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ABSTRACT 
 

ANGELA M. SPARROW: The Role of Neuropeptide Y on Binge-Like Ethanol  
 

Consumption  

 

(Under the direction of Todd E. Thiele) 
 
 

 Neuropeptide Y (NPY) is a neuromodulator that modulates a number of 

neurobiological responses including anxiety and ethanol consumption. The goal of 

the present studies was to examine the role of NPY in binge-like drinking using the 

drinking in dark (DID) procedures, which is an animal model of binge-like ethanol 

consumption using C57BL/6J mice. Experiment 1 involved central administration of 

NPY and receptor selective agonists and antagonists prior to ethanol exposure to 

test the hypothesis that NPY Y1 and Y2 receptor signaling have important 

modulatory roles in binge-like ethanol consumption. The results of this set of 

experiments indicate that NPY reduces binge-like ethanol consumption through 

activation of the Y1 receptors or antagonism of the Y2 receptors. Experiment 2 

tested the hypothesis that repeated binge-like ethanol consumption alters levels of 

NPY and NPY receptors by subjecting mice to a varying number of binge-like 

ethanol drinking cycles followed by immunohistochemistry techniques to assess 

NPY and Y1 receptor immunoreactivity (IR) in regions of the extended amygdala. 

NPY and Y1 receptor IR was reduced in the central nucleus of the amygdala (CeA), 

the bed nucleus of the stria terminalis and the nucleus accumbens in mice exposed 
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to binge-like ethanol consumption compared to water control mice. Based on these 

results, experiment 3 utilized a neurotoxin conjugated to NPY, which blunts NPY 

signaling by causing cell death in cells expressing NPY receptors. This neurotoxin 

was used to test the hypothesis that NPY receptor signaling in the amygdala has a 

modulatory role for binge-like ethanol consumption. The data revealed that blunted 

NPY signaling in either the CeA or the basolateral amygdala blocked the reduction 

of binge-like ethanol consumption by centrally administered NPY. Taken together, 

these experiments indicate that NPY has modulatory role for binge-like ethanol 

consumption through Y1 and Y2 receptors in the extended amygdala. Furthermore, 

binge-like ethanol consumption produces transient alterations in the NPY system, 

which may lead to the development of ethanol dependence. These results also 

suggest a possible therapeutic value for NPY to protect against excessive ethanol 

consumption and the development of ethanol dependence. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

 Alcoholism is a disease that is widespread and prevalent in the United States 

and affects people of any gender, race or socioeconomic status. Alcohol abuse is 

characterized by a pattern of alcohol consumption that causes impairment or 

distress in multiple aspects of one’s life including work and personal relationships 

while alcohol dependence includes an inability to control alcohol use, the 

development of tolerance associated with physiological withdrawal symptoms, and 

an increase in alcohol intake (American Psychiatric Association, 1994). In the U.S., 

an estimated 9.7 million adults (18 year of age or older) fit the DSM IV criteria for 

alcohol abuse disorders, while another 7.9 million adults fit the criteria for alcohol 

dependence (National Institute on Alcohol Abuse and Alcoholism, NIAAA, 

database). The economic costs of alcohol abuse in the U.S. is staggering at an 

estimated $184.6 billion in 1998 (NIAAA database) and has likely increased over the 

past 12 years. These costs include healthcare, lost wages due to alcohol-related 

illness or premature death, and other impacts on society including crime and 

alcohol-related motor vehicle accidents. Alcohol use is also widespread among the 

youth of our nation. In a 2009 report from NIAAA, an estimated 28.2% of 

adolescents aged 12-20 reported alcohol use in the previous 30 days (Chen et al., 
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2009). Another troubling statistic is that 23.8% of high school students report 

consuming their first alcoholic beverage by age 13. This statistic is concerning 

because the younger the age of initial alcohol consumption, the higher the risk of 

alcohol abuse and dependence later in life (Grant et al., 2001; York et al., 2004). 

Alcoholism is associated with higher rates and often co-morbid with other psychiatric 

disorders (Chen et al., 2006; Schuckit and Hasselbrock, 1994). The prevalence of 

mood disorders, anxiety and phobic disorders, and many personality disorders, in 

particular antisocial personality disorders, are much greater in those that drink 

alcohol compared to non-drinkers (Chen et al., 2006). With the high prevalence and 

astounding costs of alcohol abuse, it is important for clinicians and researchers to 

understand the pathology and underlying causes in order to find effective treatments 

for this disease. 

 

Binge Drinking in the Human Population 

Binge drinking has been defined by the National Institute on Alcohol Abuse 

and Alcoholism (NIAAA, 2004) as a pattern of alcohol drinking that produces blood 

alcohol concentrations (BACs) or 0.08 gram percent (80 mg/dl) or above within a 2 

hour period. This would correspond to about 5 alcoholic beverages for males and 4 

alcoholic beverages for females where 1 alcoholic beverage corresponds to 0.5 

ounces of pure alcohol. Binge drinking is also different from “risky” drinking, which is 

consuming enough alcohol to produce BACs between 0.05 and 0.08 gram percent 

and a drinking “bender”, which is 2 or more days or heavy drinking (NIAAA, 2004). 

Binge drinking has become an important subject in research as the number of binge 
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drinking episodes in U.S. adults has steadily increased over the last several years 

(Naimi et al., 2003). Of U.S. adults that drink excessively, about 92% reported binge 

drinking in the past 30 days (Town et al., 2006) and about 75% of all alcohol 

consumed by adults is through binge drinking (Office of Juvenile Justice and 

Delinquency Prevention, 2005). More concerning is the amount of binge drinking 

behavior that occurs among U.S. youth.  A report released in 2009 by NIAAA (Chen 

et al., 2009) found that around 26% of high school student (grades 9 – 12) reported 

at least 1 binge drinking episode in the 30 days prior to answering the survey. When 

looking at just 12th grade students, 36.5% of students reported binge drinking in the 

past 30 days with the percentage being slightly higher in males (40.4%) than 

females (32.8%). Of all alcohol consumption in those 21 and under, about 90% is in 

the form of binge drinking (Office of Juvenile Justice and Delinquency Prevention, 

2005). Though the statistics of binge drinking are high in young adults, of all binge 

drinking episodes in the U.S, about 70% occur in adults who are 26 or older (Naimi 

et al., 2003).  

Many risks are associated with binge drinking such as an increased risk of 

injury and increased violent and aggressive behavior (Brewer et al., 2005). In 

adolescents and young adults who binge drink, the use of illicit drugs is seven times 

higher than in non-binge drinkers (Chen et al., 2009). Binge drinking in adults 

causes impaired judgment and increases risky behaviors such as driving while 

intoxicated (Flowers et al., 2008; Naimi et al., 2003). A study using cardiac magnetic 

resonance imaging found that binge drinking produces short-lasting cardiac injury 

due to an inflammatory response to alcohol (Zagrosek et al., 2010). In addition, 
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binge drinking can produce long-term health consequences such as an increased 

risk of developing metabolic syndrome, heart disease and type II diabetes (Fan et 

al., 2008) and binge drinking has also been associated with increased mental 

distress and a decreased quality of life (Okoro et al., 2004). Perhaps most alarming 

is the finding of increased risk for developing alcohol dependence in individuals that 

binge drink early in life (Miller et al., 2007; Hingson et al., 2006; Hingson et al., 

2005). Binge drinking behavior during adolescents produces long-lasting 

neurocognitive disadvantages in humans and life-long pathological changes in the 

rat brain (Monti et al., 2005; Brown and Tapert, 2004). Given the numerous adverse 

consequences associated with binge drinking, and the observation that binge 

drinking is a risk factor for future ethanol dependence, understanding the 

neurobiological mechanisms that motivate binge drinking may provide insight into 

pharmaceutical interventions for reducing this dangerous behavior, and prevent the 

progression to ethanol dependence in at-risk individuals.  

 

An Animal Model of Binge-Like Ethanol Drinking 

Animal models have been an important tool in the study of alcoholism and 

alcohol-related behavior. Researchers strive to develop procedures which closely 

model the human condition. Over the past several years, investigators have studied 

binge-like ethanol consumption with the use of a recently developed model of binge 

drinking. Drinking in the dark (DID) procedures have been developed to induce high 

levels of ethanol consumption by C57BL/6J mice (Rhodes et al., 2005). High levels 

of ethanol drinking associated with DID procedures are thought to model binge-like 



5 
 

ethanol drinking. DID procedures induce mice to drink high amounts of ethanol, in a 

short time period, leading to physiologically relevant blood ethanol concentrations of 

80 mg/dL and above (Rhodes et al., 2005; Sparta et al., 2008). Previous studies 

have found that rodents have a tendency to drink most of their daily ethanol during 

the beginning of the dark period of the light/dark cycle (Gill et al., 1986). The DID 

model takes advantage of this time to induce excessive drinking, which results in 

blood ethanol concentrations reaching levels that have measurable effects on 

physiology and/or behavior (Rhodes et al., 2005). We previously found that 

removing food during DID procedures, leaving ethanol as the only source of calories 

available, did not increase ethanol consumption. Furthermore, ghrelin and leptin, 

which are peptides involved in the regulation food consumption, neither increased 

nor decreased ethanol consumption when mice were given a dose of the peptide 

that altered food consumption (Lyons et al., 2008). Thus, binge-like ethanol 

consumption stemming from DID procedures is likely not motivated by caloric need, 

but by other factors related to the pharmacological actions of ethanol.  

Recent studies have used the DID procedure to determine the neurobiological 

systems that modulate binge-like ethanol consumption. Kamdar et al., 2007 found 

that naltrexone, a non-selective opioid receptor antagonist, and a dopamine re-

uptake inhibitor both blunted binge-like ethanol intake in mice, implicating the opioid 

and dopamine systems.  Corticotrophin-releasing factor (CRF) is another system 

that has been implicated in excessive binge-like ethanol consumption. Blockage of 

the CRF type 1 receptor significantly decreases binge-like ethanol consumption 

associated with DID procedures (Sparta et al., 2008). More recent evidence showed 
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that  central administration of a CRF receptor antagonist or the CRF type 2 receptor 

agonist Urocortin 3 reduced binge-like ethanol consumption (Lowery et al., 2010) 

and microinjections of Urocortin 1 into the lateral septum also blunted binge-like 

EtOH consumption (Ryabinin et al., 2008). Thus, DID procedures allow for the 

assessment of the neurobiological processes that control binge-like drinking in an 

animal model.  

 

Neuropeptide Y 

Expression and Behavioral Involvement 

Neuropeptide Y (NPY) is a 36 amino acid peptide that is synthesized 

throughout the brain (Dumont et al., 1992; Berglund et al., 2003; Gray and Morley, 

1986). NPY cell bodies are most abundant in the hypothalamus, amygdala, nucleus 

accumbens, striatum and periaqueductal gray region (Allen et al., 1993). A study 

from 1984 reported that efferent NPY pathways from cell bodies in the amygdala 

travel through the bed nucleus of the stria terminalis (BNST) to the hypothalamus 

and regions of the basal forebrain including the septum (Allen et al., 1984). NPY is 

co-expressed with catecholamines, somatostatin, and GABA (Everitt et al., 1984; 

Beal et al., 1986; McDonald, 1989; McDonald and Pearson, 1989). Interestingly, 

i.c.v. administration of NPY increases dopamine release and alters GABA uptake in 

the striatum (Kerkerian-Le Goff et al., 1992). There are 5 NPY receptor subtypes 

(Y1, Y2, Y4, Y5, and Y6), all of which are Gi/o-protein coupled receptors. However, 

only the Y1, Y2, and Y5, receptors are expressed in the central nervous system 

(Palmiter et al., 1998). NPY in the peripheral nervous system inhibits pancreatic 
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secretion and is a powerful vasoconstrictor (Tatemoto, Carlquist and Mutt, 1982; 

Lundberg and Tatemoto, 1982) 

NPY is involved with a wide range of neurobiological systems. NPY signaling 

in the hypothalamus modulates feeding behavior and bodyweight regulation 

(Thorsell et al., 2002a; Bugarith et al., 2005; Gardiner et al., 2005), while signaling in 

the hippocampus is involved with seizure activity and spatial learning (Woldbye and 

Kokaia, 2004; Thorsell et al., 2000). The actions of NPY in the hippocampus are 

receptor specific, as the Y2, and Y5, receptors are protective against seizures and 

NPY activity through the Y1 receptor modulates spatial memory. Central activation 

of Y5 receptors modulates pain responses, as administration of a Y5 receptor 

agonist induced an analgesic response in the rat hot plate test, a supraspinal pain 

model, and this effect was blocked by pretreatment of a Y5 receptor antagonist 

(Thomsen et al., 2007). NPY has a modulating role in anxiety and stress 

responsiveness (Heilig, 2004; Thiele and Heilig, 2004). Central NPY induces 

anxiolytic effects in the elevated plus maze and open-field tests through Y1 and Y5 

receptor activity and sedative effects through the Y5 receptor (Sorenson et al., 

2004). Y1 receptor activity has also been shown to have antidepressant-like effects 

in the forced swim test (Redrobe et al., 2002). Finally and most importantly for the 

current set of experiments, NPY activity influences ethanol-related behaviors (Thiele 

et al., 2004; Thiele and Badia-Elder, 2003).  
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Role of Neuropeptide Y in Ethanol Consumption 

A number of studies have shown that ethanol consumption alters NPY 

signaling and that changes in NPY expression have an effect on ethanol drinking 

behavior. It has been found that a single injection of ethanol significantly reduces 

NPY mRNA in the arcuate nucleus of the hypothalamus (Kinoshita et al., 2000). 

However, long-term alcohol consumption significantly increases NPY levels in the 

hypothalamus (Clark et al., 1998). There is other evidence available that 

demonstrates a decrease in NPY mRNA and NPY protein levels in the central 

amygdala, the arcuate nucleus of the hypothalamus and the paraventricular nucleus 

during ethanol withdrawal (Zhang and Pandey, 2003; Roy and Pandey, 2002). 

Additionally, NPY mRNA in the hippocampus was decreased during intoxication 

associated with intragastric infusions of ethanol but mRNA levels significantly 

increased after a 16-hr withdrawal period (Olling et al., 2009). Genetic studies have 

found that alcohol-preferring (P) rats and high alcohol-drinking (HAD) rats have low 

basal levels of NPY in the amygdala compared to alcohol-nonpreferring (NP) rats 

and low alcohol-drinking (LAD) rats (Ehlers et al., 1998; Hwang et al., 1999). 

Alcohol-avoiding ANA rats also have increased NPY mRNA and Y2R expression in 

the hippocampus compared to alcohol-preferring AA rats and normal inbred Wistar 

rats (Caberlotto et al., 2001). In a study comparing two different mouse strains 

(Hayes et al., 2005), NPY levels in the nucleus accumbens shell and the amygdala 

were significantly lower in the ethanol preferring C57BL/6J strain relative to the low 

ethanol preferring DBA/2J strain, which is further evidence that low levels of NPY 

are associated with increased ethanol consumption.   
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NPY also had direct effects on neurobiological responses to ethanol. Central 

infusions of NPY in P rats significantly reduced ethanol consumption following a 

period of forced ethanol abstinence, but did not alter ethanol intake in rats exposed 

to continuous ethanol without abstinence (Gilpin et al., 2003; Gilpin et al., 2008a). A 

similar reduction of ethanol intake was seen in ethanol dependent outbred Wistar 

rats (Gilpin et al., 2008b). Transgenic mice that over-express NPY drink less ethanol 

and are more sensitive to the sedative effects of ethanol relative to wildtype mice, 

whereas mutant mice that lack normal NPY production consume more ethanol and 

are less sensitive to the sedative effects of ethanol than wildtype mice (Thiele et al., 

1998). Additionally, NPY -/- mice are more sensitive to the stimulant effect of ethanol 

as seen using a test for locomotor activity (Thiele et al., 2000). Furthermore, NPY Y1 

receptor -/- mice drink significantly more ethanol and are also less sensitive to the 

sedative effects of ethanol compared to Y1 receptor +/+ mice (Thiele et al., 2002). In 

addition, central administration of NPY increases sleep time associated with ethanol-

induced sedation without altering blood ethanol concentrations (Thiele et al., 2003). 

Several studies have demonstrated that NPY signaling in the amygdala plays a 

critical role in neurobiological responses to ethanol. A recent study using a viral 

vector to over-express NPY in the amygdala of Wistar rats showed that 

overexpression of NPY protected against ethanol deprivation-induced increases of 

ethanol consumption (Thorsell et al., 2007). Infusions of NPY into the central 

nucleus of the amygdala significantly reduced ethanol-reinforced responding in 

ethanol-dependent rats (Gilpin et al., 2008c). This study also found no effect of NPY 

on ethanol consumption in non-dependent rats, which is consistent with several 
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other studies in which NPY did not alter ethanol consumption in non-dependent 

models (Katner et al., 2002; Thiele et al., 2003). Taken together, the evidence 

presented here supports the hypothesis that NPY signaling is protective against 

dependence-induced ethanol consumption via signaling pathways in the amygdala. 

