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ABSTRACT 

PAMELA LYNN REYNOLDS:  The Ecology of Fear in Estuarine Communities:  
Cascading Effects of Multiple Predators  

(Under the direction of John Bruno) 
 

The role of predation has long influenced our understanding of ecological processes 

from the individual to the landscape level. Recent interest in the role of nonconsumptive 

effects of predators, or the consequences of prey defensive behaviors in response to predation 

risk, has revolutionized how ecologists perceive the role of predators in ecological 

communities. From focusing on how individual predators affect prey risk taking behaviors 

and foraging tactics, to the consequences of these behavioral shifts for ecosystem functions 

and services including primary production, nutrient cycling and energy transfer, we now 

know that the mere presence of predators can sometimes be more important than their lethal 

effects on prey density. However, predicting the cascading effects of multiple predator 

assemblages is often challenging and counterintuitive due to the consequences of behavioral 

interactions among predators and their prey. I tested the effects of predator presence, identity 

and richness on prey and basal resources in field and mesocosm experiments based on 

estuarine communities. By allowing predators to scare but not consume their prey, I 

examined the generality of nonconsumptive predator effects in these systems across multiple 

predator species. Predators had varying effects on prey density and the strength of a given 

prey antipredator behavior, with cascading effects on prey populations and resource 

dynamics over time. The presence of multiple predators heightened prey antipredator 

behavior, including reductions in foraging rates, and promoted basal resources despite 
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changes in predation risk. Changes in predator diversity may have profound consequences 

for marine communities by altering the strength of both consumptive and nonconsumptive 

predator-prey interactions, with consequences for the strength of a trophic cascade. Complex 

food web models incorporating both consumptive and nonconsumptive pathways are 

necessary to understand and predict the effects of ongoing declines in predator abundance 

and diversity. 
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PREFACE 

 
 
 
 
 

Oh gallant grazer, 
there is everything to fear. 

Defend yourself - hide. 
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INTRODUCTION 

The role of predation has long influenced our understanding of ecological processes 

and their functioning, from the individual to the landscape level (Connell 1980, Carpenter et 

al. 1985). It is well established that predators can alter prey morphology and physiology, life 

history characteristics, and behavior as well as prey density, with consequences for the 

distribution and production of species at adjacent trophic levels (Carpenter et al. 1985, Crowl 

and Covich 1990, Harvell 1990, Lima and Dill 1990, Strong 1992, Tollrian and Harvell 

1999, Werner and Peacor 2003). A recent major advance in our understanding of how 

predators affect ecological communities is the inclusion of nonconsumptive effects (NCEs, or 

behaviorally-mediated effects) of predators on their prey. Incorporating NCEs, the 

consequences of prey defensive behaviors in response to predation risk (Abrams 1984, 1995), 

has altered how we interpret the magnitude and scale of predator effects in many systems 

(see reviews by Dill et al. 2003, Werner and Peacor 2003, Preisser et al. 2005, Peckarsky et 

al. 2008, Schmitz et al. 2008).  

The fact that predators shape and alter the behavior of each other and their prey is not 

novel. Studies over the past three decades demonstrate that the risk of predation can 

influence almost any aspect of prey decision-making, from foraging patterns and habitat use 

to mate choice. Indeed, behavioral ecologists may be surprised to realize that community 

ecologists have largely ignored these interactions up until the last decade. The innovation lies 
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in the marked shift in focus from quantifying individual-based optimality decisions to 

exploring the consequences of behavioral changes for prey communities, including 

population growth rates and species interactions, and ecosystem functions such as primary 

production and nutrient cycling (i.e., ‘the ecology of fear,’ Brown et al. 1999). Indirect 

effects including trophic cascades, exploitative competition, and keystone predation 

traditionally thought to be transmitted by changes in species densities (consumptive effects) 

in food webs (e.g., Paine 1966, Okansen et al. 1981) are now known to also be influenced by 

changes in behavioral (nonconsumptive) interactions among predators and their prey 

(Abrams and Matsuda 1997, Grand and Dill 1999). From lynx-hare (Boonstra et al. 1998) to 

kelp-urchin-sea otter (Estes and Palmisan 1974, Estes et al. 1998, Konar and Estes 2003) and 

riparian vegetation-moose-wolf dynamics (Post et al. 1999, Wilmers et al. 2007), trait 

changes in both predators and prey can provide alternate causal mechanisms for interpreting 

classic studies of the role of predation (see review by Peckarsky et al. 2008). 

Thus investigating behavioral interactions is no longer relegated to the field of 

ethology and pursuits of natural history or species evolution, but is integral for ecologists 

who aim to quantify and predict the net effects of predators on adjacent trophic levels in 

natural systems (Werner and Peacor 2003). By determining that predator-induced changes in 

prey behavior alone can influence plant diversity, productivity, nutrient cycling and energy 

flux as well as the strength of a trophic cascade, we have begun to appreciate that the mere 

presence of predators may sometimes be more important than their lethal effects on prey 

density (see review by Schmitz et al. 2008). Basic models assuming that interactions are an 

intrinsic feature of the component species, and are thus governed by focal species densities 

independently of the community at-large (e.g., Lotka-Volterra equations and derivatives) 
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ignore the importance of behavioral changes and are therefore inadequate (Werner and 

Peacor 2003, Preisser and Bolnick 2008). 

 However, it is often empirically difficult to distinguish between nonconsumptive and 

consumptive predator effects, which can differ independently in direction and magnitude and 

are often context-dependent. For example, NCEs can alter prey resource and habitat use, 

which may alleviate imminent predation risk but pose potential long-term consequences for 

growth, fitness, life history characteristics, and susceptibility to alternate predators (Abrams 

1990, Peacor and Werner 1997, Lima 1998, McPeek and Peckarsky 1998). The presence of 

multiple predator species can alter predation risk and the strength of prey antipredator 

behavior (Soluk and Collins 1988, Morin 1995, Sih et al. 1998, Eklöv and Van Kooten 2001, 

Duffy 2002, Vance-Chalcraft et al. 2004, Bruno and O'Connor 2005, Byrnes et al. 2006), 

changing the intensity of both consumptive and nonconsumptive interactions, and make it 

difficult to predict the community-level consequences of changes in a given predator 

community. Indeed, attempts to build a general theoretical framework describing or 

predicting the effects of predator diversity has likely been hampered in part by our almost 

complete failure to incorporate behavioral ecology, particularly NCEs, into quantitative food 

web models (but see Preisser and Bolnick 2008). Ecosystem-based management and 

conservation approaches that ignore these behavioral interactions are unlikely to yield 

informative predictions on the effects of ongoing predator losses (Dill et al. 2003). 

 Here I explore several novel pursuits, including integrating multiple predator 

assemblages and their nonconsumptive effects, to further our understanding of how predators 

influence estuarine communities. The strongest trophic cascades are often observed in marine 

benthic communities (Shurin et al. 2002), which thus provide model systems to test the role 
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of NCEs on the strength of a trophic cascade. Using experiments in mesocosms and field 

cages, we tested the hypothesis that predator presence, identity and species richness can 

influence prey and basal resources (Chapters 1 and 3). By allowing predators to ‘scare’ but 

not consume their prey, we examined the generality of nonconsumptive predator effects 

across multiple predator species in complex food webs and found that predator cues alone 

could reduce prey density and population growth (Chapter 1), with potential implications for 

the expression and evolution of plant defenses (Chapter 2). We tested the persistence of 

predator effects on the strength of a trophic cascade in the field, partitioning nonconsumptive 

effects from the total predator effect in a complex food web open to natural resource 

recruitment and alternate prey availability (Chapter 3). Finally, by altering predator and prey 

species richness we assessed how realistic changes in food web topology (i.e., trophic 

skewing of richness) can interactively affect prey mortality and overall community dynamics, 

potentially by altering prey resources in addition to directly altering prey density (Chapter 4). 

 

Chapter 1: Multiple marine predators alter prey behavior, population growth and a trophic 

cascade in a model estuarine food web 

Predators can theoretically influence prey population dynamics and community 

structure by affecting prey behaviors with strong fitness consequences (Lima 1998). Together 

with my advisor Dr. John Bruno, I experimentally tested the effects of visual and olfactory 

cues from three common predators (pinfish, mud crabs, brown shrimp) on the strength of 

antipredator responses (reductions in grazing rate, dispersal and colonization) of an 

herbivorous amphipod. To assess population- and community-level impacts of altered prey 

antipredator behavior, we exposed amphipods to persistent cues from predator monocultures 
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and polycultures for approximately two prey generations. We found that predator cues 

decreased prey grazing rates, dispersal, colonization, and population growth, with 

consequences for primary and secondary production. The presence of one intimidator, 

pinfish, consistently elicited strong antipredator responses and drove the effects of predator 

richness. In this system, predator richness strengthened both consumptive and 

nonconsumptive predator effects by increasing amphipod mortality risk and decreasing per 

capita amphipod consumption of seaweed, thereby strengthening the trophic cascade. Given 

the persistence of NCEs over time and that trophic cascades are common features of marine 

systems, changing marine predator diversity may have widespread effects on predator-prey 

behavioral interactions, with consequences for ecosystem function even in areas of weak 

predation pressure. 

 

Chapter 2: Nonconsumptive predator effects indirectly influence marine plant biomass and 

palatability 

Predators can reduce herbivory and facilitate plant biomass by consuming herbivores, 

lowering individual herbivore feeding rates, or both (Hairston et al. 1960, e.g., Trussell et al. 

2003, see reviews by Werner and Peacor 2003, Preisser et al. 2005). Although the relative 

importance of these predator effects (i.e., consumptive and nonconsumptive) is under current 

debate, predators can have strong effects on grazing intensity (Shurin et al. 2002, Newcombe 

and Taylor 2010) with consequences for the ecological and evolutionary dynamics of plant 

phenotypes. With Dr. Erik Sotka, I examined the cascading impacts of predator-induced 

reductions in herbivorous amphipod grazing on the biomass and phenotype of a common 

brown alga, Sargassum filipendula. By culturing amphipods and algae in the presence or 
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absence of olfactory cues from a major amphipod consumer, pinfish (Lagodon rhomboides), 

we altered amphipod population growth rates and grazing pressure in experimental outdoor 

mesocosms. The presence of fish cues reduced per-capita rates of amphipod grazing and 

overall amphipod population growth, which correlated with higher algal biomass. Predator 

induced reductions in prey grazing also affected the phenotype of the algae, increasing algal 

tissue palatability and potential susceptibility to future grazing. These results suggest that 

nonconsumptive effects of predators can regulate herbivore populations, with consequences 

for the ecological dynamics of plant biomass and chemical defenses. 

 

Chapter 3: Partitioning consumptive and nonconsumptive predator-prey interactions with 

multiple predators in an oyster reef community 

Although the predator-prey behavioral interactions and trophic cascades are common 

in a variety of ecosystems, ecologists have yet to fully incorporate these studies into an 

experimental framework that also manipulates predator richness under realistic field settings 

with natural predator cue diffusion and alternate prey availability. In order to quantify the 

role of predator richness and the importance of predator-prey behavioral interactions on the 

strength of a trophic cascade in the field, my advisor and I manipulated the presence of top 

predators (oyster toadfish, blue and stone crabs) and their ability to access and consume their 

prey (mud crabs) in experimental oyster reef communities. An amphipod-as-prey system was 

not pursued in the field due to the constraints of preventing amphipod dispersal and 

associated caging artifacts that would likely significantly alter natural water flow and the 

nature of predator-prey interactions.  
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After two months we found that consumptive and nonconsumptive effects varied with 

top predator identity. Nonconsumptive effects comprised a strong portion of the total top 

predator effect on a basal resource (juvenile oysters), further strengthening support for the 

importance of behavioral pathways in this system. The positive nonconsumptive effects on 

juvenile oysters weakened with distance from caged top predators, suggesting that NCEs 

may attenuate sharply with increasing spatial scale in the field and that predator density and 

distribution may be important for understanding the role of nonconsumptive effects at the 

landscape level. Surprisingly, the presence of multiple top predators decreased prey mortality 

but strengthened the trophic cascade. Thus, changes in prey behavior can compensate for a 

lack of lethal reductions of prey density. Similar to results from Chapter 1, the presence of 

one predator (oyster toadfish) strongly reduced prey foraging (an antipredator strategy) and 

likely drove predator richness effects. These results support that nonconsumptive effects can 

be important in the field and may drive predator richness effects on the strength of a trophic 

cascade. 

 

Chapter 4: Effects of trophic skew on ecosystem functioning in a model marine community 

Widespread overharvesting in coastal and marine ecosystems has “skewed” food 

webs towards greater domination of species at lower trophic levels (Duffy 2003, Byrnes et al. 

2007). However, little is known about how such modifications to food web topology affect 

ecosystem functioning. Together with my advisor, I experimentally measured the effects of 

trophic skew on production in an estuarine food web by manipulating species richness across 

three trophic levels of an estuarine food web in experimental mesocosms. While increasing 

macroalgal richness promoted plant biomass, this effect disappeared in the presence of 
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grazers. Increasing plant richness may counter intuitively promote both plant and herbivore 

communities through the increased likelihood of incorporating herbivore resistant plant 

species in addition to species that provide herbivores with refuge and balanced nutritional 

requirements. The strongest trophic cascade on macroalgae emerged in bottom-up skewed 

communities with greater prey to predator richness. These results suggest that predator 

richness effects may also be contingent upon richness at lower trophic levels, and that trophic 

skew can influence marine community structure and food web dynamics. This work 

emphasizes the need for multitrophic approaches to understanding the consequences of 

changing biodiversity in natural communities. 
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CHAPTER 1:  
MULTIPLE MARINE PREDATORS ALTER PREY BEHAVIOR, POPULATION 

GROWTH AND A TROPHIC CASCADE IN A MODEL ESTUARINE FOOD WEB  
 

Abstract 

  Predators can influence prey population dynamics by affecting prey behaviors with 

strong fitness consequences.  Here, we demonstrate that multiple predator species can 

nonconsumptively influence prey population growth and the strength of a trophic cascade in 

a model marine community.  We exposed the herbivorous amphipod Ampithoe longimana to 

olfactory and visual cues from common predators (pinfish, mud crabs, brown shrimp) to 

quantify the nonconsumptive effects (NCEs) of predator identity and richness on individual, 

population and community level metrics. Predator cues decreased prey grazing rates, 

dispersal, colonization, and population growth, and influenced primary and secondary 

production.  The presence of one intimidator, pinfish, consistently elicited strong NCEs and 

drove effects of predator richness.  Given the persistence of NCEs over time and the fact that 

trophic cascades are common features of marine systems, changing marine predator diversity 

may have widespread effects on predator-prey behavioral interactions, with consequences for 

ecosystem function even in areas of weak predation pressure. 

 

Key-words: amphipod, antipredator behavior, diversity, food web, marine, nonconsumptive 

effects, predator-prey interactions, predator richness, trophic cascade 
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Introduction 

Predators can control prey populations by reducing their densities via consumption or 

a variety of nonconsumptive mechanisms (Abrams 1995). Nonconsumptive effects (NCEs, or 

behavioral interactions) of predators include changes in prey foraging, vigilance, mating and 

habitat selection (see review by Lima and Dill 1990). While antipredator behavior may 

impose immediate fitness costs, such behaviors may be beneficial over time and result in a 

net fitness increase for prey exposed to strong predation pressure (Boeing et al. 2010). Costs 

of this behavioral plasticity, including decreased births and/or individual size or growth rates, 

can drive prey population cycles and may influence trophic interactions (Preisser et al. 2005, 

Peckarsky et al. 2008). NCEs can also affect ecosystem functioning by altering plant 

diversity, productivity, nutrient cycling, trophic transfer efficiencies, and energy flux (see 

review by Schmitz et al. 2008). NCEs can be as strong or stronger than consumptive effects 

and qualitatively different (Preisser et al. 2005). They can amplify the impact of rare or less 

effective predators (Peacor 2002) and operate on larger spatial scales than direct predation 

(Orrock et al. 2008). Although the importance of predator-prey behavioral interactions is 

widely recognized, there is a paucity of knowledge regarding how NCEs operate across 

multiple prey generations (Werner and Peacor 2003). 

 Although NCEs may be common in marine systems (Raimondi et al. 2000, Dill et al. 

2003, Trussell et al. 2003, Heithaus et al. 2008), little is known about the long-term influence 

of these interactions on prey populations and their cascading effects on lower trophic levels 

in marine food webs. Most previous work on prey behavior and NCEs was conducted on 

short timescales, often within one prey generation, and measured only a few behavioral 
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responses or fitness components (e.g., McIntosh and Peckarsky 1999, Trussell et al. 2003, 

Byrnes et al. 2006), although recent work has greatly expanded our appreciation for the 

persistence and of NCEs over space and time (e.g., Berger et al. 2008, van der Merwe and 

Brown 2008). To understand the ramifications of NCEs for natural systems, it is necessary to 

account not only for the benefits of antipredator behavior for prey, but also for the associated 

population level costs and community level ramifications after multiple prey generations. 

Over time prey could theoretically habituate and antipredator behavior weaken with chronic 

exposure to predators in the absence of predation, or prey may compensate for the costs of a 

specific antipredator behavior by adjusting other behaviors (Lima and Bednekoff 1999). 

Additionally, it is possible that starving prey or prey facing significantly reduced fitness from 

a given antipredator behavior may eventually cease responding to predators regardless of 

predation risk, although this is not generally supported in the literature (see meta-analysis by 

Bolnick and Preisser 2005). As it can be difficult to isolate the role of NCEs when predation 

is allowed to occur, experiments partitioning behavioral effects and conducted over 

ecologically realistic timescales are necessary to address the persistence and ramifications of 

prey antipredator responses. 

 It is also necessary to consider NCEs in the context of the broader food web in which 

prey reside. The presence of multiple predator species can significantly affect behavior and 

the ramifications of NCEs (Sih et al. 1998, Heithaus et al. 2008). The presence of additional 

predators may affect specific prey behaviors (i.e., grazing rates) or the efficiency of the 

predator community at capturing prey (Crowder et al. 1997, Byrnes et al. 2006, Steffan and 

Snyder 2010). For example, Byrnes et al. (2006) found that although increasing predator 
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richness did not affect herbivore density, it did promote total kelp biomass by reducing short-

term herbivore feeding rates in a kelp forest food web.  

 Here we investigate the NCEs of multiple primary predators on their herbivorous 

amphipod prey in a model benthic, marine community. We used a series of laboratory, field 

and mesocosm experiments to address whether the NCEs of multiple predators can influence 

individual, population and community-level metrics. Specifically, we assessed the strength of 

NCEs on prey populations and a trophic cascade by manipulating predator identity and 

richness. We conducted short-term behavioral assays to measure immediate effects on prey 

behavior (grazing rates, dispersal, colonization), and a longer community experiment to 

quantify the ramifications of such behavioral modifications at the population and community 

level. 

 

Methods 

STUDY SYSTEM AND EXPERIMENTAL ORGANISMS 

The experimental communities were based on a shallow, subtidal food web in Bogue 

Sound, North Carolina. Macroalgae growing on patches of hard substrate form the basis of 

this food web as major primary producers and habitat-formers. These algae are grazed 

intensely by small, mobile invertebrates including amphipods, which in turn are consumed by 

small invertebrate and vertebrate predators (Nelson 1978, Duffy and Hay 2000, Bruno and 

O'Connor 2005).  

Experimental species chosen in this study are common and generally co-occur in 

shallow, sub-tidal habitats in North Carolina (Hay and Sutherland 1988). Macroalgae 

included Dictyota menstrualis, Sargassum filipendula and Ulva lactuca (Fig. 1). These 
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species tend to dominate hard-substratum areas in North Carolina estuaries, and are often 

found in local marshes and seagrass beds (Hay and Sutherland 1988, Bruno et al. 2005). We 

selected the herbivorous amphipod Ampithoe longimana as our focal prey (e.g., grazer) due 

to its abundance and strong effects on algal biomass and composition (Duffy and Hay 2000). 

This tube-building amphipod is relatively sedentary and females produce multiple broods 

(Nelson 1978). Similar gammaridean amphipods are known to respond to predator cues 

(Wooster 1998). Predators included the highly mobile pinfish (Lagodon rhomboides) and the 

ambush predators brown shrimp (Penaeus aztecus) and mud crabs (Panopeus herbstii) (Fig. 

A1A). Pinfish actively forage in the water column and periphery of macroalgal beds, while 

brown shrimp and mud crabs hunt primarily within the complex macroalgal habitat or on the 

substrate, respectively. These predators were chosen due to their local abundance, similar 

size, and varied foraging strategies. All three predators are known to consume amphipods, 

including A. longimana (see Appendix A2, Bruno and O’Connor 2005). 

Mesocosm and lab experiments were stocked with adult female A. longimana (5 + 1 

mm), which were exposed to predator cue treatments (no predators, one predator species or 

three predator species for a total of five treatments) in fully factorial designs. Experimental 

predators ranged in wet mass from an average of 2.5 (P. herbstii) - 4.2 g (P. aztecus) and 

from 1.8 - 5.8 cm in length (n = 32; Table A2). We collected predators within this size range 

to minimize variability in predator biomass among replicates across treatments. To avoid 

confounding density with richness, predator density was held constant in a substitutive 

design of three predators per experimental unit across all treatments, which is within the 

range of typical field densities for these predators (O'Connor and Bruno 2009). A substitutive 

design was also used because predator density can affect amphipod behavior (Wooster 1998). 
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Predators in all experiments were fed crushed amphipods and were replaced as necessary. 

Macroalgae and predators were used immediately after collection, while grazers were field 

collected and maintained in cultures for one week prior to experimentation. 

 

EXPERIMENTAL DESIGN 

Predators may nonconsumptively alter prey behavior, with consequences for local 

prey population growth and the strength of a trophic cascade. To examine the NCEs of 

multiple predators on prey and resource dynamics in this system, we conducted two 

laboratory behavioral assays (grazing rate, dispersal), a short-term field colonization study, 

and a five-week community experiment in outdoor mesocosms. 

 

BEHAVIORAL ASSAYS 

Laboratory assays were conducted in July 2008 using female A. longimana to assess 

short-term effects of predator cues on prey grazing and dispersal. Temperature, light and 

salinity in these assays were within the range of ambient conditions experienced throughout 

the tidal cycle in the field (O’Connor 2009; 24oC, ~400 µM m-2 s-1 per µA, 32ppt; Reynolds 

unpublished data). 

Grazing Assay: To measure the effects of predator cues on prey grazing rates, one 

female A. longimana was placed in a clear plastic 9 ml cup with 50 mg of freshly collected S. 

filipendula. Cups were weighted with small pebbles to provide additional habitat. Four cups 

with grazers were paired with four no-grazer control cups and placed in 11.4 L ‘predator 

tubs’ provided with an airstone and flow-through filtered seawater (Fig. A1B). Cups were 

then exposed to ambient filtered seawater or to seawater with visual and chemical cues from 
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the five different predator treatments (n = 8 for a total of 320 cups). Predators could swim 

freely around the cups. Small holes in the clear plastic cups allowed transmission of both 

chemical and visual cues while preventing predation. To determine grazing rates of A. 

longimana on S. filipendula across predator treatments we first compensated for autogenic 

changes in the control cups according to Sotka and Hay (Sotka and Hay 2002): Ti(Cf/Ci)-Tf 

for grazer presence T and absence C, and initial i and final f macroalgal wet mass after 4 

days. Cups were excluded if the grazer died (9) or molted (2). To avoid pseudoreplication, 

we averaged the amount grazed per amphipod within each tub and compared these tub 

averages across predator treatments. 

Dispersal Assay: To measure the effects of predator cues on prey dispersal, we 

attached one 15 g thalli of each macroalgae species (45 g total) to a 25 x 25 cm Vexar mesh 

screen secured to the bottom of 12 L tubs such that the algae floated upright in a natural 

orientation. This macroalgal wet mass was comparable to field densities (Bruno et al. 2005). 

All tubs received 30 female A. longimana. Tubs were then exposed to predator cue 

treatments (n = 6). Predators were caged in a clear 3 L pitcher weighted with a rock and fixed 

with 50 µm screens to allow passage of visual and chemical cues while preventing direct 

predation. Tubs were provided with flow-through seawater; holes allowed water to slowly 

flow into a ‘dispersal’ tub (Fig. A1C). We compared the proportion of grazers in the 

dispersal tub across predator treatments after one week. 

