matches ex-post. Denote the lower bound qw(1) for the

highest type man's cuto� type (in the distribution of women) and qm(1) for women. Then

by Lemmas 1 and 2, every agent must accept this interval ex-post as they have lower types.

Since women will accept men above qm(1) ex-post, a man above that type can mimic any

man's strategy. Thus, every man above qm(1) will get the same payo� in expectation and

thus the same cuto� qw(1). We'll call the interval of women (qw(1), qw] class 1 of side w and

denote the nth class class n. A symmetric analysis yields (qm(1), qm], class 1 of side m. We

can proceed inductively from here. Given that every woman above qw(n) rejects any man at

or below qm(n), qm(n) type agents face a problem analogous to qm men, and accept every

woman in an interval whose lower limit is de�ned as qw(n + 1). Similarly, every lower type

man accepts all women in (qw(n+1), qw(n)]. Thus every woman in class n+1 is accepted by

the same set of men and must have the same payo� in expectation and thus the same cuto�

qm(n + 1). A symmetric analysis shows that every man in (qm(n + 1), qm(n)] only accepts

women above qw(n+ 1).

Figure 1.3.1 shows the class structure of an equilibrium. Agents in each class only match

to agents in the same class on the opposite side. An agent in class 3, for example will accept

anyone in a classes 1, 2, or 3 ex-post, and will be rejected ex-post by every agent in classes 1

and 2. Note that the length of classes can vary based on density and the class cuto�s need

not be symmetric if the distributions are not. This class structure ensures that agents in
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Figure 1.3.1: The class structure of an equilibrium.
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Figure 1.3.2: This diagram shows inter-class pooling, as in Proposition 2.

each class must have a higher payo� than agents receive in any lower class.

Lemma 4 Suppose type q is in class m and type q′ is in class n. If m>n, qjE(q) > qjE(q′).

Proof. Suppose not. Then the q and q′ agents receive the same payo� and thus must have

the same ex-post cuto�. But then they are in the same class. Contradiction.

Reporting Structure

We can now address the reporting stage of the game. While the ex-post class structure

was simple, there are a wide range of possible reporting structures, including pooling over

multiple classes. Because of the bilateral nature of the signaling, it's important to note the

possibility of asymmetric reporting where, for example, every woman pools and every man

reports their class. The redundancy of the two sided reporting and acceptance decisions

means that, so long as one side reports their class and accepts everyone ex-ante, the other

side can simply accept only the the class they will match to ex-post.

De�nition 3 On a given side, we'll call an interval a contiguous pool if there is a report q̂

such that, for every type in the interval, some agent of that type reports q̂ or another report
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that is accepted by the same set of agents ex-ante.

Pools, then, are de�ned based on reporting and the ex-ante dating stage. This is in contrast

to classes, which are de�ned based on ex-post acceptance decisions. The following proposition

shows that, for any any contiguous set of classes n through n+k, an equilibrium exists where

all agents in each of these classes pool on a single report q̂. That is, any pooling structure

that nests contiguous sets of classes within pools can be supported in equilibrium. Figure

1.3.2 shows an example with two classes pooling on a single report: all agents in classes 1

and 2 make the same report q̂. Note that the cuto�s for these classes are endogenous in the

reporting structure.

Proposition 2 Any contiguous pool (qj(n+ k), qj(n− 1)] can be supported in a BPPE.

Proof. Suppose that, for each side j, all agents in classes n through n+ k pool on a single

report q̂j, no agent outside (qj(n+k), qj(n−1)] reports q̂j and every agent rejects any report

made only by agents outside of their class. Then if a pooling agent makes any report other

than q̂j they will never receive a match, yielding a non-positive payo�. Thus there is no

pro�table deviation for pooling agents. If each other class i forms a pool where all agents

report q̂ij, this is an equilibrium, so a BPPE exists.

We will now provide a lemma that establishes the range of characteristics pools can have

in equilibrium. In particular, it shows that pool cuto�s can coincide with class cuto�s as

above or appear within classes, with the possibility of multiple pools within a class and

mutual rejection by agents within the same class but in di�erent pools, even though they

would like to match ex-post.

Lemma 5 For any contiguous pool in a BPPE, on at least one side of the market, one of

the following holds for the lower(upper) bound of the pool:

i) The lower(upper) bound is also the lower(upper) cuto� of the lowest(highest) class with

reports in the pool.

ii) the non-endogenous pool cuto� induces indi�erence between reporting within the pool

and giving any report given by agents in the lowest(highest) pooling class but outside the pool.

Proof. Without loss of generality, consider the lower bound case. Suppose i) and ii) are vio-

lated and the pool is consistent with equilibrium. Then there is a report made in equilibrium
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by an agent in the lowest pooling class with a di�erent payo� than some other report made

by an agent outside pool but in the class. Then agents in that class have a strict incentive

to give the higher payo� report and the assumed reporting is not optimal. Contradiction.

The above lemma could be presented more tersely by giving a more general form of ii., but

this formulation provides more intuition about the range of possible reporting strategies. It

suggests several di�erent sorts of equilibria, and we will describe examples for both cases. If

reports satisfy i) for both bounds, classes are nested within pools and agents can't pro�tably

leave the pool by reporting above, where they'll get rejected, or reporting below, where they'll

get a lower payo�. If reports satisfy ii) for both bounds, agents will reject one another ex-ante

even though they are in the same class. For example, suppose a report q̂m is made by some

men in class n and some outside of it, and q̂w is made by some women in class n and some

outside. If men reporting q̂m always reject women reporting q̂w and vice versa, deviating to

accepting may yield a costly date with no match and will never yield a match, so it is strictly

better to reject. This can be supported if the payo� for each report on a given side in class

n is equal, e.g. half of n men of each type in the class report q̂m1 and only accept q̂w1 and

the other half report q̂m2 and only accept q̂w2 , and women behave symmetrically. Note that

reports need not satisfy the same case for both the top and the bottom bounds� the upper

bound could satisfy i) while the lower bound satis�es ii)

This can analysis can trivially be extended to pools that are discontiguous but can be

represented as a �nite union of contiguous pools. In fact, we can quite easily �nd equilibria

where, for example, classes 1 and 3 pool on a single report despite rejecting one another

ex-post while class 2 agents make a report that uniquely identi�es their class.

Corollary 1 Suppose the support of a pool can be expressed as the union of a �nite set of

intervals. Then each interval must satisfy Lemma 5.

Thus we see that the structure of reporting can be highly non-monotonic, and agents within

a given class can even reject each other ex-ante. However, the underlying ex-post matching

structure retains the coarsely assortative class structure found in previous research in this

environment with observable types.
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The Limited Pooling Equilibrium

Having established some characteristics of the set of possible equilibria, we will now introduce

the equilibrium20 of interest for the remainder of this paper. Unlike many other equilibria

in this environment, this equilibrium looks very similar to those found in Macnamara and

Collins (1990) and Burdett and Coles (1997), with agents only dating within their class. The

primary di�erence from equilibria with observable types is that there is a region between

the ex-ante and ex-post (class) cuto�s for each class that, with observable types, would be

rejected by the agents in the class. However, since per-date costs induce a lower ex-post

cuto�, agents in this interval can pool with those above them and get accepted due to the

laxer ex-post standards.

De�nition 4 (Limited Pooling Partial Equilibrium (LPPE)) We'll call a BPPE an LPPE

if each agent makes a report only made by agents in their class and accepts every report

made by agents in their class.21

We can now easily characterize the equilibrium pooling structure and the relationship

between the ex-ante and ex-post acceptance decisions:

Lemma 6 (1) In any LPPE, agents between the ex-ante and ex-post cuto�s must pool with

agents above the ex-ante cuto� such that the expected quality of that report exceeds the ex-ante

cuto�.

(2) In any LPPE, agents will always accept after a date.

Proof. Consider an agentm(w) in class n. Suppose a report q̂ is never made by women(men)

above the ex-ante cuto� in class n. Then m(w)'s continuation value is higher than the

expected payo� of dating and matching to the q̂ woman(man) and he must reject. Thus

women(men) below the ex-ante cuto� must pool with agents above it to gain acceptance in

their class. It is immediate that any agent with a type below the ex-ante cuto� must pool

20Formally, a set of equilibria with reporting strategies that lead to equivalent payo�s for all agents.

21Note that there is a larger set of equivalent equilibria where every agent accepts every agent in their class
ex-ante and only goes on dates with agents in their class, but where, for example, men make informative
reports and accept all matches and women make uninformative reports and are selective. It is without loss
to consider the special case of De�nition 4.
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Figure 1.3.3: The pooling structure of an LPPE.

with an agent of a type above the ex-ante cuto� for the average quality of an agent in that

pool to exceed the ex-ante cuto�. Finally, since agents only accept dates within their class,

they always accept a match after a date.

Figure 1.3.3 shows the pooling structure of an LPPE. For women(men) in each class,

agents the region from qw(n)+c to qw(n) are below the ex-ante class cuto� but above the

ex-post class cuto�, and thus will be rejected ex-ante if they reveal their true type, but will

be accepted ex-post. Thus, they must pool with agents above the ex-ante cuto� (classes will

always have length greater than c, so this is always possible). Note that, in this example,

q
w
> qw(4) + c, so the fourth class ends before the ex-ante cuto�. While the �rst J-1 classes

must end with the class's endogenous ex-post cuto�, the last class J may end with the lower

limit of the support of G, which may be above qw(J) or even above qw(J) + c.

Lemma 6 shows that agents between the two cuto�s must pool in order to maximize

their payo�s. Comparing an LPPE to the larger set of equilibria, we see two primary ways

other equilibria di�er: we can �nd equilibria where multiple classes pool reports and we have

between-class date acceptance, and we can �nd equilibria where agents in a given class reject
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dates with others within that class due to coordination failures.

The lack of a complex reporting structure independent of ex-post classes make LPPE

very tractable, and thus very attractive. There are reasons beyond convenience to focus

on LPPE, though. Given linear returns to matching (LRM) and a steady-state assumption

these equilibria must exhibit the �nest class partition in the set of steady-state equilibria in

terms of the number of classes.22

Additionally, in any other equilibrium some agents must pool and accept dates they will

later reject, or reject dates they'd like to accept. This means that every such agent would

strictly prefer to leave the pool and report their true class, and they are only prevented

from doing so by the absence of messages that can reveal their class.23 In particular, any

man(woman) who goes on dates outside their class or rejects dates inside their class would

prefer to unilaterally reveal their true class and commit to accepting agents in their class

ex-post, since this would allow them to match to every good draw and to reject every bad

date. This does not imply a simple equilibrium dominance argument, unfortunately�everyone

switching to truthful reporting of class creates higher expected payo�s, which induces higher

class cuto�s. Thus, agents between the old and new cuto�s could be made worse o� by being

bumped from class n to class n+ 1.

However, given LRM, consider a non-LPPE equilibrium. There must be some class

where men(women) reject dates within the class or accept dates outside the class. For the

�rst such class, n, class n men(women) who would remain in the class under the limited

pooling class cuto� would all strictly prefer to form a coalition and report their true class, if

that were possible. Importantly, if they did, no man(woman) outside their class would have

an incentive to re-pool with their new report, since they would simply be rejected ex-post,

and any coalition attempting to repool would necessarily include agents who would be worse

o� under the coalitional deviation. Thus, non-LPPE seem fragile in the sense that all agents

will deviate from the multi-class pools that de�ne them if they can �nd a way to report their

22Depending on the parameterization, there may be other equilibria with the same number of classes, but
none will have fewer.

23We'll proceed informally here. Formally modeling this game with coalitions, repeated reports, and
deviations that induce o� equilibrium path beliefs and play outside of steady-state would be intractable.
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true type, and when agents deviate from these pools there is no incentive for the agents in

their former pool to unilaterally follow them to a new report.

Could this same argument also exclude the LPPE, where pooling also occurs? We'll

provide a heuristic argument to the contrary. In an LPPE, high type agents in a class would

like to reveal their true types and thus escape pooling with agents between the ex-ante and

ex-post cuto�s. However, all of these low type agents strictly prefer to pool with higher type

agents in the class. If we assume that agents can change reports at intervals and coalitional

deviations are signi�cantly more costly than unilateral deviations due to coordination costs,

we'd expect to generally see pooling as in the LPPE since it will be too costly for high types

to repeatedly coordinate on new reports only to have low types unilaterally follow them.

The �nest partition and equilibrium preference arguments are formalized in Section 1.3.3.

We can now write down the explicit form of the agents optimization problem. We'll

focus on the case where the distributions of men and women and their utility functions are

symmetric for tractability. De�ne the number of classes as J, the proportion of agents in

class n λn ≡ G(q(n− 1))−G(q(n)), and de�ne ql and qu as the lower and upper cuto�s for

a class, respectively. Given that agents accept any agent in their class and reject all others

ex-ante, every date results in a match and the probability of accepting a draw is λn. Then

equation 1.3.3 can be rewritten as

ql =
αλ

λα + r

∫ qu

ql

(x− c)g(x)

λ
dx (1.3.4)

Rearranging and applying integration by parts, we have:

ql =
α

r
(

∫ qu

ql

G(qu)−G(x)dx− λc) (1.3.5)

We can now characterize the class structure explicitly:

Proposition 3 Given G, a LPPE implies sequence of cuto�s for men and women {q(n)}Jn=0

satisfying q(n) = α
r
(
∫ q(n−1)

q(n)
G(q(n− 1))−G(x)dx− λnc), where q(0) = q, and q(J) <= q.

Proof. The �rst and third claims follow directly from Proposition 1 and equation 1.3.5, and

if the fourth were not true there would be another class J + 1.
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It also follows that agents accepting measure zero masses of agents outside their class

or rejecting measure zero masses of agents inside their class generates the same cuto�s and

payo�s.

1.3.3 Steady State in the Limited Pooling Equilibrium.

Linear Returns to Matching

The linear returns to matching equilibrium analysis closely follows Burdett and Coles (1997).

Some proofs go through nearly unchanged, but others must be amended to account for per-

date costs and the di�ering assumptions on returns to matching. De�ne the distribution

of agents leaving the platform as H(q) and the mass of agents leaving the platform by O.

We can now de�ne our complete equilibrium concept by combining the partial equilibrium

of the LPPE, which ensures all behavior and beliefs are rational and assumes steady-state,

with a balanced �ow condition that ensures steady-state holds by equating the endogenous

out�ows with the exogenous in�ows, closing the model.

De�nition 5 (LPPE Steady-State Equilibrium (LSSE)): given exogenous in�ows (F ), a

steady state equilibrium is pair (G,N) satisfying LPPE and balanced �ow: for every interval

[q1, q2) ∈ [q, q], O(H(q2)−H(q1)) = F (q2)− F (q1).

The cuto� equation is now

q(n) =
N

r
(

∫ q(n−1)

q(n)

G(q(n− 1))−G(x)dx− λnc) (1.3.6)

Within a given class, we can get a simple characterization of out�ow. Out�ow in a class

is given by the number of agents on the platform, N, times the proportion of agents in the

class, λn, times the rate of draws of an agent in that class Nλn. Then out�ow from class n

is λ2
nN

2. Then, in an LSSE,

λn =
√

(F (q(n− 1))− F (q(n)))/N (1.3.7)

We also have that, for any [q1, q2) in class n, λn(G(q2)−G(q1))N2 = F (q2)− F (q1) and

thus, with the di�erentiability of F,
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g(q) =
f(q)

λnN2
(1.3.8)

Thus the density of agents on the platform in a given class is in�ow density times a scalar.

Combining (1.3.6) and balanced �ow, we can get eliminate G terms, yielding class cuto�s

solely in terms of in�ows and c.

q(n) =
1

r
(

∫ q(n−1)

q(n)

F (q(n− 1))− F (x)

F (q(n− 1))− F (q(n))
dx− c)

√
(F (q(n− 1))− F (q(n))) (1.3.9)

Note that in the linear returns environment, the N 's cancel out, and we have cuto�s

that depend on the previous cuto�. We can now explicitly characterize the LSSE in this

environment:

Proposition 4 Given F, then (G,N) de�nes a LSSE if and only if G satis�es (1.3.8) and

λn satis�es (1.3.6), (1.3.7), q(0) = q, q(J) ≤ q, and
∑

n λn = 1.

Proof.
∑

n λn = 1, the boundary conditions, and (1.3.6)-(1.3.8) are necessary in an LSSE by

construction. Conversely, the assumptions guarantee G(q) = 1, G(q) = 0 and G increasing,

so G is a well de�ned steady state distribution and any G and N satisfying them form a

valid LSSE.

Thus, equilibrium requires that each class cuto� is the solution to the agents' optimal

stopping problem and the density on the platform is consistent with balanced �ow.
∑

n λn =

1 ensures that g is well de�ned.

To ensure existence of an LSSE, we'll need to make some distributional assumptions. An

increasing hazard function will ensure that the class structure is unique. Note that, while

Burdett and Coles need this assumption to deal with a multiplicity of cuto�s due to N ,

that channel is shut down in the linear returns environment. However, this assumption also

constrains multiplicity induced by per-date costs, so it is still necessary in this environment.

• Assumption 3 (HAZ) : The hazard function f(q)/(1− F (q)) is increasing in q.

Proposition 5 Given F , the partition satisfying (1.3.6)-(1.3.8) and the boundary conditions

is unique.
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Proof. See Appendix 1.6.2.

The intuition for this proposition is that the RHS of (1.3.9) is decreasing in q(n), while

the LHS q(n) is obviously increasing, yielding a single crossing. The RHS can be interpreted

as the expected surplus quality of an accepted match over the cuto� quality, multiplied by

the probability of acceptance. Generally, we'd expect this to be decreasing in cuto� type

q(n), since a higher cuto� lowers the surplus over cuto� for any given draw, and, were G

exogenous, a higher cuto� would lower the probability of accepting a draw. However, due to

the endogenous nature of G, it's possible for the density to rise as q(n) increases, swamping

the aforementioned e�ects. The hazard rate assumption ensures that the density can't rise

too fast, excluding this possibility.

In this environment, existence and uniqueness of the equilibrium follow directly. The

class cuto�s are unique and these cuto�s imply a unique steady-state mass on the platform,

N . This in turn ensures a unique density g(q) = f(q)√
(F (q(n−1))−F (q(n)))N

and thus a unique

distribution on the platform G.

Proposition 6 A unique LSSE exists.

Proof. The class summation condition and (1.3.7) yield

N =
∑
n

√
(F (q(n− 1))− F (q(n))) (1.3.10)

and N does not enter the cuto� equation so q(n) is not a function of N and uniqueness is

ensured. Existence is similarly direct.

We can also show that the cuto�s are decreasing in c�that is, increasing per-date costs

generally makes classes coarser, and for su�ciently high c the class structure completely

unravels as every man(woman) accepts every woman(man) due to the high costs of continuing

their search and paying the per-date cost again.

Proposition 7 Given LRM, q(n) is decreasing and continuous in c in an LSSE for all n

and q(n)→ 0 for c su�ciently high.

Proof. Suppose c increases. Consider the �rst endogenous cuto�, q(1). The RHS of (1.3.9)

is decreasing in c, and the RHS is decreasing in q(1) by Lemma 11, so the lower RHS from c
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must be compensated with a lower q(1) for equality to hold. We can now proceed inductively.

Suppose q(n−1) is decreasing in c. Lemma 11 also shows that the RHS increasing in q(n−1),

so to maintain equality, q(n) must increase in q(n − 1). Additionally the argument in the

base case ensures that, �xing q(n − 1), q(n) is decreasing in c. Thus, q(n) is increasing in

the argument that decreases, q(n−1), and decreasing in the argument that increases, c, and

must decrease on net. Direct inspection shows continuity given the continuity of F . Lemma

11 shows that, for su�ciently high per-date costs, the RHS goes to zero and thus the cuto�

goes to zero.

The intuition for this result is that per-date costs lower expected match utility, and in the

optimal stopping problem cuto� utility must be equal to expected match utility, so higher

per-date costs should yield lower cuto�s.

We're now ready to formalize the justi�cations for our equilibrium selection. Lemma

7 shows that LPPE classes with the same upper bound generate higher payo�s for agents

within the class and thus that the classes are smaller. Lemma 8 shows that the top agents

in a pool prefer revealing their class and matching to one another to remaining in the pool.

Corollary 2 shows that an LPPE induces the �nest partition of the type-space in terms of

classes. Recall that q(n− 1) is the upper bound of a class n and de�ne q(LPPE, q(n− 1))

as the cuto� induced by q(n− 1) if everyone in the class accepts one another ex-ante and no

one else, as in an LPPE and nLPPE as the corresponding class starting at q(n− 1) with no

cross-class pooling or within-class rejection and where balanced �ow is satis�ed. Also de�ne

nLPPE,q(n) as the class with upper bound q(n − 1), lower bound q(n), limited pooling and

balanced �ow and de�ne q(LPPE, n) as the nth cuto� given an LPPE. De�ne Mn as the

mass of agents in class n.

Lemma 7 Given LRM, a class n starting at q(n− 1) where the probability of an agent in n

accepting a date outside the class or rejecting a date inside the class is strictly positive must

have a cuto� q(n) <q(LPPE, q(n− 1)). Additionally, q(n) < q(LPPE, n).

Proof. See Appendix 1.6.2.

Lemma 8 Given LRM, consider an equilibrium where the probability of an agent in a class
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n accepting a date outside the class or rejecting a date inside the class is strictly posi-

tive. Further, de�ne n as the �rst class where this is true. Then agents in class n above

q(LPPE, q(n − 1)) all strictly prefer an equilibrium with class nLPPE to the one with class

n, and if they could coordinate to reveal their true class and accept only others in their class,

no agent outside their class would have an incentive to pool with them.

Proof. A class with a lower cuto� of q(n) must have an expected match quality qE(n) = q(n)

and one with q(LPPE, q(n− 1)) must have qE(nLPPE) = q(LPPE, q(n− 1)). By Lemma 7,

q(n) < q(LPPE, q(n−1)), so agents must prefer the nLPPE. Additionally, any agent outside

the class that pools with them will be rejected ex-post, and thus has no incentive to pool.

Corollary 2 In any LSSE with LRM, the nth class cuto� is maximal in the set of steady-

state equilibria, and the number of classes is also maximal.

Proof. By Lemma 7, q(n) < q(LPPE, n) and if q(k) exceeds the lower bound of the

distribution, q(LPPE, k) must as well.

1.4 Strategic Platforms

1.4.1 Per-Date Costs as Frictions

Monopolist Platform

Up until now, we've taken per-date costs as given, but a strategic platform such as a social

planner or pro�t maximizing monopolist may be able to in�uence them, either by increasing

them via per-date pricing, or decreasing them by providing easy ways for agents to com-

municate and verify type (e.g. video chat) or verifying certain aspects of an agent's report.

We'll �rst consider the frictional case with a monopolist platform. Speci�cally, we'll consider

a platform that charges a �xed fee for both sides of the market, can provide its service cost-

lessly, faces an exogenous per-date friction c, and can decrease the per-date cost to c at a

cost τ(c), where τ(c) = 0 and τ is strictly decreasing in c. Thus the �rm will charge a �xed

fee p and every agent above a cuto� q(p, c) will join the platform, yielding pro�t �ow rate

Πfric(p, c) ≡ p(F (q) − F (q(p, c))) − τ(c), and p will equal the expected payo� of the lowest
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joining agent. Formally, amend the game to include a �rst stage where the platform chooses

p and c and consider the equilibrium where the maximal mass of agents join the platform.

As before, agents have an outside option of zero24. De�ne qn(c) as the nth endogenous cuto�

given c. De�ne p∗(c) as the optimal price given a per-date cost c. Then it will generally be

optimal for the platform to set a price such that the lowest type joining the platform is also

the cuto� type for the last class joining the platform. Speci�cally,

Lemma 9 Suppose LRM and c su�ciently high. Either:

i) a positive c is optimal for the monopolist platform, or

ii) choosing a price that yields a cuto� q(p, c) that does not coincide with the lowest

joining class' endogenous cuto� is suboptimal for the platform if q(p, c) < q1(0).