 

Allostasis: A Model of Uncontrolled Ethanol Consumption 

The allostasis model has been proposed as a way to explain uncontrolled 

ethanol consumption stemming from ethanol dependence. Ethanol consumption and 

withdrawal blunts NPY signaling, and as dependence develops over the course of 

repeated consumption and withdrawal these changes in NPY signaling are 

hypothesized to become permanent. Thus, it is hypothesized that ethanol 

dependence is associated with an new set point of NPY signaling (down-regulation), 

stemming from plastic alterations that are trigger by repeated ethanol intoxication 

and withdrawal.  This process has been labeled allostasis (Koob and Le Moal, 

2001). Specifically, according to the allostasis model, neuromodulators that have 

been associated with the modulation of ethanol consumption, such as NPY and 

CRF, which work as an opponent-process function on ethanol-related behaviors, are 

altered following repeated cycles of ethanol consumption and withdrawal (Koob and 

Le Moal, 2001; Koob, 2003; Koob and Kreek 2007). Based on the model, NPY 

signaling, which normally reduces ethanol consumption, will decrease while CRF 

signaling, which is involved with increased ethanol consumption, increases. Due to a 

hyperactive CRF system and a hypoactive NPY system, a persistent negative 

affective state occurs, which drives the negative reinforcement properties of ethanol 
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following acute withdrawal and abstinence and may be a driving force in relapse. 

The amygdala has been identified as the main area of importance for these changes 

(Koob, 2003). Ethanol deprivation following chronic ethanol exposure increases CRF 

expression in the amygdala (Zorilla et al., 2001) and as mentioned above, long-term 

ethanol consumption and withdrawal produces alterations in NPY expression with in 

the amygdala (Zhang and Pandey, 2003; Roy and Pandey, 2002). While NPY has 

been implicated in dependence-induced excessive ethanol intake, the possible role 

of NPY signaling in the modulation of binge-like ethanol drinking in non-dependent 

models has not been examined. We hypothesize that transient perturbations of NPY 

signaling develop during the course of a binge-like drinking episode, and that these 

changes make become more rigid with repeated binge drinking episodes culminating 

in dependence. Transient reduction of NPY signaling may motivate continued 

excessive ethanol intake during a binge, in a similar way as permanent reductions of 

NPY signaling are thought to motivate dependence-induced drinking. 

 

Goals of the Dissertation 

The main goal of the dissertation was to examine the role of NPY in binge 

drinking using an animal model of binge-like ethanol consumption. Furthermore, the 

present studies were designed to identify specific NPY receptor subtypes and brain 

regions involved using pharmacological and immunohistochemical techniques. First, 

the experiments in Chapter 2 tested the hypothesis that NPY Y1 and Y2 receptor 

signaling have an important modulatory role in binge-like ethanol consumption. To 

assess this hypothesis, first NPY was administered intracerebroventricularly (i.c.v.) 
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during the test day of the drinking in the dark procedures to ensure that NPY alone 

would alter binge-like ethanol consumption. Next, receptor selective agonists or 

antagonists were administered during DID procedures to determine NPY receptor 

involvement in binge-like ethanol drinking. Next, Chapter 3 tested the hypothesis 

that repeated binge-like ethanol consumption will alter NPY and Y1 receptor 

immunoreactivity. C57BL/6J mice were subjected to varying numbers of binge-like 

drinking episodes (0, 1, 3, or 6) and immunohistochemistry (IHC) techniques were 

used to measure alterations that may occur with repeated drinking episodes in the 

levels of NPY and Y1 receptors in brain regions associated with addiction (amygdala 

and the extended amygdala including the bed nucleus of the stria terminalis). Finally, 

Chapter 4 tested the hypothesis that NPY receptor signaling in the amygdala has a 

modulatory role for binge-like ethanol consumption. NPY signaling in the amygdala 

was reduced by administering a neurotoxin, NPY-saporin (NPY-SAP), infused into 

either the central nucleus of the amygdala or the basolateral amygdala. NPY was 

also administered immediately prior to binge-like ethanol consumption to determine 

if reduced NPY signaling in either of these subregions of the amygdala would alter 

the protective effects of NPY on binge-like ethanol consumption. The results from 

these studies expand our knowledge about the role of NPY in the modulation of 

binge-like ethanol consumption, which may lead to future therapies for treating 

problem binge drinking. 

 

  



 
 

 

 

 

CHAPTER 2 

THE ROLE OF NEUROPEPTIDE Y SIGNALING ON BINGE-LIKE ETHANOL 
CONSUMPTION IN C57BL/6J MICE 

 

Introduction 

Neuropeptide Y (NPY) is one of the many neuromodulators that has been 

associated with the modulation of ethanol consumption. NPY-/- mice consume 

greater amounts of ethanol than NPY +/+ mice, while mice with an overexpression of 

NPY consume less ethanol than wildtype controls (Thiele et al., 1998). Much of the 

available data have focused on the role of NPY on dependence-induced ethanol 

consumption or in animals bred to consume high amounts of ethanol. Central 

infusions of NPY reduced ethanol intake in dependent, but not in non-dependent 

Wistar rats (Thorsell et al., 2005). I.c.v. administration of NPY in P rats, rats that 

have been bred to prefer ethanol and which exhibit inherently low NPY levels in 

regions of the extended amygdala (Ehlers et al., 1998; Hwang et al., 1999), 

suppressed ethanol consumption during chronic ethanol exposure and following 

ethanol deprivation (Bertholomey et al., 2011) and also following a period of 

abstinence (Gilpin et al., 2003). 

The NPY system entails six receptor subtypes with the Y1, Y2 and Y5 

receptors being widely expressed throughout the central nervous system (CNS; 

Palmiter et al., 1998). Of the receptors, the Y1 receptor (Y1R) has been most often 
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associated with the modulation of ethanol-related behaviors. NPY Y1R-/- mice 

consume significantly more ethanol than Y1R+/+ mice (Thiele et al., 2002). Some 

recent data have also suggested a potential role of Y2 receptor (Y2R) in ethanol-

related behaviors. In many brain regions, the Y2R serves as a presynaptic 

autoreceptor that blunts the release of endogenous NPY (King et al., 1999; Colmers 

et al., 1991). Central infusion of BIIE 0246, a selective Y2R antagonist significantly 

reduced ethanol consumption in Wistar rats (Thorsell et al., 2002b). Additionally, 

NPY Y2-/- mice consume significantly less ethanol than Y2R+/+ mice, however this 

result may be dependent on genetic background (Thiele et al., 2004). Taken 

together, the data suggest an inverse relationship between the activation of Y1R and 

Y2R on the modulation of ethanol consumption. 

Investigations of the role of NPY on ethanol consumption have been directed, 

for the most part, on long-term exposure and dependence models but it has yet to 

be determined if NPY modulates non-dependent, binge-like ethanol consumption. 

The purpose of this set of experiments was to determine if NPY has a role in the 

modulation of binge-like ethanol consumption and if so, which receptor subtype or 

subtypes are involved. To accomplish this, we utilized the Drinking in the Dark (DID) 

procedures, a mouse model of binge-like ethanol consumption. Binge-like drinking 

with the DID procedure induces excessive ethanol consumption with physiologically 

relevant blood ethanol concentrations (Rhodes et al., 2005) and has been 

successfully used to examine the  neurobiological systems, such as the opioid 

system and CRF receptors, that modulate binge-like ethanol consumption (Kamdar 

et al., 2007; Sparta et al., 2008; Ryabinin et al., 2008; Lowery et al., 2010). Using 
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DID procedures, NPY and selective NPY receptor agonists and antagonists were 

administered into the brain to determine if changes in NPY signaling would produce 

alterations in binge-like ethanol consumption. Based on previous studies, it is 

predicted that the NPY Y1R and Y2R modulate binge-like ethanol consumption.  

 

Methods 

Animals 

Male C57BL/6J mice (Jackson Laboratory, Bar Harbor, ME) were used in all 

experiments. Mice were approximately 8 weeks and weighed between 25-30g at the 

beginning of experimental procedures. Mice were individually housed in 

polypropylene cages with corncob bedding and ad libitum access to standard rodent 

chow (Tekland, Madison, WI) and water, except where noted in experimental 

procedures. The colony rooms were maintained at 22ºC with a reverse 12-hr/12-hr 

light/dark cycle with lights out at 7am or 10am. All experimental procedures were 

approved by the University of North Carolina Animal Care and Use Committee 

(IACUC) and complied with the NIH Guide for Care and Use of Laboratory Animals 

(National Research Council, 1996). 

 

Surgical Procedures 

 At the beginning of the experiment and prior to any exposure to ethanol, mice 

were anesthetized with a solution containing ketamine (100 mg/ml) and xylazine (20 

mg/ml) and surgically implanted with a 26 gauge cannula (Plastics One, Roanoke, 

VA) aimed at the left lateral ventricle (0.2 mm posterior to bregma, 1.0 mm laterally 
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to the left of the midline, and 2.3 mm ventral to the skull surface). Following surgery, 

mice remained in homecages with ad libitum access to food and water for 1 week to 

recover from surgery. Mice were handled daily during the recovery period to 

acclimate to the i.c.v. infusion procedure. 

 

Drinking in the Dark 

 DID is a 4-day procedure used as an animal model of binge-like ethanol 

consumption that is described in Rhodes et al. (2005). Throughout the experiment, 

mice remained in their homecages in the vivarium. Bodyweights were taken each 

week on the first day of the experiment to monitor the health of the animals week to 

week and to calculate the g/kg of ethanol consumed. At three hours into the dark 

cycle, water bottles were removed from the homecage and replaced with a bottle 

containing a solution of 20% (v/v) ethanol. Since NPY is associated with feeding 

behaviors (Thorsell et al., 2002a; Bugarith et al., 2005; Gardiner et al., 2005), food 

was removed from the cages during ethanol access for all compounds tested, with 

the exception of BIBP 3226, as to not interfere with possible alterations on binge-like 

ethanol consumption. On days 1-3, which are considered the training days, ethanol 

bottles remained on the cages for 2 hours before removal and replacement of the 

water bottles and food. On day 4, which is the test day, water bottles were once 

again replaced with 20% ethanol however mice have 4 hours of access on the test 

day. A previous study from this laboratory showed that this procedure, with a shorter 

2 hours of ethanol access time on the training days and 4 hours of ethanol access 

on day 4, is ideal to induce the highest levels of ethanol consumption on the test day 



17 
 

(Sparta et al., 2008). When ethanol bottles were removed from the cages on the test 

day, tail blood samples were taken to access the blood ethanol concentrations. 

Ethanol consumption is expressed as g/kg/2 or 4-hr. 

 

Blood Ethanol Concentrations 

 To assess blood ethanol concentrations, mice were restrained in plastic 

mouse restrainers (Braintree Scientific Inc., Braintree, MA) and a small nick was 

made on the tip of the tail with a sterile single-bladed razor. A small amount of tail 

blood (15µl) was collected in heparinized capillary tubes (Fisher Scientific, 

Pittsburgh, PA) and one end was sealed with hemato-seal (Fisher Scientific, 

Pittsburgh, PA). Blood samples were spun for 6 minutes in a hemato-spin centrifuge 

to separate the plasma from the blood cells. Using a pipette, 5µl of the plasma was 

removed from the capillary tube and injected into the Analox Blood Analyzer (Analox 

Instruments USA, Lunenburg, MA) to determine BECs. Data collected is expressed 

as mg/dl. 

 

Drug Administration 

 Several agonists and antagonists were used to determine the role of NPY 

signaling and specific NPY receptor subtypes on binge-like ethanol consumption. 

NPY (0, 1, 3, 10 µg/µl doses; Phoenix Pharmaceuticals, INC., Burlingame, CA) was 

used to assess the role of NPY on binge-like ethanol consumption. To assess the 

role of the Y1R on binge-like ethanol consumption, we infused [D-His26]-NPY (0, 1, 3 

µg/µl doses; American Peptide, Sunnyvale, CA), a selective Y1R agonist or BIBP 
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3226 (0, 0.01, 0.1 µg/µl doses; Tocris Bioscience, Ellisville, MO), a selective Y1R 

antagonist. [D-His26]-NPY has been shown to have a 90-fold selectivity to Y1R over 

Y2R and a 376-fold selectivity for Y1R over Y5 receptors (Y5R; Mullins et al., 2001). 

BIBP 3226 was shown to have almost no affinity at NPY receptors other than the 

Y1R (Doods et al., 1996). To assess the role of the Y2R on binge-like ethanol 

consumption, we infused NPY13-36 (0, 1, 3, 10 µg/µl doses, Phoenix 

Pharmaceuticals, INC., Burlingame, CA), a selective Y2R agonist, or BIIE 0246, a 

selective Y2R antagonist (0, 1, 3 µg/µl doses, Tocris Bioscience, Ellisville, MO). 

NPY13-36 has been shown to have an EC50 value of 2.2 nM for Y2R, which is 10-fold 

lower than the EC50 for Y5R and 136-fold lower than the EC50 for Y1R (Gerald et al., 

1996). A previous study by Doods et el. (1999) found BIIE 0246 to have almost no 

affinity for the Y1 and Y5 receptors and it had a 100-fold higher affinity for Y2R than 

previously reported Y2R antagonists. Finally, to assess the role of the Y5R on binge-

like ethanol consumption, we infused [cPP1-7, NPY19-23, Ala31, Aib32, Gln34]hPP (0, 1, 

3, 10 µg/µl doses, Sigma-Aldrich, St. Louis, MO), a selective Y5R agonist. [cPP1-7, 

NPY19-23, Ala31, Aib32, Gln34]hPP has been shown to have over a 2,000-fold higher 

affinity for the Y5R compared to both the Y1R and Y2R (Cabrele et al., 2000). Doses 

for NPY, the selective Y1R agonist and the selective Y5R agonist were chosen 

based on Sorensen et al. (2004), which showed these doses were effective in 

modulating anxiety-like behaviors. BIIE 0246 doses were chosen based on Bacchi et 

al. (2006), which also found these doses to be effective in modulating anxiety-like 

behaviors. Doses of BIBP 3226 were adapted from Nakhate et al. (2009), in which 

chosen doses were effective in modulating food consumption. All compounds, with 
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the exception of BIIE 0246, were dissolved in sterile water and sterile water was 

used as the vehicle in all experiments. BIIE 0246 was dissolved in sterile 

physiological saline and the vehicle used was sterile physiological saline. All drugs 

were infused at a volume of 1µl/mouse over 1 minute on day 4 for the DID 

procedure, immediately before the beginning of ethanol access. 

 

Verification of Cannula Placements  

After the completion of the DID procedures, cannula placements were 

verified. Mice received an over-dose of the ketamine/xylazine mixture and 1 µl of 

blue dye was injected in the cannula. Brains were removed and sliced in half to 

ensure the dye was injected into the ventricular space. Mice with incorrect 

placements were removed from the analysis. 

 

Control Experimental Procedures 

 To determine if compound-induced changes in binge-like ethanol 

consumption were specific to ethanol, all compounds that successfully altered binge-

like ethanol consumption were used in a sucrose control experiment using the 

lowest effective dose of compound that altered binge-like ethanol drinking. Mice 

underwent the same DID procedures only they were given access to a 10% sucrose 

solution instead of 20% ethanol. On day 4, the drug was administered and sucrose 

remained on the cages for 4 hours. Since NPY is involved with the regulation of 

feeding behaviors, several compounds were also tested for their effects on food 

consumption. Compounds were infused and 3 hours into the dark cycle food was 
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measured and placed into the cage. Food was measured again 4 hours later. Water 

bottles remained on the cage throughout the testing period. In addition to the 

sucrose control, we were also interested in determining if the effects of NPY 

compounds were specific to high binge-like ethanol consumption, and would not 

influence low level non-binge-like ethanol consumption as has been suggested in 

previous literature (Thiele et al., 2003). Therefore, naïve mice underwent procedures 

similar to the DID procedures only ethanol access began 3 hours into the light cycle, 

a time period when ethanol consumption is typically low. On day 4, NPY was 

administered just prior to ethanol access. Tail blood samples were collected for BEC 

analysis. 

 

Data Analysis 

All data were analyzed using SPSS software. Any mouse with an incorrect 

cannula placement was removed from the analysis. For all experiments, differences 

between groups were analyzed using analysis of variance (ANOVA). When 

significant differences are found, a post hoc analysis was performed using the 

Tukey’s HSD test. In all cases, p < 0.05 (two-tailed) was used to indicate statistical 

significance. 

 

Results 

Ethanol consumption for DID days 1-3 are shown in table 2.1 for all compounds 

tested. There were no differences between groups during the training days. 
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Binge-like ethanol consumption following central NPY infusions 

The effects of centrally infused NPY on binge-like ethanol consumption are 

presented in Figure 2.1. The 3 and 10 µg doses of NPY significantly blunted 4-h 

ethanol consumption (Figure 2.1a, one-way ANOVA: F (3, 139) = 3.390; p = 0.020) 

and corresponding BECs (Figure 2.1b, one-way ANOVA: F (3, 138) = 2.785; p = 

0.043). To determine if the effects were specific to ethanol, the lowest effective dose 

of NPY was used in a sucrose control experiment. There were no difference 

between groups treated with the 0 and 3 µg doses of NPY in terms of 10% sucrose 

drinking (207.78 ± 15.23 g/kg vs. 182.18 ± 16.79 g/kg respectively; one-way 

ANOVA: F (1, 37) = 1.267; p = 0.268). Interestingly, i.c.v. infusion of the 3 µg dose 

NPY significantly increased 4-h non-binge-like ethanol consumption (Figure 2.1c; 

one-way ANOVA: F (1, 26) = 9.790; p = 0.004) and corresponding BECs (Figure 

2.1d; one-way ANOVA: F (1, 25) = 7.166; p = 0.013) when mice were drinking low 

amounts of ethanol.  

