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ABSTRACT

Fei Gao: Semiparametric Regression Analysis of Right- and
Interval-Censored Data

(Under the direction of Donglin Zeng and Danyu Lin)

Right-censored data arise when the event time can only be observed up to the end of the follow-up,

while interval-censored data arise when the event time is only known to lie within an interval. There

is a large body of statistical literature on right-censored and interval-censored data, but the existing

methods cannot properly handle certain complexities.

In the first project, we consider efficient semiparametric estimation of the accelerated failure time

(AFT) model with partly interval-censored (PIC) data, which arise when the event time may be

right-censored for some subjects and interval-censored for the others because of different observation

schemes. We generalize the Buckley-James estimator to PIC data and develop a one-step estimator

by deriving and estimating the efficient score for the regression parameters. We then establish

the asymptotic properties of the estimators, conduct extensive simulation studies, and apply our

methods to data derived from an AIDS study.

In the second project, we consider the setting when subjects may not complete the examination

schedule for reasons related to the event of interest. To make a valid inference about the interval-

censored event time of interest, we jointly model the event time of interest and the dropout time

using transformation models with a shared random effect. We consider nonparametric maximum

likelihood estimation (NPMLE) and develop a simple and stable Expectation-maximization (EM)

algorithm. We then prove the asymptotic properties of the resulting estimators and show how to

predict the event time of interest when dropout is an unavoidable terminal event. Finally, we provide

an application to data on the incidence of diabetes from the Atherosclerosis Risk in Communities

(ARIC) study.

In the third project, we formulate the effects of covariates on the joint distribution of multiple

right- and interval-censored events through semiparametric proportional hazards models with random
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effects. We consider NPMLE, develop an EM algorithm, and establish the asymptotic properties of

the resulting estimators. We leverage the joint modelling to provide dynamic prediction of disease

incidence based on the evolving event history and provide an application to the ARIC study.

Keywords: Buckley-James estimator; Joint models; Nonparametric likelihood; Random effects;

Semiparametric efficiency; Terminal event.
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CHAPTER 1: INTRODUCTION

In this chapter we introduce the concepts and ideas that will play a key role in the subsequent

development of our thesis.

1.1 Interval-Censored Data

Interval-censored data arise when the timing of an event is not known precisely, but rather is

known to lie within a time interval. Such data are frequently encountered in medical research, where

the ascertainment of the disease of interest is made over a series of examination times. An example

is the Atherosclerosis Risk in Communities (ARIC) study (The ARIC Investigators 1989), where

subjects were examined for asymptomatic diseases, such as diabetes and hypertension, over five

visits, each at least three years apart, such that the disease was only known to occur within a broad

time interval.

There are several types of interval-censored data. The simplest type is called “Case-1” interval-

censored data or current status data, which involves only one examination time for each subject.

Case-1 interval-censored data is frequently encountered in cross-sectional studies and tumorigenicity

experiments. A more general type is called “Case-2” or “Case-k” interval-censored data, when there

are two or k examination times for each subject (Huang and Wellner, 1997). The most general and

most common type is called “Mixed-case” interval-censored data, which allows for varying numbers

of examination times among subjects (Schick and Yu, 2000).

A number of methods have been developed for regression analysis of interval-censored data. In

particular, sieve estimation for the proportional odds model has been studied. Rossini and Tsiatis

(1996) considered the Case-1 interval-censored data and approximated the baseline function by a

uniformly spaced step function, where the number of jumps is predetermined by a Lipschitz-continuity

assumption. They proposed an estimation procedure maximizing the sieve likelihood function and

established the asymptotic properties for the estimators. Huang and Rossini (1997) studied the

Case-2 interval-censored data, approximated the baseline log-odds function by linear functions, and

discussed the conditions that allow for positive information for the regression parameter. Shen (1998)
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studied the same data and proposed sieve maximum likelihood methods approximating the baseline

log-odds functions by monotone spline functions.

The nonparametric maximum likelihood estimation (NPMLE) for the regression analysis of

interval-censored data has been studied. Huang (1995) and Huang (1996) studied the proportional

odds and proportional hazards models with the Case-1 interval-censored data and proposed an

iterative convex minorant algorithm for computation. They have shown that the estimators for

the regression parameters are asymptotically normal with n1/2 convergence rate and achieve the

semiparametric efficiency bound and that the NPMLE for the baseline cumulative hazard function

converges at n1/3 rate. Zeng et al. (2016) considered the NPMLE for transformation models with the

Mixed-case interval-censored data in the presence of time-dependent covariates. They established

the asymptotic properties and devised an EM algorithm that converges stably.

Rank-based estimation methods for linear transformation models have also been studied. Sun

and Sun (2005) considered the Case-1 interval-censored data and proposed the rank-based estimation,

which can be solved by a standard root-finding method or the Newton-Raphson algorithm. Gu et al.

(2005) considered the Case-2 interval-censored data and proposed a computational algorithm using

Markov Chain Monte Carlo stochastic approximation. Zhang, Sun, Zhao and Sun (2005) considered

the same data, proposed an estimating equation approach to estimate the regression parameters, and

showed the asymptotic properties of the estimators. Zhang and Zhao (2013) proposed two empirical

likelihood inference approaches for the rank-based regression parameters based on the generalized

estimating equations.

1.2 Accelerated Failure Time Model

The accelerated failure time (AFT) model assumes that the logarithm of the failure time is

linearly related to the covariates (Kalbfleisch and Prentice, 1980, pp. 32-34). Let T denote the

failure time and X denote a set of covariates. The accelerated failure time model specifies that

log(T ) = �TX + ✏,

where � is the regression coefficient, and ✏ is an error term with unknown distribution. Because of

its direct physical interpretation, the AFT model is an appealing alternative to the proportional

hazards model, especially when the response variable does not pertain to failure time and is a result
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of some mechanical process with a known sequence of intermediary stages. It may provide more

accurate or more concise summarization of the data than the proportional hazards model in certain

applications (Zeng and Lin, 2007).

A class of rank estimators have been proposed for the AFT model with right-censored data.

Prentice (1978) first proposed the rank estimators based on the well-known weighted log-rank

statistics. The asymptotic properties of the rank estimators were then rigorously studied by Tsiatis

(1990) and Ying (1993) among others. Wei et al. (1990) developed an inference procedure based on

the minimum-dispersion statistic, the calculation of which involves minimizations of discrete objective

functions with potentially multiple local minima. Lin and Geyer (1992) suggested a computational

method based on simulated annealing. Jin et al. (2003) proposed an iterative estimation procedure

based on a class of monotone estimating functions and estimated the variance of the resulting

parameter using a novel resampling procedure without involving high-dimensional, nonparametric

density function estimates. Zhou (2005) proposed an empirical likelihood approach to derive a test

and confidence interval for the rank-based estimator.

Buckley and James (1979) modified the least-squares estimator for the linear regression model

to obtain an estimator for the AFT model with right-censored data. The asymptotic properties

of the Buckley-James estimators were then rigorously studied by Ritov (1990) and Lai and Ying

(1991) among others. Later, Jin et al. (2006) computed the Buckley-James estimator by iteratively

applying Buckley-James estimating equation on an initial consistent estimator.

The rank-based estimators and Buckley-James estimators fail to achieve the semiparametric

efficiency bound. To obtain an efficient estimator, Zeng and Lin (2007) constructed a smooth

approximation to the profile likelihood function for the regression parameters of the AFT model

using kernel smoothing and maximized the approximated profile likelihood function. Later, Lin

and Chen (2013) proposed a one-step procedure based on a counting process martingale and kernel

estimation of the hazard function.

1.3 Transformation Model

The class of linear transformation models relates an unknown transformation of the failure time

T linearly to a vector of (time-independent) covariates X:

H(T ) = ��TX + ✏,
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where H(·) is an unspecified increasing function, � is a set of unknown regression parameters, and

✏ is a random error with a parametric distribution. The formulation can be extended to allow

time-dependent covariates. In the time-dependent version, the cumulative hazard function for T

given covariates X takes the form

⇤(t|X) = G



Z t

0
exp

�

�TX(s)
 

d⇤(s)

�

,

where G is a continuously differentiable and strictly increasing function, � is a set of unknown

regression parameters, and ⇤(cot) is an unspecified increasing function. The class of transformation

models encompass the proportional hazards model and proportional odds model.

It is useful to consider the following class of frailty-induced transformations

G(x) =

Z 1

0
e�xt�(t)dt,

where �(t) is a density function of a frailty with support [0,1). The choice of the gamma density

with mean 1 and variance r yields the class of logarithmic transformations G(x) = r�1
log(1 + rx)

(r � 0).
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CHAPTER 2: SEMIPARAMETRIC ESTIMATION OF THE
ACCELERATED FAILURE TIME MODEL WITH PARTLY

INTERVAL-CENSORED DATA

2.1 Introduction

Partly interval-censored (PIC) data consist of failure time observations, in which some of the

failure times are exactly observed while others are only known to lie within certain intervals. Such

data arise in clinical and epidemiological research when the occurrence of an asymptomatic event,

such as diabetic nephropathy or HIV infection, is ascertained at clinic visits. If a subject takes

frequent visits, then his or her failure time can be determined with sufficient accuracy. If the visits

are infrequent, then the failure time is known to lie within an interval that may be too broad to be

treated as exact.

Several statistical methods have been suggested to make inference with PIC data. Specifically,

estimation of the survival function for PIC data was studied by Turnbull (1976) and Huang (1999),

among others. Zhao et al. (2008) developed a generalized log-rank test for PIC data and established

its asymptotic properties. Kim (2003) studied nonparametric maximum likelihood estimation

(NPMLE) for the proportional hazards model.

In this chapter, we consider the accelerated failure time (AFT) model, which relates the logarithm

of the failure time linearly to the covariates (Kalbfleisch and Prentice, 1980, pp. 32-34). Because of

its direct physical interpretation, the AFT model is an appealing alternative to the proportional

hazards model, especially when the response variable does not pertain to failure time. It may

provide a more accurate or more concise summarization of the data than the proportional hazards

model in certain applications (Zeng and Lin, 2007). However, semiparametric estimation of the

AFT model is highly challenging, even in the case of right-censored data (Prentice, 1978; Buckley

and James, 1979; Tsiatis, 1990; Lai and Ying, 1991; Zeng and Lin, 2007; Lin and Chen, 2013). For

PIC data, we first propose an iterative algorithm similar to that of Buckley and James (1979). We

show that the resulting estimator is consistent and asymptotically normal and its variance can be

consistently estimated by bootstrap. We then propose an efficient estimator for the (vector-valued)
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regression parameter by the one-step Newton-Raphson update with the efficient score. We derive the

efficient score and construct the one-step estimator using kernel estimation. The one-step estimator

is shown to be consistent and asymptotically normal, with a limiting covariance matrix that attains

the semiparametric efficiency bound and can be consistently estimated through bootstrap. We

conduct extensive simulation studies to examine the performance of the Buckley-James and one-step

estimators in realistic settings, and we use our methods to analyze data derived from an AIDS

clinical trial.

2.2 Methods

2.2.1 Data and Model

Let T denote the failure time and X denote a d-vector of covariates. The AFT model specifies

that

log T = XT� + ✏,

where � is a d-vector of unknown regression parameters, and ✏ is an unobserved error independent

of X. The distribution of ✏ is arbitrary such that the model is semiparametric.

Let � indicate, by the values 1 versus 0, whether T is observed exactly or not. For � = 0, there

is a sequence of examination times 0 < U1 < U2 < · · · < UK < 1 that gives rise to the interval

(L,R), where L = max{Uk : Uk  T ; k = 0, . . . ,K}, and R = min{Uk : Uk � T ; k = 1, . . . ,K + 1},

with U0 = 0 and UK+1 = 1. We assume that the proportion of � = 1 is not negligible, and the joint

distribution of (U1, . . . , UK) is independent of T given X and � = 0. Note that L = 0 represents a

left-censored observation and R = 1 represents a right-censored observation. For a random sample

of n subjects, the PIC data consist of

�

�i,�iTi, (1��i)Li, (1��i)Ri,Xi

 

(i = 1, . . . , n).

6



2.2.2 Generalized Buckley-James Estimation

If the failure time is observed for every subject, then the classical least-squares estimator for � is

the solution to the estimating equation

n
X

i=1

�

Xi �X
�

n

�

Yi � Y
�

�
�

Xi �X
�T
�
o

= 0, (2.1)

where Yi = log Ti, Y = n�1Pn
i=1 Yi, and X = n�1Pn

i=1Xi. In the presence of censoring, some

values of Yi are not observed. Following the approach of Buckley and James (1979), we replace the

unobserved Yi by the conditional mean given the observed data. The conditional mean bYi(�, F ) is

given by

�iYi + (1��i)E
�

Yi
�

�

max{Uik : Uik < Ti} = Li,min{Uik : Uik � Ti} = Ri,Xi,�i = 0, Li, Ri

�

= �iYi + (1��i)

⇥ E [E {YiI (max{Uik : Uik < Ti} = Li,min{Uik : Uik � Ti} = Ri) |U1, . . . , UK ,Xi} |Xi]

E {Pr (max{Uik : Uik < Ti} = Li,min{Uik : Uik � Ti} = Ri|U1, . . . , UK ,Xi) |Xi}

= �iYi + (1��i)

⇥
E
h

PK
k=1E {YiI (Uik = Li, Ui,k+1 = Ri, Li < Ti  Ri) |U1, . . . , UK ,Xi,�i = 0} |Xi,�i = 0

i

E
n

PK
k=1 Pr (Uik = Li, Ui,k+1 = Ri, Li < Ti  Ri|U1, . . . , UK ,Xi,�i = 0) |Xi,�i = 0

o

= �iYi + (1��i)

⇥
E {YiI(Li < Ti  Ri)|Xi,�i = 0, Li, Ri}E

h

PK
k=1 I (Uik = Li, Ui,k+1 = Ri) |Xi,�i = 0, Li, Ri

i

Pr(Li < Ti  Ri|Xi,�i = 0, Li, Ri)E
h

PK
k=1 I (Uik = Li, Ui,k+1 = Ri) |Xi,�i = 0, Li, Ri

i

= �iY�,i + (1��i)

R R�,i

L�,i
udF (u)

F (R�,i)� F (L�,i)
+XT

i �,

where Y�,i = Yi � XT
i �, L�,i = logLi � XT

i �, R�,i = logRi � XT
i �, and F is the distribution

function of ✏. The third equality follows from the conditional independence of the failure time and

the examination times. Replacement of Yi in (2.1) by bYi(�, F ) yields

n
X

i=1

�

Xi �X
�

hn

bYi(�, F )� Y (�, F )

o

�
�

Xi �X
�T
�
i

= 0,
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where Y (�, F ) = n�1Pn
i=1

bYi(�, F ). Because F is unknown, we replace F by the self-consistency

estimator bF� (Turnbull, 1976; Huang, 1999) based on the transformed PIC data {�i,�iY�,i, (1�

�i)L�,i, (1��i)R�,i} (i = 1, . . . , n). The estimator bF� solves the self-consistency equation

bF�(t) = n�1
n
X

i=1

(

�iI(Y�,i  t) + (1��i)

bF�(R�,i ^ t)� bF�(L�,i ^ t)
bF�(R�,i)� bF�(L�,i)

)

, (2.2)

where a ^ b = min(a, b). If all of the failure times are observed, the right-hand side of equation

(2.2) is simply the empirical distribution function for Y�. When the failure times are subject to

censoring, the right-hand side is the conditional probability of Y�  t given the observed data under

the probability measure induced by bF�. The generalized Buckley-James estimator b� is the root of

Un(�,�) = 0, where

Un(�, b) = n�1
n
X

i=1

�

Xi �X
�

hn

bYi(b, bFb)� Y (b, bFb)

o

�
�

Xi �X
�T
�
i

.

The function Un(�,�) is not continuous in �, so it is difficult to directly solve the estimating

equation. We propose an iterative algorithm. With (�(0), F (0)
) as the starting value, the algorithm

proceeds as follows:

1. at step m, solve the self-consistency equation (2.2) with � = �(m�1) to obtain F (m)
=

bF�(m�1) ;

2. update � with the equation �(m)
= Ln(�

(m�1), F (m)
), where

Ln(�, F ) =

(

n
X

i=1

�

Xi �X
�⌦2

)�1 " n
X

i=1

�

Xi �X
�

n

bYi(�, F )� Y (�, F )

o

#

with a⌦2
= aaT; and

3. set m = m+ 1, and repeat steps (a) and (b) until convergence.

Denote the resulting estimator of (�, F ) as (

b�, bF ), where bF =

bFb�. In Section 2.6.1, we show

that (

b�, bF ) is consistent for the true value (�0, F0) and asymptotically normal under mild regularity

conditions. The covariance matrix for the limiting distribution is difficult to directly estimate

due to the lack of an analytical form. Therefore, we approximate the asymptotic distribution by

bootstrapping the observations {�i,�iTi, (1 � �i)Li, (1 � �i)Ri,Xi} (i = 1, . . . , n). Let b�
⇤

be
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the generalized Buckley-James estimator of a bootstrap sample. In Section 2.6.2, we show that

the conditional distribution of
p
n(b�

⇤ � b�) given the data converges weakly to the asymptotic

distribution of
p
n(b� � �0). The empirical distribution of b�

⇤
can then be used to approximate the

distribution of b�. Confidence intervals for individual components of �0 can be constructed by the

Wald method (with the variance of b�
⇤
) or from the empirical percentiles of b�

⇤
.

2.2.3 One-step Efficient Estimation

We wish to develop an estimator for � that attains the semiparametric efficiency bound for

PIC data. Let el�(O,�, F ) be the efficient score for � under the AFT model with the observed

data O ⌘ {�,�T, (1��)L, (1��)R,X}. We can construct a semiparametric efficient estimator

through the one-step Newton-Raphson update (Bickel et al., 1993, pp. 40-45) of the generalized

Buckley-James estimator (

b�, bF ),

e� =

b� +

n

Pn
el�(O;

b�, bF )

⌦2
o�1 n

Pn
el�(O;

b�, bF )

o

, (2.3)

where Pn is the empirical measure.

According to the semiparametric efficiency theory (Bickel et al., 1993, chap. 3), the efficient

score for � is the sum of the scores for � and F along the least favorable direction g that is

orthogonal to the tangent set for F . After the derivations given in Section 2.6.3, we find that the

least favorable direction g satisfies an integral equation. We replace the unknown quantities in the

integral equation by appropriate sample estimators. The resulting function bg satisfies the linear

equation A(

bg(t1)T, . . . , bg(tm)

T
)

T
= c, where A = (ajl) 2 Rm⇥m, c = (cT1 , . . . , c

T
m)

T,

ajl = I(l = j) bP
�

�

�

�Y�0
= tj

�

+

bF {tl}Pn

2

6

4

(1��)

I(Lb� < tj  Rb�, Lb� < tl  Rb�)
n

bF (Rb�)� bF (Lb�)
o2

3

7

5

,

cj = bP
�

�X
�

�Y�0
= tj

�

bf 0
(tj)
bf(tj)

+ Pn

2

6

4

(1��)

X
n

bf(Rb�)� bf(Lb�)
o

I(Lb� < tj  Rb�)
n

bF (Rb�)� bF (Lb�)
o2

3

7

5

,

Y� = Y � XT�, L� = logL � XT�, R� = logR � XT�, and bF {tl} is the jump size of bF at

tl. Let f0 and f 0
0 be the density function of ✏ and its derivative, respectively. The terms bf(t),

bf 0
(t), bP

�

�

�

�Y�0
= t
�

, and bP
�

�X
�

�Y�0
= t
�

are kernel estimators of f0, f 0
0, E(�|Y�0

= t), and
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E(�X|Y�0
= t), defined as

bf(t) =

1

an

Z 1

0
K

✓

s� t

an

◆

d bF (s),

bf 0
(t) =

1

b3n
R

u2K(u)du

Z 1

0
(s� t)K

✓

s� t

bn

◆

d bF (s),

bP
�

�

�

�Y�0
= t
�

=

1

nan bf(t)
Pn

n
X

i=1

�iK

 

Yb�,i � t

an

!

,

and

bP
�

�X
�

�Y�0
= t
�

=

1

nan bf(t)

n
X

i=1

�iXiK

 

Yb�,i � t

an

!

,

where K(·) is a smooth and symmetric kernel function, and an and bn are bandwidths. The conditions

for the choices of the kernel function and bandwidths can be found in Section 2.6.4.

The efficient score function can be estimated by

bl(b�, bF , bg) = �

2

6

4

�

(

X
bf 0
(Yb�)

bf(Yb�)
+

bg(Yb�)

)

+ (1��)

X
n

bf(Rb�)� bf(Lb�)
o

+

R Rb�
Lb�
bg(u)d bF (u)

bF (Rb�)� bF (Lb�)

3

7

5

.

We replace the efficient score function el�(O;

b�, bF ) in (2.3) by bl(b�, bF , bg) to obtain the one-step

estimator

e� =

b� +

n

Pn
bl(b�, bF , bg)⌦2

o�1 n

Pn
bl(b�, bF , bg)

o

.

In Section 2.6.4, we show that
p
n(e� � �0) converges in distribution to a mean-zero normal random

vector with a covariance matrix that attains the semiparametric efficiency bound. We estimate the

covariance matrix by bootstrapping the observations and applying the one-step procedure. The

validity of the bootstrap is proved in Section 2.6.4. We also show that if the error ✏ is normally

distributed, then the efficient score function is equivalent to the generalized Buckley-James estimating

function. Thus, the generalized Buckley-James estimator is semiparametric efficient when the error

is normally distributed.

2.3 Simulation Studies

We conducted extensive simulation studies to assess the performance of the proposed methods.

We generated failure times from the AFT model: log T = �X1 � X2 � ✏, where X1 and X2 are

independent Bernoulli(0.5) and standard normal variables, respectively, and ✏ is independent of
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(X1, X2). We considered four error distributions: standard normal distribution; standard extreme-

value distribution; extreme-value distribution with location and scale parameters of �0.5 and 1.5,

respectively; and logarithm of the gamma distribution with shape and scale parameters of 1 and 1,

respectively. We simulated the time to loss to follow-up C from Uniform[10, 15]. For each subject,

with probability p, we exactly observed the failure time T if T  C and obtained a right-censored

observation at C if T > C. With the remaining probability 1 � p, we generated a sequence of

examination times Uk = Uk�1+Uniform[0.1, 1] (k = 1, . . . ,K) such that UK < C. We created

the interval-censored observation (L,R) ⌘ (Uk, Uk+1) if Uk < T  Uk+1 for k = 0, . . . ,K. The

probability p depends on the covariates such that p = p0 � 0.1I(X1 = 1), where p0 was chosen to

yield approximately 25% and 50% exact observations.

We considered the iterative algorithm convergent if both the norm of the difference for � and the

integrated mean squared difference for F in two successive steps are less than 10

�4 or the difference

of the mean squared error n�1Pn
i=1{bY (�, bF�)�Y (�, bF�)�

�

Xi �X
�T
�}2 between two successive

steps is less than 10

�2. In all the scenarios we considered, the non-convergence rate was less than

1%. We estimated the standard error using the Wald method based on 200 bootstrap datasets.

Table 2.1 summarizes the results of the generalized Buckley-James estimation for sample sizes

n = 250 and 500. The bias of the parameter estimator is small and tends to decrease as n increases.

The standard error estimator accurately reflects the true variation, and the confidence intervals have

proper coverage probabilities.

With the generalized Buckley-James estimator as the initial estimator, we carried out the

one-step efficient estimation, and the results are shown in Table 2.2. We chose the Gaussian

kernel for convenience. The optimal bandwidths for estimating the density and its derivative are

an = (4/3)1/5�n�1/5 and bn = (4/5)1/7�n�1/7(Swanepoel, 1988), where � is the sample standard

deviation of {Yb�,i : �i = 1} (i = 1, . . . , n). We replaced � by the minimum of the sample standard

deviation and the interquartile range divided by 1.34, as suggested by Silverman (1986, p. 48).

The one-step estimator tends to be slightly positively biased, and the bias gets smaller as n

increases. In the case of the normal error distribution, the one-step estimator has slightly larger

standard error than the generalized Buckley-James estimator. This is not surprising because both

estimators are asymptotically efficient when the error distribution is normal and the one-step estimator

involves kernel approximation of the least favorable direction. For other error distributions, the
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Table 2.1: Simulation results for the generalized Buckley-James estimator

Error Exact n = 250 n = 500

Distribution Rate Bias SE SEE CP Bias SE SEE CP
N(0, 1) 25% �1 0.001 0.144 0.144 0.944 0.001 0.103 0.101 0.948

�2 �0.001 0.076 0.077 0.948 0.001 0.054 0.054 0.949
50% �1 0.000 0.136 0.135 0.948 0.001 0.094 0.095 0.946

�2 0.000 0.070 0.070 0.946 0.001 0.049 0.049 0.947
EV(0,1) 25% �1 �0.006 0.172 0.170 0.952 �0.003 0.120 0.119 0.950

�2 �0.008 0.092 0.094 0.946 �0.002 0.066 0.066 0.945
50% �1 �0.002 0.167 0.166 0.949 �0.001 0.118 0.118 0.953

�2 �0.002 0.088 0.087 0.945 0.000 0.064 0.062 0.949
EV(�0.5,1.5) 25% �1 �0.015 0.251 0.256 0.953 �0.005 0.180 0.178 0.949

�2 �0.013 0.139 0.140 0.947 �0.005 0.098 0.097 0.948
50% �1 0.003 0.250 0.249 0.950 0.000 0.176 0.176 0.948

�2 �0.003 0.130 0.130 0.945 �0.001 0.093 0.092 0.948
Gamma(1,1) 25% �1 �0.007 0.174 0.170 0.948 �0.002 0.119 0.120 0.953

�2 �0.007 0.095 0.094 0.949 �0.003 0.066 0.066 0.948
50% �1 �0.002 0.165 0.166 0.950 0.001 0.116 0.118 0.945

�2 0.000 0.086 0.087 0.943 �0.001 0.062 0.062 0.945
Bias and SE are the bias and standard error, respectively, of the parameter estimator; SEE is the mean of the

standard error estimator; and CP is the coverage probability of the 95% confidence interval. EV(a,b) denotes

the extreme-value distribution with location parameter a and scale parameter b. Gamma(a,b) denotes the

logarithm of the gamma distribution with shape parameter a and scale parameter b. Each entry is based on

10,000 replicates.
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one-step estimator achieves up to 16% efficiency gain over the generalized Buckley-James estimator

in terms of variance. The efficiency gain in terms of mean squared error of the estimators is similar.

The standard error estimator becomes more accurate as n increases. The confidence intervals have

satisfactory coverage probabilities.

