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ABSTRACT

Sharon L. Christ: Assessment and Robust Analysis of Survey Errors
(Under the direction of Kenneth Bollen)

Random measurement error and errors due to complex sampling designs may have delete-

rious effects on the quality of parameter estimates. This dissertation is comprised of three

research papers that provide 1) an assessment of random measurement error through es-

timation of reliability using longitudinal, latent variable models, 2) an evaluation of the

various probability weighting methods as corrections to unequal selection probabilities

in multilevel models, and 3) an evaluation of several probability weighting and modeling

approaches to unequal inclusion of observations in growth curve models.

A popular structural equation model used to estimate reliability for a single measure

observed over time is the quasi-simplex model. The quasi-simplex model (QSM) requires

assumptions about the constancy of variance components over time, which may not be

valid for a given sample and population. These assumptions are tested using models that

extend the QSM by using multiple indicator factors. The extended models include item

specific error variance and additional factor variance estimates. Reliability estimates and

their standard errors for the models with and without the QSM assumptions are compared

in light of model fit and test results for several scales using survey data. Reliability

estimates for a general model without the QSM assumptions are generally similar to the

models with the assumptions indicating that the particular QSM assumption may not be

that critical to the reliability estimates obtained from these models. However, variance

components due to additional factor and item specific error have the potential of affecting

reliability estimates markedly when they are estimated by the model.
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Probability weights have traditionally been designed for single level analysis and not

for use in multilevel models. A method for applying probability weights in multilevel

models has been developed and has good performance with large sample sizes at each

level of the model (Pfeffermann, Skinner, Holmes, Goldstein, and Rasbach, 1998). But,

the multilevel weighting method in Pfeffermann, et al. can result in relatively poor

estimation due to large amount of variation in the multilevel weights. This chapter

includes a simulation analysis to evaluate several alternative methods for analyzing two-

level models in the presence of unequal selection probabilities. The primary method of

interest is to specify the level two part of the model such that it is robust to unequal

selection bias in combination with weighting for unequal selection at level one. This

”mixed” method does result in less bias, lower variance, and lower mean squared error

for some models. A limitation is that the mixed method requires that the model is

correctly specified at level two and the appropriate level one weight is used. This ”mixed”

method is a new approach in that it combines the Pfeffermann et al. (1998) weighting

methodology at level one with the use of sample design variables at level two, rather than

use the full Pfeffermann et al. approach of weighting at both levels.

Panel studies often suffer from attrition and intermittent nonresponse. Panel data is

also commonly selected using complex sampling techniques that include unequal selection

of observations. Unequal inclusion of individuals and of repeated measures will result

in biased estimates when the missing mechanism is nonignorable, that is, when missing

values are related to outcomes. Probability weighting may be used to correct estimates for

nonignorable unequal inclusion due to selection and intermittent nonresponse. However

the growth curve models frequently used in analysis of change have not traditionally

been estimated using sampling weights. These models are usually estimated using a

mixed model where the repeated measures are modeled as a function of both fixed and

random parameters. Whereas sampling or probability weights have traditionally been

applied to marginal models, which do not include random effects parameters. In this
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chapter, several weighting approaches are applied to the mixed and marginal modeling

frameworks using simulated and empirical data in linear growth models with continuos

outcomes. Probability weighting performs the best in a marginal model when missing

data are nonignorable. However, in most real situations including the empirical example

provided in this chapter, probability weights may need to be combined with estimation

that also utilizes variance weighting such as the GLS estimator with a correctly specified

repeated measures correlation matrix as the variance weight matrix. This estimation

methods can improve efficiency and decrease bias in estimates when data are missing at

random (MAR).
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CHAPTER 1

Introduction

Sampling and nonsampling error in survey data may result in inconsistent and in-

efficient estimators. Sampling error due to unequal selection of observations is common

in survey data and may result from a complex sampling design and/or nonresponse. Pa-

rameter estimates will be inconsistent when unequal selection probabilities are related to

variables for descriptive statistics or outcome variables for a model. Random measure-

ment error is also widespread in survey data and can result from interviewer, coder, data

entry and response bias. Random measurement error decreases power and will result

in parameter inconsistency for correlation and regression coefficients when independent

variables contain error. The broad topics addressed by this dissertation research includes

sampling and random measurement error. One chapter deals with random measurement

error via the topic of estimation of reliability for scales in longitudinal data. Longitudi-

nal, latent variable models are used to estimate reliability and test model assumptions

that may affect the accuracy of reliability estimates. Estimation approaches that correct

for sampling error due to unequal selection of observations is the topic of two chapters.

Probability weighting methods are examined in the context of multilevel and longitudinal

modeling as to their quality of estimation in the presence of nonignorable unequal selec-

tion. The overarching goal of this research was to make contributions to our knowledge

about evaluating and reducing the survey errors that arise in complex samples.

Reliability of scale scores may be estimated using latent variable models, which

estimate random measurement error separately from factor variance. The quasi-simplex



model (QSM) is a longitudinal, latent variable model that may be used to estimate

reliability for a single indicator measured at three or more time points (Heise, 1969;

Wiley and Wiley, 1970). The QSM for a single indicator measured over time requires

certain model assumptions in order for the model to be identified. These assumptions

are not required when the QSM is extended to include multiple indicators of a trait. The

research in Chapter 2 uses models that are extensions of the QSM for the estimation of

reliability of scale scores and to test the alternative assumptions of the QSM for those

scores. The models use the latent variable structure of the QSM along with multiple

indicator factors including the individual scale items as indicators and random split-

halves of the scale items as indicators. The proposed models allow for the estimation of

specific error variance and additional factor variance within time. The ability to partition

the specific error variance can greatly affect reliability estimates because this variance is

reliable, but would be erroneously applied to random error in the single indicator QSM.

The ability to estimate additional factor variance is also important because this variance

can then be treated as reliable. The partitioning of all reliable variance allows for the

correct estimation of reliability.

The extension models are also used to test two relevant assumptions about the con-

sistency of variance over time. The models are used to test the assumption of constant

error variance and constant true score variance over time, where true score variance

includes all reliable variance. One or more of these assumptions are required for identify-

ing the original single indicator QSM. Testing the assumptions of the QSM is important

because this model has been used in many applied areas as a method for obtaining reli-

ability and stability estimates for scales and other single measures over time. Applying

the QSM with the most appropriate constraints is preferable in these applied settings.

The assumptions of the QSM have been evaluated in the methodological research using

different over-identified models, but a consensus on the best model assumptions has not

developed. The analysis in Chapter 2 also contributes to the existing methodological
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literature by adding a new testing situation for the QSM, which includes several scale

scores from the National Survey of Child and Adolescent Well-Being (NSCAW).

Chapters 3 and 4 both involve the assessment of estimation methods that are robust

to sampling error resulting from unequal inclusion of observations. In Chapter 3, a simu-

lation analysis is used to evaluate and compare several weighting methods for correcting

unequal selection bias in two-level (mixed) models. The method of particular interest

is to combine both probability weighting in estimation and the inclusion of sample de-

sign variables in the model. This method is in contrast to the method of using multilevel

weighting (Pfeffermann, Skinner, Holmes, Goldstein, and Rasbach, 1998), which has been

shown to be a good approach. The weighting and design variable approach is suggested

as a potential superior method in certain situations because it can result in lower MSE.

Multistage, complex sample designs that result in nesting of observations are gen-

erally designed to limit the effects of unequal selection for a single level analysis. And

multilevel modeling of data from such designs can result in severe effects of weights due

to the larger degree of unequal selection at the separate sampling stages, which parallel

the levels of a multilevel model. This selection results in extreme weight variation and

larger MSE. The method that combines a model-based approach of including sample

design variables in the model at level two where these variables are often limited in num-

ber and weight variation is large, along with weighting at level one is compared to the

method of weighting at both levels. In addition, other methods of applying the traditional

single-level weight in multilevel models are considered. These methods may be in use by

analysts since the traditional, single level weights are often the only weights available to

analysts and it is unknown how badly these weights perform in mixed models.

Alternatives to using multilevel weights, besides ignoring unequal selection proba-

bilities all together, have not been evaluated extensively. This research contributes to

our knowledge about practical alternatives to multilevel weighting for a common sam-

ple design. It is important to understand the conditions under which the alternative
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methods perform well or poorly given that access to the weights or information about

the sampling design may not be available. It also reveals the possible pitfalls of using a

multilevel model with weighted estimation. Another important contribution is that this

simulation study is based on a real sampling design and real finite population making

the results more generalizable than a simulation using an arbitrary design.

Chapter 4 addresses the issue of sampling error due to unequal inclusion of observa-

tions in longitudinal models, specifically linear growth curve models. The focus is also

specific to cohort or panel data where observations are followed over time. For this type

of data, unequal selection of observations may occur at the first time point due to sam-

ple design, non-participation, and other sampling deficiencies while unequal inclusion of

observations in the sample at follow up waves is solely due to intermittent nonresponse

or attrition. This data structure commonly arises for panel data. The purpose of this

chapter is to compare and contrast a number of weighting and estimation methods for

dealing with nonignorable unequal inclusion of observations over time in linear trajectory

models. Weighting methods are considered in both the mixed model and the marginal

model because estimation of parameters in linear trajectory models with missing data at

the level of time differs depending on whether a mixed model or a marginal model are

used.

The weighting methods considered include panel weighting with complete data, which

is the most common method in the survey sampling tradition; weighting for unequal

inclusion into the study with no weighting for time-specific nonresponse; weighting for

both unequal inclusion and time-specific nonresponse using multilevel weights; weighting

for both unequal inclusion and time-specific nonresponse using time-varying weights; and

no weighting at all. The weighting methods perform differently depending on whether

the mixed or marginal model are used. The various weighting methods in combination

with model types were evaluated and compared using an empirical example with the

NSCAW data set and using simulated data.
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This research contributes to our knowledge about how best to deal with missing data

in longitudinal modeling. While unequal selection probabilities is basically a missing data

problem, probability weighting has not been a major topic in the missing data literature.

Chapter 4 evaluates weighting as a viable option for dealing with missing data in the

longitudinal context. As well, the survey sampling literature does not cover the specific

case of trajectory modeling very well where the primary method has been the less powerful

panel weighting method. ”Time-varying” weighting in the marginal modeling context is

one alternative to the panel weighting method as is using a mixed model in conjunction

with multilevel weights.

Random measurement error and sampling error due to unequal inclusion of observa-

tions are common problems in survey data. Analysis methods for evaluating measurement

error are critical for an understanding of the quality of the measures that we use from sur-

vey data. Analysis methods that correct for bias due to unequal inclusion probabilities,

which is tantamount to bias due to missing data, are necessary for accurate estimation.

These very important issues are taken up in the chapters that follow.
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CHAPTER 2

Scale Reliability Estimation and Testing using Longitudinal,

Latent Variable Models

Abstract A popular structural equation model used to estimate reliability for a single

measure observed over time is the quasi-simplex model. The quasi-simplex model (QSM)

requires assumptions about the constancy of variance components over time, which may

not be valid for a given sample and population. These assumptions are tested using

models that extend the QSM by using multiple indicator factors. The extended models

include item specific error variance and additional factor variance estimates. Reliability

estimates and their standard errors for the models with and without the QSM assump-

tions are compared in light of model fit and test results for several scales using survey

data. Reliability estimates for a general model without the QSM assumptions are gen-

erally similar to the models with the assumptions indicating that the particular QSM

assumption may not be that critical to the reliability estimates obtained from these mod-

els. However, variance components due to additional factor and item specific error have

the potential of affecting reliability estimates markedly when they are estimated by the

model.

2.1 Introduction

The importance of reliability of measurement cannot be overstated. Low reliabil-

ity may result in inaccurate parameter and variance estimates. While univariate means

and covariances are unaffected by random measurement error, correlations and bivariate



regression parameters are attenuated in proportion to the amount of error variance. How-

ever, in multiple regression, when multiple independent variables contain measurement

error, regression coefficients can be biased upward or downward (Bollen, 1989, pp 151-

176). In addition to potential bias in parameter estimates, standard errors of estimates

are inflated when measurement error is present. Therefore, the assessment of random

measurement via reliability estimation is of great importance.

Structural equation models (SEMs) with latent variables allow for the estimation

of reliability under a myriad of theoretical models. One SEM that provides reliability

estimates for repeated measures is the quasi-simplex model (QSM). The QSM presented

by Heise (1969) and Wiley & Wiley (1970) is a model with three factors each measured

by a single indicator where the indicators are the same variable measured at three time

points. The single-indicator factors are related over time in a Markov structure. The

QSM provides estimates of reliability and stability of an observed variable measured at

three or more time points. Unlike traditional test-retest reliability, the QSM does not

require perfect stability in true score over time nor parallel measurement. However, the

QSM is limited in that it requires assumptions about the equality of true score variance

and/or the equality of error variance over time. It also does not allow for the estimation

of specific error variance (Palmquist & Green, 1992; Wiley & Wiley 1974). Specific

error variance represents variance due to an item and is separate from the common

variance of the item and the random error of the item. Specific item error variance will

increase reliability estimates since this type of error variance is replicated upon repeated

assessment.

This article has several purposes. The first is to present models for estimating re-

liability and for testing the assumptions required for estimation of the single-indicator

quasi-simplex model (QSM). The models combine an inter-item method of reliability es-

timation (Jöreskog, 1971) with the test-retest method of reliability estimation given by

the QSM. In one version of the model the items are random split-halves (Biemer, Christ,
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Wiesen, 2008). The hybrid models allow for the estimation of reliability with minimal

assumptions and may include estimation of item-specific error variance and correlated

measurement error within time/scale. The correlated measurement error is inter-item

shared variance that is parameterized as additional factors representing additional traits

within time. This variance is considered systematic and therefore reliable. Second, the

hybrid models will be utilized to test the assumptions of constant true score variance over

time, constant error variance over time, and both assumptions simultaneously (a form

of constant reliability). One or the other of these assumptions is required for identifica-

tion of the single-indicator QSM. In addition, the constant variance components are of

substantive interest in their own right for many traits. Finally, reliability of composites

and their standard errors are estimated from the hybrid models with and without the

traditional QSM assumptions. The estimates are viewed in light of model assumptions

and model fit.

The focus of this chapter is the reliability of scale scores, which are sums or averages

of several individual items. Scale scores are commonly used by researchers as measures

of constructs or broader concepts. Scale reliability is most often estimated using the

inter-item correlation method of Cronbach’s Alpha (Cronbach, 1951; Hogan, Benjamin,

& Brezinsky, 2000). The hybrid models analyzed in this chapter use an inter-item corre-

lation method of reliability estimation with fewer assumptions than Cronbach’s method

(Jöreskog, 1971). The data required for the hybrid models includes multiple measures of

the same scale (construct) over two or more time points. Scale scores from the National

Survey of Adolescent and Child Well-Being (NSCAW) are analyzed.

Testing the assumptions of the QSM is important because variants of this model

have been widely applied as a method for obtaining reliability and stability estimates

for scales and other single measures over time. The QSM models introduced by Heise

and Wiley and Wiley have also activated an abundance of methodological work in the

area of reliability, stability, and longitudinal analysis. According to the social sciences
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citation index, the 1970 Wiley & Wiley paper is currently cited in 142 articles and the

Heise (1969) paper is cited in 228 articles. Applying the QSM with the most appro-

priate constraints is preferable. The assumptions of the QSM have been evaluated in

the methodological research using different over-identified models, but a consensus on

the best model assumptions has not developed. This article contributes to the existing

methodological literature by testing the QSM assumptions in general models that allow

for specific item error variance and additional reliable variance theorized as additional

traits or dimension. It also contributes by adding a new testing situation for the QSM

to include a large and somewhat varied sample of child development scale scores, a large

sample of observations (over 1000) for most scales, and another testing population.

The remainder of this article includes 1) background on the classical test theory

definition of reliability and latent variable models for estimating reliability, 2) a descrip-

tion of the single-indicator QSM with a review of the methodological literature on the

QSM, 3) a description of the data, models, and methods used for testing of the QSM

assumptions, and 4) presentation of results and conclusions.

2.2 Background

We start with the classical test theory definition of reliability. Reliability is the

ratio of true score variance to total observed variance (Anastasi, 1988; Lord & Novick,

1968; McDonald, 1999) where true score variance is the variance of any valid or invalid

consistency in a measure. True score is therefore the expected value of a score over the

population of scores (Lord & Novick 1968, p.173-176 ). Reliability may equivalently be

defined as one minus the ratio of pure error variance to total observed variance.

Consider the observed score, yi, which is comprised of two components: true score,

τi, and unique error, εi.

yi = τi + εi (2.1)
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Where true score, τi, represents any systematic part of yi including the trait or factor ,

ti, and systematic error (or bias), si, such that τi = ti + si where si is uncorrelated with

ti. Therefore, equation (2.1) may be written in more detail as follows

yi = ti + si + ei (2.2)

where ei is pure random error. Random error, ei, has expectation of zero and is uncor-

related with the si and the ti, and, si is uncorrelated with ti. Using equation (2.1), the

reliability of yi is defined

ρyy =
σ2
τ

σ2
τ + σ2

e

=
σ2
τ

σ2
y

(2.3)

where σ2
τ = var (ti) + var (si). Equation (2.2) assumes that yi measures a single trait.

The equation can be extended to include multiple correlated traits, tip, where p in-

dexes the factors. With multiple traits, true score variance becomes σ2
τ =

∑
p

var (tp) +

2
∑
p<

∑
p′
cov (tp, tp′)+var (si). Equation (2.3) illustrates that reliability is the proportion of

total variance in the observed scores that is not attributable to pure random error. This

proportion ranges from zero, completely unreliable, to one, perfectly reliable. Consider

multiple yi, which are part of a composite score. In this case there may be one or more

traits and multiple specific error for each observed item comprising the composite.

Depending on what is intended to be measured, the tip may be considered valid or

invalid. If a single trait is intended to be measured, then all but one latent variable

would be considered invalid. However, for many scale scores a broader, multidimensional

concept may be the intended measure where the scale score is a composite of multiple

traits. In this case the validity of each factor should be considered separately. Item-

specific, systematic error is generally considered bias as it represents systematic deviation

from all traits due to the specific item. Specific error may be considered a method effect

because each indicator of the scale is considered a different method of measurement for

the scale score (Saris & Aalberts, 2003; Saris & Andrews, 1991). It is also referred

to as indicator specificity (Raykov & Tisak, 2004) where the unique error, εi, can be
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decomposed into error specific to an indicator and ”pure” measurement error.

Note that two different populations with equal random error variance for the same

scale may have different reliability due to different degrees of true score variation in a

population. The population that is more homogenous on true score would have a lower

score reliability even though the random error in the measurement process is the same

(Lord and Novick, 1968, 199; Wiley & Wiley, 1970, 113). In this sense, reliability is not

just a condition of an instrument, but also of a population.

2.3 Latent Variable Models for Estimating Reliability

Reliability estimation methods include split-halves, test-retest, and inter-item

(Brown, 1910; Cronbach, 1951; Hoyt, 1941; Jackson, 1939; Spearman, 1910). Split-halves

estimates are based on the correlation of two halves of a scale. Test-retest estimates are

based on the correlation between two or more measurements of the same scale at dif-

ferent time points. And inter-item (or internal consistency) estimates are based on the

shared correlation of the items that make up a scale. All of these methods of estimating

reliability are based on the classical test theory operational definition of reliability. In

each case, the consistency of k ≥ 2 measures is obtained.

Structural equation modeling (SEM) provides many methods for assessing reliabil-

ity, including inter-item, test-retest, and split-halves methods because SEM allows for

the separation of random measurement error variance from true score variance (Bollen,

1989; Saris & Andrews, 1991; Cudeck, du Toit, and Sörbom, 2001). Jöreskog (1971)

outlines structural equation models for reliability estimation of sets of congeneric items.

Congeneric items measure the same construct or trait and allow different measurement

error variances and different linear relationships with the trait across items. Congeneric

items are less restrictive than parallel items, which require equal linear relationship with

the trait and equal error variance across items. Congeneric items are also less restrictive

than tau equivalent items, which require equal linear relationship with the trait across

items. In many traditional methods for estimating reliability, the assumption of parallel
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measures (e.g., test-retest and split-halves) or tau-equivalent measures (e.g., Cronbach’s

alpha) is made.

Jöreskog’s model for analysis of congeneric items is a factor model where multiple

measures of the same trait are loaded on a single factor. The system of equations for this

model with k measures is

yki = λkti + εki

The yki are the observed items of the factor scores, ti, with random error component

εki. The λk are the coefficients representing the relation between true (factor) scores and

observed scores. There may be item specific error, si, in equation 2.3. However with

one factor measured at one time point, it is not possible to estimate si. In addition to a

unidimensional trait, the model assumes the following:

E (εki) = 0

cov (εki, εk′i) = 0; k 6= k′

cov (εki, ti) = 0

The second assumption (uncorrelated item errors) may be relaxed, though the definition

of reliability will change as a result. This model provides estimates of true score variance,

var (ti), as well as error variance for each indicator, var (εki). Reliability of the composite

of the k measures is given by

ρY Y =

(
K∑
k=1

λk

)2

σ2
ti(

K∑
k=1

λk

)2

σ2
ti +

K∑
k=1

(
σ2
εki

) (2.4)

where Y is the composite score.

Cronbach’s alpha may be estimated in a factor model by placing further restrictions

on Jöreskog’s model (Werts & Linn, 1970). These restrictions include equal factor load-

ings, λk = λk′ with factor variance set to one1 and equality of error variances across

1Alternatively all factor loadings may be set to one and factor variance freely estimated.
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items k 6= k′: var (εk) = var (εk′) = var (ε) so that y = λt + ε for all items. These

additional assumptions make up the requirement of parallel measurement for all of the

items in the scale. With these same constraints, traditional split-half reliability esti-

mation may be obtained using this model with two half scores as factor items. A less

restrictive reliability estimate using split halves could be obtained using the congeneric

model. In general, using SEM or factor models allows for the assumption of parallel or

tau-equivalent measures to be tested and, if necessary, relaxed.

2.3.1 The Quasi-Simplex Model for Estimating Test-Retest Reliability

The quasi-simplex model (QSM) (Heise 1969, Wiley & Wiley, 1970) is a SEM that

provides reliability estimates for a single measure that is observed at three or more

time points. The QSM model measures test-retest reliability with less restrictions than

traditional test-retest reliability. Traditional test-retest reliability is estimated by the

correlation of the measures of the same trait observed at two (or more) points in time,

but assumes parallel measures and no change in true score between measurement (Bollen,

1989, 209-210). In contrast, the QSM allows for change in true score.

The QSM is composed of a set of measurement equations (factors) and latent variable

equations. The measurement equations relate the unobserved true scores to the observed

scores.

Yt = λttt + εt (2.5)

where Yt are the observed scale scores at time t = 1, 2, 3, tt are the unobserved true scores

at t = 1, 2, 3, and the εt are the random measurement errors at t = 1, 2, 3. (The subject

subscript, i, is omitted for clarity.) The λt are the coefficients representing the relation

between true score and Yt.

The latent variable equations give the relation among true scores and make up a
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non-stationary ARMA(1,1) (duToit, 1979), model.

t1 = t1 (2.6)

t2 = β21t1 + ζ2 (2.7)

t3 = β32t2 + ζ3 (2.8)

where β21 is the effect of true score at time 1 on true score at time 2 and β32 is the

effect of true score at time 2 on true score at time 3. The β are the parameters that

measure stability/change in true score over time. And ζ2 and ζ3 are random errors for

the autoregressive equations (2.7) and (2.8) and var (ζt) is a component of true score

variance at time t.

