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Abstract

HONGYU RU: STATISTICAL ANALYSIS OF FINANCIAL TIME SERIES AND
RISK MANAGEMENT.
(Under the direction of Eric Ghysels.)

The dissertation studies the dynamic of volatility, skewness, and value at risk for
financial returns. It contains three topics.

The first one is the asymptotic properties of the conditional skewness model for
asset pricing. We start with a simple consumption-based asset pricing model, and
make a connection between the asset pricing model and the regularity conditions for a
quantile regression. We prove that the quantile regression estimators are asymptotically
consistent and normally distributed under certain assumptions for the asset pricing
model.

The second one is about dynamic quantile models for risk management. We propose
a financial risk model based on dynamic quantile regressions, which allows us to estimate
conditional volatility and skewness jointly. We compare this approach with ARCH-
type models by simulation. We also propose a density fitting approach by matching
conditional quantiles and parametric densities to obtain the conditional distributions
of returns.

The third one is a simulation study of a consumption based asset pricing model. We
show that larger returns and Sharp ratio can be obtained by introducing conditional

asymmetry in the asset pricing model.
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Chapter 1

Asymptotic Properties of Quantile-based Conditional

Skewness Models for Asset Pricing

1.1 Introduction

It has been documented by empirical studies that the distribution of stock market
returns, either conditional or unconditional, can not be fully characterized by just
mean and variance. Many previous studies have shown that the stock market returns
are negatively skewed(see e.g. Harvey and Siddique (2000)). Researchers begin to
incorporate the third moment - skewness, into financial models and applications. One
of the applications of using skewness is portfolio selection. Harvey and Siddique (2000)
has discussed about investors’ preference on the skewness of a portfolio. A portfolio
with positive skewness is preferred by investors if everything else is equal. But all those
results are subjected to the robustness of the measure of skewness due to the following
reasons.

Stock market returns, especially in emerging markets, are known to have fat tails.
The conventional measures of the moments are based on sample averages. Therefore,
those estimators are sensitive to outliers, especially for the third and higher moments.
To study the stock market returns more accurately, researchers in financial areas begin

to seek for robust measures that are less sensitive to outliers (see e.g. Kim and White



(2004)). Kim and White (2004) has surveyed several more robust measures of skewness
based on quantiles and moments, which have been originally introduced by statisti-
cians(see, e.g. Bowley (1920)). But those are only unconditional skewness measures.
To study the dynamics of the stock market returns or financial time series, we need a
robust measure for conditional skewness.

White, Kim, and Manganelli (2008) have proposed a conditional version for the
measure introduced by Bowley (1920) by replacing the unconditional quantiles with
conditional quantiles. To estimate conditional quantiles, we need back to the definition
of regression quantile. Regression quantile has been first introduced by Koenker and
Bassett (1978), which extended sample quantiles to linear regression quantiles. They
defined a minimization problem, and defined the solution to that minimization problem
as regression quantile. White (1996) has made an important contribution by proving
the consistency of the nonlinear regression quantiles for stationary dependent cases.
Another important contribution to the estimation of conditional quantiles was made
by Weiss (1991). In this paper, the author has introduced a least absolute error es-
timator, which is a special case of regression quantiles, for dynamic nonlinear models
with non i.i.d. errors. The author shows that the estimator is consistent and asymp-
totically normal under some regularity conditions and has also provided an estimator
for asymptotic covariance matrix. Engle and Manganelli (2004) have applied nonlinear
regression quantiles to study the dynamic of value at risk, which is a quantile. The
authors have proved that the estimator is consistent and asymptotically normal under
some regularity conditions, and provided an estimator for asymptotic covariance ma-
trix for nonlinear conditional quantiles in the context of time series. White, Kim, and
Manganelli (2008) have extended this method and estimated multiple quantiles jointly.

The quantile regression models used in White, Kim, and Manganelli (2008) are

for one-period return. Ghysels, Plazzi, and Valkanov (2010a) have proposed a quantile



regression model that can be used for n-period, long-horizon return based on daily infor-
mation. They find that conditional skewness still varies across time even for GARCH-
and TARCH-filtered returns. In this chapter, we focus on the quantile regression models
of Ghysels, Plazzi, and Valkanov (2010a).

The asypototic properties of those conditional quantile models have been studied
by several papers(see, e.g., White, Kim, and Manganelli (2008), Engle and Manganelli
(2004)). They show that the conditional quantile estimators are consistent and asymp-
totically normal under some regulation conditions. But those regulation conditions are
hard to be verified empirically. Motivated by the limitation of those regularity condi-
tions, we are seeking from modeling the data generating process(DGP) from an asset
pricing model to derive the regularity conditions of the quantile regression model of
Ghysels, Plazzi, and Valkanov (2010a). In other words, we want to construct the link
between those regulation conditions proposed by White, Kim, and Manganelli (2008),
and Engle and Manganelli (2004) and basic DGPs with some simple assumptions.

Now, the question is what DGP is a good model for the economy and can generate a
fairly decent amount of time-varying conditional skewness like what we have observed
in the real data (Ghysels, Plazzi, and Valkanov (2010a)). Campbell and Cochrane
(1999) have presented a consumption-based asset pricing model that can explain im-
portant asset market phenomena. In addition, the model can produce non-normal
consumption-based stock prices and returns with negative skewness. Bansal and Yaron
(2004) have also presented a consumption-based asset pricing model which includes a
long-run predictable component. Their model can also explain some key features of dy-
namic asset pricing phenomena. But for these two models, they don’t have analytical
solutions for the price-dividend ratio and returns, which are needed for constructing the
connection between DGP and regularity conditions for quantile regression. Burnside

(1998) has provided an asset pricing model with normal shocks to consumption growth.



Tsionas (2003) has extended Burnside (1998) to allow for any shock that has moment
generating functions. Both of them have analytical solution for price-dividend ratio,
and therefore returns. Tsionas (2003) can generate conditional skewness,! but we don’t
know if it can create time-varying conditional skewness. Bekaert and Engstrom (2010)
may be another option, which has both analytical solutions and allows for time-varying
conditional skewness for consumption growth.?

In this paper, we start with a rather conventional asset pricing framework based on
discounted dividend streams. Initially we use closed-form formulas of Burnside (1998)
and Tsionas (2003) using first a Gaussian setting and subsequently a general setting
that allows us to characterize DGP’s for which we subsequently study the asymptotic
properties of conditional quantile regressions and skewness measures. We have proved
that the conditional quantile estimators are consistent and asymptotically normalunder
those simple assumptions for the DGP of asset pricing we use.

This chapter is structured as follows. Section 1.2 describes the asset pricing model.
Section 1.3 describes the quantile regression model. In Section 1.4, we explore the
asympototic properties of quantile regression under the assumed data generating pro-
cess. Section 1.5 concludes this chapter and describes the future works. Regulation

conditions and proofs are in Section 1.6.

1.2 The Asset Pricing Model

First order condition of asset pricing to price an asset that entitles a dividend D,
in each period satisfy

P, = B[St 111(Pi1 + Dyya)]

'For example, if the shock distribution is a general Edgeworth expansion, then it allows for skewness.

2But we don’t know if we can prove all the regularity conditions under this model, since they
assume the parameter for shocks follow AR(1) process, namely the shocks are dependent.



where P is price of the asset at time ¢, S; ;41 is stochastic discount factor(SDF). We
consider a representative agent with CRRA preference and denote the price-dividend

ratio as v; = P,/ Dy, then we have

Crr\ D,
5( (;) (1+ v41) Df], (1.1)

where v is the coefficient of relative risk aversion, (8 is the discount factor, and C} is
the consumption at time ¢. Assume the log dividend growth z; = log(Cy11/Cy) =
log(Dy41/Dy) follows AR(1) process

ze = (L= p)p+ preo1 + &, (1.2)

where p is the persistent parameter, and &, is an i.i.d sequence of random variables.
Assumption 1 (i) |p| <1 and p #0;

1) Let Me,(s) = FEexp(s&) be the moment generating function(MGF) of &, Mg, (s
&t 3

exists;

(111) Let fe,(&) be the probability density of &, fe, (&) is everywhere continuous, con-

tinuously differentiable and fe, (&) > 0.

The unconditional distribution of z; is pu + (1 — p) " & and MGF of z; is M,,(s) =
exp(ps)Me,(s/(1 — p)). Tsionas (2003) shows that

v = Zﬁzexp [a; + b;(z; — = ZZZ, (1.3)
= =1
where a =1—7,0=(1—7) /(1 —p)

a; = aip+ 3 log M, (6(1 — )

Jj=1



b; = aL(l —ph).

L—p
The conditions for stationary and bounded equilibrium to exist are given by Tsionas
(2003).
Assumption 2 Let r = Jexp (ap) Mg, (0), r < 1.
Lemma 1 Under Assumption 1, 2,

(i) the series v, converges;

(ii) the series v, have finite moments of every integer order.

Proof: See Tsionas (2003).
We are now in position to study the property of the returns generated from this

asset pricing model. The log return can be expressed as

P+ Dy

Tt1 :log( I2
t

) = log(1 + v441) — log vy + T441. (1.4)

Lemma 2 F |7’t]3 < oo if Assumption 1, and Lemma 1 holds.

Proof: See Section 1.6.

Given Assumption 1 and 2, it is possible to show that the series of returns have
finite moments of every integer order. Here we just show that the series of returns have
finite third moments, which is sufficient for our latter use. The proofs for the returns

to have higher order moments are similar.

1.3 The Empirical Quantile Model

The setup of the empirical quantile models follows Ghysels, Plazzi, and Valkanov
(2010a) closely. In section 1.3.1, we describe the robust measure of conditional asym-
metry. In Section 1.3, we present the conditional quantile regression specification and

the estimation of the model.



A robust measure of conditional asymmetry

In section 1.2, the returns generated from the DGP’s are one-period return, which
can be daily, weekly, or monthly, etc. We are interested in the asymmetry in the
conditional distributions of n-period returns. Let 7., = Z?;& T4, for n > 2, be the
log continuously compounded n-period return of an asset, where r; is the one-period log
return. Let F,,(r) = P (ry, < r) be the unconditional cumulative distribution function

(CDF) of 14, and F, -1 (r) = P (ry, <7r|l;—1) be the conditional CDF given the

information set I;_;. The #th quantile can be defined as

qa, (Te24n) =nf {r: F, (r) =0}, 0r € (0,1].

If F,(r) and F), 44— (r) are strictly increasing, then the 0th quantile of return r,, is

Go (ren) = E,1 (1), 0 €(0,1]

and the conditional 0th quantile of return r,; is

Qo (rng) =F 1 (r), 6 €(0,1]. (1.5)

n,tlt—1

For the sake of simplicity, we could assume that F,(r) and F, (1) are strictly
increasing such that the inverse of F), (1) or F,;—1 (r) is unique. Later in the next
section, we are going to show that strictly increasing can be verified under standard
regularity conditions.