 

Binge-like ethanol consumption following central infusion of NPY Y1 receptor 

selective compounds 

The next set of experiments was performed to determine which NPY 

receptors are potentially involved in modulating binge-like ethanol consumption. 

Both doses of the Y1R agonist [D-His26]-NPY significantly reduced binge-like ethanol 

consumption (Figure 2.2a; one-way ANOVA: F (2, 24) = 3.835; p = 0.036); however, 

the ANOVA for corresponding BECs did not reach statistical significance (Figure 

2.2b; F (2, 24) = 2.392; p = 0.113).  Compared to control mice, both the 1 and 3 µg 
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doses of the Y1R agonist significantly increased 10% sucrose consumption (0µg = 

147.23 ± 21.31g/kg; 1µg = 225.46 ± 12.95g/kg; 3µg = 241.97 ± 11.40g/kg; one-way 

ANOVA: F (2, 36) = 7.340; p = 0.002). The effects of the Y1R antagonist BIBP 3226 

on binge-like ethanol consumption are presented in Figures 2.2c and 2.2d. Both the 

0.01 and 0.1 µg doses of the Y1R antagonist significantly increased binge-like 

ethanol consumption (one-way ANOVA: F (2, 74) = 3.494; p = 0.035) but 

corresponding BECs were not significantly altered (one-way ANOVA: F (2, 69) = 

1.596; p = 0.210).  Relative to the vehicle treatment, the Y1R antagonist did not 

significantly alter 10% sucrose intake (131.63 ± 12.76 g/kg and 129.04 ± 16.54 g/kg 

respectively; one-way ANOVA: F (1, 38) = 0.015; p = 0.902). 

 

Binge-like ethanol consumption following central infusion of NPY Y2 receptor 

selective compounds 

Binge-like ethanol drinking and associated BECs following treatment with the 

Y2R agonist are presented in Figures 2.3a and 2.3b. Infusions of the agonist did not 

significantly alter 4-h binge-like ethanol consumption (one-way ANOVA: F (3, 32) = 

0.848; p = 0.478) or corresponding BECs (one-way ANOVA: F (3, 32) = 0.290; p = 

0.832), but both the 3 and 10 µg doses of NPY13-36 significantly reduced 10% 

sucrose consumption (0µg = 212.41 ± 24.58g/kg; 3µg = 141.88 ± 19.43g/kg; 10µg = 

132.04 ± 22.38g/kg; one-way ANOVA: F (2, 33) = 3.887; p = 0.030). On the other 

hand, neither of the doses of NPY13-36 altered 4-h food consumption (0µg = 57.24 ± 

8.57g/kg; 3µg = 64.58 ± 6.00g/kg; 10µg = 46.06 ± 7.46g/kg; one-way ANOVA: F (2, 

32) = 1.544; p = 0.229). The effects of the selective Y2R antagonist BIIE 0246 on 
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binge-like ethanol drinking are presented in Figures 2.3c and 2.3d. The results 

indicate that the 1 µg dose of the Y2R antagonist significantly reduced binge-like 

ethanol consumption (one-way ANOVA: F (2, 22) = 3.766; p = 0.039) but both the 

0.5 and 1 µg doses significantly reduced corresponding BECs (one-way ANOVA: F 

(2, 22) = 3.651; p = 0.043).  BIIE 0246 did not alter 10% sucrose consumption 

compared to control mice (0µg = 156.10 ± 32.15g/kg; 1µg = 153.75 ± 24.28g/kg; 

one-way ANOVA: F (1, 21) = 0.003; p = 0.954). 

 

Binge-like ethanol consumption following central infusion of a NPY Y5 receptor 

selective agonist 

Results from studies with the Y5R agonist [cPP1-7, NPY19-23, Ala31, Aib32, 

Gln34]hPP are presented in Figures 2.3e and 2.3f. None of the doses tested 

significantly altered 4-h ethanol consumption (one-way ANOVA: F (3, 32) = 0.640; p 

= 0.595) or corresponding BECs (one-way ANOVA: F (3, 32) = 0.821; p = 0.492).  

Further, neither of the doses tested significantly altered sucrose consumption (0µg = 

192.63 ± 22.19g/kg; 3µg = 152.82 ± 19.84g/kg; 10µg = 170.51 ± 22.81g/kg; one-way 

ANOVA: F (2, 29) = 0.635; p = 0.537) but the 10 µg dose significantly increased 4-h 

food consumption (0µg = 44.01 ± 6.56g/kg; 3µg = 67.04 ± 7.88g/kg; 10µg = 81.55 ± 

11.89g/kg; one-way ANOVA: F (2, 25) = 4.991; p = 0.015). The results from these 

experiments indicated that the Y1R and Y2R play a role in the modulation of binge-

like ethanol consumption. 
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Discussion 

 The results of the current set of experiments indicate a role of NPY in the 

modulation of binge-like ethanol consumption using the DID model in C57BL/6J 

mice. In Experiment 1, NPY compounds were centrally infused to determine if 

alterations in NPY signaling would alter binge-like ethanol consumption. It was first 

noted that NPY, when given in an i.c.v. infusion, caused a significant reduction of 

binge-like ethanol consumption. Using receptor selective compounds, the data 

suggest roles for the Y1R and Y2R. [D-His26]-NPY, a selective Y1R agonist, caused 

a significant reduction of binge-like ethanol consumption while BIBP 3226, a 

selective Y1R antagonist, produced the opposite effect, a significant increase of 4-h 

ethanol intake. Furthermore, though NPY13-36, a selective Y2R agonist, did not alter 

ethanol consumption, the selective Y2R antagonist, BIIE 0246, did significantly 

reduce 4-h binge-like ethanol consumption. The final compound tested, the selective 

Y5R agonist, did not alter binge-like ethanol consumption. These results were 

expected since the Y5R has been primarily implicated in food consumption (Cabrele 

et al., 2000; Beck, 2006). 

 Control experiments were performed to determine if the observed effects of 

NPY and related compounds on DID ethanol drinking were specific to ethanol and if 

NPY altered other ethanol-related behaviors. None of the compounds tested that 

altered ethanol consumption produced similar effects on sucrose intake. It was 

observed that the Y1R agonist increased sucrose consumption consistent with 

evidence that the NPY system modulates caloric intake. The opposite effects of the 

Y1R agonist on binge-like ethanol consumption and sucrose drinking indicate that 



25 
 

different Y1R pathways modulate each type of consumption. The Y2R agonist did 

not alter ethanol consumption but did decrease sucrose consumption, which is 

interesting considering the Y2R antagonist, BIIE0246, produced a decrease in 

ethanol consumption, while not effecting sucrose consumption. The inability of the 

Y2R agonist to increase ethanol intake may be related to a ceiling effect, in which 

already high levels of ethanol intake associated with DID procedures make it difficult 

for further increases. The effect of the Y2R agonist on sucrose consumption also 

confirms that the dose range tested was in a physiologically relevant range. 

 Previous experiments suggest that NPY is not involved with the modulation of 

ethanol consumption in non-dependent or low consuming animals (Badia-Elder et 

al., 2001; Katner et al., 2002; Thiele et al., 2003). Much of the published data 

available suggest that NPY is involved with dependence-induced and high ethanol 

consumption (Badia-Elder et al., 2001; Gilpin et al., 2003; Thorsell et al., 2005). A 

previous report from this lab (Sparta et al., 2008) found that an antagonist for the 

CRF1 receptor, another neuromodulator involved with high ethanol consumption, did 

not alter ethanol consumption using drinking procedures that induced a low amount 

of ethanol consumption but significantly blunted binge-like ethanol intake. Because 

of these results, we wanted to test if NPY would alter ethanol consumption in a 

limited access paradigm similar to DID only beginning 3 hours into the light cycle 

(drinking in the light). With these procedures, mice drank an average of just below 2 

g/kg in a 4-hour period rather than the 4-6 g/kg observed with DID procedures. I was 

not expected that NPY would decrease ethanol consumption in this paradigm, which 

is consistent with the results. Interestingly, NPY administration actually increased 
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low level ethanol consumption, indicating that different NPY pathways modulate 

binge-like ethanol drinking versus low level ethanol drinking. Since ethanol entails 

calories, we suggest that NPY-induced increases of low level ethanol consumption 

via brain regions/pathways implicated in NPY-induced feeding behaviors, such as 

the paraventricular nucleus of the hypothalamus (Stanley and Leibowitz, 1985). 

 The results presented here are consistent with a previous report implicating 

the Y1R in ethanol consumption. Y1R null mice consume significantly more ethanol 

than wildtype counterparts (Thiele et al., 2002). However, the current data are 

inconsistent with previous pharmacological results using Y1R antagonists. 

Peripheral administration of bioavailable Y1R antagonist significantly reduced 

ethanol consumption in mice (Sparta et al., 2004). Administration of BIBP 3226, the 

same Y1R selective antagonist used in our current experiments, directly into the 

amygdala significantly reduced ethanol responding in an operant paradigm using 

non-dependent rats (Schroeder et al., 2003).  Since we show NPY has very different 

effects on binge-like ethanol drinking versus low level non-binge-like ethanol 

drinking, it is possible that inconsistent results could be related to the low level of 

ethanol drinking that was achieved in the previous studies. Long-Evans rats used in 

the Schroeder examination consumed less than 0.4 g/kg ethanol during a 1-hr 

operant session while mice in the Sparta study consumed around 9 g/kg ethanol 

over 8-hr following i.p. administration of a Y1R antagonist and only around 2 g/kg 

ethanol was consumed over an 8-hr period following i.c.v. administration of the Y1R 

antagonist. These amounts of ethanol consumption are much less than the amount 
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of ethanol consumed in the present experiments over a 4-hr period and is likely the 

cause of the inconsistencies with the previous reports.  

The current data also suggest some involvement of the Y2R. Though the 

Y2R-selective agonist did not alter ethanol, we did see a significant decrease with 

the application of a Y2R-selective antagonist. One reason for the ineffectiveness of 

the Y2R agonist could be that since the mice are already consuming excessive 

amounts of ethanol, it is difficult to induce even higher levels of ethanol. However, 

we were able to see an increase of binge-like ethanol drinking using BIBP 3226. The 

Y2R acts as a presynaptic autoreceptor in many brain regions thus Y2R activation 

would reduce the release of NPY (Colmers et al., 1991; King et al., 1999). Y2R 

antagonism has been shown to decrease ethanol consumption. Blockade of Y2R 

with BIIE 0246 significantly reduced self-administration for a sweetened ethanol 

solution using Wistar rats (Thorsell et al., 2002b).  Interestingly, central 

administration of the Y2R antagonist was effective at reducing ethanol-reinforced 

responding in ethanol dependent rats but not in rats without a history of ethanol 

dependence (Rimondini et al., 2005). It was speculated that the Y2R antagonist 

reduced dependence-induced ethanol drinking by enhancing endogenous NPY 

release (via blockade of presynaptic autoreceptors), and we hypothesize that Y2R 

antagonist-induced blunting of binge-like ethanol drinking involves a similar 

mechanism. 

 NPY has been found to stimulate the synthesis and release of dopamine, 

particularly in the striatum (Beal et al., 1986; Heilig et al., 1990). This appears to be 

due to the activation of Y2R. Application of NPY or a Y2R selective agonist 
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stimulated the release and synthesis of dopamine in the striatum, an effect that was 

reduced with pretreatment of a Y2R but not Y1R or Y5R selective antagonists 

(Adewale et al., 2005; Adewale et al., 2007). One interesting possibility is that  

blockade of the Y2R  not only increases NPY,  but may have also dampened 

dopaminergic transmission, and this action may have contributed to the ability of the 

Y2R antagonist to blunt binge-like ethanol drinking. 

 The mice used in the drinking in the dark procedures have not been made 

dependent on ethanol but these results are consistent with previous studies using 

ethanol dependent rodents (Thorsell et al., 2005). NPY reduced ethanol 

consumption following chronic ethanol or forced abstinence but not in animals that 

were not exposed to chronic ethanol or periods of deprivations (Thorsell et al., 2005; 

Gilpin et al., 2008a). NPY has also been shown to effectively reduce ethanol 

consumption in rats bred to prefer ethanol but not in non-preferring animals (Badia-

Elder et al., 2001). The current data are interesting because NPY effectively reduced 

ethanol consumption using the DID procedures, which is not a model of dependence 

and though the C57BL/6J mice are a high ethanol consuming strain (Belknap et al., 

1993), a previous study using this mouse strain did not find effects of centrally 

administered NPY on non-dependent ethanol consumption (Thiele et al., 2003). The 

data suggest binge-like ethanol consumption is mimicking dependence-induced 

ethanol consumption in order for NPY to effectively reduce binge-like ethanol 

consumption. One possibility is that similar changes are occurring to endogenous 

NPY signaling during both ethanol dependence and binge-like ethanol consumption. 

Alterations to the NPY system have been observed following chronic ethanol 
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exposure (Roy and Pandey, 2002) and Chapter 3 will examine possible alterations 

of NPY and Y1R following binge-like ethanol consumption.  

In conclusion, the current experiments reveal that the NPY system is involved 

with the regulation of binge-like ethanol consumption. Previously, NPY signaling had 

been associated with dependence-induced ethanol drinking, or excessive drinking in 

genetic models with low endogenous NPY, and these experiments extend the role of 

NPY to the modulation of binge-like ethanol consumption. NPY has several receptor 

subtypes and the results of these data suggest involvement of the Y1R and Y2R 

receptor systems. The fact that we observed opposite effects on binge-like ethanol 

consumption with the administration of a Y1R selective agonist and selective 

antagonist is strong evidence of the involvement of the Y1R in the modulation of 

binge-like ethanol consumption. Though an alteration of binge-like ethanol 

consumption was not observed with the Y2R selective agonist, the Y2R selective 

antagonist did significantly reduce ethanol consumption. Since the Y2R are 

predominately presynaptic (Colmers et al., 1991), Y2R antagonists would be 

expected to enhance endogenous NPY release. Thus, enhanced NPY signaling, via 

exogenous administration of NPY or Y1R agonist, or increased endogenous NPY 

signaling via administration of a Y2R antagonist, protects against binge-like ethanol 

drinking. The results also suggest the Y5R system is not involved with binge-like 

ethanol consumption.  Since NPY and related compounds blunted but did not 

completely abolish binge-like ethanol consumption, it can be concluded that the NPY 

system is involved with the modulation of binge-like ethanol drinking but that other 

neuromodulator systems must be involved. Finally, the results of these data suggest 
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that NPY Y1R agonists and Y2R antagonists may have clinical implications as 

possible treatments aimed at protecting against excessive binge drinking, perhaps 

ultimately preventing the progression to dependence in at-risk individuals. 
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Table 2.1 Ethanol consumed for each group on training days 1-3 of drinking in the 
dark procedures. Values shown are mean ± SEM. 
 