Assumptions of the QSM include

E (εt) = 0

cov (εt, εt′) = 0; t 6= t′

cov (εt, tt) = 0

cov (ζt+1, tt) = 0

cov (ζt, ζt′) = 0; t 6= t′

Additional constraints are required to identify this model. The original Heise QSM model

included the assumption of constant reliability over time in that the ratio of true score

variance to total variance is constant. Heise points out that the test-retest correlation

in this model is not simply the squared λ paths unless the β21 = β32 = 1, which implies

that the true score is completely stable over time. The Heise model allows change in

the mean true score estimated by the stability coefficients, β. Consequently, the model

provides a reliability coefficient that is ”uncontaminated by the temporal instability of

a [latent] variable” (Heise, 1969, 96). This is useful particularly for variables that are

observed at longer intervals where more change in average true score is expected. For

instance, the intervals in National Survey of Child and Adolescent Well-Being (NSCAW)
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are 18 months and many of the traits are developmental scales observed on children, so

that we expect at least some change in the true scores over time.

Wiley & Wiley (1970) [henceforth W & W] did not feel that the assumption of

constant true score variance over time was as plausible as the alternative assumption of

equal error variance over time.

”Error variance is best conceived as a property of the measuring instrument itself

and not of the population to which it is administered. On the other hand, the true

score variance is more realistically considered as a property of the population. Thus the

specification of stable reliability will normally require assumptions about populations as

well as assumptions about the measuring instrument (112).”

They argue that the assumption of constant reliability in the Heise model also im-

plies constant true score variance over time because he used standardized scores. Heise

subsequently states that the W & W formulation is to be preferred because of the weaker

set of assumptions. ”With standardized scores an assumption of parameter equality has

to be elaborated by adding the additional assumption that the true-score variances of

some of the different measurements are equal” (Heise, 1970).

W & W do view both assumptions as invalid, but make a case that if stability

of error variance over time is faulty, then stable reliability will most likely also be in

error. The W & W QSM model therefore has different assumptions for identification.

This model assumes unit λt’s, λt = λt′ = 1, t 6= t′ and equal error variances over

time, var (εt) = var (εt′) = var (ε), t 6= t′, but allows for true score variance and hence

reliability to change over time. Therefore the W&W QSM estimates the parameters

β21, β32, var (ε), var (t1), var (t2), var (t3), var (ζ2), and var (ζ3) for a model with three

time points. The following three, unique reliability estimates for times 1, 2, and 3 are
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obtained.

ρ2
1 =

var (t1)

var (t1) + var (ε)
(2.9)

ρ2
2 =

var (t2)

var (t2) + var (ε)
=

β2
21var (t1) + var (ζ2)

β2
21var (t1) + var (ζ2) + var (ε)

(2.10)

ρ2
3 =

var (t3)

var (t3) + var (ε)
=

β2
32 [β2

21var (t1) + var (ζ2)] + var (ζ3)

β2
32 [β2

21var (t1) + var (ζ2)] + var (ζ3) + var (ε)
(2.11)

The estimate of reliability in the Heise model is equal to equation (2.10), or the reliability

at time 2.

The QSM is established in published research. Anderson (1959) developed the ob-

served variable simplex model and addressed model identification. Jöreskog (1970, 1979)

has developed the estimation and testing aspects of the model as well as identification.

The QSM Assumptions and Reliability Over Time

The W & W article was the beginning of a debate about appropriate assumptions

for the QSM. Soon after the Heise and W & W publications, Blalock (1970a, 1970b)

discusses the models focusing on the fact that the just identified QSM model does not al-

low for testing these assumptions. He suggests using multi-indicator, multi-wave models

that allow for the testing of homogeneity in variances over time. For the single-indicator

models, Blalock (1970a), points out that regression to the mean effects may be due to

a homogenizing effect of the population or to measurement. He suggests that if total

variance is constant over time, one may attribute change to a measurement effect. Oth-

erwise, if total variance decreases over time, change may be considered due to population

homogenization over time. Blalock points to the W & W QSM assumptions as equally

arbitrary as the Heise model assumptions indicating that if the variance of either true

score or measurement error changes, then parameters linking the true scores to indicators,

λ′s, should also be allowed to change.

Various theories about the best assumption exist. First, is the test-retest effect

(Campbell & Cook, 1979) or Socratic effect (McGuire, 1960) in attitude theory, which
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contends that responses on a scale will become more consistent or homogenous over time.

The theory posits that respondent error decreases over time due to familiarity of the test

and therefore reliability increases. This theory was tested by Jagodzinski, Kühnel, and

Schmidt (1987) using multi-indicator QSMs like the ones used in this chapter. They

define consistency in several ways, but attribute the Socratic effect to a decrease in error

variance over time. They find decreasing error variance for an attitude from a short-wave

(four week) panel study. Jagodzinski & Kühnel (1987) also look at the single indicator

Heise and W & W model for short-wave panel study of political attitudes. Not all

relevant parameters are separately identified in these models. They show the conditions

for perfect reliability and perfect stability and show that both cannot be simultaneously

met. Empirical results include low reliability estimates and stability parameters that are

low between the first two waves and over 1 for the second two waves. They expected

increases in reliability over time due to the test-retest effects, but find the opposite.

They surmise that the single-indicator, just identified QSMs are sensitive to sampling

fluctuations and/or model misspecifications (J & K, 1987). Coenders, Saris, Batista-

Foguet, and Andreenkova (1999) also found that the standard error estimates were very

unstable for the single-indicator QSM; however, their results do reveal that the QSM has

better MSE than the test-retest parallel measures model when the QSM is the correct

model.

Another theory posits increased differentiation over time (Howard, 1964; Howard

& Diesenhaus, 1965) where true score variance (inter-individual differences) increases

upon repeated measurement. This theory is based on the idea that there is more stress

at first measurement and therefore more safe or stereotyped response. Ferrando (2003)

tests this theory against the test-retest theory mentioned above using multiple indicator

two-wave panel models allowing for correlated errors for the same item across wave (item-

specific error variance). Results include change in true score over time with increased

item reliability in one out of three scales and increases in reliability for items is due to
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increased true score variance, the differentiation effect. He speculates that results are

likely different depending on the specific trait being tested.

Werts, Jöreskog, and Linn (1971) use a four panel, single-indicator QSM to test

the assumptions of constant error variance, true score variance, and reliability for a

quantitative and a verbal test score. They test these for the inner two waves only, since

for the first and last time points the three coefficients are not separately identifiable.

They find that the equal error variance and equal reliability models fit the data well

and the equal true score variance model does not. However, the component fit for the

equal reliability were considered theoretically unreasonable while the component fit in

the equal error variance were viewed reasonable. Alanen, Leskinen, and Kuusinen (1998)

tested equality of reliability and stability in a three-wave, multiple-indicator model for

psycholinguistic abilities and found that models with constant reliability and stability

were acceptable. They also tested these assumptions in the context of a seven-wave,

single-indicator model for a reading test and again found constant stability and reliability.

To summarize, results vary on which assumptions are more appropriate in the QSM.

This may be in part because the best assumptions differ depending on the population and

trait of interest as well the length of time between assessments. It also makes a difference

depending on whether the single indicator or a multiple indicator model is used. There

is more instability in the single indicator models. The limitation of the single-indicator

QSM with only three time points is that these assumptions cannot be tested.

2.3.2 Specific Item Error Variance

The QSM is a just identified model and therefore does not permit estimation of

consistent item error variance. Wiley & Wiley (1974) present a version of the QSM that

measured specific item error variance. This model includes a Markov structure on both

the error terms and the true score. This model is intended to measure repeatability in the

errors over time and requires an additional constraint. The constraint proposed is that

the autoregressive parameters linking true scores over time are equal: β21 = β32. The
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autoregressive parameters linking errors over time are also held equal. While this model

allows for the estimation of a systematic error component, the model has rarely been

used and typically results in anomalous estimates and hugely inflated standard errors

due to empirical underidentification (Palmquist & Green, 1992). Underidentification of

this kind will occur if the change process for the errors is not different from the change

process for the true scores and/or if true score variance at time one and time two are

not different (Wiley & Wiley, 1974). Palmquist & Green (1992) show that the model

requires non-constant observed variances and since the error variance is held equal in the

model, the true score variances must be the source of increase or decrease. Therefore, the

assumption of constant true score variance can never hold in this model. Palmquist and

Green (1992) show that obscure results due to large sampling variability decreases with

more than three repeated measurements. Incidentally, the QSM cannot have both perfect

stability (β21 = β32 = 1) in addition to constant reliability (Jagodzinski & Kühnel, 1987).

Systematic error in the form of item-specific error variance may be estimated in

multiple-indicator Markov models such as the hybrid models used in this chapter. This

may be measured by the covariance of measurement error for the same indicator over

time or using method factors that load on the same indicator at multiple time points

(Raffalovich & Bohrnstedt, 1987; Raykov and Tisak, 2004; Saris & Andrews, 1991).

A few of the articles reviewed in Section 2.1.2 include specific error when testing the

assumptions of the QSM (e.g., Ferrando, 2003). These models may also have empirical

underidentification issues as will be discussed in subsequent sections of this chapter.

Testing of the assumptions of constant error variance, constant true score variance,

and constant reliability has been done in several published articles. The testing has been

done in both single indicator QSM models with more than 3 time points as well as in

multiple indicator models. The length of time between waves varies across the studies

as does the types of constructs being measured. Therefore, it is difficult to arrive at any

broad conclusions about the viability of each of the assumptions. However, in most of the
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articles reviewed here reliability tends to increase over time and constant error variance

seems to be a more frequent occurrence than constant true score variance. It is unknown

how variance component assumptions hold up in the context of a model that includes

the measurement of item specific error variance and additional construct variance. It is

also not clear which assumptions might operate best for a population that is changing

a lot on the constructs, such as one would expect of developmental measure on children

over the course of 36 months.

2.4 Methods

2.4.1 Data

Data used for the analysis come from the National Survey of Child and Adolescent

Well-Being (NSCAW), which is a panel survey of children in the child welfare system

in the United States. The target population of the NSCAW Child Protection Services

(CPS) sample is “all children in the U.S. who are subjects of child abuse or neglect

investigations (or assessments) conducted by CPS and who live in states not requiring

agency first contact.” (Dowd, et al., 2006). The NSCAW sample design is a complex

design that includes stratification, clustering, and unequal selection probabilities. The

NSCAW Child Protection Services (CPS) cohort includes 5,501 children, ages birth to 14

(at the time of sampling), who had contact with the child welfare system within a fifteen-

month period which began in October, 1999. Face-to-face interviews were administered

at three points in time: Wave 1, 18 months post-Wave 1, and 36 months post-Wave 1.

Each of the three waves of data includes many types of scales for measuring the health

and development of children. These scales are mostly sum scores and are the variables

of primary importance for most NSCAW researchers. The NSCAW scales analyzed in

this study are generally child developments scales, but others measure characteristics of

caregivers or the home environment. Some of the scales are psychometrically designed

and some are ad hoc. Sample sizes for each scale range from around 1,000 to over 5,000
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cases. A description of the scales used in this analysis is provided in the appendix.

It is expected that there will be change in the true scores over time since the in-

tervals are 18 months and the scales are mostly measuring development in children. If

this is true for the population, the stability coefficients will be estimated as less than

or greater than 1. The length of time between assessments should also reduce memory

effects thereby resulting in less item specific error variance. Theories about change in

the variance components are mixed for this population. It is expected that the children

and their caregivers would be subject to test-retest effects, particularly for children who

are aging and perhaps becoming more adept at answering survey questions. This would

imply decreases in random error variance over time. True score variance may also de-

crease over time since for this population being in contact with social services is a natural

intervention that would remove outliers. For example, children who substantiated abuse

may be removed from their home or the perpetrator of such abuse subject to incarcera-

tion. Children with the most severe developmental issues may regress to the mean after

intervention with social services, a homogenization effect.

2.4.2 Hybrid Models

A model that combines the W & W QSM test-retest model with the congeneric

Jöreskog model is used to estimate reliabilities and test model assumptions. The mea-

surement model is made up multiple indicators, which are the items for the NSCAW sum

scores. In another version of the combined model, two equivalent halves of the scale were

created by randomly selecting half of the scale items and summing the items into two

scores. The half scores are subsequently used as indicators of the measurement model.

In its least restrictive form the model allows for correlated item error over time for the

same indicator and within time for different indicators of the same factor. Correlations of

the same items over time may be parameterized as factors sk representing item specific

variance due to unique aspects of the items, for example, similarities due to memory

effects. The correlations of different items within time may be theorized as additional
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dimensions or method effects ct. This least restrictive model for a scale with two items

(or half scores) is pictured in Figure 2.1.

Figure 2.1: Free Model

The latent variable equations for the free model are identical to equations (2.6), (2.7),

and (2.8) for the QSM. The measurement model equations for the free model with t time

points and k items per scale are

ytk = λtktt + sk + ct + etk (2.12)

Where the tp from the general model in equation (2.2) include both the tt and the
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ct. In this model, true score is made up of all factors except for the random error

where τ = λtktt + ct + sk. The number of items per scale may vary across scales in

the item-level models and will be two for the models using split-half indicators. One

of the λtk will be constrained to 1 for identification and the others are allowed to be

freely estimated. For models with k > 2, there are q = k (k − 1) ÷ 2 factors per time

point representing within time correlated items. This means that there is a factor, c,

representing each possible correlation between items within time. Therefore, each item is

involved in k−1 of the additional factors per time point. If one were to parameterize the

model using covariances between items within and over time rather than using factors

as pictured in Figure 2.1, the variance for both the sk and ct would be included in the

error variance estimates. That is, when sk = cov (εtk, εt′k) and tt2 = cov (εtk, εtk′) then

var (εtk) = var (sk)+var (ct)+var (etk). But in the factor parameterization used here, the

var (sk) and the var (ct) are separately estimated and the estimate of the error variance

is an estimate of pure random error variance where var (εtk) = var (etk).

Assumptions of this model include the following

E (etk) = 0

cov (etk, tt) = 0

cov (ζt+1, tt) = 0

cov (ζt, ζt′) = 0

cov (sk, sk′) = cov (ct, ct′) = cov (sk, ct) = 0

cov (tt, ct) = cov (tt, sk) = 0

var (ct) = var (ct′)

Basically, all factors are orthogonal except for the three primary factors in the autore-

gressive system. The last assumption implies that item error associations have constant

variance over time. This is a necessary assumption for identification of the model and

is tantamount to assuming that the source of additional correlation, e.g., item ordering,
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between items operates the same at each time point (Blalock, 1970b).

The model pictured in Figure 2.1 and described here is similar to the multiple in-

dicator model presented in Blalock (1970b). The differences are that Blalock’s model

assumes equal λ over time for each item, i.e., λtk = λt′k, is parameterized using covari-

ances between items rather than factors, and allows the correlation between items for

adjacent time points to differ from correlation between items with lag time of 2. Also,

the model outlined by Blalock was not generalized to more than two items per scale. The

model used in this chapter is also very similar to some of the models used in other papers

to test the QSM assumptions. For example, Ferrando (2003) and Jagodzinski, Kühnel,

& Schmidt (1987) use models that are similar in that they are longitudinal, multiple

indicator factor models with estimates of specific error variance. However, these models

do not allow for additional common variance among items within time, i.e., they assume

a single dimensional trait with no additional traits or measurement factors.

By allowing the c factors, the assumption that the scales are measuring a single,

unidimensional trait is relaxed. Estimating reliability using a single factor model when

more than one underlying factor actually exists will distort reliability estimates. Other

sources of correlated items vary and may be due to systematic factors such as additional

traits, higher order traits, or experimental/method conditions that are common to cer-

tain items in the composite (Heise & Bohrnstedt, 1970; Gerbing & Anderson, 1984).

The model presented here is quite general in that the c factors allow for all possible

item consistent error variation rather than, say, a single c factor that estimates common

variance among all the items within time. Also, the models used in this chapter do not

attempt to correctly identify all trait and method factors and in this way is not a good

model for estimating stability and other specific model parameters unless the single fac-

tor in the Markov structure is theoretically meaningful. However, the model is good for

estimating variance components that may be applied to one’s operational definition of

reliability. In this chapter the definition of reliability is broadly defined and includes all
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shared variance, both within time and across time, among the items in the composite.

For the NSCAW data, many of the scales assessed are measuring multiple traits (see

the appendix). For example, the YSR scale is intended to measure ”youth behavior

problems”, which includes deviance, depression, anxiety, among other traits. Items from

these subdomains could be defined as separate trait factors in the same model and the

reliability estimates from the separate traits as well as the composite could be obtained

(Bentler, 2005; Raykov & Shrout, 2002). However, many analysts are using the composite

and may not be interested in the reliability of the separate domains. In the subsequent

analysis of NSCAW scales, the c factors (or within time correlated error) are taken

to represent repeatable variance from additional traits and possibly methods common

among certain items. Alternatively, one could relegate additional shared variance to

non-repeatable, pure random error variance depending on the assumptions about the

correlated error (e.g., Biemer, Christ, & Wiesen, 2008).

The following equations estimate true score variance and error variance from the free

model for each of the three time points for k number of indicators. True score variance

is the sum of all reliable variance, therefore, true score variance at time 1 for the sum

score is: (
K∑
k=1

λ1k

)2

(var (t1)) +
K∑
k=1

var (sk) +

k(k−1)/2∑
q=1

var (cq) (2.13)

True score variance for the sum score at time 2 is:

β2
21

(
K∑
k=1

λ1k

)2

(var (t1)) +

(
K∑
k=1

λ2k

)2

(var (ζ2)) +
K∑
k=1

var (sk)

+

k(k−1)/2∑
q=1

var (cq) (2.14)

True score variance for the sum score at time 3 is:

β2
32β

2
21

(
K∑
k=1

λ1k

)2

(var (t1)) + β2
32

(
K∑
k=1

λ2k

)2

(var (ζ2))

+

(
K∑
k=1

λ3k

)2

(var (ζ3)) +
K∑
k=1

var (sk) +

k(k−1)/2∑
q=1

var (cq) (2.15)
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And, error variance for the sum score at time t is:

K∑
k=1

(var (etk)) (2.16)

Reliability for each time point is estimated as the ratio of the true scale score variance

over total (true score plus pure error) variance for that time point. Since the model does

not include covariances of factors, those are not included in the true score variance.

Identification

Blalock (1970b) shows over-identification for a two-indicator simplex model with

correlated errors within and across time similar to the model used here. The model used

here differs from the Blalock model because it does not constrain loading equal over time,

that is, λ21 = λ22 = λ23 but in the Blalock model error correlations specific to an item

over time are allowed to differ for different time lags whereas the above model assumes

equal loadings across the items in the sk factors which is tantamount to constraining

the error covariances the same regardless of the lag time. The model in Figure 2.1 is

therefore nested within the Blalock model when λ are held equal over time. Most of

the models ultimately used for reliability estimates in this chapter include the equal

lamda over time. Nevertheless, the additional lambda parameters can be shown to be

overidentified because they are estimated by more than one combination of observed

covariances. The degrees of freedom for the free model above can be calculated using the

following equation:

df =
3k (3k + 1)

2
−
[
k (k − 1)

2
+ 7k + 2

]
(2.17)

where the first term represents the number of nonredundant observed covarainces for k

items and three time points and the second term represents the number of parameters

being estimated.

Like the single-indicator QSM, empirical underidentification is also a problem for the

two-indicator hybrid models. For example, Blalock shows that the estimation of many of

the parameters depends on the assumption that the change between waves 1 and 2 and
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the change between waves 2 and 3 are different in the population (Blalock, 1970b, p.109).

When the two stability parameters are equal in the population, many of the parameters

are unstable since the difference between the two stability parameters is involved in the

denominator of equations used to identify several parameters. Even if these stability

parameters are different in the sample, if the population values are similar then standard

error estimates for the estimates involving the ratio of the two stability coefficients may

be very volatile. For the models used in this chapter, it can also be shown that when

the stability parameters approach zero or one, var (t1) is underidentified. This is due

to the fact that the variance at time 1 includes β21 (β32 − 1) and β21β32 (β21 − 1) in the

denominator. The estimation of time 1 variance parameter is critical to the model since

it is involved in the identification of all other parameters.

The hybrid models are very general and should be simplified when there is no specific

item error variance or no additional factor variance within time. Therefore the specific

error variance factors sk and the additional cq factors may be removed from the model

for certain scale scores. The models may also be simplified by constraining item loadings

over time as in the Blalock (1970b) model. It may also be desirable to limit the number of

additional factors particularly for scales with many items where the model may become

very large.

2.4.3 Testing

Within the context of the larger, ”free” hybrid model specified above, a series of

tests were performed for each scale score to determine the best ”general model” for

testing the QSM assumptions of constant error variance and constant true score variance

over time. The general model testing includes: (1) specific error variance (any sk), (2)

additional factors within time (any cq), and (3) equal loadings for the same item over

time (λtk = λt′k). Multiple degree of freedom testing using the Wald chi-square (Agresti,

2002) is undertaken for the following hypotheses:
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1. Specific error variance: Ho: all var (sk) = 0

2. Additional factors: Ho: all var (cq) = 0

3. Equal loadings over time: Ho: all λ1k = λ2k = λ3k

Testing is in the above order where constraints are retained for QSM assumption

testing. The factor structure is tested first in steps 1 and 2 prior to testing for equal

loading. Following the general model testing and specification of a general model for each

scale, testing of the various QSM assumptions was done where constant error variance

over time, constant true score variance over time, and both constant error and true score

variance (constant reliability) over time are tested separately. These hypotheses are

tested in the context of the general model chosen for each scale, which is the free model

with additional constraints as determined by the general model testing. The specific null

hypotheses are:

4. Constant error variance over time: Ho: var (et) = var (et′) = var (e), t 6= t′

5. Constant true score variance over time: Ho: var (tt) = var (tt′) = var (t), t 6= t′.

where var (t1), var (t2), and var (t3) are given in equations (2.13), (2.14), and (2.15),

respectively.

6. Constant reliability over time: Ho: var (et) = var (et′) = var (e) and Ho: var (tt) =

var (tt′) = var (t), t 6= t′

Notice that testing of constant true score variance and constant error variance is

unaffected by how the sk and cq variances are treated since both are constant over time

in the model. The sk variance is generally always treated as consistent (part of true score

variance) and in this case the cq variance is treated as consistent. Because it is required

for identification of the general model that the variance of additional factors is constant

over time, that is, var (ctq) = var (ct′q), there is thereby a partial assumption of equal
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true score variance over time since the var (ctq) is a component of var (τ). The part of

true score variance due to the factor in the autoregressive equations may change over

time.

2.4.4 Reliability Estimation and Model Assessment

The NSCAW was sampled with a complex design including unequal selection proba-

bilities. However, the reliability estimates of the NSCAW scales are unweighted because

we are assuming population homogeneity of reliability for each scale. This assumption

means that the expected value of the weighted reliability estimates, ρ2
w, will equal the ex-

pected value of the unweighted reliability estimates, ρ2. A sandwich estimator was used

to estimate standard errors that are robust to clustering. And standard errors will also

account for stratification in the NSCAW where estimate variance is taken within stratum

and subsequently summed over the strata. Missing data were handled with direct max-

imum likelihood methods (Arbuckle, 1996). Mplus 5.0 (Muthén & Muthén, 1998-2008)

software was used to fit all models, perform nested testing, and estimate reliabilities and

their standard errors.