As discussed in Section 1.1, researches have proposed robust measures of asymme-

try other than sample average to estimate skewness. Bowley (1920) is one of them.



Bowley’s (1920) robust coefficient of skewness is defined as

CA (Tt,n) _ (%.75 (Tt,n) — q0.50 (Tt,n)) - (QO_50 (Tt,n) — Qo.25 (rt,n)) (1_6)

qo.75 (Tt,n) — qo.25 (Tt,n)

where .25 (Tt.n) s Qo050 (Ten) and qo75 (1) are the 25th, 50th, and 75th unconditional
quantiles of 7.

Groeneveld and Meeden (1984) have proposed four properties that any reasonable
skewness measure should satisfy. That is for skewness measure v (y;) (See Kim and

White (2004)):
(i) for any a > 0 and b, v (y;) = v (ay, + b);
(ii) if y; is symmetric, then v (y;) = 0;

(i) = (%) =7 (=w);

(iv) if F' and G are cumulative distribution function of y; and z;, and F' <. G, then

v (ye) < v (2¢), where <. is a skewness-ordering among distribtutions.

The measure (1.6) satisfies all the four conditions (See Groeneveld and Meeden
(1984)). Also this measure is normalized to be unit independent with values between
—1 and 1. The negative(positive) values of this measure indicate skewness to the
left(right). Although this measure is robust, it is an unconditional skewness measure,
which can not be used to study the dynamics of conditional asymmetry and those
properties of financial time series.

Recently, White, Kim, and Manganelli (2008) and Ghysels, Plazzi, and Valkanov
(2010a) have used a conditional version of (1.6) given information [;_;, which makes

studying the dynamics of conditional asymmetry using a measure like (1.6) possible.



They define

(QO.75,t (Tt,n) — qo.50,t (Tt,n)) - (QO.So,t (Tt,n) —qo.25¢ (Tt,n)) (1 7)
qo.75,t (Tt,n) — qo.25.¢ (Tt,n)

CAt (rt,n) =

where o5+ (t.n) , Q0504 (Tm) and qo7s. (1) are the 25th, 50th, and 75th conditional
quantiles of ¢ ,,. To estimate (1.7), we need estimate the conditional quantiles of r;,,. In
the next section, we present our models and estimation methods for those conditional

quantiles in (1.7).

Conditional quantile specification and estimation

We denote the 6th conditional quantile of r,, at time ¢ as gp (7] 0,), Where
dg.n is the vector of parameters to be estimated for 0th quantile at horizon n. Denote
the information set that contains the daily information up to time t — 1 as I;_; =
{zy 1,24 9,...}, where z; is a vector of daily conditioning variables. We use a mixed
data sampling (MIDAS) approach to setup the model for conditional quantile of 7,
which are multiple horizon returns, based on daily returns in the information set I;_;.

In other words, we use daily returns as regressors. The model is defined as follows

qe,t (Tt,n; 60,71) = Qon + ﬁ&,nZt (ﬂe,n) (18)
D

Zy (/‘ﬁe,n) = de (He,n) Ti—q (1.9)
d=1

where 6p,, = (g, Bon, /ﬁg,n)/ are unknown parameters to estimate. Following Ghysels,

Santa-Clara, and Valkanov (2006), we specify wy (kg,,) as

f(d_Dl/za Kfl,ﬁ,na 52,9,71)

Zrly)zzl f(m_Tma R1.0,n, K?,G,n)

wa (Kon) = : (1.10)



where kg, = (K100, K20n) 18 a 2-dimensional row vector that reduces the number of
weights for lag coefficient to estimate from D to 2, f (z,a,b) = 2471 (1 — z)bil /B (a,b),
B (a,b) = I'(a)L'(b)/T'(a + b), and I' is Gamma function. We specify the daily return
Ty—q in (2.15) as |ri_ql.

We estimate the parameters dp,, in (2.14-1.10) with non-linear least squares. More

specifically, for a given quantile # and horizon n, we minimize

T
in7! 1.11
min > pon (Eome) (1.11)

t=1

where €pnt = Ten — Qi (0;60.0), Pon(Cont) = (0 —1{cpnt <0})egne is the usual
“check” function used in quantile regressions. If the model we specified is the true
model of DGP, and dy,, are true unknown parameters, then Qg (€p¢|l;—1) = 0, where
Qo.n (€04|-) is the 6 conditional quantile of €4,;. The soluction to the optimization
problem (1.11) can also be considered as quasi-maximum likelihood estimator (QMLE),
where pg ., (€g.nt) is the log-likelihood of independent asymmetric double exponential
random variable which belongs to tick-exponential family (see e.g. White, Kim, and

Manganelli (2008), and Komunjer (2004)).

1.4 Asymptotic Properties

The asymptotic properties of 597,1 that minimizes (1.11) have been studied by several
papers(see e.g. White (1996), Weiss (1991), Engle and Manganelli (2004) and White,
Kim, and Manganelli (2008)). They have shown that the estimates g, are consis-
tent and asymptotically normal by assuming that the DGP satisfied some regularity
conditions. But those regulation conditions are hard to be verified empirically. Moti-
vated by the limitation of those regularity conditions, we are seeking from modeling the

data generating process(DGP) from a basic asset pricing model to derive the regularity

10



conditions of the quantile regression model of Ghysels, Plazzi, and Valkanov (2010a).
We consider the data are generated by DGP described in Section 1.2 and estimate
the conditional quantiles using models described in Section 1.3. First, we define some
properties for the parameter space. Then, we prove all the assumptions (see White,
Kim, and Manganelli (2008)) that are needed for consistency and asymptoticly normal-
ity under our DGP of asset pricing models described in Section 1.2. To fix notation,

all the following statements are for fixed n and fixed 6.

Assumption 3 Let the parameter space A= {60 : Bon #0,K100 >0, K20, > 0} be a
compact subset of R*, and A be a compact subset of A. Assume that the true parameter

0y, € A and 0y, € int (A).

Lemma 3 Let Q be the sample space. Under Assumption 3, the function qg+(w,dg.n)

1s such that

(i) for each t and each w € Q, gp; (w,-) is continuous, continuously differentiable,

twice continuously differentiable on A;

(ii) for each t and each 0, € A, qot (*,00.0), Vaor (+,00.0), and V3qgy (-, 00.,) are I;_4
measurable, where Vg, (+,00.,) denote the gradient(row vector) of scaler function

Qon (+,00.,) with respect to 0g.,.
Proof: See Section 1.6.

Lemma 4 For fized 6 and g, E|riiin|, Elgos|, and Elegy| are finite on A if Assump-

tion & and Lemma 2 hold.
Proof: See Section 1.6.

Lemma 5 Let Dy; = SUPs, . cA lgo.t (,000)|, D1y = max;—y 4 SUP;,  cA ‘851.’0’”%775(-, 597n)|,

and Dy, = max;—q,  4Max,;—1 4 SUDg,  eA }(a(gi’e’nagj’emqe’t(., do.n)|, where 6; 9., is the ith

11



component of 8. Under Assumption 3, if Lemma 2 holds, then (i) E (Dy;) < oo; (ii)
E(D},) < oo ; (ii) E(D3,) < co.

Proof: See Section 1.6.

Lemma 6 {pp.(co:)} is strictly stationary and ergodic, and obeys the uniform law of

large number, if Lemma 4 and Lemma 5(1) hold.
Proof: See Section 1.6.

Lemma 7 Let hgy (ri,|li—1) be the conditional density of ry, given I;_y. Under As-

sumption 1,
(i) for each 0 and each t, hg s (rin|li—1) is everywhere continuous;
(11) for each 0 and each t, hg s (14 n|li—1) > 0;

(ii1) there exists a finite positive constant N such that for each 0, and eacht, hot (ren|l—1) <

N < o0;

(iv) there exists a finite positive constant L such that for each 0, each t, and each

Ay A2 € R, |hot (M|Li—1) — hor (Na|Li—1)| < LA — Agf.
Proof: See Section 1.6.

Lemma 8 For fived t and every T > 0, there exists 0, > 0 such that for all dg,, € A

with H(Sg,n — 52,HH >7, P (‘qeﬂg(-, So.n) — Qo (-, 537n)| > 6,) > 0 if Lemma 10 holds.
Proof: See Section 1.6.

Lemma 9 Let Q° = E [h@t (0]Zi-1) Vg, (~, (53”) \r (-, 53771)] and VY = FE (ngjtngvt),
where ngi = Vo, (-,5(3’") Vo (cot) and g (ggr) = 0 — 1{59t<0}. If Lemma 10 and 7
hold, then (i) Q is positive definite; (i) VO is positive definite.

12



Proof: See Section 1.6.
Now, we are in position to have the results of consistency and asymptoticly normal-

ity.
Theorem 1 If Assumption 3, Lemma 3, 4, 5(i), 6 - 8 hold, then ng R 52771.
Proof: See White, Kim, and Manganelli (2008).

Theorem 2 If Assumption 3, Lemma 3 - 9 hold, then
VIV Q0 (g = 07,) 5 N (0,1).

Proof: See White, Kim, and Manganelli (2008).
The consistent estimators for V° and Q° have been given by several papers(see
e.g. White, Kim, and Manganelli (2008) and Engle and Manganelli (2004)) with one

additional assumption.

Theorem 3 Let VT = 7! ZtT:l ﬁ;ﬁt; N = VQe,t ('759,71) Vg (éG,t); ée,t = Tii4n —
Qo.t (', 59,n>. If Assumption 3, Lemma 3 - 9 hold, then Ve B V0.

Proof: See White, Kim, and Manganelli (2008).

Assumption 4 {ér} is a stochastic sequence and cr is a nonstochastic sequence such

that (i) ép/er > 1; (i) ep = o (1); (iii) cp* = o (TY?).

Theorem 4 Let Qr = (26TT)712tT:1 1 er<ep,<er V'aoit (5 00.0) Vo (-, 00,). If As-

sumption 3, 4, Lemma 3 - 9 hold, then QT 5 Q0.

Proof: See White, Kim, and Manganelli (2008).

13



1.5 Conclusion

In this chapter, we start with a simple consumption-based asset pricing model with
CRRA utility, and make a connection between the asset pricing model and the regularity
conditions for a quantile regression, which is hard to be verified. We prove that the
quantile regression estimators are asymptotically consistent and normally distributed

under certain assumptions for the asset pricing model.

1.6 Proofs

This section contains the proofs for this chapter.

