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ABSTRACT

Kayla Jean Knilans: The role of lytic transglycosylases LtgA and LtgD in innate immune 

recognition and pathogenesis of Neisseria gonorrhoeae  

(Under the direction of Joseph A. Duncan) 

 

During growth, Neisseria gonorrhoeae releases inflammatory 1,6-anhydro peptidoglycan 

monomers through the action of lytic transglycosylases LtgA and LtgD.  N. gonorrhoeae lacking 

LtgA and LtgD release peptidoglycan multimers rather than monomers.  Because peptidoglycan 

is a known activator of the innate immune system, we sought to understand how the activity of 

LtgA and LtgD influenced host responses to N. gonorrhoeae.  We tested inflammatory responses 

to N. gonorrhoeae using isolate FA1090 and FA1090 with ltgA and ltgD deleted, FA1090 

ΔltgA/ΔltgD.  Both live N. gonorrhoeae and culture supernatants from FA1090 ΔltgA/ΔltgD 

caused increased production of IL-1β and TNF-α in THP1 cells and primary human blood 

dendritic cells. Culture supernatants from FA1090 ΔltgA/ΔltgD, which contain multimeric 

peptidoglycan fragments, were more potent activators of host NOD2 and TLR2, but not TLR4, 

TLR9, or NOD1.  NOD1 was activated equally by peptidoglycan monomers and multimers from 

N. gonorrhoeae, but NOD2 was activated only by multimers.  To explain this, we showed that 

multimeric peptidoglycan digested by LtgA, which produce anhydro monomers, were poor 

stimulators of NOD2, while reducing peptidoglycan monomers produced by host lysozyme were 

potent stimulators of NOD2.  Increased TLR2 activation in response to FA1090 ΔltgA/ΔltgD 

culture supernatants was not the result of activation by peptidoglycan, but the presence of higher 
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levels of TLR2-activating proteins.  These data indicate that LtgA and LtgD allow N. 

gonorrhoeae to evade detection by host TLR2 and NOD2.  

We next tested the roles of NOD2 as well as LtgA and LtgD in N. gonorrhoeae infection 

in vivo.  Nod2
-/-

 mice infected with FA1090 had similar bacterial burdens and persistence of 

infection as wild type mice, confirming in vitro data that wild type N. gonorrhoeae interacts 

minimally with NOD2.  When wild type mice were infected with FA1090 ΔltgA/ΔltgD we 

observed a significantly lower bacterial burden compared to mice infected with FA1090.  

Competitive co-infection with FA1090 revealed a fitness defect for FA1090 ΔltgA/ΔltgD.  There 

was not difference in infection persistence between FA1090 and FA1090 ΔltgA/ΔltgD, though 

less mice were successfully infected with FA1090 ΔltgA/ΔltgD than wild type FA1090.  Overall 

our data is supportive of an important role for LtgA and LtgD in pathogenesis. 
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Chapter 1  

Introduction 

1.1 Introduction 

Neisseria gonorrhoeae is an obligate human pathogen responsible for the sexually 

transmitted infection gonorrhea. In the United States it is the second most commonly reported 

sexually transmitted infection to the Centers for Disease Control (CDC), with an estimated 

820,000 new cases each year (Centers for Disease Control, 2012a).  N. gonorrhoeae primarily 

infects the genital tract of both men and women.  Left untreated, gonorrhea can cause 

complications including septic arthritis and sterility in both men and women, and pelvic 

inflammatory disease in women.  In pregnant women with genital tract infection, mother to 

infant transmission can occur during birth, resulting in an infection of the eyes that can lead to 

blindness if left untreated (Laga et al., 1989).  Infection with N. gonorrhoeae can also increase 

susceptibility to acquiring other sexually transmitted infections, including HIV (Kaul et al., 

2008).  In recent years, acquisition of antibiotic resistance by N. gonorrhoeae has made 

gonococcal infections difficult to treat and is emerging as a major public health problem.  A 

better understanding of the mechanisms of N. gonorrhoeae infection pathogenesis is critical for 

the development of new therapeutic approaches, including vaccine development.  

1.2 Epidemiology of infection and antibiotic resistance 

 There were 334,826 cases of gonorrhea reported to the CDC in 2012 (Centers for Disease 

Control, 2012b).  The reported cases represent less than half of all estimated new cases, at least 
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partially because gonorrhea infection is often asymptomatic in women and occasionally 

asymptomatic in men.  Approximately 60% of the cases reported in 2012 occurred in individuals 

aged 15-24 years.  Within that age group, rates are slightly higher among women than men.  

Additionally, infection rates are highest among African-Americans than in other ethnically 

defined subgroups.  Consistent with previous years, reported cases were highest in the southern 

United States. 

 A recent report from the CDC characterized antibiotic resistance in N. gonorrhoeae 

clinical isolates (Centers for Disease Control, 2013).  There were an estimated 246,000 cases of 

antibiotic-resistant gonorrhea in the US in 2011.  Based on the prevalence of cefixime resistance, 

the CDC estimated that there were 11,480 cases of cefixime-resistant N. gonorrhoeae infection. 

Due to the increase in cefixime-resistant cases, the CDC removed cefixime as a therapy for 

treating gonorrhea infection, leaving injectable ceftriaxone as the only first-line antibiotic for 

gonococcal infection (Centers for Disease Control, 2012c).  N. gonorrhoeae resistance to these 

antibiotics is rising.  In 2011, the CDC estimated 3,280 cases had reduced susceptibility to 

ceftriaxone, threatening the last remaining first-line agent for treatment of N. gonorrhoeae.  

Globally, the threat of drug-resistant N. gonorrhoeae is growing rapidly.  A 2011 report 

described a N. gonorrhoeae isolate from a female sex worker in Japan, designated H041, with 

high ceftriaxone resistance (Ohnishi et al., 2011).  A second strain isolated in France, F89, was 

also reported to have high resistance to cefixime and ceftriaxone (Unemo et al., 2012).  Given 

that these antibiotics are currently the last remaining options for first-line treatment, there is the 

potential for the development of incurable gonorrhea.    
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1.3 Sites of infection and clinical manifestations 

The most common site of infection is the genital tract.  In women, 50-80% of infections 

are reported as being asymptomatic (Edwards and Apicella, 2004; Moran, 2007).  If symptoms 

are present, they include increased vaginal discharge, dysuria, and uterine bleeding.  In cases 

where initial physical examination appears normal, swabbing of the cervix may reveal purulent 

discharge (Curran et al., 1975).  Around 45% of women with genital tract infection will develop 

ascending infection (Edwards and Apicella, 2004).  This can lead to the development of pelvic 

inflammatory disease (PID), a serious complication of gonorrhea infection in women.  PID is an 

often painful inflammation of the reproductive organs which can lead to tissue scaring, ectopic 

pregnancy, and infertility (Centers for Disease Control, 2014).   

It is estimated that the risk of a male contracting urethral gonorrhea from an infected female 

partner is 20% for a single exposure (Holmes et al., 1970).  Urethral gonorrhea infection in men 

is usually symptomatic.  Infection is reported to be asymptomatic in men in 1-3% of cases 

(Harrison et al., 1979; Hook III and Handsfield, 2008), though in other reports the statistic is 

much higher (Handsfield et al., 1974). Discrepancies in these reports are likely the result of 

sampling bias, differences in the sensitivity of methods used to detect early infection, and 

whether or not the sexual partner through which transmission occurred had symptomatic 

infection.  Studies in male human subjects have demonstrated that there is an incubation period 

between infection and the onset of symptoms of 48-96 hours (Schneider, 1991).  The 

predominate symptoms experienced by men with N. gonorrhoeae infection are urethral discharge 

or dysuria (Hook III and Handsfield, 2008).  It is estimated that prior to the availability of 

antibiotic therapy 95% of infections would resolve spontaneously within six months (Hook III 
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and Handsfield, 2008; Pelouze, 1941).  As in women, serious complications of untreated 

infection can occur, most notably epididymitis (Watson, 1979). 

A less common site of N. gonorrhoeae infection is the pharynx.  In most reported studies, 

pharyngeal infections represent on average less than 10% of total gonorrhea infections, though 

rates tend to be higher in women (10-14%) and men who have sex with men (21%) (Odegaard 

and Gundersen, 1973; Wiesner et al., 1973).  Pharyngeal infections are typically asymptomatic 

and most clear within 12 weeks (Wallin and Siegel, 1979).  Pharyngeal infections that do not 

resolve require higher doses of antibiotics to reliably clear the bacteria than genital tract infection 

and may serve as a reservoir for antibiotic resistant N. gonorrhoeae (Hutt, 1986; Newman et al., 

2007; Weinstock and Workowski, 2009). 

Rectal infection occurs mostly commonly in women and men who have sex with men and, 

like pharyngeal infection, is commonly asymptomatic (Klein, 1977).  Rectal infections in women 

can be the result of contamination with infected cervical secretions or receptive anal intercourse 

(Hunte et al., 2010; Kinghorn and Rashid, 1979). Rectal infections in men are almost always the 

result of receptive rectal intercourse (Hook III and Handsfield, 2008).  Treatment success with 

antibiotic therapy is similar to that observed in cervical and urethral infections (Moran, 1995; 

Schroeter and Reynolds, 1972).   

Disseminated  gonococcal infection occurs in 0.5-3% of patients with untreated gonorrhea 

(Hook III and Handsfield, 2008).  Disseminated infection is more common in women than men 

and some strains of N. gonorrhoeae are more likely to disseminate than others (Holmes et al., 

1971).  The most common symptoms of disseminated infection are tenosynovitis, skin lesions, 

and arthritis.  One study of 49 patients with disseminated infection reported that 61% of patients 

had tenosynovitis, 71% had skin lesions, and 39% had arthritis (O’Brien et al., 1983).  Treatment 
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with an effective antibiotic regimen can usually resolve these symptoms within 48 hours 

(Handsfield, 1976).  

1.4 The immune response to N. gonorrhoeae 

1.4.1 General innate sensing of bacterial pathogens 

Recognition of bacterial pathogens by the immune system involves the cooperation of 

numerous intracellular and extracellular pattern recognition receptors (PRRs), each with 

specificity to particular pathogen-associated molecular patterns (PAMPs).  PRR families include 

the extracellular toll-like receptors (TLR) and c-type lectin receptors (CLR), the intracellular 

NOD-like receptors (NLR), and the secreted peptidoglycan recognition proteins (PGRP). 

The Toll proteins and their role in the immune response to pathogens was first described 

in Drosophila melanogaster (Lemaitre et al., 1996).  To date, 10 functional human TLRs have 

been cloned (Chuang and Ulevitch, 2001, 2000; Du et al., 2000; Rock et al., 1998; Takeuchi et 

al., 1999a) and six of these—TLR1, TLR2, TLR4, TLR5, TLR6 and TLR9—recognize bacterial 

components.  TLR2 can function alone or form heterodimers with TLR1 or TLR6 to recognize 

lipoproteins and lipopeptides of different structural specificities (Morr et al., 2002; Takeuchi et 

al., 2001, 2002).  TLR4, in association with cofactor MD-2, recognizes bacterial 

lipopolysaccharide (LPS) or, in the case of some gram negative bacteria such as N. gonorrhoeae, 

lipooligosaccharide (LOS) (Shimazu et al., 1999).  TLR5 recognizes bacterial flagellin (Hayashi 

et al., 2001) and, finally, TLR9 recognizes unmethylated CpG dinucleotides in bacterial DNA 

(Takeshita et al., 2001).  Activation of these receptors initiates a signaling cascade that leads to 

the production of inflammatory cytokines which trigger a variety of responses including 

recruitment and differentiation of immune cells, antigen presentation, and programmed cell death 

(Akira and Takeda, 2004). 
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The NLR family of proteins is a diverse set of intracellular PRRs that can recognize both 

PAMPs and danger associated molecular patterns.  The NOD1 and NOD2 proteins, for example, 

have both been well-described to recognize specific moieties of bacterial peptidoglycan (Franchi 

et al., 2009).  Many NLRs form complexes known as inflammasomes, which trigger IL-1β 

maturation through the activation of caspase-1 (Martinon et al., 2002). The NLRP3 

inflammasome has been shown to play a role in the innate immune response to bacterial 

infection by recognizing pore-forming toxins (Munoz-Planillo et al., 2009).  The NLRP1 

inflammasome is activated in the presence of muramyl dipeptide (MDP), the peptidoglycan 

ligand for NOD2, and has been shown to complex with NOD2 in response to Bacillus anthrasis 

infection and MDP stimulation (Faustin et al., 2007; Hsu et al., 2008).  Inflammasome 

complexes containing NLR family members NLRC4 and NAIP51 or NAIP5 respond to bacterial 

flagellin and type III secretion systems (Halff et al., 2012; Miao et al., 2006, 2010; Yang et al., 

2013).  Many of the mechanisms that dictate NLR recognition of their ligands and their 

subsequent role in controlling bacterial infections are still unknown. 

Additional proteins involved in the innate immune recognition of bacterial infections 

include the CLRs and PGRPs.  The CLR superfamily is a diverse set of receptors that can be 

soluble proteins or expressed on the surface of many immune cell types, including macrophages 

and dendritic cells.  They can mediate cell-cell interactions and some have been shown to bind 

the saccharide structures of bacterial cell walls (Weis et al., 1998).  Finally, the four mammalian 

PGRPs are intracellular and secreted proteins that recognize bacterial peptidoglycan and also 

have bactericidal activity (Lu et al., 2005).  The mammalian PGRPs are described in more detail 

in section 1.5.4 
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1.4.2 Characterization of the immune response to N. gonorrhoeae 

Gonorrhea infection fails to induce a protective adaptive immune response in the host.  The 

lack of a protective adaptive immune response to N. gonorrhoeae is mediated by a combination 

of mechanisms.  Well-defined mechanisms of gonoccocal immune evasion include suppression 

of T-cell activation and proliferation, poor induction of broadly reactive anti-gonoccocal 

antibodies responses, and antigenic variation of bacterial surface components.  Though the 

development of a protective adaptive immune response is suppressed in N. gonorrhoeae 

infection, inflammatory responses to colonization by the bacteria does occur in many cases, 

likely due to innate immune recognition.  The key components of the immune response to N. 

gonorrhoeae discussed in this section are summarized in Figure 1.1.   

The immune response to N. gonorrhoeae is typically characterized by the influx of 

polymorphonuclear leukocytes (PMNs). The purulent discharge characteristic of symptomatic 

infection in men and some women is the result of PMN influx and shedding of epithelial cells.  

Cytokines known to drive PMN migration to an infection site, IL-17A and IL-23, were found to 

be elevated in the serum of male patients with gonorrhea infection compared to uninfected 

controls (Gagliardi et al., 2011; Laan et al., 1999; Wu et al., 2007).  Experimental infections have 

revealed the presence of IL-8, IL-6, and TNF-α within the urethra (Ramsey et al., 1995).  In 

contrast, local increases of IL-1, IL-6, IL-8, and IL-10 in the genital secretions women with 

gonorrhea infection have not been observed, and serum levels of IL-6 in infected women were 

only modestly elevated (Hedges et al., 1998). Though localized cytokine production was not 

detected in clinical specimens from infected women, in vitro studies with immortalized vaginal 

and cervical epithelial cells report an increase in these cytokines upon stimulation with N. 

gonorrhoeae (Fichorova et al., 2001).  The symptomatic status of the women the clinical samples 
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were analyzed from was not reported, but the lack of local increases in inflammatory cytokines 

may correlate with the asymptomatic gonorrhea infections typically observed in women. 

Subjects with N. gonorrhoeae infection were found to have modestly increased levels of anti-

gonococcal serum IgG in men and IgA1 in women compared to uninfected subjects, and prior 

infection with N. gonorrhoeae did not alter antibody levels in patients with current infection 

(Hedges et al., 1999).  Locally, anti-gonococcal IgG and IgM antibodies do not appear to be 

significantly higher in the cervical mucus of infected and uninfected women.  Levels of local 

anti-gonococcal antibodies in men were not analyzed in this study due to the low number of male 

patients with detectable antibody levels (Hedges et al., 1999).  In vitro, N. gonorrhoeae has an 

ability to kill CEACAM1 expressing B cells and suppress antibody production (Pantelic et al., 

2005).  Recently, it was shown that B cells exposed to N. gonorrhoeae in culture produced non-

specific IgM.  Levels of anti-gonococcal antibodies produced by B cells exposed to N. 

gonorrhoeae were similar to the levels of antibodies against tetanus toxin, an antigen the subjects 

had likely been exposed to previously through vaccination, and Keyhole limpet hemocyanin, a 

control antigen that subjects should not have been exposed to previously (So et al., 2012).  If this 

non-specific induction of antibody production occurs in vivo, the effect is likely to be further 

exacerbated by a lack of T-cell co-stimulation.  N. gonorrhoeae has been shown to suppress the 

activation and proliferation of CD4+ T-cells through several mechanisms in both in vitro cell 

culture systems and in vivo in the mouse model of gonococcal infection. These mechanisms 

include Opa protein binding of CEACAM1 receptor of T-cells, induction of immunosuppressive 

cytokines and cell surface molecules in dendritic cells, and induction of TGF-β production 

through an unknown mechanism (Boulton and Gray-Owen, 2002; Liu et al., 2012; Zhu et al., 

2012).  These studies indicate that there are numerous mechanisms working in concert by which 
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N. gonorrhoeae evades the host adaptive immune system. These data and data demonstrating 

that previously infected patients are at high risk for re-infection with N. gonorrhoeae, including 

re-infection with the same serovar (Fox et al., 1999), indicate a poor humoral immune response 

and lack of a protective adaptive immune response against N. gonorrhoeae. 

1.4.3 The role of N. gonorrhoeae surface molecules in the innate and adaptive immune 

response 

N. gonorrhoeae is highly adapted to its human host, and multiple components of the bacterial 

cell wall interact directly with host receptors and serum factors.  These components include 

gonococcal lipooligosaccharide (LOS) and bacterial proteins such at the Opa, porin, and pilin 

proteins. 

