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ABSTRACT 
 

Kristin K. Sellers: State-dependent cortical network dynamics 
(Under the direction of Flavio Frohlich) 

 

Neuropsychiatric illness represents a major health burden in the United States with a paucity of 

effective treatment. Many neuropsychiatric illnesses are network disorders, exhibiting aberrant 

organization of coordinated activity within and between brain areas. Cortical oscillations, arising from the 

synchronized activity of groups of neurons, are important in mediating both local and long-range 

communication in the brain and are particularly affected in neuropsychiatric diseases. A promising 

treatment approach for such network disorders entails ‘correcting’ abnormal oscillatory activity through 

non-invasive brain stimulation. However, we lack a clear understanding of the functional role of oscillatory 

activity in both health and disease. Thus, basic science and translational work is needed to elucidate the 

role of oscillatory activity and other network dynamics in neuronal processing and behavior. 

Organized activity in the brain occurs at many spatial and temporal scales, ranging from the 

millisecond duration of individual action potentials to the daily circadian rhythm. The studies comprising 

this dissertation focused on organization in cortex at the time scale of milliseconds, assessing local field 

potential and spiking activity, and contribute to understanding (1) the effects of non-invasive brain 

stimulation on behavioral responses, (2) network dynamics within and across cortical areas during 

different states, and (3) how oscillatory activity organizes spiking activity locally and long-range during 

sustained attention. Taken together, this work provides insight into the physiological organization of 

network dynamics and can provide the basis for future rational design of non-invasive brain stimulation 

treatments. 
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CHAPTER 1: INTRODUCTION 

 

Mental illness is estimated to affect approximately 20 - 32% of adults in the United States 

(Bagalman & Napili, 2015; T. Insel, 2015). Along with devastating burden on individuals and families, the 

estimated U.S. national expenditure for mental health care in 2012 was $467 billion (including direct 

costs, loss of earnings, and disability benefits, excluding incarceration, homelessness, comorbid 

conditions, and early mortality) (T. Insel, 2015; T. R. Insel, 2008). Substantial efforts in research and 

development have led to only relatively minor improvements in managing symptoms. Two key challenges 

in developing effective treatments have been unknown mechanisms underlying the diseases and the 

diverse symptomology associated with these conditions. In recognition that most of these conditions stem 

from altered biology, the term ‘neuropsychiatric disorders’ has come to refer to mental or neurological 

disorders that stem from a neurobiological component (Miyoshi, 2011). This definition includes a large 

and diverse set of illnesses, including but not limited to Alzheimer’s disease, schizophrenia, depression, 

bipolar disorder, traumatic brain injury, brain tumor, cognitive disorders, seizure disorder, psychosis, and 

attentional disorders. While progress has been made in identifying the pathophysiology in these diseases, 

there are no complete models of the disease process. Relatedly, no identifiable biomarkers, or 

measurable entity to indicate the presence of disease, have been identified. These limitations have 

precluded adoption of the standard treatment-development approaches used by other branches of 

medicine. Furthermore, overlapping categories of neuropsychiatric, neuropsychological, and neurological 

symptoms often manifest concurrently. Symptoms include alteration to cognition, affect and behavior, 

language, reflexes, motor and sensory functions, and the manifestation of hallucinations and delusions. 

The complexity of symptoms in multiple domains (cognition, mood, social interaction) has complicated 

treatment development. 

To facilitate studying neuropsychiatric illnesses, the National Institute of Mental Health established 

the Research Domain Criteria (RDoC). This research framework creates categories, or domains, of 
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functioning which are biologically valid. In essence, the goal of this framework is to provide a system for 

understanding and diagnosing mental illnesses based on the (ab)normal functioning of the brain. At the 

core of this approach is a mechanistic understanding of brain function underlying behavior. Thus, looking 

at activity in the healthy brain is a fruitful first step towards developing treatments for neuropsychiatric 

disorders. 

In the brain, populations of neurons in individual areas are specialized to perform a set of functions 

or computations. Specialization is mediated by factors such as connectivity both locally and with other 

brain areas, organization of neurons, neuron species, and density. For example, visual cortex is 

optimized to represent the spatial world around us; thus, the neurons are organized in a retinotopic map 

to form a 2D representation of the visual image formed on the retina (Daniel & Whitteridge, 1961; Tootell, 

Silverman, Switkes, & De Valois, 1982). Multiple, specialized areas work together and form networks 

which can mediate complex processes and behavior (Sporns, Tononi, & Edelman, 2000). Elaborating on 

the above example of visual cortex, multiple features of an object are processed in parallel by different 

specialized areas; these visual features can then be integrated with input from other sensory modalities, 

as well as previous experience, expectancy, and higher-order factors such as attention (Uhlhaas & 

Singer, 2006).  

The brain is organized into both structural and functional networks. Structural networks are defined 

by anatomical connections, or the synapsing of neurons and the physical connections of axons. These 

networks can change over time, but at a relatively slow time scale (hours to days) (Sporns, 2013). In 

contrast, functional networks are defined by coordinated activity. Functional networks can be assessed 

using functional connectivity or effective connectivity metrics. Functional connectivity assesses the 

statistical relationship of recorded brain activity between areas to determine if the activity is correlated. 

Effective connectivity assesses directed effects between brain areas, in essence trying to determine a 

causal ‘direction’ of action. Both functional connectivity and effective connectivity are highly time-

dependent, and can change over tens to hundreds of milliseconds.  

The consideration of functional brain networks is intimately related to abundant evidence for the 

importance of coordinated activity within and across networks for brain functioning. This coordination 

exists at multiple temporal and spatial scales. In this body of work, I focus on organization in the cortex at 
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the time scales of millisecond, relating fluctuations in the electrical potential in the extracellular space 

around neurons (local field potential, LFP) with action potential firing (single unit , SU, and multiunit, MU, 

activity). A key feature of the LFP recorded in the brain is the rhythmic fluctuation in voltage; when 

converted to the frequency domain, this allows for investigation of oscillations. Interactions of oscillations 

at multiple frequencies (commonly measured in Hz, or cycles per second) as well as with spiking activity, 

can occur within brain regions (local areas, on the order of 100s of microns) and across regions 

(separated by millimeters to centimeters). Importantly, the activity in the brain changes over time, based 

on behavioral demands, context, and internal state; thus, all of the aforementioned interactions are 

nonstationary.  

The first recordings of oscillatory activity in cortex were conducted by Hans Berger using 

electroencephalogram (EEG) (Berger, 1929). His initial observations that brain activity fluctuates in this 

coordinated way, and that a specific rhythm of activity was modulated when eyes were opened or closed, 

paved the way for a century of work following. Historically, oscillations have been grouped into discrete 

frequency bands (delta: 0.5 to 4 Hz, theta: 4-8 Hz, alpha: 8 – 12 Hz, beta: 12 – 30Hz, gamma: 30 - ~200 

Hz). There remains debate as to whether distinct frequency cut-offs should be used, or whether the 

delimitation of oscillations should depend on a consistent biological mechanism of generation (Uhlhaas, 

Haenschel, Nikolic, & Singer, 2008). This debate aside, in general, synchronization of brain areas that are 

more distant occurs in lower frequencies (theta, alpha, and beta frequencies) whereas short-range 

synchronization is more commonly found in higher gamma frequencies (Kopell, Ermentrout, Whittington, 

& Traub, 2000; von Stein, Chiang, & Konig, 2000; von Stein & Sarnthein, 2000). In addition, lower 

frequency oscillations can aid in the organization of higher frequency activity, termed cross-frequency 

coupling (Canolty & Knight, 2010). Cross-frequency coupling between theta and gamma activity appears 

to act in a number of systems to encode units of information while preserving their order (J. Lisman, 2005; 

J. E. Lisman & Jensen, 2013). This is achieved because a set number of gamma cycles occur during 

each theta cycle. Ensembles of neurons encoding specific elements fire during each of the gamma 

cycles. Thus, the theta oscillation can act as an absolute reference for the serial organization of the set of 

represented items. Oscillations in a given frequency band can also encode information independently. In 

the hippocampus, spatial coding and the accurate representation of movement trajectories is facilitated by 
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place cells shifting their preferred phase of firing relative to the theta oscillation as a function of position in 

the physical environment (O'Keefe & Recce, 1993). Substantial work in visual cortex has demonstrated 

correlations between gamma oscillations and effective perceptual binding of multiple features of visual 

space (Engel & Singer, 2001; Honkanen, Rouhinen, Wang, Palva, & Palva, 2015; Tallon-Baudry & 

Bertrand, 1999). Taken together, a body of work has now convincingly demonstrated that oscillations 

(measured at the scalp level of the EEG or invasively at the LFP level) at different frequencies are 

correlated with a variety of cognitive and behavioral processes and may be critical for the organization of 

network activity.  

More recent work modulating network dynamics or oscillatory activity has demonstrated causative 

links with behavior. Demonstrating causative links between brain activity and behavior requires 

perturbation of brain activity in a relatively targeted or known manner and corresponding measurement of 

behavioral outcomes. In animal models, the use of optogenetics and Designer Receptors Exclusively 

Activated by Designer Drugs (DREADDS) has greatly advanced the dissection of circuitry involved in 

multiple behaviors and processes (Deisseroth, 2014; Steinberg, Christoffel, Deisseroth, & Malenka, 2015; 

Urban & Roth, 2015). Pharmacological or genetic manipulations can also be applied to alter the behavior 

of neuronal populations which generate specific oscillatory activity. A comprehensive review of this 

literature is beyond the scope of this document. In humans where such methods are not appropriate, the 

use of non-invasive brain stimulation allows for the perturbation of brain activity. A number of different 

technologies exist: in transcranial direct current stimulation (tDCS), transcranial alternating current 

stimulation (tACS), and transcranial random noise stimulation (tRNS), a weak electric current is passed 

between two or more electrodes which are placed at the level of the scalp; with transcranial magnetic 

stimulation (TMS), a magnetic coil placed above the scalp generates an electric current. Because of 

technological limitations (e.g. electrical artifacts), the simultaneous acquisition of electrophysiological 

recordings during stimulation is difficult. However, electrophysiological recordings immediately following 

stimulation can also be used to provide useful information about the causal relationship of network 

dynamics and behavior. In the first demonstration of direct causality between a physiological oscillation 

and concurrent motor behavior in healthy humans, authors found that 20 Hz tACS entrained cortical 

activity in the beta frequency band and slowed voluntary movement (Pogosyan, Gaynor, Eusebio, & 



22 
 

Brown, 2009). In another investigation of oscillatory activity, EEG recordings showed that TMS caused 

local entrainment of natural alpha oscillations (Thut et al., 2011). 10 Hz tACS successfully increased local 

alpha activity and improved target detection accuracy in a visual perception task (Helfrich et al., 2014). 

Immediately following anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC) and cathodal tDCS 

of the contralateral supraorbital region, participants showed reduced delta activity accompanied with 

improved working memory task performance (Keeser et al., 2011). Emerging with these developments 

has been the importance of context in shaping network dynamics. In a study where participants kept 

endogenous alpha oscillations low or high through keeping eyes open or closed, respectively, tACS was 

administered at the individual alpha frequency; investigators found that only in conditions of low 

endogenous power did tACS enhance alpha power, while there was no increase under conditions of high 

endogenous power (Neuling, Rach, & Herrmann, 2013). 

Such consideration of context and current activity patterns has been referred to as ‘state’. The term 

‘state’ has many meanings in neuroscience. This term was originally applied in relation to the sleep cycle; 

however, as different motifs of activity during wakefulness were discovered, the use of the term has 

expanded. Here, I adopt the conceptually broad definition of endogenously-generated processing modes 

which are modulated according to internal factors. In essence, the brain is not simply a stimulus-driven 

machine, but rather alters processing as a function of motivation, previous experience, expectancy, 

physiological status, and myriad other factors. Cortical LFP can reflect a continuum of states ranging from 

prominent low-frequency fluctuations during synchronized activity to the absence of these fluctuations in a 

desynchronized state (Harris & Thiele, 2011). Sensory responses to identical stimuli vary as a function of 

such state in visual cortex (Scholvinck, Saleem, Benucci, Harris, & Carandini, 2015), auditory cortex 

(Kisley & Gerstein, 1999), and somatosensory cortex (Poulet & Petersen, 2008). Based on the definition 

applied here, behavior can also define different states. Animals presented with the same tones during a 

passive period or an active discrimination task showed markedly greater modulation in firing rate in frontal 

cortex during the active discrimination task (Fritz, David, Radtke-Schuller, Yin, & Shamma, 2010). 

Differences in state such as awake stillness vs. locomotion also altered visual responses to identical 

stimuli (Niell & Stryker, 2010). In humans, passive listening vs. an auditory working memory task 

differentially evoked cross-frequency coupling between theta phase and high gamma amplitude (Canolty 
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et al., 2006). Substantial work has also been conducted looking at differences in responses during states 

of attention vs inattention, finding that gamma synchronization increases during attention (Desimone & 

Duncan, 1995; Fries, Reynolds, Rorie, & Desimone, 2001). As a whole, this field of work demonstrates 

that network dynamics are state-dependent, and state must actively be considered when assessing 

coordinated activity in the brain. 

Of interest for elucidating the neurobiological mechanism of neuropsychiatric disorders, individuals 

with these diseases show abnormal coordination of network activity, both during rest and cognitive tasks. 

Schizophrenia is hypothesized to be related to impaired neural synchrony, particularly in the beta and 

gamma frequency oscillations (Uhlhaas & Singer, 2006). Individuals with autism were found to exhibit 

reduced functional connectivity between Wernicke’s and Broca’s language areas, possibly related to the 

disordered language observed in autism (Just, Cherkassky, Keller, & Minshew, 2004). Disease states can 

also be associated with an excess of synchrony; patients with Parkinson’s disease exhibit increased beta 

oscillations, which are thought to relate to akinesia symptoms (Schnitzler & Gross, 2005). Other work has 

posited that it is not the excess beta oscillations per se that is problematic, but the disruption to the 

balance of synchronization and desynchronization (Courtemanche, Fujii, & Graybiel, 2003; Kuhn et al., 

2004) 

Overall, work conducted using computational models, animals, and recordings in humans has 

demonstrated that brain activity organizes within and across areas. These networks exhibit dynamics in 

activity at the level of action potential firing and oscillations. Taken together, the causative role of 

oscillations in behavior and the observation of abnormal oscillatory activity in neuropsychiatric illnesses 

has led to a broad hypothesis: If cortical oscillations are involved in organized processing and found to be 

abnormal in patients with neuropsychiatric diseases, can modulating these oscillations be effective at 

‘correcting’ abnormal activity found in disease states, thereby alleviating disease-related symptoms? A 

number of questions stem from this broad hypothesis. How do oscillations relate to specific behaviors in 

healthy individuals? Do these oscillations and behaviors correlate with abnormal activity and symptoms in 

disease? What are the appropriate oscillations to target? What are the state-dependent effects? How can 

oscillations be modulated? The work composing this dissertation does not attempt to answer all these 

questions, but rather provides a small piece toward a final answer.  
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In these basic science and translational investigations, I conducted studies in an intermediate 

animal model and healthy human participants. Combinations of electrophysiology and 

behavior/psychophysics were used to assess cortical network dynamics in a variety of states. Ferrets 

were selected for invasive electrophysiology for a number of reasons. These animals exhibit a 

gyrencephalic cortex similar to humans, a highly developed visual system, and cortical association areas 

such as prefrontal cortex. Studies fell into one or more of the following three categories:  

 

1) Assessment of the effects of non-invasive brain stimulation on behavioral responses. 

2) Characterization of network dynamics within and across cortical areas during different states 

(awake, anesthetized, spontaneous activity, visual/auditory stimulation). 

3) Investigation of network dynamics within and between cortical areas during a sustained attention 

task. 

 

First, I present a study assessing the effect of tDCS on cognitive function, assessed by a 

common intelligence quotient (IQ) test (Chapter 2). We found that this form of modulation, which does not 

take into account the oscillations underlying cognitive processing or the state of the brain, was detrimental 

to performance compared to sham stimulation. I then provide a review of current studies using tACS to 

target cognitive systems, organized according to RDoC (Chapter 3). Given the established interest and 

importance of better understanding network dynamics for the rational design of non-invasive brain 

stimulation paradigms, I then present a set of studies looking at network dynamics in an animal model. 

Characterization of network dynamics was conducted in prefrontal cortex (PFC) and primary visual cortex 

(V1) to assess differences during states defined by wakefulness and anesthesia (Chapter 4), during 

sensory stimulation (Chapter 5), and in awake animals during rest or naturalistic visual stimulation 

(Chapter 6). I next present a study assessing the dynamics within and between two cortical regions (PFC 

and posterior parietal cortex, PPC) during a sustained attention task, in particular focusing on local and 

long-range organization of spiking activity by oscillatory activity (Chapter 7). I conclude with a brief 

general discussion (Chapter 8).  
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CHAPTER 2: TRANSCRANIAL DIRECT CURRENT STIMULATION (tDCS) OF FRONTAL CORTEX 

DECREASES PERFORMANCE ON THE WAIS-IV INTELLIGENCE TEST1 

 

INTRODUCTION 

The importance of frontal brain regions has been demonstrated for numerous cognitive processes 

contributing to intelligence. Dorsolateral prefrontal cortex (DLPFC), a functional area in frontal cortex, is 

recruited during tests of general intelligence (Duncan & Owen, 2000; Duncan et al., 2000; Esposito, 

Kirkby, Van Horn, Ellmore, & Berman, 1999; Prabhakaran, Smith, Desmond, Glover, & Gabrieli, 1997). 

The middle frontal gyrus (the anatomical location of DLPFC) has been implicated in abstracting and 

integrating logical relationships (Liu et al., 2012), the ability to resolve interference efficiently (Bunge, 

Ochsner, Desmond, Glover, & Gabrieli, 2001), and visuospatial reasoning (Krawczyk, Michelle 

McClelland, & Donovan, 2011). Medial of the middle frontal gyrus lies the superior frontal gyrus; the 

lateral part of the superior frontal gyrus has been implicated in aspects of fluid intelligence (Hampson, 

Driesen, Skudlarski, Gore, & Constable, 2006; Nagahama et al., 1999), while the medial portion 

contributes to the default mode network and exhibits deactivation and reduced blood flow during cognitive 

processing (Raichle et al., 2001; Shulman et al., 1997). Patients with lesions to left superior frontal gyrus 

demonstrate deficits in working memory compared to controls, particularly in the spatial domain (du 

Boisgueheneuc et al., 2006). The most anterior portion of the frontal cortex, prefrontal cortex (PFC), is 

activated in a performance-dependent way during reasoning and novel problem-solving tests of fluid 

intelligence (Gray, Chabris, & Braver, 2003). Spatial and verbal tasks requiring high general intelligence 

differentially increased activation of lateral PFC in comparison to control tasks (Duncan et al., 2000).  

                                                      
1 This chapter previously appeared as an article in Behavioural Brain Research; doi: 
10.1016/j.bbr.2015.04.031 (http://www.sciencedirect.com/science/article/pii/S0166432815002739). The 
original citation is as follows: Kristin K. Sellers, Juliann M. Mellin, Caroline M. Lustenberger, Michael R. 
Boyle, Won Hee Lee, Angel V. Peterchev, Flavio Frohlich (2015). Transcranial direct current stimulation 
(tDCS) of frontal cortex decreases performance on the WAIS-IV intelligence test. Behavioural Brain 
Research, 290: 32-44. 
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Given the widespread involvement of frontal brain areas in higher-order cognitive processing, 

they represent an attractive target for modulating cognitive function. The ability to both improve cognitive 

performance in healthy individuals and to alleviate deficits in patients with neuropsychiatric illnesses is the 

goal of substantial research efforts. A growing body of work has been conducted using transcranial direct 

current stimulation (tDCS), a form of non-invasive brain stimulation, in an attempt to modulate cognitive 

abilities (Cohen Kadosh, 2015; Horvath, Forte, & O, 2015; Tremblay et al., 2014). Anodal tDCS increases 

neural activity by depolarizing cortical neurons, whereas cathodal tDCS reduces neural activity by 

hyperpolarizing neurons (Nitsche & Paulus, 2000; Purpura & McMurtry, 1965). Large neuronal networks 

are sensitive to such weak perturbations of neuronal membrane voltage caused by these electric fields 

(Ali, Sellers, & Frohlich, 2013; Dayan, Censor, Buch, Sandrini, & Cohen, 2013; Frohlich & McCormick, 

2010; Ozen et al., 2010; Reato, Rahman, Bikson, & Parra, 2010). Changes in neuronal excitability 

induced by tDCS outlast the duration of the stimulation (Nitsche & Paulus, 2000), likely through the 

recruitment of BDNF-dependent plasticity (Antal et al., 2010; Chaieb, Antal, Ambrus, & Paulus, 2014; 

Fritsch et al., 2010). 

The reported effects of tDCS on cognitive abilities are diverse, with seemingly conflicting reports 

of increased and decreased performance. The majority of studies conducted to date only used one 

behavioral assay to test a specific facet of cognitive processing. To our knowledge, no one study has 

conducted a comprehensive battery of cognitive testing with the same study population in order to assess 

the effects of tDCS on performance. Thus, we here asked if tDCS affects performance on a 

comprehensive assay of overall cognition, a standardized Intelligence Quotient (IQ) test. One of the most 

widely utilized IQ tests is the Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV). Use of the 

WAIS-IV test is advantageous because separate index scores can be calculated to provide insight into 

more fine-grained components of intelligence. Previous work has suggested that the different aspects of 

intelligence probed by the WAIS-IV indices and subtests do not share a single common neuronal 

substrate (Glascher et al., 2009).  

Because of the broad activation of frontal areas, we first tested if bilateral tDCS over DLPFC 

changed performance on the WAIS-IV. We hypothesized that by targeting frontal areas with tDCS, we 

would induce improved performance. Interestingly, the effects of stimulation were detrimental to IQ, 
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specifically in tasks of perceptual reasoning. We then conducted a second study to test the effects of 

unilateral right or left tDCS on performance on the WAIS-IV; similar performance decreases were found 

with additional evidence for more pronounced decreases for right tDCS. 

 

METHODS 

Participants 

In total, 44 healthy adults were recruited for this study (21 males, 23 females, mean age = 22.1 

years, SD = 4.72 years) from the University of North Carolina at Chapel Hill community. The study was 

divided into two consecutive substudies for which participants were recruited separately. For Substudy 1, 

22 participants participated in Session 1 of IQ testing, and 21 of these participants returned for Session 2 

and received either bilateral tDCS or sham tDCS with subsequent repeat IQ testing. One participant could 

not be contacted for Session 2 and was therefore excluded from the study. For Substudy 2, 22 

participants completed Session 1 of IQ testing, and 20 of these participants returned for Session 2 and 

received either right tDCS (anodal electrode on right hemisphere) or left tDCS (anodal electrode on left 

hemisphere) with subsequent repeat IQ testing. Analysis was conducted on the 20 participants who 

completed both sessions. No participants took part in both Substudy 1 and Substudy 2. By self-report, 

participants did not have a history of neurologic or psychiatric illness, were not currently using medication 

for a neurologic or psychiatric illness, were not currently undergoing counseling or psychotherapy 

treatment, did not have a first degree relative with a neurologic or psychiatric condition, had never 

undergone brain surgery, had no brain devices/implants, did not have any cardiovascular diseases, and 

were not pregnant. All participants signed written consent prior to participation. This study was approved 

by the UNC – Chapel Hill IRB.    

 

Experimental Design 

Both Substudy 1 and Substudy 2 followed a double-blind, between-subjects design with 

repeated-measure testing of IQ. In both substudies, participants completed the full WAIS-IV (Pearson 

Education, Inc., San Antonio, TX), as detailed below during the initial study visit (Session 1, baseline). 

Participants returned at least one week later (Session 2, mean time between sessions  = 23.6 days, SD = 
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19.7) and received either sham or bilateral tDCS (Substudy 1, Figure 2.3A) or right or left tDCS (Substudy 

2, Figure 2.3B) and immediately afterwards completed the same WAIS-IV test. At the conclusion of the 

Session 2, participants completed a questionnaire asking if they believed they received stimulation. 

 

Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV) 

The WAIS-IV is a comprehensive clinical instrument for assessing intelligence of adults between 

the ages of 16-90 years. There has been substantial demonstration of the test’s validity and reliability. 

The test is composed of 15 core and supplemental subtests which contribute to a composite score that 

represents general intellectual ability (full scale IQ, FSIQ) and scores in indices of specific cognitive 

areas. While the FSIQ is considered the best measure of overall cognitive ability, the test issuer 

recommends to further report the index scales that all contribute to the FSIQ: Verbal Comprehension 

Index (VCI), Perceptual Reasoning Index (PRI), Working Memory Index (WMI), and Processing Speed 

Index (PSI). The VCI measures verbal reasoning, verbal concept formation, and knowledge acquired from 

the environment (Kaufman & Lichtenberger, 2005). Strategies to solve the problems presented in this 

index may also utilize nonverbal factors such as forming mental pictures. The PRI measures perceptual 

and fluid reasoning, spatial processing, and visual-motor integration (Wechsler, 2008b). The WMI 

measures working memory, the ability to temporarily hold information in memory, manipulate or perform a 

mental operation on this information, and produce a response (Wechsler, 2008b); these processes 

require attention, concentration, mental control, and reasoning, and have been shown to be an essential 

component of higher order cognitive processes (Salthouse & Pink, 2008; Takeuchi, Taki, & Kawashima, 

2010; Unsworth & Engle, 2007). The PSI provides a metric of the participant’s ability to quickly and 

correctly scan, sequence, or discriminate simple visual information (Wechsler, 2008b); this measures 

incorporates short-term visual memory, attention, and visual-motor coordination (Groth-Marnat, 2003; 

Sattler, 2008a, 2008b). Important to note, the PSI includes cognitive decision-making or learning 

components, and is not simply measuring reaction time or visual discrimination.  

These index scales are further composed of core and supplemental subtests as described in 

Table 2.1 (Sattler & Ryan, 2009; Wechsler, 2008b). The raw scores from these subtests are scaled to a 

metric with a mean of 10 and a standard deviation of 3, based on the given age group. Different scales 
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contribute to standard composite scores (i.e. VCI, PRI, WMI, PSI, and FSIQ), metrics with mean of 100 

and standard deviation of 15. For our application, these metrics may be useful in isolating which facet(s) 

of intelligence are modulated by tDCS. All general testing, administration, and scoring guidelines were 

followed as prescribed by Pearson Education, Inc (Wechsler, 2008a). 

 

Transcranial Direct Current Stimulation  

For all participants, two stimulation electrodes (5x7cm, placed in saline soaked sponge sleeves) 

were positioned bilaterally over the middle frontal gyri, at positions F4 and F3 of the International 10-20 

System. An additional single electrode located over Cz served as the cathode for both stimulation sites 

(Figure 2.1A). For bilateral stimulation (Substudy 1), two simultaneously triggered single channel 

stimulators were used to administer anodal tDCS to the frontal electrodes (NeuroConn DC-STIMULATOR 

PLUS, NeuroConn Ltd., Ilmenau, Germany). Both the participant and the experimenter administering 

stimulation and the WAIS-IV were blind to the stimulation condition until completion of the study. Bilateral 

stimulation consisted of 20 minutes of 2mA direct current applied to each of the frontal electrodes (Figure 

2.1B, anodal current density at F3 and F4 = 0.057mA/cm2, cathodal current density at Cz = 

0.114mA/cm2). Sham stimulation consisted of 40 seconds stimulation at 2mA in the same electrode 

configuration as for the bilateral stimulation, to mimic the skin sensation of bilateral stimulation (Figure 

2.1C). Stimulation occurred while participants were resting but awake, sitting comfortably with eyes open. 

In Substudy 2, right tDCS or left tDCS was only delivered to either F4 or F3 (current density at F4, F3, 

and Cz = 0.057mA/cm2), with the same duration and amplitude as used for Substudy 1. Sham stimulation 

(40 seconds) was delivered to the non-targeted hemisphere (Figures 2.1D-E). The current density and 

duration used in this study are well within currently accepted safety guidelines for tDCS (Bikson, Datta, & 

Elwassif, 2009). We adopted a study design that avoided stimulation during test performance since 

WAIS-IV test duration exceeds the maximal stimulation duration permitted by recent tDCS safety 

guidelines (Poreisz, Boros, Antal, & Paulus, 2007).  
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TDCS Electric Field Modeling 

To determine which cortical structures were targeted by our stimulation paradigm, we simulated 

the electric field generated by the tDCS electrode configuration using a previously developed realistic 

finite element model of a human head incorporating heterogeneous and anisotropic tissue conductivity 

(Lee et al., 2012; Lee, Lisanby, Laine, & Peterchev, 2014). The head model is of a single subject (34 year 

old male) who did not participate in the study. Nevertheless, the simulated electric field distribution is 

informative of the general properties of the tDCS electrode configuration and current strength used in this 

study. The modeling procedure is briefly summarized below.  

The model was derived from structural T1-weighted MRI images (1×1×1 mm3 voxel). Image 

preprocessing included AC-PC spatial alignment, bias field correction, anisotropic diffusion filtering, and 

skull stripping (Lee et al., 2012). Individual tissue probability maps corresponding to gray matter, white 

matter, and cerebrospinal fluid (CSF) were automatically created using the segmentation tool FAST in 

FSL (FMRIB Analysis Group, Oxford, UK) (Zhang, Brady, & Smith, 2001). The non-brain regions were 

manually segmented into 11 tissue compartments including skin, muscle, skull compacta, skull 

spongiosa, vertebrae, spinal cord, lens, eyeball, sclera, optic nerve, and sinus, using a combination of 

segmentation editing tools from ITK-SNAP (Yushkevich et al., 2006) and an in-house segmentation 

algorithm based on thresholding and mathematical morphological operations. We modeled the tDCS 

sponge electrodes as rectangular cuboids with 5 cm × 7 cm surface intersecting the head (Figure 2.2). 

The complete 3D head model incorporating the tDCS electrodes was adaptively tessellated to produce 

the finite element model using the restricted Delaunay triangulation algorithm (Pons et al., 2007). The 

electrical conductivity of the head tissues was assigned as in (Lee et al., 2014). The electrodes were 

assumed to have the conductivity of saline (1.4 S/m). Constant electric current was applied to the 

electrode surfaces away from the head. For substudy 1, 2 mA were applied to each of the frontal 

electrodes and -4 mA to the posterior cathode. For substudy 2, 2 mA were applied to the frontal electrode 

(right and left tDCS modeled separately), -2 mA to the posterior cathode, and 0 mA to the frontal 

electrode contralateral to the stimulated side. Finally, the electric field was computed by solving the 

Laplace equation using the preconditioned conjugate solver within ANSYS (ANSYS Inc., Canonsburg, 

PA, USA) (Lee et al., 2012). 
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Data Analysis 

For each administration of the WAIS-IV, raw scores were calculated for each of the 15 subtests. 

Age-normalized scaled scores were then determined from these raw scores in accordance with scoring 

guidelines provided by Pearson Testing, Inc. The scaled scores were tallied to provide sums of the scaled 

scores, and converted to composite scores: FSIQ, VCI, PRI, WMI, and PSI.  

 

Statistical Analysis 

Custom-written scripts in MATLAB (Mathworks, Natick, MA) and R (R Foundation for Statistical 

Computing, Vienna, Austria) (Team, 2014) were used for analysis. Libraries used in R included lme4 

(Bates, Maechler, Bolker, & Walker, 2014) and pbkrtest (Halekoh & Hojsgaard, 2013). Wilcoxon rank-sum 

test was used to determine if continuous variables (age, time of day for Session 1, and time of day for 

Session 2) differed by stimulation condition (sham, right, left, or bilateral tDCS); chi-squared test was 

used to determine if categorical variables (gender) differed between stimulation conditions, and whether 

perception of stimulation differed between stimulation conditions.  

We performed a linear mixed model analysis of the relationship between scores on the WAIS-IV 

and stimulation condition. We entered stimulation condition (sham, right, left, or bilateral tDCS) and 

session (baseline or post stimulation [post-stim]) as fixed effects, and subjects as a random effect into the 

model. Visual inspection of the residual plots did not reveal any obvious deviations from normality or 

homoscedasticity. We used the Kenward-Roger approximation to perform F-tests and to estimate p-

values for each factor and their interaction in the mixed model (Halekoh & Hojsgaard). In the case of 

significant or trend level interactions, we conducted post-hoc Welch’s t-tests in order to determine the 

source of significance. Specifically, we compared scores between stimulation conditions within each 

session, and then calculated the difference in scores across sessions for each stimulation condition. 

Significance was determined by p<0.05, and trend by p<0.1. We present both raw p-values and p-values 

corrected for multiple comparisons using False Discovery Rate (FDR) calculations. Unless otherwise 

stated, bar graphs depict the mean change in score ± sem. For each participant, the change in score was 

calculated between sessions (session 2 – session 1); these values were then averaged across 

participants. 
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Spearman’s rank-order correlation was used to assess if the effect of stimulation was related to 

subtest administration order; group means of the change in score from Session 1 to Session 2 for each 

subtest were tested for significant correlation with subtest order (1 to 15). Spearman’s rank-order 

correlation was also used to assess for age-dependent effects of stimulation; change in score between 

Session 1 and Session 2 on each WAIS-IV metric of interest for each stimulation condition was tested for 

significant correlation with participant age. 

 

RESULTS 

The results of both substudies are detailed below. In substudy 1, we tested the hypothesis that 

bilateral tDCS applied over frontal regions would improve performance on the WAIS-IV IQ test compared 

to sham stimulation. To our surprise, we found that bilateral tDCS had a negative effect on test 

performance compared to sham stimulation. Therefore, we conducted a second substudy in order to test 

whether the effects of right or left tDCS differed from bilateral stimulation. In agreement with our findings 

from substudy 1, we found that both right and left tDCS induced similar reductions in practice gains on the 

WAIS-IV. We present the data combined across these two substudies for a number of reasons. The 

WAIS-IV has been specifically designed and validated to produce reliable scores across different test 

administrators. In our study, there were no significant differences in baseline score between the different 

stimulation groups for FSIQ or any of the index scores. In addition, the similar finding of both studies (that 

tDCS decreased practice gains) indicates that this effect is robust. Therefore, presenting the results of the 

two substudies combined provides a more comprehensive view of the effects of unilateral and bilateral 

tDCS on a standardized assessment of IQ.  

 

Demographic and Individual Characteristics 

Participants in the stimulation groups did not differ significantly in age (sham mean = 25.7 years, 

sham SD = 8.41 years, right mean = 20.6 years, right SD = 2.12 years; left mean = 21.5 years, left SD = 

2.27 years; bilateral mean = 20.5 years, bilateral SD = 2.02 years, Wilcoxon rank-sum test, all p > 0.1), 

time of day for Session 1 (Wilcoxon rank-sum test, all p > 0.1), time of day for Session 2 (Wilcoxon rank-

sum test, all p > 0.1), or gender (sham = 5 males, 5 females; right = 4 males, 6 females; left = 6 males, 4 
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females;  bilateral = 5 males, 6 females, χ2(3, n=41) = 0.867, p = 0.833). In substudy 1, 57% of 

participants correctly guessed whether they received brain stimulation, with chance level at 50% (possible 

responses were ‘Yes’ and ‘No’)( chi-square test assessing for association between stimulation condition 

and perception of stimulation , χ2(1,N=21) = 3.82, p = 0.051). In substudy 2, only 30% of participants 

correct guessed their stimulation condition, with change level at 25% (possible responses were ‘Right 

side of head’, ‘Left side of head’, ‘Both sides of head’, ‘No stimulation’)(chi-square test assessing for 

association between stimulation condition and perception of stimulation χ2(1,N=20) = 0, p > 0.05). In 

substudy 2, 55% of participants thought stimulation influenced their performance on the IQ test (‘Do you 

think your performance on the IQ test was affected by the transcranial current stimulation’). 

 

Effects of Unilateral and Bilateral tDCS on WAIS-IV Scores 

In the finite element simulation, our electrode montage predominantly induced electric fields in the 

middle and superior frontal gyri of frontal cortex (Figure 2.2). In the case of bilateral stimulation, electric 

fields were nearly symmetrical in both hemispheres (Figure 2.2A-D). For left tDCS, the electric field 

predominantly affected the left hemisphere, with limited spread into the right hemisphere (Figure 2.2E - 

G). Similarly, right tDCS targeted right middle and superior frontal gyri with only minimal applied electric 

field in the left hemisphere (Figure 2.2H - J). In order to test the effects of tDCS on intelligence, we 

assessed change in performance on the indices and subtests of the WAIS-IV as a function of stimulation 

condition. See Table 2.2 for the group means of scaled composite scores. The FSIQ is a global estimate 

of an individual’s current level of cognitive ability, and is the most reliable and valid estimate of an 

individual’s intellectual ability (Sattler & Ryan, 2009). In the linear mixed model assessing the effect of 

stimulation on FSIQ, the factor session was significant (F(1,40) = 100, p < 0.001), the factor stimulation 

condition was non-significant (F(3,37) = 0.813, p > 0.1), but the interaction between session and 

stimulation condition was significant (F(3,37) = 4.38, p = 0.00979). Post-hoc t-tests revealed that FSIQ did 

not differ significantly between groups at baseline (all p > 0.1) or after stimulation (all p > 0.1). However, 

the difference between FSIQ during post-stim and baseline was significantly different between sham and 

unilateral/bilateral stimulation (sham vs right tDCS: t(17.3) = 3.63, uncorrected p = 0.00204, corrected p = 

0.0079; sham vs left tDCS: t(17.6) = 2.28, uncorrected p =0.0352, corrected p = 0.0790 ; sham vs 
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bilateral tDCS: t(18.8) = 2.76, uncorrected p = 0.0127, corrected p = 0.0348). Right tDCS, left tDCS, and 

bilateral tDCS led to reduced practice gains compared to the sham condition (Figure 2.4: change in 

scores between session was calculated for each participant, and then averaged across participants, to 

provide mean difference in FSIQ ± SEM, sham tDCS = 9.80 ± 0.998, right tDCS = 4.10 ± 1.22; left tDCS = 

6.30 ± 1.16; bilateral tDCS = 5.55 ± 1.18). Thus, unilateral and bilateral tDCS significantly reduced the 

practice gains in FSIQ between testing sessions compared to sham stimulation.  

The WAIS also provides index scores to assess specific cognitive areas. To examine which index 

scale(s) contribute to the tDCS-induced effects on the FSIQ, we further performed linear mixed model 

analyses for each of the four index scales. The results are summarized in Table 2.3 and Figure 2.5. The 

factor session was significant in all indices except VCI, indicating that performance differed from Session 

1 to Session 2 for the PRI, WMI, and PSI. Only VCI revealed a significant effect of the factor stimulation 

condition. Interestingly, only the PRI showed a significant interaction between session and stimulation 

condition. Post-hoc testing demonstrated that compared to sham stimulation (mean difference in PRI ± 

SEM = 12.1 ± 2.73), practice gains in the PRI were significantly lower following right tDCS (mean 

difference in PRI ± SEM = 1.90 ± 20.5, t(16.7) = 2.99, uncorrected p = 0.00837, corrected p =0.022), 

lower at trend level following left tDCS (mean difference in PRI ± SEM = 5.90 ± 1.82, t(15.7) = 1.89, 

uncorrected p = 0.0773, corrected p = 0.135), and lower at trend level following bilateral tDCS (mean 

difference in PRI ± SEM = 4.64 ± 2.44, t(18.51) = 2.04, uncorrected p = 0.0562, corrected p = 0.077) 

(Figure 2.6B). This effect was not driven by differences in baseline PRI between the groups (all p > 0.1).  

Given the significant and trend-level interactions between session and stimulation condition on 

the PRI, we next analyzed the three subtests that comprise the PRI (Block Design, Matrix Reasoning, and 

Visual Puzzles). These subtests were performed consistently in the order prescribed by the WAIS-IV 

(Block Design: 1st, Matrix Reasoning: 4th, and Visual Puzzles: 8th subtests).  Results of the linear mixed 

model on these subtests are summarized in Table 2.4 and Figure 2.6. Block Design and Visual Puzzles 

provide a significant session effect, while Matrix Reasoning had a trend level effect of session. Visual 

Puzzles exhibited a significant effect of stimulation condition. For Matrix Reasoning and Visual Puzzles, 

the interaction between session and stimulation condition was significant or significant at trend level. 
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Post-hoc t-tests revealed that Matrix Reasoning did not differ significantly between groups at 

baseline (all p>0.1). However, practice gains were dependent on the stimulation condition (Figure 2.6, 

mean difference in Matrix Reasoning ± SEM: sham tDCS = 1.80 ± 0.854, right tDCS = -0.200 ± 0.663, left 

tDCS = 1.70 ± 0.761, bilateral tDCS = -0.273 ± 0.469). Specifically, right tDCS decreased the practice 

gain at trend level compared to the sham condition (t(17.0) = 1.850, uncorrected p = 0.0818, corrected p 

= 0.094); bilateral tDCS also decreased practice gains at the trend level compared to sham tDCS (t(14.1) 

= 2.128, uncorrected p = 0.0515, corrected p = 0.094); practice gains were smaller following right tDCS 

compared to left tDCS at the trend level (t(17.7) = -1.882, uncorrected p = 0.0764, corrected p = 0.094); 

and bilateral tDCS resulted in reduced practice gains compared to left tDCS (t(15.2) = 2.21, uncorrected p 

= 0.0431, corrected p = 0.094) (Figure 2.6B).  

In the case of Visual Puzzles, post-hoc t-tests indicated that right and left tDCS significantly 

decreased practice gains compared to the sham condition (Figure 2.6C, mean difference in Visual 

Puzzles ± SEM: sham tDCS = 2.60 ± 0.733, right tDCS = 0.200 ± 0.327, left tDCS = 0.400 ± 0.980, 

bilateral tDCS = 1.82 ± 0.807. Sham tDCS vs right tDCS: t(12.4) = 2.99, uncorrected p = 0.0109, 

corrected p = 0.15; sham tDCS vs left tDCS: t(16.7) = 1.80, uncorrected p = 0.090, corrected p = 0.15). 

No baseline differences were significant, but left vs bilateral tDCS exhibited trend-level differences at 

baseline (t(16.9) = 2.05, p = 0.0568). 

 

WAIS-IV Subtest Order and Participant Age do not Explain Effects of tDCS 

TDCS has been shown to induce outlasting effects on the excitability of motor cortex for multiple 

hours, assessed by measuring motor evoked potentials induced by transcranial magnetic stimulation 

pulses (Batsikadze, Moliadze, Paulus, Kuo, & Nitsche, 2013). However, no comparable physiological 

measurement exists to assess outlasting changes in excitability in frontal cortex. In theory, elapsed time 

since the end of stimulation could affect which subtests showed significant modulation based on 

stimulation condition. To test for this possibility, we calculated the correlation between group mean of 

change in score between sessions and subtest administration order. We found no significant correlation 

between the order of subtests and change in performance between the testing sessions for substudy 1 

(Figure 2.7A: Mean of change in subtest scores, in order of subtest administration. Spearman’s 
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correlation of change in score and subtest order was non-significant, sham tDCS: rho = -0.170, p = 0.544; 

bilateral tDCS: rho = -0.186, p = 0.506) or substudy 2 (Figure 2.7B, right tDCS: rho = 0.245, p = 0.379; left 

tDCS: rho = 0.218, p = 0.434).  

Lastly, the plasticity recruited by tDCS is likely age-dependent (Fathi et al., 2010). Therefore, 

effects of stimulation could be masked by the age of participants. To test for this, we calculated 

correlations between change in scores in each stimulation group and participant age. Correlations were 

non-significant for all indices of the WAIS-IV and all subtests of the PRI, except for Figure Weights in the 

left tDCS condition (all p-values > 0.1, except Figure Weights:  left, rho = 0.755, p = 0.011).  

 

DISCUSSION 

In the last decade, numerous studies have investigated whether tDCS can be used to improve 

cognitive abilities or alleviate deficits associated with neuropsychiatric diseases. The resulting literature is 

diverse,  with reports of improved and/or decreased cognitive performance with stimulation in the 

domains of working memory, executive functioning, verbal and semantic processing, cognitive control 

during emotion regulation, verbal tasks, visuospatial memory, word fluency, verbal memory, 

categorization learning, memory performance and learning, language comprehension, and  attention 

control (Horvath et al., 2015; Tremblay et al., 2014). In each of these studies, tDCS was targeted to 

DLPFC, through electrodes positioned over F4 and F3. Here, we sought to test if unilateral or bilateral 

tDCS over DLPFC altered performance on a standardized IQ test, a multi-faceted and comprehensive 

assessment of cognitive abilities. Specifically, the purpose of substudy 1 was to investigate if bilateral 

tDCS (anodes over both F4 and F3, cathode over Cz) modulates performance on a standard IQ test. 

Based on our finite element modeling, stimulation in this study primarily targeted the middle and superior 

frontal gyri. Other studies which applied stimulation through anodes positioned at F4 or F3 attributed 

stimulation effects to DLPFC, a functional region which lies on the middle frontal gyrus. 

The application of bilateral stimulation was chosen because IQ tests assess multiple cognitive 

functions, which utilize broad frontal areas; previous investigations of the effects of brain stimulation on 

cognitive function have used similar approaches (Snowball et al., 2013). As a note, previous reports of 

‘bilateral’ tDCS primarily positioned the anode on one side of the head (often M1) and the cathode over 
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the same region on the contralateral side of the head. This is markedly different from our bilateral 

stimulation, in which both sides of the head received anodal stimulation, and a common cathode was 

positioned at Cz. In a follow-up study, we tested whether the effects of right or left tDCS differed from 

bilateral stimulation. We found that all forms of tDCS (right, left, and bilateral) impaired performance on 

the FSIQ, compared to sham stimulation. More detailed analysis revealed that stimulation induced 

selective impairment of the PRI (significant for right tDCS, trending significant for left and bilateral tDCS). 

Of the three subtests which contribute to the PRI, performance on two exhibited selective impairment 

based on tDCS. Specifically, right tDCS decreased performance on Matrix Reasoning at the trend level 

compared to both sham and left tDCS, while the effects of left tDCS for this subtest were indistinguishable 

from sham stimulation. For Visual Puzzles, both right and left tDCS reduced practice gains compared to 

sham stimulation. There were no differences in baseline scores between the stimulation groups, thus this 

cannot explain the stimulation-induced reduction in practice gains on the FSIQ or PRI. Furthermore, our 

results from two independent substudies support each other. Data collected during the first substudy 

demonstrated that bilateral stimulation was detrimental to performance compared to sham stimulation. 

The results from our second substudy, performed following the completion of substudy 1, further support 

this finding and demonstrate that both right and left tDCS reduce practice gains in both the FSIQ and PRI. 

These results suggest that unilateral and bilateral tDCS over DLPFC impair performance on specific 

perceptual reasoning tasks, but may not affect verbal comprehension, working memory, or processing 

speed abilities. 

 

Potential Mechanisms of tDCS 

The mechanisms underlying the effects of tDCS are still under investigation. An important first 

consideration is that the physiological underpinnings of tDCS-induced changes differ during stimulation 

compared to after stimulation. Our discussion will focus on changes following stimulation, according to the 

experimental paradigm implemented in our study. Neurophysiological, imaging, and pharmacological 

investigations have demonstrated a number of physiological changes following tDCS (Nord, Lally, & 

Charpentier, 2013; Stagg & Nitsche, 2011), which are believed to depend upon changes in synaptic 

strength mediated by NMDA receptors and both GABAergic and glutamatergic synapses (Liebetanz, 
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Nitsche, Tergau, & Paulus, 2002; Nitsche et al., 2003). Early work with tDCS conducted in motor cortex 

demonstrated that anodal stimulation increased excitability while cathodal stimulation inhibited activity 

(Nitsche & Paulus, 2000). However, a meta-analysis looking at cognitive studies indicates that in non-

motor areas, anodal stimulation may indeed still increase excitability but cathodal stimulation does not 

induce inhibitory effects (Jacobson, Koslowsky, & Lavidor, 2012); the authors posited that this may be 

due to higher brain activation states during cognitive tasks, and the greater range of behavioral measures 

used in cognitive tasks compared to TMS-induced motor evoked potentials, which are used to measure 

motor cortex excitability.  

Using whole-brain arterial spin labeling, anodal tDCS in left DLPFC has been shown to increase 

perfusion to brain regions structurally connected with left DLPFC, increase functional coupling between 

bilateral DLPFC, but decrease functional coupling between left DLPFC and bilateral thalami; immediately 

following tDCS, perfusion decreased in the frontal lobes bilaterally, in an anatomical distribution similar to 

that of the default mode network (Stagg et al., 2013). Contrastingly, fMRI has demonstrated that 

immediately following anodal tDCS over left DLPFC, the default mode network and bilateral fronto-

parietal networks exhibited greater co-activation and connectivity (Keeser, Meindl, et al., 2011). If 

perfusion indeed decreases immediately following tDCS, this may mediate the deficits in performance on 

the IQ test we observed in the present study. Future work will be needed to determine if the brain regions 

mediating perceptual reasoning abilities may be particularly affected by reduced perfusion, as could be 

hypothesized based on our finding of selective impairment in the PRI following unilateral and bilateral 

tDCS. 