  Day 1 Day 2 Day 3 

NPY: Drinking In The Dark 

0 µg 2.07 ± 0.21 3.08 ± 0.14 2.99 ± 0.15 

1 µg 2.26 ± 0.23 2.74 ± 0.18 2.56 ± 0.16 

3 µg 2.25 ± 0.15 2.83 ± 0.23 2.72 ± 0.17 

10 µg 2.22 ± 0.21 2.98 ± 0.15 2.72 ± 0.17 

NPY: Drinking In The Light 

0 µg 1.22 ± 0.23 1.16 ± 0.18 1.69 ± 0.21 

3 µg 1.19 ± 0.16 1.49 ± 0.27 1.53 ± 0.19 

[D-His26]NPY 

0 µg 3.31 ± 0.46 3.13 ± 0.42 3.06 ± 0.35 

1 µg 2.87 ± 0.32 3.11 ± 0.32 3.18 ± 0.30 

3 µg 2.95 ± 0.33 3.38 ± 0.25 3.04 ± 0.34 

BIBP 3226 

0 µg 2.43 ± 0.26 2.93 ± 0.20 3.73 ± 1.28 

0.01 µg 2.72 ± 0.23 3.30 ± 0.22 2.74 ± 0.19 

0.1 µg 3.07 ± 0.40 2.95 ± 0.18 3.53 ± 0.56 

NPY13-36 

0 µg 2.38 ± 0.39 3.52 ± 0.33 2.81 ± 0.26 

1 µg 2.03 ± 0.32 3.23 ± 0.29 3.31 ± 0.17 

3 µg 2.21 ± 0.40 3.11 ± 0.33 3.07 ± 0.28 

10 µg 2.34 ± 0.33 3.27 ± 0.18 2.94 ± 0.28 

BIIE 0246 

0 µg 2.96 ± 0.17 2.97 ± 0.35 4.25 ± 0.55 

0.5 µg 3.07 ± 0.44 3.38 ± 0.17 3.70 ± 0.33 

1 µg 3.23 ± 0.38 3.22 ± 0.18 3.64 ± 0.44 

[CPP1-7, NPY19-23, Ala
31

, Aib
31

, Gln
34

]-hPP 

0 µg 2.89 ± 0.25 2.74 ± 0.33 2.55 ± 0.36 

1 µg 2.59 ± 0.27 2.94 ± 0.25 2.75 ± 0.32 

3 µg 2.63 ± 0.19 2.90 ± 0.20 2.74 ± 0.36 

10 µg 2.88 ± 0.27 2.54 ± 0.29 2.80 ± 0.24 
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Figure 2.1 Effects of central NPY infusions on consumption of 20% (v/v) ethanol and 
blood ethanol concentrations following 4-hr ethanol access on day 4 of drinking in 
the dark (a and b) or drinking in the light (c and d) procedures. Mice were given i.c.v. 
infusion of NPY (0, 1, 3, 10 µg) prior to drinking in the dark ethanol access. 
Compared to vehicle treatment, infusion of the 3 and 10 µg NPY dose caused a 
significant reduction of ethanol consumption (a) and corresponding BECs (b). Mice 
tested in drinking in the light procedures were given an i.c.v. infusion (0, 3 µg) prior 
to ethanol access. Relative to vehicle treatment, infusion of NPY produced a 
significant increase of ethanol consumption (c) and corresponding BECs (d). Values 
are means + SEM. * denotes p<0.05 compared to 0 µg vehicle group. 

 

 

  

b 
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Figure 2.2 Effects of selective Y1R compounds on consumption of 20% (v/v) 
ethanol and blood ethanol concentrations following 4-hr ethanol access on day 4 of 
drinking in the dark procedures. Mice were given i.c.v. administration of [D-His26]-
NPY (0, 1, 3 µg), a Y1R selective agonist, prior to ethanol access. Compared to 
vehicle treatment, infusion of the 3 µg [D-His26]-NPY dose caused a significant 
reduction of ethanol consumption (a) but corresponding BECs (b) were not 
significantly reduced. Conversely, mice given i.c.v. infusion of BIBP 3226 (0, 0.01, 
0.1 µg), a Y1R selective antagonist, prior to ethanol access drank significantly more 
ethanol (c) when given the 0.01 or 0.1 µg dose of BIBP 3226 compared to vehicle 
treatment. Corresponding BECs were not significantly altered (d). Values are means 
+ SEM. * denotes p<0.05 compared to 0 µg vehicle group. 
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Figure 2.3 Effects of selective Y2R and Y5R compounds on consumption of 20% 
(v/v) ethanol and blood ethanol concentrations following 4-hr ethanol access on day 
4 of drinking in the dark procedures. Mice were given i.c.v. administration of NPY13-36 
(0, 1, 3, 10 µg), a Y2R agonist, prior to ethanol access. None of the doses tested 
altered ethanol consumption (a) or BECs (b) relative to vehicle treatment. However, 
when given i.c.v. infusions of BIIE 0246 (0, 0.5, 1.0 µg), a Y2R antagonist, mice 
drank significantly less ethanol (c) and corresponding BECs (d) were significantly 
reduced when given the 1.0 µg dose of BIIE 0246 compared to vehicle treatment. 
Mice were given i.c.v. administration of [cPP1-7, NPY19-23, Ala31, Aib32, Gln34]hPP (0, 
1, 3, 10 µg), a Y5R agonist, prior to ethanol access. None of the doses tested 
altered ethanol consumption (e) or BECs (f) relative to vehicle treatment. Values are 
means + SEM. * denotes p<0.05 compared to 0 µg vehicle group. 
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CHAPTER 3 

THE EFFECT OF REPEATED BINGE-LIKE ETHANOL DRINKING EPISODES ON 
NPY AND RELATED PROTEINS 

 

Introduction 

Binge drinking is an ongoing problem, which can lead to the induction of 

ethanol dependence (Miller et al., 2007; Hingson et al., 2006). In the previous set of 

experiments from chapter 2, we found that NPY protects against binge-like ethanol 

consumption similarly to the protective effects of NPY observed with dependence-

induced drinking or in genetically selectived high ethanol consuming animals 

(Thorsell et al., 2005; Badia-Elder et al., 2001). Differences in the basal levels of 

NPY have been observed between high ethanol consuming and low ethanol 

consuming animals. High ethanol consuming C57BL/6J mice have lower basal NPY 

expression in regions of the amygdala and the nucleus accumbens shell compared 

to low consuming DBA/2J mice (Hayes et al., 2005). Alcohol-preferring (P) rats and 

high alcohol-drinking (HAD) rats have lower levels of NPY in the amygdala 

compared to alcohol non-preferring (NP) rats and low alcohol-drinking (LAD) rats 

(Ehlers et al., 1998; Hwang et al., 1999). Alterations of the NPY system have also 

been observed following exposure to ethanol. A single injection of a 1.0 g/kg dose of 

ethanol reduced hypothalamic NPY mRNA in rats (Kinoshita et al., 2000). Following 

ethanol withdrawal, NPY levels in the amygdala, hypothalamus and cortex were 
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reduced in rats (Roy and Pandey, 2002; Zhang and Pandey, 2003). NPY and the 

central receptors, Y1R, Y2R and Y5R, were all reduced in areas of the cortex and 

hippocampus following multiple ethanol withdrawals (Olling et al., 2009; Olling et al., 

2010). NPY immunoreactivity in regions of the rat hippocampus was significantly 

altered following withdrawal from an ethanol-containing diet (Bison and Crews, 

2003). In this latter study, NPY was significantly reduced 24-h after withdrawal from 

ethanol but significantly increased following a 72-h withdrawal period. However, NPY 

levels returned to normal after 7 days. As of yet, alterations in the NPY system have 

not been assessed following acute or repeated binge-like ethanol consumption. 

Given the important role of this system in the modulation of excessive ethanol 

intake, here we assessed the effects of binge-like ethanol drinking on NPY and Y1 

receptor (Y1R) immunoreactivity (IR). Furthermore, we assessed the effects of 

repeated binge-like drinking episodes on these markers to determine if repeated 

binge-like ethanol drinking may culminate in progressively increasing alterations of 

IR, consistent with the allostasis model (Koob, 2003). 

 

Methods 

Animals 

Male C57BL/6J mice (Jackson Laboratory, Bar Harbor, ME) were used in all 

experiments. Mice were approximately 8 weeks and weighed between 20-25g at the 

beginning of experimental procedures. Mice were individually housed in 

polypropylene cages with corncob bedding and given ad libitum access to standard 

rodent chow (Tekland, Madison, WI) and water, except where noted in experimental 
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procedures. The colony rooms were maintained at 22ºC with a reverse 12-hr/12-hr 

light/dark cycle with lights out at 7am or 10am. All experimental procedures were 

approved by the University of North Carolina Animal Care and Use Committee 

(IACUC) and complied with the NIH Guide for Care and Use of Laboratory Animals 

(National Research Council, 1996).  

 

Drinking in the Dark (DID) 

DID procedures have been developed to model binge-like ethanol drinking in 

mice and are described above and previously by Rhodes et al. (2005). Throughout 

the experiment, mice remained in their homecages in the vivarium. Bodyweights 

were taken each week on the first day of the experiment to monitor the health of the 

animals week to week and to calculate the g/kg of ethanol consumed. At three hours 

into the dark cycle, water bottles were removed from the homecage and replaced 

with a bottle containing a solution of 20% (v/v) ethanol. On days 1-3, which are 

considered the training days, ethanol bottles remained on the cages for 2 hours 

before removal and replacement of the water bottles. On day 4, the test day, water 

bottles were once again replaced with 20% ethanol however mice had 4 hours of 

access on the test day. Data collected is expressed as g/kg/4-h. 

 

Blood Ethanol Concentrations (BEC) 

To assess blood ethanol concentrations, mice were restrained in plastic 

mouse restrainers (Braintree Scientific Inc., Braintree, MA) and a small nick was 

made on the tip of the tail with a sterile single-bladed razor. A small amount of tail 
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blood (15µl) was collected in heparinized capillary tubes (Fisher Scientific, 

Pittsburgh, PA) and one end was sealed with hemato-seal (Fisher Scientific, 

Pittsburgh, PA). Blood samples were spun for 6 minutes in a hemato-spin centrifuge 

to separate the plasma from the blood cells. Using a pipette, 5µl of the plasma was 

removed from the capillary tube and injected into the Analox Blood Analyzer (Analox 

Instruments USA, Lunenburg, MA) to determine BECs. Data collected is expressed 

as mg/dl. 

 

Experimental Groups and Repeated Binge-Like Ethanol Drinking Episodes 

80 mice were used for this experiment. At the start of the experiment, mice 

were divided into 8 groups of 10 mice based on initial bodyweight so that all groups 

had a similar average bodyweight. Three groups were exposed to 1, 3, or 6 cycles of 

binge-like drinking with 20% ethanol and an additional 3 groups were matched for 

the same number of binge-like drinking episodes but instead of ethanol, they 

received a 3% sucrose solution as the drinking stimulus. One group of mice received 

continuous access to 20% ethanol with a 2-bottle choice paradigm with water in the 

second bottle. The last group of mice only received water throughout the duration of 

the experiment. All groups had ad libitum access to food throughout the entire 

experiment. 

Mice were divided between 2 reverse light/dark cycle rooms (40 in each 

room) and further divided into groups of 20 so there were 2 test days each week with 

40 mice each day (20 mice from each colony room) to ensure that brain collection at 

the end of behavioral testing was proximal to the time that bottles were removed on 
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the final test day. Bottle measurements were recorded in the continuous ethanol 

group during the same time when measures were collected from the binge-like 

drinking groups.  

The 6 ethanol binge (6E) and 6 sucrose binge (6S) groups and the 

continuous ethanol (CON) group started behavioral testing after 10 days of 

acclimation to the environment. All other mice remained in the homecages with 

regular water bottles. Mice experienced 4 days of the DID procedure and 3 days of 

rest during each week of the study. On week 4, the 3 ethanol binge (3E) and 3 

sucrose binge (3S) groups began DID exposure. During the last week, the 1 ethanol 

binge (1E) and 1 sucrose binge (1S) DID groups were exposed to a single DID 

episode. These procedures ensured that all mice were the same age at the end of 

the experiment to control for any age-related differences. Immediately following 

removal of ethanol for the last DID episode, tail blood samples were taken for BEC 

analysis. Brains were then collected for IHC analysis. 

 

Perfusions, Brain Preparation and Immunohistochemistry (IHC)  

Immediately following collection of tail blood samples, mice received an 

overdose of a ketamine/xylazine mixture.  Mice were transcardially perfused with 

0.1mM of phosphate-buffered saline (PBS, pH 7.4) followed by 4% 

paraformaldehyde in buffered saline. Brains were collected and post-fixed for 48 

hours in 4% paraformaldehyde at 4ºC and then transferred to PBS until slicing. The 

whole brain was sliced into 40µm sections using a Leica VT 1000S vibratome (Leica 

Microsystems, Nussloch, Germany) and stored in cryopreserve solution until IHC 
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analysis. The sections were divided equally and stained for NPY (rabbit anti-NPY, 

1:1000; Peninsula Laboratories, LLC, San Carlos, CA) and Y1R (rabbit anti-Y1, 

1:25,000; Antibody #96106 raised against NPY YR was provided by the CURE 

Digestive Diseases Research Center, Antibody/RIA Core, NIH Grant #DK41301). 

The sections were rinsed in PBS 3 times (10 minutes each) and then blocked in 10% 

goat serum and 0.1% triton-X-100 in PBS for 1 hour. Sections were then transferred 

to a primary solution specific to each neuro-marker in fresh PBS and 3% goat serum 

for 72 hours at 4ºC. Sections were washed 3 times in PBS and then incubated for 1 

hour at room temperature in biotinylated secondary antibody from a VectaStain Elite 

Kit (Vector Laboratories, Burlingame, CA) and 3% goat serum. Following 3 more 

washes in PBS, the tissue was transferred to the VectaStain ABC reagent for 1 hour. 

Sections were visualized by a reaction with 3,3’-diamino-benzidine (DAB, 

Polysciences Inc, Warrington, PA) in a reaction solution containing 0.05% DAB, 

0.005% cobalt, 0.007% nickel ammonium sulfate, and 0.006% hydrogen peroxide. 

Sections were mounted on glass slides, air-dried, and cover slipped. 

Digital images of NPY and Y1R IHC in candidate brain regions were obtained 

using a Nikon E400 microscope with a Nikon Digital Sight DS-U1 digital camera run 

with Nikon provided software. Anatomical landmarks were carefully noted with the 

aid of a mouse brain atlas (Paxinos and Franklin, 2001) to ensure the same plane 

was used throughout the study for each region. Density staining was analyzed by a 

researcher blind to conditions using Image J Software (Image J, National Institute of 

Health, Bethesda, MD) by calculating the percent of the total area studied that 

shows staining relative to subthreshold background. The size of the area was held 
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constant between animals and groups for each region. The average of the densities 

for the left and right sides of the brain was calculated for analysis. 

 

Data Analysis  

All data was analyzed using SPSS software. Differences between groups 

were analyzed using analysis of variance (ANOVA). When significant differences 

were found, a post hoc analysis was performed using the LSD test. In all cases, p < 

0.05 (two-tailed) was used to indicate statistical significance.  

 

Results 

The ethanol consumption and BEC data for the final week are presented in 

Table 3.1. There were no differences in ethanol consumption between groups (one-

way ANOVA: F (3, 39) = 0.908; p = 0.447), however the corresponding BECs were 

significantly lower in the continuous ethanol group compared to the 3DID and 6DID 

groups (one-way ANOVA: F (3, 39) = 7.991; p < 0.001). 

 

NPY Expression 

NPY IR data from the CeA are presented in Figures 3.1a and 3.1b, and 

representative photomicrographs can be seen in Figures 3.2a and 3.2d. After 1 

ethanol binge-like drinking cycle, NPY IR was significantly decreased compared to 

the continuous water group (WAT). The 3E and 6E binge groups, as well as 

continuous ethanol, also exhibited significantly reduced NPY IR compared to both 

the water group and the 1E group (one-way ANOVA: F (4, 44) = 52.032; p < 0.001). 
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Interestingly, NPY IR after 6 binges of 3% sucrose was significantly reduced 

compared to WAT and the other sucrose groups (one-way ANOVA: F (3, 36) = 

4.755; p = 0.007). Results from the other sub-nuclei of the amygdala are displayed in 

Table 3.2. No significant alterations of NPY IR following ethanol or sucrose 

consumption occurred in either the BLA (ethanol: one-way ANOVA: F (4, 44) = 

0.671; p = 0.616; sucrose: F (3, 36) = 0.657; p = 0.584) or the MeA (one-way 

ANOVA: F (4, 42) = 2.262; p = 0.079; sucrose: F (3, 36) = 0.970; p = 0.418).  

NPY IR data from the dorsal lateral BNST (dlBNST) are presented in Figures 

3.1c and 3.1d and representative photomicrographs are presented in Figures 3.2b 

and 3.2e. Compared to the WAT group, the 1E and 3E groups had significantly 

reduced NPY IR in the dlBNST (one-way ANOVA: F (4, 45) = 6.974; p < 0.001). The 

3S and 6S groups also exhibited reduced NPY IR in the dlBNST compared to the 

WAT group (one-way ANOVA: F (3, 36) = 8.629; p < 0.001). In the dorsal medial 

BNST (dmBNST), NPY IR was significantly reduced in all ethanol binge-like drinking 

groups compared to WAT group (Figure 3.1e; one-way ANOVA: F (4, 45) = 8.867; p 

< 0.001) Representative photomicrographs are presented in Figures 3.2c and 3.2f. 

Unlike in the dlBNST, binge-like drinking of sucrose did not significantly alter NPY IR 

in the dmBNST (Figure 3.1f; one-way ANOVA: F (3, 36) = 1.368; p = 0.268). In the 

NAc core and shell, there was a significant increase in NPY IR following ethanol 

consumption (Figure 3.1g and 3.1i). Representative photomicrographs are 

presented in Figure 3.3. In the NAc core, the 6E group had significantly increased 

NPY IR compared to WAT group (one-way ANOVA: F (4, 43) = 4.727; p = 0.003) 

and in the NAc shell, NPY IR in the 1E group was significantly increased compared 
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to the WAT group (one-way ANOVA: F (4, 43) = 2.828; p = 0.036). Sucrose did not 

significantly alter NPY IR in either the NAc core (Figure 3.1h, one-way ANOVA: F (3, 

36) = 0.698; p = 0.560) or the NAc shell (Figure 3.1j, one-way ANOVA: F (3, 36) = 

1.013; p = 0.398). 

