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ABSTRACT 

 

Anne E. Corrigan: The Association between Reduction in PM2.5 and Improvement in 

Cardiovascular Mortality Rates 

(Under the direction of J. Jason West and Ana G. Rappold) 

 

We examined the association between county-level change in PM2.5 and change in 

cardiovascular mortality rate before and after implementation of the 1997 annual PM2.5 National 

Ambient Air Quality Standards.  We examined how the association varied between counties 

stratified by attainment designation and by design values used in the designation process to 

characterize air quality. We used linear regression and difference-in-difference models, adjusted 

for sociodemographic confounders.   

Across 619 counties in the study, there were 1.10 (95% CI 0.37, 1.82) fewer deaths per 

year per 100,000 people per 1 µg/m3 PM2.5 decrease.  Improvements in air quality and morality 

rates were greater in nonattainment counties and in the counties with the highest design values, 

while attainment counties and those with the lowest design values had greater decrease in 

mortality rate per unit decrease in PM2.5; however, the differences between estimates changes in 

mortality rates were not statistically significant 
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CHAPTER 1: INTRODUCTION 

 

Various provisions of the Clean Air Act (CAA) have driven the improvement of air 

quality across U.S. communities since its enactment in 1970 (EPA 2015; U.S. Code 1970).  

Among these are National Ambient Air Quality Standards (NAAQS) which were established by 

U.S. Environmental Protection Agency (EPA) for six criteria air pollutants to protect public 

health and the environment.  The implication of the NAAQS is that states with areas in 

exceedance bear the burden of becoming compliant. Namely, when NAAQS are exceeded, states 

must develop permanent and enforceable air pollution control measures and demonstrate that the 

area will meet the standard as a result of the measures which imposes costs on public and private 

sectors.  Since 1990, average concentrations of fine particulate matter (PM2.5) have decreased by 

over 37% (EPA 2015).  Nationwide reductions in PM2.5 are responsible for the largest benefits 

tied to the CAA due to documented improvements to health (EPA 2009; OMB 2015).  However, 

studies have not yet demonstrated if expected public health benefits from improving air quality 

are comparable in nonattainment counties for PM2.5 NAAQS and counties in compliance. 

Numerous epidemiologic studies have demonstrated that mortality and other health 

endpoints are associated with both short-term (Laden et al. 2000; Schwartz et al. 1996) and long-

term (Dockery et al. 1993; Krewski et al. 2005) exposures to PM2.5. Studies have also 

demonstrated that reductions in long-term exposures to PM2.5 are associated with reductions in 

mortality rates and increased life expectancy (Correia et al. 2013; Pope et al. 2009; Schwartz et 

al. 2015; Wang et al. 2016; Zeger et al. 2008).  Moreover, studies have also documented 

immediate improvements in health outcomes when significant sources of air pollution were 
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abruptly shut down or controlled (Breitner et al. 2009; Clancy et al. 2002; Peel et al. 2008; Pope 

et al. 1992; Su et al. 2015; Wang et al. 2009).  Combined with toxicology studies, this body of 

research formed the scientific basis for a weight-of-evidence determination of a causal 

relationship between fine particulate matter (PM2.5) and cardiovascular mortality (EPA 2009). 

Few studies have focused on specifically NAAQS-induced reductions in particle 

pollution and consequent benefits on public health.  Previously, Chay et al. (2003) concluded 

that counties in nonattainment of the standard for total solid particulates (TSP), showed a larger 

reduction in TSP in the year following the CAA, but this improvement in air quality had little 

association with declines in either adult or elderly mortality.  Zigler et al. (2012) estimated that 

the 1991 nonattainment designations for PM10 causally reduced mortality but found that the 

effect estimates were similar in areas where regulations decreased and where they did not 

decrease PM10 concentrations.  Studies on the effectiveness of regulation, "accountability 

studies," have not yet focused on improvements in health due to annual PM2.5 NAAQS 

regulatory actions. 

With this study, we focused on the impact of the 1997 NAAQS designations on the 

association between the changes in cardiovascular mortality rates and in annual PM2.5.  The first 

standard for annual PM2.5 was set in 1997, but the attainment designations were not promulgated 

until 2005.  We compared age-adjusted standardized cardiovascular mortality rates in 619 

counties before and after the NAAQS were promulgated (2000-2004 vs 2005-2010).  