 

tDCS Effects on Perceptual Reasoning  

          We found that both unilateral and bilateral tDCS induced selective impairments in the PRI of the 

WAIS-IV. The PRI measures fluid reasoning, with tasks that assess nonverbal concept formation, visual 

perception and organization, visual-motor coordination, learning, and the ability to separate figure and 

ground in visual stimuli. Previous reports have found that anodal tDCS over frontal cortex improves 

perceptual sensitivity (Falcone, Coffman, Clark, & Parasuraman, 2012), learning to identify concealed 

objects in naturalistic surroundings (Clark et al., 2012), and perceptual learning (Sehm et al., 2013). Other 
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work has applied anodal tDCS to visual areas and improved perceptual learning (Pirulli, Fertonani, & 

Miniussi, 2013), while parietal tDCS has improved reaction time on contralateral search tasks (Reinhart & 

Woodman, 2015). However, another body of research has found that both right anodal and cathodal 

tDCS on DLPFC impair the efficiency of managing stimulus-response feature bindings, which taxes 

perceptual abilities; this study proposed that tDCS could create reversible ‘frontal lesions’, for at least 

specific cognitive tasks (Zmigrod, 2014; Zmigrod, Colzato, & Hommel, 2014). Another study found that 

anodal and cathodal tDCS over medial-frontal cortex did not change perceptual processing, but only 

subsequent error- and feedback-related negativities (Reinhart & Woodman, 2014). Furthermore, anodal 

tDCS of V1 was shown to block overnight consolidation of visual learning (Peters, Thompson, Merabet, 

Wu, & Shams, 2013). Thus, our work and previous studies indicate that at least some forms of frontal 

tDCS may produce a ‘frontal lesion’ effect, in which stimulation impairs performance on facets of 

perceptual reasoning.  Future work will be needed to elucidate if these specific effects results from the 

location of applied stimulation, the specific tasks being tested, or a combination of these factors.  

 

Previous Studies on tDCS and Working Memory 

Our finding that tDCS does not affect working memory performance joins a diverse set of studies 

investigating the modulation of working memory ability by tDCS. A number of studies have found that 

anodal tDCS to left DLPFC improves performance on verbal and non-verbal working memory tasks 

(Keeser, Padberg, et al., 2011; Ohn et al., 2008), with some qualifiers such as improvement measured 

only in males (Meiron & Lavidor, 2013), or that stimulation was beneficial but selectively in older adults 

with more education (Berryhill & Jones, 2012). Other reports found no effects of tDCS on working memory 

accuracy (Lally, Nord, Walsh, & Roiser, 2013; Mylius et al., 2012; Zaehle, Sandmann, Thorne, Jancke, & 

Herrmann, 2011), but improvement in only reaction time (Hoy et al., 2013; Mulquiney, Hoy, Daskalakis, & 

Fitzgerald, 2011; Teo, Hoy, Daskalakis, & Fitzgerald, 2011). Conversely, one study found that accuracy, 

but not reaction time, was improved by anodal tDCS applied to DLPFC compared to sham and cathodal 

stimulation (Fregni et al., 2005). Additional evidence suggests that left tDCS improves verbal working 

memory while right tDCS improves visuospatial working memory (Jeon & Han, 2012). There is weak 

evidence that concurrently administered anodal tDCS to left DLPFC during a working memory task may 
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improve subsequent testing on another working memory test, compared to just tDCS or administration of 

the first working memory task alone (Andrews, Hoy, Enticott, Daskalakis, & Fitzgerald, 2011). 

While the conceptualization of working memory is helpful for discussion and study, this remains a 

broad construct which incorporates multiple cognitive functions (including but not limited to rehearsal, 

maintenance, updating, and executive function) (Unsworth & Engle, 2007). Work conducted to 

disentangle which contributions to working memory may be modulated by tDCS has provided some 

insight that anodal tDCS over left DLPFC may not improve the ability to overcome bias (Gladwin, den Uyl, 

& Wiers, 2012) but may be mediated by specific effects on selective attention because of the presence of 

interference (Gladwin, den Uyl, Fregni, & Wiers, 2012). Overall, it is still unclear if and how tDCS 

modulates working memory. A meta-analysis on the effects of tDCS applied to DLPFC on n-back working 

memory tests (studies published through February 2013) indicates that only reaction time, but not 

accuracy, is improved by stimulation (Brunoni & Vanderhasselt, 2014). Of critical importance for 

comparison of studies, reaction time is not measured in the WAIS-IV working memory subtest, and thus 

our results are not directly comparable to tests of working memory which assessed reaction times. We did 

not conduct MRI scans to accommodate anatomical differences across participants; however, there is 

evidence that modulation of performance on working memory may result from differing current densities 

at DLPFC, despite consistent electrode placement according to the 10-20 system across participants 

(Kim et al., 2014). Importantly, our electrode montage differed in the location of the cathode compared to 

many previous studies. Thus, our induced current is not directly comparable to previous studies which 

administered anodal tDCS to DPFC. 

 

Investigations of tACS and Intelligence 

Other studies assessing the role of brain stimulation on forms of intelligence have utilized 

transcranial alternating current stimulation (tACS) that employs alternating current waveforms. tACS 

targets the temporal organization of network activity through frequency-specific enhancement of cortical 

oscillations and coherence (Ali et al., 2013; Frohlich & Schmidt, 2013; Herrmann, Rach, Neuling, & 

Struber, 2013). Such temporal structure plays an important role in mediating cognitive abilities such as 

attention (Miller & Buschman, 2013), working memory (Duzel, Penny, & Burgess, 2010; Siegel, Warden, 
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& Miller, 2009), and encoding and retrieval of memory (Uhlhaas, Haenschel, Nikolic, & Singer, 2008; 

Ward, 2003). One study found that gamma frequency tACS administered over left middle frontal gyrus 

reduced the amount of time required to solve the Raven’s matrices (Santarnecchi et al., 2013). However, 

there was no difference between tACS and sham groups in accuracy. Another study found that theta 

frequency tACS over parietal cortex improved performance on a modified version of Raven’s progressive 

matrices, mainly through participants correctly solving more difficult task items (Pahor & Jausovec, 2014). 

Interestingly, the Raven’s matrices in these studies are similar to the Matrix Reasoning subtest of the PRI 

in the WAIS-IV. The Matrix Reasoning subtest has previously been used as a measure of fluid 

intelligence (Barbey, Colom, Paul, & Grafman, 2014), and scores on the test are speed-dependent. Thus, 

tDCS and tACS may have opposite effects on performance on assays of fluid intelligence. This difference 

likely relates to the mechanistic difference between tDCS (inducing changes in excitability) and tACS 

(modulating temporal patterning of activity). Future work will be required to more fully understand the role 

of each of these stimulation modalities on fluid intelligence, as well as other aspects of cognitive 

processing.  

 

Neurobiological Substrate of Intelligence 

The neurobiological substrate of intelligence is still unknown. Historically, it has been posited that 

the diverse functional roles of DLPFC provide a unified neural architecture for Spearman’s classic general 

(g) factor model of intelligence (Duncan & Owen, 2000; Duncan et al., 2000). In this theory of intelligence, 

the g factor posits that an individual’s mental performance across a broad range of cognitive tests is often 

comparable (Spearman, 1904). However, recent work utilizing lesion mapping has demonstrated that 

performance on metrics used to measure the g factor of intelligence depend upon fronto-parietal 

networks, in accordance with the Parieto-Frontal Integration Theory (P-FIT) of intelligence (Barbey et al., 

2012; Glascher et al., 2010)(however, results from (Glascher et al., 2010) also demonstrate that regions 

of frontopolar cortex may play a unique role in g). In the P-FIT conceptualization of intelligence, different 

cognitive functions are mediated by a broadly distributed network of functionally specialized brain regions, 

including prefrontal, parietal, occipital, and temporal association cortices (Barbey, Colom, & Grafman, 

2013; Colom et al., 2009; Glascher et al., 2009; Jung & Haier, 2007). Four stages of information 
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processing are supported by critical information flow between multiple brain regions, in particular frontal 

and parietal regions (Sternberg & Kaufman, 2011). In agreement of this model, the neurobiological 

substrate of intelligence has been hypothesized to correspond to genetically determined brain structure 

and connectivity (Choi et al., 2008; Colom, Jung, & Haier, 2006; Haier, Jung, Yeo, Head, & Alkire, 2004; 

Hulshoff Pol et al., 2006; Shaw et al., 2006; Thompson et al., 2001), and individuals with more efficient 

whole brain network organization have a higher overall level of intelligence (Cole, Yarkoni, Repovs, 

Anticevic, & Braver, 2012; Duncan, 2013; van den Heuvel, Stam, Kahn, & Hulshoff Pol, 2009). Thus, 

while our study was not a direct assay of the neurobiological substrate of intelligence, our results may 

provide insight on this question. The differential effects of tDCS on WAIS-IV index and subtest 

performance is in agreement with P-FIT; because of the spatial distribution of brain structures implicated 

in the variety of cognitive processes included in the WAIS-IV, the stimulation would differentially affect 

these networks. 

 

Implications for Society:  DIY Stimulation 

The complexity of the neurobiological substrates of intelligence is particularly relevant given the 

growing interest of the lay public in brain stimulation. In a simplified form, many people believe that 

increased excitability induced by brain stimulation can be performance-enhancing (motivated by 

communication of findings that cognitive training enhances brain activity measured by fMRI in prefrontal 

and parietal area, including the middle frontal gyrus (Olesen, Westerberg, & Klingberg, 2004)). The 

relative low cost, technical ease, and attractive hypothetic benefits of brain stimulation have sparked the 

development of commercially available do-it-yourself (DIY) brain stimulation devices. However, DIY 

devices are not validated and may not be safe (Bikson, Bestmann, & Edwards, 2013). Furthermore, our 

study casts doubt on the hype surrounding the simplified idea that applying brain stimulation will lead to 

better cognitive performance ("Brain blast," 2013). In fact, the opposite effect was demonstrated in our 

study. This finding together with the very real safety risks of DIY brain stimulation will hopefully 

discourage the wider, uncontrolled use of tDCS outside the research laboratory. 
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LIMITATIONS AND CONCLUSIONS 

There are certain limitations to this study which are important to consider. Because we wanted to 

administer the full version of the WAIS-IV in accordance to standard testing protocols, the same test was 

administered to each participant twice. It was clear that participants exhibited a practice effect as a result 

of the retesting (Estevis, Basso, & Combs, 2012). However, as all participants in all stimulation groups 

underwent this same procedure, we do not anticipate the reported effects to depend upon differences 

induced by this retesting. However, we cannot fully exclude the possibility that unilateral or bilateral tDCS 

induced a difference in recall from Session 1, rather than a true alteration to the neural substrates 

underlying cognitive processing. However, in such a case we would expect performance modulation that 

is less task-specific than what we found, since not only the perceptual reasoning index showed a learning 

effect for the sham group. Another limitation to keep in mind is that tDCS was administered before 

participants completed the WAIS-IV during Session 2. Thus, elapsed time since the end of stimulation 

might affect which subtests showed significant modulation. However, our correlational analysis showed 

that time of test was not associated with tDCS-induced performance changes and could therefore not 

explain the specific stimulation effect on Matrix Reasoning or Visual Puzzles.  Lastly, there is growing 

recognition of important considerations when using tDCS in cognitive research, such as participant 

motivation (Berryhill, Peterson, Jones, & Stephens, 2014); our study may have suffered from one of these 

problems.  

In conclusion, we found that unilateral and bilateral tDCS over DLPFC reduced practice gains in a 

comprehensive test of intelligence, with selective impairment in perceptual reasoning. The impairment 

found here suggests that tDCS indeed targeted selective neuronal network dynamics that enable 

cognition. Our study highlights that increasing neuronal activity in some frontal areas may not be 

beneficial to cognitive processing, with additional evidence that the timing of tDCS relative to task 

performance is an important consideration in the future development of brain stimulation for therapeutic 

applications.  
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FIGURES AND TABLES 

 

Figure 2.1. tDCS administered over DLPFC 

(A) Two stimulators were used to deliver double-blinded unilateral or bilateral tDCS over DLPFC. In all 

stimulation conditions, three electrodes were placed, one each at F3, F4 (anodes, red electrodes), 

and Cz (cathode/return, blue electrode).  

(B) For bilateral tDCS, both stimulators delivered 20 minutes of 2mA stimulation with a ramp up and 

ramp down of current.  

(C) For sham tDCS, both stimulators administered 20 seconds of stimulation with a ramp up and ramp 

down of current, in order to mimic the sensations of stimulation.  

(D) For right tDCS, 20 minutes of stimulation was delivered through the stimulator attached to electrodes 

F4 and Cz, while only the 20 seconds of sham stimulation were delivered through the stimulator 

attached to F3 and Cz.  

(E) For left tDCS, 20 minutes of stimulation was delivered through the stimulator attached to F3 and Cz, 

while the stimulator attached to F4 and Cz administered 20 seconds of stimulation. 
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Figure 2.2. Electric field modeling of tDCS 

(A) Anodal tDCS administered bilaterally over frontal cortex. Red electrodes represent anodes, blue 

electrodes represent cathodes.  
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(B) For bilateral stimulation, the greatest magnitude of the electric field was mostly localized to areas 

underneath and between the electrodes. Left panels: gray matter; right panels: white matter. 

(C) The middle frontal gyri (green) and superior frontal gyri (blue) were the areas of frontal cortex with the 

highest amplitude electric field. 

(D) Axial, coronal, and sagittal sections showing electric field induced by tDCS 

(E) – (G) Anodal tDCS administered unilaterally on the left. Purple electrodes represent stimulation 

electrodes which were attached, but only received sham stimulation 

(H) – (J) Anodal tDCS administered unilaterally on the right. 
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Figure 2.3. Double-blind, randomized, placebo-controlled study design with a repeated-measure of 

IQ. 

(A) During Session 1, each participant was administered the Wechsler Adult Intelligence Scale, Fourth 

Edition (WAIS-IV). During Session 2 of substudy 1, each participant received either sham stimulation 

or bilateral tDCS. The WAIS-IV was immediately administered following stimulation in order to assess 

stimulation-induced modulation in performance. 

(B) During Session 1, each participant was administered the Wechsler Adult Intelligence Scale, Fourth 

Edition (WAIS-IV). During Session 2 of substudy 2, each participant received either right or left tDCS. 

The WAIS-IV was immediately administered following stimulation in order to assess stimulation-

induced modulation in performance. 
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Figure 2.4. Unilateral and bilateral tDCS significantly decreased practice gains in the Full Scale IQ 

(FSIQ) compared to sham stimulation. 

The difference in FSIQ between sessions (Session 2 – Session 1) was calculated for each participant, 

and then averaged across participants. Group means of individual differences are plotted. Error bars 

show 1 SEM. * indicates significant at p < 0.05. 
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Figure 2.5. The WAIS-IV provides four index scores which represent the major components of 

intelligence. 

Bars represent the group means of the individual differences of scores between Session 1 and Session 2. 

Error bars show 1 SEM. * indicates significant at p < 0.05. 

(A) Verbal Comprehension Index (VCI). 

(B) Perceptual Reasoning Index (PRI). Right tDCS significantly decreased practice gains on the PRI of 

the WAIS-IV, while left tDCS and bilateral tDCS decreased practice gains on the PRI at trend level. 

(C) Working Memory Index (WMI). 

(D) Processing Speed Index (PSI).  
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Figure 2.6. Perceptual reasoning abilities are assessed by 3 subtests. Differences between 

stimulation conditions were found in Matrix Reasoning, Visual Puzzles. 

Bars represent the group means of the differences (by participant) of scores between Session 1 and 

Session 2. Error bars show 1 SEM. * indicates significant at p < 0.05. 

(A) Block Design: No significant difference between stimulation conditions.  

(B) Matrix Reasoning: Right and bilateral tDCS decreased practice gains, at trend level, compared to 

sham stimulation. Interestingly, practice gains in Matrix Reasoning were unchanged by left tDCS 

compared to sham stimulation. 

(C) Visual Puzzles: Right and left stimulation tDCS significantly reduced practice gains compared to 

sham stimulation. 
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Figure 2.7. Changes in performance on the subtests were not influenced by test order. 

Group means of the individual differences of each subtest score between Session 1 and Session 2 are 

plotted in order of test administration. Error bars show 1 SEM. 

(A) Substudy 1: Sham or bilateral tDCS. 

(B) Substudy 2: Right or left tDCS. 
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Ability measured by each subtest:

Verbal Comprehension Index subtests
Similarities

Vocabulary

Information

Comprehension

Perceptual Reasoning Index subtests
Block Design Ability to analyze and synthesize abstract visual stimuli

Matrix Reasoning

Visual Puzzles

Figure Weights

Picture Completion

Working Memory Index subtests
Digit Span 

Arithmetic

Letter-Number Sequencing

Processing Speed Index subtests
Symbol Search

Coding

Cancellation

Supplemental subtests in italics

Processing speed, visual selective attention, vigilance, perceptual speed, 
visual-motor ability

Quantitative and analogic reasoning, involves inductive and deductive logic

Ability to acquire, retain, and retrieve general factual knowledge

Verbal reasoning and conceptualization, verbal comprehension and 
expression, ability to evaluate and use past experience, ability to demonstrate 
practical knowledge and judgment

Fluid intelligence, broad visual intelligence, analogic perceptual reasoning 
ability, classification and spatial ability, knowledge of part-whole relationships, 
simultaneous processing, and perceptual organization

Visual perception and organization, nonverbal reasoning, spatial visualization 
and manipulation, the ability to anticipate relationships among parts, and the 
ability to analyze and synthesize abstract visual stimuli

Visual perception and organization, concentration, visual recognition of 
essential details of objects

Learning and memory, attention, auditory processing, mental manipulation, 
and working memory

Mental manipulation, concentration, attention, short and long-term memory, 
numerical reasoning, and mental alertness

Spatial processing, mental manipulation, attention, concentration, memory 
span, and short-term auditory memory

Processing speed, short-term visual memory, visual motor coordination, visual 
discrimination, psychomotor speed, speed of mental operation, attention, and 
concentration

Processing speed, short-term visual memory, psychomotor speed, visual 
perception, visual-motor coordination, visual scanning ability, attention, and 
concentration

Verbal concept formation and reasoning

Work knowledge and verbal concept formation

 

Table 2.1. WAIS-IV Indices and Subtests (according to test manual, Pearson Education, Inc.) 



57 
 

Baseline Post-Stim
Full-Scale IQ Sham 117.5 ± 3.692 127.3 ± 3.636

Right 117.1 ± 2.442 121.2 ± 2.361
Left 113.8 ± 2.573 120.1 ± 2.722
Bilateral 121.5 ± 4.959 127.1 ± 5.270

Verbal Comprehension Index Sham 120.4 ± 3.263 120.9 ± 3.424
Right 110.9 ± 2.822 112.2 ± 2.832
Left 113.0 ± 2.940 114.4 ± 3.888
Bilateral 126.5 ± 4.650 127.3 ± 4.667

Perceptual Reasoning Index Sham 113.3 ± 4.230 125.4 ± 2.937
Right 115.8 ± 2.670 117.7 ± 2.797
Left 108.3 ± 4.224 114.2 ± 3.620
Bilateral 117.5 ± 4.122 122.1 ± 4.808

Working Memory Index Sham 112.7 ± 3.187 117.3 ± 5.190
Right 115.0 ± 3.795 116.3 ± 4.500
Left 108.8 ± 3.172 114.0 ± 2.295
Bilateral 115.5 ± 5.206 120.1 ± 5.573

Processing Speed Index Sham 107.7 ± 3.924 120.7 ± 3.783
Right 114.1 ± 4.841 123.4 ± 4.655
Left 114.6 ± 3.439 123.3 ± 2.725
Bilateral 105.9 ± 4.785 115.4 ± 4.407

(Mean ± sem)  

Table 2.2. WAIS-IV scores by group and session 
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Table 2.3. Linear mixed model results for Full-Scale IQ (FSIQ) Index scales 

Full-Scale IQ (FSIQ) Index Scales
VCI F(1,40) = 2.29 p > 0.1 F(3,37) = 3.78 p = 0.0184** F(3,37) = 0.106 p > 0.1
PRI F(1,40) = 23.8 p < 0.001** F(3,37) = 1.17 p > 0.1 F(3,37) = 3.45 p = 0.0261**
WMI F(1,40) = 9.90 p = 0.00312** F(3,37) = 0.420 p > 0.1 F(3,37) = 0.471 p > 0.1
PSI F(1,40) = 63.9 p < 0.001** F(3,37) = 1.04 p > 0.1 F(3,37) = 0.565 p > 0.1
** significant effects (p < 0.05), *trend-level effects (p < 0.1)

Session Condition Session x Condition
Linear mixed models fixed factors
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Perceptual Reasoning Index (PRI) Subtests

Block Des ign F(1,40) = 19.4 p < 0.001** F(3,37) = 0.648 p > 0.1 F(3,37) = 0.853 p > 0.1

Matrix Reasoning F(1,40) = 3.95 p = 0.0536* F(3,37) = 0.750 p > 0.1 F(3,37) = 2.76 p = 0.0560*

Visual  Puzzles F(1,40) = 10.3 p = 0.00262** F(3,37) = 3.41 p = 0.0274** F(3,37) = 2.28 p = 0.0949*

** s igni ficant effects  (p < 0.05), *trend-level  effects  (p < 0.1)

Sess ion Condition Sess ion x Condition

Linear mixed models fixed factors

 

Table 2.4. Linear mixed model results for Perceptual Reasoning Index (PRI) subtests 
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CHAPTER 3: TARGETING THE NEUROPHYSIOLOGY OF COGNITIVE SYSTEMS WITH 

TRANSCRANIAL ALTERNATING CURRENT STIMULATION2 

 

INTRODUCTION 

Behavior arises from the dynamic interplay of sensory input and internal states such as 

motivation and expectation. Neural activity patterns in large-scale, distributed networks provide the 

substrate that mediates behavior. Over the last few years, there have been a rapidly rising number of 

reports that non-invasive brain stimulation with weak electric fields (transcranial current stimulation) can 

alter brain network dynamics and behavior. Most studies have employed transcranial direct current 

stimulation (tDCS), which modulates neuronal activity level and excitability in a polarity-specific way 

(Nitsche & Paulus, 2000). However, tDCS cannot be tailored to directly modulate specific activity patterns 

of brain networks. In contrast, transcranial alternating current stimulation (tACS) employs a sine-wave 

electric field that appears to preferentially enhance network oscillations at frequencies close to the 

stimulation frequency. The effect of tACS results from electric polarization of neurons which are aligned 

with the applied field (Radman, Ramos, Brumberg, & Bikson, 2009); in the case of tACS, the periodic 

nature of the sine-wave results in a temporally structured change in membrane voltages across the 

network thus influencing overall network activity (Deans, Powell, & Jefferys, 2007; Frohlich & McCormick, 

2010). See (Herrmann, Rach, Neuling, & Struber, 2013) for a review on the physiological mechanisms of 

tACS. Thus, at least theoretically, tACS can be used to probe for the causal role of specific cortical activity 

patterns in cognition and to then remediate deficits in activity patterns in patient populations with cognitive 

impairment. For example, tACS at 40 Hz could be used to demonstrate the causal role of gamma 

                                                      
2 This chapter previously appeared as an article in Expert Review of Neurotherapeutics; doi: 
10.1586/14737175.2015.992782 
(http://www.tandfonline.com/doi/abs/10.1586/14737175.2015.992782?journalCode=iern20). The original 
citation is as follows: Frohlich F, Sellers KK, Cordle AL. (2015). Targeting the neurophysiology of 
cognitive systems with transcranial alternating current stimulation. Expert Review of Neurotherapeutics, 
15(2):145-67. 
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oscillations (>30 Hz) in a specific cognitive capability and then such stimulation could be used in patients 

with impaired gamma oscillations that cause the corresponding cognitive impairment. Clearly, this is an 

oversimplification that rests on several untested assumptions, yet the underlying conceptual framework at 

least provides guidance for a discovery process aimed at (1) elucidating the neural basis of cognition and 

(2) rational design of brain stimulation treatments for cognitive impairment. 

Despite tACS being far from ready to implement in such applications of cognitive enhancement, 

we here discuss existing studies that utilize tACS. Specifically, this review follows the framework 

developed by the National Institute of Mental Health (NIMH) in the Research Domain Criteria project 

(RDoC) to provide a comprehensive update on the status of tACS research as related to the cognitive 

systems domain. The RDoC initiative was developed to aid psychiatry research by using a classification 

scheme based on neurobiological measures and observable behavior. The studies reviewed here were 

primarily conducted in healthy adult populations, and provide crucial insight into the effects of brain 

stimulation on cognitive processes. In turn, this work can inform future studies which more directly 

develop tACS as a treatment for neuropsychiatric disorders. The cognitive and behavior abnormalities 

observed in these patients may be related to the altered oscillatory activity in cortex (Buzsaki & Watson, 

2012; Uhlhaas & Singer, 2010). Thus, future tACS paradigms may one day serve as an effective 

treatment modality towards alleviating cognitive and behavioral abnormalities associated with 

neuropsychiatric diseases.  

To date, tDCS has been much more extensively studied that tACS (Nitsche et al., 2008; Nitsche 

& Paulus, 2011). Both basic science and clinical studies with tDCS have been extensively discussed and 

reviewed elsewhere  (Berlim, Van den Eynde, & Daskalakis, 2013; Brunoni, Fregni, & Pagano, 2011; 

Kalu, Sexton, Loo, & Ebmeier, 2012; Monti et al., 2013). Studies have demonstrated that tDCS can 

induce (1) modulation of neurophysiological measures (e.g. motor-evoked potentials, MEPs) (Nitsche & 

Paulus, 2000), (2) changes in motor performance, (e.g. (Reis & Fritsch, 2011)), (3) alteration in brain 

activity as measured by EEG (Antal, Kincses, Nitsche, Bartfai, & Paulus, 2004), and (4) state-dependent 

stimulation effects (Antal, Terney, Poreisz, & Paulus, 2007). The use of tDCS for the treatment of tinnitus 

(Song, Vanneste, Van de Heyning, & De Ridder, 2012), major depression (Nitsche, Boggio, Fregni, & 

Pascual-Leone, 2009), Parkinson’s disease (Benninger et al., 2010; Fregni et al., 2006) and especially in 
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stroke rehabilitation (Schlaug, Renga, & Nair, 2008) appear to be particularly effective, likely through 

correction of pathological hypo- or hyperexcitability.  

However, a wide range of cognitive capabilities are mediated by the dynamic modulation of 

rhythmic oscillatory activity within and between different brain regions, rather than solely broad increases 

or decreases in excitability. For example, beta and gamma oscillations mediate interactions between 

sensory cortices and prefrontal cortex to direct attention (Benchenane, Tiesinga, & Battaglia, 2011), 

synchrony between frontal and parietal cortices in the delta frequency band appears to underlie decision 

making (Nacher, Ledberg, Deco, & Romo, 2013), and slow oscillatory activity aids the consolidation of 

declarative memories (Molle & Born, 2011). Similarly, cognitive deficits in neuropsychiatric disorders are 

associated with alterations in the structure of rhythmic oscillatory activity, rather than strict hypo- or hyper-

excitability. A reduction in gamma band oscillations has consistently been demonstrated in patients with 

schizophrenia during working memory, executive control, and perceptual processing (Uhlhaas & Singer, 

2012). Interestingly, patients with schizophrenia also exhibit elevated baseline gamma power (Kikuchi et 

al., 2014; Spencer, 2011). Individuals with autism spectrum disorder exhibit fronto-posterior networks with 

atypical modulation of gamma activity (Sun et al., 2012) and decreased frontoparietal theta coherence, 

which correlated with clinical disease severity (Kikuchi et al., 2014). 

In light of the physiological and pathological relevance of rhythmic brain activity, the brain 

stimulation community has recently witnessed a surge of interest in the non-invasive application of weak 

electric current using sine-wave waveforms (tACS) in order to target brain oscillations at specific 

frequencies (Figure 3.1, A: In vitro studies have demonstrated that sine-waves applied with different 

periods (T) entrain action potential firing. B: Illustration of sine-wave current used in tACS studies). In 

terms of changes to neurophysiological activity, tACS can induce modulation of MEPs in a frequency-

specific manner (Feurra, Bianco, et al., 2011; Wach et al., 2013b; Zaghi et al., 2010), increase oscillatory 

power matched to the frequency of stimulation (Pogosyan, Gaynor, Eusebio, & Brown, 2009; Voss et al., 

2014; Zaehle, Rach, & Herrmann, 2010), and exhibit state-dependent effects (Feurra et al., 2013; 

Neuling, Rach, & Herrmann, 2013). Stimulation is typically delivered at frequencies within the range of the 

classic EEG frequency bands, which span the range of most commonly observed physiological oscillation 

frequencies of cortical network activity: delta (0.5-4Hz), theta (4-8Hz), alpha (8-12Hz), beta (12-30Hz), 
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and gamma (30-80Hz) (Wach et al., 2013a). Importantly, the effects of tACS are dependent on the 

frequency of the applied alternating current stimulation (Schutter & Hortensius, 2011; Wach et al., 2013a). 

Coinciding with the emergence of tACS and other neurostimulation techniques for investigating 

brain dynamics, new initiatives to encourage more mechanism-driven scientific investigations into 

neuropsychiatric pathology have gained traction. In 2009, the NIMH launched the Research Domain 

Criteria project (RDoC) to classify psychopathology “based on dimensions of observable behavior and 

neurobiological measures” (Insel et al., 2010).  In alignment with the fundamental premises of non-

invasive brain stimulation, the framework postulates: “psychiatric conditions are disorders of brain circuits, 

tools of clinical neuroscience can characterize or identify brain circuit dysfunction, and biomarkers or 

biosignatures identified via neuroscience investigation can inform clinical management” (Insel et al., 

2010). Although RDoC stresses “circuits” as a primary or central unit of analysis within cognitive domains 

and other domains of behavioral function, the framework also includes subjective reports and other units 

of analysis associated with psychological investigation. Environmental and developmental factors are 

suggested as orthogonal dimensions that span many levels of analysis (Morris & Cuthbert, 2012). 

Importantly, the authors of RDoC recognize the reliability of DSM diagnoses, which are largely based on 

clusters of clinical symptoms, but aim to provide a novel conceptual framework to guide and accelerate 

the study of fundamental brain pathologies (e.g. changes in the circuitry that mediates cognition) that 

often span many DSM diagnoses. They assert that the neurobiological mechanisms of psychiatric 

symptoms and syndromes do not map well onto DSM categories; in some cases there appears to be 

considerable heterogeneity of mechanisms within categories while in other instances there exists 

considerable mechanistic overlap between supposedly discrete categories or diagnoses. 

We here make the argument that brain stimulation research should be driven by rational design 

such that stimulation paradigms are developed to target specific brain networks to alter and enhance 

brain function. Thus, we propose that the RDoC framework offers a unique opportunity to provide 

important structure and guidance to the rapidly growing tACS field and to accelerate targeted 

development of novel treatments based on tACS (Cuthbert & Insel, 2013). Therefore, in this review, tACS 

studies will be discussed though the lens of the RDoC domain of cognitive systems. We first review tACS 

studies which target or modulate the circuits and networks associated with the major cognitive domain 
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constructs of RDoC: attention, perception, working memory, declarative memory, language, and cognitive 

control (Figure 3.2). The purpose, stimulation parameters, and findings of each study discussed here are 

summarized in Table 3.1. Each construct is introduced according to its RDoC definition and implicated 

neurobiological systems or circuits. Reflecting the purpose of RDoC, these constructs cut across multiple 

established diagnostic categories. The construct of perception, for instance, involves numerous brain 

systems and circuits related to each of the sensory modalities as well as higher order processing. Deficits 

in these circuits could become the subject of investigation of perceptual disturbances in any of the various 

DSM clinical categories of pathology, including schizophrenia, dementia, bipolar disorder, alcoholic 

hallucinosis, numerous substance withdrawal or intoxication syndromes, and delirium. Most of the other 

constructs in the cognitive domain span a comparable spectrum of existing clinical diagnostic categories. 

We conclude this article with a five year perspective on extending the field of tACS from basic 

science research conducted in healthy human participants to the testing and development of treatments 

for clinical populations suffering from neuropsychiatric illnesses. In using this approach, we seek to 

illustrate how the RDoC approach can facilitate translation of tACS research into the development of 

clinically meaningful interventions. 

 

EXPERT COMMENTARY 

Attention 

According to RDoC, attention refers to “a range of processes that regulate access to capacity-

limited systems, such as awareness, higher perceptual processes, and motor action. The concepts of 

capacity limitation and competition are inherent to the concepts of selective and divided attention” 

("Workshop Proceedings of the NIMH Research Domain Criteria (RDoC) Project: Cognitive Systems, 

Rockville," 2010). Attention is conceptualized as including attention control and attention implementation. 

With regard to attention control functions, the workshop proceedings cite dorsal and ventral networks 

distributed through frontal and parietal cortices and subcortical structures. Regarding implementation of 

attention, local circuit interactions and feed-forward transmission of information through sensory systems 

are cited, and overlaps with the cognitive control construct are recognized ("Workshop Proceedings of the 

NIMH Research Domain Criteria (RDoC) Project: Cognitive Systems, Rockville," 2010). Attention capacity 
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is notably reduced in disorders such as attention-deficit-hyperactivity-disorder (ADHD) but also many 

other DSM-based diagnoses. Interestingly, EEG recordings conducted during the resting state in healthy 

control subjects and individuals with diagnosed ADHD have demonstrated that this clinical population 

exhibits increased oscillatory power in the low frequency bands and reduced power in higher frequencies 

(alpha and beta) (Woltering, Jung, Liu, & Tannock, 2012). Therefore, distinct patterns of oscillatory 

activity during rest (Woltering et al., 2012) and during attention-demanding tasks (Mazaheri et al., 2013) 

may be evident in psychiatric illnesses with deficits in attention.  

To date, Laczo et al (Laczo, Antal, Niebergall, Treue, & Paulus, 2012) is the only study which has 

directly tested the effect of tACS on attention. The authors assessed spatial visual attention, a process 

which enables selective and covert (i.e. without gaze shifts) direction of limited processing capacity to 

specific locations in the visual field. Changes in contrast sensitivity were used to study the effect of 

attention on visual information processing. Based on previous work demonstrating the importance of 

gamma frequency oscillations in spatial visual attention, the authors hypothesized that gamma frequency 

tACS applied to the primary visual cortex would alter neural synchronization and change the effect of 

attention on contrast perception. Utilizing the longest duration of stimulation published to date (45 minutes 

± 10 minutes), the authors demonstrated that 60Hz tACS improved contrast detection in healthy adults. 

However, the authors did not find a change in spatial attention. The reported lack of stimulation effect 

when applied over V1 may ensue from non-optimal placement of stimulation electrodes to target 

attentional circuits, since attention modulates primary visual cortex and sensory perception but frontal and 

parietal areas have been implicated as the circuitry controlling attentional processing (Buschman & Miller, 

2007; Peers et al., 2005).  

While much of the early work in tACS was conducted in the motor system, these studies mostly 

looked at alterations in excitability rather than capacity-limited allocation to the motor system. A notable 

exception, the study by Joundi and colleagues (Joundi, Jenkinson, Brittain, Aziz, & Brown, 2012) used 

tACS to directly probe the role of oscillatory activity in determining motor behavior. The authors 

administered tACS over motor cortex at both beta and gamma frequencies to healthy adults during a 

go/no-go paradigm which cued either motor action or motor inhibition. In contrast to altering the 

excitability of motor cortex, this task required attention for the regulation of motor action (or inaction). The 
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authors’ findings support the general framework that beta oscillatory activity in motor cortex is antikinetic, 

while gamma oscillations in motor cortex are prokinetic. While the purpose of this study was not to directly 

assess the effect of tACS on the circuitry involved in attentional processing or modulation on 

performance, the involvement of attention in the behavioral task is important to note. Because the effect 

of tACS on attentional processing is unknown, it is difficult to disentangle the effects of stimulation on 

motor performance from potential modulation of attention which influenced performance on the motor 

task.  

Understanding the effect of tACS on attention is still in its infancy. Future work should directly 

modulate frontal and parietal cortices, the putative control centers of attentional processing, and assess 

performance changes on attentional tasks. This work will need to assess if increased neuronal synchrony 

between cortical areas, enhancement of specific rhythmic activity within a given area, or yet another 

mechanism is required for improvement in attention. Subsequently or concurrently, individuals with 

deficits in attention can be tested for stimulation-induced improvements in attentional performance.    

 

Perception 

The perception construct is defined as “process(es) that perform computations on sensory data to 

construct and transform representations of the external environment, acquire information from, and make 

predictions about, the external world, and guide action” ("Workshop Proceedings of the NIMH Research 

Domain Criteria (RDoC) Project: Cognitive Systems, Rockville," 2010). Sub-constructs include (1) visual, 

(2) auditory, and (3) olfactory, somatosensory, and multimodal perception. Changes in gamma and alpha 

frequency oscillations are frequently observed with cognitive and perceptual tasks (Jensen & Mazaheri, 

2010; Martinovic & Busch, 2011; Palva & Palva, 2007). Substantial evidence suggests that individuals 

diagnosed with schizophrenia exhibit abnormal gamma band oscillations (Uhlhaas, Haenschel, Nikolic, & 

Singer, 2008). Saliently, schizophrenia is associated with impairments in perception, commonly 

manifested as auditory hallucinations (Basar & Guntekin, 2008). During an auditory oddball task, 

individuals with schizophrenia exhibited abnormal gamma activation patterns compared to age- and 

gender- matched controls (Haig et al., 2000). Together, this body of work suggests that altered oscillatory 

activity in the gamma frequency band may underlie changes in perception seen in schizophrenia. It 
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remains to be studied if similar network pathologies may drive perceptual impairment in other psychiatric 

illnesses. 

tACS studies on the visual modality of perception have built on the observation that switches in 

conscious perception of an ambiguous stimulus are correlated with alterations in synchronized activity in 

the gamma band (Engel, Fries, & Singer, 2001).  Struber et al (Struber, Rach, Trautmann-Lengsfeld, 

Engel, & Herrmann, 2014) sought to test a causal role of gamma activity in conscious perception by 

administering bilateral 40Hz tACS over occipito-parietal areas while subjects were presented bistable 

apparent motion stimuli; stimulation was administered with a 180° phase difference between 

hemispheres. Switches between horizontal and vertical apparent motion are believed to indicate changes 

in interhemispheric functional coupling. The authors report that interhemispheric gamma band coherence 

increased while the proportion of perceived horizontal motion decreased. There were no changes in 

interhemispheric coherence or perceived motion induced by control 6Hz tACS administered with 0° or 

180° phase difference. The authors suggest that these counterintuitive results (one might expect 

increased interhemispheric gamma coherence to correlate with increased horizontal perception) may 

have resulted from the phase offset of stimulation between the two hemispheres, which may have led to 

functional decoupling and thereby impaired perceived horizontal motion. The authors tested 0° phase 

difference 40Hz tACS, but did not find a significant effect on coherence or motion perception. Another 

study applied tACS over primary visual cortex at different gamma frequencies while subjects performed a 

four-alternative forced-choice detection task (Laczo et al., 2012). 60Hz tACS decreased contrast-

discrimination thresholds, indicating an improvement in visual contrast perception. However, 40Hz and 

80Hz tACS did not induce similar improvement on perception. Future studies may choose to look at the 

frequency of endogenous gamma oscillatory activity and incorporate theories of resonance when 

selecting a stimulation frequency for optimal modulation of activity.   

While gamma oscillations have been implicated in switches in conscious perception, posterior 

alpha power is believed to regulate perception. Posterior alpha rhythms are influenced by visual spatial 

attention, and likely provide functional inhibition of non-relevant stimuli and locations. Specifically, studies 

have demonstrated that alpha activity in the posterior cortex decreases the quality of visual perception in 

the contralateral hemi-field (Ergenoglu et al., 2004; Romei, Gross, & Thut, 2010), while alpha power 
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increases have been measured in the occipital cortex hemisphere receiving visual information from the 

non-attended hemi-field (Kelly, Lalor, Reilly, & Foxe, 2006; Worden, Foxe, Wang, & Simpson, 2000). 

Brignani et al (Brignani, Ruzzoli, Mauri, & Miniussi, 2013) tested the role of alpha frequency activity on 

perception by delivering tACS at 10Hz over the left or right occipito-posterior area while healthy adults 

performed a visual detection and discrimination task. Individuals receiving alpha stimulation showed 

decreased visual perception compared to individuals who received sham tACS; however, individuals who 

received 6Hz tACS also exhibited poorer performance on the perception task. The authors were cautious 

about claiming tACS-induced modulation of visual perception because of only partially-confirmed 

frequency specificity and lack of retinotopic specificity. Lack of neurophysiological measurements in this 

study precludes conclusive statements about how the applied frequencies of tACS modulated posterior 

alpha rhythms. To address this question, Helfrich et al (Helfrich et al., 2014) developed a novel artifact 

rejection technique which permitted analysis of EEG data acquired during the application of tACS. The 

authors found that 10Hz alpha frequency tACS applied over the parieto-occipital cortex increased alpha 

activity in this area and induced synchronization of oscillatory activity with the phase of the applied 

stimulation. In further support of the role of alpha rhythms in gating perception, the authors found that 

alpha frequency tACS enhanced target detection performance in a phase-dependent manner through 

augmented cortical alpha synchronization.  

In other studies of visual perception, tACS administered over occipital cortex was sufficient to 

induce visual phosphenes; beta frequency stimulation was most effective at inducing the perception of 

phosphenes in an illuminated room, whereas alpha frequency stimulation was more effective at inducing 

this visual experience in a dark room (Kanai, Paulus, & Walsh, 2010). Furthermore, 20Hz tACS over the 

occipital region has been found to decrease the threshold for inducing visual phosphenes elicited by 

transcranial magnetic stimulation (TMS) pulses (Kanai et al., 2010). However, there is debate as to 

whether tACS-induced phosphenes originate in the visual cortex or because of retinal stimulation 

(Schutter & Hortensius, 2010; Schwiedrzik, 2009).  

In the auditory sensory modality, alpha frequency tACS with a direct current offset modulated the 

detection of auditory stimuli embedded in continuous band-limited white noise (Neuling, Rach, Wagner, 

Wolters, & Herrmann, 2012). Importantly, the authors found that detection threshold was dependent on 
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the phase of the oscillation that was entrained by application of tACS. Such phase-dependent modulation 

of excitability has been previously shown in observational studies that employed EEG and MEG 

(Hanslmayr et al., 2007; Mathewson et al., 2011; Palva & Palva, 2007; Rajagovindan & Ding, 2011). 

Effects of tACS on perception in the somatosensory system have also been tested. tACS was applied to 

right somatosensory cortex (exact stimulation location was localized with transcranial magnetic 

stimulation), corresponding to sensation in the contralateral hand (Feurra, Paulus, Walsh, & Kanai, 2011). 

Stimulation was applied systematically from 2-70Hz, in steps of 2Hz, and individuals were asked to 

subjectively rate the perception of tactile sensations in their hand. The authors found that alpha, beta, and 

high gamma frequency tACS produced tactile sensation in the contralateral hand in absence of physical 

stimulation. This report demonstrates frequency-specific effects of tACS on somatosensory perception. 

Perception through the use of visual, auditory, olfactory, somatosensory, and multimodal modalities 

allows for internal representations of the external world. Oscillatory power and coherence between 

different brain areas and across the hemispheres mediates this processing. Continued work using tACS 

to selectively modulate these activity patterns can help to further elucidate the network activity patterns 

responsible for perception. 

 

Working Memory 

The construct of working memory (WM) is defined in RDoC as: “the active maintenance and 

flexible updating of goal/task relevant information (items, goals, strategies, etc.) in a form that has limited 

capacity and resists interference. These representations: may involve flexible binding of representations; 

may be characterized by the absence of external support for the internally maintained representation; and 

are frequently temporary, though this may be due to ongoing interference” ("Workshop Proceedings of the 

NIMH Research Domain Criteria (RDoC) Project: Working Memory, Rockville," 2010). Sub-constructs 

include (1) active maintenance, (2) flexible updating, (3) limited capacity, and (4) interference control. The 

RDoC workshop (2010) cites representative examples of circuits as including “extensive loops from the 

PFC through the basal ganglia that may be important for driving the flexible updating of PFC 

representations, and in learning new tasks. There are connections between the PFC and medial temporal 

lobe that may support encoding of the contents of WM into long term memory and retrieval of stored 
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memories that can be reactivated in WM” ("Workshop Proceedings of the NIMH Research Domain 

Criteria (RDoC) Project: Working Memory, Rockville," 2010). WM is critical in everyday life for 

communication, learning, and successful task completion.  

Models of WM suggest that frontal areas are responsible for the executive function and 

processing aspects of WM, while posterior parietal cortex is linked to the limited capacity storage 

component of WM (Curtis & D'Esposito, 2003; Smith & Jonides, 1999; Todd & Marois, 2004). In 

electrophysiological investigations, activation of the frontoparietal network has been associated with WM 

tasks (Kawasaki, Kitajo, & Yamaguchi, 2010). Theta frequency power and phase synchronization 

between frontal and parietal regions have been implicated in integrating WM associations into coherent 

representations (Mizuhara & Yamaguchi, 2007; Wu, Chen, Li, Han, & Zhang, 2007).  However, evidence 

that PFC can maintain the memory of a sample trace in the presence of distractors, unlike posterior 

parietal cortex, suggests that dorsolateral prefrontal cortex (DLPFC) supports both the storage and 

processing functions of WM (Miller & Cohen, 2001). For example, patients diagnosed with Alzheimer’s 

disease exhibit deficits in WM. This clinical population often exhibits decreased evoked coherence in the 

left frontoparietal region in the theta frequency band and lower evoked coherence in the right 

frontoparietal region in the delta frequency band (Guntekin, Saatci, & Yener, 2008), indicating that altered 

frontoparietal connections may underlie WM deficits seen in Alzheimer’s disease.  

Polania and colleagues (Polania, Nitsche, Korman, Batsikadze, & Paulus, 2012) directly tested 

the effect of exogenously synchronizing (in-phase) and desynchronizing (anti-phase) left dorsolateral 

prefrontal cortex (DLPFC) and posterior parietal cortex (PPC) on WM performance. The authors first 

conducted EEG while subjects performed a delayed recall task. Increase in theta phase synchronization 

between DLPFC and PPC during WM retrieval was correlated with improved reaction times on the 

working memory task. Based on these findings, the authors hypothesized that exogenously increasing 

frontoparietal theta coupling (by applying stimulation with 0° phase difference) would improve WM 

reaction times, whereas exogenously reducing theta coupling (by applying stimulation with 180° phase 

difference) would deteriorate task performance. Indeed, they found that 0° relative phase tACS in the 

theta frequency administered between frontal and parietal areas decreased reaction time, while 180° 

relative phase tACS increased reaction time in healthy subjects; there was no significant effect for control 
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stimulation at 35Hz applied with either 0° phase difference or 180° phase difference. This study provides 

early causal evidence that theta phase-coupling of frontal and parietal areas improves cognitive 

performance as measured in a WM task. Meiron & Lavidor (Meiron & Lavidor, 2014) tested the effect of 

bilateral theta frequency tACS applied over DLPFC on a verbal working memory task. In healthy adults, 

tACS was effective at improving accuracy in a WM task compared to sham stimulation. Retrospective 

judgments were also assessed in this study, and the authors found that confidence scores improved in 

conditions of verum stimulation (the condition in which WM also improved).  

Jausovec et al (Jausovec, Jausovec, & Pahor, 2013) administered theta tACS over left frontal 

cortex, left parietal cortex, or right parietal cortex in heathy adults who subsequently conducted tasks to 

assess spatial and verbal WM capacity. The authors found that tACS administered to either the right of 

left parietal cortex, but not frontal or sham stimulation, had a positive effect on subsequent WM storage 

capacity. The authors additionally found that left parietal tACS had a more pronounced effect on both 

spatial and verbal WM capacity in backward recall rather than forward recall. The findings of this study 

are consistent with the theory that the left parietal area is more important for WM storage capacity than 

DLPFC. In support of the aforementioned study, Jausovec & Jausovec (Jausovec & Jausovec, 2013) also 

applied theta tACS over either left parietal or left frontal cortex in healthy adults and assessed changes in 

WM storage capacity related to these two brain areas. They found that theta tACS over parietal areas, but 

not frontal or sham stimulation, improved performance on a visual-array comparison task. Furthermore, 

the authors report that exclusively parietal tACS induced a decrease in P300 latency in left parietal brain 

areas. The latency of this ERP component is an index of classification speed, thus the authors posit that 

theta tACS may have increased participant’s capability to allocate resources to solve the working memory 

task more rapidly. Together, these studies do not fully elucidate the roles of frontal and parietal areas in 

working memory, but they provide appealing evidence that specific oscillatory activity in these areas 

contributes to cognitive performance. 

 

Declarative Memory 

Declarative memory is defined as “the acquisition or encoding, storage and consolidation, and 

retrieval of representation of facts and events. Declarative memory provides the critical substrate for 
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relational representations – i.e. for spatial, temporal, and other contextual relations among items, 

contributing to representations of events (episodic memory) and the integration and organization of 

factual knowledge (semantic memory). These representations facilitate the inferential and flexible 

extraction of new information from these relationships” ("Workshop Proceedings of the NIMH Research 

Domain Criteria (RDoC) Project: Cognitive Systems, Rockville," 2010). The consolidation of declarative 

memories is believed to depend on slow oscillations (<1Hz) prominent during non-rapid-eye-movement 

(non-REM) sleep (Molle & Born, 2011; Stickgold, 2005; Walker & Stickgold, 2004). These slow 

oscillations originate in the neocortex and then organize activity in the neocortex, thalamus, and 

hippocampus (Molle & Born, 2011).  

