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Abstract

Background

The advent of direct-acting agents (DAAs) has improved treatment of HCV in HIV co-infec-

tion, but may be limited by primary drug resistance. This study reports the prevalence of nat-

ural polymorphisms conferring resistance to NS3/4A protease inhibitors and NS5B

polymerase inhibitors in treatment-naïve HIV/HCV co-infected individuals in China.

Methods

Population based NS3/4A sequencing was completed for 778 treatment-naïve HIV/HCV

co-infected patients from twelve provinces. NS3 sequences were amplified by nested PCR

using in-house primers for genotypes 1–6. NS5B sequencing was completed for genotyping

in 350 sequences. Resistance-associated variants (RAVs) were identified in positions asso-

ciated with HCV resistance.

Results

Overall, 72.8% (566/778) of all HCV sequences had at least one RAV associated with HCV

NS3/4A protease inhibitor resistance. Variants were found in 3.6% (7/193) of genotype 1,

100% (23/23) of genotype 2, 100% (237/237) of genotype 3 and 92% (299/325) of genotype

6 sequences. The Q80K variant was present in 98.4% of genotype 6a sequences. High-

level RAVs were rare, occurring in only 0.8% of patients. 93% (64/69) patients with geno-

type 1b also carried the C316N variant associated with NS5B low-level resistance.
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Conclusions

The low frequency of high-level RAVs associated with primary HCV DAA resistance among

all genotypes in HIV/HCV co-infected patients is encouraging. Further phenotypic studies

and clinical research are needed.

Introduction
The emergence of novel therapeutics for chronic hepatitis C virus (HCV) infection has brought
this global pandemic to the forefront of public health attention [1]. Co-infection with HIV is
common in HCV patients due to shared routes of transmission. One of the largest populations
with HIV/HCV co-infection worldwide can be found in China, with a high proportion residing
in the southern region as a result of intravenous drug use and drug trafficking from the Golden
Triangle [2]. The long latency period from asymptomatic infection to cirrhosis and hepatocel-
lular carcinoma with chronic HCV infection contributes to low uptake of HCV therapy in HIV
co-infection [3], particularly when weighing the competing comorbidities of opportunistic
infections and the high burden of pegylated interferon and ribavirin therapy. The introduction
of highly active antiretroviral therapy normalized HIV life expectancy over time, thereby
unmasking the morbidity and mortality of co-infection with HCV. End stage liver disease is
now one of the leading causes of death in HIV-infected individuals [4]. Successful HCV treat-
ment appears to mitigate this effect by slowing or stopping progression of fibrosis [5]. The
advent of direct-acting agents (DAA) has allowed earlier and better tolerated treatment of
HCV in HIV co-infection, increasing feasibility of HCV treatment uptake.

Several DAAs are currently approved for HCV treatment in the United States while many
others are still in phase II and III trials [6]. DAAs are categorized as NS3/4A protease inhibi-
tors, NS5B polymerase inhibitors and NS5A protein inhibitors depending on the viral protein
that is targeted. Currently approved protease inhibitor therapies include telaprevir, boceprevir,
and simeprevir in combination with peg-interferon and ribavirin for genotype 1 and paritapre-
vir in an interferon-free regimen. The NS5B polymerase inhibitor sofosbuvir is also available in
an all-oral, interferon-free regimen and studies have demonstrated the feasibility of this regi-
men in HIV/HCV co-infection [7]. A second NS5B polymerase inhibitor dasabuvir is approved
in a regimen including ombitasvir, paritaprevir and ritonavir. Currently treatment with DAAs
is not available in China and many challenges in traditional HCV therapy remain including
cost, low awareness of treatment options, low treatment uptake, and poor adherence [8]. An
additional barrier is the diverse distribution of HCV genotypes among co-infected patients in
China, the most common being genotypes 1b and 6a [2, 9]. Genotype 6 patients, infrequently
seen outside of Southeast Asia, are seldom included in clinical trials, and treatment data are
incomplete [10].