Additionally, we examined how the association varied between counties stratified by attainment 

designation and by design values used in the designation process to characterize air quality.  The 

primary research question of this study ultimately contributes to the discussion on the 
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significance of NAAQS and other EPA regulatory actions as they relate to changes air pollution 

and associated health concerns.
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CHAPTER 2: METHODS 

Data 

Mortality Rates 

Annual mean cardiovascular standardized age-adjusted mortality rates (annual deaths per 

year per 100,000 people) were calculated for years between 2000 and 2010.  With individual 

level data from U.S. National Center for Health Statistics (NCHS) we calculated crude 

cardiovascular mortality rates by dividing the number of cardiovascular deaths [International 

Classification of Diseases, 10th Revision (ICD 10) codes 0.0-79.9] in an age group, county, and 

year by the total population of that age group in the corresponding county and year.  The crude 

mortality rates were then age-adjusted by averaging across all age groups and weighting to the 

national population age distribution.  The standard errors for the mortality rates were calculated 

using NCHS standard formulas which assume population is known and the number of deaths has 

a Poisson distribution. Uncertainty in the mortality rates arises from short-term fluctuation in the 

number of deaths from random factors (e.g. extreme weather or changes to available medical 

care) and short-term fluctuation in population estimates (e.g. transient or seasonal moves) for 

years between decennial census counts, regardless of a constant long-term mortality rate and 

population.  Annual data was averaged before and after promulgation of the NAAQS: period 1 

(2000-2004) (pd1) and period 2 (2005-2010) (pd2).   

Similarly, we calculated standardized age-adjusted mortality rates for chronic obstructive 

pulmonary disease (COPD) to approximate accumulated exposure to smoking (Pope et al. 2009).   
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PM2.5 annual data  

Annual average PM2.5 data was calculated for years 2000 to 2010 using data from EPA’s 

Air Quality System (AQS) which documents air quality measured at environmental monitors 

across the U.S. whose locations are based on population density.  For counties with multiple 

PM2.5 monitors, the annual means of all monitors within the county were averaged.  Monitors 

were included if they reported for at least 45 days of the year to coincide with monitoring 

regulations which require 75% of days per reporting quarter collected assuming a minimum 

recording frequency of one in six days (365/6*0.75).  

Annual PM2.5 data were also averaged to period 1 (2000-2004) (pd1) and period 2 (2005-

2010) (pd2), before and after attainment designations.  The complete annual PM2.5 monitoring 

data included 775 counties.  However, 69 counties did not have PM2.5 records for any years 

2000-2004, and 87 counties did not have records in 2005-2010.  The loss of data may be 

attributed to several different factors, including location change of monitor within a metropolitan 

statistical area (MSA), monitor shut down, or population changes in an MSA.  Thus, analysis 

considered 619 counties with monitored annual mean PM2.5 in both period 1 and period 2. 

Sociodemographic characteristics  

County-level socioeconomic status (SES) and demographic variables were obtained from 

the U.S. Bureau of the Census for 2000 and 2010.  Variables included total income (in tens of 

thousands of U.S. dollars), percent with at least a high school degree (of population 25 years and 

older), percent Hispanic (of total population), and percent black (of total population). For the 

purpose of this study, changes in socio-demographic variables refer to the differences between 

Census 2000 and Census 2010 statistics (2010 minus 2000). 



 

 6 

 

Mortality rates, air monitoring data, and Census data were matched by five-digit county 

FIPS (federal information processing standard) codes, providing complete data for 619 

counties.   

Modification of the effect by NAAQS 

The EPA designates NAAQS attainment status based on a number of factors including 

ambient monitor values, meteorology, weather, geography, contributions to neighboring areas, 

etc. The first factor considered in designation is the highest recorded design value (DV) of any 

monitor in the county.  For annual PM2.5, the DV is defined as the three year rolling average 

concentration, calculated at each monitor based on annual weighted means based on quarterly 

means (40 C.F.R. §1.50 App. N 2013).  Counties without monitors or counties with DVs below 

the NAAQS may still be declared in nonattainment due to the other factors in the designation 

analysis as mentioned above.  Design values may be accessed in the AQS while 

attainment/nonattainment status is identified in the EPA Green Book, which houses designations 

for all criteria pollutants (EPA 2016).   