Patients with schizophrenia often exhibit poor declarative memory, which has been linked to 

reduced hippocampal activation during conscious recollection but robust activation of the DLPFC during 

the effort to retrieve poorly encoded material (Heckers et al., 1998). Of particular interest, patients with 

schizophrenia also exhibit abnormal non-REM sleep, with a significant reduction in slow-wave sleep and 

sleep spindle activity (Lu & Goder, 2012). It has been suggested that this altered neural activity during 

sleep may mediate deficits in declarative memory consolidation observed in patients with schizophrenia 

(Wamsley et al., 2012).  

Marshall et al (Marshall, Helgadottir, Molle, & Born, 2006) tested changes in memory consolidation 

induced by brain stimulation applied during sleep. The stimulation parameters used in this study differ 

from traditional tACS; specifically, 0.75Hz oscillating current was applied with a DC offset (with current 

amplitude between 0 and 260 µA). Subjects performed a paired-associate learning task, and memory 

retention was assessed before and after sleep. The authors demonstrated that stimulation applied at 

0.75Hz with DC offset (the authors call their stimulation paradigm slow-oscillating transcranial direct 

current stimulation, so-tDCS) during non-REM sleep enhanced the retention of hippocampus-dependent 

declarative memories in healthy humans. so-tDCS administered bilaterally in frontolateral locations 

increased slow oscillatory activity and slow spindle activity in frontal cortex, and improved memory recall 

to a greater degree than sham stimulation. These effects were specific to stimulation frequency and 

declarative memory; so-tDCS at 5Hz decreased slow oscillations and did not change declarative memory 

consolidation, and there were no effects of stimulation on procedural memory. In a follow-up study, the 
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same group found that application of theta frequency so-tDCS with current amplitude between 0 and 

260µA during non-REM sleep impaired declarative memory consolidation (Marshall, Kirov, Brade, Molle, 

& Born, 2011). These studies were conducted in healthy young adults; a similar study conducted in 

elderly subjects found no enhancement of memory consolidation following so-tDCS with 0.75Hz with 

current amplitude between 0 and 260µA (Eggert et al., 2013), indicating potential changes in offline 

memory consolidation with aging.  

In the first application of TCS incorporating a periodic structure to a patient population, so-TDCS 

was applied during non-REM sleep to children with attention-deficit/hyperactivity disorder (ADHD) (Prehn-

Kristensen et al., 2014). So-tDCS with 0.75Hz and current amplitude between 0 and 250µA, applied 

bilaterally to frontolateral locations, increased slow oscillatory power during sleep and improved 

declarative memory performance in children with ADHD to a level comparable to that of the unstimulated 

healthy control group. This study represents an important first milestone towards the study of tACS 

paradigms in patient populations. 

The above work by Marshall and colleagues focused on changes in declarative memory 

consolidation. Additional studies have used so-tDCS to assess the role of slow-oscillatory activity during 

non-REM sleep and wakefulness on the encoding, rather than consolidation, of declarative memories. 

Application of bilateral frontolateral 0.75Hz so-tDCS (with current amplitude between 0 and 250 µA) 

during non-REM sleep periods during an afternoon nap was shown to improve subsequent encoding of 

declarative memory, with no effect on procedural learning (Antonenko, Diekelmann, Olsen, Born, & Molle, 

2013). Even when applied during wakefulness, bilateral 0.75Hz so-tDCS (with current amplitude between 

0 and 260 µA) at frontolateral locations appeared to improve the encoding of hippocampus-dependent 

memories when applied during learning (Kirov, Weiss, Siebner, Born, & Marshall, 2009). Together, this 

body of work demonstrates that slow oscillations play a causal role in consolidation of hippocampal-

dependent memories during sleep and enable subsequent encoding of declarative memories. However, it 

remains an open question if the DC-offset of the applied current is responsible for inducing improvements 

in consolidation and encoding of declarative memory. Work conducted in the motor cortex has 

demonstrated that so-tDCS can induce bidirectional shifts in motor excitability similar to constant tDCS 

(Groppa et al., 2010). Demonstration that tACS with no offset is capable of inducing these behavioral 
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modifications will be required. Also, modeling the path and intensity of current flow will be beneficial for 

understanding how cortical areas contribute to hippocampus-dependent memory. Future work will be 

required to demonstrate if low frequency tACS or so-tDCS applied during sleep to patients with 

schizophrenia can increase slow-wave sleep and improve declarative memory consolidation.    

 

Language 

Language is defined as “a system of shared symbolic representations of the world, the self and 

abstract concepts that supports thought and communication” ("Workshop Proceedings of the NIMH 

Research Domain Criteria (RDoC) Project: Cognitive Systems, Rockville," 2010). There are no sub-

constructs in RDoC. While it is clear that language is of critical importance for normal functioning, to date 

there have been no studies using tACS to enhance, modify, or probe language. However, previous 

research has established the importance of oscillatory activity in language processing and function. 

Neural synchronization achieved by the modulation of gamma frequency oscillations through cross-

frequency coupling with theta oscillations is important for integration of activity across brain regions 

supporting language production and transmission (Doesburg, Vinette, Cheung, & Pang, 2012). Horton et 

al. (Horton, D'Zmura, & Srinivasan, 2013) demonstrated that both attended and unattended speech 

streams exhibit phase-locking to EEG activity in the posterior temporal cortices; these results support a 

model in which syllables in the attended stream arrive during periods of high neuronal excitability, while 

syllables in the competing speech stream arrive during periods of low neuronal excitability. Of particular 

interest is the function of theta oscillatory activity in the context of language. The phase of theta 

oscillations recorded from human auditory cortex reliably tracks and discriminates spoken sentences, 

potentially providing a mechanism for cortical speech analysis (Luo & Poeppel, 2007). Other work has 

shown that theta oscillatory amplitude is decreased in associative cortex during language production, and 

could reflect an inhibitory function similar to alpha rhythms in visual cortex and beta rhythms in motor 

cortex (Hermes et al., 2014).  

Non-invasive brain stimulation modalities such as tDCS have been shown to influence language 

performance in healthy individuals and serve as a treatment for post-stroke aphasia (Demirtas-Tatlidede, 

Vahabzadeh-Hagh, & Pascual-Leone, 2013; Monti et al., 2013). The parameters and findings in these 
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studies may serve to inform the design of future tACS studies assessing language function. In healthy 

adults, anodal tDCS applied over the left PFC has been shown to improve performance on a letter cue-

word generation task, improve naming performance, and decrease verbal reaction times, whereas 

cathodal tDCS decreased verbal fluency or had no effect (Fertonani, Rosini, Cotelli, Rossini, & Miniussi, 

2010; Iyer et al., 2005). Anodal tDCS of the left posterior perisylvian area (which includes Wernicke’s 

area) improved speed in a visual picture naming task without decrement in performance (Sparing, 

Dafotakis, Meister, Thirugnanasambandam, & Fink, 2008). The first study which assessed the effect of 

tDCS on patients with aphasia found that cathodal stimulation over the left frontotemporal area improved 

naming abilities by 33.6% (Monti et al., 2008). Additional studies with patients with aphasia which 

administered tDCS over frontal or temporal areas alone or in combination with speech therapy also found 

improvements in language (Monti et al., 2013).  

While brain stimulation therapies have demonstrated promise for the treatment of aphasia and 

other language disorders, it remains to be demonstrated if the improvement in language is ecologically 

relevant for patients and if language improvement continues over time or if ‘maintenance’ stimulation is 

required to sustain function. 

 

Cognitive Control 

Cognitive control is “a system that modulates the operation of other cognitive and emotional 

systems, in the service of goal-directed behavior, when prepotent modes of responding are not adequate 

to meet the demands of the current context. Additionally, control processes are engaged in the case of 

novel contexts, where appropriate responses need to be selected from among competing alternatives” 

("Workshop Proceedings of the NIMH Research Domain Criteria (RDoC) Project: Cognitive Systems, 

Rockville," 2010). Sub-constructs include (1) goal selection, (2) updating, (3) response election, inhibition 

or suppression, and (4) performance monitoring. As stated by the definition, the construct of cognitive 

control effectively organizes the other cognitive domain constructs. Conceptually, cognitive control is 

utilized in novel situations in order to perform a goal-directed behavior, whereas the construct of attention 

applies to directing limited-capacity systems. Of interest, a number of psychiatric illnesses exhibit both 

deficits in cognitive control and abnormal oscillatory activity. For example, individuals with bipolar disorder 
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show cognitive deficits and disorganized behavior, which are thought to reflect a disturbance in neural 

synchronization (Basar & Guntekin, 2008). Indeed, measures of neural synchronization evoked by 

auditory stimuli were reduced in patients with bipolar disorder compared to control subjects during both 

manic and mixed phases of the illness (O'Donnell et al., 2004). Another study demonstrated that the 

cortical brain activity of patients with bipolar disorder could be characterized by deficits in bilateral gamma 

band oscillatory power and exhibited synchronization to the stimulus across hemispheres during auditory 

click stimulation, both during periods of mild depression and euthymia (Oda et al., 2012).  Children and 

adolescents with autism spectrum disorder (ASD) exhibited deficits in cognitive control compared to age-, 

IQ-, and gender-matched controls(Solomon, Ozonoff, Cummings, & Carter, 2008), as well as decreased 

levels of functional connectivity between frontal, parietal, and occipital regions (Solomon et al., 2009). 

Current theories concerning ASD suggest that dysfunctional integrative mechanisms may result from 

reduced neural synchronization (Uhlhaas & Singer, 2006).  

A small number of studies have directly assessed the effect of tACS in cognitive control. 

Santarnecchi and colleagues (Santarnecchi et al., 2013) assessed the effect of tACS on fluid intelligence. 

Fluid intelligence refers to the ability to efficiently encode and manipulate new information, in essence a 

recapitulation of the RDoC construct of cognitive control. tACS was applied over left medial frontal gyrus 

in healthy adults. This cortical area has been implicated in abstract reasoning in a modality-independent 

manner, particularly in tasks involving logical conditional arguments rather than simple perceptual 

relations. The authors found a 15% improvement in the time required to solve a neuropsychological 

instrument indexing fluid reasoning, with a clear frequency-specific effect. 40Hz tACS improved the speed 

of task performance without loss of accuracy, while 5Hz, 10Hz, and 20Hz stimulation did not improve 

performance. Gamma frequency stimulation was effective only for trials in which conditional reasoning 

was required, indicating a specific effect on tasks requiring higher order cognitive control. Important for 

assessment of cognitive control, the authors included control experiments to assess waning attention and 

fatigue over the course of the session. The authors found no evidence of these confounding factors. No 

measures of neurophysiology were conducted in this study, so future work will be needed to demonstrate 

whether the improvement in fluid intelligence stems from positive modulation of mechanisms aiding 

performance, or negative modulation of processes detrimental to performance. Pahor & Jausovec (Pahor 
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& Jausovec, 2014) conducted an extension on this work by administering theta frequency tACS over 

either left frontal or parietal cortex in healthy adults, and then measuring EEG and assessing performance 

tests of fluid intelligence. The authors found that tACS improved performance on a modified version of 

Raven’s progressive matrices and the Paper Folding and Cutting subtest of the Stanford-Binet IQ test; 

these improvements were more pronounced in cases of parietal stimulation. Parietal tACS decreased 

alpha power near the site of stimulation and increased theta power during rest, and frontal stimulation 

induced a task-dependent decrease in theta power in frontal areas. 

Another aspect of cognitive control is the process of evaluating risks and benefits. Lateral prefrontal 

cortex has been implicated in adjusting decision making strategies according to dynamic contexts and 

demands (Lee & Seo, 2007; McClure, Laibson, Loewenstein, & Cohen, 2004). The DLPFC is believed to 

play a critical role in decision making under situations of risk. In particular, theta oscillations are believed 

to coordinate lateral PFC and sensory-motor networks in order to facilitate adaptive changes in 

performance. The relative balance of theta oscillations between the right and left hemispheres appears to 

be particularly important for decision making involving risk. In order to directly test the hypothesis that 

there is a causal link between lateralized oscillatory activity and risky decision making behavior, Sela et al 

(Sela, Kilim, & Lavidor, 2012) applied tACS to DLPFC in the right or left hemisphere of healthy adults. 

They found that theta frequency tACS over left DLPFC induced riskier decision making, while subjects 

receiving tACS over right DLPFC exhibited decision making no different than during sham stimulation. 

This study supports the framework that lateralization of theta activity in DLPFC is critical for adaptive 

decision-making in situations involving risk. Together, these studies provide evidence that tACS can 

improve multiple facets of cognitive control through targeted application in prefrontal regions. 

 

DISCUSSION 

Brain stimulation represents a promising approach for treating aberrant neuronal activity that 

mediates the symptoms of central nervous system disorders. Indeed, invasive brain stimulation in the 

form of deep brain stimulation for the treatment of Parkinson’s disease has turned into a clinical success 

over the last two decades (Kalia, Sankar, & Lozano, 2013; Li, Qian, Arbuthnott, Ke, & Yung, 2014). Here, 

we propose that non-invasive brain stimulation can be employed to treat cognitive symptoms by targeting 
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the underlying, more subtle and distributed aberrations in brain network activity. In particular, we argue 

that the shift in psychiatry towards neurobiological mechanisms (manifested most prominently in the 

RDoC effort) provides a helpful conceptual framework for the targeted development and validation of 

tACS, a novel form of non-invasive brain stimulation that targets cortical oscillations, as a future treatment 

modality. We have highlighted recent studies that evaluated the effects of tACS on cognition. Interestingly 

and (maybe) surprisingly given their non-invasive nature and weak perturbation strength in comparison to 

TMS, most of these studies succeeded in providing some level of evidence for the causal (functional) role 

of cortical oscillations in mediating cognitive abilities. Since the field of tACS research is still in its infancy, 

it remains unclear to what extent these results from early pilot studies will withstand more rigorous large-

scale, double-blinded studies. Nevertheless, we found that these early applications span most of the 

constructs in the cognitive systems domain (according to the RDoC framework) and therefore provide an 

attractive starting point for the development and evaluation of tACS-based treatment approaches for 

(psychiatric) illnesses that cause impairment of cognitive systems. 

Indeed, the opportunity to potentially induce frequency–specific modulation of cortical network 

activity emphasizes the importance of identifying and validating network-level biomarkers of pathological 

functional activity in CNS disorders. Likely, this pathological activity (ideally detected with EEG) will be 

subtle and identification will require more sophisticated signal processing than the typical EEG markers 

currently used in routine neurological care. Yet, identification of such pathological EEG signatures that 

correspond to the individual constructs of the cognitive systems domain will not only provide novel 

biomarkers but also precipitate targeted, frequency-specific tACS paradigms. Therefore, tACS is well 

positioned to induce a shift from observational work to targeted, neurobiology-driven interventions. In 

essence, we here advocate for the rational design of tACS treatment approaches by bringing together the 

neurophysiology and the psychiatry scientific communities. Below we outline a non-exhaustive list of 

promising approaches to achieve this goal within the next five years. 

 

State-Dependent Effects of Stimulation 

Individualized targeting of tACS can be achieved by a multitude of different approaches. tACS 

interacts with endogenous network dynamics that are quite complex. Therefore the response to 
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stimulation may be hard to predict and mechanistically explain. Despite the emerging overall picture that 

resonance-like phenomena enable enhancement of endogenous oscillations (Ali, Sellers, & Frohlich, 

2013; Frohlich & Schmidt, 2013; Reato, Rahman, Bikson, & Parra, 2010), many fundamental aspects 

such as the possible context-dependence of stimulation effects remain mostly unclear (Reato et al., 

2010). A major premise of tACS is that the applied or exogenous oscillation is targeting an endogenous 

oscillation. However, the necessary and sufficient conditions for such synergistic interaction between 

endogenous and exogenous rhythmic signals remain to be elucidated. 

 

Feedback Stimulation 

Motivated by the state-dependence of responses to brain stimulation and the often transient nature 

of impaired brain function in CNS disorders, targeted stimulation that is administered based on specific 

patterns of neuronal activity could be a promising avenue of research. Indeed, the most advanced 

“adaptive” or “feedback” brain stimulation systems that only apply stimulation when triggering network 

level activity patterns are detected have been developed for epileptic seizures, both in animal models 

(Berenyi, Belluscio, Mao, & Buzsaki, 2012; Krook-Magnuson, Armstrong, Oijala, & Soltesz, 2013) and in 

humans (Heck et al., 2014). Ideally, stimulation waveforms are adapted in real-time based on 

measurements of ongoing brain activity. One challenge for this approach is the requirement to record 

over several cycles of oscillations in order to capture the essential properties of the oscillatory activity. 

Additionally, the development of such closed-loop tACS systems is hampered by the technical challenge 

of simultaneously recording EEG signals and applying tACS. Recent work has suggested several 

workarounds, such as using other signals as surrogates for rhythmic brain activity (e.g. tremor signal 

measured with accelerometer in (Brittain, Probert-Smith, Aziz, & Brown, 2013)) or leveraging intrinsic 

coupling of different cortical oscillation frequencies. In this latter approach, stimulation at a given 

frequency modulates a cortical oscillation at a different frequency and therefore the periodic stimulation 

artifact can be removed by bandpass filtering (Boyle & Frohlich, 2013). 

 

Spatial Targeting 

Recent progress in methods of focusing the applied electric field by using small electrodes and 
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more than two stimulation electrodes has enabled a significantly improved level of spatial specificity in 

tACS. Conventional stimulation paradigms utilize two 5x7cm electrodes. By using one smaller active 

electrode (typically a circle electrode with outer radius = 12mm and inner radium = 6mm) and four return 

electrodes each placed equidistant at 3.5cm from the stimulation electrode, electrode montages such as 

high-definition tDCS (HD-tDCS) (Datta, Truong, Minhas, Parra, & Bikson, 2012; Minhas et al., 2010) can 

focus current distribution onto a targeted cortical area. Finite element modeling is the standard approach 

to model the electric field applied to the brain by TCS. The electric field induced by conventional 

stimulation montages extends into cortical areas outside those directly under the stimulation electrodes; 

in contrast, electric fields applied to the brain using HD-tDCS montages were more restricted to the area 

under the region demarked by the return electrodes (Kuo et al., 2013). A realistic head model found that 

conventional stimulation with the anode over motor cortex and the cathode on the forehead induced 

modulation over the entire cortical surface, whereas HD-tDCS applied over the same location only 

induced electric fields in motor cortex, with no cortical modulation in frontal regions, the contralateral 

motor region, or the occipital lobe (Datta et al., 2009). With more localized application of current, the 

likelihood for off-target effects is decreased. Likely, such increased spatial specificity can be employed 

not only for tDCS but also for tACS. However, the key strength of tACS may be the enhancement of 

coherence between brain areas, in which broad spatial targeting could indeed be crucial for frequency-

specific synchronization of several cortical areas. 

 

Limitations and Barriers to Successful Clinical Applications of tACS 

Despite the promise of tACS to modulate oscillatory activity in cortex, there are a number of 

important unresolved questions that remain. Further work will be required to elaborate on these topics 

prior to the successful development of tACS as a neurotherapeutic. First, it remains an open question to 

what extent tACS can induce oscillatory activity at a chosen frequency. In vitro application of sine-wave 

electric field has demonstrated that weak electric fields are capable of enhancing endogenous oscillations 

when matched in frequency, but fail to induce a frequency shift if the stimulation frequency does not 

match the endogenous oscillatory frequency (Schmidt, Iyengar, Foulser, Boyle, & Frohlich, 2014). 

Application of 25Hz and 40Hz tACS during lucid dreaming, a period of elevated low-gamma power, 
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further increases gamma oscillatory activity while other frequencies of tACS had no effect on oscillatory 

structure (Voss et al., 2014). Thus, future work will be required to ascertain the extent to which tACS is 

capable of inducing oscillatory structure in addition to increasing the strength of endogenous oscillations.  

Second, the magnitude and duration of sustained aftereffects of tACS remain an open question. 

One study found enhanced oscillatory power matched to the stimulation frequency for 30 minutes 

following stimulation, but only when tACS was administered under conditions of low oscillatory power in 

the matched frequency (Neuling et al., 2013). Alpha frequency tACS administered to parieto-occipital 

cortex has been shown to induce enhanced alpha-band oscillations outlasting the duration of the 

stimulation (Helfrich et al., 2014). Computer simulations of tACS have demonstrated that in the case of 

multistable states, stimulation can induce outlasting changes in the form of switching to another network 

activity state (Kutchko & Frohlich, 2013).  Outlasting effects of tDCS on the excitability of motor cortex 

have been reported to last multiple hours after stimulation (Batsikadze, Moliadze, Paulus, Kuo, & Nitsche, 

2013). It is unclear if the same mechanisms mediate outlast effects in tDCS and tACS. Finally, the effects 

of tACS must be studied in patient populations. Abnormal neuronal architecture, found in some 

neuropsychiatric diseases, may alter the way in which tACS modulates oscillatory activity. 

 

CONCLUSION 

The future application of tACS in the clinic for the treatment of cognitive impairment critically 

depends on interdisciplinary work that fuses basic science and clinical approaches to characterize the 

pathological changes in brain circuits that mediate cognitive symptoms and the ability of tACS to 

remediate these deficits. Creating a systematic way of approaching pathology in neuropsychiatric 

conditions, as done with RDoC, will assist in translating discoveries of basic neurophysiology to 

characterizing biomarkers or circuits that can be targeted with neuromodulation techniques such as tACS.  

We recognize and stress that to our knowledge no published tACS study has targeted impairment 

of the cognitive domain in patients with psychiatric illness. Although it appears reasonable to assume that 

tACS interventions that enhance cognition in the healthy research participant will also enhance and 

therefore restore cognitive abilities in patients with cognitive impairment, no direct evidence for such 

extrapolation exists to date. However, tDCS has recently been used to improve deficits in cognitive 
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control in patients with major depressive disorder (Wolkenstein & Plewnia, 2013). Since cortical 

oscillations represent the fundamental mediator of cognition (Wang, 2010), we here make the argument 

that tACS, which directly targets these network activity patterns, may bring more specific and more 

effective treatment of cognitive dysfunction. Nevertheless, bridging the gap between the well-known, yet 

hard to treat, cognitive deficits in psychiatric illnesses and the exciting yet early studies on the 

effectiveness of tACS on modulating cognition represents the most fundamental challenge for tACS to 

become a candidate neurotherapeutic for the treatment of psychiatric disorders. 
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FIGURES AND TABLES 

 

Figure 3.1 Transcranial alternating current stimulation (tACS) applies a weak sine-wave electric 

field to the scalp. 

(A) As demonstrated in vitro, weak sine-waves with different periods (T) entrain action potential firing. 

Top: no EF applied, middle: T = 13.3 seconds, bottom: T = 10.0 seconds. Adapted from (Frohlich & 

McCormick, 2010), reprinted with permission. 

(B) TACS delivers sine-wave electrical current of differing frequencies and phase-alignment (phase 

denoted on the far left).  
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Figure 3.2. The Research Domain Criteria project (RDoC) is an initiative by the NIMH to classify 

psychopathology based on dimensions of observable behavior and neurobiological measures. 

The project includes five domains, each of which contains constructs. In this review, we focus on the six 

constructs of the Cognitive Systems domain (Insel et al., 2010). 
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ATTENTION        
Author(s) Journal Reason for study and 

behavioral task used 
Stimulation 
location 

Verum 
stimulation 
parameters 

Sham 
stimulation 
parameters 

Participa
nt 
populatio
n  

Main Finding(s) 

Joundi et 
al (2012) 

Current 
Biology 

Sought to demonstrate 
that oscillatory cortical 
activity can modify motor 
behavior. Subjects 
performed a task 
assessing motor 
performance in a go/no-
go paradigm.  

5x7cm 
electrodes over 
the hand area 
of left motor 
cortex and the 
ipsilateral 
shoulder. 

Trials of 5 
seconds of 20 or 
70Hz sine-wave 
current. 
Amplitude 
selected per 
individual to be 
50µA below 
phosphene/scalp 
sensation 
threshold.   

None 
(stimulation 
delivered for 
half of the 
behavior 
trials) 

18 healthy 
adults 

In a task requiring 
attention for the 
regulation of motor 
(in)action, gamma 
frequency tACS was 
prokinetic and beta 
frequency tACS was 
antikinetic.  
 
 

 
Laczo et al 
(2012) 

Brain 
Stimulatio
n 

Sought to investigate if 
cortical oscillations in the 
gamma frequency range 
are the neuronal 
mechanism underlying 
the enhancement of 
information processing 
during spatial visual 
attention.   

4x4cm 
electrode 
placed over Oz 
and 4x7cm 
reference 
electrode 
placed over 
Cz.  

45±10 minutes of 
40, 60, or 80Hz 
sine-wave current 
delivered at 
1.5mA. Follow-up 
experiment, 
designed to avoid 
possible after 
effects of tACS, 
used 15±5 
minutes of 
stimulation.  

20 seconds 
of tACS 

20 healthy 
male and 
female 
adults 

60Hz tACS over 
primary visual cortex 
improved contrast 
detection during 
stimulation. 

 

PERCEPTION        
Author(s) Journal Reason for study and 

behavioral task used 
Stimulation 
location 

Verum 
stimulation 
parameters 

Sham 
stimulation 
parameters 

Participa
nt 
populatio
n  

Main Finding(s) 

Helfrich et 
al (2014) 

Current 
Biology 

Studied neuronal 
entrainment by 
measuring EEG during 
tACS and implementing 
advanced artifact 

5x7cm 
electrodes over 
Cz and Oz 

20 minutes of 
10Hz sine-wave 
current applied at 
1mA 

10Hz tACS 
ramped up 
for 10 
seconds, 
and then 

14 healthy 
right-
handed 
male and 
female 

EEG recordings 
conducted 
simultaneously with 
tACS revealed that 
10Hz tACS over 
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rejection. Participants 
performed a visual 
oddball paradigm; the 
visual stimulus was 
presented at four 
difference phase angles 
of tACS. 

discontinued  adults 
 
 

parieto-occipital cortex 
increased alpha activity 
and modulated target 
detection performance 
in a stimulation phase-
dependent manner.  

Struber et 
al (2014) 

Brain 
Topograp
hy 

Tested a causal role for 
gamma activity in 
conscious perception, as 
assessed by perceived 
horizontal or vertical 
movement in bistable 
apparent motion stimuli 
presented during tACS. 

5x7cm 
electrodes over 
P7-PO7 and 
P8-PO8 for 
anti-phase 
stimulation. 
5x7cm 
electrodes over 
C3, C4, O1, 
and O2 for in-
phase 
stimulation 

15 minutes of 6 or 
40Hz sine-wave 
current applied 
either in-phase or 
anti-phase 
between 
hemispheres; 
intensity 
determined by 
individual 
phosphene 
threshold 
(<1.5mA) 

Stimulation 
turned off 
after 
detection of 
sensory 
threshold 

45 healthy 
male and 
female 
adults  

40Hz tACS, but not 6Hz 
tACS, increased 
interhemispheric 
gamma band 
coherence and 
decreased the 
proportion of perceived 
horizontal motion. This 
was only effective when 
stimulation was applied 
with 180° phase 
difference.  

Brignani et 
al (2013) 

PLoS One Sought to determine if 
tACS could affect cortical 
activity; tested 
participants with a Gabor 
patch detection and 
discrimination task.   

16cm2 
electrode over 
PO7 or PO8, 
35cm2 
reference 
electrode 
positioned over 
Cz  

3 blocks of 5 
minutes of 6, 10, 
or 25Hz sine-
wave current 
applied at 1mA  

10Hz tACS 
for 10 
seconds 

96 
healthy, 
right-
handed 
male and 
female 
adults 

Participants who 
received 6Hz and 10Hz 
tACS showed poorer 
performance in 
detecting targets in 
comparison to 
participants who 
received no stimulation. 
However, these results 
were not retinotopically 
specific.  

Laczo et al 
(2012) 

Brain 
Stimulatio
n 

Sought to externally 
modulate gamma 
oscillations, the 
hypothesized neuronal 
mechanism of spatial 
visual attention. The 
authors assessed 
modulation of gamma 
oscillations by probing 

4x4cm 
electrode over 
Oz and 7x4cm 
reference 
electrode over 
Cz 

15 minutes each 
of 40, 60, and 
80Hz sine-wave 
stimulation 
applied at 1.5mA 
(± 10 minutes 
total stimulation 
time). A second 
set of 

20 seconds 
of tACS 

20 healthy 
male and 
female 
adults 

Contrast-discrimination 
thresholds decreased 
significantly during 
60Hz tACS, with no 
effect of 40Hz or 80Hz 
tACS.  
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contrast sensitivity and 
contrast discrimination.  

experiments 
applied 15 ± 5 
minutes of 40, 60, 
or 80Hz sine-
wave stimulation 
at 1.5mA with at 
least 2 days 
separating 
conditions 

Neuling et 
al (2012) 

NeuroIma
ge 

Sought to address the 
long-standing question of 
whether perception is 
continuous or periodic 
(mediated by 
spontaneous oscillatory 
activity) by applying an 
external oscillation to 
entrain brain oscillations 
and demonstrate 
behavioral 
consequences. 
Participants performed an 
auditory detection task. 

5x7cm 
electrodes 
positioned at 
T7 and T8 

21 minutes of 
1mA direct 
current (anode on 
right hemisphere) 
modulated by 
10Hz sinusoidal 
current of 425 ± 
81µA (sinusoidal 
current amplitude 
was individually 
adjusted based 
on participants’ 
feedback for 
comfort) 

None 16 healthy 
right-
handed 
male and 
female 
adults 

DC-offset tACS 
enhanced alpha power 
relative to the pre-
stimulation period, and 
auditory detection 
thresholds were 
dependent on the 
phase of the oscillation 
entrained by the 
stimulation. Detection 
thresholds were higher 
when the stimuli were 
presented during the 
stimulation positive half-
wave compared to 
thresholds for stimuli 
presented during the 
negative half-wave. 

Feurra 
(2011) 

Frontiers 
in 
Psycholog
y 

Sought to probe the role 
of oscillatory neural 
activity by assessing if 
tACS applied over 
somatosensory cortex 
could elicit tactile 
sensation in a frequency-
dependent manner.  

3x4cm 
electrode over 
right 
somatosensory 
cortex and 
5x7cm 
reference 
electrode over 
P3 

5 seconds per 
trial of sine-wave 
stimulation 
ranging from 2 to 
70Hz, step-size 
2Hz, (order 
randomized), 
applied at 1.5mA 

None 14 healthy 
adults 

Alpha and high gamma 
tACS applied over 
somatosensory cortex 
were effective at 
producing tactile 
sensation in the 
contralateral hand. Beta 
stimulation produced 
weaker tactile sensation 
in the contralateral 
hand. 

Kanai et al 
(2010) 

Clinical 
Neuro-

Investigated whether 
tACS can modulate the 

3x3cm 
electrode over 

5-8 minutes of 5, 
10, 20, or 40Hz 

None 16 healthy 
male and 

20Hz tACS decreased 
TMS-phosphene 
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physiology excitability of visual 
cortex in a frequency-
dependent manner, 
without involving potential 
retinal stimulation. 
Authors assessed if tACS 
modulated the intensity 
threshold for transcranial 
magnetic stimulation 
(TMS) pulses to induce 
visual phosphenes when 
delivered to visual cortex. 

Oz and 5x7cm 
reference 
electrode over 
Cz; 
Control 
condition: 
3x3cm 
electrode over 
Fz and 5x7cm 
reference 
electrode over 
Cz  

sine-wave 
stimulation 
delivered at 
750µA 
 
 

female 
adults 

threshold (increased 
the excitability of visual 
cortex); tACS at other 
frequencies did not 
affect visual cortex 
excitability.  

Kanai et al 
(2008) 

Current 
Biology 

Tested if tACS can 
interact with ongoing 
rhythmic activity in visual 
cortex. Administered 
tACS with room lights on 
and off and assessed 
participant’s perception of 
phosphenes.  

3x4cm 
electrode 4cm 
above the inion 
(near the 
midpoint 
between O1 
and O2), 
6x9cm 
reference 
electrode 
placed over Cz 

10 second trials 
of sine-wave 
stimulation 
delivered with 
room light on and 
then room lights 
off (4, 8, 10, 12, 
14, 16, 18, 20, 
22, 24, 30, and 
40Hz, order 
randomized) 
delivered at 1mA. 
Current intensity 
was then 
iteratively 
reduced (750, 
500, 250, 125µA) 
to determine 
phosphene 
threshold at each 
frequency.  

None 16 healthy 
male and 
female 
adults 

tACS in the beta 
frequency range 
induced phosphenes 
most effectively when 
administered in an 
illuminated room, while 
alpha frequency 
stimulation most 
effectively induced 
phosphenes in a dark 
room. Theta and 
gamma frequency 
stimulation did not 
produce visual 
phosphenes. 

WORKING MEMORY        
Author(s) Journal Reason for study and 

behavioral task used 
Stimulation 
location 

Verum 
stimulation 
parameters 

Sham 
stimulation 
parameters 

Participa
nt 
populatio
n  

Main Finding(s) 

Meiron & 
Lavidor 

Clinical 
Neuro-

Sought to determine how 
theta tACS modulated 

4x4cm 
electrodes 

20 minutes of 
4.5Hz sine-wave 

20 seconds 
of 4.5Hz 

24 healthy 
right-

Online working memory 
accuracy improved with 
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(2014) physiology associations between 
working memory 
accuracy and later 
retrospective self-
evaluation scores. 
Participants completed a 
verbal working memory 
task. 

placed over 
F3-AF3, F4-
AF4 

stimulation 
delivered at 1mA 

sine-wave 
stimulation 
delivered at 
1mA 

handed 
female 
adults 

bilateral tACS over 
DLPFC, compared to 
sham stimulation; 
improvement in working 
memory was 
accompanied by higher 
subjective retrospective 
success-confidence 
scores. 

Jausovec, 
Jausovec 
& Pahor 
(2014) 

Acta 
Psycholog
ica 

Sought to explore the 
relationship between 
working memory 
functions and brain 
activity in frontal and 
parietal areas by 
analyzing the influence of 
theta tACS on 
performance in tasks of 
working memory storage 
capacity and executive 
process. 

5x7cm 
electrode over 
either F3, P3, 
or P4; 5x7cm 
return 
electrode over 
right eyebrow 

15 minutes of 
theta stimulation 
(individual alpha 
frequency minus 
5Hz) delivered at 
250µA below 
individual 
thresholds for 
skin sensation 
(range = 1000µA 
to 2250µA). 

30 seconds 
tACS 

36 healthy 
right-
handed 
male and 
female 
adults 

tACS over right or left 
parietal areas improved 
working memory 
storage capacity, 
whereas there was no 
difference measured for 
frontal or sham 
stimulation.  

Jausovec 
& 
Jausovec 
(2014) 

Biological 
Psycholog
y 

Sought to investigate the 
influence of tACS on left 
parietal and frontal brain 
activity on working 
memory storage capacity. 
 

5x7cm 
electrode over 
either F3 or  
P3; 5x7cm 
return 
electrode over 
right eyebrow 

15 minutes of 
theta stimulation 
(individual alpha 
frequency minus 
5Hz) delivered at 
250µA below 
individual 
thresholds for 
skin sensation 
(range = 1000µA 
to 2000µA). 

30 seconds 
tACS 

24 healthy 
right-
handed 
male and 
female 
adults  

Left parietal tACS 
increased working 
memory storage 
capacity, whereas no 
difference was 
measured for either left 
frontal stimulation or 
sham stimulation. 
Increased working 
memory storage 
capacity was 
accompanied by ERP 
300 latency decrease. 

Polania et 
al (2012) 

Current 
Biology 

Sought to demonstrate a 
causal link between 
frontoparietal theta 
coupling and cognitive 
performance. Participants 
completed a delayed 

5x5cm 
electrode 
placed over F3, 
P3, and return 
electrode over 
Cz 

14 ±1.5 minutes 
of 6Hz sine-wave 
stimulation 
applied in-phase 
(0° phase 
difference) or 

30 seconds 
of 6Hz sine-
wave 
stimulation 
applied in-
phase (0° 

46 healthy 
right-
handed 
male and 
female 
adults 

6Hz tACS with 0° phase 
difference 
(‘synchronizing’ 
condition) improved 
visual memory-
matching reaction times 
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letter discrimination task.  anti-phase (180° 
phase difference) 
at 1mA. Control 
experiment: 
Same as above, 
with 35Hz tACS. 

phase 
difference), 
then 20 
second 
linear ramp-
down 

relative to sham 
stimulation. 6Hz tACS 
with 180° phase 
difference 
(‘desynchronizing’ 
condition) impaired 
performance relative to 
sham stimulation. 35Hz 
tACS did not induce 
changes in 
performance.  

 

DECLARATIVE 
MEMORY  

      

Author(s) Journal Reason for study and 
behavioral task used 

Stimulation 
location 

Verum 
stimulation 
parameters 

Sham 
stimulation 
parameters 

Participa
nt 
populatio
n  

Main Finding(s) 

Prehn-
Kristensen 
et al 
(2014) 

Brain 
Stimulatio
n 

 10mm in 
diameter 
electrodes 
were 
positioned at 
F3 and F4 
(anodes), and 
the reference 
electrodes 
(cathodes) 
were placed at 
both mastoids. 

Five 5 minute 
epochs (each 
separated by 1 
minute of no 
stimulation) of 
0.75Hz sine-wave 
current was 
applied oscillating 
between 0 and 
250µA. 

Non-active 
sham. 

12 
children 
with 
ADHD 
and 12 
healthy 
children; 
all males 
between 
the ages 
9-14 
years. 

Stimulation enhanced 
slow oscillation power 
during sleep in children 
with ADHD and 
improved declarative 
memory performance to 
a level equal to that of 
healthy children who 
did not receive 
stimulation. Children 
with ADHD who 
received sham 
stimulation showed no 
improvement. 

Antonenko 
et al 
(2013) 

European 
Journal of 
Neuro-
science 

Sought to demonstrate a 
causal role for slow wave 
activity during sleep in 
enhancing the capacity 
for encoding of 
information during 
subsequent wakefulness. 

10mm in 
diameter 
electrodes 
were 
positioned at 
F3 and F4, and 
the reference 

Six to eight 4 
minute 
stimulation 
epochs during 
non-REM sleep. 
0.75Hz sine-wave 
current was 

Non-active 
sham. 

15 
healthy, 
right-
handed 
male and 
female 
adults 

Stimulation enhanced 
slow wave activity 
during sleep and 
significantly improved 
subsequent encoding 
on declarative tasks 
(picture recognition, 
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Participants completed a 
word pair learning task, 
the Verbal Learning and 
Memory Test, and a 
finger sequence tapping 
task. 

electrodes 
were placed at 
both mastoids. 

applied oscillating 
between 0 and 
250µA. 

cured recall of word 
pairs, and free recall of 
word lists); stimulation 
had no effect on 
procedural finger 
sequence tapping skill. 

 
Eggert et 
al (2013) 

Brain 
Stimulatio
n 

Investigated whether 
sleep-dependent memory 
consolidation could be 
improved by application 
of brain stimulation in a 
population of older adult 
participants (as has 
previously been shown 
for healthy young 
volunteers). Participants 
performed declarative 
(common word-pair 
association task) and 
procedural (sequential 
finger tapping task) 
memory tasks. 

10mm in 
diameter 
electrodes 
were 
positioned at 
F3 and F4 
(anodes), and 
the reference 
electrodes 
(cathodes) 
were placed at 
both mastoids. 

Five epochs of 
316 seconds of 
0.75Hz sine-wave 
current was 
applied oscillating 
between 0 and 
260µA. 

Non-active 
sham 

26 
healthy, 
male and 
female 
adults 
between 
the ages 
of 60-90 
years 

Stimulation applied in 
this population of 
healthy older adults 
failed to demonstrate a 
beneficial effect on 
either declarative or 
procedural memory 
consolidation.  

Marshall 
et al 
(2011) 

PLoS One  Sought to investigate the 
role of theta oscillations 
during REM and non-
REM sleep for memory 
formation. Participants 
completed declarative 
(word paired-associates 
task) and procedural 
(finger sequence tapping, 
mirror-tracing tasks) 
memory tasks. 

8mm in 
diameter 
electrodes 
were 
positioned at 
F3 and F4 
(anodes), and 
the reference 
electrodes 
were placed at 
both mastoids 
(cathodes). 

Five 5 minute 
epochs (each 
separated by 1 
minute of no 
stimulation) of 
5Hz sine-wave 
current was 
applied oscillating 
between 0 and 
260µA.  

Non-active 
sham 

41 healthy 
male and 
female 
adults 

5Hz DC-offset tACS 
during non-REM sleep 
reduced frontal slow 
oscillatory activity, 
reduced frontal slow 
spindle power, and 
induced a decrement in 
consolidation of 
declarative memory. 
Stimulation during REM 
sleep increased global 
gamma activity.  

Kirov et al 
(2009) 

PNAS Sought to determine 
whether increases in slow 
oscillatory activity by DC-
offset tACS improved 
memory consolidation 

8mm in 
diameter 
electrodes 
were 
positioned at 

Five 5 minute 
epochs (each 
separated by 1 
minute of no 
stimulation) of 

Non-active 
sham 

28 healthy 
male and 
female 
adults 

0.75Hz DC-offset tACS 
applied during 
wakefulness increased 
EEG slow oscillatory 
activity locally and theta 
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specific to slow wave 
sleep, or whether this 
induced slow oscillatory 
activity could improve 
memory during 
wakefulness. Participants 
completed declarative 
(verbal and non-verbal 
paired-associate learning) 
and procedural (finger 
sequence tapping and 
mirror tracing) memory 
tasks. 

F3 and F4 
(anodes), and 
the reference 
electrodes 
were placed at 
both mastoids 
(cathodes). 

0.75Hz sine-wave 
current was 
applied oscillating 
between 0 and 
260µA.  

activity globally. 
Stimulation improved 
encoding of 
hippocampus-
dependent memories 
when applied during 
learning, but did not aid 
in consolidation of 
memories when applied 
after learning. 

Marshall 
et al 
(2006) 

Nature Sought to investigate if 
brain potentials have a 
physiological meaning in 
memory function. 
Participants completed 
declarative (paired-
associate learning) and 
procedural (finger 
sequence tapping and 
mirror tracing tasks) 
memory tasks.  

8mm in 
diameter 
electrodes 
were 
positioned at 
F3 and F4 
(anodes), and 
the reference 
electrodes 
were placed at 
both mastoids 
(cathodes). 

Five 5 minute 
epochs (each 
separated by 1 
minute of no 
stimulation) of 
0.75Hz sine-wave 
current was 
applied oscillating 
between 0 and 
260µA. Control 
stimulation: same 
as above, 5Hz 
sine-wave. 

Non-active 
sham 

13 healthy 
right-
handed 
male and 
female 
adults 

0.75Hz DC-offset tACS 
enhanced slow cortical 
oscillations and slow 
spindle activity during 
early non-REM sleep. 
Retention of 
hippocampus-
dependent declarative 
memories was 
enhanced, while there 
was no effect on 
procedural memory; 
5Hz stimulation 
decreased slow 
oscillations and did not 
change declarative 
memory.  

 

COGNITIVE 
CONTROL  

      

Author(s) Journal Reason for study and 
behavioral task used 

Stimulation 
location 

Verum 
stimulation 
parameters 

Sham 
stimulation 
parameters 

Participa
nt 
populatio
n  

Main Finding(s) 

Pahor & 
Jausovec 

Internation
al Journal 

Sought to examine 
whether theta tACS can 

5x7cm 
electrode over 

15 minutes of 
theta stimulation 

1 minute of 
tACS 

28 healthy 
right-

Theta tACS improved 
subsequent 
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(2014) of 
Psychoph
ysiology 

affect subsequent 
performance on tasks of 
fluid intelligence, and if 
theta tACS changed 
power in theta and alpha 
frequency bands. 

either F3 or P3, 
7x10cm return 
electrode over 
Fp2 

(individual alpha 
frequency minus 
5Hz) delivered at 
250µA below 
individual 
thresholds for 
skin sensation 
(range = 1000µA 
to 2250µA). 

handed 
male and 
female 
adults 

performance on tests of 
fluid intelligence; this 
effect was more 
pronounced in 
individuals who 
received left parietal 
stimulation rather than 
left frontal stimulation. 
Theta tACS decreased 
alpha power in areas 
near the stimulation 
site.  

Santarnec
chi et al 
(2013) 

Current 
Biology 

Sought to demonstrate a 
causal role for gamma 
synchronization in fluid 
intelligence. Participants 
completed visuospatial 
abstract reasoning tasks 
(Raven’s matrices).  

5x7cm 
electrodes 
placed over left 
middle frontal 
gyrus and Cz  

5H, 10, 20, or 
40Hz sine-wave 
current delivered 
at 750µA. 
Stimulation 
delivered for 
duration of task 
performance.  

20 seconds 
of 
stimulation 
applied at 
the 
frequency 
from the 
previous 
block 

20 healthy 
right-
handed 
male and 
female 
adults 

Gamma frequency 
tACS improved 
completion time by 15% 
on a visuospatial 
abstract reasoning task 
for complex trials 
involving 
conditional/logical 
reasoning. 

Sela et al 
(2012) 

Frontiers 
in Neuro-
science 

Sought to investigate the 
hypothesis that the 
balance of theta 
frequency oscillatory 
activity between right and 
left frontal regions, with a 
dominant role for the right 
hemisphere, is crucial for 
regulatory control during 
risky decision-making. 
Participants completed 
the Balloon Analog Risk 
Task.  

Left 
hemisphere: 
5x5cm 
electrodes 
placed over F3 
and CP5; right 
hemisphere: 
5x5cm 
electrodes 
placed over F4 
and CP6 

15 minutes of 
6.5Hz sine-wave 
current delivered 
at 1mA. 

30 seconds 
of tACS  

27 healthy 
right-
handed 
male and 
female 
adults 

Participants receiving 
theta frequency tACS in 
the left hemisphere 
exhibited riskier 
decision-making style 
compared to 
participants receiving 
right hemisphere or 
sham stimulation.   

 

Table 3.1.Summary of the purpose, stimulation parameters, and findings of each tACS study discussed in this review 
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CHAPTER 4: ANESTHESIA DIFFERENTIALLY MODULATES SPONTANEOUS NETWORK 

DYNAMICS BY CORTICAL AREA AND LAYER3 

 

INTRODUCTION 

Anesthesia is routinely used in both human patients for invasive procedures and systems 

neuroscience for electrophysiological and imaging studies of brain activity. Yet, there is a gap in 

knowledge between the well-characterized molecular targets of anesthetic agents throughout the central 

nervous system (Alkire, Hudetz, & Tononi, 2008) and the effects on overall behavioral state such as loss 

of consciousness (E. N. Brown, Purdon, & Van Dort, 2011). Specifically, little is known about how 

anesthesia modulates brain activity at the network level to achieve profound alterations in arousal and 

cognition. Bridging this gap by elucidating the network-level effects of anesthesia will (1) aid in the 

development of more refined anesthesia monitoring techniques to reduce the number of anesthesia-

related adverse side effects, (2) instigate the reinterpretation of decades of work on systems 

neuroscience conducted in anesthetized animals, and (3) provide fundamental insight into cortical 

network dynamics across cortical layers and areas. 

Traditionally, anesthesia has been assumed to suppress brain activity (Friedman et al., 2010; 

Steyn-Ross, Steyn-Ross, & Sleigh, 2004), yet recent studies have revealed that anesthetic agents may 

rather modulate the dynamics of large-scale neuronal networks (Cimenser et al., 2011; Lewis et al., 2012; 

McCarthy, Ching, Whittington, & Kopell, 2012). At the macroscopic level, anesthesia alters 

electroencephalogram (EEG) by shifting oscillatory activity from high-frequency, low-amplitude patterns to 

low-frequency, high-amplitude activity (Voss & Sleigh, 2007). Recent analysis strategies to quantify the 

                                                      
3 This chapter previously appeared as an article in the Journal of Neurophysiology; doi: 
10.1152/jn.00404.2013 (http://jn.physiology.org/content/110/12/2739.long). The original citation is as 
follows: Kristin K. Sellers, Davis V. Bennett, Axel Hutt, and Flavio Frohlich (2013). Anesthesia 
differentially modulates spontaneous network dynamics by cortical area and layer. Journal of 
Neurophysiology, 110(12):2739-2751.  
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modulation of network dynamics have revealed that anesthesia may disrupt integration of information 

across brain regions through decreasing long-range coherence (O. A. Imas, Ropella, Ward, Wood, & 

Hudetz, 2005; Olga A. Imas, Ropella, Wood, & Hudetz, 2006; John & Prichep, 2005), and reduce cortical 

information capacity by shrinking the repertoire of distinct activity patterns (Alkire et al., 2008). 

In support of such sophisticated modulation of network dynamics by anesthesia, studies using 

functional magnetic resonance imaging (fMRI) in awake and anesthetized primates have found 

profoundly altered stimulus-evoked responses and functional connectivity induced by anesthesia (J. V. 