LOS is the predominate glycolipid of the gonococcal outer membrane.  Structurally, LOS is 

similar to lipopolysaccharide (LPS) that is found in the outer membranes of most gram-negative 

bacteria.  Gonococcal LOS consists of the lipid A and core oligosaccharide of LPS, but lacks the 

O-antigen, a glycan polymer side chain attached to the core oligosaccharide (Preston et al., 

1996).  The carbohydrate moieties of N. gonorrhoeae LOS mimic carbohydrates in 

glycosphingolipids of human cells and is considered to be one mechanism of host immune 

evasion (Mandrell and Apicella, 1993).  Antigenic variation of LOS composition can alter the 

ability of N. gonorrhoeae to invade host tissues, maintain serum resistance, and/or confer 

resistance to host antimicrobial peptides (Balthazar et al., 2011; van Putten, 1993).  Variation of 

the carbohydrate composition of the LOS core is mediated through the action of glycosyl 

transferases encoded by the lgt genes (Yang, 1996). The lipid A of LOS in N. gonorrhoeae is 

typically decorated with phosphoethanolamine (PEA) at the 4’ position, which facilitates the 

interaction between outer membrane protein PorB and host complement regulatory factor C4b to 
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enhance serum resistance (Lewis et al., 2013).  PEA decoration also promotes gonococcal 

resistance to host cationic antimicrobial peptides (Lewis et al., 2009).  N. gonorrhoeae which are 

unable to add PEA to lipid A through a deletion of PEA transferase (lptA) have a demonstrated 

fitness defect in both the murine model and the male human challenge model of infection (Hobbs 

et al., 2013).  Other modifications to the lipid A group, such as the addition of phosphoryl 

moieties, result in different potencies in lipid A activation of TLR4 pathways and the induction 

of proinflammatory cytokines (John et al., 2008; Liu et al., 2010). 

The type IV pilus of N. gonorrhoeae is a multi-protein complex that forms a protrusion from 

the outer membrane of the bacteria.  Type IV pili are moderately conserved across gram-negative 

bacteria and play a role in motility, transformation, biofilm formation, and pathogenesis (Craig et 

al., 2004). Gonococcal pili are required for the natural competence of the bacteria and likely 

contribute to the bacteria’s rapid acquisition of antibiotic resistance (Seifert et al., 1990).  A role 

of pilin in pathogenesis is their ability to increase adhesion to host cells (Rudel et al., 1992).  

CD46 has previously been reported as the receptor for Neisseria pili, though another study 

demonstrated that binding efficiencies of piliated N. gonorrhoeae did not correlate with CD46 

expression (Källström et al., 1997; Kirchner et al., 2005).  Though considered to be a virulence 

factor, pilin does not appear to be strictly required for infection, as a N. gonorrhoeae mutant 

unable to express pilin protein due to a deletion in the promoter region of pilE was still able to 

establish infection in male volunteers (unpublished data discussed in(Cohen and Cannon, 1999).  

Antigenic variation of pilin is likely a mechanism of immune system evasion.  Antigenic 

variation results from the recombination of pilE with one of many silent pilS pseudogenes (Haas 

et al., 1992). Pilin variation has been observed in both natural and experimental gonorrhea 

infection (Seifert et al., 1994; Swanson, 1987).       
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The Opa proteins of N. gonorrhoeae undergo phase variable expression during infection and 

are another example of immune evasion through antigenic variation.  In the N. gonorrhoeae 

strain FA1090, there are 11 Opa loci which express at least 8 antigenically distinct Opa proteins 

(Dempsey et al., 1991). While N. gonorrhoeae not expressing any Opa proteins are able to 

establish infection in the urethra of male volunteers, N. gonorrhoeae isolates recovered from the 

urethra after inoculation with an N. gonorrhoeae isolate with expression of all Opa genes phased 

off increasingly expressed various Opa proteins during the course of infection (Jerse et al., 

1994).  Members of the Opa family proteins of N. gonorrhoeae are thought to play a role in 

bacterial adhesion through interaction with host cell heparin sulfate proteoglycans (HSPG) 

(Grassmé et al., 1997). In addition to avoiding immune recognition through antigenic variation, 

Opa proteins are thought to modify immunologic response through binding of carcinoembryonic 

antigen-related family of adhesion molecules (CEACAM) (Gray-Owen et al., 1997; Virji et al., 

1996a, 1996b).  N. gonorrhoeae binding to the CEACAM1 receptor expressed on primary 

human CD4
+
 T-cells suppresses their activation and proliferation (Boulton and Gray-Owen, 

2002).  The Opa-CEACAM interaction on dendritic cells may affect immune responses to other 

co-infecting pathogens such as HIV (Yu et al., 2013).  As noted in the previous section, this 

interaction presents another mechanism by which N. gonorrhoeae evades a protective adaptive 

host immune response. 

The most abundant outer membrane protein of N. gonorrhoeae is the 34-36 kDa trimeric 

membrane protein designated PorB (Sparling, 2008).  While different strains of N. gonorrhoeae 

carry antigenically distinct alleles of PorB, unlike the other predominate surface molecules 

mentioned above, gonococcal porin does not undergo significant antigenic variation during 

infection and the protein has been studied for its potential as a vaccine antigen (Massari et al., 
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2002; Sandstrom et al., 1982; Zhu et al., 2005).  In addition to its role in allowing small molecule 

transport across the outer membrane, the porin of N. gonorrhoeae has several identified 

functions in the virulence of the bacteria.  Gonococcal porin has been shown to transfer from the 

bacterial outer membrane to host cell membranes and then translocate to the mitochondria of 

immortalized human T cells and epithelial cells. Some researchers have reported that PorB 

translocation to the mitochondria induces host cell apoptosis, which may play a role in the 

epithelial shedding that occurs during infection (Muller, 2000).  Treatment of primary human 

PMNs with isolated porin protein PorB leads to the downregulation of opsonin-dependent cell 

surface receptors (Bjerknes et al., 1995).  Some serotypes of PorB enhance serum resistance by 

binding to factor H, a downregulator of the alternative complement pathway (Ram et al., 1998).  

Thus, gonococcal surface molecules play multiple roles during infection pathogenesis, including 

resistance to host antimicrobial responses, evasion of immune mediated recognition, and 

manipulation of the developing immune response. 

1.4.4 Other immune evasion mechanisms of N. gonorrhoeae 

N. gonorrhoeae has evolved numerous mechanisms to avoid killing by antimicrobial 

responses initiated by the innate immune recognition of the bacteria.  These include resistance to 

complement as described above, resistance to killing by host antimicrobial peptides, and killing 

by the PMNs that infiltrate the site of infection. 

N. gonorrhoeae resistance to killing by PMNs is well-documented (Criss and Seifert, 

2012).  The gonococcal metalloprotease NG1686 and several DNA repair proteins, including 

RecN and RecA, have been shown to mediate resistance to external killing by PMNs and 

resistance to oxidative killing by hydrogen peroxide (Stohl and Seifert, 2006; Stohl et al., 2005, 

2012).  While the Rec proteins are important in the repair of oxidatively damaged DNA, 
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NG1686 appears to promote resistance to oxidative PMN killing through effects on type IV pilus 

production (Stohl et al., 2013).  How the pilus promotes resistance to PMN antimicrobial 

responses is unknown.   In vitro, PMNs have shown the capacity to kill only a subset of N. 

gonorrhoeae,  as 40-70% of bacterial viability is retained in the presence of PMNs following an 

initial killing phase (Criss et al., 2009). The mechanisms by which they are able to survive non-

oxidative host antimicrobial factors has not been well elucidated. 

A partial explanation of the resistance to killing by host PMNs may be resistance to host 

antimicrobial peptides.  Resistance to host antimicrobial peptides is mediated by several 

mechanisms, including LOS structure as noted above as well as via the mtr efflux system (Shafer 

et al., 1998).  In the murine model of infection, mtr mutants of N. gonorrhoeae have a survival 

defect in vivo compared to N. gonorrhoeae with a functional mtr efflux system (Jerse et al., 

2003).  This system has also demonstrated an ability to mediate resistance to hydrophobic 

antimicrobial agents, including progesterone which is found at high concentrations in the female 

genital tract (Hagman et al., 1995).   

1.5 N. gonorrhoeae peptidoglycan properties and interactions with the immune system 

1.5.1 Peptidoglycan fragment release in N. gonorrhoeae 

N. gonorrhoeae, along with Bordetella pertussis, is one of the few pathogenic gram-

negative bacteria known to release biologically relevant quantities of peptidoglycan (PGN) 

monomers during growth and infection (Cookson et al., 1989; Melly et al., 1984).  N. 

gonorrhoeae fail to recover around 15% of their PGN during growth, compared to 1-4% in most 

other gram negative bacteria (Woodhams et al., 2013).  PGN monomers released by N. 

gonorrhoeae (Figure 1.2) contain one GlcNAc-1,6-anhydro-MurNAc disaccharide unit linked to 

a peptide, 80% of which are the L-alanine-D-glutamic acid-meso-diaminopimelic acid tripeptide, 
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with the remaining 20% composed mostly of terminal D-alanine containing tetrapeptide (Sinha 

and Rosenthal, 1980).  In Bordetella pertussis, the bacteria release tetrapeptide-containing 

peptidoglycan monomers that are known as tracheal cytotoxin (TCT) due to their ability to 

damage ciliated epithelial cells (Cookson et al., 1989; Goldman et al., 1982). Monomeric PGN 

fragments from N. gonorrhoeae were later shown to damage the mucosa of human fallopian 

tubes (Chan et al., 2012; Melly et al., 1984).  Purified TCT has been shown to induce expression 

of IL-1β and IL-6 in human monocytes and likely contributes to inflammation during B. 

pertussis infection (Dokter et al., 1994). N. gonorrhoeae PGN has arthropathic properties when 

injected into rats and probably contributes to symptoms of disseminated gonococcal infection 

(Fleming et al., 1986).  The interaction of released PGN with the immune system that trigger 

these inflammatory events and the role the PGN release by N. gonorrhoeae plays in pathogenesis 

in vivo has not been well studied. There are numerous proteins involved in the remodeling of the 

cell wall during growth, and recently several proteins have been implicated in the production and 

release of monomeric PGN in N. gonorrhoeae.  

1.5.2 Peptidoglycan recycling in N. gonorrhoeae  

The cell wall of N. gonorrhoeae is comprised of polymeric PGN consisting of long chains of 

alternating sugars, N-acetylglucosamine and N-acetylmuramic acid. Attached to the N-

acetylmuramic acid is a peptide chain 3-5 amino acids in length. In N. gonorrhoeae and other 

gram-negative bacteria the peptide consists of L-alanine, D-glutamic acid, meso-diaminopimelic 

acid (DAP), and D-alanine. There are several classes of enzymes involved in the remodeling of 

the cell wall during growth.  A model of PGN recycling in N. gonorrhoeae as described in the 

following text is depicted in Figure 1.3 (Adapted from Garcia and Dillard, 2008).   
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Amidases are responsible for cleaving the bond between the L-alanine and the N-

acetylmuramic acid and generating fragments for PGN recycling during growth.  In N. 

gonorrhoeae the periplasmic amidase AmiC cleaves this bond, freeing N-acetylmuramic acid-β-

1,4-N-acetylglucosamine disaccharide from the sacculus.  AmiC is necessary for daughter cell 

separation during division and also functions as one of several N. gonorrhoeae autolysins 

(Garcia and Dillard, 2006). AmpD is a second characterized N. gonorrhoeae amidase that 

cleaves the N-acetylmuramyl-L-alanine bond of cytoplasmic PGN fragments.  Mutation of ampD 

results in a buildup of PGN in the cytoplasm, an increased metabolism of PGN fragments, and a 

reduced release of extracellular PGN fragments (Garcia and Dillard, 2008).    

Endopeptidases and carboxypeptidases cleave the bonds between amino acids on the peptide 

chain, including cross-linkages.  NG1686 is a periplasmic metallopeptidase with both 

endopeptidase and carboxypeptidase activity.  Deletion of ng1686 results in altered colony 

morphology, but not bacterial cell size or cell shape (Stohl et al., 2012).  The precise role of 

NG1686 in PGN recycling and cell wall rebuilding is not well described.  NG1686 also has 

separate roles in N. gonorrhoeae pathogenesis, including resistance to H202 and PMN-mediated 

killing and type IV pilus formation as mentioned in Section 1.4.4 (Stohl et al., 2012, 2013).  

Other proteins with endopeptidase and carboxypeptidase activities are penicillin binding protein 

(PBP) 3 and 4.  Deletion of either PBP in N. gonorrhoeae is tolerated, but deletion of both PBP3 

and PBP4 results in a slowed growth phenotype and altered cell morphology (Stefanova et al., 

2003).  LdcA is a fourth known carboxypeptidase.  LdcA is a cytoplasmic protein responsible for 

removing the terminal D-alanine on the tetrapeptide chain from PGN monomers. 

An additional critical component of PGN recycling in N. gonorrhoeae is the permease 

AmpG, which mediates the uptake of periplasmic PGN fragments and their transport into the 
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cytoplasm.  Deletion mutants for ampG do not have detectable levels of PGN in the cytoplasm, 

and the release of PGN into the culture supernatant by these mutants is increased seven-fold 

(Garcia and Dillard, 2008). 

Additional proteins found within the cytoplasm that further degrade PGN fragments provided 

by AmpG include the N-acetylglucosaminidase NagZ, which produces free N-

acetylglucosamine, and AmhK, which eliminates the 1,6-anhydro bond by phosphorylation of 

the N-acetylmuramic acid.  These proteins are well-described in E. coli and gene homologues 

have been found in N. gonorrhoeae FA1090 whole genome sequencing data (Garcia and Dillard, 

2008).  Mutations in these genes to test the role of their protein products in growth, cell size and 

shape, colony morphology, and PGN release have not been studied.    

Finally, lytic transglycosylases cleave the N-acetylmuramic acid-β-1,4-N-acetylglucosamine 

bond, creating a 1,6-anhydro bond on the muramic acid sugar.  Most N. gonorrhoeae express 

seven lytic transglycosylases.  Two of the seven lytic transglycosylase proteins are encoded on 

the 57-kb gonococcal genetic island (GGI), which is expressed by approximately 80% of all N. 

gonorrhoeae (Ramsey et al., 2011).  All forms of the GGI encode the lytic transglycosylase 

LtgX.  N. gonorrhoeae with ltgX deleted does not secrete detectable levels of DNA during 

growth, suggesting that LtgX is critical for type IV secretion (Kohler et al., 2007).  79% of GGI 

forms encode a second lytic transglycosylase, AtlA (Dillard and Seifert, 2001).  A recombinantly 

expressed AtlA fusion protein demonstrated the ability to digest gonococcal PGN in vitro, 

confirming its activity as a lytic transglycosylase (Kohler et al., 2007).  In vivo, a N. gonorrhoeae 

mutant which contained a point mutation in the putative active site of atlA showed a 500-fold 

reduction in DNA donation (Chan et al., 2012).  Taken together, these data show that one 
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function of some lytic transglycosylases is to produce breaches in the PGN cell wall required for 

the function of type IV secretion machinery. 

In N. gonorrhoeae, the lytic transglycosylase LtgC is important for normal bacterial growth; 

mutation of ltgC was shown to affect gonococcal growth, producing smaller colonies on agar and 

appearing to have a slower growth rate in liquid culture as compared to the isogenic wild type N. 

gonorrhoeae.  Although the ltgC mutant lacks a lytic transglycosylase, it undergoes autolysis 

more readily than its isogenic parental strain.  Finally, electron micrograph analysis revealed that 

ltgC mutants failed to fully separate, suggesting that LtgC acts on PGN specifically at the septum 

of the dividing cell to promote separation (Cloud and Dillard, 2004). 

LtgB and LtgE are currently of unknown function.  Deletion of ltgB in N. gonorrhoeae does 

not affect PGN fragment release or growth.  Interestingly, expression of LtgB in E. coli was able 

to substitute for the function of lambda endolysin and cause cell lysis, indicating that the protein 

does have lytic transglycosylase activity (Kohler, 2005).  A point mutation of ltgE also did not 

affect PGN monomer release, though PGN multimer release appeared slightly elevated (Cloud-

Hansen et al., 2008). 

The two remaining gonococcal lytic transglycosylases, LtgA and LtgD, have been well 

studied and have shown to be responsible for producing the 1,6-anhydro PGN monomers 

released by N. gonorrhoeae.  LtgA is predicted to be a lipoprotein 616 amino acids long and with 

a molecular weight of 67.5kDa.  A deletion mutant of ltgA in N. gonorrhoeae has a 40% 

reduction in the release of PGN monomers compared to wild type (Chan et al., 2012).  LtgD is 

also a predicted lipoprotein, and is 363 amino acids in length with a molecular weight of 

38.5kDa.  A deletion mutant of ltgD showed a 60% reduction in the release of PGN monomers 

(Chan et al., 2012).  These data suggest non-redundant functions for each of these lytic 
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transglycosylases in digesting PGN and producing PGN monomers.  The LtgA and LtgD 

proteins may have different spatial and temporal expression, or they may be responsible for 

digesting PGN fragments of different sizes.  Elimination of PGN monomer release in N. 

gonorrhoeae can be achieved by deleting both ltgA and ltgD. N. gonorrhoeae lacking both LtgA 

and LtgD do not release PGN monomers, but rather PGN multimers that consist of dimers, 

trimers, and other larger fragments. Though N. gonorrhoeae lacking these enzymes fail to release 

recyclable 1,6-anhydromuropeptides, the bacteria do not have a growth defect in culture (Cloud-

Hansen et al., 2008).  It remains unclear what selective pressures are present in the host 

environment to cause N. gonorrhoeae to maintain LtgA and LtgD.   

1.5.3 Other peptidoglycan modifications 

In addition to the proteins involved in the breakdown and re-building of the PGN of the cell 

wall, there are proteins that function to make specific modifications to PGN.  Many bacteria, 

including N. gonorrhoeae, O-acetylate their PGN (Blundell et al., 1980).  The O-acetylation of 

PGN occurs at the C6 carbon of the muramyl residues by the action of an O-acetyltransferase.  In 

N. gonorrhoeae this occurs through a recently identified O-acetyltransferase, PatB (also referred 

to as Ape2), in conjunction with an unknown acetate transport protein (Moynihan and Clarke, 

2010).  N. gonorrhoeae O-acetylate approximately 34-52% of their PGN (Swim et al., 1983). 