The mean and variance adjusted chi-square statistic (Satorra & Bentler, 1988), CFI,

TLI, and the RMSEA (Browne & Cudeck, 1993; Steiger & Lind, 1980) are used to assess

overall model fit. The mean and variance adjusted chi-square statistic is used because

the nonindependence of observations in the data results in a statistic that is not exactly

distributed χ2 and the adjustments create an approximate χ2 variate.

2.5 NSCAW Application

There are a variety of scale scores in the NSCAW, many of which have 30 or more

items including some scales with around 100 items. For several of these scales, the item-

level models with all possible cq factors have more parameters than may be fit given the

sample sizes of the data, particularly because of the nested structure of the data. For

these scales, the split-halves (or split-thirds, etc.) model or a model with fewer additional
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cq factors are more appropriate in terms of model size. There are also several scales with

fewer than 5 items. These scales are easily estimated using the item-level model and there

is no need to perform the random split-halves step. For example, splitting a scale with 3

items into two halves with 1 and 2 items, respectively, is an unnecessary additional step.

Therefore, some of the NSCAW scales are evaluated using the split-halves model and

some are evaluated using the item-level models based on the number of items comprising

the scale. A few of the scales are evaluated using both types of hybrid models for children

in the same age group and their results may be compared across the model types. These

scales include the CDI, School Engagement, and YSR scales.

2.5.1 General Model Selection Results

The ”general” model used for the nested tests of the QSM assumptions is selected

for each scale based on a series of the three general model tests, which include tests

for specific error variance, additional factor variance, and equal item loadings for the

same indicator over time. These tests are multiple degree of freedom tests using a Wald

chi-square test (Agresti, 2002) with 0.05 alpha level. The Wald chi-square test is calcu-

lated automatically in Mplus and is equal to P ′ [COV (P )]−1 P where P is the vector of

parameter estimates to be tested and COV (P ) is the variance-covariance matrix of the

parameters estimates, which is distributed as chi-square with degrees of freedom equal

to the number of parameters tested (see Long, 1997). Tables 2.1 and 2.2 give the results

of the this testing.

For both the split half models and the item-level models, all scales have statistically

significant item specific error variance (Tables 2.1 and 2.2). While this variance is sta-

tistically significant in all cases, the item specific variance is relatively small compared

to other variance components such as pure error variance, correlated error within time

variance (the cq), and variance of the Markov factors. For example, in the split-halves

models the proportion of total variation due to specific error variance averages 2 percent

and for the item level models it averages 3 percent. Specific error variance as a percent of
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total variance only exceeds 6 percent for two scales. Because specific item error variance

includes memory effects, the magnitude of variation due to specific items over time is

probably low here since the time intervals between the three waves are substantial for

this population. In addition, for the split half models, the estimation of specific variance

due to a half scale (sum of half of the items) may be lower than would be expected

for separate specific items since any method (or memory) unique to a given question is

combined with methods specific to other questions.

In several instances specific error variance for one indicator is estimated as negative

although non-significant value. This is a problem similar to a negative error variance or

Heywood case (Bollen, 1989) since the association of the same item over time should not

be negative. This problem occurs for both the item-level and split-half level models, but

is more prominent in the split-half models. To investigate this problem, the split-half

models with specific error variance due to one half only were estimated and in all cases

estimates were always positive and significant. Therefore, the simultaneous estimation of

specific error variance for more than one indicator is resulting in the negative estimates.

For this analysis, non-significant negative specific error variance is ignored. In the case

of the split-halves model for the PLS-3 Auditory, PLS-3 Expressive, VABS, and MBA

Reading there is one half score with significant negative specific error variance indicating

model specification problems or model overfitting when all specific variance factors are

estimated. This is particularly true for the MBA and PLS-3 Auditory because the total

specific error variance (sum of variance due to each half score) is negative. Nevertheless,

this variance generally has very little effect on overall reliability estimates since it is not

of substantial size for this application.

Tables 2.1 and 2.2 also present the test results for additional factor variance (item

correlations within time). The majority of scales have significant additional factor vari-

ance. The test results for scale scores that do not have additional factor variance are

highlighted in bold. Variance due to additional factor correlations is fairly substantial for

31



these scale scores and this population since it is relatively large compared to the other

variance components. For example, as a percent of total variation the additional factor

variance averages 6 percent and 13 percent for the split-halves and item-level models.

For some scales, the addition variance represents up to 21 percent and 34 percent of the

total variance for the split-halves and item-level models, respectively. Therefore, addi-

tional consistent variance as measured by the cq factors has a non-trivial impact on the

reliability estimates. The test of equal loadings over time indicate that most of the scales

have equal loadings for the same indicators over time. Test results are bold in the table

for those scales that did not have equal loadings over time.

The general model for each scale score is listed and described under the column

”General Model” in Tables 2.3 and 2.4 and the model fit for each general model is given

in the columns under ”General Model Fit”. The general model for a particular scale is

the model that fit best given the tests of specific error variance, additional factors, and

equal loadings over time. The ”free” model is the model described above (see Figure

2.1) with no additional constraints. The ”equal loadings” model is a model that includes

both specific error variance and additional factor variance but constrains loadings for the

same indicator equal over time. This model is the most common for these scale scores and

this population. The ”no correlated” model is the same as the ”equal loadings” model

except without additional factor variance. Overall model fit based on the RMSEA, CFI,

and TLI indicates acceptable fit for most of the models. However, there are significant

chi-square tests in several cases. Given the large sample sizes and the additional model

fit statistic results, the significant chi-square tests are likely detecting small departures

due to high power of the tests (Bentler & Bonett, 1980). Also, with the number of scales

and hypotheses being tested, there is a multiple testing problem where some of the tests

will be significant due to chance alone. For example, tests of model fit on 42 models

should result in two tests that reach significance at the alpha level of 0.05 by chance.

For many of the hypotheses, the p-values for the tests meet an alpha criterion of 0.01 or
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smaller.

2.5.2 Simplex Assumption Testing and Reliability Estimates

The general model for each scale, which is given in Tables 2.3 and 2.4 for each scale,

is used as the larger model for testing the QSM assumptions of equal true score variance,

equal error variance, and equal reliability over time. Tables 2.5 and 2.6 give results

of these tests with non-significant tests highlighted in bold. For the majority of scale

scores at least one of the assumptions of constant true score variance or constant error

variance may be made. In cases where both assumptions are reasonable, the simultaneous

assumption of both equal error variance and equal true score variance over time (that

is, equal reliability over time) is also acceptable. Neither one of the assumptions seems

dominant for the split-halves models where 11 of the 23 scales have equal error variance

over time and 9 of the 23 scales have equal true score variance over time (Table 2.5).

The assumption of both equal error variance and true score variance over time holds for

the four scales where both assumptions hold separately in the split halves models. There

are 7 out of the 23 scales where neither QSM assumption holds indicating that reliability

estimates obtained for these scales from a model with one of the QSM assumptions may

result in poor estimates.

For the item-level models, the assumption of constant true score variance over time is

more prevalent than the assumption of constant error variance over time. Constant true

score variance holds for 10 of the 17 scales evaluated using the item-level model while

only 3 of the 17 scales have constant error variance over time. These results support the

idea of a possible test-retest or Socratic effect for this population since the error variances

are declining over time while the true score variances are steady over time. The decreases

in error variance are expected since the children are developing and thereby increasing

their ability to answer the test questions. There are also a fair number (6 out of 17) of

scale scores where neither assumption is reasonable. This occurs at higher rate for the

item-level models compared to the split-halves models.
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It is interesting that for scales that are comparable across the split-halves and item-

level models, which include the CDI, School Engagement, and YSR, the QSM assumption

test results sometimes differ. For example, for the CDI the split-halves model indicates

equal error variance over time while the item-level model indicates neither assumption

is acceptable. Also, the school engagement test results are opposite for the two types of

models. One difference is that in the split-halves version, the best model for the CDI

has equal loadings over time while the item-level model does not. Also, the split-halves

general models fit better for the CDI, School Engagement and the YSR compared to the

item-level models. This indicates that there are differences in the two model forms, split-

halves and item-level. As noted, the equal error variance assumption does not often hold

in the item-level model and the equal true score variance holds more often as compared

to the split-halves version of the model.

The reliability estimates for the general model, the constant error variance, and

constant true score variance models are presented in Tables 2.7 and 2.9. For the split-

halves models, 9 out of the 17 constant true score variance models did not converge (Table

2.7). Four of the 9 scales with non-convergence issues were found to have constant true

score variance in the testing of that assumption (see Table 2.5). Most of these have issues

of non-invertible matrices, which are likely due to empirical underidentification of one or

more of the parameters. As discussed in Section 3.1.3, this may occur in these models

when both of the stability parameters approach 1 or are equal to each other. The constant

true score variance over time constraint may be causing this to occur for many scales.

Therefore, no reliability estimates for the constant true score model are available for these

9 scales. For the scales where reliability estimates are available, the estimates do not differ

much across the various models. This indicates that the QSM assumption chosen would

not affect the reliability estimates dramatically. In some cases applying a QSM constraint

can decrease standard errors, but this is not a consistent result. Reliability estimates are

efficient for these data including the general model estimates.
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For the item-level models, 4 out of the 17 scales did not estimate for any of the

models. These were generally scales with more indicators (15 - 32) and were simply

too large to estimate. Also, most of the constant true score models did not estimate

likely because of empirical underidentification issues. This is interesting in the item-level

model case since almost 60% of the tests of constant true score variance were accepted

(Table 2.6). Some of the other item-level models produced reliability estimates that

are greater than one. In these cases, the pure random error is negative after applying

all possible correlations between indicators within time, the cq. This indicates that the

model should be simplified to include fewer cq elements for these scales. Of the six

scales where this occurs, five have statistically significant negative pure error variances

indicating that the number of additional factors should be reduced. Like the split-halves

models, the reliability estimates for the item-level models do not differ greatly across the

QSM assumptions indicating that these assumptions may not have a large impact on

estimates for these data.

2.6 Conclusions

In this chapter a longitudinal, latent variable model useful for estimating scale score

reliability is outlined. The model is a hybrid of the QSM with a Markov structure and

multiple item latent factors with congeneric items. The model differs from others in the

literature used to test the assumptions of constant error variance over time and constant

true score variance over time because it includes separately identifiable and estimable

specific error variances for each item and additional factors for all inter-item correlations

within time. The additional factors may represent method factors or additional traits for

multi-dimensional scales. The very general model presented can be large and unwieldy

when there are larger number of items, particularly due to the additional factor terms

within time, the cq. In this instance, the split-halves (or perhaps multi-splits) model

works well or an item level model that includes fewer possible additional factors. The

additional factors do not necessarily have to be theoretically defined additional traits
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or method effects. The model is general in that it only seeks to estimate true score

variance as all possible repeatable variance within the composite. A model could be

developed that attempts to specify additional hypothesized methods and traits via the

additional factors. Examples of specifying models for the estimation of reliability for a

multi-dimensional scale are outlined in Bentler (2005) and Raykov & Shrout (2002). In

these cases there are no repeated measurement, therefore, one could not define a general

model with all possible additional variance beyond the single factor. Therefore, it is

necessary to specify the hypothesized dimensions as separate factors.

Estimation of specific error variance in addition to the Markov structure of the pri-

mary trait factors poses a problem for some scales and models with the QSM constraints.

For example, several models could not be estimated with the constant true score vari-

ance constraint even when tests show that this constraint is appropriate. However, the

general model without the QSM assumptions seems to estimate without problem in most

cases except where there are a large number of items in the scale resulting in very large

models. And, the reliability estimates from the models with QSM constraints do not

differ markedly from the general model in cases where they can be compared. Reliability

estimates for the NSCAW example were most affected by additional factor variance. In

other populations and for other scales, specific item error variance may also impact re-

liability estimates greatly. The general model, which includes these additional variance

components, is therefore a good starting point for estimating reliability.
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CHAPTER 3

Multilevel Modeling of Samples with Unequal Selection

Probabilities

Abstract Probability weights have traditionally been designed for single level analysis

and not for use in multilevel models. A multilevel weighting method for applying prob-

ability weights in multilevel models has been developed and has good performance with

large sample sizes at each level of the model (Pfeffermann, Skinner, Holmes, Goldstein,

and Rasbach, 1998). But, the multilevel weighting method can result in relatively poor

estimation because the multilevel weights often have more variation than traditional,

single level weights. In this chapter, an alternative weighting method called a ”mixed”

method is proposed that applies the multilevel weight for unequal selection of level one

observations at level one of the model along with including the sample design variables

used to select clusters in the model at level two. It is hypothesized that using the sample

design variable rather than the level two weight will result in estimates with lower MSE

and better confidence interval coverage. A simulation analysis is used to evaluate the two

alternative weighting methods for two-level models with unequal selection of level one

and level two observations. The mixed method does result in less bias, lower variance,

and lower mean squared error for models with random intercepts only. However, both

the multilevel weighting and the ”mixed” method weighting approaches perform less well

for models with random intercepts and random slopes.



3.1 Introduction

Many samples for large-scale data sets are selected with complex probability meth-

ods that include both clustering and unequal selection probabilities. When data are

clustered (or nested) due to the sampling design and hypotheses involve cluster effects,

then multilevel (hierarchical, random effects, mixed effects) modeling is an appropriate

method. Multilevel modeling has become a prominent method for dealing with clustered

data especially because of the advances in software development for this method. Many

of the samples selected in multiple stages that result in clustering also involve unequal

selection probabilities at one or more sampling stages. That is, either the clusters or

the observations within clusters are not selected using simple random sampling and are

therefore not directly representative of their counterpart population distributions with-

out accounting for the source of unequal selection probabilities. There are two ways to

correct for unequal selection probabilities. The design based method involves the use of

probability or sampling weights in estimation to equalize the probabilities of selection.

A model based approach involves building a model that includes relevant sample design

variables that describe the unequal probabilities of selection. This latter approach results

in a model that is ”robust” to the unequal selection if the model properly specifies how

the sample design variables affect the outcome.

The design-based approach to inference has traditionally been used for descriptive

statistics when analyzing complex probability samples (Cochran, 1977; Kish, 1965). This

approach to inference assumes the finite population values are fixed and samples are ran-

dom and generated by the sampling design. Under this philosophy clustering is considered

a nuisance due to the sample design and is corrected in estimation by using standard

error estimators such as sandwich estimators or replication methods that correct for the

non-independence of observations (e.g., Binder, 1983; Hansen, Hurwitz, & Madow, 1953).

Under the model-based philosophy, the model generates repeated realizations of random

variables and the selected sample is considered fixed (Binder & Roberts, 2003; Skinner,
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Holt, & Smith, 1989, section 1.6.4). Therefore, the clusters are considered relevant to the

generation of variables and are included in the model, which is supposed to replicate the

population generating model. Multilevel modeling is a model-based method for including

one or more levels of clustering and should involve hypotheses about cluster effects.

Comparable approaches for handling unequal selection probabilities are taken under

the design and model based traditions. Under the model-based philosophy, unequal se-

lection probabilities of observations are ignored since the model is assumed to condition

upon all information generating the model outcome(s) including information related to

unequal selection probabilities. The analytic model is assumed to replicate the popula-

tion generating model perfectly, therefore applying the model to any fixed sample results

in estimates that are consistent for the infinite population. Under the design-based phi-

losophy, the unequal selection of sample observations is considered a result of the sample

design and requires correcting for consistent estimates of fixed finite population param-

eters. The two approaches to inference have been more fully described and compared in

the literature (Hansen, Madow, & Tepping, 1983; Pfeffermann, 1993).

Taking strictly a design-based or model-based approach has become less common

as the use of sampling weights in modeling has increased. Many large scale data sets

provide sampling weights to users and advise that they be used in analysis. And while

analysts are interested in obtaining the best model possible, data and theoretical com-

plexity may limit modeling. In most instances the analytic model is not identical to the

population generating model and when this involves the omission of variables related to

both sample selection and the outcome being modeled, then this may result in biased

and inconsistent estimation (Nathan & Holt, 1980; Nathan & Smith, 1989; Scott & Wild,

1989; Smith & Holmes, 1989). Additionally, it is sometimes not possible to obtain com-

plete information on the sampling design, there are often simply too many variables to

condition upon, and/or the sample design variables have no theoretical importance for

the modeler. Combining a modeling approach such as multilevel modeling when hypothe-
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ses about effects of different levels are of theoretical importance with a sample design

approach like applying sampling weights to prevent bias that may result from unequal

selection probabilities is a good approach in many cases. Including sampling weights can

protect against inadequacies in a model. That is, when the model does not replicate the

population generating model, applying weights ensures consistency in model parameters

for the finite population from which the sample is drawn even though the parameter may

not be correct for the theoretical infinite population. Combining the design and model

based approaches is also possible for dealing with clustering. For example, data with

multiple levels of nesting may be analyzed using multilevel models for certain nested

levels that are of theoretical interest while other nesting is not modeled but accounted

for using robust variance estimators. For example, a sample of children nested within

school that are in turn nested within school districts may be modeled with a two-level

model of children nested within schools where the nesting of schools in districts is treated

as a nuisance.

In this chapter, a mixed approach of combining a two-level model with the application

of probability weights is evaluated under several different weighting scenarios. The issue

at hand is whether some weighting approaches have better estimation properties than

others. One approach is to use multilevel weights, which are sampling weights that are

specific to the sampling probabilities at each level of the multilevel model. That is,

the weight applied at level two correct for unequal selection of clusters and the weights

applied at level one correct for the unequal selection of observations within clusters

(Pfeffermann, Skinner, Holmes, Goldstein, and Rasbach, 1998). Another approach is to

include the sample design variables that define the unequal selection of clusters in the

model (a model based approach to unequal selection of observations) along with applying

the weight for observations within clusters. Both of these approaches will be detailed in

this paper. The motivation for using the latter approach is that the multilevel weights,

particularly for the clusters, can be very volatile resulting in larger mean squared error
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for estimates using the multilevel weights. A method that includes the sample design

variables involved in the selection of clusters can reduce or eliminate inconsistency and

be more efficient than applying the cluster weight.

Two parallel approaches are also evaluated where the traditional weight used in single

level analysis is used instead of the multilevel weight specific to level one. The single level

weight corrects for the unequal selection probabilities of the observations due to both the

unequal selection of cluster and the unequal selection of observations within clusters;

therefore, it does not correct for the stages of selection separately. The two weighting

approaches include applying the single level weight to the multilevel model at level one

with and without including the sample design variables that describes unequal selection

of clusters. These two methods are included because the multilevel weights prescribed in

the literature are often not available to users of survey data and it is unknown how poorly

the single level weights perform in multilevel models. Finally, a method that does not

correct for unequal selection probabilities is used as a comparison method. Simulated

data are used to evaluate the different weighting approaches in two-level models with

fixed and random intercepts and slopes. The sampling design used in the simulation is

based off a common multistage design called a probabilities proportionate to size (PPS)

design using a real national level finite population.

The succeeding sections of the paper include 1) a description of complex samples and

sampling weights with applications for dealing with complex sample features in multilevel

modeling , 2) a review of the literature that prescribe and evaluates weighting techniques

for multilevel models, and 3) a description of the methods, and 4) results of the simulation

analysis.

3.2 Complex Samples and Probability (Sampling) Weights

Most large scale surveys do not use simple random sampling (SRS) where observa-

tions are selected independently and with equal probability. Instead, data contain such

features as nesting and unequal probabilities of selection due to a complex sampling
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design. These types of samples pose problems for standard single-level statistical meth-

ods, which assume SRS. Data sets that are selected for inference to national populations

and other large groups are generally complex samples because they involve clustering,

stratification, and/or unequal selection of observations. Clustering typically results when

samples are selected in multiple stages where larger sample elements such as geographic

regions are selected first followed by selection of multiple elements such as neighborhoods

or households within the earlier stage elements. The final stage of selection in survey

sampling is usually the individual and the observations of interest. An example is the

National Survey of Child and Adolescent Well-Being (NSCAW), which is a survey that

has a multiple staged sampling design where selection of a sample that represents the

population of children in the Child Protective Services (CPS) system in the United States

involves selection of county CPS agencies first, and children within county agencies sec-

ond. The first stage sampling elements are referred to as the primary sampling units or

PSUs in the sampling literature and these are called clusters in the multilevel modeling

literature. There may be additional sampling stages and elements and therefore multiple

levels of clustering. Not all multiple stage designs result in non-independence of observa-

tions. Only when more than one sample element is selected from within formerly selected

elements does clustering potentially occur. Even when the latter occurs, the degree of

clustering depends on how correlated the observations within clusters are for a particular

outcome. To the degree that observations are correlated, bias in the standard errors

of parameter estimates and bias in test statistics will occur for single-level analysis with

standard, model-based variance estimation. Either design-based standard error estimates

or model-based multilevel models may be applied to clustered data to accommodate the

non-independence of observations.

A sample feature that may result from a complex sampling process is the unequal

probability of inclusion of observations into the sample. Unequal selection of observations

is potentially very influential because it will bias parameter estimates when selection is
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related to dependent variables. When unequal selection, and therefore the weight, is

related to dependent variables then the weights are deemed informative. The degree of

informativeness is the degree to which the weights are related to the outcome. Unequal

selection probabilities may occur purposely when observations with certain characteristics

are over- or under-sampled. Strata are often developed to categorize observations for

differential probability of selection usually for ensuring adequate sample sizes for certain

subpopulations. Unequal probability of selection may also be a result of multiple stages of

selection. For example, when single individuals are selected from sampled households of

various sizes. While households may have been selected randomly with equal probability,

observations within households were selected unequally depending on the number of

eligible individuals living in the household.

One common multiple stage sampling design is a probabilities proportionate to size

(PPS) design, which involves selecting clusters with probability proportionate to the

number of within cluster observations (Kish, 1965; Levy & Lemeshow, 2008). This is

a popular sampling method because it results in smaller standard error estimates when

the clusters being sampled vary markedly in size. Also when a second stage of selection

within clusters is necessary, PPS sampling can result in equal probability of inclusion

of observations when PPS sampling of clusters is combined with random selection of

the same number of observations within each cluster. Two-staged PPS sampling designs

may also involve unequal selection of observations within clusters. If the number of

observations selected is equal or near equal across clusters, this will minimize the degree

of unequal inclusion due to the PPS selection of the clusters. The NSCAW, which is

used in the empirical example in this chapter, is selected using a PPS design where CPS

agencies are selected with probabilities proportional to the number of children served by

the agency. Children are subsequently selected with unequal probability, but with near

equal numbers within selected agencies.
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3.2.1 Probability (Sampling) Weights

Probability or sampling weights are designed to correct estimates for the biasing

effects of unequal selection probabilities. Weights are the inverse of the probability of

selection of observations into the sample. Therefore, observations with a higher prob-

ability of selection are weighted down and observations with a lower probability of se-

lection are weighted up. Weights typically account for unequal selection induced by the

sampling itself but also correct for unequal inclusion due to nonrandom non-response

or non-participation of observations. Sampling weights are the inverse of the inclusion

probability. Thus, the weight for observation j is

wj =
1

πj
(3.1)

where πj is the inclusion probability for observation j. Weights estimate the number of

finite population elements, N , that are represented by each sample observation. So the

weight for observation j estimates the number of finite population elements represented

by observation j and the sum of the weights is an estimate of the total population size,∑n
j=1 wj = N̂ .

