
  

i 
 

METHODS TO ACCOUNT FOR OUTCOME MISCLASSIFICATION IN EPIDEMIOLOGY 
 
 
 
 

Jessie K. Edwards 
 
 
 

 
A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in 
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the 
Department of Epidemiology. 
 
 
 
 

Chapel Hill 
2013 

 
 
 
 
 
 
 

 
 
 

Approved by:   
 

Stephen R, Cole  
 

Amy H. Herring  
 

Andy F. Olshan  
 

David B. Richardson   
 

Melissa A. Troester  



   
 

ii 
 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
© 2013 

Jessie K. Edwards 
ALL RIGHTS RESERVED 



  

iii 
 

Abstract 

 

JESSIE K. EDWARDS: Methods to account for outcome misclassification in epidemiology 
(Under the direction of Stephen R. Cole) 

 

 Outcome misclassification occurs when the endpoint of an epidemiologic study is 

measured with error. Outcome misclassification is common in epidemiology but is 

frequently ignored in the analysis of exposure-outcome relationships. We focus on two 

common types of outcomes in epidemiology that are subject to mismeasurement: 

participant-reported outcomes and cause-specific mortality. In this work, we leverage 

information on the misclassification probabilities obtained from internal validation studies, 

external validation studies, and expert opinion to account for outcome misclassification in 

various epidemiologic settings. 

 This work describes the use of multiple imputation to reduce bias when validation 

data are available for a subgroup of study participants. This approach worked well to 

account for bias due to outcome misclassification in the odds ratio and risk ratio comparing 

herpes simplex virus recurrence between participants randomized to receive acyclovir or 

placebo in the Herpetic Eye Disease Study. In simulations, multiple imputation had greater 

statistical power than analysis restricted to the validation subgroup, yet both provided 

unbiased estimates of the odds ratio.  
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 Modified maximum likelihood and Bayesian methods are used to explore the effects 

of outcome misclassification in situations with no validation subgroup. In a cohort of textile 

workers exposed to asbestos in South Carolina, we perform sensitivity analysis using 

modified maximum likelihood to estimate the rate ratio of lung cancer death per 100 fiber-

years/mL asbestos exposure under varying assumptions about sensitivity and specificity. 

When specificity of outcome classification was nearly perfect, the modified maximum 

likelihood approach produced estimates that were similar to analyses that ignore outcome 

misclassification.  

Uncertainty in the misclassification parameters is expressed by placing informative 

prior distributions on sensitivity and specificity in Bayesian analysis. Because, in our 

examples, lung cancer death is unlikely to be misclassified, posterior estimates are similar 

to standard estimates. However, modified maximum likelihood and Bayesian methods are 

needed to verify the robustness of standard estimates, and these approaches will provide 

unbiased estimates in settings with more misclassification. 

This work has highlighted the potential for bias due to outcome misclassification 

and described three flexible tools to account for misclassification. Use of such techniques 

will improve inference from epidemiologic studies. 
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1 Background 

 

The goal of many epidemiologic studies is to obtain an accurate estimate of the 

effect of an exposure on the occurrence of an event of interest. Measurement bias, selection 

bias, and confounding are three types of systematic errors that threaten the validity of 

results from epidemiologic studies. Selection bias and confounding are often considered in 

analysis of epidemiologic data, but the possible biases arising from measurement error are 

more routinely ignored.  

Two problems occur in studies that disregard the potential for systematic bias: 

point estimates may be biased and uncertainty about the degree of systematic bias is not 

quantified. Most epidemiologic studies ignore the potential bias in point estimates and 

present some quantification of random error, such as the confidence interval, as the sole 

indicator of uncertainty in their results, ignoring the additional uncertainty that arises from 

systematic error. This systematic error is often more substantial than random error in 

large epidemiologic studies that are increasingly common (1,2). 

All variables used in epidemiology are subject to mismeasurement. Error in the 

measurement of exposure, covariates, or outcomes can produce bias in effect estimates 

from epidemiologic studies, known as information bias. Most work addressing information 

bias focuses on exposure measurement error (3–8), but error in covariates or outcomes 

can also produce biased effect estimates (9).  
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This work begins by describing outcome misclassification, illustrating its potential 

to cause bias in two distinct types of epidemiologic studies, and describing existing 

approaches to account for outcome misclassification. Chapter 2 outlines the specific aims of 

the proposed work, while chapter 3 details two proposed methods to account for outcome 

misclassification. Chapters 4 and 5 present results from the implementation of these 

methods in two settings, and chapter 6 summarizes the findings and offers discussion of 

the results.  

 

1.1 Overview of outcome misclassification 

Consider the two-by-two table of binary observed and true outcome measurements, 

W and D, respectively: 

 

 W=1 W=0  

D=1 a b     

D=0 c d     

          

Using this notation, sensitivity, or the probability of being observed to be a case given that a 

participant is a true case, is defined as           , and can be calculated from the 

table above as        . Specificity, the probability of being observed to be a non-case 

given that a participant is actually not a case, is similarly defined as           , and 

can be calculated from the table above as        . 

 Sensitivity and specificity allow an investigator to hypothesize about the 

distribution of the observed data assuming he or she has knowledge of the true distribution 
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of the data and a guess about the values of sensitivity and specificity. For example, one can 

calculate the expected probability of a participant’s being observed to experience the 

outcome,       , in a study with specific values of sensitivity (se) and specificity (sp) 

and a known probability of experiencing the outcome,       , using the equation: 

                              . 

In practical applications, however, investigators often have knowledge only about 

the observed data (i.e.,        and       , or the margins     and     in the 

table above) and wish to make inferences about the true distribution of the outcome 

variable,        and        (the margins a + b and c + d in the table above). 

 To do this, investigators need information about the positive predictive value (PPV) 

and negative predictive value (NPV) of the observed outcome variable. The positive 

predictive value is the probability that true outcome occurred, given than investigators 

observed the outcome to occur,           . Assuming full knowledge of the two-by-

two table above, this probability can also be calculated as        . Similarly, the negative 

predictive value is the probability that a participant was not a case, given that he or she 

was not observed to experience the outcome, or           . With full knowledge of 

the two-by-two table above, the negative predictive value could be calculated as        . 

 An investigator can estimate the true probability of the outcome        using the 

observed probability of the outcome        and the positive and negative predictive 

values (PPV and NPV) through the formula 

                                  

 However, positive predictive value and negative predictive value are usually not 

available unless an investigator conducts an internal validation study nested within the 
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main study with the possibly misclassified outcome. Sensitivity and specificity are more 

widely-reported measures of outcome validity because these parameters are functions only 

of the outcome misclassification process. Positive and negative predictive values depend on 

the sensitivity and specificity of the observed outcome measure, but also on the prevalence 

of the outcome in the study population. To see this, consider how sensitivity and specificity 

can be related to positive and negative predictive value using Bayes’ Theorem: 

           
                

                                 
  

which can be simplified to  

           
    

                 
  

where   represents the P(D = 1) or the disease prevalence. 

 

1.1.1 Differential and nondifferential outcome misclassification 

Sensitivity and specificity of the outcome measure can be uniform over the entire 

study population or can differ by levels of exposure or other covariates. Consider the 2 by 2 

table presented above stratified by exposure level to produce a 2 by 2 by k table, where k is 

the number of exposure levels. 

X=1      X=0 

 W=1 W=0   W=1 W=0  

D=1 a b     D=1 a b     

D=0 c d     D=0 c d     
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Sensitivity and specificity are said to be nondifferential with respect to exposure X if 

               and                are the same for all possible values of 

X. Outcome misclassification is said to be differential with respect to exposure status when 

values of sensitivity and specificity differ across levels of exposure X. Because the positive 

and negative predictive values are functions of the prevalence of the outcome, they can 

differ within levels of exposure even with outcome misclassification is nondifferential with 

respect to exposure status (10). 

  

1.1.2 Types of bias caused by outcome misclassification 

Outcome misclassification can cause several distinct problems in epidemiology. 

First, outcome misclassification can cause errors in the overall estimation of outcome 

incidence or prevalence. If sensitivity of the observed outcome measure is less than 1, then 

false negatives can occur, in which a participant truly experiencing the outcome of interest 

is recorded not to have had the outcome. In specificity of the observed outcome measure is 

less than 1, false positives can occur, in which a participant who does not experience the 

outcome of interest is recorded to have the outcome. If more false negatives occur than 

false positives, the overall probability of the outcome will be underestimated. If more false 

positives occur, the probability of the outcome will be overestimated. Overall, imperfect 

sensitivity and specificity will cause error in the estimated incidence or prevalence of 

disease unless the number of false positives is exactly equal to the number of false 

negatives. Error in the marginal probability of the outcome causes bias not only in 

estimates of the overall burden of disease, but also in estimates of disease trends over time. 



   
 

6 
 

Error in disease trends is compounded with the misclassification probabilities, sensitivity 

and specificity, also change over time (11).  

 Outcome misclassification can also cause bias in estimates of the effect of an 

exposure variable on an outcome. When outcome misclassification is nondifferential with 

respect to exposure and the outcome is binary, bias in estimates of the effect of the 

exposure on the outcome is usually expected to be towards the null. However, this rule 

does not hold when the outcome has more than two levels or errors in exposure and 

outcome are not independent of each other (10,12–15). When outcome misclassification is 

differential with respect to exposure status, bias in estimates of the effect of the exposure 

on the outcome could be in either direction. 

 

1.1.3 Methods for assessing the probability of misclassification 

 If a gold-standard measure of the outcome exists, investigators wishing to assess the 

amount of misclassification in a study may choose to conduct an internal validation study. 

In this type of study, the gold-standard outcome measurement is taken on a (possibly 

stratified) random subset of study participants. The gold-standard outcome measure is 

compared to the fallible outcome observed in the original study to calculate the sensitivity 

and specificity of the observed outcome measure. 

 Studies unable to conduct an internal validation study could rely on an external 

validation study to assess the amount of misclassification likely to have occurred. 

Sensitivity and specificity can be gleaned from an external validation study if a gold-

standard measure exists and such a validation study is available. 
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Sensitivity and specificity from both internal and external validation studies will 

only accurately reflect the amount of misclassification in the main study if the relationship 

between gold-standard outcome and observed outcome is transportable between the 

validation study and the main study. Transportability implies that misclassification 

parameters are the same in the validation study and the main study, and would be 

expected for an internal validation study consisting of a random subgroup of the main 

study (16). Transportability is not assured for external validation studies or internal 

validation studies that are not a random subgroup of participants. In both situations, the 

validation study could represent a group of participants with characteristics different from 

participants in the main study. External validation studies carry the additional risk of 

nontransportability if the observed outcome measurement in the validation study was 

conducted differently from the observed outcome measurement in the main study. 

 

1.2 Error in participant-reported outcomes 

The outcome could be recorded with error for a variety of reasons, and the 

opportunity for outcome misclassification arises throughout the study. This work focuses 

on two common types of outcome misclassification in epidemiology: error in participant-

reported outcomes and misattribution of cause of death on death certificates, leading to 

misclassification of cause-specific mortality outcomes.  

Many epidemiologic studies rely on participants to report disease symptoms and 

events of interest. Participant-reported outcomes are especially prevalent in studies of 

recurring nonfatal diseases, such as dermatological conditions (17), allergy, cold, and flu 

symptoms, and signs gastrointestinal illness (18,19). Participant-reported outcomes are 
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also known as patient-reported outcomes, a term which has evolved to include “any 

endpoint derived from patient reports, whether collected in the clinic, in a diary, or by 

other means, including single-item outcome measures, event logs, symptom reports, formal 

instruments to measure health-related quality of life, health status, adherence, and 

satisfaction with treatment.” (20) These types of patient-reported outcomes have been 

used extensively in drug effectiveness research since the 1990s. Willke (20) reports that 

30% of drug product labels approved between 1997 and 2002 used patient-reported 

outcomes as effectiveness study endpoints.  

Recording outcomes described by participants is especially useful when time and 

cost constraints make frequent contact with investigators or physicians difficult or 

impractical. In such situations, investigators may have contact with the participant at study 

enrollment and either at the end of the study period or at the end of pre-defined intervals 

of time, at which point the participant reports any events of interest occurring during the 

study period or interval. In these settings, participants may be instructed to keep a diary of 

outcome events on a daily or weekly basis. In other settings, a participant may be contacted 

by the investigator at only one point in time, at which time the investigator will ask the 

participant to recall events of interest in his or her past.  

 Opportunities for bias arise in all study designs using participant-reported 

outcomes. A prospective study, in which the participant is aware of being under 

observation and is instructed to keep a diary of outcomes over the study period, may be 

subject to bias if the participant over-reports symptoms or fails to be diligent about 

recording events of interest. Likewise, a retrospective study, in which a participant is 

recruited to the study and then asked to recall symptoms or events of interest in the past, is 
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also subject to bias if participants fail to remember past events or inflate their number of 

past events.  

 Participants may misreport their outcomes due to errors in recall or due to social 

pressure to report one outcome over another. This social desirability bias arises most often 

when the outcome of interest is something within the direct control of the participant, such 

as a behavior, or when the outcome is taboo or embarrassing. 

 If participants in a prospective study do not know their exposure status, such as in a 

masked randomized trial, the outcome misclassification from under- or over-reporting 

symptoms or events of interest is likely to be nondifferential with respect to exposure. This 

means that the probability that a participant reports an event that occurred during the 

study period and the probability that a participant falsely reports an event that did not 

occur during the study period are not different for participants with different exposure 

values. In a masked randomized trial in which the participant does not know his or her 

exposure status, exposure is not likely to affect the participant’s reporting of the outcome. 

Because the probability of misclassification is the same for exposed and unexposed groups, 

effect estimates for binary outcomes subject to nondifferential misclassification are usually 

biased towards the null.  

 However, if participants in the prospective study do know their exposure status, 

outcome misclassification may be differential with respect to exposure. This means that 

exposed participants may be more or less likely to report an event that actually occurred or 

falsely report an event that did not occur than their unexposed counterparts. When 

outcome misclassification is differential with respect to exposure, bias could be in either 

direction. 
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 Differential outcome misclassification is even more likely in retrospective studies 

using participant-reported outcomes. When participants are asked to recall prior instances 

of events or symptoms, it is possible that participants who were exposed are more likely to 

remember events of disease than participants who were not exposed. For example, a 

mother living in a city blanketed in smog may be more likely to remember respiratory 

illnesses in her children than a mother living in an area with no smog, even if the children 

had similar respiratory histories. Differential outcome misclassification in retrospective 

studies is similar to recall bias in case control studies, in which cases are more likely to 

remember exposures than controls even with no association exists between exposure and 

outcome (21). 

 

1.2.1 Herpetic Eye Disease Study  

 As an illustrative example, this work addresses outcome misclassification due to 

errors in participant-reported information in the Herpetic Eye Disease Study, a randomized 

trial of acyclovir for preventing ocular herpes simplex virus (HSV) recurrence. Ocular HSV 

infection can cause corneal opacities and vision loss (22), and at least 500,000 people in the 

United States are infected (23). Treatment of HSV is estimated to cost approximately $17.7 

million annually to treat about 59,000 new and recurrent cases (24). 

Recurrent infections are a major contributor to vision loss from ocular HSV. After an 

initial (usually asymptomatic) infection, HSV establishes a latent infection in the trigeminal 

or other sensory ganglia. From these locations, recurrent viral shedding can lead to 

infection in the eye. This infection can manifest as blepharitis, characterized by swelling or 

inflammation of the eyelids, conjunctivitis, characterized by swelling or inflammation of the 
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membrane lining the eyelids, or dendritic or epithelial keratitis, characterized by a linear 

branching corneal ulcer. Infection can also lead to stromal keratitis, causing inflammation 

of the cornea, or iritis, causing inflammation of the anterior uvea, both of which can lead to 

permanent scarring and decreased vision. 

The primary objective of the Herpetic Eye Disease Study was to determine whether 

treatment with oral acyclovir for one year would prevent ocular recurrences in 

participants who had had an episode of ocular HSV during the preceding year (22). The 

outcome of interest in the trial was ocular HSV recurrence diagnosed by an experienced 

ophthalmologist using slit lamp biomicroscopy. HSV recurrence was assessed after 1, 3, 6, 

9, and12 months of treatment; during the post-treatment observation period, after months 

13, 15, and 18; and any time new ocular symptoms developed.  

However, a companion cohort study was also performed, nested within the 

randomized trial of acyclovir, to assess psychological stress and other triggers of recurrent 

HSV infection. In this companion study, HSV recurrence was assess both by an experienced 

ophthalmologist and through participant self-report in weekly diaries (25). Participants 

were instructed to record the date of the onset of symptoms of HSV recurrence. Such 

symptoms included redness and swelling of the eye, blurred vision, sensitivity to light, 

inflammation of the eyelids, or the sensation of a foreign object in the eye. 

Prospective weekly diaries have been used frequently in epidemiology to collect 

participant-reported data (26–29). Diaries are used most commonly for participants to 

report disease symptoms (29), specific behaviors (27), and adverse events (30) to 

minimize errors in recall at the end of the study period. Despite improvements over 

traditional long-term recall techniques, participant-reported outcomes recorded using 
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weekly diaries remain subject to outcome misclassification due to factors such as social 

desireability and lack of medical training to identify events of interest. 

This work uses the Herpetic Eye Disease Study and its companion study of triggers 

of recurrence to explore methods to account for outcome misclassification in a setting with 

both gold standard (physician diagnosis) and error-prone (weekly diary) outcome measure 

available.  

 

1.3 Misattribution of cause of death 

 In addition to accounting for outcome misclassification of participant-reported 

outcomes, this work focuses on accounting for misclassification of cause-specific mortality 

outcomes caused by misattribution of cause of death. 