PIC data often arise as an approximation to interval-censored data, where the observations with

short intervals are treated as exactly observed failure times. We examined the performance of the

proposed estimators in this practical setting. We simulated the failure time T and time to loss to

follow-up C in the same manner as before. For each subject, we generated a sequence of examination

times Uk = Uk�1+Uniform[a, b] (k = 1, . . . ,K) such that UK < C. We set (a, b) = (0, 0.1) with

probability p and (a, b) = (0.1, 1) with probability 1�p. We created the interval-censored observation

(L,R) ⌘ (Uk, Uk+1) if Uk < T  Uk+1 for k = 0, . . . ,K. If the interval length R� L is smaller than

0.1, we treated the observation as exactly observed failure time at the geometric mid-point
p
LR. In

this case, � = I(R � L < 0.1), and the exact observations are approximations to the true failure

times.

We display the results for the proposed estimators with 50% exact observations in Table 2.3.

The generalized Buckley-James estimator and one-step estimator have reasonably small bias. The

standard error estimators accurately reflect the true variation, and the confidence intervals have

satisfactory coverage probabilities. The one-step estimator achieves up to 13% efficiency gain for

some of the considered error distributions.
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Table 2.2: Simulation results for the one-step estimator

Error Exact n = 250 n = 500

Distribution Rate Bias SE SEE CP RE Bias SE SEE CP RE
N(0, 1) 25% �1 0.012 0.146 0.146 0.947 0.978 0.008 0.104 0.102 0.948 0.954

�2 0.009 0.076 0.077 0.943 0.991 0.008 0.054 0.054 0.945 1.005
50% �1 0.009 0.138 0.137 0.944 0.962 0.007 0.095 0.096 0.946 1.000

�2 0.006 0.072 0.071 0.942 0.961 0.005 0.049 0.049 0.941 1.000
EV(0,1) 25% �1 0.001 0.169 0.169 0.953 1.031 0.001 0.118 0.118 0.951 1.026

�2 0.000 0.089 0.092 0.947 1.089 0.002 0.064 0.064 0.945 1.050
50% �1 0.005 0.155 0.162 0.951 1.155 0.005 0.111 0.115 0.958 1.121

�2 0.003 0.084 0.085 0.949 1.090 0.004 0.060 0.061 0.954 1.068
EV(�0.5,1.5) 25% �1 �0.002 0.247 0.255 0.953 1.036 0.005 0.178 0.176 0.953 1.001

�2 �0.001 0.136 0.137 0.948 1.045 0.003 0.095 0.095 0.947 1.037
50% �1 0.016 0.232 0.239 0.951 1.166 0.011 0.168 0.169 0.950 1.105

�2 0.007 0.123 0.125 0.944 1.129 0.007 0.088 0.089 0.949 1.094
Gamma(1,1) 25% �1 0.000 0.169 0.169 0.951 1.053 0.001 0.118 0.118 0.951 1.022

�2 0.000 0.092 0.092 0.952 1.061 0.000 0.063 0.064 0.947 1.079
50% �1 0.005 0.158 0.161 0.956 1.087 0.006 0.112 0.116 0.953 1.110

�2 0.004 0.082 0.085 0.949 1.097 0.003 0.059 0.061 0.950 1.110
See the Note to Table 2.1. RE is the relative efficiency, defined as the ratio of the variance of the generalized Buckley-James

estimator to that of the one-step estimator.
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Table 2.3: Simulation results for the PIC approximation

Error Generalized Buckley-James One-Step
Distribution Bias SE SEE CP Bias SE SEE CP RE

N(0, 1) n = 250 �1 �0.007 0.135 0.138 0.947 0.006 0.137 0.139 0.947 0.960
�2 �0.008 0.072 0.072 0.947 0.003 0.072 0.072 0.946 1.002

n = 500 �1 �0.007 0.098 0.097 0.952 0.004 0.099 0.098 0.952 0.978
�2 �0.007 0.051 0.051 0.946 0.001 0.051 0.051 0.949 0.994

EV(0,1) n = 250 �1 �0.006 0.163 0.161 0.949 0.008 0.154 0.155 0.953 1.126
�2 �0.005 0.085 0.084 0.949 0.006 0.081 0.081 0.949 1.118

n = 500 �1 �0.007 0.116 0.115 0.949 0.003 0.112 0.111 0.952 1.073
�2 �0.007 0.061 0.060 0.949 0.001 0.058 0.058 0.952 1.118

EV(�0.5,1.5) n = 250 �1 �0.006 0.233 0.231 0.949 0.014 0.223 0.224 0.949 1.089
�2 �0.005 0.122 0.121 0.950 0.014 0.117 0.117 0.948 1.086

n = 500 �1 0.005 0.164 0.166 0.948 0.018 0.158 0.161 0.948 1.078
�2 �0.004 0.085 0.087 0.944 0.009 0.083 0.084 0.948 1.071

Gamma(1,1) n = 250 �1 �0.004 0.163 0.161 0.947 0.005 0.153 0.155 0.948 1.136
�2 �0.006 0.084 0.085 0.944 0.006 0.079 0.081 0.948 1.122

n = 500 �1 �0.005 0.115 0.115 0.949 0.004 0.109 0.112 0.950 1.108
�2 �0.007 0.060 0.060 0.946 0.001 0.057 0.058 0.951 1.096

See the Note to Table 2.2.
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Table 2.4: Simulation results for the original Buckley-James estimator

Error Right End Mid-point
Distribution Bias SE Bias SE

N(0, 1) n = 250 �1 0.291 0.115 0.131 0.124
�2 0.243 0.062 0.119 0.065

n = 500 �1 0.291 0.084 0.133 0.088
�2 0.243 0.044 0.119 0.046

EV(0,1) n = 250 �1 0.388 0.125 0.233 0.139
�2 0.319 0.069 0.195 0.074

n = 500 �1 0.390 0.090 0.233 0.099
�2 0.318 0.049 0.196 0.053

EV(�0.5,1.5) n = 250 �1 0.536 0.154 0.396 0.177
�2 0.432 0.084 0.322 0.093

n = 500 �1 0.537 0.111 0.401 0.124
�2 0.432 0.059 0.321 0.064

Gamma(1,1) n = 250 �1 0.390 0.127 0.233 0.141
�2 0.319 0.069 0.196 0.074

n = 500 �1 0.389 0.088 0.232 0.097
�2 0.319 0.048 0.196 0.052

See the Note to Table 2.1.

A naive approach to analyzing interval-censored data is to approximate all interval-censored

observations by single values and then apply the methodology for potentially right-censored data.

We examined this approach in the second simulation setting by treating each interval-censored

observation as exact failure time at the right end or the mid-point of the interval and applying the

original Buckley-James estimator. As shown in Table 2.4, both approximations yield estimators

with smaller standard error than the generalized Buckley-James and one-step estimators but induce

severe bias in the parameter estimation.

2.4 An AIDS Example

We considered an AIDS Clinical Trial Group (ACTG) study (Goggins and Finkelstein, 2000). In

this clinical trial, blood and urine samples were collected at clinical visits to test for the presence

of opportunistic infection cytomegalovirus (CMV), which is also known as shedding of the virus.

The blood and urine samples were originally scheduled to be collected about every 12 and 4 weeks,

respectively. The CMV shedding times in both blood and urine are interval-censored in that the

events are only known to occur between the last negative and first positive tests.

The data set consists of 204 HIV-infected patients with at least one blood and urine samples
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taken during the study. For CMV shedding time in blood, 7 patients have left-censored observations,

174 patients have right-censored observations, and 23 patients have interval-censored observations.

For CMV shedding time in urine, the corresponding numbers are 49, 88 and 67. The data set also

includes the patient’s baseline CD4 cell count as an indicator of less than versus greater than 75

(cells/µl). It is of interest to determine whether the baseline CD4 cell count is predictive of CMV

shedding time.

This data set was previously analyzed by Goggins and Finkelstein (2000) using the proportional

hazards model for bivariate interval-censored data. To illustrate the proposed methods, we generated

a PIC version of the data. Specifically, we defined the failure time as the minimum of the shedding

times in blood and in urine. If the shedding times in blood and in urine are (Lb, Rb] and (Lu, Ru],

then the failure time is known to lie within (Lb ^ Lu, Rb ^Ru]. The numbers of left-, interval-, and

right-censored observations are 51, 65, and 88, respectively. The interval lengths for the interval-

censored observations range from 1 month to 9 months. We treated interval-censored observations

with interval lengths less than 2 months as exact observations at the geometric mid-point of the

interval to obtain 46 exact observations.

We fit the AFT model to the generated PIC data. We estimated the standard error of the

generalized Buckley-James estimator using the Wald method based on 1,000 bootstrap datasets.

We used the optimal bandwidths described in the previous section for the one-step estimation. For

comparisons, we also fit the proportion hazards model using the NPMLE method described in Kim

(2003). The results are summarized in Table 2.5.

The estimates of the regression parameter in the AFT model are negative and thus indicate that

patients with higher CD4 cell counts tend to have longer time to CMV shedding. The one-step

estimator yields a larger estimate of the effect size than the generalized Buckley-James estimator,

with a slightly larger standard error estimate, resulting in a slightly smaller p-value. Not surprisingly,

the estimate of the regression parameter under the proportional hazards model has an opposite sign.

2.5 Discussion

It is much more challenging, both computationally and theoretically, to deal with PIC data

under the AFT model than under the proportional hazards model. We developed a generalization

of the Buckley-James estimator and a one-step efficient estimator, both of which perform well in

realistic settings. We tackled the theoretical challenges through careful use of modern empirical
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Table 2.5: Regression analysis for the ACTG study

Model Est Std error Z-statistic p-value 95% CI
Proportional hazards model 0.814 0.205 3.974 <0.0001 ( 0.412, 1.215 )
AFT model

Generalized Buckley-James �1.212 0.335 �3.616 <0.0001 ( �1.835, �0.560 )
One-step �1.256 0.343 �3.664 <0.0001 ( �1.802, �0.563 )
95% CI is the 95% confidence interval based on the Wald method (for proportional hazards model) or the empirical

percentiles of the bootstrap samples (for AFT model).

process theory and semiparametric efficiency theory.

A non-negligible proportion of exact observations is a crucial assumption for the proposed

methods. It plays an important role in establishing the asymptotic properties. With this assumption,

there are some subjects with exactly observed failure times, so the estimator for the survival function

of ✏ can be estimated accurately at those points. This leads to the
p
n convergence rate, a faster

rate than with only interval-censored observations. Computationally, we let the survival function

be a step function with jumps at the exact failure times. Without exact observations, a natural

estimator for the survival function would be a step function with potential jumps at all interval

endpoints, such that the likelihood becomes non-concave and the estimation becomes unstable.

In practice, certain bootstrap samples may contain too few or no exact observations. We suggest

to delete those samples provided that they account for a small proportion of all bootstrap samples.

An alternative strategy is to perform parametric bootstrap, which requires modeling of the censoring

distribution (Efron and Tibshirani, 1993, pp. 90-92).

We used kernel estimation for density and its derivative in constructing the one-step estimator.

The estimation for this one-dimensional distribution is relatively stable and accurate. If the density

or its derivative is estimated with bias, the resulting function will depart from the efficient score

function. However, the function is still a valid score function, such that the one-step estimator

remains consistent.

For the accelerated failure time model with right-censored data, the rank-based estimator (Gehan,

1965), which solves the gradient of a weighted probability for the observed rank, can be easily

calculated via the linear programming technique. Lin and Chen (2013) proposed a one-step efficient

estimation procedure using the rank-based estimator as the initial estimator. For PIC data, due
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to the existence of interval-censored observations, we cannot recover the rank structure to obtain

rank-based estimating equations.

In most medical studies, the events of interest are asymptomatic such that the failure times are

intrinsically interval-censored. A common practice is to apply the methodology for right-censored

data by treating the time of the first detection or the mid-point of the interval as the exact failure

time. However, this strategy can induce severe bias in the estimation, as shown in our simulation

studies. The PIC methodology as presented in this chapter provides a better approximation to

interval-censored data by treating only the small intervals as exact observations.

2.6 Technical Details

2.6.1 Asymptotic Properties of the Buckley-James Estimator

To study the asymptotic properties of (b�, bF ), we impose the following regularity conditions:

Condition 1. The true value of regression parameters �0 belongs to a known compact set B in

Rd. The covariates belong to a bounded set X in Rd.

Condition 2. The true distribution function F0 is positive, continuous, and strictly increasing

with a positive and twice-continuously differentiable density f0.

Condition 3. The distribution of � depends only on the observed data {�T, (1 � �)L, (1 �

�)R,X}. There exists a constant c0 > 0 such that Pr(� = 1|X) > c0 with probability 1.

Condition 4. Conditional on � = 0, the joint density of the examination times (U1, . . . , UK) is

continuous and differentiable in their support with respect to some dominating measure. There

exists a constant ✏0 > 0 such that Pr {min0kK�1 (Uk+1 � Uk) > ✏0|X,K,� = 0} = 1.

Remark 2.1. Condition 1 states the compactness of the Euclidean parameter space and the bound-

edness of covariates, which are standard assumptions in regression analysis. Conditions 2 and 4 are

the smoothness conditions imposed on the underlying density functions. In practice, the examination

may be scheduled at a fixed time, but patients may come randomly such that the joint density for

the examination times is smooth. Condition 3 assumes coarsening at random, allowing � to depend

on T and (L,R), which is similar to the missing at random assumption. If � = ⇠I(T  ⌧), where

0 < ⌧ < 1 is the study duration, and ⇠ is a Bernoulli random variable with success probability p,

then T is exactly observed with probability pPr(T  ⌧). If � = I(R�L  ⌘0), where ⌘0 is some small

positive number, then T is exactly observed with probability Pr(R�L  ⌘0). Condition 3 also ensures
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that the proportion of exact observations is non-negligible, which is crucial to the
p
n-convergence

rate for bF and invertibility of the information matrix.

The consistency and asymptotic normality of the generalized Buckley-James estimator are stated

below.

Theorem 2.1. Suppose that Conditions 1-4 hold. Then, there is a root to the generalized Buckley-

James estimating equation Un(�,�) = 0 such that (b�, bF ) is strongly consistent for (�0, F0), and
p
n(b� � �0, bF � F0) converges weakly to a zero-mean Gaussian process in the metric space Rd ⇥

lin(BV1(R)), where BV1(R) denotes the set of functions with total variation bounded by 1 on R,

lin(BV1(R)) denotes the closed linear span for linear functionals of BV1(R), and (

bF � F0)(h) =
R

h(t)d( bF � F0)(t) for h 2 BV1(R).

Proof. Let P denote the true probability measure. The generalized Buckley-James estimator (

b�, bF )

is a Z-estimator solving the estimating equation Pn

0
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�(1)
(�, F )
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F (R� ^ t)� F (L� ^ t)

F (R�)� F (L�)
� F (t).

We first replace the function �(2)
(�, F )(t) by a function of the bounded variation function h 2 BV1(R).

Specifically, we define

�

(2)
(�, F )(h) = �h(Y�) + (1��)

R R�

L�
h(t)dF (t)

F (R�)� F (L�)
�
Z

h(t)dF (t).

Write eh(t) =

Pm0

j=1 h(t
⇤
j )I(t

⇤
j�1 < t  t⇤j ), where t⇤j 2 {Y�,i : �i = 1} (i = 1, . . . , n). The step

function eh can be written as a finite sum of simple functions, denoted as eh(t) =
Pm0

j=1 ↵jI(t  t⇤j ).

Then,

Pn�
(2)

(

b�, bF )(h) = Pn�
(2)

(

b�, bF )(

eh) =
m0
X

j=1

↵jPn�
(2)

(

b�, bF )(t⇤j ) = 0.
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Thus, (b�, bF ) is the root of Pn�(�, F )(h) ⌘ Pn

0

B

@

�(1)
(�, F )

�

(2)
(�, F )(h)

1

C

A

= 0 for all h 2 BV1(R).

To prove the local consistency of (b�, bF ), we appeal to the implicit function theorem (Schwartz,

1969, p. 15). The distribution function F is contained in the Banach space lin(BV1(R)), where F (h) =
R

h(t)dF (t) for h 2 BV1(R). The corresponding norm is defined as kFk⇢ = supkhkBV 1 |
R

h(t)dF (t)|,

where k · kBV is the bounded variation norm. The function Pn�(�, F ) is then a map from Rd ⇥

lin(BV1(R)) to Rd⇥ lin(BV1(R)). For any (�, F ) in B�(�0, F0) ⌘ {(�, F ) : |���0|+kF �F0k⇢ < �}

and (�⇤, F ⇤
) in Rd ⇥ lin(BV1(R)), the path-wise derivative of Pn�(�, F )(h) along the direction

(� + ⌘�⇤, F + ⌘F ⇤
) is
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By Lemma 2.1, C�,F,n(�
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By Lemma 2.2, C�,F is invertible at (�0, F0) and continuous in B�(�0, F0). Thus, the derivative

operator C�,F,n is invertible at (�0, F0) and continuous in B�(�0, F0). The implicit function theorem

yields that Pn�(�, F ) is one-to-one in B�(�0, F0). Simple algebraic manipulation yields

P

0

B

@
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1

C

A

= 0.

Thus, Pn�(�0, F0) = op(1). For an arbitrary small � > 0, there exists a large enough n such that

there exists (

b�, bF ) with (kb� � �0k+ k bF � F0k⇢) < � and Pn�(

b�, bF ) = 0.

Next, we prove the asymptotic normality of (

b�, bF ). Write  (�, F )(a, h) = aT�(1)
(�, F ) +

�

(2)
(�, F )(h) for a 2 Rd and h 2 BV1(R). By the Taylor series expansion,
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By Lemma 2.2, the operator H�0,F0 is continuously invertible from BV1(R) to BV1(R). For any

µ 2 Rd, the Taylor series expansion in (2.6) with a = µ and h = �H�1
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The matrix D is invertible by Lemma 2.2. It then follows from the arbitrariness of µ that
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Then, for any (µ, ⌫) 2 Rd ⇥BV1(R),
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By Lemma 2.1,
p
n(b���0, bF �F0) converges weakly to a zero-mean Gaussian process in the metric

space Rd ⇥ lin(BV1(R)).

2.6.2 Asymptotic Properties of the Bootstrap Variance Estimator

The following theorem states the asymptotic properties of the bootstrap estimator, thereby

validating the bootstrap procedure.

Theorem 2.2. Suppose that Conditions 1-4 hold. Then, the conditional distribution of
p
n(b�

⇤ � b�)

given the data converges weakly to the asymptotic distribution of
p
n(b� � �0).

Proof. Let bF ⇤ be the bootstrap estimator for the distribution function of the error term. The

estimator (

b�
⇤
, bF ⇤

) solves the bootstrap version of the estimating equation bPn�(

b�
⇤
, bF ⇤

)(h) = 0,

where bPn denote the bootstrap empirical distribution. The consistency and convergence rate of b�
⇤
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and bF ⇤ follow from the arguments in Section 2.6.1. By the Taylor series expansion,
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By Theorem 3.6.1 of van der Vaart and Wellner (1996), the conditional distribution of (
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It then follows from the arbitrariness of µ that
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Therefore,
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⇤ � b�) converges weakly to a zero-mean Gaussian variable, and
p
n(b�

⇤ � b�) and
p
n(b� � �0) have the same asymptotic distribution.

2.6.3 Derivation of the Efficient Score

Let P�,F be the likelihood under the AFT model with PIC data. Let F⌘(h)(·) =
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The efficient score el�(O;�0, F0) is defined as the linear combination of the scores that is orthogonal

to the tangent set for F (Bickel et al., 1993, chap. 3). Thus,
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for any t. Note that if h⇤ is a solution to (2.8), then h⇤
+ c is also a solution for arbitrary d-vector

of constant functions c. We denote g(·) = h⇤
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h⇤dF0, which is the unique solution of (2.8)

with
R

g(t)dF0(t) = 0. Then, the function g satisfies

E
�

�|Y�0
= t
�

g(t)� E
�

�X|Y�0
= t
� f 0

0(t)

f0(t)
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+ E

0

@

(1��)I(L�0
< t  R�0

)

2

4

R R�0
L�0

g(u)dF0(u)�X
�

f0(R�0
)� f0(L�0

)

 

�

F0(R�0
)� F0(L�0

)

 2

3

5

1

A

= 0. (2.9)

If the error ✏ is normally distributed, then g(t) = tE(X), such that the efficient score function is

equivalent to the generalized Buckley-James estimating function. Thus, the generalized Buckley-

James estimator is semiparametric efficient when the error is normally distributed.

To implement el�(O;�0, F0), we need an appropriate estimator for g. Because bF only takes

jumps at tl (l = 1, . . . ,m), we approximate g by the step function bg with jumps at {t1, . . . , tm}.

Solving equation (2.9) at t = tj and replacing f0, f 0
0, E

�

�|Y�0
= t
�

and E
�

�X|Y�0
= t
�

by the

kernel estimators, we obtain
m
X

l=1

ajlbg(tl) = cj

for j = 1, . . . ,m. Replacing h⇤ by bg in the efficient score, we obtain the terms bl(b�, bF , bg) in the

Newton-Raphson update.

Remark 2.2. The derivation of the efficient score is based on the projection on the tangent space of

the nuisance parameter, which is similar to Example 25.28 in van der Vaart (1998). This derivation

is different from the work of Ritov and Wellner (1988) for the AFT model with right-censored data.

The latter is based on the martingale structure in right-censored data such that the right-censored

counterpart of the left hand side of (2.8) is computed as the expectation of the predictable covariation

process. If only right-censored data are observed, the least favorable direction has the closed form

g(t) = E(X|C �XT�0 � t)

⇢

f 0
0(t)

f0(t)
+

f0(t)

1� F0(t)

�

�
Z t

E(X|C �XT�0 � s)



f 0
0(s)

1� F0(s)
+

f2
0 (s)

{1� F0(s)}2
�

�0(s)ds,

where C denote the censoring time.

2.6.4 Asymptotic Properties of the One-step Estimator

To describe the asymptotic properties of the one-step estimator e�, we impose some conditions

on the kernel function and bandwidths:

Condition 5. The kernel function K is twice-continuously differentiable, and K(r)
(r = 1, 2) has

bounded total variation in (�1,1). The bandwidths an = n�⌫1 with ⌫1 2 (0, 1/3) and bn = n�⌫2
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with ⌫2 2 (0, 1/6).

Remark 2.3. Condition 5 ensures that the kernel smoothed estimators for the efficient score

functions are consistent approximations. This condition is satisfied by many kernel functions,

including Gaussian kernels and smooth kernels with bounded support.

The consistency and asymptotic efficiency for the one-step estimator are stated below.

Theorem 2.3. Suppose that Conditions 1-5 hold. Then,
p
n(e� � �0) converges in distribution to a

mean-zero normal random vector with a covariance matrix that attains the semiparametric efficiency

bound and can be consistently estimated by
n

Pn
bl(b�, bF , bg)⌦2

o�1
.

Proof. We first prove that the estimator bg(·) is consistent for g(·), which satisfies the equation

M {g(t)} = 0 for all t, where

M {g(t)} =E
�

�|Y�0
= t
�

g(t)� E
�

�X|Y�0
= t
� f 0

0(t)

f0(t)

+ E

0

@

(1��)I(L�0
< t  R�0

)

2

4

R R�0
L�0

g(u)dF0(u)�X
�

f0(R�0
)� f0(L�0

)

 

�

F0(R�0
)� F0(L�0

)

 2

3

5

1

A .

The estimator bg(t) is a d-vector of step functions such that Mn {bg(t)} = 0 at t1, . . . , tm, where

Mn {bg(tl)} =

bP
⇣

�|Yb� = tl
⌘

bg(tl)� bP
⇣

�X|Yb� = tl
⌘

bf 0
(tl)
bf(tl)

+ Pn

0

B

@

(1��)I(Lb� < tl  Rb�)

2

6

4

R R�

L�
bg(u)d bF (u)�X

n

bf(Rb�)� bf(Lb�)
o

n

bF (Rb�)� bF (Lb�)
o2

3

7

5

1

C

A

.

Define

ef(t) =

1

an

Z 1

0
K

✓

s� t

an

◆

dF0(s),

ef 0
(t) =

1

b3n
R

u2K(u)du

Z 1

0
(s� t)K

✓

s� t

bn

◆

dF0(s),

eP
�

�

�

�Y�0
= t
�

=

1

nanf0(t)

n
X

i=1

�iK

✓

Y�0,i � t

an

◆

,

and

eP
�

�X
�

�Y�0
= t
�

=

1

nanf0(t)

n
X

i=1

�iXiK

✓

Y�0,i � t

an

◆

.
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Under Condition 5, eP (�|Y�0
= t), eP (�X|Y�0

= t), ef 0
(t), and ef(t) are consistent for Pr(�|Y�0

= t),

Pr(�X|Y�0
= t), f 0

0(t), and f0(t), respectively, by Theorem 2.5 of Schuster (1969). It then follows

from the consistency of (b�, bF ) that the kernel estimators bP (�|Y�0
= t), bP (�X|Y�0

= t), bf 0
(t), and

bf(t) are strongly consistent. Then, for any d-vector of functions g(·) with bounded variation on R,

sup

t

�

�Mn {g(t)}�M {g(t)}
�

�!p 0.

By Theorem 2.5 of Schuster (1969), the derivative of bf 0
(t)/ bf(t) converges to the derivative of

f 0
0(t)/f0(t). The last term of Mn(·) is the empirical measure of the product of a step function and a

bounded function, so it has bounded total variation. Thus, the function bg(·) is a bounded variation

function. By the Taylor series expansion,

0 =

Z

Mn {bg(t)}T (

bg � g) (t)d bF (t)

=

Z

Mn {bg(t)}T (

bg � g) (t)dF0(t) + op(1)

=

Z

([Mn {bg(t)}�M {bg(t)}] + [M {bg(t)}�M {g(t)}])T (

bg � g) (t)dF0(t) + op(1)

=

Z

[M {bg(t)}�M {g(t)}]T (

bg � g) (t)dF0(t) + op(1)

= �E

8

>

<

>

:

�

�

�

bg(Y�0
)� g(Y�0

)

�

�

2
+ (1��)

�

�

�

�

�

�

R R�0
L�0

(

bg � g) (u)dF0(u)

F0(R�0
)� F0(L�0

)

�

�

�

�

�

�

2
9

>

=

>

;

+ op(1).

Therefore, the difference (

bg � g) converges to zero in probability in the normed space L2(P ). This

implies the consistency of bg.

By Lemma 2.1, the class {el�(�, F ) ⌘ el�(O;�, F ) : (�, F ) 2 B�(�0, F0)} is Donsker for some fixed

� > 0. It then follows from the consistency of b�, bF , and bg that Pn
bl(b�, bF , bg) = Pel�(�0, F0) + op(1)

and Pn
bl(b�, bF , bg)⌦2

= Pel�(�0, F0)
⌦2

+ op(1). The consistency of the one-step estimator ˜� thus

follows.

To derive the asymptotic distribution of e�, we first consider the limit of
n

Pn
bl(b�, bF , bg)⌦2

o�1
.