In multistage cluster selection the probability of inclusion for the final sample element

is a multiplicative factor of the probability of selection at each stage of selection when

each stage is independently selected. One example is a two-stage cluster sample where

the probability of selection for a final sample element is

P
(
jth element in the ith cluster selected

)
= P

(
ith cluster selected

)
P
(
jth element selected | ith cluster selected

)
(3.2)

In this case the single-level weight is

wij =
1

πiπj|i
=

1

πij
(3.3)

where πj|i is the conditional probability of individual j selected in cluster i and πi is the

probability that cluster i is selected. For a PPS sampling design πi is proportional to the
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size of the cluster where the size is the number of population elements within the cluster.

PPS sampling at the cluster level may be combined with equal number of observations

selected within each cluster because it results in an equal or near equal probability of

selection at the lowest observation level. In this case the probability of selection for

observation j in cluster i is constant across level-one observations and is equal to

πj =
Ni

M
· n
Ni

=
n

M

Where Ni is the number of population members in cluster i, M is the number of clusters

in the population of clusters, and n is the number of observations selected within each

cluster. Sample designs sometimes do not select observations within clusters with equal

probability and therefore the conditional probability, πj|i, is not equal to n
Ni

for every

observation within cluster i. This is the case in the NSCAW where children were selected

with different probabilities depending on their age, type of purported abuse, and whether

or not they received Child Protection Agency (CPA) services. However, the number of

children selected within cluster is nearly the same across clusters, which minimizes the

effect of the unequal selection of agencies in proportion to their size. The purpose for

trying to obtain equal numbers of children within agencies is twofold. First, this creates

equal caseloads for interviewers and second it reduces the variance of the weights. Since

weight variance will increase the variance of parameter estimates, less variable weights

result in more efficient estimates.

In the design-based tradition, weights are used for descriptive statistics and have

also been used in single level models. The use of probability weights in models has been

studied (Skinner, Holt, & Smith, 1989; Skinner & Holmes, 2003); and, the standard

weights available with data sets, the wj, are appropriate for descriptive statistics and

single level models. However, sampling weights that are available in large scale survey

data that also include nesting generally do not provide weights appropriate for multilevel

modeling. The multilevel weights require that the cluster probabilities and within cluster

conditional probabilities of selection are known separately.
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Probability weights are used to correct for biases due to unequal selection, but they

also add variance to parameter estimates. This results in less efficient parameter estimates

that require larger sample sizes for consistency. The effect that weights may have on an

estimator is a function of how variable the weights are. For example the estimated design

effect for a mean or total due to unequal weighting, the unequal weighting effect (UWE),

is calculated as one plus the coefficient of variation of the weights:

UWE = 1 +
σ2
w

w̄2
= 1 + v2

w (3.4)

where vw is the coefficient of variation of the weights. The UWE is an estimate of the

increase in the standard error for a mean estimate where the standard error increases by

a factor of
√
UWE. The UWE for regression parameters may also increase with weight

variation. However, the UWE is lower when weights are informative (Kish, 1965). In

most two-staged PPS sampling designs, the separate probabilities for each stage have

more variance than the single level probability that is a multiplicative factor of the

probabilities at each stage of selection. This has the potential of resulting in more

volatile parameter estimates when using the multilevel weights depending on the degree

of informativeness of the weights. The potential additional parameter variance due to the

multilevel weights is a major motivation for comparing the weighting approach to other

model-based approaches that include the cluster size variable in the multilevel model at

level two rather than the cluster weight.

3.2.2 Multilevel Models for Nested Data

When PSUs or clusters are randomly selected, they may be treated as random effects

in a multilevel model. Multilevel models include specification of the non-independence

of observations through random effects (see for example, Goldstein, 2003; Raudenbush

& Bryk, 2002). Parameters are weighted in proportion to the precision of parameters

for each cluster using a generalized least squares type estimator. Multilevel modeling

is a useful approach for hypotheses about contextual (cluster) effects including variance
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components due to clusters.

The level one equation for a two-level model may be written

yij = β0i +
K∑
k=1

βkiXkij + εij (3.5)

where yij is the outcome for individual j in cluster i, β0i is the unique intercept for

cluster i, and βki are the level one coefficients for cluster i for the kth predictor. Xkij is

the level one predictor k for individual j in cluster i. The εij are the level one errors,

which are assumed normally distributed with homogenous variance across clusters, that

is εij ∼ N (0, σ2
ε). The level two equations may be written

βki = γk0 +
S∑
s=1

γksWsi + δki (3.6)

where γks are the level two fixed effects coefficients, Wsi are the level two predictors

s for cluster i, and δki is the level two random effect. It is typically assumed that

δki ∼ N
(
0, σ2

β

)
. The components of the level two equations define the type of mixed

model in terms of random effects with fixed level one effects. The level two equation for

a random intercept model reduces to

β0i = γ00 + δ0i

βki = γk0 , k ≥ 1

Inclusion of the δki for additional βki results in a model with random slopes. For example,

the level two equations

β0i = γ00 + δ0i

β1i = γ10 + δ1i

result in the mixed model

yij = γ00 + δ0i + γ10X1ij + δ1iX1ij + εij
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Where γ00 is the fixed intercept, δ0i is the random intercept, γ10 is the fixed slope for

variable X1 and δ1i is the random slope for variable X1. Inclusion of level two predictors

Wsi results in a model with level two fixed effects and also the interaction of level two

predictors with level one predictors when Xkij are present for βki in equation (3.5). All

random effects are assumed to have a mean of zero and be uncorrelated with all fixed

effects. Additional assumptions are that the εij are uncorrelated with all δki.

Estimation

Multilevel models may be estimated using maximum likelihood (ML). The ML es-

timator assumes that the random effects are from a multinormal distribution. With

ML estimation, the likelihood is usually maximized using a computational algorithm

because there is no closed form solution for the maximizer of the likelihood (Rauden-

bush & Bryk, 2002). The computational algorithm used in this chapter is the Iterative

Generalized Least Squares (IGLS) algorithm (Goldstein, 1986). Similar to other com-

putational methods, IGLS iterates between estimation of the fixed parameters and the

random parameters. In the linear model, the estimator for the fixed effects is given by

the generalized least squares estimator, which yields the ML estimates when the residuals

are normally distributed. The GLS estimator of the fixed effects is

β̂ =
(
XTV −1X

)
XTV −1Y (3.7)

where X is the matrix of covariates, Y is the vector of outcomes and V is the block

diagonal matrix made up of the covariance matrices of random effects for each cluster.

The initial estimate β̂(0) is usually the ordinary least squares estimate, which assumes

that observations within clusters are independent, i.e., that there are no clustering effects

and V(0) are identity matrices. The initial estimates of the random effects V̂(0) are obtained

by calculating the cross product of the the raw residuals using (3.7):

Ỹ = Y − β̂X (3.8)
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where Ỹ is the vector of raw residuals and the cross product is Ỹ Ỹ T . The V̂(0) is then

used in (3.7) to obtain updated estimates of β̂ and then alternate between the random

and fixed effects estimates until the estimates for the fixed and random effects parameters

do not change. The IGLS procedures is outlined by Goldstein (1986) and also described

in Goldstein (2003) and Raudenbush & Bryk (2002).

The equations for both the fixed and random effects may be written as a combination

of sums (Pfeffermann, et al., 1998, section 3; LISREL Manual, 2008, pp.214-223). The

sums are taken over the different levels of the model where sums at level one are then

aggregated over clusters. Similar to the GLS approach, a full ML estimator would take

integrals rather than sums where the integrals are taken over the different levels (Rabe-

Hesketh & Skrondal, 2006). Weighted sums or weighted likelihoods (pseudo-likelihoods)

may be used with probability weights where the weights may differ for sums and integrals

taken over a given level of a multilevel model. The use of probability weights with

the IGLS estimation algorithm is called probability weighted iterative generalized least

squares (PWIGLS).

3.3 Probability Weighting in Multilevel Models

The traditional single level weight, wij = 1
πiπj|i

, which is typically available on survey

data has been found inappropriate for multilevel models. This is because the overall

inclusion probabilities, 1
πij

, for the final sample elements do not carry enough information

for appropriate bias correction (Pfeffermann, et al., 1998, 24). This is because bias in pa-

rameters associated with variables or random effects at a given level is due to the unequal

selection at specific stages in a multistage selection. Also, the finite population values

are not independent and therefore cannot be estimated using a simple sum (Pfeffermann,

et al., 1998, 24). Therefore, the traditional single level weight given in equation (3.3)

also requires disaggregation into its component weights specific to the stages of selection

that correspond to levels in the model. A method for doing this has been developed

by Pfeffermann, Skinner, Holmes, Goldstein, and Rabash (1998) and is described in the
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next section. Prior to the Pfeffermann, et al. (1998) paper, probability weighting for

either variance estimators (Graubard and Korn, 1996; Longford, 1995) or fixed effects

parameters (Pfeffermann & LaVange, 1989) were separately addressed in the literature.

3.3.1 Pfeffermann, Skinner, Holmes, Goldstein, and Rabash (1998)

The authors prescribe using weights at each level of a two-level model to correct for

possible informative sampling at one or both stages of selection. Informative sampling

occurs when the inclusion probabilities are related to an outcome variable after controlling

for other covariates.

The two-level probability weights are outlined per Pfeffermann, et al. (1998) as

follows. The basic requirement to compensate for the biasing effects of unequal inclusion

probabilities, which may be informative at any level, is to have weights at each level

where weights at level two are the inverse of the probability of selection of the level two

units (clusters or primary sampling units, PSUs):

wi = π−1
i (3.9)

where πi is the probability of selection for cluster i. The weights at level one are the

inverse of the inclusion probability of the level one units conditioned on selection of the

level two unit:

wj|i = π−1
j|i (3.10)

where πj|i is the probability of selection of observation j in cluster i given selection of

cluster i. These correspond directly to the components of the single level weight (3.3)

from a multiple staged sampling design.

Pfeffermann, et al. (1998) provide weighted estimators in a iterative generalized least

squares (IGLS) setting, which they call PWIGLS for probability weighted IGLS. The es-

timators are equivalent to pseudo-maximum likelihood (weighted ML) estimation under

the standard case of normality (Rabe-Hesketh & Skrondal, 2006). PWIGLS estimators

are derived by replacing sums of population units by weighted sample sums to get to
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the finite population model values. The PWIGLS estimators are outlined in the Pfeffer-

mann, et al. (1998) article as well as the LISREL documentation (duToit, 2006). The

PWIGLS estimators are consistent when both the number of clusters and the number of

observations within cluster increase. While, the consistency of fixed effects is established

for a large sample of clusters (level two units), the consistency of random effects requires

large cluster sample sizes (level one units per level two units). This is required because

the sums over level one units are non-linear due to the weights and the effect of the

non-linearity may not vanish for small cluster sample sizes.

Due to the large within cluster sample size requirement for consistent estimation of

random effects, several scaling methods for the conditional level one weights in equation

(3.10) are proposed to reduce small sample bias in random effects parameters, especially

for the individual error variance σ2
ε parameter. One scaling correction factor scales the

weights so that they sum to the cluster sample sizes. For example, the sum of the

conditional weights of students selected in classroom i sum to the number of students in

the sample from classroom i. This scaling factor is

λi =
ni∑
j wj|i

. (3.11)

The scaled level one weight becomes

w∗j|i = λiwj|i =
wj|ini∑
j wj|i

(3.12)

Another scaling factor scales the weights so that they sum to the effective sample size

where the effective sample size is the sample size that we would have if the sample were

selected with simple random sampling. The effective sample size is typically smaller

than the actual sample size when clustering or unequal selection probabilities exist. This

weight scaling was originally proposed by Longford (1995, 1996). The Longford method of

scaling did not perform as well as the scaling factor in equation (3.11) in several simulation

studies (Asparouhov, 2006; Pfeffermann, et al., 1998; .Rabe-Hesketh & Skrondal, 2006)
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Pfeffermann, et al. (1998) test the estimators and various scaling methods in a

simulation study and also apply them to real data. Results confirm that not weighting

results in serious bias when selection is informative at both levels with bias in fixed effects

as well as the random intercept. The random intercept is also slightly biased in the non-

informative selection case, which the authors suspect is the small sample bias of the ML

estimator. The non-scaled weighted estimators remove the bias in all parameters for the

larger cluster sample sizes (around 38). For smaller cluster sample sizes, the random

effects at both levels remain inconsistent when the weights are not scaled. Scaling to the

actual cluster sample sizes using λi worked better for informative selection at level one.

Standard errors using the Delta method perform very well except for the standard error of

the level one random effect (σ2
ε), which requires further adjustments. In sum, the optimal

multilevel weights were found to be wi (equation 3.9) and w∗j|i (equation 3.12). These

weights may be applied properly in LISREL, HLM using the PWIGLS algorithm and in

Mplus and GLLAMM using ML estimation with a numerical integration algorithm.

3.3.2 Simulation Studies Evaluating the Pfeffermann, et al. Method

Several subsequent simulation studies evaluate the multilevel weighting method pro-

posed in Pfeffermann, et al. (1998) under various conditions. These articles are reviewed

in this section. Simulation studies are required for evaluating the methods because there

are no closed form solutions for the estimators and the properties of the method under

small finite samples is not known. Asparouhov (2006) does present a closed form solution

for the linear random intercept model only and Kovačević & Rai (2003) give census esti-

mating equations for multilevel models generally. Nevertheless, the multi-level software

that implements weighting use iterative algorithms to estimate parameters. The weighted

(or Pseudo) maximum likelihood (PML) method (Skinner, 1989) is used in GLLAMM

(a Stata program) and Mplus software (Muthén & Muthén, 1998-2006) along with some

type of iterative numerical integration. LISREL and HLM software use PML with the

PWIGLS algorithm for multilevel probability weighted models.
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Asparouhov (2006) performed a simulation to assess the PML with multilevel weights

under various conditions including scaling method, cluster size, invariance of level one

selection across clusters (same selection of level one within all clusters), the degree of

informativeness of selection, intraclass correlation, and standardized weight variability.

They compare several scaling methods including the method described in equation (3.11).

They found that smaller cluster sample sizes and more informativeness increase the bias

in unweighted estimates. They recommend the scaling method given in equation (3.11)

and also a scaled weight for level two weights when selection is invariant across clusters.

Rabe-Hesketh & Skrondal (2006) evaluate the Pfeffermann weighting methods for

generalized linear mixed models, specifically a two level logistic regression model using

a simulation study. They show that the scaling of level one weights is necessary for

reducing bias in a logistic regression model not only in the random effects coefficients,

but also the fixed effects coefficients since the random effects and fixed effects parameters

are correlated. They also use estimates from the mixed-model to get back marginal model

estimates to address whether the marginal estimates are unbiased. They compared three

scaling methods offered in the literature, the Pfeffermann method presented above, the

Longford (1995, 1996) method of scaling weights to sum to the effective sample size in each

cluster, and the Korn & Graubard (2003) method of using only level two weights that are

the product of the level two weight, wi, and the conditional level one weight, wj|i, that is

using single-level weights at level two. Results confirm the findings from Pfeffermann, et

al. The random intercept is overestimated with raw weights, especially for smaller cluster

sizes. In addition, all three weighted methods produce biased estimates for the regression

coefficients when the random intercept standard deviation is biased due to the correlation

of the fixed and random effects in the logistic case. These biases approximately cancel out

when the multilevel coefficients are used to get back to the marginal effects even with

small cluster sizes indicating that interpreting marginal effects (design-based analysis)

may be best in many situations involving probability weighting.
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Grilli and Pratesi (2004) did a simulation study using the Pfeffermann, et al., (1998)

weighting method for multilevel models with ordinal and binary outcomes. They use

the PML or weighted log-likelihood estimator with adaptive Gaussian quadrature to

obtain parameter estimates and use a bootstrap method for obtaining variance estimates.

Their results show that the scaled weighting method produces low bias in fixed effects

parameters with modest increases in sampling variance. However, sample size affects the

random effects estimators and weighting only gives satisfactory results when the within

cluster sample sizes are adequate. They largely verify the Pfeffermann, et al., results for

the linear model and find similar results for the ordinal and binary models.

Simulation studies have also been performed using LISREL Multilevel software using

multilevel weights with scaling of level one weights to sum to the actual cluster sample

sizes (du Toit, 2006; LISREL, 2006). Two and three level linear models were simulated.

Random intercepts and slopes are included in the population models. PML with the

PWIGLS algorithm is used for parameter estimates and Taylor series linearization is

used for robust standard error estimation. This study again shows the poor performance

of unweighted estimation when informative selection exists. Weighted estimates using

the Pfeffermann et al. method and their coverage are much better. In addition, LIS-

REL program results are compared to HLM and MPlus both of which implement the

Pfeffermann, et al. method. All three packages perform similarly using this method.

In summary, all simulation analyses using the Pfeffermann, et al. weighting method

have shown that approximate unbiasedness, or consistency, of random effects estimates

requires a large number of clusters AND a large number of level one units within clusters.

This seems to occur even with non-informative weights at level one (Asparouhov, 2006).

The fixed effects parameters only require a large number of clusters for consistency (Pf-

effermann, et al., 1998). Weighted parameter results for the linear multilevel model are

less sensitive to the number of clusters than the number of level one units per cluster.

Weight scaling at level one can markedly reduce bias in random effects due to small
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cluster sizes. Scaling level one weights to the actual cluster sample sizes seem to perform

the best in most cases. The weighted estimation techniques always perform better than

unweighted estimation when informative selection exists. The literature described in this

section assessed the quality of the multilevel weights under various conditions and scaling

techniques and do not consider alternative model-based approaches or evaluate the use

of the traditional weight (designed for single level models) in multilevel models. These

alternatives are considered in this chapter.

3.4 Model Based Alternative to Weighting

When unequal selection and weights are unrelated to the outcome of a model, then

they are not informative for that model. In this case, the model parameters will be

unbiased even though the clusters and observations within clusters were not selected

with a simple random sample. Sometimes the unequal selection is simply unrelated

to the phenomenon being modeled. In other cases, the sample design variables are

somehow related to the phenomena but are properly included in the model resulting in

noninformative weights conditioned on the model. The approach of trying to include

sample design variables as effects in the model is a model-based approach to the unequal

selection problem. Generally, this is very hard to accommodate since the design variables

may be unknown or there may be too many to add into the model resulting in huge

models. Often, the design variables are not of theoretical interest. Also, the design

variables need to be properly specified in interactions and other potential non-linear

effects in the model.

The special, though common, case of a multistage PPS sample is less problematic

for the model-based approach in that the clusters are selected in proportion to their size.

In this case, there is one design variable of interest at level two of the model. The size

variable could be included in the model instead of using the cluster weights, which are

often very volatile in a PPS sample. Therefore, using the size variable rather than the

level two weight has potentially very large payoff in terms of decreasing the variance
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in parameter estimates. Of course, there may be other design variables involved in the

selection of clusters, which would limit the feasibility of this approach. In the analysis

that follows a method that includes the design variable at level two along with the

within cluster weight, w∗j|i, at level one is compared to the multilevel modeling approach

described in Section 5. This is really a ”mixed method” approach that combines model-

based and design-based (weighting) methods for dealing with unequal selection in the

same model.

The problem of not having access to multilevel weights may result in having to

include design variables into the model, if they are known. Alternatively, the traditional,

single-level weight , wij, could be used at one or both levels of the multilevel model.

This is likely already done in practice, however it is unknown how the traditional weight

performs under various conditions. Therefore, in this analysis the single-level weight will

be applied in the model at level one as a comparison to using the correct level one weight,

w∗j|i. The single-level weight will be scaled using

λi =
ni∑
j wij

. (3.13)

so that the sum of the single level weight within cluster is equal to the cluster sample

size. Table 3.1 presents the methods that will be compared in the simulation analysis.

All methods use the PWIGLS algorithm and use the estimation described in Pfef-

fermann, et al. (1998). Therefore, the differences between the methods analyzed in this

study are limited to which weights are applied at each level and whether or not the model

includes specification of design variables at level two in lieu of weights. Method 1 does

not use any weighting or design variables in the model and is included to evaluate the

extent of bias due to the unequal selection probabilities. Method 3 is the Pfeffermann,

et al. method using the correct multilevel weights. Method 5 is the ”mixed method”

that employs the correct multilevel weight at level one along with the design variable at

level two. Methods 2 and 4 use the traditional, single-level weight at level one of the

model. Method 2 does not include a correction at level two while method 4 includes the
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design variable at level two. Therefore, methods 4 and 5 are”mixed methods” because

they utilize both design-based weighting at level one to account for unequal selection of

observations within clusters along with the model-based method of specifying the design

variables in the model at level two to counteract unequal selection of clusters. With the

exception of the multilevel weights, method 3, the other methods analyzed have not been

considered in prior literature.

3.5 Simulation Design

The methods outlined in Table 3.1 are compared using simulated data that are

selected with informative unequal probability. Bias, variance, mean squared error (MSE),

and coverage error of the parameter estimates were used to assess and compare the quality

of estimates across the five methods of dealing with unequal selection probabilities.

This analysis uses a real finite population that includes observations within clusters

where the finite population is one realization among many of the infinite population. The

number of clusters and cluster sample sizes and counts for the within cluster stratification

variables are known for the real, finite population. Values for variables that are not

known for the finite population are generated using models. Sample selection from the

finite population is based on the real sample selection design of the National Survey of

Child and Adolescent Well-Being, which is a two stage, probabilities proportionate to

size (PPS) design. The PPS design includes selection of clusters in proportion to their

known size (number of level one observations) and unequal selection across known strata

of level one units within clusters. Sample replicates are drawn with varying cluster and

level one sample sizes. The IGLS and PWIGLS algorithms in LISREL (2008) software

are used for estimation of parameters from two-level linear models. Results from LISREL

should match with other software that allows weights to be applied to a specific level and

scales the level one weight to sum to cluster sample sizes.
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3.5.1 Finite population Information

Population information for the sampling frame of NSCAW II is used. This popu-

lation is made up of children involved in child protection services (CPS) agencies. The

clusters in NSCAW are child protection agencies and these approximately correspond

to counties, which are a common geographic unit used as primary sampling units. The

finite population has 2,962,541 children in the child protective service (CPS) system in

the U.S. in 2005. County level population counts are available for all 3,141 U.S. counties

or county-equivalent administrative units. These counts represent the size of the clusters

(PSUs), which are CPS agencies in this case. The population counts for children in CPS

should parallel the general population counts for these U.S. counties to some degree re-

sulting in a very realistic population of clusters and individuals within clusters. Within

counties, there are five strata based on the child’s age, whether the child resides in foster

care or not, and receipt of CPS services. There are 8 combinations of categories for the

three design variables: age (2), foster care (2), and service receipt (2). However, some

of the categories are collapsed to create the five within county strata. The population

counts for each strata within county are known. Population clusters range in size from 1

to 38,053 with the exception of a large county with around 100,000 children.

3.5.2 Population Generating Models

Model outcomes are generated as a function of the known design variables including

cluster (county) size and the five child level demographic strata. Outcomes for some

models are also a function of simulated variables that are not involved in the sample

design, which were generated ∼ N (0, 1) and are orthogonal to cluster size and strata

for one set of models and correlated with design variables for the other set of models.

A single value was generated for each cluster for the level two predictors and different

values for each observation are generated for level one predictors. Outcome variables are

generated with the following models:
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• Random intercept model (excluding the sample design variables):

yij = 88 + 13S1 + 0.05S2 + 7.9S4 + 4.7S5− 7.7size + δ0i + εij (3.14)

Where S1, S2, S4, and S5 are dummy variables indicating strata 1, 2, 4, and 5 where

stratum 3 is the reference stratum and size is equal to log(cluster size). This model has

var (δ0i) = 11 and var (εij) = 310 to mimic the NSCAW empirical example, and an

additional outcome is generated using var (δ0i) = 100 as an alternative degree of nesting.