PGN modification via O-acetylation is known to increase PGN resistance to lysozyme digestion 

in many pathogenic bacteria, including N. gonorrhoeae (Bera et al., 2006; Dillard and Hackett, 

2005; Moynihan and Clarke, 2011; Rosenthal et al., 1982, 1983).  The PGN O-acetyltransferase 

in Staphylococcus aureus can modulate host cytokine responses to the bacteria by blocking 

lysozyme digestion and subsequently suppressing inflammasome activation. (Shimada et al., 
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2010).  The precise role that O-acetylation of N. gonorrhoeae PGN plays in the immune 

response to infection with the bacteria is unknown. 

A second PGN modification that has been demonstrated in gram-positive bacteria and, more 

recently, in the gram-negative bacteria Helicobacter pylori, is N-deacetylation of the PGN sugars 

(Boneca et al., 2007; Wang et al., 2009).  Like, O-acetylation of PGN, N-deacetylation confers 

resistance to digestion by host lysozyme and suppress host inflammatory immune responses 

(Wang et al., 2010).  No N-deacetylation enzymes have been identified in N. gonorrhoeae and 

thus a role of N-deacetylation in the pathogenesis of infection has not been established.  

1.5.4 Immune system recognition of peptidoglycan 

PGN is a microbe-associated molecular pattern important in the immune recognition of both 

pathogenic and commensal bacteria.  PGN is recognized by several innate immune receptors, 

including the NOD1, NOD2, and the PGRPs.   

In humans, there are four PGRPs, which bind both extracellular and intracellular PGN (Liu et 

al., 2000, 2001; Lu et al., 2005).  In mammals, they are designated PGLYRP1, PGLYRP2, 

PGLYRP3, and PGLYRP4.  While all PGLYRPs have bactericidal activity, PGLYRP2 uniquely 

has amidase activity that contributes to its antimicrobial activity (Gelius et al., 2003; Wang et al., 

2003).  PGLYRP1 is primarily expressed in the granules of neutrophils and eosinophils, 

contributing to their anti-bacterial activity (Cho, 2005).  PGLYRP2 is expressed primarily in the 

liver, where it is then secreted into the blood, but expression also be induced in epithelial cells, 

namely the skin and gastrointestinal tract, through the action of cytokines such as IL-1β and 

TNF-α (Royet et al., 2011; Zhang et al., 2005).  Finally, PGLYRP3 and PGLYRP4 are expressed 

in the skin and mucous membranes (Royet et al., 2011).  Some insect PGRPs have demonstrated 

specificity for DAP-type or Lys-type PGN (Leulier et al., 2003), and the mammalian PGLYRP1 
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preferentially binds multimeric PGN (Liu et al., 2000).  All four PGRPs have been implicated in 

protection against colitis, as mice deficient in any of the four PGRPs have enhanced 

susceptibility to dextran sulfate sodium-induced colitis compared to wild type mice (Saha et al., 

2010).  The likely mechanism for this protection is through innate immune regulation of gut 

commensal bacteria. 

The second set of receptors that detect bacterial peptidoglycan are the including the 

nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and 2 (NOD2) 

proteins. Activation of NOD1 and NOD2 by PGN components D-glutamyl-meso-diaminopimelic 

acid (iE-DAP) or muramyl dipeptide (MDP), respectively, leads to the induction of NF-κB and 

subsequent inflammatory cytokine production (Chamaillard et al., 2003; Girardin et al., 2003a, 

2003b; Inohara, 2003). Due to the requirement of the meso-DAP moiety, which is not present in 

the PGN of gram-positive bacteria, NOD1 is primarily a sensor of gram-negative bacteria.  In 

contrast, NOD2 is a general sensor of all bacteria.  High levels of NOD2 expression is restricted 

to phagocytic cells and some specialized epithelial cells, like Paneth cells of the ileal crypts, 

while NOD1 is more ubiquitously expressed (Inohara et al., 1999; Ogura et al., 2003).  The 

ligand specificity and tissue distribution differences may indicate distinct functions of these 

receptors in bacterial sensing in the host despite similar downstream signaling consequences.  

NOD1 has been shown to play an important role in the host response to Helicobacter pylori 

(Viala et al., 2004). Mutations in NOD2 are associated with development of familial Crohn’s 

disease, an inflammatory bowel disease.  Mutant variants of NOD2 have defective tolerogenic 

responses to commensal flora in the intestine (Kullberg et al., 2008; Petnicki-Ocwieja et al., 

2009).  One mechanism for the defective tolerogenic responses may be due to the NOD2 

mutant’s inability to recruit ATG16L1, a protein involved in the autophagic functions of NOD1 
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and NOD2 (Travassos et al., 2009).   Activation of NOD2 by MDP has been shown to stimulate 

production of antimicrobial peptides including HNP1 and -defensin-2 (Voss et al., 2006; 

Yamamoto-Furusho et al., 2010). NOD2 signaling also plays several roles in coordinating the 

development of adaptive immune responses. For example, NOD2 is known to mediate MHC 

class II antigen-specific CD4+ responses and facilitate polarization of Th2 cells in response to 

those antigens (Cooney et al., 2009; Magalhaes et al., 2008).  Recent studies have characterized 

NOD activation in response to N. gonorrhoeae exposure.  In HEK293 reporter cell lines, N. 

gonorrhoeae culture supernatants were shown to be potent activators of NOD1, but poorly 

activating of NOD2 (Mavrogiorgos et al., 2013).  Our studies present here provide a mechanism 

for this differential activation, as N. gonorrhoeae release large quantities of PGN monomers that 

activate NOD1 but not NOD2.  The role that NOD1 and NOD2 signaling has in N. gonorrhoeae 

infection pathogenesis has not been studied. 

The role of TLR2 in peptidoglycan recognition has not been resolved, as conflicting reports 

exist in the literature regarding the subject. TLR2 was initially identified as a sensor of PGN in 

TLR2
-/-

 mouse macrophages and in fibroblasts transfected with human TLR2 using crude 

preparations of PGN from Staphylococcus species (Takeuchi et al., 1999b; Yoshimura et al., 

1999). However, a report by Travassos et al. demonstrated that highly purified preparations of 

PGN from multiple gram-positive and gram-negative bacterial species were unable to activate 

TLR2 (Travassos et al., 2004).  The purification process involved boiling with SDS to inactivate 

autolysins and remove non-covalently bonded proteins and LPS. Crude PGN preps were then 

treated with α-amylase and trypsin to remove glycogen and covalently bound proteins, 

respectively, followed by a hydrofluoric acid wash of gram-positive PGN to remove secondary 

polysaccharides (such as teichoic acid) covalently bound to the PGN.  Final treatment gram-
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positive and gram-negative PGN involved 8M LiCl and 0.1M EDTA to remove any polypeptidic 

contamination and finally an acetone wash to remove lipoteichoic acids or any traces of LPS 

(Girardin et al., 2003a).   A subsequent paper replicated the purification methods used by 

Travassos et al. using S. aureus PGN and showed that the highly purified PGN could activate 

TLR2 (Dziarski and Gupta, 2005). Some studies show that TLR2 recognizes PGN-associated 

lipoproteins, while another study demonstrates that TLR2 of mouse macrophages recognize 

multimeric PGN from Δlgt S. aureus, which lack lipidated prelipoproteins. (Müller-Anstett et al., 

2010; Travassos et al., 2004).  A contradicting study published around the same time showed the 

polymeric PGN prepared from Δlgt S. aureus did not activate human TLR in a reporter cell line 

(Volz et al., 2010).  There is evidence that TLR2 co-localizes with NOD2, possibly confounding 

the mechanism by which recognition occurs in in vitro systems (Müller-Anstett et al., 2010; 

Watanabe et al., 2004).  Additional studies are needed to understand the role, if any, TLR2 plays 

in PGN recognition and PGN recognition pathways involving NOD1 and NOD2. 

1.6 The murine model of N. gonorrhoeae infection 

There are a limited number of well-characterized models available to study N. gonorrhoeae 

infection in vivo.  While an experimental human challenge model of infection has been 

established, several factors limit the extent of its use for immunologic studies: 1) infection is 

limited to men, 2) studies are expensive and involve a low number of subjects, and 3) ethical 

considerations require rapid antibiotic treatment following the onset of infection (Cohen and 

Cannon, 1999).  Thus, many studies of N. gonorrhoeae infection in vivo rely on an established 

murine model of infection. 

Initial attempts at stable genital colonization of female mice failed, with very few mice 

having recoverable amounts of N. gonorrhoeae following inoculation and N. gonorrhoeae was 
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only recoverable for several days (Johnson et al., 1989; Streeter and Corbeil, 1981).  The 

presence of vaginal flora and vaginal PMNs negatively affect the ability of N. gonorrhoeae to 

colonize the mouse vagina and consequently inoculation during proestrus stage of the estrous 

cycle was more favorable to colonization (Braude, 1982).  In 1990, Taylor-Robinson et al. 

published a report describing the ability of 17β-estradiol-treated germ-free BALB/c mice to 

maintain long-term vaginal colonization with N. gonorrhoeae (Taylor-Robinson et al., 1990).  

These observations lead to the development of a murine model of infection where long-term 

vaginal colonization with N. gonorrhoeae could be achieved with 17β-estradiol treatment and 

regular antibiotic administration to suppress the overgrowth of commensal flora (Jerse, 1999).  

The exact mechanisms by which estradiol promotes susceptibility of mice in colonization with N. 

gonorrhoeae is unknown, but suppressing the influx of PMNs and dampening the inflammatory 

response is thought to play a role (Ralston et al., 2009).  In mice treated with three subcutaneous 

injections of a water-soluble 17β-estradiol spaced 48 hours apart, N. gonorrhoeae can be 

recovered from the genital tract for an average of 10 days (Song et al., 2008).  Colonization time 

can be extended through the use of slow-release estradiol pellets or additional subcutaneous 

injections (Jerse, 1999). 

Access to clean animal housing facilities is critical for utilizing the murine model of N. 

gonorrhoeae infection.  Colonization of the mucosal surfaces with commensal bacteria can 

persist despite a combined oral and intraperitoneal antibiotic regimen.  The presence of enteric 

gram-negative rods and catalase-positive, gram-positive cocci is negatively associated with 

persistence of gonococcal infection in mice (Jerse, 1999; Streeter and Corbeil, 1981).  In my own 

studies, a common commensal contaminate, Staphylococcus xylosus, did not impact the 

establishment of vaginal infection with N. gonorrhoeae, but was associated with accelerated 
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clearance of N. gonorrhoeae (Figure 1.4).  The precise mechanisms that promote accelerated 

clearance of N. gonorrhoeae in the presence of these microorganisms are currently unknown.  

Conversely, the presence of lactobacilli has been correlated with an increase in bacterial recovery 

from mouse vaginal swabs and has been shown to enhance N. gonorrhoeae growth on agar 

(Jerse, 2002; Jerse et al., 2011).  In our studies, mice that test positive for these commensals are 

removed from the study and not considered during data analysis to ensure that data are not 

compromised by variability in commensal colonization.  However, N. gonorrhoeae interaction 

with commensals may be an important area of study, in particular when considering genital 

infection in women and the persistence of infection despite the presence of a diverse vaginal 

microbiota (Newton et al., 2001).  

The choice of mouse strain is another important consideration, as several mouse strain-

dependent differences in susceptibility and immune response to N. gonorrhoeae have been 

observed (Packiam et al., 2010; Streeter and Corbeil, 1981).  For example, while vaginal 

infection in 17β-estradiol treated BALB/c mice typically results in the influx of PMNs, this does 

not occur during infection with C57BL/6 mice (Packiam et al., 2010).  C3H/HeN mice are 

resistant to infection with N. gonorrhoeae, and this resistance is not mediated by an increased 

inflammatory response but by a currently undefined mechanism (Packiam et al., 2010).  Prior to 

the establishment of the murine model of N. gonorrhoeae infection, C3H/HeJ mice were found 

to be more resistant to vaginal infection with N. gonorrhoeae than C3H/HeN mice.  The authors 

concluded the observed resistance of the C3H/HeJ to N. gonorrhoeae colonization was due to 

both high numbers of PMNs in the vaginal mucus and high numbers of recovered gram-negative 

flora (Streeter and Corbeil, 1981).  These data would later be critical in understanding why N. 
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gonorrhoeae is a poor colonizer of the mouse genital tract and informing the protocol for the 

development of an effective mouse model. 

In addition to the characteristic PMN influx during infection, the murine genital tract 

infection model of N. gonorrhoeae infection shares several other characteristics with those 

observed in infection in humans.  Despite an ability to clear N. gonorrhoeae infection, mice do 

not develop a robust humoral immune response and are susceptible to re-infection (Song et al., 

2008).  Cytokines such as IL-6, TNF-α, and IL-17 that have been found to be elevated during 

infection in humans as detailed in section 1.4.2 have also been found to be elevated in mice 

(Feinen et al., 2010; Jerse et al., 2011; Packiam et al., 2010).  Surprisingly, a positive selection 

for Opa-expressing N. gonorrhoeae has also been observed in the mouse model of infection, 

despite the known specificity of Opa for human CEACAM and the lack of a known receptor in 

mice (Cole et al., 2010).  In contrast, there is no known receptor for pilin in mice, and a loss of 

piliation in isolates recovered from mice suggests that piliation does not play a role in the murine 

model of infection (Jerse, 1999). 

There are clear limitations to use of a murine model of infection, including differences in 

physiology, host cell surface receptors, and immune signaling pathways.  For example, mice 

express three additional TLRs, one of which (TLR13) has demonstrated a role in sensing of 

bacterial rRNA (Oldenburg et al., 2012). Mouse NOD1 is able to recognize TCT while human 

NOD1 cannot; ligand differences of NOD2 signaling in mice and humans have not been well 

studied (Magalhaes et al., 2005).  Other differences between mouse and human immune 

responses include distribution of immune cell subsets, expression of immune receptors, 

expression of Ig isotypes, and activation of immune cell types (Mestas and Hughes, 2004). These 
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should be taken into consideration when conducting immunological studies in mice, perhaps 

especially in consideration of N. gonorrhoeae, which does not naturally infect mice. 

Specific to the vaginal mouse model of infection, there are some physiological differences.  

This includes differences in vaginal pH, with mouse vaginal pH being high than human vaginal 

pH, though similar to human cervical pH, where N. gonorrhoeae can establish infection (Muench 

et al., 2009; Singer, 1975).  There is also notably no period of menstrual bleeding in mice, and 

the menstrual cycle in women has been thought to play a role in gonococcal pathogenesis, 

including dissemination of infection (O’Brien et al., 1983).  Finally, as mentioned previously, the 

microflora of the mouse vaginal tract are different than that of women, though this consideration 

must be taken in the context of the infection model, where antibiotics are used to reduce the 

population of commensal species.  The ability of N. gonorrhoeae to access certain critical 

nutrients in the mouse genital tract, such as iron, is unknown; iron sources such as transferrin 

(Tf) and lactoferrin (Lf) are unavailable in mice because the gonococcal Tf and Lf receptors are 

specific to the human ligand (Jerse et al., 2011). 

Thus, careful considerations of the limitations of using a mouse model of N. gonorrhoeae 

must be taken in evaluating experimental results.  The murine model of infection, despite the 

differences mentioned, does mimic many characteristics of infection observed in humans.  The 

model provides a starting point for immunological studies that include vaccine development, and 

can contribute mechanistic data through the use of knockout mice.  An increase in the 

availability of transgenic mice expressing human pilin and Opa receptors would greatly enhance 

the relevancy of this model in studying N. gonorrhoeae infection and potential vaccine 

strategies. 
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1.7 Vaccination against N. gonorrhoeae 

The development of a vaccine against N. gonorrhoeae has been unsuccessful.  Antigenic 

variation of outer membrane proteins and active suppression of the protective adaptive immune 

response, as described in section 1.4, are attributed to these failures.  Still, in a limited number of 

cases, serovar-specific acquired immunity involving the gonoccocal outer membrane protein 

PorB has been reported (Buchanan et al., 1980).  An infection experiment conducted in 

chimpanzees showed the development of short-term resistance to re-infection (Kraus et al., 

1975).  Due to the decline in the use of chimpanzees as experimental models for both ethical and 

financial reasons, these experiments have not been repeated to confirm the result or elucidate the 

mechanisms by which resistance to re-infection occurred.  These cases all represent strain-

specific immunity, a challenge that will need to be overcome to achieve development of a 

broadly acting vaccine. 

To date, two N. gonorrhoeae vaccine candidates have entered clinical trials.  An early trial 

involved a crude whole-cell vaccine formulation.  The vaccine was well tolerated and was able to 

produce antibodies in 90% of the vaccinated group, but the vaccine ultimately failed to protect 

against infection (Greenberg, 1975; Greenberg et al., 1974).  The second vaccine attempt was a 

large clinical trial in Korea and utilized purified N. gonorrhoeae pilin of a single pilus type.  The 

efficacy of this vaccine in women was unable to be assessed, as no women enrolled in the study 

contracted gonorrhea.  There was no protective effect in men, as about equal numbers of men 

who received the vaccine contracted gonorrhea as those who received the placebo (Boslego et 

al., 1991).  Despite the poor efficacy outcome, the vaccine did induce anti-gonococcal pilin 

antibodies, including cross-reactive antibodies to pilin from a heterologous strain (Boslego et al., 

1991). 
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Recent insights into the type of adaptive immune response important in the development of 

protective immunity to N. gonorrhoeae have been elucidated in the murine model of infection.  

A report by Liu et al. demonstrated that N. gonorrhoeae were able to selectively suppress the 

development of Th1 and Th2 cells through a TGF-β-dependent mechanism.  Importantly, the 

study demonstrated that blockade of the TGF-β signaling pathway using an anti-TGF-β antibody 

was able to redirect the Th response to a Th1/Th2 response in vitro (Liu et al., 2012).  Mice 

treated with anti-TGF-β antibody during infection with N. gonorrhoeae demonstrated accelerated 

clearance of the bacteria, development of anti-gonococcal antibodies, and resistance to 

reinfection (Liu and Russell, 2011).  The use of knockout strains deficient in either Th1 or Th2 

responses showed that the accelerated clearance of the bacteria was due to the Th1 response, but 

resistance to re-infection was dependent on both Th1 and Th2 responses (Liu and Russell, 2011).  