14



Proof of Lemma 2: We show Erf , < co by showing that E |7’t+1]3 < 00. Since

Vi1 > 0, we have 0 < log(1 + vey1) < Vg1,

E|ral’ <E[log (14 v41)” + E [logve|* + E |ve41|” + 3E [log (1 + ver1) (log vy)|
+3F ’(log (1+ vtﬂ))2 log vt} +3F !(log (1+ vt+1))2 :Ut+1‘
+3E |(log (1 4 ver1)) @74 | + 3E ‘(logvt)zxtﬂl
+ 3E |(logvy) 2741 | + 6E |(log (1 + vy41)) (log vy) Ty
<Ev}, + Elogv|’ + E|zi1|* + 3F |41 (log vt)2‘ + 3E |v7, log v,
+3F ‘vt2+1a:t+1| +3F ‘vt+1xf+1| + 3F ‘(log Ut)2fljt+1‘
+ 3E |(logvy) 21| + 6F |vgq1 (log vg) 2y41]

2
3

1
<E |Ut+1|3 + Ellog Ut|3 + B |35t+1|3 +3 (E |Ut+1|3) ’ (E |log Ut|3)
2
3

3 3\ 5 3\ 3 3\ 3
+3 (Elveal’)® (B llogvi]”)® +3 (Evea]”)® (B laal)’?

(
3\3 3\ 2 3\ 2 3\ 3
+3 (Eloeal’)® (Blreal’)® + 3 (Eflogvl”)® (Elaenl”)

W=

1 L2 f
+3(Eflogvi|*)* (B |wal’)” +6 (B Jopya|” Elogvy|” E |21 )

The last inequlity holds due to Holder’s inequality. We know that F |vt+1|3 < 0o and
E |z4:1|° < 0o from Lemma 1. Now we need to show E |log v;|> < 0o to have E |r4q|* <

oo. Considering the negative part of (log v)?, since z; > 0, log z; < log Y2, i, we have

[(logvt)g]f = <logz,zi> < [(log 21)3}7,

where logz = log 8 + aj + bi(xy — p) = log 8 + a1 + by (1 —p) "' &. Since the un-
conditional distribution of z, is given by z; = p 4 (1 — p)~" & (see Tsionas (2003)).
By the assumption that the MGF of ¢ exists, all the moments of ¢ exists. Hence,

E (log z1)* < oo, E|log 2> < 0o and E ((log 21)3)_ < 00. (—logw;)® is convex because
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(—logv;) is convex and g (z) = 3

concave. Thus, F (logv,)” < (log Ev;)® < co. Therefore,

E [(1og vt)3}+ = F (log vt)3 + F [(10g vt)ﬂf < (log Evt)3 +F [(log 21)3]7 < 00

Ellogv|* = E [(log vt)3]+ + E [(log Ut)3]_ < 00

It follows that E |rq|* < oo.

d—1/2
D

Proof of Lemma 3: Let z; = ,and g(z,a,b) = 2271 (1 — 2)"7", we have

_ g (Zd7 R1.6,n, l{2,9,n>
wa (Ko.n) = =p
Zm:l g (zm: R1.0,n, ’f2,9,n)

Zﬁ:l g (Zma ﬁl,@,n - 17 ’%2,9,11)]

Oy g W (Kon) = (K19 — 1) wa (Kon) z7t — D
Zm:1 g (zm7 R1,0,n, '%2,9,71)

D
— m=19 \Zm, K1,0n, K20n — 1
Ory g, Wi (Kom) = (Koom — 1) wa (Kom) [(1 — ) - 2m=19 Zm: K100, 12 )]

ZT?L:I g (Zm7 R1,0,n, K?,@,n)

D
—1
a'21 0.nWd (’%9,n> = Wq (:‘i@,n> Z;l — Zm:Dl 9 (Zm’ K1,6,n s 52,0,n)
- Zm:l 9 (zmv K1,0n, ’{Q,G,n)

D 2
Zm:l g (Zma /{1,9,71 - 17 ’i2,6,n)]

Zi:l g (Zma "11,9,717 K?,@,n)

+ (K1gm —1)° [zd—l _

2

22:1 g (Zm> Rion — 17 /432,9,71)
ZZ:I g (Zma R1,0,n, KQ,@,TI,)

22:1 g (Zrm Hl,@,n - 27 /{2,6,71)

2117)1:1 g (Zma Hl,@,na "12,0,71)

+ (K10 — 1)2 wa (Ko.n) [

— (K19 — 1) (K100 — 2) wa (Kon)
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is convex and nondecreasing. Hence, (logv)” is



2 -1 Zﬁ:l g (zma R1,0n, R2,0,n — ]-)
0, woa (om) = i (kg) | (1 — )™ — 2=
- Zm:l g (Zma Hlﬁ,n; K’Z,G,n)

D 2
- = Zm7 R mny Y n - 1
+ (Fgom — 1 [(1 = 29) 7" — Zm—Dl 9( 1,0,n, K2,6, )
Zm:l g (Zm7 /{’/1797”7 KJQ,H,')’L)

D 2
-1
+ (/{2279% _ 1)2 Wy (Kz@,n) Em:Dl g (Zm; K1,0,ny K2,0,n )
Zm:l g (Zm7 K1,6,n, H?,G,n)

Zanzl g (zm> R1,0n, R2,0n — 2)

ZZ:I g (Zm7 R1,6,n, ’%2,9,11)

— (K20 — 1) (K190 — 2) wa (Kon)

aﬁ/l,@,n 8”/2,9,an (K;97n) =

D
m> n - 17 n 1
1) wa (Ko,n) 2oz 9 (Fms F10, F26, )

D 2
(Zm:l g (Zma Hl,&,na "12,0,71))

- (Kflﬁ,n - 1) (KQ,H,TL -

+ (K19, — 1) (K200 — 1) wq (Kon)

23:1 G (Zms K10 — 1, Ko o) 21]11 9 (21, K1,0,n5 k2,0 — 1)
2

<ZT?L:1 g (ZWIJ /4317977“ R2,9,n)>
D
-1

(’fl,ﬁ,n _ 1) (’i2,6’,n _ 1) Wy (K/G,n) Z;l . Zm:Dl g (Zm; ’flﬂ,n 7"12,9,71)

Zm:l g (ZTm K1,0,n, K’Q,G,n)

D
my ny n 1
X [(1 —zy) ' — 2m=19 (Zm: K100, K20, )] .

27[7)1:1 g (Zma Klﬁ,na /f2,0,n)

X

It is clear that Lemma 3 is satisfied under Assumption 3.

Proof of Lemma 4:

E|Tt,t+n| =F

n—1
E Tttj
Jj=0

n—1
< ZE\THJ" < 00
j=0
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Since the parameter space is compact set by Assumption 3, we have

D D

Elgos| = E |pn + Bow Y _ walkion)|ri—al| <
=1 d=1

Wa(kon)E|ri—a| < oo

Eleot| = Elrtiin — Qo] < E|rtisn] + Elgo] < 00

Lemma 10 For fized t and dg,, € A, the components of Vap+ (-, d9.n) are linearly in-

dependent of each other almost surely under Assumption 3.

Proof of Lemma 10: we check if there is nontrival a = (a1, as, as, a4)’ such that
for fixed t and dp,, € A, and every possible outcome of |r,_4|, Vg (ren, do.n)a = 0.

Since

VQQ t (Tt ) 59 n) -

< de Ron ’rt d| 50nzan19n K@n) ’rt d| ﬂ@nzafmgn Kf@n) ’7} d|>

d=1
This yields

D

ay+ de (Kon) [7t-dl (az + asfon (K1on — 1) (qu _ 01)
d=1

+asBn (Foon —1) (1 —20)' —¢2)) =0

where ¢; and ¢y are function of k14, and kig,, but do not depend on d. Since
wg (ko) >0, and 1 and |r;—4| , d = 1,---, D, are linearly independent almost surely,
then a; = 0 and as+asfp,n (K1, — 1) (z;l — cl)+a4ﬁg7n (Ko — 1) ((1 —z) ' — cQ) =
0,d=1,...,D. If By,, # 0, k190 # 1, Kagn # 1 and D > 3, the linear system of equa-

tions have no nontrival solution a such that Vgg (7, dg.n) @ = 0 identically. Lemma
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10 then follows. u
Proof of Lemma 5: For any &y, € A, E|qo¢ (-, d9.n)] < 0co. Lemma 5(i) then
follows.
Proof of Lemma 3 indicates that 0y, , w4 (kg,) is finite for all dg,, € A. If Lemma

2 holds, then for every dp,, € A, we have

3
E ‘aﬂ,e,nqat (rt,na 50,71)‘

D D D
=EBy,, Y Do (R.0) Oy gt (Rom) Dy (Kon) il [ri-a] 7]
d=1 =1 m=1
D D D
= 6g,n Z Z Z Orir 0,0 wd (Ko,n) Ory w1 (Koyn) Oy ., Wi (Ko ) B re—al [re—i] [re—m]
d=1 =1 m=1

D D D
S /Bg,n Z Z Z a"fl,@,n(’ud ('%97'”/) a"fl,@,n(’ul (K’ean) 8"fl,e,n('(')'rn (/{G,n)

1/3
X (E I'I“t_d’3 E |'rt_l|3 E |7’t_m‘3)

< Q.

Proof of E |95, q. (rm,dg,n)lg < oo for other components is similar. Since for all
don € Aand i = 1,...,4, E|85i797nqe7t (Tt7n,59’n)|3 is finite , we can conclude that
E(D3,) < oo,

The proof of Lemma 5(iii) is the same as that of Lemma 5(ii). [

Proof of Lemma 6: Since {z;} is AR(1) process with i.i.d shocks and |p| < 1,
it is strictly stationary and ergodic. When a process is strictly stationary, then a
measurable function of this process is also strictly stationary. Similary property holds
for ergodicity. Both 7., and gy, are measurable function of x;, so py, is strictly
stationary and ergodic. It has been shown by White, Kim, and Manganelli (2008) that
|po.n| is dominated by 2(|rtsin| + |Dogl). Using Theorem A.2.2 on the appendix of

White (1996), pp.,, obeys the uniform law of large number. |
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Proof of Lemma 7: First, find the expression for hgy (r:,|l:—1) as a function of

fEt (&)

vy = Z B exp [a; + b; (vi—1 — )]

=1

= Z B exp [ai + b; (p(i—1 — 1) + &) = v (2121, &)
i=1

Denote vy (x;-1,&) as g (§]1;—1). Since b; > 0 for alli =1,--- ;o0 if p > 0, and b; < 0
forall i =1,---,00if p < 0. If p =0, vy is degenerate. So we exclude the case of
p=0. g(&|I;—1) is a monotone increasing or decreasing function of & given I;_; since

it’s a sum of monotone increasing or decreasing function. Let

7t (2e-1,&) = log (14 g (§[Li-1)) —log (vi1(we-1)) + (1 = p) + pri1 + &

= G (gt’]’tfl) .