 Cause-specific mortality is used as an outcome measure in place of disease incidence 

in many epidemiologic settings, particularly in studies of rapidly fatal diseases, such as 

certain cancers. Mortality is often chosen as an outcome measure over disease incidence or 

survival because it is accurately reported, and it is an important indicator of disease burden 

in its own right (31). In practical terms, a study that performs minimal follow-up on study 

participants but wishes to assess the relationship between exposure and disease over a 

long time period may choose disease mortality as an outcome measure because mortality 

may be the only outcome expected to be reported in a standardized manner. Even in 

studies following participants closely, mortality may be the preferred outcome measure 

because it is not as dependent on screening trends or diagnostic techniques as disease 

incidence. Similarly cause-specific mortality is often chosen over survival as an outcome 

measure because any inflation in incidence due to diagnosis of disease in patients with mild 
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or nonmalignant disease causes a spurious increase in survival of those diagnosed as cases 

(31). 

 Before the introduction of the national death index in the United States in 1978, vital 

status was determined in epidemiologic studies by examining sources such the US Social 

Security Administration, Internal Revenue Service, state vital statistics office, drivers’ 

license files, and US postal service change of address forms. After 1978, vital status was 

recorded centrally in the National Death Index, a computerized index of death record 

information on file in state vital statistics offices. For all deaths identified using any of these 

sources, cause of death is typically abstracted from death certificates, and these causes of 

death are used to assign outcome statuses to participants in epidemiologic studies.   

Cause of death information on the death certificate is typically completed by a 

physician, medical examiner, or coroner. Figure 1.1 presents the cause of death section on a 

United States death certificate. In part 1, the physician, medical examiner, or coroner is 

instructed to report the chain of events leading to directly death, with the immediate cause 

of death listed first and the underlying cause of death listed last. Part 2 captures all other 

significant diseases, conditions, or injuries that contributed to death but did not result in 

the underlying or immediate cause of death. The cause of death reflects the best medical 

opinion of the person filling out the death certificate and does not need to be supported by 

a definitive diagnosis in a medical setting. 

To translate cause of death information on death certificates into outcome variables 

in epidemiologic studies, the cause of death on the death certificate is usually translated 

into international classification of diseases (ICD) codes by a nosologist. In general, 

investigators chose specific ICD codes to represent the event of interest in a study, and 
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participants with ICD codes from the cause of death on death certificates matching these 

ICD codes are designated to have the event of interest. Studies of the reliability and 

accuracy of cause of death information reported by physicians have revealed that the same 

patient reviewed by different physicians is likely to be assigned different causes of death 

(32). 

Because coroners responsible for certifying the underlying cause of death may 

receive limited medical training as well as the uncertainty inherent in ascribing cause of 

death for some conditions, underlying cause of death reported on death certificates is 

error-prone. Misattribution of underlying cause of death has plagued epidemiologic studies 

of cause-specific mortality (33,34). Studies of etiologic relationships between exposures 

and cause-specific mortality as well as studies assessing secular trends of cause-specific 

mortality are subject to bias due to outcome misclassification caused by misattribution of 

underlying cause of death.  

Because misattribution of underlying cause of death can lead to outcome 

misclassification, cause-specific mortality outcomes abstracted from death certificates have 

imperfect sensitivity and specificity. Recall that sensitivity is the probability of a true case 

being classified as such; and specificity is the probability that a true non-case being 

classified as such. Using autopsy data as a gold standard, sensitivity and specificity of cause 

of death information from death certificates is imperfect even for well-studied and 

relatively common endpoints like death due to cancer or coronary heart disease. For 

example, 
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Table 1.1 shows estimates ranging from 0.7 to 0.9 and 0.5 to 1.0 for sensitivity and 

specificity of commonly study causes of death (33–37). In addition to creating bias in 

estimates of effect in etiologic studies, error in cause of death reporting can also produce 

bias in secular trends of disease. Cancer epidemiologists have noted the impact of potential 

misattribution of underlying cause of death on trends of site-specific cancer mortality rates 

in the US and around the world (36).  
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Table 1.1: Sensitivity and specificity estimates of cause-specific mortality from the 

literature. 

 

1.3.1 Misattribution of underlying cause of death in occupational cohort studies 

 Many cohort studies of occupational exposures have used cause-specific mortality 

as an outcome measure. Cause-specific mortality is often chosen over disease incidence as 

an outcome measure for practical reasons. Workers are usually enrolled at some point 

during their employment, at which time their exposure history is recorded for the duration 

of their employment, along with other relevant covariates. However, the diseases of 

interest affecting these workers typically occur later in life, at which time few are likely to 

be working. Because date and cause of death can be identified using publically available 

information from the National Death Index and death certificates, investigators can identify 

cause-specific mortality outcomes without performing extensive follow-up on each worker. 

 Like all studies using cause of death abstracted from death certificates, occupational 

cohort studies of cause-specific mortality are subject to bias due to outcome 

misclassification caused by misattribution of underlying cause of death. 

 

Study (year)  Outcome Sensitivity Specificity 

Doria-Rose (2008) Lung cancer mortality 89% 99% 

Selikoff (1992) Lung cancer mortality 83% 99% 

Modelmog (1992) Any cancer mortality 80% 62% 

Modelmog (1992) All-cause mortality 70% 53% 

Lloyd-Jones (1998) Coronary heart disease mortality 84% 84% 



   
 

17 
 

1.3.2 Misattribution of cause of death in the South Carolina textile workers study 

 This work assesses the impact of misattribution of cause of death in the 

occupational setting using data from a study of workers exposed to asbestos at a South 

Carolina textile factory. “Asbestos” is the generic name given to a group of naturally 

occurring silicate minerals with fibrous structure that became commonly used as an 

insulator for both electrical wires and buildings due to its heat and flame resistant 

properties after the industrial revolution. Industrial production of asbestos began in the 

1850s, and, due to its attractive fire-resistant properties, asbestos was eventually 

incorporated into many building materials, such as bricks, concrete, pipes, ceiling 

insulation, drywall, flooring, and roofing materials. However, by the middle of the 20th 

century, asbestos exposure had been shown to increase the risk of both malignant and non-

malignant lung diseases (38).  

Despite the subsequent reduction in asbestos used in manufacturing in the United 

States, asbestos remains a public health concern. More than 30 million tons of asbestos 

have been mined, processed, and used in the United States since the early 1900s (38), and 

mining continues in Canada for export to the developing world. In the United States alone, 

27 million workers were exposed to asbestos between 1940 and 1979 (39). Although 

asbestos is no longer mined in the United States, approximately 1000 tons of asbestos is 

imported into the US each year for use in construction materials, brake linings, and other 

products (40). Moreover, a substantial amount of asbestos remains in US infrastructure 

and eventually will be removed, either during remediation or renovations or demolition.   

Significant production and use is also ongoing in middle-income industrial countries, 
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including Brazil, India, China and Russia. Therefore asbestos continues to pose important 

occupational hazards in the US and worldwide (41).  

Epidemiologic studies have shown a relationship between exposure to asbestos and 

lung cancer mortality, though the carcinogenic mechanism is not fully established. The two 

major types of asbestos fibers are chrysotile fibers and amphiboles, including actinolite, 

amosite, anthrophyllite, crocidolite, and tremolite (42). Amphibole fibers are more 

carcinogenic than chrysotile in part because they are more biopersistent in the lung 

(amphiboles have an estimated half-life in the lungs of decades, while chrysotile fibers have 

a half-life of months (38)), accumulate in the distal lung parenchyma, and are not cleared as 

easily. However, both fiber types can induce DNA damage, gene transcription, and protein 

expression important to modulate cell proliferation and cell death in bronchial and alveolar 

epithelial cells (43). When asbestos fibers reach the lungs, alveolar epithelial cells and 

alveolar macrophages internalize the fibers, resulting in oxidative stress and the 

subsequent generation of reactive oxygen species and reactive nitrogen species, which can 

cause DNA damage. 

Factors determining the probability and severity of disease include the cumulative 

dose of exposure, time following initial exposure, and the physical-chemical properties of 

the asbestos fibers. Some researchers have argued for the amphibole hypothesis: that 

amphiboles are carcinogenic while pure chrysotile may not cause disease because fiber 

structural characteristics are the primary determinant of toxicity. This hypothesis has been 

historically difficult to study because tremolite amphibole fibers are frequently mixed with 

chrysotile fibers in industrial applications. Prior to the study of South Carolina textile 

workers, few studies analyzing lung cancer specific mortality among factory workers 
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exposed only to the chrysotile form of asbestos had been conducted. However, like all 

studies relying on cause of death information from death certificates, estimates from the 

study of South Carolina textiles workers are subject to bias due to outcome 

misclassification from misattribution of cause of death. 

 Unlike the Herpetic Eye Disease Study, no internal gold standard outcome is 

available for participants in the South Carolina textile workers cohort. In other cohorts, 

limited validation studies have been performed comparing lung cancer and coronary heart 

disease mortality reported on death certificates to lung cancer deaths and deaths due to 

coronary heart disease identified through autopsies and physician diagnosis.  

The Life Span Study, which performed autopsies on selected participants who died 

following the atomic bombings of Hiroshima and Nagasaki, found that death certificates 

detected that a death was due to lung cancer in only 62% of the cases where the autopsy 

indicated that lung cancer was the cause of death (36). A more recent study from the Mayo 

lung clinic in the United States reported that death certificates identified lung cancer as the 

cause of death in 89% (210/237) of autopsy-confirmed lung cancer cases (34), while 

specificity was 99%. Sensitivity from other validation studies fell between the estimates 

from the Life Span Study and the Mayo lung clinic. A study of 4951 deaths occurring among 

17,800 workers exposed to asbestos reported that death certificates identified lung cancer 

as the cause of death in 86% of the deaths designated as lung cancer deaths by autopsy and 

other medical evidence (37).   

This work uses the estimates and of sensitivity and specificity from these 

validations studies to inform methods to account for outcome misclassification of lung 

cancer mortality in the South Carolina cohort. 
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1.4 Existing methods to account for outcome misclassification 

  

1.4.1 Algebraic approaches 

Approaches to account for bias in crude effect estimates due to use of a misclassified 

binary outcome variable have existed for more than half a century (44). These approaches 

use simple bias correction formulas to account for misclassification in two-by-two tables. 

In these approaches, “true” counts of outcomes in each strata of exposure are predicted 

from the observed number of outcomes and given values of sensitivity and specificity.  

Algebraic approaches to account for outcome misclassification can be deterministic 

(44) or probabilistic (10,45). Both types of algebraic methods to account for 

misclassification can be used as part of a sensitivity analysis in which the investigator 

evaluates the changes in the point estimate of the effect of the exposure on the outcome 

due to different hypothesized values for sensitivity and specificity. The probabilistic 

analysis offers an advantage in that it also provides a means to assess the uncertainty in the 

final point estimates due to outcome misclassification (10). 

 

1.4.2 The EM algorithm 

More recently, investigators have developed maximum likelihood approaches for 

logistic regression to produce effect estimates accounting for outcome misclassification 

while adjusting for relevant confounders (46,47). 

A first existing approach (46) uses an expectation maximization algorithm (48) to 

estimate parameters corrected for misclassification in logistic regression. To do this, 
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investigators perform standard logistic regression considering each individual as both 

diseased and non-diseased with weights determined by the probability that the study 

subject is truly diseased given the data. Specifically, for individuals designated as cases by 

the error prone outcome indicator (Wi=1), the probability that the     individual is truly 

diseased is the predicted value of a positive test for that individual calculated from the 

covariates, regression coefficients, sensitivity, and specificity using Bayes’s Theorem. For 

individuals designated as non-cases by the error prone outcome variable (Wi=0), the 

probability that the     individual is truly diseased is the predicted positive value of a 

negative test. Because the probabilities depended on regression parameters, they are 

recalculated after the logistic regression parameters are estimated, which leads to new 

probabilities and thus, new regression parameters. The processes of estimating the 

probabilities and the logistic regression parameters are repeated alternately until the 

parameter estimates converge. 

 This method can account for differential outcome misclassification (with respect to 

exposure or covariates) by assigning different values of sensitivity and specificity to 

individuals with different sets of values for exposure or covariates. This method can also 

incorporate internal validation data to estimate sensitivity and specificity. 

 

1.4.2 Direct maximum likelihood 

 A second existing approach accounts for misclassification in logistic regression by 

directly specifying the likelihood function to include adjustments for sensitivity and 

specificity. This approach allows incorporation of assumed values of sensitivity and 

specificity, external validation data, or internal validation data. In the case of studies with 
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external or internal validation data, the sensitivity and specificity are estimated from the 

data based on specified covariates. It can also be extended to the case control setting when 

internal validation data are available (47). 

The direct maximum likelihood approach for a main study with a validation 

subgroup specifies the likelihood for the logistic regression model relating exposure to 

outcome as the product of the likelihood for the main study and the likelihood for the 

validation subgroup. In both likelihood terms, sensitivity and specificity are based on 

associations between observed outcome, gold standard outcome, and exposure defined 

using a logistic model 

   logit[               ]                  for        

Sensitivity and specificity are calculated as 

                          
        

          
  

and   

                          
        

          
  

 The likelihood for the main study is then modified by the estimated values of sensitivity 

and specificity for each observation and multiplied by the likelihood for the validation 

study. Lyles (47) presents approaches to account for outcome misclassification in 

situations with internal validation data, external validation data, and assumed values of 

sensitivity and specificity. 

The direct maximum likelihood approach applied to account for outcome 

misclassification in logistic or log binomial regression varies according to the link function. 

In the logistic model, 
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               ]  
               

                 

 

  

And in the log binomial model, 

               ]                     

 

1.5 Summary 

 Outcome misclassification is a neglected problem in epidemiologic research despite 

common use of study endpoints subject to measurement error. Several methods exist to 

account for misclassification of binary outcomes, but these methods are not 

straightforward to program using standard statistical software or to extend to the time-to-

event setting.  
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Figures

 

Figure 1.1. Example of a completed cause of death section on a US death certificate 
 

 



  

 
 

2 Specific Aims 

 

 Misclassification of outcome variables is a threat to the accuracy of epidemiologic 

studies. Outcome misclassification occurs when investigators observe an error-corrupted 

version of the event of interest instead of the true outcome status of study participants. 

Both binary event indicators and continuous outcomes are subject to misclassification, but 

standard approaches to analyzing cohort data typically assume such biases are absent.  

Outcome misclassification can occur in many settings, but this work focuses on two 

specific types of error in outcome measurements: misclassification due to incorrect 

information reported by study participants and misattribution of cause of death on death 

certificates leading to outcome misclassification in mortality studies. This work develops 

methods to account for outcome misclassification in diverse situations both with and 

without validation data and in both binary regression models and time-to-event analyses. 

Specifically, I aim to account for outcome misclassification in binary regression 

models in situations with internal validation data using multiple imputation. I hypothesize 

that accounting for outcome misclassification in logistic and binomial regression using 

multiple imputation will produce estimates of the odds ratio and risk ratio that are not 

biased by outcome misclassification. Applying this approach to data on self-reported ocular 

herpes recurrence from the Herpetic Eye Disease study will produce estimates of the effect 
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of acyclovir on herpes recurrence that are not biased by incorrect outcome information 

supplied by participants. 

I also aim to account for outcome misclassification in the time-to-event setting with 

no validation data using maximum likelihood and Bayesian methods. I hypothesize that 

accounting for outcome misclassification using a modified likelihood function in Poisson 

models will provide estimates of the rate ratio not biased by outcome misclassification 

when the values of sensitivity and specificity indicated by the investigator are correct. 

Specifying prior distributions for sensitivity and specificity will capture the uncertainty in 

sensitivity and specificity. Applying this approach to data from the South Carolina textile 

workers’ cohort will produce estimates of the effect of asbestos exposure on lung cancer 

death that are not biased by misattribution of cause of death on death certificates. 



  

 
 

3 Methods 

 

This thesis focuses on three methods to account for outcome misclassification in a 

range of epidemiologic settings: multiple imputation, maximum likelihood, and Bayesian 

analysis. The principle features of the methods are described below, and specific 

applications of the methods are detailed in chapter 4 (multiple imputation) and chapter 5 

(maximum likelihood and Bayesian analysis). 

 

3.1 Multiple imputation to account for outcome misclassification 

This work begins by describing the use of multiple imputation to address outcome 

misclassification in studies with internal validation data. Multiple imputation is a standard 

technique for handling missing data (50,51). We use multiple imputation to account for 

outcome misclassification by viewing outcome misclassification as a missing data problem.  

Briefly, analyses using multiple imputation to impute a single missing variable (X) 

do so by examining the relationships between the value of X and other covariates Z for 

observations in which X is not missing. These relationships are then used to impute the 

value of X for the observations in which X is missing. This process is repeated K times, and 

point estimates are averaged over the resulting K cohorts. The multiple imputation process 

produces estimates that are consistent and asymptotically normal (and asymptotically 
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efficient as    ) if X is missing at random within strata of Z. Missing at random implies 

that missingness of X may depend on Z but not on X itself (after controlling for Z) (52).  

In a study with an internal validation subgroup, the possibly misclassified outcome 

(W) is available for all participants, but the gold-standard outcome (D) is available only for 

participants in the validation subgroup. If participants are selected into the validation 

subgroup randomly within strata of exposure (X) and covariates (Z), information on the 

gold-standard outcome can be said to be missing at random in the full cohort. The missing 

at random assumption allows us to exploit the relationships between D, W, X, and Z among 

participants in the validation subgroup to impute values for D for all other participants.  

 To account for outcome misclassification using multiple imputation, we use the 

logistic method for monotone missing data (53). As a first step, the gold-standard outcome 

D is regressed on the possibly misclassified outcome W, the exposure X, and other relevant 

covariates Z in the validation subgroup using the logistic regression model shown in 

Equation 3.1. 