Field Colonization Experiment: To assess potential effects of NCEs on prey dynamics 

in natural field populations with open dispersal, we examined the effects of predator cues on 

prey colonization of new algal substrate. We stocked cylindrical Vexar cages (20 cm tall with 

12 cm diameter; mesh opening of 0.3 cm) with zero, one or three predator species at constant 
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density (n = 10). Two thalli (10 g, ~30 cm long each) of S. filipendula were attached to a 12 

cm three-strand polypropylene rope fixed to the outside of each cage such that the algae 

floated upward in a natural orientation (see Figs A1E,F). Predators inside the cage could not 

access the algae, although it is possible that they may have consumed any amphipods that 

immigrated into the cage. Cages were attached to rebar fixed in sand adjacent to the jetty at 

Radio Island, NC on 11 May 2009. Cages were submerged 0.5 m from the surface at low tide 

and placed 1 m apart in a block design. After 72 hours all S. filipendula was removed and the 

number of grazers on the algae live counted. Replicates were discarded if the algae or cage 

disappeared (2) or the predators escaped (1).  

 

COMMUNITY EXPERIMENT 

If predator-induced changes in prey behavior induce significant fitness costs, NCEs 

can influence prey population growth in the absence of predation (Nelson et al. 2004). To 

quantify population- and community-level effects of NCEs, we performed a five-week 

experiment in 30 L outdoor mesocosms with flow-through filtered seawater (see Bruno and 

O'Connor 2005). In these experimental communities we tested whether predator NCEs could 

affect grazer population growth and how this interaction was influenced by predator identity 

and richness.  

We manipulated grazer presence and predator cues in a fully factorial design for a 

total of seven treatments (n = 8). Treatments with predators but no grazers were included to 

test whether predator excretions affect algal growth. Mesocosms were first stocked with an 

ambient macroalgal community; algal screens identical to those in the dispersal assay were 

secured to the bottom of each mesocosm. The next day mesocosms received no or 30 fecund 
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female A. longimana (Fig. A1D). Fecund females (e.g., currently brooding individuals) were 

added to ensure constant initial population demographics across replicates. The following 

day mesocosms received visual and olfactory cues from caged predators as in the dispersal 

experiment. Although predator biomass varied across replicates and shrimp treatments had 

greatest predator biomass (one-way ANOVA: F3,28 =11.41, P < 0.0001, Tukey’s HSD), total 

predator biomass per replicate did not significantly differ between the average single predator 

species and the three-predator species treatments (P = 0.49; LSM planned contrasts).  

Mesocosms received gravel-filtered seawater from a dump bucket system to maintain 

aeration and simulate turbulence of local subtidal habitats. Temperature, nutrients, salinity 

and light levels in mesocosms were comparable to field conditions at Radio Island and in the 

nearby Bogue Sound, NC (Bruno et al. 2005, O'Connor and Bruno 2009). Before entering 

mesocosms, seawater passed through 200-µm mesh filter bags to minimize immigration and 

fouling. Immigration was minimal, as evidenced by the low number of grazers found in 

control (no A. longiman added) mesocosms at the end of the experiment (see Fig. 1.4A). 

Mesocosms were randomly assigned to tables in a block design and were rearranged within 

each table every two days to reduce positioning artifacts. Mesocosm table assignment did not 

affect final macroalgal biomass (one-factor ANOVA, F1,73 = 0.0011, P = 0.97). The 

experiment began on 6 July 2008 and ran for 35 days, or conservatively for two overlapping 

generations of A. longimana (Cruz-Rivera and Hay 2001). Replicates were excluded if the 

predators escaped or the mesocosm cracked (6 total). 

Throughout the experiment we nondestructively measured a proxy for grazer 

abundance to assess whether populations were continuously growing. To assess A. 

longimana density, we cable tied an 8 g thalli (c. 25 cm long) of S. filipendula to a small 
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patch of Vexar and attached it to the bottom center of each mesocosm. We collected these 

dispersal patches 12 hours later and counted the number of grazers on the patch. Because A. 

longimana are often more active at night (Sotka pers. comm.), patches were deployed in the 

evening and collected the following morning (c. 12 hours). All grazers were returned to their 

respective mesocosms within two hours of removal.  

To quantify how predator-induced changes in prey behavior affect prey populations, 

we quantified final grazer abundance and population size structure, as well as grazer ash free 

dry weight and size distribution. We quantified final grazer abundance and population size 

structure by live counting all individuals from each mesocosm and identifying all fecund 

females. Grazers were preserved in 70% ethanol and size classed using a series of nested 

sieves. Ash free dry weight and secondary production was then estimated from body-size 

distributions following Edgar (1990). Assuming generation time (T) was equivalent between 

predator-cue treatments (mean age of females at offspring birth = 14 days, Sotka and 

Reynolds in press), we calculated the fundamental net reproductive rate (R or λ) using the 

equation R = N1 (N0)-1 and the intrinsic rate of natural increase (r) using the equation r = lnR 

(T)-1 (Begon et al. 2006). This calculation was used as we found no evidence for density 

dependence (see Fig. 1.4), and overlapping generations are implicit in the equation. 

We measured final macroalgal biomass per species, and quantified chlorophyll a 

concentration from one 2 x 2 cm tile in each mesocosm as a proxy for microalgal 

accumulation (for methods, see Appendix A4).  
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ANALYSIS 

Analysis of variance (ANOVA) performed in the Fit Model platform of JMP 8.0 was 

used to test all hypotheses for the behavioral assays. In the community experiment, we used a 

repeated measures ANOVA to test the effect of predator treatment on prey abundance over 

time, and a MANOVA to test the effects of predator treatment on final macroalgal community 

structure. Least Squares Means (LSM) planned contrasts were used to compare the effects of 

the mixed predator community with the average of the single predator species to test for 

predator richness effects. Data were transformed as necessary to meet the assumptions of 

normality and homoscedacity (Underwood 1997). 

 

Results 

BEHAVIORAL ASSAYS 

Predator cues affected grazer consumption and dispersal in laboratory assays, and 

colonization in the field (Table 1.1), and the effects were predator-specific (Figs 1.2A-C). 

Grazers fed less and dispersed slightly less in treatments with cues from all three predator 

species compared to cues from the average single predator (P = 0.0026 and P = 0.047; LSM 

planned contrasts). All predators reduced grazer feeding in the lab, which was lowest in the 

presence of pinfish (pinfish and three-predator species treatments did not differ, Fig. 1.2A, 

Tukey’s HSD). Grazer dispersal differed in the lab from the no-predator control only when 

pinfish were present (Fig. 1.2B, Tukey’s HSD). More amphipods were found on algae 

attached to empty, control cages in the field compared to cages with predators (Fig. 1.2C). 

Predator identity and richness also affected amphipod colonization (P = 0.035; LSM planned 

contrasts). Observations at low tide did not indicate any bias of natural predator movements 
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between cages, and thus it is not likely that observed differences in grazer abundances across 

predator treatments were due to differential attraction to the cages and predation by ambient 

predator communities (personal observation). 

 

COMMUNITY EXPERIMENT 

All grazer populations grew throughout this experiment (Fig. 1.3). Predator cues 

affected grazer population size over time (repeated measures ANOVA: F4,31 = 18.87, P < 

0.0001; P = 0.0009 based on LSM planned contrasts). Although a likely approximation of 

total grazer abundance, these data must be interpreted with caution as predator cues may 

have reduced grazer mobility and patch colonization (see Results: Dispersal and Field 

Colonization experiments). 

After 42 days, grazer abundance increased roughly 10-fold (intrinsic rate of increase, 

r = 0.996). Predator treatment affected final grazer abundance (Table 2), which was lower in 

the presence of predator cues (P = 0.0001; LSM planned contrast) although the effects varied 

among predator species (Fig. 1.3A). Final grazer populations were smaller in the three-

predator treatment compared to the average single predator, indicative of a nonconsumptive 

predator richness effect (Fig. 1.3A, P = 0.0070, LSM planned contrast). Effects of predator 

presence on estimated final grazer ash free dry mass and secondary production mirrored 

abundance responses (Table 1.2, Figs 1.4B,C; P < 0.005 and P = 0.0059, LSM planned 

contrasts). Predator treatment did not affect the proportion of fecund female grazers (one-

factor ANOVA, F4, 31 = 0.37, P = 0.83, Fig. 1.3A) nor grazer brood size (F4,31 = 0.48, P = 

0.75, n = 4 fecund females per replicate). Compared to the no-predator controls, the 

frequency of smaller grazer size classes decreased in the presence of predators (Fig. 1.5). 
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Incidental grazer immigration was minimal (Fig. 1.4, “no grazers” treatment) and thus 

differences in final grazer densities are likely due to differences in population growth rates 

across predator treatments. 

Grazer and predator treatments interactively affected final macroalgal biomass, 

community structure, and microalgal chlorophyll a (Table 1.2, Figs 1.6 and A4). On average, 

grazers reduced final macroalgal biomass and microalgal chlorophyll a (Fig. 1.6A,B). In the 

absence of grazers, predator cues did not affect macroalgal biomass or microalgal 

chlorophyll a (P = 0.31 and P = 0.45, respectively; LSM planned contrasts). In the presence 

of grazers, only treatments with pinfish cues enhanced algae compared to the no-predator 

treatment (Fig. 1.6, Tukey’s HSD).  

 

Discussion 

Our results indicate that increasing the number of predator species andthe inclusion of 

strong intimidators can strengthen the nonconsumptive effects of predators, altering prey 

behavior and population dynamics with broader consequences for other trophic levels. 

Predator cues decreased prey grazing rates, dispersal, colonization, and population growth 

and influenced primary and secondary production.  Pinfish cues induced the strongest NCEs, 

indicating strong predator identity effects on predator-prey behavioral interactions in this 

system.  

 

BEHAVIORAL ASSAYS 

 On average, grazers consumed approximately 25% less algal biomass in the presence 

of predator cues in behavioral assays than in their absence (Fig. 1.2A). Such reductions in 
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feeding may reduce the risk of predation by limiting overall activity and gut fullness, which 

have been proposed to be adaptive in reducing detection by predators (e.g., Giguère and 

Northcote, 1987). Here, reduced feeding likely led to lower grazer performance, and 

negatively affected individual fitness and overall population growth (Sotka and Hay 2002). 

In open systems in the field, NCEs of predators may also influence prey dynamics by altering 

prey movement (Orrock et al. 2008). We observed decreased grazer dispersal and 

colonization in the presence of persistent predator cues. On average 38% fewer grazers 

dispersed from experimental tanks (Fig. 1.2B), and 67% fewer grazers colonized field 

patches when predator cues were present (Fig. 1.2C). Cues from pinfish had the strongest 

effects on grazer mobility, reducing dispersal in the lab by 52% and colonization in the field 

by 74% compared to no-predator controls. These decreases may have unexpected 

consequences for natural populations, potentially stabilizing source populations while 

inhibiting sink populations. However, understanding the effects of predator induced changes 

in prey mobility on local population dynamics may be complicated by predation intensity. If 

prey mobility is reduced, prey density may increase over the short term in patches with 

predators due to reduced dispersal, but is predicted to ultimately decline due to active 

predator consumption and, possibly, reduced immigration (Sih and Wooster 1994, Orrock et 

al. 2010). 

 

COMMUNITY EXPERIMENT 

 In the community experiment, persistent predator cues led to lower prey densities 

after approximately two overlapping generations. At the end of the experiment 57% fewer 

grazers were recovered in replicates exposed to persistent predator cues (Fig. 1.4A). Several 
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mechanisms could have caused a reduction in prey population growth, including decreased 

reproduction and/or survivorship. 

 Predators can affect prey reproductive physiology via changes in body condition from 

reduced feeding or elevated stress (see review by Peckarsky et al. 2008). In behavioral assays 

adult female A. longimana grazed less in the presence of predator cues (Fig 1.2A), potentially 

reducing individual growth rates. Such negative effects on body condition can lower birth 

rates and reduce juvenile survivorship, decreasing fitness and population growth (Peckarsky 

and McIntosh 1998). For example, offspring from Daphnia magna mothers exposed to cues 

from fish predators are more susceptible to starvation (Stibor and Navarra, 2000). Reduced 

survivorship or fecundity, as well as delayed reproduction upon exposure to predator cues 

have been observed for some Daphnia clones (Burks et al. 2000, Hanazato et al. 2001). 

Similarly, E. Sotka and R. Taylor found that A. longimana reproduced several days later 

when exposed to persistent chemical cues from pinfish compared to controls (unpublished 

data), supporting the thesis that predator cues may increase the amphipod’s generation time 

and thus reduce the population growth rate. However, cues from predators are also known to 

promote the fitness of their invertebrate prey; early maturation as well as production of larger 

clutches resulting in higher fitness has also been observed in other Daphnia clones (e.g., 

Castro et al. 2007, Boeing et al. 2010). Although we recovered fewer fecund female A. 

longimana in populations exposed to persistent predator cues, predator presence did not 

affect the proportion of fecund females or their brood size. 

Delayed reproduction and/or reduced maternal condition may also affect prey size 

distributions. The frequency of small, juvenile prey individuals was lower in the presence of 

predator cues, especially pinfish (Fig. 1.5). However, increases in individual prey growth 
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rates in the presence of predators could have exacerbated our observed differences. For 

example, Peacor (2002) found that tadpoles grew more quickly in the presence of caged 

predatory larval dragonflies due to an increase in resource availability caused by an overall 

decrease in tadpole foraging. Similarly, predators could affect prey morphology by reducing 

prey activity. Johansson and Andersson (2009) found that carp gained more biomass in the 

presence of predators due to a decrease in swimming activity and an increase in energetic 

investment in growth. Regardless of the mechanism, predator cues reduced A. longimana 

population growth with consequences for their resources, algae. 

We found that NCEs alone can induce a trophic cascade and affect final algal biomass 

as well as composition (Figs 1.6, A4). Grazers intensely consumed Dictyota menstrualis, a 

preferred alga of A. longimana (Duffy and Hay 1991). Cues from pinfish and the three-

predator treatment promoted a six-fold increase in D. menstrualis biomass (Tukey’s HSD), 

and drove the interaction effect between grazer and predator cue treatments (Table 1.2). 

Biomass of the less preferred Sargassum filipendula and Ulva lactuca was largely unaffected 

by the presence of predators (Fig. 1.6C), supporting the thesis that observed changes in 

macroalgal community dynamics were driven by preferential grazing by A. longimana on D. 

menstrualis. The presence of predator cues likely did not affect A. longimana preference for 

D. menstrualis (see Appendix A5, Sotka and Reynolds in press). While predator excretions 

may enhance algal growth in some systems by increasing water column nutrient 

concentrations (e.g., Persson 1997, Layman et al. in press), we saw no direct effect of 

predator cues on macro- or microalgae in the absence of grazers (Fig. 1.6). It is possible that 

ambient nutrient levels are high in Bogue Sound, and thus algae are not likely to be nutrient 

limited in our experimental communities. 
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EFFECT OF PREDATOR EFFICIENCY 

The strength of NCEs may correlate with predator efficiency of prey capture, 

abundance and evolutionary history with their prey (Sih et al. 1998, Werner and Peacor 

2003). The costliness of antipredator behavior suggests prey should modify these behaviors 

in response to changes in predation risk; more efficient or threatening predators should more 

strongly intimidate prey (McIntosh and Peckarsky 1999). Although both shrimp (P. aztecus) 

and pinfish (L. rhomboides) were equally efficient predators in experimental mesocosms 

(Appendix 2; Nelson 1978; Bruno and O’Connor 2005), pinfish consistently elicited stronger 

NCEs. The least efficient predator, mud crabs (P. herbstii), elicited the weakest responses. 

Recent work suggests that ambush predators such as shrimp or crabs should elicit 

stronger prey antipredator behavior (Preisser et al. 2007; Schmitz 2008). However, we found 

the greatest NCEs in the presence of cues from an active predator (pinfish). Heightened 

NCEs of pinfish on A. longimana may be due to increased exposure to this predator in the 

field with seasonal variation in abundance or encounter rates. Additionally, caging of 

predators in the community and field experiments restricted their mobility and may have 

altered our estimates of predator efficiency as well as prey perception by providing prey with 

persistent, point-source cues of predator presence, thereby enhancing potential NCEs. 

However, this does not fully explain all results as the pattern of strongest NCEs by pinfish 

was also observed in grazing assays in which predator mobility was less constrained.  

It is also possible that laboratory feeding studies (Appendix A2) overestimated 

predator efficiencies, which are likely to be lower and may be similar in densely vegetated 

field habitats (Stoner 1982, Orth et al. 1984). Additionally, it is possible that prey adaptive 

risk assessment, where prey reduce antipredator behavior when the cost of starvation exceeds 



29 

that of the risk of predation (see review by Ferrari et al. 2009), varied across predator species, 

although we cannot directly assess this here. Finally, it is possible that prey intimidation by a 

given predator and the efficiency of prey capture by that predator may not be correlated in 

the field, especially if the predator types that capture the most prey are cryptic and able to 

evade detection by their prey (Brown et al. 1999).  

 

EFFECTS OF PREDATOR RICHNESS 

Recent work on plant, grazer and predator diversity highlights the importance of 

multi-trophic interactions and species richness in governing predator-prey interactions. As 

the presence of multiple predators can nonadditively influence prey behavior, it is possible 

that increasing predator richness may alter nonconsumptive predator effects and the strength 

of a trophic cascade. Because slight increases in predator richness in this system can increase 

predator efficiency and strengthen a trophic cascade, particularly when predator omnivory is 

precluded (Fig. A2, Bruno and O’Connor 2005; but see O’Connor and Bruno 2009), more 

species-rich predator assemblages may be expected to evoke stronger antipredator behavior 

in their herbivorous prey. Here we add to a growing list of studies demonstrating that 

increasing the number of predator species may nonconsumptively affect prey populations.  

In general, we found an increase in prey antipredator behavior (reduced grazing, 

dispersal, colonization) and lower prey production with exposure to cues from multiple 

predator species. Prey behavioral responses followed a hierarchy (McIntosh and Peckarsky 

1999) with prey responding maximally to the presence of a single strong intimidator, pinfish. 

This led to an accumulation of antipredator behavior and an increase in NCEs with elevated 

predator richness, likely driven by a sampling effect where the likelihood of incorporating a 
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strong intimidator increases in more diverse predator assemblages. Such sampling effects 

may be especially important if NCEs are not density dependent (i.e., the presence of one 

individual predator from a species that strongly intimidates its prey evokes the full NCE), as 

may occur in mesocosms or other systems where cue saturation is possible. However, 

supplemental work in this system (see Appendix A6) suggests that grazer antipredator 

behavior (e.g., reduced feeding) is stronger when grazers are exposed to higher predator 

densities (1 versus 3 pinfish), although this density effect did not persist with subsequent 

increases in predator density (3 versus 6 pinfish, Fig. A6). Thus, the presence of pinfish may 

have contributed to the heightened NCEs observed in the three-predator species treatment, 

but may not completely explain the observed results.  

Similar to findings in a terrestrial system with caterpillar prey (Steffan and Snyder 

2010) and a kelp forest food web with multiple invertebrate herbivores (Byrnes et al. 2006), 

we found that increasing the number of predator species elevated prey antipredator behavior. 

While Steffan and Snyder (2010) found that predator richness effects were mediated by 

increased foraging by predators in more diverse predator communities, which elevated 

encounters with prey and induced antipredator responses, here we present evidence that 

predator richness effects can manifest and persist across multiple prey generations even when 

predators cannot directly interact with their prey. While Byrnes et al. (2006) found that 

positive predator richness effects on kelp biomass were transmitted due to complementary 

prey antipredator responses, here we found that nonconsumptive predator richness effects 

may also be observed for individual prey populations. Future work should further investigate 

the role of multiple predator species NCEs on interactions among prey and predator 

populations. 
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Interpreting the results of multipredator experiments can be challenging due to 

emergent predator effects and feedbacks from indirect trophic interactions (Sih et al. 1998). 

Here we examined how predator richness affects prey behavior, but it may also alter predator 

behavior with consequences for predator efficiency (Rahel and Stein 1988, Soluk and Collins 

1988, Crowder et al. 1997, Steffan and Snyder 2009). In addition, although predators may 

affect specific prey antipredator behaviors such as dispersal, this may decrease or increase 

prey vulnerability in the field where predators interact both nonconsumptively and 

consumptively. Comprehensive examinations of both consumptive and nonconsumptive 

predator-prey interactions under realistic conditions with multiple predators are necessary for 

effective predictions of the effects of predators on ecosystem functioning. 

 Understanding the role of NCEs is recognized as integral to predicting the net effects 

of predators on the structure and functioning of ecological communities (Stachowicz et al. 

2007). Given the persistence of behavioral interactions over time and the fact that that trophic 

cascades are common features of marine systems (Shurin et al. 2002), changes in predator 

communities may have widespread effects on prey behavior with cascading impacts on 

marine communities. If predator cues have large spatial and temporal persistence, predator 

exclusion experiments in the field may underestimate the total effect of predators on prey 

dynamics as NCEs from local, natural predator communities may influence prey dynamics 

within experimental enclosures. Future work on nonconsumptive and other non-additive 

effects across realistic timescales in a food web context will contribute to our ability to 

predict the effects of changing marine predator communities. 
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Tables 

Table 1.1. Results of ANOVAS on the effects of predator treatment on prey behaviors 
(grazing, dispersal and colonization). 
 
Treatment effects in each behavioral assay on the change in grazer feeding rate, dispersal, 
and colonization, analyzed by one-factor ANOVA. 
 

Factor SS d.f. F  P  
Grazing Rate 

 Predator treatment 74.50 4 35.57 < 0.0001 
 Error 18.33  35 

 
Dispersal 

Predator treatment 0.31 4 8.52 0.0002 
Error 0.23 25 

 
Field Colonization 
    All Gammaridean Amphipods 

Predator treatment 2075.03 4 11.50 < 0.0001 
Error 1894.29 42 

    Ampithoe longimana Only 
Predator treatment 13.31 4 2.87 0.0344 
Error 49.06  42 
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Table 1.2. Results of ANOVAS on the effects of predator treatment on grazers, macro- 
and microalgae. 
 
Treatment effects in mesocosm experiment on grazer abundance and estimates of ash free 
dry mass and production (one-factor ANOVA), macroalgal wet mass and microalgal 
chlorophyll a (two-factor ANOVA with both factors fixed), and macroalgal composition 
(MANOVA). 
 

Factor SS d.f. F P  
 Grazer Abundance 

Predator Treatment 9.01 4 7.95  0.0002 
Error 8.78 31 

  
 Grazer AFDW 
  Predator treatment 13517.45 4 2.95  0.0356 
  Error 35531.63 31 
  
 Grazer Production  
  Predator treatment 10.37 4 2.87  0.0394 
  Error 28.01 31 
  
 Macroalgal Biomass 

Grazer presence (G) 1.09 1 13.25  0.0005 
Predator treatment (P) 1.20 4 3.65  0.0096 
G X P 1.42 4 4.34  0.0036 
Error 5.33  65 

 
Microalgae chlorophyll a 

Grazer presence (G) 275808.54 1 79.86  < 0.0001 
Predator treatment (P) 54265.77 4 3.93  0.0064 
G X P 41153.12 4 2.98  0.0254 
Error 224479.49 65 

 
Macroalgal Community Structure 

 Factor     Wilk’s λ           d.f.  F  P  
Grazer presence (G) 0.7241 3, 63 15.2055 < 0.0001 
Predator Treatment (P) 0.7190 12, 167 1.848 0.0444 
G X P 0.6284 12, 167 2.6711 0.0026 
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Figures 

 
 

 
 
Figure 1.1.  Experimental food web and trophic cascade.  
Trophic cascade with direct (solid) and indirect (dashed) arrows and experimental food web. 
Algae and amphipod images redrawn from Schneider et al. (1991) and Bousfield (1973). 
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Figure 1.2.  Results from behavioral assays. 
Effects of predator cues on A. longimana A) grazing rate and B) dispersal in the laboratory, 
and C) colonization of algae in the field. (Values are means + 1 SE, comparisons are Tukey’s 
HSD.) 
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Figure 1.3. Treatment effects on A. longimana density over time. 
The number of A. longimana recovered on dispersal patches during the community 
experiment. Values are means + 1 SE.  
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Figure 1.4. Results from community experiment: grazers. 
Effects of predator cues on grazer A) abundance, B) estimated biomass (ash free dry mass) 
and C) production. Incidental amphipod immigration (“no grazers” treatment) was minimal. 
(Values are means + 1 SE; comparisons are Tukey’s HSD.)  
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Figure 1.5.  Effects of predator cues on grazer size distribution.  
Effects of predator cues on grazer size frequency distributions after 5 weeks. Size classes 
correspond to the mesh size (mm) of the sieve on which the specimens were retained. 
(Values are means + 1 SE.) 
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Figure 1.6.  Results of community experiment: macro- and microalgae. 
Community Experiment: Effects of grazer and predator cue treatments on A) macroalgal 
biomass, B) microalgal chlorophyll a, and C) macroalgal community composition after 5 
weeks. (Values are means + 1 SE, comparisons are Tukey’s HSD.) 
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CHAPTER 2: 
NONCONSUMPTIVE PREDATOR EFFECTS INDIRECTLY INFLUENCE 

MARINE PLANT BIOMASS AND PALATABILITY 
 

Abstract 

Predators can reduce herbivory and increase plant biomass by consuming herbivores, 

lowering individual herbivore feeding rates, or both.  We tested whether the presence of 

predators increases plant quality by nonconsumptively reducing grazing pressure and thereby 

weakening the strength of the induced response in plant chemical defences.  We performed a 

42-day outdoor mesocosm experiment in which the herbivorous amphipod Ampithoe 

longimana was cultured on the brown seaweed Sargassum filipendula in the presence and 

absence of olfactory cues of its principal fish predator, the pinfish Lagodon rhomboides.  The 

presence of fish cues reduced per capita rates of amphipod grazing by nearly 50%.  Over the 

span of the mesocosm experiment, this per capita reduction in feeding rate yielded at least a 

40% lower growth rate of amphipod populations (i.e. r reduced from 1.01 to 0.61).  The 

lower rates of amphipod grazing (overall or per capita) correlated with higher algal biomass.  