Thus the induction of Th1 and possibly Th2 responses may be a critical component of a vaccine.  

Local administration of microencapsulated IL-12, a proinflammatory cytokine known to activate 

Th1 cells (Macatonia et al., 1995), during N. gonorrhoeae infection in mice caused accelerated 

clearance of the bacteria as well as resistance to re-infection (Liu et al., 2013).  If similar 

responses can be achieved in humans, local administration of proinflammatory cytokines to 

induce a specific Th cell response may be a novel therapeutic approach to treatment of N. 

gonorrhoeae infection, particularly considering the high rate of re-infection in the population 

(Brooks et al., 1978; Hosenfeld et al., 2009). 

The development of a N. gonorrhoeae vaccine is becoming more critical as antibiotic 

resistance becomes wide-spread and the risk of incurable gonorrhea rises.  More research is 

needed to identify antigens and stimulatory molecules that will enhance Th1 and Th2 activation. 

Important to the development of a vaccine are further studies on immune system interaction 
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between N. gonorrhoeae and the host during infection, including mechanisms that mediate 

evasion of a protective adaptive immune response and the induction of inflammatory responses 

that likely contribute to pathogenesis and transmission.  The studies presented here report on the 

roles of N. gonorrhoeae PGN on cytokine production and immune receptor activation, as well as 

the role of lytic transglycosylases LtgA and LtgD in vivo.  We provide a framework for further 

studies on N. gonorrhoeae PGN and the activation of NOD1 and NOD2 in N. gonorrhoeae 

pathogenesis. 
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Figure 1.1. Current understanding of the immune response to N. gonorrhoeae infection. 

Upon recognition of N. gonorrhoeae by antigen presenting cells, depicted here as a dendritic cell 

(DC), subsequent cytokine signaling results in the polarization of T-cells to Th17, which produce 

cytokines such as IL-17 and IL-22. In response, epithelial cells produce chemokines in the CXC 

family, which results in the influx of polymorphonuclear leukocytes (PMNs).  N. gonorrhoeae is 

resistant to PMN killing through a combination of resistance to phagocytosis and resistance to 

both oxidative and non-oxidative antimicrobial factors in cases when the bacteria are 

internalized.  Suppression of Th1/Th2 polarization occurs through a TGF-β-dependent 

mechanism.  N. gonorrhoeae can also inhibit the polarization and proliferation of CD4+ T-cells 

through direct interaction with surface CEACAM1 molecules or indirectly through DCs (not 

shown).  This model represents data obtained primarily through in vivo studies using the murine 

model of infection and in vitro studies using immortalized and primary human and mouse cells.  

Cytokines IL-6, IL-17, and IL-23 have been observed to increase locally during N. gonorrhoeae 

infection in men. 
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Figure 1.2. Structure of the peptidoglycan monomer released by N. gonorrhoeae. 

During growth, N. gonorrhoeae release peptidoglycan monomers comprised of one N-acetyl-

glucosamine (red) linked to one N-acetyl-muramic acid containing a 1,6 anhydro bond (blue).  

Attached to the N-acetyl-muramic acid is a peptide chain consisting of L-alanine, D-glutamic 

acid, meso-diaminopimelic acid and a terminal D-alanine. 80% of PGN monomers released by N. 

gonorrhoeae contain only the tripeptide; the remaining 20% are primarily tetrapeptide 

monomers.  
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Figure 1.3. Peptidoglycan recycling in N. gonorrhoeae. 

PGN fragments are liberated from the sacculus through the action of lytic transglycosylases 

LtgA, LtgD, and amidase AmiC.  Both PGN monomers produced by LtgA and LtgD as well as 

disaccharide fragments are released into the extracellular space by an unknown mechanism.  

PGN fragments that are not released are brought into the cytoplasm through the action of the 

AmpG permease.  Once in the cytoplasm, PGN fragments are broken down for recycling.  LdcA 

is a carboxypeptidase that cleaves the terminal D-alanine from the peptide chain.  AmpD is 

another known amidase of N. gonorrhoeae and cleaves the peptide chain from the N-

acetylglucosamine-N-acetylmuramic acid disaccharide.  NagZ cleaves the bond between these 

two sugars.  Finally, AmhK phosphorylates the 1,6-anhydromuramic acid sugar.     
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Figure 1.4. Persistence of N. gonorrhoeae is significantly reduced in mice colonized with 

commensal species Staphylococcus xylosus. 

The presence of a gram-positive cocci, Staphylococcus xylosus, in the vaginal tract of mice 

causes accelerated clearance of N. gonorrhoeae.  Mice were considered positive for S. xylosus (+ 

S. xylosus) if the organism was recovered from mouse vaginal swabs streaked onto HIA agar for 

at least 8 of the 10 days of the infection study (n = 10).  Mice were considered negative for S. 

xylosus (- S. xylosus) if vaginal swabs indicated less than two days of positive culture (n = 11).  

Median infection persistence of N. gonorrhoeae  was 10 days and 2.5 days for – S. xylosus and + 

S. xylosus, respectively. N. gonorrhoeae strain FA1090 was used in these studies and data shown 

are combined from two separate experiments.  Data was analyzed by GraphPad Prism using a 

Log-Rank Test, * = P < 0.0001   



34 

 

Chapter 2  

The role of N. gonorrhoeae peptidoglycan in innate immune signaling 

2.1 Overview 

Neisseria gonorrhoeae releases anhydro peptidoglycan monomers during growth through 

the action of two lytic transglycosylases encoded in the N. gonorrhoeae genome, LtgA and 

LtgD. Because peptidoglycan and peptidoglycan components activate innate immune signaling, 

we hypothesized that the activity of LtgA and LtgD would influence the host responses to 

gonoccocal infection. N. gonorrhoeae lacking LtgA and LtgD caused increased host production 

of inflammatory cytokines IL-1β and TNF-α. Culture supernatants from ΔltgA/ΔltgD N. 

gonorrhoeae, which contain multimeric peptidoglycan fragments rather than monomers, were 

potent activators of host NOD2 signaling when compared to supernatants from the isogenic 

parental N. gonorrhoeae strain. Purified peptidoglycan monomers containing anhydro muramic 

acid produced by LtgA were poor stimulators of NOD2 while peptidoglycan monomers 

containing reducing muramic acid produced by host lysozyme were potent stimulators of NOD2. 

These data indicate that LtgA and LtgD allow N. gonorrhoeae to evade detection by host NOD2.  

2.2 Introduction 

Neisseria gonorrhoeae is an obligate human pathogen responsible for causing the 

sexually transmitted disease gonorrhea. During infection, N. gonorrhoeae triggers localized 

inflammation characterized by the influx of neutrophils. Phagocyte antimicrobial responses and 

host production of antimicrobial agents are initiated following recognition of bacterial 
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components, including LOS, lipoproteins, bacterial DNA, and peptidoglycan (Takeuchi and 

Akira, 2010). The cell wall of N. gonorrhoeae is comprised of polymeric peptidoglycan (PGN) 

consisting of long chains of alternating sugars, N-acetylglucosamine (GlcNAc) and N-

acetylmuramic acid (MurNAc). Attached to the MurNAc is a peptide chain 3-5 amino acids in 

length. In N. gonorrhoeae and other gram-negative bacteria the peptide consists of L-alanine, D-

glutamic acid, meso-diaminopimelic acid (DAP), and D-alanine. Amidases, endopeptidases, and 

lytic transglycosylases act on PGN to mediate bacterial cell wall remodeling during growth and 

replication. 

Though cell wall remodeling typically leads to the release of some PGN-derived 

products, these are usually efficiently reutilized by the bacteria. Unlike most pathogenic gram-

negative bacteria, N. gonorrhoeae and Bordetella pertussis are known to release intact PGN 

monomers in excess of the capacity of the bacteria to reclaim the material and in sufficient 

quantities to induce significant inflammatory responses in host tissues (Goldman et al., 1982). 

PGN monomers released by N. gonorrhoeae contain one GlcNAc-1,6-anhydro-MurNAc 

disaccharide unit linked to the L-alanine-D-glutamic acid-meso-diaminopimelic acid tripeptide 

(80%) and tetrapeptide bearing an additional terminal D-alanine (20%) (Sinha and Rosenthal, 

1980). The tetrapeptide PGN monomers, also known as tracheal cytotoxin (TCT), were first 

isolated from B. pertussis as the causative agent of ciliated cell death in host airways (Goldman 

et al., 1982). Monomeric PGN fragments from N. gonorrhoeae were later shown to damage the 

mucosa of human fallopian tubes (Melly et al., 1984). The N. gonorrhoeae genome encodes 

seven lytic transglycosylases capable of liberating PGN from N. gonorrhoeae sacculi, but only 

LtgA and LtgD are responsible for production of 1,6-anhydro-MurNAc-containing PGN 

monomer released by N. gonorrhoeae during growth in culture (Cloud-Hansen et al., 2008). 
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Instead of releasing monomeric 1,6-anhydro-MurNAc-containing PGN monomers, N. 

gonorrhoeae lacking both ltgA and ltgD release a variety of multimeric PGN fragments (Cloud-

Hansen et al., 2008). The role PGN monomer production by LtgA and LtgD plays in the host 

response to N. gonorrhoeae infection has not been elucidated.  

PGN acts as a microbe associated molecular pattern (MAMP) that is recognized by the 

innate immune system in response to bacterial infections and commensal species. PGN 

components are recognized by several host receptors, including the nucleotide-binding 

oligomerization domain-containing protein 1 (NOD1) and 2 (NOD2) proteins. Activation of 

NOD1 and NOD2 by PGN components D-glutamyl-meso-diaminopimelic acid (iE-DAP) or 

muramyl dipeptide (MDP), respectively, leads to the induction of NF-κB and subsequent 

inflammatory cytokine production (Chamaillard et al., 2003; Girardin et al., 2003a, 2003b; 

Inohara, 2003). NOD2 has been implicated in Crohn’s disease and mutations in the protein have 

defective tolerogenic responses to commensal flora in the intestine (Kullberg et al., 2008). 

Recently, N. gonorrhoeae culture supernatant, which contains secreted 1,6-anhydro-MurNAc-

containing PGN monomers, was shown to more robustly activate NOD1, while the PGN 

polymer-containing lysates were found to stimulate both NOD1 and NOD2 equally 

(Mavrogiorgos et al., 2013). In addition to being recognized intracellularly by NOD1 and NOD2, 

extracellular multimeric PGN from gram-negative bacteria activates host Toll-like receptor 2 

(TLR2), though some studies now suggest that TLR2 recognizes PGN-associated lipoproteins 

rather than multimeric PGN itself (Travassos et al., 2004). Recognition of bacterial PGN via 

these systems allows the host to initiate antimicrobial responses (Gold et al., 1985; Greenblatt et 

al., 1978).  
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In this study, we sought to assess the role of N. gonorrhoeae LtgA and LtgD-mediated 

PGN monomer release on the innate immune responses as well as the specific immune receptor 

responses to N. gonorrhoeae PGN monomers. Here we showed that N. gonorrhoeae lacking 

LtgA and LtgD induced production of significantly more inflammatory cytokines and greater 

activation of host TLR2 and NOD2 signaling when compared to wild type N. gonorrhoeae. The 

difference in NOD2 signaling was due to the inability of host NOD2 to recognize 1,6-anhydro-

MurNAc-containing PGN monomers produced by the LtgA and LtgD proteins. In contrast, PGN 

monomers produced by the action of host lysozyme on PGN multimers lack the 1,6-anhydro 

bond and were potent activators of NOD2. Together, these data show that the LtgA and LtgD 

suppress host NOD2-mediated inflammatory cytokine signaling by converting multimeric PGN 

fragments generated during bacterial growth to 1,6-anhydro-MurNAc-containing PGN 

monomers. 

2.3 Materials and Methods 

2.3.1 Generation of N. gonorrhoeae ltgA/ltgD mutant 

N. gonorrhoeae strain FA1090 ΔltgA/ΔltgD was generated as described previously 

(Cloud and Dillard, 2002; Cloud-Hansen et al., 2008). Whole genome sequencing of FA1090 

ΔltgA/ΔltgD confirmed that the entire coding region of ltgD was deleted while the ltgA gene was 

disrupted by deletion of the last 1420 bp of the 1850 bp ltgA coding region and insertion of the 

ermC gene conferring erythromycin resistance.  A second construction of the ΔltgA/ΔltgD 

mutant, FA1090 ΔltgA/ΔltgD (KK) is described in Appendix 1. 

2.3.2 Generation of N. gonorrhoeae culture supernatants 

N. gonorrhoeae strains were grown overnight on GCB agar plates.  The bacteria were 

suspended at OD600 = 0.2 in 10 mL Graver Wade media (Wade and Graver, 2007) in 125 mL 
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sterile flasks and grown for 4.5h at 37°C and 5% CO2 in a shaker incubator. Bacteria were 

removed by collection of culture supernatant after centrifugation followed by filtration through a 

sterile 0.2μm syringe filter.  The viability (CFU/mL) was monitored by plating three dilutions of 

a sample from each strain on GCB agar plates at the beginning and end of each incubation and 

counting colonies after 48h.  Culture supernatants were generated on multiple days to account for 

day-to-day variability. 

2.3.3 Culture supernatants 

N. gonorrhoeae strains were grown overnight on GCB agar plates, suspended at OD600 = 

0.2 in 10 mL Graver Wade media, and grown for 4.5h at 37°C and 5% CO2 in a shaker 

incubator. The bacterial density (CFU/mL) was monitored by counting colonies on plated 

dilutions of the bacterial suspensions made before and after the growth period. Culture 

supernatants were generated by centrifugation followed by filtration through a sterile 0.2μm filter 

on at least three separate days to account for day-to-day variability. 

2.3.4 Reporter cell lines 

Commercially available HEK 293 cells stably transfected with the NOD1, NOD2, or 

TLR2 receptor and an alkaline phosphatase reporter (Invivogen) were stimulated with FA1090 

wildtype, ΔlgtD or ΔltgA/ΔltgD conditioned media or isolated PGN.  Cells were plated in 96-

well plates according to manufacture specification and incubated with samples at 37°C, 5% CO2 

overnight.  Receptor response was quantified using a colorimetric alkaline phosphotase assay. 

2.3.5 Cell Culture and Cytokine Analysis 

THP1 cells were grown in suspension in RPMI 1640 containing 10% fetal bovine serum, 

50 U/mL penicillin, and 50 g/mL streptomycin. Human dendritic cells were generated by 
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culture of CD34+ cells from peripheral blood in AIM V medium with 10% human AB serum 

and Stem Cell Factor (SCF 50 ng/mL), Flt3L (100 ng/mL), GM-CSF(800 U/mL) and IL-4(500 

U/mL) for 14 days.  Blood was obtained from subjects enrolled in a UNC IRB approved study 

(Study #05-2860) after obtaining informed consent. The cells were cultured and de-identified 

prior to transfer to our laboratory for exposure to N. gonorrhoeae culture supernatant (Zhu et al., 

2012). The use of these de-identified cells was reviewed by the UNC Office of Human Research 

Ethics (Study #12-0024) and was determined not to require further IRB approval because the 

study did not constitute human subjects research as defined under federal regulations [45 CFR 

46.102 (d or f) and 21 CFR 56.102(c)(e)(l)]. THP1 cells were plated at 1 x 10
6
 cells/mL and 

exposed to either N. gonorrhoeae culture supernatants or live N. gonorrhoeae for 4h. In the cases 

in which cells were exposed to live bacteria, antibiotic-free RPMI 1640 containing 10% fetal 

bovine serum only was used. TNF-α and IL-1β cytokine analyses on cell supernatants were done 

using ELISA (BD Biosciences).  

2.3.6 Purification of N. gonorrhoeae peptidoglycan fragments 

Peptidoglycan fragments from N. gonorrhoeae were isolated by the Dillard Lab as 

described previously(Cloud-Hansen et al., 2008).  Briefly, fragments were obtained from PGN 

sacculi isolated from ΔpacA ΔmsbB N. gonorrhoeae. PGN fragments containing the 1,6-anhydro 

bond were obtained by digesting whole N. gonorrhoeae PGN with soluble LtgA for 15min or 4h 

to obtain, multimers and dimers, over overnight at 37°C  to obtain monomers. Monomeric 

fragments containing the reducing bond were obtained by digesting whole PGN with human 

neutrophil lysozyme overnight at 37°C.  Purification of soluble multimer, dimer, and monomer 

fragments was performed on tandem 350-ml Bio-Gel P6 and Bio-Gel P30 size exclusion 

columns and tripeptide and tetrapeptide monomers were further purified by HPLC. 
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Peptidoglycan structures were confirmed by mass spectroscopy.  Peptidoglycan fragments were 

quantified using a Fluoraldehyde OPA (o-phthalaldehyde) Reagent solution (Thermo Scientific 

Pierce).  Fluorescent units correlate with the number of primary amines, a single primary amine 

which is present on the diaminopimelic acid of a monomeric PGN unit.  Peptidoglycan solutions 

were standardized for experimental use using isoleucine and phenylalanine. 

2.4 Results 

2.4.1 The N. gonorrhoeae LtgA and LtgD proteins play a role in suppressing the 

inflammatory cytokine production. 