Proof. Suppose the optimal contract yields a cuto� q(p, c) such that q(p, c) > q1(c) and

q(p, c) < q1(0). Then a positive c is optimal. Now suppose the platform induces an individual

rationality (IR) cuto� q(p, c) < q1(c), and q(p, c) 6= qn(c) for any n. For su�ciently high c,

there must be a c′ such that c ≥ c′ > c and q(p, c) = q1(c′) since q1 is continuous, decreasing

in c, and goes to zero as c increases. Note that the cuto� type is equal to discounted

expected utility. Thus, any class with the same lower cuto� yields the same expected match

quality for agents in that class. Then if the �rm chooses c′ and a p′ to induce the same

cuto�, the quantity of agents on the platform is identical, but the cuto� agent is willing to

pay φ(q(p, c))ψ(q(p, c)), while under the original regime the cuto� agent is willing to pay

φ(qn(c))ψ(q(p, c)). q(p, c) > qn(c) implies p′ > p, and since cuto�s are decreasing in c,

τ(c′) < τ(c). Thus the �rm will increase pro�t by inducing q(p′, c′) = q1(c′).

We can use this to result to show that the platform generally will not have an incentive

to lower per-date costs to zero:

24This can be relaxed throughout Section 4. For example, the outside option can easily be re-speci�ed
as a time discounted random draw from the distribution of agents o� the platform (large platform) or the
overall distribution of agents in the market (small platform). Assuming that the search technology (draw
rate) o� platform is su�ciently slow, agents will optimally accept any draw o� platform, rationalizing these
speci�cations. All the results of Section 4 go through with these endogenous outside options, though the
�rm's optimal prices will change. If the search technology o� platform isn't slow, high types may have better
outside options than low types, limiting the extent to which a platform can pro�tably raise per-date prices
or allow per-date frictions. Generally, the greater the e�ciency advantage of the platform relative to the
outside option, the more �exibility the platform will have to support high per-date costs and manipulate
user behavior.
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Proposition 8 Suppose LRM. If c is su�ciently high and q(p∗(0), 0) < q1(0), the monopolist

platform never has an incentive to lower per-date costs to zero.

Proof. q(p∗(0), 0) < q1(0), so since q(1, c) → 0 as c increases and q(1,c) is continuous

in c, the intermediate value theorem (IVT) ensures that there will be a c∗ > 0 such that

q(1, c∗) = q(p∗(0), 0), p∗(c∗) ≥ p∗(0), and τ(c∗) < τ(0). Thus pro�t will be higher with a

per-date cost c∗ than with a zero per-date cost.

Thus, even when per-date costs are frictions, a monopolist platform can pro�tably with-

hold higher e�ciency search technologies, even when the cost of implementing such tech-

nologies is minimal. Lemma 9 shows that inducing endogenous class cuto�s equal to the IR

cuto� is typically optimal, since that is the highest class cuto� that indi�erent agent can

have and the higher a cuto� is, the higher the utility agents in the class receive due to the

equality of the cuto� and the continuation value. Then, given that prices and per-date costs

are chosen to induce this coincidence between the platform and last class cuto�, higher per

date costs have a direct e�ect of decreasing total surplus via e�ort spent on dates, but at the

same time transfer surplus from high types to low types. Generally, the net e�ect of these

countervailing forces would be ambiguous, but because the cuto� is held constant they must

cancel out exactly, again due to the equality between cuto�s and continuation values. Thus,

in terms of revenue, the platform is indi�erent between any per-date costs that induce the

appropriate cuto�, and strictly prefers higher per-date costs in terms of its own cost τ .

Social Planner

We can now consider analogous social planner's problem. Here, it is much less likely that it

will be e�cient to have positive per-date frictions. However, as was mentioned before and

will be elaborated in the next section, there are externalities that can make agents too picky,

and this can lead to ine�ciently small classes and large utility losses due to discounting�

agents spend too much time searching due to other agents' pickiness, and end up worse

o�. Also, the last class is qualitatively di�erent then the preceding J-1 classes�it may not

end at the endogenous cuto�, but rather at the bottom of the support of the distribution,

which may be above the endogenous cuto�. This can lead to tiny rump classes with very

low payo�s since there are very few agents in the class and thus the average search time is
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extremely high. In addition to directly lowering payo�s through frictions, c can thus speed

up matching and change the size of this last rump class, potentially avoiding ine�ciently

sized �nal classes. Note that the �ow of total surplus can be expressed as

TS ≡
J∑
n=1

qjE(n)

∫ q(n−1)

q(n)

ψ(q)f(q)dq (1.4.1)

That is, for each class n, the rate of total surplus generation is the expected match utility

for each agent integrated over the distribution of in�ow in class n, where expected match

quality for the class qjE(n) is constant across agents and can be pulled out of the integral.

Total surplus is the sum over these classes. For ease of exposition, suppose for now that

ψ(q) = 1. As shown in Appendix 1.6.2, we can express ∂TS
∂c

as the sum of the e�ects of the

change in each class cuto� ∂q(n)
∂c

on the surpluses generated in the classes above and below

it. In particular, the net e�ect of a change in cuto� q(n) is proportional to

F (q(n− 1))− F (q(n))− f(q(n)) · (q(n)− q(n+ 1)) (1.4.2)

as shown in Figure 1.4.1. If F (q(n−1))−F (q(n)) > f(q(n))·(q(n)−q(n+1)) for all n (with a

caveat for the last class discussed in the Appendix), TS decreases in c, and if the inequality

is reversed the opposite holds. While the condition itself is simple, the class cuto�s are

determined by a highly non-homogeneous recurrence relation, so �nding conditions for either

case is quite di�cult in general. Below, we treat the case when utility is highly supermodular,

which ensures Equation 1.4.2 is positive because the trade-o� is between utility for class n,

F (q(n−1))−F (q(n)), and utility for class n+1, f(q(n)) ·(q(n)−q(n+1)). Supermodularity

ensures that higher classes generate more surplus since they are populated by higher type

agents, so for su�cient supermodularity the e�ect on class n dominates the e�ect on class

n-1.

Proposition 9 Suppose LRM,ψ(q) = qα, and τ(c) = 0. If α is su�ciently high, total

surplus is decreasing in c.

Proof. See Appendix 1.6.2.
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Figure 1.4.1: The trade-o� induced by q(2) shifting due to an increase in c.

Class 2 surplus decreases proportionally to its mass (in green) due to the class cuto� q(2) shifting
down and thus lowering expected match quality, which is equal to the class cuto�. Lowering q(2)
also bumps top class 3 agents up to class 2. The surplus increase induced by this is proportional to

the change in payo� q(2)−q(3) (red) multiplied by the density of agents at the cuto� f(q(2)) (blue).
Geometrically, this is the blue rectangle in Class 3. If the former decrease (green area) exceeds the

latter increase (blue area) for each class, increasing c will lower total surplus.

In the Appendix 1.6.2 we run numerical simulations for the modular utility case, and

�nd that increasing c typically decreases total surplus, and must decrease it above a certain

point (if c gets su�ciently high no one can get positive utility from joining the platform).

The primary reason for this is that lower type classes tend to be smaller, since agents choose

their reservation types based on a trade-o� between quality and discounting, which causes

a proportional decrease in match utility. Thus, agents who get high expected payo�s must

be less selective, as waiting is more costly for them. Since ∂TS
∂c

is negative when the surplus

loss for higher classes of shifting a cuto� down outweighs the gain to lower classes, lower

classes having less mass and thus generating less surplus makes ∂TS
∂c
< 0 likely. Equivalently,

the direct e�ect of decreasing surplus due to frictions overwhelms any e�ciency gains due to

lower selectivity. However, at some values of c ∂TS
∂c

can be increasing, due to the e�ect of c on

time discounting and the rump class. This is especially common with decreasing distributions

that yield more mass in lower classes. Decreasing distributions also put more weight on the

rump class, creating periodicity in the surplus as the class cuto�s shift downward in c and

the rump class goes from being a large, relatively e�cient class to a small class whose size
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is limited by the support of the distribution, and then to a large class again as the last class

cuto� passes the bottom of the support of the distribution and the next class becomes the last

class. Thus, for friction reduction costs where small decreases in frictions are asymptotically

costless like τ(c) = (c̄−c)2, we can �nd cases where there is no incentive to decrease per-date

frictions even a little bit, since total surplus is locally increasing in c.

1.4.2 Additively Separable Match Utility and Per-Date Prices

Monopolist Platform

We'll now consider the case of per-date costs as prices. We'll need to restrict our attention to

the case when ψ(q) = 1 for tractability�platforms charging a per-date price proportional to

agent type is inconsistent with the unobservable types assumption of this paper. Conversely,

charging a �xed per-date price with supermodular match utility won't induce the class

structure that makes this analysis tractable�higher type agents in any potential class will

be less a�ected by the per-date cost than lower type agents in that class, and will thus have

di�erent cuto�s. We study numerical simulations for supermodular cases in Appendix 1.6.1.

First consider the case of a monopolist platform. The platform charges a �xed fee p and a per-

date price c. Consider the equilibrium where the maximal mass of agents join the platform.

Since ψ(q) = 1, social surplus is modular�the total surplus is just the sum of the match

payo�s φ(q) for each side, discounted by the expected time to match. Thus the structure of

matching has no e�ect on payo�s, only the speed of assignment matters. Of course, individual

agents bene�t from matching to high types, but their bene�t comes at a cost to other agents

who don't get high type matches. Thus, externalities generally induce agents to be selective

when matching, even though a social planner would assign every agent on the �rst draw.

Thus, increasing per-date prices improves social surplus. It is also clear that, if a monopolist

prefers positive per-date frictions, they will prefer positive per-date prices as well, which is the

basis on which Corollary 3 extends the frictional results of the last subsection to the per-date

price environment. Given pro�ts under frictions of Πfric(p, c) ≡ p(F (q)− F (q(p, c)))− τ(c),

pro�ts under prices are Πprice(p, c) ≡ (p+w(p, c)c)(F (q)−F (q(p, c))), where w is the average

of the expected discounting for each class weighted by the in�ow rate of the class.
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Corollary 3 Suppose LRM. If q(p∗(0), 0) < q1(0), the monopolist platform never has an

incentive to lower per-date prices to zero.

Proof. Note that the proofs of Lemma 9 and Proposition 8 go through with the removal of

−τ(c) in the pro�t function and the inclusion of w(p, c)c(F (q)− F (q(p, c)).

Social Planner

As discussed above, the social planner prefers agents to leave as quickly as possible to

minimize time discounting, since assignment doesn't matter. We can prove this result very

directly for constant returns to matching (CRM):

Proposition 10 Suppose CRM. If c is a price, ψ(q) = 1, f(x) is increasing or xf(x) is

increasing and c is su�ciently small, and there is more than one class when c is zero, a

positive c maximizes social surplus.

Proof. A su�ciently high c will ensure a single class, and we have multiple classes with

zero per-date costs.ψ(q) = 1, so, given the in�ow distribution F , social surplus is given by

SS = 2
∫ q
q
φ(q)f(q)E[e−rt|q]dq. This is maximized when E[e−rt|q] is maximized for all q. A

single class maximizes the exit rate, maximizing E[e−rt|q]. Thus a single class maximizes

social surplus and a positive c is necessary to induce a single class. Platforms can choose an

appropriate �xed fee (possibly negative) to satisfy agent IR constraints.

In the LRM case, it's not necessarily true that the platform will want to maximize out�ow

for every agent type. Since the mass on the platform determines the rate of draws, having

more agents on the platform can boost exit rate and thus discounted utility. If the mass

of all agents is higher, this is a second order e�ect that must be overwhelmed by increased

agent selectiveness in order to induce larger masses on the platform in the �rst place, but it is

possible that the planner would bene�t from inducing low types to reject other low types and

only match to high types. High types give a higher payo� to their match, so time discounting

is more costly for them. By contrast, a su�ciently low type agent contributes almost nothing

no total surplus. Thus, inducing low types to reject other low types and increase their mass

on the platform would allow high types to get quick matches and preserve their much more

valuable contribution to match surplus. In this environment, the platform has no means
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to induce this partially negatively assortative matching25 so inducing a single class will still

be optimal given the instruments available, but we'll need to amend the proof to take into

account the endogenous draw rate.

Proposition 11 If c is a price, ψ(q) = 1, LRM holds, and there is more than one class

when c is zero, a positive c maximizes social surplus.

Proof. A su�ciently high c will ensure a single class, and we have multiple classes with zero

per-date costs.ψ(q) = 1, so, given the in�ow distribution F , mass on the platform will be 1

by (1.3.10) and every agent will leave upon a draw, which they get at rate 1. Suppose there

is more than one class. Mass on the platform is
∑

n

√
(F (q(n− 1))− F (q(n))) by (1.3.10),

and the probability an agent in class n gets a draw they will accept is
√

(F (q(n−1))−F (q(n)))∑
n

√
(F (q(n−1))−F (q(n)))

.

Then the rate of accepted draws is
√

(F (q(n− 1))− F (q(n))) < 1 and all agents have a

longer expected wait on the platform, getting lower utility in expectation. Platforms can

choose an appropriate �xed fee (possibly negative) to satisfy agent IR constraints.

1.5 Conclusions

In this paper, we extended the NTU search literature to an environment with a cheap talk

stage and costly type veri�cation. We found that the partition or class based equilibria that

have characterized this literature extend to this environment with informational frictions,

with agents only matching to one another within their respective disjoint classes. When per-

date costs are endogenously chosen by a strategic platform, positive per-date costs may be

optimal, despite being distortionary, and, in the case of per-date frictions, having a negative

direct e�ect on surplus. A social planner can take advantage of these per-date costs by using

them to counter externalities that make agents too picky by allowing low type agents to

pool with high type agents, preventing those high type agents from ine�ciently rejecting

them. A monopolist can use per-date costs to induce e�ective transfers from high to low

types by forcing high types to match to low types, �attening the demand curve and allowing

a monopolist that charges a �xed fee to extract more surplus from consumers.

25Negatively assortative matching occurs when higher types match to lower types rather than their own
type.
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Future avenues for study include analysis of more complex contracts in this environment

to see how much pro�t the simple contracts commonly in use leave on the table, to see

how more complex contracts interact with the externalities in these markets, and to more

precisely capture the second degree price discrimination common to the menu of contracts

in these markets. This is brie�y studied in Appendix 1.6.1.

Studying an analogous model with transferable utility would be extremely useful, yielding

results more applicable to job search, where cheap talk on both sides of the market can also

be important. A two-type TU model is studied in Appendix 1.6.1, and we discuss how, under

TU with linear returns to matching, agents are generally not picky enough since spending

more time on the platform increases the mass of agents and thus increases the frequency

of draws, a bene�t agents do not internalize even with transfers known as the thick market

externality. This is in contrast to the NTU case where agents are too picky, and thus yields

opposite implications for per-date pricing, making negative per-date prices that incentivize

an agent to stay on the platform longer optimal.

Including competition would be an obvious extension of this research program, though an

even greater multiplicity of equilibria must be contended with due to the coordination issues

with multiple platforms and network e�ects. Including exogenous exit and match dissolution

would allow for more realistic modeling of matching behavior, especially on platforms that

focus on short term matching like Tinder. This is not likely to substantively change the

qualitative characteristics of the equilibrium, though.

1.6 Appendix

1.6.1 Extensions

More Complex Contracts

So far we've assumed a simple contract structure with a single �xed fee and per-date cost

motivated by the observed simplicity of contracts in this market. However, in many cases

this is not optimal. With frictions, it will generally be optimal for the monopolist to o�er

di�erent contracts based on report. We will focus on a menu of �xed fees with a constant
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per-date cost. Optimal menus of per-date costs will be highly dependent on the distribution

F, and aren't amenable to a simple analysis.

Given the IR cuto� induced by a single �xed fee contract, if it's possible to include

multiple classes above that cuto�, the original IR cuto� can be maintained with additional

higher price cuto�s for higher types, allowing more surplus extraction. Under modular

utility it's optimal to set contract intervals coinciding with endogenous class cuto�s (everyone

reporting in class n must pay pn) for reasons analogous to those in Lemma 9. If utility is

supermodular it could be possible to �nd cases where this is not true, due to higher utility

for higher types, but we'll assume one and only one contract per class, noting that, for

supermodular utility, this must be weakly worse than the optimal contract structure.

For the lowest class k, the IR binds as is standard, yielding pk = q(k)ψ(q(k)) For class

k − 1, note that lower class agents cannot deviate to higher classes due to rejection, even

if the contract is more favorable. Thus we only need to worry about deviations by higher

type agents to lower reports. The incentive compatability (IC) constraint ICk−1,k requires

q(k − 1)ψ(q(k − 1)) − pk−1≥q(k)ψ(q(k − 1)) − pk, based on the bottom agent k − 126 so

(q(k − 1) − q(k))ψ(q(k − 1)) ≥ pk−1 − pk and so on, with each following price pn−1 rising

based on the di�erence in class utilities q(n−1)−q(n) scaled by the supermodular component

ψ(q(n−1)) and with rents q(n−1)(ψ(q)−ψ(q(n−1))) accruing to class n−1 agents based on

ψ increasing in q over the class interval. This strategy maintains the same total surplus but

allows the platform to extract more from users, and is a lower bound for maximal revenue

with multiple contracts. Some rents are still left the to users if utility is supermodular.

In the modular case, however, the monopolist has full extraction and is essentially a

social planner, and thus the earlier analysis of the social planner's problem in Section 1.4

applies: increasing per-date frictions is less costly in terms of revenue than the direct e�ect

of frictions on utility would imply, just like the social planner case, and, generally, smaller τ 's

can rationalize high per-date costs than one woud expect based on the direct e�ect of frictions

(in particular, a su�cient τ would be τ(c) = c − c), especially under certain distributional

26Higher type agents in the class bene�t weakly more from higher quality matches, but pay the same price,
so if the IC is satis�ed for the lowest agent in must be satis�ed for all others. This also makes showing local
IC su�cient.
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assumptions as discussed in the frictional social planner case. Generally, however, positive

per-date frictions are undesirable. With per-date prices and modular utility, a single �xed

fee is optimal since it's optimal for the social planner. With supermodular it may still be

optimal, especially for low degrees of supermodularity, but it may not be.

Transferable Utility

While we don' treat a transferable utility model in the main body of this paper, it is of

signi�cant interest, since it may be more applicable to many job market applications, and

some prefer the TU assumption in models of dating and marriage. In this environment,

externalities resulting from socially ine�cient acceptences and rejections are eliminated by

transfers as in the Coase theorem, but externalities resulting from the e�ects acceptance and

rejection have the on mass of agents on the platform and their distribution persist. Under

LRM, there is no cost to having too many agents one does not want to match to on the

platform (the congestion externality), but there is a cost to having fewer agents one does

want to match to on the platform (the thick market externality). Thus, there is only one

externality in play: staying on the platform longer bene�ts agents who would like to match

to you and has no e�ect on agents who don't, so agents aren't picky enough because they

don't interalize the bene�ts their presence has for others. This is the opposite of the net

e�ect of externalities in the NTU case, and suggests that platforms ought to lower per-date

costs as much as is feasible.

We'll illustrate this by studying a TU version of this paper's model. Unfortunately,

transferable utility greatly complicates the analysis by making match payo�s contingent not

just on agent types but also on the endogenous outside options of each agent. However,

we can analyze a two-type analogue of the model, with high types h and low types l and

symmetric distributions. We'll focus on the match surplus function u(h, h) ≡ 1, u(h, l) ≡ β,

u(l, l) ≡ γ, 1 > β > γ. We'll say u has (weakly) supermodular payo�s if 2β ≥ 1 + γ and

assume this for the remainder of the section. Suppose an in�ow rate normalized to 1, with

the in�ow of h types f , and the proportion of h types on the platform g and a mass of agents

on the platform N . Suppose per-date costs are zero. When high types only accept high

types, gN =
√
f , (1−g)N =

√
1− f , g =

√
f√

f+
√

1−f . Expected discount is then gN
gN+r

=
√
f√
f+r

36



for high types and
√

1−f√
1−f+r

for low types. Then, given in�ow rates f and 1 − f , the rate

of surplus generated by a match is f
√
f√
f+r

1 for the high type and (1 − f)
√

1−f√
1−f+r

γ for the

low type. When all agents accept one another, g = f and N = 1. Expected discount is

then 1
1+r

for all types and the rate of surplus generated is f 1
1+r

(f + (1− f)β) for high types

and (1 − f) 1
1+r

(fβ + (1 − f)γ) for low types. Thus, separation is optimal if and only if

(1− f) 1
1+r

(fβ + (1− f)γ) + f 1
1+r

(f + (1− f)β) ≤ (1− f)
√

1−f√
1−f+r

γ + f
√
f√
f+r

.

We can now study the TU equilibrium assuming Nash Bargaining. Then, given continua-

tions values Ch and Cl, match payo�s after transfers are uh(h, l) = 1/2(β+Ch−Cl), ul(h, l) =

1/2(β + Cl − Ch), ul(l, l) = γ/2, uh(h, h) = 1/2. Suppose high types reject all low types.

Then a high type receives expected payo� and continuation value
√
f

2(
√
f+r)

, and a low type

receives γ
√

1−f
2(
√

1−f+r)
and deviation to accepting a low type yields (β +

√
f

2(
√
f+r)
− γ

√
1−f

2(
√

1−f+r)
)/2.

Then separation isn't supportable in equilibrium when

√
f

2(
√
f + r)

< (β +

√
f

2(
√
f + r)

− γ
√

1− f
2(
√

1− f + r)
)/2 (1.6.1)

However, the social planner cares about the changed utility of the low type agent who

matches to high type. Thus, the surplus for the two agents that match when the high type

deviates is
√
f

2(
√
f+r)

+ γ
√

1−f
2(
√

1−f+r)
without the deviation and β when deviating. Then surplus is

increased by deviating if and only if
√
f

2(
√
f+r)

+ γ
√

1−f
2(
√

1−f+r)
< β, equivalent to the high type's

inequality (1.6.1) . If the distribution on the platform was exogenous, this would conclude

the analysis and the TU equilibrium would maximize total surplus. However, the mass of

agents on the platform shrinks as agents become less picky, so a high type accepting low

types imposes costs on others, Computing g given that a proportion x of high types accept

low types and taking the limit as x→ 0, we �nd that a small mass x of h types deviating to

accepting all lowers expected discount by x
(
√
fr)

2(
√

1−f+r)
2 for high types and x

(
√

1−fr)
2(
√
f+r)

2 for low

types by decreasing the rate of draws. Then a high type agent accepting low types cannot

be socially e�cient unless
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√
f

2(
√
f + r)

< (β+

√
f

2(
√
f + r)

−γ
√

1− f
2(
√

1− f + r)
)/2+

r
(
−f 2

(√
f + r

)
− (f − 1)2g

(√
1− f + r

))
4
(√

1− f + r
)2 (√

f + r
)2

(1.6.2)

where
r(−f2(

√
f+r)−(f−1)2g(

√
1−f+r))

4(
√

1−f+r)
2
(
√
f+r)

2 < 0. Thus there is an interval where, under TU, high

types will accept low types despite it being socially ine�cient for them to do so�that is,

agents are not picky enough.

Non-Multiplicatively Separable Utility

Multiplicative separability of the own-type component utility is a strong assumption in this

paper. With modular utility and a constant per-date cost it is automatically satis�ed since

ψ = 1, but with supermodular utility it imposes a functional form restriction on match

surplus and requires that per-date costs be a constant multiplied by ψ, meaning per-date

costs must be higher for higher types and imposing a very strong relationship between

match utility and per-date costs. This precludes constant per-date costs, making analysis

of per-date prices with supermodular utility infeasible. Thus, we'd like to be able to say

that this assumption, while necessary for tractability, is not driving our results. To assess

this, we study a discretized analogue to our model, with �ve types (q = .2, q = .4, q =

.6, q = .8, , q = 1) rather than a continuum. We need to limit the number of types because,

without multiplicative separability, di�erent agents in any candidate class will have di�erent

optimization problems and employ di�erent cuto� strategies, precluding the discrete class

structure that made analysis tractable. Without this, we'll instead �nd LSSE equilibria by

brute force, testing every possible combination of cuto� strategies for each type for pro�table

deviations.27 We'll also �nd optimal platform strategies as in Section 1.4 by testing every

viable �rm strategy (where price is the IR of the lowest joining type) and selecting the one

that maximizes pro�t. We'll study the case where ψ(q) = qα and per-date costs are constant.