One key limitation of DAA treatment has been the presence of primary drug resistance
leading to treatment failure. The highly error prone RNA polymerase of the hepatitis C virus
accounts for the occurrence of HCV as an assembly of quasispecies in the human host, in
which a low proportion of less fit variants with natural resistance-conferring polymorphisms
can exist [11]. Treatment with DAAs provides selective pressure for these variants, particularly
with protease inhibitors, which as a drug class has a lower threshold for developing resistance
[12]. Virologic failure manifesting in 1–13% of patients enrolled in early clinical trials was
nearly always associated with the detection of mutant variants at the time of breakthrough and
a number of these variants were present prior to initiation of treatment [13]. While wild-type
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virus eventually repopulates the HCV population [14], the uncertainty of this timing and the
potential for cross-resistance are current barriers to re-treatment. Presence of pre-existing
resistance-associated variants (RAVs) such as R155K that lead to complete treatment non-
response has also been a cause of concern, although rarely detected [15]. At this time, the con-
sequences of DAA resistance, particularly prior to treatment, are not yet fully appreciated.

Studies investigating the occurrence of baseline DAA resistance are limited in Asia and
most of the focus thus far globally has been on genotype 1. The aim of this study is to determine
the prevalence of natural polymorphisms conferring resistance to NS3/4A protease inhibitors
and NS5B polymerase inhibitors in treatment-naïve HIV/HCV co-infected patients in China
across a broad spectrum of HCV genotypes.

Material and Methods

Patient selection
Plasma samples for NS3/4A sequencing were obtained from 826 HIV/HCV co-infected
patients recruited between 2004 and 2013 from Beijing, Chongqing, Fujian, Guangdong,
Guangxi, Heilongjiang, Henan, Hunan, Shaanxi, Xinjiang, Yunnan, and Zhejiang provinces.
All patients had never received antiretroviral treatment or any HCV treatment. Demographic
information was obtained at patient enrollment and extracted through chart review. Patients
provided signed written informed consent prior to study participation. IRB approval was
granted by the Guangdong Provincial Skin Diseases and STI Control Center Ethical Review
Committee project number 57832455.

HCV genotyping
HCV genotype and subtype were determined by RT-PCR and sequencing of the HCV core
region. A subset of patients was sequenced using both HCV core and NS5B regions. Consensus
sequences of the forward and reverse strands were used. Sequences obtained were compared
against the Los Alamos HCV database [16]; reference sequences can be found in S1 Table.
Genotype and subtype were then confirmed by phylogenetic tree reconstruction (see Fig 1) in
MEGA v5.05 [17] using the neighbor joining method with the Kimura-2 parameter model. A
gamma parameter of 0.5 was used to model differences in substitution rates among base sites.
Branch support was assessed by bootstrap analysis with 1000 replicates.

Sequencing of NS3/4A protease region
HCV RNA was extracted from serum with Viral RNAMini Kit (Qiagen, USA), collected from
the spin columns, and eluted with 60μl AVE buffer to obtain 55μl of virus RNA. Complemen-
tary DNA was then amplified based on viral template using M-MLV First-Strand Kit RT-PCR
(Invitrogen, China). Because HCV has a very high frequency of variation in the region of NS3
gene, we designed genotype-specific primers to amplify the part of HCV NS3 containing
potential DAA resistant mutations (primers are available in S2 Table). Primers were employed
in nested PCR (Ex Taq DNA Polymerase, Takara, Japan) to target the NS3/4A protease-coding
region. Sequences were obtained as a consensus of the forward and reverse strands. The condi-
tions for the first round of nested PCR include: an initial denaturing step at 94°C for 4 minutes,
followed by 30 cycles of a denaturing step at 94°C for 10 seconds, an annealing step at 55°C for
30 seconds, an extension step at 72°C for 2 minutes, and then followed by a final extension at
72°C for 10 minutes. Products of first round PCR then underwent second round processing
consisting of the steps of 1st PCR but with an annealing temperature decrease to 50°C. The
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final PCR product was detected by agarose gel (1.5%) electrophoresis and sent to sequence
directly by ABI 3730XL automated sequencer using BigDye terminators (Applied Biosystems,
Foster City, California, USA) by Invitrogen™ CO., Ltd (Guangzhou, China). A proportion of
samples could not be sequenced due to quality of the sample and low viral load.