Suppose that Pel�(�0, F0)
⌦2 is singular. Then, el�(�0, F0) = 0 almost surely. We choose � = 1

and Y� = t such that g(t) + Xf 0
0(t)/f0(t) = 0. No deterministic g can be found for arbitrary

X to satisfy this equation. Thus, the information matrix Pel�(�0, F0)
⌦2 is nonsingular, and
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n

Pn
bl(b�, bF , bg)⌦2

o�1
!p {Pel�(�0, F0)

⌦2}�1. By the Taylor series expansion,

p
n
⇣

e� � �0

⌘

=

p
n
⇣

b� � �0

⌘

+

p
n

⇢

Pn
bl
⇣

b�, bF , bg
⌘⌦2

��1

⇥


Pn
bl
⇣

�0, bF , bg
⌘

�
⇢

Pn
bl
⇣

�0, bF , bg
⌘⌦2

�

⇣

b� � �0

⌘

+ op
⇣

�

�

�

b� � �0

�

�

�

⌘

�

=



1�
n

Pn
bl(b�, bF , bg)⌦2

o�1 n

Pn
bl(�0, bF , bg)⌦2

o

�p
n(b� � �0) + op(1)

+

p
n
n

Pn
bl(b�, bF , bg)⌦2

o�1
"

Pn
bl(�0, bF , bg) +

@Pn
bl(�0, bF , g)

@g
(

bg � g)
n

1 +Op

⇣

kbg � gkL2(P )

⌘o

#

Note that

@Pn
bl(�0, bF , g)

@g
(

bg � g) = � (Pn � P )�

(2)
(�0, F0)(bg � g)

�Pn

0

@

(1��)

2

4

R R�0
L�0

(

bg � g)(u)d
⇣

bF � F0

⌘

(u)

bF (R�0
)� bF (L�0

)

�

n⇣

bF � F0

⌘

(R�0
)�

⇣

bF � F0

⌘

(L�0
)

o

R R�0
L�0

(

bg � g)(u)dF0(u)
�

F0(R�0
)� F0(L�0

)

 

n

bF (R�0
)� bF (L�0

)

o

3

5

1

A .

Because (

bg�g) has bounded total variation, �(2)
(�0, F0)(bg�g) belongs to a Donsker class according

to Lemma 2.1. It then follows from the consistency of bg that the first term on the right side of

the above equation is op(n�1/2
). The second term is op(n�1/2

) by the
p
n-consistency of bF and the

consistency of bg. Thus,
@Pn

bl(�0, bF , g)

@g
(

bg � g) = op(n
�1/2

).

Therefore,

p
n(e� � �0) =

p
n
n

Pn
bl(b�, bF , bg)⌦2

o�1
Pn
bl(�0, bF , g) + op(1)

=

n

Pel�(�0, F0)
⌦2
o�1

Gn
el�(�0, F0) + op(1).

Hence, e� is asymptotically efficient for �0.

Theorem 2.4. Suppose that Conditions 1-5 hold. Let e�
⇤

be the one-step estimator of a bootstrap
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sample. Then, the conditional distribution of
p
n(e�

⇤ � e�) given the data converges weakly to the

asymptotic distribution of
p
n(e� � �0).

Proof. Let bg⇤ be the bootstrap version of bg. By the arguments in the proof of Theorem 2.3, bg⇤ � bg

converges to zero in probability in the normed space L2(P ), and bPn
bl(b�

⇤
, bF ⇤, bg⇤

) = Pel�(�0, F0)
⌦2

+

oP (1). It follows from the Taylor series expansion that

p
n
⇣

e�
⇤ � e�

⌘

=

p
n
⇣

e�
⇤ � b�⇤⌘

+

p
n
⇣

b�
⇤ � b�

⌘

+

p
n
⇣

b� � e�
⌘

=

p
n

⇢

bPn
bl
⇣

b�
⇤
, bF ⇤, bg⇤

⌘⌦2
��1 

bPn
bl
⇣

b�, bF ⇤, bg⇤
⌘

�
⇢

bPn
bl
⇣

b�, bF ⇤, bg⇤
⌘⌦2

�

⇣

b�
⇤ � b�

⌘

+op
⇣

�

�

�

b�
⇤ � b�

�

�

�

⌘i

+

p
n(b�

⇤ � b�)�
p
n
n

Pn
bl(b�, bF , bg)⌦2

o�1
Pn
bl(b�, bF , bg)

=



1�
n

bPn
bl(b�

⇤
, bF ⇤, bg⇤

)

⌦2
o�1 n

bPn
bl(b�, bF ⇤, bg⇤

)

⌦2
o

�p
n(b�

⇤ � b�) + op(1)

+

p
n
n

bPn
bl(b�

⇤
, bF ⇤, bg⇤

)

⌦2
o�1

bPn
bl(b�, bF ⇤, bg⇤

)�
p
n
n

Pn
bl(b�, bF , bg)⌦2

o�1
Pn
bl(b�, bF , bg)

=

n

Pel�(�0, F0)
⌦2
o�1p

n
⇣

bPn � Pn

⌘

bl(b�, bF , bg) + oP (1).

By Theorem 3.6.1 of van der Vaart and Wellner (1996), the conditional distribution of
p
n(bPn �

Pn)
bl(b�, bF , bg) given the data is asymptotically equivalent to the distribution of

p
n(Pn�P )

bl(b�, bF , bg).

Therefore,
p
n(e�

⇤ � e�) converges weakly to a zero-mean Gaussian variable, and
p
n(e�

⇤ � e�) and
p
n(e� � �0) have the same asymptotic distribution.

Remark 2.4. The asymptotic theory presented in Theorems 2.1-2.4 was established under the

condition that the true failure times are observed for a subset of study subjects. However, the

conclusions of Theorems 2.1-2.3 are expected to hold when the “exact” observations are not the

true failure times but rather the mid-points of small time intervals, provided that the lengths of the

intervals are of the order o(1/n). The corresponding proofs are substantially more difficult.

2.6.5 Some Useful Lemmas

Lemma 2.1. The class of functions {�(�, F )(h) : (�, F ) 2 B�(�0, F0), h 2 BV1(R)} is Donsker for

some fixed � > 0.

Proof. By Theorem 9.3 and Lemma 9.11 of Kosorok (2007) and Lemma 2.6.13 of van der Vaart and

Wellner (1996), the components of �(�, F )(h) are Donsker. It suffices to show that the denominator
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F (R�)� F (L�) is bounded above zero. Note that

F (R�)� F (L�) = F0(R�)� F0(L�) +

Z

I(L� < t  R�)d(F � F0)(t)

� F0(R�)� F0(L�)� 2�.

If L = U0 = 0 and R = U1, which is strictly greater than ✏0 by Condition 4, then

F0(R�)� F0(L�) = F0(R�) � F0(R�)� F0(R� � c1) = c1f0(t
⇤
1)

for a finite t⇤1 and a finite positive constant c1. Otherwise, L = Uk and R = Uk+1 for some

k 2 {1, . . . ,K}. Then,

F0(R�)� F0(L�) = f0(t
⇤
k)

⇢

log

✓

Uk + ✏0
Uk

◆�

� c2f0(t
⇤
k)

for a finite t⇤k and a finite positive constant c2. By Condition 2, for any positive constant M < 1,

there exists some ✏M > 0 such that f0(t) � ✏M for any t 2 [�M,M ]. Thus, there exists ✏⇤ > 0 such

that

F (R�)� F (L�) � ✏⇤ � 2�.

Therefore, F (R�)� F (L�) is strictly positive for 0 < � < ✏⇤/2.

Lemma 2.2. The operator C�,F (�
⇤, F ⇤

)(h), as defined in (2.4), is continuous in the neighborhood

of (�0, F0) and invertible at (�0, F0) from Rd ⇥ lin(BV1(R)) to Rd ⇥ lin(BV1(R)). The operator

H�0,F0(h), as defined in (2.5), is continuously invertible from BV1(R) to BV1(R). The matrix D,

as defined in (2.7), is invertible.

Proof. First, we consider the invertibility of the operator H�0,F0(h). Denote

J(t) = E

(

(1��)I
�

L�0
< t  R�0

�

F0(R�0
)� F0(L�0

)

)

� 1
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and

G {h(t)} = H�0,F0 {h(t)}� J(t) = �E

2

4

(1��)I
�

L�0
< t  R�0

� R R�0
L�0

h(u)dF0(u)
�

F0(R�0
)� F0(L�0

)

 2

3

5 .

The function J(t) is strictly negative because

J(t) = E

"

E{(1��)I(L�0
< ✏  R�0

)|L�0
, R�0

}
I
�

L�0
< t  R�0

�

F0(R�0
)� F0(L�0

)

#

� 1

= E
⇥

E
�

(1��)|L�0
, R�0

 

I
�

L�0
< t  R�0

�⇤

� 1

 E(1��)� 1 < �c0,

where the last inequality follows from Condition 3. By Condition 4, the operator G projects

h 2 BV1(R) to a continuously differentiable function, so it is a compact operator. The operator

H�0,F0 = J + G is then a Fredholm operator. By the theory of Fredholm operator (Rudin, 1973, pp.

99–103), the invertibility of H�0,F0 holds if H�0,F0 is one-to-one. Suppose that H�0,F0(h) = 0 for

some h 2 BV1(R). Then,

0 =

Z

H�0,F0(h)dh = P

(

@�(2)
(�0, F0)(h)

@F
(h)

)

= P

⇢

⇣

�

(2)
(�0, F0)(h)

o2
�

,

where the last equality follows from the fact that �(2)
(�, F )(h) is the score for F along the direction

indexed by h. Thus,

�

(2)
(�0, F0)(h) = �h(Y�0

) + (1��)

R R�0
L�0

h(t)dF0(t)

F0(R�0
)� F0(L�0

)

�
Z

h(t)dF0(t) = 0

almost surely. We choose � = 1 and Y�0
= t such that h is a constant function. In addition,

H�0,F0(h) = 0, so h = 0. The operator H�0,F0 is one-to-one and thus is continuously invertible.

Clearly, C�,F (�
⇤, F ⇤

) is continuous in the neighborhood of (�0, F0). Write

C�0,F0(�
⇤, F ⇤

) =

0

B

@

C11(�
⇤
) C12(�

⇤
)

C21(F ⇤
) C22(F ⇤

)

1

C

A

.

Let H⇤
�0,F0

denote the dual operator of H�0,F0 , which is also continuously invertible. Then, the
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operator

C22 {F ⇤
(h)} =

Z

H�0,F0 {h(t)} dF ⇤
(t) =

Z

h(t)dH⇤
�0,F0

{F ⇤
(t)}

is a continuously invertible map from linBV1(R) to linBV1(R). If C�0,F0 is invertible, then its inverse

operator is

C�1
�0,F0

=

0

B

@

�

C11 �C12C
�1
22 C21

��1 �
�

C11 �C12C
�1
22 C21

��1
C12C

�1
22

�C�1
22 C21

�

C11 �C12C
�1
22 C21

��1
C�1
22 + C�1

22 C21
�

C11 �C12C
�1
22 C21

��1
C12C

�1
22

1

C

A

.

The invertibility of C�0,F0 holds if the matrix

C11 �C12C
�1
22 C21

=

@P�(1)
(�0, F0)

@�
� @P�(2)

(�0, F0)

@�

2

4

(

@P�(2)
(�0, F0)(h)

@F

)�1(

@P�(1)
(�0, F0)

@F

)

3

5

=

@P�(1)
(�0, F0)

@�
�
@P�(2)

(�0, F0)

n

H�1
�0,F0

(w�0,F0)

o

@�
= D

is invertible. Denote QX(t) =
n

H�1
�0,F0

(w�0,F0)

o

(t)�Xt. The matrix D can be written as

D = E

(

X

 

�Q0
X(Y�0

) + (1��)

"

QX(R�0
)f0(R�0

)�QX(L�0
)f0(L�0

)

F0(R�0
)� F0(L�0

)

�
�

f0(R�0
)� f0(L�0

)

 R R�0
L�0

QX(u)dF0(u)
�

F0(R�0
)� F0(L�0

)

 2

#!T)

,

and QX(t) satisfies

E

0

@

(1��)I
�

L�0
< t  R�0

�

2

4

�

F0(R�0
)� F0(L�0

)

 

QX(t)�
R R�0
L�0

QX(u)dF0(u)
�

F0(R�0
)� F0(L�0

)

 2

3

5

1

A

�E {QX(t)} = 0. (2.10)

We can treat the AFT model with PIC data as a submodel of a larger model, where the error ✏ can

potentially depend on X. The log-likelihood for the larger model is

� log f✏|X(Y�) + (1��) log

�

F✏|X(R�)� F✏|X(L�)
 

,
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where F✏|X and f✏|X are, respectively, the distribution function and density function of ✏ given X.

The score of this larger model with respect to the direction

�

�⌘(a), F⌘,X(·)
 

⌘
"

�0 + ⌘a, F✏|X(·) + ⌘

Z (·)
(

f 0
✏|X
f✏|X

(t)X �QX(t) +

Z

QX(t)dF✏|X(t)

)

dF✏|X(t)

#

,

where a 2 Rd, is given by

s
�

�, F✏|X
�

= ��QX(Y�)� (1��)

R R�

L�
QX(t)dF✏|X(t)

F✏|X(R�)� F✏|X(L�)
+

Z

QX(t)dF✏|X(t).

The corresponding information matrix along that direction at the true value (�0, F0) is given by

D + E

(

(1��)

 

R R�0
L�0

QX(t) {Xf 0
0(t)�QX(t)f0(t)}T dt

F0(R�0
)� F0(L�0

)

�

R R�0
L�0

QX(t)dF0(t)
h

X
�

f0(R�0
)� f0(L�0

)

 

�
R R�0
L�0

QX(t)dF0(t)
iT

�

F0(R�0
)� F0(L�0

)

 2

�
Z

QX(t)
�

Xf 0
0(t)�QX(t)f0(t)

 T
dt

!)

.

The information matrix is equal to D because the second term is exact zero, which can be shown

to be true if we multiply (2.10) by {Xf 0
0(t)�QX(t)f0(t)}T and integrate t out. Thus, the matrix

D is the information matrix of the larger model. It is singular only if the score s(�0, F0) is zero

almost surely. We can choose � = 1 and Y�0
= t to find the contradiction. Thus, the matrix D is

nonsingular, and C�0,F0(�
⇤, F ⇤

) is invertible from Rd ⇥ lin(BV1(R)) to Rd ⇥ lin(BV1(R)).
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CHAPTER 3: SEMIPARAMETRIC REGRESSION ANALYSIS OF
INTERVAL-CENSORED DATA WITH INFORMATIVE DROPOUT

3.1 Introduction

Interval-censored data arise when the timing of an event is not known precisely but rather is

known to lie within a time interval. Such data are frequently encountered in medical research, where

the ascertainment of the disease of interest is made over a series of examination times. An example

is the Atherosclerosis Risk in Communities (ARIC) study (The ARIC Investigators, 1989), where

subjects were examined for asymptomatic diseases, such as diabetes and hypertension, over five

visits, with the first four each approximately three years apart and then a gap of about 15 years

before the fifth visit, such that the disease was only known to occur within a broad time interval.

A number of methods have been developed for regression analysis of interval-censored data. In

particular, nonparametric maximum likelihood estimation for the proportional odds, proportional

hazards, and transformation models have been studied by Huang (1995), Huang (1996), and Zeng

et al. (2016), respectively. Sieve estimation for the proportional odds and proportional hazards

models has been suggested by Rossini and Tsiatis (1996), Huang and Rossini (1997), Shen (1998),

and Cai and Betensky (2003). Rank-based estimation methods for linear transformation models

have been proposed by Gu et al. (2005), Sun and Sun (2005), Zhang, Sun, Zhao and Sun (2005),

and Zhang and Zhao (2013).

All aforementioned work assumes that the examination process is independent of the event of

interest, possibly conditional on covariates. This assumption is often violated in chronic disease

research because subjects may drop out of the study prematurely for health-related reasons. For

example, in the ARIC study, a large number of subjects died before their last scheduled visit. When

dropout is correlated with the event of interest, the existing methods may yield invalid inference.

In the situation where dropout is caused by a terminal event, such as death, the existing methods,

which fail to account for the fact that the event of interest cannot occur after the terminal event,

will provide incorrect estimation of disease incidence even if dropout is independent of the event of
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interest.

In this chapter, we adjust for informative dropout through the use of a random effect. Specif-

ically, we consider a broad class of joint models, under which the event time of interest follows a

semiparametric transformation model with a random effect and the dropout time follows a different

semiparametric transformation model but with the same random effect. The transformation mod-

els encompass the proportional hazards and proportional odds models. We study nonparametric

maximum likelihood estimation for the joint models and develop a stable EM algorithm for its

implementation. We establish the asymptotic properties of the resulting estimators, with different

rates of convergence for the cumulative hazard functions of the event time of interest and the dropout

time. In addition, we show how to predict the incidence for the event of interest when its occurrence

is precluded by the development of a terminal event. Furthermore, we demonstrate the advantages

of the proposed methods over the existing ones through realistic simulation studies and provide a

detailed illustration with data derived from the ARIC study. Finally, we show technical details and

additional figures.

3.2 Methods

3.2.1 Models and Likelihood

We consider a random sample of n subjects. For i = 1, . . . , n, let Ti denote the event time

or failure time of interest, Di the dropout time, and Xi(·) a p-vector of possibly time-dependent

external covariates for the ith subject. We characterize the dependence between Ti and Di through

a random effect bi, which is assumed to be normal with mean zero and variance �2. Let Xi denote

the entire history of the covariates. Conditional on bi and Xi, the cumulative hazard functions for

Ti and Di follow the transformation models

⇤(t|bi,Xi) = G

⇢

Z t

0
e�

TXi(s)+bid⇤(s)

�

(3.1)

and

A(t|bi,Xi) = H

⇢

Z t

0
e�

TXi(s)+bidA(s)

�

, (3.2)

respectively, where G(·) and H(·) are specific transformation functions, � and � are unknown

regression parameters, and ⇤(·) and A(·) are arbitrary cumulative baseline hazard functions. For
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notational simplicity, we use the same Xi in models (3.1) and (3.2), although it is straightforward

to use different sets of covariates.

Remark 3.1. We allow different transformation functions for the event of interest and dropout and

let the data determine the best choices. Since there are only two events per subject, one shared ran-

dom effect bi is sufficient to capture the dependence and additional parameters would not be identifiable.

The transformation functions G(·) and H(·) include completely monotonic functions

G(x) = � log

Z 1

0
e�xtfG(t)dt (3.3)

and

H(x) = � log

Z 1

0
e�xtfH(t)dt, (3.4)

where fG(·) and fH(·) are density functions with support on [0,1). Particularly, the class of

logarithmic transformations r�1
log(1 + rx) (r � 0) is generated by the gamma density function

with mean 1 and variance r. The choice of r = 0 or 1 yields the proportional hazards or proportional

odds model, respectively.

Suppose that the event of interest, such as diabetes, is asymptomatic, such that its occurrence

can only be detected through periodic examinations. By contrast, dropout (e.g., death), can be

observed exactly. There is a sequence of potential examination times for each subject. Obviously,

no examination can occur after dropout. There exists non-informative censoring (e.g., end of the

study), after which examination cannot occur either.

Specifically, let 0 < Ui1 < · · · < Ui,Mi < 1 denote the ith subject’s potential examination times,

which have finite support U with least upper bound ⌧ . Let Ci denote the noninformative censoring

time on Di, such that we observe Yi ⌘ min(Di, Ci) and �i ⌘ I(Di  Ci), where I(·) is the indicator

function. The examination for the ith subject does not occur after Yi. Because examination typically

does not occur at the time of dropout or the end of the study, Yi is not assumed equal to Uij for

some j. Thus, the failure time Ti is known to lie in the interval (Li, Ri), where Li = max{Uim :

Uim < Ti, Uim  Yi,m = 0, . . . ,Mi}, Ri = min{Uim : Uim � Ti, Uim  Yi,m = 1, . . . ,Mi}, and

Ui0 = 0. We let Ri = 1 if the latter set is empty. If Yi < Ui1, then no examination is performed and
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(Li, Ri) = (0,1). The observed data consist of Oi (i = 1, . . . , n), where Oi = {Li, Ri, Yi,�i,Xi(·)}.

Assume that Mi, {Uim : m = 1, . . . ,Mi}, and Ci are independent of (Ti, Di, bi) conditional on

Xi. The observed-data likelihood under models (3.1) and (3.2) is

n
Y

i=1

Z

bi

✓

exp



�G

⇢

Z Li

0
e�

TXi(s)+bid⇤(s)

��

� exp



�G

⇢

Z Ri

0
e�

TXi(s)+bid⇤(s)

��◆

⇥


e�
TXi(Yi)+biA0

(Yi)H
0
⇢

Z Yi

0
e�

TXi(s)+bidA(s)

���i

⇥ exp



�H

⇢

Z Yi

0
e�

TXi(s)+bidA(s)

��

�(bi;�
2
)dbi,

where g0(·) denotes the derivative of the function g(·), �(b;�2) = (2⇡�2)�1/2
exp(�b2/2�2), and we

define exp[�G{
R1
0 e�

TXi(s)+bid⇤(s)}] = 0.

3.2.2 Estimation Procedure

We adopt the nonparametric maximum likelihood approach, under which the estimators for

the cumulative baseline hazard functions ⇤ and A are step functions with jumps at the unique

endpoints of the intervals, 0 < t1 < · · · < tm1 < 1, and at the uncensored dropout times,

0 < s1 < · · · < sm2 < 1, where m1 and m2 are the total numbers of potential jump points. We

denote the step sizes for ⇤ as �1, . . . ,�m1 and the step sizes for A as ↵1, . . . ,↵m2 . Write ✓ = (�,�,�2)

and A = (⇤, A). We maximize the objective function

Ln(✓,A) ⌘
n
Y

i=1

Z

bi

L(1)
i (bi;�,⇤)L

(2)
i (bi;�, A)�(bi;�

2
)dbi

over �, �, �2, (�1, . . . ,�m1), and (↵1, . . . ,↵m2), where

L(1)
i (bi;�,⇤) = exp

8

<

:

�G

0

@

X

tlLi

e�
TXil+bi�l

1

A

9

=

;

� exp

8

<

:

�G

0

@

X

tlRi

e�
TXil+bi�l

1

A

9

=

;

,

and

L(2)
i (bi;�, A) =

2

4A{Yi}e�
TXi(Yi)+biH 0

0

@

X

slYi

e�
TX⇤

il+bi↵l

1

A

3

5

�i

⇥ exp

8

<

:

�H

0

@

X

slYi

e�
TX⇤

il+bi↵l

1

A

9

=

;

,
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with Xil = Xi(tl) for l = 1, . . . ,m1, X⇤
il = Xi(sl) for l = 1, . . . ,m2, and A{Yi} being the jump size

of A at Yi.

Direct maximization of Ln(✓,A) is difficult due to the lack of analytical expressions for the

parameters �1, . . . ,�m1 and ↵1, . . . ,↵m2 . We introduce some latent random variables to form a

likelihood function equivalent to Ln(✓,A) such that the maximization can be carried out by a simple

EM algorithm. First, we introduce two latent frailties ⇠i and  i with density functions fG(·) and fH(·)

given in equations (3.3) and (3.4), respectively. We then introduce independent Poisson random

variables Wil (l = 1, . . . ,m1, tl  R⇤
i ) with means �l⇠i exp(�TXil + bi), where R⇤

i = LiI(Ri =

1)+RiI(Ri < 1). Conditional on (⇠i, bi), the likelihood function of {Wil; l = 1, . . . ,m1, tl  R⇤
i } is

m1
Y

l=1,tlR⇤
i

⇢

1

Wil!

⇣

�l⇠ie
�TXil+bi

⌘Wil

exp

⇣

��l⇠ie�
TXil+bi

⌘

�

.

Let N1i =
P

tlLi
Wil and N2i = I(Ri < 1)

P

Li<tlRi
Wil. Suppose that we observe N1i = 0 and

N2i > 0. The observed-data likelihood for N1i = 0 and N2i > 0 given ⇠i and bi is equal to

gi1(⇠i, bi) ⌘ exp

0

@�⇠i
X

tlLi

e�
TXil+bi�l

1

A� I(Ri < 1) exp

0

@�⇠i
X

tlRi

e�
TXil+bi�l

1

A .

In addition, the observed-data likelihood for (Yi,�i) given  i and bi is

gi2( i, bi) ⌘
n

 iA
0
(Yi)e

�TXi(Yi)+bi
o�i

exp

⇢

� i

Z Yi

0
e�

TXi(s)+bidA(s)

�

.

Therefore, L(1)
i (bi;�,⇤) =

R

⇠i
gi1(⇠i, bi)fG(⇠i)d⇠i, and L(2)

i (bi;�, A) =

R

 i
gi2( i, bi)fH( i)d i. In

other words, Ln(✓,A) can be viewed as the observed-data likelihood for {N1i = 0, N2i > 0, Yi,�i}

with (Wil, ⇠i, i, bi) (l = 1, . . . ,m1, tl  R⇤
i ) as latent variables. Based on the foregoing results, we

propose an EM algorithm treating (Wil, ⇠i, i, bi) (i = 1, . . . , n; l = 1, . . . ,m1, tl  R⇤
i ) as complete

data.

In the M-step, we maximize the conditional expectation of the complete-data log-likelihood given

the observed data so as to update the parameters. Specifically, we update � by solving the equation

n
X

i=1

m1
X

l=1

bE (Wil) I(tl  R⇤
i )

"

Xil �
Pn

j=1XjlI(tl  R⇤
j )
bE
�

⇠j exp
�

�TXjl + bj
� 

Pn
j=1 I(tl  R⇤

j )
bE
�

⇠j exp
�

�TXjl + bj
� 

#

= 0,
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and we update ⇤ by

�l =

Pn
i=1 I(tl  R⇤

i )
bE (Wil)

Pn
i=1 I(tl  R⇤

i )
bE
�

⇠i exp
�

�TXil + bi
� 

, l = 1, . . . ,m1,

where bE(·) denotes the conditional expectation given the observed data eOi ⌘ {N1i = 0, N2i >

0, Yi,�i,Xi(·)} (i = 1, . . . , n). In addition, we update � by solving the equation

n
X

i=1

�i

 

Xi(Yi)�
Pn

j=1 I(Yj � Yi)Xj(Yi) bE
⇥

 j exp
�

�TXj(Yi) + bj
 ⇤

Pn
j=1 I(Yj � Yi) bE [ j exp {�TXj(Yi) + bj}]

!

= 0,

and we update A by

↵l =

Pn
i=1�iI(Yi = sl)

Pn
i=1 I(Yi � sl) bE { i exp (�TX⇤

il + bi)}
, l = 1, . . . ,m2.

Finally, we update �2 by �2 = n�1Pn
i=1

bE(b2i ).

In the E-step, we evaluate the conditional expectation of Wil (l = 1, . . . ,m1, tl  R⇤
i ) and the

other terms of ⇠i,  i, and bi given the observed data eOi for i = 1, . . . , n. Specifically, the conditional

expectation of Wil (l = 1, . . . ,m, tl  R⇤
i ) given eOi, ⇠i, and bi is

I(Li < tl  Ri < 1)

�l⇠i exp
�

�TXil + bi
�

1� exp

⇣

�
P

Li<tl0Ri
�l0⇠ie�

TXil0+bi
⌘ .

