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Abstract

HONGYU RU: STATISTICAL ANALYSIS OF FINANCIAL TIME SERIES AND
RISK MANAGEMENT.

(Under the direction of Eric Ghysels.)

The dissertation studies the dynamic of volatility, skewness, and value at risk for

financial returns. It contains three topics.

The first one is the asymptotic properties of the conditional skewness model for

asset pricing. We start with a simple consumption-based asset pricing model, and

make a connection between the asset pricing model and the regularity conditions for a

quantile regression. We prove that the quantile regression estimators are asymptotically

consistent and normally distributed under certain assumptions for the asset pricing

model.

The second one is about dynamic quantile models for risk management. We propose

a financial risk model based on dynamic quantile regressions, which allows us to estimate

conditional volatility and skewness jointly. We compare this approach with ARCH-

type models by simulation. We also propose a density fitting approach by matching

conditional quantiles and parametric densities to obtain the conditional distributions

of returns.

The third one is a simulation study of a consumption based asset pricing model. We

show that larger returns and Sharp ratio can be obtained by introducing conditional

asymmetry in the asset pricing model.
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Chapter 1

Asymptotic Properties of Quantile-based Conditional

Skewness Models for Asset Pricing

1.1 Introduction

It has been documented by empirical studies that the distribution of stock market

returns, either conditional or unconditional, can not be fully characterized by just

mean and variance. Many previous studies have shown that the stock market returns

are negatively skewed(see e.g. Harvey and Siddique (2000)). Researchers begin to

incorporate the third moment - skewness, into financial models and applications. One

of the applications of using skewness is portfolio selection. Harvey and Siddique (2000)

has discussed about investors’ preference on the skewness of a portfolio. A portfolio

with positive skewness is preferred by investors if everything else is equal. But all those

results are subjected to the robustness of the measure of skewness due to the following

reasons.

Stock market returns, especially in emerging markets, are known to have fat tails.

The conventional measures of the moments are based on sample averages. Therefore,

those estimators are sensitive to outliers, especially for the third and higher moments.

To study the stock market returns more accurately, researchers in financial areas begin

to seek for robust measures that are less sensitive to outliers (see e.g. Kim and White



(2004)). Kim and White (2004) has surveyed several more robust measures of skewness

based on quantiles and moments, which have been originally introduced by statisti-

cians(see, e.g. Bowley (1920)). But those are only unconditional skewness measures.

To study the dynamics of the stock market returns or financial time series, we need a

robust measure for conditional skewness.

White, Kim, and Manganelli (2008) have proposed a conditional version for the

measure introduced by Bowley (1920) by replacing the unconditional quantiles with

conditional quantiles. To estimate conditional quantiles, we need back to the definition

of regression quantile. Regression quantile has been first introduced by Koenker and

Bassett (1978), which extended sample quantiles to linear regression quantiles. They

defined a minimization problem, and defined the solution to that minimization problem

as regression quantile. White (1996) has made an important contribution by proving

the consistency of the nonlinear regression quantiles for stationary dependent cases.

Another important contribution to the estimation of conditional quantiles was made

by Weiss (1991). In this paper, the author has introduced a least absolute error es-

timator, which is a special case of regression quantiles, for dynamic nonlinear models

with non i.i.d. errors. The author shows that the estimator is consistent and asymp-

totically normal under some regularity conditions and has also provided an estimator

for asymptotic covariance matrix. Engle and Manganelli (2004) have applied nonlinear

regression quantiles to study the dynamic of value at risk, which is a quantile. The

authors have proved that the estimator is consistent and asymptotically normal under

some regularity conditions, and provided an estimator for asymptotic covariance ma-

trix for nonlinear conditional quantiles in the context of time series. White, Kim, and

Manganelli (2008) have extended this method and estimated multiple quantiles jointly.

The quantile regression models used in White, Kim, and Manganelli (2008) are

for one-period return. Ghysels, Plazzi, and Valkanov (2010a) have proposed a quantile
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regression model that can be used for n-period, long-horizon return based on daily infor-

mation. They find that conditional skewness still varies across time even for GARCH-

and TARCH-filtered returns. In this chapter, we focus on the quantile regression models

of Ghysels, Plazzi, and Valkanov (2010a).

The asypototic properties of those conditional quantile models have been studied

by several papers(see, e.g., White, Kim, and Manganelli (2008), Engle and Manganelli

(2004)). They show that the conditional quantile estimators are consistent and asymp-

totically normal under some regulation conditions. But those regulation conditions are

hard to be verified empirically. Motivated by the limitation of those regularity condi-

tions, we are seeking from modeling the data generating process(DGP) from an asset

pricing model to derive the regularity conditions of the quantile regression model of

Ghysels, Plazzi, and Valkanov (2010a). In other words, we want to construct the link

between those regulation conditions proposed by White, Kim, and Manganelli (2008),

and Engle and Manganelli (2004) and basic DGPs with some simple assumptions.

Now, the question is what DGP is a good model for the economy and can generate a

fairly decent amount of time-varying conditional skewness like what we have observed

in the real data (Ghysels, Plazzi, and Valkanov (2010a)). Campbell and Cochrane

(1999) have presented a consumption-based asset pricing model that can explain im-

portant asset market phenomena. In addition, the model can produce non-normal

consumption-based stock prices and returns with negative skewness. Bansal and Yaron

(2004) have also presented a consumption-based asset pricing model which includes a

long-run predictable component. Their model can also explain some key features of dy-

namic asset pricing phenomena. But for these two models, they don’t have analytical

solutions for the price-dividend ratio and returns, which are needed for constructing the

connection between DGP and regularity conditions for quantile regression. Burnside

(1998) has provided an asset pricing model with normal shocks to consumption growth.

3



Tsionas (2003) has extended Burnside (1998) to allow for any shock that has moment

generating functions. Both of them have analytical solution for price-dividend ratio,

and therefore returns. Tsionas (2003) can generate conditional skewness,1 but we don’t

know if it can create time-varying conditional skewness. Bekaert and Engstrom (2010)

may be another option, which has both analytical solutions and allows for time-varying

conditional skewness for consumption growth.2

In this paper, we start with a rather conventional asset pricing framework based on

discounted dividend streams. Initially we use closed-form formulas of Burnside (1998)

and Tsionas (2003) using first a Gaussian setting and subsequently a general setting

that allows us to characterize DGP’s for which we subsequently study the asymptotic

properties of conditional quantile regressions and skewness measures. We have proved

that the conditional quantile estimators are consistent and asymptotically normalunder

those simple assumptions for the DGP of asset pricing we use.

This chapter is structured as follows. Section 1.2 describes the asset pricing model.

Section 1.3 describes the quantile regression model. In Section 1.4, we explore the

asympototic properties of quantile regression under the assumed data generating pro-

cess. Section 1.5 concludes this chapter and describes the future works. Regulation

conditions and proofs are in Section 1.6.

1.2 The Asset Pricing Model

First order condition of asset pricing to price an asset that entitles a dividend Dt

in each period satisfy

Pt = Et [St,t+1(Pt+1 +Dt+1)] ,

1For example, if the shock distribution is a general Edgeworth expansion, then it allows for skewness.

2But we don’t know if we can prove all the regularity conditions under this model, since they
assume the parameter for shocks follow AR(1) process, namely the shocks are dependent.
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where Pt is price of the asset at time t, St,t+1 is stochastic discount factor(SDF). We

consider a representative agent with CRRA preference and denote the price-dividend

ratio as vt = Pt/Dt, then we have

vt = Et

[
β

(
Ct+1

Ct

)−γ
(1 + vt+1)

Dt+1

Dt

]
, (1.1)

where γ is the coefficient of relative risk aversion, β is the discount factor, and Ct is

the consumption at time t. Assume the log dividend growth xt = log(Ct+1/Ct) =

log(Dt+1/Dt) follows AR(1) process

xt = (1− ρ)µ+ ρxt−1 + ξt, (1.2)

where ρ is the persistent parameter, and ξt is an i.i.d sequence of random variables.

Assumption 1 (i) |ρ| < 1 and ρ 6= 0;

(ii) Let Mξt(s) ≡ E exp(sξt) be the moment generating function(MGF) of ξt, Mξt(s)

exists;

(iii) Let fξt(ξt) be the probability density of ξt, fξt(ξt) is everywhere continuous, con-

tinuously differentiable and fξt(ξt) > 0.

The unconditional distribution of xt is µ+ (1− ρ)−1 ξt and MGF of xt is Mxt(s) =

exp(µs)Mξt(s/(1− ρ)). Tsionas (2003) shows that

vt =
∞∑
i=1

βi exp [ai + bi(xt − µ)] ≡
∞∑
i=1

zi, (1.3)

where α ≡ 1− γ, θ ≡ (1− γ) / (1− ρ)

ai = αiµ+
i∑

j=1

logMξt(θ(1− ρj))

5



bi = α
ρ

1− ρ
(1− ρi).

The conditions for stationary and bounded equilibrium to exist are given by Tsionas

(2003).

Assumption 2 Let r ≡ β exp (αµ)Mξt (θ), r < 1.

Lemma 1 Under Assumption 1, 2,

(i) the series vt converges;

(ii) the series vt have finite moments of every integer order.

Proof: See Tsionas (2003).

We are now in position to study the property of the returns generated from this

asset pricing model. The log return can be expressed as

rt+1 = log

(
Pt+1 +Dt+1

Pt

)
= log(1 + vt+1)− log vt + xt+1. (1.4)

Lemma 2 E |rt|3 <∞ if Assumption 1, and Lemma 1 holds.

Proof: See Section 1.6.

Given Assumption 1 and 2, it is possible to show that the series of returns have

finite moments of every integer order. Here we just show that the series of returns have

finite third moments, which is sufficient for our latter use. The proofs for the returns

to have higher order moments are similar.

1.3 The Empirical Quantile Model

The setup of the empirical quantile models follows Ghysels, Plazzi, and Valkanov

(2010a) closely. In section 1.3.1, we describe the robust measure of conditional asym-

metry. In Section 1.3, we present the conditional quantile regression specification and

the estimation of the model.

6



A robust measure of conditional asymmetry

In section 1.2, the returns generated from the DGP’s are one-period return, which

can be daily, weekly, or monthly, etc. We are interested in the asymmetry in the

conditional distributions of n-period returns. Let rt,n =
∑n−1

j=0 rt+j, for n ≥ 2, be the

log continuously compounded n-period return of an asset, where rt is the one-period log

return. Let Fn(r) = P (rt,n < r) be the unconditional cumulative distribution function

(CDF) of rt,n, and Fn,t|t−1 (r) = P (rt,n < r|It−1) be the conditional CDF given the

information set It−1. The θth quantile can be defined as

q∗θk (rt,t+n) ≡ inf {r : Fn (r) = θk} , θk ∈ (0, 1].

If Fn(r) and Fn,t|t−1 (r) are strictly increasing, then the θth quantile of return rt,n is

qθ (rt,n) = F−1n (r) , θ ∈ (0, 1]

and the conditional θth quantile of return rn,t is

qθ,t (rn,t) = F−1n,t|t−1 (r) , θ ∈ (0, 1]. (1.5)

For the sake of simplicity, we could assume that Fn(r) and Fn,t|t−1 (r) are strictly

increasing such that the inverse of Fn (r) or Fn,t|t−1 (r) is unique. Later in the next

section, we are going to show that strictly increasing can be verified under standard

regularity conditions.

As discussed in Section 1.1, researches have proposed robust measures of asymme-

try other than sample average to estimate skewness. Bowley (1920) is one of them.
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Bowley’s (1920) robust coefficient of skewness is defined as

CA (rt,n) =
(q0.75 (rt,n)− q0.50 (rt,n))− (q0.50 (rt,n)− q0.25 (rt,n))

q0.75 (rt,n)− q0.25 (rt,n)
(1.6)

where q0.25 (rt,n) , q0.50 (rt,n) and q0.75 (rt,n) are the 25th, 50th, and 75th unconditional

quantiles of rt,n.

Groeneveld and Meeden (1984) have proposed four properties that any reasonable

skewness measure should satisfy. That is for skewness measure γ (yt) (See Kim and

White (2004)):

(i) for any a > 0 and b, γ (yt) = γ (ayt + b);

(ii) if yt is symmetric, then γ (yt) = 0;

(iii) −γ (yt) = γ (−yt);

(iv) if F and G are cumulative distribution function of yt and xt, and F <c G, then

γ (yt) ≤ γ (xt), where <c is a skewness-ordering among distribtutions.