Out of 208 total counties designated in nonattainment for the 1997 annual PM2.5 standard, 

our primary analysis included 133 nonattainment counties.  Counties without PM2.5 data for 

period 1 and/or period 2 were dropped.  The first designations, published in 2005, were made 

using the 2003 DV.  For our secondary analysis, we selected the highest DV in the county for 

each year.  If a county did not have at least five design values recorded from 2000 to 2010, with 

at least one value each in period 1 and period 2, it was removed from this analysis due to lack of 

sufficient records.  Counties without 2003 design values were also excluded.  
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Statistical Analysis 

Linear regression models were used to capture the association between the change in 

cardiovascular mortality rate, period 1 (2000-2004) minus period 2 (2005-2010), and the change 

in PM2.5 levels, period 1 minus period 2, in U.S. counties.  The association was evaluated by 

three different covariate models—models 1, 2, and 3 (Table 2).  Model 1 adjusted for initial 

cardiovascular mortality rate.  Model 2 adjusted for strong confounders of the PM2.5-mortality 

relationship—initial cardiovascular mortality rate, change in COPD rate, and change in total 

income.  Model 3 was adjusted by (a) initial period 1 cardiovascular mortality rate, (b) change 

in COPD, (c) change in total income, (d) change in percent with high school degree, (e) change 

in percent Hispanic, and (f) change in percent black.  Bayesian Information Criteria (BIC) was 

used to determine which covariate model best fit the data.  A model with a lower value of BIC is 

preferred. 

All models in the statistical analysis were weighted by the inverse variances (ω2) of the 

estimated rate.  The weights were also proportional to the total population (correlation = 0.96), 

giving more weight to counties with greater populations.  The general multiple regression 

equation can be summarized by: 

Δyi = β0 + β1ΔPMi + β2x2i + … + βpxpi + εi, εi~N(0, σ2/ω2) 

The model expresses the relationship between the dependent variable (ΔY)—reduction in 

cardiovascular mortality rate—and p independent variables (Xs)—change in PM2.5 (ΔPM) and 

change in aforementioned covariates.  Regression coefficients (βj) express the estimated 

expected change in Δy and per unit increase in xj (j from 1 to p).  The independent variables 

were centered on their weighted means so that the model intercept (β0) is interpreted as the 
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weighted mean change in mortality rate.  Our results focus on the resultant β1 which captures the 

expected change in annual mortality rates (Δyi) for each unit decrease in PM2.5. 

A directed acyclic graph was used to visually represent the association between change in 

PM2.5 and change in cardiovascular mortality rate with consideration of confounders to the 

association based off prior knowledge (Figure 1).  By adding to the linear regression model 

certain variables – those boxed in the diagram – we controlled for the effects of confounding 

from all identified variables as no pathway between exposure and outcome was left unblocked. 

 

  

Next, we compared the change in age-adjusted cardiovascular mortality rates for 

nonattainment versus attainment counties.  We additionally examined the change in 

cardiovascular mortality rate in counties stratified on the 2003 design value (DV).  We stratified 

around thresholds of 12 µg/m3 (the current annual PM2.5 standard) and 15 µg/m3, to consider the 

Figure 1. Directed Acyclic Graph indicating association between change in PM2.5 (ΔPM) and change 

in age-adjusted cardiovascular mortality rate (ΔAMR) from period 1 (2000-2004) to period 2 (2005-

2010) as adjusted for confounding variables. Abbreviations—PM: average PM2.5; AMR: average age-

adjusted cardiovascular mortality rate; SES: socioeconomic status variables, including race, ethnicity, 

income, education status; COPD: chronic obstructive pulmonary disease, a proxy for smoking status; 

NAAQS Attainment: 1997 annual PM2.5 National Ambient Air Quality Standard designation status 
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influence of the initial level of PM2.5 in a county at the time of the first NAAQS designation.  

The changes to health were characterized as a total difference between the two periods, adjusted 

for covariates, as well as an incremental change per unit drop in PM2.5, adjusted for covariates.   

 



 

 

1
0

 

TABLE 1. Summary statistics, means (with parenthetical interquartile ranges), for exposure, outcome, and covariates for all counties and 

counties in strata used to assess effect modification.  Deltas for PM2.5, cardiovascular mortality, and COPD mortality were calculated period 1 

(2000-2004) minus period 2 (2005-2010) so positive values represent improvement in air quality or health. Deltas for covariates were 

calculated 2010 minus 2000 so positive values represent increase in value for the given variable. 