In order to assess the effect of N. gonorrhoeae LtgA and LtgD on host cell cytokine 

production, PMA-stimulated THP1 cells were exposed to wild type N. gonorrhoeae strain 

FA1090 or an isogenic mutant with deletions of the ltgA and ltgD genes (FA1090 ΔltgA/ΔltgD) 

and the accumulation of IL-1β and TNF-α in the cell culture supernatants was measured. Cells 

exposed to FA1090 ΔltgA/ΔltgD secreted significantly greater quantities of both cytokines than 

those exposed to the isogenic parent (Figure 2.1A). Culture supernatants from FA1090 

ΔltgA/ΔltgD also elicited greater inflammatory cytokine production from THP1 cells and 

primary human dendritic cells than culture supernatant from the parental strain (Figure 2.1B and 

2.1C). To ensure the enhanced induction of host cell cytokine production by bacteria or bacterial 

culture supernatants was not due to differences in the growth of wild type and ΔltgA/ΔltgD 

FA1090 strains, the optical density of the cultures was monitored over a four-hour growth period 

and no significant difference in the optical density was observed between strains (Figure 2.1D). 

Profiling of PGN fragment release from wild type and ΔltgA/ΔltgD FA1090 by size exclusion 

chromatography of culture supernatant after metabolic labeling of the bacteria with [6-

3
H]glucosamine revealed that ΔltgA/ΔltgD FA1090 released dimeric and multimeric PGN while 
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wild type FA1090 released primarily monomeric PGN with a small peak of dimeric PGN (Figure 

2.1E), as previously described for N. gonorrhoeae strain MS11 (Cloud-Hansen et al., 2008). 

Overall, these data demonstrate that culture supernatants containing multimeric PGN fragments 

released from ΔltgA/ΔltgD N. gonorrhoeae have enhanced capacity to elicit host inflammatory 

cytokine production.  

2.4.2 The N. gonorrhoeae LtgA and LtgD proteins modulate NOD2 and TLR2 receptor 

signaling.  

To identify immune receptors involved in increased host cytokine response to FA1090 

ΔltgA/ΔltgD, commercially available HEK293 reporter cells stably transfected with NOD1, 

NOD2, TLR2, TLR4, or TLR9 were used to assess innate immune receptor activation by culture 

supernatants from wild type or ΔltgA/ΔltgD N. gonorrhoeae. FA1090 ΔltgA/ΔltgD culture 

supernatants consistently resulted in greater NOD2 activation (Figure 2.2A), with a 13-fold 

increase in activation over basal levels, compared to a 5-fold increase for the wild type. 

Similarly, culture supernatants from FA1090 ΔltgA/ΔltgD induced a 7.5-fold activation of 

reporter activity in TLR2-expressing reporter cell lines, compared to the 4.5-fold increase caused 

by wild type culture supernatants (Figure 2.2B). In contrast, NOD1-, TLR4-, and TLR9-

expressing reporter cells demonstrated equivalent reporter activation after exposure to either 

FA1090 or FA1090 ΔltgA/ΔltgD culture supernatants (Figure 2.2C, 2.2D, and 2.2E). HEK293 

cells carrying only the reporter demonstrated there was no reporter activation difference between 

FA1090 and FA1090 ΔltgA/ΔltgD culture supernatants due to stimulation of endogenous innate 

immune receptors (Figure 2.2F).  
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2.4.3 Monomeric and dimeric peptidoglycan fragments from N. gonorrhoeae differentially 

stimulate innate immune receptors. 

Because culture supernatants from ΔltgA/ΔltgD N. gonorrhoeae contain decreased levels 

of anhydro PGN monomers and increased levels of multimeric PGN (Figure 2.1G), we sought to 

test whether polymeric N. gonorrhoeae PGN exhibited a differential capacity to stimulate NOD2 

and TLR2 when compared to monomeric PGN released through the activity of LtgA. Soluble 

monomeric and multimeric PGN was generated by complete or partial digestion of N. 

gonorrhoeae sacculi with recombinant LtgA. The quantity of PGN in the preparations was 

assessed by quantitating the free amine group of the meso-DAP and equivalent quantities of DAP 

mass were used to test the ability of monomeric and multimeric PGN to stimulate NOD1, NOD2, 

and TLR2 using HEK293 reporter cell lines. Both monomeric PGN and multimeric PGN 

induced significant NOD1 activation; monomeric PGN induced an 8-fold activation of alkaline 

phosphatase activity above basal levels and equivalent quantities of multimeric PGN induced 

2.7-fold levels of reporter activation (Figure 2.3A). In contrast, incubation of the cells with 

multimeric PGN induced significant activation of NOD2 (3.3-fold induction) while incubation 

with monomeric PGN did not (1.3-fold induction, p>0.05) (Figure 2.3B).  

The purified PGN fragments showed modest activation of TLR2 above baseline with no 

significant difference between monomeric and multimeric PGN (Figure 2.3C). The stimulation 

observed in NOD1-, NOD2-, and TLR2-expressing cells was not observed in cells expressing 

only the reporter construct (Figure 2.3D) Because we did not observe differences between the 

different PGN species’ capacity to stimulate TLR2, we sought to determine if other known 

activators of TLR2 were differentially present in the culture supernatants of FA1090 and 

FA1090 ΔltgA/ΔltgD. Immunoblot analysis with antibodies directed against the N. gonorrhoeae 
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PorB and the lipoprotein Lip, both known to activate TLR2, showed that both proteins were in 

higher abundance in culture supernatants from FA1090 ΔltgA/ΔltgD than those from the parental 

FA1090 strain (Figure 2.3E) (Fisette et al., 2003; Massari et al., 2009). Overall, these data 

indicate that isolated gonococcal PGN, in either multimeric or 1,6-anhydro-MurNAc-containing 

monomeric form, is a weak stimulator of TLR2 and that LtgA and LtgD may modulate host 

TLR2 signaling by reducing release of TLR2 activating outer-membrane proteins.  

2.4.4 N. gonorrhoeae LtgA-generated PGN monomers have diminished capacity to activate 

NOD2 compared to host lysozyme-generated PGN monomers. 

Because NOD2 can be stimulated by monomeric MDP, the increased NOD2 signaling 

induced by multimeric PGN was unlikely to be attributable simply to the multimeric structure of 

the PGN. Instead, we hypothesized that reducing MurNAc-containing PGN monomers produced 

by the action of host lysozyme on multimeric PGN could stimulate NOD2 while 1,6-anhydro-

MurNAc-containing monomeric PGN generated by LtgA could not (Figure 2.4A). To test this, 

we generated PGN monomers from N. gonorrhoeae PGN using either recombinant LtgA or 

human neutrophil lysozyme. Structures of the resulting monomers were confirmed by mass 

spectrometry and show PGN monomers with peptide chain lengths of two to five amino acids 

(data not shown). Isolated monomeric fragments were tested for activation of NOD1 and NOD2 

(Figure 2.4B and 2.4C). Because the PGN monomers should contain equivalent quantities of the 

NOD1-stimulating iE-DAP ligand, irrespective of the enzyme used to cleave the GlcNAc and 

MurNAc bond, we did not expect to observe a difference in NOD1 activation between monomer 

preparations. As expected, these PGN monomers stimulated NOD1 receptor activation with 

equal potency (Figure 2.4B). However, in NOD2-expressing reporter cells, lysozyme-digested 

PGN monomers were more potent activators of NOD2 signaling when compared to LtgA-
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digested PGN monomers. To ensure that the reduced NOD2 signaling was the result of the 

presence of the 1,6-anhydro-MurNAc  moiety of the monomer and not variability in amino acid 

chain lengths within the mixture, tripeptide- and tetrapeptide-containing, 1,6-anhydro-muramyl 

or reducing-muramyl PGN monomers were isolated by HPLC and tested using NOD1- or 

NOD2- expressing reporter cell lines. As expected, there was no difference in NOD1 activation 

between the 1,6-anhydro- or reducing-MurNAc PGN tripeptide at either concentration tested. 

The 1,6-anhydro- and reducing-MurNAc monomers containing tetrapeptide induced little to no 

activation of NOD1 (Figure 2.4D). 1,6-anhydro-MurNAc-containing PGN tripeptide monomer, 

the predominant PGN monomer released by N. gonorrhoeae, did not activate NOD2 above basal 

levels. In contrast, the reducing-MurNAc tripeptide monomer produced by human lysozyme 

induced a 10.8-fold (8 uM) and 3.9-fold (800 nM) increase in NOD2 activation (Figure 2.4E). 

Additionally, 1,6-anhydro-MurNAc-containing PGN tetrapeptide (TCT) failed to activate 

NOD2, while the reducing-MurNAc-containing PGN tetrapeptide (8 uM) also activated NOD2, a 

8.2-fold increase over basal levels. These data demonstrate that PGN monomers released by N. 

gonorrhoeae lytic transglycosylases LtgA and LtgD fail to activate host cell NOD2 because the 

1,6-anhydro-MurNAc structure in the monomer is not recognized by NOD2.  

2.5 Discussion 

The role of PGN monomer production and release by N. gonorrhoeae in host immune 

recognition of the bacteria is not well studied.  Previous studies have demonstrated that N. 

gonorrhoeae releases PAMPs that preferentially induce NOD1 activation over NOD2 activation 

(Mavrogiorgos et al., 2013). Our data show that an important factor in directing the host innate 

immune response to N. gonorrhoeae are the LtgA and LtgD lytic transglycosylases, which act in 

the production of 1,6-anhydro monomeric PGN fragments (Summarized in Figure 2.5).  
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In agreement with previously published reports, our studies demonstrate that endogenous 

PGN monomers produced by N. gonorrhoeae LtgA and LtgD are potent activators of NOD1 but 

not NOD2.  This activation of NOD1, but not NOD2, by monomeric anhydro PGN agree with 

previous reports that TCT does not activate human NOD2 (Magalhaes et al., 2005) but that PGN 

structures terminating with iE-DAP in the peptide chain can activate NOD1 (Girardin et al., 

2003c). Our data in NOD2-expressing reporter cells show that the multimeric forms of PGN are 

more potent than the monomeric form.  The capacity of multimeric forms of PGN to stimulate 

NOD2 may in part be due to digestion of these PGN fragments by host cellular lysozyme, which 

has previously been shown to facilitate NOD2 recognition of Streptococcus pneumonia (Davis et 

al., 2011).  Lysozyme generated PGN monomers are more potent activators of NOD2 than the 

LtgA 1,6-anhydro product regardless of the amino acid chain length.  A synthetic addition of 

UDP to the hydroxyl group on the muramic acid has been previously shown to enhance NOD2 

activation to a synthetic meso-DAP containing muramyl tripeptide, demonstrating the 

importance of the muramic acid moiety of PGN in NOD2 mediated recognition of these PAMPs 

(Girardin et al., 2003c).  We now demonstrate that modification to the muramic acid sugar by a 

native bacterial enzyme can alter NOD2 signaling in response to the bacteria.  In this case, the 

formation of PGN monomers with a 1,6-anhydro bond by LtgA reduces stimulation of NOD2, 

which is otherwise triggered by secreted multimeric PGN fragments generated by bacterial 

growth.  Together, these data help explain why an increase in NOD2, but NOD1, signaling is 

seen in response to culture supernatants from FA1090 ΔltgA/ΔltgD, which produce large PGN 

fragments that can be processed by native lysozyme to produce the NOD2-stimulating, reducing 

PGN monomer. These data present an explanation for a recently reported observation that N. 
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gonorrhoeae bacterial culture supernatants induced weak NOD2 activation when compared to 

whole bacteria lysates (Mavrogiorgos et al., 2013).   

In addition to inducing more robust host NOD2 signaling, the deletion of ltgA and ltgD in 

N. gonorrhoeae leads to increased TLR2 signaling in response to the bacteria. Previous studies 

have implicated TLR2 in host response to PGN while some studies suggest that TLR2 has no 

direct ability to recognize PGN (Li et al., 2010; Travassos et al., 2004).  It has been proposed that 

TLR2 responds to multimeric PGN but not monomeric PGN (Müller-Anstett et al., 2010).  

Others have proposed that PGN signaling via TLR2 is the result of contaminates, such as 

lipoproteins or teichoic acids (Volz et al., 2010).  Our results do not show a significant difference 

in the activation of TLR2 between multimeric PGN, dimeric PGN, or monomeric PGN, though 

all three PGN species only weakly activate TLR2. The increased capacity to induce TLR2 

activation by culture supernatants from the ΔltgA/ΔltgD mutant is accompanied by increased 

quantities of known TLR2 stimulating proteins from N. gonorrhoeae, PorB and Lip (Massari et 

al., 2002).  We hypothesize that release of these TLR2-activating polypeptides accompanies 

release of larger PGN multimers that are not processed into 1,6-anhydro-MurNAc-containing 

PGN monomers in this strain.   

Thus we present here a specific modification of PGN by N. gonorrhoeae lytic 

transglycosylases LtgA and LtgD suppresses the response of the innate immune receptor NOD2, 

in contrast to the modification of PGN generated during break-down by host lysozyme.  

Interestingly, peptidoglycan modification via O-acetylation has previously been shown to 

increase PGN resistance to lysozyme digestion in many pathogenic bacteria, including N. 

gonorrhoeae (Bera et al., 2006; Dillard and Hackett, 2005; Moynihan and Clarke, 2011; 

Rosenthal et al., 1982, 1983).  The PGN O-acetyltransferase in Staphylococcus aureus has been 
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shown to modulate host cytokine responses to the bacteria by modulation of signaling by the 

innate immune receptors NOD2 and NLRP3 (Shimada et al., 2010). Together, these data 

combined with our reported findings suggest that the N. gonorrhoeae maintains multiple 

mechanisms to suppress host NOD2 signaling. Interestingly, while suppressing host NOD2 

signaling, N. gonorrhoeae secretes large quantities of NOD1 activating ligand, suggesting the 

two receptors play non-redundant roles in gonococcal pathogenesis. This presents a challenge to 

study N. gonorrhoeae pathogenesis using the murine model of N. gonorrhoeae due to the 

differences between mouse and human NOD1 ligand specificity (Magalhaes et al., 2005).  It is 

yet to be determined if the ability of these PGN fragments to avoid NOD2 signaling while 

simultaneously stimulating NOD1 is beneficial to the establishment, the persistence and/or 

transmission of infection.  Activation of NOD2 by MDP has been shown to stimulate production 

of antimicrobial peptides like HNP1 and -defensin-2 (Voss et al., 2006; Yamamoto-Furusho et 

al., 2010).  NOD2 has been shown to play a role in adaptive immune responses that are known to 

be weak or absent in humans infected with N. gonorrhoeae (Fox et al., 1999).  For example, 

NOD2 is known to mediate MHC class II antigen-specific CD4+ responses and facilitate 

polarization of Th2 cells in response to those antigens (Cooney et al., 2009; Magalhaes et al., 

2008).  In the mouse model of N. gonorrhoeae, induction of Th2 responses have been shown to 

be critical in the clearance of N. gonorrhoeae (Liu and Russell, 2011; Liu et al., 2012). 

Suppression of NOD2 activation by N. gonorrhoeae LtgA and LtgD modified PGN may 

therefore may be mechanisms to suppress both innate and adaptive immune responses to this 

pathogen, allowing for the persistence of infection and transmission of the disease. Given the  
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role of NOD2 in host defense and immune response, the modification of released PGN fragments 

should be further investigated for their potential role in the host immune response to N. 

gonorrhoeae. 
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IL-1β (top) and TNF-α (bottom) production was measured in (A) PMA-stimulated THP1 cells 

challenged with live N. gonorrhoeae (Multiplicity of Infection = 0.1), THP1 cells (B) or human 

dendritic cells (C) exposed to N. gonorrhoeae culture supernatants from N. gonorrhoeae grown 

in Graver-Wade medium as described in the Experimental Procedures. Secreted cytokines were 

below the level of detection (15.6 pg/ml for IL-1 and 78 pg/ml for TNF-) for untreated cells or 

cells treated with Graver-Wade medium. (D) Optical density of indicated N. gonorrhoeae strain 

cultures at the indicated time points (E) Size exclusion chromatography profiles of PGN 

fragments released from FA1090 or FA1090 ΔltgA/ΔltgD after labeling of PGN pool with [6-
3
H]glucosamine. Data points are plotted as mean +/- S.E.M. from triplicate samples. Plots are 

representative of repeated experiments (for A-B, n>3 for C-E, n=2) Significance was determined 

using Student’s T-test with the determined p-value indicated. 

Figure 2.1. Deletion of the ltgA and ltgD genes in N. gonorrhoeae results in increased 

inflammatory signaling in human monocytes and dendritic cells. 
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(A) NOD2, (B) TLR2, (C) NOD1, (D) TLR4, (E) TLR9, and (F) Null HEK293-Blue™ cells 

were treated with culture supernatants from the indicated N. gonorrhoeae strains and reporter 

SEAP activity was measured as described in the Experimental Procedures. Data is expressed as 

fold activation over the basal levels of alkaline phosphatase production from cells treated with 

Graver-Wade Medium for each independent experiment. Data shown represent mean values +/- 

S.E.M. from cells treated with two preparations of culture supernatants and experiments were 

repeated at least twice. Significance was determined using ANOVA with Bonferroni posttest for 

multiple comparisons, a corrected p-value < 0.05 was considered significant. 

  

Figure 2.2. Culture supernatants from N. gonorrhoeae lacking ltgA and ltgD genes exhibit 

enhanced activation of human NOD2 and TLR2, but not NOD1. 
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Monomeric PGN was prepared using recombinant LtgA (as described in Experimental 

Procedures) and receptor activation was compared to multimeric PGN using reporter cell lines 

described in Figure 2.2: (A) NOD1, (B) NOD2, (C) TLR2, and (D) Null1 HEK293-Blue™ cells. 

(E) Culture supernatants from the indicated strains of N. gonorrhoeae were analyzed by 

immunoblot using antibodies directed against PorB (top) and lipoprotein Lip (bottom). (A-D) 

Data shown represent mean values +/- S.E.M. from cells treated with two preparations of culture 

supernatants and experiments were repeated at least twice. Statistical analysis was done using 

one-way ANOVA with Bonferroni posttest for multiple comparisons and indicates comparison 

to basal activation (* p< 0.05; *** p<0.001). The dashed line demonstrates the normalized basal 

SEAP activity. 

  

Figure 2.3. Multimeric PGN and Monomeric PGN released by N. gonorrhoeae LtgA                   

differentially activate NOD1 and NOD2. 
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(A) The structure of 1,6-anhydro-MurNAc-containing PGN monomers predominantly released 

by LtgA (left) and reducing-MurNAc-containing PGN monomers predominantly released by 

lysozyme (right). (B) NOD1- and (C) NOD2-expressing reporter cells were treated with the 

indicated LtgA- or lysozyme-liberated PGN monomers at the indicated concentrations. 