The measure (1.6) satisfies all the four conditions (See Groeneveld and Meeden

(1984)). Also this measure is normalized to be unit independent with values between

−1 and 1. The negative(positive) values of this measure indicate skewness to the

left(right). Although this measure is robust, it is an unconditional skewness measure,

which can not be used to study the dynamics of conditional asymmetry and those

properties of financial time series.

Recently, White, Kim, and Manganelli (2008) and Ghysels, Plazzi, and Valkanov

(2010a) have used a conditional version of (1.6) given information It−1, which makes

studying the dynamics of conditional asymmetry using a measure like (1.6) possible.

8



They define

CAt (rt,n) =
(q0.75,t (rt,n)− q0.50,t (rt,n))− (q0.50,t (rt,n)− q0.25,t (rt,n))

q0.75,t (rt,n)− q0.25,t (rt,n)
. (1.7)

where q0.25,t (rt,n) , q0.50,t (rt,n) and q0.75,t (rt,n) are the 25th, 50th, and 75th conditional

quantiles of rt,n. To estimate (1.7), we need estimate the conditional quantiles of rt,n. In

the next section, we present our models and estimation methods for those conditional

quantiles in (1.7).

Conditional quantile specification and estimation

We denote the θth conditional quantile of rt,n at time t as qθ,t (rt,n; δθ,n), where

δθ,n is the vector of parameters to be estimated for θth quantile at horizon n. Denote

the information set that contains the daily information up to time t − 1 as It−1 =

{xt−1, xt−2, ...} , where xt is a vector of daily conditioning variables. We use a mixed

data sampling (MIDAS) approach to setup the model for conditional quantile of rt,n,

which are multiple horizon returns, based on daily returns in the information set It−1.

In other words, we use daily returns as regressors. The model is defined as follows

qθ,t (rt,n; δθ,n) = αθ,n + βθ,nZt (κθ,n) (1.8)

Zt (κθ,n) =
D∑
d=1

wd (κθ,n)xt−d (1.9)

where δθ,n = (αθ,n, βθ,n, κθ,n)′ are unknown parameters to estimate. Following Ghysels,

Santa-Clara, and Valkanov (2006), we specify ωd (κθ,n) as

ωd (κθ,n) =
f(d−1/2

D
, κ1,θ,n, κ2,θ,n)∑D

m=1 f(m−1/2
D

, κ1,θ,n, κ2,θ,n)
, (1.10)

9



where κθ,n = (κ1,θ,n, κ2,θ,n) is a 2-dimensional row vector that reduces the number of

weights for lag coefficient to estimate from D to 2, f (z, a, b) = za−1 (1− z)b−1 /β (a, b),

β (a, b) = Γ(a)Γ(b)/Γ(a + b), and Γ is Gamma function. We specify the daily return

xt−d in (2.15) as |rt−d|.

We estimate the parameters δθ,n in (2.14-1.10) with non-linear least squares. More

specifically, for a given quantile θ and horizon n, we minimize

min
δθ,n

T−1
T∑
t=1

ρθ,n (εθ,n,t) (1.11)

where εθ,n,t = rt,n − qt,n (θ; δθ,n), ρθ,n (εθ,n,t) = (θ − 1 {εθ,n,t < 0}) εθ,n,t is the usual

“check” function used in quantile regressions. If the model we specified is the true

model of DGP, and δθ,n are true unknown parameters, then Qθ,n (εθ,t|It−1) = 0, where

Qθ,n (εθ,t|.) is the θ conditional quantile of εθ,n,t. The soluction to the optimization

problem (1.11) can also be considered as quasi-maximum likelihood estimator (QMLE),

where ρθ,n (εθ,n,t) is the log-likelihood of independent asymmetric double exponential

random variable which belongs to tick-exponential family (see e.g. White, Kim, and

Manganelli (2008), and Komunjer (2004)).

1.4 Asymptotic Properties

The asymptotic properties of δ̂θ,n that minimizes (1.11) have been studied by several

papers(see e.g. White (1996), Weiss (1991), Engle and Manganelli (2004) and White,

Kim, and Manganelli (2008)). They have shown that the estimates δ̂θ,n are consis-

tent and asymptotically normal by assuming that the DGP satisfied some regularity

conditions. But those regulation conditions are hard to be verified empirically. Moti-

vated by the limitation of those regularity conditions, we are seeking from modeling the

data generating process(DGP) from a basic asset pricing model to derive the regularity

10



conditions of the quantile regression model of Ghysels, Plazzi, and Valkanov (2010a).

We consider the data are generated by DGP described in Section 1.2 and estimate

the conditional quantiles using models described in Section 1.3. First, we define some

properties for the parameter space. Then, we prove all the assumptions (see White,

Kim, and Manganelli (2008)) that are needed for consistency and asymptoticly normal-

ity under our DGP of asset pricing models described in Section 1.2. To fix notation,

all the following statements are for fixed n and fixed θ.

Assumption 3 Let the parameter space Ã ≡ {δθ,n : βθ,n 6= 0, κ1,θ,n > 0, κ2,θ,n > 0} be a

compact subset of R4, and A be a compact subset of Ã. Assume that the true parameter

δ0θ,n ∈ A and δ0θ,n ∈ int (A).

Lemma 3 Let Ω be the sample space. Under Assumption 3, the function qθ,t(ω, δθ,n)

is such that

(i) for each t and each ω ∈ Ω, qθ,t (ω, ·) is continuous, continuously differentiable,

twice continuously differentiable on A;

(ii) for each t and each δθ,n ∈ A, qθ,t (·, δθ,n), ∇qθ,t (·, δθ,n), and ∇2qθ,t (·, δθ,n) are It−1

measurable, where ∇qθ,n (·, δθ,n) denote the gradient(row vector) of scaler function

qθ,n (·, δθ,n) with respect to δθ,n.

Proof: See Section 1.6.

Lemma 4 For fixed θ and δθ,n, E|rt,t+n|, E|qθ,t|, and E|εθ,t| are finite on A if Assump-

tion 3 and Lemma 2 hold.

Proof: See Section 1.6.

Lemma 5 Let D0,t ≡ supδθ,n∈A |qθ,t (·, αθ,n)|, D1,t ≡ maxi=1,...,4 supδθ,n∈A
∣∣∂δi,θ,nqθ,t(·, δθ,n)

∣∣,
and D2,t ≡ maxi=1,...,4 maxj=1,...,4 supδθ,n∈A

∣∣(∂δi,θ,n∂δj,θ,nqθ,t(·, δθ,n)
∣∣, where δi,θ,n is the ith

11



component of δθ,n. Under Assumption 3, if Lemma 2 holds, then (i) E (D0,t) <∞; (ii)

E(D3
1,t) <∞ ; (iii) E(D2

2,t) <∞.

Proof: See Section 1.6.

Lemma 6 {ρθ,n(εθ,t)} is strictly stationary and ergodic, and obeys the uniform law of

large number, if Lemma 4 and Lemma 5(i) hold.

Proof: See Section 1.6.

Lemma 7 Let hθ,t (rt,n|It−1) be the conditional density of rt,n given It−1. Under As-

sumption 1,

(i) for each θ and each t, hθ,t (rt,n|It−1) is everywhere continuous;

(ii) for each θ and each t, hθ,t (rt,n|It−1) > 0;

(iii) there exists a finite positive constant N such that for each θ, and each t, hθ,t (rt,n|It−1) ≤

N <∞;

(iv) there exists a finite positive constant L such that for each θ, each t, and each

λ1, λ2 ∈ R, |hθ,t (λ1|It−1)− hθ,t (λ2|It−1)| ≤ L |λ1 − λ2|.

Proof: See Section 1.6.

Lemma 8 For fixed t and every τ > 0, there exists δτ > 0 such that for all δθ,n ∈ A

with
∥∥δθ,n − δ0θ,n∥∥ > τ , P

(∣∣qθ,t(·, δθ,n)− qθ,t(·, δ0θ,n)
∣∣ > δτ

)
> 0 if Lemma 10 holds.

Proof: See Section 1.6.

Lemma 9 Let Q0 ≡ E
[
hθ,t (0|It−1)∇q′θ,t

(
·, δ0θ,n

)
∇qθ,t

(
·, δ0θ,n

)]
and V 0 ≡ E

(
η0
′

θ,tη
0
θ,t

)
,

where η0θ,t ≡ ∇qθ,t
(
·, δ0θ,n

)
ψθ (εθ,t) and ψθ (εθ,t) ≡ θ − 1{εθ,t<0}. If Lemma 10 and 7

hold, then (i) Q0 is positive definite; (ii) V 0 is positive definite.

12



Proof: See Section 1.6.

Now, we are in position to have the results of consistency and asymptoticly normal-

ity.

Theorem 1 If Assumption 3, Lemma 3, 4, 5(i), 6 - 8 hold, then δ̂θ,n
a.s→ δ0θ,n.

Proof: See White, Kim, and Manganelli (2008).

Theorem 2 If Assumption 3, Lemma 3 - 9 hold, then

√
TV 0−1/2Q0

(
δ̂θ,n − δ0θ,n

)
d→ N (0, I) .

Proof: See White, Kim, and Manganelli (2008).

The consistent estimators for V 0 and Q0 have been given by several papers(see

e.g. White, Kim, and Manganelli (2008) and Engle and Manganelli (2004)) with one

additional assumption.

Theorem 3 Let V̂T ≡ T−1
∑T

t=1 η̂
′
tη̂t, η̂t ≡ ∇qθ,t

(
·, δ̂θ,n

)
ψθ (ε̂θ,t), ε̂θ,t ≡ rt,t+n −

qθ,t

(
·, δ̂θ,n

)
. If Assumption 3, Lemma 3 - 9 hold, then V̂T

p→ V 0.

Proof: See White, Kim, and Manganelli (2008).

Assumption 4 {ĉT} is a stochastic sequence and cT is a nonstochastic sequence such

that (i) ĉT/cT
p→ 1; (ii) cT = o (1); (iii) c−1T = o

(
T 1/2

)
.

Theorem 4 Let Q̂T = (2ĉTT )−1
∑T

t=1 1−ĉT≤ε̂θ,t≤ĉT∇′qθ,t (·, δθ,n)∇qθ,t (·, δθ,n). If As-

sumption 3, 4, Lemma 3 - 9 hold, then Q̂T
p→ Q0.

Proof: See White, Kim, and Manganelli (2008).

13



1.5 Conclusion

In this chapter, we start with a simple consumption-based asset pricing model with

CRRA utility, and make a connection between the asset pricing model and the regularity

conditions for a quantile regression, which is hard to be verified. We prove that the

quantile regression estimators are asymptotically consistent and normally distributed

under certain assumptions for the asset pricing model.

1.6 Proofs

This section contains the proofs for this chapter.
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Proof of Lemma 2: We show Er2t+1 < ∞ by showing that E |rt+1|3 < ∞. Since

vt+1 > 0, we have 0 < log(1 + vt+1) < vt+1,

E |rt+1|3 ≤E |log (1 + vt+1)|3 + E |log vt|3 + E |xt+1|3 + 3E
∣∣log (1 + vt+1) (log vt)

2
∣∣

+ 3E
∣∣(log (1 + vt+1))

2 log vt
∣∣+ 3E

∣∣(log (1 + vt+1))
2 xt+1

∣∣
+ 3E

∣∣(log (1 + vt+1))x
2
t+1

∣∣+ 3E
∣∣(log vt)

2 xt+1

∣∣
+ 3E

∣∣(log vt)x
2
t+1

∣∣+ 6E |(log (1 + vt+1)) (log vt)xt+1|

≤Ev3t+1 + E |log vt|3 + E |xt+1|3 + 3E
∣∣vt+1 (log vt)

2
∣∣+ 3E

∣∣v2t+1 log vt
∣∣

+ 3E
∣∣v2t+1xt+1

∣∣+ 3E
∣∣vt+1x

2
t+1

∣∣+ 3E
∣∣(log vt)

2 xt+1

∣∣
+ 3E

∣∣(log vt)x
2
t+1

∣∣+ 6E |vt+1 (log vt)xt+1|

≤E |vt+1|3 + E |log vt|3 + E |xt+1|3 + 3
(
E |vt+1|3

) 1
3
(
E |log vt|3

) 2
3

+ 3
(
E |vt+1|3

) 2
3
(
E |log vt|3

) 1
3 + 3

(
E |vt+1|3

) 2
3
(
E |xt+1|3

) 1
3

+ 3
(
E |vt+1|3

) 1
3
(
E |xt+1|3

) 2
3 + 3

(
E |log vt|3

) 2
3
(
E |xt+1|3

) 1
3

+ 3
(
E |log vt|3

) 1
3
(
E |xt+1|3

) 2
3 + 6

(
E |vt+1|3E |log vt|3E |xt+1|3

) 1
3

The last inequlity holds due to Holder’s inequality. We know that E |vt+1|3 < ∞ and

E |xt+1|3 <∞ from Lemma 1. Now we need to show E |log vt|3 <∞ to have E |rt+1|3 <

∞. Considering the negative part of (log vt)
3, since zi > 0, log zi ≤ log

∑∞
i=1 zi, we have

[
(log vt)

3]− =

(log
∞∑
i=1

zi

)3
− ≤ [(log z1)

3]− ,
where log z1 = log β + a1 + b1(xt − µ) = log β + a1 + b1 (1− ρ)−1 ξt. Since the un-

conditional distribution of xt is given by xt = µ + (1− ρ)−1 ξt(see Tsionas (2003)).