Note that the joint density of (⇠i, i, bi) given eOi is proportional to gi1(⇠i, bi)fG(⇠i)gi2( i, bi)fH( i)

⇥�(bi;�2). We evaluate the conditional expectation of Wil and the other terms through numerical

integration over ⇠i,  i, and bi with Gaussian quadratures.

We iterate between the E-step and the M-step until convergence. We denote the final estimators

for ✓ and A as b✓ ⌘ (

b�, b�, b�2) and bA ⌘ (

b

⇤, bA). The survival function for the failure time of interest,

P (T � t|X), can be estimated by

Z

b
exp

2

4�G

8

<

:

X

tlt

e
b�T

X(tl)+b
b�l

9

=

;

3

5�
�

b; b�2
�

db.

Remark 3.2. The proposed EM algorithm has several desirable features. First, large-scale op-
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timization is avoided as jump sizes are updated explicitly in the M-step. Second, the regression

parameters are updated by solving estimating equations similar to the partial likelihood score equations

via one-step Newton-Raphson. Finally, the E-step involves only 2-dimensional numerical integration.

If dropout is a terminal event, which cannot be avoided, then we have a semi-competing risks

set-up (Fine et al., 2001) in that the occurrence of the terminal event precludes the development of

the event of interest but not vice versa. It is more meaningful to consider the cumulative incidence

function for the failure time of interest

P (T  t, T  D|X)

= P (T  t  D|X) + P (T  D < t|X)

=

Z

b

✓

1� exp



�G

⇢

Z t

0
e�

TX(u)+bd⇤(u)

��◆

exp



�H

⇢

Z t

0
e�

TX(u)+bdA(u)

��

�(b;�2)db

+

Z

b



Z t

0

⇢

e�
TX(s)+bH 0

⇢

Z s

0
e�

TX(u)+bdA(u)

�

exp



�H

⇢

Z s

0
e�

TX(u)+bdA(u)

��

⇥
✓

1� exp



�G

⇢

Z s

0
e�

TX(u)+bd⇤(u)

��◆�

dA(s)

�

�(b;�2)db.

We estimate this quantity by

Z

b

0

@

1� exp

2

4�G

8

<

:

X

tlt

e
b�T

X(tl)+b
b�l

9

=

;

3

5

1

A

exp

2

4�H

8

<

:

X

slt

eb�
TX(sl)+b

b↵l

9

=

;

3

5�(b;�2)db

+

Z

b

2

4

X

slt

8

<

:

b↵le
b�TX(sl)+bH 0

8

<

:

X

l0l

eb�
TX(sl0 )+b

b↵l0

9

=

;

exp

2

4�H

8

<

:

X

l0l

eb�
TX(sl0 )+b

b↵l0

9

=

;

3

5

⇥

0

@

1� exp

2

4�G

8

<

:

X

tl0sl

e
b�T

X(tl0 )+b
b�l0

9

=

;

3

5

1

A

9

=

;

3

5�(b; b�2)db,

where the integral is evaluated by numerical integration with Gaussian quadratures, and b�l and b↵l

are the estimators of �l and ↵l, respectively.

We have implicitly assumed that the transformation functions are known. In practice, we consider

a variety of transformation models and choose the one that best fits the data according to, say, the

Akaike information criterion.

3.2.3 Asymptotic Theory

We establish the asymptotic properties of (b✓, bA) under the following regularity conditions.

41



Condition 1. The true value of ✓, denoted by ✓0 ⌘ (�0,�0,�
2
0), belongs to the interior of a

known compact set ⇥ ⌘ B1 ⇥ B2 ⇥ S, where B1,B2 ⇢ Rp, and S ⇢ (0,1).

Condition 2. The true value ⇤0(·) of ⇤(·) is strictly increasing and continuously differentiable on

U with ⇤0(0) = 0. The true value A0(·) of A(·) is strictly increasing and continuously differentiable

on [0, ⌧ ] with A0(0) = 0.

Condition 3. There exists some positive constant �⇤ such that Pr(C � ⌧ |X) = Pr(C = ⌧ |X) � �⇤

almost surely.

Condition 4. The number of potential examination times M is positive with E(M) < 1. There

exists a positive constant ⌘ such that Pr{min0m<M (Um+1 � Um) � ⌘|M,X} = 1. In addition,

there exists a probability measure µ in U such that the bivariate distribution function of (Um, Um+1)

conditional on (M,X) is dominated by µ ⇥ µ and its Randon-Nikodym derivative, denoted by

efm(u, v;M,X), can be expanded to a positive and twice-continuously differentiable function in the

set {(u, v) : 0  u  ⌧, 0  v  ⌧, v � u � ⌘}.

Condition 5. With probability 1, X(·) has bounded total variation in [0, ⌧ ]. If there exists a

deterministic function a1(t) and a constant vector a2 such that a1(t) + aT
2 X(t) = 0 for any t 2 U

with probability 1, then a1(t) = 0 for any t 2 U and a2 = 0.

Condition 6. The function G(·) is twice differentiable with G(0) = 0 and G0
(x) > 0. The function

H(·) is three-times differentiable with H(0) = 0 and H 0
(x) > 0. The lth derivative of exp{�G(·)} is

bounded for l = 1, 2, and the lth derivative of exp{�H(·)} is bounded for l = 1, 2, 3. There exists a

positive constant ⇢ such that

lim sup

x!1
(1 + x)⇢ exp{�G(x)} < 1,

lim sup

x!1
(1 + x)⇢ exp{�H(x)} < 1,

and

lim sup

x!1
(1 + x)1+⇢H 0

(x) exp{�H(x)} < 1.

Condition 7. For any pair of parameters (�(1),�(1),�
2
(1),⇤(1), A(1)) and (�(2),�(2),�

2
(2), ⇤(2), A(2)),
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where ⇤(1), ⇤(2), A(1), and A(2) are strictly increasing, if with probability 1,

Z

b

✓

exp



�G

⇢

Z u1

0
e�

T
(1)X(s)+bd⇤(1)(s)

�

�H

⇢

Z u2

0
e�

T
(1)X(s)+bdA(1)(s)

��◆

�(b;�2(1))db

=

Z

b

✓

exp



�G

⇢

Z u1

0
e�

T
(2)X(s)+bd⇤(2)(s)

�

�H

⇢

Z u2

0
e�

T
(2)X(s)+bdA(2)(s)

��◆

�(b;�2(2))db

for any u1 2 U and u2 2 [0, ⌧ ], then �(1) = �(2), �(1) = �(2), �2(1) = �2(2), ⇤(1)(u1) = ⇤(2)(u1) for any

u1 2 U , and A(1)(u2) = A(2)(u2) for any u2 2 [0, ⌧ ].

Condition 8. If there exist functions c1(t) and c2(t) and a constant c3 such that

Z

b



G0
⇢

Z u1

0
e�

T
0 X(s)+bd⇤0(s)

�

Z u1

0
e�

T
0 X(s)+bc1(s)d⇤0(s)

+H 0
⇢

Z u2

0
e�

T
0 X(s)+bdA0(s)

�

Z u2

0
e�

T
0 X(s)+bc2(s)dA0(s)� c3

�0(b,�20)

�(b;�20)

�

⇥ exp



�G

⇢

Z u1

0
e�

T
0 X(s)+bd⇤0(s)

�

�H

⇢

Z u2

0
e�

T
0 X(s)+bdA0(s)

��

�(b,�20)db = 0

with probability 1 for any u1 2 U and u2 2 [0, ⌧ ], where �0 is the derivative of � with respect to �2,

then c1(u1) = 0, c2(u2) = 0, and c3 = 0 for any u1 2 U and u2 2 [0, ⌧ ].

Remark 3.3. Conditions 1, 2, and 5 are standard conditions for failure time regression with time-

dependent covariates. Condition 3 implies that there is a positive probability for dropout to be observed

in the time interval [0, ⌧ ]. Condition 4 pertains to the joint distribution of examination times; it

requires that two adjacent examination times be separated by at least ⌘. The dominating measure µ

is chosen as the Lebesgue measure if the examination times are continuous random variables and as

the counting measure if examinations occur only at a finite number of time points. The number of

potential examination times M can be fixed or random, is possibly different among study subjects,

and is allowed to depend on covariates. Condition 6 pertains to the transformation functions and

holds for the logarithmic transformations. Conditions 7 and 8 are identifiability conditions for the

consistency of the estimators and nonsingularity of the information matrix, respectively.

We state the strong consistency of (b✓, bA) and weak convergence of b✓ in two theorems.

Theorem 3.1. Under Conditions 1�7, kb✓ � ✓0k !a.s. 0, kb⇤ � ⇤0kl1(U) !a.s. 0, and k bA �

A0kl1[0,⌧ ] !a.s. 0, where k · kl1(B) denotes the supremum norm on B.
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Theorem 3.2. Under Conditions 1�8,
p
n(b✓�✓0) converges weakly to a (2p+1)-variate zero-mean

normal random vector with a covariance matrix that attains the semiparametric efficiency bound.

The proofs of Theorems 3.1 and 3.2 are given in Section 3.6. To estimate the covariance matrix

of b✓, we use the profile likelihood (Murphy and Van der Vaart, 2000). Specifically, we define the

profile log-likelihood function

pln(✓) = max

A2C1⇥C2
ln(✓,A),

where ln(✓,A) = logLn(✓,A), C1 is the set of step functions with non-negative jumps at tl (l =

1, . . . ,m1), and C2 is the set of step functions with non-negative jumps at sl (l = 1, . . . ,m2). We

estimate the covariance matrix of b✓ by the inverse of

n
X

i=1

0

B

B

B

B

B

@

pli(b✓ + hne1)� pli(b✓)

hn
...

pli(b✓ + hne2p+1)� pli(b✓)

hn

1

C

C

C

C

C

A

⌦2

,

where pli is the ith subject’s contribution to pln, ej is the jth canonical vector in R2p+1, a⌦2
= aaT,

and hn is a constant of order n�1/2. To evaluate the profile likelihood, we use the EM algorithm of

Section 2.3 but only update ⇤ and A in the M-step.

3.3 Simulation Studies

We conducted simulation studies to assess the performance of the proposed methods. We

considered one time-independent covariate X1 ⇠ Unif(0, 1) and one time-dependent covariate

X2(t) = eB1I(t  V )+

eB2I(t > V ), where eB1 and eB2 are independent Bernoulli(0.5), V ⇠ Unif(0, ⌧),

and ⌧ = 4. We considered logarithmic transformation functions G(x) = r�1
G log(1 + rGx) and

H(x) = r�1
H log(1 + rHx). We set � ⌘ (�1,�2)T = (0.5, 0.4)T, � ⌘ (�1, �2)T = (0.5, 0.2)T, �2 = 0.5,

⇤(t) = 0.5t, and A(t) = log(1 + 0.5t). We generated the potential examination times Um ⇠

Um�1 + 0.1+Unif(0, ⌧/5) with U0 = 0 and the censoring time C from Unif(2⌧/3, ⌧). The number of

actual examinations is approximately 2.4 per subject. The event time of interest is left-censored

for 19% subjects, interval-censored for 28% subjects, and right-censored for 53% subjects. We

set n = 100, 200, or 400 and used 10,000 replicates. The variance estimators were obtained with

hn = 5/
p
n.
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Table 3.1: Summary statistics for the proposed estimators

rG = rH = 0 rG = rH = 1
Bias SE SEE CP Bias SE SEE CP

n = 100 �1 0.027 0.728 0.680 0.95 0.030 0.921 0.880 0.95
�2 0.028 0.422 0.382 0.94 0.037 0.533 0.481 0.94
�1 0.002 0.544 0.527 0.96 �0.012 0.723 0.727 0.97
�2 0.009 0.288 0.289 0.96 0.000 0.381 0.383 0.96
�2 �0.019 0.555 0.627 0.98 �0.112 0.781 1.035 0.97

n = 200 �1 0.006 0.482 0.463 0.95 0.009 0.623 0.602 0.95
�2 0.016 0.277 0.261 0.94 0.021 0.356 0.329 0.94
�1 0.002 0.368 0.364 0.96 0.010 0.498 0.502 0.96
�2 0.000 0.198 0.200 0.96 0.004 0.260 0.262 0.96
�2 �0.002 0.367 0.409 0.97 �0.044 0.556 0.698 0.96

n = 400 �1 0.000 0.329 0.321 0.95 0.011 0.429 0.419 0.94
�2 0.007 0.187 0.182 0.95 0.012 0.244 0.229 0.94
�1 0.005 0.255 0.254 0.95 0.002 0.354 0.351 0.95
�2 0.003 0.140 0.139 0.95 0.003 0.182 0.182 0.95
�2 0.002 0.250 0.272 0.97 �0.015 0.401 0.476 0.96

SE, SEE, and CP stand, respectively, for the empirical standard error, mean standard error

estimator, and empirical coverage percentage of the 95% confidence interval. For �2
, bias

and SEE are based on the median instead of the mean, and the confidence interval is based

on the log transformation. Each entry is based on 10,000 replicates.

Table 3.1 summarizes the results on the estimation of �, �, and �2 for different values of n, rG,

and rH . The biases for all parameter estimators are small and decrease as n increases. The variance

estimators for b� and b� are accurate, especially for large n. The variance estimator for b�2 tends to

overestimate the actual variability. The 95% confidence intervals for �, �, and �2 have reasonable

coverage probabilities.

We also evaluated the method of Zeng et al. (2016), which does not account for informative

dropout. The results for this naive method are shown in Table 3.2. The estimator for � is biased,

and the coverage probability of the corresponding confidence interval is poor.

Figure 3.1(a) shows the estimation of the baseline survival function for the event of interest when

dropout is regarded as voluntary patient withdrawal. The proposed estimator is virtually unbiased,

whereas the naive method (Zeng et al. 2016) overestimates the survival function. Figure 3.1(b)

shows the estimation of the baseline cumulative incidence function for the event of interest when

dropout is treated as a terminal event. The proposed estimator is again virtually unbiased; the naive

estimator has severe positive bias since it does not acknowledge the fact that the event of interest
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Table 3.2: Summary statistics for the naive method

rG = rH = 0 rG = rH = 1
Bias SE SEE CP Bias SE SEE CP

n = 100 �1 �0.125 0.600 0.558 0.93 �0.054 0.829 0.780 0.93
�2 �0.058 0.355 0.323 0.93 �0.015 0.483 0.433 0.92

n = 200 �1 �0.143 0.400 0.382 0.93 �0.074 0.559 0.541 0.94
�2 �0.067 0.236 0.223 0.93 �0.025 0.324 0.299 0.93

n = 400 �1 �0.148 0.274 0.266 0.91 �0.069 0.387 0.379 0.94
�2 �0.075 0.160 0.156 0.92 �0.033 0.222 0.210 0.93

See the Note to Table 3.1.

cannot occur after the terminal event.

3.4 ARIC Study

ARIC is a prospective epidemiological study conducted in four U.S. communities: Forsyth

County, NC; Jackson, MS; suburbs of Minneapolis, MN; and Washington County, MD (The ARIC

investigators, 1989). One important objective is to investigate risk factors for diabetes. A total of

14,751 Caucasian and African-American participants underwent a baseline examination between

1987 and 1989 and were scheduled for four subsequent examinations to take place in 1990�1992,

1993�1995, 1996�1998, and 2011�2013. Diabetes status (defined as fasting glucose � 126 mg/dL,

non-fasting glucose � 200 mg/dL, self-reported physician diagnosis of diabetes, or use of diabetic

medication) was determined at each examination.

We related the incidence of diabetes and death to race, gender, community, and five baseline risk

factors: age, body mass index, glucose level, systolic blood pressure, and diastolic blood pressure.

We excluded 1,933 subjects with prevalent diabetes or unknown diabetes status at baseline and 13

subjects with missing baseline covariate values to obtain a total of 12,805 subjects. Among those

subjects, 11,686 (91.3%), 10,557 (82.4%), 9,533 (74.4%), and 5,035 (39.3%) completed the second,

third, fourth, and fifth visits, respectively. As shown in Figure 3.3 in Section 3.6, there are sufficient

overlaps of the visit times for us to study diabetes onset from year 2 to year 12 and from year 22 to

year 27. A total of 2,492 (19.5%) subjects developed diabetes during the study, and 4,363 (34.1%)

subjects died before the end of the study.

We fit models (3.1) and (3.2) with logarithmic transformation functions indexed by parameters

rG and rH for diabetes and death, respectively. The likelihood is maximized at rG = 2.3 and rH = 0,
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Figure 3.1: Estimation of (a) the baseline survival function and (b) the baseline cumulative incidence
function. The solid black curve, dashed red curve, and dotted green curve pertain, respectively, to
the true value, mean estimate from the proposed method, and mean estimate from the naive method.
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which is the combination that would be selected by the Akaike information criterion. For easy

interpretation, we set rG = 1 and rH = 0.

Table 3.3 shows the estimation results for the proportional hazards models for both events

(rG = rH = 0), the proportional odds models for both events (rG = rH = 1), and the combination

of the proportional odds model for diabetes and the proportional hazards model for death (rG =

1, rH = 0). The log-likelihood values are approximately �48724.5, �48707.3, and �48681.1 for the

three combinations of transformation parameters. The variance component �2 was estimated to

be 0.561, 0.681, and 0.530 with standard errors 0.063, 0.096, and 0.070, respectively, for the three

combinations of transformation parameters, indicating strong dependence between diabetes and

death. Under all considered models, an African-American individual has a higher risk of diabetes

than a Caucasian individual. In addition, higher baseline body mass index, glucose level, and systolic

blood pressure are associated with increased risk for diabetes.

The results from the naive method, which are shown in Table 3.4, are considerably different

from ours. In particular, the naive method identifies a negative association between age and risk

of diabetes, which contradicts the established positive association in the literature. The proposed

method adjusting for death finds no significant negative association. The relationship between age

and risk of diabetes identified by the naive method is likely a spurious finding that reflects the strong

correlation between age and death.

Figure 3.2 compares the estimated cumulative incidence functions for an African-American

male versus a Caucasian male with the same values of other risk factors. The risk of diabetes

is considerably higher for the African-American individual than the Caucasian individual under

all considered models, with appreciably different estimates between the proportional hazards and

proportional odds models. The estimated probabilities from the proposed method are lower in the

tail than their naive counterparts, especially under the proportional odds model, highlighting the

importance of adjusting for death. The estimated cumulative baseline hazard functions for diabetes

and death are shown in Figure 3.4 in Section 3.6.

3.5 Discussion

In this chapter, we study efficient nonparametric maximum likelihood estimation of joint models

for interval-censored data with informative dropout. We establish the asymptotic properties for

the estimators through innovative use of modern empirical process theory. In the proofs, separate
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Figure 3.2: Estimation of cumulative incidence functions for an African-American male versus a
Caucasian male residing in Forsyth County, NC, aged 54 years, body mass index 27 kg/m2, glucose
value 98 mg/dl, systolic blood pressure 118 mmHg, and diastolic blood pressure 73 mmHg. The
red solid and dashed curves pertain to the African-American individual with the proportional
hazards and proportional odds models, respectively, from the naive method. The green solid and
dashed curves pertain to the Caucasian individual with the proportional hazards and proportional
odds models, respectively, from the naive method. The black solid and dashed curves pertain
to the African-American individual with the proportional hazards and proportional odds models,
respectively, from the proposed method, where the dropout time is modeled by the proportional
hazards model. The blue solid and dashed curves pertain to the Caucasian individual with the
proportional hazards and proportional odds models, respectively, from the proposed method, where
the dropout time is modeled by the proportional hazards model.
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Table 3.3: Regression analysis for diabetes in the ARIC study with adjustments for death

rG rH Covariate Diabetes Death
Est Std. Err. p-value Est Std. Err. p-value

0 0 Jackson �0.185 0.126 0.142 0.039 0.106 0.714
Minneapolis Suburbs �0.424 0.069 < 10

�4 �0.032 0.052 0.535
Washington County 0.101 0.066 0.124 0.088 0.050 0.081
Age �0.004 0.004 0.359 0.104 0.004 < 10

�4

Male �0.010 0.047 0.833 0.565 0.037 < 10

�4

White �0.485 0.130 0.0002 �0.503 0.108 < 10

�4

Body mass index 0.075 0.004 < 10

�4 �0.003 0.004 0.363
Glucose 0.102 0.003 < 10

�4 0.006 0.002 0.002
Systolic blood pressure 0.006 0.002 0.001 0.017 0.001 < 10

�4

Diastolic blood pressure �0.001 0.003 0.793 �0.014 0.002 < 10

�4

1 1 Jackson �0.242 0.143 0.090 0.096 0.129 0.459
Minneapolis Suburbs �0.510 0.083 < 10

�4 �0.034 0.063 0.588
Washington County 0.118 0.079 0.136 0.121 0.062 0.051
Age �0.008 0.005 0.160 0.124 0.004 < 10

�4

Male �0.033 0.057 0.561 0.680 0.045 < 10

�4

White �0.648 0.151 < 10

�4 �0.604 0.132 < 10

�4

Body mass index 0.096 0.005 < 10

�4 �0.005 0.004 0.266
Glucose 0.124 0.003 < 10

�4 0.007 0.002 0.003
Systolic blood pressure 0.007 0.002 0.001 0.020 0.002 < 10

�4

Diastolic blood pressure �0.001 0.004 0.891 �0.017 0.003 < 10

�4

1 0 Jackson �0.232 0.145 0.109 0.038 0.106 0.716
Minneapolis Suburbs �0.502 0.081 < 10

�4 �0.033 0.052 0.528
Washington County 0.114 0.078 0.141 0.086 0.050 0.086
Age �0.007 0.005 0.196 0.103 0.004 < 10

�4

Male �0.030 0.056 0.592 0.562 0.037 < 10

�4

White �0.629 0.151 < 10

�4 �0.500 0.107 < 10

�4

Body mass index 0.094 0.005 < 10

�4 �0.003 0.004 0.411
Glucose 0.122 0.003 < 10

�4 0.006 0.002 0.001
Systolic blood pressure 0.007 0.002 0.001 0.017 0.001 < 10

�4

Diastolic blood pressure 0.000 0.004 0.894 �0.014 0.002 < 10

�4

Forsyth County, NC, is the reference group for the field center variables.
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Table 3.4: Regression analysis for diabetes in the ARIC study without adjustments for death

rG Covariate Est Std. Err. p-value
0 Jackson �0.141 0.102 0.169

Minneapolis Suburbs �0.373 0.062 < 10

�4

Washington County 0.095 0.058 0.099
Age �0.010 0.004 0.009
Male �0.042 0.041 0.303
White �0.336 0.106 0.001
Body mass index 0.067 0.003 < 10

�4

Glucose 0.090 0.002 < 10

�4

Systolic blood pressure 0.005 0.002 0.004
Diastolic blood pressure 0.000 0.003 0.992

1 Jackson �0.210 0.134 0.116
Minneapolis Suburbs �0.464 0.076 < 10

�4

Washington County 0.112 0.072 0.121
Age �0.013 0.005 0.009
Male �0.062 0.052 0.230
White �0.530 0.139 < 10

�4

Body mass index 0.089 0.005 < 10

�4

Glucose 0.114 0.003 < 10

�4

Systolic blood pressure 0.006 0.002 0.007
Diastolic blood pressure 0.001 0.003 0.813

See the Note to Table 3.3.
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treatments are given to the estimators of the cumulative baseline hazard functions for the event of

interest and dropout. We avoid the assumption of Zeng et al. (2016) that a subset of study subjects

are examined at the end of the study by carefully evaluating the bracket covering number for a class

of functions that involves unbounded ⇤.

We applied our methods to data derived from the ARIC study, where diabetes is the event of

interest and death is the terminal event. In the ARIC study, there are other outcomes of interest

that are either interval-censored (e.g. hypertension, peripheral artery disease) or right-censored (e.g.

myocardial infarction, stroke). The proposed framework can be extended to incorporate multiple

interval-censored events and multiple right-censored events and thereby analyze an enriched version

of data from the ARIC study.

The class of transformation models is very broad and thus allows accurate prediction in a variety

of situations. In practice, one would need to determine which model best fits the data. One strategy

is to use the Akaike information criterion to select the best transformations, as we did for the ARIC

study. It would be worthwhile to develop additional methods for model selection and model checking.

3.6 Technical Details

Let Pn denote the empirical measure for n independent subjects, P denote the true probability

measure, and Gn ⌘ p
n(Pn � P) denote the empirical process. The proofs of Theorems 3.1 and 3.2

make use of three lemmas, which are stated and proved in Section 3.6.3.

3.6.1 Proof of Theorem 3.1

We first show the existence of the estimator (

b✓, bA). Let fM = supt2U supX(t),� |�TX(t)| +

supt2[0,⌧ ] supX(t),� |�TX(t)|. For any (✓,A) in the parameter space, the integrand in the ith term

of ln(✓,A) is bounded by

O(1)

⇣

A{Yi}e
fM+|b|

⌘�i
⇢

1 +

Z Yi

0
e�

TXi(s)+bdA(s)

��(�i+⇢)

�(b,�2)

under Condition 6. Thus, ln(✓,A) attains the maximum for finite A values, so the estimator (

b✓, bA)

exists by allowing b⇤(⌧) = 1.

We prove that lim supn
b

⇤(⌧�✏) < 1 with probability 1 for any ✏ > 0 and that lim supn
bA(⌧) < 1

with probability 1. By definition, ln(b✓, bA)� ln(✓,A) � 0 for any (✓,A) in the parameter space. We

wish to show that if bA(⌧) diverges, then this difference must be negative, which is a contradiction.
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The key is to construct a suitable function in the parameter space that converges uniformly to A0.

For ⇤, we define a step function e⇤ satisfying e⇤(t) = ⇤0(t) for t = t1, . . . , tm1 such that it converges

uniformly to ⇤0. For A, we construct a function eA by imitating bA. By differentiating ln(✓,A) with

respect to A{Yi} and setting the derivative to 0, we find that bA satisfies the equation

�i

bA{Yi}
=

n
X

j=1

R

bK1

⇣

b,Oj ;
b�, b�, bA

⌘

K2

⇣

Yi, b,Oj ; b�, bA
⌘

�
�

b; b�2
�

db
R

bK1

⇣

b,Oj ;
b�, b�, bA

⌘

� (b; b�2) db
, (3.5)

where

K1 (b,O;�,�,A) =

✓

exp



�G

⇢

Z L

0
e�

TX(s)+bd⇤(s)

��

� exp



�G

⇢

Z R

0
e�

TX(s)+bd⇤(s)

��◆

⇥


e�
TX(Y )+bH 0

⇢

Z Y

0
e�

TX(s)+bdA(s)

���

exp



�H

⇢

Z Y

0
e�

TX(s)+bdA(s)

��

,

K2 (t, b,O;�, A) = I(Y � t)e�
TX(t)+b

2

4

�

H 00
n

R Y
0 e�

TX(s)+bdA(s)
o

H 0
n

R Y
0 e�TX(s)+bdA(s)

o

�H 0
⇢

Z Y

0
e�

TX(s)+bdA(s)

��

,

and H 00
(·) is the second derivative of H(·). We replace b✓ and bA on the right side of equation (4.8)

by ✓0 and A0, respectively, to obtain a similar function. We denote the solution as eA. By the

Glivenko-Cantelli result in Lemma 3.1, eA converges uniformly to A0 in [0, ⌧ ].