We then pursued a series of laboratory-based feeding choice assays with naïve amphipods to 

determine tissue palatability and the plant traits that mediate feeding choices.  Tissue from 

tanks without grazers was more palatable than tissue from tanks with grazers, a pattern of 

induced plant defences that has been documented previously.  Surprisingly, however, plant 

tissue from tanks with grazers and fish cues was more palatable than tissue from tanks with 
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grazers but without fish cues. All changes in algal palatability were mediated by polar, but 

not lipophilic metabolites.  These results suggest that the nonconsumptive effects of fish 

predators increases the food quality of Sargassum by weakening the strength of its induced 

chemical defences. The smell of predators has the potential to regulate herbivore populations 

and affect the ecological dynamics of plant biomass and chemical defences. 

 

Key-words: algal induction, amphipod, behaviour, herbivory, inducible defence, 

macroalgae, phenotypic plasticity, plant–herbivore interactions, predator-prey interaction 

 

Introduction 

Predators often regulate herbivore densities and thereby facilitate plant growth 

(Hairston, Smith and Slobodkin 1960).  Historically, ecologists assumed that lethal, or 

consumptive effects of predators largely mediated these tritrophic cascades by reducing 

herbivore densities.  However, more recent evidence suggests that predator-induced changes 

in prey grazing behaviour (a nonconsumptive effect) may commonly underlie trophic 

cascades (Peckarsky et al. 2008).  The presence of predators often lowers per capita grazing 

rates and alters herbivore host use and feeding preferences of their prey (e.g. Trussell, 

Ewanchuk and Bertness 2003; see reviews by Lima and Dill 1990; Werner and Peacor 2003; 

Preisser, Bolnick and Benard 2005).  In those instances in which the antipredator behaviours 

lower herbivore fitness, the predator cues suppress the growth rates of herbivore populations 

(Nelson, Matthews and Rosenheim 2004).  Although the relative importance of these 

predator effects (i.e. lethal and behaviourally induced) is under current debate, both effects 

can increase plant biomass (Shurin et al. 2002; Newcombe and Taylor 2010). 
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Predators are also known to alter the ecological and evolutionary dynamics of plant 

phenotypes, including chemical and morphological defences, via their effects on herbivore 

grazing intensity. When herbivores escape predation, the subsequent grazing pressure may 

induce production of secondary metabolites and other plant defensive traits that minimize 

future grazing.  Such induced responses are common to vascular plants and aquatic and 

marine algae (Hessen and van Donk 1993; Karban and Baldwin 1997; Toth and Pavia 2007), 

and can themselves have cascading effects on herbivore populations (Agrawal and Rutter 

1998) and communities (Denno, McClure and Ott 1995; Hay and Kubanek 2002; Long, 

Hamilton and Mitchell 2007).  When plants across broad spatial and temporal scales are 

consistently grazed by herbivores that have escaped predation, evolution favours the 

constitutive production of plant defences to deter this greater herbivore pressure.  As an 

example, marine seaweeds that co-occur in biogeographic areas with predatory sea otters and 

herbivorous urchins evolved lower levels of water-soluble chemical defences relative to 

seaweeds from areas that are historically devoid of otters but replete with higher densities of 

urchins (Estes and Steinberg 1988; Steinberg, Estes and Winter 1995).  Virtually all of these 

studies assume that the effect of predators on plant phenotype is through a consumptive 

mechanism and relatively few have tested nonconsumptive predator effects on plant quality 

(but see Griffin and Thaler 2006; Kaplan and Thaler 2010). 

Here we examine how predator cues and herbivore grazing intensity interactively 

influence the growth and food quality of a fucalean brown macroalga, Sargassum filipendula.  

Within an estuarine community in North Carolina (USA), S. filipendula is abundant year 

round and inhabited by a dense and diverse array of amphipod, isopod and gastropod grazers 

(Hay and Sutherland 1988).  Amphipod abundances range from 10 to 145 individuals per 
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gram (wet mass) on S. filipendula, although species composition and abundance fluctuates 

seasonally (Duffy 1989).  The common herbivorous amphipod Ampithoe longimana (Smith 

1873) has strong effects on algal biomass and community structure (Duffy 1989).  It is also 

known to induce grazing resistance in several local algae including S. filipendula (Cronin and 

Hay 1996; Duffy and Hay 2000; Taylor, Sotka and Hay 2002).  The pinfish Lagodon 

rhomboides (Linnaeus 1766) is a predominant predator of amphipods in this system (Nelson 

1978; Nelson 1979; Stoner 1979).   

It has been hypothesized that pinfish and other common fishes in North Carolina 

estuaries heavily consume A. longimana and other mesograzers, yielding cascading effects 

on macroalgal composition (Duffy and Hay 2000).  However, it is also possible that this 

trophic cascade has a nonconsumptive mechanism when pinfish have strong nonconsumptive 

effects on A. longimana grazing behaviour (P. Reynolds and J. Bruno, unpublished data) in a 

manner similar to that seen for activity levels of other gammaridean amphipods (Wooster 

1998; Wisenden, Cline and Sparkes 1999). 

We used this model marine community to address whether predators alter macroalgal 

biomass and inducible defences via nonconsumptive effects on their herbivore prey.   We 

conducted a 6-week experiment in outdoor mesocosms to test the effects of L. rhomboides 

effluent (‘cues’) on A. longimana grazing rates (Grazing Assay) and population growth, and 

feeding assays to assess the singular and interactive effects of fish cues and grazing on the 

tissue palatability of S. filipendula (Induction Experiment).  Specifically, we asked the 

following questions: 1) Can pinfish nonconsumptively reduce amphipod grazing intensity by 

reducing per capita grazing rates, overall population growth, or both? 2) Does lowered 
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grazing pressure facilitate algal biomass, and 3) elevate tissue palatability of S. filipendula by 

weakening the strength of its induction of chemical defences? 

 

Methods 

GRAZING ASSAY 

To assess a potential mechanism for observed changes in grazer population growth 

and algal biomass (see Results), assays were conducted to test the short-term effects of 

predator cues on prey grazing in outdoor water tables on 10 August 2009.  Temperature, light 

and salinity in these assays were within the range of conditions experienced throughout the 

tidal cycle in the field (24 ˚C, ~400 µM m-2 s-1 per µA, 35ppt; P. Reynolds and J. Bruno 

unpublished data).  We placed one female A. longimana in a plastic 9-mL cup with 50 mg of 

freshly collected S. filipendula.  Paired cups without A. longimana were placed with A. 

longimana addition cups in a 11.4-L ‘predator tub’ provided with flow-through filtered 

seawater (Fig. B1A).  Three juvenile pinfish were added to half of the predator tubs (n = 9 for 

a total of 36 cups).  Predators could swim freely around the cups but could not directly 

consume the amphipods.  The opaque cups were weighed with small pebbles to provide 

additional habitat, and had holes that allowed transfer of olfactory cues from the surrounding 

water.  To determine grazing rates of A. longimana on S. filipendula across predator and cue 

treatments, we first compensated for autogenic changes in the control cups according to 

Sotka et al. (2003): Ti(Cf/Ci)-Tf for grazer presence T and absence C, and initial i and final f 

macroalgal wet mass.  The experiment ran for seven days and replicates were excluded if the 

grazer died. Results were analysed with a two-tailed t-test. 
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INDUCTION EXPERIMENT 

To examine how predator olfactory cues affect algal biomass and quality, we 

conducted experiments in outdoor mesocosms at the Institute of Marine Sciences in 

Morehead City, NC, USA (see Appendix S1 in Supporting Information).  Replicates were 

established in two rows of tanks (replicate tank volume = 11.7 L) for a total of 36 top and 

bottom tanks (see Sotka, Taylor and Hay 2002; Taylor, Sotka and Hay 2002 for description 

of tank setup).  Tanks were covered with window screen and a layer of 0.5-mm diameter 

Vexar plastic; light, temperature and salinity approximated field conditions (Li-100, 

measuring 4π irradiance; 23-25 ˚C, 34.5-36 ppt; Taylor, Sotka and Hay 2002).  The top tanks 

received filtered seawater (at 0.08 L sec-1) from the adjacent sound which then flowed into 

the bottom tanks in one direction.  Top tanks were supplied with air stones.  Filter bags (200-

µm mesh) reduced natural colonization from the water system, and screens prevented 

emigration from experimental tanks.   

Algae and amphipods were collected on 19 June 2009 from the shallow subtidal at 

Radio Island, NC (34˚ 42’N, 76˚ 41’W) at 1-0.5 m below low tide.  All bottom tanks 

received two 200- to 300-mm-long S. filipendula ramets (9.5 + 0.1g each) culled from two 

individual plants.  Half of the bottom tanks then received 12 fecund female A. longimana.  

The next day, half of the top tanks received four juvenile pinfish L. rhomboides (1.53 + 0.06 

g, 37 + 0.4 mm each fish) per tank.  The bottom tanks therefore represent one of four 

treatments (n = 9): fish cue only (-G+F), grazers only (+G-F), grazers and fish cues (+G+F), 

or control (-G-F).   

All outflow screens were cleaned and the algae lightly disturbed daily to remove 

sediment buildup.  After 21 days, half the water within each tank was exchanged with fresh 
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seawater in order to remove buildup of sediment and potential benthic microalgae at the 

bottom of the tanks; seawater was drained through a 500-µm mesh to retain all amphipods.  

Throughout the experiment, fish were fed a slurry of crushed gammaridean amphipods 

supplemented with frozen brine shrimp.  Dead or sick fish were immediately replaced.  Fish 

grew throughout the experiment; fish density was reduced to 3 fish per tank after 12 days and 

to 2 fish per tank after 24 days to maintain similar initial and final fish biomass. 

Potential increases in nitrogen concentration due to bacterial degradation of fish 

excrement or food were low and likely transient in our flow-through tank system (levels for 

all tanks: nitrite ~0.25 ppm; nitrate ~10 ppm).  Incidental grazer immigration was low in 

grazer control tanks (-G+F; see Results), and thus, this treatment serves as a proxy for the 

direct effect of fish cues on algal growth and palatability.   

Algae were exposed to treatments for 42 days to allow adequate time for induced 

resistance to develop (Sotka, Taylor and Hay 2002; Taylor, Sotka and Hay 2002).  At the end 

of the experiment bottom tanks were drained and all algae and grazers removed.  Algal wet 

mass was determined after 60 revolutions in a salad spinner.  Final algal wet mass could not 

be transformed to meet assumptions of normality and was analysed with a two-way 

nonparametric ANOVA.  Significance was evaluated by comparing observed F-ratios with a 

distribution generated from 1000 permutations of the data set (Anderson 2001) using a 

custom R script (http://cran.r-project.org). 

All grazers were live counted. Final grazer abundances were natural log-transformed 

for normality and analysed with a two-way ANOVA.  We pursued log-transformation despite 

its known limitations (O’Hara and Kotze 2010), which are especially pronounced when 

means are relatively low and raw data include zeros.  In our case, means were relatively high 
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(> 10 animals per replicate) and no tank had zero animals.  We calculated the fundamental 

net reproductive rate (R or l) using the equation R = N1 (N0)-1 and the intrinsic rate of natural 

increase (r) using the equation r = lnR (T)-1 (Begon, Townsend and Harper 2006).  This 

calculation was used as we found no evidence for density dependence (see Fig. 2.3), and 

overlapping generations are implicit in the equation.  We assumed generation time was 

equivalent between fish cue treatments (mean age of females at offspring birth = 14 days; 

Sotka and Reynolds in press).  

An undamaged portion of the uppermost (top stipe) tissue from one plant in each tank 

was retained for fresh tissue feeding assays.  Inducible responses are known to occur 

primarily in apical tissue in S. filipendula (Taylor, Sotka and Hay 2002) and other brown 

seaweeds (Rohde, Molis and Wahl 2004; Hemmi et al. 2005).  Meristems in S. filipendula 

are apical, where the youngest and potentially more valuable tissue is found at the tips of the 

plant, and the oldest tissues at the holdfast.  Due to a lack of sufficient tissue per replicate, all 

remaining healthy top stipe tissue was combined by treatment and immediately frozen for 

future assays.  Frozen tissues were later freeze-dried and ground as in Taylor, Sotka and Hay 

(2002) to create an algal powder for reconstituted tissue and extract feeding assays, as well as 

phlorotannin and C:N analysis.  Two tanks were excluded from all analyses due to 

inconsistent water flow. 

 

CHOICE ASSAY—FRESH TISSUE 

Feeding choice assays, in which algal tissues from different treatments were 

simultaneously offered, were conducted as in Sotka, Taylor and Hay (2002) to assess grazer 

feeding preferences.  Grazers were given pairwise choices of fresh S. filipendula top stipes 
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from all six combinations of the four treatments.  On 2 August 2009 one freshly collected A. 

longimana was added to dishes containing two 30 mg (blotted wet mass) pieces of tissue 

separated by a plastic rod.  Because there was no natural or experimental pairing of replicates 

across treatments, four pieces of tissue (genets) per replicate were randomly and 

independently paired with four other genets from different replicates of the compared 

treatment for a total of 36 pairwise comparisons per choice assay.  Tissue without grazers 

was retained in separate dishes to control for autogenic changes in plant mass.  After two 

days all tissues were reweighed and the amount of algae consumed calculated as described 

above in Materials and methods: grazing assay.  In order to assure that grazers made a 

choice, replicates were dropped if < 3 mg was consumed of either piece of tissue (< 4 

replicates per experimental pairing).  To reduce potential pseudoreplication from the use of 

multiple genets per replicate, the proportion consumed of each tissue was averaged without 

error for each replicate and then compared to a null of 0.5 using two-tailed t-tests. 

 

CHOICE ASSAY—FREEZE-DRIED TISSUE 

To examine the influence of structural characteristics on palatability, we conducted 

feeding choice assays using reconstituted top stipe tissue from the four treatments.  Top 

stipes were lyophilized (i.e. freeze-dried) and ground to a fine powder using a Wiley mill.  

We created reconstituted foods by adding 1.5 g of ground tissue to 6 mL of water, dissolving 

0.36 g of agar in 10 mL of heated water, and combining both mixtures.  This cooled mixture 

was then poured onto window screen, covered on both sides with wax paper, and pressed.  

We cut several 5×6-cell feeding grids, which were then offered to amphipods as described 

for the fresh-tissue assays.  Choice assay comparisons were conducted on 3 November 2009 
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using freshly caught amphipods in all of the above pairings except fish cue vs. grazed and 

fish cue vs. grazed + fish cue because tissue from control and fish cue treatments were 

equally palatable in the fresh-tissue assay (see Results).  A small clip was made in the corner 

of squares made of one tissue type per pairing for identification purposes.  The trial ended 

when at least half of either treatment (>9 cells of one treatment or no more than 45 total) was 

consumed, typically after 3 days.  We calculated consumption per treatment as a percentage 

of the total number of cells cleared for both squares, where a value of 50% represents no 

choice (following Bernays and Wedge 1987). Data were assessed statistically using blocked 

one-way permutation ANOVAs (analogous to a paired t-test) because data were non-

normally distributed and could not be transformed to yield normality.  Significance from a 

permuted distribution was generated as described within Materials and methods: induction 

experiment. 

 

CHOICE ASSAY—MACROALGAL EXTRACTS 

 The palatability of crude water-soluble (polar) and lipophilic (nonpolar) extracts were 

assayed to assess the potential role of chemical defences in determining feeding preferences 

observed in the fresh and reconstituted tissue assays. Extractions were modified from Taylor 

et al. (2003) and Long, Hamilton and Mitchell (2007), and conducted at the College of 

Charleston’s Grice Marine Laboratory.  Freeze-dried algal tissue was extracted three times in 

2:1 ethyl acetate:methanol, and in 70:30 methanol:water.  Organic solvents were removed by 

rotary evaporation and partitioned between ethyl acetate and water.  Extracts were 

incorporated at natural concentrations by dry mass into 2 g freeze-dried powdered 

Ectocarpus sp. (a highly palatable, filamentous brown alga), which was used to make 
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reconstituted food squares similar to those described in Materials and methods: choice 

assays—freeze-dried tissue.  Lipophilic extracts were added to powdered Ectocarpus after 

dissolution in ethyl acetate, and tissue was rotary evaporated to remove the solvent.  Water-

soluble extracts were dissolved in distilled water and added to the powdered Ectocarpus 

when creating foods.  Control foods were treated similarly but did not contain extracts.  

Choice assays and their analyses were conducted as described in Materials and methods: 

choice assays—freeze-dried tissue. Choice assays began on 1 March  2010 for lipophilic 

extracts, and on 8 May 2010 for water-soluble extracts.  

 

MACROALGAL TRAITS 

We measured several macroalgal traits that may correlate with herbivore feeding 

choices.  Phlorotannins are polyphenolics produced by many brown seaweeds including S. 

filipendula (Cronin et al. 1997) that can deter marine grazers and may be induced by prior 

grazing (van Alstyne 1988; Pavia and Toth 2000; Toth and Pavia 2000; Pavia, Toth and 

Aberg 2002; Lüder and Clayton 2004; but see Toth and Pavia 2002; Deal et al. 2003; 

Kubanek et al. 2004; Long, Hamilton and Mitchell 2007). Phlorotannin analysis was 

conducted at Grice using the Folin–Ciocalteu method following van Alstyne (1995) and 

Long, Hamilton and Mitchell (2007).  Freeze-dried tissue was extracted with 8:2 MeOH:H2O 

and chilled for four hours.  Extracted supernatant was then filtered to remove particulates and 

added to 2M reagent with 1M Na2CO3, vortexed and heated. Absorbance (read at 760 nm) 

was then compared to a standard curve generated with phloroglucinol (Sigma, St. Louis, 

Missouri, USA) samples.  Phlorotannin concentration was calculated as a percentage of dry 
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mass and was analysed with a two-way ANOVA (n = 3) given the data were normally 

distributed and homoscedastic. 

Nitrogen is generally considered to be limiting to primary and secondary productivity 

(Mann 1979; Mattson 1980) and can influence plant chemical defences and herbivore 

performance (Yates and Peckol 1993; Koricheva et al. 1998; Herms 2002), potentially 

counteracting induced resistance (Herms 2002; Cruz-Rivera and Hay 2003; Norderhaug, 

Nygaard and Fredriksen 2006).  We measured algal tissue nitrogen content, total nitrogen 

and total organic carbon (TOC, TN) as well as tissue C:N ratio by gas chromatography–mass 

spectrometry at UNC-Chapel Hill’s Marine Sciences Department (Fry et al. 1992; Brand 

1996) (n = 3).  The C:N and total nitrogen data could not be transformed to meet assumptions 

of normality, and the sample sizes were too small to pursue nonparametric post hoc tests (i.e. 

Wilcox tests).  We thus rank-transformed the data (Conover and Iman 1981) and pursued 

parametric one-way ANOVAs and post hoc tests.  Arguably, these three traits are not 

independent, and so we used a sequential Bonferroni procedure to generate an appropriate 

alpha (cf. Rice 1989).  All three results were significant by this procedure.  We combined all 

samples within a treatment because we had low amounts of top stipe tissue, and thus, 

statistical estimates of variation in algal traits largely reflect measurement error.   

 

Results 

The smell of fish reduced Ampithoe longimana grazing by 46% during the 1-week 

grazing assay (two-tailed t-test, T = -4.18, p < 0.001, Fig. 2.1).  Fish cues also significantly 

reduced the population growth rate of A. longimana during the 42-day induction experiment 

(Table 2.1, Fig. 2.2A).  Grazer populations exposed to fish cues averaged c. 65 amphipods by 
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the end of the 42-day experiment (r  ~ 0.61), while populations lacking fish cues averaged 

~245 amphipods (r ~ 1.01).  This represents a 40% decline in population growth rate in the 

presence of fish cues.  It is possible that the mean generation time differed among grazer 

populations across treatments, which could affect our estimates of r. Given that fish cues 

reduced grazer feeding and likely reduced individual growth rates, our estimated decline in 

grazer population growth in the presence of fish cues is likely conservative and the true 

decline is likely greater. 

There was incidental immigration of grazers into tanks that were not initially seeded 

(i.e. ‘-grazer’ treatments), but they averaged fewer than 16 amphipods per tank. It is unlikely 

that predator-induced reductions are due to emigration because fine-mesh screens at the 

outflow of all tanks effectively impeded movement of A. longimana and because direct 

assays indicated that A. longimana reduces its movement in the presence of pinfish (P. 

Reynolds and J. Bruno, unpubl. data).   Our final densities ranged from < 1 to 10.4 per g 

algal wet weight, and were within levels measured in the field (Duffy 1989), suggesting that 

grazing rates were ecologically realistic. 

The interactive effect of grazer and fish cue treatments on final biomass of the alga 

Sargassum filipendula was significant (Table 2.1; Fig. 2.2B), indicating that grazers 

consistently lowered S. filipendula biomass, but the effect was greater when fish cues were 

absent.  The negative relationship between algal biomass and grazer density was reflected 

across treatment means (Fig. 2.2) as well as replicate tanks (Fig. 2.3).  Overall, our 

manipulations effectively created three levels of grazing intensity: lower (‘-grazer - fish-cue’ 

and ‘-grazer + fish-cue’ treatments), intermediate (‘+ grazer + fish-cue’) and higher (‘+grazer 

- fish-cue’). 
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To test whether these levels of prior grazing altered the palatability of algal tissue, we 

offered fresh tissue to naïve amphipods in a pairwise series of feeding choice assays (Fig. 

2.4A). Culturing water with fish cues in the absence of amphipods did not alter the 

palatability of plant tissues to amphipods (-G -F vs. -G +F), indicating that plant tissue 

quality did not respond to fish cues directly.  Tissue from tanks without grazers was more 

palatable than those from tanks with grazers (-G -F vs. +G -F), a pattern of induction that was 

documented previously (Sotka, Taylor and Hay 2002; Taylor, Sotka and Hay 2002).  Plant 

tissue from tanks with amphipods and fish cues was more palatable than tissue from tanks 

with amphipods but without fish cues (+G +F vs. +G -F).  Summarizing all feeding assays, 

plant palatability grouped into three levels: higher (both treatments without amphipods; i.e., 

‘-grazer’), intermediate (‘+ grazer + fish-cue’) and lower (‘+ grazer - fish-cue’) palatability.  

Thus, grazing intensity, as determined by grazer densities and behavioural responses to fish 

cues, negatively correlated with plant palatability. 

We used several approaches to identify the plant traits mediating observed shifts in 

palatability.  First, feeding choice assays using freeze-dried and reconstituted algal tissue 

replicated the ranking of palatability seen in fresh-plant assays without exception (compare 

Figs 2.4A and B).  Because freeze-dried tissue removes the effects of morphological 

differences, these results indicate that patterns of algal palatability are mediated by secondary 

metabolites, nutritional traits or both.  Second, feeding choice assays using the lipophilic 

extracts of S. filipendula revealed no differences in palatability among treatment types (Fig. 

2.4C).  The feeding responses toward polar extracts (Fig. 2.4D) did replicate the freeze-dried 

and fresh-tissue assays, suggesting one or more unknown polar compounds was responsible.   
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Finally, we measured candidate plant traits that have been shown previously to affect 

herbivore feeding behaviours.  Tissues differed significantly in all algal traits (Table 2.1, Fig. 