By the assumption that the MGF of ξ exists, all the moments of ξ exists. Hence,

E (log z1)
3 <∞, E |log z1|3 <∞ and E

(
(log z1)

3)− <∞. (− log vt)
3 is convex because
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(− log vt) is convex and g (x) = x3 is convex and nondecreasing. Hence, (log vt)
3 is

concave. Thus, E (log vt)
3 ≤ (logEvt)

3 <∞. Therefore,

E
[
(log vt)

3]+ = E (log vt)
3 + E

[
(log vt)

3]− ≤ (logEvt)
3 + E

[
(log z1)

3]− <∞

E|logvt|3 = E
[
(log vt)

3]+ + E
[
(log vt)

3]− <∞
It follows that E |rt+1|3 <∞. �

Proof of Lemma 3: Let zd ≡ d−1/2
D

, and g(z, a, b) ≡ za−1 (1− z)b−1, we have

ωd (κθ,n) =
g (zd, κ1,θ,n, κ2,θ,n)∑D

m=1 g (zm, κ1,θ,n, κ2,θ,n)

∂κ1,θ,nωd (κθ,n) = (κ1,θ,n − 1)ωd (κθ,n)

[
z−1d −

∑D
m=1 g (zm, κ1,θ,n − 1, κ2,θ,n)∑D
m=1 g (zm, κ1,θ,n, κ2,θ,n)

]

∂κ2,θ,nωd (κθ,n) = (κ2,θ,n − 1)ωd (κθ,n)

[
(1− zd)−1 −

∑D
m=1 g (zm, κ1,θ,n, κ2,θ,n − 1)∑D
m=1 g (zm, κ1,θ,n, κ2,θ,n)

]

∂2κ1,θ,nωd (κθ,n) = ωd (κθ,n)

[
z−1d −

∑D
m=1 g (zm, κ1,θ,n − 1, κ2,θ,n)∑D
m=1 g (zm, κ1,θ,n, κ2,θ,n)

]

+ (κ1,θ,n − 1)2
[
z−1d −

∑D
m=1 g (zm, κ1,θ,n − 1, κ2,θ,n)∑D
m=1 g (zm, κ1,θ,n, κ2,θ,n)

]2

+ (κ1,θ,n − 1)2 ωd (κθ,n)

[∑D
m=1 g (zm, κ1,θ,n − 1, κ2,θ,n)∑D
m=1 g (zm, κ1,θ,n, κ2,θ,n)

]2

− (κ1,θ,n − 1) (κ1,θ,n − 2)ωd (κθ,n)

∑D
m=1 g (zm, κ1,θ,n − 2, κ2,θ,n)∑D
m=1 g (zm, κ1,θ,n, κ2,θ,n)
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∂2κ1,θ,nωd (κθ,n) = ωd (κθ,n)

[
(1− zd)−1 −

∑D
m=1 g (zm, κ1,θ,n, κ2,θ,n − 1)∑D
m=1 g (zm, κ1,θ,n, κ2,θ,n)

]

+ (κ2,θ,n − 1)2
[

(1− zd)−1 −
∑D

m=1 g (zm, κ1,θ,n, κ2,θ,n − 1)∑D
m=1 g (zm, κ1,θ,n, κ2,θ,n)

]2

+ (κ2,θ,n − 1)2 ωd (κθ,n)

[∑D
m=1 g (zm, κ1,θ,n, κ2,θ,n − 1)∑D
m=1 g (zm, κ1,θ,n, κ2,θ,n)

]2

− (κ2,θ,n − 1) (κ1,θ,n − 2)ωd (κθ,n)

∑D
m=1 g (zm, κ1,θ,n, κ2,θ,n − 2)∑D
m=1 g (zm, κ1,θ,n, κ2,θ,n)

∂κ1,θ,n∂κ2,θ,nωd (κθ,n) =

− (κ1,θ,n − 1) (κ2,θ,n − 1)ωd (κθ,n)

∑D
m=1 g (zm, κ1,θ,n − 1, κ2,θ,n − 1)(∑D

m=1 g (zm, κ1,θ,n, κ2,θ,n)
)2

+ (κ1,θ,n − 1) (κ2,θ,n − 1)ωd (κθ,n)

×
∑D

m=1 g (zm, κ1,θ,n − 1, κ2,θ,n)
∑D

l=1 g (zl, κ1,θ,n, κ2,θ,n − 1)(∑D
m=1 g (zm, κ1,θ,n, κ2,θ,n)

)2
(κ1,θ,n − 1) (κ2,θ,n − 1)ωd (κθ,n)

[
z−1d −

∑D
m=1 g (zm, κ1,θ,n − 1, κ2,θ,n)∑D
m=1 g (zm, κ1,θ,n, κ2,θ,n)

]

×

[
(1− zd)−1 −

∑D
m=1 g (zm, κ1,θ,n, κ2,θ,n − 1)∑D
m=1 g (zm, κ1,θ,n, κ2,θ,n)

]
.

It is clear that Lemma 3 is satisfied under Assumption 3. �

Proof of Lemma 4:

E|rt,t+n| = E

∣∣∣∣∣
n−1∑
j=0

rt+j

∣∣∣∣∣ ≤
n−1∑
j=0

E|rt+j| <∞
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Since the parameter space is compact set by Assumption 3, we have

E|qθ,t| = E

∣∣∣∣∣αθ,n + βθ,n

D∑
d=1

ωd(κθ,n)|rt−d|

∣∣∣∣∣ ≤ |αθ,n|+ |βθ,n|
D∑
d=1

ωd(κθ,n)E|rt−d| <∞

E|εθ,t| = E|rt,t+n − qθ,t| ≤ E|rt,t+n|+ E|qθ,t| <∞

�

Lemma 10 For fixed t and δθ,n ∈ A, the components of ∇qθ,t (·, δθ,n) are linearly in-

dependent of each other almost surely under Assumption 3.

Proof of Lemma 10: we check if there is nontrival a ≡ (a1, a2, a3, a4)
′ such that

for fixed t and δθ,n ∈ A, and every possible outcome of |rt−d|, ∇qθ,t (rt,n, δθ,n) a = 0.

Since

∇qθ,t (rt,n, δθ,n) =(
1,

D∑
d=1

ωd (κθ,n) |rt−d| , βθ,n
D∑
d=1

∂κ1,θ,nωd (κθ,n) |rt−d| , βθ,n
D∑
d=1

∂κ2,θ,nωd (κθ,n) |rt−d|

)
.

This yields

a1+
D∑
d=1

ωd (κθ,n) |rt−d|
(
a2 + a3βθ,n (κ1,θ,n − 1)

(
z−1d − c1

)
+a4βθ,n (κ2,θ,n − 1)

(
(1− zd)−1 − c2

))
= 0

where c1 and c2 are function of κ1,θ,n and κ1,θ,n, but do not depend on d. Since

ωd (κθ,n) > 0, and 1 and |rt−d| , d = 1, · · · , D, are linearly independent almost surely,

then a1 = 0 and a2+a3βθ,n (κ1,θ,n − 1)
(
z−1d − c1

)
+a4βθ,n (κ2,θ,n − 1)

(
(1− zd)−1 − c2

)
=

0, d = 1, . . . , D. If βθ,n 6= 0, κ1,θ,n 6= 1, κ2,θ,n 6= 1 and D > 3, the linear system of equa-

tions have no nontrival solution a such that ∇qθ,t (rt,n, δθ,n) a = 0 identically. Lemma
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10 then follows. �

Proof of Lemma 5: For any δθ,n ∈ A, E |qθ,t (·, δθ,n)| < ∞. Lemma 5(i) then

follows.

Proof of Lemma 3 indicates that ∂κ1,θ,nωd (κθ,n) is finite for all δθ,n ∈ A. If Lemma

2 holds, then for every δθ,n ∈ A, we have

E
∣∣∂κ1,θ,nqθ,t (rt,n, δθ,n)

∣∣3
= Eβ3

θ,n

D∑
d=1

D∑
l=1

D∑
m=1

∂κ1,θ,nωd (κθ,n) ∂κ1,θ,nωl (κθ,n) ∂κ1,θ,nωm (κθ,n) |rt−d| |rt−l| |rt−m|

= β3
θ,n

D∑
d=1

D∑
l=1

D∑
m=1

∂κ1,θ,nωd (κθ,n) ∂κ1,θ,nωl (κθ,n) ∂κ1,θ,nωm (κθ,n)E |rt−d| |rt−l| |rt−m|

≤ β3
θ,n

D∑
d=1

D∑
l=1

D∑
m=1

∂κ1,θ,nωd (κθ,n) ∂κ1,θ,nωl (κθ,n) ∂κ1,θ,nωm (κθ,n)

×
(
E |rt−d|3E |rt−l|3E |rt−m|3

)1/3
<∞.

Proof of E
∣∣∂δi,θ,nqθ,t (rt,n, δθ,n)

∣∣3 < ∞ for other components is similar. Since for all

δθ,n ∈ A and i = 1, . . . , 4, E
∣∣∂δi,θ,nqθ,t (rt,n, δθ,n)

∣∣3 is finite , we can conclude that

E(D3
1,t) <∞.

The proof of Lemma 5(iii) is the same as that of Lemma 5(ii). �

Proof of Lemma 6: Since {xt} is AR(1) process with i.i.d shocks and |ρ| < 1,

it is strictly stationary and ergodic. When a process is strictly stationary, then a

measurable function of this process is also strictly stationary. Similary property holds

for ergodicity. Both rt,t+n, and qθ,t are measurable function of xt, so ρθ,n is strictly

stationary and ergodic. It has been shown by White, Kim, and Manganelli (2008) that

|ρθ,n| is dominated by 2(|rt,t+n| + |D0,t|). Using Theorem A.2.2 on the appendix of

White (1996), ρθ,n obeys the uniform law of large number. �
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Proof of Lemma 7: First, find the expression for hθ,t (rt,n|It−1) as a function of

fξt(ξt).

vt =
∞∑
i=1

βi exp [ai + bi (xt−1 − µ)]

=
∞∑
i=1

βi exp [ai + bi (ρ(xt−1 − µ)) + ξt] ≡ vt (xt−1, ξt)

Denote vt (xt−1, ξt) as g (ξt|It−1). Since bi > 0 for all i = 1, · · · ,∞ if ρ > 0, and bi < 0

for all i = 1, · · · ,∞ if ρ < 0. If ρ = 0, vt is degenerate. So we exclude the case of

ρ = 0. g (ξt|It−1) is a monotone increasing or decreasing function of ξt given It−1 since

it’s a sum of monotone increasing or decreasing function. Let

rt (xt−1, ξt) = log (1 + g (ξt|It−1))− log (vt−1(xt−1)) + (1− ρ) + ρxt−1 + ξt

≡ G (ξt|It−1) .