• Model 2 is a random intercept model with a level one and a level two fixed effect

(excluding design variables)

yij = 87 + 14S1 + 0.03S2 + 8.5S4 + 4.4S5− 6.4size− 5X + 5W + δ0i + εij (3.15)

where X˜N (0, 1) is the level one predictor and W ˜N (0, 1) is the level two predictor. This

model has var (δ0i) = 9 and var (εij) = 306 to mimic the NSCAW empirical example,

and an additional outcome is generated using var (δ0i) = 100 as an alternative degree of

nesting.

• Model 3 is a mixed model with random intercept, a level one and a level two fixed

effect, and a random slope (excluding design variables)

yij = 94 + 8S1− 4S2 + 3S4− 3.5S5− 5.5size− 1.2X + 4.7W + δ1iX + δ0i + εij (3.16)

where var (δ0i) = 6, var (δ1i) = 17, cov (δ0i, δ1i) = 1.6, and var (εij) = 120. And for a

second outcome, var (δ0i) = 25, var (δ1i) = 36, cov (δ0i, δ1i) = 4.6, and var (εij) = 140.

The parameter values used in equations (3.14, 3.15, and 3.16) were taken from an empir-

ical NSCAW example using the Preschool Language Scale (PLS) as the outcome. The
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PLS scale measures precursors of auditory comprehension and expressive communica-

tion skills with tasks that focus on attention abilities, social communication, and vocal

development. The same five strata and size variables used in sample selection for this

simulation were included in the model to obtain parameter values for the effects of the

design variables. The parameter values used for the generated variables, X and W ,

mimic the values for child age and agency poverty level. The random effects values for

this empirical example were used along with the alternative levels that result in a higher

degree of nesting. The behavior of the yij in these models would probably be similar to

other quasi-continuous scale score assessments that are sums of multiple items. The PLS

scale is normally distributed in this example and ranges from 50 to 150 with a mean and

median of 90.

In total, there are ten models. Three model types include the random intercept

only model in equation (3.14), the random intercept with fixed slopes model in equation

(3.15), and the random intercept and random slope with fixed slopes model in equation

(3.16). Each model type has two different intraclass correlation coefficient values with

one mimicking the NSCAW empirical example (ICC around 5%) and the other with a

higher degree of nesting (ICC around 30%). Also, model types with fixed slopes variables

X and W have two degrees of correlation with the sample design variables. In one case,

X and W are orthogonal to the design variables and in the other case they are correlated

around 0.3. Table 3.2 displays the 10 models.

Note that the finite population values for the synthetic variables including X, W , and

the outcomes are one realization of the infinite, superpopulation. Quality of sampling

results are based on comparisons with the finite population model results, rather than

directly to the superpopulation parameters given in equations (3.14), (3.15), and (3.16).

SAS software was used to generate population level data.
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3.5.3 Sample Selection

Most simulation studies that involve unequal selection induce informative sampling

using selection related to model residuals. This study will do this by selecting on the

stratum and cluster size variables that were included in the generating models given

in equations (3.14), (3.15), and (3.16). This results in informative selection when the

design variables are not controlled for in a model. This mimics the way that informative

selection arises in real sample selection situations.

Once all variables are generated, clusters were randomly selected using a probability-

proportionate-to-size (PPS) without replacement procedure that gives a higher chance

of selection to clusters having more level one observations. A composite cluster size

measure is actually used for cluster sampling, which allows for near equal selection of the

number of level one units within clusters. A description of the composite size measure is

provided subsequently in equation (3.17). The composite size measure results in relative

county size proportions that are very close to the relative county CPS population size

proportions.

The specific method used to select clusters is a sequential sample selection method

(Chromy, 1978). Chromy’s method selects units sequentially with probability propor-

tional to size and with minimum replacement, which means that the actual number of

hits for a unit can equal the expected number of hits for that unit. This method is used

because pure without replacement sampling requires that the expected hits for any one

county equal one or less. In the NSCAW population there are several large counties that

violate this requirement. When a county was selected multiple times, then each selection

was treated as a separate PSU where a county that is selected multiple times, say twice,

will subsequently have twice the number of children selected from that county. The sam-

ple should be more representative using Chromy’s method since larger PSUs should be

selected more than once in expectation. Three cluster sample sizes were selected: 50,

100, and 200 clusters. The sample with 100 clusters will replicate the NSCAW study.
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To counterbalance the propensity to select areas having the largest caseloads, the

same number of children within each cluster was selected regardless of cluster size. Three

samples sizes of children within clusters were selected without replacement: 35, 55, and

75. The sample with 55 children per clusters will replicate the NSCAW study. Counties

with fewer than 45, 65, and 85 children in CPS were dropped from the population for

the three sample sizes, respectively. This was done to ensure adequate samples in each

stratum. Sample results are compared to finite populations form which they are drawn to

avoid any differences due to dropping the smaller counties. It is very common to choose

equal numbers of level one units within level two unit because it minimizes the potential

UWE for single-level weights and also controls the interviewer case load for each PSU.

Level one observations were selected with unequal probabilities across five strata

using the sampling methodology outlined by Folsom, Potter, & Williams (1987) to be

described below. Sampling rates within strata were based on the selection design for

NSCAW II. The population and sampling rates are given in Table 3.3 and correspond to

substantive strata described above. From Table 3.3 it can be seen that strata 1, 4, and

5 are oversampled and stratum 3 is undersampled. The unequal selection within strata

was used to ensure adequate samples of children from the strata.

The Folsom, Potter, & Williams (1987) method is used to ensure a near equal number

of level one units (children) is selected within each county while simultaneously retaining

the strata sampling rates given in Table 3.3. First, the composite size measure is calcu-

lated based on the strata sampling fractions and the strata population sizes. The size

measure for cluster i is

Si = f1Ni1 + f2Ni2 + ...+ f7Ni7 =
K∑
k=1

fkNik (3.17)

where fk is the sampling fraction for stratum k, and Nik is the population count for

stratum k in cluster i. Counties are selected PPS with minimal replacement proportional

to this composite size measure, Si. Next, nik = fkNik children were selected using simple

random sampling (SRS) from each stratum within each county.
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This two stage selection design was selected using SAS Proc Surveyselect. PPS sam-

pling is common for multiple stage selection (Kish, 1965; Levy & Lemeshow, 2008). The

use of a real finite population of clusters that generally corresponds to U.S. counties along

with the sample design of the NSCAW II makes this simulation study more generalizable

than simulations based off of arbitrary selection designs. Five hundred replicate samples

for each of the nine combinations of cluster and level one sample sizes are selected.

3.5.4 Analysis

All models were estimated using PML estimation with the PWIGLS algorithm in

LISREL v8.8 software. LISREL v8.8 results are comparable with results from Mplus

v5.0. All level one weights are automatically scaled using equation (3.11). Each of the

500 replicate samples were fit to the ten generating models ignoring the design variables

except for cluster size when it is part of the analysis strategy. For example, Model 1 is

yij = γ00 + δ0i + εij. Comparisons will be made in the quality of estimates by looking at

relative bias, root mean square error (RMSE), and coverage rates. Evaluation of error

is with respect to the finite population model parameters. Relative bias was calculated

using

relative biasr =
θ̂r − θfp
θfp

(3.18)

where r is the replicate sample, θ̂r is the parameter estimate from sample replicate r,

and θfp is the finite population parameter. The relative bias is averaged over all 500

replicates for each combination of simulation variables. RMSE was calculated using

RMSE =

√(
θ̂r − θfp

)2

+ varr

(
θ̂r

)
(3.19)

where varr

(
θ̂r

)
is the variance in parameter estimates across the 500 replicates. Coverage

rates were calculated as the proportion of finite population parameters that fall within

the 95% confidence region for each sample. The 95% confidence region for each replicate

was calculated using

θ̂r ± 1.96
(
serθ̂r

)
(3.20)
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where
(
serθ̂r

)
is the standard error for estimate θ̂r in replicate r.

3.6 Results

The UWE for a mean or total is used to compare the relative variation in the mul-

tilevel weights (cluster weight and level 1 weight) and the traditional single level weight

(Table 3.4). The actual UWE for the model parameters is not known, but the relative

variation as measured by the UWE for a mean will give an estimate of the potential added

variation to parameter estimates. Cluster weight variance would affect the efficiency of

the level 2 parameters and level one weights would affect the efficiency of the level 1

parameters. Comparison of the UWE for a mean of the weights across the three types

of weights shows that the multilevel weights have a greater potential for increasing the

standard errors of parameter estimates. The UWE for a mean associated with the cluster

level weights decrease with increasing within cluster sample sizes. The UWE associated

with the level one weights are smaller compared to cluster weights, but still larger than

the single level weights. The UWE associated with level one weights decreases with the

number of clusters sampled. This comparative look at the degree of variation in mul-

tilevel versus the single level weight should be a good representation for a PPS sample

using U.S. counties as primary sampling units (clusters) showing that extracting mul-

tilevel weights from weights designed for single level analysis using PPS are potentially

markedly less efficient.

The informativeness of the weights was measured by the correlation, or partial cor-

relation controlling for other independent variables, of the sampling weights with the

dependent variables. Informativeness results from the fact that the design variables that

were used in sampling (strata and cluster size) are related to the outcomes and therefore

to the random effects in the analytic models, which do not include design variables. Ta-

ble 3.5 gives the correlations of the multilevel and single level weights with the outcomes

averaged over 500 replicates by model type. The standard deviation of the correlations
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across replicates is also presented. The cluster level weights are correlated around 0.3

and the level one weights around -0.3 indicating similar degrees of informativeness of the

weights at each level. The single level weights are not informative since they are a lot less

variable than the multilevel weights. There is some variation across replicate samples in

the degree of informativeness, which will result in different degrees of bias.

The nontrivial degree of informativeness of the weights in this simulation ensure that

bias will result in parameter estimates when there is no correction for the unequal selec-

tion probabilities. The variation in the multilevel weights should affect the efficiency of

parameter estimates for the associated levels of the model, though the unequal weighting

effect will be smaller for weights that are more informative.

Regression models that include all simulation design variables were used to determine

the most important conditions affecting bias, variance, and MSE. Larger sample sizes

decreased bias and standard deviations of the parameter estimates as expected, but did

not have a very large effect, so results are not broken down by sample size. The degree of

nesting seem to have a greater impact on bias, standard deviations, and MSE. And the

correlation of the independent variables with sample design variables also affected bias

markedly.

3.6.1 Bias

Relative bias (equation 3.18) averaged across the 500 replications was compared

across the four estimation methods. Table 3.6 presents these findings. Positive bias

in the random intercept is more prominent in the weighting methods without inclusion

of the cluster size variable at level two. Using no corrections for the unequal selection

probabilities results in the most severe bias relative to the other methods. And applying

only the single level weight at level one is comparable to ignoring weighting altogether.

This is due to the fact that the single level weights in this design are nearly equal across

observations. In data with a sample design where the single level weights are primarily

correcting for unequal selection at level one, single level weighting at level one would
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perform better. Average relative bias is positive for random intercept estimates and

ranges from 2.9 to 5.2 times the population parameter for the weighting only methods.

This is unexpected for the multilevel weighting method, which has been shown to produce

good results with scaling of the level one weights. In this study, the large positive bias

in the random intercept is related largely to the population models with very small

ICCs, which are representative of the NSCAW data. Average relative bias in the random

intercept for models with low ICC (around 0.05) and higher ICC (approximately 0.30)

are presented in Table 3.7. With clustering as low as 0.05 it is questionable whether

multilevel modeling should be used at all and should definitely not be used with multilevel

weighting based on the findings from Table 3.7. Random slopes and covariances between

the random intercepts and random slopes are overestimated with all of the methods and

this is not due to the degree of clustering (Table 3.6). The multilevel weighting approach

has the least amount of bias in random slopes and covariances of the random effects.

Including the size variable at level two along with the level one weight at level one results

in the most bias in random slope estimates and covariances of random effect estimates

(Table 3.6), empirical expected values of the estimates are over 2 and 3 times larger than

the finite population parameters, respectively.

Average relative bias for random error at level one as well as the level one fixed

effect is small for all analysis methods for models without random slopes. However, in

the model with random slopes, the level one error as well as the level one fixed effect

are underestimated across all methods. The level one fixed effect is more biased for the

mixed method of including the size variable along with a level one weight. The fixed

slopes at level two are underestimated when no weights or just single level weights are

applied at level one. The level two fixed slope is also underestimated with the multilevel

weighting, but to a smaller degree. Models that include the size variable at level two

have the least degree of bias in the level two fixed slope across all models. The bias in

fixed effect estimates is partly a function of the correlation of the independent variables
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with the design variables. This is particularly true for the model with random slopes.

As shown in Table 3.8, the bias is lower when the independent variable are orthogonal

to the sample design variables.

In general, models that include the size variable perform better in terms of bias for

the models with random intercepts only. However, when random slopes are introduced

these methods exhibit more bias in the random slopes, the associated level one fixed

slope, and the covariance between random intercepts and slopes.

In summary, methods that include the size variable at level two seem to perform

better in terms of relative bias. This is true for the random intercept models, but not

for the model with random slopes. All methods overestimate the random slopes and

underestimate the associated fixed level one slope.

3.6.2 Variance

The standard deviation of the parameter estimates averaged across the 500 replicate

samples was compared by model type and method in Table 3.9. As expected, methods

that use the multilevel weights have the highest standard deviations for most estimates.

This is likely due to the larger UWE of the multilevel weights. Methods that include the

size variable at level two have the lowest standard deviation for the random intercepts

estimates and the fixed slopes at level two. Methods that use the single level weight,

which has minimal weight variation, have lower standard deviation in the error estimates

and level one fixed slopes. Multilevel weighting has the highest standard deviation in

all parameter estimates across all models except for the fixed intercept estimates. The

random effect estimates are much more volatile compared to the fixed effects estimates

for all model types and analysis methods.

The ICC level also affects the variance in random effects estimates, though in the

opposite way compared to relative bias. While there was more bias in random effects

estimates with low ICC, there is much more variance in random effects estimates with

higher ICC levels. Table 3.10 shows the average standard deviations in these estimates
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for outcomes with higher ICC and lower ICC levels. The ICC is also important for the

variance of the level two fixed slope estimates, which is smaller for the low ICC outcomes

(not shown in the table). This is also true for the level one fixed slope, but only in the

random slopes model.

3.6.3 RMSE and Coverage Rates

The RMSE (equation 3.19) of the parameter estimates averaged across the 500 repli-

cate samples was compared by model type and method. RMSE results are presented in

Tables 3.11 and 3.12. The mixed methods of combining level one design-based weighting

with the size variable at level two give the lowest RMSE in most situations. The mixed

methods always perform better than the multilevel modeling, with the exception of the

random slope estimates. The method of combining single level weighting with the size

variable seems to perform the best in terms of RMSE in most situations. Level one effects

such as the error and the fixed x slope are estimated well with no correction and just

applying the single level weight at level one. This indicates that the variance of the level

one weights, i.e., the level one UWE, has more of an impact on estimation than the bias

due to unequal selection at this level. This would not be true for cases where the bias

due to unequal selection is larger at level one. It is safer to use the weight specific to

level one as has been demonstrated in the literature when weight variation at this level

is not as large. Additionally, using the single level weight at level one performs poorly in

estimation of level two parameters.

Random intercepts, random slopes, and random error have the most total error in

estimation. Analysis method does not seem to matter for the total error in the random

slopes, covariance of random intercepts and slopes, and the error in the random slopes

models. Total loss in these parameters is fairly consistent across methods. This is due

both to some bias and larger standard deviations of these estimates. It is unclear why

the multilevel weighting method and the mixed method using the level one weight do not

improve upon the random slopes, covariances of random effects, and the error estimates.
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Random effects are estimated better according to RMSE in models with outcomes

that have lower ICC. This is especially true for the mixed methods and also to a lesser

degree the multilevel weighting method. Table 3.12 breaks down RMSE for the random

effects by ICC level. For the multilevel modeling method, the larger RMSE for outcomes

with higher ICC indicates that the larger standard deviation of the random effects es-

timates with high ICC outcomes overtakes the added loss from the increase in bias for

outcomes with low ICC. Random slope estimates are better for outcomes with low ICC

for all analysis methods.

Coverage rates for the parameter estimates by model type and analysis method are

presented in Table 3.13. Coverage results generally match RMSE results in terms of

comparisons across methods and model types. The mixed methods perform well for the

random intercept models and for the fixed effect estimates in the random slopes model.

Coverage in random intercepts for the multilevel weighting method are not good. Overall

results generally favor the mixed methods, except random effects in random slopes models

have poor coverage for all methods.

3.7 Conclusions

This study evaluates several methods for analyzing a two-level model using data

selected with unequal probabilities. The current design-based gold standard practice is

to apply weights at each level that correct for possible informative selection at each level

per Pfeffermann, et al. (1998). This method has been implemented in several multilevel

modeling software packages (Asparouhov, 2006; Asparouhov & Muthén, 2006a; du Toit,

2006; Rabe-Hesketh & Skrondal, 2006). However, the weights required in this method

are not readily available for most data requiring weighting. Furthermore, the sample

designs utilized in collecting data are geared toward single level analysis where weights

are designed for efficient estimation at the lowest observation level. Multilevel weights

extracted from traditional single level weights after the fact are subject to more variability

and thereby less efficient estimation, which can potentially overtake biases due to unequal
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selection.

The purpose of this study was to compare the design-based method of using mul-

tilevel weights with methods that combine weighting at level one with the model-based

strategy of including sample design variables at the cluster level. This strategy is prac-

tical for probabilities proportionate to size selection (PPS) where clusters are selected in

proportion to their size or any other design where the selection of clusters is based on a

limited number of design variables. At level two, the cluster size variable used to select

clusters (PSUs) is included in the model as a fixed effect rather than applying a weight at

level two. The payoff in terms of increased parameter efficiency is high for a PPS sample

with clusters sizes mimicking U.S. counties.

Another purpose of this study was to determine how the traditional weights designed

for single level analysis perform when used in a multilevel model. In many circumstances

the analyst does not have access to the multilevel weights and only has access to the

single level weight. Therefore, using the single level weight in a multilevel model may be

common in practice. Some have applied the single level weight at level two in a two-level

model with good results (Korn & Graubard, 2003). But this approach worked in this

case because there was not unequal selection at level one . Rabe-Hesketh and Skrondal

(2006) found that this was not a good approach when unequal selection occurs at level

one. This study confirms that with unequal selection probabilities for both the clusters

and within cluster observations, the multilevel weights are more appropriate.

Results indicate that RMSE and coverage rates can be improved using the mixed

methods. However, the analyst must have access to the variable used in selecting clusters

with proportion to size and there should be few if any additional variables affecting un-

equal selection at the cluster level. There are sometimes additional corrections necessary

due to cluster non-response and this can affect the adequacy of simply applying the size

variable. In this simulation cluster size affected the outcome as a main effect, but in

other situations the effect of the size variable could be nonlinear or interact with other
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model variables. If the size variable and the single level weights are available, the level

one weights can be extracted by multiplying the single level weights by the size variable.

In this study, level one estimates were not that different across methods indicating that

there was less effect of unequal selection at that level even though selection was infor-

mative and the weights had adequate variance. This is mostly due to the fact that there

were no interactions between the level one design variables and the level one independent

variables and correlations between design and independent variables at that level were

modest. In other studies, this is potentially not the case and the level one weights have

been shown to perform better than the single level weight.

Of course, one could take a fully model-based approach and include design variables

at each level of the multilevel model rather than apply weights at all. However, this

is typically not straight forward as selection of individuals, for example, often involves

much more complicated selection including the issue of non-response. There are often too

many variables to include in a model and they are may not be simply affecting outcomes

as main effects like in this limited simulation study. Adding all design variables in the

proper way is difficult and may result in models that are too large and atheoretical. There

then become an issue of the larger model decreasing efficiency that may offset any gains

by not applying the weights.

The multilevel modeling method with proper weight scaling is a good method that is

easy to apply when the proper weights are available. This method is ideal when both the

number of clusters and the cluster sample sizes are large. But, even with sample sizes as

large as 150 level two units and 75 level one units per level two unit, the mixed method

can greatly improve RMSE and coverage as was shown in this study. In addition, random

effects estimates may be poorly estimated using the multilevel modeling approach when

there is not adequate nesting, for example, ICCs are less than 10%. In this instance,

multilevel modeling is probably not the best methodology anyway. Using the single level

weight in a marginal model that uses standard error estimates that are robust to the
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limited clustering is preferred when nesting is small. Finally, if the multilevel weights are

not informative, then the model should be estimated without weights. In this situation

the weights would not affect fixed effects point estimates, but would increase the standard

errors of such estimates. As well, the random effects coefficients would be less efficient

and potentially slightly biased if the noninformative weights are applied (Asparouhov,

2006).
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Table 3.2: Population Generating Model Conditions

Table 3.3: Population and Sampling Rates

82



Table 3.4: Average Unequal Weighting Effects and their Standard Deviations of Cluster
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ables by Model
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Table 3.6: Average Relative Proportion Bias in Parameters Estimates by Model Type

and Analysis Method
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Table 3.7: Average Relative Proportion Bias in Random Intercept Estimates by Model

Type, Analysis Method, and ICC

Table 3.8: Average Relative Proportion Bias in Fixed Effects Estimates by Model Type,

Analysis Method, and Covariance with Design Variables
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Table 3.9: Average Standard Deviation of Parameters Estimates by Model Type and

Analysis Method
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Table 3.10: Average Standard Deviation in Random Intercept Estimates by Model Type,

Analysis Method, and ICC
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Table 3.11: Average RMSE of Parameters Estimates by Model Type and Analysis

Method
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Table 3.12: Average RMSE of Parameters Estimates by Model Type, Analysis Method,

and ICC
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CHAPTER 4

Optimal Probability Weighting Methods in Trajectory Models

for Data with Nonignorable Unequal Selection and Wave

Nonresponse

Abstract Panel studies often suffer from attrition and intermittent nonresponse. Panel

data is also commonly selected using complex sampling techniques that include unequal

selection of observations. Unequal inclusion of individuals and of repeated measures will

result in biased estimates when the missing mechanism is nonignorable, that is, when

missing values are related to outcomes. Probability weighting may be used to correct es-

timates for nonignorable unequal inclusion. However, weights have not traditionally been

applied to the growth curve models frequently used in analysis of change. Growth curve

models are estimated using a mixed model where the repeated measures are modeled as a

function of both fixed and random parameters. Whereas sampling or probability weights

have traditionally been applied to marginal models, which do not include random ef-

fects parameters. In this chapter, several weighting approaches are applied to the mixed

and marginal modeling frameworks using simulated and empirical data in linear growth

models with continuos outcomes. Probability weighting that accounts for both the un-

equal selection of individuals into the study and dropout over time performs the best in

a marginal model when missing data are nonignorable. However, probability weighting

does not improve estimates when unequal inclusion of observations is ignorable. In this

situation, the use of variance weighting such as the generalized least squares (GLS) es-



timator with repeated measures correlation weight matrix can improve the precision of

estimates.

4.1 Introduction

A common issue when estimating change over time using survey data is missing ob-

servations. Time-specific observations are often missing due to intermittent nonresponse

and dropouts. This results in unbalanced data where some of the repeated measures are

unobserved for some individuals. In addition, the panel survey data used in trajectory

analysis are often obtained through a complex sample design that includes unequal se-

lection of units, e.g., individuals, into the study (Kish, 1965; Levy & Lemeshow, 2008).