 All Counties Attainment Nonattainment DV03 ≤ 12 12< DV03 ≤15 15 < DV03 

Counties Included, n 619 486 133 165 221 81 

Cardiovascular Mortality Rate, pd 1 323 (72.1) 320 (78.7) 335 (43.6) 299 (59.4) 339 (71.3) 345 (50.4) 

Cardiovascular Mortality Rate, pd 2 262 (67.7) 261 (69.3) 268 (54.3) 242 (53.2) 274 (59) 280 (50.2) 

Δ Cardiovascular Mortality Rate (pd1-pd2) 61.2 (22.1) 59.5 (25.4) 67.1 (16.3) 56.6 (25.8) 65.1 (20.9) 64.8 (16) 

(deaths per 100,000 people)       

PM2.5 concentration, pd 1 12 (3.92) 11.1 (3.39) 15.3 (2.06) 9.66 (2.6) 13.5 (1.48) 16.2 (1.15) 

PM2.5 concentration, pd 2 10.8 (3.35) 10.2 (3.28) 13.2 (1.97) 8.89 (2.82) 12 (1.38) 13.9 (1.09) 

Δ PM2.5 concentration (pd1-pd2) 1.21 (1.3) 0.969 (1.33) 2.1 (0.779) 0.778 (1.02) 1.5 (0.878) 2.29 (1.2) 

(µg/m3)       

COPD Mortality Rate, pd 1 47.5 (15.6) 48.3 (14.9) 44.7 (17.2) 47.3 (15.6) 46.3 (15) 47.4 (17.1) 

COPD Mortality Rate, pd 2 47.4 (17.1) 48.5 (16.5) 43.6 (19) 46.5 (17.6) 46.7 (15.9) 47 (18.9) 

Δ COPD Mortality Rate (pd1-pd2) 0.125 (7.89) -0.144 (8.69) 1.11 (5.63) 0.83 (8.23) -0.417 (7.9) 0.479 (4.92) 

(deaths per 100,000 people)       

Total Income 2000 8.02 (7.66) 5.96 (5.35) 15.5 (14.8) 7.9 (8.08) 8.11 (6.74) 16.3 (12.7) 

Total Income 2010 8.41 (8.54) 6.39 (5.84) 15.8 (15.5) 8.62 (9.11) 8.44 (6.99) 16.4 (14.5) 

Δ Total Income (2010-2000) 0.395 (0.533) 0.431 (0.478) 0.266 (0.944) 0.724 (0.816) 0.334 (0.516) 0.0573 (0.822) 

(tens of thousands of U.S. dollars)       

Percent High School Educated 2000 80.7 (8.35) 80.6 (8.4) 80.7 (8) 82.3 (8.1) 79.9 (8.8) 78.7 (7.4) 

Percent High School Educated 2010 85.5 (6.6) 85.5 (6.83) 85.5 (6.2) 86.6 (6.3) 84.7 (6.9) 83.9 (6.3) 

Δ Percent High School Educated (2010-2000) 4.82 (2.7) 4.8 (2.7) 4.86 (2.3) 4.3 (2.8) 4.84 (2.6) 5.22 (1.8) 

(percent of population age >25 high school degree)      

Percent Black Population 2000 11.7 (15) 11.2 (15.1) 13.6 (14.9) 7.24 (9.14) 15.7 (19.8) 16.3 (16.7) 

Percent Black Population 2010 12.7 (15.7) 12.1 (15.4) 15.1 (15.9) 8.07 (10.4) 17 (20.3) 17.6 (19.5) 

Δ Percent Black Population (2010-2000) 1.03 (1.4) 0.913 (1.35) 1.46 (1.5) 0.833 (1.18) 1.28 (1.73) 1.32 (1.53) 

(percent of total population)       

Percent Hispanic Population 2000 7.82 (6.54) 7.53 (5.53) 8.89 (9.27) 11.3 (10.2) 5.42 (5.09) 9.81 (6.76) 

Percent Hispanic Population 2010 10.6 (10) 10.2 (8.53) 12 (13.3) 14.5 (14.4) 8.04 (7.27) 12.7 (10) 

Δ Percent Hispanic Population (2010-2000) 2.79 (2.84) 2.71 (2.66) 3.1 (3.64) 3.19 (3.06) 2.62 (2.6) 2.92 (3.06) 

(percent of total population)       
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CHAPTER 3: RESULTS 

Population Characteristics 

The association between change in cardiovascular mortality rate and the change in PM2.5 

as well as modification of that association by attainment status was analyzed for 619 counties, 

capturing 70% of the U.S. population (2010).  Modification of the association by design value 

was analyzed in 467 counties, capturing 61% of the U.S. population. 

From period 1 (2000-2004) to period 2 (2005-2010), overall cardiovascular mortality 

rate, decreased on average by 61.2 deaths per year per 100,000 people annually with an 

interquartile range (IQR) of 22.1 deaths per year per 100,000 people (Table 1).  Annual PM2.5 

decreased on average by 1.21 µg/m3 with an IQR of 1.3 µg/m3.  COPD mortality rates also 

decreased on average from period 1 to period 2 by 0.125 deaths per year per 100,000 people.  