This will also allow us to look at per-date pricing when utility is supermodular. We'll use

3 di�erent distributions, a decreasing distribution (.35, .3, .2, .1, .05), the discrete uniform

27We ignore mixed strategies.
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Figure 1.6.1: Cost per-date 1

From left to right: a) increasing distribution, r = .05, α = 0, b) increasing distribution, r = .1,
α = 1.

(.2, .2, .2, .2, .2), and an increasing distribution (.05, .1, .2, .3, .35), and varying assumptions

on r to study the equilibria under di�erent conditions. For concision, we'll only report a few

of the more salient examples here. Generally, the simulations using constant per-date costs

are consistent with the results in Section 1.4 assuming per date costs of cψ(q).

In Figure 1.6.1 a), we see the discrete type analogue to the frictional modular utility case

for a monopolist discussed in Proposition 8. As per-date frictions increase, the price that

can be charged to the lowest joining type decreases, and there is a negative direct e�ect on

pro�t. However, higher type agents become less selective, and when the per-date friction is

high enough to induce a higher type to accept the lowest joining type there is a discontinuous

increase in pro�t due to the e�ective transfer from the high type to the cuto� type which

counterbalances the direct e�ect. Thus we see multiple levels of c that are consistent with

maximizing revenue, as in the previous analysis. b) shows the case with ψ(q) = q, but unlike

the formal analysis of Proposition 8, per-date frictions are c instead of cq, meaning that the

class structure will not hold in equilibrium and the aforemention proposition does not apply.

However ,we see qualitatively similar results, with a negative direct e�ect of c on pro�t and

discrete jumps back to higher pro�t when higher types accept the lowest joining type.

In Figure 1.6.2 a), we see the discrete type analogue to the per-date price modular utility

case for a monopolist discussed in Corollary 3. This case is very similar to the frictional case,

but raising per-date prices doesn't decrease the amount of surplus that can be extracted from

the lowest joining type, so the e�ective transfers from high to low types as per-date prices

increase are the only salient e�ect, and pro�t increases with per-date price. b) shows the
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Figure 1.6.2: Cost Per Date 2

From left to right: a) increasing distribution, r = .1, α = 0. b) uniform distribution, r = .1, α = 1.

Figure 1.6.3: Cost Per Date 3

From left to right: a) increasing distribution, r = .2, α = 0. b) increasing distribution, r = .2,
α = 1.

case with supermodular utility ψ(q) = q, and per-date price c, a case which could not be

studied before due the lack of a class structure. In fact, however, we see the same situation,

where higher per-date prices increase pro�t, and even though the class basis for the claim of

Corollary 3 does not hold, the argument that the IR-cuto� agent's utility can be extracted

through a combination of �xed fees and per-date prices, and higher per-date prices should

make higher types less selective and thus force them to match to the IR-cuto� type, increasing

their expected match utility should still hold.

In Figure 1.6.3 a), we see the discrete type analogue to the frictional modular utility

case for a social planner discussed in Section 1.4.1. As discussed before, the direct negative

e�ect of increasing per-date frictions dominates, and higher frictions generally lower surplus,

although small local increases are possible due to the non-endogenous lower bound of the

rump class. In b), we see the case with ψ(q) = q, and per-date friction c, and the e�ect of
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Figure 1.6.4: Cost Per Date 4

From left to right: a) increasing distribution, r = .2, α = 0. b) increasing distribution, r = .2,
α = .5, c) increasing distribution, r = .2, α = 1.

increasing c is qualitatively similar.

In Figure 1.6.4 a), we see the discrete type analogue to the per-date price modular utility

case for a social planner discussed in Proposition 11. As discussed before, increasing per-

date prices lowers the time costs of search, and because of modular utility sorting doesn't

matter, so increasing per-date prices increases total surplus. We couldn't study optimal

per-date prices with supermodular utility before due to tractability problems, but b) and c)

we can examine numerical simulations of this case. As discussed before, with supermodular

utility assortation increases surplus, so when per-date prices increase and agents become less

picky, there will be a tradeo� between lowering time costs on the one hand and lowering

sorting on the other. In fact, in b) with ψ(q) =
√
q and moderate supermodularity we see

exactly that, with total surplus initially increasing in per-date prices when decreasing time

costs dominates and total surplus later decreasing when sorting e�ects dominate, yielding an

optimal per-date price that is positive. With c), ψ(q) = q and supermodularity is stronger.

We see the same story here, but the optimal per-date price is signi�cantly lower as the costs

of lowering sorting are higher.

1.6.2 Proofs

Steady State�Linear Returns to Matching

We'll now provide a proof of Proposition 5 via two lemmas. This closely follows Burdett and

Coles, but requires some adjustment to accommodate per-date costs. First, we'll transcribe a

useful result from Burdett and Coles. De�ne Γ(x1, x2) ≡ (F (x1)−F (x2))2−f(x2)
∫ x1
x2
F (x1)−

F (x)dx
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Lemma 10 An increasing hazard rate f(x)/(1-F(x)) implies Γ(.) ≥ 0

De�ne φ(q(n), q(n− 1)) ≡
∫ q(n−1)

q(n)
F (q(n−1))−F (x)
F (q(n−1))−F (q(n))

dx− c for q(n− 1) > q. Since F is strictly

increasing and twice di�erentiable, φ is well de�ned, continuous and twice di�erentiable

almost everywhere, restricting ourselves to right di�erentiation at the lower bound. It can

be shown that φ → −c as class size goes to zero and φ → q − q(n) − c as q(n − 1) → q.

Lemma 10 implies φ is decreasing in q(n):

∂
∂q(n)

∫ q(n−1)

q(n)
F (q(n−1))−F (x)
F (q(n−1))−F (q(n))

dx− c =
∫ q(n−1)

q(n)
(F (q(n−1))−F (x))f(q(n))

(F (q(n−1))−F (q(n)))2
dx− 1 ≤ 0.

We can also show that φ is strictly increasing in q(n− 1):

∂
∂q(n−1)

∫ q(n−1)

q(n)
F (q(n−1))−F (x)
F (q(n−1))−F (q(n))

dx− c =
∫ q(n−1)

q(n)
(F (x)−F (q(n)))f(q(n))
(F (q(n−1))−F (q(n)))2

dx > 0.

Fix N and let qn(N), λn(N), J(N) satisfy

i) q0(N) = q

ii) if qn−1(N) > q, qn(N) = φ(qn(N), qn−1(N))Nλn(N)
r

, qn(N) = φ(qn(N), qn−1(N))Nλn(N)
r

,

λn(N) =
√
F (qn−1(N))− F (qn(N))/N

iii) if qn−1(N) <= q, qn(N) = λn(N) = 0

The following lemma shows inductively that each cuto� is well behaved if the previous

one is. The main challenge is to show uniqueness, especially in the presence of a per-date

cost. In (1.3.9), the LHS is (obviously) increasing, so if we can show the RHS is decreasing,

uniqueness is guaranteed. Thus the meat of the proof is establishing the properties of the

RHS.

Lemma 11 If qn−1(N) > q and is continuous at N for some N>0, then there is a unique

solution for qn(N) if participation in search in class n can be supported, where qn(N) is

continuous at N, qn(N) < qn−1(N), λn > 0 and is continuous at N. qn and λn go to zero as

qn−1 → q. Additionally, qn(N) is increasing in qn−1(N),

Proof. ∂
∂q(n)

1
r
(φ(q(n), q(n−1))

√
(F (q(n− 1))− F (q(n)))) = 1

r
(φ1

√
(F (q(n− 1))− F (q(n)))−

φ f(q(n))√
(F (q(n−1))−F (q(n)))

). Consider the minimal c such that φ1

√
(F (q(n− 1))− F (q(n))) −

φ f(q(n))√
(F (q(n−1))−F (q(n)))

≥ 0.

Then c = 1
r
(
∫ q(n−1)

q(n)
F (q(n−1))−F (x)
F (q(n−1))−F (q(n))

dx− (F (q(n−1))−F (q(n)))
f(q(n))

(
∫ q(n−1)

q(n)
(F (q(n−1))−F (x))f(q(n))

(F (q(n−1))−F (q(n)))2
dx−

1)). Then the expected payo� is 1
r
( (F (q(n−1))−F (q(n)))

f(q(n))

√
(F (q(n− 1))− F (q(n))))φ1. φ1 must

be negative and the remainder of the expression is positive, so the RHS of (1.3.9) must
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be negative. Thus, either 1
r
(φ1

√
(F (q(n− 1))− F (q(n))) − φ f(q(n))√

(F (q(n−1))−F (q(n)))
) ≤ 0 and

the RHS is decreasing while the LHS is increasing, ensuring a a unique solution, or c is

high enough that any draw will be accepted ex-post, which also implies a unique cuto�.

Direct inspection shows continuity given continuity of the constituent functions, and thus

the continuity of qn(N) and λn(N). The RHS is negative as qn → qn−1 so qn < qn−1. Thus

λn(N) > 0. qn → 0 goes to zero as qn−1 → q since RHS is negative and λn(N) ≤ G(qn−1)−

G(q) → 0 as qn−1 → q. Finally, ∂
∂q(n−1)

1
r
(φ(q(n), q(n − 1))

√
(F (q(n− 1))− F (q(n)))) =

1
r
(q(n − 1) − q(n) − c) f(q(n)

2
√

(F (q(n−1))−F (q(n)))
. Consider the minimal c such that 1

r
(q(n − 1) −

q(n) − c) f(q(n)

2
√

(F (q(n−1))−F (q(n)))
≤ 0. Then c = q(n − 1) − q(n) and continuation value is

1
G(q(n−1))−G(q(n))+r

∫ q(n−1)

q(n)
(x−c)g(x)dx = 1

G(q(n−1))−G(q(n))+r

∫ q(n−1)

q(n)
(x−q(n−1)+q(n))g(x)dx≤

1
G(q(n−1))−G(q(n))+r

∫ q(n−1)

q(n)
q(n)g(x)dx= G(q(n−1)u)−G(q(n))

G(q(n−1))−G(q(n))+r
q(n) < q(n). Thus c ≥ q(n − 1) −

q(n) ensures a corner solution for the cuto�, q. Thus, q(n) is unchanging in q(n-1) if c >

q(n−1)−q(n), else the RHS is increasing in q(n-1), which, given that the LHS is unchanged

and the LHS is increasing and the RHS decreasing in q(n), implies a rise in q(n-1) must

induce a rise in q(n).

We'll now prove Lemma 7. Note that (1.3.3) can be rewritten as q(n, q̂) = (Nλn(q̂)E[q′|n,q̂,match]−Nγn(q̂)c)
Nλn(q̂)+r

=

Nλn(q̂)(E[q′|n,q̂,match]−c)
Nλn(q̂)+r

− N(γn(q̂)−λn(q̂))c)
Nλn(q̂)+r

This is simply (1.3.4) minus c times a scalar on the

RHS and with the values of γn = Pr[date|n, q̂], λn = Pr[match|n, q̂] and E[q′|n, q̂,match]

changed to re�ect that agents may reject dates inside their class and accept agents out-

side their class, changing their probability of dating and matching over a given interval and

changing the distribution of matches accepted. Every agent in a class must have the same

expected match quality, so it will su�ce to consider q(n) = Nλn(E[q′|n,match]−c)
Nλn+r

− N(γn−λn)c)
Nλn+r

.

Lemma 12 Given LRM and 1-F log-concave, a class n starting at q(n-1) where the probabil-

ity of an agent in n rejecting a date inside the class is strictly positive must have Nλn(E[q′|n,match]−c)
Nλn+r

≤

qE(nLPPE,q(n)).

Proof. Forthcoming.

We can now prove Lemma 7:

Proof. Let k be the �rst class with a positive measure of agents deviating from the LPPE.

Lemma 12 shows that Nλk(E[q′|k,match]−c)
Nλk+r

≤ qE(kLPPE,q(k)), with strict inequality holding if the
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probability of rejecting a match within one's class is strictly positive, and N(γk−λk)c)
Nλk+r

≥ 0, with

strict inequality holding if the probability of accepting a match outside one's class is strictly

positive. Then, since qE(q(k)) = q(k), qE(k) < qE(kLPPE,q(k)) ≤ qE(LPPE, q(k − 1)) ≤

qE(q(k)). Contradiction. We can proceed inductively from here. Suppose that q(n − 1) ≤

q(LPPE, n − 1). Then q(n) ≤ q(LPPE, q(n − 1)) as before. Lemma 11 establishes that

q(LPPE, q(n− 1)) ≤ q(LPPE, n), so q(n− 1) ≤ q(LPPE, n).

Steady State�Constant Returns to Matching

In addition to LRM, we can also study the analogous model with constant returns to match-

ing. The CRM analysis largely follows Burdett and Coles (1997). While several proofs must

be amended to account for per-date costs, some go through unchanged. De�ne the distribu-

tion of agents leaving the platform by H(q) and the mass of agents leaving the platform by

O.

Within a given class, we can get a simple characterization of out�ow. Out�ow in a class

is given by the number of agents on the platform, N, times the proportion of agents in the

class, λn, times the probability of an agent in the class drawing another agent in that class,

λn. Then out�ow from class n is λ2
nN . Then, in an LSSE,

λn =
√

(F (q(n− 1))− F (q(n)))/N (1.6.3)

We also have that, for any [z1, z2) in class n, λn(G(z2) − G(z1))N = F (z2) − F (z1) and

thus, with the di�erentiability of F,

g(q) =
f(q)

λnN
(1.6.4)

Thus the density of agents on the platform in a given class is in�ow density times a scalar.

Combining equation 1.3.5 and balanced �ow, we can get eliminate G terms, yielding class

cuto�s solely in terms of in�ows, N, and c.

q(n) =
1

r
(

∫ q(n−1)

q(n)

F (q(n− 1))− F (x)

F (q(n− 1))− F (q(n))
dx− c)

√
(F (q(n− 1))− F (q(n)))/N (1.6.5)
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We're can now characterize the LSSE in this environment:

Proposition 12 Given F, (G,N) de�nes a LSSE if and only if G satis�es (1.6.4) and

{(λn, q(n))}Jn=0 satis�es (1.6.3), (1.6.5), q(0) = q, q(J) <= q, and
∑

n λn = 1.

Proof.
∑

n λn = 1, the boundary conditions, and (1.6.3)-(1.6.5) are necessary in an LSSE by

construction. Conversely, the assumptions guarantee G(q) = 1, G(q) = 0 and G increasing,

so G is a well de�ned steady state distribution and any G and N satisfying them form a valid

LSSE.

To ensure existence of an LSSE, we'll need to make some distributional assumptions. The

increasing hazard rate will ensure that, for each possible N, the class structure is unique.

We'll now provide a proof of Proposition 13 via a lemma. This closely follows Burdett and

Coles, but requires some adjustment to accommodate per-date costs.

Lemma 10 implies φ is decreasing in q(n):

∂
∂q(n)

∫ q(n−1)

q(n)
F (q(n−1))−F (x)
F (q(n−1))−F (q(n))

dx− c =
∫ q(n−1)

q(n)
(F (q(n−1))−F (x))f(q(n))

(F (q(n−1))−F (q(n)))2
dx− 1 ≤ 0.

We can also show thatφ is strictly increasing in q(n-1):

∂
∂q(n−1)

∫ q(n−1)

q(n)
F (q(n−1))−F (x)
F (q(n−1))−F (q(n))

dx− c =
∫ q(n−1)

q(n)
(F (x)−F (q(n)))f(q(n))
(F (q(n−1))−F (q(n)))2

dx > 0.

Fix N and let qn(N), λn(N), J(N) satisfy

i) q0(N) = q

ii) if qn−1(N) > q, qn(N) = φ(qn(N), qn−1(N)) δλ(N)
r

, qn(N) = φ(qn(N), qn−1(N))λn(N)
r

,

λn(N) =
√
F (qn−1(N))− F (qn(N))/N

iii) if qn−1(N) <= q, qn(N) = λn(N) = 0

The following Lemma shows inductively that each cuto� is well behaved if the previous

one is. The main challenge is to show uniqueness, especially in the presence of a per-date

cost. In 2.8, the LHS is (obviously) increasing, so if we can show the RHS is decreasing,

uniqueness is guaranteed. Thus the meat of the proof is establishing the properties of the

RHS.

Lemma 13 If qn−1(N) > q and is continuous at N for some N>0, then there is a unique

solution for qn(N), where qn(N) is continuous at N, qn(N) < qn−1(N), and λn > 0 and

is continuous at N. qn(N) and λn(N) go to zero as qn−1(N) → q. Additionally, qn(N) is

increasing in qn−1(N),
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Proof. ∂
∂q(n)

1
r
(φ(q(n), q(n−1))

√
(F (q(n− 1))− F (q(n)))/N) = 1

r
(φ1

√
(F (q(n− 1))− F (q(n)))/N−

φ f(q(n))√
N(F (q(n−1))−F (q(n)))

). Consider the minimal c such that φ1

√
(F (q(n− 1))− F (q(n)))/N−

φ f(q(n))√
N(F (q(n−1))−F (q(n)))

≥ 0.

Then c =
∫ q(n−1)

q(n)
F (q(n−1))−F (x)
F (q(n−1))−F (q(n))

dx− (F (q(n−1))−F (q(n)))
f(q(n))

(
∫ q(n−1)

q(n)
(F (q(n−1))−F (x))f(q(n))

(F (q(n−1))−F (q(n)))2
dx−1).

Then the RHS of (1.6.5) is 1
r
( (F (q(n−1))−F (q(n)))

f(q(n))

√
(F (q(n− 1))− F (q(n))/N)φ1. By Lemma

10, φ1 must be negative and the remainder of the expression is positive, so expected payo�

must be negative. Thus, either 1
r
(φ1

√
(F (q(n− 1))− F (q(n)))/N−φ f(q(n))√

N(F (q(n−1))−F (q(n)))
) ≤

0 and the RHS is decreasing while the LHS is increasing, ensuring a unique solution, or c

is high enough that any draw will be accepted ex-post, which also implies a unique cuto�.

Direct inspection shows continuity given continuity of the constituent functions, and thus

the continuity of qn(N) and λn(N). The RHS is negative as qn → qn−1 so qn < qn−1. Thus

λn(N) > 0. qn → 0 goes to zero as qn−1 → q since RHS is negative and λn(N) ≤ G(qn−1)−

G(q) → 0 as qn−1 → q. Finally, ∂
∂q(n−1)

1
r
(φ(q(n), q(n − 1))

√
(F (q(n− 1))− F (q(n)))/N)=

1
r
(q(n − 1) − q(n) − c) f(q(n)

2
√
N(F (q(n−1))−F (q(n)))

. Consider the minimal c such that 1
r
(q(n −

1)− q(n)− c) f(q(n)

2
√
N(F (q(n−1))−F (q(n)))

≤ 0. Then c = q(n− 1)− q(n) and continuation value is

1
G(q(n−1))−G(q(n))+r

∫ q(n−1)

q(n)
(x−c)g(x)dx = 1

G(q(n−1))−G(q(n))+r

∫ q(n−1)

q(n)
(x−q(n−1)+q(n))g(x)dx≤

1
G(q(n−1))−G(q(n))+r

∫ q(n−1)

q(n)
q(n)g(x)dx= G(q(n−1)u)−G(q(n))

G(q(n−1))−G(q(n))+r
q(n) < q(n). Thus c ≥ q(n − 1) −

q(n) ensures a corner solution for the cuto�, q. Thus, q(n) is unchanging in q(n-1) if c >

q(n−1)−q(n), else the RHS is increasing in q(n-1), which, given that the LHS is unchanged

and the LHS is increasing and the RHS decreasing in q(n), implies a rise in q(n-1) must

induce a rise in q(n).

Proposition 13 For all N>0, there exist unique, continuous solutions for qn(N) and λn(N)

satisfying (1.6.3)-(1.6.5), q0(N) = q and qJ(N) ≤ q. such that qn(N) < qn−1(N) and

λn(N) > 0 if qn−1(N) > q.

Proof. For the base case of q0 = q, q0 is a constant function of N. Lemma 13 ensures that

qn−1(N) continuous implies qn(N) continuous, and qn(N) < qn−1(N), so induction follows.

Continuity of λn(N) follows from the continuity of qn(N), qn−1(N), and
√

(F (x)− F (y)/N .

λn(N) > 0 follows from the fact that qn(N) < qn−1(N) and f(q) > 0 for q ∈ [q, q].
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However, N may not be consistent with G(q) = 1, so we'll need an additional result. Log-

concavity ensures the continuity of class sizes, and that, along with values of N inducing

values G(q,N) above and below 1, ensures the existence of {λn}Jn=1 such that
∑

n λn = 1

. It's worth noting that the inclusion of a per-date cost makes uniqueness of the cuto�s

harder to obtain than in the Burdett and Coles environment�without per date costs, the

agent's optimization problem has convenient monotonicity properties that per-date costs

militate against. However, the already necessary assumption of log-concavity of the survivor

function also eliminates cases where per-date costs could induce a multiplicity of cuto�s.

Proposition 14 An LSSE exists.

Proof. Proposition 13 guarantees this result so long as
∑

n λn(N) = 1.
∑

n λn(N) =

1√
N

∑
n

√
F (qn−1(N))− F (qn(N)) > 1√

N

∑
n F (qn−1(N)) − F (qn(N)) = 1√

N
(F (q) − F (q)) =

1√
N
, so lim

N→0

∑
n λn(N) =∞.

∑
n λn(N)

⇒ q(1) = 1
r
(
∫ q
q1(N)

1−F (x)
1−F (q1(N))

dx− c)
√

1− F (q1(N)))/N

1−F (x)
1−F (q1(N))

< 1 if x ∈ (q1(N), q] so∫ q
q1(N)

1−F (x)
1−F (q1(N))

dx < q − q1(N).

Then we have

q1(N) < 1
r
(q − q1(N)− c)

√
(1− F (q1(N))/N

q1(N)1+r
r
< 1

r
(q − c)

√
(1− F (q1(N)))/N

q1(N) < 1
1+r

(q − c)
√

(1− F (q1(N)))/N

so q1(N)→ 0. For N su�ciently large, q1(N) < q, so F (q1(N)) = 0. Then∑
n

√
F (qn−1(N))− F (qn(N)) =

√
F (q0(N))− F (q1(N)) = 1∑

n λn(N) = 1√
N
→ 0.

λn(N) is continuous for all n, so
∑

n λn(N) is continuous. Then, given
∑

n λn(N) > 1 for

some N and
∑

n λn(N) < 1 for some N, the IVT ensures an N exists such that
∑

n λn(N) = 1.

Finally, we'd like to have uniqueness. This will require further distributional assump-

tions. Burdett and Coles only need that xf(x) is increasing, but the inclusion of per-date

costs again imposes stronger requirements for uniqueness. Unfortunately, in this case their

assumptions are not strong enough to resolve the monotonicity issues with per-date costs.
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For su�ciently small per-date costs, the increasing xf(x) assumption is adequate, but to

ensure uniqueness for any per-date cost we'll need the stronger assumption that f(x) is in-

creasing. This assumption is quite onerous, so we'll stick with the weaker assumption from

Burdett and Coles and focus on su�ciently small per-date costs in the later analysis.

Lemma 14 qn(N) is decreasing and di�erentiable in N.