Clearly, n�1
n

ln(b✓, bA)� ln(✓0, eA)

o

� 0. Let �im = I(Uim < Ti  Ui,m+1) for i = 1, . . . , n and

m = 0, . . . ,Mi, where Ui,Mi+1 = 1. By Condition 6 and the fact that e�|x|
(1 + y)  1 + exy 

e|x|(1 + y), we obtain

0  n�1ln(b✓, bA)� n�1ln(✓0, eA)

 O(1) + n�1
n
X

i=1

log

⇣

n bA{Yi}
⌘

+n�1
n
X

i=1

"

log

Z

b

n

eb�
TXi(Yi)+b

o�i
⇢

1 +

Z Yi

0
eb�

TXi(t)+bd bA(t)

���i�⇢

�
�

b; b�2
�

db

#
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 O(1) + n�1
n
X

i=1

log

⇣

n bA{Yi}
⌘

+n�1
n
X

i=1

✓

log

Z

b

⇣

e
fM+b

⌘�i
h

e�
fM�|b|

n

1 +

bA(Yi)
oi��i�⇢

�
�

b; b�2
�

db

◆

 O(1) + n�1
n
X

i=1

log

⇣

n bA{Yi}
⌘

� n�1
n
X

i=1

h

(�i + ⇢) log
n

1 +

bA(Yi)
oi

.

We first show that lim supn
bA(⌧) < 1 using the partitioning idea of Murphy (1994). Specifically, we

construct a sequence u0 = ⌧ > u1 > · · · > uQ = 0. Then,

n�1
n
X

i=1

log

⇣

n bA{Yi}
⌘

� n�1
n
X

i=1

h

(�i + ⇢) log
n

1 +

bA(Yi)
oi

 O(1) +

Q
X

q=0

n�1
n
X

i=1

I(Yi 2 [uq+1, uq)) log
⇣

n bA{Yi}
⌘

� n�1
n
X

i=1

I(Yi = ⌧)⇢ log
n

1 +

bA(⌧)
o

�
Q
X

q=0

n�1
n
X

i=1

I (Yi 2 [uq+1, uq)) log
n

1 +

bA(uq+1)

o

,

which is further bounded by

� (2n)�1
n
X

i=1

(⇢+�i)I(Yi = ⌧) log
n

1 +

bA(⌧)
o

�
(

(2n)�1
n
X

i=1

(⇢+�i)I(Yi = ⌧)� n�1
n
X

i=1

�iI (Yi 2 [u1, u0))

)

log

n

1 +

bA(⌧)
o

�
Q
X

q=1

(

n�1
n
X

i=1

(⇢+�i)I (Yi 2 [uq, uq�1))� n�1
n
X

i=1

�iI (Yi 2 [uq+1, uq))

)

log

n

1 +

bA(uq)
o

.

Note that uq is chosen such that the coefficients in front of log{1 + bA(uq)} are all negative when

n is large enough. Thus, the corresponding terms cannot diverge to 1. However, if bA(⌧) diverges

to 1, then the first term diverges to �1. We conclude that there exists some MA < 1 such that

lim supn
bA(⌧)  MA. Therefore,

0  n�1ln(b✓, bA)� n�1ln(✓0, eA)

 O(1) + n�1
n
X
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log

Z

b

⇣
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h

�G
n

e
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oi⌘�i,Mi
�
�
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�
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 O(1) + n�1
n
X

i=1

(

log

Z

|b|1

⇣
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�G
n

e
fM+|b|

b

⇤(Ui,Mi)

oi⌘�i,Mi
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b; b�2
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db

)

+n�1
n
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(

log
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�

b; b�2
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db

)

 O(1)� n�1
n
X

i=1

�i,MiG
n

e
fM+1

b

⇤(Ui,Mi)

o

.

If lim supn
b

⇤(⌧ � ✏) = 1, then G{efM+1
b

⇤(⌧ � ✏)} = 1 with probability 1 under Condition 6. This

is a contradiction. Therefore, lim supn
b

⇤(⌧ � ✏) < 1 with probability 1 for any ✏ > 0. By choosing a

sequence of ✏ decreasing to 0, it then follows from Helly’s selection lemma that along a subsequence,

b

⇤! ⇤⇤ pointwise on any interior set of U , bA ! A⇤ weakly on [0, ⌧ ], and b✓ ! ✓⇤ ⌘ (�⇤,�⇤,�
2
⇤). We

denote A⇤ = (⇤⇤, A⇤).

We now show that ✓⇤ = ✓0 and A⇤ = A0. We define

m(✓,A) = log

(

L(✓,A) + L(✓0, eA)

2

)

and

M = {m(✓,A) : ✓ 2 ⇥,⇤ 2 D1, A 2 DMA} , (3.6)

where L(✓,A) is the objective function for a single subject, and Dc = {⇤ : ⇤ is increasing with

⇤(0) = 0,⇤(⌧)  c}. By the concavity of the log function,

Pnm(

b✓, bA) � 1

2

n

Pn logL(b✓, bA) + Pn logL(✓0, eA)

o

� Pnl(✓0, eA) = Pnm(✓0, eA).

Note that
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⇣

b✓, bA
⌘

� Pm
⇣

✓0, eA
⌘

= P log

"

L(b✓, bA) + L(✓0, eA)

2L(✓0, eA)

#

= P log

8

<

:

1

2

+

bA{Y }�
R

bK1

⇣

b,O;

b�, b�, bA
⌘

�(b, b�2)db

2

eA{Y }�
R

bK1

⇣

b,O;�0,�0, eA
⌘

�(b,�20)db

9

=

;

.
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By the definition of eA, bA(t) is absolutely continuous with respect to eA(t), and

bA(t) =

Z t

0

Pn⌫ (s,O;✓0,A0)
�

�

�

Pn⌫
⇣

s,O;

b✓, bA
⌘

�

�

�

d eA(s), (3.7)

where

⌫(t,O;✓,A) =

R

bK1 (b,O;�,�,A)K2(t, b,O;�, A)�(b;�2)db
R

bK1 (b,O;�,�,A)�(b;�2)db
.

To take limits on both sides of equation (4.4), we first show that the denominator of the integrand is

uniformly bounded away from zero. It follows from the Glivenko-Cantelli property in Lemma 3.1

that

sup

t2[0,⌧ ]
|Pn⌫ (t,O;✓0,A0)� P⌫ (t,O;✓0,A0)| !a.s. 0

and

sup

t2[0,⌧ ]

�

�

�

Pn⌫
⇣

t,O;

b✓, bA
⌘

� P⌫ (t,O;✓⇤,A⇤)
�

�

�

!a.s. 0.

Note that for any ✏ > 0,

lim sup

n

bA(⌧) �
Z ⌧

0

⌫ (t,O;✓0,A0)

✏+ |P⌫ (t,O;✓⇤,A⇤)|
dA0(s).

Let ✏! 0. It follows from the Monotone Convergence Theorem that

Z ⌧

0

P⌫ (t,O;✓0,A0)

|P⌫ (t,O;✓⇤,A⇤)|
dA0(t) < 1.

We claim that mint2[0,⌧ ] |P⌫(t,O;✓⇤,A⇤)| > 0. If this inequality does not hold, then there exists

some t⇤ 2 [0, ⌧ ] such that P⌫(t⇤,O;✓⇤,A⇤) = 0. The function P⌫(t⇤,O;✓⇤,A⇤) is right-differentiable

almost everywhere. Thus, there exists � > 0 such that for t 2 (t⇤, t⇤ + �),

|P⌫ (t,O;✓⇤,A⇤)| = |P⌫ (t,O;✓⇤,A⇤)� P⌫ (t⇤,O;✓⇤,A⇤)|  O(1)|t� t⇤|

almost everywhere. Hence,
Z t⇤+�

t⇤

1

|t� t⇤|
dA0(t) < 1,

which is a contradiction. By taking the limits on both sides of (4.4), we conclude that A⇤(t) is
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absolutely continuous with respect to A0(t), so that A⇤(t) is differentiable with respect to t. In

addition, d bA(t)/d eA(t) converges to dA⇤(t)/dA0(t) uniformly in t. It then follows from Lemma 3.1

that the class M, as defined in (3.6), is Glivenko-Cantelli. Thus,

0  Pnm
⇣

b✓, bA
⌘

� Pnm
⇣

✓0, eA
⌘
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⌘

�m
⇣
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+ oP (1)

! P
"
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2

+
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⇤(Y )

�
R

bK1 (b,O;�⇤,�⇤,A⇤)�(b,�2⇤)db

2A0
0(Y )

�
R

bK1 (b,O;�0,�0,A0)�(b,�20)db

)#

such that the negative Kullback-Leibler information is positive. Therefore,

Z
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(

M
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0
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T
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=
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T
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T
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T
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(

Z Y

0
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T
0 X(s)+bdA0(s)

)#

�(b;�2
0)db

with probability 1. For any m 2 {0, . . . ,M}, we set �m0
= 1 in the above equation for m0

= m, . . . ,M

and take the sum of the resulting equations to obtain

Z

b
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0
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T
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��
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���
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=

Z

b
exp
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0
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T
0 X(s)+bd⇤0(s)

��
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T
0 X(Y )+bA0(Y )H 0

⇢

Z Y

0
e�

T
0 X(s)+bdA0(s)

���
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�H

⇢

Z Y

0
e�

T
0 X(s)+bdA0(s)

��

�(b;�20)db.

Because m is arbitrary, we can replace Um in the above equation by any t1 2 U . We set � = 1 and
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integrate Y from 0 to t2 2 [0, ⌧ ] to obtain

Z

b
exp



�G

⇢
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0
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T
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0 X(s)+bdA0(s)

��

�(b;�20)db.

By Condition 7, we have ✓⇤ = ✓0 and A⇤ = A0. We conclude that kb✓�✓0k ! 0, |b⇤(t1)�⇤0(t1)| ! 0,

and | bA(t2) � A0(t2)| ! 0 for any t1 2 U and t2 2 [0, ⌧ ]. Because A0 is continuous, bA converges

uniformly to A0 on U ⇥ [0, ⌧ ].

3.6.2 Proof of Theorem 3.2

Let

H1(t, u, v,O;✓,A) =
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,
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Then, the score function for ✓ is l✓(✓,A) = (l�(✓,A)

T, l�(✓,A)

T, l�2(✓,A))

T, where

l�(✓,A) =

M
X

m=0

�m

Z ⌧

0
H1(t, Um, Um+1,O;✓,A)X(t)d⇤(t),
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l�(✓,A) = �X(Y ) +

Z ⌧

0
H2(t,O;✓,A)X(t)dA(t),

and

l�2(✓,A) =
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K1(b,O;�,�,A)�(b;�2)db
.

The score operator for A along the submodel dA✏,h = ((1 + ✏h1)d⇤, (1 + ✏h2)dA)T for h = (h1, h2)

with h1 2 L2(µ) and h2 2 BV1[0, ⌧ ] is
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M
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where BV1(B) denotes the set of functions on B with total variation bounded by 1.

Clearly,
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We apply the Taylor series expansions at (✓0,A0) to the right sides of the above two equations. In

light of Lemma 3.3, the second-order terms are bounded by
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Thus,
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and
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n
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where l✓✓ is the second derivative of l(✓,A) with respect to ✓, l✓A(h) is the derivative of l✓ along

the submodel dA✏,h, lA✓(h) is the derivative of lA(h) with respect to ✓, and lAA(h, bA�A0) is the

derivative of lA(h) along the submodel dA0 + ✏d( bA�A0). All derivatives are evaluated at (✓0,A0).

Let h⇤
= (h⇤

1,h
⇤
2) denote the least favorable direction such that l⇤AlA(h

⇤
) = l⇤Al✓, where

h⇤
1 is (2p + 1)-dimensional vector of functions in L2(µ), h⇤

2 is (2p + 1)-dimensional vector of

functions in L2[0, ⌧ ], and l⇤A is the adjoint operator of lA. We first show the existence of h⇤. Let

Q = L2(µ)⇥ L2[0, ⌧ ]. We equip Q with an inner product defined as
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where h(1)
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khk = P
n

lA (✓0,A0) (h)
2
o1/2

= P
"(

M
X

m=0

�m

Z ⌧

0
H1(t, Um, Um+1,O;✓0,A0)h1(t)d⇤0(t)

+�h2(Y )A0
0(Y ) +

Z ⌧

0
H2(t,O;✓0,A0)h2(t)dA0(t)

�2
#1/2

for h = (h1, h2). It is easy to show that k · k is a seminorm on Q. Furthermore, if khk = 0, then

P{lA(✓0,A0)(h)2} = 0. Thus, with probability 1, lA(✓0,A0)(h) = 0. By the arguments in the proof

of Lemma 3.3, h1(t) = 0 for t 2 U and h2(t) = 0 for t 2 [0, ⌧ ]. Clearly, khk  c < h,h >1/2 for some

constant c by the Cauchy-Schwarz inequality. According to the bounded inverse theorem in Banach

spaces, we have < h,h >1/2 eckhk for another constant ec. By the Lax-Milgram theorem (Zeidler,

1995), h⇤ exists and satisfies
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differentiable functions. Thus, h⇤ can be expanded to be a continuously differentiable function in

[0, ⌧ ]⇥ [0, ⌧ ] with bounded total variations. It then follows that
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Using similar arguments as in the proof of Lemma 3.2, we can show that l✓(✓0,A0)�lA(✓0,A0)(h
⇤
)

belongs to a Donsker class. Next, we show that the matrix P[{l✓ � lA(h
⇤
)}⌦2

] is invertible. If the

matrix is singular, then there exists a vector v ⌘ (v1,v2, v3)T with v1,v2 2 Rp and v3 2 R such

that vTE[{l✓ � lA(h
⇤
)}⌦2

]v = 0. It follows that, with probability 1, the score function along the
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submodel {✓0 + ✏v,A✏(vTh⇤
)} is zero. That is,
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with probability 1. For any t 2 [0, ⌧ ], we let � = 0 and integrate Y from 0 to t to obtain
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By Condition 8, vT
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to a zero-mean random vector whose covariance matrix attains the semiparametric efficiency bound.

3.6.3 Some Useful Lemmas

Lemma 3.1. Under Conditions 1�6, the classes of functions
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In the remaining scenario, we assume, without loss of generality, that ⇤(1)(⌧)  M⇤ and ⇤(2)(⌧) > M⇤.
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where the last inequality follows from the integration by parts. By Theorem 2.7.5 of van der Vaart

and Wellner (1996), the bracketing number for B2 ⇥ DMA is of order O{exp(✏�1
)}. Thus, the
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eH1 is Glivenko-Cantelli.

To show that the class eH2 is Glivenko-Cantelli, we note that

Z

b
K1 (b,O;�, �,A)K2(t, b,O;�,A)�(b;�2)db = I(Y � t)

Z

b
K3 (t,O;✓,A)�(b;�2)db,

where

K3(t,O;✓,A) = K1 (b,O;�, �,A) e�
TX(t)+b

2

4

�

H 00
n

R Y
0 e�

TX(s)+bdA(s)
o

H 0
n

R Y
0 e�TX(s)+bdA(s)

o

�H 0
⇢

Z Y

0
e�

TX(s)+bdA(s)

��

.

65



By the above arguments for eH1, the class {
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where eC is a constant. By similar arguments as in the proof of Lemma 3.1, the bracketing numbers

for H1 and H2 are of order O{exp(✏�1
)}. Thus, H1 and H2 are P-Donsker.

Lemma 3.3. Under Conditions 1�6,
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Consequently, using the mean-value theorem again, we have
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Note that if kfk2 = 0 for some f 2 V, then

Z
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�(b;�20)db = 0 (3.8)

with probability 1.

For � = 0, we set Y = ⌧ in (4.11) to obtain an equation. For � = 1, we integrate Y from 0 to ⌧
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in (4.11) to obtain another equation. We add the two equations to obtain
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For any m 2 {0, . . . ,M}, we sum over all possible �m0 with m0
= m, . . . ,M to obtain
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Because m is arbitrary, we can replace Um with t 2 U . By Condition 8,
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with probability one. The term G0
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is strictly greater than zero. Therefore,

f1 = 0. In addition, we sum over (4.11) with all possible �m for m = 0, . . . ,M to obtain
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We let � = 0 and integrate Y from 0 to t to obtain
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By Condition 8,
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with probability one. The term H 0
n

R Um

0 e�
T
0 X(t)+bdA0(t)

o

is strictly greater than zero. Therefore,

we obtain f2 = 0, implying that k · k2 is a norm in V .

By the Cauchy-Schwarz inequality, for any f 2 V,
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where c1 is a finite constant. By the bounded inverse theorem in the Banach space, we have

kfk2 � c01kfk1 for some constant c01. Therefore,
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The lemma thus holds.
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Figure 3.3: Frequency of examinations over follow-up time. The white, red, green, and blue
histograms pertain, respectively, to the second, third, fourth, and fifth examinations.
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Figure 3.4: Estimation of baseline cumulative hazard functions, where baseline is defined for an
African-American male residing in Forsyth County, NC, aged 54 years, body mass index 27 kg/m2,
glucose value 98 mg/dl, systolic blood pressure 118 mmHg, and diastolic blood pressure 73 mmHg.
The red solid and dashed curves pertain to the proportional hazards and proportional odds models,
respectively, from the naive method. The black solid and dashed curves pertain to the proportional
hazards and proportional odds models, respectively, from the proposed method, where the dropout
time is modeled by the proportional hazards model.
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CHAPTER 4: SEMIPARAMETRIC REGRESSION ANALYSIS OF
MULTIPLE RIGHT- AND INTERVAL-CENSORED EVENTS

4.1 Introduction

Many clinical and epidemiological studies are concerned with multiple diseases, which may

be symptomatic or asymptomatic. Time to the development of a symptomatic disease is right-

censored if the disease does not occur during the follow-up, whereas time to the development of

an asymptomatic disease is typically interval-censored because the disease occurrence can only

be monitored periodically using biomarkers. In the Atherosclerosis Risk in Communities (ARIC)

study (The ARIC Investigators, 1989), for instance, subjects were followed for up to 27 years for

symptomatic cardiovascular diseases, such as myocardial infarction (MI) and stroke, through reviews

of hospital records; they were also examined over five clinic visits, with the first four at approximately

3-year intervals, for occurrences of asymptomatic diseases, such as diabetes and hypertension.

There is a large body of literature on right-censored data (Kalbfleisch and Prentice, 1980) and

also a growing body of literature on interval-censored data (Huang, 1996; Huang and Wellner, 1997;

Zhang, Sun, Zhao and Sun, 2005; Chang et al., 2007; Wen and Chen, 2013; Chen, Chen, Lin and

Tong, 2014; Zeng et al., 2016). However, the existing literature has treated right-censored and

interval-censored data separately. Joint modelling of the two types of data would allow investigators

to evaluate the effects of covariates on both types of events and to predict the occurrence of a

symptomatic disease given the history of asymptomatic diseases.

In this paper, we relate potentially time-dependent covariates to the joint distribution of multiple

right- and interval-censored events through semiparametric proportional hazards models with random

effects. Specifically, we assume a shared random effect for the interval-censored events, which affects

the right-censored events with unknown coefficients. We assume an additional shared random effect

for the right-censored events to capture their own dependence. The proposed models are reminiscent

of selection models for joint modeling of survival and longitudinal data (Hogan and Laird, 1997).

We estimate the model parameters through nonparametric maximum likelihood estimation,
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under which the baseline hazard functions are completely nonparametric. We develop a simple EM

algorithm that converges stably for arbitrary sample sizes, even with time-dependent covariates. We

show that the resulting estimators are consistent and the parametric components are asymptotically

normal and asymptotically efficient. We also show that the covariance matrix of the parametric

components can be estimated consistently with profile likelihood or nonparametric bootstrap. We

pay special attention to the estimation of the conditional cumulative incidence function, which can

be used to predict disease occurrence dynamically by updating the event history. Finally, we assess

the performance of the proposed numerical and inferential procedures through extensive simulation

studies and provide a substantive application to the ARIC data on diabetes, hypertension, stroke,

MI, and death.

4.2 Methods

4.2.1 Data, Models, and Likelihood

Suppose that there are K1 asymptomatic events occurring at times T1, . . . , TK1 and K2 sympto-

matic events occurring at times TK1+1, . . . , TK , where K = K1 +K2. Let Xk(·) be a p-vector of

possibly time-dependent external covariates for the event time Tk. For k = 1, . . . ,K1, the hazard

function of Tk conditional on covariate Xk and random effect b1 is given by

�k(t;Xk, b1) = e�
TXk(t)+b1�k(t), (4.1)

where � is a set of unknown regression parameters, �k(·) is an arbitrary baseline hazard function,

and b1 is a latent normal random variable with mean zero and variance �21. For k = K1 + 1, . . . ,K,

the hazard function of Tk conditional on covariates Xk and random effects b1 and b2 is given by

�k(t;Xk, b1, b2) = e�
TXk(t)+�kb1+b2�k(t), (4.2)

where �k(·) is an arbitrary baseline hazard function, � ⌘ (�K1+1, . . . , �K)

T is a set of unknown

coefficients, and b2 is a latent normal random variable with mean zero and variance �22. Write

⌃ = (�21,�
2
2). By letting Xk depend on k, models (4.1) and (4.2) allow the regression parameters to

be different among the K events by appropriate definitions of dummy variables; see Lin (1994).

We implicitly assume that K1 and K2 are greater than one; otherwise, some of the parameters
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need to be fixed to ensure identifiability. For example, if K1 = K2 = 1, we require �22 = 0 and

�1 = 1; if K1 > 1 and K2 = 1, we require �22 = 0; and if K1 = 1 and K2 > 1, we require one of the

�k’s to be 1.

Remark 4.1. The random effects b1 and b2 characterize the underlying health conditions for the

asymptomatic and symptomatic events, respectively. The random effect for the asymptomatic events

affects the kth symptomatic event through the unknown coefficient �k. For example, in the ARIC study,

b1 represents the common pathways for diabetes and hypertension, such as obesity, inflammation,

oxidative stress, and insulin resistance, which also serve as potential risk factors for MI, stroke, and

death. The random effect b2 represents the underlying propensity for major cardiovascular diseases

and death.

Suppose that the asymptomatic event time Tk (k = 1, . . . ,K1) is monitored at a sequence

of positive time points Uk1 < · · · < Uk,Mk
and is known to lie in the interval (Lk, Rk], where

Lk = max{Ukl : Ukl < Tk, l = 0, . . . ,Mk}, and Rk = min{Ukl : Ukl � Tk, l = 1, . . . ,Mk + 1}, with

Uk0 = 0 and Uk,Mk+1 = 1. Let Ck denote the censoring time on the symptomatic event time Tk

(k = K1 + 1, . . . ,K) such that we observe Yk = min(Tk, Ck) and �k = I(Tk  Ck), where I(·) is the

indicator function. For a random sample of n subjects, the data consist of {Oi : i = 1, . . . , n}, where

Oi = {Lik, Rik,Xik(·) : k = 1, . . . ,K1} [ {Yik,�ik,Xik(·) : k = K1 + 1, . . . ,K}.

We assume that {Uikl : k = 1, . . . ,K1; l = 1, . . . ,Mik} and {Cik : k = K1 + 1, . . . ,K} are

independent of {Tik : k = 1, . . . ,K} and bi ⌘ (bi1, bi2) conditional on {Xik(·) : k = 1, . . . ,K}. Then,

the likelihood concerning the parameters ✓ ⌘ (�,�,⌃) and A ⌘ (⇤1, . . . ,⇤K) is

n
Y

i=1

Z

bi

K1
Y

k=1



exp

⇢

�
Z Lik

0
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TXik(s)+bi1d⇤k(s)
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exp
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��

 (bi;⌃)dbi,

where  (bi;⌃) =

Q2
j=1 �(bij ;�

2
j ), �(bij ;�2j ) = (2⇡�2j )

�1/2
exp{�b2ij/(2�

2
j )}, ⇤k(t) =

R t
0 �k(s)ds, and

exp{�
R1
0 e�

TXik(s)+bi1d⇤k(s)} = 0.

74



4.2.2 Estimation Procedure

We adopt the nonparametric maximum likelihood estimation approach. For k = 1, . . . ,K1, let

0 = tk0 < tk1 < tk2 < · · · < tk,mk
< 1 be the ordered sequence of all Lik and Rik with Rik < 1.

For k = K1 + 1, . . . ,K, let 0 = tk0 < tk1 < tk2 < · · · < tk,mk
< 1 be the ordered sequence of

all Yik with �ik = 1. The estimator for ⇤k (k = 1, . . . ,K) is a step function that jumps only at

tk1, . . . , tk,mk
with respective jump sizes �k ⌘ (�k1, . . . ,�k,mk

). We maximize the objective function

Ln(✓,A) =

n
Y

i=1

Z

bi

(

K1
Y

k=1

g(1)ik (bi1;�,�k)

)

8

<

:

K
Y

k=K1+1

g(2)ik (bi;�,�k)

9

=

;

 (bi;⌃)dbi,

over ✓ and �1, . . . ,�K , where

g(1)ik (bi1;�,�k) = exp

0

@�
X

tklLik

e�
TXikl+bi1�kl

1

A� I(Rik < 1) exp

0

@�
X

tklRik

e�
TXikl+bi1�kl

1

A ,

g(2)ik (bi;�,�k) =

h

⇤k{Yik}e�
TXik(Yik)+�kbi1+bi2

i�ik

exp

0

@�
X

tklYik

e�
TXikl+�kbi1+bi2�kl

1

A ,

Xikl = Xik(tkl) for k = 1, . . . ,K and l = 1, . . . ,mk, and ⇤k{Yik} is the jump size of ⇤k at Yik.

Direct maximization of the objective function is difficult due to the lack of analytical expressions

for �1, . . . ,�K . We introduce latent Poisson random variables to form a likelihood equivalent to

the objective function such that the maximum likelihood estimators can be easily obtained via

a simple EM algorithm. For k = 1, . . . ,K1, we denote R⇤
ik = I(Rik = 1)Lik + I(Rik < 1)Rik

and introduce independent Poisson random variables Wikl (l = 1, . . . ,mk, tkl  R⇤
ik) with means

�kl exp(�
TXikl + bi1). Conditional on bi1, the likelihood function of {Wikl; l = 1, . . . ,mk, tkl  R⇤

ik}

is

mk
Y

l=1,tklR⇤
ik

⇢

1

Wikl!

⇣

�kle
�TXikl+bi1

⌘Wikl

exp
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��kle�
TXikl+bi1

⌘

�

.