Fig 1. Phylogenetic tree.Neighbor-joining tree representing the relationship of all sequences with reference
sequences. Solid circle (●) marks different subtype identified reference. Bootstrap analysis was performed with 1000
replicates and only bootstrap values�70% are shown at the corresponding nodes. Reference sequences: Genotype 1a
(AF511950, NC004102, M67463); 1b (AY587016, D11355, EF032892); 2a (AY746460, D00944, AB047639); 3a
(NC009824, AF046866, X76918); 3b (D49374); 6a (DQ480513, AY859526, Y12083); 6u (EU408332, EU408331,
EU408330); 6n (EU246937, EU246938, AY878652).

doi:10.1371/journal.pone.0157438.g001
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Analysis of resistance-associated variants
NS3 sequences were aligned using BioEdit v7.0 [18]. Sequences for genotype 1a (Genbank
accession number: AF009606), 1b (AJ238799) and 2a (AF177036) were aligned with ClustalW
[19] according to reference sequences recommended by HCV-DrAG [20]. All other genotypes
were aligned to the genotype 1a H77 reference sequence due to lack of established reference
sequences. Insertions and deletions present were manually validated. The accession numbers
for sequences submitted to Genbank are KT162143-KT162915. Variants were manually identi-
fied at positions reported to confer resistance to HCV protease inhibitors: 36, 41, 43, 54, 55, 80,
109, 155, 156, 168 and 170 [12, 21]. Association with phenotypic resistance and fold-change
resistance data to approved DAAs and those in clinical trials were obtained from the literature
[21, 22]. While there is no established cut-off between high-level and low-level RAVs, we used
an EC50> 10 to define a high-level RAV consistent with previously published literature [12].
In patients with NS5B sequencing, four positions reported to confer resistance to NS5B poly-
merase inhibitors could be identified in the region sequenced for genotyping (nucleotides
7935–8505): L159, S282, C316, and V321. Variants were similarly manually identified in these
sequences.

Molecular modeling
Crystal structure of simeprevir bound to HCV protease was obtained from the Protein Data
Bank (PDB code 3KEE) in Swiss-model platform [23]. DeepView v4.1 was used for analysis of
the Q80K variant and construction of a three-dimensional structure [24].

Results

Patient characteristics
The breakdown of genotypes in our study included 204 (25%) with genotype 1a/b, 25 (3%)
with genotype 2a, 253 (31%) with genotype 3a/b and 344 (42%) with genotype 6a/n/u/v (see
Table 1). Men comprised roughly two-thirds of the total population (76%). The majority of
patients were young, between 30 and 40, with only 5% of patients older than 50 years of age.
Intravenous drug use was the primary identified risk factor for transmission in 69% of patients
and represented the majority of patients in genotypes 1, 3 and 6. Genotype 2 patients differed
from other genotypes in blood transfusions as the dominant route of transmission, older age
and a higher proportion of women. Clinical characteristics among the genotypes were similar
with an overall median CD4 count of 126, median ALT of 38 units/liter (normal 7–56), median
AST of 35 units/liter (normal 10–40), and log10 HCV RNAmedian of 6.1 copies/uL. The low
median CD4 count reflects a high level of pre-antiretroviral therapy immunosuppression in
our cohort.

Rates of natural polymorphisms conferring NS3/4A protease inhibitor
resistance
The NS3 region was adequately sequenced for 778 out of 826 patients: genotype 1 (193 of
204), genotype 2 (23 of 25), genotype 3 (237 of 253) and genotype 6 (325 of 344). Naturally
occurring RAVs associated with PI resistance were found in all genotypes under study (see
Table 2). 81.2% (632/778) of all sequences harbored at least one RAV. One or more RAVs
were found in 3.6% (1/28) of genotype 1a, 3.6% (6/165) of genotype 1b, 100% (23/23) of geno-
type 2a, 100% (125/125) of genotype 3a, 100% (112/112) of genotype 3b, 98.7% (299/303) of
genotype 6a, and none (0/22) of genotype 6n/u/v sequences. Variants existing in combination
were present in 100% of genotype 3a (V36L + Q80R + D168Q (1); V36L + A156G + D168Q
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(1); V36L + D168Q (123)) and 3b sequences (V36L + T54S + D168Q (2); V36L + D168Q
(110)) and 2.3% of genotype 6a sequences (Q80K + 168E (4); Q80K + I132V (3)). A number
of amino acid variants not associated with resistance at positions Q80, I132, and V170 were
detected for all genotypes.