Liu et al., 2013). Despite only indirect coupling between blood oxygenation dynamics measured by fMRI 

and electrical brain activity (Logothetis & Wandell, 2004; Magri, Schridde, Murayama, Panzeri, & 

Logothetis, 2012), fMRI has provided important indications of the complexity of the network-level effects 

of anesthesia. Resting-state fMRI (rs-fMRI) in humans has demonstrated reduced functional connectivity 

during anesthesia compared to the awake state, which scaled with depth of anesthesia (Peltier et al., 

2005). Also, a growing body of evidence suggests that anesthesia does not affect all cortical areas 

similarly (Bonhomme, Boveroux, Brichant, Laureys, & Boly, 2012; Heinke & Koelsch, 2005; Heinke & 

Schwarzbauer, 2001). In particular, rs-fMRI findings indicate that propofol-induced loss of consciousness 

correlates with decreased corticocortical and thalamocortical connectivity in frontoparietal networks, while 

connectivity is preserved in sensory cortices (Boveroux et al., 2010). Positron emission tomography data 

(White & Alkire, 2003) in humans has also demonstrated that anesthesia-induced loss of consciousness 

by isoflurane or halothane is accompanied by decreased corticocortical and thalamocortical connectivity. 

However, this remains an area of debate, as computational models investigating propofol anesthesia 

suggest that there is increased functional coupling between the thalamus and cortex (Ching, Cimenser, 

Purdon, Brown, & Kopell, 2010). 

Yet, the changes in mesoscopic and microscopic network dynamics caused by anesthesia as a 

function of cortical area, cortical layer, and anesthetic depth remain poorly understood. To address this 

gap in knowledge, we here examined how anesthesia modulates spontaneous network activity in a 

primarya sensory area (primary visual cortex, V1) and a higher-order association area (prefrontal cortex, 

PFC) by electrophysiological recordings of local field potential (LFP, mesoscopic network activity) and 

multiunit spiking activity (MU, microscopic network activity) in awake and anesthetized ferrets. We used 
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isoflurane at three concentrations (0.5%, 0.75%, and 1.0%, each with continuous and equal xylazine 

administration for maintaining adequate sedation) because isoflurane is a commonly employed anesthetic 

in neuroscience. We hypothesized that a primary sensory cortical area (V1) and an association cortical 

area (PFC) would exhibit differential modulation of network dynamics in response to anesthesia due to 

their different functional roles. Indeed, we found that the effects of anesthesia on these two cortical areas 

were vastly different. In V1, modulation induced by anesthesia in input layer IV (granular layer) differed 

from modulation of activity in supragranular and infragranular layers. In contrast, in PFC, anesthesia 

altered network dynamics and induced highly rhythmic activity patterns with fewer differences across 

cortical layers. To our knowledge, this is the first study that comprehensively examines the dose-

dependent effects of an anesthetic on two different cortical areas across layers with such high temporal 

resolution. 

 

METHODS 

Surgery 

Adolescent female ferrets (Mustela putoris furo, 15-20 weeks old) were used in this study. All 

experiments were conducted in animals that had not reached sexual maturity to avoid possible estrous-

dependent changes in physiology. This intermediate model species was chosen due to key similarities 

with primates; in particular, ferrets have a gyrencephalic cortex, a highly developed visual system, and 

cortical association areas such as prefrontal cortex. Aseptic surgical procedures were used to prepare 

animals for multichannel electrophysiological recordings in V1 and PFC. Animals received an initial 

intramuscular injection of ketamine (30 mg/kg) and xylazine (1-2 mg/kg). The method of anesthesia 

maintenance used during surgery depended on the specific experimental preparation (see below). Animal 

physiology (electrocardiogram, pulse oxygen level, endtidal CO2 for a subset of animals, and rectal body 

temperature) was continuously measured. Endtidal CO2 was between 30 and 50mmHg (Kohn, 1997). 

Animals were warmed with a water heating blanket to maintain rectal temperature of 38.0-39.0° C. The 

animal’s eyes were protected with paralube for the duration of surgery. 

Surgical procedures consisted of an initial midline incision of the scalp, retraction of the soft 

tissue, and a circular craniotomy located over V1 (approximately 3mm anterior to lambda and 9mm lateral 
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to midline) and/or PFC (approximately 5mm anterior to bregma and 2mm lateral to the midline). The 

potential for brain swelling was reduced with a preventative injection of furosemide (1mg/kg, IM). Dura 

was removed and the brain was covered with warm, sterile 4% agar. Probe location in V1 was verified by 

eliciting visually evoked potentials and mapping receptive fields, while insertion location in PFC was 

confirmed by histology to be in the anterior sigmoid gyrus (Duque & McCormick, 2010) (recording probe 

dipped in DiI prior to insertion, Invitrogen, Grand Island, NY). A stainless steel head post was implanted 

with bone screws and dental cement. All procedures were approved by the UNC – Chapel Hill IACUC and 

exceed guidelines set forth by the NIH and USDA.  

 

Experiments in Anesthetized Animals 

Most recordings in anesthetized animals (“anesthetized recordings”, female ferrets) were 

conducted immediately following surgery. For these experiments, animals were intubated and artificially 

respirated (10-11cc, 50bpm, 100% medical-grade oxygen), and isoflurane was used to maintain deep 

anesthesia during surgery. These animals were continuously administered an IV via the cephalic vein 

(4.25mL/hr 5% dextrose lactated ringer’s, 0.015mL/hr xylazine during surgery with the addition of 

0.079mL/hr vecuronium bromide during recordings). Paralysis by vecuronium bromide was used to 

enhance the stability of electrophysiological recordings. Surgical procedures are outlined above. 

Anesthetized recordings were conducted during resting-state (dark room, no stimuli) under 

varying concentrations of isoflurane anesthesia (iso, 0.5%, 0.75%, 1.0%). Continuous administration of 

xylazine via IV guaranteed the complete absence of withdrawal response to toe pinch for all 

concentrations of isoflurane used in this study. The use of xylazine as an additional anesthetic was 

mandated by UNC-CH IACUC requirements. Unless otherwise stated, ‘anesthesia’ subsequently refers to 

this paradigm of isoflurane and xylazine administration. The temporal order of anesthetic concentration 

was randomized across animals. 20 minute elapsed after changing anesthetic concentration prior to 

starting a new recording, exceeding the approximately 4-7 minutes required to reach new baseline neural 

activity for our experimental setup. The animal’s eyes were moistened with saline prior to each recording 

and animal vital signs were monitored throughout the recordings.  
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Two linear 16-channel silicon probes (100µm contact site spacing along the z-axis, Neuronexus, 

Ann Arbor, MI) were used in cases of dual craniotomies. Animals were headfixed during these recordings. 

A silver chloride wire tucked between the skull and soft tissue and held in place with 4% agar in saline 

was used as the reference for both linear probes. Each probe was slowly advanced into cortex with a 

micromanipulator (Narishige, Tokyo, Japan); correct depth was determined by small deflections of the 

LFP at superficial electrode recording sites and larger deflections of the LFP at deeper electrode 

recording sites. Unfiltered signals were first amplified with MPA8I head-stages with gain 10 (Multichannel 

Systems, Reutlingen, Germany), then further amplified with gain 500 (Model 3500, A-M Systems, 

Carlsborg, WA), digitized at 20kHz (Power 1401, Cambridge Electronic Design, Cambridge, UK), and 

digitally stored using Spike2 software (Cambridge Electronic Design). In this study, all three 

concentrations of isoflurane anesthesia corresponded to lack of behavioral responses. Burst suppression 

was not present in any recording; rather, we found rhythmic occurrence of UP (active phase) and DOWN 

states (quiet phase); the DOWN states were relatively short, typically at most 1-1.5 sec long, and 

therefore did not last the 10s of seconds typically seen during the suppression period of burst 

suppression patterns. Infrared videography (Handycam HDR-cx560v, Sony, Tokyo, Japan) of the animal 

was conducted. 

 

Experiments in Awake Animals 

Prior to surgery in animals which were recorded from while awake (“awake recordings”), animals 

were trained to be calmly restrained for up to 2 hours. Female ferrets were used for awake recordings 

because their growth had plateaued, and they were therefore more suited for chronic implants compared 

to males. All animals were spayed in case they were kept until the age of sexual maturity; all animals in 

this study were used prior to the age of sexual maturity. Deep anesthesia was maintained for the duration 

of the surgery with intramuscular injections of ketamine (30 mg/kg) and xylazine (1-2 mg/kg) 

approximately every 40 minutes. Surgical procedures are outlined above. Additionally, the base of a 

custom-fabricated cylindrical chamber with a removable cap (material: Ultem 1000) was secured to the 

skull with bone screws and dental cement in order to allow subsequent access to the craniotomy for 

recordings. Upon completion of these surgical procedures, the incision was closed with sutures and 
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treated with antibiotic cream. Yohimbine (0.25 – 0.5mg/kg, IM) was then administered to reverse 

anesthesia. The animal was kept warm with a heating blanket and observed during recovery from 

anesthesia. Meloxicam (0.2 mg/kg, IM) and enrofloxacin (0.5 mg/kg, IM) were administered to prevent 

infection and to minimize post-surgical discomfort.  

Awake recordings during resting-state (dark room, no stimuli) began after animals had fully 

recovered from surgery (at least 5 days). Each recording session was brief (typically < 2 hours), during 

which the animal was restrained and headfixed. Multichannel electrophysiological data were recorded 

with acutely inserted, linear 32-channel silicon probes (50µm contact site spacing along the z-axis, 

Neuronexus, Ann Arbor, MI). In these electrodes, the reference was located on the same shank (0.5 mm 

above the top recording site) and was positioned in the 4% agar in saline above the brain. Infrared 

videography was used to monitor whisking and minor movements that, together with the fact that the 

animal’s eyes remained open, established the absence of sleep during these recording sessions. A 

subset of animals which had been used for awake recordings (both V1 and PFC craniotomy locations) 

was also used for anesthetized recordings to minimize the number of animals used in this study. At the 

conclusion of the study, all animals were humanely killed with an overdose of sodium pentobarbital and 

immediately perfused with 4% formaldehyde in 0.1M phosphate buffered saline for subsequent 

histological verification of recording locations.  

 

Data Analysis and Statistical Methods 

             Recorded broadband signals were processed offline with custom-written scripts in MATLAB 

(Mathworks, Natick, MA). Continuous recordings were segmented into non-overlapping 5 second trials. A 

subset of these trials was manually excluded due to motion artifacts in the LFP signal (defined as extreme 

values in the raw trace). If not stated otherwise, figures represent medians across recordings sessions, 

recording sites, and trials (62 recording sessions; total trials in V1: awake = 3612, 0.5% iso = 729, 0.75% 

iso = 2557, 1.0% iso = 2860; total trials in PFC: awake = 6327, 0.5% iso = 2298, 0.75% iso = 2722, 1.0% 

iso = 3394). If not stated otherwise, values are presented as median ± sem. Time-dependent frequency 

content was determined by convolution of raw extracellular voltage signals with a family of Morlet 

wavelets (0.5Hz – 40Hz, step-width 0.5Hz) with normalized amplitude, providing an optimal trade-off 
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between time and frequency uncertainty (Goupillaud, Grossmann, & Morlet, 1984). Total power in each 

frequency band (delta = 0.5-4Hz, theta = 4-8Hz, alpha = 8-12Hz, beta = 12-20Hz, gamma = 20-40Hz) 

was calculated by taking the median value across all trials. When comparing results presented here to 

prior studies, it is important to consider that there is no consensus about the frequency range used for 

each frequency band, particularly in differentiating the beta and gamma frequency bands. For readability, 

we did not divide beta into ‘beta 1’ and ‘beta 2’, but attributed frequencies often assigned to ‘beta 2’ (23-

30Hz) to the gamma band. Early seminal work looking at fast oscillations which increased during 

alertness and during sensory processing examined frequency ranges from 20-40Hz (Steriade, Dossi, 

Pare, & Oakson, 1991) in cats, another carnivore intermediate model species. Spectra are first presented 

averaged across all recording electrodes, and subsequently shown by cortical layer; all spectra are 

shown on a logarithmic scale. Bootstrapping with 100 iterations of resampling, a distribution-independent 

method, was used to calculate standard errors when parametric models were a poor fit for the data. 

Cross-correlation was determined as peaks of the cross-correlogram computed with the MATLAB xcorr 

function; the trial-shuffled control correlation was subtracted to exclude changes in correlation peak due 

to changes in signal amplitude across awake and anesthetized recordings. High-pass filtered data (4th 

order butterworth filter, 300Hz cutoff) were subjected to a threshold of -3*std for detection of action 

potentials (multiunit activity). In order to quantify the correspondence between mesoscopic LFP oscillatory 

structure and microscopic MU activity, spike-field coherence (SFC) was calculated. Spike-triggered 

averages from 1 second segments of LFP around each spike were obtained. Multitaper spectral 

estimates were used to determine spectra of the spike-triggered averages (MATLAB pmtm function with 

time-bandwidth product of 3.5). SFC values are the ratio of spike-triggered average spectra to the 

average of spectra calculated from each LFP segment (Fries, 2009). The choice of frequency analysis for 

SFC was motivated by existing literature to enable comparisons with the findings presented here. 10 

second non-overlapping trials were used to determine spike-field coherence to provide longer data 

windows (V1: awake = 1715, 0.5% iso = 360, 0.75% iso = 1115, 1.0% iso = 1423; PFC: awake = 2288, 

0.5% iso = 1137, 0.75% iso = 1187, 1.0% iso = 1628). The non-parametric Kruskall-Wallis test was 

implemented using the MATLAB function kruskalwallis to determine if samples from awake animals and 

animals administered different concentrations of anesthesia came from the same distribution. 1-way 
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ANOVA with Tukey’s honestly significant difference criterion was used to correct for multiple 

comparisons. 

In order to verify electrode location in V1, receptive fields were determined by presenting the 

animal with a series of gray screens with one square of a 19-10 grid colored white or black for 40ms. 

Each square was shown for 30 repeats (order randomized) with 160ms between each stimulus. Evoked 

MU spiking for each grid location was determined by calculating the number of spikes elicited between 60 

– 140ms after presentation of each stimulus, and subtracting the number of spikes which occurred in the 

80ms preceding presentation of the stimulus. Histology procedures consisted of cutting 100µm coronal 

sections of fixed tissue using a vibratome. Cresyl violet was used for Nissl staining. Stained sections and 

sections with DiI tracks from the recording electrodes were imaged using an Olympus BX51 microscope.  

 

RESULTS 

In order to elucidate the effects of anesthesia on mesoscopic and microscopic cortical network 

dynamics, we performed electrophysiological recordings of spontaneous activity in absence of sensory 

stimulation. We studied network dynamics in awake (n = 6) and anesthetized (n = 5) ferrets. In both 

conditions, the eyes of the animals were open (Figure 4.1A: infrared image of right eye of an awake and 

anesthetized ferret). To test our hypothesis that anesthesia differentially modulates dynamics in different 

cortical areas, we compared the effects of isoflurane anesthesia in a sensory cortical area, primary visual 

cortex (Figure 4.1B, V1, central vision, lateral gyrus), and a higher-order association cortical area, 

prefrontal cortex (Figure 4.1B, PFC, anterior sigmoid gyrus). We used linear depth probes to 

simultaneously record LFP and MU activity from all cortical layers (Figure 4.1C) to determine if different 

elements of the cortical microcircuit were equally sensitive to modulation by anesthesia. Three 

concentrations of isoflurane anesthetic (0.5%, 0.75%, and 1.0%) were used to assess differences in 

network activity between the awake and the anesthetized states (62 recording sessions total). In 

agreement with our hypothesis, we found that anesthesia had fundamentally different effects on V1 and 

PFC.  
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Anesthesia Increased Spectral Power in PFC but Altered Distribution of Power in V1 

We found that anesthesia had differential effects on the oscillation structure of network activity in 

V1 and PFC. Relative to activity in the awake animal, the LFP in V1 exhibited changes in rhythmic 

structure with increased depth of anesthesia (Figure 4.1D, left). The LFP measured in PFC in the awake 

animal exhibited only minimal rhythmic structure but showed prominent slow rhythms during anesthesia 

(Figure 4.1D, right). Furthermore, V1 exhibited frequency-specific modulation of global power with varying 

depths of anesthesia (Figure 4.2A, left, dotted lines indicate ± 2 std). In awake animals, the LFP in V1 

exhibited a spectral peak at ~18Hz (Figure 4.2A: left, trace insert). With 0.5% and 0.75% isoflurane, the 

V1 LFP spectral peak occurred at a lower frequency. This spectral peak in V1 of animals anesthetized 

with 0.5% and 0.75% isoflurane was similar to the spindle frequency peak which appeared in 

anesthetized recordings in PFC (discussed below). With 1.0% isoflurane anesthesia, there was no longer 

a pronounced peak in V1 spectral power. In contrast, PFC in the awake animal did not exhibit a clear 

spectral peak. With anesthesia, the entire spectrum shifted to higher power (Figure 4.2A, right, dotted 

lines indicate ± 2 std) and a peak in the spindle frequency at ~10Hz emerged (Figure 4.2A: right, trace 

insert). To further probe these marked differences in frequency structure, we calculated total power in 

each frequency band traditionally associated with distinct cognitive and behavioral functions (X. J. Wang, 

2010) (delta = 0.5-4Hz, theta = 4-8Hz, alpha = 8-12Hz, beta = 12-20Hz, gamma = 20-40Hz). Relative to 

awake animals, anesthesia modestly modulated total power in V1 for each frequency band (Figure 4.2B, 

left, ** indicates Kruskal-Wallis test significant to p<0.001, * indicates Kruskal-Wallis test significant to 

p<0.05. See Table 4.1 for all values). The most pronounced change was the suppression of power in the 

beta band with anesthesia (beta power: awake = 8.05 ± 0.14, 0.5% iso = 5.66 ± 0.07, 0.75% iso = 5.22 ± 

0.04, 1.0% iso = 4.90 ± 0.04, Kruskal-Wallis test between all anesthesia concentrations significant to 

p<0.001), which corresponds to the loss of the 18Hz peak in the spectrum (Figure 4.2A, left). In contrast, 

in PFC, anesthesia dramatically increased power in all frequency bands, most profoundly in the delta 

range (Figure 4.2B, right, delta power: awake = 4.94 ± 0.23, 0.5% iso = 26.19 ± 0.66, 0.75% iso = 31.01 ± 

0.63, 1.0% iso = 52.19 ± 0.32, ** indicates Kruskal-Wallis test significant to p<0.001, * indicates Kruskal-

Wallis test significant to p<0.05. See Table 4.2 for all values). This increase in slow rhythmic power 
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reflects the increase in cortical slow oscillations commonly associated with anesthesia (Steriade, Nunez, 

& Amzica, 1993). 

 Given the two different modulation profiles for V1 and PFC, we next examined how anesthesia 

affected the relative contributions of the different frequency bands to the overall LFP signal. We computed 

the power in each frequency band as a percent of total power and again found two very different effect 

profiles of anesthesia. In V1, the distribution of power in the different frequency bands was mostly resilient 

to anesthesia. The limited changes to the power distribution included both increases and decreases in 

relative contribution when comparing awake animals to animals anesthetized with different isoflurane 

concentrations (Figure 4.3A). Again, in clear contrast to V1, the relative distribution of power in PFC 

shifted from the gamma to the delta band. We found an almost doubled contribution of delta oscillations 

to the overall spectrum when comparing awake to deeply anesthetized (1.0% isoflurane) animals (Figure 

4.3B: Delta = black, awake = 22%, 0.5% iso = 31%, 0.75% = 32%, 1.0% iso = 43%). Concomitantly, the 

relative contribution of the gamma band shrank to less than half (Figure 4.3B: Gamma = yellow, awake = 

30%, 0.5% iso = 19%, 0.75% = 19%, 1.0% iso = 14%). Interestingly, the intermediate frequency bands 

(theta, alpha, and beta) failed to show such a pronounced redistribution of relative power with anesthesia. 

In summary, these analyses demonstrate that, in agreement with our hypothesis, network dynamics in V1 

were quite resilient to anesthesia whereas PFC exhibited profound alterations in rhythmic structure in 

presence of anesthetics. 

 

Laminar Effects of Anesthesia 

Given the distinct functional roles of different cortical layers, we next examined if the changes in 

spectral power with anesthesia were uniform across cortical depth. We found that the prominent peak at 

~18Hz in V1 of the awake animal was almost exclusively localized to deep (infragranular) layers (Figure 

4.4A, left, red box). The spectral peaks seen at slightly lower frequencies with intermediate 

concentrations of anesthesia (Figure 4.2A, 0.5% and 0.75% isoflurane) were also predominantly in 

infragranular layers (Figures 4.4B and C, left, red box). The highest concentration of anesthesia (1.0% 

isoflurane) abolished this intermediate frequency peak in the deep layers (Figure 4.4D, left). In contrast, 

compared to spectral power in awake animals in PFC (Figure 4.4A, right), spectral power in PFC was 
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greatly increased across all cortical layers with 0.5% (Figure 4.4B, right), 0.75% (Figure 4.4C, right), and 

1.0% isoflurane (Figure 4.4D, right). A local peak around 10Hz is evident in layer IV and infragranular 

layers of PFC in anesthetized animals, corresponding to the peak in spindle frequencies (Figure 4.2A, 

right). Cortical layers likely mediate sophisticated information processing, in which individual layers play 

different roles in the overall functioning of cortical microcircuits. We therefore examined if anesthesia 

impaired these distinct processing roles by increasing the correlation between the activity in different 

layers. To this end, we calculated the average of exhaustive pairwise cross-correlations of electrodes 

(shuffle controlled). Overall, LFP signals in V1 exhibited lower cross-correlation than those in PFC (Figure 

4.4E, note different scales). In further agreement with our hypothesis that modulation by anesthesia 

varies by cortical areas, correlation increased in PFC but decreased in V1 in anesthetized animals 

compared to awake animals (cross correlation V1: awake = 0.0012 ± <.0001, 0.5% iso = 0.0005 ± 0.0002, 

0.75% iso = 0.0008 ± 0001, 1.0% iso = 0.0011 ± 0001, Kruskal-Wallis test between all anesthesia 

concentrations significant to p<0.05, except awake and 0.5% is non-significant. Cross correlation PFC: 

awake = 0.0004 ± 0.0003, 0.5% iso = 0.0121 ± 0.0012, 0.75% iso = 0.0149 ± 0.0015, 1.0% iso = 0.0316 ± 

0.0009, Kruskal-Wallis test between all anesthesia concentrations significant to p<0.001). Thus, we also 

found a selective increase in correlated processing across layers with anesthesia in PFC. 

 

Cortical Area- and Layer-Specific Alterations to Microscopic Network Dynamics with Anesthesia 

Thus far, we have presented key differences in the mesoscopic network structure of V1 and PFC 

induced by anesthesia based on LFP recordings. We next asked if microscopic dynamics in these cortical 

circuits, mediated by action potential firing, were similarly modulated. In looking at simultaneous LFP and 

MU traces, increased coordination is evident between mesoscopic and microscopic processes with 

anesthesia, particularly in PFC. Both V1 and PFC in the awake animal exhibited MU firing that was not 

time-locked to any gross structures of the LFP (Figure 4.5A, top: V1. Figure 4.5B, top: PFC). With 

anesthesia, MU activity in V1 and PFC became more rhythmic (Figure 4.5A, bottom: V1. Figure 4.5B, 

bottom: PFC). The slow rhythm in both LFP and MU activity was generated by alternating epochs of MU 

firing and quiescence; this activity structure corresponds to the slow oscillation (UP and DOWN states) 

that represents a hallmark of anesthesia (red shaded boxes in Figure 4.5 highlight DOWN states). Taking 
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into account cortical depth, we quantified these changes to the mesoscopic and microscopic network 

activity by probing for region-specific effects of anesthesia on MU firing rates and on the temporal 

relationship between LFP and MU (spike-field coherence). 

In agreement with our hypothesis that V1 and PFC would also exhibit differential modulation of 

microscopic dynamics, we found area-specific changes in MU firing rate. Averaged across cortical layers, 

anesthesia did not significantly modulate firing rate in V1 or PFC (Figure 4.6A, V1 median firing rate: 

awake = 24.6 ± 2.87, 0.5% iso = 24 ± 6.40, 0.75% = 23.6 ± 0.65, 1.0% iso = 23.9 ± 0.49, Kruskal-Wallis 

test between all anesthesia concentrations non-significant at p=0.05. PFC median firing rate: awake = 

23.9 ± 0.68, 0.5% iso = 24.8 ± 1.54, 0.75% = 25.7 ± 1.08, 1.0% iso = 24.2 ± 0.37, Kruskal-Wallis test 

between all anesthesia concentrations non-significant at p=0.05). Given these non-significant changes in 

MU firing rates when averaged across cortical depth, we next examined if modulation of MU activity 

depended on cortical depth since the firing of neurons in different layers likely perform distinct tasks. 

Indeed, we found depth-dependent response profiles in V1 and in PFC. In V1, moderate concentrations 

of anesthesia (0.5% and 0.75% isoflurane) increased MU firing specifically in input layer IV with a 

concomitant reduction of firing in the other layers (Figure 4.6B, left). In PFC, MU spiking decreased 

exclusively in supragranular layers for intermediate concentrations of anesthesia (0.5% and 0.75% 

isoflurane) (Figure 4.6B, right). Together, these data show that specifically layer IV was susceptible to 

changes in firing rate induced by anesthesia in V1 but not PFC. This unique, differential alteration to the 

activity of the input layer in a primary sensory cortex points towards modulation by anesthesia based on 

the functional role of specific cortical layers. 

 

Anesthesia Induced Targeted Increases in Spike-Field Coherence 

Having established that anesthesia had area- and layer-specific effects on both mesoscopic and 

microscopic network dynamics independently, we next asked how anesthesia altered the relationship 

between mesoscopic LFP network dynamics and microscopic MU firing. Spike-field coherence (SFC) was 

used to measure preferential firing of action potentials as a function of LFP phase. For a given frequency, 

higher values indicate that MU firing was more tightly coupled to the LFP phase. In awake animals, both 

V1 and PFC exhibited low SFC across cortical layers (Figure 4.7A). With all concentrations of anesthesia, 
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spiking in V1 was more tightly coupled to the phase of the LFP at all frequencies in supragranular and 

infragranular layers (Figures 4.7B, C, and D, left). The strongest increase in coupling was found in the 

slowest and fastest frequencies. Notably, increase in SFC exhibited layer-dependence and remained 

minimal in input layer IV for all concentrations of anesthesia. Anesthesia in PFC resulted in increased 

SFC in superficial layers at higher frequencies, and across layers at low frequencies (Figures 4.7B, C, D, 

right). In PFC, the strength of SFC increased with deepening anesthesia from 0.5% isoflurane to 1.0% 

isoflurane. In summary, MU spiking was mostly independent of LFP phase in the awake animal. In the 

anesthetized animal, MU spiking was modulated by LFP phase in a cortical area and layer-specific 

manner. These results further confirm that understanding the effects of anesthesia on cortex requires not 

only recordings across cortical layers but also analysis strategies that bridge the micro- and mesoscopic 

scale. 

 

DISCUSSION 

While the molecular targets of anesthetics have been well characterized, changes in mesoscopic 

and microscopic network dynamics caused by anesthesia are not well understood. Here, we utilized in 

vivo electrophysiological recordings to investigate these alterations as a function of cortical area, cortical 

layer, and anesthetic depth. We developed this anesthesia model in ferrets, which have a gyrencephalic 

cortex similar to humans, to increase the translational relevance of this study. In agreement with our 

hypothesis, we found that anesthesia induced profoundly different modulation of both mesoscopic and 

microscopic network activity in a primary sensory cortical area (V1) and an association cortical area 

(PFC). The present study provides a dramatic improvement in spatial resolution of network dynamics 

compared to previous work using EEG. The use of laminar probes allowed for measurement of 

modulation by anesthesia with layer specificity. We found that layer IV in V1 was mostly resistant to 

spectral changes induced by anesthesia, whereas infragranular layers exhibited pronounced modulation 

of these mesoscopic dynamics. Contrastingly, PFC demonstrated dramatically increased LFP power with 

anesthesia across cortical layers. Modulation of microscopic dynamics by anesthesia also exhibited 

specificity by cortical area and layer. MU spiking was preferentially increased in V1 in input layer IV, while 

spiking in PFC decreased at the most superficial electrodes at lower concentrations of anesthesia. We 
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also found that layer IV in V1 was spared from increases in SFC induced by anesthesia; in PFC, 

superficial layers and slow frequencies exhibited increased SFC with deepening anesthesia.  

 

Modulation of Spectral Power 

Activity in different frequency bands has been correlated with a broad range of cognitive and 

behavioral states (X. J. Wang, 2010). The targeted modulation of specific frequency bands by anesthesia 

likely reflects changes in underlying network dynamics, which may lead to the dramatic behavioral effects 

caused by anesthesia in animals and humans. We found that the distribution of power across frequency 

bands in V1 in the awake animal exhibited little change when compared to the data from anesthetized 

animals. V1 exhibited alterations in spectral power in specific frequency bands. The beta frequency peak 

in V1 of awake animals, which localized to deeper layers, is in agreement with reports of sub-gamma 

power in deeper layers of V1 in awake macaque monkeys (Maier, Adams, Aura, & Leopold, 2010). Our 

results demonstrate that isoflurane anesthesia abolished this beta peak. Given that the beta range has 

been implicated as a carrier for visual attention (Wrobel, 2000), changes to this rhythm may underlie 

changes in visual processing as well as altered integration with other brain regions. In contrast, the 

modulation profile in PFC was characterized by broad increases in power and two-fold changes in the 

relative presence of different cortical oscillations. A comparison of mesoscopic and microscopic network 

dynamics in our animal model with previous findings in humans revealed some similar modulatory effects 

of anesthesia. A frontal shift of EEG power during anesthesia, anteriorization, is commonly observed in 

animals (Tinker, Sharbrough, & Michenfelder, 1977) and humans (Feshchenko, Veselis, & Reinsel, 2004; 

Gugino et al., 2001). Previous reports in humans found increases in delta, theta, and alpha power in 

frontal areas with deepening administration of propofol and sevoflurane (gamma frequencies were not 

investigated) (Feshchenko et al., 2004; Gugino et al., 2001). Our PFC recordings in anesthetized animals 

exhibited dramatic increases in power across all frequency bands. Our anesthetized recordings also 

exhibited a PFC spectral peak in the alpha range as seen in anesthetized humans (Purdon et al., 2013). 

Additionally, both V1 and PFC showed a shift in power towards lower frequencies with deep anesthesia, 

in accordance with a long history of human studies (Faulconer, 1952; Gibbs, Gibbs, & Lennox, 1937). 

Use of high-density EEG in humans anesthetized with propofol has demonstrated increased delta and 
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alpha activity in frontal electrodes sites (Cimenser et al., 2011). In agreement, our results demonstrate 

increased total power as well as increased relative power for both of these frequency bands in PFC. 

Cimenser et al. (2011) also reported decreased alpha and increased delta activity at occipital sites. In our 

study, we found the same modulation pattern, but only for the deepest anesthesia concentration of 1% 

isoflurane. More prominently, our data showed a strong suppression of oscillations in the beta band in V1 

for all concentrations of anesthesia. Visual attention has been associated with beta band activity; 

therefore the reduction in beta band power may be correlated with the suppression of attentional 

processing during anesthesia. The differences in both overall and relative spectral power modulation in 

V1 and PFC indicate differential effects of anesthesia in these two cortical areas. Moreover, we found that 

the prominent modulation of the beta band in V1 was mostly localized to deeper cortical layers. This 

suggests that examination at the spatial resolution of individual layers is necessary to fully understand 

modulation of network activity.  

 

Modulation According to Distinct Functional Roles across Laminar Structure and Cortical Area 

By organizing with respect to laminae, neuronal networks exhibit differential patterns of 

spontaneous and evoked firing by layer (de Kock, Bruno, Spors, & Sakmann, 2007; Sakata & Harris, 

2009; Wallace & Palmer, 2008). It has been unknown if and how anesthesia differentially modulates 

network activity in V1 and PFC based on laminar structure. Because of the complex feedforward and 

feedback projections across laminae (Douglas & Martin, 2004), differential modulation of activity across 

cortical layers by anesthesia could significantly alter processing of sensory information. Intriguingly, our 

results show that the effects of anesthesia are not consistent across cortical layers. In supragranular 

layers, SFC increased across frequencies in anesthetized V1. Layer IV in V1 exhibited different 

modulation compared to supragranular and infragranular layers, with minimal SFC in layer IV during 

anesthesia. In infragranular layers of V1, SFC increased with anesthesia across all frequencies, with the 

most prominent effect in the delta frequency range and at fast frequencies. Interestingly, the modulation 

of SFC by anesthesia in V1 exhibited a different laminar profile compared to the increase in oscillatory 

power with deepening cortical depth. This indicates that increased SFC was not driven by stronger 

oscillatory power. The beta spectral peak seen in V1 of awake animals localized to infragranular layers. 
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With 0.5% and 0.75% isoflurane in V1, the beta peak was not present but a spectral peak in the alpha 

frequency range appeared in infragranular layers. With 1.0% isoflurane in V1, no mid-frequency spectral 

peak was evident. In PFC, spectral power increased across all cortical layers with 0.5%, 0.75%, and 1.0% 

isoflurane. Supragranular layers in PFC exhibited increased SFC at faster frequencies. In layer IV and 

infragranular layers of PFC in anesthetized animals, a local peak around 10Hz developed (corresponding 

to the spindle frequencies) and SFC increased at slow frequencies. In PFC, both spectral power and SFC 

increased in layer IV and infragranular layers at low frequencies. However, increased SFC across 

frequencies in supragranular layers did not correspond with change in the spectral power.  

The primary input to V1 layer IV comes from the lateral geniculate nucleus (LGN) (Hubel & 

Wiesel, 1972). Anesthesia has been shown to decrease levels of spontaneous activity in the LGN and 

decrease the firing rates of LGN neurons responding to visual stimuli (Alitto, Moore, Rathbun, & Usrey, 

2011). While overall spiking rates in V1 were not significantly altered by anesthesia, layer IV exhibited 

increased firing with a concomitant decrease in firing rate in other layers during 0.5% and 0.75% 

isoflurane. This seemingly paradoxical increase of activity with anesthesia has been previously examined 

by modeling propofol anesthesia, and might be caused by antisynchrony of interneuron activity mediated 

by the M-current (McCarthy, Brown, & Kopell, 2008). Alterations in the balance of excitatory and inhibitory 

drive between awake and anesthetized animals (Haider, Hausser, & Carandini, 2012) could underlie the 

differences observed in cortical network dynamics.  

Our results also demonstrate that the laminar effects of anesthesia are specific to cortical area; 

modulation of firing rate was similar across layers in PFC, with alterations only in the most superficial 

layers. Activity across electrodes was highly correlated during anesthesia in PFC. Therefore, it appears 

that modulation of network dynamics varies based on not only cortical layer, but also cortical area. A 

possible explanation for this specificity stems from differences in the structural and functional architecture 

of these cortical areas. Layer IV in ferret V1 is highly granulated, whereas granulation of layer IV in PFC 

is rather poor (Duque & McCormick, 2010), indicating there are variations in the cellular composition. PFC 

is involved in mediating higher cognitive functions (Fuster, 2008; Jacobsen, 1936), and is critical for top-

down feedback to optimize processing of behaviorally relevant sensory information (Buschman & Miller, 

2007; Fritz, David, Radtke-Schuller, Yin, & Shamma, 2010; Gregoriou, Gotts, Zhou, & Desimone, 2009). 
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Necessary for these functions, layer IV in ferret PFC receives many afferents from the mediodorsal nuclei 

of the thalamus (Duque & McCormick, 2010). Various anesthetics have been shown to decrease thalamic 

activity (Andrada, Livingston, Lee, & Antognini, 2012) and thalamocortical connectivity (Hudetz, 2012). At 

first glance, reduced thalamic activity is seemingly at odds with increased MU firing in layer IV of V1. 

However, layer IV in V1 receives not only feedforward excitation from the thalamus, but also feedforward 

inhibition (from layer IV inhibitory interneurons driven by the thalamus) (Miller, 2003). Therefore, 

decreased thalamic activity may reduce feedforward inhibition, resulting in similar MU spiking rates 

between awake and anesthetized animals. Elucidating whether anesthetics act directly on cortical areas 

or if alterations in activity are mediated by thalamocortical connectivity is an area of active research (Boly 

et al., 2012; Kim, Hwang, Kang, Kim, & Choi, 2012). Furthermore, the propagation of cortical activity 

across layers may differ between sensory processing and spontaneous activity (Sakata & Harris, 2009). 

Taken together, these results demonstrate that the effects of anesthesia vary by cortical area and cortical 

layer. Interestingly, the laminar profiles of these effects vary for microscopic spiking activity, mesoscopic 

spectral power changes, and SFC looking at the coherence between these levels of network activity.  

 

Improvements in Spatial and Temporal Resolution  

Work conducted using EEG and functional magnetic resonance imaging (fMRI) has provided 

valuable insight into macroscopic activity changes induced by anesthesia. However, these recording 

modalities have inherent limitations in spatial and temporal resolution (Babiloni, Pizzella, Gratta, Ferretti, 

& Romani, 2009). Furthermore, fMRI is not a direct measure of neural activity, but rather depends on 

fluctuations in the blood oxygenation level dependent (BOLD) signal (G. G. Brown, Perthen, Liu, & 

Buxton, 2007) which change with neuronal energy demands. This neurovascular coupling is directly 

dependent on blood flow and blood volume (Kannurpatti, Biswal, Kim, & Rosen, 2008). Particularly 

relevant for the current study, anesthesia has been shown to alter blood flow to the brain, thereby 

disrupting normal neurovascular coupling. Isoflurane is known to induce vasodilation of cerebral arteries 

in a dose-dependent manner (Flynn, Buljubasic, Bosnjak, & Kampine, 1992) and increase relative blood 

flow to subcortical regions (Hansen, Warner, Todd, Vust, & Trawick, 1988; Reinstrup et al., 1995). Studies 

in animals (Disbrow, Slutsky, Roberts, & Krubitzer, 2000) and humans (Antognini, Buonocore, Disbrow, & 
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Carstens, 1997) have reported decreased BOLD activation with increasing concentrations of anesthetics, 

including isoflurane. However, these results are difficult to interpret given the unknown contributions of 

alterations in neurovascular coupling versus true modulation of neural activity. Additionally, evidence 

suggests that the fMRI activity-electrophysiology relationship varies across cortical areas because of 

differences in neurovascular coupling, particularly in sensory cortices compared to association cortical 

areas (Ojemann, Ojemann, & Ramsey, 2013). Even with improvements in neuroimaging acquisition and 

analysis strategies (Alkire, 2008; He, Yang, Wilke, & Yuan, 2011), these techniques are still indirect 

measures of neural activity, with limited spatial and temporal resolution. Our electrophysiological 

recordings provide direct measures of neural activity with excellent spatial and temporal resolution in 

comparison. Furthermore, our approach does not suffer from potential confounds due to alterations in 

blood supply to cortical areas. 

 

Comparison of Different Anesthetic Agents 

There are a large number of different anesthetic agents, which act through a variety of molecular 

mechanisms. Isoflurane is an inhalant anesthetic which potentiates GABA acting on GABAA receptors, 

exerting effects in cortical and subcortical areas (Harrison, Kugler, Jones, Greenblatt, & Pritchett, 1993). 

However, the potentiation achieved by isoflurane is typically half that caused by propofol (see below), 

indicating that isoflurane also acts at other molecular targets (Franks, 2006). These targets may include 

glycine receptors (Harrison et al., 1993) as well as two-pore-domain potassium channels (Patel et al., 

1999). At the mesoscopic network level, the power of spontaneous gamma oscillations have been found 

to be unchanged by increasing concentrations of isoflurane anesthesia in rats (Hudetz, Vizuete, & Pillay, 

2011). Similarly, we found only small total power changes in the gamma frequency band in V1, but more 

prominent alterations in the power of gamma frequencies relative to total power. At the microscopic 

network level, administration of isoflurane in rat somatosensory cortex has been shown to reduce 

spontaneous action potential firing (Hentschke, Schwarz, & Antkowiak, 2005). Xylazine, an agonist for 

alpha-2 adrenergic receptors which are found widely across cortical layers (Hedler, Stamm, Weitzell, & 

Starke, 1981; Nicholas, Pieribone, & Hokfelt, 1993), was also used in this study. Activation of alpha-2 

adrenoreceptors has been shown to increase cortical activity in prefrontal cortex by acting on the H-
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channels (M. Wang et al., 2007). Taken together, these studies may explain why we did not find 

differences in MU firing rate between awake and anesthetized animals in PFC. GABAA mediated 

decrease in firing rate could have been compensated for by increased cortical activity driven by alpha-2 

adrenoreceptors in PFC. Previous studies testing the application of alpha-2 adrenergic agonists in rat 

visual cortex support the role for alpha-2 adrenoreceptors in the modulation of sensory inputs to the visual 

cortex through increasing single-to-noise ratio in visually-driven cells (when delivered in low 

concentrations) and decreasing firing rates of visually-driven and non-visually-driven cells (when 

administered at high concentrations) (Kolta, Diop, & Reader, 1987). It remains to be fully elucidated how 

the interaction of isoflurane and alpha-2 adrenoreceptors affect spontaneous MU spiking activity in visual 

cortex. In comparing our findings to other studies using isoflurane anesthesia, it is important to remember 

that xlyazine was continuously administered to all anesthetized animals. This contributed to an anesthetic 

drug-sparing effect, in which lower concentrations of isoflurane were required to maintain complete 

sedation (Doherty et al., 2007; Soares, Ascoli, Gremiao, Gomez de Segura, & Marsico Filho, 2004). 

Therefore, anesthesia at 0.5%, 0.75%, and 1.0% isoflurane in this study corresponded to lack of 

behavioral responses, induced UP and DOWN states, but did not lead to burst suppression. Burst 

suppression activity is characterized by periods of high-voltage activity which are interspersed quasi-

periodically with long (10-20 second) periods of isoelectric activity; importantly, burst suppression activity 

is not rhythmic (Ching, Purdon, Vijayan, Kopell, & Brown, 2012). The anesthetic paradigm used in this 

study did not induce burst suppression because DOWN states remained relatively short (1-1.5 seconds at 

the longest) and alternated rhythmically with UP states. However, it should be noted that there is no firmly 

agreed upon delineation between UP and DOWN state activity and burst suppression.  

Propofol is another commonly used anesthetic delivered intravenously which acts primarily at 

GABAA receptors to potentiate inhibitory current flow. The specific subunit composition of the GABAA 

receptor appears to modulate the effect of propofol (Franks, 2006). Cats anesthetized with propofol 

exhibit a spectral peak around 12Hz, and decreased spontaneous single-unit firing of occipital cortical 

neurons (Andrada et al., 2012). Loss of consciousness (LOC) induced by propofol in humans is marked 

by frontal alpha oscillations as measured by EEG (Purdon et al., 2013). Our results show a similar 

spectral peak in the alpha band in PFC, despite using different anesthetics.  
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Theories of Cortical Disintegration and Reduced Encoding Capacity 

There are two related leading postulates of the mechanism underlying behavioral alternations 

during anesthesia. The first is characterized by disruption of cortical integration (Alkire et al., 2008; 

Hudetz, 2006). Anesthetics may disrupt cortical integration by acting on structures that facilitate long-

range corticocortical interactions (Mashour, 2004). Sensory neuronal processing may still occur, either in 

a form identical to or altered from the awake state (Plourde et al., 2006), but conscious sensation is 

abolished because of impaired transmission or an inability of other brain regions to receive or interpret the 

information. The thalamus is likely involved in this information processing pathway; isoflurane has been 

shown to attenuate the output of somatosensory signals from an area of the rat thalamus, while its input 

is only marginally affected (Detsch, Vahle-Hinz, Kochs, Siemers, & Bromm, 1999). Comparison of 

connectivity as measured by fMRI in awake marmoset and during propofol anesthesia has shown that 

propofol decreases thalamocortical connectivity (Liu, Lauer, Ward, Li, & Hudetz, 2013). Humans 

anesthetized with sevoflurane show a dose-dependent reduction of synchronized neural activity during 

resting state (temporally correlated slow-fluctuations between functionally related areas) as determined 

by fMRI scans and connectivity maps calculated from seed regions in motor areas (Peltier et al., 2005). 

LOC induced by propofol anesthesia in humans has been associated with the functional isolation of 

cortical regions but the preservation of connectivity within local networks as measured by ECoG and 

implanted temporal cortex microelectrode arrays (Cimenser et al., 2011; Lewis et al., 2012; McCarthy et 

al., 2012). Although not the same as anesthesia, sleep exhibits many similar behavioral effects, namely 

the loss of consciousness. Indeed, lack of consciousness during sleep has been related to a breakdown 

in effective cortical connectivity, or the ability of a set of neuronal groups to causally affect the firing of 

other neuronal groups (Massimini, Boly, Casali, Rosanova, & Tononi, 2009; Massimini et al., 2005). Our 

results contribute to this postulated mechanism of anesthesia by providing evidence of profoundly 

different effects of anesthesia on a primary sensory area and an association cortical area. V1 exhibited 

minimal alterations in spectral power compared to PFC, which displayed massive differences in 

anesthetized spectra relative to the awake animal.  

In the second proposed mechanism of anesthesia, a disruption in the repertoire of cortical activity 

patterns reduces the brain’s ability to encode information (Alkire et al., 2008). Our correlation results 
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support this hypothesis. Correlation of activity across electrodes was much higher with anesthesia in 

PFC, but reduced in V1. The ability to maintain sensory responses during anesthesia may be linked with 

less correlated activity across cortical layers in this primary sensory area. In contrast, increased 

correlation across cortical layers in PFC may be related to the corresponding lack of consciousness or 

higher-order cognitive functions. 

The focus of the present study was on elucidating the cortical area and layer-specific effects of 

anesthesia when comparing steady state brain dynamics in awake and anesthetized animals. We chose 

to look at spontaneous cortical dynamics because of the emerging functional role of spontaneous activity 

in cortex (Berkes, Orban, Lengyel, & Fiser, 2011; Fox & Raichle, 2007; Han, Caporale, & Dan, 2008). 

Together with recent studies on the loss of consciousness induced by anesthesia (Alkire, Haier, & Fallon, 

2000; Massimini, Ferrarelli, Sarasso, & Tononi, 2012; Purdon et al., 2013), the insights into the effects of 

anesthesia on mesoscopic and microscopic network dynamics with high resolution provide an emerging 

picture of anesthesia as a complex and sophisticated modulator of cortical network activity. The results 

here provide a starting point for developing computational models to further understand the complex 

interaction between mesoscopic and microscopic network activity. The present work clearly demonstrates 

that such models should incorporate laminar profiles of activity and be tailored to specific cortical areas to 

accurately represent the functioning of cortical networks. 
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FIGURES AND TABLES 

 

Figure 4.1. Extracellular local field potential (LFP) recordings were conducted in ferret primary 

visual cortex (V1) and prefrontal cortex (PFC) to study the effects of anesthesia on spontaneous 

network activity. 

(A) Infrared images of an awake (left) and anesthetized (right) ferret show eyes were open in both 

cases during electrophysiological recordings. 

(B) Recording probe locations in the left hemisphere of ferret cortex. PFC: anterior sigmoid gyrus 

(2mm from midline) posterior to presylvian sulcus. V1: lateral gyrus (9 mm from midline, central 

vision). 

(C) Linear probes with 16- and 32-channels were used to simultaneously record from all cortical layers. 

In 32-channel probes (pictured here), the low-impedance reference was 0.5mm above the most 

superficial electrode site.  

(D) LFP traces from V1 (left) and PFC (right) of awake and anesthetized (0.5%, 0.75%, and 1.0% 

isoflurane) animals. LFP structure in V1 was altered by anesthesia, and LFP amplitude and 

rhythmicity were strongly increased by anesthesia in PFC. Note different scales for V1 and PFC.
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Figure 4.2. Anesthesia modulated LFP in a frequency-specific manner in V1 but induced 

broadband enhancement of LFP power in PFC. 

(A) Left: Time-averaged LFP spectra (0.5 – 40Hz) in V1 demonstrate modulation of power as a 

function of anesthesia (LFP trace inset: ~18 Hz activity in the awake animal). The spectral peak 

was at lower frequencies for anesthesia concentrations of 0.5% and 0.75% isoflurane and was 

abolished by 1.0% isoflurane anesthesia. Right: Dramatic increase in LFP spectral power by 

anesthesia in PFC. Anesthesia induced a spectral peak in the spindle frequency, ~10Hz (LFP trace 

inset: 1.0% isoflurane). Dotted lines indicate ± 2 std calculated by bootstrap. 

(B) Total power in each frequency band. Left: Anesthesia modulated power specific to each frequency 

band in V1. Right: In PFC, anesthesia mediated broadband power increase, with the most 

prominent effect in the delta range. Error bars indicate 1 SEM. ** indicates that power in frequency 

bands was significantly different across awake and anesthetized animals at p<0.001; * indicates 

that power in frequency bands was significantly different at p<0.05 
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Figure 4.3. Distribution of oscillatory power across frequency bands was differentially affected by 

depth of anesthesia in V1 and PFC. 