3.1 

              
                          

                            
 

 Regression parameters are assumed to follow a multivariate Gaussian distribution 

with mean vector ( ̂   ̂   ̂   ̂   ̂   and covariance matrix ( ̂     estimated from the 

logistic regression model above. Regression parameters are drawn for each of K 

imputations from the posterior predictive distribution of parameters. Drawing regression 

coefficients for each imputation allows uncertainty about the relationship between W, X, 

and D to propagate through the analysis (50).  
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A new variable,   
 , is created to represent the imputed outcome, where k indexes 

the number of imputations. By definition,   
  = D for participants in the validation 

subgroup. For participants not in the validation subgroup,   
  is imputed based on 

regression coefficients drawn for each imputation. For each imputation,     is assigned by 

a random draw from a Bernoulli distribution with probability   , where 

3.2 

    
   ( ̂ 

   ̂ 
    ̂ 

     ̂ 
     ̂ 

   )

     ( ̂ 
   ̂ 

    ̂ 
     ̂ 

     ̂ 
   )

  

 At this point in the analysis, K datasets exist with imputed outcomes   
  for all 

participants. The relationship between exposure and outcome in these datasets can be 

analyzed with any type of analysis model desired. For example, to estimate the risk ratio 

for the effect of exposure X on true outcome D, 

              

              
  

we can use binomial regression to estimate the effect of exposure X on the imputed 

outcome in each of the K datasets. The binomial model for the imputed outcome given the 

exposure and relevant covariates for k = 1, 2, … , K is  

3.3 

                 (  
    

      
  )  

The estimated risk ratio from this model is    ( ̅ )     (   ∑  ̂ 
  

   ), where  ̂ 
  is the 

natural log of the estimated risk ratio from the kth imputed dataset. The variance for  ̅  is 

given by  
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3.4 
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The choice of effect measure is flexible. For example, if one wished to estimate the 

odds ratio in place of the risk ratio 

                             

                             
  

logistic regression could be used as the analysis model in place of log binomial regression. 

The logistic models for the imputed outcome given treatment group and relevant 

covariates for k=1 to K are 

3.5 

              
       

    
      

   

         
    

      
   

 

and the odds ratio is given by is    ( ̅ )     (   ∑  ̂ 
  

   ), where  ̂ 
  is the natural log of 

the estimated odds ratio from the kth imputed dataset. Variance is again computed using 

equation 3.4.  

 Regardless of the choice of effect estimate, the analysis model need not match the 

imputation model. Covariates likely to influence the outcome misclassification process may 

be used in the imputation model (3.1) but excluded from the analysis model if they do not 

meet the criteria for covariate inclusion in the analysis model. Addition of covariates to the 

imputation model rarely reduces the precision of the final estimate, and any decline in 

precision is generally offset with a reduction in bias (51). 

 The imputation model shown in Equation 3.1 can be used to account for outcome 

misclassification that is differential or nondifferential with respect to exposure. 

Investigators often assume outcome misclassification is nondifferential if the person who 
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assesses the outcome does not have knowledge of the participants’ exposure status. The 

assumption of nondifferential misclassification implies that      in the imputation model 

shown in Equation 3.1. In models where    is allowed to be different from 0, separation of 

data points can occur if the size of the validation subgroup is small. Firth’s correction (54) 

can be applied in these settings to prevent separation of data points (55). Firth’s correction 

uses a modified score function to obtain maximum likelihood estimates when response 

variables can be perfectly predicted by a linear combination of risk factors (55), a situation 

known as separation (56) or monotone likelihood (57). Firth’s correction may be viewed as 

a multivariable extension of a continuity correction. 

 

3.2 Maximum likelihood to account for outcome misclassification  

 The following section discusses the use of modified maximum likelihood to account 

for outcome misclassification. In this section, we assume no validation data are available 

and perform sensitivity analyses by setting values of sensitivity and specificity. 

 The maximum likelihood approach to account for outcome misclassification in 

logistic regression was outlined by Lyles (47). Briefly, for a logistic regression model 

comparing the odds of outcome   between exposure groups X controlling for covariates Z,  

     [          ]          ∑   

   

   

         

each independent record i contributes the following likelihood term 

3.6 
                                        

In this model, the odds ratio of interest is given by        . 
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 If a misclassified version of the outcome variable, W, is observed in place of the gold 

standard outcome Y, the estimated odds ratio is subject to bias. To account for outcome 

misclassification in the logistic model, the likelihood is rewritten in terms of W, sensitivity, 

and specificity. 

3.7 
   [                                       ]   [  

                                   ]       

Here, we extend this approach to account for outcome misclassification due to 

misattribution of cause of death. When outcome misclassification is thought to be 

attributable only to misspecification of the cause of death, several issues emerge. First, the 

dates of death are assumed to be correct. Second, participants alive at the end of the study 

are not subject to outcome misclassification. Similarly, the misclassification probabilities 

apply only to deaths observed to occur during the study.  

We choose to study the relationship between cause-specific mortality and an 

exposure of interest using Poisson regression. When estimating the rate ratio of death due 

to cause A per unit increase in exposure X using Poisson regression, the parameter 

estimating the desired rate ratio is         in the Poisson model below, 

3.8 

      (         ∑   

   

   

       )   

where    represents the rate of death due to cause A in strata j, Xj is the exposure, and Z is a 

    matrix with columns for each of    covariates in the model.  

 To fit this model, person-time contributed by study participants is grouped into 

strata of distinct covariate patterns. Strata are indexed by            In studies of 
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continuous exposures or covariates, these variables must be categorized. Each strata 

contains a count of the number of person years contributed to that strata (    and the 

number of deaths     . In each strata,    deaths are attributed to the cause of interest 

(cause  ), though the true number of deaths due to cause        is unobserved. The true 

number of person-years and deaths remains nj and dj, respectively, under the assumption 

that the dates of death are correct. 

 Under the ideal model specified above, the likelihood expression would be 

3.9 

   ∏ 
 

     (     )

 

   

  

The first term  
 

  , captures the number of events occurring in strata j, and the second term, 

   (     )  takes the number of person-years contributed in strata j into account. 

However, because we observe wj possibly misclassified deaths due to cause   in place 

of    true deaths due to cause  , the model above cannot be fit directly. Instead, standard 

analyses typically fit the model 

  
     (        ∑   

   

   

       )   

where   
  represents the rate of a possibly misclassified version of the outcome variable, wj 

and          represents an estimate of the rate ratio possibly biased by outcome 

misclassification. 

 To account for misclassification using a modified likelihood function, I begin by 

specifying the Poisson likelihood for a situation with two causes of death and no outcome 

misclassification. 
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3.10 

       ∏ 
 

    
 

             (     )   

 

   

 

where    is described above,               ,               , and    is the estimated 

rate of deaths due to causes other than cause A for strata j,  

      (         ∑   

   

   

       )   

where Z is a     matrix with columns for the L covariates included in the analysis. As in 

the likelihood function for one cause of death, deaths due to cause A contributed to the first 

term,  
 

  , deaths due to other causes contributed to the second term,  
 

       , and person-

time is taken into account in the third term,       (     )   . 

Because the true number of deaths due to cause A is unavailable, the likelihood is 

modified to use the count of potentially misclassified deaths due to cause A for each 

stratum,      and the misclassification probabilities (i.e., sensitivity and specificity) to 

restructure the likelihood as: 

3.11 

               ∏ {               }
  

{               }
       

 

   

  

 exp   [                               ]   . 

Under the assumption that sensitivity and specificity are correct, the modified 

likelihood function will be maximized at the same estimates for   and   as the likelihood 

function 3.10, though the modified likelihood function will be more diffuse, resulting in 

wider intervals. Using the modified likelihood function above, a sensitivity analysis can be 
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performed by setting sensitivity and specificity to plausible values identified using the 

existing literature or through expert opinion.  

 

3.3 Bayesian analysis to account for outcome misclassification 

 The sensitivity analysis approach outlined above requires the investigator to set the 

value of sensitivity and specificity. When an investigator suspects outcome 

misclassification is present based on external validation studies or expert opinion, 

Bayesian methods offer an appealing alternative to sensitivity analysis.  

Uncertainty about the amount of misclassification in the data can be acknowledged 

explicitly by placing informative prior distributions on sensitivity and specificity that 

reflect beliefs about the amount of misclassification in the data and certainty about those 

beliefs. Bayes’s theorem offers a method to combine these prior probability distributions 

for sensitivity and specificity with the observed data characterized by likelihood function 

3.6 to obtain a posterior distribution of the parameter(s) of interest. In this case, the 

parameter of interest is    from model 3.9. Non-informative, null-centered priors are 

placed on the regression parameters.  

 The posterior distribution can rarely be expressed in closed form. However, a large 

number of samples can be drawn from the posterior distribution using Markov chain 

Monte Carlo. We more closely approximate the posterior distribution as more samples are 

drawn, allowing calculation of statistics of interest, such as the mean, median, and 95% 

highest posterior density intervals. If posterior draws have a normal distribution, 95% 

posterior intervals will approximate the 95% highest posterior density intervals.  
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3.4 Application to the Herpetic Eye Disease Study  

 We implement the multiple imputation approach to account for outcome 

misclassification due to error in participant reported outcomes in the Herpetic Eye Disease 

Study. The Herpetic Eye Disease Study is a randomized trial of acyclovir for preventing 

ocular herpes simplex virus (HSV) recurrence at 58 university and community-based sites 

in the United States (22). Participants were 12 years of age and older and had an episode of 

ocular HSV in the 12 months before the study, but their disease had been inactive during 

the 30 days preceding the study. During the study, the 703 participants were randomized 

to receive either oral acyclovir or placebo. The acyclovir group received 400 mg of 

acyclovir twice daily for 12 months, and the placebo group received oral placebos with the 

same frequency. The goal of the study was to compare the 12-month incidence of ocular 

HSV recurrence between the group randomized to receive acyclovir and the group 

randomized to receive placebo. Information was collected on age, race, gender, and number 

of ocular recurrences prior to randomization. Participants returned for five follow-up visits 

during the one-year treatment period and an additional three follow-up visits during the 

six months immediately following the treatment period. HSV recurrences that were 

diagnosed during the trial were treated with topical corticosteroids and antivirals, though 

oral acyclovir or placebo was continued for the duration of the one-year treatment period. 

 Nested within the Herpetic Eye Disease Study, the Ocular HSV Recurrence Factor 

Study was designed to evaluate the psychological, environmental, and biological triggers of 

ocular HSV recurrence between 1992 and 1998. Patients in the Herpetic Eye Disease study 

were eligible to participate in the recurrence factors study if they were at least 18 years of 

age. Participants in the recurrence factor study completed weekly diaries to track acute and 
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chronic stressors, including illnesses, injuries, menstrual periods, sun exposure, and 

emotional and financial stresses. This analysis was limited to the 308 Herpetic Eye disease 

study patients who also enrolled in the recurrence factors study. 

 The outcome of interest was a binary indicator of HSV recurrence over the 12-

month study period. Among participants in the recurrence factors study, HSV recurrence 

was assessed in two ways. First, participants recorded symptoms of HSV recurrence in 

their weekly diaries. In addition, study-certified ophthalmologists examined participants 

using microscopy when symptoms were apparent or at planned study visits in months 1, 3, 

6, 9, and 12. This analysis will consider physician-diagnosed ocular recurrence to be the 

gold-standard outcome measure, represented by D, and participant-reported symptoms to 

be the error-prone outcome measure, represented by W.  

 The effect of interest was the odds ratio comparing the incidence of HSV recurrence 

among participants randomized to receive acyclovir to incidence of HSV recurrence among 

participants randomized to placebo. The first analysis was conducted using physician-

diagnosed HSV recurrence as the outcome measure on all participants. The odds ratio was 

estimated as          in the logistic regression model 

            
                 

                   
  

where D represents physician-diagnosed recurrence, X is treatment assignment to 

acyclovir (X = 1) or placebo (X = 0), and Z is a vector of covariates including age, sex, and 

number of previous recurrences.  

 To assess the performance of multiple imputation to account for outcome 

misclassification, a hypothetical validation subgroup of 91 participants was selected from 
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the 308 participants in the recurrence factors study. Participant-reported symptoms of HSV 

recurrence (W) was assumed to be available for all participants, but physician-diagnosed 

HSV recurrence was assumed to be available only for participants randomly selected to be 

in the validation subgroup. Thus, the hypothetical validation subgroup mimicked an 

internal validation subgroup randomly sampled from the main study. 

We compared results of an ideal analysis on the full cohort of 308 participants using 

the physician diagnosis as the outcome variable with results from four methods for 

handling outcome misclassification: 1) the naïve analysis, in which participant-reported 

outcome (W) represented the outcome status for all 308 participants; 2) the validation 

subgroup, in which the physician-diagnosed outcomes (D) were compared between those 

receiving acyclovir and those receiving placebo in the validation subgroup of 91 

participants; 3) a direct maximum likelihood approach (47) to account for outcome 

misclassification and; 4) multiple imputation to account for outcome misclassification. 

Direct maximum likelihood and multiple imputation approaches were evaluated under the 

assumptions of both differential and nondifferential misclassification of the outcome with 

respect to treatment group. 

 

3.5 Application to study of South Carolina textile workers study     

 Both maximum likelihood and Bayesian approaches were applied to account for 

outcome misclassification due to misattribution of cause of death in the South Carolina 

textile workers’ study. The study population comprised workers at a textile production 

plant in South Carolina that produced asbestos beginning in 1896 and asbestos textile 

products beginning in 1909 (58). The study enrolled 3072 men and women who were 
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employed at the plant for at least one month between 1 January 1940 and 31 December 

1965. Employment records were used to obtain information on date of birth, year of study 

entry, race (Caucasian or non-Caucasian), sex, and employment status in each year. 

 Detailed work histories, including plant department, job held by the participant, and 

start and end dates, were available for each participant in the cohort. Cumulative exposure 

to the chrysotile form of asbestos was estimated using a job exposure matrix to link work 

history to industrial hygiene sampling measurements taken between 1930 and 1975, as 

previously described (59). Industrial hygiene data were collected from the company 

insurance carrier, the State Board of Health, the US Public Health Service, and the company 

sampling program (58). Chrysotile exposure concentrations, expressed as fibers longer 

than 5 micrometers per milliliter of air (fibers/mL), were estimated for each day of each 

participant’s work history. Yearly exposure values were calculated as the product of the 

proportion of the year worked and the average daily exposure concentration and reported 

as fiber-years per milliliter (fiber-y/mL). To capture the appropriate exposure window for 

the effect of asbestos on lung cancer mortality, exposure values were lagged 10 years, 

meaning that the risk of lung cancer in each year was not affected by asbestos exposure in 

the prior 10 years. Chrysotile was the only type of asbestos ever processed at the plant as a 

raw fiber, indicating that confounding exposure by other types of asbestos figures, such as 

crocidolite, is unlikely. 

 Participants were followed for cause of death through January 1, 2001. Between 

1940 and 1978, vital status was determined by the US Social Security Administration, 

Internal Revenue Service, Veterans Affairs, state drivers’ license files, vital statistics offices, 

and postal mail correction services. Participants not found in one of these sources were 
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traced using local telephone listings, property records, voter records, records of funeral 

homes, and other local sources (42).  

 Between 1979 and 2001, vital status was determined using the National Death 

Index. Those confirmed alive in 1979 and not found in the National Death Index were 

assumed to be alive at the end of the study. For those who died, cause of death was 

determined through examination of death certificates and coded by a qualified nosologist 

into the revision of the International Classification of Diseases (ICD) in effect at the date of 

each death.  

 In this cohort, we estimated the effects of asbestos exposure on the rate of death due 

to lung cancer. A death was classified as a death due to lung cancer using ICD-7, ICD-8, and 

ICD-9 code 162. Cause of death reported on the death certificate was the error-prone 

version of the outcome variable, but, unlike the earlier example from the Herpetic Eye 

Disease Study, no internal validation subgroup was available to assess the possible 

outcome misclassification. To account for outcome misclassification, we performed 

sensitivity analysis using modified maximum likelihood and the Bayesian analysis placing 

informative prior distributions on sensitivity and specificity as described above. The effect 

of interest was the rate ratio of lung cancer death per 100 f-y/mL of asbestos exposure. 

 

3.6 Simulations 

 We used simulations to explore the finite sample properties of the methods to 

account for outcome misclassification proposed in this section. Each simulation experiment 

was repeated for scenarios involving varying parameters of interest, including total sample 
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size, effect size, misclassification parameters, and size of the validation subgroup, if 

applicable.  

In each simulation experiment, the distribution of exposure was designed to mimic a 

real-data example. For example, in the simulations to evaluate multiple imputation to 

account for outcome misclassification, the exposure distribution reflected the distribution 

of acyclovir exposure in the Herpetic Eye Disease Study data. In the simulation experiments 

to assess the performance of modified maximum likelihood to account for outcome 

misclassification, the exposure distribution was designed to mimic the distribution of 

asbestos exposures among participants in the South Carolina textile workers study.  

True outcome variables were generated based on the exposure and effect size of 

interest. The effect size was varied across scenarios. In the simulations designed to assess 

the performance of multiple imputation, the true binary outcome indicator was generated 

directly from the exposure and effect size. In the simulations for maximum likelihood, the 

true time to death due to cause A was generated along with a true time to death due to all 

other causes. If the time to death due cause A  was less than the time to death due to other 

causes, the death was a death due to cause A. Otherwise, the simulated participant was said 

to have died from other causes.  

In each simulation, a misclassified version of the outcome variable was generated 

based on the true outcome variable and the values of the misclassification parameters. 

Values of sensitivity and specificity were altered for each simulated scenario.  

For each scenario, 10,000 cohorts were simulated based on the characteristics and 

parameters described above. The analysis of interest was conducted in each simulated 

cohort, and outcome misclassification was address by either multiple imputation (for the 
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cohorts mimicking the Herpetic Eye Disease study data) or modified maximum likelihood 

(for the cohorts mimicking the South Carolina textile workers study).  

We assessed the performance of each method to account for outcome 

misclassification by comparing bias, 95% confidence interval coverage, statistical power, 

and mean-squared error between the standard analysis with the analysis using multiple 

imputation or modified maximum likelihood to account for outcome misclassification. Bias 

was defined as 100 times the difference between the average estimated effect size and true 

effect size, and confidence interval coverage was calculated as the proportion of 

simulations in which the estimated Wald-type confidence limits included the true value. 