If b; > 0, G(&|I,—1) is a monotone increasing function of & given I, ;. It implies
that there is an one-to-one transformation between & and G (&|;—1). The conditional

probability density of r; given [;_; is

f& (ft)
frt 1 \T Ii-1) = |
e ) = o G T oo

10¢,9 (& 1i—1)| > 0 since g (§|l;—1) is monotone in &. [0 g (&|li—1)] < oo since by

Assumption 2

0e,9 (&) = Zﬁibi exp a; + b; (p(xi—1 — p)) + &) = Z Z;
i=1 i=1

lim (301/2) = pexp (an) Me, 6) < 1
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0 < 0g,G (&|I;—1) < oo. Therefore, 0 < fy,1,_, (re|ls—1) < oo by Assumption 2. If
b < 0, 0,G (&|Li—1) = 0gg (&lLi—1) / (1 + g (&]L—1)) + 1 = 0 has only one solution
for & given I;_;, since —0¢, G (&|I;—1) is monotone decreasing in & and 1+ g (&|1;—1)
is monotone increasing in & given [, ;. It implies that there exists a partition By, B
such that for each ¢, there is an one-to-one transformation between G, (§|I;—1) and &
on each By, k =1,2. Then, the conditional probability density of r; given I;_; is

fft gt
I
th|It 1 Tt| t— 1 Z |8§tGBk £t|It 1)|

=Gp (rt|1t 1)

0 < frjgn_, (relfi—1) < oo then follows for b; < 0. The joint conditional probability

density of 74, -+ 14,1 given [;_q is

frt7---7rt+n—1‘lt—l (rt7 e 7rt+'fl—1|'[t_1)
= fT‘tIIt—l (Ttut—l) th+1|7‘t,It—1 (Tt+1|rt’ ]t—l) e
f7"t+n—1|Tt+n—27---77't7[t—1 (Tt+n—1|rt+n—27 s, T, It—l)

= thIIt—l (Ttut—l) th+1|It (rt+1|lt) e f?"t+n—1|ft+n—2 (Tt+n—1|]t+n—2)

Since given [;_1, r; and x; has one-to-one transformation on By, k = 1,2, given r,
and [;_; is the same as given [;. The last equality then follows. Therefore, 0 <
Jrorreinallioy (Tts =+ s Tign—1|Li—1) < 0o. Consider the transformation of (ry, ..., 7¢4n—1)
o (U,Uy,...,U,1) = (Z;:é Titjs Tttty - - - ,Tt+n_1>. The joint probability density of

(U,Uy,...,U,—1) given I;_4 is

fU,Ul ..... Un71|ft71 (uJ Uy .. ;un71|lt71>
_ thw-"Ttﬁ»nflutfl (Tta <o 7Tt+n*1’[t*1)
|J| Tt:u—zyz_ll U Tp 1=UL ey Tt fn— 1 =Up—1

- frt"“’rt*"*l‘lt*l <rt’ e ’rtﬂl*lut*l) |Tt=U*Z;'L;11 Uj, P4 1=UL,ee s Ttfn—1=Un—1
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Therefore, we have 0 < fyu,, v, 11,1 (W, U1, ... Up_1|Li—1) < 00.

Then, Lemma 7(i) is obvious. Lemma 7(ii) follows since

ho ¢ (Tt,nut—l) = fU\It,l (U|It—l)

where fuu,, v, 11 (W, U1, U1 L—1) > 0.

By the proposition that any function f € L' (w, F, u), then | f| < 0. hgy (renlli—1) <
oo since [ fu,_, (ulli—1) du = 1.

By Assumption 1(iii), fu.r,

,,,,, Upile—1 (W, U1, ... Un_1|[;—1) is continuously differen-

tiable. From the mean value theorem, we have
|hot (M|Li—1) = hoy (Aol Ti—1)| = hy, (clTi—1) [Ar — Ao,

where ¢ € (A, A\2). If b}, (c|l;_1) < Ly, then Lemma 7(iv) holds.
0.t

Proof of Lemma 8: Applying the mean value theorem, we have

|QG,t('7 59,n> - q@,t('7 ég,n)‘ = |qu,t(-, 5;,71)(59771, - 58771)‘ )

where d;, € A and lies between d,, and dy,,.°> Lemma 10 indicates that for fixed ¢
and d5,, € A, the components of Vgy,(-,d5,,) are linearly independent of each other
almost surely, which means that Vg (-, d5,,)(06,n — 93,,) = 0 if and only if &y, — oy, is
zero. If |8y, — 69, || > 7 for every 7 > 0, then Vg, (-, 89 ,,) (09,0 — 07,,) # 0. Therefore,
Va0, (-, 89 ) (Bo.n — 89 ,,)| > 0 with positive probability. This implies that there exists

5. > 0, such that P (‘qut(-, do.n) — Qo.t(-s 53%)’ > 6;) > 0. [

3Does Bo,n # 0 influence the use of the mean value theory?
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Proof of Lemma 9: Q° is nonnegative definite. For any vector p = (pi, pa, ps, p4)',

we have

p/Qop =k [he,t (O‘It—l) (VC]e,t ('7 (53,”) p)/ VC]G,t ('a 53,n) p]

=F |:h9’t (0|]t—1) (Vq97t (‘, (ng) p)2i| Z 0.

Lemma 7 indicates that hg, (0[1;—1) > 0. So, p’Q°p = 0 if and only if pVgy, (-, 537n) =0
almost surely. Lemma 10 indicates that the components of Vg, (-, 53771) are linearly
independent almost surely, so there is no nontrival solution of p such that p’Q% = 0.
Therefore, QQ° is positive definite.

V' is nonnegative definite since

PV =F [we (€0,t) Vo, ('7 52,n) p}Q > 0.

The equality holds if and only if 1y (€9.t) Vot (~, 52771) p = 0 almost surely. 1y (g¢+) = 60—
1 (e, <0} is nonzero, since ¢y (€9;) = 0 or §—1. Lemma 10 indicates that the components
of Vg (-, 63771) are linearly independent almost surely, so there is no nontrival solution

of p such that Vg, (-,89,,) p = 0 holds. Therefore, V* is positive definite. [ |
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Chapter 2

Dynamic Quantile Models for Risk Management

2.1 Introduction

Koenker and Bassett (1978) propose a regression quantile framework and establish
the consistancy and asymptotic normality of the quantile regression estimators. The re-
gression quantile model of Koenker and Bassett (1978) is a static quantile model. Engle
and Manganelli (2004) introduce a conditional autoregressive value at risk (CAViaR)
model, which is a dynamic quantile model. This model makes the calculation of condi-
tional quantile and conditional value at risk possible. This paper also provides a test,
called dynamic quantile (D(Q) test, to evaluate the goodness of fit of estimated dynamic
quantile process.

Other dynamic quantile models include the Quantile Autoregressive model (QAR) of
Koenker and Xiao (2006), the Dynamic Additive Quantile (DAQ) model of Gouriéroux
and Jasiak (2008) and the multi-quantile generalization of Engle and Manganelli’s
(2004) CaViaR approach to model conditional quantiles of White, Kim, and Manganelli
(2008).

Ghysels, Plazzi, and Valkanov (2011) introduce a Mlxed DAta Sampling (MIDAS)
quantile regression model, which address the conditional quantile of multiple horizon
returns using single horizon returns(e.g. daily returns). Chen, Ghysels, and Wang

(2010) introduce the class of models High FrequencY Data-Based PRojectlon-Driven



(HYBRID) GARCH models, which addresses the issue of volatility forecasting involving
forecast horizons of a different frequency. The HYBRID GARCH class of models allow
us to write model multiple horizon models in a framework similar to GARCH(1,1). We
adopt the same strategy for dynamic quantile models. That is, we introduce dynamic
HYBRID quantile models that nest the CaViAR model of Engle and Manganelli (2004)
and the MIDAS quantile models of Ghysels, Plazzi, and Valkanov (2011).

Sakata and White (1998) and Hall and Yao (2003) show that, for heavy-tailed er-
rors, the asymptotic distributions of quasi-maximum likelihood parameter estimators
in GARCH models are non-normal, and are particularly difficult to estimate directly
using standard parametric methods. In such circumstances, dynamic quantile regres-
sion approaches might perform better than standard QMLE. We will show this by
simulation in Section 2.5.

The conditional quantiles are typically not the direct object of interest. Instead, its
key components, the conditional mean, conditional variance and the distribution are
the prime focus. One may wonder how to obtain the predictive distribution of returns.
Wu and Perloff (2005), Wu (2006) and Wu and Perloff (2007) proposed methods to fit
densities to quantiles. Motivated by these methods, we propose a quantile distribution
fits method to obtain conditional densities by matching the quantiles of a specific
parametric family with the selected set of conditional quantiles.

This chapter is structured as follows. Section 2.2 describes the generic setup. Sec-
tion 2.3 proposes models of financial risk based on dynamic quantile regressions. Section
2.4 introduces a density fitting approach to obtain conditional distributions of future
returns based on matching conditional quantiles and parametric densities. 2.5 is the
simulations of dynamic quantile regressions compared with conditional heteroskedas-
ticity and quantile distribution fits for risk management. Section 2.6 concludes this

chapter.
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2.2 The Generic Setup

In this section, we describe the notations that will be used in the later sections.
Let us start with a location scale family. Let r; be the portfolio return. We assume

the return r; follows

re = pue-1(07) + /ot 1 (05)ee (2.1)

where p;—1(0}") is conditional mean or conditional location using information 3;_,
oyi—1(07) is the conditional volatility using information $_;, and &; are ii.d with
Fle] = 0, E[e?] = 1, and density F(#%). Then the standardized return &, can be

written as

ay — Tt Mt\t—l(ef)
e(0%) = —O—t|t71(93) (2:2)

/ al

@ 0% 09) governs the location, scale and distribu-

where the parameter vector 6 = (
tion of the standardized returns or returns.

Then the quantile function of the standardized return £,(6*) can be written as
Q°(p,0*) =inf{e € R:p < F(e,03)} (2.3)

where 0 < p < 1 is a probability. Then the conditional quantile of return r; can be

written as

Qi (p,0°) = pje—1(0) + Q°(p, 0*) 01 (07) (2.4)

The skewness and kurtosis of &, if any, are not dynamic since ¢; are i.i.d. So the first two

conditional moments, the conditional mean/location and conditional volatility, govern
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the dynamic of the conditional quantiles of r;.

There are some evidence that the financial returns have some distributional pre-
dictable patterns that can not be fully captured by location-scale family in (2.1). Some
literature shows that &, given by (2.2) have predictable patterns in skewness and kur-
tosis. These include Engle and Manganelli (2004), Kim and White (2004), Engle and
Mistry (2007), White, Kim, and Manganelli (2008), (2010), Ghysels, Plazzi, and Valka-
nov (2011) and (2010b).