When the latter occurs in addition to wave specific nonresponse, there exist missing ob-

servations at both levels of a two-level growth model. The unequal inclusion of level two

units (individuals) or level one units (repeated observations) due to either unequal selec-

tion or nonresponse and dropout is a missing data problem for which the Rubin (1976)

typologies apply. Unequal inclusion may result in data that is missing completely at ran-

dom (MCAR), where missing values are unrelated to repeated measures outcomes in the

growth curve model. Unequal inclusion may result in data that are missing at random

(MAR) where values for missing observations may be related to the repeated outcome

values only indirectly through observed variables. In a growth curve model MAR means

that missing observations are related to the missing values of the repeated outcomes only

through model covariates including time. Finally, if the unequal inclusion results in miss-

ing observations that are related to the values of repeated measure outcomes conditioned

on the covariates, the missing data are missing not at random (MNAR) or nonignorable.

Nonignorable missing data will result in biased estimates of model parameters.

There is quite a wealth of literature addressing missing data (Allison, 2001; Arbuckle,

1996; Little & Rubin, 1987; Rubin, 1987; Schafer, 1997; Schafer & Graham, 2002) and

some of this pertains specifically to missing data in longitudinal analyses (e.g., Diggle

& Kenward, 1994; Duncan & Duncan, 1994; Hedeker & Gibbons, 1997; Little, 1995).
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However, most of the literature addresses methods that may be used under the MAR

assumption. These methods often do not include weighting. When unequal inclusion

is nonignorable or MNAR, probability weights may be used to correct for the unequal

inclusion of both individuals and time-specific observations. An alternative to weighting

for nonignorable inclusion is to try and specify a model that renders the missing data

mechanism MAR rather than MNAR and use an estimation method that utilizes all

observed information.

Growth curve modeling is a powerful method for estimating change over time using

longitudinal data. These models may be estimated in a mixed modeling framework or

a marginal modeling framework. The more common approach is to used the mixed

modeling framework where repeated measures are estimated as a function of both fixed

effects parameters and random effects parameters (Bollen & Curran, 2006; Raudenbush

& Bryk, 2002). The fixed effects include an intercept and slope of the trajectory as

well as other covariates. The random effects typically include random intercepts, slopes,

and time-specific residuals. The mixed modeling framework is appealing because the

random effects measure the degree of variation across individuals in growth trajectories.

In the marginal model framework (Diggle, Heagerty, Liang, & Zeger, 2002), the expected

values of the repeated measures are estimated as a function of an intercept and slope as

well as other potential covariates. In this framework, random effects parameters are not

estimated. For model with continuous or quasi-continuous outcomes, the interpretation

of fixed effects parameters for the mixed or marginal model is the same. However, the

optimal application of weights in the two models may differ.

It is unclear what the best probability weighting approach is for a growth curve model

when missing data are nonignorable or MNAR. Probability weights have traditionally

been used in marginal models (Pfeffermann, 1993; Skinner, Holt, & Smith, 1989). A

common weighting approach for repeated measures analysis in a marginal model is to

use panel weights along with casewise deletion of individuals who were not observed at
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every wave. This approach could also be used in a mixed model where individuals (level

two observations) that are missing one or more repeated measures are excluded from

the analysis and the panel weight is applied at the level of the individual. But panel

weighting does not make use of all of the available observations.

Another method that may be used particularly if panel weights are not available is

to simply use the weight for the individuals at the first time point used in the analysis.

This method would counteract the informative selection of the individuals into the study;

however, it would not correct for any time specific dropout or nonresponse. An alternative

to both of these approaches, which has not been addressed in the literature, is to use

time varying weights. For this method, the weight for each individual at each time point

is used where the time specific weights correct for both unequal inclusion into the study

and nonresponse at the specific time point. Finally, a weighting method specific to mixed

models has been developed by Pfeffermann, Skinner, Holmes, Goldstein, and Rasbash

(1998). While the weighting methods for the mixed model have not been tailored to the

longitudinal case, they are easily applied there. The purpose of this chapter is to compare

these weighting methods in both the mixed and marginal models using a simulation and

an empirical example.

The remainder of this section includes 1) a description of the linear growth model

specification and estimation in the random effects and marginal modeling traditions, 2)

a description of data structures and missing data in linear growth models, 3) various

weighting approaches to dealing with missing data/unequal inclusion probabilities in

linear growth models, 4) a description of the simulation design and simulation analysis

results, and 5) presentation of methods and results from an empirical example using the

National Survey of Child and Adolescent Well-Being (NSCAW).

4.2 The Linear Growth Model

Growth curve models are useful for describing and testing change over time. These

models may be estimated in a mixed effects model (mixed model) in either the multilevel
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(Raudenbush & Bryk, 2002) or structural equation modeling (SEM) traditions (Bollen

& Curran, 2006). In mixed effects growth models, each individual has an estimated

trajectory. These individual trajectories are averaged for a population level trajectory

estimate, known as a fixed effect, and the individual trajectories (intercept and slope)

vary across individuals. The estimated variance of the trajectories (intercept and slope)

are known as random effects. The unconditional linear growth model may be written

yit = αi + βiT + εit (4.1)

where yit is the outcome measured at time point t for individual i. In this model, only the

time variable, T , which indicates time point, is included as a predictor. The βi measures

the expected change for individual i, and the intercept, αi, measures the starting value

at the reference level of T for individual i, typically the first observation time. The error

term, εit represents the random error for individual i at time t. The εit are assumed to

have zero mean, E (εit) = 0 and to be uncorrelated with αi and βi. (The errors are also

often assumed to have no autocorrelation and equal variance for each t, however these

assumptions are not required). The coding of T importantly defines the units of time and

the origin of time, where for three time points T may be coded 0, 1, and 2 for assessment

at waves 1 through 3. T may also be in some other metric such as age (Bollen & Curran,

2006; Mehta & West, 2000).

Equations for αi and βi may be written

αi = µα + δαi (4.2)

βi = µβ + δβi (4.3)

Equations (4.2) and (4.3) are the ”level two” equations where µα and µβ are the

mean intercept and mean slope, respectively. The random effects are made up of the

individual variation around the average intercept, δαi, and the individual variation around

the average trajectory, δβi. In trajectory models, the intercept and slope are typically
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allowed to correlate where cov (δαi, δβi) = σαβ, that is, the matrix of random effects is

unstructured. Equation (4.1) may be written in the following form

yit = µα + µβT + δαi + δβiT + εit (4.4)

The assumption of equal error variances, σ2 (εit), is often made.

In contrast to mixed effects models, marginal or ”population average” models (Diggle,

Heagerty, Liang, & Zeger, 2002) have the objective of estimating an average trajectory for

the population rather than for each individual. In this framework, average trajectories are

estimated, but variation in trajectories are not explicitly estimated. The nesting of time

within observation is treated as a nuisance and accommodated by correcting standard

error estimation (Binder, 1983; Hanson, Hurwitz, & Madow, 1953). Marginal models

are a traditional design-based (survey) estimation approach, which easily incorporate

weighting for population average estimates. The model is the same as in equation (4.4)

except without the random effects parameters, δαi, δβi, and εit. The marginal expectation

of the response is modeled as a function of explanatory variables. In the unconditional

growth model this includes only time, T .

E (yit) = α + βT (4.5)

For normally distributed, continuous data, the mixed effects and marginal models lead

to the same fixed effects parameter estimates (Diggle, Heagerty, Liang, & Zeger, 2002;

Zeger, Liang, & Albert, 1988). This is because the average of the intercepts and slopes

for individuals is the same as the population average intercept and slope. For an uncon-

ditional linear growth model:

E (yit) = E [E (yit|zi)] = α + βT + E (zi) = α + βT . (4.6)

where zi are the random effects. In the mixed effects approach, a trajectory for each child

is estimated either explicitly or implicitly. The individual trajectories are then averaged

to get an estimated mean population trajectory. For nonlinear outcomes, the random
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effects and marginal models lead to different interpretations because the equivalency in

expression (4.6) does not hold under transformation (Zeger, Liang, & Albert, 1988). In

generalized mixed models, regression coefficients are scaled by a factor related to the

amount of random effect variance.

The hypothesis of interest in an unconditional linear growth model typically includes:

(1) H0 : µβ = 0, the mean trajectory has a slope of zero, that is, no change on average

over time. And in the mixed model additional hypotheses include (2) H0 : var (βi) =

var (δβi) = 0, the variance of individual slopes is zero, that is, no variation in change over

time across individuals, and (3) H0 : var (αi) = var (δαi) = 0, the variance of individual

intercepts is zero, that is, no variation in intercept value across individuals.

It is often not just of interest to describe and test for change over time, but to test

for predictors of change. A conditional growth model may be fit to longitudinal data

where time varying and time invariant predictors affect the trajectory parameters. The

conditional growth model equations in a mixed model are

yit = αi + βiT + εit (4.7)

αi = µα + ΓαXit + δαi (4.8)

βi = µβ + ΓβXit + δβi (4.9)

Again, yit is the outcome measured at time point t for individual i. The X is the matrix

of covariates, which may be time varying. The Γα is the matrix of slope parameters for

the effects of the covariates on the trajectory intercepts and Γβ is the matrix of slope

parameters for the effects of the covariates on the trajectory slopes. The µβ parameter

measures the trajectory slope of an outcome across time as measured by T . This mean

slope parameter is conditional given the other covariates in the model. That is, µβ is

conditioned on the Xi. The parameter µα measures the mean intercept of the trajectory,

which is the conditional mean at T = 0. This intercept is also conditioned on the

covariates in the model and measures the mean intercept when all Xi = 0. In reduced
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form equations (4.7), (4.8), and (4.9) become

yit = µα + ΓαXit + µβT + ΓβXitT + δαi + δβiT + εit (4.10)

The comparable marginal model is the expectation of the response modeled as a

function of time, T , and the explanatory variables, Xit.

E (yit) = α + βT + ΓαXit + ΓβXitT (4.11)

Conditional growth models allow hypothesis tests of differences in trajectory inter-

cepts and slopes for subgroups of a categorical covariate and for levels of a quantitative

covariate. Hypotheses in both the marginal and mixed model include: (1) H0 : γαk = 0,

the effect of Xk on the intercept is zero, i.e., there is no difference in the mean of yit at

T = 0 across levels of Xk, and (2) H0 : γβk = 0, the effect of Xk on the slope is zero,

there is no difference in the mean of βi across levels of Xk..

The mixed models presented in this section may be estimated using a latent variable

(SEM) approach (Bollen & Curran, 2006; McArdle, 1986; Meredith & Tisak, 1990; and

Willett & Sayer, 1994). In the SEM parameterization, the intercept and slope as well as

the random effects are unobserved latent variables measured by the outcomes, yit and T

represents the factor loading on the slope latent variable. However, the theoretical model

is the same regardless of whether the mixed or SEM framework is used.

4.2.1 Estimation

In the mixed model with ML estimation, fixed effects estimates and random effects

estimates are simultaneously estimated whereby the fixed and random effect influence

the estimation of the other through the likelihood function. The likelihood equation for

the fixed and random parameters in θ is (Diggle, Heagerty, Liang, & Zeger, 2002)

L (θ; y) =
m∏
i=1

∫ ni∏
j=1

f (yij|Zi; β) f (Zi;G) dZi (4.12)

where Zi are the random effects variables, β is the matrix of fixed effects parameters,

and G is the matrix of random effects parameters. The inclusion of the distribution of
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the random effects f (Zi;G) means that the likelihood equations for the fixed effects are

conditioned on the random effects. Estimation requires an iterative process that alter-

nates between estimating the fixed and random parameters given the updated estimate

of the other. The fixed effects estimates are therefore precision weighted by the random

effects (Raudenbush & Bryk, 2002, pp.38-45; Diggle, Heagerty, Liang, and Zeger, 2002,

pp.64-65). The ML estimator in this case is the generalized least squares estimator:

β̂ (V0) =
(
X ′V −1X

)−1
X ′V −1y (4.13)

where V is a block-diagonal matrix with common non-zero blocks V0 and the non-zero

elements are proportional to the intra- level two correlation. In the longitudinal case

with time nested within individual this is Corr (yit, yit′) = ρ. The V0 blocks with four

time points , for example, take the form

σ2
(i)1 σ(i)12 σ(i)13 σ(i)14

σ(i)21 σ2
(i)2 σ(i)23 σ(i)24

σ(i)31 σ2
(i)32 σ2

(i)3 σ(i)34

σ(i)41 σ(i)42 σ(i)43 σ2
(i)4


(4.14)

The diagonal elements within blocks are often assumed equal to each other and a uni-

form correlation structure assumes that every observation within an individual is equally

correlated with every other observation from that individual, σ(i)tt′ = σ(i)ss′ . The off

diagonal elements are the intraclass correlation (ICC), ρ. Therefore, the V0 blocks have

the following correlation elements 

1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1


(4.15)

Other V0 may be specified with efficiency gains for correctly specified structures. For

example, for longitudinal data it may be more appropriate to specify an autoregressive
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structure that includes ρ, ρ2, and ρ3 for the correlation between repeated measures that

are lag 1, 2 and 3, respectively. In the mixed model, the default V0 structure is uniform.

In the linear growth model the Corr (yit, yit′) = ρ is a function of the random in-

tercept, random slope, and covariance between the random intercepts and slope (Diggle,

Heagerty, Liang, and Zeger, 2002, p.133). The ML random effects estimates are esti-

mated by plugging in the values from equation (4.13) into the likelihood equation and

solving for the random effects in G. Note that the ρ differ across individuals (level two)

only in the unbalanced situation when there is no time-specific nonresponse. With no

missing time points, all V0 have equal ρ̂ resulting in the standard least squares estimator.

The default estimation in the marginal model does not include precision weighting

using ρ. Instead an independent correlation weight matrix is assumed, that is, the V0

are identity matrices. The independence correlation matrix assumes no correlation be-

tween time points within individual so that off diagonal elements are 0. Estimation in

the marginal model with correlation weight matrix is called generalized estimation equa-

tions (GEE) (Liang & Zeger, 1986; Zeger & Liang, 1986; and Prentice, 1988). GEE

with independent correlation weight matrix is also the standard least squares estimator.1

However, the marginal model may be estimated using a uniform correlation structure2,

which uses the intra individual correlation as a weight for the fixed effects in the same

manner as the mixed model where the uniform correlation weight matrix is given in 4.15.

As a result, the estimator for the marginal model parameters is also equation (4.13).

When there are no missing data due to time-specific nonresponse, the estimates from

the marginal model with any specified correlation weight matrix structure and the mixed

model are identical because there are no differences in precision for the estimates across

individuals (level two observations) and the covariance weighting becomes equal across

1The correlation weight matrix is sometimes refered to as the working correlation matrix in the GEE
literature.

2The uniform correlation weight matrix is sometimes refered to as an exchangeable matrix due to the
exchangeability of the off-diagonal elements in the matrix.
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individuals. However, with time-specific nonresponse, estimates from the mixed and

marginal model with uniform correlation matrix may differ due to differences in the ρ̂

(see, for example, the discussion in Skinner & Vieira, 2007).

The importance of the GLS estimator with covariance weighting for the missing

data problem is that it changes the MAR assumption of the growth curve model. Data

are missing at random (MAR) if data are missing randomly as a function of the model

covariates including the repeated outcomes from observed time points. With correctly

specified model and covariance weight matrix, the missing data will be MAR and es-

timates will be consistent. In this situation, probability weights are not necessary for

correcting wave-specific nonresponse. However, if the wave-specific nonresponse is not

MAR or the correlation weight matrix is miss-specified, probability weights are neces-

sary for adjusting level one missing. The estimator in (4.13) will not result in consistent

estimates when missing repeated measures are missing not at random (MNAR) or “non-

ignorable”. A nonignorable missing mechanism occurs when time-specific missing values

are related to the missing values of the outcome at those same time points after control-

ling for other observed variables (i.e., data are not MAR). When wave-specific missing

data are MCAR, the generalized least squares estimator for the linear growth model given

in equation (4.13) is consistent for any correlation specification and is fully efficient with

the correctly specified correlation weight matrix (Liang & Zeger, 1986).

4.2.2 Estimation with Probability (Sampling) Weights

Probability weights are developed to correct for biases due to unequal inclusion of

observations into the data resulting from selection or nonresponse. Probability weights

are inversely proportional to the inclusion probability of a sample observation. Thus, the

weight for observation i is

wi =
1

πi
(4.16)
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where πi is the selection probability for observation i. Weights estimate the number of

population elements, N , that are represented by each sample observation. These weights

are usually a combination of a base weight that is a function of sampling design variables

as well as correction factors, which are functions of auxiliary variables known for each

observation (Biemer & Christ, 2007; Lohr, 1999). The correction factors are therefore

based on some type of model where the nonparticipation or frame noncoverage is assumed

to be MAR given the auxiliary information. The next section discusses weighting in more

detail.

For the linear growth model, the weighted ML estimator for fixed effects in the mixed

model and the weighted GEE estimator is

β̂w =
(
WX ′V −1X

)−1
WXV −1y (4.17)

where W is the a diagonal matrix of probability weights for each person-by-time ob-

servation and V is the block-diagonal correlation matrix with blocks V0. The variance

estimator with probability weights is the sandwich estimator (Binder, 1983; Skinner,

1989, p.78)

var
(
β̂w

)
=[∑

i∈s

witx
′
itV
−1xit

]−1(
n

n− 1

(∑
i

(
θi − θ̄

) (
θi − θ̄

)′))[∑
i∈s

witx
′
itV
−1xit

]−1

(4.18)

where i is the cluster (individual in a growth model), and n is the number of clusters in

the sample, θi is the β̂wi for observation i and θ̄ is the average of the θi over the sample.

4.3 Weighting for Selection and Nonresponse in Longitudinal Panel

Surveys

Sample designs that include unequal selection of individuals into the sample are

common for panel surveys. This often results from the need to oversample particular

subpopulations of interest to obtain adequate sample size or due to a multiple stage se-

lection designs. Individuals may enter the study at differential rates also due to sampling
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frame deficiencies and nonparticipation of the respondent. Unequal selection of individu-

als that are a result of the sample design itself provide known probabilities of inclusion for

a given respondent. Inclusion probabilities that result from sample frame problems and

nonresponse are not known with certainty and must be modeled. The unequal selection

of individuals may be MNAR or nonignorable for many models and outcomes, therefore,

sampling statisticians provide probability (sampling) weights, which are applied in esti-

mation to counteract bias (Cochran,1977; Kish, 1965; Lohr, 1999). Weights due to the

sampling design are ”base weights” and the modeled weights for nonparticipation are

generally applied as adjustments to the base weights (Biemer & Christ, 2007; Biemer &

Christ, 2008). The adjusted weight for the probability of inclusion of observation i into

the study will be denoted wi.

Once an individual enters a panel study, there is also the potential that the individual

is not observed in one or more subsequent waves of data collect. This is generally due

to nonresponse for which the probabilities of inclusion are not known with certainty and

must be modeled. Sampling statisticians generally create a new weight for each wave to

account for changes in the sample due to wave-specific nonresponse. Weights that allow

for proper inference to the cohort population at a given wave are created such that the

initial weight used for inclusion into the sample at the study initiation, wi is adjusted for

the wave-specific nonresponse. The nonresponse adjustment to the weight for entry into

the study at time t is

λit =
1

πit|πi
(4.19)

where πit|πi is the conditional probability that observation i responds at time point t

given their selection into the sample. These adjustments are multiplied by the weights for

inclusion into the study to obtain the time-specific, cross-sectional weight for observation

i at time point t:

wit = wiλit =
1

πi
· 1

πit|πi
(4.20)

where wi is the probability of inclusion into the study due to selection, frame deficiencies,
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and nonresponse and where λit = 1 when t = 1.

Weights for longitudinal analyses are also typically provided with panel survey data.

These ”panel weights” are used with the sample of individuals who have complete data

for all data collection waves included in a particular analysis. The weight is therefore the

inverse of the probability that the individual was observed at every time point included in

the longitudinal (repeated measures) analysis. Assuming that nonresponse at time point

t is independent of nonresponse at time point t+ 1 conditioned on the model generating

the nonresponse probabilities, the panel weight for observation i is

wpi =
1

πi
· 1

πi1|πi
· 1

πi2|πi
...

1

πit|πi
(4.21)

Any combination of waves of data may be included in the panel weight and need not be

consecutive. For example, if one were analyzing observations from waves 1, 3, and 5, the

wi would be multiplied by λi1, λi3, and λi5.

The weights outlined in (4.20) and (4.21) may be used in growth curve models using

the estimator in (4.17) several ways: 1) The analyst may apply wi to individual i at each

and every observed time point for individual i used in the model. In this application, the

weight is time invariant, 2) The wit may be applied to individual i at time t for every

observed time point for individual i used in the model. In this application, the weight is

time varying, and 3) The panel weight, wpi , may be applied to individual i at every time

point used in the model where only individuals observed at every time point are included

in the model. These three approaches to weighting: time invariant weighting, time

varying weighting, and panel weighting, may be used in a mixed or marginal modeling

framework. A fourth approach that may be used in the mixed modeling framework

is multilevel weighting (Pfeffermann, et al., 1998; Skinner & Holmes, 2003). In this

approach the λit are applied to sums or integrals over time points and the wi are applied

to sums or integrals over the individuals in the algorithm used to estimate the parameters

in (4.17). Whereas for weighting approaches 1) - 3), the weights would be applied to

summing over individuals. Additionally, the λit are scaled to sum to the actual within
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person sample size in this method. Table 4.1 summarizes the weighting / modeling

approaches that will be evaluated in this chapter.

It is unknown which of the proposed weighting methods would provide the optimal

estimates in terms of consistency and efficiency given that the weights are correct. Panel

weighting is probably the most common approach to weighting in longitudinal analysis

because most publicly available longitudinal survey data that includes sampling weights

also include and recommend the use of panel weights in longitudinal analysis. However,

this is not a very efficient use of data since it uses fewer individual-by-time observations.

The time invariant weighting approach may be naively applied in many situations. This

weighting should correct for bias due to unequal inclusion of individuals into the study,

but would not necessarily correct for bias due to time-specific, intermittent nonresponse.

The time varying weighting approach has not been explicitly addressed in the literature,

but should be a method that corrects for bias due to time-specific unequal inclusion.

Additionally, the performance of probability weighting methods likely differ depending

on whether precision weighting is used with the GLS estimator with weight matrix V

or whether the traditional marginal modeling approach of no precision weighting using

an independence assumption is used. These three weighting methods in combination

with the two estimation approaches can also be compared to the multilevel modeling

case, which is specifically designed for probability weighting in the case where GLS with

weight matrix V is used.

The weights described here are specific to cohort panel data where inference is to the

cohort who entered the study at initiation and does not include inference to a dynamic

population that is changing over time with the exception of changes due to deaths. Other

longitudinal data intended to observe a dynamic population, such as the Current Popu-

lation Survey (CPS), which includes resampling or the Panel Study of Income Dynamics

(PSID), which includes sample refreshing are not directly evaluated in this chapter. With

cohort panel studies, unequal selection of observations may occur at the first time point
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due to sample design, non-participation, and other sampling deficiencies while unequal

inclusion of observations at follow up waves is solely due to intermittent nonresponse or

attrition. Therefore, the weights described in this chapter would not apply to a sample

that is refreshed with selection of additional observations at a later wave of data collec-

tion. Examples of survey data with cross-sectional and panel weights like those outlined

in this section include the National Longitudinal study of Youth (NLSY79 and NLSY97),

ADD Health, and the Early Childhood Longitudinal Study (ECLS).