If bi > 0, G (ξt|It−1) is a monotone increasing function of ξt given It−1. It implies

that there is an one-to-one transformation between ξt and G (ξt|It−1). The conditional

probability density of rt given It−1 is

frt|It−1 (rt|It−1) =
fξt (ξt)

|∂ξtG (ξt|It−1)|

∣∣∣∣
ξt=G−1(rt|It−1)

.

|∂ξtg (ξt|It−1)| > 0 since g (ξt|It−1) is monotone in ξt. |∂ξtg (ξt|It−1)| < ∞ since by

Assumption 2

∂ξtg (ξt|It−1) =
∞∑
i=1

βibi exp [ai + bi (ρ(xt−1 − µ)) + ξt] ≡
∞∑
i=1

z̃i

lim
i→∞

(z̃i+1/z̃i) = ρ exp (αµ)Mξt (θ) < 1.
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0 < ∂ξtG (ξt|It−1) < ∞. Therefore, 0 < frt|It−1 (rt|It−1) < ∞ by Assumption 2. If

bi < 0, ∂ξtG (ξt|It−1) = ∂ξtg (ξt|It−1) / (1 + g (ξt|It−1)) + 1 = 0 has only one solution

for ξt given It−1, since −∂ξtG (ξt|It−1) is monotone decreasing in ξt and 1 + g (ξt|It−1)

is monotone increasing in ξt given It−1. It implies that there exists a partition B1, B2

such that for each t, there is an one-to-one transformation between GBk (ξt|It−1) and ξt

on each Bk, k = 1, 2. Then, the conditional probability density of rt given It−1 is

frt|It−1 (rt|It−1) =
2∑

k=1

fξt (ξt)

|∂ξtGBk (ξt|It−1)|

∣∣∣∣
ξt=G

−1
Bk

(rt|It−1)

.

0 < frt|It−1 (rt|It−1) < ∞ then follows for bi < 0. The joint conditional probability

density of rt, · · · , rt+n−1 given It−1 is

frt,...,rt+n−1|It−1 (rt, · · · , rt+n−1|It−1)

= frt|It−1 (rt|It−1) frt+1|rt,It−1 (rt+1|rt, It−1) · · ·

frt+n−1|rt+n−2,...,rt,It−1 (rt+n−1|rt+n−2, · · · , rt, It−1)

= frt|It−1 (rt|It−1) frt+1|It (rt+1|It) · · · frt+n−1|It+n−2 (rt+n−1|It+n−2)

Since given It−1, rt and xt has one-to-one transformation on Bk, k = 1, 2, given rt

and It−1 is the same as given It. The last equality then follows. Therefore, 0 <

frt,...,rt+n−1|It−1 (rt, · · · , rt+n−1|It−1) <∞. Consider the transformation of (rt, . . . , rt+n−1)

to (U,U1, . . . , Un−1) =
(∑n−1

j=0 rt+j, rt+1, . . . , rt+n−1

)
. The joint probability density of

(U,U1, . . . , Un−1) given It−1 is

fU,U1,...,Un−1|It−1 (u, u1, . . . , un−1|It−1)

=
frt,...,rt+n−1|It−1 (rt, . . . , rt+n−1|It−1)

|J |

∣∣∣∣
rt=u−

∑n−1
j=1 uj ,rt+1=u1,...,rt+n−1=un−1

= frt,...,rt+n−1|It−1 (rt, . . . , rt+n−1|It−1)
∣∣
rt=u−

∑n−1
j=1 uj ,rt+1=u1,...,rt+n−1=un−1
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Therefore, we have 0 < fU,U1,...,Un−1|It−1 (u, u1, . . . , un−1|It−1) <∞.

Then, Lemma 7(i) is obvious. Lemma 7(ii) follows since

hθ,t (rt,n|It−1) = fU |It−1 (u|It−1)

=

∫
fU,U1,...,Un−1|It−1 (u, u1, . . . , un−1|It−1) du1 · · · dun−1,

where fU,U1,...,Un−1|It−1 (u, u1, . . . , un−1|It−1) > 0.

By the proposition that any function f ∈ L1 (ω,F , µ), then |f | <∞. hθ,t (rt,n|It−1) <

∞ since
∫
fU |It−1 (u|It−1) du = 1.

By Assumption 1(iii), fU,U1,...,Un−1|It−1 (u, u1, . . . , un−1|It−1) is continuously differen-

tiable. From the mean value theorem, we have

|hθ,t (λ1|It−1)− hθ,t (λ2|It−1)| = h′θ,t (c|It−1) |λ1 − λ2| ,

where c ∈ (λ1, λ2). If h′θ,t (c|It−1) ≤ L0, then Lemma 7(iv) holds.

�

Proof of Lemma 8: Applying the mean value theorem, we have

∣∣qθ,t(·, δθ,n)− qθ,t(·, δ0θ,n)
∣∣ =

∣∣∇qθ,t(·, δ∗θ,n)(δθ,n − δ0θ,n)
∣∣ ,

where δ∗θ,n ∈ A and lies between δθ,n and δ0θ,n.3 Lemma 10 indicates that for fixed t

and δ∗θ,n ∈ A, the components of ∇qθ,t(·, δ∗θ,n) are linearly independent of each other

almost surely, which means that ∇qθ,t(·, δ∗θ,n)(δθ,n − δ0θ,n) = 0 if and only if δθ,n − δ0θ,n is

zero. If
∥∥δθ,n − δ0θ,n∥∥ > τ for every τ > 0, then ∇qθ,t(·, δ0θ,n)(δθ,n − δ0θ,n) 6= 0. Therefore,∣∣∇qθ,t(·, δ0θ,n)(δθ,n − δ0θ,n)

∣∣ > 0 with positive probability. This implies that there exists

δτ > 0, such that P
(∣∣qθ,t(·, δθ,n)− qθ,t(·, δ0θ,n)

∣∣ > δτ
)
> 0. �

3Does βθ,n 6= 0 influence the use of the mean value theory?
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Proof of Lemma 9: Q0 is nonnegative definite. For any vector p = (p1, p2, p3, p4)
′,

we have

p′Q0p = E
[
hθ,t (0|It−1)

(
∇qθ,t

(
·, δ0θ,n

)
p
)′∇qθ,t (·, δ0θ,n) p]

= E
[
hθ,t (0|It−1)

(
∇qθ,t

(
·, δ0θ,n

)
p
)2] ≥ 0.

Lemma 7 indicates that hθ,t (0|It−1) > 0. So, p′Q0p = 0 if and only if p∇qθ,t
(
·, δ0θ,n

)
= 0

almost surely. Lemma 10 indicates that the components of ∇qθ,t
(
·, δ0θ,n

)
are linearly

independent almost surely, so there is no nontrival solution of p such that p′Q0p = 0.

Therefore, Q0 is positive definite.

V 0 is nonnegative definite since

p′V 0p = E
[
ψθ (εθ,t)∇qθ,t

(
·, δ0θ,n

)
p
]2 ≥ 0.

The equality holds if and only if ψθ (εθ,t)∇qθ,t
(
·, δ0θ,n

)
p = 0 almost surely. ψθ (εθ,t) = θ−

1{εθ,t<0} is nonzero, since ψθ (εθ,t) = θ or θ−1. Lemma 10 indicates that the components

of ∇qθ,t
(
·, δ0θ,n

)
are linearly independent almost surely, so there is no nontrival solution

of p such that ∇qθ,t
(
·, δ0θ,n

)
p = 0 holds. Therefore, V 0 is positive definite. �
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Chapter 2

Dynamic Quantile Models for Risk Management

2.1 Introduction

Koenker and Bassett (1978) propose a regression quantile framework and establish

the consistancy and asymptotic normality of the quantile regression estimators. The re-

gression quantile model of Koenker and Bassett (1978) is a static quantile model. Engle

and Manganelli (2004) introduce a conditional autoregressive value at risk (CAViaR)

model, which is a dynamic quantile model. This model makes the calculation of condi-

tional quantile and conditional value at risk possible. This paper also provides a test,

called dynamic quantile (DQ) test, to evaluate the goodness of fit of estimated dynamic

quantile process.

Other dynamic quantile models include the Quantile Autoregressive model (QAR) of

Koenker and Xiao (2006), the Dynamic Additive Quantile (DAQ) model of Gouriéroux

and Jasiak (2008) and the multi-quantile generalization of Engle and Manganelli’s

(2004) CaViaR approach to model conditional quantiles of White, Kim, and Manganelli

(2008).

Ghysels, Plazzi, and Valkanov (2011) introduce a MIxed DAta Sampling (MIDAS)

quantile regression model, which address the conditional quantile of multiple horizon

returns using single horizon returns(e.g. daily returns). Chen, Ghysels, and Wang

(2010) introduce the class of models High FrequencY Data-Based PRojectIon-Driven



(HYBRID) GARCH models, which addresses the issue of volatility forecasting involving

forecast horizons of a different frequency. The HYBRID GARCH class of models allow

us to write model multiple horizon models in a framework similar to GARCH(1,1). We

adopt the same strategy for dynamic quantile models. That is, we introduce dynamic

HYBRID quantile models that nest the CaViAR model of Engle and Manganelli (2004)

and the MIDAS quantile models of Ghysels, Plazzi, and Valkanov (2011).

Sakata and White (1998) and Hall and Yao (2003) show that, for heavy-tailed er-

rors, the asymptotic distributions of quasi-maximum likelihood parameter estimators

in GARCH models are non-normal, and are particularly difficult to estimate directly

using standard parametric methods. In such circumstances, dynamic quantile regres-

sion approaches might perform better than standard QMLE. We will show this by

simulation in Section 2.5.

The conditional quantiles are typically not the direct object of interest. Instead, its

key components, the conditional mean, conditional variance and the distribution are

the prime focus. One may wonder how to obtain the predictive distribution of returns.

Wu and Perloff (2005), Wu (2006) and Wu and Perloff (2007) proposed methods to fit

densities to quantiles. Motivated by these methods, we propose a quantile distribution

fits method to obtain conditional densities by matching the quantiles of a specific

parametric family with the selected set of conditional quantiles.

This chapter is structured as follows. Section 2.2 describes the generic setup. Sec-

tion 2.3 proposes models of financial risk based on dynamic quantile regressions. Section

2.4 introduces a density fitting approach to obtain conditional distributions of future

returns based on matching conditional quantiles and parametric densities. 2.5 is the

simulations of dynamic quantile regressions compared with conditional heteroskedas-

ticity and quantile distribution fits for risk management. Section 2.6 concludes this

chapter.
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2.2 The Generic Setup

In this section, we describe the notations that will be used in the later sections.

Let us start with a location scale family. Let rt be the portfolio return. We assume

the return rt follows

rt = µt|t−1(θ
a
l ) +

√
σ2
t|t−1(θ

a
v)εt (2.1)

where µt|t−1(θ
a
l ) is conditional mean or conditional location using information =t−1,

σt|t−1(θ
a
v) is the conditional volatility using information =t−1, and εt are i.i.d with

E [εt] = 0, E[ε2t ] = 1, and density F (θad). Then the standardized return εt can be

written as

εt(θ
a) ≡

rt − µt|t−1(θal )
σt|t−1(θav)

(2.2)

where the parameter vector θa ≡ (θa′l , θ
a′
v , θ

a′
d )′ governs the location, scale and distribu-

tion of the standardized returns or returns.

Then the quantile function of the standardized return εt(θ
a) can be written as

Qε(p, θa) = inf {ε ∈ R : p ≤ F (ε, θad)} (2.3)

where 0 < p < 1 is a probability. Then the conditional quantile of return rt can be

written as

Qr
t (p, θ

a) = µt|t−1(θ
a
l ) +Qε(p, θa)σt|t−1(θ

a
v) (2.4)

The skewness and kurtosis of εt, if any, are not dynamic since εt are i.i.d. So the first two

conditional moments, the conditional mean/location and conditional volatility, govern

26



the dynamic of the conditional quantiles of rt.

There are some evidence that the financial returns have some distributional pre-

dictable patterns that can not be fully captured by location-scale family in (2.1). Some

literature shows that εt given by (2.2) have predictable patterns in skewness and kur-

tosis. These include Engle and Manganelli (2004), Kim and White (2004), Engle and

Mistry (2007), White, Kim, and Manganelli (2008), (2010), Ghysels, Plazzi, and Valka-

nov (2011) and (2010b).