The bulk of the ARCH literature assumes that standardized returns normalized by
conditional volatility is independent and identical distributed(i.i.d.). Francq and Za-
koian (2004) have proved that quasi-maximum likelihood estimators(QMLE) for gener-
alized autoregressive conditional heteroscedastic (GARCH) process and autoregressive
moving-average(ARMA) GARCH process with i.i.d. innovations are consistent and
asymptotically normal. To model higher order moments, one need extend the i.i.d as-
sumptions on the innovations to some less restrictive assumptions. Escanciano (2009)
has extended the consistency and asymptotic normality of the QMLE for pure GARCH
process in Francq and Zakoian (2004) with i.i.d. innovations to martingale difference
centered squared innovations. This extension is important since now the ARCH process
allows for conditional skewness.

Now, let us consider the return 7, follows (2.1) where ¢, satisfies E [g;|S—1] =
0, E[e2|S;-1] = 1 a.s., and has density F(6%). Note & are not i.i.d. Assume the
dependency of the quantile function of ¢; are governed by parameter 6¢. Then the

dynamic quantile function of the standardized return can be written as

Qi(p,0°,0%) = inf{e, € R:p < Fe, 03)} (2.5)
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In conclusion, considering a location-scale model with relaxed assumption !, we can
study the dynamic quantile model Q5(p, 0%, 607) of the standardized return ;. We can
also consider to model the conditional quantiles of return Q}(p, #9) directly, where 61
is the parameter determine the dynamic quantiles of return. This is a case beyond
location-scale family. We can also further construct conditional mean/location, condi-
tional volatility from the conditional quantiles of return @} (p, 69).

Here is an example of how to construct the predictive distribution 2 of return. As-
sume 7y is from a location-scale family, o1 (65) follows a GARCH(1,1), and F(6) is
zero mean unit variance Gaussian distribution. So the predictive distribution of return
given 3y is 7¢[S—1 ~ N(pee—1(07), 044—1(05)). Now, we construct predictive distri-
bution of r; with conditional quantiles estimated through quantile models @} (p, 7).

Define the interquartile range as

1QR{(07) = (Q7(.75,07) — Q7 (.25,67)) (2.6)

The predictive distribution of returns is 74|31 ~ N(QF(.50,69),.549554 x IQ Ry (07)?).
549554 is a constant using conditional quantiles to construct conditional volatility.
If we need construct conditional skewness from conditional quantiles, we can adopt
a robust coefficient of skewness proposed by Bowley. The conditional version of the
measure of Bowley is as follows

Qr(.75,07) — Q7(.50,07)) — (Q7(.50,607) — Q7(.25,67))
1QR;(69)

Skew (r¢|S—1) = (

(2.7)

where Q7 (.25,69), Q}(.50,07) and Q(.75,69) are the 25th, 50th, and 75th conditional

'We can assume the normalized returns are a martingale difference sequence (see e.g. Escanciano
(2009))

2 i.e. conditional mean, conditional volatility, and conditional skewness, etc
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quantiles of r;.

For the cases that the conditional distribution can not be fully characterized by the
first two or three moments, to obtain the predictive distribution of returns, we propose
an Quantile Distribution Fits approach. Namely, we can use a parametric family to
fit a conditional density via matching the quantiles of the parametric facility ¢;(p, 6)
with the selected set of conditional quantiles Q7 (p,0%) or Q5(p, 0%, 69) by the method

of least squares.

2.3 Dynamic Quantile Models

Chen, Ghysels, and Wang (2010) introduce the class of models High FrequencY
Data-Based PRojectlon-Driven (HYBRID) GARCH models, which addresses the is-
sue of volatility forecasting involving forecast horizons of a different frequency. Their
HYBRID GARCH models can handle volatility forecasts for example over the next
five business days with past daily data, or tomorrow’s expected volatility while using
intra-daily returns.

The HYBRID GARCH model(Chen, Ghysels, and Wang (2010)) has the following

dynamics for volatility:
‘/‘r+1|7 =w+ avﬂrfl + /BHT (28)

where 7 refers to a different time scale than . When H, is simply a daily return we
have the volatility dynamics of a standard daily GARCH(1,1), or H, a weekly return
those of a standard weekly GARCH(1,1).
By further specify H, as
J

H, = HO" 7,) = [ij exp (Z (05" + 61"i/m + HfiQ/m2)>rJ2-’T] (2.9)

=1
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where 7 = (717,720« s Fin—1.74 rm,T)T is R™—valued random vector. The parameters
to be estimated are (w,a, 3,0, 07 01) for the HYBRID GARCH model. We denote
H., as given by 2.9 as exponential weights HYBRID GARCH model.

Ghysels, Plazzi, and Valkanov (2011) introduce a Mlxed DAta Sampling (MIDAS)
quantile regression model, which addresses the conditional quantile of multiple horizon
returns using single horizon returns(eg. daily returns). The MIDAS quantile regression

model(Ghysels, Plazzi, and Valkanov (2011)) is described as follows.

QQ,t (7}7”; 59,”) = Qyn + ﬁH,nZt (Ke,n) (210)
D

Zy (kon) = Y wa (Kon) T-d (2.11)
d=1

where dg,, = (.0, Bon, lig,ny are unknown parameters to estimate. Following Ghysels,

Santa-Clara, and Valkanov (2006), we can specify wy (kg,,) as

f(diT%/Z7 R1,0,n, /{2,0,71)

2221 f(melﬂ, K1,6,n, /12,9,n)

wa (Kon) = : (2.12)

where kg, = (K100, K20n) 18 a 2-dimensional row vector that reduces the number of
weights for lag coefficient to estimate from D to 2, f (z,a,b) = 247 (1 — 2)"" /3 (a, b),
B (a,b) =T'(a)l'(b)/T'(a+10b), and I" is Gamma function. We denote Z; as given by 2.12
as beta weights MIDAS Quantile model.

Engle and Manganelli (2004) introduce Conditional Autoregressive Value at Risk

(CAViaR) model, which is a quantile regression model specified as follows.
q T
Qi () =B+ Y BiQii (B) + Y Byl (xi) (2.13)
i=1 j=1

where p = g+r+1 is the dimension of 5 and [ is a function of a finite number of lagged

values of observations.
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The HYBRID GARCH class of models allowed us to propose multiple horizon mod-
els in a framework similar to GARCH(1,1). We adopt the same strategy for dynamic
quantile models. That is, we introduce dynamic HYBRID quantile models that nest
(1) the CaViAR model of Engle and Manganelli (2004) and (2) the MIDAS quantile
models of Ghysels, Plazzi, and Valkanov (2011).

We characterize a HYBRID quantile regression in a similar way to HYBRID GARCH
- where the conditional quantile pertains to multiple horizon returns and the regressors

are higher frequency returns - as follows:

Q:(pa 0(1) = W"‘QQ:_l(p, Qq)—f—ﬂHg (2]‘4)
m—1

HS = > wj(k)aj, (2.15)
7=0

when the HYBRID process driving the quantile is a same frequency absolute return we
recover the CaViAR model, and when a = 0 we recover the MIDAS quantile. There are
several benefits from using the HYBRID and MIDAS quantile specification (2.14)-(2.15)
rather than other conditional quantile models, such as Engle and Manganelli (2004) and
White, Kim, and Manganelli (2008). We follow Engle and Manganelli (2004), who find
that absolute returns successfully capture time variation in the conditional distribution
of returns, and use absolute daily or intra-daily returns as the conditioning variable in
(2.15). Alternative specifications with squared returns will be considered also.

To test the validity of the forecast model of CAViaR, Engle and Manganelli (2004)
propose a new test, in-sample D() test, which is used for model selection. The test is
defined as follows.

o Hit (ﬁ) X (ﬁ) (1\;1?11\/1'2))1 X (6) Hit (5) T s (216
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where Hit is defined as follows.

Hit(8°) = I (r, < Q, (Bo)) — 0 (2.17)

Further definitions of X (B) and My can be found in Engle and Manganelli (2004).

We use S&P 500 daily returns ranging from 1982 to 2011 to test our HYBRID
quantile models. We will estimate a generic of HYBRID quantile models with both
exponential weight(2.9) and beta weights(2.12). The choice of x in (2.15) we use are
7], v, 3 and r. We estimate 1% and 5% weekly VaRs(horizon 5) using non-overlapping
daily returns with lag 5.

Table 2.1 shows the estimated parameters obtained from HYBRID quantile models
and MIDAS quantile models for 5% VaRs. Both Hit and D@ test p values are for
in-sample tests. Hit in percent is the percentage of times that the VaR is exceeded.
As indicated by Hit, the precision of all the models are good. Most of quantile models
are not rejected at 5% confidence interval by D@ tests for exponential weights except
three of the MIDAS quantile models. For beta weights, HYBRID quantile models are
also prefered by D@ in-sample test.

Table 2.2 shows the estimated parameters obtained from HYBRID quantile models
and MIDAS quantile models for 1% VaRs. The models perform similarly by looking at
in-sample Hit and DQ tests for 1% VaRs.

Figure 2.1 shows the 5% through 95% multiple horizon quantiles (horizon 5) ob-
tained using HYBRID quantile regression method and MIDAS quantile regression
method using daily returns with lag 5. As expected, with the lag term of quantile
included in the HYBRID quantile regression, the quantiles obtained are more smoother

than the quantiles obtained from MIDAS quantiles.
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2.4 Quantile Distribution Fits

Wu and Perloff (2005), Wu (2006) and Wu and Perloff (2007) fits densities to quan-
tiles. This is an interesting aspect if we have several conditional quantiles and we want
to use them to find the conditional density of either returns or standard returns by
fitting quantiles to a density. We call this method Quantile Distribution Fits.

Assume we have conditional quantiles Q} (p, 89) for a selection of p-values and deter-
mined by a parameter vector #¢ for return r at time t. The Q7 (p,0?) can be obtained
by quantile regression method like CAViaR, MIDAS Quantile regression, and HYBRID
Quantile regression. Then the conditional distribution of r at time ¢ can be found by
solving

1= . 2
min - ; Q7 (p,07) — a:(p,04)]", Yt € {1,....T} (2.18)
where 0% is the parameters to be estimated, N is the number of quantiles used in finding
conditional distribution, and ¢,(p, 64) is the quantile function of selected distribution.

For the choice of ¢;(p, 64), we can pick a rich family of distributions, like the Gener-
alized Hyperbolic (GH) class which is characterized by five parameters. When further
narrowed down to subclasses of four-, three-, or two-parameter distributions, yields
widely used distributions such as the normal inverse Gaussian distribution, the hyper-
bolic distribution, the variance gamma distribution, the generalized skewed t distribu-
tion, the student t distribution, the gamma distribution, the Cauchy distribution, the
normal distribution, etc. We can also use extreme value distributions like Generalized
Extreme Value (GEV) distribution and Generalized Pareto (GP) distribution.