Let Aik =

P

tklLik
Wikl and Bik = I(Rik < 1)

P

Lik<tklRik
Wikl. The observed-data likelihood
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for Aik = 0 and Bik > 0 given bi1 is equal to

exp

0

@�
X

tklLik

e�
TXikl+bi1�kl

1

A� I(Rik < 1) exp

0

@�
X

tklRik

e�
TXikl+bi1�kl

1

A ,

which is the same as g(1)ik (bi1;�,�k). Therefore, the objective function Ln(✓,A) can be viewed as

the observed-data likelihood for {Aik = 0, Bik > 0 : i = 1, . . . , n; k = 1, . . . ,K1} [ {Yik,�ik : i =

1, . . . , n; k = K1 + 1, . . . ,K} with (Wikl, bi) (i = 1, . . . , n; k = 1, . . . ,K1; l = 1, . . . ,mk, tkl  R⇤
ik) as

latent variables. In view of the foregoing results, we propose an EM algorithm treating Wikl and bi

as missing data.

In the M-step, we maximize the conditional expectation of the complete-data log-likelihood given

the observed data so as to update the parameters. Specifically, we update � by solving the equation

n
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where bE(·) denotes the conditional expectation given the observed data eOi (i = 1, . . . , n), with

eOi = {Aik = 0, Bik > 0,Xik(·) : k = 1, . . . ,K1}[{Yik,�ik,Xik(·) : k = K1+1, . . . ,K}. We update

�k by solving the equation

n
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�ik
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We update �k using

�kl =
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ik)
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for k = 1, . . . ,K1 and l = 1, . . . ,mk and

�kl =

Pn
i=1�ikI(Yik = tkl)

Pn
i=1 I(Yik � tkl) bE
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exp

�

�TXikl + �kbi1 + bi2
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for k = K1 + 1, . . . ,K and l = 1, . . . ,mk. Finally, we update �2j by �2j =

Pn
i=1

bE(b2ij)/n for j = 1, 2.

In the E-step, we evaluate the conditional expectation of Wikl (k = 1, . . . ,K1; l = 1, . . . ,mk, tkl 

R⇤
ik) and the other terms of bi given the observed data eOi for i = 1, . . . , n. Specifically, the conditional

expectation of Wikl (k = 1, . . . ,K1; l = 1, . . . ,mk, tkl  R⇤
ik) given eOi and bi is

I(Lik < tkl  Rik < 1)

�kl exp
�

�TXikl + bi1
�

1� exp

⇣

�
P

Lik<tkl0Rik
�kl0e�

TXikl0+bi1
⌘ .

Note that the density of bi given eOi is proportional to {
QK1

k=1 g
(1)
ik (bi1;�,�k)}

⇥{
QK

k=K1+1 g
(2)
ik (bi;�,�k)} (bi;⌃). We evaluate the conditional expectation of Wikl and the other

terms through numerical integration over bi with Gauss-Hermite quadratures.

We iterate between the E-step and M-step until convergence. In the M-step, the high-dimensional

nuisance parameters �kl (k = 1, . . . ,K; l = 1, . . . ,mk) are calculated explicitly, such that inversion

of high-dimensional matrices is avoided. We denote the final estimators for ✓ and A as b✓ ⌘ (

b�, b�, b⌃)

and bA ⌘ (

b

⇤1, . . . , b⇤K).

4.2.3 Asymptotic Theory

We establish the asymptotic properties of (b✓, bA) under the following regularity conditions.

Condition 1. The true value of ✓, denoted by ✓0 ⌘ (�0,�0,⌃0), belongs to the interior of a

known compact set ⇥ ⌘ B ⇥ G ⇥ S, where B ⇢ Rp, G ⇢ RK2 , and S ⇢ (0,1)⇥ (0,1).

Condition 2. The true value ⇤k0(·) of ⇤k(·) is strictly increasing and continuously differentiable

with ⇤k0(0) = 0.

Condition 3. For k = 1, . . . ,K1, the monitoring times have finite support Uk with the least

upper bound ⌧k. The number of potential monitoring times Mk is positive with E(Mk) < 1. There

exists a positive constant ⌘ such that Pr{min1kK1,0m<Mk
(Uk,m+1 � Ukm) � ⌘|Mk,Xk} = 1. In

addition, there exists a probability measure µk in Uk such that the bivariate distribution function of

(Ukm, Uk,m+1) conditional on (Mk,Xk) is dominated by µk ⇥ µk and its Radon-Nikodym derivative,

denoted by efkm(u, v;Mk,Xk), can be expanded to a positive and twice-continuously differentiable

function in the set {(u, v) : 0  u  ⌧k, 0  v  ⌧k, v � u � ⌘}.

Condition 4. For k = K1 + 1, . . . ,K, let ⌧k denote the study duration time and Uk = [0, ⌧k].

There exists a positive constant � such that Pr(Ck � ⌧k|Xk) = Pr(Ck = ⌧k|Xk) � � almost surely.

Condition 5. With probability 1, Xk(·) has bounded total variation in Uk. If there exists a
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constant vector a1 and a deterministic function a2k(t) such that aT
1 Xk(t)+a2k(t) = 0 for any t 2 Uk

and any k 2 {1, . . . ,K} with probability 1, then a1 = 0 and a2k(t) = 0 for any t 2 Uk and any

k 2 {1, . . . ,K}.

Remark 4.2. Conditions 1, 2, and 5 are standard conditions for failure time regression with time-

dependent covariates. Condition 3 pertains to the joint distribution of monitoring times of the

asymptomatic events; it requires that two adjacent monitoring times are separated by at least ⌘;

otherwise, the data may contain exact observations such that different theoretical treatment is needed.

The dominating measure µk is chosen as the Lebesgue measure if the monitoring times are continuous

random variables and as the counting measure if monitorings occur only at a finite number of time

points. The number of potential monitoring times Mk can be fixed or random, is possibly different

among study subjects and event types, and is allowed to depend on covariates. Condition 4 implies

that there is a positive probability for the kth symptomatic event to be observed in the time interval

[0, ⌧k].

We state the strong consistency of (b✓, bA) and the weak convergence of b✓ in two theorems.

Theorem 4.1. Under Conditions 1�5, kb✓ � ✓0k !a.s. 0, and kb⇤k � ⇤k0kl1(Uk) !a.s. 0, where

k · kl1(Uk) denotes the supremum norm on Uk for k = 1, . . . ,K.

Theorem 4.2. Under Conditions 1�5, n1/2
(

b✓�✓0) converges weakly to a (p+K2+2)-dimensional

zero-mean normal random vector with a covariance matrix that attains the semiparametric efficiency

bound.

The proofs of all theorems are provided in Section 4.6.

We propose two approaches to estimate the covariance matrix of b✓. The first approach makes

use of the profile likelihood (Murphy and Van der Vaart, 2000). Specifically, we define the profile

log-likelihood function

pln(✓) = max

A2C1⇥···⇥CK
logLn(✓,A),

where Ck is the set of step functions with non-negative jumps at tkl (k = 1, . . . ,K; l = 1, . . . ,mk).
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We estimate the covariance matrix of b✓ by the inverse of

n
X

i=1

0

B

B

B

B

B

@

pli(b✓ + hne1)� pli(b✓)

hn
...

pli(b✓ + hnep+K2+2)� pli(b✓)

hn

1

C

C

C

C

C

A

⌦2

,

where pli is the ith subject’s contribution to pln, ej is the jth canonical vector in Rp+K2+2, a⌦2
= aaT,

and hn is a constant of order n�1/2. To evaluate the profile likelihood, we use the EM algorithm of

Section 2.2 but only update ⇤1, . . . ,⇤K in the M-step.

Alternatively, we approximate the asymptotic distribution of b✓ by bootstrapping the observations.

In particular, we draw a simple random sample of size n with replacement from the observed data

{Oi : i = 1, . . . , n}. Let b✓
⇤

be the estimator of ✓ in the bootstrap sample. The empirical distribution

of b✓
⇤

can be used to approximate the distribution of b✓. Confidence intervals for ✓0 can be constructed

by the Wald method (with the variance of b✓
⇤
) or from the empirical percentiles of b✓

⇤
. The following

theorem states the asymptotic properties of b✓
⇤
, thereby validating the bootstrap procedure.

Theorem 4.3. Under Conditions 1�5, the conditional distribution of n1/2
(

b✓
⇤ � b✓) given the data

converges weakly to the asymptotic distribution of n1/2
(

b✓ � ✓0).

4.2.4 Dynamic Prediction

Given the fitted joint model, we can predict future events by updating the event history. For

a subject with covariate X, let O(t) denote the event history at time t > 0, which includes the

interval-censored observations of the asymptomatic events {Lk(t), Rk(t) : k = 1, . . . ,K1}, and the

right-censored observations of the symptomatic events {Yk(t),�k(t) : k = K1 + 1, . . . ,K}.

If no event history is available, the density of the random effect b can be estimated by  (b; b⌃).

We estimate the survival function of Tk, denoted by P (Tk � t|X), by

Z

b
sk(t;X, b) (b; b⌃)db,
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where sk(t;X, b) is the conditional survival probability given b that takes the form

sk(t;X, b) =

8

>

>

<

>

>

:

exp

n

�
R t
0 e

b�T
Xk(u)+b1db⇤k(u)

o

k = 1, . . . ,K1

exp

n

�
R t
0 e

b�T
Xk(u)+b�kb1+b2db⇤k(u)

o

k = K1 + 1, . . . ,K

,

and the integral is evaluated by numerical integration with Gauss-Hermite quadratures. In some

studies, one of the symptomatic event is terminal (e.g., death) such that its occurrence precludes the

development of other events. Without loss of generality, we assume the Kth event is terminal and

estimate the cumulative incidence function of the kth event (k = 1, . . . ,K � 1), i.e., P (Tk  t, Tk 

TK |X), by

Z

b



{1� sk(t;X, b)} sK(t;X, b) +

Z t

0
{1� sk(u;X, b)} sK(u;X, b)e

b�T
XK(u)+b�Kb1+b2db⇤K(u)

�

⇥ (b; b⌃)db.

At time t0 > 0, we update the posterior density of b given the event history O(t0) so as to

perform dynamic prediction. Note that the posterior density of b is proportional to

J(b; t0,X) ⌘
K1
Y

k=1

{sk(Lk(t0);X, b)� sk(Rk(t0);X, b)}

⇥
K
Y

k=K1+1

 

sk(Yk(t0);X, b)



b

⇤k{Yk(t0)}e
b�T

Xk{Yk(t0)}+b�kb1+b2

��k(t0)
!

 (b; b⌃).

If the subject has not developed the kth event or the terminal event by time t0, i.e., Yk(t0) =

YK(t0) = t0 and �k(t0) = �K(t0) = 0, we estimate the conditional cumulative incidence function of

the kth event, P (Tk  t, Tk  TK |O(t0),X), by

Z

b

J(b; t0,X)

sk(t0;X, b)sK(t0;X, b)
R

b0 J(b
0
; t0,X)db0



{sk(t0;X, b)� sk(t;X, b)} sK(t;X, b)

+

Z t

s
{sk(t0;X, b)� sk(u;X, b)} sK(u;X, b)e

b�T
XK(u)+b�Kb1+b2db⇤K(u)

�

 (b; b⌃)db.

In practice, it is desirable to identify subjects who are at increased risk as the event history

is accumulating. In the same vein as the risk score under the standard proportional hazards

80



model, we use the risk score b�
T
Xk(t0) + b�kbb1(t0) + bb2(t0) to dynamically predict the kth event

(k = K1+1, . . . ,K), where bb(t0) ⌘ (

bb1(t0),bb2(t0)) is a suitable estimator of b given the event history

O(t0). The estimator bb(t0) can be the posterior mean or mode of b or an imputed value from the

posterior distribution. For example, the risk score using the posterior mean is given by

b�
T
Xk(t0) +

R

b(b�kb1 + b2)J(b; t0,X)db
R

b J(b; t0,X)db
.

The risk score quantifies the subject-specific risk and can be very useful to both individual patients

and clinicians when making decisions about lifestyle modifications and preventive medical treatments.

4.3 Simulation Studies

We conducted simulation studies to assess the performance of the proposed methods. We

considered one time-independent covariate X1 ⇠ Unif(0, 1) and one time-dependent covariate

X2(t) = I(t  V )B1+I(t > V )B2, where B1 and B2 are independent Bernoulli(0.5), V ⇠ Unif(0, ⌧),

and ⌧ = 4. We considered two asymptomatic events and two symptomatic events. We set

Xk = ek ⌦ (X1, X2)
T, where ek is the kth canonical vector in R4, and ⌦ denotes the Kronecker

product. We set � = (0.5, 0.4, 0.5,�0.2,�0.5, 0.5,�0.5, 0.5)T, ⇤1(t) = 0.5t, ⇤k(t) = log{1+t/(k�1)}

for k = 2, 3, 4, �3 = �4 = 0.25, and �21 = �22 = 1. Both symptomatic events were censored by

C ⇠ Unif(2⌧/3, ⌧). The series of monitoring times were generated sequentially, with Um =

Um�1 + 0.1 + Unif(0, 0.5) for m � 1 and U0 = 0. The last monitoring time is the largest Um that is

smaller than C. We set n = 100 or 200 and simulated 2,000 replicates. For each dataset, we applied

the proposed EM algorithm by setting the initial value of � to 0, the initial values of �k and �2k to

1 and the initial value of �kl to 1/mk. We used 20 quadrature points for integration with respect

to each random effect and set the convergence threshold to 10

�3. For variance estimation, we set

hn = 5/
p
n for profile likelihood and used 100 bootstrap samples.

Table 4.1 summarizes the simulation results. The biases for all parameter estimators are small,

especially for n = 200. Both the profile-likelihood and bootstrap variance estimators for b� are

accurate, especially for n = 200. Both variance estimators for b� tend to overestimate the true

variabilities, but the coverage probabilities of the confidence intervals get closer to the nominal level

as sample size increases. The profile-likelihood variance estimators for b�21 and b�22 overestimate the

true variabilities, while the bootstrap variance estimators for b�21 and b�22 accurately reflect the true
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Table 4.1: Summary statistics for the simulation studies without a terminal event

n = 100 n = 200

Profile Bootstrap Profile Bootstrap
Bias SE SEE CP SEE CP Bias SE SEE CP SEE CP

�11 0.006 0.585 0.597 0.961 0.627 0.967 0.027 0.405 0.399 0.947 0.412 0.953
�12 0.029 0.327 0.321 0.941 0.348 0.960 0.019 0.222 0.216 0.949 0.228 0.953
�21 0.015 0.623 0.609 0.946 0.648 0.963 0.014 0.410 0.409 0.951 0.424 0.958
�22 �0.005 0.341 0.329 0.940 0.355 0.962 �0.002 0.225 0.222 0.951 0.233 0.961
�31 �0.022 0.617 0.635 0.957 0.610 0.949 �0.004 0.416 0.428 0.960 0.420 0.948
�32 �0.002 0.319 0.338 0.965 0.322 0.949 0.009 0.221 0.229 0.958 0.222 0.947
�41 �0.012 0.623 0.651 0.969 0.629 0.955 0.006 0.449 0.440 0.947 0.431 0.942
�42 0.004 0.330 0.348 0.967 0.332 0.950 �0.001 0.231 0.235 0.955 0.229 0.945

�1 �0.012 0.227 0.252 0.979 0.260 0.971 �0.012 0.159 0.171 0.962 0.170 0.960
�2 �0.013 0.237 0.260 0.976 0.266 0.972 �0.016 0.162 0.173 0.966 0.177 0.963

�2
1 0.062 0.445 0.751 0.978 0.493 0.956 0.031 0.317 0.482 0.982 0.318 0.946
�2
2 �0.102 0.413 0.510 0.993 0.482 0.971 �0.062 0.297 0.335 0.987 0.312 0.974
SE and SEE denote, respectively, the empirical standard error and mean standard error estimator.

CP stands for the empirical coverage probability of the 95% confidence interval based on the Wald

method for the profile-likelihood approach and the 95% symmetric confidence interval for the

bootstrap approach. For �1, �2, �
2
1 , and �2

2 , bias and SEE are based on the median instead of the

mean, and SE is based on the mean absolute deviation. For �2
1 and �2

2 , the confidence intervals are

based on the log transformation.

variabilities. Figure 4.1(a) shows the estimation of the baseline survival functions with sample size

n = 200. The estimators are virtually unbiased.

We considered a second setup with an additional terminal event. We set Xk = ek ⌦ (X1, X2)
T,

where ek is the kth canonical vector in R5. In addition, we set � = (0.5, 0.4, 0.5,�0.2,�0.5, 0.5,

�0.5, 0.5, 0.3,�0.2)T, ⇤5(t) = log(1 + t/4), and �5 = 0.25. The terminal event was also censored by

C. The results are shown in Table 4.2 and Figure 4.1(b). The conclusions are similar to the case of

no terminal event.

We assessed the performance of dynamic prediction based on the conditional cumulative incidence

function in the setting with a terminal event. Suppose that at the first monitoring time t0 = 1, event

2 has occurred but events 1, 3, and 4 have not. Figure 4.2 shows the estimation of the baseline

cumulative incidence functions (pertaining to X = 0) for events 3 and 4 given the event history at

time t0 = 1. The estimators slightly underestimate the true values at the right tail, but the biases

get smaller as n increases.
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Figure 4.1: Estimation of (a) the baseline survival function and (b) the baseline cumulative incidence
function based on n = 200. The solid black curve and dashed red curve pertain, respectively, to the
true value and mean estimate from the proposed method.
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Table 4.2: Summary statistics for the simulation studies with a terminal event

n = 100 n = 200

Profile Bootstrap Profile Bootstrap
Bias SE SEE CP SEE CP Bias SE SEE CP SEE CP

�11 0.058 0.825 0.797 0.951 0.879 0.968 0.024 0.505 0.515 0.959 0.544 0.969
�12 0.031 0.445 0.436 0.955 0.502 0.980 0.020 0.291 0.286 0.946 0.310 0.964
�21 0.042 0.780 0.794 0.960 0.881 0.980 0.022 0.521 0.517 0.955 0.549 0.961
�22 �0.019 0.452 0.437 0.948 0.498 0.978 �0.013 0.295 0.288 0.944 0.311 0.961
�31 �0.019 0.675 0.724 0.968 0.694 0.962 �0.014 0.457 0.477 0.957 0.468 0.954
�32 0.007 0.353 0.393 0.973 0.372 0.956 0.005 0.245 0.260 0.963 0.253 0.957
�41 �0.027 0.716 0.775 0.971 0.749 0.959 �0.020 0.483 0.505 0.963 0.500 0.960
�42 0.008 0.385 0.421 0.972 0.405 0.968 0.014 0.268 0.276 0.953 0.271 0.948
�51 0.019 0.631 0.680 0.970 0.659 0.959 �0.004 0.440 0.451 0.959 0.446 0.955
�52 �0.009 0.339 0.361 0.969 0.343 0.950 0.007 0.230 0.240 0.957 0.234 0.950

�1 0.004 0.313 0.331 0.972 0.490 0.985 �0.002 0.225 0.226 0.967 0.264 0.977
�2 0.009 0.374 0.410 0.982 0.549 0.980 0.008 0.261 0.277 0.977 0.311 0.980
�3 0.019 0.335 0.371 0.980 0.502 0.980 0.003 0.244 0.252 0.974 0.281 0.974

�2
1 0.134 0.598 0.933 0.969 0.753 0.950 0.077 0.424 0.573 0.970 0.453 0.945
�2
2 �0.129 0.390 0.519 0.993 0.532 0.974 �0.047 0.289 0.332 0.988 0.327 0.981
See the Note to Table 4.1.
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Figure 4.2: Estimation of the baseline cumulative incidence function conditional on the event history.
The solid black curve, dotted blue curve, and dashed red curve pertain, respectively, to the true
value and the mean estimates from the proposed method with n = 100 and n = 200.
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4.4 ARIC Study

ARIC is a perspective epidemiological cohort study conducted in four U.S. communities: Forsyth

County, NC; Jackson, MS; Minneapolis, MN; and Washington County, MD. A total of 15,792

participants received a baseline examination between 1987 and 1989 and four subsequent examinations

in 1990-1992, 1993-1995, 1996-1998, and 2011-2013. At each examination, medical data were

collected, such that interval-censored observations for diabetes and hypertension were obtained. The

participants were also followed for cardiovascular diseases through reviews of hospital records, such

that potentially right-censored observations on MI, stroke, and death were collected.

We related the disease incidence to race, sex, and five baseline risk factors: age, body mass

index (BMI), glucose level, systolic blood pressure, and smoking status. Since the Jackson cohort is

composed of black subjects only, and neither Minneapolis nor Washington County cohorts contain

black subjects, we included the cohort⇥race indicators as predictors. We excluded subjects with

prevalent cases at baseline or missing covariate values to obtain a total of 8,728 subjects.

Table 4.3 shows the proportions of incidence cases, non-cases during follow-up, and the observa-

tions with no information (i.e., no observations at the scheduled visits) for the asymptomatic events.

Less than 20% of the subjects have developed diabetes, while approximately half of the subjects

have developed hypertension during the study. Table 4.4 shows the proportions of incidence cases

and non-cases for the symptomatic events. A small proportion of subjects have developed MI or

stroke during the study.

Table 4.3: Distribution of observations for the asymptomatic events in the ARIC study

Event Incidence Case Non-case During Follow-up No Information
Diabetes 1508 (17.3%) 6771 (77.6%) 449 (5.1%)

Hypertension 4081 (46.8%) 4202 (48.1%) 445 (5.1%)

Table 4.4: Distribution of observations for the symptomatic events in the ARIC study

Event Incidence Case Non-case
MI 726 (8.3%) 8002 (91.7%)

Stroke 445 (5.1%) 8283 (94.9%)
Death 2503 (28.7%) 6225 (71.3%)

We jointly modeled the asymptomatic and symptomatic events in the ARIC study with equations

(4.1) and (4.2). Table 4.5 and 4.6 show the estimation results for the regression parameters. Several
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Table 4.5: Estimation results for the regression parameters of the asymptomatic events in the ARIC
study

Diabetes Hypertension
Covariate Estimate Std error p-value Estimate Std error p-value

Forsyth County, white �0.5332 0.1817 0.0033 �0.5032 0.0615 <0.0001
Jackson, black �0.1356 0.1806 0.4530 �0.1075 0.0673 0.1104

Minneapolis, white �0.9415 0.1802 <0.0001 �0.5747 0.0579 <0.0001
Washington County, white �0.3778 0.1778 0.0336 �0.3798 0.0592 <0.0001

Age �0.0093 0.0057 0.1025 0.0166 0.0036 <0.0001
Male �0.0655 0.0593 0.2694 �0.2329 0.0396 <0.0001
BMI 0.0911 0.0059 <0.0001 0.0254 0.0044 <0.0001

Glucose 0.1075 0.0033 <0.0001 0.0004 0.0023 0.8744
Systolic blood pressure 0.0096 0.0026 0.0003 0.0780 0.0022 <0.0001

Smoker 0.4576 0.0674 <0.0001 0.3134 0.0468 <0.0001
The blacks in Forsyth County form the reference group for the cohort⇥race variables.

characteristics and baseline risk factors are found to be predictive of the events. Older subjects have

higher risks of hypertension, MI, stroke, and death than younger subjects. Males have lower risk

of hypertension but higher risks of MI, stroke, and death than females. Smokers have significantly

higher risks for all events than non-smokers. In addition, higher baseline BMI increases the risks of

diabetes, hypertension, and MI; higher baseline glucose level increases the risks of diabetes, stroke,

and death; and higher baseline value of systolic blood pressure increases the risks of all considered

events.
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Table 4.6: Estimation results for the regression parameters of the symptomatic events in the ARIC study

MI Stroke Death
Covariate Estimate Std error p-value Estimate Std error p-value Estimate Std error p-value

Forsyth County, white 0.0467 0.2477 0.8504 0.1308 0.3688 0.7228 �0.2475 0.1049 0.0183
Jackson, black �0.3121 0.2681 0.2444 0.6622 0.3755 0.0778 0.1871 0.1118 0.0941

Minneapolis, white �0.1052 0.2476 0.6710 0.0507 0.3688 0.8907 �0.3262 0.1040 0.0017
Washington County, white 0.1953 0.2457 0.4266 0.5013 0.3653 0.1700 �0.1194 0.1032 0.2471

Age 0.0805 0.0078 <0.0001 0.1121 0.0099 <0.0001 0.1465 0.0054 <0.0001
Male 0.9279 0.0901 <0.0001 0.4050 0.1071 0.0002 0.6108 0.0545 <0.0001
BMI 0.0273 0.0101 0.0068 �0.0010 0.0123 0.9356 0.0080 0.0060 0.1847

Glucose 0.0059 0.0046 0.2007 0.0215 0.0057 0.0002 0.0104 0.0030 0.0006
Systolic blood pressure 0.0135 0.0036 0.0002 0.0192 0.0047 <0.0001 0.0089 0.0022 0.0001

Smoker 1.2378 0.0888 <0.0001 1.0023 0.1127 <0.0001 1.3045 0.0599 <0.0001
See the Note to Table 4.6.
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Table 4.7: Estimation results for the random effects in the ARIC study

Parameter Estimate Std error p-value
�
MI

0.7145 0.1258 <0.0001
�
Stroke

0.9045 0.1450 <0.0001
�
Death

0.7184 0.1026 <0.0001
�2
1 0.5801 0.1215 <0.0001
�2
2 1.1465 0.1165 <0.0001

The estimation results for the remaining parametric components are shown in Table 4.7. The

variance components �21 and �22 are significantly larger than zero, indicating strong correlation

among the asymptomatic events and among the symptomatic events. The parameters �
MI

, �
Stroke

,

and �
Death

are also significantly larger than zero, reflecting the strong positive dependence of the

symptomatic events on the asymptomatic events.

To evaluate the performance of the proposed prediction methods, we randomly divided the study

cohort into training and testing sets with equal numbers of subjects. We analyzed the training set to

obtain parameter estimates, based on which we calculated the risk scores for subjects in the testing

set, where the posterior means of the random effects were used. Specifically, at examinations 2, 3,

and 4, we calculated the risk scores of MI or stroke for subjects who have not developed the disease.

We evaluated the performance of the prediction using C-index (Uno et al., 2011) and compared

it with that of the risk scores based on the standard proportional hazards model. The values of

the C-index based on twenty randomly divided training/test tests are shown in Figure 4.3. The

proposed risk score performs better than the risk score of the standard proportional hazards model

at all examinations for all symptomatic events.

Figure 4.4 shows the estimated conditional cumulative incidence functions of MI and stroke for

two smokers and two non-smokers who have different event histories at year 3 but with the same

values of other risk factors. The risks of MI and stroke are considerably higher for the smokers

than the non-smokers with the same event history. The estimated conditional probabilities for the

subjects who have developed both diabetes and hypertension are higher than those who have not

developed diabetes or hypertension.