(A) Power in each frequency band as a percent of total power. Distribution of power across frequency 

bands in V1 was mostly resistant to change by anesthesia. The modest differences between awake 

and anesthetized animals varied by frequency band and exhibited no apparent monotonic 

relationship. 

(B) In PFC, distribution of spectral power shifted from gamma (yellow) to delta (black) frequency bands 

with increasing depth of anesthesia. 
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Figure 4.4. Activity across cortical layers maintained independence with anesthesia in V1 but 

became strongly correlated in PFC. 

(A) Left: In V1 of awake animals, oscillatory power was stronger at deeper cortical layers. Red box 

highlights the infragranular localization of the ~18Hz oscillatory peak found exclusively in the awake 

animal. Right: Activity in PFC of the awake animal did not exhibit any intermediate frequency 

spectral peak. Note different color scales for V1 and PFC. SG = supragranular layers, IV = layer IV, 

IG = infragranular layers. 
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(B) Left: In V1 of animals anesthetized with 0.5% isoflurane, the intermediate frequency peak appeared 

at a lower frequency (~10Hz) as highlighted by the red box. This oscillation was localized in 

infragranular layers. Right: 0.5% isoflurane increased oscillatory power across layers in PFC 

relative to the awake animal.  

(C) Left: In V1 of animals anesthetized with 0.75% isoflurane, the intermediate frequency peak (red 

box) appeared at ~10Hz. This oscillation was localized in infragranular layers. Right: Compared to 

awake animals, 0.75% isoflurane increased oscillatory power across layers in PFC.  

(D) Left: 1.0% isoflurane abolished the intermediate frequency peak in V1. Right: In PFC, 1.0% 

isoflurane increased spectral power across cortical layers compared to power in awake animals. An 

increase in low frequency power is evident relative to corresponding power in animals anesthetized 

with 0.5% and 0.75% isoflurane.  

(E) Correlation of activity across cortical layers was much higher in PFC. Left: In V1, anesthesia 

decreased the cross-correlation of LFP activity across cortical layers. Right: Increasing 

concentrations of anesthesia increased cross-correlation of LFP activity across cortical layers in 

PFC. Error bars indicate 1 SEM. ** indicates Kruskal-Wallis test between anesthesia 

concentrations significant at p<0.001. * indicates Kruskal-Wallis test between anesthesia 

concentrations significant at p<0.05. Note different scales for V1 and PFC.  
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Figure 4.5. Paired LFP and MU spiking traces. 

(A) Matching LFP and high-pass filtered traces of MU spiking activity from representative trials for V1. 

In the anesthetized animal (bottom), MU firing became more rhythmic and correlated with structure 

of the LFP. Red shaded boxes indicate DOWN states. 

(B) Same representation as in (a) for PFC. Anesthesia strongly increased rhythmic structure of the LFP 

and coordinated MU firing. Red shaded boxes indicate DOWN states. Note different scales for V1 

and PFC. 



 

143 
 

 

Figure 4.6. Anesthesia altered MU firing rate and spiking across cortical layers differently in V1 

and PFC. 

(A) Median spontaneous MU firing rates exhibited non-significant difference with anesthesia in V1 and 

PFC. Error bars indicate 1 SEM. Kruskal-Wallis tests between anesthesia concentrations within 

each cortical area were non-significant at p=0.05. 

(B) MU firing as a function of cortical depth. Left: In V1, intermediate concentrations of anesthesia 

(0.5% and 0.75% isoflurane) increased MU firing specifically in layer IV with concomitant 

decreases in spiking rate in supragranular and infragranular layers. Right: MU firing rates  
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decreased with 0.5% and 0.75% isoflurane exclusively in supragranular layers. 1.0% isoflurane did 

not exhibit alteration to spiking across cortical layers in PFC. SG = supragranular layers, IV = layer 

IV, IG = infragranular layers. 
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Figure 4.7. Anesthesia induced frequency-, layer-, and cortical area-specific increases in spike-

field coherence (SFC). 

(A) SFC was minimal in awake recordings in both V1 (left) and PFC (right). Note different color scales 

for V1 and PFC. SG = supragranular layers, IV = layer IV, IG = infragranular layers. 

(B) SFC increased with 0.5% isoflurane. V1 (left) exhibited increased SFC in supragranular and 

infragranular layers.  Input layer IV was resistant to increased SFC induced by anesthesia. PFC 

(right) exhibited increased SFC primarily in supragranular layers at faster frequencies. 

(C) With 0.75% isoflurane, SFC increased in V1 (left) in supragranular and infragranular layers, while 

PFC (right) exhibited increased SFC at supragranular layers and across layers at slow frequencies. 

(D) SFC was strongest with 1.0% isoflurane. SFC was strongest in V1 (left) with 1.0% isoflurane; layer 

IV remained resistant to increased SFC induced by anesthesia. In PFC (right), 1.0% isoflurane 

induced strong SFC at slow frequencies across layers and at supragranular layers. 
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Delta Theta Alpha Beta Gamma 

Awake 8.93 ± 0.127 4.99 ± 0.083 4.14 ± 0.061 8.06 ± 0.138 8.38 ± 0.082 

0.5% Iso 7.35 ± 0.446 4.60 ± 0.164 5.44 ± 0.0801 5.66 ± 0.068 10.33 ± 0.080 

0.75% Iso 7.89 ± 0.148 5.20 ± 0.063 5.00 ± 0.052 5.22 ± 0.039 7.97 ± 0.055 

1.0% Iso 9.82 ± 0.149 5.52 ± 0.069 3.91 ± 0.055 4.90 ± 0.044 6.92 ± 0.076 

Total power [mV^2] ± sem 

Table 4.1. Total spectral power by frequency band in V1 
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Delta Theta Alpha Beta Gamma 

Awake 4.94 ± 0.235 3.77 ± 0.052 2.94 ± 0.027 4.08 ± 0.027 6.82 ± 0.033 

0.5% Iso 26.19 ± 0.664 14.76 ± 0.197 14.91 ± 0.146 12.56 ± 0.123 15.95 ± 0.190 

0.75% Iso 31.01 ± 0.629 16.93 ± 0.167 15.72 ± 0.120 14.31 ± 0.095 18.53 ± 0.167 

1.0% Iso 52.19 ± 0.315 20.59 ± 0.123 18.19 ± 0.111 14.77 ± 0.084 16.68 ± 0.138 

Total power [mV^2] ± sem 

Table 4.2. Total spectral power by frequency band in PFC 
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CHAPTER 5: AWAKE VS. ANESTHETIZED: LAYER-SPECIFIC SENSORY PROCESSING IN VISUAL 

CORTEX AND FUNCTIONAL CONNECTIVITY BETWEEN CORTICAL AREAS4 

 

INTRODUCTION 

Most of what we understand about the processing of sensory signals in the brain rests on studies 

in anesthetized animals (Gilbert, 1977; Hubel & Wiesel, 1959). An implicit assumption, which has 

remained mostly unchallenged, is that circuits of basic sensory processing are comparatively spared from 

the effects of anesthetics in contrast to higher-order cortical areas. Yet, general anesthesia profoundly 

alters global brain function. In particular, anesthetics alter the temporal structure of brain activity (Lennox, 

1949) and may thereby disrupt information processing that relies on precise timing of neuronal activity 

and functional interactions between brain areas. Impairment of dynamic interactions within and between 

neuronal circuits may represent a key mechanism by which anesthetics alter overall cognitive and 

behavioral states (Alkire, 2008; Heinke & Koelsch, 2005; Kreuzer et al., 2010; Lee et al., 2013; White & 

Alkire, 2003). Non-invasive imaging and EEG studies have provided support for impaired large-scale 

organization of spontaneous (“resting”) activity across brain areas in humans (John et al., 2001; Moeller, 

Nallasamy, Tsao, & Freiwald, 2009) (but see (Vincent et al., 2007)). These findings have precipitated a 

new model of the network-level mechanism of action of anesthetics; in this model, information processing 

is impaired by alterations of large-scale network dynamics and functional connectivity during anesthesia 

(Alkire, Hudetz, & Tononi, 2008). Yet, the underlying alterations to micro- and mesoscale cortical circuit 

function, in particular during sensory processing, remain little studied. 

                                                      
4 This chapter previously appeared as an article in the Journal of Neurophysiology; doi: 
10.1152/jn.00923.2014 (http://jn.physiology.org/content/113/10/3798.long ). The original citation is as 
follows: Kristin K. Sellers, Davis V. Bennett, Axel Hutt, James H. Williams, and Flavio Frohlich (2015). 
Awake vs. anesthetized: Layer-specific sensory processing in visual cortex and functional connectivity 
between cortical areas. Journal of Neurophysiology, 113(10):3798-3815. 
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To close this gap in knowledge, we asked if and how response dynamics and functional 

connectivity of sensory processing are altered during anesthesia. To answer this question, we measured 

mesoscopic (local field potential, LFP) and microscopic (multiunit activity, MUA) network dynamics 

simultaneously across cortical layers during presentation of visual stimuli in V1 and PFC of awake and 

anesthetized ferrets. Investigating both mesoscopic and microscopic network dynamics provided deeper 

insight into overall neuronal activity patterns, since mesoscopic LFP activity reflects synaptic currents 

which do not necessarily result in local suprathreshold activity, while microscopic MUA represents 

suprathreshold input to recorded neurons. Anesthetized recordings utilized three concentrations of 

isoflurane (each with a constant xylazine infusion). Our study first focused on primary visual cortex (V1), 

since V1 is well-suited for elucidating differential effects of anesthetics across cortical layers given the 

extensive body of work examining the distinct role of each cortical layer in sensory function (Binzegger, 

Douglas, & Martin, 2009; Hirsch & Martinez, 2006). To test large-scale interaction dynamics within 

cortico-cortical circuits, we then probed the response dynamics in PFC and subsequently directly 

measured functional connectivity between V1 and PFC by simultaneous recordings in both areas. 

 

METHODS 

Surgery 

Adolescent female ferrets (Mustela putoris furo, 15-20 weeks old at study onset, 750-1000g) were 

used in this study (awake: n = 14 animals; anesthetized: n = 10 animals). Details of the animal model and 

recording methods were described previously (Sellers, Bennett, & Frohlich, 2015; Sellers, Bennett, Hutt, 

& Frohlich, 2013). All animals underwent aseptic surgery in preparation for subsequent 

electrophysiological recordings in V1 and PFC. All electrophysiology was conducted with acute insertions 

of recording electrodes. General anesthesia was induced with an initial intramuscular injection of 

ketamine (30 mg/kg) and xylazine (1-2 mg/kg). The method of anesthesia maintenance used during 

surgery depended upon the specific experimental preparation: ketamine/xylazine for implantation of 

recording chambers (awake group) and isoflurane/xylazine for acute recordings. The choice of drugs and 

doses was designed to achieve general anesthesia throughout surgery and the anesthetized recordings, 

with complete absence of withdrawal response to toe pinch as an assay of anesthetic depth (assessed 
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prior to administration of vecuronium bromide). This fulfilled requirements by the local IACUC. Physiologic 

monitors included electrocardiogram, peripheral capillary oxygen saturation, and rectal body temperature, 

with end-tidal CO2 for a subset of animals. A water heating blanket was used to maintain animal 

temperature between 38.0-39.0°C, and when measured, end-tidal CO2 was between 30 and 50 mmHg 

(Kohn, 1997). Paralube was used to protect the eyes for the duration of the surgery. 

Surgical procedures consisted of an initial midline incision of the scalp, retraction of the soft 

tissue, and a circular craniotomy located over left V1 (approximately 3 mm anterior to lambda and 9 mm 

lateral to the midline) and/or left PFC (approximately 5 mm anterior to bregma and 2 mm lateral to the 

midline, rostral anterior sigmoid gyrus) (Duque & McCormick, 2010) (Figure 5.1B). The potential for brain 

swelling was reduced with a preventative injection of furosemide (1 mg/kg, IM). After removal of dura, the 

brain was covered with warm, sterile 4% agar. A stainless steel head post was implanted with bone 

screws and dental cement. All procedures were approved by the UNC – Chapel Hill IACUC and exceed 

the guidelines set forth by the NIH and USDA. 

 

Procedures in Awake Animals 

Prior to recordings in animals that were awake (“awake recordings”), there was an initial phase of 

habituation to restraint, followed by surgical implantation of the recording chamber to access the 

craniotomy, and finally a period for full recovery of at least 5 days. The animals were habituated to be 

calmly restrained for up to 2 hours in the recording apparatus. General anesthesia during surgery was 

maintained by intramuscular injections of ketamine (30 mg/kg) and xylazine (1-2 mg/kg) approximately 

every 40 minutes. The base of a custom-fabricated cylindrical chamber with a removable cap (material: 

Ultem 1000) was secured to the skull with bone screws and dental cement in order to allow subsequent 

access to the craniotomy for recordings. Upon completion of these surgical procedures, the incision was 

closed with sutures and treated with antibiotic cream. Yohimbine (0.25-0.5 mg/kg, IM) was administered 

for emergence; the animal was kept warm with a heating blanket and observed during recovery. 

Meloxicam (0.2 mg/kg, IM) and enrofloxacin (5 mg/kg, IM) were administered to prevent infection and to 

minimize post-surgical discomfort.  
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Procedures in Anesthetized Animals  

Prior to recordings in anesthetized animals (“anesthetized recordings”), general anesthesia was 

induced with an intramuscular injection of ketamine (30 mg/kg) and xylazine (1-2 mg/kg) and the animals 

were intubated and mechanically ventilated (10-11 cc, 50 bpm, 100% medical grade oxygen). Eyes were 

kept lubricated with sterile saline (applied at the beginning of the wait period for anesthesia stabilization) 

and vital signs were monitored throughout recording. Any effect from ketamine administered during 

induction was minimal as multiple hours elapsed prior to the start of electrophysiological recordings and 

the elimination half-life of ketamine has been reported to be 45-60 minutes (Davidson & Plumb, 2003; W. 

B. Saunders Company). 

General anesthesia was maintained with isoflurane (iso, 0.5%, 0.75%, 1.0%) and a constant 

infusion of xylazine. Intravenous access was established in the cephalic vein and fluids included 4.25 

mL/hr 5% dextrose lactated ringer’s with 1.5 mg/kg/hr xylazine. To optimize electrophysiological stability, 

0.79 mg/kg/hr vecuronium bromide was added during some recordings. The temporal order of isoflurane 

concentrations was randomized across animals to control for changes related to continuous infusion of 

xylazine. At least 20 minutes elapsed after changing anesthetic concentration prior to starting a new 

recording, exceeding the amount of time required in our setup for the LFP to stabilize at the new 

anesthetic concentration. 

We were interested in assessing differences in sensory-evoked activity over a range of anesthetic 

depths that each maintained general anesthesia. Informally in the course of pilot experiments, all dosing 

achieved loss of the righting reflex but systematic assessment during the recordings was technically not 

feasible. The dosing used did not induce long periods of isoelectric brain activity. 

 

Visual and Auditory Stimulation and Multichannel Electrophysiology 

We recorded LFP and MU spiking in response to visual and auditory stimulation. In a first set of 

experiments, multichannel electrophysiological data were recorded with acutely inserted, linear silicon 

depth probes that simultaneously recorded neuronal activity in all cortical layers (32 channels, 50μm 

contact site spacing along the z-axis for single craniotomies; two 16 channel probes, 100μm contact site 

spacing along the z-axis for dual craniotomies, one in V1 and one in PFC, Neuronexus, Ann Arbor, MI). 
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For 32-channel probes, the reference electrode was located on the same shank (0.5mm above the top 

recording site) and was positioned in 4% agar in saline above the brain. A silver chloride wire tucked 

between the skull and soft tissue and held in place with 4% agar in saline was used as the reference for 

both 16-channel probes used during anesthetized recordings. Probes were slowly advanced into cortex 

using a micromanipulator (Narishige, Tokyo, Japan), and correct depth was determined online by small 

deflections of the LFP at superficial electrode recording sites and larger deflections of the LFP at deeper 

electrode recording sites. Current source density (CSD) analysis was performed offline to verify electrode 

positioning across cortical layers (Figure 5.1C). CSD was determined by calculating the second spatial 

derivative of the low-pass filtered and smoothed LFP in response to full-field flashes presented at a rate 

of 1Hz (Ulbert, Halgren, Heit, & Karmos, 2001). The first sink-source pair in the CSD was used to 

determine putative layer IV. All electrode penetrations were within 1 mm of the same location in V1, 

corresponding to 5 degrees visual field in azimuth and 4.8 degrees visual field in elevation (given 

magnification factors in area 17 of 0.2 mm in cortex/degrees of visual space in the azimuth and 0.207 mm 

in cortex/degrees of visual space in elevation (Cantone, Xiao, McFarlane, & Levitt, 2005)). Unfiltered 

signals were first amplified with MPA8I head-stages with gain 10 (Multichannel Systems, Reutlingen, 

Germany), then further amplified with gain 500 (Model 3500, A-M Systems, Carlsborg, WA), digitized at 

20kHz (Power 1401, Cambridge Electronic Design, Cambridge, UK), and digitally stored using Spike2 

software (Cambridge Electronic Design). 

Upon correct depth placement of the electrode(s), the animal was presented with visual or 

auditory stimuli. The same stimuli were presented to awake and anesthetized animals. Each awake 

recording session was brief (typically < 2 hours), during which the animal was head fixed. Visual stimuli 

were presented on a 52 x 29 cm monitor with 120Hz refresh rate and full high-definition resolution (1,920 

x 1,080 pixels, GD235HZ, Acer Inc, New Taipei City, Taiwan) at 47 cm distance from the animal (Figure 

5.1A, left). The same monitor and animal positions were used across sessions, for both awake and 

anesthetized animals. Visual stimuli filled 58 degrees of the visual field horizontally, 33 degrees of the 

visual field vertically, and were controlled by the Psychophysics toolbox (Brainard, 1997) for MATLAB 

(Mathworks, Natick, MA) and a GeForce580 GPU (NVIDIA, Santa Clara, CA). Correct timing of individual 

display frames was ascertained by a photodiode covering a small flashing square in the corner of the 
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monitor. The visual stimulus was 10 seconds long and consisted of 10 transitions between static 

checkerboard frozen noise stimuli (“1 Hz noise”, Figure 5.1A, bottom); each trial consisted of 10 seconds 

visual stimulus bracketed by 10 seconds of black or gray dark. This visual stimulus was part of a larger 

set of stimuli that was presented during each recording session in randomized order. The checkerboard 

visual stimulus enabled the study of responses to both abrupt transitions (i.e. “impulse responses”) and to 

sustained static visual input in between transitions (i.e. “step responses”). Receptive field mapping was 

conducted to functionally verify recording location in V1 (Figure 5.1D). Receptive fields were determined 

by presenting the animal with a series of gray screens with one square of a 19x10 grid colored white or 

black for 40ms. Each square was shown for 30 repeats of each color in a randomized presentation order. 

MUA evoked by each square was calculated by subtracting baseline MUA during the 50ms immediately 

prior to the stimulus onset from MUA 30-80ms after stimulus onset. Based on comparable receptive field 

maps across recordings, consistent craniotomy and electrode insertion locations, and unchanged animal 

and monitor position, we are confident of consistent visual stimulation across recording sessions. We 

validated our PFC recording locations by histological verification of probe location (recording probe 

dipped in DiI, Invitrogen, Grand Island, NY, before insertion) to ensure the electrode was properly 

inserted in the rostral portion of the anterior sigmoid gyrus (Duque & McCormick, 2010), 2 mm from the 

midline (Figure 5.1E). 

Auditory stimulation consisted of open-field white noise played on two speakers (Dayton Audio 

B652, 8 ohm impedance, 70Hz-20kHz, Dayton Audio, Springboro, OH) through an amplifier (PylePro, 

2x40 watt, Pyle, Brooklyn, NY) at 64.3 dB-SPL (System 824 sound level meter, Larson Davis, Depew, 

NY). Auditory stimulation trial structure was similar to visual stimulation (10.7s silence, 10.7s auditory 

stimulation, 10.7s silence). We used a microphone to record sound on a channel of our electrophysiology 

recording system during the entirety of auditory stimulation sessions. We applied a threshold to this 

auditory signal channel in order to detect the onset of stimulation and synchronize the presentation of 

auditory stimuli with neural recordings. 

During awake recordings, continuous infrared video recording (Handycam, HDR-cx560v, Sony, 

Tokyo, Japan) was used to document that the animal was awake as evidenced by open eyes, whisking, 

and nose twitching. Two of the awake animals (one each: V1 and PFC recording locations) was 
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subsequently used for anesthetized recordings to minimize the total number of animals used in this study. 

Presented anesthetized data were combined across both sets of animals. At the conclusion of the study, 

animals were humanely killed with an overdose of sodium pentobarbital and immediately perfused with 

4% formaldehyde in 0.1M phosphate buffered saline for subsequent histological verification of recording 

locations. 

 

Experiments Assessing Interaction of V1 and PFC 

In a second set of experiments, simultaneous recordings in V1 and PFC were conducted in both 

awake and isoflurane/xylazine anesthetized animals in order to assess the interaction of V1 and PFC. For 

experimental feasibility, single metal electrodes were used to acquire electrophysiological data instead of 

multichannel probes. Electrophysiological signals were recorded using single metal electrodes acutely 

inserted in putative layer IV, measured 0.3-0.6mm from the surface of cortex (tungsten microelectrode, 

250µm shank diameter, 500 kOhms impedance, FHC Inc., Bowdoin, ME). A silver chloride wire tucked 

between the skull and soft tissue was used as the reference. Unfiltered signals were amplified with gain 

1000 (Model 1800, A-M Systems, Carlsborg, WA), digitized at 20 kHz (Power 1401, Cambridge Electronic 

Design, Cambridge, UK), and digitally stored using Spike2 software (Cambridge Electronic Design). All 

other details of the surgical and experimental procedures were the same as described above.  

 

Data Analysis and Statistical Analysis 

Recorded broadband signals were processed offline with custom-written scripts in MATLAB 

(Mathworks, Natick, MA). For some depth probes, a few select channels had to be excluded because of 

known defects in Neuronexus B-stock probes; in these cases, we interpolated data from neighboring 

channels. This was only the case for approximately 30% of recordings conducted using 32-channel 

probes (and never for the 16-channel probes), in which either one or two channels were defective; there 

were never instances of consecutive defective channels, thus the spatial blurring was minimal (since 

there always was at least one usable electrode site for every 100µm of cortical depth). About 15% of the 

trials were manually excluded due to motion artifacts in the LFP signal (defined as extreme values in the 

raw traces). If not stated otherwise, the mean across recording sites and trials was calculated per 
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recording session, and figures represent means across recording sessions (number of recording 

sessions, visual stimulation: V1 awake = 39, V1 0.5% iso = 16, 0.75% iso = 17, 1.0% iso = 18, PFC 

awake = 27, PFC anesthetized = 51. Auditory stimulation: V1 awake = 5, V1 anesthetized = 5, PFC 

awake = 15, PFC anesthetized = 17). Laminar probes and CSD allowed for analysis of responses by 

layers: putative supragranular (LI-II/III), granular (LIV), and infragranular layers (LV-VI). Varying isoflurane 

levels were collapsed for the analysis of PFC and the response to auditory stimulation. 

High-pass filtered data (4th order butterworth filter, 300Hz cutoff) were subjected to a threshold of 

-3*std for detection of action potentials (MUA). The distribution of thresholds for awake recordings was 

within the range of thresholds obtained in anesthetized recordings. For response histograms, spiking rate 

was calculated based on 20ms bins. Time constants were calculated by fitting an exponential with offset 

to the MUA response for the time periods indicated: a +b*e(-t/τ). MU response latency was calculated from 

histograms with 5ms bins for increased temporal resolution. Time-dependent frequency content was 

determined by convolution of the raw extracellular voltage signals with a family of Morlet wavelets (0.5Hz 

– 40Hz, step-width 0.5Hz) with normalized amplitude, providing an optimal trade-off between time and 

frequency uncertainty (Goupillaud, Grossmann, & Morlet, 1984). The same methods were applied to 

recordings from awake and anesthetized animals. All spectra are shown on a logarithmic scale. Power in 

each frequency band (delta = 0.5-4Hz, theta = 4-8Hz, alpha = 8-12Hz, beta = 12-30Hz, gamma = 30-

40Hz) was calculated for each recording session. The power enhancement ratio was calculated as the 

ratio between spectral power during visual stimulation to spectral power during spontaneous activity 

before stimulation.  

Spike-field coherence (SFC) was used to quantify the interaction between mesoscopic LFP 

frequency structure and microscopic MU activity. SFC measures phase synchronization between the LFP 

and spike times as a function of frequency. Spike-triggered averages from 1 second segments of LFP 

around each spike were obtained. Multi-taper spectral estimates were used to determine spectra of the 

spike-triggered averages (MATLAB pmtm function with time-bandwidth product of 3.5). Multi-taper 

spectral analysis was used because this approach is optimized for spectral analysis of short data 

segments (such as those obtained from data surrounding each spike time), and is well-suited for non-

stationary signal with rapid fluctuations (van Vugt, Sederberg, & Kahana, 2007). SFC values were given 
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by the ratio of spike-triggered average spectra to the average of spectra calculated from each LFP 

segment (Fries, Reynolds, Rorie, & Desimone, 2001). Thus, SFC is normalized for spike rate and spectral 

power. The SFC ratio was defined as the ratio of the mean SFC for 0.5-30Hz to the mean SFC for 30-

40Hz. 

To assess phase synchrony, we calculated inter-trial phase coherence (ITPC) (Tallon-Baudry, 

Bertrand, Delpuech, & Pernier, 1996). ITPC within V1 and PFC, separately, was calculated by convolving 

the raw extracellular voltage signals with a family of Morlet wavelets (0.5Hz – 40Hz, step-width 0.5Hz) 

with normalized amplitude, and then calculating the mean length of the angle vector across trials. These 

values were calculated per channel, and statistics were conducted across sessions. Normalization was 

conducted by subtracting the average ITPC during full-field dark screen (visual stimulation) or silence 

(auditory stimulation). Recordings conducted under all doses of anesthetics were combined. We defined 

a region of interest of 0.5-10Hz for 500ms after stimulus onset to measure differences in phase 

coherence between awake and anesthetized animals. We normalized the average ITPC in our region of 

interest by subtracting averaged ITPC from 500ms during the preceding dark/silent period. While a 

commonly applied metric to assess phase-resetting, evidence suggests that ITPC may also reflect 

evoked responses. In order to test for this, we utilized the methods proposed by (Martinez-Montes et al., 

2008). Specifically, we calculated the t-like statistic, which assesses if there is a significant difference 

between the sample mean of the wavelet coefficients for each time point and frequency and the average 

of these sample means for the pre-stimulus period. A local false discovery rate (FDR) of 0.2 was used to 

test for significance and correct for multiple comparisons in the time-frequency map. 

In order to test the relationship of activity between V1 and PFC, in a second set of experiments, 

we recorded LFP and MUA simultaneously from V1 and PFC in two awake and two isoflurane/xylazine 

anesthetized ferrets using single metal electrodes inserted into putative layer IV (number of sessions: 

awake = 18, 0.5% iso = 10, 1.0% iso = 21). In order to gain insight into the functional connectivity 

between V1 and PFC, the time-dependent spectral coherence was estimated by first convolving the raw 

signal in V1 and PFC with a family of Morlet wavelets across frequencies [0.2 Hz – 40 Hz, step-width of 

0.2 Hz for time-dependent analysis and step-width of 0.5 Hz for time-averaged analysis]. For each trial, 

the auto spectra in V1 and PFC and the cross spectrum were calculated. The auto spectra in V1, auto 
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spectra in PFC, and cross spectrum were averaged across trials, without smoothing within trials. The 

time-frequency spectral coherence was then calculated as the square of the averaged cross spectrum, 

normalized by the product of the averaged auto spectra from V1 and PFC (Zhan, Halliday, Jiang, Liu, & 

Feng, 2006). This method of calculating coherence does not assume a stationary signal. Spectral 

coherence was calculated per recording session, and means were calculated across sessions to provide 

group-averaged results. Time-averaged spectral coherence was obtained by averaging over time during 

presentation of the visual stimulus. This coherence measure assumes a linear dependence of activity 

between V1 and PFC and takes values from 0 (absent coherence) to 1 (perfect coherence). 

Since the functional relationship of V1 and PFC activity is not well-understood and the 

assumption of linear dependency may not hold, we additionally calculated nonlinear phase-locking 

between V1 and PFC (Lachaux, Rodriguez, Martinerie, & Varela, 1999). The raw signal in V1 and PFC 

was convolved with a family of Morlet wavelets across frequencies (0.5 – 40Hz, step-width 0.5Hz) to 

obtain instantaneous phases of the signal from each brain area. The circular variance of the phase 

differences between V1 and PFC was computed over trials in each recording, and then averaged across 

recordings to provide the group-averaged phase-locking value (V1-PFC PLV). V1-PFC PLVs range from 

0 to 1, reflecting absent to perfect phase-locking, respectively. 

Statistical tests were performed using ANOVA, with post hoc testing if the main effect was 

significant at p < 0.05. Tukey's honestly significant difference criterion was used to correct for multiple 

comparisons. Unless otherwise stated, mean ± sem are reported. 

 

RESULTS 

In order to elucidate how micro- and mesoscale network dynamics of sensory processing differ 

between awake and anesthetized animals, we performed multichannel electrophysiology combined with 

sensory stimulation in head-fixed ferrets (Figure 5.1A, top). The visual stimulus (10s) consisted of 10 

frozen-noise, static checkerboard patterns that were consecutively presented at a frequency of 1 Hz 

(Figure 5.1A, bottom). We recorded LFP and MUA from V1 (n = 13 animals) and PFC (n = 9 animals) to 

quantify MUA and LFP network dynamics (Figure 5.1B: recording locations of V1 and PFC shown on 

photograph of a ferret brain). These two cortical recording locations were chosen to capture responses in 



 

166 
 

and interactions between a primary sensory area and a higher-order cortical association area. We used 

multichannel depth probes for simultaneous electrophysiological recordings from all cortical layers (Figure 

5.1C: current source density in V1, the top sink source pair was indicative of putative granular layer IV; 

layers were identified and grouped as supragranular (LI-LII/III), granular (LIV), or infragranular (LV-LVI)). 

Receptive field mapping demonstrated well-defined visual responses and therefore provided functional 

verification of recording location in V1 (Figure 5.1D); post-mortem histological processing was used to 

confirm recording location in PFC (Figure 5.1E). Infrared videography was used to verify that animals 

were awake for the entirety of the awake recordings as determined by the presence of whisking, minor 

movements, and blinking. Animals had not been trained in any task and were freely viewing during the 

recordings. 

 

Disruption of Temporal Precision and Laminar Distribution of Visually Evoked MUA during 

Anesthesia  

In one conceptual framework, anesthetics could selectively alter information flow between higher-

order (cortical) areas and spare processing in primary sensory cortices, leaving sensory responses intact. 

Alternatively, anesthesia could indiscriminately suppress visual responses and therefore reduce overall 

representation of sensory input. Lastly, anesthetics could disrupt specific aspects of the spatio-temporal 

response dynamics in the cortical microcircuit. In order to disambiguate between these possibilities, we 

first asked if and how visual responses in V1 measured by multiunit activity (MUA) were altered during 

anesthesia. We found that MUA responses differed strikingly between recordings in the awake and 

anesthetized animal. Importantly, we did not find broad suppression of visual responses by anesthetics. 

Rather, we identified several pronounced differences in the temporal structure of MUA responses 

between awake and anesthetized animals. In the awake animal, MUA response dynamics exhibited two 

salient features. First, in response to the onset of the 10 sec visual stimulus, a strong MUA response 

occurred (Figure 5.2A, left, representative high-pass filtered trace from infragranular layers, taken from 

recording shown in Figure 5.2B left, blue line indicates spike-extraction threshold set at -3*std; Figure 

5.2B, left, responses from a single recording; Figure 5.3A, left, averaged group-level responses; MUA 

rates were calculated based on 20 ms bins). MU responses markedly decreased with subsequent 
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transitions to the next checkerboard pattern within each trial of the 10s visual stimulus (Figures 5.2A & B, 

Figure 5.3A, left). Second, awake animals exhibited temporally precise, transient increases in MUA in 

response to each transition in the stimulus (Figure 5.3A, bottom left). In anesthetized animals, the 

amplitude of visually-evoked MUA was comparable for the stimulus onset and the subsequent noise-

pattern transitions in the stimulus (Figures 5.2A, right, representative high-pass filtered trace from 

infragranular layers, taken from the recording shown in Figure 5.2B right, blue line indicates spike-

extraction threshold; Figure 5.2B, right, responses from a single recording; Figure 5.3A, right, averaged 

group-level responses). Furthermore, there was a pronounced ‘tail’ of continued MUA response following 

the initial temporally precise response to transitions in the stimulus (Figure 5.3A, bottom right). 

Accordingly, the decay time constant for the MUA response was significantly longer in anesthetized 

animals compared to in awake animals (Figures 5.3A, bottom, time constant for MU activity during 

seconds 4-5 of visual stimulation: awake = 0.050s, 95% CI [0.037 0.066], 1.0% iso = 0.140s, 95% CI 

[0.119 0.160]). 

We calculated MU firing rate using 5 ms bins to provide better temporal resolution at the onset of 

the visual stimulus but found no alteration in the response latency of MU firing (Figure 5.3B). The latency 

of MU spiking after onset of the visual stimulus exhibited a significant group factor of condition (awake, 

0.5% iso, 0.75% iso, 1.0% iso, F= 2.86, p = 0.041), however no post host tests were significant (Figure 

5.3C, mean response latency ± 1 sem, defined as exceeding a threshold of 2*stdev of baseline spiking 

activity, awake = 0.019s ± 0.0011s; 0.5% iso = 0.018s ± 0.00070s; 0.75% iso = 0.016s ± 0.00071s; 1% 

iso = 0.015s ± 0.00056s). Together, these results indicate that anesthetics altered V1 visually-evoked 

spiking by maintaining a large amplitude response to each subsequent transition in the stimulus and 

concomitantly inducing prolonged MUA responses to transients in the visual input. 

Previous work has demonstrated that anesthetics selectively alter spontaneous activity as a 

function of cortical layer (Sellers et al., 2013). We here sought to investigate if MUA responses to visual 

input also differed across cortical layers during anesthesia. Understanding the impact of anesthetics on 

dynamics across layers in the cortical microcircuit is particularly tractable in V1 because of the well-

established pathway of information flow between cortical layers in visual processing (Binzegger et al., 

2009). 32-channel depth probes allowed for simultaneous acquisition of electrophysiological activity 
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across all cortical layers (Figure 5.4A, group-averaged MU spiking rate during visual stimulation across 

cortical layers for awake animals and animals anesthetized with 0.5%, 0.75%, & 1.0% isoflurane all with 

xylazine). In awake animals, there was a trend level difference in visually-evoked spiking rates across 

cortical layers (Figure 5.4B, far left, mean firing rate averaged across 10 seconds of visual stimulation ± 1 

sem: supragranular = 34.11Hz ± 1.918, granular = 40.01Hz ± 2.302, infragranular = 40.68 Hz ± 2.138, F = 

2.67, p = 0.07). For the three levels of anesthetic, there were significant and trend level effects of cortical 

layer on increased visually-evoked spiking, particularly with differences in the granular layer (Figure 5.4B, 

right, mean firing rate averaged across 10 seconds of visual stimulation ± 1 sem: 0.5% iso, supragranular 

= 33.39Hz ± 4.267, granular = 49.25Hz ± 7.181, infragranular = 36.70Hz ± 4.194, F = 2.37, p = 0.1; 

0.75% iso, supragranular = 40.24Hz ± 4.339, granular = 53.85Hz ± 5.824, infragranular = 37.66Hz ± 

2.629, F = 3.81, p = 0.03; 1.0% iso, supragranular = 39.72Hz ± 4.676, granular = 48.29Hz ± 5.604, 

infragranular = 34.25Hz ± 2.247, F = 2.58, p =0.09).  

Given this trending increase in MUA response in the granular layer during anesthesia, we next 

asked if anesthetics altered adaptation dynamics to the 1 Hz temporal structure of the stimulus as a 

function of cortical depth. In awake animals, we observed adaptation of supragranular, granular, and 

infragranular layers to repeated presentations of the stimulus (Figure 5.4C, left: impulse-like response to 

each of the ten screen changes during the visual stimulus, calculated as the mean MU firing rate for 

200ms after each screen change). During anesthesia, this adaptation of MUA responses was slowed; 

supragranular, granular, and infragranular layers each exhibited inconsistent modulation in response 

across the ten transitions between checkerboard-noise patterns within the visual stimulus (Figure 5.4C, 

right). Decreased activity in the main output layer (layer V, infragranular layers) relative to activity in the 

input layer (layer IV, granular layers) suggests that the interaction between cortical areas may be 

impaired under anesthesia. 

 

Amplified Visually-Evoked Frequency Structure during Anesthesia  

Given these changes in the temporal activity structure of microscopic sensory responses 

measured by MUA, we next asked if mesoscopic activity patterns, in particular the frequency structure of 

the LFP, were also altered by anesthetics. During visual stimulation in awake animals, the LFP (Figure 
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5.5A, left, raw trace from infragranular layers, taken from recording shown in Figure 5.5B left) and spectral 

content (Figure 5.5B, left, single recording example; Figure 5.6A, left, group-averaged results) modestly 

reflected the temporal (1 Hz) structure of the visual stimulus. In contrast, in anesthetized animals, spectral 

power was predominantly driven by the temporal patterning of the visual stimulus (Figures 5.5A right, raw 

trace from infragranular layers taken from recording shown in 5.5B right; 5.5B right, single recording 

example; Figure 5.6A, right, group-averaged results). To assess if this difference in spectral modulation 

was limited to certain cortical layers, we determined stimulation-induced modulation of spectral power by 

cortical layer (Figure 5.6B, ratio of spectral power during visual stimulation to power of spontaneous 

activity). Indeed, we found similar response profiles across layers; in addition, in both awake and 

anesthetized animals, spectral modulation at low frequencies was greater in granular and infragranular 

layers compared to supragranular layers. We next quantified the enhancement of power in each 

frequency band by the visual stimulus, by calculating the ratio of power during visual stimulation to power 

during spontaneous activity before stimulation. Visual stimulation enhanced power for frequency bands in 

both awake and anesthetized animals, with the greatest enhancement at the highest concentrations of 

isoflurane (Figure 5.6C, percent enhancement ± 1 sem, awake animal: delta = 26.42 ± 3.653% 

enhancement, theta = 12.40 ± 3.725% enhancement, alpha = 5.565 ± 3.091% enhancement, beta = 

0.4129 ± 1.945% enhancement, gamma = 11.89 ± 1.503% enhancement. 1% iso: delta = 167.4 ± 22.87% 

enhancement, theta = 143.0 ± 17.42% enhancement, alpha = 112.8 ± 10.07% enhancement, beta = 

75.57 ± 8.024% enhancement, gamma = 48.39 ± 6.889% enhancement). Enhancement in each 

frequency band for animals anesthetized with 0.5%, 0.75%, or 1.0% isoflurane all with xylazine was 

significantly greater than enhancement in the matching frequency band in awake animals (delta: F = 

26.69, p < 0.05; theta: F = 29.18, p < 0.05; alpha: F = 40.90, p < 0.05; beta: F = 57.67, p < 0.05; gamma: 

F = 15.71, p < 0.05). In addition, post hoc tests demonstrated that delta, theta, alpha, and beta power 

enhancement were significantly different between 0.5% iso and 1.0% iso, and beta power enhancement 

was significantly different between 0.75% iso and 1.0% iso. Thus, increasing concentrations of isoflurane 

increased power across all frequency bands, but with the greatest enhancement in the lower frequency 

bands and in granular and infragranular layers. 
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Selective Enhancement of Spike-Field Coherence at Low-Frequencies during Anesthesia 

Given the prolonged MUA responses to visual stimulation together with the broad-band increases 

in stimulus-driven frequency structure during anesthesia, we asked how the functional interaction 

between microscopic and mesoscopic network dynamics was modulated by anesthetics. Spike-field 

coherence (SFC) links mesoscopic LFP network dynamics to microscopic MUA by quantifying the 

interaction between network frequency structure and spiking activity. We found that SFC was minimal in 

awake animals, while anesthetics induced differential effects based on cortical layer (Figure 5.7A). In 

order to further quantify the frequency- and layer-specificity of changes in SFC during anesthesia, we 

developed a metric to indicate the relative enhancement of low frequency SFC (Figure 5.7B-D, SFC ratio 

= mean SFC from 0.5Hz to 30Hz / mean SFC from 30Hz to 40Hz). With anesthetic, the SFC ratio 

increased for supragranular (Figure 5.5B, SFC ratio ± 1 sem: awake = 0.991 ± 0.0714, 0.5% iso = 1.84 ± 

0.283, 0.75% iso = 2.00 ± 0.311, 1.0% iso = 2.54 ± 0.458), granular (Figure 5.7C, awake = 1.17 ± 0.103, 

0.5% iso = 2.22 ± 0.202, 0.75% iso = 2.38 ± 0.216, 1.0% iso = 2.86 ± 0.262), and infragranular layers 

(Figure 5.7D, awake = 1.05 ± 0.0588, 0.5% iso = 3.42 ± 0.403, 0.75% iso = 2.83 ± 0.409, 1.0% iso = 2.99 

± 0.496). For each cortical depth, anesthesia condition was a significant factor (supragranular, F = 7.28; 

granular F = 20.8; infragranular F = 15.8; all p < 0.05). These results demonstrate that during anesthesia 

there was increased synchronization of the LFP and spiking activity, preferentially at lower frequencies. 

Given the likely role of mesoscale dynamics measured by the LFP in enabling and timing the interaction 

between cortical areas, we next investigated the effects of anesthetics on functional cortical connectivity. 

 

Altered Visual Representation in PFC by Anesthetics 

Motivated by the evidence for prominent changes in the magnitude, duration, and adaptation of 

visually-evoked responses in V1 by anesthetics, we next asked if representation of the visual input in PFC 

was also altered by anesthetics. If anesthetic agents cause functional disconnectivity of cortico-cortical 

circuits, PFC responses to sensory stimulation present in the awake animal should be absent in the 

anesthetized animal. Indeed, the onset of visual stimulation induced modulation of the LFP and spectral 

power in PFC of the awake animal (Figure 5.8A, left: single trial example taken from recording session 

plotted in Figure 5.8B left; Figure 5.8B, left: responses from a single recording), whereas visual 
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stimulation did not evoke this activity in PFC of the anesthetized animal (Figure 5.8A, right: single trial 

example taken from recording session plotted in Figure 5.8B right; Figure 5.8B, right: responses from a 

single recording). To quantify this difference between the awake and anesthetized animals, we defined a 

region of interest (ROI) of 0.5-10 Hz for 500 ms after stimulus onset, normalized by the 500 ms prior to 

stimulus onset. Averaged across recordings, spectral modulation was different between awake and 

anesthetized animals (ROI analysis, induced spectral modulation ± 1 sem, awake: 0.186 ± 0.0389, F = 

22.91, p < 0.05; anesthetized: 0.0651 ± 0.0186, F = 12.24, p < 0.05, significant difference between the 

two conditions, F = 9.14, p < 0.05).   

We next asked if the representation of sensory input in PFC differed across cortical layers. Based 

on previous findings that layer II/III frontal cortex receives convergent synaptic inputs from sensory and 

motor systems (Opris, Hampson, Stanford, Gerhardt, & Deadwyler, 2011), we expected that the most 

prominent effects of anesthetics would be found in superficial layers. We calculated the enhancement of 

spectral power as the ratio of power during stimulation to spontaneous activity prior to stimulation. As 

expected, visual stimulation in awake animals induced the strongest spectral modulation in layer II/III, 

according to the temporal pattern of the visual stimulus (Figure 5.8C, left). In anesthetized animals, we 

found slight, non-specific spectral enhancement in the low frequencies (Figure 5.8C, right). Additionally, 

we examined MUA in PFC (Figure 5.8D, representative high-pass filtered traces from infragranular layers 

of awake and anesthetized animals). Awake animals exhibited modulation of PFC MUA by the visual 

stimulus, quantified as the difference in MUA between the 500 ms window before stimulus onset and the 

MUA in the initial 500 ms after stimulus onset (mean ± 1 sem, 2.47Hz ± 0.452, F = 29.85, p < 0.05), while 

PFC MUA was not modulated by the visual stimulus in anesthetized animals (1.05Hz ± 0.547, F = 3.69, 

p=0.06). 

We next computed the ITPC of the LFP. This metric assumes values above zero (maximum value 

of 1) if sensory stimulation consistently altered the phase of the ongoing activity across trials. However, 

ITPC may be sensitive to evoked responses in addition to phase-resetting (Krieg et al., 2011; Martinez-

Montes et al., 2008). Thus, for each ITPC result, we additionally calculated if there was a significant 

evoked response for each (see Figure 5.11). PFC of awake animals exhibited increased ITPC at the 

stimulus onset, in particular at low frequencies (Figure 5.8E, left, mean ROI phase-locking ± 1 sem: 
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awake = 0.0945 ± 0.0201, F = 22.03, p < 0.05, appearance of increased phase synchrony prior to the 

visual stimulus onset is an artifact of the wavelet analysis and does not indicate a response prior to 

stimulus onset). Critically, this engagement was minimal in PFC of the anesthetized animal (Figure 5.8E, 

right, mean ROI ITPC ± 1 sem: anesthetized = 0.0213 ± 0.00638, F = 11.14, p < 0.05, significantly 

different from the awake condition, F = 20.92, p < 0.05). This minimal response to the visual input in PFC 

during anesthesia supports altered functional interaction induced by anesthetics. 

As a reference, we applied this ITPC metric to our V1 data as we expected to see a larger, 

stimulus-driven effect under anesthesia based on the above presented results. Indeed, phase-coherence 

at the onset of the visual stimulus was observed in the awake animal (Figure 5.8F, left: mean ITPC ± 1 

sem = 0.150 ± 0.0225, F = 44.41, p < 0.05) but was stronger and remained elevated throughout the 

duration of visual stimulation in anesthetized animals (Figure 5.8F, right: mean ITPC ± 1 sem = 0.324 ± 

0.0187, F = 299.66, p < 0.05, awake vs anesthetized significantly different, F = 30.76, p < 0.05). 

Therefore, in agreement with the MUA and frequency spectrum LFP results, visual input had a more 

pronounced effect on network dynamics in V1 of the anesthetized animal.  

 

Altered Representation of Auditory Stimulus in V1 and PFC by Anesthetics 

Given this reduced representation of visual stimuli in PFC under anesthesia, we next asked if 

anesthetics similarly modulate the functional connectivity that mediates cross-modal sensory signaling in 

the brain. To address this question, we used auditory stimuli to investigate if the response to such input 

differed in V1 and PFC between the awake and the anesthetized animal. In V1, presentation of the 

auditory stimulus induced modulation in both the LFP and the spectrogram (Figure 5.9A, left: single trial 

example taken from recording session shown in Figure 5.9B left; Figure 5.9B, left: responses from a 

single recording). These effects were absent in the anesthetized animal (Figure 5.9A, right: single trial 

example taken from recording session shown in Figure 5.9B right. Figure 5.9B, right: responses from a 

single recording). At the group level, we found a small modulation of spectral power, although not 

significant (ROI analysis, mean ± 1 sem, 0.146 ± 0.106, F = 1.91, p=0.20), but no significant spectral 

modulation in anesthetized animals (-0.0251 ± 0.0515, F = 0.24, p = 0.63). To investigate if there was 

differential spectral modulation by cortical layer, we calculated the enhancement of spectral power as the 
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ratio of power during stimulation to spontaneous activity prior to stimulation. In awake animals (Figure 

5.9C, left), there was prominent low frequency modulation in V1 granular layers and alpha frequency 

modulation in infragranular layers, whereas anesthetized animals exhibited no prominent differences 

across cortical layers (Figure 5.9C, right). In looking at the MUA (Figure 5.9D, representative high-pass 

filtered traces from an awake and anesthetized animal), we found significant MUA response in V1 

exclusively in awake animals (awake: mean ± 1 sem, 19.7Hz ± 7.04, F = 7.71, p = 0.02; anesthetized: 

0.271 ± 0.914, F = 0.09, p = 0.77; difference between awake and anesthetized significantly different, F = 

10.57, p < 0.05). 

We again examined ITPC within V1 in response to the auditory, white-noise stimulus. 

Interestingly, we found that V1 exhibited increased phase synchrony in response to the auditory stimulus 

in the awake animal while there was no such response in the anesthetized animal (Figure 5.9E, left, 

mean ROI ITPC ± 1 sem in V1 awake = 0.207 ± 0.0163, F = 161.82, p < 0.05; Figure 5.9E, right, mean 

ROI ITPC ± 1 sem in V1 anesthetized = 0.00756 ± 0.0114, F = 0.44, p = 0.52; significantly different 

between the two conditions, F = 72.30, p < 0.05), consistent with intact functional connectivity between 

visual and auditory areas exclusively in awake animals. See Figure 5.11 for additional analysis testing for 

evoked responses. 