NPY IR in the hippocampal regions is listed in Table 3.2. The hippocampus 

was analyzed because, though not usually a region associated with ethanol 

consumption, alterations in the NPY system had previously been observed in this 

region following ethanol exposure (Bison and Crews, 2003; Olling et al., 2009; Olling 

et al., 2010). In the CA1, NPY IR was significantly increased but only in the 

continuous ethanol group when compared to the WAT group (one-way ANOVA: F 

(4, 45) = 5.490; p = 0.001). Sucrose binge-like drinking did not alter NPY IR (one-

way ANOVA: F (3, 36) = 0.175; p = 0.913). In the CA2 region of the hippocampus, 

all ethanol groups had increased NPY IR compared to the WAT group (one-way 

ANOVA: F (4, 45) = 3.684; p = 0.011), but only the 1S group exhibited increased 

NPY IR (one-way ANOVA: F (3, 36) = 2.976; p = 0.044). There was a significant 

increased NPY IR in the CA3 region following 6 ethanol binge-like drinking cycles or 

6 weeks of continuous ethanol access (one-way ANOVA: F (4, 45) = 5.717; p = 

0.001). For the sucrose consumption, no groups showed significant alterations of 

NPY IR compared to the water drinking group but the 3S group showed significantly 

reduced NPY IR compared to the 1S and 6S groups (one-way ANOVA: F (3, 36) = 

3.854; p = 0.017). In the dentate gyrus, there were significant decreases of NPY IR 

in the 3E, 6E and CON groups compared to the water drinking control group (one-

way ANOVA: F (4, 45) = 8.028; p < 0.001). No significant alterations occurred 
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following sucrose binge-like drinking (one-way ANOVA: F (3, 36) = 2.623; p = 

0.065). 

 

NPY Y1 Receptor Expression 

NPY Y1R IR data from the CeA are presented in Figures 3.4a and 3.4b, and 

photomicrographs are presented in Figures 3.5a and 3.5d. Y1R IR exhibited a 

similar pattern in the sub-nuclei of the amygdala as was seen with the NPY IR. In the 

CeA, Y1R IR was significantly reduced in the 1E group compared to WAT group and 

Y1R IR was further reduced in the 3E and 6E groups, as well as mice exposed to 

continuous ethanol compared to both the 1E and WAT groups (one-way ANOVA: F 

(4, 43) = 31.659; p < 0.001). No significant alterations occurred in the sucrose 

groups (one-way ANOVA: F (3, 36) = 0.965; p = 0.420). The data from the BLA and 

MeA are listed in Table 3.3. Y1R IR in the BLA was not significantly altered by either 

binge-like consumption of ethanol (one-way ANOVA: F (4, 44) = 0.378; p = 0.823) or 

sucrose (one-way ANOVA: F (3, 36) = 0.808; p = 0.498). The MeA also did not 

exhibit significant alterations of Y1R IR following ethanol consumption (one-way 

ANOVA: F (4, 40) = 1.301; p = 0.286) or sucrose consumption (one-way ANOVA: F 

(3, 35) = 1.083; p = 0.369). 

Y1R IR data from the dlBNST are presented in Figures 3.4c and 3.4d and 

representative photomicrographs are presented in Figures 3.5b and 3.5e. Binge-like 

ethanol consumption did not significantly alter Y1R IR in the dlBNST (one-way 

ANOVA: F (4, 45) = 1.730; p = 0.160). However, 1, 3 and 6 cycles of binge-like 

consumption of 3% sucrose significantly increased Y1R IR compared to the WAT 
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group (one-way ANOVA: F (3, 35) = 3.696; p = 0.021). Y1R IR data from the 

dmBNST are presented in Figures 3.4e and 3.4f and representative 

photomicrographs are presented in Figure 3.5c and 3.5f. Y1R IR in the dmBNST 

was significantly reduced in all ethanol groups compared to the WAT group (one-

way ANOVA: F (4, 44) = 5.594; p = 0.001). Binge-like sucrose consumption did not 

significantly alter Y1R IR in the dmBNST (one-way ANOVA: F (3, 34) = 0.179; p = 

0.910). Y1R IR data from the NAc core and shell are presented in Figures 3.4g - 3.4j 

and representative photomicrographs are presented in Figure 3.6. In the NAc core, 

one ethanol binge-like cycle significantly reduced Y1R IR and by 3 ethanol binge-like 

cycles, Y1R expression was further decreased and remained low after 6 ethanol 

binge-like cycles and continuous ethanol compared to both 1E and WAT groups 

(one-way ANOVA: F (4, 44) = 10.065; p < 0.001). No significant alterations occurred 

in Y1R IR following binge-like sucrose consumption (one-way ANOVA: F (3, 35) = 

0.058; p = 0.981). In the NAc shell, the 3E, 6E and CON ethanol groups displayed 

significantly reduced Y1R IR than both the 1E and WAT groups (one-way ANOVA: F 

(4, 44) = 7.027; p < 0.001). Y1R IR in the NAc shell was not significantly altered 

following binge-like sucrose consumption (one-way ANOVA: F (3, 35) = 1.286; p = 

0.295). 

Y1R IR in the hippocampal regions is listed in Table 3.3. In the CA1 region, 

Y1R IR was not altered by either binge-like ethanol consumption (one-way ANOVA: 

F (4, 45) = 1.972; p = 0.115) or sucrose consumption (one-way ANOVA: F (3, 35) = 

2.778; p = 0.056). In the CA2 region of the hippocampus, Y1R IR was significantly 

increased in all ethanol groups compared to the WAT group (one-way ANOVA: F (4, 
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45) = 3.012; p = 0.028) and Y1R IR was significantly increased following 3 and 6 

sucrose binges (one-way ANOVA: F (3, 35) = 10.346; p < 0.001). Y1R IR in the CA3 

region was not altered by either binge-like ethanol consumption (one-way ANOVA: F 

(4, 45) = 0.639; p = 0.637) or sucrose consumption (one-way ANOVA: F (3, 35) = 

0.492; p = 0.690). Finally, Y1R IR in the dentate gyrus was not significantly altered 

following either binge-like ethanol exposure (one-way ANOVA: F (4, 45) = 1.434; p = 

0.238) or sucrose consumption (one-way ANOVA: F (3, 35) = 0.087; p = 0.967).  

 

Discussion 

 The present experiment revealed that multiple binge-like drinking episodes 

caused significant alterations of NPY and Y1R IR in regions of the extended 

amygdala. Both NPY and Y1R IR were significantly reduced in the CeA in response 

to binge-like ethanol drinking, but no changes were evident in the MeA or BLA 

subregions, exhibiting subregion specificity. Interestingly, the same pattern of results 

was found with NPY and Y1R, where one DID episode significantly reduced IR and 

multiple cycles of binge-like ethanol consumption further reduced IR relative to both 

the water drinking group and the 1 ethanol binge-like drinking group. A different 

pattern emerged following sucrose binge-like drinking as NPY IR was significantly 

reduced relative to the WAT group but only after 6 sucrose binge-like drinking 

cycles. Importantly, significant reductions of NPY and Y1R IR after 1 or 3 cycles of 

binge-like drinking were specific to ethanol intake.  

In addition to the amygdala, alterations of the NPY system also occurred in 

other regions of the extended amygdala, specifically the BNST and NAc. In the 
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dmBNST, NPY and Y1R IR were significantly reduced in all ethanol groups 

compared to the water drinking group, indicating NPY signaling in this region may be 

critical to the modulation of ethanol consumption. A couple minor, though significant 

reductions were also observed with NPY IR in the dlBNST following 1 and 3 cycles 

of ethanol binge-like ethanol drinking. The nucleus accumbens, another region of 

interest, was also affected by binge-like ethanol consumption. Y1R expression in the 

NAc core produced the same pattern of results as was found in the CeA. One cycle 

of binge-like ethanol consumption significantly reduced Y1R IR compared to the 

water control group and multiple cycles of binge-like ethanol consumption further 

reduced Y1R IR. Reductions of Y1R IR were observed in the NAc shell with the 

exception of the 1 ethanol binge-like drinking group These results are very different 

from NPY IR, which was actually up-regulated after 6 cycles of ethanol binge-like 

drinking in the NAc core and up-regulated  after 1 ethanol binge-like drinking cycle in 

the NAc shell. These results could indicate that Y1R was down-regulated to 

compensate for increased NPY signaling.  

At the time of the experiment, a Y2R antibody was not available to us but it 

would be interesting to examine the effects of binge-like ethanol consumption on this 

receptor subtype since Y2R in the striatum, which has neuronal connections to the 

nucleus accumbens, facilitates the release of dopamine (Adewale et al., 2005; 

Adewale et al., 2007). Another action of NPY which may be important to these 

adaptations is the effects on GABA release. NPY is co-expressed with GABA and 

studies have found that NPY inhibits GABA release in areas such as the striatum 

and BNST (Chen and van den Pol, 1996; Kerkerian-Le Goff et al., 1992; Kash and 
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Winder, 2006). Since GABA activation is facilitated by ethanol, these effects could 

become even greater when the inhibitory actions of NPY are blunted. Based on the 

results of the current experiment, a possible NPY pathway for the control of binge-

like ethanol consumption would start with initiation of NPY signaling in the CeA 

connecting to the nucleus accumbens via the BNST. This possible pathway is 

consistent with a previously proposed NPY pathway (Tasan et al., 2010). Since 

anxiety and emotional integration have also been linked to these regions, continued 

binge-like ethanol consumption could produce a down-regulation of NPY signaling, 

leading to a negative affective state, which would further drive excessive binge-like 

ethanol drinking, a pattern which is consistent with the model of allostasis (Koob, 

2003). 

 Unlike the regions of the extended amygdala, NPY and Y1R expression was 

increased in the various subregions of the hippocampus following ethanol binge-like 

drinking. These results are consistent with a previous finding in which NPY was 

significantly increased in the hippocampus following withdrawal from ethanol (Bison 

and Crews, 2003). These results may be explained by the effects of NPY on seizure 

activity. NPY activity in the hippocampus protects against seizures by inhibiting 

glutamate release (Woldbye and Kokaia, 2004, Woldbye et al., 2010), thus 

increased NPY in the hippocampus may reflect a preparatory response to protect 

against hyper neuronal activity stemming from withdrawal after the binge-like 

drinking episode.  

The IHC results showing alterations in NPY and Y1R IR tap into the allostasis 

model of ethanol dependence originally proposed by Koob (Koob, 2003; Koob and 
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Le Moal, 2001). This model suggests that repeated cycles of ethanol consumption 

followed by withdrawal and/or abstinence can induce neuroplastic changes in 

neuromodulator systems, including NPY, that are involved with modulating ethanol 

dependence-induced drinking. These alterations are thought to trigger excessive 

ethanol consumption, which may lead to ethanol dependence. These adaptations 

may be long-lasting and occur in brain regions that are important to the 

neurobiological responses to ethanol. Prior to now, the neurochemical alterations in 

response to binge-like drinking models have not been fully examined. The current 

results are novel because they show that excessive ethanol intake in a non-

dependent model of binge-like ethanol consumption can produce significant 

neuroadaptations often seen in dependent models even after just 1 cycle of binge-

like ethanol consumption. In an area such as the central amygdala, a region that has 

been heavily examined as playing an important role in modulating ethanol intake, it 

is interesting to find significant reductions of NPY and Y1R following 1 binge cycle 

and further reduction following multiple binge cycles. We have yet to examine how 

long-lasting these alterations are, but the data suggest that in addition to being a 

potential therapeutic target for treating excessive ethanol drinking stemming from 

dependence, targets aimed at NPY receptors may also be useful for preventing 

excessive binge-like ethanol drinking in non-dependent individuals, perhaps 

ultimately preventing dependence. Based on the results, the central nucleus of the 

amygdala is a probable region to target when looking more at region specificity of 

NPY-produced alterations of binge-like ethanol consumption, which will be further 

examined in Chapter 4. 
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Table 3.1 Ethanol consumed and blood ethanol concentrations for each group on 

day 4 of the final round of drinking in the dark procedures. No significant differences 

of ethanol consumption between groups. The average BEC of the continuous 

access group was significantly reduced from all other groups. Values shown are 

mean ± SEM. * denotes p<0.05 compared to other groups. 

 

Group 
Ethanol Consumed 

(g/kg) 
Blood Ethanol Concentration 

(mg/dl) 

1 DID 4.43 ± 0.28 112.94 ± 10.50 

3 DID 5.06 ± 0.27 160.54 ± 14.69 

6 DID 5.14 ± 0.27 151.04 ± 19.57 

Continuous 4.64 ± 0.51 73.49 ± 9.04* 

 

Table 3.2 Average densities of NPY (as % area) in regions of the amygdala and 

hippocampus. Values shown are mean ± SEM. * denotes p<0.05 compared to water 

group. 

 

 

20% Ethanol Binge Cycles Continuous 3% Sucrose Binge Cycles 

Region 1 3 6 Ethanol Water 1 3 6 

BLA 
0.369 ± 
0.053 

0.396 ± 
0.027 

0.414 ± 
0.027 

0.335 ± 
0.037 

0.385 ± 
0.026 

0.369 ± 
0.033 

0.410 ± 
0.026 

0.355 ± 
0.030 

MeA 
0.257 ± 
0.035 

0.210 ± 
0.012 

0.172 ± 
0.012 

0.184 ± 
0.014 

0.254 ± 
0.048 

0.264 ± 
0.036 

0.220 ± 
0.027 

0.192 ± 
0.012 

CA1 
0.473 ± 
0.023 

0.450 ± 
0.033 

0.494 ± 
0.028 

0.615 ± 
0.048* 

0.410 ± 
0.027 

0.399 ± 
0.017 

0.388 ± 
0.028 

0.414 ± 
0.034 

CA2 
0.396 ± 
0.035* 

0.437 ± 
0.041* 

0.472 ± 
0.043* 

0.418 ± 
0.040* 

0.267 ± 
0.018 

0.417 ± 
0.019* 

0.350 ± 
0.035 

0.348 ± 
0.036 

CA3 
0.261 ± 
0.018 

0.216 ± 
0.013 

0.311 ± 
0.024* 

0.348 ± 
0.042* 

0.207 ± 
0.020 

0.248 ± 
0.022 

0.164 ± 
0.020 

0.247 ± 
0.020 

DG 
0.522 ± 
0.027 

0.356 ± 
0.030* 

0.404 ± 
0.024* 

0.344 ± 
0.026* 

0.489 ± 
0.032 

0.514 ± 
0.029 

0.415 ± 
0.020 

0.450 ± 
0.025 

 
Table 3.3 Average densities of Y1R (as % area) in regions of the amygdala and 
hippocampus. Values shown are mean ± SEM. * denotes p<0.05 compared to water 
group. 
 

 

20% Ethanol Binge Cycles Continuous 3% Sucrose Binge Cycles 

Region 1 3 6 Ethanol Water 1 3 6 

BLA 
0.052 ± 
0.004 

0.048 ± 
0.004 

0.056 ± 
0.007 

0.056 ± 
0.004 

0.055 ± 
0.007 

0.065 ± 
0.006 

0.060 ± 
0.005 

0.054 ± 
0.004 

MeA 
0.058 ± 
0.006 

0.081 ± 
0.009 

0.065 ± 
0.008 

0.077 ± 
0.014 

0.062 ± 
0.005 

0.056 ± 
0.008 

0.070 ± 
0.004 

0.063 ± 
0.005 

CA1 
0.105 ± 
0.010 

0.094 ± 
0.012 

0.085 ± 
0.009 

0.106 ± 
0.012 

0.073 ± 
0.006 

0.089 ± 
0.007 

0.100 ± 
0.005 

0.089 ± 
0.007 

CA2 
0.111 ± 
0.011* 

0.113 ± 
0.012* 

0.101 ± 
0.006* 

0.101 ± 
0.010* 

0.071 ± 
0.006 

0.087 ± 
0.006 

0.117 ± 
0.007* 

0.100 ± 
0.006* 

CA3 
0.068 ± 
0.006 

0.076 ± 
0.014 

0.076 ± 
0.009 

0.063 ± 
0.003 

0.063 ± 
0.006 

0.074 ± 
0.004 

0.076 ± 
0.008 

0.071 ± 
0.012 

DG 
0.111 ± 
0.027 

0.073 ± 
0.005 

0.081 ± 
0.008 

0.075 ± 
0.007 

0.097 ± 
0.007 

0.097 ± 
0.013 

0.102 ± 
0.012 

0.101 ± 
0.007 
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Figure 3.1 Average densities of NPY as % area following multiple binge-like drinking 
episodes with ethanol or sucrose in the CeA (a, b), dlBNST (c, d), dmBNST (e, f), 
NAc Core (g, h) and NAc Shell (i, j). Values shown are mean ± SEM. * denotes 
p<0.05 compared to water group. 
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Figure 3.2 Representative photomicrographs of NPY IR in the CeA (A and D), 
dlBNST (B and E), and dmBNST (C and F) for the 1 ethanol binge-like drinking 
group (top panels) and the WAT group (bottom panels). Images shown were 
captured at 20x and the scale bar represents 100µ. 
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Figure 3.3 Representative photomicrographs of NPY IR in the NAc core (top panels) 
and NAc shell (bottom panels) for the 1E group (A and D), 6E group (B and E), and 
WAT group (C and F). Images shown were captured at 10x and the scale bar 
represents 200µ. 
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Figure 3.4 Average densities of Y1R as % area following multiple binge-like drinking 
episodes with ethanol or sucrose in the CeA (a, b), dlBNST (c, d), dmBNST (e, f), 
NAc Core (g, h) and NAc Shell (i, j). Values shown are mean ± SEM. * denotes 
p<0.05 compared to water group. 
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Figure 3.5 Representative photomicrographs of Y1R IR in the CeA (A and D), 
dlBNST (B and E), and dmBNST (C and F) for the 1 ethanol binge-like drinking 
group (top panels) and the WAT group (bottom panels). Images shown were 
captured at 40x and the scale bar represents 50µ. 
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Figure 3.6 Representative photomicrographs of Y1R IR in the NAc core (top panels) 
and NAc shell (bottom panels) for the 1E group (A and D), 6E group (B and E), and 
WAT group (C and F). Images shown were captured at 40x and the scale bar 
represents 50µ. 
 