2.5), but these differences were largely explained by the plants that were most intensively 

grazed (+G-F treatment).  Phlorotannin concentration increased from 0.27% to 0.34% (by dry 

mass) between control (-G-F) and grazed tissues (+G-F; Fig. 2.5A), which represents a 25% 

increase.  In contrast, phlorotannin concentration from control (-G-F), fish cue (-G+F) and 

‘+grazer + fish cue’ (+G+F) tissues were similar (0.27-0.28%).  Grazed tissues also had 38% 

less total nitrogen than did control tissues (control vs. grazed: 2.16% vs. 1.35%) and 10% 

more total carbon (22.8% vs. 25.1%).  This yielded a far lower C:N ratio within control than 

grazed tissues (12.1 vs. 21.7), signifying that grazers would gain nearly twice as much 

nitrogen (standardized by carbon intake) while consuming control versus grazed tissue.  

There were much smaller differences in total nitrogen (2.21-2.54%), total carbon (22.8-

24.1%) and C:N ratios (10.5-12.1) among control, fish cue and ‘+grazer +fish cue’ treatments 

(Fig. 2.5B-D).   

 

Discussion 

 Cascading impacts of nonconsumptive effects appear to be strong within North 

Carolina fish–epifauna–seaweed interactions.  Olfactory cues from the pinfish Lagodon 

rhomboides yielded a 46% reduction in per capita grazing rates in A. longimana, 40% 

reduction in its population growth rate, and a 74% reduction in overall population size after 

42 days (or at least 2-3 overlapping generations).  Consistent with a trophic cascade, these 

artificial and predator-induced reductions in amphipod population size correlated with 

increasing Sargassum filipendula biomass (Figs 2.2-3) and palatability (Figs 2.4-5).  Thus, 
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non-lethal effects of predators can have cascading effects on both plant quantity and quality 

in nearshore marine environments. 

 

NONCONSUMPTIVE EFFECT OF FISH PREDATORS ON PLANT BIOMASS 

Small herbivorous species that live on seagrasses and macroalgae (termed 

mesograzers; Brawley 1992) can lower macroalgal growth rates (Norton and Benson 1983) 

and biomass (Shacklock and Croft 1981; Duffy and Hay 2000; Bruno and O'Connor 2005), 

as well as alter macroalgal composition (Duffy 1990; Bruno and O'Connor 2005).  A 

negative effect of mesograzers on macrophyte biomass is not ubiquitous (Poore, Campbell 

and Steinberg 2009) in part because some mesograzers can also reduce epiphytic biomass 

(Brawley and Fei 1987; Duffy 1990; Mancinelli and Rossi 2001), which could alternatively 

promote plants via competitive release.  In many habitats, fishes facilitate macrophytes by 

reducing densities of these mesograzers (Kennelly 1983; Dayton et al. 1984; Davenport and 

Anderson 2007; Korpinen, Jormalainen and Honkanen 2007; Newcombe and Taylor 2010).  

Historically, such trophic cascades were thought to be largely mediated by consumption rates 

rather than nonconsumptive, behavioural effects (Schmitz 2005; Peckarsky et al. 2008; 

Preisser and Bolnick 2008b).  This bias occurs despite the fact that predator-induced 

reductions in per-capita grazing rates are commonly documented within many predator–prey 

systems (e.g. McIntosh and Townsend 1996; Trussell, Ewanchuck and Bertness 2003; 

Byrnes et al. 2006; Nelson 2007; Steffan and Snyder 2010).  Moreover, reductions in feeding 

rates that occur with chronic exposure to predator cues over the lifespan of an individual or 

across generations can generate persistent reductions prey in population size (Fig. 2.2) 

(Nelson, Matthews and Rosenheim 2004; Pangle, Peacor and Johannsson 2007) and this 
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long-term impact magnifies the nonconsumptive effect on per capita feeding.  However, prey 

state (e.g. body condition) may modify trade-offs between foraging and predation risk, 

thereby regulating the expression of prey antipredator behaviour (Lima and Bednekoff 1999; 

Stephens, Brown and Ydenberg 2007). Starving prey are more likely to engage in risky 

activities, thereby limiting the degree of NCEs in systems where prey experience persistent 

predation risk and/or reduced resource abundance and quality. 

As a consequence of the growing recognition of nonconsumptive predator effects, 

published studies that demonstrated trophic cascades are being re-assessed (Peckarsky et al. 

2008).  As an example, Duffy and Hay (2000) found relatively weak evidence for a trophic 

cascade involving spottail pinfish (Diplodus holbrooki) and A. longimana in experimental 

algal communities.  In their 22-week experiment, outdoor mesocosms stocked with algae and 

amphipods were divided in half with a mesh barrier and predators were added to one side.  

Surprisingly, spottail pinfish did not significantly reduce A. longimana densities nor set in 

motion a trophic cascade effect on algal biomass.  Assuming amphipods are able to detect the 

presence of fish predators, our data suggest that the lack of a trophic cascade in Duffy and 

Hay (2000) may have reflected the presence of fish cues, which would have 

nonconsumptively inhibited A longimana grazing and population growth rates on both sides 

of the mesocosm including in the ‘no fish’ treatments.  Thus, the real effect of A. longimana 

on seaweed communities may be even greater than quantified by Duffy and Hay.  In a similar 

vein, field studies that use cages (e.g. Davenport and Anderson 2007) or chemical means 

(Poore, Campbell and Steinberg 2009) to remove predatory fishes and increase mesograzer 

densities may underestimate the true effect of mesograzers on algal communities because 

olfactory cues from fish will continue to lower grazing rates. For these scenarios to be true, 
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the spatial scale of the experimental manipulation must be similarly sized or smaller relative 

to the spatial scale across which fish cues are effective.  If the spatial scale of manipulation is 

greater than the scale at which fish cues are effective, then the ensuing heterogeneity will 

complicate interpretations of observed responses by plants and mesograzers. 

 

NONCONSUMPTIVE EFFECT OF FISH PREDATORS ON PLANT QUALITY 

As with numerous plant and algal species (Toth, Karlsson and Pavia 2007; Toth and 

Pavia 2007), S. filipendula responds to grazing by Ampithoe longimana by becoming less 

palatable (Taylor, Sotka and Hay 2002).  We demonstrate that the strength of this induced 

resistance is graded with the degree of mesograzer herbivory (Fig. 2.4).  In particular, the 

nonconsumptive effect of pinfish moderated A. longimana grazing pressure and increased S. 

filipendula food quality by lowering its induced response.  Although induced resistance after 

prior grazing in S. filipendula was previously documented by Taylor et al. (2002) and Sotka 

et al. (2002), the seaweed traits responsible have yet to be explored.  We show here that 

shifts in seaweed palatability with grazing pressure were mediated by polar, and not 

lipophilic, algal tissue extracts (Fig. 2.4) and likely reflect an increase in the production of 

secondary metabolites, a decrease in nutritional content, or both.  We do not believe that 

water-soluble phlorotannins explain observed tissue palatability patterns because the 

concentration of phlorotannins was very low (< 0.5%) relative to other brown seaweeds (van 

Alstyne, Duggins and Dethier 2001), but is consistent with previous observations from other 

tropical regions (e.g. Steinberg and Paul 1990; Pereira and Yoneshigue-Valentin 1999), and 

A. longimana appears to readily consume these and greater levels of phlorotannins (Kubanek 

et al. 2004).  Moreover, definitive proof that phlorotannins play a role requires that 
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herbivores are offered the isolated compounds in a feeding choice assay (e.g. Boettcher and 

Targett 1993).  Regardless, it seems likely that a non-phenolic water-soluble deterrent was 

induced by amphipod grazing, as has been suggested for other brown seaweed–mesograzer 

interactions (Deal et al. 2003; Long, Hamilton and Mitchell 2007). 

Nutritional traits or the interaction of nutritional traits with secondary metabolites 

may be responsible for shifts in tissue palatability. Plant nutritional traits can shift with 

herbivory pressure and may be adaptive in some cases (Ritchie, Tilman and Knops 1998; 

Norderhaug, Nygaard and Fredriksen 2006; Bracken and Stachowicz 2007).  We found that 

S. filpendula tissues that were least preferred (i.e. exposed to prior grazing) exhibited lower 

nitrogen, greater carbon and a substantially greater C:N ratio compared to more preferred 

tissues exposed to less grazing pressure (Fig. 2.5).  In theory, herbivores are nitrogen-limited 

(Mann 1979; Mattson 1980), and many herbivores attempt to maximize nitrogen relative to 

carbon intake (or protein to carbohydrate, Raubenheimer and Simpson 2009).  However, 

when in the presence of predators, stressed grazers may selectively seek carbohydrate-rich 

foods and consume higher C:N plant tissue (Hawlena and Schmitz 2010a), with 

consequences for plant tissue composition, grazer nutrient assimilation and nutrient cycling 

(Trussell, Ewanchuck and Bertness 2006, Hawlena and Schmitz 2010b). Unfortunately, we 

did not generate ash-free dry mass values relative to wet mass, which is known to negatively 

correlate with no-choice feeding rates exhibited by A. longimana across algal species, 

although strong variation in this parameter was unlikely within our single, focal algal species 

(Cruz-Rivera and Hay 2001). 

We do not believe that predator cues alone or direct grazer excretions strongly 

affected algal traits.  Fish cues in the absence of herbivores (-G +F) had no effect on algal 
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palatability (Fig. 2.4) nor algal biomass (Fig. 2.3).  Although pinfish effluent may have 

increased ammonia concentration in the water, promoting N uptake and leading to decreased 

algal tissue C:N in the absence of grazers, the magnitude of these changes was relatively 

slight (Fig. 2.5).  Similarly, although it is possible that increased herbivore density can lead 

to elevated local deposits of nutrient-rich herbivore excretions (Taylor and Rees 1998), we 

found lower nitrogen within tissues that were exposed to greater grazer densities (Fig. 2.5). 

The nonconsumptive effect of predators on plant biomass is positive, but counter-

intuitively, predator effects on plant quality may result in higher grazing rates over time.  

This is because when predators weaken algal-induced responses and increase food quality, 

the growth rates and fecundity of herbivores can increase.  Indeed, grazer-induced defences 

of Ascophyllum nodosum decrease the fecundity of gastropod grazers (Toth, Langhamer and 

Pavia 2005).  Similarly, Haavisto, Välikangas and Jormalinen (2010) found that the isopod 

Idotea baltica exhibited decreased egg production when fed defended Fucus vesiculosus 

compared to ungrazed algae.  On the other hand, recent evidence suggests that waterborne 

cues of grazed macroalgae attract predators (Coleman et al. 2007), which raises the 

possibility that grazer-induced tissue will lower herbivore fitness by both increasing predator 

pressure and lowering food quality.  Clearly, the chemical mediation of tritrophic interactions 

between predators, mesograzers and macrophytes deserve increased attention.  

 

SUMMARY 

Marine herbivores can alter algal community dynamics and their phenotype, 

including morphology and defensive chemistry (Cronin and Hay 1996).  Here we 

demonstrate that predator cues can ameliorate the effects of grazers on algal growth and 
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improve algal food quality by weakening the strength of induction.  The behaviourally 

mediated trophic cascade among pinfish, amphipods and Sargassum raises the untested 

possibility that nonconsumptive effects of predators are as large as their consumptive effects, 

especially in regions of low predation pressure where predators scare more herbivores than 

they consume.   
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Tables 

Table 2.1. ANOVA of treatment effects on amphipods, algae and phlorotannins.  
 
Results of two-factor ANOVAs on final amphipod abundance, algal wet mass and tissue 
phlorotannin concentration. 
 
            
Factor SS d.f. F P   
Grazer Abundance 

+ Grazers (G) 46.83 1 104.62 < 0.001 
+ Fish-Cue (F)  6.39 1 14.26 < 0.001 
GXF 2.00 1 4.47         0.043   
Error 13.43 30      

Algal Wet Mass 
+ Grazers 13437.10 1 118.72 < 0.001     
+ Fish Cue  923.67 1 8.16 0.008  
GXF 499.95 1 4.417 0.044   
Error 3395.38 30      

Algal Phlorotannins 
+ Grazers (G) 3.03e-7 1 7.54 0.025   
+ Fish-cue (F) 4.62e-7 1 11.49 0.010   
GXF 4.40e-7 1 10.95 0.011 
Error 3.22e-7 8    
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Figures 

 
 

added to powdered Ectocarpus after dissolution in ethyl acetate, and

tissue was rotary evaporated to remove the solvent. Water-soluble

extracts were dissolved in distilled water and added to the powdered

Ectocarpus when creating foods. Control foods were treated simi-

larly but did not contain extracts. Choice assays and their analyses

were conducted as described in Materials and methods: choice

assays – freeze-dried tissue. Choice assays began on 1 March 2010

for lipophilic extracts, and on 8 May 2010 for water-soluble

extracts.

MACROALGAL TRAITS

Wemeasured several macroalgal traits that may correlate with herbi-

vore feeding choices. Phlorotannins are polyphenolics produced by

many brown seaweeds including S. filipendula (Cronin et al. 1997)

that can deter marine grazers and may be induced by prior grazing

(van Alstyne 1988; Pavia & Toth 2000; Toth & Pavia 2000; Pavia,

Toth & Aberg 2002; Lüder & Clayton 2004; but see Toth & Pavia

2002; Deal et al. 2003; Kubanek et al. 2004; Long, Hamilton &

Mitchell 2007). Phlorotannin analysis was conducted at Grice using

the Folin–Ciocalteu method following van Alstyne (1995) and Long,

Hamilton & Mitchell (2007). Freeze-dried tissue was extracted with

8:2 MeOH:H2O and chilled for 4 h. Extracted supernatant was then

filtered to remove particulates and added to 2 m reagent with 1 m

Na2CO3, vortexed and heated. Absorbance (read at 760 nm) was

then compared to a standard curve generated with phloroglucinol

(Sigma, St. Louis, MO, USA) samples. Phlorotannin concentration

was calculated as a percentage of dry mass and was analysed with a

two-way anova (n = 3) given the data were normally distributed and

homoscedastic.

Nitrogen is generally considered to be limiting to primary and sec-

ondary productivity (Mann 1979; Mattson 1980) and can influence

plant chemical defences and herbivore performance (Yates & Peckol

1993; Koricheva et al. 1998; Herms 2002), potentially counteracting

induced resistance (Herms 2002; Cruz-Rivera & Hay 2003; Norderh-

aug, Nygaard & Fredriksen 2006). We measured algal tissue nitrogen

content, total nitrogen and total organic carbon (TOC, TN) as well as

tissue C:N ratio by gas chromatography–mass spectrometry at UNC-

Chapel Hill’s Marine Sciences Department (Fry et al. 1992; Brand

1996) (n = 3). The C:N and TN data could not be transformed to

meet assumptions of normality, and the sample sizes were too small

to pursue nonparametric post hoc tests (i.e. Wilcox tests). We thus

rank-transformed the data (Conover & Iman 1981) and pursued

parametric one-way anovas and post hoc tests. Arguably, these three

traits are not independent, and so we used a sequential Bonferroni

procedure to generate an appropriate alpha (cf. Rice 1989). All three

results were significant by this procedure. We combined all samples

within a treatment because we had low amounts of top stipe tissue,

and thus, statistical estimates of variation in algal traits largely reflect

measurement error.

Results

The smell of fish reducedA. longimana grazing by 46% during

the 1-week grazing assay (two-tailed t-test, T = )4.18,
P < 0.001, Fig. 1). Fish cues also significantly reduced the

population growth rate of A. longimana during the 42-day

induction experiment (Table 1; Fig. 2a). Grazer populations

exposed to fish cues averaged c. 65 amphipods by the end of the

42-day experiment (r c. 0.61), while populations lacking fish

cues averaged c.245 amphipods (r c. 1.01). This represents a

40% decline in population growth rate in the presence of fish

cues. It ispossible that themeangeneration timedifferedamong

grazer populations across treatments, which could affect our

estimates of r. Given that fish cues reduced grazer feeding and

likely reduced individual growth rates, our estimated decline in

grazer population growth in the presence of fish cues is likely

conservativeand the truedecline is likely greater.

There was incidental immigration of grazers into tanks that

were not initially seeded (i.e. ‘)grazer’ treatments), but they

averaged fewer than 16 amphipods per tank. It is unlikely that

predator-induced reductions are due to emigration because

fine-mesh screens at the outflow of all tanks effectively

impeded movement of A. longimana and because direct assays

indicated that A. longimana reduces its movement in the pres-

ence of pinfish (P. Reynolds & J. Bruno, unpubl. data). Our

final densities ranged from <1 to 10.4 per g algal wet weight,

and were within levels measured in the field (Duffy 1989), sug-

gesting that grazing rates were ecologically realistic.

The interactive effect of grazer and fish cue treatments on

final biomass of the alga S. filipendulawas significant (Table 1;

Fig. 2b), indicating that grazers consistently lowered S. filipen-

dula biomass, but the effect was greater when fish cues were
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Fig. 1. Amphipod grazing rates over 7 days in the presence (+) and
absence ()) of olfactory cues from fish (fish icon). (T = )4.18,
P < 0.001)Mean consumption (mg)±1 SE are shown.

Table 1. Results of two-factor anovas on final amphipod abundance,

algal wet mass and tissue phlorotannin concentration

Factor SS d.f. F P

Grazer abundance
+Grazers (G) 46.83 1 104.62 <0.001
+Fish-cue (F) 6.39 1 14.26 <0.001
G · F 2.00 1 4.47 0.043
Error 13.43 30

Algal wet mass
+Grazers 13437.10 1 118.72 <0.001
+Fish-cue 923.67 1 8.16 0.008
G · F 499.95 1 4.42 0.044
Error 3395.38 30

Algal phlorotannins
+Grazers 3.03e-7 1 7.54 0.025
+Fish-cue 4.62e-7 1 11.49 0.010
G · F 4.40e-7 1 10.95 0.011
Error 3.22e-7 8

4 P. L. Reynolds & E. E. Sotka
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Figure 2.1. Effects of fish cues on amphipod grazing rates 
A. longimana grazing rates over 7 days in the presence (+) and absence (-) of olfactory cues 
from fish (fish icon). (T = -4.18, p < 0.001)  Mean consumption (mg) +1 SE are shown. 
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absent. The negative relationship between algal biomass and

grazer density was reflected across treatment means (Fig. 2) as

well as replicate tanks (Fig. 3). Overall, our manipulations

effectively created three levels of grazing intensity: lower (‘)
grazer)fish-cue’ and ‘) grazer + fish-cue’ treatments),

intermediate (‘+grazer + fish-cue’) and higher (‘+grazer )
fish-cue’).

To test whether these levels of prior grazing altered the pal-

atability of algal tissue, we offered fresh tissue to naı̈ve amphi-

pods in a pairwise series of feeding choice assays (Fig. 4a).

Culturing water with fish cues in the absence of amphipods

did not alter the palatability of plant tissues to amphipods

()G ) F vs. )G+F), indicating that plant tissue quality did

not respond to fish cues directly. Tissues from tanks without

grazers were more palatable than those from tanks with grazers

()G)F vs. +G ) F), a pattern of induction that was docu-

mented previously (Sotka, Taylor & Hay 2002; Taylor, Sot-

ka & Hay 2002). Plant tissue from tanks with amphipods

and fish cues was more palatable than tissue from tanks with

amphipods but without fish cues (+G+F vs. +G ) F).

Summarizing all feeding assays, plant palatability grouped

into three levels: higher (both treatments without amphipods;

i.e. ‘)grazer’), intermediate (‘+grazer + fish-cue’) and lower

(‘+grazer ) fish-cue’) palatability. Thus, grazing intensity,

as determined by grazer densities and behavioural responses

to fish cues, negatively correlated with plant palatability.

We used several approaches to identify the plant traits medi-

ating observed shifts in palatability. Firstly, feeding choice

assays using freeze-dried and reconstituted algal tissue repli-

cated the ranking of palatability seen in fresh-plant assays

without exception (compare Fig. 4a,b). Because freeze-drying

tissue removes the effects of morphological differences, these

results indicate that observed patterns of algal palatability were

mediated by secondary metabolites, nutritional traits or both.

Secondly, feeding choice assays using the lipophilic extracts of

S. filipendula revealed no differences in palatability among

treatment types (Fig. 4c). The feeding responses toward polar

extracts (Fig. 4d) did replicate the freeze-dried and fresh-tissue

assays, suggesting one or more unknown polar compounds

were responsible.

Finally, we measured candidate plant traits that have been

shown previously to affect herbivore feeding behaviours. Tis-

sues differed significantly in all algal traits (Table 1; Fig. 5),

but these differences were largely explained by the plants that

were most intensively grazed (+G ) F treatment). Phlorotan-

nin concentration increased from 0.27% to 0.34% (by dry

mass) between control ()G ) F) and grazed tissues (+G)F;
Fig. 5a), which represents a 25% increase. In contrast, phloro-

tannin concentration from control ()G ) F), fish cue

()G+F) and ‘+grazer + fish cue’ (+G+F) tissues were sim-

ilar (0.27–0.28%). Grazed tissues also had 38% less TN than

did control tissue (control vs. grazed: 2.16% vs. 1.35%) and

10% more total carbon (22.8% vs. 25.1%). This yielded a far

lower C:N ratio within control than grazed tissues (12.1 vs.

21.7), signifying that grazers would gain nearly twice as much

nitrogen (standardized by carbon intake) while consuming

control versus grazed tissue. There were much smaller differ-

ences in TN (2.21–2.54%), total carbon (22.8–24.1%) andC:N

ratios (10.5–12.1) among control, fish cue and ‘+grazer + -

fish cue’ treatments (Figs 5b–d).

!
(a)

(b)

Fig. 2. Effects of grazer (dark bars) and fish cue (fish icon) treatments
on final (a) grazer population size and (b) algal wet mass after
42 days. Letters represent treatments that are significantly different
by Tukey’s HSD.Mean±SE values are shown.

Fig. 3. Exponential decay of final algal biomass with grazer density
(Biomass · ln(grazer abundance): r2 = 0.827; P < 0.001). Filled
shapes represent replicates initially stockedwith grazers, and triangles
and circles represent replicates without and with olfactory cues from
fish, respectively.

Effects of herbivore fear on seaweed biomass and quality 5
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Figure 2.2. Effects of grazer and fish cue treatments on final grazer and algal 
populations 
Effects of grazer (dark bars) and fish cue (fish icon) treatments on final A) grazer population 
size and B) algal wet mass after 42 days.  Letters represent treatments that are significantly 
different by Tukey’s HSD. Mean ± SE values are shown. 



 

 70 

absent. The negative relationship between algal biomass and

grazer density was reflected across treatment means (Fig. 2) as

well as replicate tanks (Fig. 3). Overall, our manipulations

effectively created three levels of grazing intensity: lower (‘)
grazer)fish-cue’ and ‘) grazer + fish-cue’ treatments),

intermediate (‘+grazer + fish-cue’) and higher (‘+grazer )
fish-cue’).

To test whether these levels of prior grazing altered the pal-

atability of algal tissue, we offered fresh tissue to naı̈ve amphi-

pods in a pairwise series of feeding choice assays (Fig. 4a).

Culturing water with fish cues in the absence of amphipods

did not alter the palatability of plant tissues to amphipods

()G ) F vs. )G+F), indicating that plant tissue quality did

not respond to fish cues directly. Tissues from tanks without

grazers were more palatable than those from tanks with grazers

()G)F vs. +G ) F), a pattern of induction that was docu-

mented previously (Sotka, Taylor & Hay 2002; Taylor, Sot-

ka & Hay 2002). Plant tissue from tanks with amphipods

and fish cues was more palatable than tissue from tanks with

amphipods but without fish cues (+G+F vs. +G ) F).

Summarizing all feeding assays, plant palatability grouped

into three levels: higher (both treatments without amphipods;

i.e. ‘)grazer’), intermediate (‘+grazer + fish-cue’) and lower

(‘+grazer ) fish-cue’) palatability. Thus, grazing intensity,

as determined by grazer densities and behavioural responses

to fish cues, negatively correlated with plant palatability.

We used several approaches to identify the plant traits medi-

ating observed shifts in palatability. Firstly, feeding choice

assays using freeze-dried and reconstituted algal tissue repli-

cated the ranking of palatability seen in fresh-plant assays

without exception (compare Fig. 4a,b). Because freeze-drying

tissue removes the effects of morphological differences, these

results indicate that observed patterns of algal palatability were

mediated by secondary metabolites, nutritional traits or both.

Secondly, feeding choice assays using the lipophilic extracts of

S. filipendula revealed no differences in palatability among

treatment types (Fig. 4c). The feeding responses toward polar

extracts (Fig. 4d) did replicate the freeze-dried and fresh-tissue

assays, suggesting one or more unknown polar compounds

were responsible.