Positions of NS3/4A resistance-associated variants and correlation with
phenotypic resistance data
The V36A variant conferring a 7.4-fold increase in EC50 with telaprevir use was detected in
only one patient with genotype 1a. V36L, also associated with low-level telaprevir resistance,
was present in all genotype 2a, 3a, and 3b sequences. Four patients with genotype 1b and two
patients with genotype 3b harbored the T54S variant, which confers low-level resistance to
both first generation PIs telaprevir and boceprevir. The Q80K variant with reduced susceptibil-
ity to second-generation drug simeprevir was present in 98.4% of genotype 6a sequences. The
increase in EC50 for Q80K as demonstrated in genotype 1 replicons is 7.8. A much less com-
mon variant conferring low-level resistance to simeprevir, Q80R, appeared in genotypes 1b, 3a
and 6a. I132V, a low-level RAV that affects telaprevir response in the genotype 1a replicon but
not genotype 1b, was observed in 3 patients with genotype 6a.

Table 1. Demographic and clinical characteristics of all patients separated by genotype.

Characteristic Total n = 826 Genotype 1 n = 204 Genotype 2 n = 25 Genotype 3 n = 253 Genotype 6 n = 344

Subtype

a 33 (16%) 25 (100%) 124 (49%) 321 (93%)

b 171 (84%) -- 129 (51%) --

n -- -- -- 19 (6%)

v -- -- -- 3 (1%)

u -- -- -- 1 (0%)

Gender

Male 631 (76%) 154 (75%) 15 (60%) 198 (78%) 264 (77%)

Female 194 (24%) 50 (25%) 10 (40%) 55 (22%) 79 (23%)

Age

<30 84 (10%) 24 (12%) 0 (0%) 29 (11%) 31 (9%)

30–40 420 (51%) 103 (51%) 10 (40%) 138 (54%) 169 (49%)

40–50 275 (33%) 66 (33%) 9 (36%) 76 (30%) 124 (36%)

>50 45 (5%) 10 (5%) 6 (24%) 10 (4%) 19 (6%)

Route of Transmission

Sexual 178 (22%) 39 (19%) 4 (16%) 52 (21%) 83 (24%)

Blood 58 (7%) 35 (17%) 14 (56%) 3 (1%) 6 (2%)

IVDU 566 (69%) 118 (58%) 5 (20%) 191 (75%) 252 (73%)

Unknown 22 (3%) 11 (5%) 2 (8%) 7 (3%) 2 (1%)

Median CD4 count*
(range)

126 (31–241) 103 (24–211) 198 (121–338) 150 (42–254) 115.5 (30–237)

Median ALT 38 (27–60) 38.5 (27–67) 30 (24–41) 38 (26–61) 37.5 (27–57)

Median AST 35 (20–58) 36 (20–63) 21 (15–37) 33 (20–50) 34 (20–58)

Median Log10 HCV
RNA

6.1 (5.5–6.6) 6.2 (5.6–6.7) 6.1 (5.5–6.6) 5.9 (5.4–6.4) 6.3 (5.7–6.8)

CD4 count expressed as cells/uL (n = 813); ALT = alanine aminotransferase (units/L) (n = 561); AST = aspartate aminotransferase (units/L) (n = 561);

HCV RNA expressed as IU/mL (n = 415)

*Obtained at time of enrollment in study

doi:10.1371/journal.pone.0157438.t001
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High-level RAVs other than D168Q were rare, occurring only in 6 (0.8%) patients. Five
patients, including one genotype 1b patient and four genotype 6a patients, carried the D168E
variant. One genotype 3a patient carried A156G. Both D168E and A156G confer high-level
resistance to simeprevir with a respective 38- and 19-fold decreased susceptibility. D168Q con-
fers a fold change in EC50 of>700 [25] and is found in all genotype 3 sequences in our cohort.
Notably, we did not detect the R155K variant implicated in high-level resistance to all protease
inhibitors in any sequence.