Figures 4.5(a) and 4.5(b) illustrate the estimation of the conditional cumulative incidence

functions of stroke given different event histories. We estimated the cumulative incidence functions

at baseline and then updated them at two examinations at year 3 and year 6. The development of
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Figure 4.3: Boxplots of the estimates of the C-index at each examination in the ARIC study. The
red and blue boxes pertain to the standard proportional hazards model and the proposed joint model,
respectively.
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Figure 4.4: Estimation of the conditional cumulative incidence functions of MI and stroke for a
50-year-old white female residing in Forsyth County, NC, with BMI 40 kg/m2, glucose 98 mg/dl,
and systolic blood pressure 113 mmHg. The solid curves pertain to smokers, while the dashed curves
pertain to non-smokers. The black curves pertain to subjects who have not developed diabetes or
hypertension by year 3. The red curves pertain to subjects who have developed both diabetes and
hypertension by year 3.
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diabetes, hypertension, and MI substantially increases the incidence of stroke, whereas the history

of no diabetes, hypertension, or MI over the first six years entails lower incidence of stroke. For

comparison, we show in Figure 4.5(c) the estimated cumulative incidence function of stroke under the

univariate model of Fine and Gray (1999), which does not condition on the event history and thus

reflects the population average. This estimate lies between the two previous conditional estimates,

as expected.

4.5 Discussion

In this chapter, we formulated the joint distribution of multiple right- and interval-censored

events with proportional hazards models with random effects. We characterized the correlation

structure of the asymptomatic and symptomatic events through two independent random effects and

used unknown coefficients to capture the effects of the asymptomatic events on the symptomatic

events. To our knowledge, no such modelling approach has been previously adopted.

We studied efficient nonparametric maximum likelihood estimation of the proposed joint model

and established the asymptotic properties of the estimators through innovative use of modern

empirical process theory. We showed the Glivenko-Cantelli and Donsker properties for the classes

of functions of interest by carefully evaluating their bracketing numbers. The estimators of the

cumulative baseline hazard functions for the symptomatic and asymptomatic events converge at

different (n1/2 and n1/3) rates, such that separate treatments were required in the proofs.

We proposed nonparametric bootstrap for variance estimation as an alternative to the conventional

profile-likelihood approach. We established the validity of the bootstrap procedure and showed

through simulation studies that bootstrap yields more accurate estimators of the variabilities for

the variance components. To our knowledge, bootstrap with interval-censored data has not been

rigorously studied. In large studies, bootstrap may be overly time-consuming. It would be worthwhile

to develop other versions of bootstrap, such as subsampling bootstrap, to reduce computational

burden.

ARIC is one of many epidemiological cohort studies with multiple symptomatic and asymptomatic

events. Such events are also available in electronic health records. Indeed, other types of outcomes,

such as longitudinal repeated measures and recurrent events, may also be available. The proposed

joint model can be extended to accommodate additional multivariate outcomes and improve dynamic

prediction.
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Figure 4.5: Estimation of the cumulative incidence of stroke for a 50-year-old white female smoker
residing in Forsyth County, NC, with BMI 40 kg/m2, glucose 98 mg/dl, and systolic blood pressure
113 mmHg: (a) proposed model with MI developed at year 5 and diabetes and hypertension developed
between baseline and year 3; (b) proposed model without MI, diabetes or hypertension by year 6;
and (c) Fine and Gray model.
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4.6 Technical Details

Let Pn denote the empirical measure for n independent subjects, P denote the true probability

measure, and Gn ⌘ p
n(Pn � P) denote the empirical process. The proofs of Theorems 4.1, 4.2, and

4.3 make use of three lemmas, which are stated and proved in Section 4.6.4.

4.6.1 Proof of Theorem 4.1

We first show the existence of the estimator (b✓, bA). Let fM =

PK
k=1 supt2Uk

supXk(t),� |�TXk(t)|+
PK

k=K1+1 |�k|. For any (✓,A) in the parameter space, the integrand in the ith term of ln(✓,A) is

bounded by

O(1)

K
Y

k=K1+1

"

⇣

⇤k{Yik}e
fM |bi|

⌘�ik
⇢

1 +

Z Yik

0
e�

TXik(s)+�kbi1+bi2d⇤k(s)

���ik
#

 (bi;⌃).

Thus, ln(✓,A) attains the maximum for finite values of ⇤k for k = K1 + 1, . . . ,K, so the estimator

(

b✓, bA) exists by allowing b⇤k(⌧k) = 1 for k = 1, . . . ,K1.

We shall prove that lim supn
b

⇤k(⌧k � ✏) < 1 with probability 1 for any ✏ > 0 and k = 1, . . . ,K1

and that lim supn
b

⇤k(⌧k) < 1 with probability 1 for k = K1 + 1, . . . ,K. By definition, ln(b✓, bA)�

ln(✓,A) � 0 for any (✓,A) in the parameter space. We wish to show that if lim supn
b

⇤k(⌧k � ✏) = 1

for some ✏ > 0 for k = 1, . . . ,K1 or b⇤k(⌧k) = 1 for k = K1 + 1, . . . ,K, then this difference must

be negative, which is a contradiction. The key is to construct a suitable function in the parameter

space that converges uniformly to A0.

For k = 1, . . . ,K1, we define the step function e⇤k with e⇤k(t) = ⇤k0(t) for t = tk1, . . . , tk,mk
such

that it converges uniformly to ⇤k0. For k = K1 + 1, . . . ,K, we construct function e⇤k by imitating

b

⇤k. Specifically, by differentiating ln(✓,A) with respect to ⇤k{Yik} and setting the derivative to 0,

we find that b⇤k satisfies the equation

�ik

b

⇤k{Yik}
=

n
X

j=1

R

b J1
⇣

b,Oj ;
b�, b�, bA

⌘

J2k
⇣

Yik, b,Oj ;
b�, b�k

⌘

�
⇣

b; b⌃
⌘

db
R

b J1
⇣

b,Oj ;
b�, b�, bA

⌘

�
⇣

b; b⌃
⌘

db
, (4.3)

where

J1 (b,O;�,�,A) =

K1
Y

k=1



exp

⇢

�
Z Lk

0
e�

TXk(s)+b1d⇤k(s)

�

� exp

⇢

�
Z Rk

0
e�

TXk(s)+b1d⇤k(s)

��
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⇥
K
Y

K1+1



n

e�
TXk(Yk)+�kb1+b2

o�k

exp

⇢

�
Z Yk

0
e�

TXk(s)+�kb1+b2d⇤k(s)

��

,

and

J2k (t, b,O;�, �k) = �I(Yk � t)e�
TXk(t)+�kb1+b2 .

We replace b✓ and bA on the right side of equation (4.3) by ✓0 and A0, respectively, to obtain a similar

function. We denote the solution as e⇤k. By the Glivenko-Cantelli result in Lemma 1, e⇤k converges

uniformly to ⇤k0 in Uk for k = K1 + 1, . . . ,K. We denote eA = (

e

⇤1, . . . , e⇤K).

Clearly, n�1
n

ln(b✓, bA)� ln(✓0, eA)

o

� 0. Let �ikm = I(Uikm < Tik  Uik,m+1) for i = 1, . . . , n,

k = 1, . . . ,K1, and m = 0, . . . ,Mik, where Uik,Mik+1 = 1. By the fact that e�|x|
(1+ y)  1+ exy 

e|x|(1 + y), we obtain

0  n�1ln(b✓, bA)� n�1ln(✓0, eA)

 O(1) + n�1
n
X

i=1

K
X

k=K1+1

log

⇣

nb⇤k{Yik}
⌘

+n�1
n
X

i=1

2

4

log

Z

b
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Y

k=K1+1

(

e
b�T

Xik(Yik)+�kbi1+bi2

1 +

R Yik

0 eb�
T
Xik(t)+�kbi1+bi2db⇤k(t)

)�ik

�
⇣

b; b⌃
⌘
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3

5

 O(1) + n�1
n
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i=1

K
X
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log

⇣

nb⇤k{Yik}
⌘

+n�1
n
X

i=1

0
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@

log

Z

b

K
Y
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2

4

e
fMkbk

e�fMkbk
n

1 +

b

⇤k(Yik)
o

3

5

�ik

�
⇣

b; b⌃
⌘

db

1

C

A

 O(1) + n�1
n
X

i=1

K
X

k=K1+1

log

⇣

nb⇤k{Yik}
⌘

� n�1
n
X

i=1

K
X

k=K1+1

h

�ik log

n

1 +

b

⇤k(Yik)
oi

.

We first show that lim supn
b

⇤k(⌧k) < 1 using the partitioning idea of Murphy (1994). Specifically,

we construct a sequence uk0 = ⌧k > uk1 > · · · > uk,Qk
= 0. Then,

n�1
n
X

i=1

K
X

k=K1+1

log

⇣

nb⇤k{Yik}
⌘

� n�1
n
X

i=1

K
X

k=K1+1

h

�ik log

n

1 +

b

⇤k(Yik)
oi

 O(1) +

K
X

k=K1+1

Qk�1
X

q=0

n�1
n
X

i=1

I(Yik 2 [uk,q+1, ukq)) log
⇣

nb⇤k{Yik}
⌘
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�
K
X

k=K1+1

n�1
n
X

i=1

I(Yik = ⌧k)�ik log

n
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b

⇤k(⌧k)
o

�
K
X

k=K1+1

Qk�1
X

q=0

n�1
n
X

i=1

�ikI (Yik 2 [uk,q+1, ukq)) log
n

1 +

b

⇤k(uk,q+1)

o

,

which is further bounded by

� (2n)�1
n
X

i=1

K
X

k=K1+1

�ikI(Yik = ⌧k) log
n

1 +

b

⇤k(⌧k)
o

�
K
X

k=K1+1

(

(2n)�1
n
X

i=1

�ikI(Yik = ⌧k)� n�1
n
X

i=1

�ikI (Yik 2 [u1, u0))

)

log

n

1 +

b

⇤k(⌧k)
o

�
K
X

k=K1+1

Qk�1
X

q=1

(

n�1
n
X

i=1

�ikI (Yik 2 [ukq, uk,q�1))� n�1
n
X

i=1

�ikI (Yik 2 [uk,q+1, ukq))

)

⇥ log

n

1 +

b

⇤k(ukq)
o

.

Note that ukq is chosen such that the coefficients in front of log{1 + b⇤k(ukq)} are all negative when

n is large enough. Thus, the corresponding terms cannot diverge to 1. However, if b⇤k(⌧k) diverges

to 1, then the first term diverges to �1. We conclude that there exists some M⇤ < 1 such that

maxK1+1kK lim supn
b

⇤k(⌧k)  M⇤ for k = K1 + 1, . . . ,K.

We denote eA⇤
= (

e

⇤1, . . . , e⇤K1 , b⇤K1+1, . . . , b⇤K). Then,

0  n�1ln(b✓, bA)� n�1ln(✓0, eA⇤
)

 O(1) + n�1
n
X

i=1

(

log

Z

b

K1
Y

k=1

h

exp

n

�e
fMkbk

b

⇤k(Uik,Mik
)

oi�ik,Mik
�
⇣

b; b⌃
⌘

db

)

 O(1) + n�1
n
X

i=1

(

log

Z

kbk1

K1
Y

k=1

⇣

exp

h

�G
n

e
fMkbk

b

⇤k(Ui,Mik)

oi⌘�i,Mik
�
⇣

b; b⌃
⌘

db

)

+n�1
n
X

i=1

(

log

Z

kbk>1
�
⇣

b; b⌃
⌘

db

)

 O(1)� n�1
n
X

i=1

K1
X

k=1

�ik,Mik
e
fM
b

⇤k(Uik,Mik
).

Therefore, for k = 1, . . . ,K1, lim supn
b

⇤k(⌧k � ✏) < 1 with probability 1 for any ✏ > 0. By

choosing a sequence of ✏ decreasing to 0, it then follows from Helly’s selection lemma that along
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a subsequence, b⇤k ! ⇤k⇤ pointwise on any interior set of Uk and b✓ ! ✓⇤ ⌘ (�⇤,�⇤). We denote

A⇤ = (⇤1⇤, . . . ,⇤K⇤).

We now show that ✓⇤ = ✓0 and A⇤ = A0. First, we consider the differentiability of ⇤k⇤ for

k = K1+1, . . . ,K. By the definition of e⇤k, b⇤k(t) is absolutely continuous with respect to e⇤k(t), and

b

⇤k(t) =

Z t

0

Pn⌫k (s,O;✓0,A0)
�

�

�

Pn⌫k
⇣

s,O;

b✓, bA
⌘

�

�

�

de⇤k(s), (4.4)

where

⌫k(t,O;✓,A) =

R

b J1 (b,O;�,�,A) J2k(t, b,O;�, �k) (b;⌃)db
R

b J1 (b,O;�,�,A) (b;⌃)db
.

To take limits on the two sides of equation (4.4), we first show that the denominator of the integrand

is uniformly bounded away from zero. It follows from the Glivenko-Cantelli property in Lemma 4.1

that

sup

t2Uk

|Pn⌫k (t,O;✓0,A0)� P⌫k (t,O;✓0,A0)| !a.s. 0

and

sup

t2Uk

�

�

�

Pn⌫k
⇣

t,O;

b✓, bA
⌘

� P⌫k (t,O;✓⇤,A⇤)
�

�

�

!a.s. 0.

Note that for any ✏ > 0,

lim sup

n

b

⇤k(⌧k) �
Z ⌧k

0

P⌫k (t,O;✓0,A0)

✏+ |P⌫k (t,O;✓⇤,A⇤)|
d⇤k0(s).

Let ✏! 0. By the Monotone Convergence Theorem,

Z ⌧k

0

P⌫k (t,O;✓0,A0)

|P⌫k (t,O;✓⇤,A⇤)|
d⇤k0(t) < 1.

We claim that mint2Uk |P⌫k(t,O;✓⇤,A⇤)| > 0. If this inequality does not hold, then there exists

some t⇤ 2 Uk such that P⌫k(t⇤,O;✓⇤,A⇤) = 0. The function P⌫k(t⇤,O;✓⇤,A⇤) is right-differentiable

almost everywhere. Thus, there exists � > 0 such that for t 2 (t⇤, t⇤ + �),

|P⌫k (t,O;✓⇤,A⇤)| = |P⌫k (t,O;✓⇤,A⇤)� P⌫k (t⇤,O;✓⇤,A⇤)|  O(1)|t� t⇤|
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almost everywhere. Hence,
Z t⇤+�

t⇤

1

|t� t⇤|
d⇤k0(t) < 1,

which is a contradiction. By taking the limits on both sides of (4.4), we conclude that ⇤k⇤(t) is

absolutely continuous with respect to ⇤k0(t), so that ⇤k⇤(t) is differentiable with respect to t. In

addition, db⇤k(t)/de⇤k(t) converges to d⇤k⇤(t)/d⇤k0(t) uniformly in t.

Define

m(✓,A) = log

(

L(✓,A) + L(✓0, eA)

2

)

and

M = {m(✓,A) : ✓ 2 ⇥,A 2 D1,1 ⇥ · · ·⇥DK1,1 ⇥DK1+1,M ⇥ · · ·⇥DK,M} ,

where L(✓,A) is the objective function for a single subject, and Dk,c = {⇤ : ⇤ is increasing with

⇤(0) = 0,⇤(⌧k)  c}. By the concavity of the log function,

Pnm(

b✓, bA) � 1

2

n

Pn logL(b✓, bA) + Pn logL(✓0, eA)

o

� Pnl(✓0, eA) = Pnm(✓0, eA).

It follows from Lemma 4.1 that the class M is Glivenko-Cantelli. Thus,
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such that the negative Kullback-Leibler information is positive. Therefore,
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with probability 1. For any k 2 {1, . . . ,K1} and m 2 {0, . . . ,Mk}, we set �km0
= 1 in the above

equation for m0
= m, . . . ,Mk and take the sum of the resulting equations to obtain
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Because m is arbitrary, we can replace Ukm in the above equation by any tk 2 Uk. For k =

K1 + 1, . . . ,K, we set �k = 1 and integrate Yk from 0 to tk 2 Uk to obtain
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(4.5)

For any k = 1, . . . ,K1, we set tk0 = 0 for k0 6= k in (4.5) to obtain
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By the arguments in the proof of Theorem 1 of Elbers and Ridder (1982), we find �21⇤ = �210 and

Z tk

0
e�

T
⇤ Xk(s)d⇤k⇤(s) =

Z tk

0
e�

T
0 Xk(s)d⇤k0(s). (4.6)

We differentiate both sides with respect to tk and take the logarithm to obtain

�T
⇤ Xk(tk) + log �k⇤(tk) = �

T
0 Xk(tk) + log �k0(tk) (4.7)

for tk 2 Uk and k = 1, . . . ,K1. For k = K1 + 1, . . . ,K, we set tk0 = 0 for k0 /2 {1, k} in (4.5) to

obtain
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�

�(b1;�
2
10)�(b2;�

2
20)db.

We let b3k⇤ = �k⇤b1 + b2 and b3k0 = �k0b1 + b2 to obtain

Z

b1

exp

⇢

�eb1
Z t1

0
e�

T
0 X1(s)d⇤10(s)

�

⇥


Z

b3k⇤

exp

⇢

�eb3k⇤
Z tk

0
e�

T
⇤ Xk(s)d⇤k⇤(s)

�

�(b3k⇤ � �k⇤b1;�
2
2⇤)db3k⇤

�

db1

=

Z

b1

exp

⇢

�eb1
Z t1

0
e�

T
0 X1(s)d⇤10(s)

�

⇥


Z

b3k0

exp

⇢

�eb3k0
Z tk

0
e�

T
0 Xk(s)d⇤k0(s)

�

�(b3k0 � �k0b1;�
2
20)db3k0

�

db1.

We apply the inverse Laplace transform to both sides to obtain

Z

b3k⇤

exp

⇢

�eb3k⇤
Z tk

0
e�

T
⇤ Xk(s)d⇤k⇤(s)

�

�(b3k⇤ � �k⇤b1;�
2
2⇤)db3k⇤

=

Z

b3k0

exp

⇢

�eb3k0
Z tk

0
e�

T
0 Xk(s)d⇤k0(s)

�

�(b3k0 � �k0b1;�
2
20)db3k0

for any b1. By the arguments in the proof of Theorem 1 of Elbers and Ridder (1982), we find
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�22⇤ = �220, �k⇤ = �k0, and

Z tk

0
e�

T
⇤ Xk(s)d⇤k⇤(s) =

Z tk

0
e�

T
0 Xk(s)d⇤k0(s) (4.8)

for k = K1 + 1, . . . ,K. We differentiate both sides with respect to tk and take the logarithm to

obtain

�T
⇤ Xk(tk) + log �k⇤(tk) = �

T
0 Xk(tk) + log �k0(tk) (4.9)

for tk 2 Uk and k = K1 + 1, . . . ,K. By Condition 5, (4.7), and (4.9), �⇤ = �0 and �k⇤(tk) = �k⇤(tk)

for k = 1, . . . ,K and tk 2 Uk. We let Xk(t) = 0 by redefining Xk(t) to centre at a deterministic

function in the support of Xk(t) in (4.6) and (4.8) to obtain ⇤k⇤(tk) = ⇤k⇤(tk) for k = 1, . . . ,K and

tk 2 Uk. We conclude that kb✓ � ✓0k ! 0 and |b⇤k(tk)� ⇤k0(tk)| ! 0 for any tk 2 Uk. Because A0 is

continuous, bA converges uniformly to A0 on
Q

k Uk.

4.6.2 Proof of Theorem 4.2

Let

H1k(t, u, v, b,O;✓,A) =

J1(b,O;�,�,A)Q1(t, u, v, b1,Xk;�,⇤k) (b;⌃)

R

b0 J1(b
0,O;�,�,A) (b0;⌃)db0

for k = 1, . . . ,K1, and

H2k(t, b,O;✓,A) =

J1(b,O;�,�,A)Q2(t, Yk, b,Xk;�, �k) (b;⌃)

R

b0 J1(b
0,O;�,�,A) (b0;⌃)db0

for k = K1 + 1, . . . ,K, where

Q1(t, u, v, b1,Xk;�,⇤k)

= e�
TXk(t)+b1

2

4

I(v � t) exp
n

�
R v
0 e�

TXk(s)+b1d⇤k(s)
o

exp

n

�
R u
0 e�

TXk(s)+b1d⇤k(s)
o

� exp

n

�
R v
0 e�

TXk(s)+b1d⇤k(s)
o

�
I(u � t) exp

n

�
R u
0 e�

TXk(s)+b1d⇤k(s)
o

exp

n

�
R u
0 e�

TXk(s)+b1d⇤k(s)
o

� exp

n

�
R v
0 e�

TXk(s)+b1d⇤k(s)
o

3

5 ,

and

Q2(t, u, b,Xk;�, �k) = �I(u � t)e�
TXk(t)+�kb1+b2 .
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Then, the score function for ✓ is l✓(✓,A) = (l�(✓,A)

T, l�K1+1(✓,A), . . . , l�K (✓,A), l�2
1
(✓,A), l�2

2
(✓,A))

T,

where

l�(✓,A) =

K1
X

k=1

Mk
X

m=0

�km

Z ⌧k

0

Z

b
H1k(t, Ukm, Uk,m+1, b,O;✓,A)dbXk(t)d⇤k(t),

+

K
X

k=K1+1

⇢

�kXk(Yk) +

Z ⌧k

0

Z

b
H2k(t, b,O;✓,A)dbXk(t)d⇤k(t)

�

,

l�k(✓,A) = �k

R

b b1J1(b,O;�,�,A) (b;⌃)db
R

b J1(b,O;�,�,A) (b;⌃)db
+

Z ⌧k

0

Z

b
b1H2k(t, b,O;✓,A)dbd⇤k(t),

l�2
j
(✓,A) =

R

J1(b,O;�,�,A)�0
�2
j
(bj ;�2j )�(b3�j ;�23�j)db

R

J1(b,O;�,�,A) (b;⌃)db

for j = 1, 2, and �0
�2
j
(bj ;�2j ) is the derivative of �(bj ;�2j ) with respect to �2j . The score operator

for A along the submodel dA✏,h = ((1 + ✏h1)d⇤1, . . . , (1 + ✏hK)d⇤K)

T for h = (h1, . . . , hK) with

hk 2 L2(µk) for k = 1, . . . ,K1 and hk 2 BV1(Uk) for k = K1 + 1, . . . ,K is

lA(✓,A)(h) =

K1
X

k=1

Mk
X

m=0

�km

Z ⌧k

0

Z

b
H1k(t, Ukm, Uk,m+1, b,O;✓,A)dbhk(t)d⇤k(t)

+

K
X

k=K1+1

⇢

�khk(Yk) +

Z ⌧k

0

Z

b
H2k(t, b,O;✓,A)dbhk(t)d⇤k(t)

�

,

where BV1(B) denotes the set of functions on B with total variation bounded by 1.

Clearly,

Gn

n

l✓(b✓, bA)

o

= �
p
nP
n

l✓(b✓, bA)� l✓ (✓0,A0)

o

,

and

Gn

n

lA(b✓, bA)(h)
o

= �
p
nP
n

lA(b✓, bA)(h)� lA (✓0,A0) (h)
o

.

We apply the Taylor series expansions at (✓0,A0) to the right sides of the above two equations. In

light of Lemma 4.3, the second-order terms are bounded by

OP (1)
p
nE

2

4

K1
X

k=1

Mk
X

m=0

n

b

⇤k(Ukm)� ⇤k0(Ukm)

o2
+

K
X

k=K1+1

n

b

⇤k(Yk)� ⇤k0(Yk)
o2

+

�

�

�

b� � �0

�

�

�

2
+ kb� � �0k2 +

�

�

�

b⌃�⌃0

�

�

�

2
�
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=

p
n

⇢

OP (n
�2/3

) +OP (1)

�

�

�

b� � �0

�

�

�

2
+OP (1) kb� � �0k2 +OP (1)

�

�

�

b⌃�⌃0

�

�

�

2
�

= OP

✓

n�1/6
+

p
n
�

�

�

b� � �0

�

�

�

2
+

p
n kb� � �0k2 +

p
n
�

�

�

b⌃�⌃0

�

�

�

2
◆

.

Thus,

Gn

n

l✓(b✓, bA)

o

= �
p
nP
n

l✓✓
⇣

b✓ � ✓0
⌘

+ l✓A( bA�A0)

o

+OP

✓

n�1/6
+

p
n
�

�

�

b� � �0

�

�

�

2
+

p
n kb� � �0k2 +

p
n
�

�

�

b⌃�⌃0

�

�

�

2
◆

,

and

Gn

n

lA(b✓, bA)(h)
o

= �
p
nP
n

lA✓(h)
⇣

b✓ � ✓0
⌘

+ lAA(h, bA�A0)

o

+OP

✓

n�1/6
+

p
n
�

�

�

b� � �0

�

�

�

2
+

p
n kb� � �0k2 +

p
n
�

�

�

b⌃�⌃0

�

�

�

2
◆

,

where l✓✓ is the second derivative of l(✓,A) with respect to ✓, l✓A(h) is the derivative of l✓ along

the submodel dA✏,h, lA✓(h) is the derivative of lA(h) with respect to ✓, and lAA(h, bA�A0) is the

derivative of lA(h) along the submodel dA0 + ✏d( bA�A0). All derivatives are evaluated at (✓0,A0).

If the least favorable direction exists, we denote it as h⇤
= (h⇤

1, . . . ,h
⇤
K), where h⇤

k (k = 1, . . . ,K1)

is (p+K2+2)-dimensional vector of functions in L2(µk) and h⇤
k (k = K1+1, . . . ,K) is (p+K2+2)-

dimensional vector of functions in L2(Uk). We first show the existence of h⇤, which is the solution

to l⇤AlA(h
⇤
) = l⇤Al✓ with l⇤A as the adjoint operator of lA. Let Q =

QK1
k=1 L2(µk)⇥

QK
k=K1+1 L2(Uk).