Proof. Di�erentiability follows from induction on (1.6.5). For the �rst class, we must have

q1(N) = 1
r
(
∫ q
q1(N)

1−F (x)
1−F (q1(N))

dx − c)
√

1− F (q1(N)))/N . Denote the LHS L and the RHS

R. Lemma 13 shows Rq1 = ∂
∂q1(N)

1
r
(
∫ q
q1(N)

1−F (x)
1−F (q1(N))

dx − c)
√

1− F (q1(N)))/N is negative

while L1 = 1 is positive. Suppose q1(N) is weakly increasing in N for some N. Then LN =

q
′
1(N) > 0 and RN = q

′
1(N)Rq1 − R/(2N) is negative. But L=R. Contradiction. We

can now procede inductively. Suppose qn−1(N) is decreasing in N. (1.6.5) must hold, and

Rqn = ∂
∂qn(N)

1
r
(
∫ qn−1(N)

qn(N)
F (qn−1(N))−F (x)

F (qn−1(N))−F (qn(N))
dx − c)

√
(F (qn−1(N))− F (qn(N)))/N is negative

and Rqn−1 = ∂
∂qn−1(N)

1
r
(
∫ qn−1(N)

qn(N)
F (qn−1(N))−F (x)

F (qn−1(N))−F (qn(N))
dx − c)

√
(F (qn−1(N))− F (qn(N)))/N is

positive by Lemma 13. Then the LN = q
′
n(N) > 0 and RN = q

′
n(N)Rqn + q

′
n−1(N)Rqn−1 −

R/(2N), which is negative since q
′
n−1(N) is negative.

Lemma 15 λn−1 ≥ λn for any N>0 with xf(x) for c su�ciently small or any c with f(x)

increasing.

Proof. Di�erentiability follows from induction on (1.6.5). For the �rst class, we must have

q1(N) = 1
r
(
∫ q
q1(N)

1−F (x)
1−F (q1(N))

dx − c)
√

1− F (q1(N)))/N . Denote the LHS L and the RHS

R. Lemma 13 shows Rq1 = ∂
∂q1(N)

1
r
(
∫ q
q1(N)

1−F (x)
1−F (q1(N))

dx − c)
√

1− F (q1(N)))/N is negative

while L1 = 1 is positive. Suppose q1(N) is weakly increasing in N for some N. Then LN =

q
′
1(N) > 0 and RN = q

′
1(N)Rq1 − R/(2N) is negative. But L=R. Contradiction. We

can now procede inductively. Suppose qn−1(N) is decreasing in N. (1.6.5) must hold, and

Rqn = ∂
∂qn(N)

1
r
(
∫ qn−1(N)

qn(N)
F (qn−1(N))−F (x)

F (qn−1(N))−F (qn(N))
dx − c)

√
(F (qn−1(N))− F (qn(N)))/N is negative

and Rqn−1 = ∂
∂qn−1(N)

1
r
(
∫ qn−1(N)

qn(N)
F (qn−1(N))−F (x)

F (qn−1(N))−F (qn(N))
dx − c)

√
(F (qn−1(N))− F (qn(N)))/N is

positive by Lemma 13. Then the LN = q
′
n(N) > 0 and RN = q

′
n(N)Rqn + q

′
n−1(N)Rqn−1 −

R/(2N), which is negative since q
′
n−1(N) is negative.

Lemma 16 xf(x) strictly increasing in x guarantees λn−1 ≥ λn for c such that c′ ≥ c > 0

for some c'. f(x) increasing guarantees λn−1 ≥ λn for any c.
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Proof. Trivial for n − 1 ≥ J(N). For n − 1 < J(N), we �rst want to show λn−1 ≥ λn for

all n. De�ne θ(ql, qh) =
∫ qh
ql

F (qh)−F (x)
F (qh)−F (ql)

dx − c)
√

(F (qh)− F (ql)). Thus 1√
Nr

= ql/θ(ql, qh).

λ =
√

(F (qh)− F (ql))/N so it will su�ce to show ∂
∂qh
F (qh) − F (ql(qh)) is increasing. The

implicit function theorem yields ∂
∂qh
F (qh) − F (ql(qh)) = f(qh) − f(ql)

δ√
N(1−δ)

θ2

1− δ√
N(1−δ)

θ1
= f(qh) −

f(ql)
qlθ2/θ

1−qlθ1/θ
. We can show that this is non-negative if and only if

∫ qh
ql
x f(x)−ql f(ql)−c dx ≥

0. If c is su�ciently small, this will be satis�ed (clearly always satis�ed for c=0 and xf(x)

increasing.) If xf(x) strictly increasing, a strictly positive c can be supported. It can be

shown that if (qh−ql)f(ql)
F (qh)−F (ql)

≤ 1, any c large enough to violate the above inequality will yield

a corner solution for any agent's optimization problem, with agents accepting any match, a

single class, and uniqueness thus ensured. if f(x) is increasing, (qh−ql)f(ql)
F (qh)−F (ql)

≤ 1.

Proposition 15 xf(x) strictly increasing in x guarantees the existence of a unique LSSE

for all c such that c′ ≥ c > 0 for some c'. f(x) increasing guarantees uniqueness for any c.

Proof. Total di�erentiation of λn−1(N) =
√
F (qn−1(N))− F (qn(N))/N

yields
q′n−1(N)f(qn−1(N))−q′n(N)f(qn(N))

2λnN
− λn

2N
for all but the last class and

q′n−1(N)f(qn−1(N))

2λnN
− λn

2N

for the last class. Summing over n, we have− λJ
2N

+

J(N)−1∑
n=1

(
1

2N
(

1

λn+1

− 1

λn
)q′n(N)f(qn(N))− λn

2N
).

λn are decreasing in n by Lemma 16, so 1
λn+1
− 1

λn
increasing, and q′n(N) decreasing by Lemma

15. Thus the sum is negative, proving that
∑

n λn is strictly decreasing in N. Thus, the N

such that
∑

n λn = 1 must be unique, and so the LSSE.

Strategic Platforms

We'll now prove Proposition 9. De�ne λF (n) ≡ F (q(n−1))−F (q(n)), the in�ow mass in class

n. Suppose ψ(q) = qa and de�ne the mean ψ value in class n as mψ(n) ≡
∫ q(n−1)

q(n)
qa f(q)

λF (n)
dq.

De�ne the length of class n as l(n) ≡ q(n− 1)− q(n).

Proof. ∂TS
∂c

=
∑J

n=1 qEc(n, c)mψ(n)λF (n)+

qE(n, c) (qc(n− 1, c)q(n− 1, c)αf(q(n− 1, c))− qc(n, c)q(n, c)αf(q(n, c)))

Using the fact that qE(n, c) = q(n, c) for all but the last class J, manipulating the sum-

mation, and suppressing c, we have

∂TS
∂c

=
∑J−2

n=1 qc(n) (mψ(n) · λF (n)− q(n)α · f(q(n)) · l(n+ 1))
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+qc(J − 1) (mψ(J − 1) · λF (J − 1)− q(J − 1)α · f(q(J − 1))(q(J − 1)− qE(J)))

+qc(J) (mψ(J) · λF (J)− q(J)α · f(q(J)) · qE(J))

If every term in this summation is negative, ∂TS
∂c

is negative. By Proposition 7, qc(n) is

decreasing, so it su�ces to show mψ(n) · λF (n) > q(n)α · f(q(n)) · l(n + 1) for each n<J-1,

and the corresponding inequalities for J-1 and J. By Jensen's inequality, mψ(n) > E[q|q ∈

[qn, qn−1)]α. Given that F has full support, E[q|q ∈ [qn, qn−1)]α > qn. Thus, as α → ∞,

E[q|q ∈ [qn, qn−1)]α/qα →∞. Then mψ(n) ·λF (n) > q(n)α ·f(q(n)) · l(n+1) for α su�ciently

high, and since J is �nite, an α exists ensuring mψ(n) · λF (n) > q(n)α · f(q(n)) · l(n+ 1) for

all n < J − 1, as well as the inequalities for J-1 and J.

We'll now study a selection of simulations. We focus on the modular utility case, and

�nd that increasing c typically decreases total surplus. This is not surprising given that a

per-date friction of c decreases each agent's payo� by c. However, e�ciency gains due to less

selective agents and changes in the rump class due to c can outweigh the direct cost of c in

some cases. In Figure 1.6.5, we assume a decreasing density f . This puts more weight on

the rump class, creating more periodicity in the surplus as the class cuto�s shift downward

in c and the

rump class goes from being a large, relatively e�cient class to a small class whose size is

limited by the support of the distribution, and then to a large class again as the last class

cuto� passes the bottom of the support of the distribution and the next class becomes the

last class. In both the case where r=.1 and r=.001, we clearly see the periodic component

to total surplus, and over some intervals total surplus is actually increasing in c. Generally,

the degree of discounting doesn't make a large di�erence unless agents are very impatient.

In Figure 1.6.7 a), we again assume a decreasing density f , but assume the a smaller

support for f. This largely eliminates the periodic component to total surplus and leaves

only the direct e�ect of c�total surplus is approximately linearly decreasing in c. Because

the lowest type agents in the distribution are still half the quality of the highest types,

there are far fewer endogenous classes, and e�ciency losses due to excessive selectivity are

lower. Thus, e�ciency gains due to increasing c are much less relevant. In Figure 1.6.7 b)

we consider an analogous case with a uniform distribution. The factors that could lead to

increasing total surplus are weaker in this case, but we still see some periodic e�ect and a
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Figure 1.6.5: Total Surplus and Per-date Costs 1

From left to right: a) F (x) =
√
x− q/

√
1− q, r = .001, q = .01 b) F (x) =

√
x− q/

√
1− q, r = .1,

q = .01
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Figure 1.6.6: Total Surplus and Per-date Costs 2

From left to right: a) F (x) =
√
x− q/

√
1− q, r = .001, q = .5 b) F (x) = (x− q)/(1− q), r = .001,

q = .01

small region where total surplus is slightly increasing in c.

In Figure 1.6.7 a), we see the uniform distribution case corresponding to Figure 1.6.7 a).

Again, the narrow range of qualities yields a monotonically decreasing total surplus. Finally,

in Figure 1.6.7 b) we see total surplus when f is increasing. Here, even with a lower limit of

support close to zero the second order e�ects are dominated by the linear friction costs.
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Figure 1.6.7: Total Surplus and Per-date Costs 2

From left to right: a) F (x) = (x− q)/(1− q), r = .001, q = .5, q = .001 b) F (x) = (x− q)2/(1− q)2,
r = .001, q = .01
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CHAPTER 2

MATCHING WITH SINGLE PEAKED PREFERENCES

2.1 Introduction

In theoretical and empirical models of matching markets it is often assumed that agents

have preferences over a single parameter which is either vertical, where all agents share a

preference ordering over types; or horizontal, where agents prefer their own type. For both

vertical (Becker (1973)) and horizontal models (Clark (2003), Clark (2007), and Klumpp

(2009)), simple matching functions have been derived for continuous and discrete cases.

However, preferences may be much more general, with di�erent individuals having di�erent

preference orderings (violating the assumptions of vertical models) while not necessarily

having a preference for their own type (violating the horizontal assumption).

In this paper we derive a simple, closed form matching function under single-peaked

univariate preferences, where each agent is characterized by a univariate type and has an

ideal type, preferring partners closer to that type, and where utility is nontransferable.

Applications include marriage and dating, as well as job search when bargaining over wages

is di�cult or impossible, as in many public sector and entry level professional jobs. This

result generalizes previous results like Becker (1973) and Clark (2007) to a much broader class

of preferences. Speci�cally, we consider the case where there are continuous distributions of

agents and, after removing perfect matches (agent a's ideal type is agent b's type and vice

versa), the remainder distributions of unmatched agents can be separated by a monotonic

curve1, and where the masses on each side of this curve are not severely imbalanced in a way

that will be described later. This assumption will often hold when the bivariate distributions

1More speci�cally, their graphs can be separated by this curve after one side of the market has transposed
so that own type on one side corresponds to ideal type on the other. This transposition will be critical to
our intuition throughout this paper.
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of own and ideal types for each side have relatively similar dispersion and di�erent mean

vectors. For example, in marriage and dating, men may generally prefer women slightly

shorter than them, with some variation, and women may generally prefer taller men, again

with some variation. Similarly, some men may prefer women with similar incomes to them,

while other men and all women may prefer higher incomes.

This paper makes contributions relevant to the empirical and theoretical literature on

matching. First, it contributes to the wide empirical literature on assortative matching.2 We

show that matching over single peaked preferences exhibits several di�erent forms of assorta-

tion, which form testable predictions. In particular, individuals who are perfect matches will

match stably, and they will exhibit converse positive assortative matching (CPAM), where

increases in an agent's ideal type correspond to increases in their match's type. Individuals

who don't get perfect matches, however, exhibit other forms of assortation. If the supply

for a given type of agent meets demand, in a sense that will be made explicit later, we �nd

positive assortative matching (PAM), where higher types match to higher types irrespective

of ideal type, or negative assortative matching (NAM), where higher types match to lower

types, where the type of assortation depends on the relative orientation of the two distri-

butions. We see PAM when agents generally prefer higher types than their stable matches

(vertical preferences is one example of this). We see NAM when agents generally prefer

lower types than their stable matches. Finally, when one side is locally in shortage, some

will match as before, but others will be able to leverage their scarcity to match to agents of

their ideal type (CPAM for the side in shortage) who do not �nd them ideal.

This paper also makes theoretical models involving embedded matching problems tractable

in a much more general preference environment. For example, it provides a framework for

studying theoretical models of marital sorting on income when di�erent men and women

have di�erent preferences.

This paper follows a rich literature on stable matching problems, starting with the sem-

inal paper by Gale and Shapley (1964). Becker (1973) found that PAM occurs when there

2In one dimension, assortation is a matching structure where the type of an agent's match is monotonic
in the agent's own type.
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is a continuum of types and the utility of a match is increasing in types and nontransfer-

able. Unlike Gale-Shapley, this requires no iterative process to �nd agent pairs in the stable

matching, so it is suitable for use in theoretical models. However, it imposes the fairly oner-

ous assumption of vertical preferences�higher types are universally preferred to lower types,

and agents only care about one trait. Legros and Newman (2007) extended PAM and NAM

results to a class of partially nontransferable utility problems, where there are limitations on

the ability of some or all agents to transfer utility to their match.

Assuming horizontal preferences over a single trait where agents want to match to their

own type, Clark (2003) gives an algorithm for �nding stable matchings in a market with a

�nite set of agents. Clark (2007) then treats the univariate horizontal case with an in�nite

set of agents, �nding a very simple matching result, which, like Becker's result for vertical

preferences, is well suited to a theoretical model. Clark (2006) also gives a condition guaran-

teeing a unique stable matching. Finally, Klumpp (2009) derives a very simple �inside-out�

algorithm for horizontal matching with �nitely many agents.

The remainder of this paper is organized as follows: Section 2 demonstrates Clark's

matching algorithm for the simplest case where preferences are homophilic�that is, where

the peak preference is the agent's own type. Section 3 generalizes the model by allow

agents to have arbitrary single peaked preferences, and matching algorithms are derived

given some additional assumptions. Section 4 relates the single-peaked matching result to

the horizontal and vertical preference literature. Section 5 provides interpretation for the

results and empirical implications. Finally, the concluding section describes directions for

further study.
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2.2 Model with homophilic preferences

2.2.1 Baseline Model

3 Consider a two sided one-to-one matching model with two continuous, integrable distribu-

tions A and B with full support on [l, u]× [l, u]. We'll abuse notation by also letting A and

B represent the set of agents on each side. We'll call the �rst dimension type θ, and the

second preference p. Denote an agent i with type θ and preference p on side S as siθp, sθp if

suppressing the index is appropriate, and s if suppressing both is possible. Let preferences

be strictly single peaked. That is, for an agent aθp(bθp), if θ2 > θ1 ≥ θ or θ ≥ θ1 > θ2

, bθ1p1 �
aθp

bθ2p2 (aθ1p1 �
bθp

aθ2p2), with indi�erence over identical types. Before we address

more general single peaked preferences, it is instructive to review the horizontal preference

matching algorithm �rst derived in Clark (2007). Suppose for every agent sθp p = θ �that

is, agents have homophilic preferences and we can suppress p. Suppose further that agents

face no search costs or other limitations to matching, i.e. suppose agents optimize over the

entire set of agents who are willing to match to them. Note that, while we can normalize

either A or B to measure 1 without loss of generality, making both measure 1 is a simplifying

assumption, requiring an equal mass of agents on each side. We will proceed for now using

this assumption as it simpli�es the problem, and relax it later.

• Assumption 1 (MASS) : Suppose an equal measure of agents on each side.

This scenario a�ords an extremely simple solution. First, we match and remove from con-

sideration the area under both curves, if such an area exists.

Lemma 17 For each type θ, a measure µθ = min(µθA, µθB) of θ agents on side A (B)

matches to θ types on side B (A), where µθS is the mass of agents of type θ on side S.

Proof. There are at least µθ agents of type θ on each side by de�nition. Since preferences

are homophilic, aiθ strictly prefers bjθ to any agent bks, and symmetrically biθ prefers ajθ to

any aks. Then a mass µθ of aθ's will strictly prefer to match with any of the measure µθ of

3I derived these horizontal results independently, being unaware of Clark's unpublished paper. However
I believe the derivation is a good motivation for the later, novel result, so I have retained this section.
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Figure 2.2.1: Initial distributions A and B of agents over type θ.

There is an area of overlap in the center where, for any type in the overlap, both distributions have

at least as much mass as the overlapped region.

Figure 2.2.2: Remainder distributions A′ and B
′
.

The remainder distributions A′.and B
′
that are left when the mass of overlapping agents is

matched and removed from the market.

bθ's, and the bθ's will symmetrically strictly prefer aθ's to any other agents, so they will form

stable matches.

Now we can eliminate the stably matched overlap agents from consideration. The re-

mainder distributions can be de�ned as

fA′ (θ) = max{ fA(θ)− fB(θ)∫
Θ

max{(fA(θ)− fB(θ), 0} dθ
, 0}

and

fB′ (θ) = max{ fB(θ)− fA(θ)∫
Θ

max{(fB(θ)− fA(θ), 0} dθ
, 0}

where the integral ensures a well-de�ned probability density function with mass 1. Note that

the area under both A and B is the same for both distributions, so the scalar they must be

57



multiplied by is also the same and we don't have any issues of miscounting the measures of

agents on each side. De�ne A' and B' as the distributions with these respective densities.

We now inductively derive a very simple matching algorithm that yields the type s of

the match bjs for aiθ (ajs for biθ) as an explicit function depending only on the remainder

distributions and aiθ (biθ). The intuition here is that we start at the far right of the left

remainder distribution (A in this example) and the far left of the right distribution (B in this

example), or on other words the innermost points of each distribution, and then iteratively

match outward, with the current (innermost remaining) matchers taking the already stably

matched interior agents as unavailable. Because agents want the closest match possible, the

current matchers on each side strictly prefer the current (innermost remaining) matchers on

the other side to anyone else, so they match and the process continues. Note that, because

matching is one-to-one, the measure of agents who have been matched on one side must

equal the measure of agents who have been matched on the other. Before we complete this

proof, we make two additional assumptions.

• Assumption 2 (SEP): Suppose the probability density functions have the single

crossing property i.e. the probability density functions intersect at only one point.

• Assumption 3 (OUT): Suppose that agents prefer any match to no match.

Like MASS, SEP and OUT are not necessary for a tractable answer, but they allow for a

very simple baseline result to be derived, against which deviations from these assumptions

can later be compared.

Lemma 18 Without loss of generality, assume A
′
is to the left of B

′
. Suppose that all agents

in the interval (θA, θB) have been stably matched and are eliminated from consideration, while

no other agents in A
′
or B

′
have matched. Then a mass of agents min{fA(θA), fB(θB)} of

types θAand θB will match stably.

Proof. We know aiθA prefers bjθBto any other bkθ and vice versa, as they are mutually

distance-minimal among the set of remaining potential matches, and all agents that have

already been matched are closer to their match then they are to any remaining potential
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Figure 2.2.3: Inside-Out Matching.

The stage in the matching process when types θA and θB are the innermost unmatched types.

Note that the darkened areas that have already been matched are of equal mass and θA and θBare
mutually closest to one another among the remaining agents.

match by construction, so they will not prefer to deviate to one of the current matchers.

Thus the agents will match stably, as was to be shown.

We are now ready to present the algorithm and prove its validity.

Proposition 16 (Homophilic Matching) Suppose MASS, SEP, and OUT . A measure of

agents equal to the measure under both curves and with equal density over θ will match to

their own type. For all remaining agents of all types θ, θA agents match to agents of type

F−1
B (1− FA(θA)) and θB agents match to agents of type F−1

A (1− FB(θB)).

Proof. The �rst portion of Proposition 16 is simply Lemma 17. The second is obtained by

inductively applying Lemma 18 starting at the innermost points on the two remainder dis-

tributions and moving outwards, and by using the fact that the measures of agents matched

on each side, 1− FA(θA) for A and FB(θB) for B, must be equal.

2.2.2 Extensions to the Baseline Model

To get the result above, we made three fairly restrictive assumptions. We will now relax

them and �nd the matching outcome in the more general cases. The matching algorithm is

remains quite simple, although relaxing SEP will require a new assumption.

MASS sets the measure of agents on each side of the matching market equal. This is
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Figure 2.2.4: Matching with unbalanced distributions.

Here B has more mass than A, so the furthest (least attractive) B agents do not receive a match

unless they are matched in stage one, the overlap matching phase.

a reasonable assumption in the broader heterosexual dating market, for example, where it

is approximately true. However, if one wants to model, say, online dating platforms that

attract men and women in disproportionate numbers, or the marriage market in countries

that have a signi�cant de�cit of men due to war or women due to sex selective abortions,

then MASS must be abandoned. All this will do is leave the outermost agents of the larger

side unmatched, as the supply of agents on the other side will have run out. Speci�cally,

without loss of generality suppose µB > µA and A is to the left of B. Then the rightmost

µB − µA B agents�that is, B agents to the right of θB = F−1
B (µB − µA)� will be unmatched,

while the rest will match as before.

SEP ensures that all agents of one distribution are above or below all agents of the

other. If this does not hold, we may have a situation like Figure 2.2.5 where some A agents

are above all B agents and some A agents are below all B agents, and of course much more

complicated situations of the same nature could occur. In order to �nd the matching here,

we need to be able to relate preferences for types on the left of the agent to preferences for

types to the right of the right of the agent. Assuming we have a utility function or some

other means to compare potential matches to the left and right, we can �nd cuto� agents

who are indi�erent between their best available match on the right and left. In some cases

we can proceed as before from the innermost points on each pair of adjacent �islands� in the

two distributions, with indi�erent agents determining cuto�s where agents switch from the

available match on one side to the match on the other. However, we may run into situations

60



Figure 2.2.5: Matching without the single crossing property.

The remainder of A is separated into two �islands�, with the remainder of B in the middle. B agents

to the left of the dotted line will match to the left A island, while B agents to the right will match

to the right island.

where agents in one island match to agents in a nonadjacent island. This is not the primary

focus of this paper, so we will not explore this issue any further.

OUT requires that all agents accept whatever the best match available to them is. How-

ever the most obvious qualitative characteristic of the matching outcome in this model is

that, for the agents of types that are over-represented relative to that type on the other

side, the non-perfect matches quickly deteriorate in quality for fringe agents, as the best

remaining match moves further away from them the further to the outside they are. The

outermost agents will in fact get their worst possible match, so it seems reasonable that at

a certain point agents will prefer no match to a terrible one. The result of dropping OUT ,

assuming that the reservation distance is the same for all types, is simply that matching

will terminate once the distance between the innermost remaining agents is equal to the

reservation distance, with the rest remaining unmatched.

2.3 Generalization to arbitrary single peaked preferences

2.3.1 Baseline Model

We now allow agent type and agent preference to vary independently, generalizing to arbi-

trary single peaked preferences. This allows agents to prefer types other than their own. For

example, men may prefer women of a di�erent level of femininity than their own, or may

prefer someone of a complementary disposition to make up for their shortcomings. Also, two
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Figure 2.2.6: Matching when agents have the option to refuse.

Agents beyond the distance where the cuto� agents are indi�erent between matching or staying

single do not clear the matching market.

individuals with the same characteristics may have di�erent preferences over their match's

characteristics, rather than e.g. a man's height uniquely determining his height preference.