Rates of natural polymorphisms conferring NS5B polymerase inhibitor
resistance
The NS5B region was sequenced in 350 of 778 sequences. All sequences were obtained from
the Guangdong province of China. Naturally occurring RAVs associated with NS5B resistance
were found in several genotypes (see Table 3). 20.6% (72/350) of all sequences harbored at least
one RAV. One or more RAVs were found in 92.8% (64/69) of genotype 1b, 5.1% (2/39) of
genotype 3a, 4% (1/25) of genotype 3b, 2.5% (5/201) of genotype 6a, and none of genotype 1a/
2a/6n sequences. Only one sequence with genotype 3a carried two RAVs.

Positions of NS5B resistance-associated variants and correlation with
phenotypic resistance data
Sixty-four patients with genotype 1b, one patient with genotype 3a, and one patient with geno-
type 6a harbored the C316N variant, which confers low-level resistance to dasabuvir [26] and
has been implicated in reduced response rates to sofosbuvir [27]. Two other variants identified
—the V321F variant in two patients with genotype 3a and the C316W variant in one patient
with genotype 3b –are not associated with phenotypic resistance. No sequence contained at
baseline the S282T RAV associated with sofosbuvir resistance in clinical trials [28].

Table 2. Summary of NS3 protease region resistance-associated variants by genotype.

Residue V36 Q41 F43 T54 V55 Q80 R109 I132 R155 A156 D168 V170

Genotype

1a (n = 28) 36A (1) 170I (28)

1b (n = 165) 41H (1) 54S (4) 80R(1)
80L (1)
80E (3)

132V (79)+

132L (2)
168E (1) 170I (75)

2a (n = 23) 36L (23) 80G (23) 132L (23) 170I (23)

3a (n = 125) 36L (125) 80R (0.5)* 132L (125) 156G (1) 168Q (125) 170I (120)

3b (n = 112) 36L (112) 54S (2) 132L (112) 168Q (112) 170I (112)

6a (n = 303) 36I (1) 80R (1)
80K (298)

132V (3) 168E (4) 170I (303)

6n (n = 19)

6u (n = 1) 132L (1)

6v (n = 2) 132L (2)

*Nucleic acid ambiguity resulting in two possible amino acid conversions, one WT and one mutated, thus characterized as 0.5
+Considered significant RAV in genotype 1a replicon only; wild-type in genotype 1b replicon

Variants in bold lettering have been shown to have resistance to NS3 protease inhibitors in vitro and in vivo; only these variants were included in

calculation of RAV prevalence for each genotype

Variants without bold lettering are present at residues implicated in resistance, but amino acid change not known to confer resistance

doi:10.1371/journal.pone.0157438.t002
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Discussion
Drug resistance is a major public health threat. Better understanding variants conferring resis-
tance to direct acting antivirals (DAAs) among HCV-infected individuals has important impli-
cations for expanding HCV programs worldwide. Our data suggest substantial variation by
genotype in the frequency and diversity of natural polymorphisms conferring resistance to
NS3/4A protease inhibitors and NS5B polymerase inhibitors in Chinese patients with HIV/
HCV co-infection. While baseline resistance analysis on non-genotype 1 sequences is available
[29–31], we expand upon this literature with a greater number of individuals with genotypes 3
and 6. Our data also extend the limited literature from China [32]. The high degree of genetic
variability amongst HCV genotypes and subtypes has clearly been shown to impact treatment
outcomes with DAAs. A deeper understanding of these genetic disparities will assist in achiev-
ing superior viral suppression with new and upcoming treatment modalities.