We next extended this analysis to recordings conducted in PFC during presentation of the 

auditory stimulus. In PFC, auditory stimulation induced modulation at the onset of the stimulus, as 

evidenced in both the LFP and the spectrogram (Figure 5.10A, left: single trial example taken from the 

recording shown in Figure 5.10B left; Figure 5.10B, left: responses from a single recording). These effects 

were absent in the anesthetized animal (Figure 5.10A, right: single trial example taken from the recording 

shown in Figure 5.10B right. Figure 5.10B, right: responses from a single recording). At the group level, 

onset of the auditory stimulus also induced subtle modulation of spectral power in the awake animal only 

(ROI analysis, induced spectral modulation ± 1 sem, awake: 0.109 ± 0.0356, F = 9.35, p < 0.05, 

anesthetized: 0.0128 ± 0.0518, F = 0.06, p = 0.81; difference between awake and anesthetized significant 

at trend level, F = 2.49, p = 0.12).  

We next calculated spectral modulation across cortical layers in PFC induced by the auditory 

stimulus. We found no pronounced differences between the awake and anesthetized change in spectral 
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power for the broadband auditory stimulus at the group level (Figure 5.10C). In looking at MUA (Figure 

5.10D, representative high-pass filtered traces from an awake and anesthetized animal), we found that 

MUA was altered by auditory stimulation only in the awake animal (induced modulation mean ± 1 sem, 

awake: 1.84Hz ± 0.860, F = 4.59, p = 0.04, anesthetized: -0.948 ± 0.814, F = 1.36, p = 0.25, awake and 

anesthetized significantly different, F = 5.55, p = 0.03). Furthermore, PFC exhibited increased phase 

synchrony at the onset of the auditory stimulus in exclusively the awake animal (Figure 5.10E, left, mean 

ROI ITPC ± 1 sem in PFC awake = 0.0917 ± 0.0188, F = 23.78, p < 0.05; Figure 5.10E, right, mean ROI 

ITPC ± 1 sem in PFC anesthetized = 0.00828 ± 0.0107, F = 0.60, p = 0.44, significantly different between 

the two conditions, F = 15.83, p < 0.05), consistent with intact functional connectivity in only the awake 

animal.  

As stated above, ITPC is likely driven by not only phase resetting but also evoked responses. We 

utilized the approach of (Martinez-Montes et al., 2008) to find the time points and frequencies at which 

there was a significant difference in sample mean of the wavelet coefficients compared to the baseline 

rest period (which the authors termed the T-mean statistic). Indeed, we found that visual stimulation in V1 

induced an evoked response in both awake and anesthetized animals (Figure 5.11A, corresponding to 

ITPC results in Figure 5.8F), while visual stimulation only induced an evoked response in PFC of awake 

animals (Figure 5.11B, corresponding to Figure 5.8E). Auditory stimulation only induced an evoked 

response in V1 and PFC of awake animals (Figure 5.11C, auditory stimulation in V1, corresponding to 

ITPC results in Figure 5.9E; Figure 5.11D, auditory stimulation in PFC, corresponding to ITPC results in 

Figure 5.10E). Thus, this additional analysis identified a likely role of evoked responses as one of the 

main sources contributing to non-zero ITPC values.  

 

Decreased Spectral Coherence and Phase Synchrony between V1 and PFC with Anesthesia 

Motivated by evidence for altered sensory processing across cortical areas and sensory modalities 

under anesthesia, we next directly investigated mesoscale functional connectivity between V1 and PFC 

by recording LFP and MUA simultaneously with single electrodes in V1 and PFC of awake and 

anesthetized animals during visual stimulation. We first used spectral coherence between LFP in V1 and 

PFC to quantify functional connectivity between the two areas. Averaged over the duration of the visual 
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stimulus, awake animals exhibited greater spectral coherence between V1 and PFC compared to 

anesthetized animals (Figure 5.12A, group-averaged and time-averaged spectral coherence between V1 

and PFC). Spectral coherence averaged within each frequency band during visual stimulation was 

significantly greater in awake animals compared to animals anesthetized with isoflurane/xylazine (Figure 

5.12B, mean spectral coherence between V1 and PFC during stimulation in each frequency band ± 1 sem 

for awake animals and animals anesthetized with 0.5% and 1.0% iso, respectively: delta = 0.34 ± 0.037, 

0.15 ± 0.012, 0.15 ± 0.010, theta = 0.30 ± 0.033, 0.13 ± 0.0043, 0.11 ± 0.0030, alpha =  0.27 ± 0.026, 

0.14 ± 0.0065, 0.12 ± 0.0043, beta = 0.24 ± 0.016, 0.11 ± 0.0013, 0.11 ± 0.0022, gamma = 0.22 ± 0.013, 

0.11 ± 0.0013, 0.11 ± 0.0020, all awake vs 0.5% iso and 1.0% iso for a given frequency band significantly 

different, F = 19.88, p < 0.05). These results demonstrate that administration of isoflurane/xylazine 

anesthetics significantly reduced spectral coherence and thus impaired functional connectivity between 

V1 and PFC during sensory stimulation. However, it is important to note that the V1 autospectrum 

appears in the denominator of this metric, and thus differences in spectral coherence between awake and 

anesthetized animals may result from the larger V1 LFP response in anesthetized animals. In addition, 

the interactions between V1 and PFC may deviate from linearity, leading to biased coherence results. 

Thus, we further confirmed this finding of impaired mesoscale functional connectivity by determining the 

effect of anesthetics on nonlinear phase synchrony between the two cortical areas. In agreement with the 

spectral coherence data, averaged over the duration of the visual stimulation, awake animals exhibited 

greater V1-PFC PLV than animals anesthetized with isoflurane/xylazine, (Figure 5.12C, group-averaged 

and time-averaged V1-PFC PLV). V1-PFC PLVs averaged within each frequency band during visual 

stimulation were significantly greater in awake animals compared to animals anesthetized with 

isoflurane/xylazine (Figure 5.12D, mean V1-PFC PLV during stimulation in each frequency band ± 1 sem 

for awake animals and animals anesthetized with 0.5% and 1.0% iso, respectively: delta = 0.91 ± 0.0035, 

0.83 ± 0.0035, 0.82 ±0.0029, theta = 0.92 ± 0.0032, 0.81 ± 0.0022, 0.82 ± 0.0016, alpha =  0.91 ± 0.0025, 

0.80 ± 0.0036, 0.81 ± 0.0025, beta = 0.91 ± 0.0016, 0.81 ± 0.0010, 0.81 ± 0.0012, gamma =0.91 ± 

0.0014, 0.81 ± 0.0023, 0.81 ± 0.0018, all awake vs 0.5% iso and 1.0% iso for a given frequency band 

significantly different, F = 389.73, p < 0.05). Together, these results provide support for disruption of 

functional connectivity between V1 and PFC at the mesoscale by anesthetics. 
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DISCUSSION 

Anesthetics profoundly alter brain activity and are widely used in both clinical practice and 

systems neuroscience research. During general anesthesia, spontaneous macroscopic network dynamics 

are fundamentally altered and have been thoroughly studied in humans using EEG (Brown, Lydic, & 

Schiff, 2010; Katoh, Suzuki, & Ikeda, 1998; Lennox, 1949; Rampil, 1998), ECoG (Laura D. Lewis et al., 

2012), and recently with fMRI (Heinke & Schwarzbauer, 2002; Purdon et al., 2009). Also, the molecular 

targets of anesthetics have been well described and are comprised of relatively complex sets of intrinsic 

and synaptic ion channels for most anesthetic agents (Brown, Purdon, & Van Dort, 2011; Campagna, 

Miller, & Forman, 2003). The effects of anesthetics on intermediate, mesoscale network dynamics have 

been less well studied. A recent report has demonstrated layer-specific modulation of sensory-evoked 

activity in auditory cortex (Raz et al., 2014). A more complete understanding of the effects of anesthesia 

across lamina is crucial since the architecture of the cortical microcircuits that spans all cortical layers 

likely plays a fundamental role in cortical information processing (Binzegger et al., 2009). The importance 

of this question derives from the fact that a vast majority of systems neuroscience studies of sensory 

processing have been performed in the anesthetized preparation due to obvious advantages of 

experimental stability and data throughput in comparison to the awake preparation. We here asked how 

sensory processing is altered during anesthesia, in particular how micro- and mesoscale activity in 

primary visual cortex and prefrontal cortex and the functional connectivity between these areas are 

modulated. 

 

Dynamics of Visual Responses 

The main findings of the present study demonstrate that the anesthetics used did not simply 

suppress sensory responses but rather induced a set of specific changes to the temporal structure of both 

micro- and mesoscale response patterns. At the microscale of MUA, we found that the awake, freely-

viewing animal exhibited temporally precise, brief responses in V1 that were most pronounced at the 

stimulus onset and substantially reduced for the subsequent transitions in the visual stimulus. Anesthetics 

caused temporally prolonged MUA activity, with similar large amplitude responses to each transition in 

the visual stimulus. At the mesoscale of the LFP, we found that anesthetics induced a more pronounced 
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representation of the temporal structure of the stimulus and accordingly a tighter interaction between LFP 

and MUA (especially for low frequencies). Together, these results demonstrate that anesthetics alter the 

overall network dynamics in V1 during visual processing. 

 

Timing and Synaptic Inhibition 

MUA in the awake animal exhibited precise timing and selective response to transitions in the 

visual input. Thus, V1 acted as a “change detector” or highpass filter. Precise timing of neuronal spiking 

has emerged as a hallmark of sensory processing in the visual (Tiesinga, Fellous, & Sejnowski, 2008), 

auditory (Kayser, Logothetis, & Panzeri, 2010; Lu, Liang, & Wang, 2001), and somatosensory (Petersen, 

Panzeri, & Diamond, 2001) systems (but see also (Oram, Wiener, Lestienne, & Richmond, 1999)). 

Precise timing of spiking responses likely emerges from the interaction of synaptic excitation and 

inhibition (Okun & Lampl, 2008; Wehr & Zador, 2003). For example, precise spike timing in layer IV of the 

somatosensory system is mediated by the feedforward recruitment of synaptic inhibition provided by fast-

spiking inhibitory interneurons (Gabernet, Jadhav, Feldman, Carandini, & Scanziani, 2005; Higley & 

Contreras, 2006). Disruption of such precisely balanced synaptic excitation and inhibition could therefore 

represent a possible mechanism of action for the changes described here. Importantly, intracellular 

recordings in cortex of awake animals recently failed to provide evidence for the canonical regime of 

balanced excitation and inhibition (Haider, Hausser, & Carandini, 2013; M. Rudolph, Pospischil, 

Timofeev, & Destexhe, 2007); rather inhibition dominated in the awake animal and balanced excitation 

and inhibition was found in the anesthetized animal (Haider, Duque, Hasenstaub, & McCormick, 2006) 

and in vitro (Shu, Hasenstaub, & McCormick, 2003).  

 

Layer-specific Modulation of Network Dynamics by Anesthetics 

The observed layer-specific alterations of sensory processing during anesthesia likely stem from 

the interplay of several mechanisms at the molecular and cellular level. In particular, changes in 

neuromodulatory tone and synaptic inhibition as a function of layer are candidate mechanisms (Kimura et 

al., 2014). Xylazine, used in this study to achieve complete anesthesia for all concentrations of isoflurane 

(as required by local IACUC regulations), acts as an α2-adrenergic agonist on presynaptic and 
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postsynaptic receptors; isoflurane acts to potentiate GABAA receptors, glycine receptors, 5-HT3 receptors, 

kainate receptors, and two-pore-domain background K+ channels, and inhibit nACh receptors, AMPA 

receptors, voltage-gated Na currents at nerve terminals, and at least some types of voltage-gated Ca 

channels (Eckle, Digruccio, Uebele, Renger, & Todorovic, 2012; Hemmings, 2009; Hemmings et al., 

2005; Patel et al., 1999; U. Rudolph & Antkowiak, 2004). The specificity and efficacy of targeting at each 

of these binding sites, which can induce both complementary and competitive effects, could modulate 

sensory responses. In particular, bilateral norepinephrine projections to the visual cortex are robust, but 

exhibit different densities across supragranular, granular, and infragranular layers (Pinaud, Tremere, & 

De Weerd, 2006). In visual cortex of rats, microiontophoresis of norepinephrine enhanced visually-evoked 

responses, while serotonin suppressed stimulus-evoked excitation and inhibition (Waterhouse, Azizi, 

Burne, & Woodward, 1990). Therefore, differences in the laminar profile of sensory processing between 

awake and anesthetized animals may arise from action at these molecular targets which are expressed in 

varying densities across cortical layers. Furthermore, layer-specific differences in inhibitory feedforward 

and feedback circuits could also contribute to the differing effects of anesthetics across layers. In 

particular, feedforward inhibition is pathway- and layer- specific, capable of modulating network activity 

through stronger feedforward inhibition and relatively weaker feedback inhibition (Yang, Carrasquillo, 

Hooks, Nerbonne, & Burkhalter, 2013). A reduction in synaptic inhibition caused by anesthetics could 

therefore account for the increase in visually-evoked firing rates that we measured in layer IV of 

anesthetized animals. 

In addition, projections from cholinergic nuclei to V1 (Pinaud et al., 2006) and PFC (Chandler, 

Lamperski, & Waterhouse, 2013) have been established. The release of acetylcholine in primary sensory 

cortices during sensory stimulation has been found to depend upon activity in PFC (Rasmusson, Smith, & 

Semba, 2007). Thus, disruption of cortico-cortical connectivity between V1 and PFC induced by 

anesthesia may contribute to altered visual responses in V1 via reduced acetylcholine release.  

 

Relationship to Previous Studies of Sensory Processing in Awake and Anesthetized Animals 

Previous work has investigated several aspects of alteration to electrophysiological sensory 

responses by anesthetics agents (Detsch, Vahle-Hinz, Kochs, Siemers, & Bromm, 1999; Schumacher, 
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Schneider, & Woolley, 2011; Villeneuve & Casanova, 2003), demonstrating  altered contextual (figure-

ground) modulation but maintained receptive field properties (Lamme, Zipser, & Spekreijse, 1998), 

impairment of motion integration (Pack, Berezovskii, & Born, 2001), increased correlation structure of 

activity (Greenberg, Houweling, & Kerr, 2008), and increased gamma oscillations in V1 induced by visual 

stimulation flashes (O. A. Imas, Ropella, Ward, Wood, & Hudetz, 2005) during anesthesia. We primarily 

utilized isoflurane and xylazine in combination because of their widespread and historic use in studying 

sensory processing in the visual, auditory, and olfactory systems of both animals and humans (Heinke & 

Schwarzbauer, 2001; Hudetz & Imas, 2007; Madler, Keller, Schwender, & Poppel, 1991; Rojas, Navas, 

Greene, & Rector, 2008; Sebel, Ingram, Flynn, Rutherfoord, & Rogers, 1986; Villeneuve & Casanova, 

2003; Vincis, Gschwend, Bhaukaurally, Beroud, & Carleton, 2012). Our results demonstrated enhanced 

neural responses at the frequency of the presented stimulus, and we found that with isoflurane and 

xylazine anesthetics, visual responses were temporally prolonged compared to responses in awake 

animals. However, previous reports have demonstrated that anesthetics reduce the sustained portion of 

sensory responses. With pentobarbital/chloral hydrate anesthesia, only the phasic response to auditory 

stimuli were still present in recordings from rat primary auditory cortex (Gaese & Ostwald, 2001). In 

addition, desflurane anesthesia induced differential changes in early and late poststimulus unit responses 

in V1 elicited by visual flash stimulation, with preserved reactivity of cortical units within 100ms of stimulus 

presentation but reduced late component responses with deepening anesthesia (Hudetz, Vizuete, & 

Imas, 2009). The reason for the apparent contradiction with our current results is not entirely clear, but 

may stem from anesthetic-induced changes in the number of units which were visually-responsive, and 

thus different findings from analysis at the single unit vs multiunit level. Furthermore, given that the 

mechanism of action of anesthetic agents varies at the molecular level, it is likely that the differential 

effects of anesthetic agents extend to the systems level studied here. 

Fundamental differences in sensory processing between awake and anesthetized animals are not 

unique to visual cortex. In agreement with our finding of temporally prolonged sensory-evoked responses 

during anesthesia, barrel cortex of rats anesthetized with urethane and chloral hydrate exhibited 

sustained sensory-evoked activity (Devonshire, Grandy, Dommett, & Greenfield, 2010). At anesthetic 

depths prior to burst suppression, responses to auditory stimulation measured in auditory cortex were 
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intact during isoflurane anesthesia, whereas visually-elicited modulation in auditory cortex was reduced 

(Raz et al., 2014). These results nicely complement our results that during anesthesia, sensory 

responses are maintained only in the primary sensory cortex for the matched modality of stimulation, but 

responses to sensory stimulation across cortical areas are silenced. 

 

Disruption of Cortico-cortical Connectivity during Anesthesia 

Primary sensory cortices do not operate in isolation, but rather send projections to and receive 

projections from higher cortical areas such as PFC that play a crucial role in defining overall state by 

mechanisms such as allocation of attention (Buschman & Miller, 2007; Gregoriou, Gotts, Zhou, & 

Desimone, 2009). Top-down feedback facilitates the processing of task-relevant information (Morishima 

et al., 2009) and modulates activity in sensory cortices (Anton-Erxleben, Stephan, & Treue, 2009; J. Fritz, 

Shamma, Elhilali, & Klein, 2003). Intriguingly, recent evidence suggests that impairment of such 

information flow between cortical areas represents a network mechanism of action for anesthetics (Alkire 

et al., 2008; Bonhomme, Boveroux, Brichant, Laureys, & Boly, 2012; Raz et al., 2014). Specifically, 

studies using EEG and fMRI have demonstrated that general anesthesia alters the functional connectivity 

and information transfer between anterior and posterior areas of the brain (Jordan et al., 2013; Lee et al., 

2013). A study of healthy human subjects anesthetized with propofol suggested that cognitive binding, 

defined as the integration of low-order neural representations of sensory stimuli with high-order cortices, 

(Mashour, 2004) is disrupted by blocking the projection of the sensory information to high-order 

processing networks (Liu et al., 2012). Our results support this model and provide increased temporal and 

spatial resolution of these effects of anesthesia. We found that anesthetics reduced visual- and auditory-

evoked phase-locking responses in PFC, and that anesthetics limited responses in V1 elicited by auditory 

stimulation. This agrees with imaging studies that demonstrated decreases in fronto-parietal functional 

connectivity and in cross-modal interactions between auditory and visual areas (Boveroux et al., 2010; 

Schrouff et al., 2011). Furthermore, we found that cortico-cortical interactions between V1 and PFC were 

disrupted by anesthetics, as assessed through both amplitude and phase measures. A study of event-

related potentials in anesthetized rats similarly found reduced long-range antero-posterior coherence 

(Olga A. Imas, Ropella, Wood, & Hudetz, 2006). In seeming contrast to the disruption of cortical 
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connectivity during anesthesia, some studies have demonstrated cross-modal responses during 

isoflurane anesthesia (Land, Engler, Kral, & Engel, 2012; Takagaki, Zhang, Wu, & Lippert, 2008); 

however, these results were only obtained under conditions of burst suppression and were attributed to 

propagating waves of activity across cortical areas, which together suggest a different mechanism of 

action.  

In awake animals, we found MUA responses in PFC elicited by visual and auditory stimulation. 

These results are particularly interesting in light of a previous study which did not find MUA responses in 

frontal cortex of ferrets in response to auditory stimuli presented during passive listening (J. B. Fritz, 

David, Radtke-Schuller, Yin, & Shamma, 2010). The stimuli used in our study were “broadband” stimuli 

(white auditory noise and visual checker board patterns) which may have recruited bottom-up attention, 

thus explaining this difference. Bottom-up attention is elicited by a salient stimulus and is believed to 

involve different neural pathways compared to other forms of attention (Miller & Buschman, 2012). 

Furthermore, the behavioral training status of the animals was different; the animals in the current study 

were completely untrained while (J. B. Fritz et al., 2010) studied animals which had been trained in an 

auditory discrimination task. Although the animals were not engaged in a behavioral task during the 

presentation of the auditory stimuli, the global brain state may have been different because of effortful 

inhibition of behavioral responses or monitoring for a switch to the active condition. Lastly, it needs to be 

emphasized that precise anatomical and functional demarcations of ferret frontal cortex are currently 

missing and it is therefore possible that slight differences in recording locations across studies lead to 

different findings. Together, these differences may explain the modest spiking responses we found in our 

study. 

Our findings provide insight at the mesoscopic network-level of two cortical areas, which could 

account for previous reports of reduced functional connectivity as measured through blood oxygenation 

level dependent (BOLD) signals, and anesthetic-induced decreases in directional connectivity at the level 

of EEG in human subjects anesthetized with propofol, ketamine, or sevoflurane (Jordan et al., 2013; Lee 

et al., 2013; Mashour, 2013). Loss of consciousness induced by other pharmacological agents such as 

the benzodiazepine midazolam also induced a breakdown of cortical functional connectivity (Ferrarelli et 

al., 2010). Interruption of cortico-cortical signaling agrees with the framework that anesthetics disrupt 
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cortical functional connectivity and integration (Alkire et al., 2008; Mashour, 2004; Nallasamy & Tsao, 

2011), and functionally isolate different neuronal networks (L. D. Lewis et al., 2012). Modeling work has 

demonstrated that reduced functional connectivity between cortical areas during slow wave sleep may be 

caused by a shift in the balance of synaptic excitation and inhibition (Esser, Hill, & Tononi, 2009), a 

mechanism which could also underlie anesthesia and aligns nicely with experiments demonstrating 

altered synaptic excitation and inhibition induced by anesthesia. Additionally, indirect cortico-thalamo-

cortical loops are also impaired by anesthetics and may therefore also contribute to the functional 

disconnectivity found in our study (Alkire & Miller, 2005).  

As with any study, there are limitations to the experiments discussed here. All doses of 

anesthetics administered corresponded to general anesthesia with the same behavioral state; animals 

had lost the righting reflex and were unresponsive to toe pinch. This may explain the limited dose-

dependent differences. Other studies have more completely investigated differing depths of anesthesia, 

ranging from sedation to unconscious immobility (Hudetz et al., 2009). In addition, not all animals in the 

study were recorded from during both the awake and anesthetized conditions. Previous reports have 

found that spontaneous firing rates can be affected by anesthetics, thus the background MUA activity 

(sometimes referred to as noise level) could have been reduced in the case of anesthetized recordings. 

Specifically, work performed in cultured brain slices (Antkowiak & Helfrich-Forster, 1998) and in vivo 

(Hentschke, Schwarz, & Antkowiak, 2005) have demonstrated that volatile anesthetics, including 

isoflurane, administered at half the concentration used for general anesthesia and at concentrations 

inducing hypnosis in humans decreased spontaneous action potential firing in neocortical neurons. 

Somatosensory cortex of urethane anesthetized rats exhibited rhythmic bursts of synchronized action 

potential firing, which led to decreased overall spontaneous firing rate (Erchova, Lebedev, & Diamond, 

2002). Direct pairwise comparisons between the awake and anesthetized condition in the same animal 

could reduce potential confounds of inter-animal differences in neural dynamics. Such a study design 

could have been achieved by recording from chronically implanted probes from each animal daily in both 

the awake and anesthetized conditions. Despite these limitations we believe this work provides a 

framework for interpreting sensory responses recorded in anesthetized animals and insight into 

fundamental mechanisms of action of anesthetic agents.  
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FIGURES  

 

Figure 5.1. Multichannel electrophysiology in V1 and PFC of awake and anesthetized ferrets 

during presentation of visual stimuli. 

(A) Top: Full-field visual stimuli were presented to awake and anesthetized head-fixed ferrets. Bottom: 

Each trial of visual stimulation consisted of 10 seconds dark (spontaneous activity), 10 seconds of 

checkerboard frozen noise with abrupt transitions to a new pattern every second, and 10 seconds 

dark again. 

(B) LFP and MU activity were recorded in primary visual cortex (V1, lateral gyrus) and prefrontal cortex 

(PFC, rostral anterior sigmoid gyrus, 2mm from the midline) during presentation of sensory stimuli. 

(C) The use of multichannel depth probes allowed for simultaneous recordings across all cortical 

layers. Current source density (CSD) analysis was used to determine the depth of putative 

supragranular, granular, and infragranular layers. The top sink/source pair was indicative of 

putative granular layer IV. The figure depicts a representative CSD for one recording location in an 

awake animal. 

(D) Receptive field mapping was conducted to provide functional verification of electrode position in 

V1. Figure depicts a representative receptive field map for one recording electrode for an animal 

anesthetized with 1.0% isoflurane and xylazine. Map depicts visual field covered by computer 
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monitor that spanned classical receptive fields and a large amount of surrounding visual space 

(full-field visual stimulation). 

(E) Histological examination to verify electrode location in PFC. Left: Electrode track location (electrode 

dipped in DiI prior to insertion) in representative coronal section of PFC. Right: Neighboring coronal 

section (Nissl stain). 
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Figure 5.2. Representative MUA responses in awake and anesthetized animals 

(A) Representative traces of high-pass filtered MU spiking activity from infragranular layers in an 

awake (left) and 1.0% isoflurane with xylazine anesthetized (right) animal during visual stimulation. 

Awake animals exhibited MUA primarily at stimulus onset and the first few transitions of noise 

patterns. In anesthetized animals, MUA was strongly driven by the stimulus transitions for the 

entire duration of the visual stimulation. Red bars indicate presentation times of the visual stimulus. 

Blue lines indicate threshold for extracting spikes; both large amplitude spikes and small amplitude 

spikes were extracted. 

(B) MU spike-time histograms from a single recording session for an awake animal (left) and an animal 

anesthetized with 1.0% isoflurane with xylazine (right). Raw traces shown in (A) are from these 

recording sessions. Large red arrows indicate stimulus onset and offset; small red arrows indicate 

transitions between noise patterns in the stimulus.  
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Figure 5.3. Differences in MUA response dynamics between awake and anesthetized animals. 

(A) Group-averaged MU spike-time histograms. Top: In awake animals (left), MU firing was temporally 

precise and aligned to transitions in the visual stimulus. In 1.0% isoflurane with xylazine 

anesthetized animals (right), firing rate remained elevated following transitions to subsequent noise 

patterns during visual stimulation. Large red arrows indicate stimulus onset and offset; small red 

arrows indicate transitions between noise patterns in the stimulus. Bottom: MUA exhibited a shorter 

decay time-constant in awake animals compared to anesthetized animals. Red line: Exponential fit 

of decay time-course. All plots show averages across cortical layers. 

(B) Group-averaged MU spiking response latency in awake and anesthetized animals. 5 ms binning 

was used for finer temporal resolution. All plots show averages across cortical layers. Red lines: 

Stimulus onset.  

(C) Group-averaged mean MU response latency, defined as exceeding a threshold of 2*std of baseline 

spiking activity. Response latency was not significantly different between awake and anesthetized 

animals. All plots show averages across cortical layers. Error bars indicate 1 sem. 
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Figure 5.4. Disruption of the laminar distribution and adaptation of visually-evoked MUA 

responses. 

(A) Group-averaged MU firing rate across cortical layers. Compared to awake animals (top), increasing 

concentrations of anesthetic (bottom, 0.5%, 0.75%, 1.0% isoflurane all with xylazine) altered the 

laminar distribution of MU firing, notably increasing relative strength of the response in putative 

layer IV (electrode depth 0.3mm – 0.6mm). 

(B) Group-averaged mean firing rate across 10 seconds of visual stimulation for supragranular, 

granular, and infragranular layers. Awake animals exhibited slightly higher MU firing rate in 

granular and infragranular layers compared to supragranular layers. 0.5%, 0.75%, and 1.0% 

isoflurane all with xylazine increased firing rate in granular layers at the trend level relative to 

supragranular and infragranular layers. Error bars indicate 1 sem. * indicates significantly different 

at p < 0.05. 
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(C) Response to each of the ten transitions between subsequent noise patterns during the visual 

stimulus, calculated as the mean MU firing rate for 200ms after each screen change, for 

supragranular (blue), granular (green), and infragranular (red) layers. Awake animals exhibited 

pronounced spike rate adaptation for later noise patterns, while anesthetics slowed this adaptation 

of MUA. 



 

189 
 

 

Figure 5.5. Representative LFP responses to visual input in V1 

(A) Representative LFP traces from infragranular layers in V1 in an awake (left) and 1.0% isoflurane 

with xylazine anesthetized (right) animal during visual stimulation. Note UP and DOWN states in 

the LFP trace from the anesthetized animal. Red bars indicate presentation of visual stimulus. 

(B) Spectrograms of single recordings from awake (left) and 1.0% isoflurane with xylazine anesthetized 

(right) animals. Raw traces shown in (A) are from these recording sessions. Plots show averages 

across cortical layers. 
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Figure 5.6. Differences in mesoscale LFP responses to visual input in V1 

(A) Group-averaged spectrograms of awake (left) and 1.0% isoflurane with xylazine anesthetized 

(right) animals. Plots show averages across cortical layers. 

(B) Group-averaged ratio of spectral power during visual stimulation to spectral power during 

spontaneous activity prior to visual stimulation by cortical layer. In both awake (left) and 1.0% 

isoflurane with xylazine anesthetized (right) animals, the 1Hz structure of the visual stimulus is 

apparent in the activity of all cortical layers. 

(C) Enhancement ratio of spectral power during visual stimulation to spectral power during 

spontaneous activity prior to visual stimulation. Plots show averages across cortical layers. In both 

awake and anesthetized animals (0.5%, 0.75%, and 1.0% isoflurane all with xylazine), all 

frequency bands exhibited increased power. Greater enhancement in power was evident as 

isoflurane concentration increased. Error bars indicate 1 sem. * above bars indicates significantly 

different from values in awake animals, p < 0.05. Additional significant differences at p < 0.05 are 

indicated. 
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Figure 5.7. Anesthetics increased spike-field coherence (SFC) in V1 during visual stimulation, 

preferentially at low frequencies. 

(A) SFC was used to quantify the interaction between mesoscopic LFP frequency structure and 

microscopic MUA during presentation of the visual stimulus. This figure shows group-averaged 

SFC by cortical depth during presentation of visual stimulation. SFC was low in awake animals 

across cortical layers (left). Anesthesia induced layer-specific changes to SFC (right, 0.5%, 0.75%, 

and 1.0% isoflurane all with xylazine). Specifically, compared to awake animals, anesthetized 

animals exhibited increased SFC in supragranular and infragranular layers, increased SFC at low 

frequencies in granular layers, and decreased SFC at higher frequencies in granular layers. 

Putative granular layer IV (electrode depth 0.3mm-0.6mm) indicated by red box.  

(B) The SFC ratio (mean SFC from 0.5Hz to 30Hz / mean SFC from 30Hz to 40Hz) was used to 

indicate the relative enhancement of low frequency SFC. In supragranular layers, anesthetics 
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enhanced SFC broadly across frequencies compared to SFC in the awake animal. Error bars 

indicate 1 sem. * indicates significantly different at p < 0.05. 

(C) In granular layers, anesthetics enhanced SFC in low frequencies in a dose-dependent manner and 

decreased SFC at higher frequencies compared to SFC in awake animals. Error bars indicate 1 

sem. * indicates significantly different at p < 0.05. 

(D) Anesthetics enhanced SFC in low frequencies most prominently in infragranular layers. Error bars 

indicate 1 sem. * indicates significantly different at p < 0.05. 
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Figure 5.8. Visual stimulation induced spectral modulation and increased inter-trial phase 

coherence (ITPC) in PFC of awake animals, but not in PFC of anesthetized animals. 

(A) Representative LFP traces from infragranular layers in PFC in an awake (left) and 1.0% isoflurane 

with xylazine anesthetized (right) animal during visual stimulation. Red bars indicate presentation of 

the visual stimulus. 

(B) Spectrograms of single recordings from PFC in awake (left) and 1.0% isoflurane with xylazine 

anesthetized (right) animals. In awake animals, the onset of the visual stimulus at time = 0s 

induced spectral modulation, particularly in low frequencies. Plots show averages across cortical 

layers. 

(C) Group-averaged ratio of PFC spectral power during visual stimulation to spectral power during 

spontaneous activity, by cortical layer. In awake animals (left), the visual stimulation induced 

spectral modulation in superficial layers according to the temporal pattern of the visual stimulus. In 
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anesthetized animals (right), superficial layers exhibited minimal spectral modulation by the visual 

stimulus. Dashed lines indicate 1Hz. 

(D) Representative traces of high-pass filtered MU spiking activity from PFC infragranular layers in an 

awake (left) and 1.0% isoflurane with xylazine anesthetized (right) animal during visual stimulation. 

Awake animals exhibited increased MUA at stimulus onset. In anesthetized animals, MUA was 

highly rhythmic, likely driven by anesthesia. 

(E) Phase-coherence was used to probe for responses to sensory stimuli. Group-averaged ITPC 

increased at the onset of visual stimulation in PFC of awake animals (left). In PFC of anesthetized 

animals, there was no increase of group-averaged phase-coherence induced by visual stimulation 

(right). Plots show averages across cortical layers. 

(F) V1 in awake (left) and anesthetized (right) animals exhibited increased group-averaged phase-

coherence during presentation of the visual stimulus. Plots show averages across cortical layers. 
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Figure 5.9. V1 spectral modulation and increase in ITPC by auditory stimulation were suppressed 

by anesthetics. 

(A) Representative LFP traces from infragranular layers in V1 in an awake (left) and 1.0% isoflurane 

with xylazine anesthetized (right) animal during auditory stimulation. Red bars indicate presentation 

of the auditory stimulus. 

(B) Spectrograms of single recordings from V1 in awake (left) and 1.0% isoflurane with xylazine 

anesthetized (right) animals. In awake animals, the onset of the auditory stimulus at time = 0s 

induced spectral modulation. Plots show averages across cortical layers. 

(C) Group-averaged ratio of V1 spectral power during auditory stimulation to spectral power during 

spontaneous activity, by cortical layer. In awake animals (left), the strongest effect of auditory 

stimulation on spectral power was found at low frequencies in the granular layer and in the alpha 

band in infragranular layers. These dynamics were absent in anesthetized animals (right).  

(D) Representative traces of high-pass filtered MU spiking activity from V1 infragranular layers in an 

awake (left) and 1.0% isoflurane with xylazine anesthetized (right) animal during auditory 

stimulation. 
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(E) Auditory stimulation elicited increased group-averaged phase-coherence in V1 of awake animals 

(left). In V1 of anesthetized animals, there was no detectable increase in group-averaged phase-

coherence induced by auditory stimulation (right). Plots show averages across cortical layers. 
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Figure 5.10. Auditory stimulation induced increase in spectral power and ITPC in PFC of awake 

animals. 

(A) Representative LFP traces from infragranular layers in PFC in an awake (left) and 1.0% isoflurane 

with xylazine anesthetized (right) animal during auditory stimulation. Red bars indicate presentation 

of the auditory stimulus. 

(B) Spectrograms of single recordings from PFC of awake (left) and 1.0% isoflurane with xylazine 

anesthetized (right) animals. In only the awake animal, the onset of the auditory stimulus at time = 

0s induced spectral modulation. Plots show averages across cortical layers. 

(C) Group-averaged ratio of PFC spectral power during auditory stimulation to spectral power during 

spontaneous activity, by cortical layer.  

(D) Representative traces of high-pass filtered MU spiking activity from PFC infragranular layers in an 

awake (left) and 1.0% isoflurane with xylazine anesthetized (right) animal during auditory 

stimulation. Awake animals exhibited increased MUA at stimulus onset. In anesthetized animals, 

MUA was highly rhythmic, likely driven by anesthesia. 
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(E) PFC in awake animals (left) exhibited increased group-averaged ITPC at the onset of auditory 

noise stimulation. There was no detectable increase in group-averaged phase-coherence induced 

by auditory noise stimulation in PFC of anesthetized animals (right). Plots show averages across 

cortical layers. 
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Figure 5.11. Inter-trial phase coherence is likely driven by not only phase resetting but also 

stimulation-induced evoked responses. 

(A) We adopted the approach of (Martinez-Montes et al., 2008) to find the time points and frequencies 

at which there was a significant difference in sample mean of the wavelet coefficients compared to 

the baseline rest period (the T-mean). Group-averaged results demonstrate that in V1, visual 

stimulation induced an evoked response for both awake (left) and anesthetized (right) animals, 

according to the temporal patterning of the visual stimulus. This corresponds to ITPC results in 

Figure 5.8F. Plots show averages across cortical layers. Red line indicates stimulus onset. 

(B) Group-averaged results demonstrate that in PFC, visual stimulation induced an evoked response 

at stimulus onset for awake animals (left) but this effect was absent in anesthetized animals (right). 

This corresponds to ITPC results in Figure 5.8E. Plots show averages across cortical layers. Red 

line indicates stimulus onset. 

(C) In V1, auditory stimulation induced an evoked response at stimulus onset in awake (left) but not 

anesthetized (right) animals. This corresponds to ITPC results in Figure 5.9E. Plots show averages 

across cortical layers. Red line indicates stimulus onset. 
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(D) In PFC, auditory stimulation induced an evoked response at stimulus onset in awake (left) but not 

anesthetized (right) animals. This corresponds to ITPC results in Figure 5.10E. Plots show 

averages across cortical layers. Red line indicates stimulus onset. 
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Figure 5.12. Functional connectivity: Spectral coherence and phase synchrony during visual 

stimulation between V1 and PFC were reduced with isoflurane/xylazine anesthetics. 

(A) Single electrodes in V1 and PFC were used to assess functional connectivity between these 

cortical areas. Group-averaged and time-averaged spectral coherence between V1 and PFC 

during visual stimulation. Spectral coherence was highest in awake animals (blue line) across 

frequencies compared to animals anesthetized with 0.5% isoflurane with xlyazine (green line) or 

1.0% isoflurane with xlyazine (red line).  

(B) Mean spectral coherence between V1 and PFC during stimulation in each frequency band. Error 

bars indicate 1 sem. * indicates significantly different at p < 0.05. 

(C) Group-averaged and time-averaged phase synchrony between V1 and PFC (V1-PFC PLV) was 

highest in awake animals (blue line) across frequencies compared to animals anesthetized with 

0.5% isoflurane with xlyazine (green line) or 1.0% isoflurane with xlyazine (red line). Awake 

animals exhibited a local peak in V1-PFC PLV in the theta frequency band. 

(D) Mean V1-PFC PLV during visual stimulation in each frequency band. Error bars indicate 1 sem. * 

indicates significantly different at p < 0.05.  
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CHAPTER 6: FREQUENCY-BAND SIGNATURES OF VISUAL RESPONSES TO NATURALISTIC 

INPUT IN FERRET PRIMARY VISUAL CORTEX DURING FREE VIEWING5 

 

INTRODUCTION 

Encoding of sensory stimuli in cortex represents the process of transforming external physical 

signals into neuronal activity patterns that reduce the redundancy of the sensory input (Barlow, 1961; E P 

Simoncelli & B A Olshausen, 2001). In primary visual cortex (V1), the responses of individual neurons 

and networks of neurons to synthetic visual stimuli measured by changes in action-potential firing are well 

characterized (Hubel & Wiesel, 1959; but see Olshausen & Field, 2005). These “artificial” stimuli have 

been optimized to elicit neuronal spiking responses as a function of basic input properties such as 

orientation, contrast, and spatial frequency. Recently, it has been proposed that synthetic stimuli 

modulate neuronal activity differently than naturalistic visual stimuli (Felsen & Dan, 2005; Smyth, 

Willmore, Baker, Thompson, & Tolhurst, 2003a) due to the different image statistics of synthetic 

laboratory stimuli and real-world visual input (E P Simoncelli & B A Olshausen, 2001). Specifically, 

naturalistic stimuli exhibit a characteristic 1/f to 1/f2 power distribution as a function of spatial frequency f 

(Ruderman & Bialek, 1994; E. P. Simoncelli & B. A. Olshausen, 2001; Tolhurst, Tadmor, & Chao, 1992; 

van der Schaaf & van Hateren, 1996). Studies that employed naturalistic images and movie segments to 

investigate neuronal responses have revealed sparse coding in V1 (e.g. Baddeley et al., 1997; 

Froudarakis et al., 2014; Haider et al., 2010; Vinje & Gallant, 2000; Weliky, Fiser, Hunt, & Wagner, 2003; 

Willmore, Mazer, & Gallant, 2011) that facilitated decoding, maximized coding capacity, and was driven 

by higher-order statistics of the stimulus. Sensory-evoked activity has been recognized to closely relate to 

                                                      
5 This chapter previously appeared as an article in Brain Research; doi: 10.1016/j.brainres.2014.12.016 
(http://www.sciencedirect.com/science/article/pii/S0006899314016850). The original citation is as follows: 
Kristin K. Sellers, Davis V. Bennett, Flavio Frohlich (2015). Frequency-band signatures of visual 
responses to naturalistic input in ferret primary visual cortex during free viewing. Brain Research, 
1598:31-45. 
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the ongoing spontaneous activity (Berkes, Orban, Lengyel, & Fiser, 2011; Luczak, Bartho, & Harris, 2013; 

Scholvinck, Friston, & Rees, 2011; Tsodyks, Kenet, Grinvald, & Arieli, 1999). For example, the structure 

of spontaneous network dynamics was only modestly altered by naturalistic visual input as determined by 

similarity in correlation structure of spiking activity (J. Fiser, C. Y. Chiu, & M. Weliky, 2004). Recently, 

sparse coding of naturalistic visual input was demonstrated to be state-dependent such that the quiet 

waking animal employed a less sparse code than the alert animal (Froudarakis et al., 2014). In general, 

visual responses depend on overall state (Bennett, Arroyo, & Hestrin, 2013; Niell & Stryker, 2010; Polack, 

Friedman, & Golshani, 2013). Also, in theoretical models, overall state-defining fluctuations explain 

response distributions (Goris, Movshon, & Simoncelli, 2014). Together, these results point towards a 

model of sensory processing of naturalistic input in which visual responses (1) are sparse and reliable, 

and (2) emerge from the modulation of ongoing endogenous network dynamics that depend on overall 

behavioral state. Yet, a limited number of studies have considered the local field potential (LFP) dynamics 

of naturalistic vision in the awake animal (Brunet et al., 2013; Ito, Maldonado, Singer, & Grün, 2011; 

Kayser, Salazar, & Konig, 2003; Whittingstall & Logothetis, 2009) and very little is known about the 

temporal structure of mesoscale network dynamics in V1 across cortical layers measured by the LFP and 

its relationship to the microscale spiking activity in the awake, freely viewing animal. 

Given the recent description of different activity states characterized by the relative presence or 

absence of slow rhythmic activity in the cortical LFP of awake animals (Harris & Thiele, 2011; Poulet & 

Petersen, 2008), we here asked (1) how naturalistic visual input modulated the mesoscale V1 activity 

structure during free viewing in the awake animal, and (2) how the mesoscale activity structure related to 

the microscopic spiking response. We used the well-known trial-to-trial variability of sensory responses 

(Tolhurst, Movshon, & Dean, 1983) as a tool to answer these questions and thereby fill a key gap in our 

understanding of how sensory input interacts with ongoing network dynamics in the awake animal. In this 

study, we used the ferret animal model due to its well-studied visual system (Law, Zahs, & Stryker, 1988) 

and primate-like columnar architecture of V1 (Chapman & Stryker, 1993). We presented full-field nature 

movie clips to awake, head-fixed ferrets and determined the rhythmic architecture of the LFP before and 

during visual stimulation (corresponding to spontaneous and sensory-evoked activity) and how these 
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mesoscale network dynamics related to the multiunit spiking response elicited by the visual stimulus as a 

function of cortical layer. 

  

METHODS 

Acclimation and Surgery 

Female ferrets (Mustela putoris furo, supplied by Marshall BioResources, 15-20 weeks old at study 

onset, 750-1000g, n = 3) were used in this study. Surgical and electrophysiological recording procedures 

were described in detail previously (Sellers, Bennett, Hutt, & Frohlich, 2013). The growth of female ferrets 

plateaus prior to the age used here, making females more suited than males for chronic chamber 

implants. All animals were spayed by the vendor in case they were kept past the age of sexual maturity; 

in this study, all animals were used prior to the age of sexual maturity. Animals were acclimated to be 

calmly restrained for up to two hours. Subsequently, animals underwent aseptic surgery in preparation for 

electrophysiological recordings in primary visual cortex (V1). An initial intramuscular injection of ketamine 

(30 mg/kg) and xylazine (1-2 mg/kg) was used for anesthesia induction. Deep anesthesia was maintained 

for the duration of the surgery with supplemental intramuscular injections of ketamine and xylazine, 

approximately every 40 minutes. This anesthesia paradigm was designed to achieve general anesthesia 

throughout surgery, and was assayed by complete absence of withdrawal response to toe pinch. 

Physiologic monitors included electrocardiogram, pulse oxygen level, and rectal body temperature. 

Animals were warmed with a water heating blanket to maintain rectal body temperature of 38.0-39.0°C. 

The animal’s eyes were protected with paralube for the duration of surgery. 

Surgical procedures consisted of an initial midline incision of the scalp, retraction of the soft 

tissue, and a circular craniotomy located over V1 (approximately 3 mm anterior to lambda and 9 mm 

lateral to the midline). The potential for swelling was reduced with an injection of furosemide (1mg/kg, IM). 

After removal of dura, the brain was covered with warm sterile 4% agar. A custom-fabricated cylindrical 

chamber with a removable cap (material: Ultem 1000) was cemented to the skull in order to allow 

subsequent access to the craniotomy for recordings. Additionally, a stainless steel head post was 

implanted with bone screws and dental cement. Upon completion of these surgical procedures, the 

incision was closed with sutures and treated with antibiotic cream. Yohimbine (0.25-0.5mg/kg, IM) was 
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administered to reverse anesthesia. The animal was kept warm with a heating blanket and observed 

during recovery from anesthesia. Meloxicam (0.2mg/kg, IM) and enrofloxacin (5mg/kg, IM) were 

administered to prevent infection and to minimize post-surgical discomfort for five days post-surgery. 

Animals were allowed to fully recover from surgery (at least 7 days) before the first recording session. All 

procedures were approved by the UNC- Chapel Hill IACUC and exceed guidelines set forth by the NIH 

and USDA.  

 

Multichannel Extracellular Recordings 

Local field potential (LFP) and multiunit activity (MUA) were recorded during spontaneous activity 

and presentation of naturalistic visual stimuli. During each recording session, animals were restrained, 

head-fixed, and the recording chamber was opened. After rinsing the craniotomy site with sterile saline, a 

linear 32-channel depth probe (Neuronexus, Ann Arbor, MI) was acutely inserted perpendicular to the 

surface of cortex to record from all cortical layers simultaneously. Recording sites were spaced 50µm 

apart along the z-axis, with the reference electrode located on the same shank (0.5mm above the top 

recording site). Probes were slowly advanced into cortex using a micromanipulator (Narishige, Tokyo, 

Japan), and correct depth placement was determined by small amplitude deflections of the LFP at 

superficial electrode sites and large amplitude deflections of the LFP at deeper electrode sites. Current 

source density (CSD) analysis was conducted offline to determine location of recording electrode relative 

to cortical layer IV (see Data Analysis). All electrode penetrations were made within 1mm of the same 

location in V1, corresponding to 5 degrees visual field in azimuth and 4.8 degrees visual field in elevation 

(given magnification factors in area 17 of 0.2mm in cortex/degrees of visual space in the azimuth, and 

0.207mm in cortex/degrees of visual space in elevation) (Cantone, Xiao, McFarlane, & Levitt, 2005). 

Raw signals were first amplified with MPA8I head-stages with gain 10 (Multichannel Systems, 

Reutlingen, Germany) and then further amplified with gain 500, (Model 3500, A-M Systems, Carlsborg, 

WA), digitized at 20 kHz (Power 1401, Cambridge Electronic Design, Cambridge, UK), and digitally stored 

using Spike2 software (Cambridge Electronic Design). All recordings were conducted with room lights off 

and with minimal acoustic noise to prevent contamination of the recording with neuronal responses to 

extraneous stimuli.  
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Upon correct depth placement of the electrode, the animal was presented with naturalistic visual stimuli 

(four different movie clips from Planet Earth, BBC, London, UK) on a 52 x 29 cm monitor with 120Hz 

refresh rate and full high definition resolution (1,920 x 1,080 pixels, GD235HZ, Acer Inc., New Taipei City, 

Taiwan) at 47cm distance from the animal. Visual stimuli filled 58 degrees of the visual field horizontally, 

33 degrees of the visual field vertically, and was controlled by the Psychophysics toolbox (Brainard, 1997) 

for MATLAB and a GeForce580 GPU (NVIDIA, Santa Clara, CA). Correct timing of individual display 

frames was ascertained by a photodiode covering a small flashing square in the corner of the monitor. 

Each trial of visual stimulation contained 10 seconds of dark control before visual stimulation (to record 

spontaneous activity), 10 seconds of Planet Earth footage (movie of animals moving across the screen), 

and 10 seconds dark control after visual stimulation. For a few sessions, only a subset of stimuli was 

used to shorten the duration of the head-restraint. Continuous video recording with an infrared sensitive 

camera (Handycam HDR-cx560v, Sony, Tokyo, Japan) and LED infrared illumination was used to 

document that the animal was fully awake during recordings as evidenced by whisking and noise 

twitching. At the conclusion of the study, all animals were humanely killed with an overdose of sodium 

pentobarbital and immediately perfused with 4% formaldehyde in 0.1M phosphate buffered saline for 

subsequent histological verification of recording locations. 