Note that, since the �type� of an individual is now a pair of the form (characteristic, peak

preference), so if we continue using the term �type� for an agent's characteristic, we introduce

ambiguity. For that reason, an agent's characteristic (e.g. height, BMI, etc.) will now be

referred to as their trait.

Now that agents have two characteristics, the set of agents on a given side is a bivariate

distribution over own trait and peak preference. Denote an agent i with trait θ and peak

preference p as siθp. Trait in this situation is the sole characteristic over which an agent's

potential matches have preferences, while peak preference determines that agent's most

preferred match. To facilitate easy visualization of the algorithm to be derived, we will

overlay the distributions A and B, �ipping the axes for B. This will put A agent traits

and B agent peak preferences on the vertical axis, and B agent traits and A agent peak

preferences on the horizontal axis.

The reason for representing the distributions like this is that A agents evaluate matches

based on the distance between their preference and a B agent's trait, which is now the

horizontal distance between aiθp and bjsn on our graph, and B agents evaluate matches

based on the distance between their preference and an A agent's trait, which is now the

vertical distance between aiθp and bjsn, so we can use the graph to easily compare agent

preferences over potential matches.

In general, this is a more complicated problem, and no simple formula of great generality
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Figure 2.3.1: Contour plot of the trait/preference distribution A.

An A agent's trait runs along the vertical axis and its peak preference over the traits of potential

matches runs along the horizontal axis. Darker colors indicate greater mass.

Figure 2.3.2: Overlaid contour plots of distributions A (teal) and B (purple).

Darker teal areas indicate more mass in A, and darker purple areas indicate more mass in B.
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Figure 2.3.3: Comparing matches graphically using the overlay. As shown above, the

vertical and horizontal distances between an A and a B agent on this representation tell us the

agents' preferences for each other.

will be o�ered in this paper The agents under both distributions still match to their preferred

traits, but the agents in the remainder distributions are more di�cult to deal with. Whether

a more general simple solution is possible is a topic for further study. However, under speci�c

assumptions on the distributions, the problem is still very tractable. First, we'll make the

same assumptions as in Section II, with a slight variation to account for the more general

environment. Speci�cally, we keep MASS and OUT as is and add the following amended

assumption:

• Assumption 2' (SEP') : De�ne h(x) = y all ∀(x, y) ∈ s. Suppose the remainder

distributions A' and B' are separated by a single curve s. That is, ∀x and ∀y′ > h(x),

(x,y') has support only on A for all y' or only on B for all y', and ∀y′ < h(x), the only

the opposite distribution has support at (x,y').

As before, this ensures no complications due to multi-modal distributions, varying tail

weights, or �at areas between the remainder distributions. Further su�cient but not neces-

sary conditions for a simple solution are as follows:
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• Assumption 4(CURVE1, CURVE2):

� h is monotonically increasing (decreasing) in x.

� the marginal density of A at preference x equals the marginal density of B at

preference y for (x, y) ∈ s.That is, fAX(x) = fBY (y).

Figure 2.3.4: Matching from the southwest to northeast on the remainder distributions.

B agents of trait x match to A agents of trait y, regardless of peak preference.

Under these conditions, the matching of the remainder distributions can be solved by match-

ing in an �unzipping� fashion, where at any stage of the matching process the agents in the

southwest (southeast) quadrant of the graph below and to the left (right) of some (x, y) on

s have all matched (analogous to the interval which has already matched in the homophilic

case), while no one else has, and the agents of interest are those on the edges of the quadrant

(analogous to the innermost remaining types in the homophilic case). First, we eliminate

the overlapping agents, as before.

Lemma 19 For each point (x, y), a measure of agents on side A(B) equal to µ(x, y) =

min{fA(x, y), fB(y, x)}, matches to the types on side B(A) with transposed θ and p.
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Proof. Analogous to Lemma 17, there are at least µθp (θ, p) A agents and (p, θ) B agents by

de�nition. Since preferences are homophilic, aiθp weakly prefers bjpθ to any other B agent,

and symmetrically bipθ prefers ajθp to any other A agent. Then a mass µθ of aθ's will weakly

prefer to match with any of the measure µθ of bθ's, and the bθ's will symmetrically strictly

prefer aθ's to any other agents, so they will form stable matches.

Note that in this case the matching outcome described here may not be the only one

possible, since agents don't strictly prefer their mirror agent over agents with their ideal trait

but a preference for someone other than them. This can be resolved by using lexicographic

preferences where preference over θ are as before and, if two potential matches have the same

θ, agents prefer matches whose preferences are closer to their own trait, with the rationale

that, if someone likes you better, your relationship with them will generally be better. This

gives an outcome with the same perfect matching in the �rst stage and where agents of

a given trait match �inside out� in preference in the second stage, with agents closer to s

matching to each other �rst, and agents further away from s matching later. However, this

assumption of preferences presents measure theoretic complications for the solution in the

more generalized case in section 3.2, so we will not make this assumption in the following

sections. The proof of uniqueness of the stable matching in a �nite version of this model is

given in the appendix.

We now construct the remainder distributions. De�ne

fA′ (θ, p) = max{ fA(θ, p)− fB(p, θ)∫
p

∫
θ
(max{fA(θ, p)− fB(p, θ), 0}) dθdp

, 0}

and

fB′ (θ, p) = max{ fB(θ, p)− fA(p, θ)∫
p

∫
θ
(max{fB(θ, p)− fA(p, θ), 0}) dθdp

, 0}

We are now ready to prove the inductive lemma for this case:

Lemma 20 Without loss of generality assume A
′
is to the northwest of B

′
(separated by a

curve as per SEP'). Suppose that all agents with traits and preferences such that (x, y) <

(x∗, y∗) have been stably matched and are eliminated from consideration, while no other agents

in A
′
or B

′
have matched. Then the set of A′ agents {aiθp : θ = y∗} will match stably and
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arbitrarily to the set of B′ agents {biθp : θ = x∗}.

Proof. For each B agent bx∗n, n ≤ y∗, which is the trait of all A agents on the other

edge of the quadrant de�ned by (x, y), so ay∗p
�

bx∗m
aθp, ∀ unmatched agents aθp where as

θ > y∗. A symmetric argument shows that all ay∗p strictly prefer bx∗n agents to any other

unmatched B agents, so the edge agents of both distributions will match to one another.

Since fAX(x) = fBY (y), these sets of agents have equal measure, so they exactly and stably

match to one another, leaving no remaining bx∗n or ay∗p.

Proposition 17 (Single Peaked Two-sided Matching I) Suppose MASS, SEP ′, OUT , and

CURV E. A measure of agents equal to the measure under both distributions and with equal

density over (x, y) will match to their preferred type, which also �nds them optimal. For

agents in the remainder distributions A
′
and B

′
and for all (x, y) ∈ s, the set of A′ agents

{aθp : θ = y} will match stably and arbitrarily to the set of B′ agents {bθp : θ = x}.

Proof. The �rst result is simply Lemma 17. Inductively proceeding with Lemma 2 northeast

along s, we have that ayp matches with any bxn and vice versa ∀(x, y) ∈ s. Because the

marginal densities are equal along this path, the measure of matched agents at any point in

the inductive process is identical for both sides, so we don't violate the necessary condition

of 1− 1 matching.

It's worth noting that this marginal density assumption is very important. If we did not

have CURV E2 and tried to proceed as above, we'd have unequal measures of agents being

matched at various points in the matching process, a clear contradiction. In fact, what would

happen is that each �layer� of A′ agents would not completely match out the corresponding

layer of B′ agents, and the remaining B′ agents would match to the next layer of A′ agents.

We would then no longer be in the the extremely convenient situation where the current

matchers are all of one trait and where every current matcher prefers the edge agents on the

other side to any other available agent. Similarly, dropping CURVE1 would invalidate the

procedure, with, for example, agents on one side matching to no one on the other side when

the slope of s was negative.

We can also obtain an algorithm for the matching in a one-sided problem with single-

peaked preferences from the two-sided algorithm by representing the one-sided problem as
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a two sided problem. Recall that a one-sided matching problem is one where there is a

single set of agents who must be matched to one another in any way that satis�es stability,

whereas the two sided problem imposes the additional constraint that agents can only match

to individuals on the opposite side.

Corollary 4 (Single Peaked One-sided Matching) For any distributionf(p, θ), de�ne fA(p, θ) =

fB(p, θ) = f(p, θ). Then if fAand fB satisfy MASS, SEP ′, OUT , and CURV E and

s = (x, x)∀x ∈ R , Proposition 17 holds. Equivalently, the one-sided matching problem with

distribution f has the stable matching given by Proposition 17, where the match of a given

agent a(b) is inf rather than fB(fA).

Proof. The �rst claim follows directly from Proposition 17, as it is just a special case of the

problem considered there. For the second claim, consider the one-sided matching problem

with single peaked preferences and distribution f . An agent a with trait θa and preference

pa prefers matches b based on . Similarly, b prefers matches based on|pb − θa|. Then if we

overlay fA = f with an axes-transposed copy of f , fB, a's preferences over f are given by

the vertical distance, and b's preferences over f are given by the horizontal distance. First,

we remove agents with perfect matches, so a mass min(f(p, θ), f(θ, p)) is matched to its

ideal match for each (θ, p), then we move on to the iterative stage. f, at every stage of

the matching process, the set of unmatched agents on each side in the two-sided problem

is equal to the set of unmatched agents in the one-sided problem, where all the matches

thus far derived in the two-sided problem are stable in the one sided problem, then the

current matches are optimal among the set of available matches for all agents on both sides,

so they are optimal in the one-sided problem. There is one complication here�when agent

a is matched to agent b in the two-sided problem, the a is removed from side A and b is

removed from side B. However, in the one-sided problem both a and b are on the same side.

If some matched agents are not removed from each side, the set of available matches will

not correspond to the one-sided problem. However, because the distributions are identical,

the remainder distributions are also identical by their de�nitions, and x = y ∀(x, y) ∈ s, the

set of current matches is identical, and agents are indi�erent between all possible matches

in this set. Since there are in�nitely many agents at every point with nonzero support, we
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can always have half the agents of a given type match to the other half, leaving no agents

unmatched and all agents with their preference maximal match among the set of remaining

agents.

Note that this yields a very simple matching outcome where as many agents get perfect

matches as possibly can and the remainder match to their own trait (positive assortation).

2.3.2 Extensions to the Baseline Model

While the result in 3.1 is extremely simple, the assumptions, especially CURVE2, are unlikely

to be even approximately satis�ed in a real world application. Having the marginal densities

equal at any particular point on s is unlikely, much less at every point. First, then, we will

relax this assumption. This signi�cantly complicates the problem, but does not render it

insoluble. Without loss of generality, assume that A and B are separated by a monotonically

decreasing h, with A above and to the right and B below and to the left. First, �nd all points

(xi, yi) ∈ s such that 1 − FB′Y (yi) = FA′X(xi) for i ∈ {1, ..., n} (assume there are �nitely

many such points). Then, ∀(x, y) ∈ s where (xi, yi) 5 (x, y) 5 (xi+1, yi+1), (xn, yn) 5 (x, y),

or (x, y) 5 (x1, y1),1 − FB′Y (y) 5 FA′X(x) or 1 − FB′Y (y) = FA′X(x). Without loss of

generality, suppose 1− FB′Y (y) 5 FA′X(x). Then, with the following amended assumption,

we can proceed to a matching solution.

• Assumption 4' (CURVE2'):

� When A′(B′) has a larger mass matched out, the marginal density of A′(B′) at

trait x(y) is greater than or equal to the marginal density of B′(A′) at trait y(x)

for preferences greater than or equal to y(x), where y(x) is such that we have

masses ma = mb1 + mb2 (mb = ma1 + ma2). That is, fA′X(x) =
∫∞
y
fB′(x, p)dp

(fB′Y (y) =
∫ x
−∞ fA(y, p)dp), .

This assumption ensures that, for example, there is never more mass in β1 in Figure 2.3.5

than in α, which would invalidate the matching algorithm since, as x moved outward as the

matching progressed down and to the right, more mass would be matched in B than in A,

even if y didn't decrease at all.
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Finally, before we state the proposition, we'll need a de�nition and two equations.

De�nition 6 De�ne MA(x) as the set of B agents that an A agent of trait x can stably

match to. That is. MA(x) = {bjθp : θ = y} ∩ {bjθp : p = x ∧ θ = y}. Similarly, MB(y) =

{ajθp : θ = x} ∩ {ajθp : p = y ∧ θ 5 x}.

We also de�ne two equations guaranteeing equal masses of agents have been matched out

at each step (this is equivalent to the equal masses condition in CURVE2').

∞∫
−∞

x∫
−∞y

fA′(θ, p)dθdp =

x∫
−∞

∞∫
y

fB′(θ, p)dθdp (2.3.1)

∞∫
−∞

∞∫
y

fB′(θ, p)dθdp =

∞∫
y

x∫
−∞

fA′(θ, p)dθdp (2.3.2)

Proposition 18 (Single Peaked Two-sided Matching II) SupposeMASS, SEP ′, OUT , and

CURV E ′. A measure of agents equal to the measure under both distributions and with equal

density over (x, y) will match to their converse type, who also �nds them optimal. For agents

in the remainder distributions A
′
and B

′
and for all (x, y) ∈ s, if 1 − FB′Y (y) 5 FA′X(x)

A′ agents {aiθp : θ = x} will match stably and arbitrarily to elements of the set of B′

agents MA(x) and vice versa, where y satis�es Eqn. 3.1 If 1−FB′Y (y) > FA′X(x) B′ agents

{biθp : θ = y} will match stably and arbitrarily to elements of the set of A′ agents MB(y) and

vice versa, where x satis�es Eqn. 3.2.

Proof. Then A agents of trait x will match to b agents of trait y and p 5 x or b agents

whereh−1(x) 5 p 5 y and trait x. To check that this is stable, consider a1, b1 and a2, b2

matching this way, where x2 > x1and consequently y2 < y1 . Without loss of generality,

either (1) 1 − FB′Y (y) 5 FA′X(x) for both 1 and 2, or (2)1 − FB′Y (y) 5 FA′X(x) for pair

1 and not for pair 2. If (1), a1 �b1 a2 since pb1 5 θa1 < θa2 . Then we need only consider

the potential a1 − b2 blocking pair. a1 �b2 a2 only if pb2 < θa2 , else a2 is b2's perfect match.

But if so then the trait of b2 is y2. Then b1 �a1 b2 as y2 < θb1 < pa1 . If (2), b1 �a1 b2 since

pa1 > θb1 > θb2 and a1 �b1 a2as pb1 = θa1 > θa2 , so there is no blocking pair. Finally, if

both pairs come from the same stage in the matching algorithm, either the b's are indi�erent

between the a's or the a's are indi�erent between the b's, so there is no blocking pair.
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Figure 2.3.5: Matching with unequal marginal distributions.

A has more mass in ma than B has in mb1, so agents in mb2 have also been matched to equalize the

mass on both sides.
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Figure 2.3.6: Proposition 18, Case 1 Example.

1− FB′Y (y) 5 FA′X(x) for both(x1, y1) and (x2, y2).
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Figure 2.3.7: Proposition 18, Case 2 Example.

1− FB′Y (y) 5 FA′X(x) for (x1, y1) only.
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Figure 2.4.1: Horizontal preferences in the single peaked preference framework.

2.4 Relationship to the Literature

As mentioned previously, there are well known results for two-sided matching with vertical

preferences, and Clark 2007(? ) gives the results for horizontal preferences shown in section

2. It is obvious from the previous exposition that horizontal preferences are a special case

of single-peaked preferences�speci�cally, they are the case where preference is set equal to

trait. Then with these preferences, we should �nd that the single peaked algorithm reduces

to the horizontal preference algorithm. In fact this is the case. In the horizontal preference

case, the distributions have support only on the diagonal, where preference equals trait.

From here, we remove the overlap and can now easily draw a monotonically decreasing

curve s = (x, h(x)) that separates the two sides, and by letting h(x) =F−1
B (1 − FA(x)), we

have the appropriate matches and an equal mass of matched out agents at every step in the

process, as desired.

Similarly, Becker's NTU model with vertical preferences is also a special case of single-

peaked preferences, namely, when everyone's preference is for higher traits. If there is a
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Figure 2.4.2: Horizontal matching in the single peaked preference framework

maximal trait θ̄, we can simply set preferences to θ̄. This a�ords a simple graphical rep-

resentation, with the distributions varying along trait with support only at preference θ̄.

Choosings = (x, h(x)) and letting h(x) =F−1
B (FA(x)), we have the appropriate matches and

an equal mass of matched out agents at every step in the process and the two distribu-

tions are separated by s, and we have the familiar positive assortative matching for vertical

preferences with nontransferable utility.

2.5 Interpretation and Empirical Implications

2.5.1 Interpretation

These models are amenable to some interpretation. While in the vertical case we have PAM,

and in the horizontal case we have PAM in the overlap and NAM in the remainders, in

the equal-marginals case of single peaked preferences, we have two modes of matching that

encompass these previous cases. First, we have CPAM over trait and preference in the

overlap region, where we have positive assortation in A trait and B preference and in B trait

and A preference�that is, increase in one parameter corresponds to increase in the other
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Figure 2.4.3: Vertical preferences in the single peaked preference framework.

parameter in one's match. Note that this is more than just PAM�the matches have exactly

reversed trait and preference. We can also see that the standard PAM of the horizontal

model is actually a special case of this CPAM, where only the fact that trait and preference

are equal ensures that A trait equals B trait. For the remainders, we see PAM when the

separating curve is increasing, which is to say that agents generally prefer higher types than

their stable matches. We see NAM when the separating curve is decreasing, which is to say

that agents generally prefer lower types than their stable matches. This again corresponds

to the horizontal and vertical cases, with the line in the vertical case having a positive slope,

while the horizontal case has a negative slope.

The more general model of proposition 18 is a bit more complicated, but also yields an

intuitive interpretation. Without loss of generality, assume a strictly decreasing h and A

at the top right, with higher mass on side A as in Figure 2.3.5. In this situation, B agents

can be thought of as being in shortage at (x, h−1(x)) in Figure 2.3.5, as there aren't enough

of them to match to A agents as in the equal marginals outcome. As such, and given that

matching utilities for each agent in a match need not correlate in any way, we'd expect

that B agents will often be able to leverage this scarcity to get a matching outcome more

favorable to their side, and this is in fact the case. Notice that the entire region β1 in Figure
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2.3.5 gets perfect matches (from their perspective), while β2 agents have a similar matching

outcome to B agents in the equal marginals case. A agents, on the other hand, match to B

agents whose trait is further from their preferences than the agents with trait h−1(x) that

they'd match to in the equal marginals case, so they are worse o�. In terms of assortation,

we see that, for the overlap region the result is the same as the equal-marginals case, while

in the remainders we have some of the agents exhibiting PAM or NAM in trait as before

(e.g. agents matching from α to β2), while the shortage agents get CPAM.

2.5.2 Empirical Implications

The empirical implications of this model are also fairly straightforward, though they vary

based on the orientation of the distributions. Again, without loss of generality assume a

strictly decreasing h and A at the top right, with higher mass on side A as in Figure 2.3.5.

As a's trait increases, the matching function that gives the distribution of possible matches

exhibits distributions where the maximum preference of matches is equal to a's trait and

thus increasing (β2 in Figure 2.3.5 is the set of possible matches with preferences less than

a's trait). Note that all potential matches for an A agent with trait x must have the same

trait, y, unless their preference is equal to a's trait, and that this y is decreasing in x. The

distribution of possible matches also includes B agents whose trait is greater than y but less

than the minimum preference of a agents with trait x in A', β1 in Figure 2.3.5. This region's

upper and lower bounds in B agent trait decrease in x, while the B agent's preference is of

course increasing in x as it is equal to x. Finally, we can expect a mass point of perfect

matches where preference and trait are reversed from the �rst stage of the matching process.

If we only observe trait, we would expect to see a mass point at the minimum trait a matches

to, and as a's trait increases, we would expect that mass point to move downward. Analogous

predictions can be recovered for other orientations and relative surpluses.

2.6 Conclusions

This paper derived an algorithm for �nding matching outcomes in a generalization of several

environments that have previously been explored in the matching literature, namely Becker's

77



vertical model and Clark's horizontal model. By allowing for a wide variety of single peaked

distributions, this algorithm can be used to explore matching behavior in a much richer

environment.

There are several plausible extensions for this model which will not be explored fully in

this paper but may be worth further consideration. For example further study could include

determining how these models relate to analogous �nite matching models or models with

search.

2.7 Appendix

2.7.1 Uniqueness of the Stable Matching

As noted earlier, the stable matchings derived in this paper may not be unique. However,

with the additional assumption of lexicographic preferences where agents �rst prefer match

traits close to their peak preference, then secondarily prefer match preferences close to their

trait, we can pursue a proof of uniqueness for the equal marginals case.

• Assumption 5 (LEX) : Without loss of generality, consider side A. For any A agent

aτ of type τ and B agents bθi and bθj where τ < i < j (j < i < τ),

bθi �
aτ
bθj (bθj �

aτ
bθi)

There is an additional complication, however�the proof technique used here only works with

�nite sets of agents, so we must restrict ourselves to a �nite version of the model analyzed

above. It may well be possible to extend the proof to in�nite case, but the measure theoretic

complications haven't been resolved as of this writing. First, we need to prove the equal

marginals proposition in this environment.

Lemma 21 Suppose LEX. For each point (x, y), a measure of agents on side A(B) equal to

µ(x, y) = min{fA(x, y), fB(y, x)}, matches to the types (y, x) on side B(A).

Proof. There are at least µxy (x, y) A agents and (y, x) B agents by assumption. aiθp strictly

prefers bjpθ to any other B agent, and symmetrically bipθ strictly prefers ajθp to any other A

agent. Then a mass µθp of aθp's strictly weakly prefer to match with any of the mass µθp of
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bpθ's, and the bpθ's will symmetrically strictly prefer aθp's to any other agents, so they will

form stable matches.

We are now ready to prove the inductive lemma for this case:

Lemma 22 Without loss of generality assume A
′
is to the northwest of B

′
(separated by a

curve as per SEP'). Suppose that all agents with traits and preferences such that (x, y) <

(x∗, y∗) have been stably matched and are eliminated from consideration, while no other agents

in A
′
or B

′
have matched. Then the set of A′ agents {aiθp : θ = y∗} will match stably to the

set of B′ agents {biθp : θ = x∗}, where for matching pair (a,b), pb = f−1
B′T (fA′X(pa)).

Proof. Note that the second order preferences don't change agent preferences for matches of

di�erent traits. They are only relevant when considering two agents of the same trait. Thus

the types of agents in every match will remain the same as before, as proven in Lemma 20.

For a given (x,h(x)), notice that this problem mirrors the horizontal matching problem of

Section 2. Then by Lemma 18, we have that the innermost agents will match to each other

at each step, and in order to ensure an equal mass matched out at every step, we must have

pb = f−1
B′T (fA′X(pa)).

Proposition 19 (Lexicographic Single Peaked Two-sided Matching I) SupposeMASS, SEP ′,

OUT , and CURV E. A measure of agents equal to the measure under both distributions and

with equal density over (x, y) will match to their preferred type, which also �nds them opti-

mal. For agents in the remainder distributions A
′
and B

′
and for all (x, y) ∈ s, the set of

A′ agents {aθp : θ = y} will match stably to the set of B′ agents {bθp : θ = x}, where for

matching pair (a,b), pb = f−1
B′T (fA′X(pa)).

Proof. The �rst result is simply Lemma 17. Inductively proceeding with Lemma 2 northeast

along s, we have that ayp matches with any bxn and vice versa ∀(x, y) ∈ s. Because the

marginal densities are equal along this path, the measure of matched agents at any point in

the inductive process is identical for both sides, so we don't violate the necessary condition

of 1− 1 matching.

De�ne a member of the family of matchings given by Proposition 19 as L. De�ne the

type of a match for agent ai(bi) under assignment M as as mM(ai) (mM(bi))
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Figure 2.7.1: A sequence of matching pairs under L and a0, b1's assignment under M.

Proposition 20 (Single Peaked Two-sided Matching I Uniqueness) Suppose the conditions

of Proposition 17 are satis�ed and A and B are �nite sets. Then L is the unique stable

matching up to agents with identical type.