For the choice of N, we can in principle fit as many quantiles as we want. More
quantiles means better distributional fit, but they may start crossing. The more quan-

tiles we use, the issue of crossing becomes more acute and then there is also the issue
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of too many moment conditions, which creates singularities.

By having the conditional distribution, we can further obtain Expected Shortfall
(ES), an alternative measure of risk proposed by Artzner, Delbaen, Eber, and Heath
(1997). The Expected Shortfall is the expected value of r when the threshold (i.e. VaR)
has been exceeded. It can be calculated by integral over the quantile function ¢(p, 6,)

in our case. The ath Expected Shortfall is defined as follows

1 (03
BS7 = B (nlre < ai0.6) = & [ a0y (219)
0

where 0 < a < 1.

We would like to compare the Expected Shortfall obtained using the fitted pa-
rameters of quantile distribution fits with the regression based Expected Shortfall for
CaViaR or other quantile models(Manganelli and Engle (2001)). The regression based

Expected Shortfall is defined as follows

re = 0Q¢ (p, 07) + e, 1 < Qf (e, 09) (2.20)

ES, = B (rir < Qi (a,07)) = 6Qi (av, 07) (2.21)

We start fitting generalized extreme value(GEV) distribution to quantiles of return
by minimizing the sum of squared distances of quantiles given by (2.18). The prelimi-
nary results are shown in Figure 2.2. The quantiles used in this figure were 10%, 20%,
30%, and 40% quantiles obtained by CAViaR SAV model using daily return. There
are three parameters to be estiamted(location, scale and shape). The quantiles ob-
tained by quantile distribution fits and CAViaR are generally on top of each other.
The smaller the quantiles, the more discrepancy between quantiles obtained by two
methods. Quantiles obtained by quantile distribution fits tend to be smaller for lower

quantiles.
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The results for comparison of Expected Shortfall using conditional distribution from
quantile distribution fits and regression based Expected Shortfall are shown in Figure
2.3. The larger discrepancy for 1% ES may be caused by the smaller sample size in the
regression.

We also test other distributions, including generalized pareto(GP) distribution. In
general, quantile distribution fits with GEV performs better than with GP. Also, quan-
tile distribution fits with t, skew t, and generalized hyperbolic distribution fails some-
times due to a lack of analytic quantile functions. We also use other quantiles like 25%,
50%, and 75% quantiles, and the results are worse than using 10%, 20%, 30%, and 40%

quantiles.

2.5 Simulation

In Section 2.5.1, we present results to compare the simulation results to compare

conditional heteroskedasticity and quantiles.

Simulation of Conditional Heteroskedasticity versus Quantils

This section covers an extensive Monte Carlo simulation to compare conditional
heteroskedasticity and quantiles. We first describe the conditional heteroskedasticity
and quantiles models we use in this section.

We consider the conditional volatility as GARCH(1,1)

Ty = Ot&y (222)

of = wy + aor? , + Boot (2.23)

where E [g;|F;_1] = 0, and F [¢Z|F,_1] = 1. By specifying the density of &;, we define
seven GARCH type models.
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If ¢ ~ N(0,1), the model is Gaussian GARCH(1,1) and we denoted it as NOR.
The parameters to be estimated for this model is 8 = (wo, o, 5o)-

If &; is Student’s t-distribution which has the probability density function given by

(L+ﬁ>_;l (2.24)

where v > 2 is the number of degree of freedom and I' is the Gamma Function. We
denote this Student’s ¢ GARCH model as STDT. The parameters to be estimated for
this model is 6 = (wy, a, Bo, V).

If &, is Skew t-distribution proposed by Hansen (1994) which has the probability

density function given by

1 bz+a\’ )
g (z|v, A) = be (1 + < ) > , 2 < —a/b (2.25)

v—2\1-X\

1 be 4 a2 (=(+1)/2)
=bc|1 > —a/b 2.2
c<+y_2<1+/\>> , 2> —a/ (2.26)

where v > 2, —1 < A < 1, and

To ensure the mean and variance of ¢; to be zero, a, b, and ¢ must satisfy

ElZ]=a=0

E|Z?] =bv" +a* =
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We denote this SKWE T GARCH model as SKEWT. The parameters to be estimated
for this model is § = (wp, ag, Bo, v, A). Note there are only one free parameter A\ to
be estimated, and it is the skewness parameter of this density.If A > 0, the density is
positively skewed and vice versa.

If £, is Generalized Hyperbolic Skew Student’s t-distribution proposed by Aas and

Haff (2006) which has the probability density function given by

256" |5 F Kun (\/52 (62 + (= — M)2>) exp (B (x — 1))
f<I|57V7:U’75>: PES] 757&0

NN

(2.27)

(g

VRO (3)

(v —p)
I+ =%

, 3=0 (2.28)

where v > 4 to ensure finite variance. To ensure the mean and variance of ¢; to be

zero, the parameters must satisfy

_ LB
BIX]=p+——5=0
254 2
Var [X] = 2% 0 =1

21 v-2

We denote this Generalized Hyperbolic Skew ¢ GARCH model as GHST. The param-
eters to be estimated for this model is 6 = (wy, ag, By, B, v, 1, 0).

The skewness of the above density is

2= 9pe L
skew [X] = 25t (-2 (" 3(v—2)+

83242
v—=6

(2.29)

It is time-invariant. To generate time-varying skewness in the simulation, we also

consider two Generalized Hyperbolic Skew ¢ GARCH models with either v or 3 follow
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a AR(1) process.

n=ct+ vt e (2.30)

Br==c+ ¢Bi1 + & (2.31)

where ¢; is white noise with variance k. We denote the Generalized Hyperbolic Skew ¢
GARCH with time-varying $ model as GHYP1 and the Generalized Hyperbolic Skew
t GARCH with time-varying v model as GHYP2. The parameters for this model is
0 = (wo, o, Bo, B, v, 11,0, ¢, ¢, k). The last three parameters are determined without
estimation for both GHYP1 and GHYP2.

The last GARCH type model we consider is the model that €, follows mixed normal
distribution with two components. We denote this model as MIXNOR. The parameters
to be estimated for this model is 6 = (wp, ag, A1, Ao, i1, pi2, 01, 02). These parameters
must satisfy conditions such that Ay + Ay = 1, E (g4|F;—1) =0, and E (e2|F;_1) = 1.

The single horizon quantile models we consider here are four CAViaR models pro-
posed by Engle and Manganelli (2004). Let r, be the return, and ¢; be the #th quantile
of r;. The symmetric Absolute Value CAViaR model, denoted as SAV, is

¢ (B) = Br + Boqi—1 (B) + B3 |re—1] . (2.32)

The Symmetric Square Value CAViaR model, denoted as SSV, is

a4 (B) = Br + Baqi—1 (B) + Bari_y. (2.33)
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The Asymmetric Slope CAViaR model, denoted as AS, is

@ (B) = b1+ Boqi—1 (B) + B3 (ri—1) " + Ba (re—1) ™. (2.34)

The Adaptive CAViaR model, denoted as AD, is

@ (B1) = @1 (B1) + Br { [1 + exp (G[?/t—1 — g (B)] 7 = 9)} } , G =10. (2.35)

Table 2.4 provides a summary of notations and descriptions of these models used
in the simulation and estimation.

We simulate data using seven different data generating processes (i.e. NOR, STDT,
SKEWT, GHYP, GHYP1, GHYP2, and MIXNOR). For the data generating processes
NOR, STDT, SKEWT, GHYP and MIXNOR, the parameters used in the simulations
are obtained by estimating 1982-2011 S&P 500 returns using the models accordingly.
For GHYP1 and GHYP2, we use time-varying 5 and v generated by AR(1) processes,
respectively, while other parameters remain the same as GHYP. For each data gener-
ating process, we simulate 1000 samples with length 2500.

Table 2.4 shows all the parameter choices used in the simulation. They are obtained
by estimating 1982-2011 S&P 500 daily, weekly, and biweekly returns using the models
accordingly. The last column is log likelihood obtained through the estimations. For
daily data, STDT model is the best model by looking at this criteria. For weekly and
biweekly data, MIXNOR and GHYST provide the best estimation results, respectively.

For each sample, we estimate conditional heteroskedasticity models(NOR, STDT,
SKEWT, GHYP, and MIXNOR) and CaViAR models(5%, 25%, and 75% quantiles).
The performances of model estimations are evaluated through the estimates of g, and
5% VaR. Our purposes are to compare the conditional volatility and conditional Value

at risk estimated through GARCH type models and quantile models. This raises the
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questions what are the true and estimated conditional Value at risk from GARCH type
models, and how to find out the conditional volatility from the quantile models.

For CAViaR models, the 62 is estimated through ¢ x I QRQ, where c¢ is a parameter
estimated through the interquartile range of each DGP? and I QR is the estimates of
interquartile range. For conditional heteroskedasticity models, the 5% VaR is estimated
through ¢fezo;™, where ¢lo¢ is the 5% quantile of each DGP.

The measures we use to compare d; are QLI K E and M S Eprop proposed by Patton

(2011). The definitions are as follows.

1 — hy &2
OLIKE — — (log 2% 1) , (2.36)
T tz; 0t2 ht
1 T 6_2 2
MSEprop = T Z (h_tt - ) : (2.37)

t=1
and h; = (of™¢)2. where QLIKE is normalized to yield zero when the estimated
volatility is equal to the true volatility. A smaller value of QLIKFE means better
estimation. We compare the estimates of 5% VaR using Mean squared error.

The results of comparisons are shown in Table 2.5 - Table 2.7.

Table 2.5 shows the comparison of o, using QLIKFE. For the simulation with data
generating process NOR, the CaViaR quantile models SAV and AS perform compa-
rably to the true model NOR. For data generating process STKEWT, the CaViaR
quantile model SAV performs comparably to the true model SKEWT. GARCH type
model NOR and CaViaR model AS perform similarly and slightly worse than the true
model SKEWT. For data generating process GHST, the true model performs the best,

then followed by other GARCH type models. In this case, the CaViaR quantile models

3For example, for GARCH-Normal, ¢ = .549554.
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do not show advantage over the GARCH type models. But for data generating pro-
cess GHYP2, the CaViaR quantile models SAV performs comparably with estimated
through GHYP and performs better than other GARCH type models. For data gen-
erating process MIXNOR, CaViaR quantile model SAV performs better than NOR,
STDT, and GHST, and worse than SKEW'T and the true model MIXNOR. Overall,
CaViaR model SAV performs consistently very well for a variety of data generating
process.

Table 2.6 shows the comparison of o; using M SFEprop. For data generating process
NOR, SAV performs similarly to NOR by looking MSEprop. For data generating
process STDT, CaViaR quantile models SAV, SSV and AS perform even better than the
true model STDT. For data generating process SKEWT, the CaViaR model SAV and
AS perform better than the true model SKEW'T. For data generating process GHST,
the true model performs the best, then followed by other GARCH type models. In this
case, the CaViaR quantile models do not show advantage over the GARCH type models
as using the measure of QLIKFE. For data generating process MIXNOR, CaViaR
quantile model SAV performs the best. Overall, using M.SFEprop as criteria, CaViaR
quatile models shows even more advantages than GARCH type models compared with
using QLIKE.