Statistical power was calculated as the percentage of simulations in which the Wald-type 

confidence interval excluded the null value. The bias-precision tradeoff was considered 

through examination of the mean-squared error, which was the sum of the square of the 

bias and the square of the standard deviation of the bias. 

 



  

 
 

4 Accounting for misclassified outcomes in binary regression models 
using multiple imputation with internal validation data 

 

Outcome misclassification is widespread in epidemiology, but methods to account 

for it are rarely used. We describe the use of multiple imputation to reduce bias when 

validation data are available for a subgroup of study participants. This approach is 

illustrated using data from 308 participants in the multicenter Herpetic Eye Disease Study 

between 1992 and 1998 (48% female, 85% Caucasian, median age 49 years). The odds 

ratio (OR) comparing acyclovir and placebo groups on the gold-standard outcome 

(physician-diagnosed herpes simplex virus recurrence) was 0.62 (95% confidence interval 

(CI): 0.35, 1.09). We discarded physician diagnosis except a 30% validation subgroup to 

compare methods. Multiple imputation (OR=0.60; 95% CI: 0.24, 1.51) was compared to 

naïve analysis using self-reported outcomes (OR=0.90; 95% CI: 0.47, 1.73), analysis 

restricted to the validation subgroup (OR=0.57; 95% CI: 0.20, 1.59), and direct maximum 

likelihood (OR=0.62; 95% CI: 0.26, 1.53). In simulations, multiple imputation and direct 

maximum likelihood had greater statistical power than analysis restricted to the validation 

subgroup, yet all three provided unbiased estimates of the OR. The multiple imputation 

approach was extended to estimate risk ratios using log-binomial regression. Multiple 

imputation has advantages regarding flexibility and ease of implementation for 

epidemiologists familiar with missing data methods. 
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4.1 Introduction  

Misclassification of outcome variables is common in epidemiology and threatens the 

validity of inferences from epidemiologic studies (1,2). However, standard approaches to 

epidemiologic data analysis typically assume outcome misclassification is absent. Although 

approaches to account for bias in crude effect estimates due to use of a misclassified binary 

outcome have existed for more than half a century (46), these methods are rarely used 

because epidemiologists commonly wish to present results adjusted for several 

confounding variables. More recently, investigators have developed maximum likelihood 

approaches (2,3) to produce odds ratio estimates that account for outcome 

misclassification while adjusting for relevant confounders using logistic regression, but 

these methods have not been widely applied in the epidemiologic literature. Here we 

describe an alternative approach to account for outcome misclassification using missing 

data methods that are familiar to epidemiologists. 

 Methods to account for misclassification rely on information relating the observed 

outcome to the gold standard outcome measure. This relationship can be estimated by 

comparing the observed outcome to the gold standard outcome in a validation subgroup 

that is a random subset of the main study or in external data. In this paper, we focus on the 

former case where internal validation data are available for a subgroup of the population 

under study. We treat outcome misclassification as a missing data problem where the true 

outcome status is known only for participants in the validation subgroup and missing for 

all other participants (4). This perspective allows misclassification bias to be addressed by 

applying well-established methods for handling missing data (16,50,53). In the sections 

that follow, we describe an approach to account for outcome misclassification using 
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multiple imputation to estimate odds ratios and risk ratios, provide examples using cohort 

data (25), and explore some finite sample properties of the proposed method by Monte 

Carlo simulation. 

 

4.2 Methods 

Study population 

We illustrate the use of multiple imputation to account for outcome misclassification 

using data from the Herpetic Eye Disease Study, a randomized trial of acyclovir for 

preventing ocular herpes simplex virus (HSV) recurrence at 58 university and community-

based sites in the United States (22). Participants were 12 years of age and older and had 

an episode of ocular HSV in the 12 months before the study, but their disease had been 

inactive during the 30 days preceding the study. During the study, the 703 participants 

received either oral acyclovir or placebo for 12 months. The goal of the study was to 

compare the 12-month incidence of ocular HSV recurrence between the group randomized 

to receive acyclovir and the group randomized to receive placebo. Information was also 

collected on age, race, gender, and number of ocular recurrences prior to randomization. 

Here, we restrict analyses to the 308 of 703 participants who co-enrolled in a study that 

collected weekly diaries about ocular HSV symptoms and possible triggers between 1992 

and 1998(60). 

 

Outcome Ascertainment and Validation 

The outcome of interest was a binary indicator of HSV recurrence over the 12-

month study period (any recurrence versus none) assessed in two ways. Study-certified 
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ophthalmologists examined participants using microscopy when symptoms were apparent 

or at planned study visits in months 1, 3, 6, 9, and 12. In addition, participant-reported HSV 

recurrence was obtained from a weekly diary. We consider participant-reported HSV 

recurrence to be the observed, and possibly mismeasured, version of the outcome variable 

(    if the participant reported any recurrence,     otherwise), and physician-

diagnosed HSV recurrence to be the gold standard (D = 1 if the ophthalmologist diagnosed 

a recurrence, D = 0 otherwise). We randomly sampled 30% (n = 91) of the 308 participants 

to treat as a validation subgroup. In this analysis, we assume that W was available for all 

participants and D was observed only for those selected to be in this hypothetical 

validation subgroup. 

 

Statistical methods 

We used logistic regression to estimate the odds ratio comparing ocular HSV 

recurrence between participants randomly assigned to acyclovir and those assigned to 

placebo. We compared results of an ideal analysis on the full cohort of 308 participants 

using the physician diagnosis as the outcome variable with results from four methods for 

handling outcome misclassification: 1) the naïve analysis, in which W represented the 

outcome status for all 308 participants; 2) the validation subgroup, in which the physician-

diagnosed outcomes (D) were compared between those receiving acyclovir and those 

receiving placebo in the validation subgroup of 91 participants; 3) a direct maximum 

likelihood approach (47) to account for outcome misclassification and; 4) multiple 

imputation to account for outcome misclassification. Direct maximum likelihood and 

multiple imputation approaches were evaluated under the assumptions of both differential 
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and nondifferential misclassification of the outcome with respect to treatment group. We 

further extended the direct maximum likelihood and multiple imputation approaches to 

estimate risk ratios using log-binomial regression. 

The direct maximum likelihood approach accounted for outcome misclassification 

using the method described by Lyles et al (47). This approach included data from all 

participants, with those in the validation subgroup providing data on the correctly 

classified outcome and those not in the validation subgroup providing data on the 

misclassified outcome.  In contrast, the naïve analysis included data from all participants, 

but used only the misclassified outcome, and the validation analysis included data from 

participants in the validation subgroup only, but used the correctly classified outcome. To 

account for nondifferential misclassification in the direct maximum likelihood approach, 

we estimated the sensitivity and specificity from the records in the validation subgroup. 

These values were used to compute the likelihood to be maximized, which was a product of 

the main study likelihood and the validation sample likelihood, as detailed in Appendix 1. 

To relax the assumption of nondifferential misclassification, we added treatment group to 

the model for sensitivity and specificity.  

Multiple imputation is a standard technique for handling missing data (50,51). We 

use multiple imputation to account for outcome misclassification by exploiting the 

relationships between D, W, treatment group (X), and other covariates (Z) among 

participants in the validation subgroup to impute values for D for all other participants.  

The first step is to model the relationship between physician-diagnosed HSV 

recurrence and participant-reported HSV recurrence in the validation subgroup. In this 

example, we use the logistic regression method for monotone missing data (50). To do this, 
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we regress physician-diagnosed HSV recurrence (D) on participant-reported HSV 

recurrence (W), treatment group (X), and other covariates (Z) using a logistic regression 

model 

4.1 

              
                          

                            
              

We then draw a set of regression coefficients for each of K imputations from the 

posterior predictive distribution of the parameters. We set K = 40 in this analysis. Assume 

parameters follow a multivariate Gaussian distribution with mean vector 

( ̂   ̂   ̂   ̂   ̂   and covariance matrix ( ̂     estimated from the logistic regression 

model above. Drawing regression coefficients for each imputation allows uncertainty about 

the relationship between W, X, and D to propagate through the analysis (50). 

A new variable,   
 , is created to represent the imputed outcome. For participants in 

the validation subgroup,     =  , where k indexes the number of imputations. For 

participants not in the validation study, values for     are imputed based on the regression 

coefficients drawn for that imputation. For each imputation,     is assigned by a random 

draw from a Bernoulli distribution with probability    , where  

4.2 
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The analysis model is then used to compare imputed outcomes between treatment and 

placebo groups conditional on other covariates (Z). In the example, we first use a logistic 

regression model to estimate the odds ratio comparing imputed HSV recurrence for 

participants assigned to acyclovir and those assigned to placebo in each imputation and 
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combine results using standard multiple imputation techniques (51). The logistic models 

for the imputed outcome given treatment group and relevant covariates for k=1 to 40 are 

4.3 

              
       

    
      

   

         
    

      
   

           

The estimated odds ratio is 

 

4.4 
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where  ̂ 
  is the natural log of the estimated odds ratio from the kth imputed dataset. The 

variance for  ̅  is given by  
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In a closed cohort, it may be preferable to estimate the risk ratio instead of the odds 

ratio (61–63). To illustrate the ability of the proposed multiple imputation approach to 

estimate different parameters of interest, we also use a log-binomial regression model to 

estimate the risk ratio comparing imputed HSV recurrence for participants assigned to 

acyclovir and those assigned to placebo in each imputation. To estimate a risk ratio, the 

binomial model for the imputed outcome given treatment group and relevant covariates for 

k = 1 to 40 is used in place of the logistic model shown in Equation 4.3. 

4.6 
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Multiple imputation can be used to account for misclassification of the outcome that 

is differential or nondifferential with respect to treatment group. The assumption of 

nondifferential misclassification implies that      in the imputation model (Equation 

4.2). In models where    was allowed to be different from 0, because the validation 

subgroup was relatively small, we used Firth’s correction (54) to prevent separation of 

data points (55). Firth’s correction uses a modified score function to obtain maximum 

likelihood estimates when response variables can be perfectly predicted by a linear 

combination of risk factors (55), a situation known as separation (56) or monotone 

likelihood (57). Firth’s correction may be viewed as a multivariable extension of a 

continuity correction. Appendix 2 provides the SAS code for multiple imputation to account 

for outcome misclassification. Alternatively, one could use standard programs for multiple 

imputation included in many statistical software packages, such as SAS’s PROC MI (SAS 

Institute, Cary, NC) or IVEware (University of Michigan, Ann Arbor, MI). 

Although the cohort originated as part of a randomized trial, selection into the 

cohort for analysis was dependent on the participant keeping a weekly diary, which could 

have been influenced by several covariates. To estimate measures of association that were 

not biased by this selection, we adjusted for age, sex, and number of previous HSV 

occurrences by including these covariates in the Z vector in all analyses.  

 

Simulation study 

 The bias, 95% confidence interval coverage, mean squared error, and statistical 

power for each method were evaluated under 15 simulation scenarios (Appendix 3). Each 

scenario represented different values of key parameters: sensitivity, specificity, size of the 
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validation subgroup, and total sample size. One set of simulations was designed to mimic 

the example; that is, for each trial, 300 participants were generated with values for 

treatment group, true disease status, reported disease status, and whether or not that 

individual was in the validation subgroup.  

Another set of scenarios used the same parameter values but simulated a study of 

1000 participants. For each simulation, 10% or 30% of participants were randomly 

selected for the validation subgroup. In each scenario, the odds ratio for the effect of 

acyclovir on ocular HSV recurrence was estimated using each of the four methods 

described above and summarized over the 10,000 simulations.  

 

4.2 Results 

Study participants were 48% female, 85% white, and had a median age of 49 years. 

Table 1 presents the data on self-reported recurrence (W) and physician diagnosed 

recurrence (D) from the Herpetic Eye Disease Study.  Of the 308 study participants with 

both outcome measures available, 91 were randomly selected for the hypothetical 

validation subgroup.  Of the 14 participants in the validation subgroup who reported HSV 

recurrences, 8 were diagnosed with HSV recurrence by a physician; of the 77 participants 

who did not report HSV recurrence, 65 had no physician diagnosed recurrence. Specificity 

of self-reported HSV recurrence was 0.9 (95% CI: 0.8, 1.0) and did not differ by treatment 

group. Sensitivity appeared to be higher for participants assigned to acyclovir (sensitivity = 

0.5; 95% CI: 0.3, 0.6) than for participants assigned to placebo (sensitivity = 0.3; 95% CI: 

0.2, 0.5), though the difference was imprecise. The sensitivity and specificity of self-
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reported HSV recurrence in the validation subgroup were similar to the sensitivity and 

specificity in the full cohort. 

 Table 2 presents estimates of the odds ratio from each method to account for 

outcome misclassification. In the complete data, the odds ratio comparing the gold 

standard outcome measure, physician-diagnosed HSV recurrence, between treatment 

groups was 0.62 (95% CI: 0.35, 1.09; standard error (SE) = 0.29). The odds ratio comparing 

self-reported HSV recurrence between participants assigned to acyclovir and those 

assigned to placebo was 0.90 (95% CI: 0.47, 1.73; SE = 0.33). Restricting the analysis to the 

91 participants in the validation subgroup yielded an estimate of the odds ratio of 0.57 

(95% CI: 0.20, 1.59; SE = 0.52). While this result was similar to the estimate from the 

complete data, it was less precise, as expected based on the smaller sample size. Assuming 

outcome misclassification was nondifferential with respect to treatment group, the direct 

maximum likelihood approach estimated an odds ratio of 0.62 (95% CI: 0.26, 1.53; SE = 

0.46). Assuming differential misclassification, the estimated odds ratio from direct 

maximum likelihood was 0.59 (95% CI: 0.22, 1.55; SE = 0.49). Accounting for outcome 

misclassification through multiple imputation produced estimated odds ratios of 0.60 

(95% CI: 0.24, 1.51; SE = 0.47) and 0.62 (95% CI: 0.24, 1.61; SE = 0.49) assuming 

nondifferential and differential misclassification, respectively. Estimates from the direct 

maximum likelihood and multiple imputation approaches were similar in magnitude to 

estimates from the validation subgroup alone, and marginally more precise.  

Table 3 presents results from several analyses of the risk ratio. Direct maximum 

likelihood and multiple imputation produced estimates of the risk ratio that were similar to 

the estimate of the risk ratio from the complete data using physician-diagnosed recurrence 
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as the outcome measure (RR=0.68; 95% CI: 0.44, 1.07; SE=0.23). Accounting for outcome 

misclassification using direct maximum likelihood produced an estimated risk ratio of 0.68 

(95% CI=0.34, 1.38; SE=0.36) assuming nondifferential misclassification and 0.65 (95% 

CI=0.31, 1.40; SE=0.39) assuming differential misclassification. The estimated risk ratios 

from the multiple imputation approach were 0.69 (95% CI: 0.35, 1.36; SE = 0.35) and 0.69 

(95% CI: 0.34, 1.41; SE=0.36) assuming nondifferential and differential misclassification, 

respectively. Estimates of the risk ratio from both direct maximum likelihood and multiple 

imputation were similar in magnitude to estimates from analysis limited to the validation 

subgroup (RR=0.61; 95% CI: 0.27, 1.35, SE=0.41), and slightly more precise. 

 

Simulation Results 

 Results from the simulations indicated that multiple imputation removed bias due 

to outcome misclassification under all combinations of sensitivity, specificity, and 

validation subgroup sizes explored. Naïve estimates were biased dramatically towards the 

null in scenarios with both nondifferential and differential misclassification, with bias 

increasing as sensitivity decreased (Tables 4 and 5). In contrast, the multiple imputation 

approach yielded estimates of the odds ratio with less bias than the naïve analysis in all 

scenarios examined. Bias in odds ratios estimated by multiple imputation was similar in 

magnitude to bias in estimates from analyses limited to the validation subgroup and bias in 

estimates obtained using direct maximum likelihood. Bias decreased as the proportion of 

participants in the validation subgroup increased, but all three correction methods 

succumbed to finite sample bias when the total number of subjects in the validation 

subgroup was small.  
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Confidence intervals from the naïve analysis showed poor coverage, which varied as 

a function of sensitivity and sample size. Confidence intervals from multiple imputation 

maintained appropriate coverage, as did those from the validation subgroup and direct 

maximum likelihood.  

Multiple imputation and direct maximum likelihood generally had smaller mean 

squared error than analysis limited to the validation subgroup. However, all three methods 

to account for outcome misclassification typically had larger mean squared error than the 

naïve analysis because the added imprecision of the correction methods offset the 

corresponding reduction in bias.  

In simulations under a true odds ratio of 1, both direct maximum likelihood and 

multiple imputation preserved the type-1 error rate of 5%. Results from simulations under 

a true odds ratio of 0.5 indicated that both direct maximum likelihood and multiple 

imputation had higher statistical power than limiting analysis to the validation subgroup at 

levels of sensitivity commonly seen in the literature (0.9 and 0.6), but that all three non-

naïve methods had similar statistical power at low values of sensitivity (0.3), as seen in the 

example (Figure). Analyses accounting for misclassification using multiple imputation were  

slightly less powerful than those using direct maximum likelihood. As expected, statistical 

power for the methods to account for outcome misclassification increased as the sensitivity 

of the observed outcome measure increased. Despite a pronounced null bias, the naïve 

analysis had high statistical power when sensitivity was large due to its high precision. 

However, when sensitivity decreased, bias in the naïve analysis caused power to fall well 

below that of the other methods. 
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4.3 Discussion 

Multiple imputation performed well to account for bias due to outcome 

misclassification in the Herpetic Eye Disease Study example and the scenarios explored 

through simulation. Estimates from multiple imputation were similar in magnitude to 

estimates from the complete data using the gold standard outcome and were marginally 

more precise than estimates from analysis limited to the validation subgroup. Multiple 

imputation produced estimates that were similar in magnitude and precision to estimates 

obtained using direct maximum likelihood to account for outcome misclassification. These 

results were supported in Monte Carlo simulations, where multiple imputation yielded 

estimates with little bias in all scenarios and was sometimes more statistically powerful 

than analyses limited to the validation subgroup.  