From 2000 to 2010, total household income increased by $3,950 and there was a 4.82% increase 

in the population with at least a high school degree of age 25 or older.  Hispanic and black 

populations also increased over the study period by 2.79% and 1.03%, respectively. 

The strongest predictor of change in cardiovascular mortality rate was a county’s 

cardiovascular mortality rate during period 1 (Figure A.3); therefore, we included initial-period 

cardiovascular mortality rate as an explanatory variable.  Period 1 cardiovascular mortality rates 

were also correlated to the average PM2.5 concentrations in period 1 (Figure A.4). Finally, there 

was a strong correlation between the change in PM2.5 concentrations from period 1 to period 2 

and the period 1 concentration of PM2.5 (ρ = 0.57, 0.76 when weighted), indicating areas with the 

highest initial levels of PM2.5 had the largest declines in PM2.5 (Figure A.5). 
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Main Result 

The estimated impact of reductions in PM2.5 on reductions in cardiovascular mortality 

was consistent across the three models, ranging from 0.99 (95% CI 0.27, 1.71) deaths per year 

per 100,000 people to 1.44 (95% CI 0.73, 2.14) fewer deaths per year per 100,00 people per unit 

(1 µg/m3) decrease in PM2.5 (Table 2).  Added variables altered the estimate of the mean effect 

and improved the model fit (BIC analysis), suggesting confounding effects of additional 

predictors on the association between of the decrease in PM2.5 and decrease in cardiovascular 

mortality rate.  Model 3 fit the data best (BIC), estimating a drop in mortality rate of 1.10 (95% 

CI 0.37, 1.82) fewer deaths per year per 100,000 people was associated with 1 µg/m3 reduction 

in PM2.5 across U.S. counties.   

Model 3 also estimated 0.168 fewer deaths per year per 100,000 people were associated 

with each unit increase (1 death per year per 100,000 people) in initial (period 1) cardiovascular 

mortality rate (Table 2).  Each unit decrease in the COPD morality rate (1 fewer COPD death per 

year per 100,000 people) was associated with 0.256 fewer cardiovascular deaths per year per 

100,000 people. Model 3 coefficients also estimate 0.304 fewer cardiovascular deaths per year 

per 100,000 people were associated with each ten thousand dollar-increase in total household 

income and 0.431 fewer deaths per year per 100,000 people were associated with each 1% 

increase in Hispanic population (percent of total population).  Finally, 1.52 more cardiovascular 

deaths per year per 100,000 people were associated with each 1% increase in percent of 

population aged 25+ that had at least a high school degree and 0.314 more deaths per year per 

100,000 people were associated with each 1% increase in Black population (percent of total 

population).  Henceforth, we present results using models adjusting for all covariates of Model 3. 
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TABLE 2. Results of Selected Regression Models for County-Level Analysis; The 

reported values are the estimated changes in age-adjusted cardiovascular mortality 

rate associated with each variable listed on the left. Positive coefficients indicate 

improvement in mortality rate, fewer deaths per year per 100,000 people. Standard 

error of average effect estimate is given in parentheses. n = 619. 

Variable Model 1 Model 2 Model 3 

(Intercept) 63.1 (0.48) 63.1 (0.47) 63.1 (0.46) 

Reduction in PM2.5 (µg/m3) 1.44 (0.36) 0.99 (0.37) 1.1 (0.37) 

Cardiovascular Mortality Rate, pd 1 0.124 (0.01) 0.144 (0.01) 0.168 (0.01) 

Δ COPD Mortality Rate -- 0.364 (0.13) 0.256 (0.13) 

Δ Income Total (in $10,000 USD) -- 0.534 (0.16) 0.304 (0.17) 

Δ Percent High School Educated (%) -- -- -1.52 (0.31) 

Δ Percent Hispanic Population (%) -- -- 0.431 (0.21) 

Δ Percent Black Population (%) -- -- -0.314 (0.27)  

 

First, we examined effect modification by counties designated nonattainment versus 

attainment of the 1997 standard.  Second, we examined effect modification by counties stratified 

based off the first factor in the designation analysis—the 2003 design value, an indicator for 

initial PM and the first of five criteria used to determine attainment status for the 1997 standard. 

Association Modified by Attainment Status  

The average decrease in PM2.5 in nonattainment counties from period 1 to period 2, 2.10 

µg/m3, was roughly twice that in attainment counties 0.97 µg/m3 (Table 1; Figure A.1).  