 
 
  



 
 

 

 

 

CHAPTER 4 

THE ROLE OF AMYGDALAR NPY SIGNALING ON BINGE-LIKE ETHANOL 
CONSUMPTION IN C57BL/6J MICE 

 

Introduction 

Based on the results of experiments in the previous chapters, we have 

determined that the NPY system is involved in the modulation of binge-like ethanol 

consumption. The results from Chapter 3 have also implicated the central nucleus of 

the amygdala as an area or interest as NPY and Y1 receptor (Y1R) immunoreactivity 

was blunted in this region, even after a single cycle of binge-like ethanol 

consumption. However, it has yet to be determined if NPY signaling in the amygdala 

effects binge-like ethanol consumption. In addition to the current 

immunohistochemistry data, previous research has implicated the amygdala, 

particularly the central nucleus of the amygdala (CeA), as a region of interest in both 

the regulation of ethanol consumption and also as a region rich with NPY signaling 

(Thorsell et al., 2007). Viral-vector induced over-expression of NPY in the amygdala 

of rats significantly blunted the elevated ethanol consumption stemming from forced 

ethanol deprivation (Thorsell et al., 2007). A more recent study observed that NPY 

infused into the CeA of P rats significantly reduced two-bottle choice ethanol drinking 

without altering overall fluid intake (Zhang et al., 2010). Bilateral infusions of NPY 

into the CeA significantly reduced ethanol consumption following acute withdrawal in 
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dependent rats but NPY does not alter ethanol consumption in non-dependent 

outbred rats (Gilpin et al., 2008a). NPY administered into the CeA also significantly 

reduced ethanol consumption in P rats following multiple deprivations but not P rats 

with continuous access to ethanol (Gilpin et al., 2008b). Additionally, differences in 

baseline levels of NPY in the CeA have been observed between alcohol preferring 

and non-preferring animals (Ehlers et al., 1998; Hwang et al., 1999; Hayes et al., 

2005). Innate differences in NPY levels between P and NP rats may explain why 

NPY protects against elevated ethanol drinking in P rats but does not alter ethanol 

drinking in NP rats or low ethanol drinking outbred rats (Gilpin et al., 2003; 

Bertholomey et al., 2011).  

One of the tools that is available to examine the effects of altered NPY 

signaling in specific brain regions utilizes the neurotoxin saporin. Saporin can be 

conjugated to a peptide or antibody to target a particular receptor. Saporin is a 

ribosome inactivating neurotoxin and when it binds to the targeted receptors, it is 

internalized into the cell. The saporin breaks apart from the target and inactivates 

the ribosomes, ultimately leading to cell death (Advanced Targeting Systems, 

Saporin Tutorial; www.ATSbio.com). For these experiments saporin conjugated to 

NPY (NPY-SAP) was infused into specific regions of the amygdala to reduce NPY 

signaling. The control used was a blank saporin (B-SAP), saporin that is not 

conjugated to a peptide, does not target a receptor, and thus does not produce 

neurotoxic effects. Previous studies have found that NPY-SAP alters NPY-related 

behaviors and produces a significant reduction of NPY Y1R in the targeted region 

(Bugarith et al., 2005; Lyons and Thiele, 2010). NPY-SAP infused into the 
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basolateral region of the hypothalamus of rats significantly increased feeding and 

produced a significant reduction of NPY Y1R in the targeted hypothalamus 

subregion (Bugarith et al., 2005). NPY-SAP infused into the CeA resulted in a 

significant increase in anxiety-like behaviors using the elevated zero-maze test and 

Y1R immunoreactivity was significantly reduced in the CeA but not in surrounding 

regions (Lyons and Thiele, 2010). The purpose of the following set of experiments 

was to examine the effect of blunted NPY signaling in either the CeA or basolateral 

(BLA) regions of the amygdala, using NPY-SAP, on binge-like ethanol consumption 

and to determine the effects of these lesions on exogenous NPY-induced 

attenuation of binge-like drinking. 

 

Methods 

Animals 

Male C57BL/6J mice (Jackson Laboratory, Bar Harbor, ME) were used in all 

experiments. Mice were approximately 8 weeks and weighed between 20-25g at the 

beginning of experimental procedures. Mice were individually housed in 

polypropylene cages with corncob bedding and ad libitum access to standard rodent 

chow (Tekland, Madison, WI) and water, except where noted in experimental 

procedures. The colony rooms were maintained at 22ºC with a reverse 12-hr/12-hr 

light/dark cycle with lights out at 10am. All experimental procedures were approved 

by the University of North Carolina Animal Care and Use Committee (IACUC) and 

complied with the NIH Guide for Care and Use of Laboratory Animals (National 

Research Council, 1996). 
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Surgical Procedures 

Mice were anesthetized using a mixture of ketamine and xylazine (100mg/ml 

and 20mg/ml respectively). Mice received a bilateral infusion of 48ng in 0.5ul over 5 

minutes of the neurotoxin NPY conjugated to saporin (NPY-SAP; Advanced 

Targeting Systems, San Diego, CA) or vehicle into the central nucleus of the 

amygdala (CeA). Our previous report with this dose of NPY-SAP was sufficient to 

reduce Y1R in the targeted region without spreading to surrounding regions (Lyons 

and Thiele, 2010). The following coordinates were used for the CeA: 1.5 mm 

posterior to bregma, ± 2.8 mm lateral to midline, and 4.4 mm ventral to skull surface. 

The vehicle used was a Blank-saporin (B-SAP), which is saporin that is not 

conjugated to an antibody or peptide and consequently does not target any cells in 

the brain. Following infusion of the neurotoxin, mice were implanted with a single 26 

gage cannula (Plastics One, Roanoke, VA) aimed at the left lateral ventricle (0.2 mm 

posterior to bregma, 1.0 mm laterally to the left of the midline, and 2.3 mm ventral to 

the skull surface).  Mice were given 10 days to recover from surgery and to allow the 

neurotoxin time to become active in the cells.  

 

Drug Administration 

Mice were tested with NPY (0 or 6 µg/1.0 µl doses; Phoenix Pharmaceuticals, 

INC., Burlingame, CA) which was administered i.c.v. on the test day (day 4) of DID 

procedures. NPY was dissolved in sterile water and sterile water was also used as 

the vehicle.  
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Experimental Procedure 

Mice had 10 days to recover after surgery to allow the NPY-SAP to become 

active. Mice were handled to become acclimated to the experimenter and then went 

through a habituation period to become accustomed to the infusion procedure. 

Subjects had 4 days of 2 hour DID drinking and were infused i.c.v. with 1 µl of sterile 

water over 1 minute on days 2 and 4 of the habituation period.  

After acclimation to the infusion procedure, mice went through DID 

procedures (described below). Since NPY is involved with feeding regulation, food 

was removed each day during ethanol access. After the 3 training days, mice were 

divided into one of four groups based on baseline ethanol consumption. The four 

groups were: NPY-SAP/vehicle, NPY-SAP/NPY, B-SAP/vehicle, and B-SAP/NPY. 

On the test day, food was removed from cages and mice received a single i.c.v. 

infusion of NPY or vehicle (1µl over 1 min) prior to ethanol exposure. After 4 hours of 

ethanol exposure, bottles were removed and a small amount of blood was collected 

from the tail vein for BEC analysis. Each mouse went through two weeks of DID 

procedures and a Latin-square design was used so that each mouse received both 

the vehicle and NPY dose. 

 

Drinking in the Dark (DID) 

The DID procedures were the same as described above and are based on 

procedures described by Rhodes et al., 2005. Bodyweights were taken on the first 

day of each week of DID testing to monitor the health of the animals week to week 

and to calculate the g/kg of ethanol consumed. At three hours into the dark cycle, 
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water bottles were removed from the homecage and replaced with a bottle 

containing a solution of 20% (v/v) ethanol. On days 1-3, which are considered the 

training days, ethanol bottles remained on the cages for 2 hours before removal and 

replacement of the water bottles. On day 4, the test day, water bottles were once 

again replaced with 20% ethanol; however mice had 4 hours of access to the 

ethanol solution on the test day.  When ethanol bottles were removed from the 

cages on the test day, tail blood samples were taken to access the blood ethanol 

concentrations. Ethanol consumption is expressed as g/kg/2 or 4-hr. 

 

Blood Ethanol Concentrations (BEC) 

Mice were restrained in plastic mouse restrainers (Braintree Scientific Inc., 

Braintree, MA). A small nick was made on the tip of the tail with a sterile single-

bladed razor and a small amount of tail blood (15µl) was collected in heparinized 

capillary tubes (Fisher Scientific, Pittsburgh, PA) and one end was sealed with 

hemato-seal (Fisher Scientific, Pittsburgh, PA). After the blood sample was collected 

the mouse was placed back in the homecage. Blood samples were spun for 6 

minutes in a hemato-spin centrifuge to separate the plasma from the blood cells. 

Using a pipette, 5µl of the plasma was removed from the capillary tube and injected 

into the Analox Blood Analyzer (Analox Instruments USA, Lunenburg, MA) to 

determine BECs. Data collected is expressed as mg%. 
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Placement check, Perfusions and Immunohistochemistry (IHC) 

Following completion of the DID procedures, brains were collected and 

prepared for IHC. Mice received an overdose of a ketamine/xylazine mixture.  Mice 

were transcardially perfused with 0.1mM of phosphate-buffered saline (PBS, pH 7.4) 

followed by 4% paraformaldehyde in buffered saline. After the perfusion for each 

mouse was completed, 1µl of blue dye was infused into the cannula before the brain 

was removed to check the placement of the i.c.v. cannulation. Brains were collected 

and post-fixed for 48 hours in 4% paraformaldehyde at 4ºC and then transferred to 

PBS until slicing. Brains were sliced into 40µm sections using a Leica VT 1000S 

vibratome (Leica Microsystems, Nussloch, Germany) and stored in cryoperserve 

solution at -20 ºC until IHC analysis. The sections were divided equally and stained 

for Y1R (rabbit anti-Y1, 1:15,000; Antibody #96106 raised against NPY Y1R was 

provided by the CURE Digestive Diseases Research Center, Antibody/RIA Core, 

NIH Grant #DK41301) as a means of assessing the neurotoxic lesions induced by 

NPY-SAP. Correct placements were expected to be associated with reduced Y1R 

IHC, specifically in the targeted brain region. The sections were rinsed in PBS 3 

times (10 minutes each) and then blocked in 10% goat serum and 0.1% triton-X-100 

in PBS for 1 hour. Sections were then transferred to a primary solution specific to 

each neuro-marker in fresh PBS and 3% goat serum for 72 hours at 4ºC. Sections 

were washed 3 times in PBS and then incubated for 1 hour at room temperature in 

biotinylated secondary antibody from a VectaStain Elite Kit (Vector Laboratories, 

Burlingame, CA) and 3% goat serum. Following 3 more washes in PBS, the tissue 

was transferred to the VectaStain ABC reagent for 1 hour. Sections were visualized 
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by a reaction with 3,3’-diamino-benzidine (DAB, Polysciences Inc, Warrington, PA) 

in a reaction solution containing 0.05% DAB, 0.005% cobalt, 0.007% nickel 

ammonium sulfate, and 0.006% hydrogen peroxide. Sections were mounted on 

glass slides, air-dried, and cover slipped. 

Digital images of Y1R IHC in candidate brain regions were obtained using a 

Nikon E400 microscope with a Nikon Digital Sight DS-U1 digital camera run with 

Nikon provided software. Anatomical landmarks were carefully noted with the aid of 

a mouse brain atlas (Paxinos and Franklin, 2001) to ensure the same plane was 

used throughout the study for each region. Density staining was analyzed by a 

researcher blind to conditions using Image J Software (Image J, National Institute of 

Health, Bethesda, MD) by calculating the percent of the total area studied that 

shows staining relative to subthreshold background. The size of the area was held 

constant between animals and groups for each region. The average of the densities 

for the left and right sides of the brain was calculated for analysis. 

 

Control Procedures 

To assess the specificity to alterations in ethanol consumption, the same 

procedures were repeated except animals were given access to a 10% sucrose 

solution rather than 20% ethanol. An additional control experiment was performed as 

described above with the exception that NPY-SAP or the B-SAP control was infused 

into the basolateral amygdala (BLA) rather than the CeA to assess specificity of the 

sub-region effects of the central amygdala. The coordinates used for the BLA were: 
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1.9mm posterior to bregma, ± 2.9 mm lateral to midline, and 4.5 mm ventral to skull 

surface.  

 

Data Analysis 

All data were analyzed using SPSS software. Any mouse with an incorrect 

cannula placement or NPY-SAP infusion was removed from the analysis. 

Differences between groups were analyzed using analysis of variance (ANOVA). 

When significant differences were found, a post hoc analysis was performed using 

the Tukey’s HSD test. Planned comparisons were used to indicate differences within 

saporin treatment groups. In all cases, p < 0.05 (two-tailed) was used to indicate 

statistical significance.  

 

Results 

Ethanol consumption for DID days 1-3 are shown in table 4.1 for all groups. 

There were no differences between groups during the training days. 

 

NPY-SAP into the CeA 

NPY-SAP treatment alone did not significantly alter ethanol consumption or 

BECs compared to B-SAP treated control mice (Figures 4.1a and 4.1b). An ANOVA 

did not reveal significant differences in ethanol consumption (two-way ANOVA: 

treatment: F (1, 46) = 0.144; p = 0.607; NPY dose: F (1, 46) = 2.148; p = 0.150; 

treatment*dose: F (1, 46) = 2.979; p = 0.092) but there is a significant treatment by 

dose interaction on BECs (two-way ANOVA: treatment: F (1, 46) = 0.003; p = 0.957; 
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NPY dose: F (1, 46) = 0.237; p = 0.629; treatment*dose: F (1, 46) = 6.055; p = 

0.018). However, planned comparisons performed for each saporin treatment group 

indicate the 6 µg/µl NPY dose produced significant decreases in binge-like ethanol 

consumption in the B-SAP treated mice (T-test: T (19) = 2.199; p = 0.040) but not 

NPY-SAP treated mice (T-test: T (24) = -0.192; p = 0.850) Data were converted to 

change from baseline to determine if the dose of NPY affected the saporin treatment 

groups differently (Figures 4.2a and 4.2b). The B-SAP treated mice drank 

approximately 1.7 g/kg less ethanol and had BECs averaging 65 mg/dl less when 

treated with the 6 µg/µl dose of NPY relative to the vehicle treated group. These 

results are significantly different than NPY-SAP treated mice that were given a 

central infusion of NPY, as these mice drank approximately 0.14 g/kg more ethanol 

with BECs 43 mg/dl higher  than the vehicle treated group (one-way ANOVA: F (1, 

23) = 6.482; p = 0.018; F (1, 23) = 13.021; p = 0.001; ethanol consumption and 

BECs respectively). 

Results from the 10% sucrose control study indicate no significant changes in 

sucrose consumption following i.c.v. infusion of 6 µg NPY relative to vehicle 

treatment and there was no difference between saporin treatment groups (two-way 

ANOVA: treatment: F (1, 24) = 1.418; p = 0.247; NPY dose: F (1, 24) = 0.177; p = 

0.678; treatment*dose: F (1, 24) = 0.104; p = 0.751). 

Brains were stained for Y1R and immunoreactivity (IR) results in the 

amygdala are shown in Figures 4.3a and 4.3b. NPY-SAP treatment produced a 

significant reduction of Y1R IR compared to B-SAP treated mice in the CeA (one-

way ANOVA: F (1, 24) = 31.937; p < 0.001) indicating NPY-SAP effectively blunted 
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Y1R in the targeted region. Data from 3 mice were removed from the analysis as the 

mice failed exhibit evidence of lesions (determined as Y1R IR being greater than 1 

standard deviation above the average IR for NPY-SAP treated mice). Y1R IR 

analyzed in the adjacent BLA region and was not significantly different between 

NPY-SAP and B-SAP treatment (one-way ANOVA: F (1, 23) = 1.345; p = 0.258) 

indicating that saporin infusions did not spread to nearby regions. 