Both multiple imputation and direct maximum likelihood have been used to handle 

traditional missing data situations (50,64,65) and exposure measurement error (4,6). Both 

approaches have been shown to provide consistent and asymptotically normal estimates. 

The direct maximum likelihood approach produces estimates that are asymptotically 

efficient, while multiple imputation produces estimates that approach asymptotic efficiency 

as the number of imputations increases (52). While multiple imputation employs a two-

stage estimation procedure, it can be implemented with standard missing data methods. In 

contrast, though direct maximum likelihood methods perform estimation in a single step, 

these methods must be programmed explicitly using a procedure that is able to obtain 

maximum likelihood estimates given a general likelihood expression, such as the SAS 

procedure NLMIXED. We could have addressed outcome misclassification with other 
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techniques to handle missing data, such as inverse probability weights or the expectation 

maximization (EM) algorithm. We chose to use multiple imputation because the standard 

inverse probability weighted estimator is inefficient (66) and the EM algorithm is more 

difficult to implement in standard software. 

In the example, we demonstrated that the multiple imputation approach can be 

easily adapted to estimate risk ratios using log-binomial regression. Had the binomial 

model not converged, we could have applied the multiple imputation approach with any 

standard method to estimate the risk ratio, including the “copy method” applied in the 

binomial model (67,68), modified Poisson regression  (69), or Bayesian techniques (70). 

More importantly, flexibility in the choice of analysis models enables the multiple 

imputation techniques illustrated here to be further extended to account for 

misclassification of non-binary outcomes by altering the imputation and analysis models. 

For continuous outcomes measured with error, the observed outcome measure and 

covariates could be regressed on the gold-standard outcome measure in the validation 

subgroup using linear regression. Coefficients from this model could be used to impute 

outcomes for study participants not in the validation subgroup, and the complete dataset 

could then be analyzed using the appropriate analysis model.   

Another advantage of the multiple imputation approach is it easily allows 

researchers to include different sets of variables in the imputation model and the analysis 

model. Performing the imputation and analysis using different models avoids the problem 

of conditioning on variables influencing only the relationship between the observed and 

gold standard outcome in the final analysis model. Likewise, the imputation model could be 
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altered to employ more flexible prediction functions in place of the linear-logistic model 

used to impute outcomes in this example (71). 

Although the present work focuses on estimation of effect measures in a closed 

cohort, flexibility in choice of analysis model allows the multiple imputation approach to be 

extended to account for outcome misclassification in analysis of time-to-event outcomes in 

situations where the event type is subject to error but the event date is assumed to be 

known. In this scenario, the event indicator could be imputed using the monotone logistic 

method, and the hazard ratio or rate ratio would be estimated in each imputation and 

summarized using Equation 4.4.  

Measurement error methods typically assume that the relationship between the 

true outcome and the observed outcome variable is monotonic, which implies that the 

observed outcome measure either increases, plateaus, or decreases with increasing levels 

of the gold standard measure, but does not decrease following an increase or vice versa 

(15). Monotonicity is ensured for binary outcome variables (as in the example), but must 

be considered for non-binary outcomes. 

In the example, accounting for misclassification with multiple imputation and direct 

maximum likelihood offered only slight gains in precision over analysis limited to the 

validation subgroup. We expect estimates from multiple imputation and direct maximum 

likelihood to be more precise than estimates from the validation subgroup because these 

methods use information from all participants in the study to estimate the effect size, while 

analysis limited to the validation subgroup discards all information on participants missing 

the gold standard outcome measure. Because, in our example, the observed outcome was a 

poor proxy for the gold standard outcome, the imputation model contained a high degree of 
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uncertainty that propagated through to the variance of the final effect estimate. Larger 

gains in precision would be expected if sensitivity in the example data were higher or the 

proportion of participants in the validation substudy were smaller. However, in the 

example, when the proportion of participants in the validation substudy was further 

reduced, the absolute numbers in the validation substudy became so small that results 

became unstable.  

In simulations, we used mean squared error to assess the tradeoff between bias and 

precision. Despite its large bias, the naïve analysis had smaller mean squared error than 

methods to account for outcome misclassification in most of the scenarios explored 

through simulation. Because mean squared error places equal weight on bias and variance, 

the precision of the naïve analysis offset its bias. In large sample sizes, where mean-

squared error is dominated by bias instead of random error, the non-naïve methods will be 

superior to the naïve analysis. The simulation results can be interpreted only under the 

assumption that the underlying data generating mechanism matches the parametric 

models used to simulate the data. It is unclear how multiple imputation and direct 

maximum likelihood would have performed under a misspecified analysis model. 

We have shown that multiple imputation works well to account for both 

nondifferential and differential outcome misclassification. When the degree of 

misclassification varied across levels of exposure, we often saw separation of data points in 

the imputation model. Separation is likely to occur when the positive predictive value of 

the observed outcome is high. In this analysis, we applied Firth’s correction to obtain point 

estimates in these models. Alternatively, Bayesian methods could be used to address the 
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problem of separation by incorporating prior information to stabilize regression 

coefficients.  

 A limitation of both multiple imputation and direct maximum likelihood approaches 

is that they depend on correct specification of the model relating the observed outcome to 

the gold standard outcome measure. Estimates of the association between exposure and 

outcome could be biased if the relationship between observed and gold standard 

measurements is not transportable, implying that it is not consistent between the 

validation subgroup and the complete data. Obtaining a representative validation subgroup 

is vital to any method using a validation study to account for misclassification, as these 

methods typically assume that information on the gold standard outcome measure is 

missing at random. Because inclusion in the validation subgroup determines if the gold 

standard outcome is missing for a participant, the probability of being included in the 

validation study must be independent of that participant’s gold standard outcome, given 

the observed outcome and the covariates. When information on the gold standard outcome 

measure is not missing at random, the transportability assumption may not be met. 

 We must also consider the possibility that the gold-standard measurement is itself 

misclassified. A fundamental limitation of all validation studies is that they assume that the 

gold standard outcome measure represents the true outcome. In the example, physician 

diagnosis may have been misclassified if a participant experienced a recurrence of HSV that 

resolved before the opportunity for physician diagnosis or if errors occurred during chart 

abstraction. In situations in which the gold standard measurement is itself subject to non-

negligible error, using methods that rely on validation data to account for outcome 

misclassification may yield biased and falsely precise estimates (72). 
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Under the assumptions mentioned above, applying multiple imputation to account 

for outcome misclassification removes bias in effect estimates from logistic and log-

binomial regression. This technique uses well-established missing data methods that can 

be implemented using standard statistical software and provides an opportunity for data 

analysts to account for outcome misclassification in wide range of statistical models. 
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4.4 Tables and Figures 

Table 4.1. Characteristics of full cohort and validation subgroup a classified by self-reported 
recurrence and physician-diagnosed recurrence of ocular herpes simplex virus during 12 
months of follow-up, 308 participants in the multicenter Herpetic Eye Disease Study 
followed for 12 months between 1992 – 1998  
 

 Full Cohort (N=308) Validation subgroup 
(N=91) 

 Placebo 
(No.) 

Acyclovir 
(No.) 

Placebo 
(No.) 

Acyclovir 
(No.) 

No self-reported 
recurrence b 

    

No diagnosed recurrence 104 119 30 35 
     Diagnosed recurrence 26 14 8 4 
Self-reported recurrence     

No diagnosed recurrence 11 10 3 3 
     Diagnosed recurrence 12 12 4 4 
Sensitivity c 0.32 0.46 0.33 0.50 
Specificity d 0.90 0.92 0.91 0.92 
a Self-reported outcomes and physician records were available for all 308 participants. We 
sampled a synthetic validation subgroup of 91 participants for the purposes of illustration 
b Participants reported ocular HSV recurrences through a weekly diary and were seen by an 
ophthalmologist every 3 months. Self-reported recurrences refers to data obtained from 
patient diaries and diagnosed recurrences refer to results of examination by the study 
ophthalmologist 
c Sensitivity was the proportion of patients with a physician-diagnosed recurrence who also 
self-reported a recurrence 
d Specificity was the proportion of participants without a physician-diagnosed recurrence 
who did not self-report a recurrence  
 



 

 

6
2

 

Table 4.2. Estimates of the odds ratio comparing recurrence of ocular herpes simplex virus between participants randomized 
to acyclovir or placebo from various models, 308 participants in the multicenter Herpetic Eye Disease Study followed for 12 
months between 1992 – 1998  
 
Model  No. 

Outcomes 
No.  

at Risk 
Adjusted  

OR a 
95% CI SE for 

ln(OR) 
Complete data, physician diagnosed 
recurrence 

  
 

  

   Acyclovir group 26 155 0.62 0.35, 1.09 0.29 
   Placebo group 38 153 1   
   Total 64 308    
      
Naïve analysis      
   Acyclovir group 22 155 0.90 0.47, 1.73 0.33 
   Placebo group 23 153 1   
   Total 45 308    
      
Validation subgroup b      
   Acyclovir group 8 46 0.57 0.20, 1.59 0.52 
   Placebo group 12 45 1   
   Total 20 91    
      
Direct maximum likelihood (nondifferential)   0.62 0.26, 1.53 0.46 
Direct maximum likelihood (differential)   0.59 0.22, 1.55 0.49 
Multiple imputation (nondifferential)   0.60 0.24, 1.51 0.47 
Multiple imputation (differential)   0.62 0.24, 1.61 0.49 
 
* OR, odds ratio; CI, confidence interval; No., number; SE, standard error; ln(OR), natural log of the odds ratio 
a All models were adjusted for race, sex, age, and number of previous recurrences b Validation subgroup includes 91 
participants 
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Table 4.3. Estimates of the risk ratio comparing recurrence of ocular herpes simplex virus between participants randomized to 
acyclovir or placebo from various models, 308 participants in the multicenter Herpetic Eye Disease Study followed for 12 
months between 1992 – 1998  
 
Model  No. 

Outcomes 
No.  

at Risk 
Adjusted  

RR a 
95% CI SE for 

ln(RR) 
Complete data, physician diagnosed 
recurrence 

  
 

  

   Acyclovir group 26 155 0.68 0.44, 1.07 0.23 
   Placebo group 38 153 1   
   Total 64 308    
      
Naïve analysis      
   Acyclovir group 22 155 0.93 0.55, 1.59 0.27 
   Placebo group 23 153 1   
   Total 45 308    
      
Validation subgroup b      
   Acyclovir group 8 46 0.61 0.27, 1.35 0.41 
   Placebo group 12 45 1   
   Total 20 91    
      
Direct maximum likelihood (nondifferential)   0.68 0.34, 1.38 0.36 
Direct maximum likelihood (differential)   0.65 0.31, 1.40 0.39 
      
Multiple imputation (nondifferential)   0.69 0.35, 1.36 0.35 
Multiple imputation (differential)   0.69 0.34, 1.41 0.36 
 
* RR, risk ratio; CI, confidence interval; No., number; SE, standard error; ln(RR), natural log of the risk ratio  
a All models were adjusted for race, sex, age, and number of previous recurrences 
b Validation subgroup includes 91 participants 
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Table 4.4. Bias and 95% confidence interval coverage for simulation studies a under 9 scenarios for nondifferential 
misclassification 
 

    Naive Validation Direct ML b MI c 
Sensitivity Specificity N Percent d Bias e Cover f MSE g Bias Cover MSE Bias Cover MSE Bias Cover MSE 
0.9 0.9 1000 10 24 62 8 -5 96 47 -4 96 33 2 97 27 
  1000 30 24 62 8 -1 95 10 -1 95 6 -1 95 6 
  300 30 24 85 13 -5 96 47 -4 96 42 2 97 27 
0.6 0.9 1000 10 35 40 15 -5 96 47 -5 96 48 -3 96 29 
  1000 30 35 40 15 -1 95 10 -1 95 8 -1 95 8 
  300 30 35 76 21 -5 96 47 -4 96 48 -3 96 33 

0.3 0.9 1000 10 51 20 30 -5 96 47 -5 96 54 -4 95 35 
  1000 30 51 20 30 -1 95 10 -1 95 9 -1 95 9 
  300 30 51 66 38 -5 96 47 -5 96 58 -3 96 37 

*MI, multiple imputation; ML, maximum likelihood; MSE, mean squared error;  
a Results are summarized over 10,000 simulations 
b Direct maximum likelihood  
c Multiple imputation  
d Percent of all participants included in the validation subgroup 
e Bias was defined as 100 times the difference between the average estimated log odds ratio and the true log odds ratio  
f Confidence interval coverage was calculated as the percentage of simulations in which the estimated 95% Wald-type 
confidence limits included the true value 
g MSE was calculated as the sum of the bias squared and the variance 



 

   

 

6
5

 

Table 4.5. Bias and 95% confidence interval coverage for simulation studies a under 6 scenarios for differential 
misclassification. 
 

    Naive Validation Direct ML b MI c 
Sensitivity d  Specificity N Percent e Bias f Cover g MSE h Bias Cover MSE Bias Cover MSE Bias Cover MSE 
(0.95, 0.85) 0.9 1000 10 34 36 14 -5 96 47 -5 96 41 4 100 12 

  1000 30 34 36 14 -1 95 10 -1 95 6 1 97 6 
  300 30 34 75 19 -5 96 47 -4 96 42 3 99 17 

(0.70, 0.50) 0.9 1000 10 60 4 39 -5 96 47 -5 96 46 3 98 17 
  1000 30 60 4 39 -1 95 10 -1 95 8 0 96 7 

  300 30 60 47 45 -5 96 47 -5 96 49 2 98 23 

 
* MI, multiple imputation; ML, maximum likelihood; MSE, mean squared error;  
a Results are summarized over 10,000 simulations 
b Direct maximum likelihood  
c Multiple imputation  
d Sensitivity differs by exposure group; presented as (sensitivity for X = 1, sensitivity for X = 0) 
e Percent of all participants included in the validation subgroup 
f Bias was defined as 100 times the difference between the average estimated log odds ratio and the true log odds ratio  
g Confidence interval coverage was calculated as the percentage of simulations in which the estimated 95% Wald-type 
confidence limits included the true value 
h MSE was calculated as the sum of the bias squared and the variance 
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Figure 4.1. Relationship between statistical power and sensitivity of the observed outcome 
measure in simulations with a 30% validation subgroup and a total sample size of 1000 for 
the naïve analysis, analysis limited to the validation subgroup, the direct maximum 
likelihood method, and the multiple imputation method to account for outcome 
misclassification 

 

 

 

 



  

 
 

5 Accounting for outcome misclassification in the effect of occupational 
asbestos exposure on lung cancer mortality 

 

Asbestos is a known cause of lung cancer, but the outcome typically used to quantify the 

relationship between asbestos exposure and lung cancer, lung cancer death, is subject to 

misclassification. We used modified maximum likelihood and Bayesian methods to explore 

the effects of outcome misclassification on the rate ratio of lung cancer death per 100 fiber-

y/mL of asbestos exposure. The standard covariate-adjusted estimate of the rate ratio was 

1.94 (95% confidence interval [CI]: 1.55, 2.44), and modified maximum likelihood 

produced similar results when we assumed that the specificity of outcome classification 

was 0.98, regardless of sensitivity. With sensitivity and specificity assumed to be 0.90, 

estimated rate ratios were farther from the null, and less precise (rate ratio = 2.97; 95% CI: 

1.34, 6.56). With specificity constrained above 0.95 in the Bayesian analysis, the posterior 

estimate was similar to the standard estimate, but when specificity was centered at 0.95 

(and sensitivity centered at 0.85), the rate ratio rose to 2.04 (95% posterior interval [PI]: 

1.61, 2.56). In the present context, standard estimates for the effect of asbestos on lung 

cancer death were similar to estimates accounting for the relatively minor 

misclassification. However, modified maximum likelihood and Bayesian methods were 

needed to verify the robustness of standard estimates, and these approaches will provide 

unbiased estimates in settings with more misclassification.  
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5.1 Introduction 

The relationship between occupational exposure to asbestos and lung cancer 

mortality has been examined for over half a century, and epidemiological studies have 

provided strong evidence that asbestos is a lung carcinogen (42,58,59). Although asbestos 

is no longer mined in the United States, approximately 1000 tons of asbestos is imported 

into the US each year for use in construction materials, brake linings, and other products 

(40). Moreover, a substantial amount of asbestos remains in US infrastructure and 

eventually will be removed, either during remediation, renovations, or demolition. 

Significant production and use is also ongoing in middle-income industrial countries, 

including Brazil, India, China and Russia. Therefore asbestos continues to pose important 

occupational hazards in the US and worldwide (41). 

Most analyses of asbestos exposure in occupational settings have estimated the 

effect of asbestos on lung cancer mortality in place of lung cancer incidence for practical 

reasons. Because many countries have comprehensive databases containing standardized 

information about deaths, investigators can identify the observed deaths that are due to 

lung cancer, while the dates of lung cancer incidence are typically less well-known. The 

number of lung cancer deaths approximates the number of incident lung cancer cases 

because the time between lung cancer incidence and death is relatively short and few 

effective treatments have existed.  

Outcome ascertainment in studies of lung cancer mortality involves determining 

both the date and cause(s) of death.  In the current paper we focus on the scenario in which 

the underlying cause of death is used to classify each decedent with respect to the outcome. 

In most cases, particularly in developed countries, the date of death is recorded with 
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typically negligible error. However, misattribution of cause of death remains more likely. If 

such misattribution results in a death due to lung cancer being classified as a death due to 

other causes, or vice versa, the outcome is misclassified. Despite evidence of imperfect 

sensitivity and specificity for cause of death abstracted from death certificates (32,33,35–

37,49,73,74), most studies of occupational asbestos exposure assume no misclassification. 

To present estimates of the effect of asbestos exposure on lung cancer mortality that 

account for outcome misclassification, we propose an approach that uses modified 

maximum likelihood to estimate rate ratios under chosen values of sensitivity and 

specificity, as in a sensitivity analysis. We expand this approach to account for uncertainty 

in the values of sensitivity and specificity by placing informative prior distributions on 

sensitivity and specificity. Until the discussion, we assume that the date of death is 

measured without error but that the cause of death is subject to misclassification. We 

illustrate these approaches using data from a cohort of textile workers in South Carolina, 

United States assembled to assess the relationship between the chrysotile form of asbestos 

and lung cancer mortality.  