Finally, we measured candidate plant traits that have been

shown previously to affect herbivore feeding behaviours. Tis-

sues differed significantly in all algal traits (Table 1; Fig. 5),

but these differences were largely explained by the plants that

were most intensively grazed (+G ) F treatment). Phlorotan-

nin concentration increased from 0.27% to 0.34% (by dry

mass) between control ()G ) F) and grazed tissues (+G)F;
Fig. 5a), which represents a 25% increase. In contrast, phloro-

tannin concentration from control ()G ) F), fish cue

()G+F) and ‘+grazer + fish cue’ (+G+F) tissues were sim-

ilar (0.27–0.28%). Grazed tissues also had 38% less TN than

did control tissue (control vs. grazed: 2.16% vs. 1.35%) and

10% more total carbon (22.8% vs. 25.1%). This yielded a far

lower C:N ratio within control than grazed tissues (12.1 vs.

21.7), signifying that grazers would gain nearly twice as much

nitrogen (standardized by carbon intake) while consuming

control versus grazed tissue. There were much smaller differ-

ences in TN (2.21–2.54%), total carbon (22.8–24.1%) andC:N

ratios (10.5–12.1) among control, fish cue and ‘+grazer + -

fish cue’ treatments (Figs 5b–d).

!
(a)

(b)

Fig. 2. Effects of grazer (dark bars) and fish cue (fish icon) treatments
on final (a) grazer population size and (b) algal wet mass after
42 days. Letters represent treatments that are significantly different
by Tukey’s HSD.Mean±SE values are shown.

Fig. 3. Exponential decay of final algal biomass with grazer density
(Biomass · ln(grazer abundance): r2 = 0.827; P < 0.001). Filled
shapes represent replicates initially stockedwith grazers, and triangles
and circles represent replicates without and with olfactory cues from
fish, respectively.

Effects of herbivore fear on seaweed biomass and quality 5
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Figure 2.3. Exponential decay of final algal biomass with grazer density 
(Biomass X ln(grazer abundance): r2 = 0.827; p < 0.001). Filled shapes represent replicates 
initially stocked with grazers, and triangles and circles represent replicates without and with 
olfactory cues from fish, respectively. 
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Figure 2.4. Grazer and fish cue treatment effects on algal palatability 
Effects of grazer (dark bars) and fish cue (fish icon) treatments on algal palatability in A) 
fresh tissue (statistics are for two-tailed t-tests of first tissue choice with null = 50% 
consumption; n = 8-9); and pooled B) reconstituted tissue, C) lipophilic extracts and D) polar 
extract assays (non-parametric ANOVA permutation with cup as block). Mean + 1 SE are 
shown.  *P < 0.05, **P < 0.01, ***P < 0.001. NA refers to treatments that were not 
conducted due to a lack of a direct fish cue effect found in A). 
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Nelson 2007; Steffan & Snyder 2010). Moreover, reductions in

feeding rates that occur with chronic exposure to predator cues

over the lifespan of an individual or across generations can

generate persistent reductions prey in population size (Fig. 2)

(Nelson, Matthews & Rosenheim 2004; Pangle, Peacor & Joh-

annsson 2007) and this long-term impact magnifies the non-

consumptive effect on per capita feeding. However, prey state

(e.g. body condition) may modify trade-offs between foraging

and predation risk, thereby regulating the expression of prey

antipredator behaviour (Lima & Bednekoff 1999; Stephens,

Brown & Ydenberg 2007). Starving prey are more likely to

engage in risky activities, thereby limiting the degree of NCEs

in systems where prey experience persistent predation risk

and ⁄or reduced resource abundance and quality.
As a consequence of the growing recognition of non-con-

sumptive predator effects, published studies that demonstrated

trophic cascades are being re-assessed (Peckarsky et al. 2008).

As an example, Duffy &Hay (2000) found relatively weak evi-

dence for a trophic cascade involving spottail pinfish (Diplodus

holbrooki) and A. longimana in experimental algal communi-

ties. In their 22-week experiment, outdoor mesocosms stocked

with algae and amphipods were divided in half with a mesh

barrier and predators were added to one side. Surprisingly,

spottail pinfish did not significantly reduceA. longimana densi-

ties nor set in motion a trophic cascade effect on algal biomass.

Assuming amphipods are able to detect the presence of fish

predators, our data suggest that the lack of a trophic cascade

in Duffy & Hay (2000) may have reflected the presence of fish

cues, which would have non-consumptively inhibited A longi-

mana grazing and population growth rates on both sides of the

mesocosm including in the ‘no fish’ treatments. Thus, the real

effect of A. longimana on seaweed communities may be even

greater than quantified by Duffy and Hay. In a similar vein,

field studies that use cages (e.g. Davenport & Anderson 2007)

or chemical means (Poore, Campbell & Steinberg 2009) to

remove predatory fishes and increase mesograzer densities

may underestimate the true effect ofmesograzers on algal com-

munities because olfactory cues from fish will continue to

lower grazing rates. For these scenarios to be true, the spatial

scale of the experimental manipulation must be similarly sized

or smaller relative to the spatial scale across which fish cues are

effective. If the spatial scale of manipulation is greater than the

scale at which fish cues are effective, then the ensuing heteroge-

neity will complicate interpretations of observed responses by

plants andmesograzers.

NON-CONSUMPTIVE EFFECT OF FISH PREDATORS ON

PLANT QUALITY

As with numerous plant and algal species (Toth, Karlsson &

Pavia 2007; Toth & Pavia 2007), S. filipendula responds to

grazing by A. longimana by becoming less palatable (Taylor,

Sotka & Hay 2002). We demonstrate that the strength of this

induced resistance is graded with the degree of mesograzer

herbivory (Fig. 4). In particular, the non-consumptive effect

of pinfish moderated A. longimana grazing pressure and

increased S. filipendula food quality by lowering its induced

response. Although induced resistance after prior grazing in

S. filipendula was previously documented by Taylor, Sotka &

Hay (2002) and Sotka, Taylor & Hay (2002), the seaweed

traits responsible have yet to be explored. We show here that

shifts in seaweed palatability with grazing pressure were med-

iated by polar, and not lipophilic, algal tissue extracts

(Fig. 4) and likely reflect an increase in the production of sec-

ondary metabolites, a decrease in nutritional content, or

both. We do not believe that water-soluble phlorotannins

explain observed tissue palatability patterns because the con-

centration of phlorotannins was very low (<0.5%) relative

to other brown seaweeds (van Alstyne, Duggins & Dethier

(a)

(b)

(c)

(d)

Fig. 5. Effects of grazer (dark bars) and fish cue (fish icon) treatments
on pooled algal tissue (a) phlorotannin concentration, (b) C : N ratio
(F3,8 = 254.6, P < 0.001), (c) total nitrogen (F3,8 = 81.952,
P < 0.001) and (d) total organic carbon (F3,8 = 4.570, P = 0.030).
±1 SE. Letters in represent treatments that are significantly different
by Tukey’s HSD.Refer to Table 1 for overall test for phlorotannins.
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Figure 2.5. Grazer and fish cue treatment effects on macroalgal traits 
Effects of grazer (dark bars) and fish cue (fish icon) treatments on pooled algal tissue A) 
phlorotannin concentration, B) C:N ratio (F3,8 = 254.6, p < 0.001), C) total nitrogen (F3,8 = 
81.952, p < 0.001) and D) total organic carbon (F3,8 = 4.570, p = 0.030). +1 SE.  Letters in 
represent treatments that are significantly different by Tukey’s HSD.  Refer to Table 2.1 for 
overall test for phlorotannins. 
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CHAPTER 3:  
PARTITIONING CONSUMPTIVE AND NONCONSUMPTIVE PREDATOR-PREY 

INTERACTIONS WITH MULTIPLE PREDATORS IN AN OYSTER REEF 
COMMUNITY 

	  
Abstract 

Predators can affect prey populations via lethal changes in prey density (a 

consumptive effect) or by altering prey behavior (a nonconsumptive effect), both of which 

can influence the strength of trophic cascades.  The role of predator richness and composition 

in modifying consumptive predator effects is becoming more clear, if often system specific.  

However, very little is known about how predator community composition modifies 

nonconsumptive predator effects, particularly in a field setting.  We experimentally assessed 

the role of predator richness and identity in controlling prey density and the strength of the 

trophic cascade via both consumptive and nonconsumptive effects.  We manipulated the 

presence, composition and richness of predators (oyster toadfish, blue and stone crabs) and 

their ability to access and consume their prey (mud crabs) in experimental oyster reef 

communities in the field. After two months, we found that top predators consumed mud crabs 

and nonconsumptively reduced their foraging (an antipredator response) on juvenile oysters. 

These two effects varied among the three top predators, indicating that predator identity can 

have independent effects on the strength of consumptive and nonconsumptive predator-prey 

interactions. Trophic cascades of top predators on juvenile oysters were almost exclusively 

driven by nonconsumptive interactions. Surprisingly, predator richness promoted juvenile 
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oysters despite reducing mortality risk of their consumers. Thus, predator richness weakened 

the consumptive effects of predators but strengthened their nonconsumptive effects on basal 

resources. Interspecific interference among top predators, as well as strong mud crab 

antipredator responses induced by the presence of one top predator (oyster toadfish), are 

likely responsible for this counterintuitive result. However, positive cascading NCEs of 

toadfish on juvenile oysters attenuated at small spatial scales, indicating that while these 

effects can persist over time in the field in the presence of multiple predators and alternate 

prey resources, predator density and distribution may play a large role in shaping the overall 

magnitude and direction of NCEs a given ecosystem property.  

 

Key-words: nonconsumptive effect, multiple predators, species richness, trophic cascade 

oyster reef 

 

Introduction 

Predators can have strong direct and indirect effects in food webs (Connell 1980, 

Carpenter et al. 1985), influencing productivity, nutrient cycling, and community structure 

(Duffy 2003, Cardinale et al. 2006, Fukami et al. 2006, Greig and McIntosh 2006, Schmitz 

2006, Stief and Holker 2006, Trussell et al. 2006). Cascading effects on lower trophic levels 

can occur when predators consume (a lethal density reduction, CE) or alter the behavior (a 

nonconsumptive effect, NCE) of consumers at intermediate trophic levels (Carpenter et al. 

1985, Strong 1992, Werner and Peacor 2003). Predator-induced changes in prey activity, 

habitat, and diet preferences can affect prey growth and survivorship, with consequences for 

the prey and resource dynamics (Trussell et al. 2002, Dill et al. 2003, Werner and Peacor 
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2003, Grabowski 2004). Understanding the role of such nonconsumptive predator-prey 

interactions is now recognized as integral to predicting the overall effect of predators in 

natural food webs (Preisser et al. 2005, Peckarsky et al. 2008, Schmitz et al. 2008). 

Although there is a long history of studying predator-prey behavioral interactions, 

predicting the role of predator communities and their cascading nonconsumptive effects on a 

given ecosystem property is challenging. To date most research has examined the effects of 

single predators, but there is growing evidence that interactions among multiple predators 

can have important and often counterintuitive effects on prey and community dynamics 

(Soluk and Collins 1988, Morin 1995, Sih et al. 1998, Eklöv and Van Kooten 2001, Duffy 

2002, Vance-Chalcraft et al. 2004, Bruno and O'Connor 2005, Byrnes et al. 2006, Steffan 

and Snyder 2009). Multiple predators can exhibit emergent effects on prey density via risk 

reduction or enhancement, in which fewe or more prey are consumed, respectively, than 

expected based on the effects of a single predator (Soluk and Collins 1988, Sih et al. 1998). 

Antagonistic interactions and/or interference among multiple predators can reduce prey 

mortality risk (Sih and Krupa 1996, Crowder et al. 1997, Finke and Denno 2004, Vance-

Chalcraft et al. 2004, Griffen and Byers 2006), whereas predator complementarity or 

facilitation can increase prey risk (Losey and Denno 1998, Fodrie and Kenworthy 2008).  

The presence of multiple predators can also heighten prey antipredator responses such 

as suppressed foraging activity, reducing consumption of basal resources and further 

strengthening a trophic cascade (Byrnes et al. 2006, Steffan and Snyder 2010). However, if 

prey exhibit risk-sensitive behavior (Lima and Bednekoff 1999) and can accurately assess 

predation risk, predator assemblages that reduce prey mortality may actually suppress prey 

antipredator responses and potentially increase prey foraging (Botham et al. 2008, Martin et 
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al. 2009), thereby weakening a trophic cascade. However, if prey utilize simple cues for 

predator detection and cannot perceive changes in risk, a change in predator assemblage may 

have no effect or the opposite effect on the strength of a trophic cascade.  Thus, changes in 

the number of predator types (e.g., species richness) can strongly influence the strength of a 

trophic cascade via both consumptive and nonconsumptive pathways (see reviews by Duffy 

et al. 2007, Stachowicz et al. 2007, Bruno and Cardinale 2008). Given that the presence of 

multiple predators is a common feature of most ecological systems (Cohen and Briand 1984, 

Schoener 1989, Polis 1991), understanding how predator richness influences predation risk 

and its effect on prey behavior is critical to our ability to predict and model the consequences 

of trophic interactions on food web dynamics. 

Despite a growing emphasis on multiple predator effects and the role of behavior, 

how prey antipredator responses contribute to the total predator effect and how they are 

modified by predator richness in natural field settings is poorly understood. Most behavioral 

studies in aquatic systems have been conducted in mesocosms in which cue saturation is 

likely (e.g., Byrnes et al. 2006, Grabowski et al. 2008, but see Trussell et al. 2002) and may 

therefore represent a ‘maximum’ estimation of the role of nonconsumptive effects. Under 

field conditions, more natural cue diffusion may influence our ability to detect NCEs and 

their relative contribution to the total effect of a predator community on a given ecosystem 

property. For example, high flow regimes in aquatic systems can provide prey with 

hydrodynamic refuges from olfactory-mediated predation, but may also interfere with their 

ability to detect and properly respond to predators in the field (Weissburg and Zimmer-Faust 

1993). The presence of alternate resources may also mask predator richness effects in 

diverse, open systems where both predators and their prey can exhibit diet switching 
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behaviors (O'Connor and Bruno 2009). Thus, complicated predator-prey behavioral 

interactions and alternate prey availability in open systems make it difficult to predict the 

effects of changing predator communities in natural food webs. 

To examine how multiple predators affect the strength of a trophic cascade by 

altering both predation risk (a consumptive effect) and prey antipredator behavior (a 

nonconsumptive effect), we manipulated model oyster reef communities in experimental 

field cages. To test multiple predator effects on predation risk, we manipulated the richness 

of top predators (0, 1 or 3 species). To partition the cascading nonconsumptive (behavioral) 

effects of multiple predators from the total predator effect (lethal + behavioral), we 

manipulated predator access to their prey (see supplemental Fig. C1 for images of the 

experimental design). 

Oyster reefs support diverse and dense communities of invertebrate and fish predators 

and their associated prey including bivalves, decapods, gastropods, and other resident 

invertebrates (Wells 1961, Ulanowicz and Tuttle 1992, Peterson et al. 2003, Grabowski et al. 

2005). Interactions among top predators and a common consumer of juvenile oysters, the 

mud crab (Panopeus herbstii), are well studied in this system (Grabowski 2004, Grabowski 

and Powers 2004, Grabowski and Kimbro 2005, Grabowski et al. 2008). Mud crabs are 

important consumers of bivalves, although mud crab density alone is not necessarily a good 

predictor of juvenile oyster survivorship (McDermott 1960, Bisker and Castagna 1987, Abbe 

and Breitburg 1992). The presence of predatory oyster toadfish (Opsanus tau) is known to 

reduce mud crab mobility and consumption of juvenile oysters, thereby promoting oysters 

even in complex reef habitats where fish predation is low and mud crab densities are high 

(Grabowski 2004). Another common mud crab predator, adult blue crabs (Callinectes 
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sapidus), may also be negatively affected by toadfish and reduce its overall predation 

pressure on mud crabs on reefs with resident toadfish (Bisker et al. 1989). Adult stone crabs 

(Menippe mercenaria) also utilize oyster reefs (Irlandi and Peterson 1991, Nakaoka 2000), 

and are known to interfere with predation activities of other predators (Hughes and 

Grabowski 2006). Interactions among these top predators may influence mud crab predation 

risk and subsequently the strength of their antipredator behavior, with consequences for their 

consumption of basal resources such as juvenile oysters (see Fig. 3.1 for experimental food 

web and hypothetical predator-prey interactions). 

Based on previous work in this system (Grabowski 2004, Grabowski et al. 2005, 

Hughes and Grabowski 2006, O'Connor et al. 2008) and in other multiple predator studies 

(Sih et al. 1998, Byrnes et al. 2006, Steffan and Snyder 2010), we predicted that: (1) Top 

predators nonconsumptively increase oyster abundances by reducing mud crab foraging; (2) 

Increased top predator richness reduces mud crab mortality risk; and therefore (3) Increased 

top predator richness weakens a trophic cascade if mud crabs exhibit risk-sensitive behavior, 

or strengthen the cascade if they are risk-insensitive (Table 3.1). 

   

Methods 

The experiment was conducted at Hoop Pole, a sheltered estuarine wildlife refuge in 

Bogue Sound, near the University of North Carolina’s Institute of Marine Sciences in 

Morehead City, NC. Field plots were established in July and were maintained until October 

of 2009, incorporating a period of peak oyster spawning and recruitment (Southworth and 

Mann 2004). Experimental plots were established in a channel bordered by intertidal mud 

flats adjacent to native and restored bivalve beds, including oysters (Cassostrea virginica) 
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and clams (Mercenaria mercenaria), and salt marsh (primarily Spartina alterniflora) and 

seagrass (Zostera marina) habitats. Juvenile and adult mud, stone and blue crabs, as well as 

oyster toadfish, are common consumers in this system (Grabowski 2004, O'Connor et al. 

2008). 

 

EXPERIMENTAL DESIGN 

The experimental design was a split-split-plot in a randomized design with two 

overlapping temporal blocks (n = 9). Experimental cages (plot-level) were stocked with a 

given top predator community and divided into sub-plots such that the top predators could or 

could not access their mud crab prey (total effect or NCE-only treatments). Sub-plots were 

visually divided into two zones (near or far the central divider) to quantify spatial biases in 

oyster survivorship and recruitment within the cages.  

We manipulated top predator presence and identity to create five different top 

predator community types: MC (mud crab) only, MC + stone crabs (SC), MC + blue crabs 

(BC), MC + oyster toadfish (TF), and MC + SC + BC + TF for a total of 10 experimental 

treatments (Fig. C1). With this design, we could directly compare the strength of 

nonconsumptive effects to the total predator effect without confounding changes in prey 

density. Specific treatment comparisons were used to test hypotheses (Table 3.1). Top 

predators were manipulated in an additive design such that predator density increased with 

species richness. Although this potentially confounds the effects of species richness with 

density (Connolly 1988, Sih et al. 1998, Benedetti-Cecchi 2004), this design maintained 

natural field densities per species and may more accurately reflect field distributions given 

the highly intraspecific territorial nature of some of our species (O'Connor et al. 2008). 
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Experimental animals were collected with crab traps or by hand at Hoop Pole and 

surrounding field sites. Units were stocked with species at densities based on previously 

collected data including field surveys conducted on shellfish reefs at this and nearby sites 

(e.g., McDonald 1982, Zimmerman et al. 1989, Lenihan et al. 2001, Silliman et al. 2004, 

Grabowski and Kimbro 2005, O'Connor and Crowe 2005). All species were observed 

together in the field in areas of similar size to our experimental units. Treatments contained 0 

or 1 stone crab, blue crab or oyster toadfish, or one individual of all three species, and 0 or 15 

mud crabs. Top predators were collected within a similar size range representative of the 

native assemblage at this site. The average initial individual mass of each species (n = 10) 

was 103 (+ 5.1) g for toadfish, 70 (+ 5.4) g for blue crabs, and 88 (+ 6.0) g for stone crabs 

(values are means + 1 SE). Mud crabs were collected within their most common size range at 

the field site (15 - 30 mm CW) and stocked at densities within the range observed on local 

reefs (10 - 49 mud crabs/m2, McDonald 1982). Experimental plots without cages were 

included to control for caging artifacts but are not analyzed here. Supplemental laboratory 

trials verified consumption of juvenile oysters by mud crabs and examined any potential 

direct effects of the top predators on juvenile oyster survivorship, which were minimal 

(Reynolds and Bruno, unpublished data). Although blue and stone crabs are known to 

consume oysters, laboratory feeding trials indicated that the size class of these predators used 

in this study did not have a significant effect on juvenile oyster mortality compared to mud 

crabs (Reynolds and Bruno, unpublished data; Bisker and Castagna 1987). Thus, we 

attributed differences in oyster survivorship to changes in mud crab consumption. Given the 

predator sizes used in this study, prior work supports that all top predators were capable of 
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consuming mud crabs, while top predator losses due to intraguild predation by toadfish on 

blue and stone crabs was unlikely (Bisker et al. 1989). 

 

FIELD SETUP 

Field plots were randomly assigned to treatments and were installed in an area of 500 

m2 in water 1 m deep at mean low tide. Species were stocked in cages within experimental 

plots to maintain treatments. Cages were rectangular, 100 x 50 x 50 cm made of plastic 

Vexar mesh (5 mm aperture) attached to a 20 mm diameter PVC pipe frame. Cages included 

lids fastened with re-sealable cable ties. Cages were separated by least 1.5 m and buried 10 

cm into the sediment; reinforcing rebar were attached at two opposite corners of each cage. 

Cages were filled with ~70 L mud and 40 L defaunated oyster shells to provide a natural 

substrate. Mud crabs were added to the cages a week after installation to allow time for 

natural infaunal recruitment, and top predators were added one week later. Crushed mussels 

(food) were added to the cages at the time of mud crab addition to reduce transportation 

stress and promote initial mud crab survivorship. Cages were installed in two blocks 

established and broken down two weeks apart. 

Field cages were divided in the center with 5 mm Vexar to create two compartments 

(50 x 50 x 50 cm). Top predators were added to only one compartment, in which they could 

directly access their mud crab prey (CE + NCE = Total Effect treatment). No predators were 

added to the adjoining compartment; top predators could only nonconsumptively influence 

prey in this compartment (NCE treatment). Thus mud crabs in the NCE compartments 

received kairomes (olfactory cues from their predators) as well as pheromones (cues from 

conspecifics, including alarm and death cues). With this nested design we could directly 
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compare nonconsumptive effects on a given response variable to that of the total predator 

effect. Replicates were excluded from the analysis if a top predator was missing (one set of 

replicates) or the cage was damaged. 

 

RESPONSE VARIABLES 

Mud crab mortality juvenile oyster abundance: To assess changes in mud crab 

mortality across treatments, we collected all mud crabs from each experimental compartment 

after two months. All oyster shells were removed from the cages and the mud sieved on a 2 

mm screen to capture any burrowed crabs. All fauna within the oyster shell and mud matrix 

were preserved in 70% EtOH and later identified. To assess treatment impacts on the 

abundance of juvenile oysters that settled and successfully grew in field cages (e.g., oyster 

recruits), we collected 20 oyster shells from each compartment (10 shells from each of the 

two zones; 40 total per cage) at the end of the experiment. Shell collection was standardized 

as in O’Connor et al. (2008), selecting horizontally positioned shells of the same size class. 

We counted all live juvenile oysters that had recruited on each sampled shell; the abundance 

of recruits was averaged per shell per zone. 

Juvenile oyster survivorship: Juvenile oysters (< 20 mm) were purchased from a local 

oyster hatchery and maintained in flow through seawater tables. Five individual oysters were 

glued onto a dead adult oyster shell to mimic natural settlement and accessibility (as in 

Grabowski 2004), which was tethered with nylon monofilament and attached within the 

experimental unit for ease of recovery. Each cage received four feeding shells, tethered 

haphazardly in each of two areas: close (A) and far (B) from the center unit divider (e.g., one 

feeding shell per zone). The assay was deployed immediately after top predator addition 
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(initial feeding assay), and immediately prior to experimental breakdown (final feeding 

assay). The number of juvenile oysters surviving in each zone for every compartment was 

recorded after 24 hours and the feeding shells were removed. We examined cascading 

predator richness effects on juvenile oyster mortality from this assay using the multiplicative 

risk model above. 

 

ANALYSIS 

Top predator and access treatments: To assess the presence of a trophic cascade, we 

first tested the effect of top predator presence on mud crab mortality, and mud crab presence 

on oyster survivorship and recruitment for Total Effect and NCE treatments separately using 

a two factor ANOVA with time block as the second factor. Analyses were performed using 

the fit model platform in JMP version 8.0.1 (SAS Institute, Cary, North Carolina, USA). 

Time block was not significant for either analysis and was subsequently dropped and the data 

re-analyzed (Underwood 1981).  