The bulk of the ARCH literature assumes that standardized returns normalized by

conditional volatility is independent and identical distributed(i.i.d.). Francq and Za-

koian (2004) have proved that quasi-maximum likelihood estimators(QMLE) for gener-

alized autoregressive conditional heteroscedastic (GARCH) process and autoregressive

moving-average(ARMA) GARCH process with i.i.d. innovations are consistent and

asymptotically normal. To model higher order moments, one need extend the i.i.d as-

sumptions on the innovations to some less restrictive assumptions. Escanciano (2009)

has extended the consistency and asymptotic normality of the QMLE for pure GARCH

process in Francq and Zakoian (2004) with i.i.d. innovations to martingale difference

centered squared innovations. This extension is important since now the ARCH process

allows for conditional skewness.

Now, let us consider the return rt follows (2.1) where εt satisfies E [εt|=t−1] =

0, E[ε2t |=t−1] = 1 a.s., and has density F (θad). Note εt are not i.i.d. Assume the

dependency of the quantile function of εt are governed by parameter θq. Then the

dynamic quantile function of the standardized return can be written as

Qε
t(p, θ

a, θq) = inf {εt ∈ R : p ≤ F (εt, θ
a
d)} (2.5)
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In conclusion, considering a location-scale model with relaxed assumption 1, we can

study the dynamic quantile model Qε
t(p, θ

a, θq) of the standardized return εt. We can

also consider to model the conditional quantiles of return Qr
t (p, θ

q) directly, where θq

is the parameter determine the dynamic quantiles of return. This is a case beyond

location-scale family. We can also further construct conditional mean/location, condi-

tional volatility from the conditional quantiles of return Qr
t (p, θ

q).

Here is an example of how to construct the predictive distribution 2 of return. As-

sume rt is from a location-scale family, σt|t−1(θ
a
v) follows a GARCH(1,1), and F (θad) is

zero mean unit variance Gaussian distribution. So the predictive distribution of return

given =t−1 is rt|=t−1 ∼ N(µt|t−1(θ
a
l ), σt|t−1(θ

a
v)). Now, we construct predictive distri-

bution of rt with conditional quantiles estimated through quantile models Qr
t (p, θ

q).

Define the interquartile range as

IQRr
t (θ

q) ≡ (Qr
t (.75, θq)−Qr

t (.25, θq)) (2.6)

The predictive distribution of returns is rt|=t−1 ∼ N(Qr
t (.50, θq), .549554× IQRr

t (θ
q)2).

.549554 is a constant using conditional quantiles to construct conditional volatility.

If we need construct conditional skewness from conditional quantiles, we can adopt

a robust coefficient of skewness proposed by Bowley. The conditional version of the

measure of Bowley is as follows

Skew (rt|=t−1) =
(Qr

t (.75, θq)−Qr
t (.50, θq))− (Qr

t (.50, θq)−Qr
t (.25, θq))

IQRr
t (θ

q)
(2.7)

where Qr
t (.25, θq), Qr

t (.50, θq) and Qr
t (.75, θq) are the 25th, 50th, and 75th conditional

1We can assume the normalized returns are a martingale difference sequence (see e.g. Escanciano
(2009))

2 i.e. conditional mean, conditional volatility, and conditional skewness, etc
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quantiles of rt.

For the cases that the conditional distribution can not be fully characterized by the

first two or three moments, to obtain the predictive distribution of returns, we propose

an Quantile Distribution Fits approach. Namely, we can use a parametric family to

fit a conditional density via matching the quantiles of the parametric facility qt(p, θ
d)

with the selected set of conditional quantiles Qr
t (p, θ

q) or Qε
t(p, θ

a, θq) by the method

of least squares.

2.3 Dynamic Quantile Models

Chen, Ghysels, and Wang (2010) introduce the class of models High FrequencY

Data-Based PRojectIon-Driven (HYBRID) GARCH models, which addresses the is-

sue of volatility forecasting involving forecast horizons of a different frequency. Their

HYBRID GARCH models can handle volatility forecasts for example over the next

five business days with past daily data, or tomorrow’s expected volatility while using

intra-daily returns.

The HYBRID GARCH model(Chen, Ghysels, and Wang (2010)) has the following

dynamics for volatility:

Vτ+1|τ = ω + αVτ |τ−1 + βHτ (2.8)

where τ refers to a different time scale than t. When Hτ is simply a daily return we

have the volatility dynamics of a standard daily GARCH(1,1), or Hτ a weekly return

those of a standard weekly GARCH(1,1).

By further specify Hτ as

Hτ ≡ H(θH , ~rτ ) =

[
m∑
j=1

exp

(
j∑
i=1

(
θH0 + θH1 i/m+ θH2 i

2/m2
))
r2j,τ

]
(2.9)
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where ~rτ = (r1,τ , r2,τ , . . . , rm−1,τ , rm,τ )
T is Rm−valued random vector. The parameters

to be estimated are (ω, α, β, θH0 , θ
H
1 , θ

H
2 ) for the HYBRID GARCH model. We denote

Hτ as given by 2.9 as exponential weights HYBRID GARCH model.

Ghysels, Plazzi, and Valkanov (2011) introduce a MIxed DAta Sampling (MIDAS)

quantile regression model, which addresses the conditional quantile of multiple horizon

returns using single horizon returns(eg. daily returns). The MIDAS quantile regression

model(Ghysels, Plazzi, and Valkanov (2011)) is described as follows.

Qθ,t (rt,n; δθ,n) = αθ,n + βθ,nZt (κθ,n) (2.10)

Zt (κθ,n) =
D∑
d=1

wd (κθ,n)xt−d (2.11)

where δθ,n = (αθ,n, βθ,n, κθ,n)′ are unknown parameters to estimate. Following Ghysels,

Santa-Clara, and Valkanov (2006), we can specify ωd (κθ,n) as

ωd (κθ,n) =
f(d−1/2

D
, κ1,θ,n, κ2,θ,n)∑D

m=1 f(m−1/2
D

, κ1,θ,n, κ2,θ,n)
, (2.12)

where κθ,n = (κ1,θ,n, κ2,θ,n) is a 2-dimensional row vector that reduces the number of

weights for lag coefficient to estimate from D to 2, f (z, a, b) = za−1 (1− z)b−1 /β (a, b),

β (a, b) = Γ(a)Γ(b)/Γ(a+ b), and Γ is Gamma function. We denote Zt as given by 2.12

as beta weights MIDAS Quantile model.

Engle and Manganelli (2004) introduce Conditional Autoregressive Value at Risk

(CAViaR) model, which is a quantile regression model specified as follows.

Qt (β) = β0 +

q∑
i=1

βiQt−i (β) +
r∑
j=1

βjl (xt−j) (2.13)

where p = q+r+1 is the dimension of β and l is a function of a finite number of lagged

values of observations.
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The HYBRID GARCH class of models allowed us to propose multiple horizon mod-

els in a framework similar to GARCH(1,1). We adopt the same strategy for dynamic

quantile models. That is, we introduce dynamic HYBRID quantile models that nest

(1) the CaViAR model of Engle and Manganelli (2004) and (2) the MIDAS quantile

models of Ghysels, Plazzi, and Valkanov (2011).

We characterize a HYBRID quantile regression in a similar way to HYBRID GARCH

- where the conditional quantile pertains to multiple horizon returns and the regressors

are higher frequency returns - as follows:

Qr
τ (p, θ

q) = ω + αQr
τ−1(p, θ

q) + βHQ
τ (2.14)

HQ
τ =

m−1∑
j=0

wj (κ)xj,τ (2.15)

when the HYBRID process driving the quantile is a same frequency absolute return we

recover the CaViAR model, and when α = 0 we recover the MIDAS quantile. There are

several benefits from using the HYBRID and MIDAS quantile specification (2.14)-(2.15)

rather than other conditional quantile models, such as Engle and Manganelli (2004) and

White, Kim, and Manganelli (2008). We follow Engle and Manganelli (2004), who find

that absolute returns successfully capture time variation in the conditional distribution

of returns, and use absolute daily or intra-daily returns as the conditioning variable in

(2.15). Alternative specifications with squared returns will be considered also.

To test the validity of the forecast model of CAViaR, Engle and Manganelli (2004)

propose a new test, in-sample DQ test, which is used for model selection. The test is

defined as follows.

DQIS ≡
Ĥit

′ (
β̂
)
X̂
(
β̂
)(

M̂TM̂′
T

)−1
X̂ ′
(
β̂
)
Ĥit

′ (
β̂
)

θ (1− θ)
d∼ χ2

q as T →∞ (2.16)
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where Hit is defined as follows.

Hit(β0) ≡ I (rt < Qt (β0))− θ (2.17)

Further definitions of X
(
β̂
)

and M̂T can be found in Engle and Manganelli (2004).

We use S&P 500 daily returns ranging from 1982 to 2011 to test our HYBRID

quantile models. We will estimate a generic of HYBRID quantile models with both

exponential weight(2.9) and beta weights(2.12). The choice of x in (2.15) we use are

|r|, r2, r3 and r. We estimate 1% and 5% weekly VaRs(horizon 5) using non-overlapping

daily returns with lag 5.

Table 2.1 shows the estimated parameters obtained from HYBRID quantile models

and MIDAS quantile models for 5% VaRs. Both Hit and DQ test p values are for

in-sample tests. Hit in percent is the percentage of times that the VaR is exceeded.

As indicated by Hit, the precision of all the models are good. Most of quantile models

are not rejected at 5% confidence interval by DQ tests for exponential weights except

three of the MIDAS quantile models. For beta weights, HYBRID quantile models are

also prefered by DQ in-sample test.

Table 2.2 shows the estimated parameters obtained from HYBRID quantile models

and MIDAS quantile models for 1% VaRs. The models perform similarly by looking at

in-sample Hit and DQ tests for 1% VaRs.

Figure 2.1 shows the 5% through 95% multiple horizon quantiles (horizon 5) ob-

tained using HYBRID quantile regression method and MIDAS quantile regression

method using daily returns with lag 5. As expected, with the lag term of quantile

included in the HYBRID quantile regression, the quantiles obtained are more smoother

than the quantiles obtained from MIDAS quantiles.
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2.4 Quantile Distribution Fits

Wu and Perloff (2005), Wu (2006) and Wu and Perloff (2007) fits densities to quan-

tiles. This is an interesting aspect if we have several conditional quantiles and we want

to use them to find the conditional density of either returns or standard returns by

fitting quantiles to a density. We call this method Quantile Distribution Fits.

Assume we have conditional quantiles Qr
t (p, θ

q) for a selection of p-values and deter-

mined by a parameter vector θq for return r at time t. The Qr
t (p, θ

q) can be obtained

by quantile regression method like CAViaR, MIDAS Quantile regression, and HYBRID

Quantile regression. Then the conditional distribution of r at time t can be found by

solving

min
θd

1

N

N∑
p=1

[Qr
t (p, θ

q)− qt(p, θd)]2 , ∀t ∈ {1, ..., T} (2.18)

where θd is the parameters to be estimated, N is the number of quantiles used in finding

conditional distribution, and qt(p, θd) is the quantile function of selected distribution.

For the choice of qt(p, θd), we can pick a rich family of distributions, like the Gener-

alized Hyperbolic (GH) class which is characterized by five parameters. When further

narrowed down to subclasses of four-, three-, or two-parameter distributions, yields

widely used distributions such as the normal inverse Gaussian distribution, the hyper-

bolic distribution, the variance gamma distribution, the generalized skewed t distribu-

tion, the student t distribution, the gamma distribution, the Cauchy distribution, the

normal distribution, etc. We can also use extreme value distributions like Generalized

Extreme Value (GEV) distribution and Generalized Pareto (GP) distribution.

For the choice of N , we can in principle fit as many quantiles as we want. More

quantiles means better distributional fit, but they may start crossing. The more quan-

tiles we use, the issue of crossing becomes more acute and then there is also the issue
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of too many moment conditions, which creates singularities.

By having the conditional distribution, we can further obtain Expected Shortfall

(ES), an alternative measure of risk proposed by Artzner, Delbaen, Eber, and Heath

(1997). The Expected Shortfall is the expected value of r when the threshold (i.e. VaR)

has been exceeded. It can be calculated by integral over the quantile function qt(p, θd)

in our case. The αth Expected Shortfall is defined as follows

ESαt = Et (rt|rt < qt(α, θd)) =
1

α

∫ α

0

qt(γ, θd)dγ (2.19)

where 0 < α < 1.