 

NPY-SAP into the BLA 

The ethanol consumption and BEC results for mice treated with NPY-SAP or 

B-SAP into the BLA are shown in Figures 4.4a and 4.4b. NPY-SAP into the BLA did 

not alter binge-like ethanol consumption (two-way ANOVA: F (1, 47) = 2.393; p = 

0.129) or BECs (two-way ANOVA: F (1, 47) = 0.692; p = 0.410) in the absence of 

i.c.v. NPY. When NPY was infused, there was an overall effect of NPY on 4-h 

ethanol consumption (two-way ANOVA: F (1, 47) = 6.122; p = 0.017) but no effect 

on BECs (two-way ANOVA: F (1, 47) = 0.243; p = 0.624), and there was no dose by 

treatment interaction for either ethanol consumption or BECs (two-way ANOVA: F 

(1, 47) = 2.537; p = 0.118; F (1, 47) = 2.092; p = 0.155, respectively). However, 

planned comparisons  performed for each saporin treatment group indicate the 6 

µg/µl NPY dose produced significant decreases in binge-like ethanol consumption in 

the B-SAP treated mice (T-test: t (25) =3.463; p = 0.002) but not NPY-SAP treated 

mice (T-test: t (19) =0.522; p = 0.608). Data was converted to change from baseline 

to determine if the dose of NPY affected the saporin treatment groups differently 

(Figures 4.5a and 4.5b). The B-SAP treated mice drank approximately 2.2 g/kg less 
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ethanol and had BECs averaging 41 mg/dl less when given central infusion of a  6 

µg/µl dose of NPY relative to the vehicle condition. NPY-SAP treated mice drank 

approximately 0.5 g/kg less ethanol with BECs 20 mg/dl higher when given central 

infusion of NPY relative to the vehicle condition(one-way ANOVA: F (1, 26) = 6.003; 

p = 0.021; F (1, 26) = 6.050; p = 0.021; ethanol consumption and BECs 

respectively).  

Four subjects were removed due to incorrect placements using the same 

criterion of Y1R IR noted above. NPY-SAP treatment produced a significant 

reduction of Y1R IR in the BLA (Figure 4.6b) compared to B-SAP treated mice (one-

way ANOVA: F (1, 29) = 33.986; p < 0.001). The pattern of drinking results is similar 

when NPY-SAP is infused into the BLA or the CeA, indicating a possible role of both 

these amygdala subregions in the modulation of binge-like ethanol consumption. 

Y1R IR was analyzed in the adjacent CeA region (Figure 4.6a). Y1R IR was no 

different in the CeA between NPY-SAP and B-SAP treatment (one-way ANOVA: F 

(1, 29) = 1.141; p = 0.295) indicating that saporin infusions did not spread to nearby 

regions. 

 

Discussion 

 Our previous data implicates the NPY signaling system as being involved in 

the modulation of binge-like ethanol consumption. The purpose of this data set was 

to determine the brain region that is involved with this modulation binge-like ethanol 

drinking following central administration of exogenous NPY. These experiments 

investigated the role of the amygdala. Blunted NPY signaling in the CeA or BLA 
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subregions with the use of NPY-SAP did not significantly alter baseline binge-like 

ethanol consumption, indicating that disruption of this part of the NPY pathway alone 

does not enhance or blunt binge-like ethanol consumption with the DID model. 

When NPY was administered centrally, differences emerged between saporin 

treatment groups. Regardless of amygdala subregion, blunted NPY receptor 

signaling in either the CeA or BLA abolished the ability of centrally infused NPY to 

reduce binge-like ethanol consumption. The control experiment with 10% sucrose 

also did not yield any differences between saporin treatments or from NPY infusion. 

These results suggest that NPY signaling in the amygdala specifically modulates 

binge-like ethanol consumption and not consumption of other caloric and reinforcing 

stimuli. 

 Initially, we predicted NPY-SAP treatment in the CeA would produce basal 

differences in ethanol consumption relative to B-SAP treated mice. By blunting NPY 

signaling, it was hypothesized that these mice would consume more ethanol than 

the control group. However, this was not the observed result, which may be related 

to a ceiling effect associated with an already high level of binge-like ethanol drinking. 

If NPY-SAP was specific to the Y1R, we may have observed this effect based on 

prior results with a Y1R selective antagonist but NPY-SAP abolishes neurons 

expressing all NPY receptor subtypes in the targeted region. NPY Y1R and Y2R are 

expressed in the amygdala. The Y2R are primarily presynaptic (Colmers et al., 

1991) and are often co-expressed with Y1R (Chen and van den Pol, 1996), thus 

essentially cancelling out competing receptor subtypes. Another possible 

explanation as to why saporin treatment alone did not alter ethanol consumption is 
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that saporin causes cell death and other receptors besides NPY receptors are 

reduced due to co-expression with NPY, thus saporin may interfere with other 

systems that have competing effects with the NPY system. The major inhibitory 

neurotransmitter, GABA, which is a target of alcohol (Higgins, 1962; Hakkinen and 

Kulonen, 1959), is co-localized with NPY throughout the brain including the 

amygdala regions (McDonald and Pearson, 1989). By blunting both of these 

systems, possible alterations in ethanol consumption would be a wash and no 

changes would occur. NPY in the amygdala is also co-localized with somatostatin, a 

peptide involved with the release of dopamine (McDonald, 1989; Beal et al., 1986). 

Causing cell death in NPY receptor containing neurons with saporin could also 

reduce actions of the dopamine system, thereby altering rewarding properties of 

ethanol. Because saporin is potentially affecting systems other than NPY, we cannot 

make conclusive statements about the endogenous amygdalar NPY system. 

However, when administering NPY, thus introducing an exogenous supply of NPY to 

the system, the importance of normal NPY signaling in the amygdala to NPY 

modulation of binge-like ethanol consumption is apparent because blunted signaling 

in this region abolished the NPY-produced reduction of binge-like ethanol 

consumption. Thus, the effects of ventricularly infused NPY on binge-like ethanol 

drinking appear to require normal NPY signaling in the CeA and BLA.  

 In conclusion, the current experiments indicate the importance of an intact 

NPY system in both the CeA and BLA subregions for effective exogenous NPY 

modulation of binge-like ethanol consumption. Though DID procedures model binge-

like ethanol drinking in non-dependent animals, these data are consistent with prior 
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published data, which has established the CeA as the necessary region for NPY-

induced attenuation of ethanol consumption in dependence models (Thorsell et al., 

2007; Zhang et al., 2010).  Initially, the BLA in the present experiments was intended 

as a control region, but our results indicate that this amygdalar subregion is also 

necessary for the protective effects of NPY on excessive ethanol drinking. These 

data are in accordance with a proposed signaling pathway in a study by Tasan et al. 

(2010). This study proposes that signaling between the BLA and CeA NPY neurons 

as well as to other areas of the extended amygdala, including the BNST, as an 

important pathway in modulating ethanol intake.  In summary, our data indicates that 

normal NPY signaling is necessary in both the CeA and BLA regions for centrally 

infused NPY to be protective against binge-like ethanol consumption. 
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Table 4.1 Ethanol consumed for each group on training days 1-3 of drinking in the 
dark procedures. Values shown are mean ± SEM. 
 

  Day 1 Day 2 Day 3 

NPY-SAP in the CeA 

NPY-SAP 0 µg 1.70 ± 0.32 2.35 ± 0.38 2.56 ± 0.36 

NPY-SAP 6 µg 1.37 ± 0.28 2.34 ± 0.32 2.24 ± 0.32 

B-SAP 0 µg 1.40 ± 0.32 2.45 ± 0.28 2.97 ± 0.38 

B-SAP 6 µg 1.73 ± 0.28 2.96 ± 0.26 2.87 ± 0.23 

NPY-SAP in the BLA 

NPY-SAP 0 µg 2.27 ± 0.55 2.45 ± 0.34 3.10 ± 0.27 

NPY-SAP 6 µg 1.98 ± 0.31 2.41 ± 0.26 2.82 ± 0.34 

B-SAP 0 µg 1.56 ± 0.26 2.84 ± 0.24 3.09 ± 0.40 

B-SAP 6 µg 1.50 ± 0.29 2.28 ± 0.32 2.42 ± 0.35 
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Figure 4.1 The effects of blunted NPY signaling by infusion of NPY-SAP (48 
ng/side) in the central nucleus of the amygdala on consumption of 20% (v/v) ethanol 
(a) and blood ethanol concentrations (b) following 4-hr ethanol access on day 4 of 
drinking in the dark procedures. Saporin treatment alone did not alter ethanol 
consumption or BECs. Mice were given i.c.v. administration of NPY (0, 6 µg) prior to 
ethanol access. Compared to vehicle treatment, NPY infusion caused a significant 
reduction of ethanol consumption but not corresponding BECs in the B-SAP treated 
mice. The effects of NPY were blocked in mice treated with NPY-SAP in the CeA. 
Values are means + SEM. * denotes p<0.05 compared to 0 µg vehicle group. 

 

  

a 

b 
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Figure 4.2 Data from mice treated with saporin in the central nucleus of the 
amygdala were converted to change from baseline. The average ethanol consumed 
and BEC from the control group for each saporin treatment was subtracted from 
data collected with i.c.v. administration of 6 µg NPY to obtain the change from 
baseline for ethanol consumption (a) and BECs (b). Change from baseline was 
significantly different between NPY-SAP and B-SAP treatment groups when saporin 
was infused into the CeA. Values are means + SEM. * denotes p<0.05 between 
groups. 

 
 

 
 
  

a 
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Figure 4.3 Immunohistochemistry results of Y1 receptor immunoreactivity in the 
amygdala of mice treated with NPY-SAP (48ng/side) in the CeA. Average Y1R IR in 
the CeA (a) was significantly reduced compared with B-SAP treated mice. Average 
Y1R IR in the BLA (b) was no different compared with B-SAP treated mice. Values 
are means + SEM. * denotes p<0.05 between groups.  

 

  

a 
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Figure 4.4 The effects of blunted NPY signaling by infusion of NPY-SAP (48 
ng/side) in the basolateral amygdala on consumption of 20% (v/v) ethanol (a) and 
blood ethanol concentrations (b) following 4-hr ethanol access on day 4 of drinking 
in the dark procedures. Saporin treatment alone did not alter ethanol consumption or 
BECs. Mice were given i.c.v. administration of NPY (0, 6 µg) prior to ethanol access. 
Compared to vehicle treatment, NPY infusion caused a significant reduction of 
ethanol consumption but not corresponding BECs in the B-SAP treated mice. The 
NPY effect was blocked in mice treated with NPY-SAP in the BLA. Values are 
means + SEM. * denotes p<0.05 compared to 0 µg vehicle group. 
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Figure 4.5 Data from mice treated with saporin in the basolateral amygdala was 
converted to change from baseline. The average ethanol consumed and BEC from 
the control group for each saporin treatment was subtracted from data collected with 
i.c.v. administration of 6 µg NPY to obtain the change from baseline for ethanol 
consumption (a) and BECs (b). Change from baseline was significantly different 
between NPY-SAP and B-SAP treatment groups when saporin was infused into the 
BLA. Values are means + SEM. * denotes p<0.05 between groups. 
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Figure 4.6 Immunohistochemistry results of Y1 receptor immunoreactivity in the 
amygdala of mice treated with NPY-SAP (48ng/side) in the BLA. Average Y1R IR in 
the CeA (a) of mice treated with NPY-SAP was not altered compared with B-SAP 
treated mice. Average Y1R IR in the BLA (b) of mice treated with NPY-SAP was 
significantly reduced compared with B-SAP treated mice. Values are means + SEM. 
* denotes p<0.05 between groups. 
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CHAPTER 5 

GENERAL DISCUSSION 

 

Summary of Experimental Findings 

 The experiments described in the previous chapters are the first to evaluate 

the role of NPY signaling in an animal model of binge-like ethanol consumption. 

Though the drinking in the dark (DID) procedure is not a model of ethanol 

dependence, the current findings are similar to previous reports on the role of NPY 

in dependence-induced ethanol consumption (Gilpin et al., 2008b; Katner et al., 

2002; Thiele et al., 2003). In the first set of experiments, it was found that centrally 

administered NPY significantly reduced binge-like ethanol consumption in a dose 

dependent manner. This finding is novel because previous findings indicated that 

NPY does not alter ethanol consumption in non-dependent models or rodents 

without a preference for ethanol (Thorsell et al., 2005; Badia-Elder et al., 2001). 

Interestingly, NPY administered to low ethanol consuming mice produced the 

opposite effects, causing a significant increase of ethanol consumption. Thus results 

suggest that different central NPY pathways are recruited during excessive binge-

like ethanol drinking versus moderate ethanol intake. 

 NPY acts on 3 centrally located receptor subtypes, namely the Y1R, Y2R, 

and Y5R. Results from experiments using receptor-selective compounds suggest 
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that binge-like ethanol consumption can be blunted by activation of the Y1R or 

antagonism of the Y2R. Furthermore, blockade of Y1R enhances binge-like ethanol 

consumption. Both of these receptors are widely expressed throughout the brain but 

expression is greatest in regions of the extended amygdala (Stanic et al., 2006). 

Previous reports have indicated that NPY alters ethanol consumption in dependent 

models but does not alter drinking in non-dependent rodents (Thorsell et al., 2005; 

Badia-Elder et al., 2001; Slawecki et al., 2000), which may appear inconsistent with 

the present results since DID procedures model excessive binge-like ethanol 

drinking in non-dependent animals. One possibility is that during binge-like ethanol 

consumption, alterations occur within the NPY system, similar to changes observed 

following ethanol dependence and withdrawal (Ehlers et al., 1998), which would 

allow NPY infusions to alter ethanol consuming behavior during the DID procedures. 

This possibility was examined in Chapter 3.  

Binge-like ethanol consumption produced significant alterations in NPY and 

Y1R immunoreactivity (IR) in regions of the extended amygdala, which have been 

previously indicated as areas of importance for the control of ethanol and anxiety-

like behaviors (Thorsell et al., 2007; Gilpin et al., 2008c; Heilig, 2004). Significant 

reductions were exhibited in both NPY and Y1R IR in the central nucleus of the 

amygdala (CeA) and reductions were greater with multiple binge-like drinking 

episodes. No changes occurred in either the medial (MeA) or basolateral (BLA) 

subregions indicating region specificity for ethanol-induced alterations in the NPY 

system. Based on these results, the CeA was chosen as a candidate region for 

NPY-saporin (NPY-SAP) treatment to examine the role of NPY signaling in the CeA 
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in the modulation of binge-like ethanol intake, and the BLA was chosen as a control 

region. NPY-SAP treatment significantly reduced Y1R IR in the targeted region 

without affecting Y1R IR the adjacent region. When NPY was administered centrally 

in the mice treated with NPY-SAP into the CeA, binge-like ethanol consumption was 

not reduced as it was in blank-saporin (B-SAP) treated control mice. Based on the 

IHC results of Chapter 3, it was expected that NPY-SAP treatment into the BLA 

would not affect the ability of central NPY to reduce binge-like ethanol consumption. 

However, NPY-SAP treatment into the BLA also blocked NPY-induced reduction of 

binge-like ethanol consumption similar to NPY-SAP treatment into the CeA. Thus, 

normal NPY receptor expression in both the CeA and BLA are necessary for NPY-

induced blunting of binge-like ethanol intake. Saporin treatment alone in either the 

CeA or the BLA did not affect baseline binge-like ethanol drinking. These results 

could be due to a number of factors including NPY-SAP-induced blunting of both 

Y1R and Y2R, since NPY-SAP targets all NPY receptor subtypes and these 

receptors are often co-expressed (Chen and van den Pol, 1996). Since Y1R are 

postsynaptic receptors while Y2R are mainly presynaptic (Colmers et al., 1991; King 

et al., 1999), activation of both receptor subtypes would have opposing effects on 

ethanol consumption and blunting expression of each receptor subtype may mask 

potential effects that would be observed if receptor down-regulation was specific to 

one receptor subtype.  Furthermore, the petrochemical phenotype of the cells that 

are killed by NPY-SAP are unknown, making it difficult to interpret negative data.  

Taking the IHC data following binge-like ethanol consumption together with saporin 

treatment results, the CeA and BLA appear to be essential regions in the NPY 
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signaling pathway at which exogenous NPY modulates binge-like ethanol 

consumption. NPY IR in the BLA was not affected at the time in which NPY was 

assessed but it is possible that NPY in the BLA is altered at a different period than 

the one assessed in the current experiments.   

In addition to the CeA, binge-like ethanol consumption altered NPY and Y1R 

IR in regions of the extended amygdala including the nucleus accumbens (NAc) and 

the bed nucleus of the stria terminalis (BNST). These regions have been implicated 

as part of the NPY pathway involved with ethanol consumption (Koob, 2003; Koob 

and Le Moal, 2001). These data extend previous findings of altered NPY expression 

following ethanol dependence (Ehlers et al., 1998; Zhang and Pandey, 2003; Roy 

and Pandey, 2002) by indicating that NPY signaling in the extended amygdala 

modulates excessive binge-like ethanol drinking in non-dependent animals in 

addition to modulating dependence-induced drinking. Taken together, the results 

presented here suggest that centrally administered NPY compounds may be acting 

in the amygdala, as indicated with the saporin data, and influencing downstream 

targets to reduce binge-like ethanol consumption.  