To assess the effects of top predator community type (BC, SC, TF, BC+SC+TF) and 

access (TE, NCE) to their mud crab prey on mud crab mortality, we conducted a four-way 

ANOVA with top predator community, access (total or nonconsumptive) and block as fixed 

factors, and experimental unit (cage) as a random effect nested within predator community 

treatment. Although ANOVA is robust to deviations from normality (Underwood 1981), mud 

crab mortality data could not be transformed to meet test assumptions and results must be 

interpreted cautiously. Thus, we set the alpha for this test at 0.01 to avoid type II error 

(Underwood 1981). We also used a four-way ANOVA on the final abundance of oyster 

recruits with top predator community type, access, and block as fixed factors and cage as a 
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random factor nested within predator community treatment. Block and cage effects were not 

significant for either analysis and were consequently removed from the analysis and the data 

were re-analyzed with a two-way ANOVA (Underwood 1981). Zone biases for juvenile 

oyster survivorship in the feeding assay and final oyster recruit abundance were assessed 

with two-tailed matched paired t-tests. Additional analyses utilizing a split-split plot design 

mixed-effects model to incorporate zone within the model testing predator identity effects on 

oyster survivorship and recruitment was also pursued and yielded similar results (see 

Appendix C, Supplemental C2). 

Top predator richness effects: To test for a predator richness effect on final mud crab 

survivorship in the total and nonconsumptive predator effect treatments, we compared 

expected proportions derived from a multiplicative risk model (Soluk 1993, Sih et al. 1998) 

to the observed experimental values. The multiplicative risk model is preferred for additive 

experimental designs with fixed initial prey abundances as it adjusts expected prey 

mortalities such that prey cannot be consumed twice (Soluk 1993, Sih et al. 1998). The 

model employed here was adapted from Nilsson et al. (2006), accommodating three top 

predator species:   

ESC+BC +TF = pSC + pBC + pTF - (pSC · pBC) – (pSC · pTF) – (pBC · pTF) + (pSC · pBC · pTF). 

Here, EBC+SC+TF  is the expected proportion of mud crab mortality in the three-predator 

treatments and pSC, pBC, and pTF are the respective mean observations in the one-predator 

treatments. The term pSC · pBC · pTF is included to remove the first correction from occurring 

twice for a specific prey individual. The expected and observed values were compared with 

two-tailed t-tests (Quinn and Keough 1993), where no deviation from zero implies that the 

results follow model predictions and significance indicates an emergent multipredator effect. 
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A similar analysis was used to examine emergent multiple predator effects on oyster 

mortality risk for the final feeding assay. 

Because top predator identity and not diversity per se influenced mud crab foraging 

(see Results), and because a multiplicative risk model is inappropriate for analyzing resource 

abundance in an open system, we assessed predator richness effects on the abundance of 

oyster recruits using post hoc tests.  

Mud crab foraging: We assumed that no mud crab mortality occurred during the 

initial feeding assay. Because juvenile oyster losses on feeding shells in control (mud crabs 

absent) cages were minimal (< 12%), we calculated changes in mud crab foraging rates by 

dividing juvenile oyster losses by either initial or final mud crab abundance as per the 

respective feeding assay, and comparing this to the average of the mud-crab only control: 

[MO/AMC]+p / [MO/AMC]-p for oyster mortality [MO] and mud crab abundance [AMC] in the 

presence (+) and absence (-) of top predators, p). Deviations from 1 therefore indicate a 

change in foraging rate from baseline. These data were then analyzed with a two-way 

ANOVA as block and cage effects were not significant. 

 

Results 

MUD CRAB MORTALITY AND OYSTER RECRUIT ABUNDANCE 

We found very low abundances of mud crabs in control cages (only 2 of 9 control 

cages had any mud crabs in them), indicating that our cages successfully prevented natural 

immigration into the no mud crab (“none”) treatment replicates. Mud crab mortality was 

observed in all treatments (30% in mud crab only controls, i.e., without top predators), and 

many have occurred due to both predation and cannibalism (Fig. 3.2A). Final mud crab 
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abundances in NCE treatments (i.e., top predators were present without access) did not vary 

from the mud crab only controls, indicating that NCEs alone had little effect on mud crab 

mortality (Fig. 3.2A). Top predator access to mud crabs, but not predator community type, 

affected mud crab mortality (Table 3.2A), further supporting that changes in mud crab 

survivorship were due to consumption by top predators and not predator cues alone. On 

average, when top predators could access their prey (Total Effect treatment), mud crabs 

experienced a 58% increase in mortality relative to the mud crab only controls. Top predators 

did not affect mud crab mortality when they could not access their prey (NCE treatment). 

Stone crabs with access to their prey (Total Effect treatment) caused the highest mud crab 

mortality (60%, Fig. 3.2A).  

Mud crabs decreased the final abundance of juvenile oyster recruits (Fig. 3.2B), 

indicating the potential for a trophic cascade. Predator community type (e.g., top predator 

identity and richness), but not access to their mud crab prey, increased the final abundance of 

juvenile oysters that recruited into field cages (Table 3.2B), indicating the presence of a 

trophic cascade driven by both consumptive and nonconsumptive predator-prey interactions. 

The greatest abundance of oyster recruits was observed in the presence of toadfish (Fig. 

3.2B). On average, juvenile oyster abundance and survivorship was greater in the zones 

closest to an adjoining compartment housing a toadfish (Fig. 3.3 “near”), indicating that the 

strength of nonconsumptive effects of some predators may attenuate over small spatial scales 

in the field. 
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TOP PREDATOR RICHNESS EFFECTS 

Predator richness influenced mud crab mortality in both total and nonconsumptive 

predator treatments (multiplicative risk model, df = 8, P < 0.0001 and P = 0.0183, 

respectively), indicating that emergent predator effects may be governed by nonconsumptive 

mechanisms. Assuming that predator density influenced mud crab mortality, the presence of 

three predator species reduced mud crab mortality risk regardless of whether the predators 

could directly access their prey (Fig. 3.4). Predator richness also affected juvenile oyster 

survivorship in the final feeding assay in both total and nonconsumptive predator treatments 

(multiplicative risk model, df = 8, P = 0.035 and P = 0.004, respectively), indicating that top 

predator richness strengthened the trophic cascade and reduced the risk of juvenile oyster 

mortality (Fig. 3.5). 

 

MUD CRAB FORAGING 

Reduced foraging is a common antipredator strategy by which prey increase their 

likelihood of surviving an encounter with predators (Werner and Peacor 2003, Grabowski 

2004). In control (mud crab only) cages, mud crabs on average consumed just under one 

juvenile oyster per crab per day. Predator community, and not access, influenced per capita 

mud crab foraging in both the initial and final the 24-hr feeding assays relative to no predator 

(mud crab only) controls (Table 3.2C,D, Fig. 3.5). On average, foraging was lowest in the 

presence of toadfish (MC + TC and MC + SC + BC + TF treatments).  
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Discussion 

Here we show that nonconsumptive effects can be strong in the field when predators 

are held at natural densities. Nonconsumptive effects comprised a large portion of the total 

predator effect on juvenile oysters after two months in experimental field cages, further 

supporting the importance of behavioral pathways on the strength of the trophic cascade in 

this system (Fig. 3.2). Top predators generally promoted juvenile oysters, even when they 

could not lethally reduce the density of mud crabs. These findings support the results of 

laboratory studies in similar and other systems (e.g., Grabowski 2008) and demonstrate that 

predator cue saturation, as may occur in laboratory and mesocosm studies, may not drive the 

strength of NCEs. However, our data provide a cautionary note to the emerging conclusion of 

the widespread pre-eminence of NCEs. Specifically, we found that the cascading positive 

NCEs of toadfish on juvenile oysters declined with only minimal distance from the cue 

source in the field. This suggests that NCEs may be far more dependent on predator density 

than previously appreciated, and this issue warrants future attention. 

 

ROLE OF PREDATOR IDENTITY 

Predators can have species-specific differences in the efficiency of prey capture and 

the overall intensity of a predator-prey interaction (Polis 1988). Thus it is no surprise that the 

type and strength of prey antipredator responses often vary with predator identity (e.g., 

McIntosh and Peckarsky 1999, Botham et al. 2008, Reynolds and Bruno, submitted), with 

potential consequences for the strength of a trophic cascade (Byrnes et al. 2006). Although 

predator density may also influence the strength of prey antipredator responses (Sih 1992), 

here we found that predator identity, and not necessarily density, influenced the strength of 
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an antipredator response (reduced per capita mud crab foraging on juvenile oysters). 

Although we found that stone crabs were the strongest consumers of mud crabs (Fig. 3.2A) 

and posed the greatest predation risk in our experimental enclosures, they had little effect on 

mud crab foraging (Fig. 3.5). Oyster toadfish, despite their weaker effects on mud crab 

mortality, evoked the strongest reductions in mud crab foraging and strengthened the trophic 

cascade. Here we provide evidence that the predator species that causes the highest prey 

mortality does not necessarily have the greatest positive effect on the strength of a trophic 

cascade and the abundance of basal resources.  

Several factors, including predator species differences in cue dispersal and 

detectability, as well as shared natural history with their prey, may contribute to shape prey 

perception and the subsequent strength of their antipredator responses to a given predator 

type (Sih et al. 1998, Werner and Peacor 2003). Predator species-specific activities, such as 

foraging mode and microhabitat utilization (e.g., burrowing), may influence the dispersion of 

olfactory cues and detection by their prey in underwater environments. As distribution and 

concentration of complex chemical signals can be an important part of prey risk assessment 

(Tomba et al. 2001), species-specific biases in the type and strength of predator odor plumes 

may have consequences for prey antipredator behavior (e.g., Smee and Weissburg 2006). 

Predators with specific hunting modes, such as sit-and-pursue species including oyster 

toadfish, may provide prey with more accurate and consistent information on their location 

and allow prey to more accurately assess and respond to predation risk (Preisser et al. 2007, 

Schmitz 2008). In aquatic systems, sedentary predators such as toadfish may exude stronger 

chemical signatures, providing prey with more robust cues to localize predation threat. This, 

coupled with the release of predator-specific chemical compounds, may also influence prey 
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antipredator behavior. Oyster toadfish, unlike adult crabs, produce highly concentrated urea, 

which they can excrete in pulses when out of their shelters (e.g., when foraging, Walsh 

1997). This may further enhance prey detection of oyster toadfish presence, and may further 

elevate prey antipredator behaviors. 

Observed spatial biases in oyster survivorship and recruitment within experimental 

compartments exposed to toadfish cues provide some evidence for the ability of mud crabs to 

accurately localize and respond to predation risk from this predator (MC + TF NCE 

treatment, Fig. 3.3). However, as we were unable to assess mud crab habitat utilization 

within the experimental cages, we cannot determine definitively whether these differences in 

oyster survivorship by zone are due strictly to differences in mud crab per capita foraging 

rates overall, or to mud crab migration within the experimental cages and their concentration 

in to regions further away from the predator (Orrock et al. 2008). Regardless of the 

mechanism, we see evidence that the positive effects of top predators on basal resources can 

attenuate over a small spatial scale.   

Variability in predation risk and the shared history of predators and their prey in the 

field can further alter prey antipredator responses (Sih et al. 1998, Werner and Peacor 2003). 

For example, in our oyster reef community adult mud crabs are strong intraguild predators 

and will consume juvenile stone and blue crabs. Thus, cues from adult stone and blue crabs 

may not be strongly informative of predation risk unless mud crabs can infer size-specific 

information from cues emitted by larger, predaceous crabs. Additionally, oyster toadfish are 

likely the dominant consumer of mud cab populations at the study site (Grabowski 2004), 

and thus heightened antipredator responses to this predator may not be surprising (Botham et 

al. 2008, Martin et al. 2009). 
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RICHNESS EFFECT MEDIATED BY CHANGES IN PREY FORAGING RATE 

Predator richness can have strong yet counterintuitive effects in aquatic and terrestrial 

systems, with consequences for basal resources (Bruno and Cardinale 2008). Difficulty in 

predicting predator richness effects may arise when the presence of multiple predators 

independently affects the strength of consumptive and nonconsumptive predator-prey 

interactions. Here, increasing top predator richness decreased mud crab mortality risk 

(consumptive pathway, Fig. 3.4), potentially by reducing top predator efficiency and/or 

negative intraspecific interactions among individual mud crabs (Sih and Krupa 1996, 

Crowder et al. 1997, Finke and Denno 2004). As was documented by Grabowski et al. (2008) 

and has been found in many other multiple predator studies (see review by Sih et al. 1998), 

the presence of one predator (e.g., toadfish) may have suppressed foraging by other predators 

thereby releasing the shared prey (mud crabs) from predation. This contrasts with the work 

by Steffan et al. (2010), who found that increasing predator diversity in an old field grassland 

system reduced negative intraguild interactions among predators and increased their foraging 

activity. The presence of multiple predators may have further reduced prey mortality risk in 

our system by reducing mud crab mobility (Grabowski 2004), conspecific encounters, and 

negative intraspecific interactions  such as cannibalism, which are common among 

brachyurian crabs (e.g., Wolcott 1996).  

Similar to the findings of Steffan et al. (2010) and Byrnes et al. (2006), predator 

richness strengthened a trophic cascade in our oyster reef system via heightened 

nonconsumptive interactions. However, in those studies predators had little effect on prey 

density, and cascading richness effects on plant biomass were mediated exclusively by 
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nonconsumptive predator-prey interactions. Predator richness in our experimental oyster 

reefs increased the abundance of lower trophic level consumers, and perhaps 

counterintuitively, strengthened the trophic cascade (Fig. 3.4). Classically, predator release 

should decrease the strength of a trophic cascade (Paine 1980). This conflict may be 

explained by a failure of mud crabs to exhibit risk sensitive antipredator behavior (Lima and 

Bednekoff 1999), or to modulate foraging behavior with actual predation risk. Despite 

reduced risk with increased predator richness, mud crabs exhibited reduced foraging rates to 

the multiple predator species assemblage (Fig. 3.5). 

Mud crabs are strong consumers of bivalves and feed on a wide size range of oysters 

(McDermott and Flower 1952, Bisker and Castagna 1987). McDermott (1960) determined 

that individual mud crabs could eat up to two juvenile oysters (spat) per crab per day. Mud 

crabs in our field cages consumed juvenile oysters at a considerably slower rate of less than 

one oyster per crab per day, which was likely influenced by ambient predator-induced 

reductions in overall foraging activity (Grabowski 2004) as well as the availability of 

alternate prey in the field cages. Foraging on juvenile oysters versus other reef fauna such as 

polychaetes or gastropods, may be risky in the field as it forces the crabs to the top of the reef 

matrix where they may be more obvious to cruising predators and/or attract nearby burrowed 

predators. 

Understanding the cascading effects of predators and their prey on basal resources 

may be further complicated by the ability of many plants and lower trophic level organisms 

to exhibit defensive trait changes in the presence of their consumers (Tollrian and Harvell 

1999). For example, decreased mud crab risk in the toadfish and three top predator species 

communities may have had a negative feedback on mud crab foraging efficiency on juvenile 
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oysters via induced oyster defenses. Nonlethal exposure to predatory crabs can increase 

oyster shell strength (Newell et al. 2007), which may reduce oyster vulnerability to predation. 

It is unknown whether inducible changes in oyster shell morphology are due to enemy-

avoidance kariomes (emitted directly by their consumers) or an alarm pheromone released by 

damaged conspecifics (Newell et al. 2007), although both types of cues are known to 

increase bivalve shell thickness and resistance to predatory crabs (Leonard et al. 1999) and 

may have operated in our experimental enclosures. Elevated juvenile oyster recruit 

survivorship in enclosures with toadfish, whether via reduced mud crab foraging or increased 

oyster defenses, may have also positively affected oyster recruitment over time as larval 

oysters are attracted to and settle on or near the shells of living conspecifics (Newell et al. 

2007), further exacerbating differences among experimental treatments. 

In general, the strength of NCEs, relative to density or lethal effects, has been 

observed to increase as the abundance of resources increases (Luttbeg et al. 2003). Negative 

interspecific interactions among top predators may have further reduced mud crab foraging 

on juvenile oysters by promoting the abundance and availability of alternate shared 

resources, such as solitary tunicates (Styela plicata and Mogula manhattensis) and other 

infauna (see supplemental Fig. C2). Reduced alternate resources (e.g., tunicates) in 

treatments lacking toadfish may have also elevated mud crab consumption of oysters via an 

inherent tradeoff to balance predation and starvation risks. Prey will often modulate the 

strength of their antipredator responses with body condition, where starving prey are less 

likely to fear predators compared to satiated prey individuals (e.g., Luttbeg et al. 2003, Moir 

and Weissburg 2009). Thus, NCEs of diverse predator assemblages may promote the 

persistence of intermediate trophic levels while mediating their effects on basal resources.  
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Similar to studies with invertebrates in kelp forest mesocosms (Byrnes et al. 2006) 

and in a model grassland system (Steffan and Snyder 2010), we found that the presence of 

multiple top predator species in a model oyster reef community heightened prey antipredator 

responses, thereby reducing prey consumption of resources and strengthening the trophic 

cascade. Strong, emergent species richness effects can be transmitted through behavioral 

predator-prey interactions, and lethal reductions in prey density may not be necessary to 

maintain the strength of a trophic cascade. Although mechanisms influencing the effects of 

predator diversity may operate similarly in both consumptive and nonconsumptive pathways, 

predicting the total effect of changing predator richness on a given ecosystem property 

requires an understanding of synergistic interactions among these factors. Interactions among 

predators with changing predator richness, whether antagonistic or facultative, may strongly 

affect trophic cascades depending on the ability of prey to assess and accurately respond to 

changes in predation risk. 
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Tables  

Table 3.1. Theoretical consumptive and nonconsumptive effects of multiple predators.   
 
Predicted cascading effects of multiple predator interactions on the strength of a trophic 
cascade, categorized as consumptive and nonconsumptive mechanisms that increase (+) or 
decrease (-) resources (juvenile oysters) by altering prey (mud crab) foraging rates. Sensitive 
prey modulate their antipredator responses (e.g., foraging rate) with variations in predation 
risk, whereas insensitive prey do not.  
 
 

Predator interactions 

Increased risk 

Increased negative 
interspecific interactions 
(predator interference) 

Decreased negative 
intraspecific interactions; 
Increased predator 
facilitation 

Risk sensitive 

Risk insensitive 

Decreased risk 

Consumptive 
effect 

- foraging 

- foraging 

Nonconsumptive 
effect 

+ resources 

Prey  
perception 

Risk sensitive 

Risk insensitive 

+ resources 

- foraging 

0/+ foraging 

+ resources 

0/- resources 

Trophic 
Cascade 

Stronger 

Weaker 

Resource 
abundance 
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Table 3.2.  Results of two-factor ANOVAS on the effects of predator community and 
access to prey on mud crab and juvenile oyster abundance and mud crab foraging rate.   
 
Two-factor ANOVAs for A) final mud crab mortality, B) final juvenile oyster abundance, and 
C) change in mud crab foraging rate across two fixed factors: predator community type (four 
levels: MC + SC; MC + BC; MC + TF; MC + SC + BC + TF) and access (two levels: total or 
nonconsumptive effect).  p < 0.05 in bold.   
 
A. Mud crab mortality 
 
Factor d.f. SS F P  
Community 3 39.00 1.96 0.1296 
Access 1 156.06 23.47 < 0.0001 
Community*Access 3 43.39 2.18 0.0996 
Error   64 425.56  
 
 
B. Final juvenile oyster recruit abundance 
 
Factor d.f. SS F P  
Community 3 5.36 4.08  0.0103 
Access 1 1.07 2.44  0.1229 
Community*Access 3 2.88 2.19  0.0976 
Error 64 28.01 
 
 
C. Change in initial per capita mud crab feeding rate (from 24-hr feeding assay) 
 
Factor d.f. SS F P  
Community 3 1.21 28.70  < 0.0001 
Access 1 0.11 7.74  0.0071 
Community*Access 3 0.00 0.02  0.9967 
Error 64 0.90 
 
 
D. Changes in final per capita mud crab feeding rate (from 24-hr feeding assay) 
 
Factor d.f. SS F P  
Community 3 3.00 29.04  < 0.0001 
Access 1 0.00 0.06  0.8012 
Community*Access 3 0.20 1.92  0.1348 
Error 64 2.20 
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Figures 

 

 
Figure 3.1.  Experimental food web. 
Experimental food web with multiple top predators (blue crab, oyster toadfish, stone crab) 
and their hypothetical consumptive (line) and nonconsumptive (dashed) effects on prey (mud 
crabs) and basal resources (juvenile oysters).   
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Figure 3.2.  Effects of predators on mud crab and juvenile oyster abundance.  
Number of lost mud crabs (A) and final abundance of juvenile oyster recruits (B) in the 
presence of lethal (Total Effect) and nonlethal (NCE) top predator communities in field cages 
after two months. Treatment codes: None (no consumers), MC mud crabs only, SC stone 
crab, BC blue crab, TF oyster toadfish. Means + SE. 
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Figure 3.3.  Spatial effect of predators on oysters.  
Number of surviving juvenile oysters in the final 24-hr feeding assay (A) and final juvenile 
oyster abundance (B) by zone across top predator communities for nonconsumptive (NCE) 
treatments. No zone biases were found for total effect treatments in which predators could 
access and consume mud crabs; averages for the total effect treatment are included for 
comparison. The “near” zone (striped bars) was closer to the adjoining cage compared to the 
“far” zone (white bars). Treatment codes: None (no consumers), MC mud crabs only, SC 
stone crab, BC blue crab, TF oyster toadfish. Means + SE. (* p < 0.05, ** p < 0.001).   
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Figure 3.4.  Multiple predator effects on mud crab and oyster mortality. 
Mean deviations from expected proportions (observed - expected ± 1 SE) of lost mud crabs 
(after 2 months) and juvenile oysters (from 24-hr feeding assay) for the total and 
nonconsumptive treatments with all three top predator types (MC + SC + BC + TF). 
Expected proportions were calculated using the multiplicative risk model (Sih et al. 1998, 
Nilsson et al. 2006). Deviations were compared to zero in a two-tailed t-test (i.e., no 
difference is the null hypothesis of no richness effect). Significant deviations (risk reduction) 
for both consumptive and nonconsumptive treatments indicated emergent top predator effects 
for both response variables. 
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Figure 3.5.  Predator effects on mud crab foraging. 
Change in mud crab feeding rate compared to mud crab only controls (dashed line) in the 
initial (A) and final (B) 24-hr feeding assays when top predators could (Total Effect, dark 
bars) and could not (NCE, light bars) access their prey. All top predators except stone crabs 
reduced mud crab foraging (e.g., values < 1). Means + SE.  
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CHAPTER 4:  
EFFECTS OF TROPHIC SKEW ON ECOSYSTEM FUNCTIONING 

IN A MARINE COMMUNITY 
 

Abstract 

Widespread overharvesting of top consumers of the world’s ecosystems has “skewed” 

food webs, in terms of biomass and richness, towards greater domination at lower trophic 

levels. This skewing is exacerbated in locations where exotic species are predominantly low-

trophic level consumers, e.g., benthic macrophytes, detritivores and filter feeders.  However, 

in some systems where numerous exotic predators have been added, sometimes purposefully, 

e.g., many freshwater systems, food webs are skewed in the opposite direction, i.e., towards 

consumer dominance.  Little is known about how such modifications to food web topology, 

e.g., changes in predator to prey species richness, affect ecosystem functioning. We 

experimentally measured the effects of trophic skew on production in an estuarine food web 

by manipulating species richness across three trophic levels in experimental mesocosms. 

After 24 days, increasing macroalgal richness promoted plant biomass, although this effect 

disappeared in the presence of grazers. The strongest trophic cascade on macroalgae emerged 

in bottom-up skewed communities (with a greater ratio of prey to predator richness), while 

the strongest cascade on microalgal accumulation emerged in the top-down skewed 

communities (where predator richness was high relative to that of grazers and plants). These 

results suggest that trophic skew can influence marine community structure and food web 
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dynamics, and emphasize the need for multitrophic approaches to understanding the 

consequences of marine extinctions and invasions. 

 

Key-words: trophic skew, food web topology, species richness, marine 

 

Introduction 

Species losses from habitat destruction and overharvesting, and species gains from 

accidental and intentional introductions, are changing the topology of aquatic food webs 

(Duffy 2003, Byrnes et al. 2007). Although the rate of species gain from introductions often 

outpaces those lost to extinctions with potentially little effect on overall community diversity 

at local scales (Sax and Gaines 2003), inherent species biases in extinction and invasion 

processes are altering the distribution of diversity in marine food webs (Byrnes et al. 2007). 