It is also important to note that probability weights provided to analysts using panel

survey data are designed to correct for unit nonresponse and do not take into consid-

eration additional missing data due to nonresponse to particular items on the survey.

Therefore, individuals who are observed at a given time point, but are not observed on

every analysis variable at that time point would not be accommodated by the probability

weights if that individual-by-time observation is not included in the analysis. This is not

to say that weights for this type of situation may not be developed, but that the sam-

pling weights made available for an entire data set do not correct for item missing. Other

methods are available for dealing with item missingness including multiple imputation

(Rubin, 1987; Schafer, 1997) and direct maximum likelihood (Arbuckle, 1996; Schafer &

Graham, 2002).

4.4 Simulation

A simulation analysis was undertaken in order to evaluate the various weighting

methods outlined in Table 4.1. A finite population with 1 million level two observations

and 10 level one observations (time points) per level two observation was generated using

random effects generating models. Model values were chosen to be somewhat comparable

to the model results from one of the empirical examples from the NSCAW application

undertaken in the next section. Two outcomes were generated. One outcome is a function

of an unconditional model with fixed and random intercept and slope following equation

(4.4). The other outcome is a function of a conditional model with fixed and random
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intercepts, fixed and random slopes, fixed level one and level two covariates, and fixed

interactions of the covariates with time following equation (4.10). The unconditional

generating models is

yit = µα + µβT + δαi + δβiT + εit (4.22)

Where T represents time and t = 0, 1, 2, ..., 10, µα = 20, µβ = 2, var (δαi) = 70,

var (δβi) = 1, var (εit) = 12.96, and cov (δαi, δβi) = −5. The conditional generating

model is

yit = µα + γα1Xit + γα2Wi + µβT + γβ1XitT + γβ2WiT + δαi + δβiT + εit (4.23)

Where T represents time and t = 0, 1, 2, ..., 10, Xit is a time varying covariate ∼N (0, 1),

Wi is a time invariant covariate ∼N (0, 1), µα = 5, µβ = 4, γα1 = 2, γα2 = 1, γβ1 =

−0.3, γβ2 = 0.5, var (δαi) = 16, var (δβi) = 2, var (εit) = 12.25, and cov (δαi, δβi) = 1.

Random effects are orthogonal to the fixed effects in both models. The fixed and random

effects parameter values used in equations (4.22 and (4.23) mimic the values from the

Kaufman Brief Intelligence Test (K-BIT) Matrices scale example used later in this chapter

(Section 12). The K-BIT Matrices scale measures the ability to perceive relationships

and complete analogies. The parameter values used for the generated variables, X and

W , mimic the values for child age and other race, respectively. The yij in these models

are quasi-continuous scale score assessments that are sums of multiple items. The K-BIT

scale is normally distributed in this example and ranges from 0 to 50 with a mean and

median of 26.

4.4.1 Simulated Sample Selection and Simulation Weights:

Samples were selected from the generated finite population with unequal probability.

First, level two observations (individuals) were selected as a function of the random

slopes where selection is proportional to exp (δβi). This selection mechanism results in

overselection of observations with larger slope values. It also affects the intercept values

since these are correlated with the slopes. Five hundred replicates with three different
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level two sample sizes were selected. The level two sample sizes are 50, 200, and 500.

Next, from each of the replicate level two samples, level one observations (time points)

were selected as a function of the random error terms. Only the first 5 time points are

included in the level one selection of samples to be more comparable with many panel

studies and the empirical example provided in this paper. Errors at each time point are

stratified into two strata where for stratum one εit > 0 and for stratum two εit 5 0. Level

one observations (time points) are selected using stratified sampling in the proportions

presented in Table 4.2.

This selection mechanism results in overselection of level one observations that have

values greater than the average value as given by the population intercept and slope. The

selection results in nonignorable (MNAR) missing values at level one since observations

are dependent on the missing values of yit. The majority (two-thirds) of cases have at least

four time points and around one-third have three or fewer time points. The particular

selection design used in this simulation is designed to affect the average intercept and

slope values, E (αi) and E (βi) where the average slope value should be inflated for both

models and the average intercept value should be deflated in the unconditional model and

inflated in the conditional model due to the negative and positive covariances between

the random effects. Random intercepts and slopes may also be affected by such a design,

but are not necessarily affected. The random variation around the newly biased fixed

estimates may remain the same as the random variation in the population for the true

parameters. This is indeed the case for most of this simulation data as we shall observe in

the results. The covariate effects should not be affected by the selection design because

these effects are homogenous across the different levels of the slope and level one error

values.

Unequal selection of observations was done in two stages in the SAS procedure SUR-

VEYSELECT. Weights for the individuals selected into the samples and the conditional

weights for the repeated measures selected into the samples are calculated automatically
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by the SURVEYSELECT procedure as the inverse of the probability of selection of each

observation. Time invariant weights are equal to the inverse of the probability of selection

for level two observations, wi = 1
πi

where πi is proportional to exp (δβi). These weights

correct for unequal inclusion of individuals into the sample. The conditional weights for

the selection of repeated measures is the inverse of the conditional probability of selection

of level one observations given selection of the level two observation, λit = 1
πit|πi

where

πit|πi is the conditional probability of level one observation at time t given level two

observation i is selected into the sample and is proportional to values presented in Table

4.2.

Time varying weights were calculated as the inverse of the product of the probability

of selection of level two observations and the probability of selection of level one obser-

vations. Specifically, the probability of inclusion into the sample is multiplied by the

conditional probability of inclusion for each time point separately. Time varying weights

are therefore:

ωit =
1

πi
· 1

πit|πi
where wit is the inverse of the unconditional probability of selection of level one ob-

servation at time t. The wit are the traditional single level weights for cross-sectional

analysis at each time point separately. Multilevel weights are equal to wi for level two

and wt = 1
πit|πi

for level one. Panel weights, wpi , are derived as the inverse of the product

of the level two probability of inclusion and the conditional probability of inclusion for

every level one time point because selection probabilities are independent at each time

point, i.e.,

wpi =
1

πi
· 1

πi0|πi
· 1

πi1|πi
· 1

πi2|πi
· 1

πi3|πi
· 1

πi4|πi
The degree of unequal selection may be evaluated using the unequal weighting effect

(UWE), which measures the amount of noise added to estimates. The UWE for a mean

estimate is equal to 1+cv2
w = 1+ var(w)

(w̄)2
where the standard error of the mean is increased
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by a factor of
√

UWE. Table 4.3 presents the
√

UWE for each of the weights used by

generating model and level two sample size. From the table it can be seen that the panel

weights have the most variation relative to the other weights. The time varying weights

have the second greatest variability as these combine unequal selection from both levels

one and two. Finally, the selection of level two observations as indicated by
√

UWE for

the time invariant weights is more variable than the selection of level one observations

conditional on the level two selection.

4.4.2 Evaluation:

First, the mixed and marginal models with both independent and uniform correlation

weight matrix are estimated for the data with unequal selection at level two (individuals),

but with complete and balanced data at level one (time) with all 10 time points generated

by the population models. In this situation, only weighting of level two observations using

the time invariant weight, wi, is necessary for correcting estimates. This was done to

show the equivalence of the estimation methods for this situation as well as to determine

the degree of bias due to nonignorable unequal selection of the individuals.

Following this, the models are estimated for each final replicate samples that suffer

from intermittent nonresponse using the eleven methods outlined in Table 4.1. Within

the eleven methods there are two model types, 1) mixed model and 2) marginal model.

There are two estimation types within the marginal model using 1) an independent

correlation weight matrix or 2) an uniform correlation weight matrix. Finally, there

are five weighting approaches using 1) the time invariant weight, 2) the panel weight,

3) the time varying weight, 4) the multilevel weights, and 5) using no weight. Note

that the specified correlation weight matrix does not affect results for the panel weight

analysis since observations that are missing a time point are excluded from the analysis

and the data is therefore balanced (i.e., complete case analysis). The multilevel weights

only apply to the mixed model. Finally, the results for the unweighted marginal models

with uniform correlation matrix match very closely with the other unweighted models,
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especially the results for the unweighted mixed model, therefore those results are not

presented here. The multilev and surveyglim procedures in LISREL v.8.8 software are

used to estimate the mixed and marginal models, respectively. SUDAAN v.9.0 is used

to estimate the marginal models with uniform correlation matrix.

Quality of the weighting methods was evaluated according to the bias, efficiency,

and coverage of fixed and random effects parameters. Degree of bias is estimated by the

difference in the finite population parameter values given for equations (4.22) and (4.23)

the expected value of the parameter estimates:

E
(
θ̂r

)
=

∑500
r=1 θ̂r
500

where θ̂r is the parameter estimate for replicate r. Efficiency is judged by the standard

deviation of the θ̂r across the 500 replicates. The expected values of the standard error

estimates, E
(
serθ̂r

)
, were also calculated where

(
serθ̂r

)
is the standard error for esti-

mate θ̂r in replicate r. These were compared to the standard deviation of the θ̂r. Finally,

coverage rates were calculated as the proportion of finite population parameters that fall

within the 95% confidence region for each sample. The 95% confidence region for each

replicate was calculated using

θ̂r ± 1.96
(
serθ̂r

)
. (4.24)

4.5 Results

4.5.1 Balanced Data with 10 Time Points

Tables 4.4 - 4.6 presents the weighted and unweighted results for the unconditional

model. Each of the three models give identical results for both the weighted and un-

weighted fixed effects estimates, however the standard error estimates differ marginally

when level two sample sizes are 50 (Table 4.4). The standard error estimates in the

weighted case are generally underestimating variability as measured by the stdr

(
θ̂r

)
, but

improve with increases in level two sample size. The opposite is true for the unweighted
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standard error estimates where the larger sample sizes result in underestimation of the

standard deviation of the estimates.

The unweighted and weighted results reveal that the intercept and slope parame-

ters are markedly biased due to the unequal selection of level two observations. The

unweighted intercept is estimated around 15 compared to the parameter value of 20

and the unweighted slope is estimated around 3 compared to the parameter value of 2.

The use of time invariant weights in this case results in essentially unbiased estimates

of the population parameter values for the fixed intercept and slope. The weighted

and unweighted random effects estimates presented in Table 4.5 show that the selection

mechanism used here does not affect the random effects parameter estimates because the

unweighted estimates are unbiased. The weighted estimates for the larger sample sizes

are also converging on the population parameter values. Comparison of the standard

deviations of the weighted random effects estimates to the unweighted random effects

estimates reveals that the weighted estimates are much more volatile due to the weights

and hence require the larger sample size for asymptotic properties to be fulfilled. Finally,

coverage rates given in Table 4.6 reveal that there is zero coverage for the unweighted

fixed effects estimates However, coverage rates for the generally unbiased random effects

estimates are much superior in the unweighted analysis. Coverage rates for the weighted

random intercepts and random slopes for a sample size of 500 approaches the coverage

rates for the comparable unweighted estimates with a sample size of 50 indicating that

the UWE for random effects parameters is very large and far greater than the UWE for

a mean as presented in Table 4.3 for the time invariant weight.

Results for the conditional model with complete and balanced level one data with

10 data points per level two observation using the time invariant weights are presented

in Tables 4.7 through 4.9. For the larger conditional growth model, larger sample sizes

are required for convergence of the weighted fixed intercept and slope estimates on the

parameter values (Table 4.7). The unweighted estimates reveal that the selection of level
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two observations results in intercept estimates close to 6 compared to the population

parameter value of 5. As well, the expected value of the unweighted fixed slope estimates

are nearly two points higher than the parameter value of 4. Estimates for the effects

of covariates (Table 4.7) are good for both the unweighted and weighted analysis since

the selection design did not affect these relationships. Again, the mixed model and

marginal models with independent and uniform correlation matrix produce the same

results within sample size and weighting method indicating that unequal selection of

level two observations only may be addressed equally in the various estimation types.

Standard error estimates are again lower than the standard deviations for the fixed

effects estimates (Table 4.8. - covariate effects exhibit the same pattern but are not

shown in this table). This is true for all of the fixed effects in the weighted analysis, but

the estimates improve with level two sample size. The standard error estimates for the

unweighted fixed effects are unbiased except for the unweighted slope estimates, which are

themselves biased. Random effects results for the conditional model are similar to those

of the unconditional model (Table 4.9), though the unweighted analysis reveals that there

may be a slight underestimation of the random slopes indicating that unequal selection

may have decreased the variance of the slopes. In general, the weighted estimates require

much larger sample sizes for convergence on the random effects population parameters.

Coverage rates (Table 4.10) for the weighted estimates in the conditional model are

poorer for biased parameters such as the fixed slope than the coverage rates for similar

parameters in the unconditional model. For example, the fixed slope estimate coverage

reaches only 0.78 with a level two sample of size of 500. As expected, the coverage rates

for the biased parameters, the fixed intercept and slope, are very poor for the unweighted

estimates. However, the coverage for unbiased fixed and random effects is better in the

unweighted analysis than the weighted analysis. The coverage rate for the slightly biased

random slope of the unweighted analysis gets worse with increased sample size probably

due to smaller standard error estimates.
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Results for the mixed and marginal models for the case where there is unequal

selection of level two observations but no unequal selection of time points, reveal that

using the time invariant weight corrects for biases due to the selection design. This is true

for both the mixed and marginal models with either correlation matrix, all of which give

very similar results within weighting approach and level two sample size. The weighted

analysis requires fairly large samples sizes to obtain decent coverage rates, particularly for

random effects estimates measured in a mixed model. Next, we turn to analysis of data

with both unequal inclusion of level two and level one observations. In this situation,

there are many more weighting options and the type of model and estimation techniques

have more variable results.

4.5.2 Unbalanced Data with 5 Time Points

The eleven weighting and modeling combinations outlined in Section 1.2 are applied

to the data with unequal selection of level two and level one observation per the selection

mechanisms outlined above. Only five time points are included in this evaluation. Con-

sider first the unconditional model. Unequal selection of level two observations resulted

in an expected value of 15 and 3 for the unweighted estimates of the fixed intercept

and slope (Table 4.4 above). Looking at the unweighted estimates in Table 4.11, the

unweighted intercept estimates are about the same because very little unequal selection

occurred at the first time point; however, the slopes are inflated even further by the

overselection of positive level one error terms. The unweighted fixed slope estimates are

now approximately 3.2 versus the population parameter of 2. For unweighted method 10

and 11, the mixed and marginal models produce identical results. The method of apply-

ing the time invariant weight also produces the same results across the three modeling

and estimation methods (method 1, 2, and 3). These results reveal that the bias due

to level two unequal inclusion is corrected, however the 0.2 increase in the slope due to

unequal inclusion of time points remains. The traditional panel weighting methods (4

and 5) perform the same across the model types because data are balanced and weights
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are applied at level two. This method performs well with larger complete data sample

sizes. For example, after listwise deletion of level two observations with missing time

points, a sample size of approximately 137 (averaged across the replicates) give decent

results using the panel weights. Even with sample sizes as small as approximately 55,

the panel weighting method performs better than all but one other method. Using the

time varying weight in combination with an independence correlation weight matrix in

a marginal model seems to perform the best of all the methods for estimation of fixed

effects. Even with level two sample sizes as small as 50, the expected value of estimates

are fairly unbiased. Performance is great with level two sample sizes of 200 and 500.

The benefit of the marginal method is that it does not require large level one sample

sizes like the multilevel modeling method does with level one weighting. Larger level one

sample sizes are often not available for trajectory type analysis using panel data. Using

the time varying weight in the mixed model performs about as well as using the time

invariant weight in the marginal models because it weights at level two only. Finally,

there remains some bias in the marginal models with uniform correlation matrix and time

varying weights. This may be due to the correlation matrix weighting counteracting the

sampling weights. Standard error estimates are underestimated for the sample size with

50 level two observations.

Table 4.12 gives the results for random effects estimates for the unconditional model.

Once again, the unweighted models give the best estimates of the random effects because

these were not affected by the sample design in the unconditional model. Panel weights

perform poorly since level two sample sizes are much smaller after listwise deletion,

however, with approximately 137 level two observations the random effects estimates are

converging on the population parameter values. Coverage rates (Table 4.13) corroborate

the other tables and show that the marginal model method with time varying weights

and an independent correlation matrix give the best coverage for the fixed intercept and

slope estimates. Panel weighting comes in second when listwise sample sizes are larger,
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e.g., 137. However, coverage rates for the random effects are worst for the panel weighting

due to the smaller level two sample size. Other weighting methods in the mixed model

do not differ much in terms of coverage performance. Coverage for the level one random

error is worse than the other random effects estimates.

Similar results are revealed for the conditional model (Tables 4.14 - 4.17) in terms of

estimation of the fixed intercept and slope. However, larger sample sizes are required for

convergence on the population parameter values. For example, the marginal method with

time varying weights and an independence correlation matrix is still the best performing

method relative to the others, yet it converges more slowly on the population values in

the conditional model relative to the unconditional model. It is unclear why method 9

does not perform better given previous work on this method. It may require larger level

one sample sizes as has been indicated in Pfeffermann, et al. (1998). Using the time

invariant weight is again not a good method since the bias due to time-specific missing

values is uncorrected. The panel weighting method performs alright as well, but with the

conditional model approximate sizes of 137 are not large enough. The marginal model

with uniform correlation matrix, method 8, underestimates the intercept and again does

not perform as well as the marginal model with assumed independence between time

points. In the nonignorable missing data case, using the correlation information does not

improve estimates. Covariate effects are essentially unbiased for all methods since they

are not affected by the selection mechanism. Random effects estimates (Table 4.16) are

not estimated well for any method in the smaller sample sizes.

4.6 NSCAW Empirical Example

4.6.1 Methods

The various weighting methods were evaluated in an empirical example using data

from the National Survey of Child and Adolescent Well-Being (NSCAW). The NSCAW

is a panel survey of children in the child welfare system in the United States. The target
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population of the NSCAW Child Protection Services (CPS) sample is “all children in the

U.S. who are subjects of child abuse or neglect investigations (or assessments) conducted

by CPS and who live in states not requiring agency first contact.” (Dowd, et al., 2006).

The NSCAW sample design is a complex design that includes stratification, clustering,

and unequal selection probabilities. The NSCAW Child Protection Services (CPS) cohort

includes 5,501 children, ages birth to 14 (at the time of sampling), who had contact with

the child welfare system within a fifteen-month period which began in October, 1999.

Face-to-face interviews were administered at three points in time: Wave 1, 18 months

post-Wave 1, and 36 months post-Wave 1.

Linear growth models were fit to three NSCAW measures observed for three waves

of data collection that occurred at 18 month intervals. The first measure is a depression

scale, the Children’s Depression Inventory (CDI), which measures depression by asking

various questions of children about their engagement in certain activities or their expe-

rience of certain feelings (Kovacs, 1992). The second and third measures are the Math

and Verbal scores from the Kaufman Brief Intelligence Test (K-BIT), which is a brief,

individually administered measure of verbal and nonverbal intelligence for children, ado-

lescents, and adults (Kaufman & Kaufman, 1990). An unconditional and a conditional

linear growth model with three time points was analyzed for continuous outcomes. In

the conditional growth model, intercepts and slopes are conditioned upon child age, child

sex, and child race/ethnicity. There are no item missing for these independent variables.

The NSCAW wave one weight was used for time invariant weighting, this weight is

the inverse of the probability of selection for an individual child at wave 1 and represents

the probability of entering the study. The cross-sectional weights for waves one, two,

and three were used for time varying weighting, these weights are the inverse of the

probability of inclusion at waves 1, 2, and 3 separately where the weight at waves 2 and

3 are equal to the wave 1 weight with additional time specific, nonresponse adjustments.

NSCAW panel weights, which were developed for use with children observed at all three
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waves were used for panel weighting. Multilevel weights were derived using the wave one

weight at level two and the wave two and wave three weights divided by the wave one

weight at level one.

The NSCAW data was selected with a complex sample design that included clusters

that are comparable to counties and stratification where strata are larger geographic

regions. For the purposes of this study, the clustering at the PSU (county) level and the

stratification are ignored. The data are treated as if the only nesting is at the level of the

individual where time is nested within individual. This was done to avoid confounding

of the way that the different methods may treat additional clustering and stratification.

If county level clustering were accounted for, the standard error estimates would likely

be larger because the between county variance would be used rather than the between

child variance. The regional strata would also affect the standard error estimates because

variances would be calculated within stratum and subsequently aggregated across strata.

Table 4.18 presents the missing data patterns for the outcomes. For each measure,

around 55% have complete data across all waves. The NSCAW sampling weights only

correct for that portion of the missing data that is a result of unit missing due to non-

participation at the particular wave of data collection. Therefore, it is important to look

at why the data are missing. All missing data from wave one are a result of item missing

because all children were observed on some measures at that wave. About 25% of the

sample is missing for each of the scales at wave one. At waves two and three, some of

the missing is due to nonparticipation of the child at that wave and another portion of

the missing is due to children who were not observed for the specific scale. At wave

two, around 10% of the sample are missing units and around 15-16% are missing items.

At wave three, most (around 11% of the sample) are unit missing and approximately

4% are item missing. The majority of item missing could be considered MCAR because

children were not observed on the scale due to their age. For all three scales, very young

children were not assessed. Therefore, as the children aged between waves, they were
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later assessed on the scales. For each of the three scales, the number of respondents

who were observed at least once on the measure is large = 2914. The unequal weighting

effect for the estimate of a mean is 2.9 for the wave 1 weight, 3.0 for the time varying

weight, and 3.2 for the panel weight. This indicates that the standard error estimate

for a mean would increase by a factor of approximately 1.7 - 1.8 due to the variance in

the probability weights. The weights are not that informative for these measures where

the correlation between the outcomes and the various types of weights ranges from an

absolute value of 0.01 to 0.03. This low degree of informativeness means that the unequal

inclusion is nearly MCAR for these outcomes.

The multilev and surveyglim procedures in LISREL v.8.8 software are used to esti-

mate the mixed and marginal models, respectively. SUDAAN v.9.0 is used to estimate the

marginal models with uniform correlation matrix. LISREL multilev results are compara-

ble with results from Mplus v5.0. For the marginal models with independent correlation

matrix, the SUDAAN and LISREL surveyglim results are identical.

4.6.2 Results

Tables 4.19 through 4.33 present the results for the growth models for the three

NSCAW outcomes. Results for the eleven methods listed in Table 4.1 are evaluated,

however, the results are grouped by model type. Tables 4.19 through 4.21 present the

fixed effects estimates from the unconditional models. There are little differences in

estimates for the CDI across models and weighting methods. Most differences appear

with the KBIT measures. Weighting procedures used with the mixed model and all

available observations produce similar results with the exception of some differences for

the unweighted results. Only the results for panel weighting, which utilize a different

sample, differs markedly from the other results. The fact that not weighting at all

provides similar, though more efficient, estimates indicates that the level of bias in fixed

effect estimates due to unequal selection is rather low for these outcomes.

Marginal model methods that use an independent correlation weight matrix have
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similar results for the time invariant and time varying weighting methods. There are more

differences in results between weighted analyses and unweighted analyses for the marginal

models. The panel weighting method produces quite different results as compared to the

other weighting methods for the marginal models where the panel weighting results are

sometimes closer in size to the results from mixed models, for example, the KBIT slopes.

Marginal models with uniform correlation weight matrix give results that are more similar

to the mixed model results for the KBIT measures. The fact that the sampling weights

are only accounting for that part of the missing due to child nonparticipation at a given

wave and not very informative, as well as the fact that there are so few time points likely

results in the greater impact of the correlation weight matrix versus the sampling weights.