Proof. De�ne bi as mL(ai). We'll suppose a stable matching M exists such that mL(ai)

has a di�erent type vector than bi for some i. First consider stage one. Every agent gets

their unique (in terms of type vector) ideal match, which also considers them ideal. Then

no agents in either stage 1 or stage 2 could form a blocking pair with a stage 1 agent, since

the stage 1 agent strictly prefers their current match. Then any stable matching M cannot

di�er from L for these agents). Now consider stage 2. If the matching M di�ers from L in

this stage, at least one agent has a di�erent match, and their new match in M also has a new

match relative to L. Suppose there exists b1 ∈ B′ such that mM(b1) = a0 and θa0 > θa1 or

θa0 = θa1 and Pa0 < Pa1 . If not, a0 is such that θa0 < θa1 or θa0 = θa1 and Pa0 > Pa1 . Thus b1

strictly prefers a0 to a1. Then a0 must strictly prefer their match under L, b0 = mL(a0) 6= b1,

to b1 or (b1, a0) from a blocking pair in L, contradicting its stability. In this case we could

proceed with the following argument with a0 rather than b1. Then without loss of generality,

assume ∃b1 ∈ B′ as before. Since b1 matches to a0, despite preferring a1, it must be that
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some a1 type agent matches to some b2 such that θb1 > θb2 or θb1 = θb2and Pb1 < Pb2 , else

there would be a blocking pair (a1, b1) in M since the only agents a1 would be indi�erent

to are other b1agents, and one of them is matching to a0 so there are not enough remaining

b1 agents to match to all a1 agents. We see that b2 is matching to a1, despite preferring

a2. From here, we can proceed by induction�for any t, if bt is such that mM(bt) = at−1 and

θat−1 > θat or θat−1 = θat and Pat−1 < Pat , a1, it must be that some at type agent matches

to some bt+1 such that θbt > θbt+1 or θbt = θbt+1 and Pbt < Pbt+1 . But then mM(bt+1) = at

and θat > θat+1 or θat = θat+1 and Pat < Pat+1 . Since there are �nitely many agents in A

and B, we will �nd a t such that, e.g. at must match to some bt+1 such that θbt > θbt+1 or

θbt = θbt+1and Pbt < Pbt+1 , but there are no remaining agents in B that satisfy this condition,

so we have a blocking pair.
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CHAPTER 3

MATCHING MARKETS WITH N-DIMENSIONAL PREFERENCES

3.1 Introduction

In theoretical models of matching markets it is often assumed that agents have preferences

over a single parameter which is either vertical, where all agents share a preference ordering

over types; or horizontal, where agents prefer their own type. For both vertical (Becker

(1973)) and horizontal models (Clark (2003), Clark (2007), and Klumpp (2009)), simple

matching functions have been derived for continuous and discrete cases. However, it would

be desirable to model multiple preference dimensions representing all the traits we believe

agents have preferences over. This would allow us to make predictions about how an agent's

own multivariate type will correspond to the multivariate type of their match in a real

matching market. It would also allow us to explore the qualitative structure of matching

over many traits, which cannot be studied in a univariate model.

In this paper we derive a simple matching function for a special case of n-dimensional

horizontal preferences, where agent types are points in Rn and agents prefer matches that

are closer to them in terms of distance. Speci�cally, we consider the case where the set of

agents on each side are symmetric about a separating hyperplane. Because this assumption

is implausible in real world applications, we simulate matching markets with both modest

and moderate deviations from the symmetry assumption and �nd that the theoretical re-

sults for symmetric markets well approximate the stable matching assignments observed in

markets with moderate deviations from symmetry. We treat both the case where utility is

nontransferable (NTU) and the case where where utility is transferable (TU). In the NTU

case the two matching agents cannot bargain over the apportionment of the utility of the

match, while in the TU case agents can divide the match payo� between one another in any

way they choose.
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While this model assumes horizontal preferences, the results can easily be extended to

a preference structure that includes vertical preferences, categorical horizontal preferences1,

and even more general single peaked preferences2, as all these preference types can be repre-

sented by horizontal preferences. Thus, these results can be applied to a matching problem

where the economist observes an arbitrary number of horizontal, vertical, categorical horizon-

tal, or single peaked preference traits. Because of this, the horizontal preference assumption

is not terribly restrictive, and these results may plausibly be directly applied to real world

matching markets.

These results make two primary contributions to the literature. First, they contribute to

the wide empirical literature on assortative matching.3 While research on assortation has

generally been con�ned to single traits, such as whether rich individuals marry rich individu-

als and poor individuals marry poor individuals, our result yields testable predictions for the

structure of assortation among all traits simultaneously. Under a special case of symmetry,

it predicts positively assortative matching4 (PAM) along all but one trait, and negatively

assortative matching5 (NAM) along the remaining trait. More generally, it predicts that an

agent's match's type will be a linear function of their own type. Lindenlaub (2013) recovers

matching functions and studies assortation in a similar n-dimensional matching environment,

but focuses exclusively on vertical preferences and TU.

The second contribution is to the theoretical matching literature. Univariate models are

the norm in the literature because with theoretical models it is easier to work with closed form

solutions, and these are much easier to obtain in a univariate model. By providing closed form

matching functions for multivariate matching problems, our results open up new possibilities

1For example, there are several ethnic categories and agents prefer their own category.

2For example, women most prefer men who are 80% their height plus 18 inches, with preference decreasing
in distance from this ideal.

3In one dimension, assortation is a matching structure where the type of an agent's match is monotonic
in the agent's own type.

4PAM means an agent's match's type is monotonically increasing in the agent's own type.

5NAM means agent's match's type is monotonically decreasing in the agent's own type.
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for analyzing matching models with multiple preference traits in a theoretical setting. There

are already matching theory results for more general preference structures, such as the famous

Gale-Shapley algorithm. However, while these algorithms can solve matching problems with

arbitrary preferences, including multiple preference dimensions, they are iterative algorithms

that do not give closed form solutions. Thus, while analyzing multivariate matching problems

has been tractable in empirical settings for some time, theoretically tractable n-dimensional

matching models have only begun to be studied, and our results provide extremely simple

matching functions for a wide range of preferences in both TU and NTU environments.

Additionally, we �nd that the NTU and TU matching assignments are identical in our

environment given a common assumption on match utility. A major implication of this is

that the NTU assignment maximizes total match surplus and internalizes any externalities.

Also, the equilibria of �nite NTU matching markets with search frictions must approach

surplus maximization as frictions go to zero (low search costs or high patience) in many

environments6. The assumptions of our paper may frequently be satis�ed in future theoretical

work due to the need for tractability, so we can expect surplus maximization to be a common

feature in tractable multivariate NTUmodels. However, the strong distributional assumption

of symmetry needed to get this result suggests that this absence of externalities is a property

of a special class of matching markets and cannot be expected to hold generally. Externalities

in matching markets may drive rationales for intervention and provide opportunities for

matching platform owners to pro�tably manipulate user matching behavior, so this is of

practical interest.

This paper follows a rich literature on stable matching problems, starting with the seminal

paper by Gale and Shapley (1964) mentioned above. Becker (1973) found that PAM occurs

when there is a continuum of types and the utility of a match is increasing in types and

nontransferable and that PAM also occurs when utility is transferable and the total utility

of a match exhibits increasing di�erences in the two agents' types. Unlike Gale-Shapley, this

requires no iterative process to �nd agent pairs in the stable matching, so it is suitable for

6Environments that satisfy the assumptions of this paper and those of e.g. Lauermann and Nï¾÷ldeke
(2014).
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use in theoretical models. However, it imposes the fairly onerous assumption of univariate

vertical preferences�higher types are universally preferred to lower types, and agents only

care about one trait. Legros and Newman (2007) extended PAM and NAM results to a class

of partially nontransferable utility problems, where there are limitations on the ability of

some or all agents to transfer utility to their match.

Assuming horizontal preferences over a single trait where agents want to match to their

own type, Clark (2003) gives an algorithm for �nding stable matchings in a market with a

�nite set of agents. Clark (2007) then treats the univariate horizontal case with an in�nite

set of agents, �nding a very simple matching result, which, like Becker's result for vertical

preferences, is well suited to a theoretical model. Clark (2006) also gives a condition guaran-

teeing a unique stable matching. Finally, Klumpp (2009) derives a very simple �inside-out�

algorithm for horizontal matching with �nitely many agents.

Multivariate matching has been studied empirically for some time. Choo and Siow (2003)

develop an empirical model of TU marriage matching on age and education. Hitsch, Hor-

taï¾÷su, and Ariely (2010) study online dating, recovering preferences over many traits using

a multivariate NTU model with horizontal and vertical preference dimensions. Chiaporri et

al. (2012) study multivariate marriage matching empirically and recover a simple match-

ing function by assuming that preferences can be aggregated to a single index of quality.

Theoretical treatments of multidimensional matching include Chiaporri et al. (2010), which

applies optimal transport theory to multidimensional TU matching problems and �nds a

very general (but not closed form) characterization of TU matching functions. Lindenlaub

(2013) �nds closed form solutions to multivariate matching problems in a very similar envi-

ronment to this paper, and studies the e�ects of varying complementarities between traits.

The analysis, however, is restricted to vertical preferences and TU. This paper extends the

literature by �nding closed form matching functions for TU and NTU in a framework where

agents have preferences over multiple traits and where they can have a wider variety of

preferences over each trait.

The remainder of this paper is organized as follows: Section 2 lays out the basic theoretical

framework this paper uses and explores issues surrounding the modeling of agent preferences

that shape the paper. Section 3 derives the main propositions of the paper, characterizing the
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matching functions for various symmetric n-dimensional horizontal matching problems. It

also includes discussion of how these results might extend to asymmetric matching problems.

Section 4 outlines the simulation model that is used to analyze the asymmetric case. Section

5 reviews the results. Section 6 summarizes the paper and suggests avenues for further re-

search. Section 7, the in-text appendix, provides many Monte Carlo simulations to test the

robustness of the theoretical results to deviations from the theoretical assumptions. It also

includes several proofs not included in the main body of the article. An online appendix (lo-

cated at http://s�anders.web.unc.edu/�les/2013/09/ndimmatching_online_appendixc.pdf)

provides additional Monte Carlo simulations, an extension of the results of this paper to the

Roommates Problem, and background information on the various matching algorithms used

and referenced in this paper.

3.2 Theoretical Preliminaries

3.2.1 The Model

The environment we'll be considering is a matching market with two sides, or sets of agents,

A and B7. We'll denote speci�c agents in A as a, and speci�c agents in B as b. These

sides could be interpreted as men and women in a heterosexual dating market. Agents of

each side seek exclusive matches with agents of the other side. These agents can costlessly

and perfectly observe every other agent in the market and costlessly propose and accept

or reject any number of matches. Time is not modeled in this environment; everything

happens simultaneously and with no time discounting. Agents have preferences over potential

matches, and if b �
a
b′ we'll say a strictly prefers b to b′, and if b <

a
b′ we'll say a prefers b to

b′ or is indi�erent between them.

The goal of our analysis will be to �nd stable matchings in this environment. In this

environment, a matching or assignment is a function µ : A∪B → A∪B such that, for each

agent x ∈ A∪B, µ(x) is an agent on the opposite side or the empty set (no match), and µ is a

7We will sometimes abuse notation by denoting the type distributions associated with these sets by A
and B as well.
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bijection. This tells us what a match is, but our real goal is to predict how they will form. To

do this, we need to specify agent preferences over matches. We will assume that, when agents

a and b match, they produce a match surplus u(a, b) which will be split between the two

agents. In the nontransferable utility (NTU) environment, we will assume that agents cannot

bargain over the apportionment of u(a, b). For example, if a and b match, each agent will get

u(a, b)/2. Agents want to maximize their own utility, so an agent a will prefer agents b that

yield a higher u(a, b). In the NTU environment, a stable matching is a matching in which

there is no a and b such that b �
a
µ(a) and a �

b
µ(b). Such an (a, b) is a called a blocking pair.

In the transferable utility (TU) environment, match surplus can be apportioned between

the two agents in any way. Because of this, the utility an agent gets from a match is not

entirely determined by the agent she matches to�the transfers between agents must also be

accounted for. Thus, a stable matching with TU is a matching µ such that there exists an

allocation rule v : A∪B → R giving the utility for each matched agent such that is feasible:

v(a) + v(µ(a)) ≤ u(a, µ(a)) ∀a ∈ A and v(b) + v(µ(b)) ≤ u(b, µ(b)) ∀b ∈ B, and under which

the match is stable: there is no a and b such that u(a, b) > v(a) + v(b). Such an (a, b) is

called a blocking pair.

We focus on matchings because we want to �nd out how agents pair up in this environ-

ment, and we restrict our consideration to stable matchings as we assume that, if agents are

matched in an unstable way, it's likely that some matches will dissolve as poorly matched

agents pursue better matches that also prefer them. In stable matchings, by contrast, the

matching should remain unchanged over time so long as preferences and the distribution of

agents remain the same.

Preferences can be very general in the framework outlined so far, but we'll restrict them

to horizontal preferences, where agents prefer matches with types closer to their own. Specif-

ically, we look at an environment where agents s of each side S have n traits, and their type

is an n-vector, θs ∈ Rn. When unambiguous, we'll use s to denote an agent's type vec-

tor to conserve notation. The ith trait in this environment is θi. These could be income,

height, BMI, risk aversion, etc. The horizontal preference assumption means that agents pre-

fer matches whose n-dimensional type is closer to their own n-dimensional type in a given

distance metric on Rn. Typically we'll use the Euclidean distance.
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Figure 3.2.1: Mapping vertical preferences to a horizontal model.

Side A's type remains the same in θ′, but B's type is multiplied by -1 and translated by a constant,

so that the highest A type is below the lowest B type. Thus the highest A and lowest B types

in θ′ are the highest θ type agents and are mutually most desirable in the horizontal framework,

while the lowest A and highest B types are the low types in the original vertical framework and are

mutually least desirable in the horizontal mapping.

We'll also specify utility functions corresponding to these preferences, where utility is

decreasing in distance. In our �rst case, we'll assume nontransferable utility in this matching

problem so that agents cannot o�er some of their matching utility to a potential mate to

induce them to match. We'll then assume transferable utility with an additional assumption

that the utility function is convex in distance.

3.2.2 Modeling Various Preference Types in a Horizontal Frame-

work

As mentioned previously, we are considering agents with horizontal preferences over n traits.

However, there are many traits where preferences are manifestly not horizontal for most

individuals. For example, people generally prefer more attractive partners, not a partner

of their own level of attractiveness.8 Luckily, while the horizontal preference assumption

8A common result in matching models with vertical preferences is that agents match to mates of their
own quality, but this is a characteristic of the equilibrium, not of agents' own preferences.
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requires preferences to correspond to a shared distance function over all n traits, it still allows

considerable �exibility. Many types of preferences can be mapped into this framework. We'll

show how vertical preferences can be mapped into this framework below. More general single

peaked preferences, and certain types of categorical preferences can be also mapped into the

horizontal framework, as shown in Online Appendix 1.1.1.

In the attractiveness example, we assume agents prefer more attractive individuals. If

everyone can agree on the relative attractiveness of any two individuals, and everyone prefers

more attractive to less attractive individuals, we call this a vertical preference. Vertical

preferences can be represented in a horizontal framework, as shown in Figure 3.2.3. Given

two distributions over a single trait θ with vertical preferences (the higher the type, the more

desirable to all agents on the other side), we can generate a new trait θ′ by mapping the

two distributions to the real line with preferences based on least-distance. For example, we

could have attractiveness for A and B, θ, range from 0 to 1. Then we can map to the new

A attractiveness using the identity function θ′A = θA and the new B attractiveness using

θ′B = 2 − θB. Since higher θ′ type A agents (lower θ′ type B agents) had better vertical

types, and are also closer to and thus more preferred by all B (A) agents, we preserve the

preference orderings of all agents. Thus, if we expect agents to have vertical preferences over

a trait we'd like to include in the model, we can preserve that preference structure in the

horizontal model we've developed. 9

3.2.3 Aggregation to a Single Dimension

An obvious question we might ask is the following: can we reduce multivariate preferences to

a single variable? Many theoretical models use univariate preferences, and existing research

has already discovered closed form matching functions for many types of preferences over a

single trait. Thus, if we could transform a multidimensional problem into a one-dimensional

problem, that would be an attractive way to proceed. Speci�cally, we'll consider the following

problem: we have an n-dimensional matching problem as described in Section 2.1, with either

9Note that we need the best A agent to be below the best B agent in the horizontal mapping. If not,
there will be overlap in the support of A and B, and overlap agents will most prefer their own θ′ type, rather
than the �best� agent of the other side.
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horizontal or vertical preferences over each trait. Our goal is to construct a univariate type

and corresponding values along that one parameter for each agent such that the salient

features of the n-dimensional matching model are preserved in the one-dimensional model.

Ideally, we'd like to preserve preference orderings over potential matches for each agent and

stable matching outcomes for each agent. In fact, a single aggregated type is used in a

number of papers in the literature, such as �pizzazz� in Burdett and Coles (1997). More

recently, the ability to aggregate type vectors into a univariate index has been used as an

identifying assumption in empirical work such as Chiappori et al. (2012).

As shown in Online Appendix 1.1.2, aggregation that preserves the set of stable match-

ings is possible with vertical preferences under an additional assumption. However, when

horizontal traits are introduced, mapping from n dimensions to one dimension will generally

lead to a larger set of stable matches. Most importantly, it cannot preserve the full prefer-

ence orderings of each agent (Online Appendix 1.1.2). Because the full preference orderings

are not preserved, if we change some parameter of the matching problem and cause the

stable matching to change, we cannot expect those changes to be the same in the univariate

model as in the underlying multivariate model. For example, if we want to examine a model

where a market designer is optimizing over some parameters10 that change the structure of

the matchings, aggregation will render this optimization invalid with respect to the original

n-dimensional problem. Generally, we cannot assume theoretical economic models involving

univariate matching problems are valid stand-ins for those same models with multivariate

matching problems unless we have a speci�c reason to believe such aggregation preserves the

characteristics of the model we consider salient11. Thus, we'll now consider the problem of

explicitly solving multivariate matching problems.

10e.g. a price of entry into the matching platform.

11In a companion paper (Flanders (2014)), we �nd just such an environment where aggregation does not
change the salient characteristics of the model.
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3.3 Theoretical Results for Symmetric Distributions

3.3.1 Nontransferable Utility Matching with Symmetric Distribu-

tions

If we cannot reduce an n-dimensional horizontal problem to a one-dimensional one, we must

consider how to directly solve an n-dimensional problem. We will see that, given a form of

symmetry between the distributions of each side and the condition that the distributions are

separated, we can solve the matching problem. We can even characterize the type of one's

match as a linear function of one's own traits. The model here is still the one outlined in

Section 2.1, with disutility of distance given by an increasing function f of the negation of

the Euclidean distance metric: u(a, b) ≡ f(−d(a, b)), where d is shared by all agents on both

sides.

De�ne the unit normal to a hyperplane h with origin at zero as η(h). Denote the normal

to a hyperplane h beginning in h and terminating at a point a as η(h, a). De�ne dη(a, b)

as the distance between a and b along vector η(h, a) and dhi(a, b) as the distance between a

and b along the ith basis vector of h. De�ne d(a, h) ≡ ||η(h, a)|| = dη(a, h). Note that this

is the minimal distance between a and the hyperplane h, and also the distance between a

and a's projection onto h. We'll need to make several assumptions to get a simple matching

function:

• Assumption 1 (SEP) : ∃h = {x : ax = k} for some a and k such h separates A and

B. That is, ay < k < az ∀y ∈ A,z ∈ B.

Separation of the two distributions ensures that no one can get their own type as a match,

which they would always accept. We could eliminate overlap by matching out identical

agents and using the proposition to be proved on the remaining agents, but typically these

remainder distributions will still not satisfy the separation criterion, as this condition is

stronger than a requirement that the sets be disjoint. While this assumption appears strong,

it will often be quite easy to satisfy: if there is at least one vertical trait, this condition is

automatically satis�ed, since vertical preferences require that the distributions of the two

sides be separated along the vertical dimension, and by constructing a hyperplane with a
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normal along the vertical dimension, we can separate the entire n-dimensional distributions.

Thus, if there are any traits that can be assumed to be quality based, such as income in

a dating/marriage application, this condition imposes no further restriction. Alternatively,

if more general preferences are decomposed into vertical and horizontal components, as

done in Hitsch, Hortaï¾÷su, and Ariely (2010) and discussed in Online Appendix 1.1.1,

then the vertical component will be su�cient for Assumption 1. If the distance between

the distributions is large enough, we can �nd a hyperplane that satis�es SEP as well as

assumption 3.2. To state assumption 2, we must �rst de�ne the re�ection or Householder

matrix of h as R(h) ≡ I − 2η(h)η(h)T .

• Assumption 2 (REF) : the set A is the re�ection about h of the distribution B.

That is, R(h) · A = B.

We'll need this assumption to ensure that every agent has a re�ected agent, which, combined

with the shared distance metric, will ensure that we can match every agent to their re�ection

stably. Note that this assumption is a generalization of univariate symmetry assumptions

(e.g. FM(x) = FW (x) for type distributions FS and sides M and W ) common to many

matching papers (e.g. Burdett and Coles (1997), Bloch and Ryder (2000), etc.) that also

allows for more general forms of symmetry.

• Assumption 3 (EUC) : the distance metric on which preferences are based is the

Euclidean distance.

Using the Euclidean distance, we'll be able to restate the distance between two points in

terms of distance along the normal to a hyperplane and the distance along the basis vectors

of that hyperplane, which will be crucial for proving the that agents stably match to their

re�ections (this will not generally be true for other norms). The important characteristic of

the Euclidean norm is that it is rotationally symmetric. That is, the indi�erence curve of

any agent with distance preferences based on the Euclidean norm is a hypersphere, which

has rotational symmetry. In contrast, for the 1-norm or sup-norm the indi�erence curve will

be a hypercube, which is not invariant to rotation.

Essentially, we want to do what is seen in Figure 3.4.1. Given a matching problem

with distributions A and B that are symmetric about some hyperplane which may have any
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arbitrary orientation in the typespace, we want to solve an equivalent problem where the

typespace is rede�ned through a change of basis such that the re�ecting hyperplane is now

normal to one of the new basis vectors. Then an agent and their re�ection will di�er only

along one dimension�along the vector normal to the hyperplane. This will be critical in

the proof, and rotational symmetry of the Euclidean norm ensures that the rotation of the

typespace due to the change of basis will not change the matching problem.

Now we can state the result. Recall the property of re�ection matrices that R(h) · a =

a− 2η(h, a):

Proposition 21 (Continuous Symmetric NTU Matching) Given a two sided NTU matching

market with sides A and B, suppose there exists a hyperplane h ⊂ Rn satisfying SEP and

REF. Suppose agents prefer closer matches in the Euclidean distance metric (EUC). Then

all agents matching to their re�ection is stable. That is,µ(a) = a− 2η(h, a)=R(h) · a.

Proof. For a contradiction, consider the matching outcome of Proposition 21 and suppose

there is a blocking pair (a1, b2) such that b2 �
a1
µ(a1) = b1 and a1 �

b2
µ(b2) = a2. Then

d(a1, b2) < min{d(a1, b1), d(a2, b2)}. Since the agents in pairs (a1, b1) and (a2, b2) are each

re�ections of their respective matches, we know d(a1, b1) = 2d(a1, h) = dη(a1, h), d(a2, b2) =

2d(b2, h) = dη(b2, h). Since d is the Euclidean distance,

d(a1, b2) =

√√√√√∑ n

i = 1
di(a1, b2)2

and equivalently, we have

d(a1, b2) =

√√√√√∑ n− 1

i = 1
dhi(a1, b2)2 + dη(a1, b2)2

≥
√
dη(a1, b2)2

= dη(a1, b2)

= dη(a1, h) + dη(b2, h)
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= (d(a1, b1) + d(a2, b2))/2

≥ min{d(a1, b1), d(a2, b2)}

Contradiction.