We would like to compare the Expected Shortfall obtained using the fitted pa-

rameters of quantile distribution fits with the regression based Expected Shortfall for

CaViaR or other quantile models(Manganelli and Engle (2001)). The regression based

Expected Shortfall is defined as follows

rt = δQr
t (p, θ

q) + ηt, rt < Qr
t (α, θ

q) (2.20)

ÊS
α

t = Êα
t (rt|rt < Qr

t (α, θ
q)) = δ̂Qr

t (α, θ
q) (2.21)

We start fitting generalized extreme value(GEV) distribution to quantiles of return

by minimizing the sum of squared distances of quantiles given by (2.18). The prelimi-

nary results are shown in Figure 2.2. The quantiles used in this figure were 10%, 20%,

30%, and 40% quantiles obtained by CAViaR SAV model using daily return. There

are three parameters to be estiamted(location, scale and shape). The quantiles ob-

tained by quantile distribution fits and CAViaR are generally on top of each other.

The smaller the quantiles, the more discrepancy between quantiles obtained by two

methods. Quantiles obtained by quantile distribution fits tend to be smaller for lower

quantiles.
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The results for comparison of Expected Shortfall using conditional distribution from

quantile distribution fits and regression based Expected Shortfall are shown in Figure

2.3. The larger discrepancy for 1% ES may be caused by the smaller sample size in the

regression.

We also test other distributions, including generalized pareto(GP) distribution. In

general, quantile distribution fits with GEV performs better than with GP. Also, quan-

tile distribution fits with t, skew t, and generalized hyperbolic distribution fails some-

times due to a lack of analytic quantile functions. We also use other quantiles like 25%,

50%, and 75% quantiles, and the results are worse than using 10%, 20%, 30%, and 40%

quantiles.

2.5 Simulation

In Section 2.5.1, we present results to compare the simulation results to compare

conditional heteroskedasticity and quantiles.

Simulation of Conditional Heteroskedasticity versus Quantils

This section covers an extensive Monte Carlo simulation to compare conditional

heteroskedasticity and quantiles. We first describe the conditional heteroskedasticity

and quantiles models we use in this section.

We consider the conditional volatility as GARCH(1,1)

rt = σtεt (2.22)

σ2
t = ω0 + α0r

2
t−1 + β0σ

2
t−1 (2.23)

where E [εt|Ft−1] = 0, and E [ε2t |Ft−1] = 1. By specifying the density of εt, we define

seven GARCH type models.
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If εt ∼ N (0, 1), the model is Gaussian GARCH(1,1) and we denoted it as NOR.

The parameters to be estimated for this model is θ = (ω0, α0, β0).

If εt is Student’s t-distribution which has the probability density function given by

f(t|ν) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 +
t2

ν

)− ν+1
2

(2.24)

where ν > 2 is the number of degree of freedom and Γ is the Gamma Function. We

denote this Student’s t GARCH model as STDT. The parameters to be estimated for

this model is θ = (ω0, α0, β0, ν).

If εt is Skew t-distribution proposed by Hansen (1994) which has the probability

density function given by

g (z|ν, λ) = bc

(
1 +

1

ν − 2

(
bz + a

1− λ

)2
)(−(ν+1)/2)

, z < −a/b (2.25)

= bc

(
1 +

1

ν − 2

(
bz + a

1 + λ

)2
)(−(ν+1)/2)

, z ≥ −a/b (2.26)

where ν > 2, −1 < λ < 1, and

a = 4λc
ν − 2

ν − 1

b2 = 1 + 3λ2 − a2

c =
Γν+1

2√
π (ν − 1)Γ (ν/2)

.

To ensure the mean and variance of εt to be zero, a, b, and c must satisfy

E [Z] = a = 0

E
[
Z2
]

= b2 + a2 = 1.
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We denote this SKWE T GARCH model as SKEWT. The parameters to be estimated

for this model is θ = (ω0, α0, β0, ν, λ). Note there are only one free parameter λ to

be estimated, and it is the skewness parameter of this density.If λ > 0, the density is

positively skewed and vice versa.

If εt is Generalized Hyperbolic Skew Student’s t-distribution proposed by Aas and

Haff (2006) which has the probability density function given by

f(x|β, ν, µ, δ) =

2
1−ν
2 δν |β|

ν+1
2 K ν+1

2

(√
β2
(
δ2 + (x− µ)2

))
exp (β (x− µ))

Γ
(
ν
2

)√
π

(√
δ2 + (x− µ)2

) ν+1
2

, β 6= 0

(2.27)

=
Γ
(
ν+1
2

)
√
πδΓ

(
ν
2

) [1 +
(x− µ)2

δ2

]−(ν+1)/2

, β = 0 (2.28)

where ν > 4 to ensure finite variance. To ensure the mean and variance of εt to be

zero, the parameters must satisfy

E [X] = µ+
βδ2

ν − 2
= 0

V ar [X] =
2β2δ4

(ν − 2)2 (ν − 4)
+

δ2

ν − 2
= 1

We denote this Generalized Hyperbolic Skew t GARCH model as GHST. The param-

eters to be estimated for this model is θ = (ω0, α0, β0, β, ν, µ, δ).

The skewness of the above density is

skew [X] =
2 (ν − 4)1/2 βδ

[2β2δ2 + (ν − 2) (ν − 4)]3/2

[
3 (ν − 2) +

8β2δ2

ν − 6

]
. (2.29)

It is time-invariant. To generate time-varying skewness in the simulation, we also

consider two Generalized Hyperbolic Skew t GARCH models with either ν or β follow
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a AR(1) process.

νt = c+ φνt−1 + εt (2.30)

βt == c+ φβt−1 + εt (2.31)

where εt is white noise with variance k. We denote the Generalized Hyperbolic Skew t

GARCH with time-varying β model as GHYP1 and the Generalized Hyperbolic Skew

t GARCH with time-varying ν model as GHYP2. The parameters for this model is

θ = (ω0, α0, β0, β, ν, µ, δ, c, φ, k). The last three parameters are determined without

estimation for both GHYP1 and GHYP2.

The last GARCH type model we consider is the model that εt follows mixed normal

distribution with two components. We denote this model as MIXNOR. The parameters

to be estimated for this model is θ = (ω0, α0, λ1, λ2, µ1, µ2, σ1, σ2). These parameters

must satisfy conditions such that λ1 + λ2 = 1, E (εt|Ft−1) = 0, and E (ε2t |Ft−1) = 1.

The single horizon quantile models we consider here are four CAViaR models pro-

posed by Engle and Manganelli (2004). Let rt be the return, and qt be the θth quantile

of rt. The symmetric Absolute Value CAViaR model, denoted as SAV, is

qt (β) = β1 + β2qt−1 (β) + β3 |rt−1| . (2.32)

The Symmetric Square Value CAViaR model, denoted as SSV, is

qt (β) = β1 + β2qt−1 (β) + β3r
2
t−1. (2.33)
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The Asymmetric Slope CAViaR model, denoted as AS, is

qt (β) = β1 + β2qt−1 (β) + β3 (rt−1)
+ + β4 (rt−1)

− . (2.34)

The Adaptive CAViaR model, denoted as AD, is

qt (β1) = qt−1 (β1) + β1
{[

1 + exp
(
G[yt−1 − qt−1 (β1)]

−1 − θ
)]}

, G = 10. (2.35)

Table 2.4 provides a summary of notations and descriptions of these models used

in the simulation and estimation.

We simulate data using seven different data generating processes (i.e. NOR, STDT,

SKEWT, GHYP, GHYP1, GHYP2, and MIXNOR). For the data generating processes

NOR, STDT, SKEWT, GHYP and MIXNOR, the parameters used in the simulations

are obtained by estimating 1982-2011 S&P 500 returns using the models accordingly.

For GHYP1 and GHYP2, we use time-varying β and ν generated by AR(1) processes,

respectively, while other parameters remain the same as GHYP. For each data gener-

ating process, we simulate 1000 samples with length 2500.

Table 2.4 shows all the parameter choices used in the simulation. They are obtained

by estimating 1982-2011 S&P 500 daily, weekly, and biweekly returns using the models

accordingly. The last column is log likelihood obtained through the estimations. For

daily data, STDT model is the best model by looking at this criteria. For weekly and

biweekly data, MIXNOR and GHYST provide the best estimation results, respectively.

For each sample, we estimate conditional heteroskedasticity models(NOR, STDT,

SKEWT, GHYP, and MIXNOR) and CaViAR models(5%, 25%, and 75% quantiles).

The performances of model estimations are evaluated through the estimates of σ̂t and

5% VaR. Our purposes are to compare the conditional volatility and conditional Value

at risk estimated through GARCH type models and quantile models. This raises the
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questions what are the true and estimated conditional Value at risk from GARCH type

models, and how to find out the conditional volatility from the quantile models.

For CAViaR models, the σ̂2
t is estimated through c× ˆIQR

2
, where c is a parameter

estimated through the interquartile range of each DGP3 and ˆIQR is the estimates of

interquartile range. For conditional heteroskedasticity models, the 5% VaR is estimated

through qtrue5% σtruet , where qtrue5% is the 5% quantile of each DGP.

The measures we use to compare σ̂t are QLIKE and MSEprop proposed by Patton

(2011). The definitions are as follows.

QLIKE =
1

T

T∑
t=1

(
log

ht
σ̂2
t

+
σ̂2
t

ht
− 1

)
, (2.36)

MSEprop =
1

T

T∑
t=1

(
σ̂2
t

ht
− 1

)2

, (2.37)

and ht = (σtruet )2. where QLIKE is normalized to yield zero when the estimated

volatility is equal to the true volatility. A smaller value of QLIKE means better

estimation. We compare the estimates of 5% VaR using Mean squared error.

The results of comparisons are shown in Table 2.5 - Table 2.7.

Table 2.5 shows the comparison of σt using QLIKE. For the simulation with data

generating process NOR, the CaViaR quantile models SAV and AS perform compa-

rably to the true model NOR. For data generating process STKEWT, the CaViaR

quantile model SAV performs comparably to the true model SKEWT. GARCH type

model NOR and CaViaR model AS perform similarly and slightly worse than the true

model SKEWT. For data generating process GHST, the true model performs the best,

then followed by other GARCH type models. In this case, the CaViaR quantile models

3For example, for GARCH-Normal, c = .549554.
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do not show advantage over the GARCH type models. But for data generating pro-

cess GHYP2, the CaViaR quantile models SAV performs comparably with estimated

through GHYP and performs better than other GARCH type models. For data gen-

erating process MIXNOR, CaViaR quantile model SAV performs better than NOR,

STDT, and GHST, and worse than SKEWT and the true model MIXNOR. Overall,

CaViaR model SAV performs consistently very well for a variety of data generating

process.

Table 2.6 shows the comparison of σt using MSEprop. For data generating process

NOR, SAV performs similarly to NOR by looking MSEprop. For data generating

process STDT, CaViaR quantile models SAV, SSV and AS perform even better than the

true model STDT. For data generating process SKEWT, the CaViaR model SAV and

AS perform better than the true model SKEWT. For data generating process GHST,

the true model performs the best, then followed by other GARCH type models. In this

case, the CaViaR quantile models do not show advantage over the GARCH type models

as using the measure of QLIKE. For data generating process MIXNOR, CaViaR

quantile model SAV performs the best. Overall, using MSEprop as criteria, CaViaR

quatile models shows even more advantages than GARCH type models compared with

using QLIKE.

In conclusion, for estimation of σ̂t, CAViaR Models (SAV, SSV, AS) are better than

GARCH type models when there are fat tail, skewness or time-varying skewness in the

data.

Table 2.7 shows the comparison of VaR using MSE. And the findings can be sum-

marized as follows. For estimation of VaR, some of the GARCH type models are better

than CaViaR Models. This makes sense since the estimation of q5% is less accurate

than say the estimations of q25% and q75% for skewness measures.
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2.6 Conclusion

We introduce a generic of HYBRID quantile regression models and use the measure

of in-sample Hit and DQ tests(Manganelli and Engle (2001)) to check the performance

of our models compared with MIDAS quantile regression models. For the estimation

of 5% VaRs, the HYBRID quantile regression models are prefered. For 1% VaRs, there

two types of models provide similar results.

We propose a method to find conditional distributions based on quantile regres-

sions called Quantile Distribution Fits. This method allows us to calculate Expected

Shortfall, and other properties, which is very useful for risk management. We compare

the results of quantiles/Value at Risk by quantile regressions and quantile distribu-

tion fits. We also study the expected shortfall using conditional distribution obtained

by quantile distribution fits with the regression based expected shortfall for quantiles

regressions. The results suggest that Quantile Distribution Fits is a very promising

alternative method for risk management.