 

NPY and CRF: Opponent Processes 

 NPY is one of many neuromodulating systems controlling ethanol 

consumption. Activation of another system, corticotrophin releasing factor (CRF), 

produces reciprocal effects from NPY on ethanol consumption as well as anxiety-like 

behaviors. As discussed previously, activation of the NPY system produces 

anxiolytic-like effects in rodent models (Heilig, 2004; Thiele and Heilig, 2004; 
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Sorenson et al., 2004; Redrobe et al., 2002). The opposite is true of the CRF 

system. Administration of CRF increases anxiety-like behaviors, measured as 

decreased exploration in the open-field test and reduced time spent in the open 

arms of the elevated plus maze (Sutton et al., 1982; Baldwin et al., 1991). 

Furthermore, these effects appear to be mediated by the CRF type-1 receptor 

(CRFR1) since transgenic mice lacking CRFR1 demonstrate reduced anxiety-like 

behaviors compared to wild-type controls (Smith et al., 1998). In our current studies 

as well as previous experiments, NPY IR was significantly reduced in regions of the 

extended amygdala following exposure to ethanol (Roy and Pandey, 2002). In 

contrast, CRF IR is increased in the amygdala following exposure to chronic ethanol 

and during withdrawal (Olive et al., 2002; Zorilla et al., 2001). At the cellular level, 

NPY and CRF produce opposing effects on GABAergic transmission, which may be 

important to the effects on ethanol consumption since GABA levels are increased in 

the brain following ethanol exposure (Hakkinen and Kulonen, 1959; Higgins, 1962). 

In the BNST, NPY suppresses GABAergic transmission, while CRF, through 

activation of the CRFR1, enhances GABA release (Kash and Winder, 2006). In the 

amygdala, effects of CRF on GABA in response to ethanol are enhanced in rats 

made dependent on ethanol compared to ethanol naïve rats (Roberto et al., 2010). 

In addition, antagonism of CRFR1 in ethanol dependent rats reduces GABA 

transmission to that of ethanol naïve rats. Unlike NPY activation, which reduces 

ethanol consumption, activation of the CRF system enhances ethanol self-

administration, while CFR antagonism reduces ethanol consumption (Le et al., 

2000). As with anxiety-like behaviors, data from transgenic mice suggests this 
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modulation of ethanol consumption is through CRFR1 since following ethanol 

deprivation, CRFR1-/- mice self-administer less ethanol compared to wild-type 

controls (Chu et al., 2007). As with NPY, data suggest that CRF modulates ethanol 

consumption in dependent, but not non-dependent animals (Valdez et al., 2004). 

The current data presented here suggest that activation of NPY reduces binge-like 

ethanol consumption while previous data from this lab demonstrates that 

antagonism of the CRFR1 also decreases binge-like ethanol consumption using the 

DID model (Sparta et al., 2008; Lowery et al., 2010). The evidence suggests that 

these two systems, NPY and CRF, work in an opposing fashion in overlapping brain 

regions in the modulation of ethanol intake and anxiety-related behaviors. The 

opposing actions of NPY and CRF are hypothesized as integral components of the 

allostasis model of the development of ethanol dependence. 

 

NPY, Binge-like Drinking, and Allostasis 

 Allostasis, the regulation of physiological systems outside of the “normal” 

homeostatic range (Sterling and Eyer, 1981), is a proposed model for alterations that 

occur in the reward pathways of the brain following chronic exposure to drugs or 

alcohol (Koob and Le Moal, 2001; Koob, 2003; Valdez and Koob, 2004). It is 

hypothesized that persistent and chronic alterations to the NPY and CRF systems, 

due to chronic ethanol exposure, produce changes in the mood state which then 

promote a switch in the reinforcing properties of ethanol as ethanol dependence 

emerges. An essential element of this model involves the development of tolerance 

to the positive reinforcing (euphoric) effects of ethanol, resulting from a reduction of 
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NPY, as well as the induction and sensitization of a negative affective state over the 

course of dependence, resulting from an increase in CRF expression (Valdez and 

Koob, 2004). A negative affective state associated with dependence has been 

demonstrated in animal models of anxiety and depression. Withdrawal from chronic 

ethanol exposure significantly reduced open arm time in the elevated plus maze as a 

test for anxiety-like behaviors (Rasmussen et al., 2001) and up to a 48-hr withdrawal 

significantly increased the threshold for intracranial self-stimulation, which is a 

measure of depression-like behaviors (Schulteis et al., 1995). Withdrawal following 

chronic ethanol exposure also caused greater depressive like symptoms in the 

forced swim test (Walker et al., 2010). When ethanol dependence develops, the 

motivation to consume ethanol switches from positive reinforcement to negative 

reinforcement, where one consumes ethanol in the hope of maintaining a “normal” 

mood state and alleviating the negative affect stemming from dependence (Valdez 

and Koob, 2004). According to the allostasis model, over time a larger amount of 

ethanol would need to be consumed to alleviate the negative affective state.  

 The results of the current experiments are an indication that binge-like 

ethanol consumption leads to alterations in the NPY system in the same direction as 

occurs during dependence (down-regulation), changes which may initially be 

transient but may ultimately become rigid with repeated bouts of binge-like drinking, 

culminating in dependence (consistent with the allostasis model). Alterations of NPY 

and Y1R expression in the amygdala are consistent with previous findings in 

dependent models (Ehlers et al., 1998) and the hypothesis that the amygdala is a 

region of importance to withdrawal-induced stress responses and allosteric changes 
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from chronic ethanol (Moller et al., 1997; Koob, 2003). Much of the data available in 

support of the allostasis model focuses on animals that are already ethanol 

dependent. The data presented here reveal the effects of ethanol at the beginning 

stages of ethanol drinking and before dependence has developed. The results 

suggest that transient alterations of NPY signaling occur at an early stage and over 

time, with multiple bouts of binge-like ethanol consumption and withdrawal, these 

changes become greater, as exhibited by further decreases of NPY and Y1R IR with 

increasing cycles of binge-like ethanol intake. Eventually, we believe these 

alterations would become persistent, and induce the negative affective state that is 

associated with ethanol dependence. Since decreased NPY signaling is associated 

with anxiety- and depressive-like behaviors, it is not unreasonable to suggest the 

negative emotional state during ethanol dependence is due to decreased NPY 

signaling. The alterations in several brain regions are suggestive of a kindling effect 

due to multiple ethanol binge-like episodes. Kindling was originally described with 

seizure activity in that repeatedly administering a low level of electrical stimulation, 

which on its own does not produce convulsions, will eventually induce seizure 

activity (Carrington et al., 1984). A kindling-like effect has also been observed with 

multiple ethanol withdrawals. In the human literature, adult male alcoholics 

experienced seizures and more intense withdrawal symptoms if they had previously 

gone through detox and abstinence (Booth and Blow, 1993). Animal models have 

exhibited similar results. Mice subjected to chronic ethanol vapor, with or without 

withdrawal periods, were tested for handling-induced seizures. Seizure activity was 

more intense in mice subjected to multiple withdrawals compared to mice treated to 
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chronic ethanol without intermittent withdrawals and furthermore, the seizures 

became more severe with an increasing number of withdrawal periods (Becker and 

Hale, 1993; Becker, 1994). In addition to seizure activity, kindling has also been 

demonstrated to effect mood alterations after withdrawal. Rats that experienced 

multiple withdrawals from ethanol diet showed decreased social interaction and 

decreased open arm exploration in the elevated plus maze compared to rats with 

only one ethanol withdrawal (Overstreet et al., 2002; Overstreet et al., 2004). The 

current set of experiments are the first to suggest blunted NPY signaling in the 

amygdala and NAc following a single or multiple ethanol binge-like consumption 

episodes. The data here show that one cycle of ethanol binge-like drinking 

significantly reduced NPY and Y1R in the central amygdala. Expression was further 

reduced following three or six cycles of binge-like ethanol drinking. The NPY and 

Y1R alterations stemming from binge-like ethanol intake are consistent with the 

allostasis hypothesis and could explain the kindling effects on seizure activity and 

anxiety-like behaviors associated with ethanol withdrawal since NPY is involved with 

both of these behaviors (Woldbye and Kokaia, 2004; Heilig, 2004; Sorenson et al., 

2004).  

A schematic representation of NPY signaling in the allostasis model is shown 

in Figure 5.1 (adapted from Valdez and Koob, 2004). Based on the allostasis model, 

during ethanol consumption, NPY signaling is enhanced to produce the anxiolytic 

and euphoric effects of ethanol and these levels remain elevated until the 

termination of ethanol drinking. During withdrawal, NPY signaling is hypothesized to 

become hypoactive, resulting in a negative affective state. Eventually, NPY 
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signalling normalizes. However, with repeated consumption and withdrawal, 

allostasis occurs and a new sub-optimal level of NPY activity is established (Valdez 

and Koob, 2004). A key aspect in the allostasis model is that NPY signaling remains 

elevated as long as ethanol is onboard, and reduced signaling does not appear until 

withdrawal occurs. Based on the current results, we propose a slight modification of 

the allostasis model. Our results indicate that NPY signaling is blunted “prior” to the 

onset of withdrawal. Theoretically, as a binge begins NPY signaling is initially 

increased but as more ethanol is consumed (or as a specific level of ethanol in the 

blood/brain is reached) over the course of a binge, NPY signaling becomes 

exhausted and signaling decreases. We speculate that this reduction of NPY 

signaling during a binge motivates continued and uncontrolled drinking, analogous to 

the mechanism that drives dependence-induced drinking. At the end of the first 

period of binge-like ethanol consumption, while blood ethanol concentrations were 

still high and before the start of ethanol withdrawal, NPY IR was decreased, 

indicating that during ethanol binge-like consumption, transient reductions in NPY 

signaling did in fact occur, consistent with our proposed mechanism. With repeated 

exposure to binge-like ethanol consumption, we hypothesize that these transient 

alterations become prolonged as tolerance develops and NPY signaling further 

decreases, eventually maintaining a new set point (allostatic point) and leading to 

ethanol dependence.  

 Though behavioral alterations such as withdrawal-induced anxiety-like or 

depressive-like like behaviors were not examined in this study, it is not expected that 

these changes would have occurred in the present work. While dependence is 
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associated with increased anxiety- and depression-like behaviors (Rasmussen et al., 

2001; Schulteis et al., 1995; Walker et al., 2010; Koob and Le Moal, 2001), the DID 

procedure is not a model of dependence. Unpublished data from this lab show that 

while a single cycle of binge-like ethanol drinking does not alter voluntary 

consumption of ethanol, 6 cycles of binge-like drinking promotes a significant 

increase of subsequent voluntary ethanol intake, similar to increased voluntary 

ethanol drinking stemming from ethanol dependence. These observations indicate 

that while DID procedures do not model ethanol dependence, over time, ethanol 

dependence may develop following repeated bouts of binge-like ethanol 

consumption. The current results suggest a possible therapeutic value for NPY for 

preventing the development of ethanol dependence by reducing binge drinking, a 

risk factor for dependence (Miller et al., 2007; Hingson et al., 2006; Hingson et al., 

2005).  

 

NPY and Ethanol Signaling Pathway 

 Based on the current results and past data, a possible NPY-ethanol signaling 

pathway is represented in figure 5.2. A study by Zardetto-Smith and Gray (1995) 

indicate that NPY neurons in the amygdala send efferent projections to other regions 

of the extended amygdala. Data from the current saporin experiments indicate that 

both the CeA and BLA subregions are essential parts of the pathway since blunting 

NPY signaling in either subregion blocked the reduction of binge-like ethanol 

consumption by centrally administered NPY. Y2R deletion in either the CeA or the 

BLA have also been shown to reduce anxiety-like behaviors (Tasan et al., 2010), 
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indicating the importance of signaling in these two regions on behaviors associated 

with ethanol withdrawal and it is hypothesized that reduced function of the NPY 

system contributes to the negative affective state during ethanol withdrawal (Koob, 

2003). Tasan et al. (2010) also suggest that there are NPY projections between the 

BLA and CeA. The current data revealed no changes to NPY or Y1 IR in the BLA 

following binge-like ethanol consumption but blunted NPY signaling in the BLA did 

block the effects of centrally administered NPY on binge-like ethanol consumption 

indicating the BLA as a region involved with this signaling pathway. In previous 

studies examining differences in basal NPY levels between high ethanol consuming 

rodents (P and HAD rats and C57BL/6J mice) and low ethanol consuming rodents 

(NP and LAD rats and DBA/2J mice), expression of NPY was significantly lower in 

the amygdala of high ethanol consuming rodents (Ehlers et al., 1998; Hwang et al., 

1999; Hayes et al., 2005). These results in conjunction with the current findings 

support the hypothesis that NPY signaling in the amygdala is not only important to 

the modulation of ethanol consumption, but is also altered by exposure to ethanol. In 

addition to the current results on binge-like ethanol consumption and basal 

differences to NPY between high and low ethanol consuming animals, alterations to 

NPY have been observed following chronic ethanol exposure and withdrawal (Zhang 

and Pandey, 2003; Roy and Pandey, 2002), further implicating an extended 

amygdala NPY pathway in response to both ethanol consumption and withdrawal. In 

the present study, NPY and Y1R IR were significantly reduced in mice with 

continuous ethanol access and these reductions were consistent with the multiple 

binge-like ethanol exposure groups. Previous experiments have also noted 
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decreased NPY mRNA or protein in the amygdala following withdrawal from chronic 

ethanol (Zhang and Pandey, 2003; Roy and Pandey, 2002); however in both of 

these studies, NPY was not altered in the non-withdrawal condition, which is 

inconsistent with the current findings. 

 From the amygdala, NPY efferent projections travel along the BNST to 

anterior regions of the extended amygdala (Zardetto-Smith and Gray, 1995; Koob, 

2003; Tasan et al., 2010). Interestingly, we found alterations of NPY and Y1R IR in 

the BNST and the NAc, regions postulated to modulate dependence-induced drug 

seeking (Koob, 2003; Valdez and Koob, 2004). Reduced basal NPY levels have 

been found in the NAc of C57BL/6J mice compared to low ethanol consuming 

DBA/2J mice (Hayes, et al., 2005) further indicating this region as being associated 

with high ethanol consumption. Based on the current results in which NPY and Y1R 

IR is reduced in the CeA, as well as the BNST and NAc, following binge-like ethanol 

consumption, we speculate that NPY signaling throughout the extended amygdala 

may critically modulate binge-like drinking in non-dependent animals. 

 

Future Directions 

 The experiments described here extend the allostasis model to binge-like 

ethanol consumption and the alterations that occur prior to the induction of ethanol 

dependence. More work is still needed to further understand the role of NPY 

signaling and confirm the results from these experiments. Since 

immunohistochemistry is not a definitive method to examine signaling, a follow-up 

experiment are needed to measure mRNA levels of NPY and NPY receptors 
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following single or multiple cycles of binge-like ethanol consumption. We believe the 

observed alterations are initially transient so it would be important to measure NPY 

and Y1R IR or mRNA following a period of initial withdrawal and prolonged 

withdrawal. The IHC experiment only examined Y1R IR and not other receptors. 

Thus, it will be important to examine the role of other NPY receptor subtypes. The 

experiments utilizing saporin should also be more closely examined since NPY-SAP 

induces cell death in all NPY receptor containing neurons. To examine receptor 

subtype signaling in selected regions, site-directed infusions of the receptor-

selective compounds should be performed. We hypothesize that the centrally 

administered Y1R and Y2R selective compounds acted on receptors in the 

amygdala and site-directed infusions into the CeA or BLA prior to binge-like ethanol 

consumption would confirm this hypothesis. In addition to the amygdala, it will be 

interesting to examine what the effect of blunted NPY signaling in the BNST or NAc 

will have on binge-like ethanol consumption and if interruptions at any part of this 

proposed pathway would alter binge-like drinking. Lastly, this dissertation focuses on 

the NPY system but the allostasis model also implicates the CRF signaling system 

(Koob and Le Moal, 2001). Future studies should be performed to examine how 

these two competing systems interact during binge-like ethanol consumption. 

In conclusion, the data presented here extend the allostasis model to not just 

ethanol dependence but also to changes that occur during binge-like ethanol 

consumption prior to the onset of dependence. The data indicate the NPY signaling 

system to be involved with the modulation of binge-like ethanol consumption. The 

data here are the first to examine alterations in ethanol non-dependent animals and 
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indicate that repeated cycles of excessive, binge-like ethanol consumption and 

withdrawal produce progressively increasing alterations of NPY and Y1R IR, which 

may eventually lead to ethanol dependence. Finally, NPY may be a possible 

therapeutic treatment to prevent ethanol dependence in an at-risk patient population. 
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Figure 5.1 Schematic representation of the allostasis model and the alterations of 
NPY signaling during ethanol consumption. (Adapted from Valdez and Koob, 2004) 
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Figure 5.2 Schematic representation of the NPY signaling pathway involved with 
binge-like ethanol consumption. 
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