 

Data Analysis 

Recorded signals were processed offline with custom-written scripts in MATLAB (Mathworks, 

Natick, MA). Current source density (CSD) was calculated in order to determine the location of the 32-

channel probes relative to cortical layers. Cortical layers were aligned across different electrode 

penetrations according to putative granular layer IV. CSD was determined by calculating the second 

spatial derivative of the low-pass filtered and smoothed LFP in response to full-field flashes (white screen) 

of duration 32ms, presented at a rate of 1Hz. The first stimulus-evoked sink in the laminar profile is 

indicative of layer IV (Mitzdorf, 1985). As additional verification of probe placement, MU firing rate was 

calculated for 30-50ms post stimulus onset. A subset of trials was manually excluded due to motion 

artifacts in the LFP signal, determined by extreme values in the raw traces. In order to calculate the 

spatial frequency of the visual stimuli, the video was converted to gray scale and a two-dimensional 
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discrete Fourier transform was calculated on a square region of each frame. Rotational averaging was 

used to reduce the two dimensional power spectrum to one dimension. The same procedure was 

conducted to calculate spatial frequency of a stock image of a naturalistic visual stimulus (from the point-

of-view of an animal) and for two artificial visual stimuli (black and white checkerboard noise and 

luminance gratings). Data from different naturalistic visual stimulus movies were pooled (n = 578 trials). 

Data are presented per trial, averaged across electrodes, unless otherwise noted. Values are reported as 

median ± sem (standard error of the mean). The spectral content of the LFP was determined by 

convolving the raw extracellular voltage signals with a family of Morlet wavelets (0.5Hz – 40Hz, step-width 

0.5Hz) with normalized amplitude, providing an optimal trade-off between time and frequency uncertainty 

(Goupillaud, Grossmann, & Morlet, 1984). Power in each frequency band (delta = 0.5-4Hz, theta = 4-8Hz, 

alpha = 8-12Hz, beta = 12-20Hz, gamma = 20-40Hz) was calculated for each trial. Relative power was 

determined by calculating the percent of total power in each frequency band, on a trial-by-trial basis. 

Relative power enhancement was calculated by dividing the relative power during visual stimulation by 

the relative power during spontaneous activity before stimulation, on a trial-by-trial basis. We wanted to 

test if observed spectral modulation of the LFP was induced by spectral properties of the visual stimulus. 

To do so, we employed a linear-nonlinear model of V1 spatio-temporal receptive fields and used these as 

spatial and temporal filters of the 10 second movie clips (Mante, Bonin, & Carandini, 2008; Ringach, 

2004). Modeled MU activity was peak-normalized, and the spectrum was calculated using the fast Fourier 

transform. MU action potential firing was detected by high-pass filtering the data (4th order Butterworth 

filter, 300Hz cutoff) and imposing a threshold of -3*std. MU firing rate enhancement was calculated by 

dividing MU firing rate during visual stimulation by MU firing rate during spontaneous activity before 

stimulation, on a trial-by-trial basis. Correlation coefficients were calculated using MATLAB function 

corrcoef, and significance was calculated by using the Fisher r-to-z transformation.  

To determine the preferred phase-of-firing of MUA for each frequency band, the instantaneous 

phase was calculated using the Hilbert transform on band-pass filtered data (delta = 0.5-4Hz, theta = 4-

8Hz, alpha = 8-12Hz, beta = 12-20Hz, gamma = 20-40Hz). Peak phase-of-firing was determined as the 

phase with the highest probability of spiking. Kullback-Leibler (KL) divergence was used to determine the 

difference of the resulting preferred phase-of-firing histograms from a flat distribution. To determine the 
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time-course of the band-limited power in the five frequency bands, we used the Hilbert transform on 

band-pass filtered data (delta = 0.5-4Hz, theta = 4-8Hz, alpha = 8-12Hz, beta = 12-20Hz, gamma = 20-

40Hz) to determine the instantaneous amplitude in each frequency band. This allowed for trajectory plots 

of the oscillatory activity in frequency-band pairs of interest (phase space plots of instantaneous 

amplitudes in frequency bands of interest). We conducted k-means clustering of normalized amplitudes 

(at all time-steps) in order to quantify if behavioral states could be differentiated based on oscillatory 

activity. We requested clustering into two clusters based on visual inspection of the phase-space plots. 

We did not include the one second of data immediately following onset and offset of the stimulus in k-

means clustering, as we were interested in the equilibrium states corresponding to spontaneous activity 

and visual stimulation rather than transients at stimulation onset and offset. Correctly clustered refers to 

trials which were categorized correctly based on if the data originated from a spontaneous activity or 

visually-evoked data point. Phase-amplitude coupling was calculated between the phase of low 

frequencies (delta or alpha) and the amplitude of the gamma oscillation, according to  (Voytek et al., 

2010). Briefly, the raw signal was band pass filtered at the low frequency of interest (delta or alpha) and 

the gamma frequency. The amplitude of the gamma-filtered signal was extracted, and then filtered at the 

lower frequency of interest. The phase of both signals was extracted and phase-amplitude coupling was 

calculated as the mean vector between the angles. 

Bootstrapping with 100 iterations of resampling with replacement, a distribution-independent 

method, was used to calculate standard errors when parametric models were inappropriate. The non-

parametric Kruskall-Wallis test was used to determine statistical significance (if the samples of interest 

came from the same distribution) and multiple comparisons were corrected for using Tukey’s honestly 

significant difference criterion. 

 

RESULTS 

Little is known about the mesoscale network dynamics in V1 of awake animals in absence of 

experimental constraints such as anesthesia or reward-driven attentional processes that define cortical 

state by shaping the overall network dynamics. In order to characterize how naturalistic visual input 

modulates local network activity in the freely-viewing animal, we presented fullfield (58 x 33 degrees 
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visual field) movie clips displaying nature scenes to awake, head-fixed ferrets. The presentation of the 

movie clips was interleaved with periods of no visual stimulation (spontaneous activity). The visual stimuli 

exhibited the characteristic 1/f to 1/f2 spatial frequency structure of naturalistic stimuli (Figure 6.1A, left), 

which is comparable to the spectra of a point-of-view naturalistic visual stimulus (Figure 6.1A, left middle). 

Traditionally used synthetic visual stimuli (checkerboard noise pattern, luminance grating) exhibited 

characteristically different spectra (Figure 6.1A, right). The animals were acclimated to restraint but did 

not receive any other behavioral training and the recording sessions did not include any reward 

contingencies. We verified that the animals were awake during the entirety of the recording sessions by 

reviewing infrared videography for open eyes and minor movements. Local field potential (LFP) and 

multiunit activity (MUA) were recorded with multichannel depth probes in V1 (N = 3 animals). Raw LFP 

traces revealed strikingly different network dynamics for periods of spontaneous activity and visual 

stimulation (Figure 6.1B). Prominent high amplitude, low frequency oscillations often occurred during 

periods of spontaneous network activity; this slow rhythmic activity was typically suppressed for the 

duration of the visual stimulus. Full-field naturalistic visual input therefore altered overall mesoscale 

activity in structure in V1, with the most obvious difference present in the low frequencies. Spectral 

analysis averaged across trials (N = 578) and cortical depth revealed that visual stimulation modulated 

the power in the entire spectrum included in the analysis (Figure 6.2A, 0.5 Hz-40 Hz, change in power 

determined by subtraction of spectra during and before visual stimulation). In particular, power at low 

frequencies (with the exception of a narrow peak around 6 Hz) was lower during visual stimulation and 

power at higher frequencies was enhanced with a cross-over frequency of suppression and enhancement 

around 18 Hz. We mapped this broadband modulation of oscillatory activity onto the standard frequency 

bands as determined by the percent of total power for any given frequency band. This provided a 

measure of the relative presence of oscillations in difference frequency bands (El Boustani et al., 2009). 

When comparing spontaneous activity (Figure 6.2B left, median percent ± sem, delta = 31% ± 0.34, theta 

= 16% ± 0.10, alpha = 13% ± 0.12, beta = 19% ± 0.18, gamma = 21% ± 0.23, n = 578 trials) with visually-

driven activity (Figure 6.2B right, median percent ± sem, delta = 28% ± 0.29, theta = 17% ± 0.11, alpha = 

12% ± 0.10, beta = 17% ± 0.12, gamma = 26% ± 0.22, n = 578 trials), delta, alpha, and beta band activity 

decreased with presentation of visual input and theta and gamma band increased. The mean ranks 
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comparing spontaneous and evoked activity for each of the frequency bands were significantly different 

(delta: df = 1, H = 29.67, p<0.0001; theta: df = 1, H = 10.85, p=0.001; alpha: df=1, H = 43.33, p<0.0001; 

beta: df = 1, H = 47.98, p<0.0001; gamma: df = 1, H = 190.3, p<0.0001; n = 578 trials, Kruskal-Wallis 

test). Thus, naturalistic visual input caused heterogeneous spectral modulation across all cortical 

oscillation frequencies, suggesting that naturalistic visual input elicits comprehensive modulation of the 

overall activity structure in the awake, freely viewing animal presented with full-field naturalistic visual 

input. Importantly, visual stimulation not only increased fast cortical oscillations but also decreased the 

presence of slow oscillatory activity both on absolute (Figure 6.2A) and relative (Figure 6.2B) scales. To 

verify that this spectral modulation was not induced by spectral components of the visual stimulus itself, 

we modeled the spectral properties of responses to the naturalistic videos (Figure 6.2C). Briefly, we 

created spatio-temporal receptive fields characteristic of V1, modeled MU responses using these 

receptive fields as spatial and temporal filters of the visual stimulus, and extracted the frequency 

information of this MU activity. Indeed, we found that the spectral modulation measured in ferret V1 could 

not be explained by these modeled responses to the visual stimulus. 

We then asked how these changes in mesoscopic network dynamics related to the MUA in 

response to the visual stimulus. In principle, modulation of mesoscopic LFP activity and microscopic MUA 

by visual input could reflect two distinct processes. Alternatively, changes in oscillatory activity could 

define excitability of the local circuitry in V1 and therefore be closely related to the MUA response to the 

visual input. To disambiguate between these two scenarios, we asked to what extent the trial-to-trial 

variability of MUA visual responses to the naturalistic visual input was captured by the trial-to-trial 

variability of the stimulus-induced changes to the oscillation power in the different frequency bands. In 

one extreme scenario, the trial-to-trial fluctuation in change of LFP power to the visual input would not 

correlate with the MU trial-to-trial variability, suggesting a decoupling of overall oscillatory tone at the 

mesoscale and sensory processing at the microscale. Alternatively, changes in LFP power could closely 

relate to changes in MU responses and therefore be another representation of the same underlying 

process. In particular, it has long been known that engagement of sensory systems measured by MUA 

co-occurred with increases in gamma oscillations in the anesthetized animal. We here asked, given the 

broad spectral modulation that we found at the LFP level in the awake, freely-viewing animal, if and how 
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the classical frequency bands related to the MU response in average across all cortical layers. For each 

frequency band, we correlated the normalized visual response to the entire stimulus (spike count) with the 

change in relative LFP power in that given frequency band. For the delta oscillation, we found a negative 

correlation, indicating that a stimulus-induced decrease in delta power was associated with a stronger MU 

responses to the stimulus (Figure 6.3A, sample LFP and MUA traces; Figure 6.3B, R = -0.15, 95% CI [-

0.23, -0.07], n = 578 trials; correlation coefficient significantly different from 0, p < 0.001). In contrast, we 

found no significant correlation for the theta band (Figure 6.3C, R = 0.004, 95% CI [-0.078, 0.085], n = 

578 trials; correlation coefficient not significantly different from 0, p = 0.93. The alpha oscillation power 

was also negatively correlated with the MU response, again indicating that the LFP state dynamics were 

related to the network MU response (Figure 6.3D, R = -0.24, 95% CI [-0.31, -0.16], n = 578 trials; 

correlation coefficient significantly different from 0, p < 0.001). This correlation coefficient was not 

statistically different from the corresponding measure for the delta band (Fisher r-to-z transformation, 

p=0.11). For the beta band, we found a small negative correlation (Figure 6.3E, R = -0.09, 95% CI [-0.17, 

-0.008], n = 578 trials; correlation coefficient significantly different from 0, p = 0.03). MU response 

exhibited a positive correlation with gamma oscillation power (Figure 6.3F, R = 0.37, 95% CI [0.30, 0.44], 

n = 578 trials; correlation coefficient significantly different from 0, p < 0.001). This correlation coefficient 

was significantly different from the corresponding measures in the delta (Fisher r-to-z transformation, 

p<0.001) and alpha (Fisher r-to-z transformation, p<0.001) frequency bands. Together, these results 

propose that measurements in LFP power in different frequency bands relate to the MUA such that low 

frequencies (delta and alpha) correspond to decreased response to visual input whereas increase in the 

gamma frequency reflects an increased response to the visual stimulus. Importantly, these results 

suggest that the bidirectional modulation of the oscillatory activity found here directly relates to the 

microscopic spiking response. 

We then asked if the relationship between modulation of oscillation power in individual frequency 

bands and MUA visual responses exhibited a layer-specific fine-structure. To answer this question, we 

computed the same correlation coefficients separately for supragranular (LI-LII/III), granular (LIV), and 

infragranular (LV-VI) layers (Figure 6.4). Again, the delta, alpha, and gamma bands exhibited the most 

pronounced correlations with MUA visual responses. The relationship between oscillation recruitment and 
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MUA responses was quite uniform across layers for the alpha (supragranular: R = -0.16, 95% CI [-0.26 -

0.061]; granular: R = - 0.18, 95% CI [-0.26 -0.96]; infragranular: R= -0.14, 95% CI [-0.22 -0.054]) and 

gamma (supragranular: R = 0.29, 95% CI [0.19 0.38]; granular: R = 0.31, 95% CI [0.23 0.39]; 

infragranular: R= 0.30, 95% CI [0.23 0.38]) frequency bands. However, several interesting additional 

features became apparent in this analysis. First, the negative correlation between recruitment of delta 

oscillation and MUA response was absent for supragranular layers (R = -0.073, 95% CI: [-0.18 0.031]) but 

not for granular (R = -0.20, 95% CI: [-0.28 -0.11]) and infragranular (R = -0.16, 95% CI: [-0.24 -0.076]) 

layers. Theta oscillation recruitment weakly correlated with MUA responses exclusively in the granular 

layer (R = 0.086, 95% CI [0.0019 0.17]; supragranular: R = 0.02, 95% CI [-0.084 0.12]; infragranular: R = 

0.0047, 95% CI [-0.087 0.078]). Beta oscillation recruitment was negatively correlated with MUA 

responses only in the supragranular layers (R = -0.12, 95% CI [-0.22 -0.017]; granular: R = -0.062, 95% 

CI [-0.15 .022]; infragranular: R = 0.026, 95% CI [-0.057 0.11]). This layer-specific fine structure may 

reflect local differences in the functional role of oscillatory activity within the V1 microcircuit or the 

preferential target layers of incoming connections that use specific oscillation frequencies as their signal. 

Thus, these data suggest the presence of an endogenous trade-off between slow (delta and alpha) and 

fast (gamma) oscillation power that is modulated by visual input and shapes the spiking response to 

naturalistic visual input. 

In addition to the relationship between time-averaged MUA and oscillatory power, MUA has been 

shown to exhibit preferred phase-of-firing according to the ongoing oscillation in different frequencies 

(Masquelier, Hugues, Deco, & Thorpe, 2009). Therefore, we next asked if MUA exhibited a preferred 

phase-of-firing, and if these faster timescale dynamics were also modulated by presentation of naturalistic 

visual stimuli. We found that MUA exhibited the strongest preferred phase-of-firing for the delta oscillation 

both during spontaneous activity and visual stimulation (Figure 6.5A, example high-pass filtered trace and 

delta-frequency band-pass filtered LFP trace. Figure 6.5B and 6.5C, left: preferred phase of firing for delta 

oscillation = -2.83 radians). Kullback-Leibler (KL) divergence was calculated as a metric of non-uniformity 

of MUA phase distribution (Figure 6.5D, median KL divergence and 95% CI: spontaneous activity, delta = 

0.0068 [0.0066 0.0070]; visual stimulation, delta = 0.0023 [0.0022 0.0024]). Naturalistic visual stimulation 

decreased the strength of preference for phase-of-firing, particularly in the lower frequencies (Figure 
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6.5D, median KL divergence during spontaneous activity and 95 % CI: theta = 0.0037 [0.0035 0.0038], 

alpha = 0.0018 [0.0017 0.0019], beta = 0.0005 [0.0004 0.0005], gamma = 0.0002 [0.0002 0.0002], 

median KL divergence during visual stimulation and 95% CI: theta = 0.0008 [0.0007 0.0009], alpha = 

0.0005 [0.0005 0.0006], beta = 0.0004 [0.0003 0.0004], gamma = 0.0002 [0.0002 0.0002]). Therefore, 

naturalistic visual input weakened the strength of coupling between MUA and phase of the ongoing 

oscillation. Together, these data suggest that the low frequency oscillations are not only decreased in 

amplitude but also had less influence on spike-timing during presentation of naturalistic visual input. 

We next investigated the time-course of the modulation of the LFP spectrum, in particular of the 

delta, alpha, and gamma bands that we found to be correlated with the MUA response. In order to gain 

resolution in the time-domain, we used the Hilbert transformation to extract the time-course of the power 

in the different frequency bands for LFP activity in three groups of cortical layers (supragranular: LI-LII/III, 

granular: LIV, and infragranular: LV-VI). We used a two-dimensional state-space representation defined 

by delta and gamma power (averaged across trials) to characterize the dynamics of the band-limited 

oscillation power. Trajectories in state space that separate into two clusters, connected by transients at 

stimulation onset and offset, would indicate that presentation of naturalistic visual input switched the V1 

network between two states. Alternatively, lack of separation of the epochs corresponding to spontaneous 

activity and visual stimulation would support a model in which relative oscillation strength in different 

frequencies occurs on a continuum without clear separation into distinct network states. In agreement 

with the former model of distinct states, the delta-gamma phase plots demonstrated clear clustering into 

two relatively distinct states with transitions at stimulus onset and offset for all three groups of cortical 

layers (Figure 6.6). At stimulation onset, an initially transient (light blue) characterized by an increase in 

both gamma and delta power was followed by a state switch that corresponded to a reduction of delta 

power and a concomitant increase of gamma power. Importantly, the transients between the two states 

were quite pronounced and lasted up to several seconds, in particular at the offset of the stimulus (orange 

time points). Although the offset transient quickly moved the trajectory back to the state corresponding to 

spontaneous activity (marked as “I” in Figure 6.6C), an extra “rebound detour” occurred before final 

convergence (marked as “II”), in particular for deep layers. Similarly, for the state space representation of 

the alpha-gamma power pair, we again found two distinct clusters (Figure 6.7). Stimulus onset induced a 
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switch from a high alpha, low gamma power state to a low alpha, high gamma power state. Interestingly, 

the offset transient lasted several seconds and mostly corresponded to a recovery of the spontaneous 

alpha oscillation levels (near horizontal orange part of the trajectories). Together, this state-space 

analysis proposes that free viewing of naturalistic stimuli induced a state transition from a cortical state 

characterized by relative dominance of delta and alpha oscillations to a cortical state characterized by the 

relative dominance of the gamma oscillation. To test this model, we used k-means clustering to assay for 

the presence of two distinct clusters and measured the number of misclassification as an indicator for 

poorly captured structure by two clusters. Mostly, the two clusters determined by k-means clustering 

indeed corresponded to spontaneous and evoked activity. We quantified the percent of data points which 

were incorrectly clustered for each group of cortical layers. For both delta-gamma and alpha-gamma 

trajectories, supragranular layers exhibited less accurate clustering, with significantly more incorrectly 

clustered data points than granular or infragranular layers (Figure 6.8, percent incorrectly clustered ± sem 

for supragranular, granular, and infragranular respectively; bars represent medians across 100 iterations 

of bootstrapping. Delta-gamma: 6.78% ± 0.24, 0.69% ± 0.07, 1.03% ± 0.08; Alpha-gamma: 6.42% ± 0.25, 

2.28% ± 0.15, 3.48% ± 0.12, comparisons significant at p < 0.05 are noted). These results further support 

the presence of two distinct states that are governed by the same trade-off of delta and alpha versus 

gamma band activity. Transitions for gamma oscillation power were relatively fast but the delta and alpha 

oscillation power transients lasted up to several seconds, suggesting a slow transition between the two 

states. 

The distinct states described above were described by the relative power between slow and fast 

frequency oscillations. Substantial work has demonstrated the importance of coordination between the 

phase of low frequencies and amplitude of higher frequency oscillations (Canolty & Knight, 2010). Thus, 

we asked whether the two distinct states defined by delta or alpha power vs gamma power also exhibited 

differences in the phase-amplitude coupling (PAC) of slow and fast frequencies. Indeed, we found that 

both delta-gamma and alpha-gamma PAC were lower during the state elicited by presentation of 

naturalistic visual stimuli compared to spontaneous activity (Figure 6.9). Interestingly delta-gamma PAC 

differed less between the two states, particularly in the granular layer (Figure 6.9B, right). In other words, 

alpha-gamma PAC was more strongly modulated by visual stimulation. This result is in agreement with 
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our finding that alpha power is more highly correlated with MU spiking activity, compared to delta power. 

Together, these results demonstrate that the state change induced by visual stimulation is characterized 

by a change in the balance between low and high frequencies and also by a decoupling of slow and fast 

oscillations. 

 

DISCUSSION 

Our understanding of the visual system is mostly based on the neuronal responses to synthetic, 

optimized stimuli presented to anesthetized animals. Recent work that employed naturalistic visual input 

provided a new perspective on visual coding and the modulatory rather than driving nature of sensory 

input both in animal models (Belitski et al., 2008; Besserve, Scholkopf, Logothetis, & Panzeri, 2010; Dan, 

Atick, & Reid, 1996; David, Vinje, & Gallant, 2004; J. Fiser, C. Chiu, & M. Weliky, 2004; Gallant, Connor, 

& Van Essen, 1998; Ito et al., 2011; MacEvoy, Hanks, & Paradiso, 2008; A. Mazzoni, N. Brunel, S. 

Cavallari, N. K. Logothetis, & S. Panzeri, 2011; Alberto Mazzoni, Nicolas Brunel, Stefano Cavallari, Nikos 

K Logothetis, & Stefano Panzeri, 2011; Mazzoni, Panzeri, Logothetis, & Brunel, 2008; Montemurro, 

Rasch, Murayama, Logothetis, & Panzeri, 2008; Reinagel, 2001; Smyth, Willmore, Baker, Thompson, & 

Tolhurst, 2003b; Vinje & Gallant, 2000; Wang et al., 2007; Weliky et al., 2003; Whittingstall & Logothetis, 

2009) and in human imaging studies (e.g. Betti et al., 2013). However, surprisingly little is known about 

network dynamics in absence of experimentally induced constraints such as anesthesia, which selectively 

increase delta oscillations and suppress alpha oscillation in visual cortex (Purdon et al., 2013), or 

attention paradigms that use reward-based approaches that selectively modulate gamma oscillations as a 

function of the specific attentional demands (Buschman & Miller, 2007). We here sought to fill in this gap 

of knowledge about the mesoscale network dynamics in V1 during free viewing of naturalistic visual input. 

We found that free viewing of naturalistic visual stimuli (movie clips of nature scenes) modulated 

cortical oscillations in all frequency bands; most prominently, the delta and alpha frequency bands were 

suppressed and the gamma frequency band was enhanced. Analysis of the time-course of the 

instantaneous power in these frequency bands demonstrated that visual stimuli switched the overall 

network between two distinct states at the onset and offset of the stimulus, respectively. These LFP 

dynamics were related to the microscopic MUA responses to the visual stimuli. Both the delta and alpha 
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frequency bands negatively correlated with the MU responses and explained a moderate amount of the 

trial-to-trial variability of the MU response. Stimulus-elicited changes in the gamma frequency band 

positively correlated with the MU response. Together, these data propose that V1 switches between 

distinct states that are defined by the relative presence of delta and alpha oscillations on the one hand 

side and gamma oscillations on the other hand side.  

Our data agree with previous studies that consistently found gamma oscillations to be a marker of 

visual processing for a large number of different visual stimuli and experimental conditions. Most 

importantly in the context of our results, naturalistic visual input increased gamma oscillations in awake 

primates (Brunet et al., 2013; Ito et al., 2011; Whittingstall & Logothetis, 2009) and cats (Kayser et al., 

2003). Similar to our results, recruitment of gamma oscillations correlated with MU responses in the 

awake, fixating primate (Whittingstall & Logothetis, 2009). Gamma oscillations arise from local circuit 

interactions, specifically from the dynamic interaction of principle cells and parvalbumin-positive, fast-

spiking inhibitory interneurons (Cardin et al., 2009; Sohal, Zhang, Yizhar, & Deisseroth, 2009). Likely, 

excitatory afferent drive caused by the visual stimulation increased spiking activity in V1 and 

concomitantly the power in the gamma band. In contrast to our results, previous studies (e.g. Belitski et 

al., 2008) reported a stimulus-induced increase in the low frequencies (but see: Kayser et al., 2003) and 

found a positive correlation between low frequency activity and spiking response (Whittingstall & 

Logothetis, 2009). These differences may be explained by the fact that our paradigm did not include 

application of anesthetics or behavioral contingencies that would have shaped the behavioral state of the 

animal and might have suppressed the state transitions with visual stimulation as found in our study. 

At the macroscopic level of human electroencephalograms (EEGs), both alpha and delta 

oscillations have emerged as regulators of overall network excitability. Specifically, human studies have 

consistently found that the power and phase of the alpha oscillation measured with EEG or MEG 

modulated threshold sensory responses (Busch, Dubois, & VanRullen, 2009; Ergenoglu et al., 2004; 

Hanslmayr et al., 2007; Palva & Palva, 2007; van Dijk, Schoffelen, Oostenveld, & Jensen, 2008). Our 

results of stronger visual responses on trials with more stimulus-induced suppression of the delta and 

alpha frequency band conceptually agree with the functional role of these macroscopic network 

dynamics. Importantly, however, we did not employ threshold sensory stimuli nor did we require specific 
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behavioral responses. Rather, we used naturalistic full-field visual input without any experimental 

contingencies. Our results therefore propose that (1) the functional roles of these mesoscale oscillations 

relate to the macroscopic dynamics in human EEG studies and (2) that the regulation of MUA in V1 

reflects the underlying mechanism of differential responses as a function of delta and alpha oscillations 

measured by EEG. 

Sensory responses not only reflect the properties of the physical input but also the state of the 

sensory system before and during the receipt of incoming information. Separation of endogenous state 

dynamics of neuronal networks and sensory responses is fundamentally difficult to achieve since any 

input – at least in theory - perturbs the state of the system. To mitigate this confound, studies of state-

dependent sensory processing typically employ brief, weak stimuli (Castro-Alamancos, 2004; Curto, 

Sakata, Marguet, Itskov, & Harris, 2009; Haider, Duque, Hasenstaub, Yu, & McCormick, 2007; 

Hasenstaub, Sachdev, & McCormick, 2007; Worgotter et al., 1998) and implicitly assume that the 

stimulus itself does not change global brain state. These studies demonstrated the role of oscillatory 

activity in regulating excitability and therefore sensory responses. In contrast, our study provides a 

different perspective in which the sensory stimulus itself (10 sec of full-field naturalistic visual input) 

switches overall cortical state. Such state transitions between slow rhythmic and desynchronized states 

have been recently reported to spontaneously occur in both the somatosensory and the auditory system 

of rodents (Luczak et al., 2013; Poulet & Petersen, 2008). Our study shows a similar presence of slow 

rhythmic activity in the awake, resting ferret. Of note, not all recent work in awake animals found such 

rhythmic structure. These differences may be due to different experimental conditions where for example, 

animals received intermittent rewards during head fixation (Haider, Hausser, & Carandini, 2013) and 

therefore assumed an anticipatory behavioral state, or where animals exhibited heightened, 

experimentally-induced noradrenergic tone (Constantinople & Bruno, 2011). Together, our findings 

support the existence of a state characterized by the relative dominance of delta and alpha oscillations 

and a state characterized by the relative dominance of the gamma oscillation (as identified by the trial-

averaged phase-space representation and the subsequent k-means clustering). 

As a notable limitation, our study did not probe the underlying mechanism for the meso- and 

microscale dynamics described here. Likely candidate mechanisms are modulation of neuromodulatory 
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tone, top-down modulation by higher-order cortical areas such as prefrontal cortex, and state switching in 

thalamo-cortical loops due to increased depolarization by the afferent visual input from the retina to the 

thalamus. Each of these mechanisms may individually or together contribute to the dynamics described 

here. Changes in cholinergic tone are associated with changes in attentional state (Harris & Thiele, 2011; 

Lee & Dan, 2012); increased cholinergic tone has broad effects on intrinsic and synaptic properties, with 

the main effect at the meso- and macroscale being a desynchronization that typically corresponds to a 

selective suppression of low frequency network activity (Metherate, Cox, & Ashe, 1992). Stimulation of 

brainstem cholinergic centers leads to tonic depolarization of cortical neurons (Steriade, Amzica, & 

Nunez, 1993; Steriade, McCormick, & Sejnowski, 1993), and stimulation of cortical sources of cholinergic 

innervation produces awake-like cortical activity in anesthetized animals (Goard & Dan, 2009; Metherate 

et al., 1992; Steriade, Amzica, et al., 1993; Steriade, McCormick, et al., 1993). Release of neocortical 

acetylcholine shifted subthreshold membrane potential fluctuations from slow, delta oscillations to low-

amplitude, gamma frequency oscillation (Metherate et al., 1992). Although no experimental contingency 

provided an incentive for the animals in our study to pay attention to the visual stimulus, the onset of the 

visual stimuli in absence of other salient sensory input may still have recruited cholinergic modulation by 

means of sensory-driven, bottom-up attention. Top-down modulation from higher order cortical areas 

could also provide (possible concomitantly or synergistically with changes in neuromodulatory tone) 

different network set-points as recently described in the somatosensory system (Zagha, Casale, 

Sachdev, McGinley, & McCormick, 2013). Third and last, cortical activity arises from the thalamocortical 

interaction in the canonical circuit that consists of the primary thalamic nucleus (in case of the visual 

system the lateral geniculate nucleus, LGN), the primary cortical target, here V1, and the reticular 

nucleus. Thalamo-cortical relay cells exhibit bistable behavior in which, as a result of depolarization and 

overall neuromodulatory tone, neurons either exhibit burst firing that facilitates slow rhythmic activity in 

the thalamo-cortical loop or tonic spiking that corresponds to an “activated” or desynchronized cortex 

(Steriade, McCormick, et al., 1993). In this scenario, afferent sensory input would provide the necessary 

drive to induce such transitions between the two states. Related to this, it remains to be studied if the 

network dynamics described here are unique to V1, or if these properties are more ubiquitous throughout 

cortical regions. Specific parameters which may affect the network dynamics described here may include 
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cell populations, innervation by other brain regions, and feedback within a given brain region and with 

other brain regions (e.g. thalamocortical loops). 

Together, our work provides a novel perspective on the mesoscale network dynamics in V1 of the 

awake, freely viewing animal. We found that naturalistic visual input switched cortical state in the freely 

viewing animal and that the balance between delta and alpha oscillations on the one hand side and 

gamma oscillations on the other hand side may provide a mechanism by which sensory responsiveness 

is adjusted on a trial-to-trial basis. Our work therefore proposes that using more naturalistic experimental 

approaches to visual stimulation offers an important, complementary perspective on how mesoscopic 

state dynamics mediate sensory processing. Eventually, such insights could provide a network-level 

understanding of sensory processing deficits in patients with schizophrenia and autism, disease state that 

have been recently associated deficits in cortical oscillatory activity (Uhlhaas & Singer, 2012). 
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FIGURES  

 

Figure 6.1. Naturalistic visual stimuli exhibit characteristic spectral properties and modulate LFP 

dynamics. 

(A) The spatial frequency of the naturalistic videos used for visual stimulation (far left) and a point-of-view 

naturalistic image (middle left) exhibit the characteristic 1/f to 1/f2 spatial frequency distribution of 

naturalistic stimuli. Artificial stimuli of black and white checkerboard noise (middle right) and 

luminance gratings (far right) do not exhibit this spatial frequency structure. 

(B) Trials consisted of 10 sec of spontaneous activity (screen dark), followed by 10 sec of naturalistic 

movie clip, followed by 10 sec of spontaneous activity. Representative local field potential traces 

simultaneously recorded on electrode contact sites in supragranular (top), granular (middle), and 

infragranular (bottom) layers of ferret V1.
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Figure 6.2. Modulation of mesoscopic network dynamics in V1 by naturalistic visual input during 

free viewing. 

(A) Group averaged difference in power spectrum of LFP between spontaneous and visually-evoked 

activity. Low frequencies exhibited downregulation (with the exception of a small peak in the theta 

range) and higher frequencies exhibited an upregulation of oscillation power. Gray line indicates ± 1 

sem. 

(B) Relative power for each frequency band during spontaneous activity (left) and during visual 

stimulation (right). Relative power was calculated by dividing power in each frequency band by total 

power, on a trial-by-trial basis. The medians across all trials are plotted. 

(C) The LFP spectral modulation is not explained by modeled physiological responses to the naturalistic 

videos, using spatio-temporal receptive fields characteristic of V1. 
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Figure 6.3. Relationship between mesoscale (LFP) and microscale activity (MUA) during free 

viewing of naturalistic visual input 

(A) Representative sample traces (2 sec of spontaneous activity followed by 2 sec of visual response). 

Top: band-limited LFP in delta band. Bottom: MUA. Stimulus suppressed power in delta frequency 

bands and increased MUA.  

(B) Enhancement in relative delta power exhibited a negative correlation with enhancement of MUA in 

response to stimulus. Enhancement in relative delta power was calculated for each trial by dividing 

the relative power during visual stimulation by the relative power during rest before visual stimulation. 

MUA enhancement was calculated for each trial by dividing MUA firing rate during visual stimulation 

by MUA firing rate during spontaneous activity before stimulation. Each data point represents one 

trial. Best fit line is plotted in red (y = -0.31x + 1.59).  
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(C) Enhancement in relative theta power exhibited a near zero correlation with enhancement of MUA. 

Each data point represents one trial. Best fit line is plotted in red (y = 0.007x + 1.29). 

(D) Enhancement in relative alpha power exhibited a negative correlation with enhancement of MUA. 

Each data point represents one trial. Best fit line is plotted in red (y = -0.51x + 1.77). 

(E) Enhancement in relative beta power exhibited a near zero negative correlation with enhancement of 

MUA. Each data point represents one trial. Best fit line is plotted in red (y = -0.17 + 1.45). 

(F) Enhancement of relative gamma power exhibited a positive correlation with enhancement of MUA. 

Each data point represents one trial. Best fit line is plotted in red (y = 0.58x + 0.57).  
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Figure 6.4. Relationship between mesoscale (LFP) and microscale activity (MUA) during free 

viewing of naturalistic visual input as a function of supragranular, granular, and infragranular 

electrode site locations 

.
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Figure 6.5. MUA exhibited the strongest preferred phase-of-firing to the delta oscillation; 

naturalistic visual stimulation decreased MUA preferred phase-of-firing in low frequencies. 

(A) Simultaneous sample traces during spontaneous activity. High-pass filtered data (top) shows MUA 

which is phase aligned to the delta phase band-pass filtered LFP (bottom).  

(B) Preferred phase-of-firing for all MUA during spontaneous activity, according to the phase of individual 

frequency bands.  

(C) Preferred phase-of-firing for MUA during visual stimulation, according to the phase of each frequency 

band.  

(D) The Kullback-Leibler divergence was used as a metric of non-uniformity of MUA. MUA showed the 

strongest phase-of-firing preference according to the phase of the delta oscillation. MUA exhibited 

stronger preferred phase-of-firing during spontaneous activity (top) compared to during visual 

stimulation (bottom). Plots show median and 95% CI. 
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Figure 6.6. Phase-space representation of instantaneous amplitudes of delta and gamma 

oscillations 

(A) Left: Trajectory of instantaneous delta and gamma amplitudes in supragranular layers, color-coded in 

1 second increments. Periods of spontaneous activity are plotted in dark blue (before visual 

stimulation) and red (after visual stimulation), while periods of visual stimulation are plotted in 

intermediate colors. Onset and offset of the visual stimulation caused a transient change in both delta 

and gamma amplitudes.  

(B) Same representations as in (A) but for granular layer.  

(C) Same representations as in (A) but for infragranular layer. 
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Figure 6.7. Phase-space representation of instantaneous amplitudes of alpha and gamma 

oscillations. Same representations as in Figure 6.6 but for different pair of frequency bands 

(A) Left: Trajectory of instantaneous delta and gamma amplitudes in supragranular layers, color-coded in 

1 second increments.  

(B) Same representations as in (A) but for granular layer.  

(C) Same representations as in (A) but for infragranular layer.  
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Figure 6.8. Percent of incorrectly clustered data points for delta-gamma and alpha-gamma 

trajectories, respectively. 

100 iterations of bootstrapping were conducted to calculate standard error of the mean. Error bars 

indicate ± 1 sem, * indicates significantly different at p < 0.05.  
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Figure 6.9. Phase-amplitude coupling (PAC) of low frequency phases and gamma amplitude was 

decreased by presentation of the naturalistic visual stimulus. 

(A) PAC during spontaneous activity (left) between delta or alpha phase and gamma amplitude was 

decreased by presentation of the visual stimulus (middle, right). Coupling between delta phase and 

gamma amplitude was stronger than alpha-gamma PAC, and was less affected by visual stimulation.  

(B) Same representations as in (A) but for granular layer.  

(C) Same representations as in (A) but for infragranular layer 
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CHAPTER 7: OSCILLATORY INTERACTION DYNAMICS IN THE FRONTOPARIETAL ATTENTION 

NETWORK DURING SUSTAINED ATTENTION IN THE FERRET 

 

INTRODUCTION 

Numerous studies in both humans and animal models have reported frequency-specific 

modulation of cortical oscillations as a function of overall state and behavioral demands (Buzsaki & 

Draguhn, 2004; Engel, Fries, & Singer, 2001). Given the ubiquitous nature of oscillatory activity patterns 

in cortex, oscillations at specific frequencies cannot be associated with a single cognitive demand or 

behavior but are rather involved in a range of behaviors (Fries, 2005; Voytek & Knight, 2015). Yet there 

may be overarching principles which guide the presence of specific oscillations (Siegel, Warden, & Miller, 

2009; von Stein & Sarnthein, 2000; Womelsdorf & Fries, 2007). For example, oscillations may enable the 

coordination of activity within and across multiple brain regions (Canolty et al., 2010; Fries, 2009; 

Sarnthein, Petsche, Rappelsberger, Shaw, & von Stein, 1998; Totah, Jackson, & Moghaddam, 2013; 

Varela, Lachaux, Rodriguez, & Martinerie, 2001). Overall, there is growing evidence that low-frequency 

oscillations generally mediate long-range local field potential (LFP) organization while higher-frequency 

gamma oscillations organize local activity (Kopell, Ermentrout, Whittington, & Traub, 2000; von Stein, 

Chiang, & Konig, 2000). 

Visual attention is ideal for investigating such organization of inter-area interaction dynamics 

since it requires coordination of activity within and across brain regions (Clayton, Yeung, & Cohen 

Kadosh, 2015; Posner & Petersen, 1990). Substantial work conducted using fMRI has demonstrated that 

visual attention is correlated with activation of a number of cortical (frontal, parietal, temporal, occipital) as 

well as subcortical (thalamic and midbrain) regions (Corbetta & Shulman, 2002; Langner & Eickhoff, 

2013; Petersen & Posner, 2012; Scolari, Seidl-Rathkopf, & Kastner, 2015). In particular, the frontoparietal 

attention network is activated during attention-demanding visuospatial tasks (Katsuki & Constantinidis, 

2012). However, the finer-time scale electrophysiological correlates of sustained attention are less clear. 
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Limited work has shown that prefrontal and posterior parietal cortices exhibit LFP synchrony in lower and 

middle gamma frequencies during top-down and bottom-up attention, respectively (Buschman & Miller, 

2007). During the preparatory attention period of a task-switching paradigm, frontoparietal networks in 

monkeys exhibited increased 5 to 10Hz phase synchronization in trials which required a top-down 

behavioral strategy (Phillips, Vinck, Everling, & Womelsdorf, 2014). However, it remains poorly 

understood how spiking activity in the frontoparietal network is organized by oscillatory structure locally 

and long-range during sustained attention. To fill this gap, we investigated LFP oscillations and SU 

spiking activity and their relationship both within and between PFC and PPC during a task that requires 

sustained attention, the 5-choice serial reaction time task (5-CSRTT). We hypothesized that local 

organization of spiking activity is mediated by high frequency oscillatory activity, while long-range 

organization relies on low-frequency oscillations. 

 

METHODS 

Behavioral Training 

Spayed female ferrets (Mustela putorius furo, ~17 weeks old at study onset) were used in this 

study. 3 animals were trained to perform a sustained visual attention task. 4 additional animals were used 

for anatomical studies. All animal procedures were approved by the Institutional Animal Care and Use 

Committee of the University of North Carolina at Chapel Hill, and complied with guidelines set by the 

National Institute of Health.  

We adapted the 5-choice serial reaction time task with touch screen implementation for this study 

(Bari, Dalley, & Robbins, 2008). An enclosed and sound-insulated custom-built behavioral box (interior 

box = 50 x 60 cm, exterior box = 83 x 91 x 110 cm) was used for training and testing sessions. A 

capacitive touch screen (Acer T232HL bmidz 23-inch touch screen LCD display) was secured behind a 

plexiglass mask with 5 squares (7 x 7 cm) to allow for response touches at one end of the box, and a 

spout for water delivery with infrared sensor and LED illumination was positioned near the floor on the 

opposing wall. Auditory cues were delivered through speakers (HP Compact 2.0 speaker), a houselight 

was mounted above the animal, and infrared videography was conducted during each session (Microsoft 

LifeCam Cinema 720p HD Webcam). Training was conducted in successive levels in order to train the 
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animal to associate the lick spout with reward, initiate trials at the lick spout, touch the screen, and touch 

the screen only following stimulus presentation.  

Successful trial initiation was indicated by a beep (0.1s duration) and the lick spout light turning 

off. Following a 5 second delay period (‘sustained attention’), one of the five windows displayed a white 

square filling the response area for 3.5 seconds. Correct responses could be indicated by touching this 

window during this 3.5 second period or for the 2 seconds following. Correct touches were indicated by 

immediate disappearance of the stimulus, a tone (0.5s duration), and the release of a water reward at the 

lick spout. Responses prior to the stimulus onset (premature), touch of one of the 4 unlit squares 

(incorrect), and lack of any touch response (omission) were indicated by a white noise stimulus (1s 

duration), illumination of the house light, and the start of a 6 second time-out period. Following the time-

out period or 8 seconds after a correct response (sufficient time for the animal to retrieve water reward), 

the lick spout light re-illuminated to indicate the next trial could be initiated. Control of the behavior 

session was conducted using custom-written MATLAB code (MathWorks, Natick, MA) and a data 

acquisition device (USB 6212, National Instruments, Austin, TX). Each recording session consisted of 

100 trials, although some sessions were terminated early if the animal stopped initiating trials.  

Animals were trained and tested once daily on a 5 days on / 2 days off schedule. During training 

and testing, animals were water restricted to enhance participation in the behavioral task. Training/testing 

was conducted in the mornings, during which time animals received water for correct responses. 

Supplemental water was provided in the afternoon such that each animal had access to 60mL/kg/day. Ad 

lib water was provided during the 2 days off. Animal weight was monitored daily to ensure sufficient 

hydration. 

 

Microelectrode Array Implantation Surgery 

Upon meeting training criterion (5 consecutive days of at least 60 trials completed with less than 

30% omission), animals were implanted with microelectrode arrays in PFC and PPC. Aseptic surgical 

procedures were used, as previously described (Sellers, Bennett, Hutt, & Frohlich, 2013; Sellers, Bennett, 

Hutt, Williams, & Frohlich, 2015). After anesthesia induction using an intramuscular (IM) injection of 

ketamine/xylazine (30 mg/kg of ketamine, 1-2 mg/kg of xylazine), ferrets were intubated and deep 
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anesthesia was maintained with isoflurane (1-2%) in 100% oxygen. Throughout surgery, end-tidal CO2, 

electrocardiogram, partial oxygen saturation, and rectal body temperature were monitored. Body 

temperature was maintained between 38-39°C with a water heating blanket and end-tidal CO2 was 

between 30-50 mmHg. Tissue and muscle were retraced to expose the skull surface. Two small 

craniotomies were made to access right hemisphere PFC (5 mm anterior to bregma and 2 mm lateral to 

the midline) and PPC (3.5 mm lateral to the midline and midway between bregma and lambda). 32-

channel microelectrode arrays (tungsten electrodes oriented 4 x 8, 200µm spacing, low impedance 

reference electrode 1mm shorter on the same array, Innovative Neurophysiology, Durham, NC) were 

positioned above each craniotomy using a stereotaxic arm and slowly inserted into deep layers of cortex. 

Arrays were secured using dental cement, muscle and skin were sutured, and anesthesia was reversed. 

Animals were allowed to recover in their home cages for at least 7 days prior to reintroduction to water 

restriction and recording sessions.  During recovery, meloxicam was administered for pain relief (0.2 

mg/kg IM injection) and clavamox was administered to prevent infection (12.5-13mg/kg, PO).  

 

In Vivo Electrophysiological Recordings 

Continuous electrophysiological data was acquired during behavior at a sampling rate of 20kHz 

with a bandwidth of 0.1Hz to 5kHz using headstages (RHD2132 amplifier board, Intan Technologies, Los 

Angeles, CA) which amplified and digitized the signal and then transmitted via a cable to a control board 

(RHD2000 USB Interface Board, Intan Technologies, Los Angeles, CA). Behavioral responses were 

recorded as digital inputs together with the electrophysiology to ensure proper synchronization of 

neuronal activity and behavior. Because the task was self-paced, we selected behavioral responses to 

align the trials. Specifically, trial initiation was used for alignment, and 5 second before and 7 seconds 

after this time point were analyzed. The 5 seconds following initiation represent the sustained attention 

period. We only analyzed trials with correct responses, in which the animal was facing the screen at the 

time of stimulus onset. In order to select only trials in which the animal was facing the screen prior to 

stimulus onset, we manually reviewed video recordings and coded the orientation of the animal 

immediately prior to the stimulus onset as facing or not facing the screen. A small subset of trials with 
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signal artifacts, identified as simultaneous large amplitude deflections across channels, were excluded 

from analysis. 

 

Data Analysis 

The local field potential (LPF) was extracted by applying a low-pass filter (2nd order Butterworth 

filter with cutoff at 300Hz) to the raw data. Spectral analysis was performed by convolving the LFP signals 

with a family of Morlet wavelets (0.5 to 120Hz, step width of 0.5Hz; or 0.2 to 10Hz, step width of 0.2Hz). 

Spectral analysis was conducted at standard frequency bands (delta = 0.5-4Hz, theta = 4- 8Hz, alpha = 8-

12Hz, beta = 12-30Hz, gamma = 30-80Hz, high gamma = 80-120Hz). We found that all animals exhibited 

a local peak at 5Hz, and thus used this frequency for subsequent theta analysis. We also found that each 

animal exhibited a local peak in approximately the gamma frequency range (29Hz, 34Hz, and 33Hz, 

respectively) in PPC during the sustained attention period, and thus centered a 10Hz band around this 

local peak for each animal for analysis of PPC gamma. To assess difference in spectral power before and 

after trial initiation, the power within each frequency band was averaged for the 5 seconds prior to 

initiation and the 5 seconds after initiation (the sustained attention period).  

Spikes were sorted into putative single units (SU) using standard methods (Offline Sorter, Plexon 

Inc, Dallas, TX). Briefly, spikes were detected by applying a high-pass filter (2nd order butterworth filter 

with cutoff at 300Hz) to raw traces and a threshold of -4*standard deviation (750 µs deadtime); 

waveforms of 1600µs were extracted. The T-distribution expectation maximization algorithm was used to 

sort spikes from the first 300 seconds of recordings in order to create unit templates. Spikes were then 

matched to these templates. Outlier waveforms were removed through manual inspection. Spikes with 

shorter than 1ms refractory period were removed.  

A structural change test (Chow, 1960) was used to assess if spiking activity was significantly 

modulated over the course of the peristimulus time period. Methods were adopted from (Kimchi & 

Laubach, 2009) and use the strucchange library (Zeileis, Leisch, Hornik, & Kleiber, 2002) for R 

(https://www.r-project.org/). Briefly, a PSTH was calculated for each unit with bin width of 1ms and 

convolved with a Gaussian window; a linear model was fit to the full data window, and a series of linear 

models were fit to smaller data windows. An F-statistic was calculated and evaluated with a criterion of p 
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< 0.05 to determine if the coefficients from the linear regressions based on the full series and the local 

segment were significantly different. In the case of significant differences between the linear regressions, 

the point with the largest change was indicated (breakpoint). 

Phase locking values between LFP signals in the two brain regions were calculated as previously 

described (Lachaux, Rodriguez, Martinerie, & Varela, 1999; Liebe, Hoerzer, Logothetis, & Rainer, 2012). 