Nonattainment counties also had a greater decrease in mortality rate (63.7 (95% CI 62.2, 65.3) 

deaths per year per 100,000), adjusted for confounders, than attainment counties (62.7 (95% CI 

61.5, 64.0) deaths per year per 100,000) when PM2.5 was not included as an explanatory variable 

(Figure 2a).  The difference between estimates, however, was not statistically significant.  Per 

unit decrease in PM2.5, counties in nonattainment had a smaller change in mortality rate (0.59 

(95% CI -0.54, 1.71) deaths per year per 100,000 people) compared to counties in attainment 

(1.96 (95% CI 0.77, 3.15) deaths per year per 100,000 people), but this difference was not 

statistically significant (Figure 2b).   



 

 14 

 

 

 

Association Modified by Design Value 

Counties with a 2003 DV greater than 15 µg/m3 experienced the greatest decrease in 

mean annual PM2.5 (2.29 µg/m3) from period 1 to period 2 (Table 1; Figure A.2).  County-level 

observed changes in PM in each group are given by Figure A.2.  Similarly, the mean decline in 

cardiovascular mortality rate for these same counties (64.5 (95% CI 62.5, 66.6) deaths per year 

per 100,000), adjusted for confounders but not changes in PM2.5, exceeds the mean decline in 

mortality rate in counties with the lowest 2003 DVs (62.3 (95% CI 60.4, 64.2) deaths per year 

per 100,00), though the difference is not statistically significant (Figure 3a).  Per unit PM2.5, 

however, counties with the highest 2003 DVs had an incremental decline in cardiovascular 

mortality rate (0.73 (95% CI -0.57, 2.02) fewer deaths per year per 100,000 per 1 µg/m3 drop) 

that was three times less than that of counties with 2003 DV below 12 µg/m3 (2.6 (95% CI 0.52, 

4.70) fewer deaths per year per 100,000 per 1 µg/m3 drop), though the difference was not 

Figure 2. (a) Point estimate and 95% confidence intervals for a decrease in cardiovascular mortality 

rate for all counties, nonattainment counties, and attainment counties—adjusted for confounders 

included in Model 3 but not PM2.5 (b) Point estimate and 95% confidence intervals for effect of a per 

unit decrease in PM2.5 on decrease in cardiovascular mortality rate for all counties, nonattainment 

counties, and attainment counties—adjusted for confounders included in Model 3. 
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statistically significant (Figure 3b).  For all estimates of PM2.5 and mortality change from period 

1 to period 2, the estimates for counties with 2003 DV greater than 12 µg/m3 and less than or 

equal to 15 µg/m3 fell between those of the other two groups and were not statistically different. 

 

Figure 3. (a) Point estimate and 95% confidence intervals for decrease in cardiovascular mortality 

rate for all counties and counties with 2003 Design Value (DV03) greater than 15 µg/m3, between 12 

and 15 µg/m3, and under 12 µg/m3—adjusted for confounders included in Model 3 but not PM2.5. (b) 

Point estimate and 95% confidence intervals for effect of a per unit decrease in PM2.5 on decrease in 

cardiovascular mortality rate for all counties and counties with 2003 DV greater than 15 µg/m3, 

between 12 and 15 µg/m3, and under 12 µg/m3—adjusted for confounders included in Model 3. 
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CHAPTER 4: CONCLUSIONS 

We estimate the association between the change in cardiovascular mortality rate and the 

change in annual PM2.5 across 619 US counties and examine how the association varied by 

counties’ attainment status for 1997 annual PM2.5 NAAQs.  A decrease in 1 µg/m3 of PM2.5 was 

associated with 1.10 (95% CI 0.37, 1.82) fewer deaths per year per 100,000 people.  When we 

examined the same association by attainment status and by initial DV, we found that 

nonattainment counties as well as those with the greatest initial levels of PM2.5, experienced 

greater average declines in PM2.5 (2.1 µg/m3 and 0.97 µg/m3, respectively) but smaller 

improvements to health per unit drop in PM2.5 (respectively, 0.59 (95% CI -0.54, 1.71) and 0.73 

(95% CI -0.57, 2.02) fewer deaths per year per 100,000 people), although these were not 

statistically different.  Meanwhile, attainment counties with cleaner air experienced smaller 

declines in PM2.5 (0.97 µg/m3) but greater improvement to health per unit drop in PM2.5 (1.96 

(95% CI 0.77, 3.15) fewer deaths per year per 100,000).  However, the differences in health 

improvement were not statistically significant.  The initial PM2.5 was higher among 

nonattainment counties and the change in PM2.5 was highly correlated with initial PM2.5 (Figure 

A.1).   