Since an agent's a's match is R(h) ·a where R is a matrix, the matching function is linear.

To interpret this, we'll introduce a new de�nition of assortation for multiple dimensions.

De�ne ai as the value of the ith trait of agent a, and a¬i as the vector of a's traits excluding

i.

De�nition 7 (Unconditional PAM(NAM)) We'll say a matching µ satis�es unconditional

PAM (NAM) in trait i if ai > a′i implies µi(a) > µi(a
′) (µi(a) < µi(a

′)) ∀a, a′ ∈ A.

This extends the univariate de�nition to multiple dimensions by ensuring the one dimensional

assortation holds throughout the typespace. We could imagine a weaker de�nition requiring

only, say, ai > a′i implies µi(a) > µi(a
′) (ai > a′i implies µi(a) < µi(a

′)) for a given a¬i vector

(a¬i = a′¬i). Then we could have, for example, PAM in income for low education individuals

and NAM in income for high education individuals. De�nition 7, by contrast, requires a

much stronger notion of assortation.

Given this de�nition and the fact that µ is linear in own type, the following holds:

Corollary 5 (n-Dimensional Assortation) for each i, µi either satis�es unconditional PAM,

satis�es unconditional NAM, or, for each a¬i, all (· , a¬i) type agents match to B agents of

type (bi, · ) for some bi.

While the direction of assortation for each trait depends on the orientation of the two distri-

butions, the linear matching pattern ensures that if matching on one trait is PAM (NAM) for

one vector of other traits, it is PAM (NAM) for every vector of other traits. This yields strong

testable implications about the structure of matching, but to fully characterize the qualita-

tive structure of matching, it will be helpful to normalize the typespace. De�ning a rotated

typespace with the normal to h as the �rst dimension and n−1 orthogonal spanning vectors

of h as the remaining n − 1 dimensions and denoting the vector with all zero components

except a value of one at component i as ei, we can immediately derive a characterization of

the matching function from Proposition 21:
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Corollary 6 (Normal n-Dimensional Assortation) Where de�ned,
∂µ(a)

∂a1

= −e1,
∂µ(a)

∂ai
=

ei for i > 1

Proof. Note that µ(a) = a− 2η(h, a) = a− 2d(h, a)e1. Then
∂µi(a)

∂ai
= ei− 2

∂d(h, a)e1

∂ai
and

∂d(h, a)e1

∂ai
is 0 if i > 1 and ei if i = 1.

Corollary 6 has a simple interpretation: along the normal to the hyperplane dividing

the two distributions, the matching exhibits NAM. Along vectors orthogonal to the �rst,

the matching exhibits PAM. Additionally, match type along one dimension depends only on

own type along that same dimension. This is very intuitive given the fact that matches are

re�ections of one another along the hyperplane.

Note that Corollary 6 hold only for the synthetic traits of the rotated typespace, which

are vectors in the original typespace. Further, the original typespace itself may be composed

of synthetic traits generated from the original traits in order to map non-horizontal prefer-

ences into the horizontal preference framework, as shown in Section 2.2. Thus, if we want

to interpret the assortation results with respect to the original traits, we'll need to map the

rotated, synthetic traits back to the original set of traits. For a simple example, consider an

n-dimensional matching problem with n− 1 horizontal dimensions and 1 vertical dimension,

where no rotation is required. Then there will be PAM in all horizontal traits. Horizontal

traits do not need to be mapped into the horizontal framework and we assumed they are un-

rotated, so no no mapping�or equivalently the identity mapping�is required. Thus the PAM

of Corollary 6 applies directly to the horizontal traits. The vertical trait is still unrotated,

but one side's values have been multiplied by -1. Thus, the NAM of Corollary 6 corresponds

to PAM in the original vertical trait. Thus in this example we have PAM along all traits,

and every agent matches to their own type.

3.3.2 Transferable Utility Matching with Symmetric Distributions

We now move on to an analogous matching problem for transferable utility. Just as Becker

showed that TU and NTU-stable matchings coincide for univariate vertical preferences when

match utility is supermodular in types, we �nd that the NTU-stable matching derived above

is also TU-stable given the appropriate analogue for supermodularity in this framework.
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That analogue is convexity of the disutility of distance. This will ensure that the marginal

cost of a closer pair being moved further apart is greater than the marginal cost of further

pairs being separated further. Convexity is important in the TU framework since agents are

free to bargain with each other over that division of match surplus. Due to that bargaining,

TU-stability requires that the sum of match surpluses be maximized, and the aggregate

surplus maximizing allocation depends on convexity. As with our previous result, we will

see NAM along the vertical dimension. Convexity ensures that a distant pairing and a

close pairing has a higher total match surplus than two mediocre pairings, so in order to

maximize match surplus the closest pairs will be preferentially matched together. Along all

other dimensions agents will match to their own type (after the typespace has been rotated),

as this is their ideal match.12

Generally, explicitly solving for TU-stable matchings is more di�cult, since one must �nd

not just the matching but also show there are surplus allocations that support that matching

as stable. Finding those surplus allocations can be very di�cult in general, but the REF

assumption ensures that an even split of the match surplus for every pair will admit a stable

matching. Generally, the allocations can be thought of as a shadow price for the agent's

presence in the matching market (Browning et al. (2014)). As such, stable allocations vary

widely depending on the outside options of each agent in the match�colloquially, whether

they are in shortage or surplus. However, we've assumed that the two distributions are

symmetric, and in the stable matching agents will turn out to match to their mirror type,

as before. Thus, every agent's decision problem is mirrored by the decision problem of their

mirror match, and neither has any sort of advantage or disadvantage relative to the other in

bargaining over the split, so an even split is supportable.

12Becker also found a result for TU stability with submodular match utility, and we conjecture that this
result too can be generalized to the n-dimensional framework, where the disutility of distance is instead
concave. In this framework, instead of the two distributions being re�ections of one another, they must
instead be translations of one another�the same distributions up to an o�set. This is actually a less restrictive
assumption than the re�ective symmetry assumption, as it does not require any sort of rotation, or that
the distributions be separated. Given this framework, we conjecture (and Monte Carlo simulations support)
that agents will match to their translated twin in the opposing distribution. However, proving this result
will be more di�cult than in the convex disutility case, and, as with Becker's result for submodular utility,
the result is of less interest since it implies NAM, which is typically not observed empirically. Thus, the
proof is not pursued here.
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Proposition 22 (Continuous Symmetric TU Matching) Given a two sided TU matching

market with sides A and B, suppose there exists a hyperplane h ⊂ Rn satisfying SEP and

REF. Suppose agents prefer closer matches in the Euclidean distance metric (EUC) and the

match utility is weakly convex and decreasing in distance. Then all agents matching to their

re�ection is a stable matching assignment. That is, µ(a) = a− 2η(h, a)=R(h) · a. Further,

every pair splitting the match surplus equally is an allocation consistent with stability. If

match utility is strictly convex in distance and there are �nitely many agents, the stable

assignment is unique.

Proof. See Appendix 3.7.1.2

We can extend this result beyond two-sided matching problems as well. Online Appendix

1.2 gives an analogous result for the one-sided matching or �Stable Roommates� problem�a

result that is in some ways more robust, as it does not require rotation of the typespace.

3.3.3 Matching with Asymmetric Distributions

Propositions 21 and 22 gives us an easily derived and interpreted matching function. How-

ever, we are very unlikely to encounter perfectly symmetric sides empirically; we cannot

expect the n-dimensional distribution of men to be the exact re�ection of the n-dimensional

distribution of women about a separating hyperplane. However, we can easily �nd an approx-

imate re�ection. For example, we can choose a hyperplane that re�ects the center of mass

of distribution A to the center of mass of distribution B. The natural question to ask, then,

is whether the sort of approximate symmetry we might see in the data corresponds to ap-

proximately the same matching structure. Unfortunately, deriving more general closed form

matching functions for n-dimensional horizontal matching markets is extremely di�cult.

However, we can make some conjectures. The factors that ensure the assortation in the

symmetric case are still at work in an asymmetric market. In an asymmetric case like Figure

3.3.1, agents still want closer matches, which means A agents closer to B (more desirable to

all B agents) will match to agents in B that are themselves close to A (also more desirable).

Similarly, agents on the top right of B are likely to match to agents on the right side of A,

who they prefer and to whom they're among the more attractive options. However, because
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Figure 3.3.1: Failure of the symmetry assumption.

In any empirical application, the symmetry assumption will never be fully satis�ed. In this example,

distributions A and B are uniform square distributions, identical up to translation. Because they

are o�set from each other along the horizontal dimension, no hyperplane can perfectly re�ect one

onto the other, so the symmetry assumption fails.

there is not a symmetric match for all agents, one side or another will be in shortage at

various times in the inside-out algorithm, so the matching outcome will be distorted from

the ideal symmetric case. Thus we would expect some attenuation in the e�ect of own

traits on corresponding match traits and possibly some modest e�ect of own traits on non-

corresponding match traits. Notice that, while the re�ection may not be a perfect match,

as long as there is su�cient separation between the two distributions we will be able to �nd

a separating hyperplane that maps the center of mass of A onto the center of mass of B,

giving an approximate re�ection. At least one vertical dimension will guarantee that the

two distributions are separated, as seen in Section 3.2.2. If the separation of the two sides

is large enough, we should have enough space between the distributions to �t a hyperplane

that both separates them and re�ects the center of mass of one onto the center of mass of

the other. Thus, while a lack of symmetry may change the matching outcome, getting an

approximate re�ection should not generally be a problem in an empirical setting.
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3.4 Simulation Framework

3.4.1 Simulation Setup

We'll now develop a framework to test the validity of symmetric distribution results in

situations with asymmetric distributions. We'll consider two cases: �rst, we assume a best

case scenario where the underlying distributions for A and B are symmetric but the realized

observations are drawn randomly and thus do not exhibit perfect symmetry. Note that this

will completely eliminate the matching structure we relied on for Proposition 21, since agents

no longer have mirror matches. However, the overall distribution should be approximately

the same, so we can hope that the results will be almost identical. Second, we consider a

less optimistic scenario where the underlying distributions are not perfectly symmetric, but

exhibit moderate asymmetry when re�ected onto one another, as in Figure 3.3.1. In this case

we can expect same-trait e�ects signi�cantly below one and other e�ects may be nonzero.

To simplify the analysis and facilitate visualization of the model, we'll primarily focus

on a two-dimensional typespace, and later look at how increasing the number of dimensions

changes the outcome. In both the symmetric and asymmetric cases, the observations on

both sides are drawn from square bivariate uniform distributions. In the �rst case, they are

stacked vertically as in the right-hand portion of Figure 3.4.1. In this case A and B are

symmetric about h, h is horizontal, and the assortation should be along θ1 and θ2. For the

second case, the distributions are o�set along θ1, yielding a market like that seen in Figure

3.3.1. In this case, h is not horizontal. To match the predicted e�ects to the axes of the

model, it will be necessary to rotate the typespace such that h becomes horizontal as seen

in Figure 3.4.1.

3.4.2 Simulation Model Speci�cations

In the simulation model, the two dimensional matching market is as described in section 4.1.

For higher dimensions, only the asymmetric case is simulated: the distribution is uniform

over an n-cube, o�set greatly along one dimension, and slightly o�set along all others. With

the simulated agents in hand and their preferences speci�ed, we can simply run a version of
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Figure 3.4.1: Rotation example

An example where A and B are symmetric about the separating hyperplane h, but the hyperplane
is not normal to any of the basis vectors of the type-space. To observe the predicted assortation,

we must rotate the typespace so that h is normal to one of the newly created synthetic traits.

Klumpp's inside-out algorithm in the NTU case to �nd the stable matching outcome.13 In

the TU case, we can solve for the stable assignment and transfers pair by formulating the

matching problem as a linear program (Shapley and Shubik (1972)).14 Given a separating

hyperplane along the horizontal axis, we can then run regressions with one b trait as the

dependent variable and both a = µ(b) traits as the independent variables, where the resulting

coe�cients estimate the e�ects of a change in each on the b trait. In the idealized symmetric

case we would expect the coe�cients to be one for trait one on trait one, -1 for trait two

on trait two, and zero otherwise. We run each speci�cation many times and �nd the mean

of recovered coe�cient values, as well as a 90% con�dence interval. More detailed model

speci�cations can be found in Appendix 7.2.1.

While a few simulations are shown in Section 5 below, many more simulations are included

in Appendix 3.7.2 and Online Appendix 1.3. The environments simulated include alternate

distributions for A and B, non-uniform distributions, an example with a categorical variable,

deviations from the 2-norm assumption, simulations with correlated traits, di�erent levels of

13See Online Appendix 1.4.3 for a summary of the algorithm.

14See Online Appendix 1.4.2 for a summary of the algorithm.
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Predicting µ1(a) (vertical characteristic) by a

a1 a2 R
2

95th %ile -0.89 0.05 0.99

mean -0.98 0.00 0.97

5th %ile -1.09 -0.04 0.95

a1 a2 R
2

95th %ile -0.87 0.05 0.98

mean -0.98 0.00 0.97

5th %ile -1.08 -0.04 0.94

Symmetric, n=100

Asymmetric, n=100

Table 3.1: MC Results for the Vertical trait: NTU, 200 iterations, baseline speci�cation.

convexity with TU, and NTU and TU simulations for various market sizes and numbers of

preference traits.

3.5 Results

First, we'll look at the two dimensional case with NTU and a very coarse market of 100

agents on each side (Table 3.1). We start with the 100 agent case so that we can compare

the NTU results to the TU results, which cannot easily be simulated for larger markets.

We'll initially look at the match's �rst trait, the �vertical� or separating trait. We see that

in this case the linear same-trait e�ects explain virtually all of the variation in one's match's

vertical trait, and the coe�cient is very close to -1 for both the symmetric and asymmetric

distributions. The opposite-trait e�ects are quite close to zero, as predicted. The R2 is very

close to 1, showing that almost all the variation in your match's vertical trait is explained

by your own vertical trait, with no noticeable drop o� for the asymmetric case. The range

of coe�cient estimates is fairly tight around both traits, showing that we can expect the

estimated coe�cients to be consistently close to their predicted values in this environment.

Now we'll look at the match's second trait, the �horizontal� trait (Table 3.2). In the

symmetric case, we see that the linear same-trait e�ects explain much of the variation in

one's match's horizontal trait, and the coe�cient is fairly close to 1, as predicted. However,

there is much more attenuation than with the vertical coe�cient for both the symmetric and

the asymmetric case. The opposite-trait e�ects are quite close to zero, as before. The R2
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Predicting µ2(a) (horizontal characteristic) by a

a1 a2 R
2

95th %ile 0.15 0.96 0.77

mean -0.02 0.83 0.67

5th %ile -0.21 0.72 0.55

a1 a2 R
2

95th %ile 0.15 0.85 0.67

mean -0.01 0.75 0.56

5th %ile -0.20 0.65 0.45

Symmetric, n=100

Asymmetric, n=100

Table 3.2: MC Results for the Horizontal trait: NTU, 200 iterations, baseline speci�cation.

Predicting µ1(a) (vertical characteristic) by a

a1 a2 R
2

95th %ile -0.87 0.16 0.94

mean -0.96 -0.02 0.92

5th %ile -1.08 -0.16 0.88

a1 a2 R
2

95th %ile -0.84 0.13 0.92

mean -0.96 -0.02 0.88

5th %ile -1.10 -0.21 0.84

Symmetric, n=100

Asymmetric, n=100

Table 3.3: MC Results for the Vertical trait: TU, 60 iterations, baseline speci�cation.

is signi�cantly lower than for the vertical coe�cient, and drops o� more signi�cantly in the

asymmetric case. The range of coe�cient estimates is still fairly tight around both traits.

As we'll see later, the results much better approximate the ideal symmetric case as the size

of the market increases.

Now, we'll look at the analogous two dimensional case with TU (Table 3.3). We'll initially

look at the match's �rst trait, the �vertical� or separating trait. We see that the linear same-

trait e�ects still explain virtually all of the variation in one's match's vertical trait, and the

coe�cient is very close to -1 for both the symmetric and asymmetric distributions�though

not quite as close as in the NTU case. The opposite-trait e�ects are also quite close to zero,

as predicted. The R2 is fairly close to 1, showing that most of the variation in your match's

vertical trait is explained by your own vertical trait, with a small drop o� for the asymmetric

case. The range of coe�cient estimates is fairly tight around both traits, showing that we

102



Predicting µ2(a) (horizontal characteristic) by a

a1 a2 R
2

95th %ile 0.09 1.07 0.97

mean 0.01 1.00 0.96

5th %ile -0.09 0.88 0.93

a1 a2 R
2

95th %ile 0.03 1.07 0.96

mean -0.04 0.95 0.94

5th %ile -0.12 0.87 0.90

Symmetric, n=100

Asymmetric, n=100

Table 3.4: MC Results for the Horizontal trait: TU, 60 iterations, baseline speci�cation.

can expect the estimated coe�cients to be consistently close to their predicted values in this

environment.

Finally, we'll look at the match's horizontal trait in the TU case (Figure 3.4). In the

symmetric case, we see that in this case the linear same-trait e�ects explain virtually all

of the variation in one's match's horizontal trait, and the coe�cient is fairly close to 1, as

predicted, with modest attenuation in the asymmetric case. The opposite-trait e�ects are

quite close to zero, as before. The R2 is quite close to 1 and the range of coe�cient estimates

is still fairly tight around both traits.

These results are quite auspicious for applications of the theoretical result to empirical

data. Even in very small, coarse matching markets of two hundred agents, the idealized result

well approximates the actual outcome. The only exception to this is the weaker horizontal

assortation results in the NTU case. We'll see that the NTU case's horizontal results improve

markedly as the number of agents on each side grows. The primary question we are left with

is why the horizontal trait's e�ect is signi�cantly weaker and why it explains less of the

horizontal variation in the NTU case. This question is treated in Appendix 3.7.2.2.

So far, we've considered very small, coarse matching markets. How do the results we've

seen change when when there are more agents on each side? Do the results more closely

mirror the theoretical predictions? In particular, do the less than ideal results we saw in the

horizontal NTU case improve with more agents on each side? Also, so far we've looked at

models with just two traits over which agents have preferences. What happens if there are
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Figure 3.5.1: NTU with baseline speci�cations 1.

Predicting match's vertical trait from own vertical trait for di�erent number of agents and di�erent

numbers of preference dimensions. 200 iterations per speci�cation.

more traits? We now address these questions.15

In Figure 3.5.1 we see that, for an agent's match's vertical trait, the average coe�cient

on the corresponding trait of the agent appears to asymptotically approach 1 as the number

of agents on each side increases. We see some slight attenuation from this result as we

increase the number of preference dimensions, but even with �ve dimensions the result is

quite strong. To the extent that the coe�cient values do not monotonically decrease as the

number of agents increases and as the number of traits decreases, we can attribute this to

the �nite sample size for the Monte Carlo simulations, which introduces some noise into the

mean coe�cient estimates.

15Before we proceed, a note on some di�erences in the TU and NTU simulations: the inside-out algorithm
is faster than Gale-Shapley, which is already an extremely fast algorithm. However, the method used to
solve for TU stable matches is extremely slow. Thus TU simulations in this paper are for markets with
between 30 and 100 agents per side, while NTU simulations go up to 4,000 agents per side. This is because,
for TU simulations, the linear program to be solved has 10,200 constraints with just 100 agents to a side. If
we were to attempt to solve the model with 4,000 agents to a side, there would be 16,008,000 constraints.
Thus, the computation time increases very quickly with larger markets. In the 100 agents per side case, the
inside-out algorithm takes about 0.001 seconds, while the TU algorithm takes 2-4 minutes per simulation.
Even increasing the market size to 150 per side requires at least an hour of computation, if not more. Thus, it
is not possible to run Monte Carlo simulations for large markets in the TU case, and the number of iterations
must be lower than in the NTU case.
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Figure 3.5.2: NTU with baseline speci�cations 2.

Predicting match's vertical trait from own horizontal trait for di�erent number of agents and di�erent

numbers of preference dimensions. 200 iterations per speci�cation.

In Figure 3.5.2 we see that, for an agent's match's vertical trait, the average coe�cient

on the horizontal trait of the agent appears to asymptotically approach a value just slightly

below 0. To the extent that the coe�cient values are not monotonic in sample size, we can

probably attribute this to the �nite sample size for the Monte Carlo simulations, noting

the extremely small region of the y-axis that's being graphed. The fact that the coe�cient

seems slightly biased from the predicted coe�cient of 0 should not be surprising�our baseline

speci�cation includes asymmetry in both the draws and the underlying distributions, and

while asymmetry in the draws should asymptotically approach zero as the size of the market

increases, the asymmetry of the underlying distributions will not. If anything, it is quite

impressive that there is so little bias, given the signi�cant deviation from symmetry we've

speci�ed.

In Figure 3.5.3 we see that, for an agent's match's vertical trait, the average R2 appears

to asymptotically approach 1 as the number of agents on each side increases. We also see that

the R2 is attenuated as we increase the number of preference traits. Note that, to recover

the R2, we regress only the same trait coe�cient so that the R2 gives us the variation in
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Figure 3.5.3: NTU with baseline speci�cations 3.

Average predicted R2 for the regression of own vertical trait on match's vertical trait for di�erent

number of agents and di�erent numbers of preference dimensions. 200 iterations per speci�cation.

one's match trait solely attributable to the predicted same own trait e�ect.

For the NTU case, we've looked at simulations where both the individual draws and

underlying distributions have signi�cant asymmetry, and we generally see that the predic-

tions from the theoretical results for symmetric distribution are a good approximation for

the actual stable assignments. As the size of the market increases, the stable assignments

appear to asymptotically approach the predicted assortation in the vertical trait. As seen

in Appendix 3.7.2.3, we also come fairly close to the predicted assortation along horizontal

traits, though the results are not quite as strong. Additionally, this asymptotic behavior

appears quite quickly as the size of the market increases�just a few thousand agents to a

side gives us extremely strong �delity to the predicted result. In many applications such as

online dating, the market will be more than large enough to see asymptotic behavior. We do

see that we need larger and larger markets to get the same level of �delity to the predicted

results as we increase the number of traits. This is not terribly surprising, as increasing the

number of traits while holding the number of agents on each side constant e�ectively makes

the distributions on each side sparser, since they vary over a larger type-space. A concern
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Table 3.5: MC Results for Five Dimensions.

Here we compare the �delity of a �ve dimensional NTU stable matching to the predicted results

for two cases. In the equal weights case, each trait is given equal weight in the distance metric. In

the unequal weights case, trait two is given ten times as much weight as the others. The reported

values are the means of 200 stable matchings with 1000 agents on each side. The model used is the

asymmetric baseline for �ve dimensions.
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here is that we could presumably enumerate dozens or hundreds of traits over which agents

have preferences. The simulations above suggest we might need millions or billions of agents

on each side to get a good approximation to the symmetric result if there are too many traits.

Luckily, not all preferences are created equal, and some traits will be of great importance,

while others are of little. Then, as we see in Table 3.5, the traits that are very important to

agents should have good �delity to the predicted results at reasonable market sizes even if

there are many more less important traits. The less important traits, conversely, will have

very poor �delity to the predicted result. However, traits which agents do not care much

about are probably not of great interest to begin with.

As mentioned before, we can only simulate very small markets for the TU case. Thus, we

cannot observe the asymptotic TU trends the way we did in with NTU. The TU simulations

for various market sizes and numbers of traits appear quite similar to those for NTU. The

main di�erence is that, as seen before, there is a relatively better �t for the horizontal traits

and a relatively worse �t for the vertical trait compared to NTU. However, the inability to

simulate to markets of many hundreds of agents and the very small number of iterations

that were possible for the Monte Carlo simulations makes the interpretation much more

di�cult. Generally, the TU results seem consistent with the NTU results in the range we

can examine them in, and we assume that they would continue to mirror the NTU results

in larger markets. The TU simulations are presented in Appendix 3.7.2.4.