Monomers contained a mixture of PGN monomer species as described. The indicated PGN 

monomer species were further isolated using HPLC and the capacity of each to stimulate NOD1 

(D) and NOD2 (E) reporter cells was assessed. Data shown are representative of at least two 

experiments from at least two independent preparations of PGN monomers. (B-E) Data shown 

represent mean values +/- S.E.M. from cells treated with two preparations of culture supernatants 

and experiments were repeated at least twice. Statistical analysis was done using one-way 

ANOVA with Bonferroni posttest for multiple comparisons (**** P < 0.0001). The dashed line 

demonstrates the normalized basal SEAP activity 

Figure 2.4 PGN digested by LtgA but not human neutrophil lysozyme escapes detection by    

NOD2. 
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Figure 2.5. Summary figure showing N. gonorrhoeae evasion of NOD2 signaling through 

the production of 1,6-anhydro PGN monomers by LtgA and LtgD. 

Wild type N. gonorrhoeae release large quantities of cytotoxic 1,6-anhydro PGN monomers 

during growth.  These monomers are produced through the action of lytic transglycosylases LtgA 

and LtgD.  The addition of the 1,6-anhydro bond on the muramic acid sugar by LtgA and LtgD 

results in PGN fragments that cannot be recognized by NOD2. When the ltgA and ltgD genes are 

deleted, N. gonorrhoeae release PGN multimers.  These multimers are then subject to digestion 

by host lysozyme and detection by NOD2.  
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Chapter 3  

The role of N. gonorrhoeae peptidoglycan in pathogenesis using a murine model of 

infection 

 

3.1 Overview 

Neisseria gonorrhoeae releases 1,6-anhydro peptidoglycan monomers during growth that 

are the product of two lytic transglycosylases, LtgA and LtgD.  N. gonorrhoeae lacking LtgA 

and LtgD do not release peptidoglycan monomers, but rather large, multimeric peptidoglycan 

fragments.  We sought to determine the role of released peptidoglycan monomers in the 

pathogenesis of gonorrhea infection in vivo in a murine model of infection using a N. 

gonorrhoeae mutant with the ltgA and ltgD genes deleted.  Secondly, as we have previously 

shown that LtgA and LtgD reduce NOD2 activation in vitro, we also wanted to assess the role of 

NOD2 in pathogenesis.  In this study, we show that wild type mice that are infected with 

FA1090 ΔltgA/ΔltgD have a lower bacterial burden compared to mice infected with wild type 

FA1090 and that FA1090 ΔltgA/ΔltgD has a fitness defect in a competitive infection model.  

Deletion of ltgA and ltgD did not affect the persistence of infection in mice.  Finally, NOD2 does 

not appear to play a role in pathogenesis in the mouse model of infection, as no difference 

between bacterial burden or infection persistence was seen in Nod2
-/-

 mice infected with FA1090 

compared to wild type mice. 

3.2 Introduction 

Neisseria gonorrhoeae is a gram-negative pathogen that is the causative agent for the 

sexually transmitted infection gonorrhea.  During symptomatic infection in humans, N. 
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gonorrhoeae stimulates the production of inflammatory cytokines IL-17A and Il-23 that leads to 

the influx of polymorphonuclear leukocytes (PMNs) (Gagliardi et al., 2011).  This response is 

thought to be directed by IL-17 producing Th17 cells, which is observed in the murine model of 

infection (Feinen et al., 2010).  N. gonorrhoeae does not induce a protective adaptive immune 

response in the host.  Antibody titers of anti-gonococcal antibodies in patients with re-infection 

are no higher than in patients with first time infection, and re-infection can occur with the same 

N. gonorrhoeae serovar (Fox et al., 1999; Hedges et al., 1999; Hobbs et al., 1999).  In the mouse 

model of infection, N. gonorrhoeae has been shown to suppress a protective Th1/Th2 response 

through the induction of TGF-β (Liu et al., 2012).  The mechanism by which TGF-β induction 

occurs is unknown. 

During growth, N. gonorrhoeae release large quantities of cytotoxic anhydro 

peptidoglycan monomers.  PGN monomers released by N. gonorrhoeae contain one N-

acetylglucosamine-1,6-anhydro-N-acetylmuramic acid disaccharide unit linked to a peptide, 80% 

of which are the L-alanine-D-glutamic acid-meso-diaminopimelic acid tripeptide, with the 

remaining 20% composed mostly of terminal D-alanine containing tetrapeptide (Sinha and 

Rosenthal, 1980).  The tetrapeptide PGN monomer is structurally identical to the PGN 

monomers released by Bordetella pertussis, known as tracheal cytotoxin due to their ability to 

kill ciliated epithelial cells (Cookson et al., 1989; Goldman et al., 1982).  PGN monomers from 

N. gonorrhoeae have been shown to damage fallopian tube explants and induce inflammatory 

cytokine production (Chan et al., 2012; Melly et al., 1984).  It is hypothesized that this tissue 

damage may be important in the establishment of infection and transmission, though the effects 

of cytotoxic peptidoglycan monomers on cervical and urethral epithelium have not been studied.  
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The full extent to which N. gonorrhoeae PGN monomer release plays a role in pathogenesis and 

immune recognition of the bacteria is unknown. 

Inflammatory signaling in response to bacterial infections is mediated by the detection of 

pathogen-associated molecular patterns (PAMPs) through numerous extracellular and 

intracellular receptors.  The innate immune nucleotide-binding oligomerization domain-

containing protein 1 (NOD1) and 2 (NOD2) proteins are cytosolic sensors of bacterial 

peptidoglycan (PGN). Activation of NOD1 by PGN peptide chain component D-glutamyl-meso-

diaminopimelic acid (iE-DAP) in gram-negative bacteria and NOD2 by the muramyl dipeptide 

(MDP) moiety found in the PGN of most bacteria leads to the induction of NF-κB and 

inflammatory cytokine production (Chamaillard et al., 2003; Girardin et al., 2003a, 2003b; 

Inohara, 2003).  Both NOD1 and NOD2 have shown to play a role in directing the immune 

response to numerous pathogenic bacteria.  NOD1 has been shown to play a critical role in 

controlling the infection to Helicobacter pylori, as Nod1-/- mice were more susceptible to gastric 

infection.  This effect was dependent on PGN delivery to host cells through the action of the H. 

pylori type IV secretion system (Viala et al., 2004).  In vitro, NOD2 has been shown to play a 

role in controlling the growth of Mycobacterium tuberculosis in human monocyte-derived 

macrophages and primary mononuclear cells (Brooks et al., 2011; Ferwerda et al., 2005).  

Survival of Nod2-/- mice challenged with intraperitoneal Staphylococcus aureus was 

significantly reduced compared to wild type mice (Deshmukh et al., 2009).  In mouse 

neutrophils, NOD2, but not NOD1, directed the production of innate immune cytokines in 

response to several gram negative bacteria (Jeong et al., 2014).  NOD1 and NOD2 signaling in 

response to N. gonorrhoeae has recently been a topic of investigation.  Culture supernatants from 

N. gonorrhoeae robustly activate NOD1 and whereas activation of NOD2 is significantly less 
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(Mavrogiorgos et al., 2013).  This is likely due to the presence of 1,6-anhydro PGN monomers 

that are released into the supernatant of growing N. gonorrhoeae, which contain the iE-DAP 

moiety capable of activating NOD1 but are poorly activating of NOD2 due to the presence of the 

1,6-anhydro bond on the muramic acid sugar (Chapter 2, Section 2.4).  These PGN monomers 

are produced through the action of two lytic transglycosylases, LtgA and LtgD.  N. gonorrhoeae 

with the ltgA and ltgD genes deleted release multimeric PGN fragments rather than monomers 

(Cloud-Hansen et al., 2008). 

In this study we sought to determine the role of both NOD2 and the ltgA and ltgD genes 

in N. gonorrhoeae pathogenesis using the murine model of infection.  We found that N. 

gonorrhoeae lacking PGN processing by LtgA and LtgD had diminished bacterial burdens over 

the course of infection. A N. gonorrhoeae mutant with the ltgA and ltgD genes deleted, FA1090 

ΔltgA/ΔltgD, was impaired in competitive infections.  This indicates that the multimeric PGN 

released by these bacteria, which is capable of activating NOD2 more efficiently than PGN 

released from wild type N. gonorrhoeae, did not impact survival of the isogenic parent FA1090. 

In concordance with this, mice lacking NOD2 were not impaired in their ability to clear N. 

gonorrhoeae, suggesting that NOD2 signaling is not important in acute N. gonorrhoeae 

infection, at least in the mouse vaginal infection model.    

3.3 Materials and Methods 

3.3.1 Bacterial strains 

 For the competitive co-infections, FA1090 and FA1090 ΔltgA/ΔltgD were transformed 

with pCTS32 (Steichen et al., 2008) by spot transformation on GC agar as described previously 

to generate spectinomycin-resistant variants of each strain (Johnston and Cannon, 1999).  These 

strains were designated FA1090-spectinomycin and FA1090 ΔltgA/ΔltgD-spectinomycin. 
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N. gonorrhoeae strain FA1090 ΔltgA/ΔltgD (JD) was generated as described previously 

(Cloud and Dillard, 2002; Cloud-Hansen et al., 2008). Whole genome sequencing of FA1090 

ΔltgA/ΔltgD (JD) confirmed that the entire coding region of ltgD was deleted while the ltgA gene 

was disrupted by deletion of the last 1420 bp of the 1850 bp ltgA coding region and insertion of 

the ermC gene conferring erythromycin resistance.  A second construction of the ΔltgA/ΔltgD 

mutant, FA1090 ΔltgA/ΔltgD (KK) is described in Appendix 1. 

3.3.2  Experimental murine infection with N. gonorrhoeae 

Female BALB/c (4 to 6 weeks old) were purchased from The Jackson Laboratories, ME. 

BALB/c Nod2
-/-

 mice were a gift from Holly Rosenzweig (Rosenzweig et al., 2011) and age-

matched female BALB/c Nod2
-/-

 mice were obtained through in-house breeding.  Mice in the 

diestrus stage of the estrus cycle were started on a regimen of subcutaneous water-soluble 17β-

estradiol (0.5mg) two days prior to infection, the day of infection, and two days following 

infection to promote susceptibility to N. gonorrhoeae (Song et al., 2008).  Mice additionally 

received oral trimethoprim sulfate (0.04mg/mL), streptomycin sulfate (5mg/mL), and 

vancomycin (250μg/mL) in addition to intraperitoneal streptomycin sulfate and vancomycin 

twice daily (3.6mg and 0.6mg, respectively).  On the day of infection, mice were infected with 

Opa-matched 1x10
6
 CFU FA1090 or FA1090 ΔltgA/ΔltgD.  Vaginal mucus was collected daily 

with sterile swabs to assess commensal colonization and colonization with N. gonorrhoeae.  The 

bacterial load for each mouse was calculated by performing serial 10-fold dilutions of the vaginal 

samples in a 96-well plate and replica plating in at least triplicate onto GC-VCNTS agar. 

3.3.4 Competitive co-infection in mice 

Mice in the diestrus stage of the estrus cycle were selected for the study and made 

susceptible to N. gonorrhoeae with the administration of water-soluble 17β-estradiol and an oral 
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and intraperitoneal regimen of antibiotics as described above.  BALB/c mice were inoculated 

vaginally with equal CFU/mL FA1090-spectinomycin and FA1090 ΔltgA/ΔltgD or FA1090 and 

FA1090 ΔltgA/ΔltgD-spectinomycin for a total of 2x10
6
 CFU per mouse.  Bacterial burden in 

each mouse was assessed using vaginal swabs as described above, and N. gonorrhoeae were 

replica plated on GC-VNTCS-spectinomycin and GC-VNTS agar.  Total burden was calculated 

from colonies counted on GC-VNTS agar.  The amount of bacteria without spectinomycin 

resistance was determined by subtracting the amount of N. gonorrhoeae recovered from the GC-

VNTCS-spectinomycin agar from total bacteria burden as calculated from GC-VNTS agar.  The 

presence of a spectinomycin resistance marker did not alter the ability of either FA1090 or 

FA1090 ΔltgA/ΔltgD to colonize mice relative to the isogenic N. gonorrhoeae strains without 

spectinomycin resistance. 

3.3.3 Characterization of inflammation 

The percentage of neutrophil influx was assessed by microscopic examination of stained 

vaginal smears.  Images were taken of at least three fields and the number of cornified epithelial 

cells, nucleated epithelial cells, and neutrophils were counted on each.  Data are expressed as a 

percentage of neutrophils relative to total cells in the field. 

3.3.4 Cytokine analysis of mouse derived dendritic cells 

Bone marrow was harvested from the femurs of euthanized mice and the cells were grown 

for 7 days in RPMI 1640 containing 10% inactivated FBS, penicillin/streptomycin, GM-CSF, 

and IL-4. The phenotype of BMDCs grown under these conditions has been verified via flow 

cytometry using cell markers CD11c and MHC II, and costimulation markers CD80, CD86, and 

CD40.  Cells were exposed to either live N. gonorrhoeae or N. gonorrhoeae culture supernatants 
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generated as described previously (Chapter 2, Section 2.3.3.) for 16 hours.  Supernatants were 

collected and cytokines were measured by ELISA (BD Scientific). 

3.4 Results 

3.4.1 Mice infected with ∆ltgA/∆ltgD N. gonorrhoeae have a lower bacterial burden 

compared to infection with wild type 

To assess the role of ltgA and ltgD in infection pathogenesis, female BALB/c mice were 

infected with either FA1090 ΔltgA/ΔltgD or wild type FA1090.  Vaginal samples were collected 

in PBS daily for ten days to monitor bacterial burden.  Samples were diluted serially10-fold and 

replica plated onto GC-VNTCS agar. Colonies at each dilution were counted to establish 

CFU/mL for each mouse on each day.  Bacteria recovered (CFU/mL) from infected mice on each 

day for mice infected with FA1090 or FA1090 ΔltgA/ΔltgD is shown in Figure 3.1A.  Area 

under the curve (AUC) for each infected mouse was calculated, and showed that the overall 

bacterial burden in mice infected with FA1090 ΔltgA/ΔltgD was significantly lower than mice 

infected with FA1090 N. gonorrhoeae (Figure 3.1B).  

3.4.2 Deletion of ltgA and ltgD does not impact infection persistence in vivo 

 The persistence of N. gonorrhoeae FA1090 or FA1090 ΔltgA/ΔltgD in BALB/c mice was 

monitored over the course of ten days.  Mice that were not positive for N. gonorrhoeae culture 

on day 10 were considered to have cleared the infection on the day after the last day detectable 

levels of N. gonorrhoeae were recovered from vaginal swabs.  Mice in which N. gonorrhoeae 

was never recovered during the 10 days of monitoring were considered to not have been infected.  

Deletion of ltgA and ltgD may play a role in early infection, as there was a statistically 

significant difference in persistence of infection up to day 4 (Figure 3.2).  However, this may 

simply reflect the low bacterial burden characteristic of FA1090 ΔltgA/ΔltgD that was frequently 
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below the lower limit of detection of the assay, as demonstrated in some mice by several days of 

no N. gonorrhoeae recovery followed by at least one day of positive culture.  Over the total 

course of 10 days there was not a statistically significant difference in the persistence of infection 

between FA1090 and FA1090 ΔltgA/ΔltgD. 

3.4.3 Inflammatory responses to FA1090 ΔltgA/ΔltgD in mice 

We measured inflammatory cytokine response in mouse bone marrow derived dendritic 

cells (BMDCs) to determine if mouse cells would respond similarly to N. gonorrhoeae FA1090 

and FA1090 ΔltgA/ΔltgD at human THP1 and primary blood dendritic cells discussed in Chapter 

2 (Figure 2.1A-C).  Mouse BMDCs were exposed to N. gonorrhoeae culture supernatants and 

IL-1β and TNF-α secretion was measured in the supernatants.  As with the human cells lines 

tested previously, mouse BMDCs produced more inflammatory cytokines IL-1β and TNF-α in 

response to culture supernatants from FA1090 ΔltgA/ΔltgD compared to wild type FA190 

(Figure 3.3A). 

We assayed mice infected with N. gonorrhoeae for inflammation by counting the number 

neutrophils relative to other cells present on slides of vaginal swabs.  In experimental mice that 

N. gonorrhoeae was never recovered from, no neutrophils were observed.  In mice that were 

positive for N. gonorrhoeae infection, 3/7 mice infected with FA1090 were positive for 

neutrophil influx on at least one day and in mice infected with FA1090 ΔltgA/ΔltgD (KK) 

(construction described in Appendix 1) 1/6 mice were positive for neutrophil influx.  Neutrophil 

influx on average was higher in FA1090-positive mice, with a mean of 3%, 5%, and 2% on days 

5, 6, and 7 respectively, though there was considerable variation between mice.  In FA1090 

ΔltgA/ΔltgD-positive mice, the mean neutrophil influx was 0%, 0%, and 0.2% for days 5, 6, 7 

respectively (Figure 3.3B).  Thus while FA1090 ΔltgA/ΔltgD does induce influx of PMNs, 
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inflammation is less than FA1090, which does not recapitulate the increased inflammatory 

cytokine release by isolated dendritic cells or monocyte cell lines that we have observed in cell 

culture-based experiments. However, bacterial loads in mice infected with FA1090 ΔltgA/ΔltgD 

were lower than mice infected with FA1090, and sample numbers were low for each group.    