For every possible channel pair between PFC and PPC (m and n, respectively) a value for phase locking 

between 0 and 1 was calculated as  

𝑃𝑃𝑃𝑚𝑚(𝑡, 𝑓0) =
1
𝐾
�� 𝑒𝑖(𝜑𝑘

𝑚(𝑡,𝑓0)−𝜑𝑘
𝑛(𝑡,𝑓0))

𝐾

𝑘=1
� 

where K indicates trials, and 𝜑𝑘𝑚(𝑡, 𝑓0) and 𝜑𝑘𝑚(𝑡, 𝑓0) indicate the instantaneous phases of the two channels 

at frequency 𝑓0 calculated using the Morlet wavelet transform. Significance was determined by the 

Rayleigh statistic at a significance level of p < 0.05 (Fisher, 1993). Summary figures show the average of 

significant PLV across channels pairs.  

In order to assess the degree of phase-locking of single units, as a function of time and 

frequency, we calculated spike-LFP synchrony according to methods previously described (Totah et al., 

2013). For the 12 second trials aligned by trial initiation, spike-LFP phase locking was calculated in 2s 

sliding windows with 200ms increments. Specifically, for each time window, LFP phase angles were 

extracted using the wavelet transform at each spike time across trials. The circular statistics toolbox for 

MATLAB was used for statistical analysis of spike-LFP phase synchrony (Berens, 2009). If any time 

window had fewer than 50 spikes, the unit was removed from analysis. Prior to calculating strength of 

phase locking, differences in spike rate across time for each unit were corrected for by subsampling the 

number of spikes in each window such that all windows had the same number of spikes. For analysis of 

spike-LFP phase locking within area, the phase was taken from a neighboring electrode in order to avoid 

potential bleed-through of spiking activity in the LFP. For analysis of spike-LFP phase locking across 

areas (phase from PFC, spiking in PPC, and vice versa), the LFP was averaged across channels in the 

phase-providing brain region and the wavelet transform was conducted on this averaged signal. The 

strength of spike-LFP phase locking was then calculated using Rayleigh’s Z, 

𝑍 = 𝑛𝑅2 
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where 𝑛 spikes contribute to the mean resultant phase vector length, 𝑅. The p-value at a significance 

level of 0.05 was computed using the approximation  

𝑝 = 𝑒
��(1+4𝑁+4(𝑁2− 𝑅𝑛2))−(1+2𝑚)�

 

where 𝑅𝑚 = 𝑅 × 𝑛 (Zar, 1999). The fraction of units exhibiting significant spike-LFP phase locking was 

determined by a significant estimated p-value for at least 20% of the trial.  

Phase-amplitude coupling (PAC) (Voytek et al., 2010) was used to assess the relationship of 

activity in two different frequencies. We were specifically interested in the relationship of theta phase 

(centered at 5Hz) and high gamma amplitude (80-120Hz). The LFP was bandpass filtered separately in 

each of these frequency ranges. The high-gamma analytic amplitude signal was then filtered at the theta 

frequency band. The Hilbert transform was used to extract the phase of both signals (alpha-filtered, 

alpha-filtered high-gamma amplitude) and PAC was calculated as the mean vector between the angles. A 

Fisher’s z-transform was used to normalize the data to an approximately Gaussian distribution, and the 

Kolmogorov-Smirnov test was used to assess if PAC values were significantly different from zero. 

 

Tracing Studies 

Two types of tracer studies were conducted to determine direct anatomical projections from PFC 

to PPC. Anterograde virus, rAAV5-CamKII-GFP (titer of 6 x 1012 vg/ml; dialyzed with 350 nM NaCl and 

5% D-sorbitol in PBS, UNC Vector Core, Chapel Hill, NC), was injected in PFC (n = 2 animals) and 

retrograde tracer Alexa 488-conjugated cholera toxin subunit B (CTB, 1% CTB in phosphate buffer, 

Invitrogen) was injected in PPC (n = 2 animals) (Conte, Kamishina, & Reep, 2009). Similar aseptic 

surgical procedures were used as described above. rAAV5-CamKII-GFP or Alexa 488-conjugated cholera 

toxin subunit B were prepared in a 1 µL Hamilton syringe (Hamilton Company, Reno, NV). In the case of 

GFP injection, 1 µL of virus was delivered (0.1 µL/min) bilaterally in PFC at a depth of 0.9mm below the 

surface of cortex. In the case of CTB injection, 0.1 and 0.6µL was delivered (0.1 µL/min) bilaterally in PPC 

at a depth of 1-1.5mm below the surface of cortex. Following injection, the syringe was left in place for 10 

minutes before being slowly removed. The craniotomy was covered with bone wax, and the tissue was 

sutured as described above. Virus was allowed to express for 10 weeks and CTB was allowed to traffic 

for 7 days. 
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Histological Procedures 

Upon reaching scientific endpoint, electrolytic lesions were conducted in implanted animals by 

passing current through the four corner electrodes of the microelectrode array (5 µA, 10s, unipolar). 

Animals were humanely euthanized with an overdose of sodium pentobarbital and immediately perfused 

with 0.1M PBS and 4% paraformaldehyde solution in 0.1M PBS. 60 µm coronal sections of the fixed brain 

were prepared with a cryostat (CM3050S, Leica Microsystems). Sections from animals implanted with 

microarrays were separated into series and stained for cytochrome oxidase or Nissl (Yu et al., 2016). 

Sections from animals used in tracing studies were separated into series and cover-slipped unstained 

with DAPI mounting medium (Sigma-Aldrich, St. Louis, MO), or stained for cytochrome oxidase or Nissl. 

Slides were imaged using either a widefield microscope (Nikon Eclipse 80i, Nikon Instruments, Melville, 

NY) or a confocal microscope with 10x objective (Zeiss LSM, Zeiss, Jena, Germany).  

 

RESULTS 

Animals performed a sustained attention task, the 5-CSRTT, during simultaneous recording of 

LFP and spiking activity in PFC and PPC (Figure 7.1). In this self-paced task, animals initiated trials to 

start a 5-second sustained attention period, at the end of which a white square was displayed in one of 

five windows on a touchscreen for 3.5 seconds. Correct responses of the animal touching the window in 

which the stimulus was presented resulted in water reward, while other responses (premature: touching 

any window prior to stimulus presentation, incorrect: touching one of the other four windows, or omission: 

not touching any window) resulted in a time-out and no water reward. Animals performed this task with 

high accuracy (Figure 7.1C, performance of Animal C; Supplementary Figure 7.A). We focused on the 

time period 5 seconds prior to initiation to 7 seconds after initiation, which encompassed the 5-second 

sustained attention period of interest; subsequent analyses was conducted only on trials with correct 

behavioral responses in which the animal was facing the screen at the time of stimulus onset (verified by 

reviewing video). In total, we analyzed 42 sessions (Animal A = 7 sessions, Animal B = 16 sessions, 

Animal C = 19 sessions) with a total of 2418 trials (mean number of correct trials for each recording ± std:  

Animal A = 35.14 ± 7.47 trials, Animal B = 50.88 ± 22.27 trials, Animal C = 71.47 trials ± 9.06). After spike 
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sorting, we analyzed 458 single units in PFC (Animal A = 155, Animal B = 172, Animal C = 131) and 397 

single units in PPC (Animal A = 193, Animal B =142, Animal C = 62). 

The frontoparietal attention network in humans and monkeys exhibits rich anatomical connectivity 

(Cavada & Goldman-Rakic, 1989; Szczepanski, Pinsk, Douglas, Kastner, & Saalmann, 2013). Because 

we were interested in the frontoparietal attention network in the ferret, we conducted a separate tracing 

study (n = 4 animals) to determine if PFC and PPC exhibit direct anatomical connectivity in this 

intermediate model species. We conducted anterograde tracing using CaMKII-GFP injected into PFC 

(Figures 7.2A-C) and retrograde tracing using CTB injected into PPC (Figures 7.2D-F). Results from both 

of these tracing methods were in agreement and demonstrated direct anatomical connections from PFC 

to PPC. This lends support that these regions of PFC and PPC in the ferret are part of the frontoparietal 

attention network. Recording locations were verified with histology (Figure 7.3), and correspond to the 

PFC and PPC locations from the tracing study. 

 

Task-Modulated Spiking Activity and Spectral Power in Select Frequencies 

We first investigated how spiking activity and spectral power were modulated during the 

sustained attention period (Figure  7.4). Because we were interested in activity of single units throughout 

this period, rather than just transient evoked response such as in response to a visual stimulus, we 

employed a structural change test to assess modulation of spiking activity (Kimchi & Laubach, 2009). We 

found a 86.7% of PFC units and 85.1% of PPC units were modulated during the peristimulus period 

(Figure 7.4A left, percent of PFC units for each animal which were significantly task-modulated shown in 

color: Animal A = 80.7%, Animal B = 89.5%, Animal C = 90.1%; Figure 7.4B left, percent of PPC units for 

each animal which were significantly task-modulated shown in color: Animal A = 77.2%, Animal B = 

94.4%, Animal C = 88.7%). The largest breakpoints for each significantly modulated unit indicate at what 

time the greatest change in spiking activity structure occurred (Figures 7.4A and B, right). PFC exhibited 

changes in spiking activity structure throughout the sustained attention period, whereas PPC spiking 

modulation was more localized to the trial and stimulus onsets. 

Next, we looked at modulation of spectral power during the task. There were no local peaks in the 

PFC spectra (Figure 7.4C, averaged across recording sessions for Animal C). However, PPC exhibited 
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local peaks in activity at 5Hz (theta) and in the gamma band (Figure 7.4D, averaged across recording 

sessions for Animal C). There was a modest increase in power during the sustained attention period at 

delta frequencies, 5Hz,  gamma frequencies (defined as a 10Hz band centered at the individual animal’s 

local gamma peak), and high gamma frequencies (80-120Hz) in PPC (delta:  t(41) = -5.35, p < 0.001; 5Hz 

theta, t(41) = -6.62, p < 0.001; gamma: t(41) = -10.30, p < 0.001; high gamma: t(41) = -6.73, p < 0.001). 

There was no significant change in spectral power during the sustained attention period in PFC. Based on 

the task-modulated activation of theta, gamma, and high gamma oscillations in PPC during the sustained 

attention period, we focused our subsequent investigation of local and long-range activity organization on 

these frequencies. 

 

Task-Modulated Theta Phase Synchronization between PFC and PPC 

Having demonstrated that select frequencies exhibited task-dependent modulation, we next 

asked if activity in PFC and PPC was coordinated at these frequencies. To assess synchronization 

between these areas across time and frequency, we calculated PLV (Lachaux et al., 1999) between 

simultaneously recorded channel pairs in PFC and PPC (mean number of electrode pairs for each 

recording ± std: Animal A = 779.14 ± 131.76 pairs, Animal B = 683.53 ± 212.55 pairs, Animal C = 498.32 

± 221.31 pairs) for frequencies between 0.2 to 120Hz. We found prominent 5Hz theta phase 

synchronization before trial initiation and after trial initiation, but a disruption in this between-area 

communication at the time of trial initiation (Figure 7.5A, example phases at 5Hz from a single channel 

pair example; Figure 7.5C, significant PLV for Animal C, averaged across recordings; Supplemental 

Figure 7.B). For all animals, synchronization at 5Hz was the most prominent between-region 

communication frequency (Figure 7.5B). 76% of recordings showed decreased PLV at 5Hz during 

initiation compared to before and after initiation (defined as -3 to -1 seconds and 1 to 3 seconds relative 

to initiation, respectively). Phase-locking at 5Hz was significantly decreased during trial initiation (defined 

as 0.5 seconds before initiation to 0.5 second after initiation) compared to before or after initiation (Figure 

7.5D, paired t-test, before vs during: t(41) = 3.17, p = 0.003; after vs during: t(41) = 3.36, p = 0.002). 

Average phase lags across all recordings (PFC phase minus PPC phase) were small for all three animals 

(Figure 7.5E).  
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Unidirectional Long-Range Theta Spike-LFP Phase Locking  

Theta phase synchronization between PFC and PPC indicates that this low-frequency oscillation 

may serve as the substrate for long-range cortico-cortical communication in the state of sustained 

attention. To confirm that this rhythmic interaction guided the spiking activity, we next assessed if spiking 

activity across these brain areas was also organized by theta oscillations. Specifically, we tested if spike-

timing in one area was influenced by the phase of the theta oscillation in the other area by calculating 

spike-LFP phase locking. For each unit, the instantaneous phase was extracted for each spike. 

Rayleigh’s Z was used as a measure of the strength of phase locking, and only values which were 

significant as determined by an estimated p-value were included. Normalization was conducted for 

differences in firing rates prior to calculating spike-LFP phase locking. We calculated time- and frequency-

resolved spike-LFP phase locking both across area (units from PFC, phase from PPC, and vice versa) 

(Liebe et al., 2012; Totah et al., 2013). 

In keeping with the phase synchronization in the theta frequency band between PFC and PPC, 

we found that units in PFC were phase locked to the theta oscillation in PPC. Of the 449 PFC unit – PPC 

phase pairs analyzed (Animal A = 152 pairs, Animal B = 168 pairs, Animal C = 129 pairs), 30.5% 

exhibited theta spike-LFP locking (Animal A = 60.5%, Animal B = 13.7%, Animal C = 17.1%), as defined 

by significant theta spike-LFP phase locking for at least 20% of the trial (Figure 7.6B, fraction of 

significantly phase-locking units across time for Animal A; Supplementary Figure 7.C). As shown by an 

example unit from Animal A, the strength of spike-LFP phase locking is centered on a narrow band at 5Hz 

(Figure 7.6C). A polar histogram shows the distribution of phases of each spike. Interestingly, phase 

locking did not exhibit any significant fluctuations across the duration of the trial; there was no significant 

difference in the average strength of significant spike-PLF phase locking before initiation and during the 

sustained attention period (PFC units: t(180) = 1.54, p = 0.13). In contrast, there was no sizeable phase 

locking of PPC units to theta oscillations in PFC. Of the 393 PPC unit – PFC phase pairs analyzed 

(Animal A = 189 pairs, Animal B = 142 pairs, Animal C = 62 pairs), only 1.8% exhibited theta spike-LFP 

locking (Supplementary Figure 7.E; Animal A = 1.6%, Animal B = 2.1%, Animal C = 1.6%). This 

unidirectional coupling of spikes to the theta phase suggests that the theta oscillation organizes cortico-

cortical long-range interaction. 
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Local Theta and High Gamma Spike-LFP Phase Locking in PFC 

Having established the importance of theta oscillations for the long-range coupling of PFC and 

PPC, we next sought to investigate whether theta oscillations were also responsible for the organization 

of local processing within each brain area. In principle, both long-range and local processing could rely on 

the theta oscillation; however, an alternative possibility is that local and long-range synchronization are 

mediated by different frequencies. In order to disambiguate between these possibilities, we investigated 

within-area spike-LFP phase locking (phase and units from the same brain area, on neighboring 

electrodes) across a broad range of frequencies.  

Based on the fraction of significantly locked units, both theta and broad high gamma (80-120Hz) 

are relevant for local organization of spiking activity in PFC (Figure 7.7A). In addition to a greater fraction 

of units being significantly phase-locked to theta and high gamma, the strength of spike-LFP phase 

locking was greater in these frequencies compared to alpha, beta, and gamma frequencies (Figure 7.7B, 

average strength of significant spike-LFP phase locking for Animal A). Of the PFC unit – PFC phase pairs 

analyzed (Animal A = 152 pairs, Animal B = 168 pairs, Animal C = 126 pairs), 26.2% percent exhibited 

theta spike-LFP locking (Supplementary Figure 7.D; Animal A = 52.0%, Animal B = 10.1%, Animal C = 

16.7%) and 45.5% to 61.9% exhibited high gamma spike-LFP locking in the 80-120Hz range (Animal A = 

59.9% to 76.3%, Animal B = 35.1% to 47.%, Animal C = 42.1% to 63.5%). One example unit shows 

strong spike-LFP phase locking at 5Hz (Figure 7.7D), while another example unit shows spike-LFP phase 

locking broadly in the high gamma frequencies (Figure 7.7F). Of the PFC units with significant spike-LFP 

phase locking, 59% exhibited significant spike-LFP phase locking to 5Hz oscillations both locally in PFC 

and long-range with oscillations in PPC, while 14% and 27% exhibited only local or long-range locking, 

respectively (Figure 7.7G). 

 

High Gamma Spike-LFP Phase Locking Locally in PPC 

We next asked if the phase-locking to the theta and the gamma oscillation is a general principle 

that is shared by PFC and PPC. To answer this question, we performed the same analysis as above but 

for the PPC units. In contrast to our findings in PFC, PPC units only showed strong spike-LFP phase 
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locking to high gamma phase. Of the PPC unit – PPC phase pairs analyzed (Animal A = 189 pairs, 

Animal B = 142 pairs, Animal C = 62 pairs), only 7.6% percent exhibited theta spike-LFP locking 

(Supplementary Figure 7.D; Animal A = 6.4%, Animal B = 9.9%, Animal C =6.5 %) while 44.5% to 57.0% 

exhibited high gamma spike-LFP locking in the 80-120Hz range (Figure 7.8A, Animal A = 60.3% to 

72.0%, Animal B = 22.5% to 30.1%, Animal C = 46.8% to 71.0%). Similar to the example unit in PFC, 

spike-LFP phase locking across broad high gamma frequencies is apparent in an example PPC unit 

(Figure 7.8C). 

 

Theta and High Gamma Oscillations Organize Locally Through Phase-Amplitude Coupling 

Given the prominent role of theta and gamma rhythms for organizing local and long-range 

synchrony, we next asked if and how theta and gamma coordinate locally. To answer this question, we 

calculated the phase-amplitude coupling of these two oscillations. Indeed, we found theta-high gamma 

phase-amplitude coupling in both PFC and PPC (Figure 7.9, Supplementary Figure 7.E). Theta-high 

gamma PAC was significant for each animal (Kolmogorov-Smirnov test was used to assess if PAC values 

were significantly different from zero, PAC in PFC and PPC for all animals p < 0.001). 

Taken together, this work points to the coordination of low-frequency (theta) and high-frequency 

(high gamma, 80-120Hz) oscillations in organizing spiking activity long-range and locally. Figure 7.10 

provides a summary of the local and long-range coordination within and between PFC and PPC 

elucidated in this study.  

 

DISCUSSION 

We found that PFC and PPC exhibited task-dependent synchronization at 5Hz during a sustained 

attention task. PFC spiking was organized locally by theta and high-gamma oscillations and long-range 

by PPC theta oscillations, while PPC spiking was only guided by local high-gamma oscillations. This 

suggests that overall regulation of neuronal processing during sustained attention is coordinated by a 

combination of local and long-range information integration, relying on different frequencies. 
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Relevance of PFC and PPC to Sustained Attention 

Attention is a broad construct which has been defined as “the selective prioritization of the neural 

representations that are most relevant to one’s current behavioral goal” (Buschman & Kastner, 2015). 

Sustained attention, one facet of overall attention, involves focusing on one task for a continuous amount 

of time. The behavioral task used in this study, the 5-CSRTT, includes aspects of the continuous 

performance task used in humans and has been used extensively in assessing sustained attention in 

animals (Robbins, 1998). To our knowledge, this is the first investigation of neuronal networks underlying 

sustained visual attention in the ferret. We recorded from PFC in the rostral-most portion of the anterior 

sigmoid gyrus, similar to (Duque & McCormick, 2010; Fritz, David, Radtke-Schuller, Yin, & Shamma, 

2010) and the caudal portion of PPC located on the suprasylvian gyrus. This area of PFC in ferrets has 

been shown to have reciprocal connections with thalamus (Duque & McCormick, 2010), and appears to 

be responsible for behaviorally-relevant selection of sensory stimuli (Fritz et al., 2010; Zhou, Yu, Sellers, 

& Frohlich, 2016). Our recording and tracer injection locations agreed with localization of PPC as defined 

by (Foxworthy, Allman, Keniston, & Meredith, 2013; Foxworthy & Meredith, 2011; Manger, Masiello, & 

Innocenti, 2002). 

Through anterograde and retrograde tracing, we found that these areas in the ferret exhibit direct 

anatomical connections. In humans, direct frontoparietal connectivity assessed using diffusion tensor 

imaging found that the strength of white-matter fibers is related to the efficiency of attentional selection in 

visuospatial tasks (Tuch et al., 2005). The frontoparietal attention network in humans and monkeys 

incorporates multiple subdivisions of PFC and PPC which are strongly interconnected through fibers 

passing through the superior longitudinal fasciculus; regions in this network include but are not limited to 

the intraparietal sulcus, Areas 7a and 7b in the inferior parietal lobule, frontal eye field (FEF), and dorsal 

premotor cortex (Ptak, 2012). Taken together, our results suggest that in ferrets, these regions of PFC 

and PPC may be homologous to aspects of the frontoparietal attention network in the primate and human 

brain.  

Extensive work in animals and humans has demonstrated the importance of the frontoparietal 

network, and in particular PFC and PPC, in mediating attention (Katsuki & Constantinidis, 2012). 

Inactivation of PFC in monkeys with muscimol injection resulted in a deficit in selective attention 
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performance (Iba & Sawaguchi, 2003), and deficits in visual attention in both FEF (Wardak, Ibos, 

Duhamel, & Olivier, 2006) and PPC (Wardak, Olivier, & Duhamel, 2004). Spiking activity is modulated 

during sustained attention in a number of brain areas, including PPC in rats (Broussard, Sarter, & Givens, 

2006) and lateral intraparietal cortex (LIP) in rhesus macaques (Bendiksby & Platt, 2006). Lesion and 

imaging studies in humans have revealed that activation of frontal and parietal cortical areas are 

associated with performance on sustained attention tasks (Kastner & Ungerleider, 2000; Sarter, Givens, 

& Bruno, 2001). As further support of the importance of these brain regions in sustained attention, healthy 

control participants showed a task-related increase in theta activity primarily in frontal and parietal regions 

during sustained attention, which was absent in participants with attention-deficit/hyperactivity disorder; 

however, treatment with methylphenidate led to normalization of task-related theta enhancement (Skirrow 

et al., 2015). Our findings contribute to this body of work by elucidating similarities and differences in how 

activity in these brain areas is organized during sustained attention. The coordination of activity across 

these areas not only provides further support of the importance of coordinated activation of these brain 

regions for mediating attentional processing, but provides further insight into the mechanism of such 

communication. 

 

Cognitive Importance of Theta and High Gamma Oscillations 

A framework for the role of cortical oscillations in sustained attention with four components has 

recently been proposed: frontomedial theta oscillations mediate cognitive monitoring and control 

functions, low-frequency phase synchronization mediates communication across brain networks,  gamma 

mediates excitation of task-relevant cortical areas, and alpha mediates inhibition of task-irrelevant cortical 

areas (Clayton et al., 2015). Our results provide further evidence for three of these organizing principles. 

We found that theta power increased during sustained attention in PPC. This further aligns with previous 

evidence that theta oscillations are involved in learning, attention, and memory (Kahana, Seelig, & 

Madsen, 2001). In addition to power increase, we found task-modulated phase-locking in the theta band 

between PFC and PPC. This finding may be expected, as long-range theta synchrony contributes to the 

coordination of goal-relevant information (Womelsdorf & Everling, 2015), and prefrontal-parietal networks 

in macaques have been found to phase synchronize at 5-10Hz during top-down controlled preparatory 
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states (Phillips et al., 2014). We also found increased power in gamma and high gamma frequency 

bands. Compared to lower-frequency oscillations, (high-) gamma is more spatially restricted and reflects 

more local processing (Canolty et al., 2007; Crone, Miglioretti, Gordon, & Lesser, 1998). Our results align 

with previous findings that Area V4 exhibits increased coherent gamma activity for attended vs non-

attended stimuli during a selective attention task (Taylor, Mandon, Freiwald, & Kreiter, 2005). 

It should be noted that substantial work conducted in the frontoparietal network has found beta 

synchronization to play an important role in long-range synchronization mediating attention (Gross et al., 

2004; Hipp, Engel, & Siegel, 2011; Womelsdorf & Everling, 2015). In this study, we did not see beta 

synchronization of LFP activity between PFC and PPC. Selecting cutoffs to separate distinct frequency 

band is a topic of much debate, and there is presently a shift towards identifying the underlying 

generation mechanism for oscillations in order to separate functionally different rhythms. Nevertheless, 

future work will be needed to clarify modes of long-range synchronization as a function of specific brain 

networks, species, and behavioral demands.  

 While activity in individual frequency bands is important, the interaction of multiple-frequency 

bands has been found to mediate communication in a number of cognitive and behavioral paradigms. 

Overall, we found joint and distinct roles for theta and high-gamma activity in organizing local and long-

range activity during sustained attention. Perhaps the most well-studied cross-frequency interaction is 

between theta and gamma oscillations in the hippocampus. Evidence indicates that nested oscillations 

allow for the representation of space for navigation (O'Keefe & Dostrovsky, 1971) as well as the ordered 

representation of multiple items relevant for working memory (Lisman & Jensen, 2013). However, the role 

of these oscillations in organizing the structure of activity in cortex is less well understood. Our findings 

aligned with (Lisman & Jensen, 2013) in demonstrating modulation of (high-)gamma amplitude by theta 

oscillations. Limited work has demonstrated that theta phase modulates high-gamma amplitude in 

humans in multiple tasks including non-visual verbal tasks, memory tasks, and motor tasks, as measured 

through electrocorticography (Canolty et al., 2006; Voytek et al., 2010). In macaques, an increase in 

phase-amplitude coupling between theta and gamma in anterior cingulate cortex and PFC was found with 

correct attentional shift but not before errors (Voloh, Valiante, Everling, & Womelsdorf, 2015). Work in 

primate visual cortex has found that feedforward communication utilizes theta and gamma frequency 
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bands, while feedback communication relies on the beta frequency band (Bastos et al., 2015). Other work 

indicates that theta synchronization across brain regions is characteristic of top down processes, 

incorporating expectations to coordinate lower level perception and encoding, while gamma 

synchronization reflects bottom up processing, in which interaction of perceptual inputs drive higher order 

mental activities (Kahana et al., 2001; von Stein & Sarnthein, 2000). While it must be fully tested if the 

same frequencies are implicated in other brain regions and species, brain function clearly exhibits 

multiplexing of activity across frequency bands. 

 

Organization of Spiking Activity by Oscillations 

The organization of spiking activity by oscillations is critical for the effective integration of relevant 

task information. We found that PFC units were phase-locked to the 5Hz oscillation in PPC, whereas PPC 

units were not typically phase-locked to theta in PFC. This suggests that theta activity may be more 

prominent in PPC; indeed, we found a local peak in PPC spectral activity in the theta band that increased 

during the sustained attention period, while PFC showed no such spectral modulation. It remains an 

outstanding question why PPC units were only phase locked to local high-gamma activity but not the local 

theta oscillation. However, these findings align with previous theories that high-frequency oscillations in 

sensory areas reflect discrete sampling of the environment (Fiebelkorn et al., 2013); the activity of PPC 

units could be reflecting environmental sampling while the theta oscillation in PPC acts as a more global 

pacemaker, synchronizing with PFC to establish the PFC theta oscillation and guiding spiking activity in 

PFC. In a visual working memory task, single unit spiking activity was organized locally in V4 by theta 

oscillations (Lee, Simpson, Logothetis, & Rainer, 2005). Prior work conducted in monkeys during memory 

processing also found an asymmetric relationship in spike-LFP phase locking between PFC and V4. 

However, the authors reported stronger phase locking of V4 units to PFC oscillations (Liebe et al., 2012); 

the difference with our results may relate to the behavioral paradigm. Our sustained attention task was 

strongly dependent on the appearance of a visual stimulus, possibly relying on visually-responsive PPC, 

while the working memory task in the referenced study is a strongly top-down mediated behavior. 

The specific cognitive demands of the attention task may elicit different network organization. 

Using a slightly different metric of assessing synchrony between areas, spike-field coherence, gamma 
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frequency coupling was found between FEF and V4 during a covert attention task (Gregoriou, Gotts, 

Zhou, & Desimone, 2009). Using the same method, greater gamma synchronization of spiking and 

oscillatory activity in monkey V4 was correlated with faster response times in a detection task 

(Womelsdorf, Fries, Mitra, & Desimone, 2006), suggesting that sensory changes are more efficiently 

processed by neurons with enhanced gamma-band synchronization. 

 

Conclusions 

Taken together, our findings suggest simultaneous organization of spiking activity by multiple 

frequencies mediating local and long-range connectivity during cognitively demanding behavior. Long-

range organization of PFC and PPC was mediated by 5Hz activity. PFC exhibited local organization of 

spiking activity by both theta and high gamma oscillatory activity, while PPC spiking was locally organized 

only by high gamma oscillations. This work points to a unified yet distinct organization scheme for activity 

within and across cortical areas during sustained attention. Spiking activity in PPC may be encoding local 

sensory integration information, while low-frequency oscillatory activity mediates cross-area coupling for 

the execution of sustained attention given the processed sensory information. 
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FIGURES 

 

Figure 7.1. Animals performed a sustained visual attention task during simultaneous 

electrophysiological recordings in prefrontal cortex (PFC) and posterior parietal cortex (PPC). 

(A) Top: The 5-choice serial reaction time task was a self-paced task; the animal initiated each trial, 

starting a 5 second sustained attention period, which terminated when a stimulus appeared in one of 

five windows. Bottom: Electrophysiological signals were continuously recorded during the task to 

provide information on LFP and spiking activity. 

(B) Representation of the behavior chamber showing 5 response windows on a touch screen. 

(C) After training, animals performed well in this task, answering approximately 80% of trials correctly per 

session. Figure shows sessions analyzed for Animal C. See Supplementary Figure 7.A for other 

animals. 

(D) Spike sorting was conducted on high-pass filtered data. Single units in PFC and PPC aligned to trial 

initiation show task-modulation in firing rate. Different units showed heterogeneous changes in firing 

rate across time.  
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Figure 7.2. Anterograde and retrograde tracing demonstrate anatomical connectivity between PFC 

and PPC. 

(A) rAAV5-CamKII-GFP was injected in PFC for anterograde tracing. 

(B) GFP was injected in PFC at 27mm relative to caudal crest (rcc). Red square in neighboring Nissl 

stained section indicates location of fluorescent image on the right. Injection site in PFC shows robust 

labeling of cell bodies; green = GFP, blue = DAPI counterstain, ASG = anterior sigmoid gyrus, PRG = 

proreal gyrus. 

(C) Cytochrome oxidase stained neighboring section in PPC (13.5mm rcc). Red square indicates location 

of fluorescent image on the right. Projections in PPC exhibit GFP labeling, indicating direct 

anatomical connections to the injection site location; green = GFP, blue = DAPI counterstain, SSG = 

suprasylvian gyrus, LG = lateral gyrus. 

(D) CTB-488 was injected in PPC for retrograde tracing. 

(E) CTB-488 was injected into PPC at 13.5mm rcc. Red square in neighboring section stained for 

cytochrome oxidase indicates location of fluorescent image on the right; green = CTB-488, blue = 

DAPI counterstain. 

(F) PFC (27mm rcc) exhibits expression of CTB-488. Red square in neighboring section stained for Nissl 

indicates location of fluorescent image on the right; green = CTB-488, blue = DAPI counterstain. 
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Figure 7.3. Recording locations in PFC and PPC 

(A) Overview of electrode implantation locations and tracer injections from ferret atlas. PFC was 27mm 

rcc and PPC was 13.5mm rcc. OB = olfactory bulb, OBG = orbital gyrus, ASG = anterior sigmoid 

gyrus, PSG = posterior sigmoid gyrus, CNG = coronal gyrus, AEG = anterior ectosylvian gyrus, MEG 

= medial ectosylvian gyrus, PEG = posterior ectosylvian gyrus, SSG = suprasylvian gyrus, LG = 

lateral gyrus, PRG = proreal gyrus;  1 = prs presylvian sulcus, 2 = rf rhinal fissure, 3 = crs cruciate 

sulcus, 4 = cns coronal sulcus, 5 = as ansinate sulcus, 6 = ls lateral sulcus, 7 = sss suprasylvian 

sulcus, 8 = pss pseudosylvian sulcus. 

(B) Nissl stained section in PFC showing electrode implantation location in Animal A indicated by 

electrolytic lesions. 

(C) Area in red box from (B) showing electrode tracks. 

(D) Nissl stained section in PPC showing electrode implantation location in Animal A. 

(E) Area in red box from ( D) showing electrode tracks 

 

  



 

267 
 

 

Figure 7.4. Task-dependent modulation of single unit spiking and spectral activity 

(A) Left: 86.7% of PFC units across all animals showed significant modulation during the peristimulus 

period. Colored pie pieces indicate significantly modulated units for each animal, while gray pieces 

show units with non-significant modulation. Right: In PFC, the largest breakpoints for each 

significantly modulated unit indicate that structural change in spiking activity was most prominent 

during the sustained attention period. 

(B) Left: 85.1% of PPC units across all animals exhibited significant modulation during the peristimulus 

period. Colored pie pieces indicate significantly modulated units for each animal, while gray pieces 

show units with non-significant modulation. Right: In PPC, the largest breakpoints for each 
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significantly modulated unit indicate that structural change in spiking activity was most prominent 

immediately following trial initiation and at stimulus onset. 

(C) Spectrograms from PFC averaged across sessions in Animal C. Left: No prominent spectral 

modulation during trial. Right: No local spectral peak at 5Hz is evident 

(D) Spectrograms from PPC averaged across sessions in Animal C Left: A narrow gamma band showed 

task-modulated changes in power. Right: A prominent 5Hz peak is evident in the spectra, again 

exhibiting task-modulation.  
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Figure 7.5. Task-dependent synchronization between PFC and PPC at 5Hz 

(A) LFP-LFP phase locking was used to assess synchronization between PFC and PPC. At behaviorally-

relevant periods during the behavior task (before initiation = 3 to 1 seconds before initiation, during 

initiation = 0.5 seconds before to 0.5 after, after initiation = 1 to 3 seconds after initiation) phases in 

PFC and PPC were assessed for consistent differences. Here, 5Hz phase is shown for one pair of 

channels across trials. 

(B) Across all animals, phase locking value was highest at 5Hz. 

(C) Averaged across all recordings for Animal C, phase locking between PFC and PPC was weakened 

during trial initiation and by stimulus onset. See Supplementary Figure 7.B for animals A and B. 

(D) Across all recordings, phase locking values before initiation (left) and after initiation (right) were 

significantly greater than during initiation. 

(E) Averaged across all recordings, the phase difference between PFC and PPC was near zero for all 

animals, both before initiation and after initiation. 
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Figure 7.6. PPC 5Hz oscillation exerted long-range organization on spiking activity in PFC 

(A) Spike-LFP phase locking was used to test if theta phase drove spiking activity across areas. Only a 

unidirectional long-range relationship was found, between PPC theta phase and PFC spiking activity. 

(B) Averaged across recordings for Animal A, spike-LFP phase locking was most prominent at a narrow 

band centered on 5Hz. Spike-LFP phase locking was present throughout the duration of the trial, and 

did not exhibit task-dependent modulation in strength. See Supplementary Figure 7.C for Animals B 

and C. 

(C) An example unit recorded in PFC exhibits phase-locking to PPC 5Hz activity. Polar plot indicates 

histogram of preferred phase of firing. 
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Figure 7.7. Both theta (5Hz) and high gamma (80-120Hz) oscillations are involved in the local 

organization of spiking activity in PFC 

(A) Averaged across recordings for Animal A, units were predominantly phase-locked to oscillations at 

5Hz and in the high gamma band. 

(B) Averaged across recordings for Animal A, the average Rayleigh’s Z for significantly locked units (a 

measure of the strength of phase locking) was also highest for spike-LFP phase locking at 5Hz and in 

the high gamma range. 

(C) Spike-LFP phase locking was calculated between the 5Hz oscillation and spiking activity, both in 

PFC. 

(D) An example unit recorded in PFC exhibits phase-locking to PFC 5Hz activity. The polar plot exhibits 

preferred phase of firing; same unit as Figure 7.6C. 

(E) Spike-LFP phase locking was calculated between high-gamma oscillations and spiking activity, both 

in PFC. 
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(F) An example unit recorded in PFC exhibits phase locking to broad high-gamma activity. 

(G) PFC units exhibited spike-LFP phase locking to the 5Hz oscillation both locally and long-range. Venn 

diagram indicates the percentage of units across all animals which exhibited local locking to PFC 

phase, long-range locking to PPC phase, or both local and long-range locking. 
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Figure 7.8. High gamma oscillations are responsible for the local organizing of spiking activity in 

PPC. 

(A) Spike-LFP phase locking was calculated between high-gamma oscillations and spiking activity, both 

in PPC.  

(B) Averaged across recordings in Animal C, units were predominantly phase-locked to high-gamma 

oscillations. In contrast to PPC, no prominent spike-LFP phase locking was seen at 5Hz. 

(C) An example unit recorded in PPC exhibited phase locking to broad high-gamma activity. 
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Figure 7.9. Theta and high-gamma activity are locally related through phase-amplitude coupling. 

(A) In PFC, theta phase and high gamma amplitude show organizing through phase-amplitude coupling. 

Averaged across recordings for Animal C, two oscillation periods shown for visualization. See 

Supplementary Figure 7.E for Animals A and B. 

(B) In PPC, theta phase and high gamma amplitude show organizing through phase-amplitude coupling. 

Averaged across recordings for Animal C, two oscillation periods shown for visualization. 
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Figure 7.10. Cartoon illustrating organizational structure of activity within and between PFC and 

PPC. 

Long-range, phase-phase synchronization in the theta frequency range was present between PFC and 

PPC. Spike-LFP phase synchronization was evident between PFC units and PPC theta phase. Locally in 

PFC, both theta and high gamma oscillations organized spiking activity while only high-gamma 

oscillations organized local spiking activity in PPC. Both PFC and PPC exhibited within area coordination 

of theta and high-gamma through phase-amplitude coupling. 
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Figure 7.A. Behavioral performance for Animals A and B during recording sessions. 

 

 

  



 

277 
 

 

Figure 7.B. Phase locking between PFC and PPC for animals A and B 

 

 

  



 

278 
 

 

Figure 7.C. Fraction of units with significant spike-LFP phase locking between areas. 

(A) Across recording sessions for Animal B, PFC units exhibited significant spike-LFP phase locking with 

PPC 5Hz oscillations.  

(B) Same as A for Animal C.  

(C) Across recording session for Animal A, no sizeable fraction of PPC units exhibited spike-LFP phase 

locking with PFC 5Hz oscillations. 

(D) Same as C for Animal B. 

(E) Same as C for Animal C. 
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Figure 7.D. PFC and PPC units exhibit local spike-LFP phase locking at high-gamma frequencies. 

(A) Averaged across recordings for Animal B, PFC units exhibited spike-LFP phase locking at high-

gamma frequencies.  

(B) Same as A for Animal C. 

(C) Averaged across recordings for Animal A, PPC units exhibited spike-LFP phase locking at high-

gamma frequencies. 

(D) Same as C for Animal B. 
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Figure 7.E. Local theta and high-gamma activity exhibit phase-amplitude coupling 

(A) In PFC, theta phase and high gamma amplitude show organization through phase-amplitude 

coupling. Averaged across recordings for Animal A, two oscillation periods shown for visualization. 

(B) Same as A for PPC in Animal A. 

(C) Same as A for Animal B. 

(D) Same as B for Animal B. 
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CHAPTER 8: DISCUSSION 

The studies described in this dissertation provide insight in the physiological organization of 

network dynamics at the level of LFP and action potential firing. A deeper understanding of network 

organization is critical for the rational design of non-invasive brain stimulation techniques to target 

perturbed network activity in patients with neuropsychiatric disorders. The studies here were conducted in 

both an intermediate animal model species and healthy human participants. Electrophysiology and 

behavior/psychophysics were combined to assess cortical network dynamics across a variety of states 

and in the context of specific cognitive functions. 

In Chapter 2, I demonstrated that tDCS can be detrimental to cognitive processes. This non-

invasive brain stimulation modality using a constant current decreased performance on an IQ test when 

applied either bilaterally or unilaterally, compared to sham stimulation. Based on work conducted in the 

motor cortex, tDCS is believed to increase or decrease excitability of neurons depending on the polarity of 

stimulation (Nitsche & Paulus, 2000). While some previous reports have demonstrated a positive effect of 

tDCS, the use of constant current may be better served when there is a known deficit or excess of 

excitability. However, substantial work has demonstrated that the synchronization of rhythmic neuronal 

activity is critical to cognitive process. Thus, a promising alternative approach is the use of periodic 

waveforms, such the sine-wave stimulation employed in tACS. 

In Chapter 3, I provide a review of studies which used tACS to assess the effects of periodic sine-

wave stimulation on cognitive tasks. The goal of this review was to propose that tACS be used to 

elucidate the causal role of synchronization in cognition, with the aim of future work correcting 

pathological network synchrony and dynamics. Towards this goal, discussion was organized according to 

the cognitive systems domain of the RDoC framework established by the National Institute of Mental 

Health. 

Starting in Chapter 4, I present a series of studies utilizing an animal model to study network 

dynamics within and across cortical areas. The use of an animal model was advantageous because of 
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the accessibility gained through invasive recordings and techniques which are not currently possible in 

humans (e.g. injection of tracers to determine direct anatomical connections). In Chapter 4, I showed that 

V1 and PFC have markedly different spontaneous network dynamics compared to each other and 

depending on state. Here, state was defined as animals being or anesthetized. In Chapter 5, I assessed 

differences in network dynamics during sensory processing in awake and anesthetized animals. 

Together, Chapter 4 and 5 emphasize the importance of considering state when assessing network 

dynamics. Anesthesia is commonly used in systems neuroscience because it decreases methodological 

difficulty and increases the yield of experiments. However, a theory of the network-level effect of 

anesthesia with substantial experimental support proposes that anesthetics induce cortical disintegration 

through loss of effective connectivity (Alkire, 2008; Hudetz, 2006, 2012) and disrupt long range 

corticocortical interactions (Mashour, 2004). In further support of this theory, I found that anesthesia 

reduced functional cortico-cortical connectivity between V1 and PFC, while stimulus-driven oscillatory 

activity was greatly enhanced in V1 during anesthesia. Thus, this system clearly may be suboptimal for 

studying network dynamics, which by definition incorporate the integration of information across multiple 

brain areas. 

In Chapter 6, I present a study assessing state-dependent and state-independent differences in 

dynamics in V1 in awake animals either during resting condition or naturalistic visual stimulation. The use 

of naturalistic visual stimuli, with complex image features, has been shown to elicit different sensory 

responses compared to the traditional artificial stimuli originally designed to strongly drive visual 

responses (Felsen & Dan, 2005), although possibly not in the lateral geniculate nucleus (Mante, Bonin, & 

Carandini, 2008). We found that naturalistic stimuli modulated the full frequency spectrum in awake 

animals, with suppressed power of low frequency oscillations and enhanced power of high frequency 

oscillations. This bi-directional modulation was correlated with multiunit action potential firing, indicating 

relevance for encoding or processing of the visual stimuli.  

In Chapter 7, animals were trained in a translational assay of sustained visual attention, the 5-

choice serial reaction time task. Simultaneous recordings in PFC and PPC allowed for investigation of 

how oscillatory activity organized spiking activity locally and long-range during sustained attention. I found 

that long-range organization, assessed by both LFP-LFP phase locking and spike-LFP phase locking, 
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depended on low frequency theta oscillations, while local organization of spiking activity was primarily 

mediated by high-gamma oscillations. 

Based on these results and previous work, a number of themes have emerged as particularly 

relevant for the organization of network activity. Specifically, I will briefly discuss the importance of cross-

frequency coupling, the organization of spiking activity by oscillations, and state-dependent differences in 

responses.  

Cross-frequency coupling refers to the association of multiple neuronal oscillations at different 

frequencies (Hyafil, Giraud, Fontolan, & Gutkin, 2015). Cross-frequency coupling can occur locally, in 

which the network generating the individual oscillations shares the same subpopulation of cells, or more 

long-range in which different populations of neurons generate the two different frequency oscillations. The 

coupling of these oscillations can happen between phase-frequency, phase-phase, phase-amplitude, and 

amplitude-amplitude (Canolty & Knight, 2010). The most well studied form of cross-frequency coupling is 

phase-phase coupling between theta and gamma oscillations in rodent hippocampus (Buzsaki & Moser, 

2013; Tort, Rotstein, Dugladze, Gloveli, & Kopell, 2007). Theta and gamma oscillations allow for the 

representation of space in hippocampus for navigation, as well as the ordered representation of multiple 

items in working memory (J. E. Lisman & Jensen, 2013). Neuronal ensembles, comprised of groups of 

active neurons, represent particular mental items (or in the case of spatial encoding in hippocampus, 

particular regions in the environment). The timing of firing of cells in the ensembles relative to the gamma 

cycle allows for the organization of separate items; more specifically, the first item is represented by 

neurons which fire in the first gamma cycle, the second item is represented by firing during the second 

gamma cycle, etc. In order to recall these items in sequential order, the gamma oscillation is nested within 

a slower time-scale theta oscillation. Thus, each item is also encoded during a particular and  unique 

phase of the theta cycle, providing an overall ordering (J. Lisman & Buzsaki, 2008). Cross-frequency 

coupling maybe particularly important for long-distance communication; slower oscillations can 

synchronize between brain areas because they are less sensitive to conduction delays (von Stein & 

Sarnthein, 2000), and coupling with higher frequency oscillations can then occur locally.  

The organization of spiking activity by local and long-range oscillatory activity has also emerged as an 

important network principle. During short-term working memory, spiking in prefrontal cortex carried the 
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most information of the remembered objects when it occurred at particular phases of the dominant 

frequency oscillations (Siegel, Warden, & Miller, 2009). Furthermore, the strength of coupling between 

spiking and oscillatory activity in V4 and PFC was predictive of short-term memory performance (Liebe, 

Hoerzer, Logothetis, & Rainer, 2012). Single unit activity in extrastriate visual cortex also exhibited phase 

locking during a visual working memory task, indicating preferential encoding (Lee, Simpson, Logothetis, 

& Rainer, 2005). This is a refinement on previous theories which posited that increases in firing rate 

mediated remembering items in short term memory (Fuster & Alexander, 1971). Recordings of single unit 

and oscillatory activity during attention have demonstrated that spike-LFP phase locking is higher in 

prefrontal areas during trials when animals successfully recruited attention and made correct responses 

compared to error trials (Totah, Jackson, & Moghaddam, 2013). Experimental evidence has shown that 

incorporating multiple coding schemes, in particular both spike-train patterns and the phase of firing, 

provides more overall information and increases the fidelity of encoding sensory information (Kayser, 

Montemurro, Logothetis, & Panzeri, 2009; Montemurro, Rasch, Murayama, Logothetis, & Panzeri, 2008). 

Taken together, this body of research suggests that oscillations organize spiking activity in a behaviorally 

relevant manner. Oscillations may provide windows of increased excitability for the successful integration 

and organization of information encoded by spiking activity.  

A recurring theme throughout this dissertation is the importance of state-dependent differences in 

network dynamics. Different levels of cortical synchrony are often used to classify states, ranging from 

sleep stages to findings that somatosensory barrel cortex exhibits desynchronized LFP activity during 

active whisking but higher amplitude low-frequency synchronized activity during quiet wakefulness 

(Crochet & Petersen, 2006; Poulet & Petersen, 2008). Differences in state, such as during passive and 

active behavioral conditions, can also modify properties of responses such as spectrotemporal response 

field in auditory cortex (Fritz, Shamma, Elhilali, & Klein, 2003). Visually evoked firing rate in V1 more than 

doubled when animals transited from standing to running with no changes in activity in LGN, indicating 

that state was strictly modulating cortical responses (Niell & Stryker, 2010). Changes in state induced by 

top-down control, such as through sustained or preparatory attention, also modify neuronal responses 

(Desimone & Duncan, 1995; Ghose & Maunsell, 2002; Harris & Thiele, 2011). Most studies have found a 

characteristic increase in responsiveness to attended stimuli (Moran & Desimone, 1985). Greater average 
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response enhancement was seen in progressively higher cortical hierarchy levels (Maunsell & Cook, 

2002). However, task engagement in auditory cortex has also been shown to exert widespread and 

robust suppression of evoked responses (Otazu, Tai, Yang, & Zador, 2009). Of note, it has also been 

found that a large range of brain states are compatible with high performance in a relatively simple 

sensory perception task (Sachidhanandam, Sreenivasan, Kyriakatos, Kremer, & Petersen, 2013). 

Although state is often determined by ongoing activity in cortex and behavioral responses, other brain 

areas such as the thalamus are key in controlling cortical state (Poulet, Fernandez, Crochet, & Petersen, 

2012). 

There is growing evidence that disruption to communication and organization modes discussed 

here underlie a number of deficits found in neuropsychiatric disorders (Voytek & Knight, 2015). Disruption 

can result from oscillatory coupling which is too strong, leading to hyper-synchronicity of activity, or 

oscillatory coupling which is too weak, resulting in disorganized spike timing and lack of information 

integration. The studies included in this dissertation contribute to our understanding of the involvement of 

oscillatory activity and network dynamics in organizing cortical activity during rest, sensory processing, 

and sustained attention. Substantial work is still required to complete our understanding of the functional 

role of cortical oscillations and overall network dynamics in mediating cognitive and perceptual 

processing.  
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