The average drop in cardiovascular mortality attributed to the reductions in PM2.5 (the 

product of the average incremental effect from Figure 2b and the average drop in PM2.5 from 

Table 1) was approximately 1.24 deaths per year per 100,000 people in nonattainment counties 

and 1.9 deaths per year per 100,000 in attainment counties.  Though multiple risk factors interact 

to contribute to health improvement, these results suggest that 1.9% and 3.0% of the overall 
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decrease in cardiovascular mortality rate is attributed to the decline in PM2.5 in nonattainment 

and attainment counties, respectively.  In counties with 2003 DV greater than 15 µg/m3, 1.67 

fewer deaths per year per 100,000 people were attributed to reductions in PM2.5 (3.2% of total 

health improvement) while, in counties with 2003 DV less than 12 µg/m3, 2.03 fewer deaths per 

year per 100,000 people were attributed to PM2.5 reductions (2.6%). 

Our results also suggest that health benefit per unit drop in PM2.5 persists in the counties 

with PM2.5 levels at and below 12 µg/m3, our current national standard for annual PM2.5.  At 

lower levels of PM2.5, a unit decrement in PM2.5 is associated with greater expected health 

improvement in a county. Taken together, these findings suggest that the concentration response 

function between PM2.5 and cardiovascular mortality rate is nonlinear with a concave down 

shape, having a steeper slope at lower values of PM2.5 and a less steep slope higher 

concentrations.   
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CHAPTER 5: DISCUSSION 

The main result is supported by studies which find a significant association between 

health improvements and the decline in annual PM2.5.  Pope et al. (2009) estimated an increase in 

mean life expectancy of 0.61±0.2 years was associated with a 10 µg/m3 decrease in PM2.5 in the 

1980s and 1990s, and Correia et al. (2013) reported a 10 µg/m3 decrease was associated with an 

increase in mean life expectancy of 0.35 years from 2000 to 2007.  “Quasi-experimental” 

studies, have reported significant absolute improvements to health when abrupt, dramatic 

improvements to air quality have occurred as a result of a local event or source-control action 

(Breitner et al. 2009; Clancy et al. 2002; Peel et al. 2008; Pope et al. 1992; Su et al. 2015; Wang 

et al. 2009).  Pope et al. (1992) first demonstrated a significant reduction in daily mortality after 

PM10 concentrations dropped dramatically due to the temporary closure of a steel mill in the 

Utah Valley.  After a 1990 ban on bituminous coal in Dublin, Ireland, Clancy et al. (2002) 

reported a sharp reduction in black smoke and sulfur dioxide along with a 10.3% reduction in 

cardiovascular deaths or about 243 fewer cardiovascular deaths per year.  Examining a more 

recent sudden change in air pollution, Su et al. (2015) reported unique air pollution controls for 

the Beijing 2008 Summer Olympics successfully led to reduction of air pollution—measured by 

PM10, PM2.5, particle number concentration (PNC), and NO2—and a decreased risk of 

cardiovascular mortality.  When the unique controls ended post-Olympics, air pollution 

increased and was associated with increases in cardiovascular mortality.  Our report of overall 

improvement in health after the implementation of NAAQS, though over a relatively longer time 

period, is in accordance with these studies.   
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On the other hand, previous studies which examined impacts of broader, as opposed to 

localized and immediate, air pollution requirements were unable to conclude that national 

regulations were associated with changes in both air quality and health.  In evaluating the 

changes in total suspended particles (TSPs) induced by the Clean Air Act Amendments in 1970, 

Chay et al. (2003) found that TSP concentrations declined significantly more in nonattainment 

counties compared to attainment counties.  However, he reported that nonattainment status had 

little association with changes in adult or elderly mortality rates.  Further, the authors 

demonstrated that attainment and nonattainment counties very near to the 1970 TSP standard at 

the time of legislation had similar characteristics—an element that may have reduced omitted 

variable bias.  This strength, unfortunately, may have been undermined by the difference in 

initial health status between attainment and nonattainment counties (Chay et al. 2003).  

Considering attainment status for the annual PM10 NAAQS, Zigler (2016) reported that the 1991 

designations overall caused 1.76 fewer deaths per 1,000 Medicare beneficiaries.  However, using 

principal stratification, the authors indicated that the magnitude of negative dissociative effects 

was similar to the negative associative effects, meaning that the regulation causally reduced 

morality regardless of whether the regulation causally reduced average concentrations of PM10. 