While natural food webs are thought to be slightly weighted toward greater species richness 

at lower trophic levels (Petchey et al. 2004), biases in which species are more likely to be lost 

and gained can result in food webs skewed toward greater or lower predator to prey richness. 

Generally, large consumers, such as top predators, are more likely to go extinct due to 

their characteristic small population sizes, small geographic ranges, slow population growth, 

low initial diversities, and high susceptibility to over-harvesting and habitat loss (Tracy and 

George 1992, McKinney 1997, Terborgh et al. 2001). Conversely, in some estuarine systems 

species at lower trophic levels, such as macroplanktivores and plants (particularly species 

found in ballast water), are more likely to be transported and gained (Byrnes et al. 2007). In 

streams and lakes modified for human recreation, however, intentional or accidental releases 

of predatory game fish are increasing predator richness (Gido and Brown 1999, Eby et al. 
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2006). This trophic skew, or re-organization of trophic structure due to a change in the ratio 

of predator to prey richness (Duffy 2003, Dobson et al. 2006), is changing the structural 

biodiversity of aquatic food webs with unknown consequences for ecosystem processes 

(Lotze and Milewski 2004, Petchey et al. 2004, Byrnes et al. 2007). 

 A wealth of research over the past decade indicates that changes in the biodiversity of 

aquatic food webs alter their functioning and services (Stachowicz et al. 2007). Generally, 

biodiversity is thought to have cascading, positive effects where increasing species richness 

results in elevated abundance or biomass at a given trophic level with consequences for other 

ecosystem processes including stability and invasibility (see review by Cardinale et al. 2006, 

Stachowicz et al. 2007). However, most work to date in aquatic systems has focused on 

manipulating richness at one trophic level (e.g., Bruno et al. 2005, Zhang and Zhang 2006,  

but see Dyer and Letourneau 2003, Bruno et al. 2008, Douglass et al. 2008), or elevated 

richness across all trophic levels simultaneously to detect biodiversity effects (e.g., Downing 

and Leibold 2002). 

 Understanding the consequences of trophic skew, or shifts in species richness across 

multiple trophic levels, is difficult because diversity effects are often contingent upon the 

presence and diversity of adjacent trophic levels (Gamfeldt et al. 2005, Thebault and Loreau 

2006). For example, terrestrial studies indicate that capture and consumption of prey from 

within a given trophic level are influenced by richness at lower and higher trophic levels 

(Aquilino et al. 2005). In addition, diversity can affect production through fundamentally 

different mechanisms across trophic levels (Long et al. 2007). Recent studies manipulating 

richness across multiple trophic levels simultaneously have largely featured designs in which 

overall community richness varied across treatments, and/or featured limited species pools 
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where results were largely ascribed to identity effects and changes in community 

composition (e.g., Bruno et al. 2008, Douglass et al. 2008). Thus, empirical studies are 

necessary to predict how trophic skew will affect marine systems. 

 We measured the effects of trophic skew on primary and secondary production in 

outdoor mesocosms by manipulating predator to prey species richness in a diverse tritrophic 

estuarine food web. We created four food web structures that reflected real or predicted 

skewing scenarios for natural systems: 1) top-down skewed (inverted triangle) with greater 

predator to prey richness, consistent with predictions based on accidental and intentional 

predator additions (Ruzycki et al. 2003), 2) neutral (rectangle) with constant predator to prey 

richness, and 3-4) two degrees of bottom-up (triangular) skewing with greater prey to 

predator richness, as may be typical for impacted estuarine food webs (Byrnes et al. 2007). 

We tested the direct and indirect effects of predator (top-down) and plant (bottom-up) 

diversity (Hairston et al. 1960, Hunter and Price 1992, Dyer and Letourneau 2003) by 

comparing production across these trophic skewing scenarios (Fig. 4.2).  

 Previous studies in this and similar systems have found that: 1) Increasing plant 

richness increases plant biomass (Bruno et al. 2005); 2) The presence of grazers reduces 

plant biomass (Bruno et al. 2008); and 3) Increasing predator richness can suppress grazers, 

thereby increasing plant biomass (Bruno and O'Connor 2005, Douglass et al. 2008). With 

concurrent and opposite changes in prey and consumer richness, it is possible that 1) one type 

of richness effect, bottom-up or top-down, may dominate and dictate final primary biomass, 

2) these effects may cancel out, resulting in constant primary production across different food 

web structures, or 3) the effects may interact additively or nonadditively (Aquilino et al. 

2005, Douglass et al. 2008).  
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Methods 

The experiment was performed in outdoor, flow through mesocosms at the University 

of North Carolina at Chapel Hill’s Institute of Marine Science (IMS) in Morehead City, NC 

in July 2007. We independently manipulated secondary consumer (hereafter referred to as 

predator) and algal richness to create three different food web structures with constant total 

community richness (Fig. 4.1). Experimental food webs were top-skewed (2 macroalgal: 4 

grazer: 6 predator species), neutral (4:4:4), slightly bottom-up skewed (5:4:3), or bottom-up 

skewed (6:4:2) (n = 8). We also included no-predator and algae only controls to compare 

changes in trophic cascade strength across experimental communities. 

 We used a substitutive design, manipulating macroalgal and predator richness and 

identity while holding biomass and density constant per mesocosm (35 g algae and 6 predator 

individuals, c. 18 g) at densities comparable with natural levels in North Carolina subtidal 

communities (Nelson 1979a, Bruno and O'Connor 2005, Powers et al. 2005, O'Connor and 

Bruno 2009). Algal and predator species composition per replicate were chosen randomly 

from a larger pool of nine algae and eight predator species (Table 4.1). Selection of species 

identity from these larger species pools allowed for a conservative test of richness effects in 

our system by varying community composition, but not richness, for replicates within a given 

treatment. This controlled for species identity and composition effects (Tilman 1997). Initial 

grazer richness, composition and abundance were held constant such that each treatment 

received a mixture of four grazer species. 

We chose a substitutive design because it is effective for multiple predator effects 

experiments and does not confound diversity with density, as do additive designs (Sih et al. 

1998, Finke and Denno 2004). Although replacement designs can potentially diminish 
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intraspecific interactions by decreasing species-specific densities with increasing species 

richness (Jolliffe 2000, Griffin et al. 2008), this design is appropriate for our system because 

high predator diversity in the field may increase negative interspecific interactions among 

predator types, thereby limiting the densities of the different predator populations and 

reducereducing intraspecific interactions (see Bruno and O'Connor 2005, O'Connor and 

Bruno 2009). 

Replicates were maintained in 30 L clear plastic aquaria provided with gravel-filtered 

seawater from Bogue Sound (see supplemental Fig. D1 for images of experimental 

mesocosms). Seawater flowed through 100 µm nylon mesh filter bags to limit outside grazer 

recruitment, and was delivered through a dump bucket system that maintained aeration and 

approximated natural subtidal turbulence (Duffy and Hay 2000, Bruno et al. 2005, Bruno and 

O'Connor 2005). Mesocosms were covered with 5 cm opening Vexar mesh lids to reduce 

light levels to natural field conditions, and were placed in water tables in a blocked design to 

maintain constant temperature. Light, temperature and salinity within the mesocosms closely 

approximated field conditions in the nearby Bogue Sound during the course of the 

experiments (J.F. Bruno, unpublished data). Mesocosms were rotated every 5 days to reduce 

positioning artifacts. 

After 24 days we quantified treatment effects on grazer abundance, macroalgal 

biomass, and microalgal accumulation. This endpoint was based on observable changes in 

algal growth among treatments and represented approximately two or more overlapping 

grazer generations (Sotka and Reynolds, in press).  Grazers were preserved in 70% EtOH and 

later identified and counted. To assess microalgal production, we measured the chlorophyll a 

concentration from standardized 2 cm2 samples scraped from the side of each mesocosm. We 
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extracted and quantified chlorophyll a concentration as in Bruno and O’Connor (Bruno and 

O'Connor 2005) to quantify microalgal accumulation. We used a two-factor ANOVA 

(performed in the Fit Model platform of JMP) to test for food chain length and food web 

structure treatment effects on all response variables. Results were log transformed as 

necessary to meet the assumptions of normality and heteroscedacity (Underwood 1997). 

 

STUDY SYSTEM AND ORGANISMS 

The South Atlantic Bight hard-substratum communities are highly diverse, composed 

of tropical and temperate species of algae, invertebrates and fishes (Hay and Sutherland 

1988). Macro- and epiphytic algae, the main primary producers in this system, are intensely 

grazed by a diverse macroinvertebrate community composed largely of amphipods and 

isopods (Jernakoff et al. 1996, Duffy and Hay 2000), which are in turn consumed by an array 

of invertebrate and vertebrate predators including shrimp, crabs and fishes (Nelson 1979a, b). 

Experimental communities featured local algal, grazer, and predator species that commonly 

co-occur and typically dominate hard-substratum sites of North Carolina estuaries. 

Organisms were collected and cultured or maintained in outdoor water tables at IMS prior to 

experimentation. 

Chosen macroalgal species (Table 4.1) are common in NC estuaries, although their 

abundances fluctuate seasonally (Hay and Sutherland 1988, Powers and Kittinger 2002, 

Bruno et al. 2005). We attached seven algal thalli haphazardly to 25 x 25 cm Vexar mesh 

screens (with 5mm openings), which were secured to the bottom of each 30 L polypropylene 

mesocosm such that algae floated upright in natural orientation. Initial total algal biomass per 

mesocosm was held constant at 35 g with approximately 5 g per individual thalli attachment. 
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Initial algal biomass was purposefully lower than field densities (Bruno et al. 2005) in order 

to allow room for growth. Algal biomass was determined after first immersing the algae in 

seawater for at least 15 minutes and then spinning it 15 revolutions in a salad spinner to 

remove excess water. We dipped algae in a diluted pesticide (Sevin, as in Carpenter and 

Lodge 1986, Duffy and Hay 2000, Bruno et al. 2005) and rinsed it with fresh seawater to 

remove existing invertebrates and trace pesticides before placement in mesocosms. 

Mesocosms received an initial equal volume of grazers from a mixture of three 

amphipods (Dulichiella appendiculata, Gammarus mucronatus, and Elasmopus levis) and 

one isopod (Paracerceis caudata) prior to predator additions. These mesograzers are 

common in NC estuaries, achieving densities of 10-145 individuals g-1 wet mass of the alga 

Sargassum filipendula (Duffy 1989). They also have short generation times, respond quickly 

to changes in habitat and predation, and consume various types of macro- and microalgae 

(Nelson 1979a, Virnstein and Curran 1986, Edgar 1992). Each subsequent week an 

additional equal volume of grazers was added to each mesocosm to mimic natural 

recruitment and to remove the possibility of predator overexploitation (for a total of c. 120 

herbivores per mesocosm overall). Volume additions were subsampled (n = 20) and 

composed mostly of E. levis for the initial additions, and D. appendiculata and P. caudata 

for the recruitment additions. The initial volume addition was supplemented with five 

individuals of each grazer species to ensure that all replicates received the same grazer 

richness. Grazers were added within the lower range of natural field densities to allow for 

natural reproduction and population growth throughout the experiment (Duffy et al. 2003, 

Bruno and O'Connor 2005, Duffy et al. 2005).  

Predator assignments were chosen randomly from a pool of functionally distinct 
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invertebrates and fishes including omnivorous and strictly carnivorous species (Table 4.1). 

Due to low field abundances it was impossible to collect enough of any one of the mud and 

swimming crab species. To resolve this issue without risking elevating richness, each 

replicate assigned to either of these crab groups received individuals of only one species for 

that group throughout the duration of the experiment. Each mesocosm received six individual 

predators, which is within natural field densities (O'Connor and Bruno 2009). Predators were 

collected within their respective average juvenile size classes. This was most important for L. 

rhomboides, which ontogenetically switches from a strict predator to an omnivore at 3.5 cm 

(Stoner 1979, Muncy 1984), or around 2.5 g (feeding trial pilot study, n = 8). Total predator 

mass per mesocosm varied (0.29-3.71 g), but was not significantly different across 

treatments. Mesocosms were checked daily and dead or stressed predators were replaced 

throughout the experiments; the absolute number of predator replacements did not vary 

across treatments (one-way ANOVA, F2,23 = 0.90, p = 0.42). This predator press design 

maintained the potential for species interactions (e.g., intraguild predation), although it 

precluded direct, long-term effects of such encounters on lower trophic levels. 

 

Results  

 Trophic skew (the presence and richness of adjacent trophic levels) influenced final 

algal biomass and final grazer abundance (Table 4.2). Generally, grazers reduced final 

macroalgal wet mass by 33% compared to grazer-free controls, but generally this effect 

disappeared when their predators were present indicating a trophic cascade (Fig. 4.2A; see 

Appendix Fig. D2 for images of final macroalgal biomass). Predators generally increased 

macroalgal biomass when in the presence of grazers (LSM contrast, F1,83 = 2718.93, P < 
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0.0001). The distribution of species richness across trophic levels also influenced final 

macroalgal biomass, where the strongest trophic cascade on macroalgae appears in the 

bottom-up skewed food web structures (e.g., triangular shaped, Fig. 4.2A).  

 Microalgae, including early-successional Cladophora sp. and Ulva linza as well as 

the chain-forming diatom Tabellaria sp., colonized and grew in all mesocosms. Chlorophyll 

a concentration, a proxy for microalgal growth, was affected by the presence of upper trophic 

levels, but not changes in predator to prey richness (Table 4.2B). On average grazers reduced 

chlorophyll a concentration by 83% in the absence of predators, and 66% in their presence 

(Fig. 4.2B). Predators generally promoted microalgal accumulation (LSM contrast, F1,83 = 

7.15, P = 0.009). In contrast with the macroalgal results, the strongest trophic cascade on 

microalgal accumulation emerged in the top-skewed food web structure (inverted triangle) 

with greater predator to prey richness. 

 Incidental grazer immigration was minimal across all food web structures (~39 

individuals per algae-only control mesocosm). Both the presence of predators and changes in 

predator to prey richness influenced final grazer abundance (Table 4.2C). On average, 

predators reduced grazer abundance by 91%. Grazer abundance was greatest in the bottom-

up skewed food web structures regardless of the presence of predators (LSM contrast F1,83 = 

50.79, P < 0.0001, Fig. 4.2C) indicating that algal richness promoted grazer population 

growth. The presence of predators, but not the distribution of species richness across trophic 

levels, influenced grazer community composition (Fig. 4.3). 

 

Discussion  

 The results of our experiment suggest that the distribution of species richness across 
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trophic levels, or trophic skew, can affect the strength of a trophic cascade in a diverse 

estuarine food web. As evidenced by changes in primary producers and grazer communities 

across experimental food web structures, increasing prey to predator richness can strengthen 

or weaken a trophic cascade depending on the primary producers of interest. 

Similar to results from other aquatic and terrestrial studies, we found that increasing 

plant richness increased primary production in experimental mesocosms after 24 days 

(Tilman et al. 2001, Bruno et al. 2005, Hooper et al. 2005, Stachowicz et al. 2008). These 

positive diversity effects are thought to be largely due to complementarity and sampling 

effects, whereby the likelihood of incorporating facilitators, resource partitioning, and the 

most productive species increases with elevated richness (Loreau et al. 2001). Although here 

we do not have macroalgal monocultures and cannot test specific mechanisms underlying 

observed richness effects, it is likely that increasing algal richness played a strong role in 

governing the effects of trophic skew on primary biomass by increasing the likelihood of 

incorporating palatable and highly productive algal species. 

Although increasing plant richness may increase biomass accumulation, these effects 

are often weak or undetectable in the presence of consumers (Naeem et al. 2000, Fox 2004, 

Gamfeldt et al. 2005, Bruno and Cardinale 2008), suggesting that consumers can decouple 

the relationship between plant diversity and productivity (Mulder et al. 1999). Here we found 

that grazers generally reduced macroalgal biomass and microalgal accumulation (Figs 

4.2AB), mitigating the effects of macroalgal richness. Additionally, plant richness was 

positively correlated with grazer abundances (Fig. 4.2C). Elevating plant richness and the 

number of plant functional groups is known to promote herbivore diversity and overall 

herbivory (Haddad et al. 2001, Scherber et al. 2006) directly through resource availability 
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and indirectly by influencing the interactions between herbivores and their predators 

(Siemann et al. 1998, Moran et al. 2010). Although result in reduced plant biomass over time, 

here we do not see suppression of consumer effects on plant with increasing plant diversity. 

It is possible that this experiment was not of sufficient duration to allow unpalatable algal 

species to replace the biomass of the more palatable species lost to herbivory. Alternatively, 

as several of the algal species in our species pool are known to be less preferred by one or 

more of our herbivores, it is possible that increasing plant richness increased overall plant 

community palatability. Additionally, trophic skewing may affect different functional groups 

of primary producers (e.g., macro- vs. microalgae), making it difficult to predict the overall 

effects of concurrent species gains and losses on primary production. 

Increasing predator richness can increase prey capture or antipredator behaviors, due 

to diet complementarity and niche differences (Burkepile and Hay 2008), thereby releasing 

plants from herbivory and strengthening a trophic cascade (Bruno and O'Connor 2005, 

Byrnes et al. 2006). Unlike results here, work in detrital food webs found that “top-down” 

diversity effects of consumer richness had strong effects on functioning (e.g., decomposition, 

Srivastava et al. 2009). Increasing predator richness in our experimental communities was 

likely correlated with increased likelihood and potential promotion of omnivory (both a 

sampling and nonadditive richness effect), thereby increasing overall consumption of plants 

and appearing to weaken the trophic cascade (Finke and Denno 2004, Bruno and O'Connor 

2005).  

Community composition and identity effects may drive observed differences among 

experimentally skewed food webs. Elevated macroalgal richness, coupled with decreased 

predator richness, may have promoted grazer survivorship and population growth through 
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increased refuge and food quality, and/or decreased predator efficiency of prey capture 

(Bruno and O'Connor 2005, Moran et al. 2010). An increased likelihood of incorporating 

unpalatable algae due to higher algal richness, and a decreased likelihood of omnivory due to 

lower predator richness, could promote algal biomass in bottom-up skewed communities. 

Reduced predator richness in these food webs could also reduce predator efficiency if 

intraspecific competition among predators is stronger than interspecific interactions. As food 

webs become skewed, the identity of the species being gained or lost (e.g., whether they are 

an omnivorous predator or a palatable algae) may become increasingly important.  

Biodiversity can significantly affect primary production, nutrient cycling and 

community composition. Control of algal blooms, yield of important commercial and 

recreational fisheries, and other ecosystem services may depend not only on the maintenance 

of biodiversity, but of its distribution throughout a given food web. Understanding the effects 

of trophic skew on ecosystem functioning may be an important tool in predicting the 

potentially synergistic effects of species extinctions and invasions on ecosystem functioning 

and will be an important challenge for empirical and applied endeavors across systems.  

 

Supporting Information 

Additional supporting information may be found in Appendix D: 

Supplemental D1. Images of experimental mesocosms 

Supplemental D2. Images of experimental algal communities 
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Tables 

Table 4.1.  Experimental species list.  
 
Macroalgae 
Codium fragile 
Ulva lactuca 
Dictyota menstrualis 
Gracilaria tikvahiae 
G. verrucosa 
Padina gymnospora 
Sargassum filipendula 
Ceramium sp. 
Hypnea musciformis 
 
Grazers 
Dulichiella appendiculata 
Elasmopus levis 
Gammarus mucronatus 
Paracerceis caudata 
 
Predators 
Hypleurochilus geminatus 
Monacanthus hispidus 
Fundulus heteroclitus 
Lagodon rhomboids 
Palaemonetes vulgaris 
Penaeus aztecus 
Mud crabs (Panopeus herbstii, Eurypanopeus depressus or Neopanope sayi) 
Swimming crabs (Callinectes sapidus or C. similis) 
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Table 4.2.  Results of two-way ANOVA on the effects of trophic skew.  
Degree of trophic skewing encompassed the presence of upper trophic levels (e.g., food chain 
length: algae only, + grazers, + grazers + predators) and the distribution of species richness 
(top-down, neutral, slightly bottom-up, bottom-up skewed). 
 
Response Factor d.f. SS F P  
A. Macroalgal biomass 

Food chain length (FCL) 2 3875.99 26.59 < 0.001 
Richness distribution (RD) 3 2589.50 11.84 0.002 
FCL * RD 6 555.12 1.27 0.281 
Error 83 6050.01 

 
B. Microalgal accumulation 

Food chain length 2 10.17 40.08 < 0.001 
Richness distribution  2   0.11 0.28 0.841 
FCL * RD 4   1.44 1.89 0.092 
Error 83 10.53 

 
C. Grazer abundance 

Food chain length 2 16718.14 275.54 < 0.001 
Richness distribution 3     611.64   11.60 < 0.001 
FCL * RD 6     495.43     4.70 < 0.001 
Error 83   1458.96 
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Figures 

  
Figure 4.1.  Experimental food web structures with varying species richness per trophic 
level. 
 

 
 
Figure 4.2.  Effects of trophic skew on macroalgae, microalgae and mesograzers.  
Final A) macroalgal biomass, B) microalgal chlorophyll a concentration, and C) mesograzer 
abundance in experimental mesocosms across trophic skewing treatments after 24 days. 
Values are means + SE. 
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Figure 4.3.  Final grazer abundance per species across skewing treatments. 
(Means + 1SE). 
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CONCLUSIONS 

The role of predators has long been acknowledged as important for prey populations 

and ecosystem functioning. Predator effects on prey density and behavior have been well 

studied across many taxa and systems, yet many questions concerning the causes and 

consequences of the relative strength of these consumptive and nonconsumptive effects 

remain unanswered. The research I have presented in this thesis addresses several of these 

questions and suggests avenues of future research that may further our ability to understand 

the role of predators, and not simply predation, in ecological communities. Specifically, we 

found that 1) multiple predators influenced prey behavior, 2) changes in individual prey 

behavior had implications for population- and community-level dynamics, 3) multiple 

predators (e.g., predator species richness) enhanced a trophic cascade via strengthened 

nonconsumptive predator-prey interactions, and 4) nonconsumptive effects persisted over 

time and in a diverse food web. 

First, we found that multiple predators can affect both predation risk (a consumptive 

interaction) and prey antipredator responses (a nonconsumptive interaction). Predators 

consistently reduced prey foraging (an antipredator response; Chapters 1-3), although the 

degree of this antipredator response varied with predator identity. Effective antipredator 

behaviors to a given predator reduce direct predation (consumptive effect), but often result in 

costly changes in prey behavior, morphology or life history characteristics (Sih et al. 1985, 
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Lima 1998, Peacor 2003, Creel and Christianson 2008). Thus prey should modulate the 

intensity of their response with the associated predation risk posed by a given predator (e.g., 

McIntosh and Peckarsky 1999). However, we did not observe a clear correlation between the 

intensity of the antipredator response and the predator species that posed the greatest 

predation risk (e.g., consumed the most prey individuals) in either of our experimental 

estuarine food webs. Amphipods responded maximally to pinfish despite findings that brown 

shrimp were equally as efficient predators as pinfish (Chapter 1). Mud crabs responded 

maximally to oyster toadfish, whereas stone crabs caused the greatest mud crab mortality in 

experimental enclosures (Chapter 3). Other factors, such as cue dispersal and reception, as 

well as life history characteristics and evolutionary history among predators and their prey 

may contribute to these counterintuitive results. 

Second, we provide evidence that predators can affect prey density and population 

dynamics without accessing or consuming their prey (Chapters 1-2). As noted above, while 

antipredator behaviors reduce the likelihood of predation, they often depress fitness when 

predation does not occur (Magurran 1999). Reduced prey activity levels including foraging 

rates, for example, may reduce detection by predators but result in slowed growth and 

maturation as well as reduced fecundity and maternal provisioning. In addition, predator-

induced stress can alter prey physiology; stress hormones can lower fecundity and alter prey 

resource use (Boonstra et al. 1998, Hawlena and Schmitz 2010a). Over time, predators may 

affect prey densities via nonconsumptive reductions in prey population growth rates 

(Chapters 1-2, Nelson et al. 2004). In turn, nonconsumptive predator reductions in prey 

grazing at the scale of the individual (Chapters 1-3) and the population (Chapters 1-2) can 

strengthen a trophic cascade by promoting basal resources. Thus we provide support that 
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nonconsumptive predator-prey interactions can influence individual prey, as well as 

population, community and ecosystem level dynamics (Peacor and Werner 2001, Werner and 

Peacor 2003, Preisser et al. 2005, Trussell et al. 2006, Pangle et al. 2007, Creel and 

Christianson 2008, Schmitz et al. 2008, Hawlena and Schmitz 2010b). 