 

5.2 Methods 

Study population 

 The study population comprised workers at a textile production plant in South 

Carolina that produced asbestos beginning in 1896 and asbestos textile products beginning 

in 1909 (58). The study enrolled 3072 men and women who were employed at the plant 

for at least one month between 1 January 1940 and 31 December 1965. Employment 
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records were used to obtain information on date of birth, year of study entry, race 

(Caucasian or non-Caucasian), sex, and employment status in each year. 

 

Exposure assessment 

 Detailed work histories were available for each participant in the cohort. 

Cumulative exposure to the chrysotile form of asbestos was estimated using a job exposure 

matrix to link work history to industrial hygiene sampling measurements taken between 

1930 and 1975, as previously described (59). Chrysotile exposure concentrations, 

expressed as fibers longer than 5 micrometers per milliliter of air (fibers/mL), were 

estimated for each day of each participant’s work history. Yearly exposure values were 

calculated as the product of the proportion of the year worked and the average daily 

exposure concentration and reported as fiber-years per milliliter (fiber-y/mL). To capture 

the appropriate exposure window for the effect of asbestos on lung cancer mortality, 

exposure values were lagged 10 years, meaning that the risk of lung cancer in each year 

was not affected by asbestos exposure in the prior 10 years. 

 

Mortality ascertainment 

Participants were followed for lung cancer death through January 1, 2001. Between 

1940 and 1978, vital status was determined by the US Social Security Administration, 

Internal Revenue Service, Veterans Affairs, state drivers’ license files, vital statistics offices, 

and postal mail correction services. Between 1979 and 2001, vital status was determined 

using the National Death Index. Those confirmed alive in 1979 and not found in the 

National Death Index were assumed to be alive at the end of the study. For those who died, 
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cause of death was determined through examination of death certificates and coded by a 

qualified nosologist into the revision of the International Classification of Diseases (ICD) in 

effect at the date of each death. The underlying cause of death was used to define the 

outcome. A death was considered to be a case if it was classified as a death due to lung 

cancer (defined as ICD-8 and ICD-9 code 162, and ICD-10 codes C33 – C44) (42,58,59).  

 

Statistical methods 

 The 121,010 person years contributed by 3072 participants were grouped into 

3059 populated strata, indexed as j = 1, 2, …, J. These strata are defined by sex, age (5 year 

intervals from 15 to 90), and year at study entry (1 year intervals from 1940 to 1965), and 

cumulative asbestos exposure. Cumulative asbestos exposure was categorized into 1 fiber -

y/mL intervals for values 10 fiber-y/mL and under, 5 fiber-y/mL intervals for values from 

10 to 50 fiber-y/mL, 10 fiber-y/mL intervals for values from 50 to 100 fiber-y/mL, and 25 

fiber-y/mL intervals for values above 100 fiber-y/mL, and the category score was set to the 

mean value of asbestos exposure for each interval.  

In strata j, we have nj person-years with dj deaths. We observe wj possibly 

misclassified lung cancer cases, but the true unobserved number of lung cancer cases is yj. 

The true number of person-years and deaths remains nj and dj, respectively under the 

assumption that the dates of death are correct. 

We would like to estimate the effect of occupational asbestos exposure on lung 

cancer mortality by estimating the rate ratio of lung cancer death per 100 fiber-y/mL of 

asbestos exposure. The parameter estimating the desired rate ratio is         in the 

Poisson model 
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where    represents the rate of true lung cancer deaths in strata j, Xj is the cumulative 

asbestos exposure, and Z is a     matrix with columns for sex, log(age), and year of study 

entry. 

 However, because we observe wj possibly misclassified lung cancer cases in place of 

yj true lung cancer cases, the model above cannot be fit directly. Instead, standard analyses 

typically fit the model 
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where   
  represents the rate of a possibly misclassified version of the outcome variable, wj. 

We fit this second (naïve) model to the data from the South Carolina textile plant cohort, 

where wj is the number of deaths due to lung cancer recorded on death certificates in strata 

j.  

 We account for misclassification of the outcome using values of sensitivity and 

specificity of lung cancer classification obtained from existing literature. Sensitivity is 

defined as the probability that a participant is correctly classified as a lung cancer case, 

given that the participant died of lung cancer. Specificity is the probability that a 

participant is classified as a non-lung cancer death, given than the participant died of a 

cause other than lung cancer. Because validation studies report varying estimates of the 

accuracy of cause-of-death information obtained from death certificates, we perform a 

sensitivity analyses in which we set sensitivity and specificity to each of several plausible 
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values. We then adopt a Bayesian approach by placing informative prior distributions on 

parameters to incorporate uncertainty in the sensitivity and specificity.  

 

Sensitivity analysis 

 We first demonstrate how to modify the Poisson likelihood to account for outcome 

misclassification by setting the values of sensitivity and specificity, as one would in a 

sensitivity analysis. We begin by specifying the Poisson likelihood for a situation with two 

causes of death and no misclassification, 

       ∏ 
 

    
 

             (     )   

 

   

 

where    is described above,               ,               , and    is the 

estimated rate of other types of death for strata j,  

      (         ∑   

 

   

       )   

where Z is a     matrix with columns for sex, age, and year of study entry.  

However, because the true number of lung cancer deaths is unavailable, we must 

modify the likelihood to use the count of potentially misclassified lung cancer deaths for 

each stratum,    and the misclassification probabilities (i.e., sensitivity and specificity) to 

restructure the likelihood as: 

               ∏ {               }
  

{               }
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Under the assumption that sensitivity and specificity are correct, the modified likelihood 

function will be maximized at the same estimates for   and   as the likelihood function 

above, though the modified likelihood function will be more diffuse. 

To identify plausible values of the misclassification probabilities, we turned to 

existing literature on the accuracy of cause of death information reported on death 

certificates. The Life Span Study, which performed autopsies on selected participants who 

died following the atomic bombings of Hiroshima and Nagasaki, found that death 

certificates listed lung cancer as the underlying cause of death in only 62% of the cases 

where the autopsy indicated that lung cancer was the cause of death (36). A more recent 

study from the Mayo lung clinic in the United States reported that death certificates 

identified lung cancer as the underlying cause of death in 89% (210/237) of autopsy-

confirmed lung cancer cases (34), while specificity was 99%. A validation study conducted 

in the Third National Cancer Survey found that lung cancer was recorded as the underlying 

cause of death on the death certificate in 95% (9568/10059) of lung cancer cases 

diagnosed by hospital physicians (73). Sensitivity from other validation studies fell 

between the estimates from the Life Span Study and the Mayo lung clinic. For example, a 

study of 4951 deaths occurring among 17,800 workers exposed to asbestos reported that 

death certificates identified lung cancer as the cause of death in 86% of the deaths 

designated as lung cancer deaths by autopsy and other medical evidence (37).  

We allowed sensitivity to range from 0.6, as seen in the Life Span Study, to 0.9 as 

seen in the Mayo Lung Clinic study. Because few validation studies provided the specificity 

of death certificates to identify lung cancer deaths, we investigated three plausible values 

for specificity: 0.98, 0.95, and 0.90. We estimated the rate ratio of lung cancer death per 
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100 fiber-years/mL of asbestos exposure for the following scenarios: 1) Assuming no 

misclassification of cause of death, which corresponds to the standard naïve analysis of 

these data; 2) setting specificity to 0.98 and sensitivity to 0.9, 0.8, and 0.6; 3) setting 

specificity to 0.95 and sensitivity to 0.9, 0.8, and 0.6; and 4) setting specificity to 0.90 and 

sensitivity to 0.9, 0.8, and 0.6. In all scenarios, we assumed that outcome misclassification 

was nondifferential with respect to cumulative asbestos exposure. To compare more 

directly with the Bayesian analysis, we also examined one scenario in which specificity was 

set to 0.95 and sensitivity was set to 0.85. The sensitivity analysis was performed using SAS 

procedure NLMIXED (V 9.3, SAS Institute, Cary, NC), and code to perform this analysis is 

available in appendix 4.  

We evaluated the performance of this method to account for outcome 

misclassification through Monte Carlo simulations. Bias, 95% confidence interval coverage, 

and mean squared error were compared between standard naïve methods and the analysis 

using modified maximum likelihood to set values of sensitivity and specificity for 5 

scenarios with varying degrees of outcome misclassification. The design and results of the 

simulation study are detailed in appendix 5. 

 

Prior distributions for sensitivity and specificity 

 We are rarely certain about the amount of misclassification present in the data.  In 

this analysis, we acknowledge this uncertainty by placing informative prior distributions 

on sensitivity and specificity that reflect beliefs about the amount of misclassification in the 

data and certainty about those beliefs. Based on the existing literature, we assumed 

sensitivity was uniformly distributed between 0.75 and 0.95. Specificity was assumed to be 
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uniformly distributed between 0.9 and 1.0. We explored the effects of tightening the prior 

distributions and shifting the prior distribution for specificity. Posterior estimates of the 

rate ratio for lung cancer mortality per 100 f-y/mL of asbestos exposure were obtained 

using Markov chain Monte Carlo simulation by the SAS procedure MCMC. We report 

posterior intervals, which were equivalent to the highest posterior density intervals. 

Models were run for 500,000 iterations with a burn-in of 50,000 iterations. Every third 

value after burn-in was retained in the calculation of the posterior estimates and 95% 

posterior intervals (PI) to minimize autocorrelation. Convergence was assessed through 

examination of trace and autocorrelation plots. SAS code is provided in appendix 4. 

 

5.3 Results 

 The study enrolled 3072 textile workers between 1940 and 1965. The cohort was 

predominantly male and Caucasian and enrolled at a median age of 23 years (table 1). The 

median occupational exposure to asbestos at study entry was 0.2 fiber-y/mL and the 

median cumulative occupational exposure to asbestos at the end of follow-up was 5.0 fiber-

y/mL. One hundred ninety-eight lung cancer deaths and 1763 other deaths were recorded 

between 1940 and 2001, and 265 participants were lost to follow-up (9%) (Table 1). 

 Table 2 provides the estimated ratio ratios for lung cancer death per 100 fiber-y/mL 

cumulative asbestos exposure under several assumptions about sensitivity and specificity. 

Assuming perfect sensitivity and specificity of cause of death information, as in standard 

analyses, the rate of lung cancer deaths increased by a factor of 1.94 per 100 fiber-y/mL 

(95% CI: 1.72, 2.62) after adjustment for sex, race, age, and year of study entry.  
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The rate ratios under scenarios assuming varying degrees of nondifferential 

outcome misclassification were further from the null than the rate ratio from the standard 

analysis assuming perfect sensitivity and specificity. The change in the rate ratio was 

determined primarily by the higher specificity. With specificity set to 0.98, the rate ratio 

was relatively unchanged as 2.03 (95% CI: 1.57, 2.61), 2.02 (95% CI: 1.57, 2.60), and 2.00 

(95% CI: 1.56, 2.56) when sensitivity was varied as 0.9, 0.8, and 0.6, respectively. When 

specificity was reduced to 0.95, the estimated rate ratios were 2.19 (95% CI: 1.60, 3.00), 

2.17 (95% CI: 1.59, 2.98), and 2.12 (95% CI: 1.56, 2.89) for sensitivity set to 0.90, 0.80, and 

0.60, respectively. When specificity was further reduced to 0.90, estimates of the rate ratio 

were even farther from the null but much less precise. With specificity at 0.9 and sensitivity 

set to 0.9, 0.8, and 0.6, the estimated rate ratios were 2.97 (95% CI: 1.34, 6.56), 3.03 (95% 

CI: 1.32, 6.94), and 3.07 (95% CI: 1.54, 6.10). 

 In simulations, revised estimates using modified maximum likelihood showed little 

bias in all scenarios examined, even when sensitivity and specificity were quite low. 

Similarly, confidence limits from the revised estimates showed appropriate coverage, and 

mean squared error was improved for the revised estimates when compared to the 

standard estimates under all combinations of sensitivity and specificity. Detailed numeric 

results from the simulations are provided in appendix 2. 

 

Bayesian analysis 

 Results from the Bayesian analysis are presented in table 3. Rate ratios were 

attenuated when compared to results using modified maximum likelihood, but remained 

further from the null than results from the standard analysis. Under our consensus prior 
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(sensitivity uniformly distributed around 0.85 and specificity uniformly distributed around 

0.95), the rate ratio was 2.04 (95% PI: 1.61, 2.56).  Tightening the priors for sensitivity and 

specificity produced an estimated rate ratio of 2.14 (95% PI: 1.69, 2.78), and shifting the 

prior for specificity to be uniformly distributed between 0.95 and 1.0, moved the rate ratio 

to 1.96 (95% PI: 1.53, 2.51), similar to the value given by standard methods. Shifting the 

prior for sensitivity to include all of the values of sensitivity estimated from the previous 

validation studies referenced had little effect on the posterior estimate of the rate ratio or 

posterior interval. 

 

5.4 Discussion 

Misclassification of cause of death has been a concern in analysis of cancer trends 

and etiologic research in cancer epidemiology for decades (36,37,73–75). We accounted for 

misclassification of lung cancer death in a cohort of textile factory workers exposed to 

asbestos using a modified maximum likelihood approach. The covariate-adjusted rate ratio 

of lung cancer death per 100 fiber-y/mL of asbestos exposure of 1.94 obtained using 

standard methods rose to over 3.00 when sensitivity and specificity were assumed to be 

poor, though rose only to 2.18 under likely values of sensitivity and specificity.  

Estimates of the rate ratio from a sensitivity analysis assuming imperfect sensitivity 

and specificity were always further from the null than the standard analysis assuming 

perfect outcome classification, though less precise. When informative prior distributions 

were placed on the parameters determining outcome misclassification rather than setting 

these values to constants, estimates of the rate ratio fell between estimates from standard 

analysis and estimates from the sensitivity analysis. In simulations with imperfect 
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sensitivity and specificity, using modified maximum likelihood to account for outcome 

misclassification removed bias in all scenarios examined and resulted in smaller mean 

squared error than the standard analysis.  

Sensitivity analysis showed that estimates of the rate ratio were relatively 

insensitive to changes in hypothetical values of sensitivity, but changed substantially when 

specificity was altered. The sensitivity of the rate ratio to changes in specificity is not 

surprising; when the event is rare, even small changes in the specificity result in 

considerable changes in the number of events assumed to have occurred.  

A similar pattern emerged in the Bayesian analysis. When specificity was 

constrained to be between 0.95 and 1 and sensitivity was allowed to range from 0.75 to 

0.95, the posterior estimate of the rate ratio was similar to the rate ratio estimated with 

standard methods. However, when specificity was centered at 0.95 (and sensitivity was 

centered at 0.85), the posterior rate ratio fell between estimates of the rate ratio from the 

sensitivity analysis, in which sensitivity and specificity were set to constant values, and 

standard methods, in which sensitivity and specificity were assumed to be 1. When the 

prior distributions for sensitivity and specificity were tightened, posterior estimates of the 

rate ratio moved away from the estimate from standard methods and towards the estimate 

from the sensitivity analysis and posterior intervals were tighter. 

Because the specificity of lung cancer mortality reported on death certificates is 

high, posterior estimates of the rate ratio per 100 f-y/mL of asbestos exposure were similar 

to the adjusted rate ratio from standard analysis. We would expect posterior rate ratios to 

differ more dramatically from the standard estimates of the rate ratio for outcomes subject 

to more severe misclassification. For example, asbestos has been implicated in the elevated 
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risk of mortality from coronary heart disease seen in cohorts of miners, mill workers, and 

shipyard workers (76–80). Unlike lung cancer, the specificity of coronary heart disease 

reported on death certificates is low (33,81). We expect that future studies of the 

relationship between asbestos and coronary heart disease mortality that account for 

outcome misclassification using methods such as those described here would produce 

estimates of the rate ratio that differ substantially from standard estimates.  

We use results from existing validation studies on the accuracy of cause of death 

information on death certificates to inform the sensitivity analysis and Bayesian prior 

distributions. Here, we discuss the misclassification probabilities in terms of sensitivity and 

specificity instead of the detection rates and confirmation rates often presented in such 

validation studies. Sensitivity and detection rate both refer to the probability that the 

underlying cause of death recorded on the death certificate is lung cancer, given that a 

participant died of lung cancer. The confirmation rate often reported in validation studies 

is the probability that a participant died of lung cancer, given that the death certificate 

listed lung cancer as the underlying cause of death, and is also known as the positive 

predictive value. We choose to frame our methods to account for outcome misclassification 

in terms of sensitivity and specificity instead of detection and confirmation rates because 

the confirmation rate is sensitive to changes in the prevalence of the outcome.  

This work extends existing approaches to account for outcome misclassification to 

the time-to-event setting. Magder and Hughs (46), Lyles (47), and Edwards (82) have 

illustrated maximum likelihood-based approaches to account for outcome misclassification 

in logistic regression. Here, we apply a modified likelihood function to account for 

misclassification between lung cancer deaths and other types of death in Poisson 
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regression, similar to work by Sposto et al (83) and Stamey et al (84), who have used a 

maximum likelihood approach (the EM algorithm) and Bayesian methods, respectively, in 

this setting. The current work complements the methods set forth in these papers by 

providing a less-computationally intensive direct maximum likelihood solution to account 

for the misclassification of outcomes, as well as applying this likelihood function in the 

Bayesian setting.   

In studies without validation data, posterior estimates are largely determined by the 

prior distributions for sensitivity and specificity. Priors can be elicited through expert 

opinion or formed from the existing literature. Here, we have constructed the prior 

distributions based on three previous validation studies: the atomic bomb survivor data, 

the Mayo lung clinic study, and a validation study of workers exposed to asbestos. If 

available, internal or external validation data could be formally incorporated into the 

modified likelihood function in either the maximum likelihood or the Bayesian method 

described above, following Lyles (47). When validation data are available, the prior 

distributions for sensitivity and specificity will exert less influence on the posterior 

estimate of the rate ratio than when the prior contains most of the information about the 

misclassification parameters. 