In conclusion, for estimation of 6;,, CAViaR Models (SAV, SSV, AS) are better than
GARCH type models when there are fat tail, skewness or time-varying skewness in the
data.

Table 2.7 shows the comparison of VaR using MSE. And the findings can be sum-
marized as follows. For estimation of VaR, some of the GARCH type models are better
than CaViaR Models. This makes sense since the estimation of g5y is less accurate

than say the estimations of ga59 and gr54 for skewness measures.
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2.6 Conclusion

We introduce a generic of HYBRID quantile regression models and use the measure
of in-sample Hit and DQ tests(Manganelli and Engle (2001)) to check the performance
of our models compared with MIDAS quantile regression models. For the estimation
of 5% VaRs, the HYBRID quantile regression models are prefered. For 1% VaRs, there
two types of models provide similar results.

We propose a method to find conditional distributions based on quantile regres-
sions called Quantile Distribution Fits. This method allows us to calculate Expected
Shortfall, and other properties, which is very useful for risk management. We compare
the results of quantiles/Value at Risk by quantile regressions and quantile distribu-
tion fits. We also study the expected shortfall using conditional distribution obtained
by quantile distribution fits with the regression based expected shortfall for quantiles
regressions. The results suggest that Quantile Distribution Fits is a very promising
alternative method for risk management.

For estimation of 6;, CAViaR Models (SAV, SSV, AS) are better than GARCH
type models when there are fat tail, skewness or time-varying skewness in the data.
For estimation of VaR, some of the GARCH type models are superior than CaViaR
Models. This may arise from the fact that the estimation of g5y is less accurate than

say the estimations of ¢o59, and ¢r59 for skewness measures.

2.7 Tables and Figures

This section contains tables and figures for this chapter.
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Table 2.1: Hybrid quantiles and MIDAS quantiles for 5% VaR
Model HYBRID MIDAS
x |r] r? r rs 7| r? T rs
Panel I: Exponential Weights
w -0.2255  -0.5661 -0.6124 -0.9906 -1.8101 -2.8321 -3.8394 -3.4571
0.7201 0.7692 0.8408 0.6911
8 -1.0231  -0.1710 1.0062 0.0407 -2.0661 -0.4581 0.8005 0.0466
K1 82.4187 18.8972 1.3519 223.6761 58.4813 4.2246  335.1269 239.4319
Ko -11.5922 -2.4032 -0.1867 -31.5316 -6.5666 -0.4442  -47.6295 -29.9681
Hit (%) 4.9366  5.0033  5.0033 5.0033 5.0033 5.0033 5.0033 4.9366
DQ p values 0.9370  0.8868  0.5496 0.8883 0.0172 0.9630 0.0000 0.0428
Panel II: Beta Weights
w -0.2018 -0.5769 -0.8949 -0.7841 -1.9384 -2.8254 -3.8074 -3.4578
0.7153  0.7692  0.7559 0.7565
15} -1.0891 -0.1648  0.8543 0.0290 -1.8649 -0.4500 0.7887 0.0466
K1 70.3929 62.6558 10.5647 53.9638 152.6235 221.1039 21.8558 128.1018
K2 44.9371  37.6604 4.4327 29.8219 1.8488 1.8442 10.8169 3.2954
Hit (%) 5.0033  4.9366  4.9366 5.0033 5.0700 5.0033 5.0033 5.0033
DQ p values 0.9438  0.0965 0.5482 0.0000
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Table 2.2: Hybrid quantiles and MIDAS quantiles for 1% VaR
Model HYBRID MIDAS
x 7| r? r rs 7| r? r rs
Panel I: Exponential Weights
w -0.6471 -1.1271  -1.2982 -1.1205 -4.3155 -5.0566 -7.0351 -6.2308
0.7436 0.7436 0.8032 0.8200
15} -0.9795 -0.2721 2.1812 0.0406 -2.1111 -0.7087  1.6703 0.0357
K1 16.7011 51.7878 0.0052 283.2151 58.7313 58.4610  6.8645 197.2404
Ko -2.0263 -6.0263 0.0242  -31.5316 -6.5666 -6.5666 -0.8859  -22.2962
Hit (%) 1.0007 1.0007 0.9340 1.0007 1.0007 0.9340  1.0007 1.0007
DQ p values 0.7737 0.9696 0.1539 0.8734 0.9495 0.9851  0.4555
Panel II: Beta Weights
w -0.6768 -1.1360  -1.6637 -2.2420 -4.2135 -5.0549 -6.6011 -6.2305
0.7436 0.7436 0.7391 0.6356
15} -0.9266 -0.2619 0.9580 0.0310 -2.3949 -0.7095  1.2658 0.0346
K1 85.6395 134.1690 11.1725 64.2875 152.6235 192.1371  5.5065 160.3267
Ko 53.1661 26.4930 4.7366 36.2934 1.8260 1.8402  1.7065 9.5178
Hit (%) 1.0007 1.0007 0.9340 1.0007 1.0007 1.0007  0.9340 1.0007
DQ p values 0.8524 0.9702 0.9959 0.9279 0.9724
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Table 2.3: Summary of Model Specifications

Model Notation  Description

1 NOR Gaussian GARCH

2 STDT TGARCH

3 SKEWT  Skew T GARCH(Hansen (1994))

4 GHST Generalized Hyperbolic Skew T GARCH(Aas and Haff (2006))

5 GHST1 Generalized Hyperbolic Skew T GARCH with Time Varying 5 (Aas and Haff
(2006))

6 GHST2 Generalized Hyperbolic Skew T GARCH with Time Varying v (Aas and Haff
(2006))

7 MN(3,3) Mixed Normal GARCH with 3 component densities and 3 GARCH pro-
cess(Haas, Mittnik, and Paolella (2004))

8 MN Mixed Normal GARCH

9 SAV CAViaR: Symmetric Absolute Value
a (B) = P1 + Baqr—1 (B) + B3 [ye—1]

10 SSV CAViaR: Symmetric Square Value
4t (B) = B1 + Bagr—1 (B) + Bayi—s

11 AS CAViaR: Asymmetric Slop
g (B) = B1+ B2gi—1 (B) + B3 (yr—1) " + Ba (ye—1)~

12 AD CAViaR: Adaptive

@ (B1) = qe—1 (B1) + B {[1 + exp (Glys—1 — @1 (B1)] "+ = 0) ]}, G =10
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Table 2.4: Summary of Parameters in Simulation Study

Model Parameters LL
NOR (wo, @0, Bo)

daily 0.0133 0.0798 0.9115 -10295
weekly 0.1471 0.1337 0.8465 -3359
biweekly 0.1523 0.1016 0.8984 -1963
STDT (wo, a0, Bo, V)

daily 0.0070 0.0571 0.9381 6.2893 -10057
weekly 0.1039 0.0935 0.8893 8.8307 -3336
biweekly 0.3028 0.1021 0.8693 5.5406 -1900
SKEWT (wo, o, Bo, v, A)

daily 0.1004 0.1401 0.7683 21.5589 -0.0417 -10281
weekly 0.1080 0.0967 0.8897 8.4570 -0.1834 -3324
biweekly 0.5067 0.1558 0.8269 4.5074 -0.2634 -1885
GHST (WO,O[O,ﬁO,B,V7M,6)

daily 0.0000 0.1106 0.8894 -0.2681 13.1669 0.2641 3.3162 -10166
weekly 0.1014 0.0942 0.8949 -0.5415 8.9402 0.4890 2.5036 -3324
biweekly 0.5999 0.1706 0.8294 -0.5198 5.0646 0.3793 1.4954 -1886
GHST1 (WO;O(0750767V7M)6,C7¢?]€)

daily 0.0000 0.1106 0.8894 -0.2681 13.1669 0.2641 3.3162 -0.0330 0.8000 0.0260

weekly 0.1014 0.0942 0.8949 -0.5415 8.9402 0.4890 2.5036 -0.0330 0.8000 0.0260

biweekly 0.5999 0.1706 0.8294 -0.5198 5.0646 0.3793 1.4954 -0.0330 0.8000 0.0260

GHST?2 (WO7O¢O760767V7M)6,C7¢?]€)

daily 0.0000 0.1106 0.8894 -0.2681 13.1669 0.2641 3.3162 -0.2305 0.8000 0.4000

weekly 0.1014 0.0942 0.8949 -0.5415 8.9402 0.4890 2.5036 -0.2305 0.8000 0.4000

biweekly 0.5999 0.1706 0.8294 -0.5198 5.0646 0.3793 1.4954 -0.2305 0.8000 0.4000

MIXNOR (wo, a0, Bo, A1, Az, i, iz, 01, 02)

daily 0.0084 0.0650 0.9312 0.9322 0.0678 0.0469 -0.6450 0.8718 1.9627 -10082
weekly 0.0984 0.0920 0.8968 0.9057 0.0943 0.0858 -0.8246 0.8500 1.7074 -3323
biweekly 0.4242 0.1455 0.8545 0.9474 0.0526 0.0849 -1.5294 0.7565 2.4971 -1893
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Figure 2.1: HYBRID quantile regression and MIDAS quantile regression: (a) the 5%,
10%, 25%, 50%, 75%, 90% and 95% quantiles for multiple horizon returns(horizon 5)
using HYBRID quantile regression models with lag 5, (b) the 5%, 10%, 25%, 50%, 75%,
90% and 95% quantiles for multiple horizon returns(horizon 5) using MIDAS quantile
regression models with lag 5.

50



(a) Parameters fitted using GEV
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(b) CaViaR 1% quantile vs 1% quantile calculated using fitted parameters
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0 (c) CaViaR 5% quantile vs 5% quantile calculated using fitted parameters
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Figure 2.2: Comparison of quantiles by quantile distribution fits and CAViaR model:
(a) the fitted parameters of generalized extreme value(GEV) distribution where the
four quantiles (10% to 40% by 10%) used by quantile distribution fits are obtained by
CAViaR SAV model using daily data, (b) CaViaR 1% quantile(Green) vs 1% quantile
calculated using fitted parameters(Blue), (c) CaViaR 5% quantile vs 5% quantile cal-
culated using fitted parameters, (d) CaViaR 10% quantile vs 10% quantile calculated
using fitted parameters.
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(a) CaViaR 1%, 5%, and 10% quantiles
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Figure 2.3: Comparison of Expected Shortfall(ES) by quantile distribution fits and
regression based ES of CAViaR quantiles: (a) 1%, 5% and 10% CaViaR quantiles,
(b) 1% regression based ES(Green) vs 1% quantile fitting based ES(Blue), (¢) 5%
regression based ES(Green) vs 5% quantile fitting based ES(Blue), (d) 10% regression
based ES(Green) vs 10% quantile fitting based ES(Blue).