We report the presence of the Q80K variant, associated with decreased response to simepre-
vir in genotype 1a patients, in the majority of individuals with genotype 6a. Endemic to South-
east Asia, genotype 6a is the second most common genotype behind genotype 1b in Southern
China [33]. Liu et al. reported similar findings with variant Q80K present in 95% of mono-
infected HCV patients in their patients with genotype 6a [32]. The importance of this RAV,
seen in 48.1% of genotype 1a patients in North America [34], lies in its influence on clinical
response to simeprevir in patients with genotype 1a. Response to simeprevir in patients with
the Q80K variant was not statistically significant compared to placebo in the QUEST-1/
QUEST-2 trials [35]. A pooled 58.3% of patients with the Q80K variant attained sustained viro-
logic response with simeprevir compared to 83.6% without [35]. The effect of Q80K, however,
does not appear to be class-specific given equivalent response to macrocyclic PI faldaprevir
[36]. The theory behind decreased efficacy of simeprevir in the presence of Q80K is related to
the direct contact between Q80K and R155, which participates in the formation of a salt bridge
with residue D168. The disruption of this R155-D168 salt bridge by the Q80K variant leads to a
weakened interaction between the protease and the inhibitor and subsequently decreased sus-
ceptibility [37]. Our modeling of the Q80K variant in genotype 6a reveals the same structural
changes that occur in genotype 1a (Fig 2), which suggests that genotype 6a patients may also
have decreased response to simeprevir. However, a phase IIa open-label study on simeprevir
monotherapy demonstrated potent antiviral activity against a small cohort of genotype 6
patients, although pretreatment Q80K was present in only one patient [25]. The same study
found potent antiviral activity in genotype 4 patients, corroborated by preliminary results from

Table 3. Summary of NS5B polymerase region resistance-associated variants by genotype.

Residue L159 S282 C316 V321

Genotype

1a (n = 10)

1b (n = 69) C316N (64)

2a (n = 4)

3a (n = 39) C316N (1) V321F (1)

3b (n = 25) C316W (1)

6a (n = 201) C316N (5)

6n (n = 2)

Variants in bold lettering have been shown to have resistance to NS3 protease inhibitors in vitro and in vivo; only these variants were included in

calculation of RAV prevalence for each genotype

Variants without bold lettering are present at residues implicated in resistance, but amino acid change not known to confer resistance

doi:10.1371/journal.pone.0157438.t003
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a Phase III trial in genotype 4 patients demonstrating excellent response to simeprevir in com-
bination with peg-interferon and ribavirin, although with higher SVR rates seen in treatment-
naïve and relapsed patients than non-responders [38]. These findings lend credence to study-
ing the use of simeprevir in genotype 6 as well. The recent creation of a hepatitis C replicon
encoding a genotype-6a NS3 protease should also facilitate phenotypic resistance testing and
clarify impact of the Q80K variant [39].

Our data suggest a low frequency and diversity of natural polymorphisms conferring PI
resistance in genotype 1a individuals, which contrast with other literature demonstrating up to
29% prevalence (S3 Table). However, our overall RAV rate of 3.6% is consistent with rates
reported in a recent review article of 0.1% to 3.1% [40]. Only one clinically significant variant
(V36A) was detected in genotype 1a compared to results from resistance studies on clinical
trial patients showing a much higher number and variety of RAVs in 1a patients [41–43]. An
additional distinction in our genotype 1 population was the absence of the Q80K variant in
genotype 1a sequences. The idea of two distinct clades of subtype 1a has been proposed due to
the much lower prevalence of the Q80K variant in Europe compared to North America [44]. A
recent study from Brazil also did not detect Q80K in a large sample of genotype 1a patients
[45], suggesting the potential for additional clades. In general, studies worldwide on PI resis-
tance differ with respect to number and type of variants studied, prior HCV treatment status
and presence of HIV co-infection, leading to limited conclusions on regional differences in
resistance patterns.