While sensitivity and specificity arise from a joint distribution, here we have chosen 

to specify independent prior distributions for sensitivity and specificity. In practice, 

independent priors on sensitivity and specificity are easier to elicit both from experts and 

the existing literature, and independent priors simplify computational aspects of both the 

sensitivity analysis and the Bayesian analysis. However, ignoring the correlation between 
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sensitivity and specificity may cause the uncertainty in the posterior estimates of the rate 

ratio to be either understated or overstated (85,86). 

Both the sensitivity analysis and the Bayesian method presented above could be 

extended to account for outcome misclassification that is differential with respect to 

exposure. In both cases, sensitivity and specificity would be specified as a function of 

exposure. Differential outcome misclassification may be of interest in studies of self-

reported outcomes or other situation in which the person recording the outcome of 

interest is aware of the participant’s exposure status. In this analysis, because the coroner 

or medical professional assigned to complete the death certificate was likely unaware of 

the participant’s cumulative asbestos exposure, outcome misclassification was assumed to 

be nondifferential with respect to exposure. Similarly, outcome classification may depend 

on covariates other than exposure status. If investigators believe that the validity of cause 

of death information on death certificates improves over time, sensitivity and specificity 

could be written as a function of calendar time or other relevant covariates. 

In this analysis, we have assumed that the date of death was correct and that only 

the cause of death was subject to error. Under this assumption, the event time, and thus the 

person-time contributed by each participant, is assumed to be measured correctly, though 

the event indicator is error-prone. However, if the date of death were recorded incorrectly, 

a death was never recorded, or a death was falsely recorded, the event times would also be 

subject to error. Under these conditions, the modified maximum likelihood approach and 

the Bayesian methods presented here would be insufficient to account for the bias due to 

outcome mismeasurement. When the outcome is death, event times are usually correct in 

countries that require standardized reporting of all deaths. However, studies of other 
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outcomes, such as disease incidence, are more likely to be confronted with mismeasured 

event times, especially if detection of the disease is difficult.  

 Here, we have presented maximum likelihood and Bayesian methods to account for 

misclassification of lung cancer-specific mortality in a cohort of textile workers exposed to 

asbestos. Results from the sensitivity analysis and Bayesian analysis suggest that, at likely 

values of sensitivity and specificity, outcome misclassification of lung cancer death is not 

likely to produce substantial bias in standard estimates of the rate ratio for the effect of 

asbestos exposure on lung cancer death. However, sensitivity analysis suggests that 

standard methods to estimate rate ratios for outcomes subject to greater probability of 

misclassification, particularly those subject to poor specificity, are likely to produce biased 

estimates. Both the sensitivity analysis and the Bayesian analysis provided approaches to 

account for outcome misclassification in estimation of the rate ratio under varying beliefs 

about the misclassification parameters.  
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5.5 Tables 

Table 5.1. Characteristics of 3072 textile workers in South Carolina, United States, 1940 – 
2001  
Characteristic:  Median (IQR) Percent (n) 
   
Age at study entry (years)  23 (19, 29)   
Calendar year at study entry 1943 (1941, 1946)  
Male  58.9 (1807) 
Caucasian  81.4 (2500) 
Cumulative asbestos exposure in 
fiber-y/ml at end of follow-up  

4.99 (1.45, 21.38)  

Lung cancer deaths  6.5 (198) 
Non lung cancer deaths  57.4 (1763) 
Loss to follow-up  8.6 (265) 
IQR, Interquartile range 
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Table 5.2. Rate ratio of lung cancer mortality per 100 fiber-years/mL cumulative asbestos 
exposure, South Carolina, United States, 1940 – 2001, under several outcome 
misclassification scenarios  
 
Model Specificity Sensitivity  RR 95% CI 

Crude 1 1 3.52  2.86, 4.33 

     

Adjusted a 1 1 1.94 1.55, 2.44 

     

 0.98 0.90 2.03 1.57, 2.61 

 0.98 0.80 2.02 1.57, 2.60 

 0.98 0.60 2.00 1.56, 2.56 

     

 0.95 0.90 2.19 1.60, 3.00 

 0.95 0.85 2.18 1.59, 2.99 

 0.95 0.80 2.17  1.59, 2.98      

 0.95 0.60 2.12 1.56, 2.89 

     

 0.90 0.90 2.97 1.34, 6.56 

 0.90 0.80 3.03 1.32, 6.94 

 0.90 0.60 3.07 1.54, 6.10 

RR, Rate Ratio; CI, Confidence Interval 
a Adjusted for sex, race, age, and year of study entry 
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Table 5.3 Rate ratio of lung cancer mortality per 100 fiber-years/mL cumulative asbestos 
exposure, South Carolina, United States, 1940 – 2001, under several independent prior 
distributions reflecting beliefs about outcome misclassification  
 

  Specificity Sensitivity     

Model Details Details  RR 95% CI/PI  

Crude 1 1 3.52 2.86, 4.33 

Adjusted a 1 1 1.94  1.55, 2.44 

Consensus prior Uniform (0.9, 1.0) Uniform (0.75, 0.95) 2.04  1.61, 2.56 b 

Alternate variance Uniform(0.925, 0.975) Uniform(0.8, 0.9) 2.14 1.69, 2.78 b 

Alternate priors Uniform (0.95, 1) Uniform (0.75, 0.95) 1.96 1.53, 2.51 b 

 Uniform (0.9, 1.0) Uniform(0.6, 0.9) 2.05 1.58, 2.56 b 

RR, Rate Ratio; CI, Confidence Interval; PI, Posterior Interval 
a Adjusted for sex, race, age, and year of study entry 
b Posterior intervals 

 

 

 

 

 



  

 
 

6 Discussion 

 

6.1 Summary 

Effect estimates are likely to be biased when the outcome of interest is misclassified, 

except in special cases. Bias due to outcome misclassification is small when specificity is 

near 1 or the number of false positive outcomes is low. Many epidemiologists assume 

either perfect outcome measurement or perfect specificity and routinely disregard 

outcome misclassification in their analyses. However, we have seen that bias due outcome 

misclassification may occur in studies of both of the commonly-used types of outcomes 

explored in the preceding chapters. In this work, we proposed three tools to account for 

outcome misclassification in epidemiologic analyses: multiple imputation, modified 

maximum likelihood, and Bayesian methods. 

We first examined the use of participant-reported symptoms as an indicator of the 

outcome of interest. Many studies use participant recall or diaries to track outcomes 

without invading privacy or requiring frequent contact between the participant and the 

study team. In the Recurrence Factors sub-study of the Herpetic Eye Disease Study, the 

sensitivity of participant-reported HSV recurrence was less than 50% and specificity was 

about 90%, resulting in substantial bias in the naïve odds ratio (or risk ratio). 
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We next examined the use of death certificates to identify deaths due to a cause of 

interest. Misattribution of cause of death information on death certificates can cause 

outcome misclassification. In the example from the South Carolina textile workers cohort, 

we suspected that lung cancer death was subject to mild outcome misclassification, which 

resulted in little bias in the naïve rate ratio. In sensitivity analysis, however, we saw that 

the naïve rate ratio would be substantially biased if specificity had been below 95%, which 

may occur for other causes of death. 

 Multiple imputation, modified maximum likelihood, and Bayesian methods provide 

tools to account for outcome misclassification in a variety of epidemiologic settings. In this 

work, we demonstrated that multiple imputation can be used to account for outcome 

misclassification in studies with an internal validation subgroup. Modified maximum 

likelihood allowed sensitivity analysis of effect estimates under known or hypothesized 

values of sensitivity and specificity. This modified maximum likelihood approach was 

extended to incorporate prior distributions that expressed uncertainty about the values of 

sensitivity and specificity using Bayesian analysis. 

 Both multiple imputation and the Bayesian analysis using the modified likelihood 

function accounted for the uncertainty inherent in outcome misclassification. Multiple 

imputation allowed this uncertainty to propagate through the analysis by redrawing 

coefficients for the relationship between the gold standard outcome and the error-prone 

outcome for each imputation. Uncertainty was handled in the Bayesian analysis through 

direct manipulation of the width of the uniform prior distributions for sensitivity and 

specificity.  
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6.1.1 Multiple imputation 

We used multiple imputation to account for outcome misclassification in a study 

with an internal validation subgroup. In simulations, multiple imputation produced 

estimates of the odds ratio and risk ratio with little bias and appropriate confidence 

interval coverage under scenarios with varying degrees of differential and nondifferential 

outcome misclassification.  

 Multiple imputation was also used to account for outcome misclassification in the 

Herpetic Eye Disease study data. The naïve odds ratio comparing participant-reported HSV 

recurrence between treatment arms randomized to receive oral acyclovir and placebo was 

biased towards the null due to poor sensitivity and specificity of participant-reported HSV 

recurrence. Using multiple imputation to account for outcome misclassification produced 

an odds ratio with little bias. However, multiple imputation offered only slight gains in 

precision over analysis limited only to the internal validation subgroup.  

 Multiple imputation is useful in studies with internal validation data because it 

leverages information in the complete data to obtain more precise estimates than analysis 

limited to the validation subgroup. This advantage is seen most clearly when the validation 

subgroup is a small proportion of the entire study population and outcome 

misclassification is mild. In the data from the Herpetic Eye Disease Study multiple 

imputation offered only a slight advantage over limiting analysis to the validation subgroup 

even though the validation study was small. Because the observed outcome was a poor 

proxy for the gold standard outcome, the imputation model contained a high degree of 

uncertainty that propagated through to the variance of the final effect estimate. 
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 Both multiple imputation and modified maximum likelihood can be used to estimate 

odds ratios and risk ratios when validation data are available. In this analysis, multiple 

imputation produced results similar to results using modified maximum likelihood to 

account for outcome misclassification, though results using the modified likelihood 

function were slightly more precise.  

 Any method using an internal validation subgroup to account for outcome 

misclassification must make two critical assumptions about the validation subgroup. The 

first is that the relationship between the observed, error-prone, outcome and the gold-

standard outcome is the same in the validation subgroup and in the complete data. This 

transportability assumption could be violated if participants are not selected into the 

validation subgroup at random (or at random within strata of covariates). The second 

assumption is that the gold-standard outcome is measured without error. If the gold-

standard outcome is, itself, subject to error, multiple imputation will produce results with 

residual bias that are misleadingly precise (72). 

 Unfortunately, internal validation data are often unavailable. In studies without an 

internal validation subgroup, sensitivity and specificity can be estimated from external 

validation subgroups or expert opinions about the misclassification probabilities. However, 

multiple imputation is not easily extended to account for outcome misclassification when 

only sensitivity and specificity are known and no information is available about the positive 

or negative predictive value. Because positive predictive value is a function of the 

prevalence of the outcome in addition to the sensitivity and specificity, it is rarely 

transportable from one population to another. In these situations, we turn to modified 

maximum likelihood and Bayesian methods.  
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6.1.2 Modified maximum likelihood and Bayesian analysis 

 Modified maximum likelihood and Bayesian analysis worked well to account for 

outcome misclassification in studies in which no internal validation subgroup was 

available. Here, we focused on the scenario in which the event indicator was subject to 

error but the times were thought to be correct, as motivated by cause of death from the 

National Death Index. In simulated scenarios with varying degrees of outcome 

misclassification, modified maximum likelihood produced rate ratios with little bias and 

appropriate coverage.  

 In the cohort of South Carolina textile workers exposed to asbestos, modified 

maximum likelihood was used to conduct a sensitivity analysis in which rate ratios were 

estimated under varying assumptions about the amount of misclassification of lung cancer 

mortality. Changes in sensitivity had little effect on the rate ratio, but changes in specificity 

produced dramatic shifts in the rate ratio.  

 To allow uncertainty about sensitivity and specificity, we placed informative prior 

distributions on these parameters. Based on existing validation studies, sensitivity was 

assumed to follow a uniform distribution bounded by 0.75 and 0.95. Specificity was 

assumed to be uniformly distributed between 0.9 and 1.0. Using these priors, the posterior 

estimate of the rate ratio was very similar to the rate ratio from the standard analysis. We 

would expect posterior rate ratios to differ more dramatically from the standard estimates 

of the rate ratio for outcomes subject to more severe misclassification.  

 While placing prior distributions on sensitivity and specificity and using Markov 

chain Monte Carlo to sample from the posterior distribution of the parameter of interest is 



 

92 
 

appealing, it has several limitations. First, Markov chain Monte Carlo is computationally 

intensive. Condensing the data into a dataset with one record per distinct covariate pattern 

reduced the time required for each run, but the program still required several hours to 

obtain posterior estimates. Second, sensitivity and specificity are weakly identifiable from 

the observed data at best (46). For this reason, almost all of the information about 

sensitivity and specificity is contained in the prior distributions, and convergence to a 

stable posterior distribution is difficult. In addition, posterior draws of sensitivity and 

specificity may not have fully explored the uniform distributions specified by the priors, 

resulting in underestimation of the variance and artificially tight posterior intervals. 

 

6.2 Future directions 

In chapters 3, 4, and 5, we described multiple imputation, modified maximum 

likelihood, and Bayesian methods to account for outcome misclassification. These methods 

worked well in the examples to confirm earlier findings; after accounting for 

misclassification acyclovir was shown to be more effective than placebo at preventing 

ocular HSV recurrences and asbestos was shown to increase the risk of lung cancer. The 

next step is to use these methods to account for outcome misclassification in emerging 

research areas. Use of these methods will improve inferences from epidemiologic studies, 

but may require extensions to be applied to specific types of analyses.  

In chapter 5, we saw that outcome misclassification did not produce bias in effect 

estimates when specificity of the outcome measure was high. In the sensitivity analysis, 

estimates of the rate ratio for lung cancer death per 100 f-y/mL of asbestos exposure 

accounting for outcome misclassification were similar to estimates from the standard 
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model under the most likely value of specificity (98%). However, for outcome measures 

with lower specificity, bias due to outcome misclassification becomes more pronounced 

and may have an impact on epidemiologic findings. 

For example, asbestos has been implicated in the elevated risk of mortality from 

coronary heart disease seen in cohorts of miners, mill workers, and shipyard workers (76–

80). Unlike lung cancer, the specificity of coronary heart disease reported on death 

certificates is low (33,81). 

In the Framingham heart study, 84% (635/758) of the deaths identified by a 

physician panel as deaths due to coronary heart disease were classified as a death due to 

coronary heart disease on the death certificate. Similarly, 84% of deaths designated as non-

coronary heart disease deaths by the physician panel were classified as deaths due to 

causes other than coronary heart disease on the death certificate (33). A validation study 

conducted in the Atherosclerosis Risk in Communities (ARIC) study produced similar 

results. In the ARIC study, the sensitivity of death certificate classification of coronary heart 

disease death was 81%, and specificity was 72% (81).  

 Due to the high probability of outcome misclassification of coronary heart disease 

mortality, studies using coronary heart disease mortality reported on death certificates are 

likely to produce biased effect estimates. Future work could use the methods developed 

here to account for outcome misclassification in studies of coronary heart disease 

mortality. As a first step, we used the methods outline in chapter 5 to conduct a sensitivity 

analysis to examine the effect of possible outcome misclassification on the rate ratio of 

death due to coronary heart disease per 100 f-y/mL of asbestos exposure in the cohort of 

textile workers in South Carolina. Results are summarized in the appendix. Many outcomes 
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used in epidemiology are subject to low specificity and could benefit from similar 

sensitivity analyses. 

In chapter 4, we saw that multiple imputation can be used to account for outcome 

misclassification in studies with validation data. We focused on accounting for outcome 

misclassification of a binary outcome in logistic and log-binomial regression, but multiple 

imputation could be extended to account for outcome misclassification in other types of 

models as well. Extending the multiple imputation approach to account for 

misclassification in the time-to-event setting presents several challenges. A time-to-event 

outcome has two components: a time and an event indicator. Multiple imputation can be 

extended with minor modification to account for error in either of these components if an 

internal validation subgroup is available.  

For example, consider the situation in which the time from the origin to the event was 

potentially mismeasured. If an internal validation subgroup related the observed times to a 

gold-standard measure of the time-to-event and all participants were known to have 

experienced the event of interest, multiple imputation could use information in the 

validation subgroup to impute the time-to-event in the complete data. Unlike the binary 

outcomes discuss above, the relationship between the gold standard measure of time and 

the observed time would be modeled with a parametric accelerated failure time model, and 

this model would be used to impute the times-to-event in the complete data. Challenges in 

the imputation of the time to event arise when participants drop out of the study or 

experience competing events.  

 Alternatively, a situation could arise in which the times were known but the event 

indicator was potentially misclassified, as in chapter 5. If internal validation study relating 
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the observed outcome indicator to the gold-standard outcome indicator were available, 

multiple imputation could be used to impute the outcome in the complete data. Using 

multiple imputation to account for a misclassified event indicator in time-to-event data 

would differ from the application of multiple imputation in the Herpetic Eye Disease Study 

data only in the choice of analysis model. In the time-to-event setting, the analysis model 

would likely be a Cox proportional hazards model or parametric accelerated failure time 

model instead of a binary regression model.  

In chapter 5, we placed informative prior distributions on sensitivity and specificity 

and used Markov chain Monte Carlo to sample from the posterior distribution of the rate 

ratio. However, the convergence of this procedure was difficult to achieve and highly 

dependent on the specification of the model and starting values for parameters. Future 

work using this approach should assess model convergence carefully before basing 

inference on results obtained from Markov chain Monte Carlo.  

 As an alternative, future work could place informative prior distributions on 

sensitivity and specificity using prior data records, as proposed by Greenland for bias 

analysis (72). In this approach, prior data records are appended to the dataset and 

combined with the existing data using missing data methods to compute posterior effect 

estimates. Encoding beliefs about the misclassification parameters using prior data records 

avoids the computational challenges of Markov chain Monte Carlo and allows more 

flexibility in the choice of prior.  
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6.3 Conclusions 

This work has highlighted the potential for bias due to outcome misclassification and 

described three tools to account for misclassification in a variety of epidemiologic settings. 