3.6 Conclusions

In this paper, we found a simple, closed form matching function for a special case of fric-

tionless two-sided matching where agents have preferences over multi-dimensional types. To

get this result, we needed to make strong assumptions on the distributions of agents and

the structure of preferences, most notably that the distribution of agents on each side was

the re�ection of the distribution of agents on the other. However, the simulations in Section

5 and in the appendix strongly support the symmetric mirror-matching result's applicabil-

ity to modestly asymmetric markets. While, as expected, there is some attenuation of the
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anticipated same-trait e�ects on matches, the coe�cients are relatively close to their pre-

dicted values even in small matching markets of a few hundred, and improve as the size of

the market increases. Thus, these results may plausibly be applied to empirical matching

data. These results also have relevance for theory work. We can embed the closed form

matching functions into more complex economic models, such as models of online dating

markets. This allows for the theoretical study of matching phenomena involving multiple

traits, such as how agents tradeo� between various match traits. It also allows one to com-

pare the highly aggregated, univariate theoretical matching models that are typical in the

literature to multivariate models, in order to see whether the qualitative characteristics of a

multivariate model are preserved in a more stylized univariate model.

One major implication of our result is that the NTU assignment maximizes total match

surplus when the match utility function is convex. In an analogue to the Coase Theorem,

the frictionless TU assignment maximizes total surplus (Shapley and Shubik (1972)) and

internalizes externalities via transfers, and the two assignments coincide, so the NTU as-

signment has the same properties. Also, Adachi (2003), Eeckhout (1999), and Lauermann

and Nï¾÷ldeke (2014) show that, in many search environments with NTU, search equilibria

approach the frictionless stable assignment as frictions go to zero, provided that assignment

is unique. Thus, there are a wide range of environments16 where �nite17 NTU search mar-

kets must have equilibria that approach surplus maximization as frictions go to zero. The

setting of this paper encompasses many environments with univariate vertical or horizontal

preferences and symmetric distributions, and future theoretical work in both search and fric-

tionless multi-dimensional matching will likely often satisfy the assumptions imposed in this

paper due to the tractability issues with asymmetric distributions. Thus, tractable models

with NTU, especially with multiple preference dimensions, will likely have these qualities.

This implies, for instance, that externality issues with NTU search markets of this type can

be resolved by simply improving the search technology. However, the strong assumptions

needed in this paper�and the divergence of TU and NTU assignments in simulations that

16e.g. those satisfying the assumptions of one of the above papers and this paper.

17The NTU uniqueness result in this paper is only proved for �nite markets.
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relax these assumptions�illustrate how special these environments are and suggest that these

e�ciency results cannot be expected to hold generally in the broader universe of possible

matching markets. Failure of NTU matching to maximize social surplus due to externali-

ties may provide a justi�cation for market intervention or for platform owners like online

dating websites to in�uence consumer matching behavior through contracts, platform struc-

ture, etc., so this issue has practical importance. Indeed, a recent survey of the search and

matching literature (Chade, Eeckhout, and Smith (2015)) identi�es the role of externalities

in matching markets as one of the most important open questions in the �eld.

3.7 Appendix

3.7.1 Proofs

Uniqueness of Symmetric stable matching with �nitely many agents.

While we've proven in Section 3 that the symmetric matching outcome is stable for NTU, we

have not proven that it is unique. While the following proof technique does not work in the

in�nite case. In the �nite case, we can construct the only possible type of stable matching

and show that, under certain conditions, the set of stable matchings is a singleton.

Proposition 23 (NTU Finite Symmetric Matching) Suppose ∃ a hyperplane h ⊂ Rn such

that the �nite set of agents A is the re�ection of the �nite set of agents B about h and h

separates A and B. Suppose agents prefer closer matches in the Euclidean distance metric.

Then all agents match to their re�ection. That is,µ(a) = a− 2η(h, a)=R(h).a.

Proof. Consider the �rst step of Klumpp's inside-out algorithm and a pair (a, b) such that

d(a, b) is distance minimal among all a ∈ A and b ∈ B . We will show that a and b are

re�ections of each other. Without loss of generality, consider a's matching problem. Suppose

d(a, b) > d(a, b′), whereb′ = R(h).a. Then (a,b) is not distance minimal, a contradiction.

Supposed(a, b) ≤ d(a, b′) where b′ = R(h).a and b 6= b′. Since Euclidean distance is rotation

invariant, we can �nd n-1 orthogonal vectors spanning h and decompose d(a,b) into distance

along the normal and distance along h,

√√√√√∑ n− 1

i = 1
dhi(a, b)

2 + dη(a, b)2. Then
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√√√√√∑ n− 1

i = 1
dhi(a, b)

2 + dη(a, b)2 ≤

√√√√√∑ n− 1

i = 1
dhi(a, b

′)2 + dη(a, b′)2

Since b′ is the re�ection of a about h, dhi(a, b
′) = 0. Therefore we have

√√√√√∑ n− 1

i = 1
dhi(a, b)

2 + dη(a, b)2 ≤
√
dη(a, b′)2

∑ n− 1

i = 1
dhi(a, b)

2 + dη(a, b)
2 ≤ dη(a, b

′)2

dη(a, b)
2 < dη(a, b

′)2

dη(a, b) < dη(a, b
′)

Note that distance dη(a, b) = d(a, h) + d(b, h), so we have

d(a, h) + d(b, h) < 2d(a, h)

d(b, h) < d(a, h)

But we know that a′ = R(h).b is an agent in A since A is the re�ection of B about h, and

d(a′, b) = 2d(b, h) < d(a, h) + d(b, h) = dη(a, b) <

√√√√√∑ n− 1

i = 1
dhi(a, b)

2 + dη(a, b)2 = d(a, b),

so (a,b) is not distance minimal, a contradiction. Continuing inductively, if all previous steps

in the inside-out algorithm have resulted in mirror pairs matching out, every agent remaining

unmatched has a mirror pair still unmatched, and the result just proved applies. Thus all

agents getting a mirror match is a stable matching. Note that having at least one vertical

trait will ensure the separation condition, as along the vertical axis, all agents in A will be

above (below) all agents in B. Since this is just a special case of the inside out algorithm,
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the properties of that algorithm's matching outcome are preserved, most importantly the

uniqueness of the stable match given strict preferences (Klumpp (2009)).

Continuous Symmetric TU Matching.

Proof. First, we'll show stability. For a contradiction, consider the matching outcome

of Proposition 22 and suppose there is a blocking pair (a1, b2) such that u(d(a1, b2)) >

u(d(a1, b1))/2 + u(d(a2, b2))/2 . But by convexity, we know u(d(a1, b1))/2 + u(d(a2, b2))/2 ≥

u((d(a1, b1) + d(a2, b2))/2). Since the agents in pairs (a1, b1) and (a2, b2) are each re�ections

of their respective matches, we know d(a1, b1) = 2d(a1, h) = dη(a1, h), d(a2, b2) = 2d(b2, h) =

dη(b2, h). Since d is the Euclidean distance,

d(a1, b2) =

√√√√√∑ n

i = 1
di(a1, b2)2

and equivalently, we have

d(a1, b2) =

√√√√√∑ n− 1

i = 1
dhi(a1, b2)2 + dη(a1, b2)2

≥
√
dη(a1, b2)2

= dη(a1, b2)

= dη(a1, h) + dη(b2, h)

= (d(a1, b1) + d(a2, b2))/2

Thus

u(d(a1, b1))/2 + u(d(a2, b2))/2 ≥ u((d(a1, b1) + d(a2, b2))/2) ≥ u(d(a1, b2))

Contradiction.

Now, we show uniqueness. Recall that a stable allocation must maximize the aggregate
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match surplus. Suppose there are k agents on each side and that mirror agents have identical

indices. Suppose that each agent's type is unique.18 Then for any potential stable allocation

µ, we must have
∑k

i=1 u(d(ai, µ(ai))) =
∑k

i=1 u(d(ai, bi)). As before, we can decompose the

distances along the basis vectors, noting again that d(ai, bi) = dη(ai, bi). Then we have

k∑
i=1

u(dη(ai, bi)) =
k∑
i=1

u


√√√√√∑ n− 1

i = 1
dhi(ai, µ(ai))2 + dη(ai, µ(ai))2


k∑
i=1

u(dη(ai, bi)) ≤
k∑
i=1

u(dη(ai, µ(ai)))

Note that, having removed all horizontal components, we have a condition on a single

vertical component. This condition is analogous to the optimality condition in the standard

Becker TU matching problem. For any distinct pairs i and j, we have that dη(ai, bi) +

dη(aj, bj) = dη(ai, bj) + dη(aj, bi) and dη(ai, bj) = dη(aj, bi). Then convexity ensures that

u(dη(ai, bj)) = u(dη(ai, bj)/2+dη(aj, bi)/2) = u(dη(ai, bi)/2+dη(aj, bj)/2) < u(dη(ai, bi))/2+

u(dη(aj, bj))/2. For any µ(ai), de�ne bj(i) ≡ µ(ai). Then
∑k

i=1 u(dη(ai, µ(ai))) =
∑k

i=1 u(dη(ai, bj(i))) ≤∑k
i=1 u(dη(ai, bi))/2 + u(dη(aj(i), bj(i)))/2 =

∑k
i=1 u(dη(ai, bi)) since µ is a bijection, and the

inequality is strict if j(i) 6= i for some i. In fact, if µ is some matching other than the stable

matching described above, it must be that j(i) 6= i for some i. Then this alternate matching

cannot be stable and the stable assignment is in fact unique. 19

18If there is more than one agent of a given type, we can easily amend the proof to account for this. The
stable allocation will remain unique up to agent type, though not up to individuals, since two identical agents
can have their matches switched without changing total surplus.

19This uniqueness result is proved in much greater generality in Theorem 4.11 of Chiappori et al., but
mapping the match surplus functions from this environment to their framework and showing their conditions
are satis�ed to demonstrate that it is a special case of their result would be too long-winded for this paper.
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3.7.2 Monte Carlo Simulations

Detailed Simulation Model Speci�cations

In the NTU case we simulate 100, 200, 400, 800, 2,000, or 4,000 agents for each side for both

the symmetric and asymmetric speci�cations. The agents are drawn from an independent

bivariate uniform distribution with support from 0 to 3.5. In the symmetric case, the two

distributions are o�set by 10 along the second trait (thus, along the second trait, A agents

range from -5 to 0 and B agents range from 5 to 10). They are not o�set along the �rst

trait. In the asymmetric case A and B are o�set by 10 along the second trait and 3.2.5

along the �rst. Therefore, they are not symmetric about the hyperplane that approximately

mirrors them. For higher dimensions, the distribution is uniform over an n-cube whose edges

are of length 5, and the o�sets are 10 along one trait, and 3.2.5 along all others. For TU

simulations, the matching disutility is the square root of the two-norm distance. In the TU

case 30, 50, 70, or 100 agents are drawn for each side. For future reference, we'll call the

above class of models our baseline speci�cation. We'll run models with 2, 3, 4, or 5 traits

over which agents have preferences. Larger numbers of traits were not simulated because

the formulae de�ning the general form of the rotation matrix increase in both number and

length as n increases, becoming unmanageable with more than a few dimensions.

With the simulated agents in hand and their preferences speci�ed, we can simply run

a version of Klumpp's inside-out algorithm in the NTU case to �nd the stable matching

outcome.20 In the TU case, we can solve for the stable assignment and transfers pair by

formulating the matching problem as a linear program (Shapley and Shubik (1972)).21 Given

a separating hyperplane along the horizontal axis, we can then run regressions with one b

trait as the dependent variable and both a = µ(b) traits as the independent variables, where

the resulting coe�cients estimate the e�ects of a change in each on the b trait. In the

idealized symmetric case we would expect the coe�cients to be one for trait one on trait

one, -1 for trait two on trait two, and zero otherwise. We run each speci�cation a number of

20See Online Appendix 1.4.3 for a summary of the algorithm.

21See Online Appendix 1.4.2 for a summary of the algorithm.
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times�200 times for NTU speci�cations, and either 60 or 20 for TU depending on the model

speci�cation�and �nd the mean of recovered coe�cient values, as well as a 90% con�dence

interval.

Before we can run the regressions in the asymmetric case, we must derive a rotation

matrix and rotate the typespace to one where the hyperplane is horizontal. We �nd the

vector from the center of mass (mean) of A to the center of mass of B, and construct the

rotation matrix that maps that vector to the vertical axis. We then rotate the typespace,

creating new �synthetic� traits 1 and 2 which should correspond to the vectors along which

matching is positively assortative or negatively assortative. Finally, we run the regression

using th e synthetic traits.

Understanding Di�erences in TU and NTU Simulation Results

In Section 5, we saw that, in the NTU case, we had better �delity to the predicted assortation

results along the vertical trait. In the TU case we saw the opposite, though in this case the

di�erence between the vertical and horizontal results was smaller. We'll now try to �nd

some intuition as to why we'd see these results, starting with the NTU case. Recall that

one's predicted match�their re�ection about the hyperplane h�generally will not exist in

these simulations. Thus, agents will have to match to some substitute with a di�erent trait

vector. Because the Euclidean distance is used and agents di�er from their predicted match

only along the vertical parameter, small changes from this outcome are much more costly in

utility terms if they result in vertical change than if they result in horizontal change. In fact,

the utility e�ect of a horizontal deviation per unit distance asymptotically approaches zero

for small horizontal deviations. Thus, deviations from this ideal matching due to shortage or

surplus of agents on a given side are likely to be realized primarily via horizontal deviations

which are less costly. For example, in Figure 3.7.1 we see that a large horizontal deviation

is on the same indi�erence curve as a tiny vertical deviation.

This explains the results in the NTU case, but what about TU? Why do TU stable match-

ings seem to better approximate the theoretical assortation prediction along the horizontal

dimension, and approximate the vertical assortation prediction relatively less well? First,
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Figure 3.7.1: Horizontal deviations have small utility e�ects relative to vertical deviations.

An agent b is predicted to match to their re�ection, a. Because a and b di�er only along the �vertical�
dimension, the distance between b and an agent near a has a much larger vertical component than

horizontal component, so in the Euclidean distance horizontal deviations cause a much smaller

change in distance and thus utility.
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let's consider the simpli�ed example in Figure 3.7.2. In this example the symmetry assump-

tion does not hold, and we see how the unique stable matchings under the two transferability

assumptions di�er. In both the NTU and TU cases, the stable matches are shown by lines

between agents, and the re�ection matches for B agents predicted by propositions 1 and 3

are shown as µ(bi). Notice that, in the NTU case, the actual stable matching {a1b2, a2b1} has

matches for B agents with the same θ2 values (vertical types) as the predicted matches for

those B agents. However, the θ1 or horizontal types of the actual matches are very di�erent

than the symmetric matching prediction. In the TU case, by contrast, stable matches for the

B agents have the same horizontal types as their predicted matches, but the vertical types

di�er. In the NTU case we have the predicted vertical assortation, but not the horizontal

assortation, and in the TU case we have the predicted horizontal assortation, but not the

vertical assortation. Note also that we cannot have both at the same time�the predicted

matches do not actually exist, and the two con�gurations shown in 3.7.2 are the only pos-

sible matchings. While matching problems with more agents and less carefully chosen trait

values will not be as extreme as this example, Figure 3.7.2 distills an important quality

of n-dimensional matching problems of the sort we've been studying: there will generally

be a tradeo� between assortation along one dimension and assortation along another. In

the two dimensional case, we can come up with matchings (not necessarily stable) that get

closer to the horizontal assortation prediction, but this will often result in less �delity to the

vertical assortation prediction, and vice versa. We will see below that TU stable matching

puts a greater premium on horizontal assortation than vertical assortation relative to NTU,

so the stable matches in the TU framework will exhibit better horizontal assortation and

commensurately worse vertical assortation.

Why is this? Whenever an A agent matches to a B agent, they create a negative exter-

nality for any A agents that would have liked to match to that B agent, since that B agent is

now removed from the set of possible matches. In the NTU case, however, agents only care

about their own match. It is irrelevant to an A agent whether matching to a particular B

agent leaves another A agent with a far worse outcome. We can see exactly this in the NTU

case of Figure 3.7.2. First, the closest agents, b1 and a2, match. This leaves a1 and b2 with

an extremely bad pairing, but since transfers are impossible, they have no recourse. In the

117



TU case, by contrast, agents can freely trade their match surplus with their match in order

to entice potential mates. In the TU case of Figure 7.2, we see that the stable matching is

a1 matching with b1 and a2 matching with b2. Notice that these matches are almost as good

(close) for b1 and a2 as the a2b1 match, and that they are vastly better for a1 and b2 than

the a1b2 match. Essentially, a1 and b2 are able to o�er more of their surplus to a2 and b1 in

order to attract them, and they greatly prefer this to getting a terrible match. We can think

of the TU stable matching structure in terms analogous to the Coase Theorem�agents cause

externalities by removing mates from the pool of potential matches, but they internalize

those externalities since those a�ected can o�er transfers embodying the cost that has been

imposed on them.

How does this relate to horizontal and vertical preferences? Consider how vertical assor-

tation a�ects individual utility: everyone agrees on the rank ordering of potential matches,

so if one A agent matchesf to a B agent they �nd more desirable along this dimension,

another A agent must match to someone they �nd less desirable. That is, one agent's gain

is another agent's loss�this is the negative externality discussed before. In light of this, we

see that vertical assortation will make some agents better o�, but it will make other agents

worse o�. Along the horizontal dimension, however, di�erent agents prefer di�erent matches,

since they prefer their own type. In fact, horizontal assortation will make all agents better

o�, since it will give all agents their ideal type along that dimension. Thus, when we move

from an NTU framework where externalities are ignored to a TU framework where they are

accounted for, we can expect to see a shift towards horizontal assortation at the expense of

vertical assortation.

Note that we've been running simulations where the support and variance of the distribu-

tion along each dimension is identical. If we were to increase the support of the distribution

along the ith trait, or equivalently we were to increase the weight on the ith trait in the

distance metric, the relative �delity of the simulations to the horizontal and vertical assor-

tation predictions would change. Speci�cally, putting more weight on a trait will generally

improve the assortation along that trait, while worsening it along all others. An illustration

of this can be seen in Table 3.5 in Section 5, where the coe�cient and R2 dramatically im-

prove for predicting a match's second trait by own second trait, while all other assortation
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Figure 3.7.2: TU and NTU stable assignments di�er when the symmetry assumption fails.

Here we consider the simplest nontrivial matching problem�two agents on each side�and assume mild

convex preferences for distance for the TU case. Assume uTU (a) = −
√
d(a, µ(a)). The predicted

but nonexistent symmetric matches for B agents are shown as µ(bi).

results worsen. Intuitively, we can think about this in much the same way we looked at the

better vertical assortation results in the NTU case. As in that case, the stable matching in

the approximate symmetry environment is going to be a close approximation to the perfect

symmetry stable matching, which has perfect assortation. However, it will not be possible

to match each agent to their exact mirror-type because of the lack of perfect symmetry,

so agents must deviate from their predicted matches. When a given trait is assigned more

weight in agents' utility functions, they will be relatively more sensitive to deviations along

this axis, and relatively less sensitive to deviations along other axes, so the assortation result

will be stronger along the higher-weight axis and weaker along all others.

Additional NTU simulations for various market sizes and numbers of traits

Below we have the remainder of the baseline NTU simulations from Section 5. These are

the the horizontal same trait coe�cients and the corresponding R2.

In Figure 3.7.3 we see that, for an agent's match's horizontal trait, the average value for

the agent's horizontal coe�cient increases as the number of agents on each side increases.

119



�

���

���

���

���

�

��� ��� ��� ��� ���� ����

�
�
�
��
��
��
�
�	
�
�	


�

�
����	��	
�����	��	�
��	����

����������	���
�	���������
�	��
�
����������	��	
��

�����������	��	
�

�	
��

�	
��

�	
��

�	
�


Figure 3.7.3: NTU with baseline speci�cations 4.

Predicting match's horizontal trait from own horizontal trait for di�erent number of agents and

di�erent numbers of preference dimensions. 200 iterations per speci�cation.

Recall that this this the case where the �delity of the average coe�cient values to the

predicted result of 1 was poorest in the small market simulations. Here we see that increasing

the number of agents on each side signi�cantly improves the result. We also see that adding

more traits causes more attenuation from the predicted result. It may be the case that, even

with an arbitrarily large market, the average coe�cient will remain below 1. Again, the

baseline speci�cation has asymmetric distributions, so there may be some deviation from

the predicted symmetric result even with very large markets.

In Figure 3.7.4 we see that, for an agent's match's horizontal trait, the average R2 in-

creases as the number of agents on each side increases. Recall that this this the case where

the �delity of the average coe�cient values to the predicted result of 1 was poorest in the

small market simulations. Here we see that increasing the number of agents on each side sig-

ni�cantly improves the result. We also see that adding more traits causes more attenuation

from the predicted result, except that the two dimension case improves more slowly with

more agents on each side. It may be the case that, even with an arbitrarily large market,

the average coe�cient will remain below 1. Again, the baseline speci�cation has asymmetric
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Figure 3.7.4: NTU with baseline speci�cations 5.

Average predicted R2 for the regression of own horizontal trait on match's horizontal trait for

di�erent number of agents and di�erent numbers of preference dimensions. 200 iterations per

speci�cation.

distributions, so there may be some deviation from the predicted result even with very large

markets. The nature of the asymmetry also changes slightly as the number of dimensions

changes, since the n-cube distributions are o�set along each dimension. This could be the

source of the strange behavior for the two dimensional case. Note that, to recover the R2,

we regress only the same trait coe�cient so that the R2 gives us the variation in one's match

trait solely attributable to the predicted same own trait e�ect.

TU simulations for various market sizes and numbers of traits

Below, we have simulations for the TU environment analogous to the NTU simulations

for various numbers of traits and di�erent market sizes presented in Section 5. As discussed

in Section 5, TU simulations are much more computationally intensive, so only small markets

are simulated here, and the number of iterations in the Monte Carlo process is small�just 20

per speci�cation. While these limitations make evaluation of the asymmetric stable matching
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Figure 3.7.5: TU with baseline speci�cations 1.

Predicting match's vertical trait from own vertical trait for di�erent number of agents and di�erent

numbers of preference dimensions. 20 iterations per speci�cation.

outcomes much more di�cult in than in the NTU case, we see that the results are qualita-

tively similar to the NTU results. Including more preference traits worsen cause attenuation

in the same-trait coe�cients from the predicted value of 1 or -1, and also worsen the R2,

while the di�erent-trait coe�cients remain around the predicted value of zero. Increasing

the size of the matching market improves the �t of the asymmetric model to the predictions

of the symmetric model, though the inability to simulate markets with many hundreds or

thousands of agents prevents us from seeing the limit behavior that we saw with the NTU

simulations. The primary di�erence is a relatively better �t for the horizontal traits, and

a relatively worse �t for the vertical traits, as compared the the NTU case. This is the

same behavior we saw in the 2 dimensional, 100 agent per side TU vs. NTU comparison in

Section 5. Given the similarity of the TU and NTU results in the region in which we can

compare them (small markets), we can conjecture that the �delity of the asymmetric stable

assignments to the symmetric model predictions should drastically improve as the number of

agents increases, as in the NTU case. It should become quite good even for several preference

traits as the number of agents on each side reaches several thousand.
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Figure 3.7.6: TU with baseline speci�cations 2.

Predicting match's vertical trait from own horizontal trait for di�erent number of agents and di�erent

numbers of preference dimensions. 20 iterations per speci�cation.
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Figure 3.7.7: TU with baseline speci�cations 3.

Average predicted R2 for the regression of own vertical trait on match's vertical trait for di�erent

number of agents and di�erent numbers of preference dimensions. 20 iterations per speci�cation.
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Figure 3.7.8: TU with baseline speci�cations 4.

Predicting match's horizontal trait from own horizontal trait for di�erent number of agents and

di�erent numbers of preference dimensions. 20 iterations per speci�cation.
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Figure 3.7.9: TU with baseline speci�cations 5.

Average predicted R2 for the regression of own horizontal trait on match's horizontal trait for di�er-

ent number of agents and di�erent numbers of preference dimensions. 20 iterations per speci�cation.
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