For estimation of σ̂t, CAViaR Models (SAV, SSV, AS) are better than GARCH

type models when there are fat tail, skewness or time-varying skewness in the data.

For estimation of VaR, some of the GARCH type models are superior than CaViaR

Models. This may arise from the fact that the estimation of q5% is less accurate than

say the estimations of q25% and q75% for skewness measures.

2.7 Tables and Figures

This section contains tables and figures for this chapter.
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Table 2.1: Hybrid quantiles and MIDAS quantiles for 5% VaR

Model HYBRID MIDAS

x |r| r2 r r3 |r| r2 r r3

Panel I: Exponential Weights

ω -0.2255 -0.5661 -0.6124 -0.9906 -1.8101 -2.8321 -3.8394 -3.4571

α 0.7201 0.7692 0.8408 0.6911

β -1.0231 -0.1710 1.0062 0.0407 -2.0661 -0.4581 0.8005 0.0466

κ1 82.4187 18.8972 1.3519 223.6761 58.4813 4.2246 335.1269 239.4319

κ2 -11.5922 -2.4032 -0.1867 -31.5316 -6.5666 -0.4442 -47.6295 -29.9681

Hit (%) 4.9366 5.0033 5.0033 5.0033 5.0033 5.0033 5.0033 4.9366

DQ p values 0.9370 0.8868 0.5496 0.8883 0.0172 0.9630 0.0000 0.0428

Panel II: Beta Weights

ω -0.2018 -0.5769 -0.8949 -0.7841 -1.9384 -2.8254 -3.8074 -3.4578

α 0.7153 0.7692 0.7559 0.7565

β -1.0891 -0.1648 0.8543 0.0290 -1.8649 -0.4500 0.7887 0.0466

κ1 70.3929 62.6558 10.5647 53.9638 152.6235 221.1039 21.8558 128.1018

κ2 44.9371 37.6604 4.4327 29.8219 1.8488 1.8442 10.8169 3.2954

Hit (%) 5.0033 4.9366 4.9366 5.0033 5.0700 5.0033 5.0033 5.0033

DQ p values 0.9438 0.0965 0.5482 0.0000
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Table 2.2: Hybrid quantiles and MIDAS quantiles for 1% VaR

Model HYBRID MIDAS

x |r| r2 r r3 |r| r2 r r3

Panel I: Exponential Weights

ω -0.6471 -1.1271 -1.2982 -1.1205 -4.3155 -5.0566 -7.0351 -6.2308

α 0.7436 0.7436 0.8032 0.8200

β -0.9795 -0.2721 2.1812 0.0406 -2.1111 -0.7087 1.6703 0.0357

κ1 16.7011 51.7878 0.0052 283.2151 58.7313 58.4610 6.8645 197.2404

κ2 -2.0263 -6.0263 0.0242 -31.5316 -6.5666 -6.5666 -0.8859 -22.2962

Hit (%) 1.0007 1.0007 0.9340 1.0007 1.0007 0.9340 1.0007 1.0007

DQ p values 0.7737 0.9696 0.1539 0.8734 0.9495 0.9851 0.4555

Panel II: Beta Weights

ω -0.6768 -1.1360 -1.6637 -2.2420 -4.2135 -5.0549 -6.6011 -6.2305

α 0.7436 0.7436 0.7391 0.6356

β -0.9266 -0.2619 0.9580 0.0310 -2.3949 -0.7095 1.2658 0.0346

κ1 85.6395 134.1690 11.1725 64.2875 152.6235 192.1371 5.5065 160.3267

κ2 53.1661 26.4930 4.7366 36.2934 1.8260 1.8402 1.7065 9.5178

Hit (%) 1.0007 1.0007 0.9340 1.0007 1.0007 1.0007 0.9340 1.0007

DQ p values 0.8524 0.9702 0.9959 0.9279 0.9724
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Table 2.3: Summary of Model Specifications

Model Notation Description

1 NOR Gaussian GARCH

2 STDT TGARCH

3 SKEWT Skew T GARCH(Hansen (1994))

4 GHST Generalized Hyperbolic Skew T GARCH(Aas and Haff (2006))

5 GHST1 Generalized Hyperbolic Skew T GARCH with Time Varying β (Aas and Haff
(2006))

6 GHST2 Generalized Hyperbolic Skew T GARCH with Time Varying ν (Aas and Haff
(2006))

7 MN(3,3) Mixed Normal GARCH with 3 component densities and 3 GARCH pro-
cess(Haas, Mittnik, and Paolella (2004))

8 MN Mixed Normal GARCH

9 SAV CAViaR: Symmetric Absolute Value

qt (β) = β1 + β2qt−1 (β) + β3 |yt−1|

10 SSV CAViaR: Symmetric Square Value

qt (β) = β1 + β2qt−1 (β) + β3y
2
t−1

11 AS CAViaR: Asymmetric Slop

qt (β) = β1 + β2qt−1 (β) + β3 (yt−1)
+

+ β4 (yt−1)
−

12 AD CAViaR: Adaptive

qt (β1) = qt−1 (β1) + β1
{[

1 + exp
(
G[yt−1 − qt−1 (β1)]−1 − θ

)]}
, G = 10
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Table 2.4: Summary of Parameters in Simulation Study

Model Parameters LL

NOR (ω0, α0, β0)

daily 0.0133 0.0798 0.9115 -10295

weekly 0.1471 0.1337 0.8465 -3359

biweekly 0.1523 0.1016 0.8984 -1963

STDT (ω0, α0, β0, ν)

daily 0.0070 0.0571 0.9381 6.2893 -10057

weekly 0.1039 0.0935 0.8893 8.8307 -3336

biweekly 0.3028 0.1021 0.8693 5.5406 -1900

SKEWT (ω0, α0, β0, ν, λ)

daily 0.1004 0.1401 0.7683 21.5589 -0.0417 -10281

weekly 0.1080 0.0967 0.8897 8.4570 -0.1834 -3324

biweekly 0.5067 0.1558 0.8269 4.5074 -0.2634 -1885

GHST (ω0, α0, β0, β, ν, µ, δ)

daily 0.0000 0.1106 0.8894 -0.2681 13.1669 0.2641 3.3162 -10166

weekly 0.1014 0.0942 0.8949 -0.5415 8.9402 0.4890 2.5036 -3324

biweekly 0.5999 0.1706 0.8294 -0.5198 5.0646 0.3793 1.4954 -1886

GHST1 (ω0, α0, β0, β, ν, µ, δ, c, φ, k)

daily 0.0000 0.1106 0.8894 -0.2681 13.1669 0.2641 3.3162 -0.0330 0.8000 0.0260

weekly 0.1014 0.0942 0.8949 -0.5415 8.9402 0.4890 2.5036 -0.0330 0.8000 0.0260

biweekly 0.5999 0.1706 0.8294 -0.5198 5.0646 0.3793 1.4954 -0.0330 0.8000 0.0260

GHST2 (ω0, α0, β0, β, ν, µ, δ, c, φ, k)

daily 0.0000 0.1106 0.8894 -0.2681 13.1669 0.2641 3.3162 -0.2305 0.8000 0.4000

weekly 0.1014 0.0942 0.8949 -0.5415 8.9402 0.4890 2.5036 -0.2305 0.8000 0.4000

biweekly 0.5999 0.1706 0.8294 -0.5198 5.0646 0.3793 1.4954 -0.2305 0.8000 0.4000

MIXNOR (ω0, α0, β0, λ1, λ2, µ1, µ2, σ1, σ2)

daily 0.0084 0.0650 0.9312 0.9322 0.0678 0.0469 -0.6450 0.8718 1.9627 -10082

weekly 0.0984 0.0920 0.8968 0.9057 0.0943 0.0858 -0.8246 0.8500 1.7074 -3323

biweekly 0.4242 0.1455 0.8545 0.9474 0.0526 0.0849 -1.5294 0.7565 2.4971 -1893
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Horizon 5, lag 5, hybrid quantile
THETA = [0.05;0.10; 0.25;0.50; 0.75; 0.90, 0.95]
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-20 Horizon 5, lag 5, midas quantile
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Figure 2.1: HYBRID quantile regression and MIDAS quantile regression: (a) the 5%,
10%, 25%, 50%, 75%, 90% and 95% quantiles for multiple horizon returns(horizon 5)
using HYBRID quantile regression models with lag 5, (b) the 5%, 10%, 25%, 50%, 75%,
90% and 95% quantiles for multiple horizon returns(horizon 5) using MIDAS quantile
regression models with lag 5.
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(a) Parameters fitted using GEV
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(b) CaViaR 1% quantile vs 1% quantile calculated using fitted parameters
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−2
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(c) CaViaR 5% quantile vs 5% quantile calculated using fitted parameters

0 500 1000 1500 2000 2500 3000 3500
−4
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(d) CaViaR 10% quantile vs 10% quantile calculated using fitted parameters

Figure 2.2: Comparison of quantiles by quantile distribution fits and CAViaR model:
(a) the fitted parameters of generalized extreme value(GEV) distribution where the
four quantiles (10% to 40% by 10%) used by quantile distribution fits are obtained by
CAViaR SAV model using daily data, (b) CaViaR 1% quantile(Green) vs 1% quantile
calculated using fitted parameters(Blue), (c) CaViaR 5% quantile vs 5% quantile cal-
culated using fitted parameters, (d) CaViaR 10% quantile vs 10% quantile calculated
using fitted parameters.
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(a) CaViaR 1%, 5%, and 10% quantiles
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(b) 1% regression based ES and quanitle fitting based ES
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(c) 5% regression based ES and quanitle fitting based ES
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(d) 10% regression based ES and quanitle fitting based ES

Figure 2.3: Comparison of Expected Shortfall(ES) by quantile distribution fits and
regression based ES of CAViaR quantiles: (a) 1%, 5% and 10% CaViaR quantiles,
(b) 1% regression based ES(Green) vs 1% quantile fitting based ES(Blue), (c) 5%
regression based ES(Green) vs 5% quantile fitting based ES(Blue), (d) 10% regression
based ES(Green) vs 10% quantile fitting based ES(Blue).

52



Chapter 3

Simulation Study of Long Run Skewness for Asset Pricing

3.1 Introduction

Bansal and Yaron (2004) have presented a consumption-based asset pricing model

which includes a long-run predictable component, a time-varying consumption growth

rates, time-varying volatility, and preference of Epstein and Zin (1989). Their model

can explain some key features of dynamic asset pricing phenomena and address the

asset market puzzles.

It has also been documented by empirical studies that the distribution of equity

returns, either conditional or unconditional, can not be fully characterized by just

mean and variance. Many previous studies have shown that the equity returns are

negatively skewed(see e.g. Harvey and Siddique (2000)). Ghysels, Plazzi, and Valkanov

(2010a) have also found a strong relationship between the conditional asymmetry and

macroeconomic variables, which is different from the conditional volatility.

Inspired by these important findings, an intriguing question arises. Can we improve

our understanding of equity returns and asset pricing by introducing higher moments

into Bansal and Yaron (2004) type of model?

To better understand these questions, in this chapter, we are seeking to incorporate

asymmetry in the Bansal and Yaron (2004) type of model and use simulation study to

further investigate the long run skewness for an asymmetry consumption based asset



pricing model that can generate larger equity returns due to asymmetry.

This chapter is structured as follows. Section 3.2.1 describes the asymetry consump-

tion based asset pricing model. Section 3.2.2 provides the calibration of the model.

Section 3.3 describes the simulation study using this model. Section 3.3.1 studies the

Hansen Jagannathan Bound generated by this model. Section 3.3.2 provides distri-

bution of equity returns for different parameter choices. Section 3.3.3 simulates the

conditional moments of macro fundamentals and equity returns. In section 3.4, we

conclude this chapter by sumerizing the findings.

3.2 Model Specification and Calibration

In this section, we first describe the threshold model of Colacito, Ghysels, Meng,

and Ru (2012) in Section 3.2.1. Then the monthly calibration of the model is provided

in Section 3.2.2.