We equip Q with an inner product defined as

< h(1),h(2) >=

K1
X

k=1

Z

Uk

h(1)k h(2)k dµk(t) +
K
X

k=K1+1

Z ⌧k

0
h(1)k h(2)k d⇤k0(t),

where h(1)
= (h(1)1 , . . . , h(1)K ) and h(2)

= (h(2)1 , . . . , h(2)K ). On the same space, we define

khk = P
n

lA (✓0,A0) (h)
2
o1/2

= P
 "

K1
X

k=1

Mk
X

m=0

�km

Z ⌧k

0

Z

b
H1k(t, Ukm, Uk,m+1, b,O;✓0,A0)dbhk(t)d⇤k0(t)
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+

K
X

k=K1+1

⇢

�hk(Yk) +

Z ⌧k

0

Z

b
H2k(t, b,O;✓0,A0)dbhk(t)d⇤k0(t)

�

3

5

21

A

1/2

for h = (h1, . . . , hK). It is easy to show that k · k is a seminorm on Q. Furthermore, if khk = 0,

then P{lA(✓0,A0)(h)2} = 0. Thus, with probability 1, lA(✓0,A0)(h) = 0. By the arguments in the

proof of Lemma 4.3, hk(tk) = 0 for tk 2 Uk for k = 1, . . . ,K. Clearly, khk  c < h,h >1/2 for some

constant c by the Cauchy-Schwarz inequality. According to the bounded inverse theorem in Banach

spaces, we have < h,h >1/2 eckhk for another constant ec. By the Lax-Milgram theorem (Zeidler,

1995), h⇤ exists and satisfies that for any tk 2 Uk,

Z ⌧k

0
P
(

Mk
X

m=0

�km

Z

b
H1k(tk, Ukm, Uk,m+1, b,O;✓0,A0)db

Z

b
H1k(s, Ukm, Uk,m+1, b,O;✓0,A0)db

)

⇥h⇤
k(s)d⇤k0(s)

= P
(

Mk
X

m=0

�km

Z

b
H1k(tk, Ukm, Uk,m+1, b,O;✓0,A0)dbl✓ (✓0,A0)

)

(4.10)

for k = 1, . . . ,K1 and

Z ⌧k

0
P
✓

I(tk  Ck) exp{�⇤k(tk)}+
Z

b
H2k(tk, b,O;✓0,A0)db

�

Z

b
H2k(s, b,O;✓0,A0)db

◆

⇥ h⇤
k(s)d⇤k0(s) + P [I(tk  Ck) exp{�⇤k(tk)}]h⇤

k(tk)

= P
⇢

E{l✓ (✓0,A0) |Tk = tk}I(tk  Ck) exp{�⇤k(tk)}+
Z

b
H2k(tk, b,O;✓0,A0)dbl✓ (✓0,A0)

�

for k = K1 + 1, . . . ,K. We differentiate (4.10) with respect to tk to obtain

qk1(tk)h
⇤
k(tk) +

K
X

k0=1

Z ⌧k

tk

qk2(s, tk)h
⇤
k0(s)ds+

Z tk

0
qk3(s, tk)h

⇤
k(s)ds = qk4(tk),

where qk1(tk) > 0 and qkj (k = 1, . . . ,K; j = 1, 2, 3) and qk4 (k = 1, . . . ,K) are continuously

differentiable functions. Thus, h⇤ can be expanded to be a continuously differentiable function in

[0, ⌧k]K with bounded total variation. It then follows that

Gn

n

l✓(b✓, bA)

o

�Gn

n

lA(b✓, bA)(h⇤
)

o
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=�
p
nP
n

l✓✓
⇣

b✓ � ✓0
⌘

+ l✓A( bA�A0)

o

+

p
nP
n

lA✓(h
⇤
)

⇣

b✓ � ✓0
⌘

+ lAA(h
⇤, bA�A0)

o

+OP

✓

n�1/6
+

p
n
�

�

�

b� � �0

�

�

�

2
+

p
n kb� � �0k2 +

p
n
�

�

�

b⌃�⌃0

�

�

�

2
◆

=

p
nP
h

{l✓ (✓0,A0)� lA (✓0,A0) (h
⇤
)}⌦2

i ⇣

b✓ � ✓0
⌘

+OP

✓

n�1/6
+

p
n
�

�

�

b� � �0

�

�

�

2
+

p
n kb� � �0k2 +

p
n
�

�

�

b⌃�⌃0

�

�

�

2
◆

.

Using arguments in the proof of Lemma 4.2, we can show that l✓(✓0,A0)� lA(✓0,A0)(h
⇤
) belongs

to a Donsker class. Next, we show that the matrix P[{l✓ � lA(h
⇤
)}⌦2

] is invertible. If the matrix is

singular, then there exists a vector v ⌘ (v1,v2, v3, v4)T with v1 2 Rp, v2 ⌘ (v2,K1+1, . . . , v2K) 2 RK2 ,

and v3, v4 2 R such that vTE[{l✓ � lA(h
⇤
)}⌦2

]v = 0. It follows that, with probability 1, the score

function along the submodel {✓0 + ✏v,A✏(vTh⇤
)} is zero. That is,

Z

b

 

K1
X

k=1

Mk
X

m=0

�km

Z ⌧k

0
Q1(t, Ukm, Uk,m+1, b1,Xk;�0,⇤k0)

�

vT
1 Xk(t)� vTh⇤

k(t)
 

d⇤k0(t)

�v3
�0
�2
10
(b1,�210)

�(b1;�210)
� v4

�0
�2
20
(b2,�220)

�(b2;�220)
+

K
X

k=K1+1



�k

�

vT
1 Xk(Yk) + v2kb1 � vTh⇤

k(Yk)⇤
0
k0(Yk)

 

+

Z ⌧k

0
Q2(t, Yk, b,Xk;�0, �k0)

�

vT
1 Xk(t) + v2kb1 � vTh⇤

k(t)
 

d⇤k0(t)

�◆

⇥J1(b,O;�0,A0) (b;⌃0)db = 0

with probability 1. For any tk 2 Uk for k = K1 + 1, . . . ,K, we let �k = 0 and set Yk = tk to obtain

Z

b

"

K1
X

k=1

Mk
X

m=0

�km

Z ⌧k

0
Q1(s, Ukm, Uk,m+1, b1,Xk;�0,⇤k0)

�

vT
1 Xk(s)� vTh⇤

k(s)
 

d⇤k0(s)

�v3
�0�2

10
(b1,�2

10)

�(b1;�2
10)

� v4
�0�2

20
(b2,�2

20)

�(b2;�2
20)

+

K
X

k=K1+1

Z tk

0
e�

T
0 Xk(s)+�k0b1+b2

�

vT
1 Xk(s) + v2kb1 � vTh⇤

k(s)
 

d⇤k0(s)

#

⇥
 

K1
Y

k=1

Mk
X

m=0

�km

"

exp

(

�
Z Ukm

0
e�

T
0 Xk(s)+b1d⇤k0(s)

)

� exp

(

�
Z Uk,m+1

0
e�

T
0 Xk(s)+b1d⇤k0(s)

)#!

⇥
K
Y

k=K1+1

exp

⇢

�
Z t

0
e�

T
0 Xk(s)+�k0b1+b2d⇤k0(s)

�

 (b;⌃0)db = 0.

For any k = 1, . . . ,K1 and mk 2 {0, . . . ,Mk}, we sum over all possible �k,m0
k

with m0
k = mk, . . . ,Mk
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to obtain

Z

b

"

K1
X

k=1

Z Uk,mk

0
e�

T
0 Xk(s)+b1

�

vT
1 Xk(s)� vTh⇤

k(s)
 

d⇤k0(s)� v3
�0�2

10
(b1,�2

10)

�(b1;�2
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� v4
�0�2

20
(b2,�2

20)

�(b2;�2
20)

+

K
X

k=K1+1

Z tk

0
e�

T
0 Xk(s)+�k0b1+b2

�

vT
1 Xk(s) + v2kb1 � vTh⇤

k(s)
 

d⇤k0(s)

#

⇥ exp

(

�
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X

k=1

Z Uk,mk

0
e�

T
0 Xk(s)+b1d⇤k0(s)�

K
X

k=K1+1

Z tk

0
e�

T
0 Xk(s)+�k0b1+b2d⇤k0(s)

)

 (b;⌃0)db = 0.

Because mk is arbitrary, we can replace Uk,mk
in the above equation by any tk 2 Uk. We apply the

inverse Laplace transform to obtain

K1
X

k=1

Z tk

0
e�

T
0 Xk(s)+b1

�

vT
1 Xk(s)� vTh⇤

k(s)
 

d⇤k0(s)� v3
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�2
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� v4
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(b2,�220)
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+
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0
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T
0 Xk(s)+�k0b1+b2

�

vT
1 Xk(s) + v2kb1 � vTh⇤

k(s)
 

d⇤k0(s) = 0

for any b1 and b2. Therefore, v2 = 0, v3 = v4 = 0, and

K
X

k=1

Z tk

0
e�

T
0 Xk(s)+b1vT

1 {Xk(s)� h⇤
k(s)} d⇤k0(s) = 0.

We differentiate both sides with respect to tk to obtain vT
1 {Xk(tk)� h⇤

k(tk)} = 0 for tk 2 Uk and

k = 1, . . . ,K. By Condition 5, v1 = 0. Hence, the matrix E
⇥�

l✓ � lA(h
⇤
)

 ⌦2⇤ is invertible.

Because the matrix P[{l✓ � lA(h
⇤
)}⌦2

] is invertible, b✓ � ✓0 = OP (n�1/2
), and

p
n
⇣

b✓ � ✓0
⌘

=

⇣

P
h

{l✓(✓0,A0)� lA(✓0,A0)(h
⇤
)}⌦2

i⌘�1
Gn

n

l✓(b✓, bA)� lA(b✓, bA)(h⇤
)

o

+ oP (1).

The influence function for b✓ is the efficient influence function, such that
p
n
⇣

b✓ � ✓0
⌘

converges

weakly to a zero-mean normal random vector whose covariance matrix attains the semiparametric

efficiency bound.

4.6.3 Proof of Theorem 4.3

Let bA⇤ be the estimator of A in the bootstrap sample. We denote bPn as the bootstrap empirical

distribution and bGn =

p
n(bPn � Pn) as the bootstrap empirical process. Using arguments in the
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proof of Theorem 4.2, we can show that
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p
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2
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and
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n
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p
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(h)� lA
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o

=

p
nbPn

n
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⇣
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⌘

+ lAA

⇣
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⌘o

+OP

✓
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+

p
n
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�

b� � �0

�

�

�

2
+

p
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p
n
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b⌃�⌃0

�

�
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2
◆

.

Therefore,
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n
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⌘
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o

=

p
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⌘

+ l✓A
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n
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+

p
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2
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p
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p
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n

l✓
⇣

b✓, bA
⌘

� lA
⇣

b✓, bA
⌘

(h⇤
)

o⌦2
�

⇣

b✓ � b✓⇤
⌘

+OP
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n�1/6
+
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2
+

p
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p
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�
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�
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�

2
◆

.

By the arguments in the proof of Theorem 4.2,

p
n
⇣

b✓ � b✓
⇤⌘

=

⇣

P
h

{l✓ (✓0,A0)� lA (✓0,A0) (h
⇤
)}⌦2

i⌘�1
bGn

n

l✓(b✓, bA)� lA(b✓, bA)(h⇤
)

o

+ oP (1)

=

⇣

P
h

{l✓ (✓0,A0)� lA (✓0,A0) (h
⇤
)}⌦2

i⌘�1
Gn

n

l✓(b✓, bA)� lA(b✓, bA)(h⇤
)

o

+ oP (1),

where the last equality follows from Theorem 3.6.1 of van der Vaart and Wellner (1996). Therefore,
p
n(b✓�b✓⇤) converges weakly to a zero-mean normal random vector, and

p
n(b✓�b✓⇤) and

p
n(b✓�✓0)

have the same asymptotic distribution.
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4.6.4 Some Useful Lemmas

Lemma 4.1. Under Conditions 1�5, the classes of functions

eH1 ⌘
⇢

Z

b
J1(b,O;�,�,A) (b;⌃)db : ✓ 2 ⇥,A 2 D1

�

and

eH2k ⌘
⇢

Z

b
J1(b,O;�,�,A)J2k(t, b,O;�, �k) (b;⌃)db : ✓ 2 ⇥, t 2 Uk,A 2 D1

�

for k = K1+1, . . . ,K are P-Glivenko-Cantelli, where D1 = D1,1⇥· · ·⇥DK1,1⇥DK1+1,M⇥· · ·⇥DK,M

and M is a finite constant.

Proof. Define

Wk(t,X, b1;�,⇤k) =

R t
0 e

�TXk(s)+b1d⇤k(s)

⇤k(⌧k)

for k = 1, . . . ,K1, where � 2 B and ⇤k 2 Dk,1. The class of functions {e�TXk(s)+b1
: � 2 B},

with X and b1 as random variables, is a VC class with VC-index V. Thus, the class Wk ⌘

{Wk(t,X, b1;�,⇤k) : � 2 B,⇤k 2 Dk,1} is a convex hull of the VC-class with the L2(P)-bracketing

number O{exp(✏�2V/(V+2)
)}.

For any (�(1),⇤(1)
k ) and (�(2),⇤(2)

k ) in B ⇥ Dk,1, tk 2 Uk, and any positive constant M , if

⇤

(1)
k (⌧k) > M and ⇤(2)

k (⌧k) > M , then

�

�

�

�

exp

⇢

�
Z tk

0
e�

(1)TXk(s)+b1d⇤(1)
k (s)

�

� exp

⇢

�
Z tk

0
e�

(2)TXk(s)+b1d⇤(2)
k (s)

�

�

�

�

�

 2 exp

⇣

�Me�
fM�|b1|

⌘

.

If ⇤(1)
k (⌧k)  M and ⇤(2)

k (⌧k)  M , then

�

�

�

�

exp

⇢

�
Z tk

0
e�

(1)TXk(s)+b1d⇤(1)
k (s)

�

� exp

⇢

�
Z tk

0
e�

(2)TXk(s)+b1d⇤(2)
k (s)

�

�

�

�

�

 sup

�2B,⇤k2Dk,1,⇤k(⌧k)M

�

�

�

�

exp

⇢

�
Z tk

0
e�

TXk(s)+b1d⇤k(s)

�

�

�

�

�

⇥
n

�

�

�

Wk

⇣

t,X, b1;�
(1),⇤(1)

k

⌘

�Wk

⇣

t,X, b1;�
(2),⇤(2)

k

⌘

�

�

�

M

+Wk

⇣

t,X, b1;�
(1),⇤(1)

k

⌘

�

�

�

⇤

(1)
k (⌧k)� ⇤(2)

k (⌧k)
�

�

�

o


�

�

�

Wk

⇣

t,X, b1;�
(1),⇤(1)

k

⌘

�Wk

⇣

t,X, b1;�
(2),⇤(2)

k

⌘

�

�

�

M + e
fM+|b1|

�

�

�

⇤

(1)
k (⌧k)� ⇤(2)

k (⌧k)
�

�

�

.
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In the remaining scenario, we assume, without loss of generality, that ⇤(1)
k (⌧k)  M and ⇤(2)

k (⌧k) > M .

Then,

�

�

�

�

exp

⇢

�
Z tk

0
e�

(1)TXk(s)+b1d⇤(1)
k (s)

�

� exp

⇢

�
Z tk

0
e�

(2)TXk(s)+b1d⇤(2)
k (s)

�

�

�

�

�

 sup

�2B,⇤k2Dk,1,⇤k(⌧k)M

�

�

�

�
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⇢

�
Z tk

0
e�

TXk(s)+b1d⇤k(s)

�

�

�

�

�

⇥
h

�

�

�

exp

n

�⇤(1)
k (⌧k)Wk

⇣

t,X, b1;�
(1),⇤(1)

k

⌘o

� exp

n

�MWk

⇣

t,X, b1;�
(1),⇤(1)

k

⌘o

�

�

�

+

�

�

�

exp

n

�MWk

⇣

t,X, b1;�
(1),⇤(1)

k

⌘o

� exp

n

�⇤(2)
k (⌧k)Wk

⇣

t,X, b1;�
(2),⇤(2)

k

⌘o

�

�

�

i


⇣

e
fM+|b1||⇤(1)

k (⌧k)�M |
⌘

+ 2 exp

⇣

�Me�
fM�|b1|

⌘

.

Because there exist M/✏ ✏-brackets to cover [0,M ], the above results imply that there exist

O
�

exp

�

✏�2V/(V+2)
� 

⇥M/✏ brackets

n

Wk

⇣

t,X, b1;�
(1),⇤(1)

k

⌘

,Wk

⇣

t,X, b1;�
(2),⇤(2)

k

⌘o

⇥
n

⇤

(1)
k (⌧k),⇤

(2)
k (⌧k)

o

such that

�

�

�

�

exp

⇢

�
Z tk

0
e�

(1)TXk(s)+b1d⇤(1)
k (s)

�
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⇢

�
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0
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(2)TXk(s)+b1d⇤(2)
k (s)

�

�

�

�

�


⇣
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⌘

✏+ 2 exp

⇣

�e�
fM�|b1|M

⌘

.

Therefore, there exist O
�

exp

�

✏�2V/(V+2)
�

/✏
 

✏-brackets to cover {exp{�
R tk
0 e�

TXk(s)+b1d⇤k(s)} :

� 2 B,⇤k 2 Dk,1} in L2(P).

For any (�(1),�(1),⇤(1)
k ) and (�(2),�(2),⇤(2)

k ) in B ⇥ G ⇥Dk,M for k = K1 + 1, . . . ,K,

�
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⇢

�
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0
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(1)
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0
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(2)
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k (s)

�
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�
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 sup
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�

�

�

�

exp

⇢

�
Z Yk

0
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TXk(s)+�kb1+b2d⇤k(s)

�

�

�

�

�

⇥
�

�

�

�

Z Yk

0
e�

(1)TXk(s)+�
(1)
k b1+b2d⇤(1)

k (s)�
Z Yk

0
e�

(2)TXk(s)+�
(2)
k b1+b2d⇤(2)

k (s)

�

�

�

�


⇢

C⇤e
fMkbk

⇣

�

�

�

�(1) � �(2)
�

�

�

+

�

�

�

�(1)k � �(2)k

�

�

�

⌘

+

�

�

�

�

Z Yk

0
e�

(1)TXk(s)+�
(1)
k b1+b2d

⇣

⇤

(1)
k � ⇤(2)

k

⌘

(s)

�

�

�

�

�

 e
fMkbk

n

C⇤
�

�

�

�(1) � �(2)
�

�

�

+ C⇤
�

�

�

�(1)k � �(2)k

�

�

�

+

�

�

�

⇤

(1)
k (Yk)� ⇤(2)

k (Yk)
�

�

�
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+

Z ⌧k

0

�

�

�

⇤

(1)
k (s)� ⇤(2)

k (s)
�

�

�

ds

�

,

where the last inequality follows from integration by parts. By Theorem 2.7.5 of van der Vaart

and Wellner (1996), the bracketing number of B ⇥ G ⇥ Dk,M is of order O{exp(✏�1
)}. Thus, the

bracketing number of eH1 is of order O{exp(✏�2V/(V+2)
+✏�1

)✏�1}. Therefore, the class eH1 is Glivenko-

Cantelli. Because I(Yk � t) is Glivenko-Cantelli, eH2k is Glivenko-Cantelli by the preservation of the

Glivenko-Cantelli property under the product.

Lemma 4.2. Under Conditions 1�5, the classes of functions

H1 ⌘
⇢

Z

b
J1(b,O;�,�,A) (b;⌃)db : ✓ 2 ⇥,A 2 D2

�

and

H2k ⌘
⇢

Z

b
J1(b,O;�,�,A)J2k(t, b,O;�, �k) (b;⌃)db : ✓ 2 ⇥, t 2 Uk,A 2 D2

�

for k = K1 + 1, . . . ,K are P-Donsker, where D2 = D1,M ⇥ · · ·⇥DK,M and M is a finite constant.

Proof. As in the proof of Lemma 4.1, for any (�(1),⇤(1)
k ) and (�(2),⇤(2)

k ) in B ⇥Dk,M and tk 2 Uk,

we have

�

�

�

�
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⇢

�
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0
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�
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⇢
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0
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�

�
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�
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fM+|b1|

⇢

C⇤
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�
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�(1) � �(2)
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�

�

+
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⇤
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k (t)� ⇤(2)
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�

�

+

Z ⌧k
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�

�

�

⇤
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k (s)
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�

�
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.

Thus,

�

�

�

J1(b,O;�(1),�(1),A(1)
)� J1(b,O;�(2),�(2),A(2)

)

�

�
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 eCe2
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�

�

+

�

�

�

�(1) � �(2)
�

�

�

+

K
X

k=1

Z ⌧k

0

�

�
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⇤

(1)
k (s)� ⇤(2)

k (s)
�

�

�
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+
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X

k=1

n

�

�

�

⇤

(1)
k (Lk)� ⇤(2)

k (Lk)

�

�

�

+

�

�

�

⇤

(1)
k (Rk)� ⇤(2)

k (Rk)

�

�

�

o

+

K
X

k=K1+1

�

�

�

⇤

(1)
k (Yk)� ⇤(2)

k (Yk)
�

�

�

9

=

;

,

where eC is a constant. By the arguments in the proof of Lemma 4.1, the bracketing numbers of H1

and H2k are of order O{exp(✏�1
)}. Thus, H1 and H2k are P-Donsker.
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Lemma 4.3. Under Conditions 1�5,

E

2

4

K1
X

k=1

Mk
X

m=0

n

b

⇤k(Ukm)� ⇤k0(Ukm)

o2
+

K
X

k=K1+1

n

b

⇤k(Yk)� ⇤k0(Yk)
o2

3

5

= OP (n
�2/3

) +O

✓

�

�

�

b� � �0

�

�

�

2
+ kb� � �0k2 +

�

�

�

b⌃�⌃0

�

�

�

2
◆

.

Proof. By Theorem 4.1, bA is consistent for A0. Thus, there exists a finite constant M such that

b

⇤(⌧k)  M . By the Donsker results in Lemma 4.2, m(

b✓, bA) is in a Donsker class. Note that

Z �

0

q

1 + logN[](✏,M, L2(P))d✏  O(�1/2).

In addition, by Lemma 1.3 of van der Geer (2000) and the mean-value theorem,

P
n
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⌘
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⇣
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 �cH2
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o

,

where c is a positive constant, and H{(✓,A), (✓0, eA)} is the Hellinger distance
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@
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2

�

� exp

(
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2

)#2

dµ

1

A

1/2

with respect to the dominating measure µ. By Theorem 3.4.1 of van der Vaart and Wellner (1996),

there exists rn with r2n�(1/rn) ⇠
p
n such that H{(b✓, bA), (✓0, eA)} = OP (1/rn). In particular, we

choose rn in the order of n1/3 such that H{(b✓, bA), (✓0, eA)} = OP (n�1/3
).

By the mean-value theorem,
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= OP (n
�2/3

).

Consequently, using the mean-value theorem again, we have
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for some positive constant c0. We define a norm in V ⌘
QK

k=1BV (Uk) such that for any f ⌘

(f1, . . . , fK)
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In addition, we define a seminorm
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Note that if kfk2 = 0 for some f 2 V, then
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with probability 1.

Consider k = K1 + 1, . . . ,K. For �k = 0, we set Yk = ⌧k in (4.11) to obtain an equation; for

�k = 1, we integrate Yk from 0 to ⌧k in (4.11) to obtain another equation. We add all the equations
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For any k 2 {1, . . . ,K1} and any mk 2 {0, . . . ,Mk}, we set Uk0m = 0 for k0 6= k and sum over all
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= mk, . . . ,Mk to obtain
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Therefore, fk(Ukm) = 0 for k = 1, . . . ,K1. Because m is arbitrary, fk(tk) = 0 for any tk 2 Uk

for k = 1, . . . ,K1. In addition, we sum over (4.11) with all possible �km for k = 1, . . . ,K1 and
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Therefore, fk(tk) = 0 for any tk 2 Uk for k = K1 + 1, . . . ,K. We obtain f = 0, implying that k · k2

is a norm in V .

By the Cauchy-Schwarz inequality, for any f 2 V,
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where c1 is a finite constant. By the bounded inverse theorem in the Banach space, we have

kfk2 � c01kfk1 for some constant c01. Therefore,

OP (n
�2/3

) +O

✓

�

�

�

b� � �0

�

�

�

2
+ kb� � �0k2 +

�

�

�

b⌃�⌃0

�

�

�

2
◆

� c0c
0
1
2E

2

4

K1
X

k=1

Mk
X

m=0

n

b

⇤k(Ukm)� ⇤k0(Ukm)

o2
+

K
X

k=K1+1

n

b

⇤k(Yk)� ⇤k0(Yk)
o2

3

5 .

The lemma thus holds.
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CHAPTER 5: EXTENSIONS AND FUTURE RESEARCH

5.1 Accelerated Failure Time Model with Interval-Censored Data

In Chapter 2, we studied the efficient estimation of the AFT model with PIC data that requires

a non-negligible proportion of exact observations. The assumption is crucial in establishing the

asymptotic properties and constructing the computation algorithm. Therefore, the proposed approach

cannot be trivially applied to the interval-censored data where no exact observations are present.

Semiparametric regression analysis of interval-censored data without treating any observations

as exact is extremely challenging. Although progress has been made on the semiparametric analysis

of interval-censored data under the AFT model (Rabinowitz, Tsiatis and Aragon, 1995; Murphy,

van der Vaart and Wellner, 1999; Shen, 2000; Betensky, Rabinowitz and Tsiatis, 2001; Tian and Cai,

2006), efficient estimation has not been explored. The similar idea of one-step efficient estimation,

as proposed in Chapter 2 for PIC data, may be applied to obtain efficient estimators for the AFT

model. Smoothing and approximations may be needed to obtain desirable numerical performance in

finite samples.

5.2 Regression Analysis of Interval-Censored Data With Informative Examina-
tion Times

In some applications, the examination times are directly related to the event of interest, instead

of through dropout. This may be the case if patients tend to visit their doctors more frequently

when they are not feeling well. Zhang, Sun and Sun (2005), Chen et al. (2012), Chen, Wei, Hsu and

Lee (2014), and Ma et al. (2015) studied this problem for current status data by assuming a frailty

model or copula structure for the event of interest and the examination time. Zhang et al. (2007)

considered the case of two examination times and modeled the first examination time, the gap time,

and the event of interest through a proportional hazards frailty model. Zhao et al. (2015) considered

the same type of data and assumed a copula model for the event of interest and the gap time. Wang

et al. (2016) considered an arbitrary number of examination times and assumed a shared frailty

model. All of these methods require parametric assumptions or approximations for the cumulative
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baseline hazard functions.

We can extend the proposed NPMLE to the aforementioned settings. In particular, for an

arbitrary number of examination times, we can model the intensity of the examination process using

a transformation model with frailty and modify the proposed EM algorithm to accommodate the

recurrent examination process.

5.3 Regression Analysis of Panel Count Data

Panel count data arise in studies that concern recurrent events. Study subjects are observed

only at discrete time points, such that only the number of recurrent events that occurred before

each observation time is known. The regression analysis of panel count data, especially with the

proportional mean model, has been studied in literature. In particular, Sun and Wei (2000) proposed

a GEE-type procedure for the estimation of regression parameters. Wellner and Zhang (2007)

considered two likelihood-based approaches: the pseudolikelihood estimator is fairly easy to compute,

but it can be inefficient in certain cases (Wellner et al., 2004); and the algorithm for the more efficient

nonparametric maximum likelihood estimation is computational intensive. Lu et al. (2009) modeled

the baseline mean function with monotone B-splines and established the asymptotic properties of

their spline-based estimators.

We may extend the proposed EM algorithm for interval-censored data to conduct NPMLE for the

proportional mean model with panel count data. Specifically, we may introduce similar independent

Poisson random variables such that the likelihood function can be viewed as the observed-data

likelihood for the Poisson random variables. The algorithm can also be extended to accommodate

the dependent observation process by modeling the examination process using another proportional

mean model with frailty. The asymptotic theory for the panel count data, with independent or

dependent examination process, can also be developed.
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