Use of such techniques in concert with validation data or expert knowledge and 

appropriate methods to account for confounding and selection bias will improve inference 

from epidemiologic studies. 
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Appendix 1: Direct maximum likelihood to account for outcome 
misclassification 

 

We compare the proposed multiple imputation approach to account for outcome 

misclassification to a direct maximum likelihood approach outlined in Carroll et al (16) and 

detailed by Lyles et al (47). The direct maximum likelihood approach for a main study with 

a validation subgroup specifies the likelihood for the logistic regression model relating 

exposure to outcome as the product of the likelihood for the main study and the likelihood 

for the validation subgroup. In both likelihood terms, sensitivity and specificity are based 

on associations between observed outcome, gold standard outcome, and exposure defined 

using a logistic model 

   logit[               ]                  for        

Sensitivity and specificity are calculated as 
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and the likelihood for the validation study is 
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where i indexes the nm  participants in the main study (but not the validation subgroup) 

(i=1, … , nm) and j indexes the nv participants in the validation subgroup (j=1, … , nv). As in 

the main body of the paper, D is an indicator of the gold standard outcome status, W is the 

observed outcome status, X is the treatment group, and Z is the vector of covariates.  

The direct maximum likelihood approach differed between the logistic model and log 

binomial model only in the choice of link function. In the logistic model, 
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And in the log binomial model, 
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Appendix 2: SAS code for multiple imputation to account for outcome 
misclassification 

 

We adapted SAS code from Cole (4) to perform multiple imputation to account for 

outcome misclassification.  Here, we present SAS code to account for outcome 

misclassification that is differential with respect to treatment group. We will illustrate use 

of Firth’s correction to prevent separation of data points when modeling the relationship 

between gold standard and observed exposure in the validation subgroup in the 

imputation model. The SAS code below could be adapted to account for nondifferential 

outcome misclassification by removing the interaction between treatment group and 

observed outcome in the imputation model. 

 

*step 1: Fit logistic regression model relating gold standard outcome to observed outcome 

in validation subgroup; 

data m; col1=.; col2=.; col3=.; col4=.; col5=.; col6=.; 

data a; set a; wx=w*x; 

proc logistic data=a descending covout outest=b(keep=_name_ intercept w x wx z1 z2) 

noprint;  where r=1;  

model d=w x wx z1 z2/firth; 

data bb; set b; if  _name_="d"; bh0=intercept; bh1=w; bh2=x; bh3=wx; bh4=z1; bh5=z2;  

keep bh0-bh5; 

data cov; set b; if _name_^="d"; keep intercept w x wx z1 z2 ; 

 

*step 2: Sample coefficients for each imputation; 
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proc iml; 

   use cov; read all into cov;       *variance-covariance matrix; 

   use bb; read all into mu; mu=mu`; *means; 

   v=nrow(cov);                       *number of variables; 

   n=40;                              *number of imputations; 

   seed=222; 

   l=t(root(cov));                  *cholesky root of cov matrix; 

   z=normal(j(v,n,seed));          *generate nvars*samplesize normals; 

   d=l*z;                           *premultiply by cholesky root; 

   d=repeat(mu,1,n)+d;             *add in the means; 

   td=t(d); 

   create m from td;              *write out sample data to sas dataset; 

   append from td; 

quit; 

data m; set m;  retain _imputation_ 0; _imputation_=_imputation_+1; 

    b0=col1; b1=col2; b2=col3; b3=col4; b4=col5; b5=col6; 

    keep _imputation_ b0-b5 ;  

data aa; merge d bb;  do _imputation_=1 to 40; output; end; 

proc sort data=m; by  _imputation_; 

proc sort data=aa; by  _imputation_; 

 

*step 3: impute outcome for records not in the validation subgroup; 

data c; merge aa m; by  _imputation_; call streaminit(9); 
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    if r=1 then d_imp=d;   

 else  d_imp=rand("bernoulli",1/(1+exp(-(b0+b1*w+b2*x+b3*wx+b4*z1+b5*z2))));  

 

*step 4a: Fit Logistic analysis model in each imputation; 

proc logistic data=c outest=e covout noprint desc; by _imputation_;model d_imp=x z1 z2; 

*step 4b: Fit Binomial analysis model in each imputation; 

proc genmod data=c desc;  

model d_imp=x z1 z2 / link=log dist=bin wald type3; 

by _imputation_;  

ods output parameterestimates=f; 

run; 

*step 4c: Summarize Logistic results over all imputations; 

proc mianalyze data=e;  modeleffects x;  
 title " multiple imputation to account for outcome misclassification";  

run; 
 

*step 4d: Summarize Binomial results over all imputations; 

data f; 

 set f; 

 if parameter="x"; 

proc mianalyze data=f;   

 modeleffects estimate;  

 stderr stderr;  

 ods output parameterestimates=mi3(keep= parm estimate stderr);  

run; 
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Appendix 3: Monte Carlo Simulation Methods for Chapter 4 

 

For each of 15 simulated scenarios, records were generated with values for 

treatment group (x), true outcome status (d), observed outcome status (w), and an 

indicator of inclusion in the validation subgroup (r). Half of the simulated records were 

assigned to each treatment group. True outcomes were simulated based on a Bernoulli 

distribution with the probability of being a case generated from a logistic regression model 

with the   coefficient for acyclovir equal to -0.693 (a true odds ratio of 0.5). Error-prone 

outcomes were generated based on hypothetical values for the accuracy of the outcome 

measure; one set of simulations generated observed outcome data with nondifferential 

misclassification with sensitivity set to be 0.90, 0.60, or 0.30, and the other assumed that 

outcome classification was more sensitive in exposed participants (sensitivity=0.95 and 

0.70 for the two scenarios, respectively) than unexposed participants (sensitivity=0.85 and 

0.50). Specificity was 0.90 in all scenarios. 

For each scenario, a designated proportion was chosen to be included in the 

validation subgroup. For each record, r was sampled from a Bernoulli distribution with 

probability equal to the proportion included in the validation subgroup. As in the real data 

example, the true outcome was assumed to be known only for records where r = 1.  

Each scenario was simulated 10,000 times. Bias was defined as 100 times the 

difference between the average estimated log odds ratio and the true log odds ratio. 

Confidence interval coverage was calculated as the percentage of simulations in which the 

estimated Wald-type confidence limits included the true value. Bias and precision were 

considered together using mean squared error, which was calculated as the sum of the 
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square of the bias and the variance. Statistical power was calculated as the percentage of 

simulations in which the Wald-type confidence interval excluded the null value. 
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Appendix 4: Computer programs for Chapter 5 

 

A. SAS code to account for outcome misclassification in a Poisson model using direct 

maximum likelihood and known values of sensitivity and specificity 

 

The SAS code below is applied to the dataset with the 120,010 person-years summarized 

into 4183 strata of distinct covariate patterns. In the code below, lam =   , mu =   , wj =   , 

dj =   , and nj =   . In this example, sensitivity is assumed to be 85% and specificity is 

assumed to be 95%. 

 

%let se=0.85; %let sp=0.95; 

title "rate ratio accounting for outcome misclassification (se=&se, sp=&sp)"; 

proc nlmixed data=tabled gconv=1e-15 fconv=1e-15;  

 parms b0=-5 b1=.5 a0=-5 a1=0 b2=0 b3=0  b4=0 a2=0 a3=0  a4=0;  

 se=&se; sp=&sp;  

 lam=exp(b0+b1*asbestos+b2*sex+b3*log(age)+b4*year);  

 mu=exp(a0+a1*asbestos+a2*sex+a3*age+a4*year);  

 lik=(lam*se+mu*(1-sp))**(wj)*( lam*(1-se)+mu*sp)**(dj-wj)*exp(-(lam*se+mu*(1-

sp)+ lam*(1-se)+mu*sp)*nj); 

 model nj~general(log(lik)); 

run; 

B.  SAS code to account for outcome misclassification in a Poisson model by placing prior 

distributions on sensitivity and specificity 
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The SAS code below places informative prior distributions on sensitivity and specificity. In 

this example, sensitivity is given a uniform prior distribution from 0.75 to 0.95, and 

specificity is given a uniform prior distribution from 0.9 to 1. 

 

proc mcmc data=table ntu=1000 nmc=500000 nbi=50000 nthin=3 seed=215  outpost=p1 ; 

 parms b0=-8 b1=1 a0=-3 a1=0 b2=-1 b3=2  b4=0 a2=-1 a3=0  a4=0;  

 parms se=.9 sp=.97; 

 prior b0 b1 b2 b3 b4 a0 a1 a2 a3 a4~normal(0,var=100); 

 prior se~uniform(0.75, 0.95); 

 prior sp~uniform(0.9, 1); 

 lam=exp(b0+b1*asbestos+b2*sex+b3*log(age)+b4*year);  

 mu=exp(a0+a1*asbestos+a2*sex+a3*age+a4*year);  

 lik=(lam*se+mu*(1-sp))**(wj)*( lam*(1-se)+mu*sp)**(dj-wj)*exp(-(lam*se+mu*(1-

sp)+ lam*(1-se)+mu*sp)*nj); 

 model nj~general(log(lik)); 

 ods select PostSummaries PostIntervals; 

title "priors se=0.75 to 95,  sp=0.9 to 1"; 

run; quit; run; 
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Appendix 5: Monte Carlo simulations for Chapter 5 

 

A. Design 

We used simulation to explore the finite sample properties of using the modified 

maximum likelihood estimates to account for outcome misclassification. Simulations were 

performed with sensitivity and specificity assumed to be known. The simulations were 

intended to mimic the data from the cohort of textile workers exposed to asbestos in South 

Carolina. Let i index simulated participants in each strata of distinct covariate patterns (i 

=1, … ,  ), where    is the number of participants in strata j, and X represent exposure 

ranging from 0 to 500 (mean = 45, standard deviation = 28). The time to death due to lung 

cancer (R) and time death due to other causes (S) followed exponential distributions with 

means determined by the exposure value. In expectation, a 100-unit increase in exposure 

decreased the time to lung cancer (R) by one-half and the time to non-lung cancer death (S) 

by one-third. The total time (T) contributed by each record was the minimum of R and S.  

Cause of death was represented by  . If death due to lung cancer occurred before 

death due to other causes would have occurred (R < S) then   was set to 1. Otherwise, if 

death due to other causes occurred before death due to lung cancer (S < R), then   was set 

to 2. Simulated participants were censored after 5 years; for participants with T > 5,   was 

set to 0. 

Error-prone cause of death indicator    was generated based on   and values of 

sensitivity and specificity. We simulated five possible scenarios with varying degrees of 

outcome misclassification: 1) both sensitivity and specificity set to 1; 2) specificity set to 

0.95 and sensitivity set to 0.9; 3) specificity set to 0.95 and sensitivity set to 0.6; 4) both 
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sensitivity and specificity set to 0.9; and 5) specificity set to 0.9 and sensitivity set to 0.6. In 

all scenarios, outcome misclassification was nondifferential with respect to exposure and 

other measured covariates. For each scenario,    was sampled from a Bernoulli 

distribution with probability determined by sensitivity and specificity. Where   = 1, the 

probability that   = 1 was equal to the value of sensitivity; where   = 2, the probability that 

  = 1 was equal to 1 – specificity. If   was not drawn to be 1 (lung cancer death),   was set 

to 2 (other death). If T > 5 years, then    was set to 0. 

Each scenario was simulated 10,000 times. For each simulated cohort, we 

summarized the data into J strata of distinct covariate patterns following the same 

categorization used for the actual data and calculated two counts for each strata: yj, the sum 

of all actual lung cancer deaths in each strata, ∑        
  

   
, and wj, the sum of all reported 

lung cancer deaths in each strata, ∑     
   

  

   
). We used Poisson regression to estimate 

the rate ratio of the lung cancer death per 100-unit increase in exposure. We estimated the 

true rate ratio (using yj as the count of lung cancer deaths) and the naïve rate ratio (using 

wj as the count of lung cancer deaths) with standard methods. We then compared these 

results to results using the method described above using modified maximum likelihood to 

account for outcome misclassification by setting values of sensitivity and specificity.  

We evaluated the performance of this method to account for outcome 

misclassification by comparing bias and 95% confidence interval coverage between the 

standard analysis using wj as the count of lung cancer deaths and the analysis using 

modified maximum likelihood to set values of sensitivity and specificity. Bias was defined 

as 100 times the difference between the average estimated log rate ratio and true log rate 

ratio, and confidence interval coverage was calculated as the proportion of simulations in 
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which the estimated Wald-type confidence limits included the true value. The bias-

precision tradeoff was considered through examination of the mean-squared error, which 

was the sum of the square of the bias and the square of the standard deviation of the bias. 

 

B. Results 

 Appendix table 1 compares the performance of the standard method and the 

modified maximum likelihood estimate to account for misclassification in the rate ratio for 

10,000 simulated cohorts under several scenarios of outcome misclassification. As 

expected, the standard estimates of the rate ratio were biased towards the null when 

sensitivity and specificity were imperfect and bias increased as the degree of outcome 

misclassification increased. In contrast, revised estimates accounting for sensitivity and 

specificity using modified maximum likelihood showed little bias, even when sensitivity 

and specificity were quite low. The confidence limits from the revised estimates showed 

appropriate coverage in all scenarios examined. 

 Mean squared error was improved for the revised estimates when compared to the 

standard estimates under all combinations of sensitivity and specificity. The difference in 

mean squared error between the standard and revised estimates was small in scenario 2, 

where sensitivity was 0.9 and specificity was 0.95, because the inflated standard error of 

the revised estimate offset the small bias in the standard estimate. However, as sensitivity 

and specificity decreased, the difference in mean squared error became more pronounced. 

In the scenario with the most extreme outcome misclassification (sensitivity of 0.6 and 

specificity of 0.9), the bias in the standard estimate overwhelmed the increase in standard 
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error of the revised estimate, resulting in a large improvement in mean squared error for 

the revised estimate when compared to the standard estimate. 
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Table A.1 Results accounting for outcome misclassification using Poisson regression in 
10,000 simulated cohorts a  

 

Scenario  Method Rate ratio Bias b 
95% CI  

Coverage c 

Mean 

squared 

error d 

1. Specificity = 1, Sensitivity = 1 Truth 2.00 0 95 0.77 

      

2. Specificity = 0.95, Sensitivity = 0.9 Standard 1.89 -5 91 1.15 

Revised 2.00 0 95 0.95 

      

3. Specificity = 0.95, Sensitivity = 0.6 Standard 1.84 -8 89 1.96 

Revised 2.01 0 95 1.30 

      

4. Specificity = 0.9, Sensitivity = 0.9 Standard 1.80 -10 79 1.93 

Revised 2.01 0 95 0.96 

      

5. Specificity = 0.9, Sensitivity = 0.6 Standard 1.72 -15 72 3.55 

Revised 2.01 1 95 1.46 

a The models accounting for imperfect sensitivity and specificity did not converge in 6, 7, 9, 

and 5 simulated cohorts for scenarios 2,3, 4, and 5, respectively. 
b Bias was defined as 100 times the difference between the true ln(rate ratio) and the 

estimated ln(rate ratio) 
c 95% confidence interval coverage was the proportion of iterations in which the estimated 

95% confidence interval contained the true value 
d Mean squared error was the sum of the square of the bias and the square of the standard 

deviation of the bias 
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Table A.2 Comparison of average standard errors and standard deviations of point 
estimates from 10,000 simulated cohorts a 

 

a The models accounting for imperfect sensitivity and specificity did not converge in 6, 7, 9, 

and 5 simulated cohorts for scenarios 2,3, 4, and 5, respectively. 

 

 

  

Scenario  Method Mean   

Mean 

standard 

error 

Standard 

deviation of 

  

1. Specificity = 1, Sensitivity = 1 Truth 0.695 0.087 0.088 

     

2. Specificity = 0.95, Sensitivity = 0.9 Naïve 0.639 0.091 0.092 

Revised 0.691 0.094 0.095 

     

3. Specificity = 0.95, Sensitivity = 0.6 Naïve 0.612 0.110 0.114 

Revised 0.698 0.110 0.114 

     

4. Specificity = 0.9, Sensitivity = 0.9 Naïve 0.588 0.089 0.091 

Revised 0.696 0.097 0.098 

     

5. Specificity = 0.9, Sensitivity = 0.6 Naïve 0.542 0.108 0.112 

Revised 0.700 0.115 0.121 
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Appendix 6: Sensitivity analysis of rate ratios of coronary heart disease per 
100 f-y/mL asbestos exposure under misclassification scenarios 

 

Table A.3 Rate ratios of mortality due to coronary heart disease per 100 fiber-years/mL 
cumulative asbestos exposure, South Carolina, United States, 1940 – 2001, under several 
outcome misclassification scenarios  
 
   Coronary Heart Disease 

Model Specificity Sensitivity RR 95% CI 

Crude 1 1 2.60 2.14, 3.16 

     

Adjusted a 1 1 1.37 1.10, 1.70 

     

 0.98 0.90 1.38 1.09, 1.75 

 0.98 0.80 1.38 1.09, 1.75 

 0.98 0.60 1.38 1.09, 1.74 

     

 0.95 0.90 1.41 1.07, 1.85 

 0.95 0.85 1.41 1.07, 1.85 

 0.95 0.80 1.41 1.07, 1.85 

 0.95 0.60 1.40 1.07, 1.84 

     

 0.90 0.90 1.50 1.02, 2.20 

 0.90 0.80 1.50 1.02, 2.19 

 0.90 0.60 1.48 1.01, 2.17 

     

 0.85 0.90 1.91 1.07, 3.42 

 0.85 0.80 1.92 1.08, 3.41 

 0.85 0.60 1.91 1.14, 3.22 

RR, Rate Ratio; CI, Confidence Interval 

a Adjusted for sex, race, age, and year of study entry 
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