We identified the NS5B polymerase inhibitor variant C316N in the majority of genotype 1b
patients at baseline. While NS5B resistance has been rare in clinical trials, the C316N variant
has been identified as a baseline polymorphism associated with sofosbuvir resistance in geno-
type 1b patients (4 of 6 patients also had the L159F variant) [27]. In phase 3 trials with sofosbu-
vir, genotype 1b patients (82%) also had lower SVR rates than genotype 1a (92%) [46]. A
proposed mechanism based on structural modeling is a bulkier polymerase structure involving
C316N in 1b patients that may interfere with sofosbuvir binding [27]. Our results are

Fig 2. Comparison of crystal structures of NS3 protease with and without the Q80K variant
complexing with TMC-435350 (Simeprevir). Similar changes in structure are seen in both genotype 1a and
genotype 6a. NS3 protease is shown as light blue ribbon. Yellow structure represents simeprevir (TMC-
435350). Residues pictured are as follows: gray (Q80), blue (R155) and red (D168).

doi:10.1371/journal.pone.0157438.g002
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consistent with findings in Chinese genotype 1b HCV mono-infected patients in which the
C316N RAV was found in 85.6% (137/160) of sequences[47]. These results taken together sug-
gest DAA regimens without sofosbuvir may be preferable in Chinese genotype 1b patients with
and without co-infection. Our study was limited to detecting 4 of 12 known NS5B RAVs. Dedi-
cated study of NS5B polymerase inhibitor resistance in co-infection will be an important area
for future research.

Other than the previously described D168Q variant leading to simeprevir non-response in
all patients with genotype 3 [25], few high-level RAVs were found (D168E, D168Q and
A156G), and all confer resistance to simeprevir only. Few studies on PI resistance have
included a substantial number of genotype 3b patients, and interestingly we found the presence
of the D168Q variant in all 112 patients. The systematic presence of this variant in genotype 3
confers complete non-response to the macrocyclic protease inhibitor simeprevir, related to
structural changes that constrain proper binding [25]. Correspondingly, all genotype 3 patients
demonstrate no response to simeprevir use in vivo [25]. These findings suggest that primary PI
resistance, other than to simeprevir for genotype 3 patients, would be limited in China.

The influence of HIV co-infection on the presence of baseline HCV variants was not
addressed in our study but warrants discussion. Rates of RAVs to PIs have been previously
established to be largely comparable in HIV/HCV co-infection regardless of HIV treatment
status [31, 45, 48]. Furthermore, co-infected patients exposed to an HIV regimen including a
protease inhibitor also did not exhibit higher RAV rates [49–51]. Of note is a small study on
co-infected patients reporting sites of primary resistance to first-generation HCV PIs in two
patients on PI-containing HIV therapy [52], raising the concern of selective pressure. While
larger studies are merited, these findings suggest that from a resistance standpoint HIV co-
infection may not be an additional hindrance to HCV treatment options. A further limitation
in our study is the application of resistance data from genotype 1 to other genotypes, and accu-
rate conclusions on phenotypic or clinical resistance cannot be made. The ongoing creation of
non-genotype 1 replicons and ensuing results from phenotypic experiments will inform future
resistance studies. Lastly, our use of population sequencing does not provide as complete a pic-
ture of the HCV viral quasispecies population as can now be characterized using next genera-
tion sequencing. Due to the limitations of our sequencing method, it is possible that sequences
harboring high-level RAVs in our patients escaped detection and have the potential to become
the dominant population under selective pressure from treatment. As such, we may be under-
estimating the true prevalence of high-level RAVs. The rapidly increasing application of next
generation sequencing will be paramount to the understanding of HCV resistant variant
dynamics prior to, during and after treatment with DAAs and an area for future study.

In summary, we report an overall 72.8% prevalence of preexisting resistance-associated vari-
ants to NS3/4A protease inhibitors and 20.6% to NS5B polymerase inhibitors in a large cohort
of treatment-naïve HIV/HCV co-infected patients from China. Few sequences (0.8%) harbored
high-level RAVs capable of causing primary DAA resistance. The Q80K variant associated
with decreased efficacy of simeprevir was nearly universally present in patients with genotype
6a. Similarly nearly all genotype 1b patients harbored the C316N variant associated with
decreased response to sofosbuvir. Clinical trials with these DAAs will be necessary prior to
implementation in China. Further phenotypic studies and clinical research on a broad spec-
trum of genotypes as well as patients co-infected with HIV are still needed.
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