Our study considers 1997 NAAQS designations for PM2.5 and reports a strong 

improvement to health per unit drop in PM2.5 for counties in attainment.  Relative to 

nonattainment counties, attainment counties are lower on the concentration response curve and 

have a steeper slope. This is also consistent with literature which supports the persistence of the 

association at levels of PM2.5 at or below the current NAAQS of 12 µg/m3, indicating that health 

will continue to improve as areas ambient concentrations of PM2.5 decline (Crouse et al. 2012; 
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Daniels 2004; Marshall et al. 2015; CA Pope et al. 2015; Schwartz et al. 2002; Schwartz et al. 

2008).   

Moreover, the analyses of Marshall et al. (2015), CA Pope et al. (2015), and others also 

propose a supralinear (concave downward) PM2.5-mortality concentration response (C-R) 

function, in agreement with conclusions presented here (Crouse et al. 2012; Lu et al. 2017; 

Marshall et al. 2015; CA Pope, 3rd et al. 2015).  CA Pope et al. (2015) reported that there are 

health benefits from reducing air pollution in more polluted areas and even greater health 

benefits per unit drop in PM2.5 from continuing to reduce air pollution in cleaner areas.  Putting 

emphasis on U.S. conditions, Marshall et al. (2015) concluded that a supralinear C-R for 

cardiopulmonary mortality and PM2.5 implies we should achieve greater health benefit and 

economic efficiency by making “blue skies bluer”, although this optimal policy might conflict 

with traditional environmental equity goals. 

Our study faces a number of challenges common to long-term accountability studies.  

First, nonattainment counties are clustered in or nearby urban areas and have different socio-

economic, demographic (SES) characteristics compared to attainment counties.  Despite 

controlling for changes in SES variables in our statistical model, it is possible that we did not 

totally remove confounding. 

Second, annual PM2.5 NAAQS are not solely responsible for nationwide reductions to 

annual PM2.5.  Technological advancements and decreasing costs of clean technology as well as 

other air quality regulations and programs have reduced PM2.5 and its precursors.  National fuel 

standards target mobile emission sources across all counties while NAAQS for NOx, SOx, and 

ozone have their own attainment designations and associated control requirements which do not 

necessarily align with designations for PM2.5 NAAQS used here.   Because such programs 
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differentially impact all counties—not simply the attainment versus nonattainment groups used 

for this study—it is difficult to identify the change to PM2.5 and subsequent change to health 

attributed to a particular program in a particular county.  Finally, the annual PM2.5 NAAQS as 

well as most other regulations target a single air pollutant, but they may influence concentrations 

of multiple pollutants which interact to affect health through more complex and unaccounted for 

pathways. 

This study has affirmed that reductions in PM2.5 are significantly associated with 

reductions in age-adjusted cardiovascular mortality rates.  Further, we report that the health 

benefits per unit drop in PM2.5 varied but were not statistically different between the counties 

grouped by designation status or initial level of PM2.5.  We hypothesize that the PM2.5-mortality 

concentration response function is nonlinear with cleaner counties experiencing greater 

improvement per unit PM2.5.   
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APPENDIX A 

 

 

Figure A.1. Reduction in PM2.5 (period 1 minus period 2) in attainment versus nonattainment 

counties. Each point represents the observed average drop in PM2.5 in a county with size given 

by the inverse variance for change in cardiovascular mortality rate, also proportional to 

population size of county.  

Figure A.2. Reduction in PM2.5 (period 1 minus period 2) in counties with 2003 design value 

(DV) less than or equal to 12 µg/m3, 2003 DV between 12 µg/m3 and 15 µg/m3, and DV 2003 

greater than 15 µg/m3. Each point represents the observed average change in PM2.5 in a county 

with size given by the inverse variance for change in cardiovascular mortality rate, also 

proportional to population size of county.  
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Figure A.3. Linear fit to the association between average initial cardiovascular mortality rate, 

period 1 (2000-2004), and the decrease in cardiovascular morality rate from period 1 (2000-

2004) to period 2 (2005-2010) with nonattainment counties given in red. 

 

Figure A.4. Linear fit to the association between initial PM2.5, the average in period 1 (2000-

2004), and the decrease in PM2.5 from period 1 (2000-2004) to period 2 (2005-2010) with 

nonattainment counties given in red. 
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Figure A.5. Linear fit to the association between initial PM2.5, the average in period 1 

(2000-2004), and the decrease in PM2.5 from period 1 (2000-2004) to period 2 (2005-

2010) with nonattainment counties given in red. 
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