Third, we found that the presence of multiple predators (e.g., increasing predator 

richness) influenced prey populations with cascading, positive effects on basal resources. The 

presence of multiple predators reduced prey grazing, although in one instance this increase in 

predator richness heightened predation risk (Chapter 1) and in another reduced predation risk 

(Chapter 3). Universal increases in antipredator responses with predator richness may occur 

when prey responses are graded toward the most threatening predator in a given assemblage 

(e.g., McIntosh and Peckarsky 1999), and/or when prey are unable to detect changes in 

predation risk due to interspecific interactions among their predators. Investigating the causes 

and consequences of prey sensitivity and their ability to detect changes in predation risk will 

improve our understanding of how multiple predator assemblages can affect the strength of a 

trophic cascade in areas of weak predation pressure.  

 Finally, we observed that nonconsumptive effects persisted over time in both 

experimental mesocosms and field enclosures. Controversy over the relative importance of 

consumptive and nonconsumptive interactions often contrasts differences in spatial and 

temporal scales of these two effects (Preisser and Bolnick 2008b). For example, starving prey 

will reduce their responses or fail to respond altogether to the presence of predators (Sih 

1992), or they may compensate for lost feeding opportunities by increasing consumption 

after the threat of predation has passed. If predators promote dispersal, they can reduce 

immediate prey abundance with positive effects on prey resources in that patch and negative 
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impacts at the destination sites (Power et al. 1985), with little overall change in prey density 

and consumer pressure on the landscape scale. Thus adaptive prey responses may cancel out 

any positive nonconsumptive effects of predators on basal resources over time.  

 However, NCEs that affect prey fitness or dispersal may have important implications 

for metapopulation dynamics (Orrock et al. 2008) over both short and long timescales. NCEs 

that reduce fitness (e.g., depressed growth, fecundity due to stress or reduced resource intake) 

may influence prey populations more slowly than direct predation but may also ‘spill over’ 

and indirectly impact other members of the community at large (Huang and Sih 1990, 

Abrams et al. 1996, Peacor and Werner 1997). Nonconsumptive effects that promote prey 

dispersal, as has been commonly observed for many stream invertebrates, may reduce prey 

abundances faster than direct predator consumption (Wooster and Sih 1995), thereby 

positively influencing basal resources in local patches. If instead predators inhibit prey 

activities including dispersal (e.g., Chapter 1), any immigrating prey may be retained and 

overall prey abundances elevated in areas with more predators (Sih and Wooster 1994, 

Wooster and Sih 1995). Such NCEs that promote prey retention and/or colonization may 

operate faster than within-patch reproduction thereby reducing resources in local patches (Sih 

et al. 2010), with consequences for prey population stability (Luttbeg and Schmitz 2000).  

 Additionally, while consumptive effects can only occur in the immediate area of the 

predator, predators with wide ranging cues that trigger antipredator behavior in their prey 

(e.g., olfactory cues) can scare prey that are far from the predator (Chapter 3)(Sih et al. 

1992). Further investigations into the relationships between temporal and spatial scales and 

the strength of both consumptive and nonconsumptive predator effects in a community 

context are necessary to elucidate the importance of predators in natural systems. 
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 This research raises several avenues for future work and potential applications of 

predator-prey interactions for understanding ecological processes. To better understand 

variations among systems in the strength of both consumptive and nonconsumptive predator 

effects, it is necessary to integrate sensory/cognitive and behavioral ecology with traditional 

community ecology approaches. In particular, it will be useful to compare prey populations 

and prey species to detect whether differences in the type of predator cue (e.g., olfactory, 

visual, auditory) explain differences in antipredator responses. Quantifying how the local 

environment shapes the dispersal of predator cues, as well as how prey sensory biases 

influence their detection, will also elucidate observed system and prey-type biases in the 

strength of NCEs on ecosystem functioning. 

 Just as different predators have varying consumptive and nonconsumptive effects on a 

given prey population or species, different prey types will likely experience differences in 

CEs and NCEs to a given predator or predator community (Byrnes et al. 2006). Recent 

reviews suggest that variations in prey behavior, rather than predator diet selection, affect the 

relative impact of predators on different prey species (Sih and Christensen 2001). Prey with 

effective antipredator behaviors (e.g., are able to hide or escape) suffer lower consumptive 

effects and stronger nonconsumptive effects, while species with ineffective antipredator 

behaviors experience stronger lethal consumption by predators. This suggests that NCEs may 

drive trophic cascades in habitats with greater structural complexity where predation 

intensity is low and refuge abundance high (e.g., oyster reefs), while CEs may drive effects 

in open habitats where prey experience high predation rates (e.g., sand flats). Additionally, 

native prey should experience stronger NCEs than CEs from predators compared to 

introduced prey which have little to no prior exposure to the given predator. Isolating 
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attributes of prey and habitats that make prey more likely to be affected by NCEs compared 

to CEs may further aid our ability to predict when and where we find the strongest 

nonconsumptive trophic cascades.  

 Placing NCEs in the context of invasion ecology may also aid in assessing and 

predicting the abilities of prey to cope with native and non-native predators (Sih et al. 2010). 

Native and non-native predators may differ in their consumptive and nonconsumptive effects 

on prey, which may partially explain invasion outcomes and the establishment of exotic 

predators. For example, prey that respond to general predator cues may be more likely to 

detect and respond to novel predators with effective antipredator behaviors thereby limiting 

the success of that predator, while prey that respond to specific predator cues may not 

respond appropriately and thereby facilitate the predator. Furthering investigations on how 

prey respond and adapt to changes in predation risk, whether from predator extinctions, novel 

predator invasions or native predator re-introductions, will improve our ability to predict the 

effects of trophic skew (Chapter 4) and our ability to conserve and manage natural systems. 

In closing, understanding the role of predators is critical as habitat loss and harvesting 

for sustenance, profit, and sport have led to significant declines in the abundance and species 

richness of predators in a wide variety of habitats (Pimm et al. 1995, Ricciardi and 

Rasmussen 1999, Terborgh et al. 2001). This is particularly true in the ocean where decades, 

and in some cases centuries, of overfishing have greatly reduced the diversity and abundance 

of top predators (Jackson et al. 2001, Wing and Wing 2001, Myers and Worm 2003). By 

determining how changes in predator communities influence natural food webs, we may 

better understand and predict how ongoing predator losses will affect the processes shaping 

natural communities. While most standard ecological theory implicitly assumes that the role 
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of nonconsumptive effects of predators on their prey does not deviate from their consumptive 

effects (see review by Peckarsky et al. 2008), recent studies have begun to incorporate 

density-independent effects of predators on prey population dynamics (Abrams 1995, Bolker 

et al. 2003, Preisser and Bolnick 2008a). Further inquiry and the development of models 

accounting for independent effects of both consumptive and nonconsumptive predator-prey 

interactions will improve our ability to detect and predict changes in ecosystem function with 

ongoing changes in predator communities. Indeed, it may be time to amend Tennyson’s 

(1849) “Nature, red in tooth and claw” with “Fearing tooth and claw, Nature is green” as a 

more accurate reflection of our modern understanding of the importance of predation and 

fear for ecological and evolutionary processes, including the persistence of trophic cascades. 
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APPENDICES 
 

Appendix A: Supplementary Materials for Chapter 1 

Supplemental A1: Experimental images 

 

 
 
Figure A1. Images of experimental predators and setup. 
(A) Experimental predators: pinfish, mud crab, brown shrimp. Setup for behavioral grazing 
(B) and dispersal (C) assays, mesocosm community experiment (D), and colonization 
experiment field site (E) and cage (F). 
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Supplemental A2: Predator efficiency of prey capture 

To assess how efficiently our predators consumed A. longimana, we conducted a 

feeding trial in September of 2008 at the University of North Carolina at Chapel Hill’s 

Institute of Marine Science (IMS) in Morehead City. The experimental setup was the same as 

in the community experiment except predators were not caged (n = 6). After 6 hours we 

removed all predators and counted the remaining A. longimana. Lower recovery indicated 

greater predator efficiency. We compared the number of amphipods recovered across 

predator treatments using a one-factor ANOVA with LSM planned comparison of the 3 

predator polyculture to the average predator monoculture in JMP. 

Predator identity affected A. longimana survival (one-factor ANOVA: F3,20 = 7.896, 

P = 0.0011, Fig. A2). Fewer A. longimana were recovered in predator polycultures compared 

to the average monocultures (P = 0.016, LSM planned comparison). Almost all amphipods 

were recovered in the no-predator replicates, which on average lost 2.8% of prey. Fish and 

shrimp were the most efficient predators in monoculture, consuming on average 53.8 and 

46.7% of prey respectively during the feeding trial, while crabs only consumed 24.4%. These 

results are similar to those of Bruno (2005) and Nelson (1979). The fewest prey were 

recovered in predator polycultures, which consumed on average 57.8% of prey during the 

trial. These conclusions should be interpreted with caution as predator efficiency and 

richness effects may change under more natural conditions with open prey populations 

(O'Connor & Bruno 2009). 
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Table A2. Sizes of predators used in the community experiment.  
Lengths are true length for fish and shrimp, carapace width for crabs. Values are means + 1 
SE. n = 32. 
 
Predator Wet Mass (g) Length (cm) 
Panopeus herbstii (mud crab) 2.5 + 0.1 1.8 + 0.1 
Penaeus aztecus (brown shrimp) 4.2 + 0.2 5.8 + 0.1 
Lagodon rhomboides (pinfish) 2.6 + 0.1 4.3 + 0.1 
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Figure A2. Effects of predator identity and richness on predator community efficiency 
of prey capture.  
Lower recovery indicates greater predator efficiency. (Values are means + 1 SE; comparisons 
are Tukey’s HSD.) 
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Supplemental A3: Methods for chlorophyll a analysis 
 

Microalgae colonized all mesocosms during the community experiment. Microalgal 

communities included the early-successional alga Cladophora sp., Ulva intestinalis and the 

diatom Tabellaria. We measured chlorophyll a concentration as a proxy for microalgal 

production. A 4 cm2 square of vinyl tiling was attached to plastic coated copper wires and 

fixed in the center of each mesocosm at approximately 10 cm from the surface and at least 6 

cm from the bottom. Tiles were collected at the end of the experiment, stored in light-

blocking containers, and frozen until processed. Chlorophyll a was extracted using a 

sonicator and a 10 mL solvent of 45:45:10 acetone, ethanol and DI water solution for 24 

hours, and then quantified using a TD-700 fluorometer or tri-chromatic spectrometer (US 

EPA Method 446.0). Water samples filtered from a random subsample of mesocosms prior to 

macroalgal and animal additions exhibited similar initial chlorophyll a levels across tables 

(one-factor ANOVA, F1, 38 = 0.0915, P = 0.7639; n = 5) and thus final chlorophyll a 

differences are likely due to amphipod grazing. 
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Supplemental A4: Macroalgal composition 
 

To graphically compare species composition between experimental communities, we 

generated a nonmetric multidimensional scaling analysis (NMS) on a distance matrix of 

Bray–Curtis similarities generated from macroalgal wet mass in PC-ORD (McCune & Grace 

2002). A NMS step-down procedure was performed and the NMS scree plot and results of a 

Monte Carlo test were evaluated to select a 2D configuration for generation of the NMS 

ordination. A 2D NMS ordination was then performed with a maximum of 250 iterations, 20 

real data runs, and 20 randomized data runs. The 2D NMS ordination plot was graphed with 

R statistical software v2.11.0 (R Foundation for Statistical Computing, Vienna, Austria).  

 

 
Figure A4. NMS plot of macroalgal community composition across predator and grazer 
treatments in the five-week community experiment.  
(r2 NMS 1 = 0.85, NMS 2 = 0.14; stress level 3.24). Grazers were absent in light symbols, 
and present in dark symbols. 
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Supplemental A5: Effects of predator cues on grazer diet preference 
 

To assess whether predator presence and richness affect preference for the chemically 

defended D. menstrualis, amphipods were exposed to chemical cues from predators in an 

identical setup to the grazing rate experiment (see Chapter 1, methods) except the assay was 

run in a laboratory and each cup received feeding screens rather than fresh algal tissue. 

Feeding screens were prepared using either freeze-dried, ground D. menstrualis or a control 

alga, the highly palatable Ulva linza, mixed with agar and spread over windowscreen (for 

detailed methods and recipe see Reynolds and Sotka in press). Each cup received one D. 

menstrualis screen and one U. linza screen. Cups were checked daily and the assay ended per 

replicate when the amphipod consumed >30% of one screen, or 40% total across both 

screens. As there was no loss of algae in the control cups (grazers absent), we directly 

compared the average proportion of D. menstrualis consumed per amphipod for each tub 

across predator treatments using a one-factor ANOVA in JMP. Data were transformed as 

needed to meet assumptions of normality and homoscedacity. Predator presence, identity and 

richness did not significantly affect grazer preference for the chemically defended alga (one-

factor ANOVA: F4, 40 = 1.30, P = 0.29; Fig. A5). 
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Figure A5. Effect of predator cues on grazer preference for the chemically rich alga, 
Dictyota menstrualis. 
(Values are means + 1SE.)
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Supplemental A6: Effects of pinfish density on grazer feeding 
 

To assess whether predator density influences the strength of predator NCEs on prey 

grazing, on 22 August 2009 we placed female A. longimana in clear plastic cups with 50 mg 

Sargassum filipendula and exposed them to olfactory and visual cues from 0, 1, 3 or 6 pinfish 

(see Methods: Grazing Assay for description of replicate setup; n = 8) for 7 days. Pinfish 

density affected grazer feeding (F3,28 = 22.22, P < 0.0001). Increasing pinfish density from 1 

to 3 individuals per tub nonconsumptively reduced grazer feeding, although there was no 

difference in grazing rate in the 3 and 6 pinfish treatments (Fig. A6). 
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Figure A6. Effects of predator density on prey grazing rate. 
(Values are means + 1 SE; comparisons are Tukey’s HSD.) 
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Appendix B: Supplementary Materials for Chapter 2 

Supplemental B: Experimental images. 

 
 
Figure B1. Experimental images. 
A) Grazing rate assay and algal induction; B) Outdoor mesocosms; C) Top tank with pinfish; 
D) Bottom tank; E) Fresh tissue choice assay experiment; F) Freeze-dried tissue choice assay 
experiments. 
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Figure B2. Setup of tanks for the algal induction experiment.  
Algal tissue was quantified and assayed for all bottom tanks. Figure adapted from Sotka et al. 
(2002).  
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Appendix C: Supplementary Materials for Chapter 3 

Supplemental C1. Image of experimental cages 
 

 
 
Figure C1. Field site at Hoop Pole, NC, with experimental cages (top) and cage design 
with access treatments (Total Effect and NCE) and zone (Near and Far) placement 
(bottom). 
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Supplemental C2: Mixed-effects modeling  

To directly incorporate zone (position within sub-plot) into our examination of top 

predator identity effects on oyster survivorship in the feeding assays, we used a mixed-effects 

model incorporating time block (two levels: block 1 or 2) and predator identity (three levels: 

stone crab, blue crab, toadfish) as fixed effects and predator access (two levels, Total Effect 

or NCE), cage (27 levels), and zone (two levels, near or far) as random effects. Here, random 

effects take into account correlations of subplots within the cages; the mixed effect model 

allows one to account for any heterocedacity or correlation structure present in the data. 

Model comparisons were conducted to select the best model. Cages without a top predator 

and cages with all three top predators were excluded in this analysis. The outcome of interest 

was the number of oysters remaining in each sub-subplot (e.g., zone). As oyster survivorship 

per zone was bounded (0-5, respectively), we tested the main effects and interactions using a 

linear regression model with a binomial distribution fit using lmer (nlme4 package) in R 

(version 2.11.0).  
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Table C2. Comparisons of multiple mixed-effects models. 
 
A. Model comparison for oyster survivorship per zone in the initial feeding assay.  
 
Component removed from model LR std. df     P AIC   
Access*Zone 5.042        1      0.02474 194.59 
Predator identity*Zone 10.619      2    0.004945 198.16 
Time 0.2765      1       0.599 191.55 
Predator identity*Access 0.0305      2      0.9849 193.27 
Predator*Access*Zone 5.5594      2     0.06206 197.24 
 
 
B. Model comparisons for oyster survivorship per zone in the final feeding assay. 
 
Component removed from model LR std. df     P AIC  
Predator identity*Zone 8.0848      2     0.01756 95.903 
Access*Zone 2.0872      1      0.1485 91.818 
Time 0.2082      1      0.6482 91.731 
Predator identity*Access 0.0577      2      0.9716 93.523 
Predator identity*Access*Zone 5.2975      2     0.07074 97.465 
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Supplemental C3. Treatment effects on tunicate recruitment. 
 

 
Figure C3. Final abundance of solitary tunicates that recruited into experimental field 
cages. 
Means + SE tunicates after two months in the presence of lethal (“Total”) and nonlethal 
(“NCE”) top predator communities. Treatment codes: None (no consumers), MC mud crabs, 
SC stone crab, BC blue crab, TF oyster toadfish. The presence of toadfish strongly promoted 
tunicate recruitment. 
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Appendix D: Supplementary Materials for Chapter 4 

Supplemental D1. Setup of experimental mesocosms 
 
Table D1. Species composition of A) macroalgal and B) predator community in each 
mesocosm. 
Shaded algae are known to be chemically defended and least preferred by most of our 
experimental mesograzers. Light algae are highly palatable. Shaded predators are 
omnivorous, while light predators are strict carnivores. 
 
A Macroalgal Species

Replicate 1 2 3 4 5 6
1 Ceramium sp. Gracilaria verrucosa
2 Dictyota menstrualis Gracilaria verrucosa
3 Dictyota menstrualis Hypnea musciformis
4 Gracilaria tikvahiae Codium fragile
5 Gracilaria tikvahiae Sargassum filipendula
6 Gracilaria verrucosa Sargassum filipendula
7 Hypnea musciformis Ulva lactuca
8 Padina gymnospora Ulva lactuca
9 Padina gymnospora Ulva lactuca
1 Ceramium sp. Dictyota menstrualis Gracilaria verrucosa Hypnea musciformis
2 Ceramium sp. Codium fragile Gracilaria tikvahiae Hypnea musciformis
3 Codium fragile Dictyota menstrualis Gracilaria verrucosa Ulva lactuca
4 Dictyota menstrualis Hypnea musciformis Padina gymnospora Ulva lactuca
5 Codium fragile Dictyota menstrualis Padina gymnospora Ulva lactuca
6 Gracilaria tikvahiae Gracilaria verrucosa Padina gymnospora Sargassum filipendula
7 Gracilaria tikvahiae Gracilaria verrucosa Hypnea musciformis Ulva lactuca
8 Gracilaria tikvahiae Padina gymnospora Sargassum filipendula Ulva lactuca
9 Codium fragile Gracilaria verrucosa Sargassum filipendula Ulva lactuca
1 Codium fragile Dictyota menstrualis Padina gymnospora Sargassum filipendula Ulva lactuca
2 Ceramium sp. Dictyota menstrualis Gracilaria verrucosa Sargassum filipendula Ulva lactuca
3 Ceramium sp. Gracilaria verrucosa Hypnea musciformis Padina gymnospora Sargassum filipendula
4 Dictyota menstrualis Gracilaria tikvahiae Hypnea musciformis Padina gymnospora Ulva lactuca
5 Codium fragile Dictyota menstrualis Gracilaria tikvahiae Gracilaria verrucosa Hypnea musciformis
6 Dictyota menstrualis Gracilaria tikvahiae Gracilaria verrucosa Hypnea musciformis Padina gymnospora
7 Codium fragile Gracilaria tikvahiae Padina gymnospora Sargassum filipendula Ulva lactuca
8 Codium fragile Gracilaria verrucosa Gracilaria tikvahiae Hypnea musciformis Sargassum filipendula
9 Codium fragile Gracilaria verrucosa Padina gymnospora Sargassum filipendula Ulva lactuca
1 Ceramium sp. Codium fragile Gracilaria tikvahiae Gracilaria verrucosa Sargassum filipendula Ulva lactuca
2 Codium fragile Dictyota menstrualis Gracilaria tikvahiae Gracilaria verrucosa Padina gymnospora Ulva lactuca
3 Ceramium sp. Codium fragile Dictyota menstrualis Gracilaria tikvahiae Sargassum filipendula Ulva lactuca
4 Ceramium sp. Dictyota menstrualis Gracilaria verrucosa Hypnea musciformis Padina gymnospora Sargassum filipendula
5 Codium fragile Dictyota menstrualis Gracilaria tikvahiae Hypnea musciformis Padina gymnospora Sargassum filipendula
6 Dictyota menstrualis Gracilaria tikvahiae Gracilaria verrucosa Hypnea musciformis Padina gymnospora Ulva lactuca
7 Codium fragile Dictyota menstrualis Gracilaria verrucosa Hypnea musciformis Padina gymnospora Sargassum filipendula
8 Dictyota menstrualis Gracilaria verrucosa Hypnea musciformis Padina gymnospora Sargassum filipendula Ulva lactuca
9 Gracilaria tikvahiae Gracilaria verrucosa Hypnea musciformis Padina gymnospora Sargassum filipendula Ulva lactuca

To
p-

do
w

n 
sk

ew
ed

N
eu

tr
al

S
lig

ht
ly

 b
ot

to
m

-u
p 

sk
ew

ed
B

ot
to

m
-u

p 
sk

ew
ed

 



 

 166 

B Predator Species
Replicate 1 2 3 4 5 6

1 Blenny Blue crab Brown shrimp Grass shrimp Mud crab Mummichog
2 Blue crab Brown shrimp Grass shrimp Mud crab Mummichog Pinfish
3 Blenny Blue crab File fish Mud crab Mummichog Pinfish
4 Blue crab Brown shrimp File fish Grass shrimp Mummichog Pinfish
5 Blue crab File fish Grass shrimp Mud crab Mummichog Pinfish
6 Blenny File fish Grass shrimp Mud crab Mummichog Pinfish
7 Brown shrimp File fish Grass shrimp Mud crab Mummichog Pinfish
8 Blenny Brown shrimp File fish Grass shrimp Mummichog Pinfish
9 Blenny Brown shrimp File fish Grass shrimp Mud crab Pinfish
1 Blenny Brown shrimp Brown shrimp File fish Pinfish Pinfish
2 Blenny File fish Mummichog Mummichog Pinfish Pinfish
3 Blenny File fish File fish Grass shrimp Grass shrimp Mud crab
4 Blenny Blue crab Brown shrimp Grass shrimp Grass shrimp Mud crab
5 Blue crab Blue crab File fish File fish Mummichog Pinfish
6 Blue crab Brown shrimp Mummichog Mummichog Pinfish Pinfish
7 Blue crab Blue crab File fish Grass shrimp Mummichog Mummichog
8 Brown shrimp Brown shrimp Mud crab Mud crab Mummichog Pinfish
9 File fish File fish Grass shrimp Grass shrimp Mud crab Pinfish
1 File fish File fish Grass shrimp Grass shrimp Mummichog Mummichog
2 Blenny Blenny Brown shrimp Brown shrimp Mummichog Mummichog
3 Blenny Blenny File fish File fish Mud crab Mud crab
4 Brown shrimp Brown shrimp Grass shrimp Grass shrimp Mud crab Mud crab
5 Blue crab Blue crab Brown shrimp Brown shrimp Mud crab Mud crab
6 File fish File fish Mummichog Mummichog Pinfish Pinfish
7 File fish File fish Grass shrimp Grass shrimp Pinfish Pinfish
8 Blue crab Blue crab Mummichog Mummichog Pinfish Pinfish
9 Brown shrimp Brown shrimp Grass shrimp Grass shrimp Pinfish Pinfish
1 Blenny Blenny Blenny File fish File fish File fish
2 Blenny Blenny Blenny Mud crab Mud crab Mud crab
3 Blue crab Blue crab Blue crab Mud crab Mud crab Mud crab
4 Blue crab Blue crab Blue crab Mummichog Mummichog Mummichog
5 File fish File fish File fish Grass shrimp Grass shrimp Grass shrimp
6 File fish File fish File fish Pinfish Pinfish Pinfish
7 Brown shrimp Brown shrimp Brown shrimp Grass shrimp Grass shrimp Grass shrimp
8 Brown shrimp Brown shrimp Brown shrimp Mummichog Mummichog Mummichog
9 Mummichog Mummichog Mummichog Pinfish Pinfish Pinfish
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Figure D1. Experimental mesocosm setup.  
Clockwise: mesocosms receiving filtered seawater, macroalgal community, and mesocosm 
side view (courtesy of M. O’Connor). 
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Supplemental D2. Images of final experimental algal communities. 
 

 
Figure D2. Example algal communities after 24 days in experimental mesocosms 
exposed to different types and degrees of trophic skew. 
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