It is likely that the use of the correlation matrix weighting is increasing the efficiency of

these estimates by utilizing the association between repeated measures over time. The

fixed effects estimates and their standard errors for the mixed and marginal models are

the same when using the sample observed at all waves with panel weights. This is a

situation where the data are perfectly balanced with three observations per person and

no missing data and was corroborated in the simulation analysis.

Tables 4.22 through 4.24 present random effects results for the various mixed models.

Random effects estimates for the mixed models differ mostly for the unweighted and panel

weighted methods. It is difficult to determine the reason for these differences. The panel

weighting method is certainly less efficient due to the smaller sample sizes, but also may

results in biased random effects for some of the outcomes.

Fixed intercepts and slopes for the conditional growth models seem to be more af-

fected by weighting methods (Tables 4.25 through 4.27). For example, ignoring the

weights results in much different estimates as compared to methods utilizing weights.

And, applying time varying weights produces some differences for the mixed models.

For example, the CDI fixed slope and the KBIT Verbal fixed intercept. Panel weight-

ing also stands out as having very different estimates compared to the other methods.
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The marginal models with independent correlation weight matrix have estimates that are

sometimes very different from the mixed models and the marginal models with uniform

correlation weight matrix again tend to be closer to the mixed models.

Covariate effects on intercepts and slopes reveal some similar patterns (Tables 4.28

through 4.30 and Tables 4.31 through 4.33). With the exception again of panel weighting

and not weighting, the other weighting methods within the mixed modeling framework

produce similar results. On occasion, the time varying weights have differences. For

example, some of the race effects on the intercepts differ for the CDI outcome. Marginal

models with independent correlation weight matrix have covariate results that differ

from the mixed model for many of the effects. Again, as expected the marginal models

with uniform correlation weight matrix produce results that are often more in line with

the mixed models than the comparable marginal model with independent weight matrix.

Time varying weighting and using time invariant weights also show different results within

the marginal models. Although not presented here, the results for panel weighting with

the marginal model and uniform correlation weight matrix gives identical estimates and

standard errors to the other models that use panel weighting. Random effects estimates

for the conditional models are presented in Tables 4.34 through 4.36. With the exception

of panel weighting and not weighting the other methods produce comparable random

effects estimates.

It is difficult to discern which estimation methods are best for this empirical example.

The best guess is based on what is known about the missing data. In this example, it is

likely that the methods that utilize the correlation of the observations over time in the

estimation process (the mixed model and the marginal model with uniform correlation

matrix) performs better since much of the wave-specific missing data can be considered

MCAR and it is plausible that the rest is MAR conditioned on observed outcomes for

individuals at other waves. Efficiency of estimates should be improved using this corre-

lation especially given the small number of time points. Bias ought to also be decreased
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since information from the other waves is utilized. The differences for some of the slopes

in the two estimation methods is quite marked indicating the potential benefits to using

correlation information in the estimation process.

4.7 Conclusions

Probability weighting is a method that may be used to correct for bias due to non-

ignorable missing data in growth models. Weighting is used with survey data to account

for unequal selection of observations into the data, but it is a method that may also be

used to address missing data issues in general. Weighting methods require larger sample

sizes to meet asymptotic properties because the weights add variation to parameter esti-

mates. However, with large sample sizes and survey software that properly handles the

weights, this approach is easily applied. In longitudinal analyses, weights may be used

to address both unequal selection probabilities and intermittent dropout over time.

Weights have traditionally been applied in a marginal modeling framework, but may

also be used in a mixed modeling framework. In both the mixed and marginal modeling

frameworks with continuous or quasi-continuous outcomes, a generalized least squares

estimator (GLS) may be used. This GLS estimator weights the fixed effects parame-

ters using the covariance matrix of within cluster correlations. In the mixed model this

matrix is estimated using the random effects estimates. In the marginal modeling frame-

work, GLS estimation utilizing the covariance matrix is termed generalized estimation

equations (GEE) (Liang & Zeger, 1986). The GLS estimator will differ in the mixed

and marginal modeling frameworks only when the specified covariance weight matrix or

its estimation differ (Zeger, Liang, Alberts, 1988; Skinner & Vieira, 2007). This type

of estimation will render missing repeated measures MAR when the missing data are

related to other observed repeated measures and will improve efficiency when repeated

measures are correlated. In this case, weights that correct for time specific nonresponse

are unneccessary.

In this chapter several weighting approaches are applied to linear growth models
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estimated in the mixed and marginal modeling frameworks. It is important to consider

alternative weighting methods for growth models since there are several options, some of

which have not been considered in the literature, e.g., treating weights as time varying.

Also, the various weighting methods have not been compared and it is unknown which

combination of weighting and model or estimation methods result in the best estimates.

It has been traditional to apply panel weights and casewise delete any observations that

do not have complete data across time points. This method seems to perform well

for nonignorable unequal inclusion of observations, yet it is far less efficient due to the

decreases in sample size. Unless the casewise deleted sample is large, it is better to use all

available person-by-time observations along with a time varying weight in the marginal

model or the multilevel weights in a mixed model. Though the latter requires large

level one sample sizes. Also, for the mixed model generally and especially with weighted

analysis, random effects estimates require much larger sample sizes as compared to the

fixed effects. The time varying weights and the multilevel weights importantly include

probability information for both missing level two (individuals) and level one (time)

observations.

It is always important to understand the unequal selection and nonresponse well

before choosing a method for dealing with it. Sampling weights available for an entire data

set are not designed to handle the item missing problem. In most instances, survey data

will suffer from both unit selection and nonresponse as well as missing items. Sampling

weights are used when missingness is MNAR or nonignorable. Other methods, such as

utilizing the correlation weight matrix can improve estimates since in most situations it

is probably fair to assume that outcomes are related over time.
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Table 4.1: Estimation Methods Evaluated

Table 4.2: Percent of Level Two Observations with Level One Sample Size Averaged

Across Sample Replicates
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Table 4.3: Unequal Weighting Effects Averaged Across Sample Replicates
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Table 4.8: Standard Deviations and Expected Values of Standard Errors for Fixed Effects

Estimates for the Conditional Trajectory Model with No Missing Time Points

129



T
ab

le
4.

9:
E

x
p

ec
te

d
V

al
u
es

of
R

an
d
om

E
ff

ec
ts

E
st

im
at

es
fo

r
th

e
C

on
d
it

io
n
al

T
ra

je
ct

or
y

M
o
d
el

w
it

h
N

o
M

is
si

n
g

T
im

e
P

oi
n
ts

T
ab

le
4.

10
:

95
%

C
on

fi
d
en

ce
R

at
es

fo
r

E
st

im
at

es
fo

r
th

e
C

on
d
it

io
n
al

T
ra

je
ct

or
y

M
o
d
el

w
it

h
N

o
M

is
si

n
g

T
im

e
P

oi
n
ts

130



Table 4.11: Expected Values of Weighted Fixed Effects Estimates for the Unconditional

Trajectory Model
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Table 4.13: 95% Coverage Rate for Weighted Estimates for the Unconditional Trajectory

Model
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Table 4.18: Percent of Sample Observations with Missing Pattern by Outcome

Table 4.19: CDI Unconditional Trajectory Models Fixed Effects with Standard Errors
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Table 4.20: KBIT Matrices Unconditional Trajectory Models Fixed Effects with Standard

Errors

Table 4.21: KBIT Verbal Unconditional Trajectory Models Fixed Effects with Standard

Errors
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Table 4.25: CDI Conditional Trajectory Models Fixed Effects with Standard Errors

Table 4.26: KBIT Matrices Conditional Trajectory Models Fixed Effects with Standard

Errors
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Table 4.27: KBIT Verbal Conditional Trajectory Models Fixed Effects with Standard

Errors
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CHAPTER 5

Conclusions

Sampling and nonsampling error can have dramatic effects on estimates and are

common problems for analysis of survey data. Random measurement error will have

deleterious effects on estimates in many circumstances. Random measurement error de-

creases the efficiency of estimators and may result in biased estimates of associations.

Longitudinal structural equation models may be used to assess the degree of random

measurement error by providing estimates of reliable and unreliable variance compo-

nents. Chapter 2 of this dissertation proposes models for measuring reliability of scale

scores using panel survey data. Estimators may also be biased and inconsistent as a

result of unequal probabilities of selection. Unequal probabilities of selection are com-

mon to survey data collected using complex sampling designs. The potential for bias was

demonstrated in two separate studies in this dissertation presented in Chapters 3 and 4.

Probability weighting is a method used to correct the biases due to unequal selection.

Several weighting methods were assessed in Chapters 3 and 4 in the context of multilevel

or mixed modeling as to their performance in producing consistent and efficient estimates

under informative selection. The research in this dissertation adds to our understanding

of evaluating and reducing the effects of survey errors that arise with analysis of complex

samples.

Reliability estimates for a number of scale scores are obtained using longitudinal,

latent variable models in Chapter 2. The models are very general in that they do not

require model assumptions that are necessary for assessing reliability in single-item panel



measures, namely, assumptions of constant variance over time. In addition, the proposed

models allow for the partitioning of item specific error variances as well as variance due

to additional factors that are not attributable to the primary trait. One limitation of the

item-level factor models proposed is that for scale scores with many items, the estimation

of all three variance components: trait variance, specific error variance, and additional

factor variance, can be unwieldy and lead to empirical underidentification. However, one

of the benefits of the proposed models is that they may be reduced by placing further

assumptions on the models without assuming constant variance over time. For example,

the additional factor variance may include all possible additional item covariance or just

a component of that covariance. The models are also useful in that the standard errors

for the reliability estimates are provided using standard SEM software.

In the evaluation of reliability for the scales in the NSCAW, several of the scale

scores contain substantial random measurement error. For example, many estimates

from the item level models are below 0.7 and as low as 0.45. The analysis also revealed

that the assumptions of constant error variance over time had little effect on reliability

estimates as compared to the assumption of no specific error variance or no additional

factor variance. Therefore, the ability to partition these additional variance components

proved critical to accurate reliability estimates. However, while the models with esti-

mates of additional variance are desirable in their generality, the number of estimated

parameters can becomes unwieldy and empirical underidentification can occur. Further

research should focus on the specific empirical identification problems with these models

and whether they would be common in practice. As well, simpler models may produce

the same reliability estimates in some conditions. For example, with two indicator factor

models the additional factor variance will go into the residual shocks and therefore be

included in stable variance without having to specify this variance separately with an

additional factor. This model is more stable and provides the same reliability estimates,

but specific model parameters are biased and the model fit is poorer. Whether the more
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parsimonious models are equivalent to the more general models when there are more than

two items per factor is unknown and the efficiency of the reliability estimates should also

be compared across these approaches.

Probability weighting in multilevel or mixed models is a relatively new methodology

that combines the traditional design-based weighting approach to dealing with unequal

inclusion of observations with the traditional model-based approach to incorporating

clustering. In Chapter 3 of this dissertation, several alternative weighting methods for

analyzing a two-level model using data selected with unequal probabilities are evaluated.

The main point of this study is to compare and contrast the current gold standard

weighting approach to the alternative method of incorporating sample design variables

directly in the model. The hypothesis is that the latter approach will result in estimates

with lower total loss as measured by mean squared error and coverage. The primary

limitation of the multilevel weighting approach is that the appropriate weights are often

more volatile resulting in weighted estimators that are less efficient. While the upside

of including sample design variables is that estimators are more efficient. This latter

approach is also somewhat more feasible when weighting clusters because the number

of sample design variables used in unequal selection are usually reasonable for selection

of clusters in the common multistage sampling designs. In addition to the contrast of

using multilevel weights versus incorporating design variables, is the assessment of using

single-level weighting instead of the proper multilevel weights. This method is evaluated

primary to assess the deficiencies of an approach that is probably employed by many

analysts who do not have access to the multilevel weights.

Results of the simulation analysis indicate that RMSE and coverage rates can be

improved by including design variables directly in the model compared to using multilevel

weighting. Limitations of this method are that the analyst needs access to the sample

design variables used in selecting clusters. In order to offset biases due to selection,

specification of the model at the cluster level must also be correct in terms of the effects of
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the design variables. Even if specification is not exact, it may be better to use the variable

approach rather than the weighting approach when sample sizes are small. Alternatively,

with large sample sizes at both levels, the multilevel modeling method is a good method

that is easy to apply when the proper weights are available. Even so, with sample sizes

as large as 150 level two units and 75 level one units per level two unit, the variable

method can greatly improve RMSE and coverage as demonstrated in Chapter 3.

Chapter 4 also includes an evaluation of weighting methods for a mixed model;

however, the focus is on longitudinal data and the linear growth curve model. Also, the

methods compared in this chapter include weighting in the marginal model framework

in addition to weighting in the mixed model framework. In the longitudinal situation,

unequal inclusion of observations at the level of time is different from unequal inclusion

due to the sample design. Intermittent dropout over time is common for panel studies

and there is often information about individuals from time points where they are observed

that can be used to specify a model that is robust to time specific dropout. Also, the

weights provided to analysts for time specific nonresponse differ. For example, panel

weights have traditionally been used to deal with intermittent nonresponse and there is

no comparable weight for standard (not longitudinal) multilevel data. In the Chapter 4

analysis, different weighting approaches in the context of the mixed and marginal models

are compared. And, it was shown that the GLS/ML estimators for fixed effects in the

two types of models are equivalent when the same variance weight matrix is used. It was

found that the best weighting approach depends on whether the variance weighting is

used or not.

Results from the simulation analysis show that panel weighting performs well with

adequate sample sizes and results are equivalent under the mixed and marginal models.

However, the best performance resulted from time-varying weighting using all available

person-by-time observations in the marginal model with no covariance weighting, al-

though this method does not provide random effects estimates. Multilevel weights in the
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mixed model do provide random effects estimates and perform well with large level one

and level two sample sizes. Common results across Chapters 3 and 4 are that weight-

ing in the multilevel or mixed model framework seems to require much larger samples

for obtaining good random effects estimates, particularly when the model includes more

than just a random intercept term. The empirical example results from Chapter 4 seem

to confirm the simulation analysis results from Chapter 3. That is, if the model is speci-

fied such that the unequal inclusion is MAR, probability weighting is not necessary. In

the longitudinal case, this assumption seems more plausible since the observed measures

from the same individual at other time should provide more information for missing time

points than observed measures from individuals within a cluster would provide for other

individuals in that cluster. In both chapters, sampling weights prove necessary and useful

when missingness is MNAR or nonignorable.

Future research should include evaluations of the intersection of design based and

model based estimation approaches. Some research has begun which uses Bayesian meth-

ods for modeling both the sampling design and the analytic model (Pfeffermann, Da Silva

Moura, & Silva, 2006; Little, 2004). The Bayesian model methods improve estimator ef-

ficiency without overburdening the theoretical model with sample design variables. But,

these methods have not been used much in practice. Another modeling approach to

informative selection that could be investigated and compared to weighting is the use of

multiple imputation (Schafer, 1997; Little & Rubin, 1987). In some circumstances, for

example drop out in longitudinal data analysis, it may be desirable to impute missing

data using sample design variables in the imputation model rather than weight in the an-

alytic model. Multiple imputation may prove more efficient under certain circumstances

compared to probability weighting and would not overburden the analytical (or theoreti-

cal model). Additionally, weighting could be considered as an alternative to model based

methods for dealing with missing data. Most missing data methods in the model based

literature do not work for data that are MNAR. However, some modeling methods have
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been proposed such as pattern mixture modeling (Hedeker & Gibbons, 1997) and these

could be compared to probability weighting.

This dissertation research contributes to our ability to assess and correct for sur-

vey errors. Chapter 2 contributes to an historic and vast literature about reliability. In

this chapter, a general, longitudinal, latent variable model useful for estimating scale

score reliability is outlined. The model is used to test assumptions about constant error

variance over time common to single-indicator panel models and to estimate reliability

in a less restrictive model. This research contributes to the literature by specifying a

new general model for reliability estimation as well as results from an additional testing

situation for the assumptions of single-indicator reliability models. Chapters 3 and 4

contribute to a new area of literature that deals with probability weighting for unequal

selection and nonresponse in models of multilevel data. Optimal weighting and estima-

tion combinations are offered for two level models of data selected with PPS sampling

and growth curve models with intermittent nonresponse. This research contributes new

information about how estimation using multilevel weighting compares to unweighting

estimation using modeling of the sample design for clusters. It also provides a compar-

ison of alternative weighting approaches, some which have not been considered before,

specific to growth curve modeling. These methods have not heretofore been evaluated

relative to one another.
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CHAPTER 6

Appendix

Child Behavior Checklist (CBCL), Youth Self-Report (YSR), and Teacher

Report Form (TRF) Caregivers, youth, and teachers reported on children’s compe-

tencies and problem behavior in the Child Behavior Checklist, Youth Self-Report and the

Teacher Report Form (Achenbach 1991a, 1991b, 1991c, and 1991d). The problem scale

is composed of eight syndromes (Withdrawn, Somatic Complaints, Anxious/Depressed,

Social Problems, Thought Problems, Attention Problems, Delinquent Behavior, and Ag-

gressive Behavior) and an Other Problems category. Behaviors are also categorized as

Externalizing (containing the Delinquent and Aggressive Behavior syndromes) or In-

ternalizing (containing the Withdrawn, Somatic Complaints, and Anxious/Depressed

syndromes). A Total Problems score is derived from the total of the syndromes and

Other Problems items (Achenbach, 1991a). Items for the CBCL, YSR, and TRF are on

a 3-point Likert-type scale. Items are summed to produce the scales for internalizing,

externalizing, and total problem behavior. Items for the CBCL were different for the 2

- 3-year-old age group and the 4 - 18-year-old age group. Scales were combined for the

split-half models.

Social Skills Rating System (SSRS) and Vineland Adaptive Behavior Scale

(VABS) Screener - Daily Living In the NSCAW, the Social Skills Rating System

measures parent (SSRS) and teacher (SSRST) perception of the child’s social skills in four

domains: cooperation, assertion, responsibility, and self-control (Gresham and Elliott,



1990). Items are three-point ordinal scales, which are summed to create the SSRS scores.

The Vineland Adaptive Behavior Scale (VABS) is was used to measure daily living skills

among children aged 0 to 10 years as assessed by caregivers (Sparrow, et al., 1984). A 15-

item Daily Living Skills domain was used and is part of the 261-item Vineland Adaptive

Behavior Scale. This domain measures personal skills (e.g., how the child eats, dresses,

and performs personal hygiene), domestic skills (household tasks the child performs), and

community skills (how the child spends his or her time, and telephone skills). Separate

scores were computed for the three age groups, 0-1, 2-5 and 6-10 as the sum of the 15

items in the domain. Items are measured on a 3 point ordinal scales.

Children’s Depression Inventory (CDI) The Children’s Depression Inventory

(CDI) measures depression by asking various questions of children about their engage-

ment in certain activities or their experience of certain feelings (Kovacs, 1992). CDI

contains 27 items, each with a 3-point Likert-type scale (0 = absence of symptom, 1 =

mild symptom, 2 = definite symptom) that addresses a range of depressive symptoms

as indicated by five factors: Negative Mood, Interpersonal Problems, Ineffectiveness,

Anhedonia, and Negative Self-Esteem. Scores are the sum of the items responses for

each factor. We estimated the reliability of the total CDI scale, which includes all five

depression factors.

Peer Loneliness and Social Dissatisfaction Questionnaire for Young Children

The Peer Loneliness and Social Dissatisfaction questionnaire (Asher and Wheeler, 1985)

is designed to measure peer relationships, including social rejection with questions about

success in making and keeping friendships and school adjustment. The questionnaire is

administered only to children in school. All items are measured on a three-point ordinal

scale and are summed to produce a total score.

School Engagement School engagement scale is comprised of the sum of four-point

ordinal scales measuring student’s subjective achievement and their disposition toward
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learning and school. Items were derived from the Drug Free Schools (DFSCA) Outcome

Study Questionnaire (US Department of Education: Office of the Under Secretary).

Engagement is measured for children 6 years and older who are in school.

The Home Observation for Measurement of the Environment Short Form

(HOME-SF) HOME-SF measures the quality and quantity of stimulation and support

in the home environment of children from birth to 10 years (Caldwell and Bradley, 1984;

Bradley, 1994). Items address the mother’s behaviors toward the child and various aspects

of the physical environment (e.g., safe play environment, size of living space). During

the caregiver interview, the interviewer indicates whether these conditions exist, do not

exist, or were not observed. HOME-SF is a short form version of the HOME scale. Items

making up the HOME-SF have varying ordinal scales and are subsequently dichotomized

prior to summing into cognitive stimulation, emotional support, and total scales.

Research Assessment Package for Schools - Self-Report Instrument for Mid-

dle School Students (RAPS-SM) ”A shorter version of the Relatedness scale from

RAPS-S (IRRE, 1998) was used to measure children’s feelings about their relationship

with their primary and secondary caregivers. There were two sets of questions, one

for each caregiver. Four subscales were used for NSCAW: Parental Emotional Security,

Involvement, Autonomy Support, and Structure. Children answered how true each state-

ment was (1 = not at all true, 2 = not very true, 3 = sort of true, and 4 = very true).

Parental Emotional Security asked how true it was that the child felt good, mad, or

happy with his or her caregiver. Involvement asked questions about the caregiver’s inter-

est in, time spent with, and things done to help the child. Autonomy Support inquired

about the caregiver’s trust of the child and whether the child was allowed to make his or

her own decisions. Structure asked about the caregiver’s fair treatment of the child, the

caregiver’s belief in the child’s abilities, and the child’s understanding of what the care-

giver wants” (Dowd, et al., 2004: Appendix III, DFUM.) A mean rather than a summed

relatedness score was created to account for the fact that not all children answered the
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same number of questions.

Short-Form Health Survey (SF-12) SF-12, a shorter version of the SF-36 (12 versus

36 items), measures mental and physical health of the caregiver (Ware, et al., 1996, 1998).

The same twelve items make up the physical and mental health raw scale scores. Items

are dichotomous and ordinal in original form. Scales are created from the weighted sum

of the items after they are dichotomized. The scoring steps were performed as described

by the publisher. See the DFUM Appendix III and Ware, et al. (1998).

Woodcock-McGrew-Werder Mini-Battery of Achievement (MBA) MBA is a

brief, wide-range test of basic skills and knowledge, including tests of reading, mathemat-

ics, writing, and factual knowledge (science, social studies, and humanities). MBA may

be used with children and adults aged 4 to over 90 years (Woodcock, McGrew, Werder,

1994). NSCAW utilized MBA with children aged 6 and older and administered only the

Reading and Math tests. A file of raw scores was generated for all children who com-

pleted the section. Administered assessments included Reading letter-word identification

(A), Vocabulary (B), and Comprehension (C), Mathematics (D) and General Knowledge

(E). MBA reading is comprised of assessments A, B, and C and MBA math is comprised

of assessments D and E. Raw scores for each section were computed as the sum of the

correct items in the subtest plus a base score. For items in the analysis models, the

basescore is distributed across all items equally. In the NSCAW sample, some items in

the MBA reading and math scale did not discriminate between cases since very few or no

children gave correct answers. Items with variances less than 0.005 were removed from

the scale.

Preschool Language Scale-3 (PLS-3) PLS-3 measures language development of

children from birth to 5 years (Zimmerman, Steiner, and Pond, 1992). The Auditory

Comprehension subscale measures precursors of receptive communication skills with tasks

focusing on attention abilities. The Expressive Communication subscale measures pre-
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cursors of expressive communication skills with tasks that focus on social communication

and vocal development. Items in the subscales are dichotomous (1=correct, 0=incorrect).
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