3.4.4 The ∆ltgA/∆ltgD N. gonorrhoeae mutant has a fitness defect in competitive infection in 

vivo 

To evaluate whether or not the release of PGN multimers, rather than monomers, could 

act on the host in trans to reduce gonococcal colonization by both wild type and mutant FA1090, 

we performed a competitive co-infection with FA1090 in wild type BALB/c mice.  If FA1090 

ΔltgA/ΔltgD is defective in single infection when compared to wild type FA1090, but not 

defective when compared to wild type in competitive infection, it could suggest that either the 

multimeric PGN acts in trans to reduce survival of FA1090 or that secretion of monomer by wild 

type N. gonorrhoeae is capable of acting in trans to enhance mutant. In contrast, the 

predominance of FA1090 over FA1090 ΔltgA/ΔltgD would reflect an intrinsic survival defect in 

the mutant.  For each mouse on each day that were positive for N. gonorrhoeae, the competitive 

index (CI) was calculated.  The CI is defined as follows: 

    
 
                  

             
          

 
                  

             
         

 

 

The log(CI) reflects the relative fitness of FA1090 and FA1090 ΔltgA/ΔltgD, where log(CI) = 0 

reflects an equal fitness and log(CI) > 0 or log(CI) < 0 reflects a fitness defect in FA1090 or in 

FA1090 ΔltgA/ΔltgD respectively.  Over the course of a 10 day infection, the log(CI) was 

significantly below 0 on each day, except on days where the dynamic range of the assay was 
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reduced as a result of low bacterial recovery (Figure 3.4A and 3.4B).  Individual mice are noted 

by different symbols and/or symbol color.  Mice not appearing as a data point on a single day 

were the result of no recovery of N. gonorrhoeae on that day.  The data show that FA1090 

ΔltgA/ΔltgD has a fitness defect in vivo that was not recovered by the presence of 1,6-anhydro 

PGN monomers produced during co-infection by FA1090.  Similarly, the survival of FA1090 in 

vivo was not affected by the presence of multimeric PGN. 

3.4.5 NOD2 does not play a role in N. gonorrhoeae pathogenesis in the murine model of 

infection 

 Given that N. gonorrhoeae PGN release is known to cause inflammatory cytokine 

production by host cells in cell culture, we additionally sought to study the role of NOD2 in N. 

gonorrhoeae pathogenesis.  To test the role of NOD2 in the pathogenesis of N. gonorrhoeae 

infection, we infected Nod2
-/-

 and wild type mice with FA1090.  N. gonorrhoeae was collected 

from mice and quantified by replica plating on GC-VNTCS agar as previously described.    

Nod2
-/-

 mice had the same bacterial burden and persistence of infection as wild type time mice 

over the course of a 10 day infection (Figure 3.5A-C). 

3.5 Discussion 

 The role of PGN monomer production and release by N. gonorrhoeae in pathogenesis is 

not fully elucidated.  PGN monomers from both N. gonorrhoeae and Bordetella pertussis are 

well-documented to cause death of fallopian tube epithelial cells and ciliated cells of the tracheal 

epithelium, respectively (Goldman et al., 1982; Melly et al., 1984). Here we show that the lytic 

transglycosylase proteins LtgA and LtgD responsible for producing these anhydro PGN 

monomers are important in N. gonorrhoeae colonization of the female mouse genital tract.  N. 

gonorrhoeae that have the ltgA and ltgD genes deleted have a fitness defect in vivo and are poor 
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colonizers of the infection site. Whether or not this is a direct consequence of PGN multimer 

release, failure of monomer release, or the result of yet-to-be characterized effects of ltg deletion, 

such as effects on cell wall integrity or PGN recycling in vivo, is unknown.   

We also studied the role of NOD2 in N. gonorrhoeae pathogenesis using Nod2
-/-

 mice.  

Somewhat surprisingly, we found that Nod2
-/-

 mice had a similar bacterial burden and 

persistence of infection as wild type mice.  One possible explanation for this is the possibility 

that N. gonorrhoeae, an obligate human pathogen, has been fine-tuned to the immune signaling 

of its human host.  Mice are not naturally susceptible to infection with N. gonorrhoeae and only 

become susceptible under administration of 17β-estradiol as well as antibiotics to reduce 

commensal colonization.  Differences in ligand specificity between mouse NOD1 and human 

NOD1 have been demonstrated.  Mouse NOD1, for example, is able to recognize 1,6-anhydro 

tetrapeptide PGN monomer, while human NOD1 cannot (Magalhaes et al., 2005).  During 

growth, about 20% of the 1,6-anhydro PGN monomers released are the tetrapeptide monomer, 

while most of the remaining are 1,6-anhydro tripeptide PGN monomer (Sinha and Rosenthal, 

1980).  Ligand recognition differences between mouse NOD2 and human NOD2, particularly in 

the context of recognizing 1,6-anhydro PGN fragments, has not been studied.  Such differences 

could manifest in an in vivo mouse model infection as compensatory or alternate critical immune 

signaling for control of infection that are not relevant in human infection.  Examples of this have 

been demonstrated in vitro, where NOD2 was shown to be important in controlling 

Mycobacterium tuberculosis infection in human, but not mouse, macrophages (Brooks et al., 

2011). Thus, the lack of a phenotype in Nod2
-/-

 mice in N. gonorrhoeae infection is not a 

definitive indication that NOD2 does not play a role in infection in humans. 
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An alternative explanation may be supported by our previous findings, reported in 

Chapter 2, which show that 1,6-anhydro PGN monomers released by N. gonorrhoeae are poorly 

activating of NOD2.    The role of NOD2 in detection of N. gonorrhoeae has only recently been 

reported on, and its function has not been tested in vivo through use of a mouse model.  Culture 

supernatants from growing N. gonorrhoeae are poor activators of NOD2 (Mavrogiorgos et al., 

2013).  Our data showing no role for NOD2 in either controlling bacterial burden or infection 

persistence in vivo may confirm in vitro findings that wild type N. gonorrhoeae is a poor 

activator of NOD2.  An interesting question then arises regarding the role of NOD2 in N. 

gonorrhoeae infection.  Given that NOD2 has been shown to play a role in many innate and 

adaptive immune responses—including autophagy, antimicrobial peptide production, and antigen 

presentation—avoiding NOD2 activation may be beneficial to survival in the host (Cooney et al., 

2009; Travassos et al., 2009; Voss et al., 2006).  Since we have observed in vitro that FA1090 

ΔltgA/ΔltgD causes increased production of inflammatory cytokines and is more activating of 

NOD2, infection of Nod2
-/-

 mice with FA1090 ΔltgA/ΔltgD might better demonstrate the 

interplay between N. gonorrhoeae and NOD2.  If NOD2 signaling is responsible for the poor 

fitness of FA1090 ΔltgA/ΔltgD in vivo, then Nod2
-/-

 mice infected FA1090 ΔltgA/ΔltgD would 

have elevated bacterial burdens compared to wild type mice. 

FA1090 ΔltgA/ΔltgD does not appear to be more inflammatory in vivo, in contrast to in 

vitro data showing that mouse BMDCs produce more IL-1β and TNF-α in response to culture 

supernatants from FA1090 ΔltgA/ΔltgD when compared to cytokine production in response to 

wild type FA1090.  Our in vivo characterization is limited to neutrophil influx, however, and 

may not sufficiently quantify the full extent of local inflammation.  It may explain, however, 

why FA1090 ΔltgA/ΔltgD is able to survive in the mouse host for a similar length of times as 
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FA1090.  Ultimately, the bacterial burdens in mice infected with FA1090 ΔltgA/ΔltgD may be 

too low to trigger sufficient PMN migration, and this may explain the higher percentage of 

PMNs in FA1090 infected mice.  Additional experiments are needed in order to make a 

conclusion regarding the correlation between bacterial burden and PMN influx.  There are also 

other markers of inflammation that can be investigated.  While the ability to obtained 

quantifiable levels of local cytokines can be challenging, physical infection of excised mouse 

genital tract tissues during infection or quantification of mRNA expression for various host 

inflammatory responses may reveal a more complete understanding of inflammation induced by 

FA1090 ΔltgA/ΔltgD. 

However, the possibly exists that the mechanism that confers a defect in FA1090 

ΔltgA/ΔltgD colonization of the mouse genital tract may not be host mediated.  Another lytic 

transglycosylase, LtgC, is required for separation and bacteria with ltgC deleted have an 

observed growth defect in vitro (Cloud and Dillard, 2004). While deletion of ltgA and ltgD has 

not been reported to confer a growth defect in vitro (Cloud-Hansen et al., 2008, and Chapter 2 

Figure 2.1), a growth defect in FA1090 ΔltgA/ΔltgD may not be observable in liquid culture, 

which is challenging with N. gonorrhoeae as the bacteria undergo significant lysis after less than 

24 hours.  A minor growth defect may become more significant in a long-term in vivo growth 

scenario such as the murine model of infection, which may result in the lower bacterial burden 

and fitness defect.  In support of data showing that ltgA and ltgD deletion does not have a growth 

defect phenotype, in Vibrio fischeri deletion of ltgA and ltgD, which have a similar function in 

PGN monomer production, also does not result in a growth defect or changes in cell morphology 

(Adin et al., 2009).  That considered, there may be other consequences to deletion of ltgA and 

ltgD, such as integrity of the cell wall, which may reduce resistance to host antimicrobial factors. 
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Evaluation of survival of FA1090 ΔltgA/ΔltD in the presence of serum, antimicrobial peptides, 

ROS, or other stressors is needed to determine if loss of resistance to host antimicrobial factors is 

an explanation for the colonization defects observed in vivo. 

Our data demonstrate for the first time a role for LtgA and LtgD in pathogenesis in vivo 

in the pathogenic bacteria N. gonorrhoeae, and these proteins may be an important target of 

study in other bacteria where PGN release in an important factor in host-pathogen interaction. 

Additional research is needed to understand the mechanisms by which the deletion of ltgA and 

ltgD confer a fitness defect in vivo.  These include investigations into the known PGN 

recognition receptors, including NOD2, through the use of Nod2
-/-

 mice or siRNA knockdown of 

NOD2 in human cell lines and evaluation of resistance to host antimicrobial factors.  Given the 

variable expression of NOD2 in different cell types, the site of infection may be important.  This 

presents another possible limitation of using the mouse model for these studies, as the infection 

site in mice is the vagina, whereas the infection site in humans is typically the cervix or the 

urethra.  It is possible that NOD2 signaling not important for acute clearance of bacteria but 

plays a role in inducing a protective adaptive immune response.  In that case, there might be 

selective pressure to avoid NOD2 signaling even if there is no benefit in acute infection. As an 

alternate to studies involving NOD2, our previous in vitro findings show that FA1090 

ΔltgA/ΔltD also increases TLR2 activation, which may mediate the reduced survival of the 

mutant in vivo.  
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Figure 3.1. Mice infected with FA1090 ΔltgA/ΔltgD have a lower bacterial burden 

compared to mice infected with wild type N. gonorrhoeae. 

BALB/c mice were infected with either FA1090 or FA1090 ΔltgA/ΔltgD (JD).  Bacterial burden 

was monitored daily with vaginal swabs.  A) Amount of N. gonorrhoeae recovered from mice on 

each day.  Graph shows data for mice known to be colonized with N. gonorrhoeae. A value of ½ 

lower limit of detection (LLD) was used when N. gonorrhoeae was not recovered from a mouse 

on one day but was recovered on a subsequent day.  B) Area under the curve (AUC) of bacterial 

burden for each mouse over the course of the experiment.  Data shown are a combination of two 

separate experiments. Data were analyzed using GraphPad Prism 6. AUC data was analyzed by 

Student’s t-test.  * = P < 0.05. 

  

LLD 
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Figure 3.2. Deletion of ltgA and ltgD does not affect infection persistence of N. gonorrhoeae 

in the mouse model. 

Mice were infected with either FA1090 or FA1090 ΔltgA/ΔltgD and the persistence of infection 

was monitored over the course of ten days using vaginal swabs.  Data shown were the 

combination of two independent experiments. All data was analyzed using GraphPad Prism 6. 

Infection persistence data was analyzed using a logrank test. ns = not significant. 
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Figure 3.3. Increased inflammatory responses to FA1090 ΔltgA/ΔltgD in vitro do not 

replicate in vivo. 

Primary mouse bone marrow derived dendritic cells (BMDCs) were exposed to culture 

supernatants from FA1090 and FA1090 ΔltgA/ΔltgD and assayed for production of A) IL-1β and 

TNF-α.  Mice infected with FA1090 or FA1090 ΔltgA/ΔltgD were assayed for vaginal neutrophil 

influx (B).  Data from days five, six, and seven of mice for which N. gonorrhoeae was recovered 

(+Ng) or not recovered (-Ng) during the course of the experiment are shown.  Data are shown as 

the mean percent of neutrophils in all mice.  The percent of neutrophils for an individual mouse 

is the mean number of neutrophils relative to other cells types calculated from at least three fields 

with a total of at least 100 cells.  Cytokine data are representative of at least three independent 

experiments with at least three independent preparations of culture supernatant.  In vivo data are 

the combination of two independent experiments (see Appendix 3). Data were analyzed by 

GraphPad Prism 6. Error bars represent +/- S.E.M. Significance was determined using Student’s 

T-test, * = P < 0.05. 
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Figure 3.4. Deletion of ltgA and ltgD in N. gonorrhoeae confers a fitness defect in vivo. 

A competitive co-infection with FA1090 and FA1090 ΔltgA/ΔltgD was used to evaluate the 

relative fitness of FA1090 ΔltgA/ΔltgD.  Bacterial loads of each were calculated from vaginal 

swabs taken daily.  Competitive index (CI) is defined as FA1090 

ΔltgA/ΔltgDrecovered/FA1090recovered and is normalized for differences in the inoculum. A) Log(CI) 

for each mouse on each day.  Data are only shown for mice in which N. gonorrhoeae was 

recovered on that day.  Each mouse in the study is represented by different symbols and/or 

symbol colors. B) Data showing average total recovered N. gonorrhoeae (FA1090 + FA1090 

ΔltgA/ΔltgD).  Mice in which no N. gonorrhoeae was recovered are excluded.  Data shown is the 

combination of two independent experiments.  Data were analyzed using GraphPad Prism 6.  CI 

data was assessed for being significantly different from 0.  Data were confirmed to be normally 

distributed using a Shapiro-Wilk normality test and significance was determined on each day 

using a one sample t-test, * = P < 0.05.  LLD: lower limit of detection. 
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Figure 3.5. NOD2 does not play a role in controlling N. gonorrhoeae infection. 

BALB/c WT or Nod2-/- mice were infected with N. gonorrhoeae FA1090.  Daily vaginal swabs 

were used to monitor bacterial burden over the course of ten days.  Neither bacterial burden nor 

infection persistence was altered in Nod2
-/-

 mice.  A) Amount of N. gonorrhoeae recovered from 

mice on each day.  Graph shows data for mice known to be colonized with N. gonorrhoeae. A 

value of ½ lower limit of detection (LLD) was used when N. gonorrhoeae was not recovered 

from a mouse on one day but was recovered on a subsequent day.  B) Area under the curve 

(AUC) of bacterial burden for each mouse over the course of the experiment. C) Persistence of 

N. gonorrhoeae infection.  Data shown is the combination of two independent experiments. All 

data were analyzed using GraphPad Prism 6. AUC data were analyzed by Student’s t-test.  

Infection persistence data were analyzed using the logrank test. ns = not significant. 
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Chapter 4 

Discussion and Future Directions 

4.1 Discussion

The precise role of peptidoglycan monomer release and NOD2 signaling in the 

pathogenesis of N. gonorrhoeae infection has not been well studied.  NOD2 is involved in the 

induction of many host responses that have been shown to be suppressed during N. gonorrhoeae 

infection or that N. gonorrhoeae is resistant to.  For example, NOD2 is known to mediate MHC 

class II antigen-specific CD4+ responses and facilitate polarization of Th2 cells in response to 

those antigens (Cooney et al., 2009; Magalhaes et al., 2008).  In the mouse model of N. 

gonorrhoeae, induction of Th2 responses enhance rate of bacterial clearance (Liu and Russell, 

2011; Liu et al., 2013). Th2 responses to infection are suppressed by N. gonorrhoeae-induced 

TGF-β secretion, which in the context of other inflammatory cytokines leads to the 

predominance of Th17 responses (Liu et al., 2012).  Activation of NOD2 by MDP has been 

shown to stimulate production of antimicrobial peptides like HNP1 and -defensin-2 (Voss et al., 

2006; Yamamoto-Furusho et al., 2010).  N. gonorrhoeae is able to survive intracellularly even in 

cells capable of producing antimicrobial peptides, and is resistant to various host antimicrobial 

agents, including bile salts, progesterone, and antimicrobial peptides (Criss et al., 2009; Hagman 

et al., 1995; Jerse et al., 2003; Shafer et al., 1998). Nevertheless, while our studies implicate 

reduced NOD2 signaling as a mechanism of action of the lytic transglycosylases LtgA and LtgD 

in vitro, N. gonorrhoeae infection in Nod2
-/- mice progressed similarly to infection in wild type 

mice.  It is possible that mouse recognition of PGN through NOD1, NOD2, or other signaling 
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pathways is sufficiently different than PGN signaling in humans to explain this discrepancy.  

There is evidence for ligand specificity differences between mouse and human NOD1, as mouse 

but not human NOD1 can recognize tetrapeptide 1,6-anhydro PGN monomer known at tracheal 

cytotoxin that is released from Bordetella pertussis (Magalhaes et al., 2005). NOD2 is  able to 

control Mycobacterium tuberculosis infection in vitro in human macrophages but not in mouse 

macrophages (Brooks et al., 2011).  Differences between mouse and human NOD2 with regards 

to 1,6-anhydro PGN recognition and activation have not been studied.  It seems unlikely that N. 

gonorrhoeae would release sufficient quantities of monomeric PGN as to cause epithelial cell 

damage while also minimizing NOD2 recognition of these fragments if NOD2 was not relevant 

to pathogenesis.  The 1,6-anhydro bond that interferes with human NOD2 signaling does not 

play a role in inducing ciliated cell death; only a portion of the peptide chain, lactyl-D-glutamic 

acid-meso-diaminopimelic acid, is required for the toxic function of PGN monomers (Luker et 

al., 1995).  In the context of our own in vitro data and data published by another group, N. 

gonorrhoeae culture supernatants are poorly activating of NOD2 (Mavrogiorgos et al., 2013).  