Model Specification

Following Colacito, Ghysels, Meng, and Ru (2012), specify a representative con-

sumer’s preference at time t, Ut, as follows:

Ut = (1− δ) logCt +
δ

1− γ
logEt[exp{(1− γ)Ut+1}] (3.1)

Where γ is the degree of risk aversion, δ is the subjective discount factor, and Ct is

the consumption at time t. This preference is the limiting case of Epstein and Zin

(1989) when the intertemporal elasticity of substitution tends to be one. It is non

time-additive while the constant relative risk aversion(CRRA) is time-additive. This

preference has been used by several other papers, such as Colacito and Croce (2010),

Kan (1995), Anderson (2005) and Lucas and Stokey (1984).
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Let ∆ct = log(Ct) − log(Ct−1) denotes consumption growth. Following Colacito,

Ghysels, Meng, and Ru (2012), we assume the consumption dynamic follows:

∆ct+1 = (µc + κc) + κxxt + σcεc,t+1 (3.2)

and the dividend growth ∆dt = log(Dt)− log(Dt−1) follows:

∆dt = λ∆ct (3.3)

where λ > 1 is the leverage ratio for the claim on consumption and xt is the long-run

component of consumption growth which follows:

xt = ρ−xt−1 + σxεx,t, ∀xt−1 ≤ 0 (3.4)

xt = ρ+xt−1 + σxεx,t, ∀xt−1 > 0 (3.5)

Here, µc + κc is the average consumption growth, κx is the coefficient of xt, σx is the

volatility of shocks to x, σc is the standard deviation of the short-run shock to con-

sumption, and ρ is autoregressive coefficient of long-run component xt. For stationary,

ρ < 1. The shocks εc,t and εx,t are i.i.d normal with mean zero and standard deviation

1. The model of Bansal and Yaron (2004) is a special case of the above model when

ρ = ρ1 = ρ+, κc = 0, and κx = 1.

To solve the utility in equilibrium, we define the value function as follows:

Vt = Ut − logCt = δθ logEt exp

{
Vt+1 + ∆ct+1

θ

}
(3.6)

where θ = 1/(1− γ). Then the value function can be solved by iterating it on a grid of

values of xt.
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For the preference given by 3.1, the stochastic discount factor, which is the intertem-

poral marginal rate of substitution, can be given as follows:

Mt+1 =
∂Ut/∂Ct+1

∂Ut/∂Ct
(3.7)

= exp

{
log δ −∆ct+1 +

Ut+1

θ
− logEt exp

{
Ut+1

θ

}}
(3.8)

Let mt = logMt be the log consumption stochastic discount factor. The risk free

rates can be written as:

rft = − logEt exp {mt+1} (3.9)

Define vd,t = Pt/Dt as price-dividend ratio(P/D ratio) and Rd
t as the returns to

the dividend growth, which is levered consumption claim given by 3.3. The first order

condition to price an asset implies that the return Rd
t satisfies Euler equation:

1 = Et [Mt+1Rd,t+1] (3.10)

Where the returns Rd
t is

Rd,t+1 =
Pt+1 +Dt+1

PT
=

1 + vd,t+1

vd,t
exp {∆dt+1} (3.11)

The log return is rd,t+1 = logRd,t+1. The dynamic of P/D ratio can be written as

follows:

vd,t = Et [exp {mt+1} (1 + vd,t+1) exp {∆dt+1}] (3.12)
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Calibration

Following Colacito, Ghysels, Meng, and Ru (2012), we calibrate the model at

monthly frequency. The parameters choices are given by Table 3.1. The autoregressive

coefficient ρ given in the table is for the benchmark case where ρ = ρ− = ρ+. Other

choices of ρ− and ρ+ are listed in Table 3.2. The coefficient of risk aversion in Table 3.1

is set to 10 as a benchmark case. We study cases of γ from 7.5 to 20. The leverage is

set to be 3 such that the dividend claim is more volatile than the consumption stream.

3.3 Simulation

After solving the value function, we simulate samples of length 100,000 with base-

line parameter choices given by Table 3.1. Additional simulations are done for γ ∈

{7.5, 10, 12.5, 15, 17.5, 20} with other parameters are same as Table 3.1 to study the

relationship of E [M ] and σ [M ].

Section 3.3.1 studies the relationship between mean and variance of stochastic dis-

count factor generated by this model. Section 3.3.2 provides distribution of equity

returns for different parameter choices. Section 3.3.3 simulates the conditional mo-

ments of macro fundamentals and equity returns.

Hansen and Jagannathan Bound

Hansen and Jagannathan (1991) introduces Hansen and Jagannathan bounds which

provide a criteria to validate whether a consumption based asset pricing model are fea-

sible to compare asset pricing models. The Hansen and Jagannathan bounds are bound

on the expectation of stochastic discount factor, standard deviation of the stochastic

discount factor, and other moments of stochastic discount factor. Hansen and Ja-

gannathan bound for a vector of returns, R, is the hyperbola given by the following
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equation in {E [M ] , σ [M ]} space.

σ (M)2 ≥ (1− E [M ]E [R])′Σ−1 (1− E [M ]E [R]) (3.13)

where Σ is the covariance matrix of R.

Table 3.7 shows the results of pair of E [M ] and σ [M ].

Equity Returns

Table 3.2 shows the choice of parameters of ρ− and ρ+, and the means, volatilites,

skewness, kurtosis, and first order autocorrelation of predictive component of consump-

tion growth xt, which follow the process of Equation 3.4 and 3.5. The choice of pa-

rameters of ρ− and ρ+ are chosen in 3.2 in order that the first order autocorrelation of

consumption growth are the same across cases. We consider two choices of first order

autocorrelation here, that is ρ = 0.962 and ρ = 0.963. To compare different cases, we

need adjust κc and κx in order that the unconditional mean and volatility of consump-

tion growth are the same across different cases(See Colacito, Ghysels, Meng, and Ru

(2012)).

Table 3.3 shows the mean, variance, skewness, and kurtosis for both excess returns

and risk free rates generated with parameters given by Table 3.1 and γ = 15. All

numbers in the table are annualized. The first column is for baseline case with ρ− =

ρ+ = 0.962. The simulated excess return has a mean of 2.391, and a slightly positive

skewness. The larger the difference between ρ− and ρ+, the greater the expected excess

return and negatively skewed. The risk free rates slightly decrease while the difference

between ρ− and ρ+ increases. And the skewness of the risk free rates is always negative

in the model from the simulations. The trends are the same for ρ = 0.963 cases.

Table 3.4 shows the same results with parameters given by Table 3.1 and γ = 10.
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All numbers in the table are annualized. With γ = 10, the maximum expected excess

return we can obtain from our selected parameters is 3.113. While for γ = 15, the

maximum expected excess return we can obtain is 6.059, which is obtained when ρ−

and ρ= have the maximum difference.

From these we can conclude that the degree of asymmetry of autogressive coefficient

of the long run component xt plays an important role in the equity risk premia. That

is, the degree of asymmetry of the predictive component of consumption growth largely

determines the maximum Sharpe ratio that can be reached(Colacito, Ghysels, Meng,

and Ru (2012)) and skewness can explains larger equity risk premia.

Table 3.5 shows the mean, variance, skewness, kurtosis for return, excess return,

and risk free rates for parameters given by 3.1 and γ = 15 at multiple non-overlapping

horizons from one month to one year. All numbers in the table are annualized. From

this table, we can see that the variance is slightly reduced by aggregating with non-

overlapping method, but the skewness is increased along the aggregating. We will show

why this could be the case in Section 3.3.3 by evaluating the conditional moments of

predictive component of consumption growth xt and the conditional moments of excess

returns. The variance of excess returns decreases while aggregating, and the skewness

of excess returns increases. The skewness of risk free rates are larger than the skewness

of excess returns, but the patterns are the same while aggregating.

Table 3.6 shows the same results for parameters given by 3.1 and γ = 15 at multiple

overlapping horizons from one month to a year. All numbers in the table are annualized.

All the patterns remains the same as aggregating using non-overlapping method.

Conditional Moments

Compared with Bansal and Yaron (2004), we introduce asymmetry in the predic-

tive components of consumption growth rates xt. Given our setting, the conditional
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skewness of xt+1|xt should be zero, and for longer horizons, the distribution of con-

ditional moments of xt+n|xt, where n > 1, are not clear. Hence, we simulate the

xt+n, n ∈ {1, ..., 12} on a grid of xt, which is equally spaced on the axis of xt, for 10,000

times. Then, for each value on the grid of xt, we calculate the expectation, variance,

skewness, and kurtosis of xt+n. These are the simulated conditional moments xt+n|xt.

We are also interested in the conditional moments of excess returns. We simulate

conditional moments of excess returns using the same method.

Figure 3.1 shows the conditional moments of xt+n|xt, where n = 1, 3, 12 for illus-

tration. We can see that the conditional skewness of xt+1|xt is zero and conditional

variance is constant as expected. The conditional skewness of xt+n|xt is increasing while

the number of horizons n increases, especially when xt is near zero. This is the case

since the asymmetry we introduce in the model is indeed a threshold model while the

threshold is at zero.

Figure 3.2 shows the conditional moments of rt+n|xt, where n = 1, 3, 12 for illus-

tration. All the numbers in the figure are annualized. The same pattern holds as the

conditional moments of xt+n|xt. The conditional excess returns attain the maximum

at xt = 0.

3.4 Conclusion

By introducing asymmetry in the autoregressive coefficient of the long run com-

ponent xt (predictive component of consumption growth rates), therefore asymmetry

in the predictive component of consumption growth rate, we propose an asymmetry

version of Bansal and Yaron (2004). We study the relationship between the expected

stochastic discount factor and variance of the stochastic discount factor. As shown by

Colacito, Ghysels, Meng, and Ru (2012), the Hansen and Jagannathan bound can be

attained and larger Sharp ratio can also be achieved.
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By increasing the asymmetry in the predictive component of consumption growth

rates, larger expected excess returns can be obtained. And the skewness of both excess

return and risk free rates increase as the asymmetry in the autoregressive coefficient of

the long run component increases. We also study the distribution of the excess return

and risk free rates over longer horizon by overlapping and non-overlapping methods.

The results show that the variance slightly decreases while the horizon increases and

the skewness increases for both excess returns and risk free rates using both overlapping

and non-overlapping aggregating methods.

By introducing asymmetry in the predictive component of consumption growth

rates xt, the conditional moments of xt becomes time-varying at multiple horizons

when aggregating without overlapping. The conditional distribution of xt+n|xt become

time-varying, and more negatively skewed. The conditional moments for excess returns

also become more negatively skewed when increasing horizon.

Given the inspiring findings in this chapter, one can expect to explain larger excess

returns using the consumption based asset pricing by introducing conditional asymme-

try in the long run component of consumption growth rates. Therefore, conditional

asymmetry/ conditional skewness may offer a promising approach to address equity

premium puzzle and could significantly improve our understanding on the risk man-

agement and portfolio selection in the future.

3.5 Tables and Figures

The following are Tables and Figures of this chapter.
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Table 3.1: Monthly Calibration

γ Risk aversion 10 or 15

δ Subjective discount factor 0.9989875

µc Average consumption growth 0.001

ρ 0.962 or 0.963

κc 0

κx 1

σc Standard deviation of the short-run shock to consumption 0.0068

σx Volatility of shock to x 0.05σc

λ Leverage 3

Table 3.2: Distribution of Predictive Components for Monthly Calibration

ρ− ρ+ E [x] σ [x] skew [x] kurt [x] ρ [xt, xt−1]

0.962 0.962 0.000 0.000 3.000 0.962

0.972 0.945 -0.978 3.674 -0.254 3.047 0.962

0.980 0.868 -2.470 3.654 -0.605 3.288 0.962

0.981 0.841 -2.716 3.662 -0.653 3.337 0.962

0.963 0.963 0.000 0.000 3.000 0.963

0.976 0.930 -1.531 3.704 -0.387 3.113 0.963

0.978 0.915 -1.891 3.713 -0.470 3.167 0.963

0.979 0.899 -2.138 3.695 -0.528 3.212 0.963

0.980 0.899 -2.351 3.710 -0.574 3.252 0.963

0.981 0.874 -2.531 3.744 -0.606 3.287 0.963

0.981 0.858 -2.632 3.699 -0.634 3.316 0.963

0.982 0.834 -2.860 3.727 -0.673 3.361 0.963
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Figure 3.1: Conditional Moments of xt for multiple horizons: moments of xt+1|xt in
blue, xt+3|xt in green and xt+12|xt in red
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