Our data showing that Nod2
-/-

 mice maintain similar bacterial burdens and persistence of 

infection as wild type mice may reflect that in vivo N. gonorrhoeae minimally activates NOD2 

during infection.  Culture supernatants from the lytic transglycosylase deletion mutant FA1090 

ΔltgA/ΔltgD is a superior activator of human NOD2 in vitro relative to wild type FA1090, likely 

due to the presence of large, multimeric PGN complexes (Chapter 2, Section 2.X).  Infection of 

Nod2
-/-

 mice with the mutant strain may reveal a function of NOD2 in infection and the survival 

benefit for evasion of NOD2 activation.  Such studies, along with those described in Chapter 4, 

Section 4.2, are required to further elucidate a possible role of NOD2 in N. gonorrhoeae 

pathogenesis. 
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 Despite a the lack of involvement of mouse NOD2 in controlling infection with N. 

gonorrhoeae, the LtgA and LtgD proteins responsible for the production of released 1,6-anhydro 

PGN monomers do demonstrate a role in pathogenesis in the mouse model of infection and 

inflammatory response in vitro.  In vitro LtgA and LtgD reduces inflammatory signaling, as 

exposure to live FA1090 ΔltgA/ΔltgD or culture supernatants induces the production of 

significantly more IL-1β and TNF-α compared to wild type FA1090 in a variety of cell types, 

including THP1 cells, human primary blood dendritic cells, and mouse bone marrow derived 

dendritic cells.  This is likely partially due to an increase in NOD2 signaling by releasing PGN 

multimers rather than PGN monomers with a 1,6-anhydro bond addition on the muramic acid 

sugar.  We show that 1,6-anhydro PGN monomers are poor activators of NOD2.  In contrast 

reducing forms of PGN, produced through the action of host lysozyme on multimeric PGN, are 

in contrast highly activating of NOD2.  The lack of a significant increase in NOD1, TLR4, and 

TLR9 activation in response to culture supernatants from FA1090 ΔltgA/ΔltgD suggests the 

increased NOD2 response is not simply the result of higher levels of bacterial compounds—

DNA, LPS, or NOD1-activating PGN—but is rather specific to an increase quantity of NOD2-

activating PGN, presumably multimeric PGN that is subsequently being digested by host 

lysozyme.  The finding that the addition of the 1,6-anhydro bond on the muramic acid sugar of 

PGN monomers blocks NOD2 activation has not been previously reported and is an important 

addition to the literature in understanding innate immune recognition of bacteria.   

Interestingly, we did observe an increase in TLR2 activation in response to culture 

supernatants from FA1090 ΔltgA/ΔltgD.  The role of TLR2 in PGN signaling has been disputed 

in the literature.  PGN was originally identified as a TLR2 ligand, but subsequent studies that 

used rigorous purification methods on bacterial-derived PGN showed no activation of TLR2, 
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suggesting that contaminates such as teichoic acid or PGN-associated lipoproteins were 

activating TLR2 (Schwandner et al., 1999; Takeuchi et al., 1999b; Travassos et al., 2004; 

Yoshimura et al., 1999).  However, a response paper to that study used similar stringent 

purification methods on Staphylococcus aureus-derived PGN showed that multimeric S. aureus 

PGN was an activator of TLR2 (Dziarski and Gupta, 2005).  Additional studies have since 

demonstrated a role of TLR2 in recognition of S. aureus PGN through co-localization with 

NOD2, and that multimeric PGN from Δlgt S. aureus mutants, which lack lapidated 

prelipoproteins, is not recognized by TLR2 alone (Müller-Anstett et al., 2010; Volz et al., 2010). 

Our results do not show a significant difference in the activation of TLR2 between multimeric 

and monomeric PGN, and both PGN species only weakly activate TLR2. The increased capacity 

to induce TLR2 activation by culture supernatants from FA1090 ΔltgA/ΔltgD is likely due to 

increased quantities of known TLR2 stimulating proteins from N. gonorrhoeae, PorB and Lip 

(Fisette et al., 2003; Massari et al., 2002).  Release of these TLR2-activating polypeptides may 

accompany the release of larger PGN multimers that are not processed into 1,6-anhydro-

MurNAc-containing PGN monomers in FA1090 ΔltgA/ΔltgD. 

LtgA and LtgD appear to have a distinct role in pathogenesis based on in vivo data from 

the mouse model of infection.  There is a significantly lower bacterial burden in mice infected 

with FA1090 ΔltgA/ΔltgD compared to mice infected with FA1090.  Further, FA1090 

ΔltgA/ΔltgD has a clear fitness defect, as demonstrated by competitive infection with mice. 

Despite this, there was no observable difference in the persistence of infection in the mutant 

compared to the wild type, though there may be a difference in the early establishment of 

infection by FA1090 ΔltgA/ΔltgD.  This could be partially explained by the low number of local 

neutrophils observed in response to FA1090 ΔltgA/ΔltgD compared to FA1090.  In vitro, 
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FA1090 ΔltgA/ΔltgD induces the production of more IL-1β and TNF-α compared to FA1090.  

The discrepancy between the in vitro and in vivo data may be explained by the low bacterial 

burden characteristically observed in mice infected with FA1090 ΔltgA/ΔltgD.  Bacterial 

numbers of FA1090 ΔltgA/ΔltgD may not be high enough to induce significant inflammation, 

and are therefore able to persist for a similar amount of time as FA1090. 

Lytic transglycosylases have been implicated in other bacteria as being important to 

virulence, but in those contexts the lytic transglycosylases play a role in cell separation or cell 

wall dynamics that are thought to be important in interaction with host cells (Bartoleschi et al., 

2002; Stapleton et al., 2007).  An example more relevant to the action of lytic transglycosylases 

in PGN release involves Vibrio fischeri, an organism whose PGN monomer release is important 

in its symbiotic relationship with the Hawaiian bobtail squid (Koropatnick, 2004).  A 

ΔltgA/ΔltgD mutant of V. fischeri, which, similar to ΔltgA/ΔltgD N. gonorrhoeae produces 

significantly less PGN monomer, did not have a colonization or fitness defect when tested in vivo 

in squid (Adin et al., 2009).  Our data are the first to report on the possible colonization defects 

in pathogenic bacteria that occur as a result of deletion of the lytic transglycosylases responsible 

for PGN monomer production.   

Our current data do not provide a mechanistic explanation for the reduced fitness of 

FA1090 ΔltgA/ΔltgD in the mouse model.  Though mouse NOD2 does not appear important in 

infection with wild type N. gonorrhoeae, this does not exclude the possibility of a role for NOD2 

in response to FA1090 ΔltgA/ΔltgD.  Gonococci may be more susceptible to killing by host 

phagosomes due to the increased production of NOD2-activating PGN.  Subsequent pathways 

downstream of NOD2, such as autophagy or the induction of host antimicrobial peptides may be 

detrimental to phagocytosed organisms.  Comparing the bacterial burden of FA1090 
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ΔltgA/ΔltgD and FA1090 wild type in a Nod2
-/-

 mouse could provide an answer to this question.  

Alternatively, despite lack of in vitro evidence that deletion of ltgA and ltgD cause growth 

defects, these mutants may a growth defect in vivo.  These lytic transglycosylase mutants may 

also have increased susceptibility to host antimicrobial factors. 

4.2 Future Directions 

 The studies presented here investigate the role the monomers play in pathogenesis, 

inflammation, and receptor activation by disrupting the production of 1,6-anhydro peptidoglycan 

monomers in N. gonorrhoeae through the deletion of the genes encoding two lytic 

transglycosylases, ltgA and ltgD.  This approach has led to the discovery that LtgA and LtgD 

have a distinct role in suppressing inflammation, through both NOD2 as a result of PGN 

breakdown and through TLR2 by an unknown mechanism.  Additionally, N. gonorrhoeae 

lacking LtgA and LtgD are poor colonizers of the female mouse genital tract and have a clear 

fitness defect in vivo.  However, there are some critical limitations in using this approach to 

understanding the role of PGN monomers in N. gonorrhoeae infection.  N. gonorrhoeae lacking 

LtgA and LtgD are still releasing large quantities of peptidoglycan.  Production and release of 

these multimeric fragments still expose the host to a NOD1-activating ligand, as we have shown 

here (Chapter 2, Section 2.X).  Additionally, like monomeric PGN, the multimeric fragments 

contain the peptide chain moiety responsible for epithelial cell damage that occurs during 

infection (Luker et al., 1995; Melly et al., 1984).  Thus, other approaches, such as altering the 

amount of PGN released by N. gonorrhoeae, provide an important extension to the studies on N. 

gonorrhoeae PGN discussed here. 

 Deletion of the ampD or ampG in N. gonorrhoeae provides such an opportunity.  

Deletion of ampD, whose protein product AmpD is a cytoplasmic N-acetylmuramyl-l-alanine 
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amidase, results in N. gonorrhoeae whose levels of PGN release are significantly reduced 

(Garcia and Dillard, 2008).  A reduction in PGN release can also be achieved by replacing the           

gonococcal ampG, a permease, with meningococcal ampG, resulting in a reduction of PGN 

release from 15% to 4%, an amount similar to that observed in other gram-negative bacteria such 

as Escherichia coli (Woodhams et al., 2013).  This occurs as a result of meningococcal ampG 

being more efficient at recycling PGN than gonococcal ampG.  A similar strategy was used in 

the construction of an attenuated Bordatella pertussis strain for vaccine use, where B. pertussis 

ampG was replaced with E. coli ampG to reduce the amount of toxic PGN monomers released 

(Mielcarek et al., 2006). An increase in PGN monomer release can also be achieved: deletion of 

ampG in N. gonorrhoeae causes a substantial (7-fold) increase in the amount of PGN released 

(Garcia and Dillard, 2008). Both the ampG and ampD deletion mutants are reported to have 

similar in vitro growth characteristics to the isogenic wild type strain, and thus in that respect are 

suitable for in vitro and in vivo studies using live N. gonorrhoeae.  Identification of a phenotype 

for ampG or ampD mutant N. gonorrhoeae in vivo using the mouse model of infection in 

comparative and competitive infections with the wild type strain could provide further insights 

into the role of PGN in vivo.  Use of these strains could also open up avenues of in vitro studies 

on PGN release including recognition and killing of N. gonorrhoeae by neutrophils or infiltrating 

APCs.  Because ΔltgA/ΔltgD N. gonorrhoeae appear to produce equal amounts of NOD1-

stimulating ligand during growth as wild type (Chapter 2, Section 2.X), the use of ΔampD N. 

gonorrhoeae would reduce the total amount of released PGN and mechanistic roles for both 

NOD1 and NOD2 in triggering an immune response could be better explored.  The same follows 

for use of ΔampG, which would increase the amount of NOD1 and NOD2-activating PGN, the 

latter of which is notably present in only minimal quantities, due to the majority of released PGN 
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being the 1,6-anhydro monomer, which does not activate NOD2.  An ampG mutant of Shigella 

flexneri that released more PGN than wild type was found to increase NOD1, but not NOD2 

activation (Nigro et al., 2008).  

 There are reported differences between the ligand specificities and role in controlling the 

immune response to bacterial infection between human and mouse NOD1 and NOD2 that may 

represent a clear limitation of studying N. gonorrhoeae PGN in a mouse infection model and 

using mouse-derived cells.  Mouse NOD1 can recognize tetrapeptide PGN monomer, while 

human NOD1 cannot (Magalhaes et al., 2005).  Differences in NOD2 signaling between mouse 

and human concerning the anhydro PGN fragments discussed in Chapter 2 have not been 

reported and such an experiment may provide insight into the relevancy of the mouse model of 

N. gonorrhoeae infection.  Human NOD2 has been shown to play a role in the control of 

Mycobacterium tuberculosis in macrophages in vitro while mouse NOD2 does not (Brooks et al., 

2011).  Thus, even if mouse NOD2 has similar limitation in detecting PGN fragments that 

contain a 1,6-anhydro bond, there may be critical differences in downstream signaling. 

 Given these potential problems with the mouse model of infection discussed above, use 

of the human model of infection in men to study the role of monomeric PGN release in N. 

gonorrhoeae infection may provide the only relevant data for this scientific question.  The use of 

this model presents its own scientific challenges—low numbers of volunteers, studies are limited 

to infection of the male urethra, for example—but a competitive co-infection with FA1090 and 

FA1090 ΔltgA/ΔltgD (or FA1090 ΔampD or ΔampD if preliminary studies prove sufficiently 

interesting) would reveal the role of LtgA and LtgD in the fitness of this bacteria in humans.  In 

vitro studies making use of siRNA to knockdown NOD2 or NOD1 in human primary or 
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immortalized cells could provide some mechanistic explanations of an observed in vivo 

phenotype. 

 There is still a significant amount of work to be done in understanding the role of N. 

gonorrhoeae PGN and PGN receptors—including NOD1 and NOD2—in infection.  

Undoubtedly additional proteins that function to regulate the production and release of 

monomeric PGN will be discovered in the future.  Currently the mechanism by which PGN 

monomers are transported, actively or passively, across the cell membrane is unknown.  Further 

characterization, both in vivo and mechanistically, of N. gonorrhoeae mutants that disrupt wild 

type monomeric PGN release are needed to add to the understanding of how N. gonorrhoeae 

interacts with the host immune system and suppresses both innate and protective adaptive 

immune responses. 
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APPENDIX 1: CONSTRUCTION OF FA1090 ΔLTGA/ΔLTGD (KK) 

Alternate construction of FA1090 ΔltgA/ΔltgD 

N. gonorrhoeae strain FA1090 ΔltgD was generated as described previously (Cloud and Dillard, 

2002; Cloud-Hansen et al., 2008) and deletion was confirmed by PCR.  Construction of FA1090 

ΔltgA/ΔltgD (KK) was done in FA1090 ΔltgD using the ermC/rpsl ltgA insert plasmid described 

previously by spot transformation on GC agar (Johnston and Cannon, 1999).  Erythromycin-

resistant colonies were chosen, and insertion of the plasmid was confirmed by PCR.  However, a 

PCR product of the repair plasmid insertion was used to retransform the mutant, rather than 

using the repair plasmid as described.  Transformants were selected on streptomycin and were 

confirmed to have erythromycin susceptibility.  Clean deletion of ltgA was confirmed by PCR, 

shown below, and the sequence was verified. 
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APPENDIX 2: FA1090 ΔLTGA/ΔLTGD (KK) IN VITRO DATA 

FA1090 ΔltgA/ΔltgD (KK) has a similar in vitro phenotype as FA1090 ΔltgA/ΔltgD (JD). 

As seen with FA1090 ΔltgA/ΔltgD (JD), FA1090 ΔltgA/ΔltgD (KK) induces the production of 

more inflammatory cytokines IL-1β and TNF-α in comparison to wild type FA1090 in human 

derived cell lines.  This was reproducible with both PMA-stimulated THP1 cells exposed to live 

N. gonorrhoeae (MOI 0.1) and THP1 cells exposed to N. gonorrhoeae culture supernatants, 

which were generated as described in Chapter 2.  Similar phenotypes are also observed in 

transfected immune receptor-expressing cells.  FA1090 ΔltgA/ΔltgD (KK) was more activating 

of both NOD2 and TLR2, but not NOD1. 
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FA1090 ΔltgA/ΔltgD (KK) produces similar inflammatory and receptor activation 

responses as FA1090 ΔltgA/ΔltgD (JD) 

A) PMA-treated THP1 cells were exposed to live N. gonorrhoeae (multiplicity of infection: 0.1) 

and production of IL-1β and TNF-α in the cell culture supernatant was measured by ELISA.  

Data are representative of two independent experiments. B) THP1 cells were exposed to N. 

gonorrhoeae culture supernatants and production of IL-1β and TNF-α was measured by ELISA.  

HEK293 cells transfected with a secreted alkaline phosphatase reporter and C) NOD1, D) 
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NOD2, or E) TLR2 were exposed to N. gonorrhoeae culture supernatant.  Data are expressed as 

fold activation over basal levels of activation in response to graver wade media controls.  For 

experiments using N. gonorrhoeae culture supernatants, data is representative of at least two 

independent experiments with at least two preparations of culture supernatants.  Data were 

analyzed using GraphPad Prism 6 using Student’s t-test, * = P < 0.05. 
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APPENDIX 3: FA1090 ΔLTGA/ΔLTGD (KK) IN VIVO DATA 

 
FA1090 ΔltgA/ΔltgD (KK) has a similar in vivo phenotype as FA1090 ΔltgA/ΔltgD (JD). 

BALB/c mice were infected with either FA1090 or FA1090 ΔltgA/ΔltgD (KK) and 

bacterial burden was monitored daily with vaginal swabs as described in Chapter 3.  Notably, 

bacterial burdens for both wild type FA1090 and FA1090 ΔltgA/ΔltgD (KK) were lower than is 

typically observed in these experiments.  In addition, an unusually low number of mice were 

successfully infected with N. gonorrhoeae, resulting in a low number of subjects for analysis.  

The bacterial burden of FA1090 ΔltgA/ΔltgD (KK) is trending lower than that of FA1090, 

though the difference in area under the curve (AUC) between the mutant and wild type is not 

statistically significant (Panel A and B, P = 0.1027).  As observed with FA1090 ΔltgA/ΔltgD 

(JD), infection persistence was similar between FA1090 and FA1090 ΔltgA/ΔltgD (KK) (Panel 

C).  Additional experiments are needed to increase the number of animals in each group and 

confirm these findings and phenotype similarity to FA1090 ΔltgA/ΔltgD (JD). 
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Preliminary data shows that FA1090 ΔltgA/ΔltgD (KK) has a similar in vivo phenotype as 

FA1090 ΔltgA/ΔltgD (JD).   

A) Amount of N. gonorrhoeae recovered from mice on each day.  Graph shows data for mice 

known to be colonized with N. gonorrhoeae. A value of ½ lower limit of detection (LLD) was 

used when N. gonorrhoeae was not recovered from a mouse on one day but was recovered on a 

subsequent day.  B) Area under the curve (AUC) of bacterial burden for each mouse over the 

course of the experiment.  C) Persistence of infection. Data shown are a combination of two 

separate experiments. Data were analyzed using GraphPad Prism 6. AUC data was analyzed by 

Student’s t-test. 
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