52



Chapter 3

Simulation Study of Long Run Skewness for Asset Pricing

3.1 Introduction

Bansal and Yaron (2004) have presented a consumption-based asset pricing model
which includes a long-run predictable component, a time-varying consumption growth
rates, time-varying volatility, and preference of Epstein and Zin (1989). Their model
can explain some key features of dynamic asset pricing phenomena and address the
asset market puzzles.

It has also been documented by empirical studies that the distribution of equity
returns, either conditional or unconditional, can not be fully characterized by just
mean and variance. Many previous studies have shown that the equity returns are
negatively skewed(see e.g. Harvey and Siddique (2000)). Ghysels, Plazzi, and Valkanov
(2010a) have also found a strong relationship between the conditional asymmetry and
macroeconomic variables, which is different from the conditional volatility.

Inspired by these important findings, an intriguing question arises. Can we improve
our understanding of equity returns and asset pricing by introducing higher moments
into Bansal and Yaron (2004) type of model?

To better understand these questions, in this chapter, we are seeking to incorporate
asymmetry in the Bansal and Yaron (2004) type of model and use simulation study to

further investigate the long run skewness for an asymmetry consumption based asset



pricing model that can generate larger equity returns due to asymmetry.

This chapter is structured as follows. Section 3.2.1 describes the asymetry consump-
tion based asset pricing model. Section 3.2.2 provides the calibration of the model.
Section 3.3 describes the simulation study using this model. Section 3.3.1 studies the
Hansen Jagannathan Bound generated by this model. Section 3.3.2 provides distri-
bution of equity returns for different parameter choices. Section 3.3.3 simulates the
conditional moments of macro fundamentals and equity returns. In section 3.4, we

conclude this chapter by sumerizing the findings.

3.2 Model Specification and Calibration

In this section, we first describe the threshold model of Colacito, Ghysels, Meng,
and Ru (2012) in Section 3.2.1. Then the monthly calibration of the model is provided

in Section 3.2.2.

Model Specification

Following Colacito, Ghysels, Meng, and Ru (2012), specify a representative con-

sumer’s preference at time t, Uy, as follows:

U =(1-9)logCy + log Eylexp{(1 — v)Us1}] (3.1)

L=y

Where v is the degree of risk aversion, § is the subjective discount factor, and Cj is
the consumption at time ¢. This preference is the limiting case of Epstein and Zin
(1989) when the intertemporal elasticity of substitution tends to be one. It is non
time-additive while the constant relative risk aversion(CRRA) is time-additive. This

preference has been used by several other papers, such as Colacito and Croce (2010),

Kan (1995), Anderson (2005) and Lucas and Stokey (1984).
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Let Ac¢; = log(Cy) — log(Cy_1) denotes consumption growth. Following Colacito,

Ghysels, Meng, and Ru (2012), we assume the consumption dynamic follows:
Aciir = (fe + Ke) + Koy + ettt (3.2)
and the dividend growth Ad; = log(D;) — log(D;_1) follows:
Ady = Mg (3.3)

where A > 1 is the leverage ratio for the claim on consumption and z; is the long-run

component of consumption growth which follows:

Ty = P_Tp1 + Og€xy, V1 <0 (3.4)

Ty = P+T—1 + OzExts V,It_l >0 (35)

Here, p. + k. is the average consumption growth, r, is the coefficient of x;, o, is the
volatility of shocks to x, o, is the standard deviation of the short-run shock to con-
sumption, and p is autoregressive coefficient of long-run component x;. For stationary,
p < 1. The shocks e.; and ¢, are i.i.d normal with mean zero and standard deviation
1. The model of Bansal and Yaron (2004) is a special case of the above model when
p=p1=pP+, ke =0, and k, = 1.

To solve the utility in equilibrium, we define the value function as follows:

(3.6)

A
Vi=U, —log C; = 5910gEtexp{M}

where § = 1/(1 —~). Then the value function can be solved by iterating it on a grid of

values of z;.
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For the preference given by 3.1, the stochastic discount factor, which is the intertem-

poral marginal rate of substitution, can be given as follows:

oU,/oC
My = —a[t]//a(t;l (3.7)
t/0C
= exp {log5 — Acpiq + Utgl —log E; exp { U7‘:9+1 }} (3.8)

Let m; = log M, be the log consumption stochastic discount factor. The risk free

rates can be written as:

r{ = —log Eyexp {my41} (3.9)

Define vg; = P;/D; as price-dividend ratio(P/D ratio) and R{ as the returns to
the dividend growth, which is levered consumption claim given by 3.3. The first order

condition to price an asset implies that the return R¢ satisfies Euler equation:

]_ - Et [Mt+1Rd,t+1] (310)

Where the returns RY is

Pirt Dyt 1
Rurss = t+1;T b _ +UZ‘1¢“ exp {Adys1) (3.11)

The log return is r4441 = log Rgs+1. The dynamic of P/D ratio can be written as

follows:

Var = Ei[exp {mi1} (14 vae1) exp {Adiga }] (3.12)
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Calibration

Following Colacito, Ghysels, Meng, and Ru (2012), we calibrate the model at
monthly frequency. The parameters choices are given by Table 3.1. The autoregressive
coefficient p given in the table is for the benchmark case where p = p_ = p,. Other
choices of p_ and p, are listed in Table 3.2. The coefficient of risk aversion in Table 3.1
is set to 10 as a benchmark case. We study cases of v from 7.5 to 20. The leverage is

set to be 3 such that the dividend claim is more volatile than the consumption stream.

3.3 Simulation

After solving the value function, we simulate samples of length 100,000 with base-
line parameter choices given by Table 3.1. Additional simulations are done for v €
{7.5,10,12.5,15,17.5,20} with other parameters are same as Table 3.1 to study the
relationship of £ [M] and o [M].

Section 3.3.1 studies the relationship between mean and variance of stochastic dis-
count factor generated by this model. Section 3.3.2 provides distribution of equity
returns for different parameter choices. Section 3.3.3 simulates the conditional mo-

ments of macro fundamentals and equity returns.

Hansen and Jagannathan Bound

Hansen and Jagannathan (1991) introduces Hansen and Jagannathan bounds which
provide a criteria to validate whether a consumption based asset pricing model are fea-
sible to compare asset pricing models. The Hansen and Jagannathan bounds are bound
on the expectation of stochastic discount factor, standard deviation of the stochastic
discount factor, and other moments of stochastic discount factor. Hansen and Ja-

gannathan bound for a vector of returns, R, is the hyperbola given by the following
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equation in {E [M], o [M]} space.

o(M)*>(1—E[M]E[R]) %™ (1 - E[M]E[R]) (3.13)

where Y is the covariance matrix of R.

Table 3.7 shows the results of pair of E[M] and o [M].

Equity Returns

Table 3.2 shows the choice of parameters of p_ and p,, and the means, volatilites,
skewness, kurtosis, and first order autocorrelation of predictive component of consump-
tion growth z;, which follow the process of Equation 3.4 and 3.5. The choice of pa-
rameters of p_ and p, are chosen in 3.2 in order that the first order autocorrelation of
consumption growth are the same across cases. We consider two choices of first order
autocorrelation here, that is p = 0.962 and p = 0.963. To compare different cases, we
need adjust k. and k, in order that the unconditional mean and volatility of consump-
tion growth are the same across different cases(See Colacito, Ghysels, Meng, and Ru
(2012)).

Table 3.3 shows the mean, variance, skewness, and kurtosis for both excess returns
and risk free rates generated with parameters given by Table 3.1 and v = 15. All
numbers in the table are annualized. The first column is for baseline case with p_ =
p+ = 0.962. The simulated excess return has a mean of 2.391, and a slightly positive
skewness. The larger the difference between p_ and p., the greater the expected excess
return and negatively skewed. The risk free rates slightly decrease while the difference
between p_ and p, increases. And the skewness of the risk free rates is always negative
in the model from the simulations. The trends are the same for p = 0.963 cases.

Table 3.4 shows the same results with parameters given by Table 3.1 and v = 10.
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All numbers in the table are annualized. With v = 10, the maximum expected excess
return we can obtain from our selected parameters is 3.113. While for v = 15, the
maximum expected excess return we can obtain is 6.059, which is obtained when p_
and p— have the maximum difference.

From these we can conclude that the degree of asymmetry of autogressive coefficient
of the long run component z; plays an important role in the equity risk premia. That
is, the degree of asymmetry of the predictive component of consumption growth largely
determines the maximum Sharpe ratio that can be reached(Colacito, Ghysels, Meng,
and Ru (2012)) and skewness can explains larger equity risk premia.

Table 3.5 shows the mean, variance, skewness, kurtosis for return, excess return,
and risk free rates for parameters given by 3.1 and v = 15 at multiple non-overlapping
horizons from one month to one year. All numbers in the table are annualized. From
this table, we can see that the variance is slightly reduced by aggregating with non-
overlapping method, but the skewness is increased along the aggregating. We will show
why this could be the case in Section 3.3.3 by evaluating the conditional moments of
predictive component of consumption growth z; and the conditional moments of excess
returns. The variance of excess returns decreases while aggregating, and the skewness
of excess returns increases. The skewness of risk free rates are larger than the skewness
of excess returns, but the patterns are the same while aggregating.

Table 3.6 shows the same results for parameters given by 3.1 and v = 15 at multiple
overlapping horizons from one month to a year. All numbers in the table are annualized.

All the patterns remains the same as aggregating using non-overlapping method.

Conditional Moments

Compared with Bansal and Yaron (2004), we introduce asymmetry in the predic-

tive components of consumption growth rates x;. Given our setting, the conditional
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skewness of 1|z, should be zero, and for longer horizons, the distribution of con-
ditional moments of z;.,|r;, where n > 1, are not clear. Hence, we simulate the
Tipn,n € {1,...,12} on a grid of x;, which is equally spaced on the axis of z;, for 10,000
times. Then, for each value on the grid of x;, we calculate the expectation, variance,
skewness, and kurtosis of x;,,. These are the simulated conditional moments x;,|x;.
We are also interested in the conditional moments of excess returns. We simulate
conditional moments of excess returns using the same method.

Figure 3.1 shows the conditional moments of x;,,|r;, where n = 1,3,12 for illus-
tration. We can see that the conditional skewness of x;. |z, is zero and conditional
variance is constant as expected. The conditional skewness of x;,,|z; is increasing while
the number of horizons n increases, especially when x; is near zero. This is the case
since the asymmetry we introduce in the model is indeed a threshold model while the
threshold is at zero.

Figure 3.2 shows the conditional moments of r;,,|x;, where n = 1,3,12 for illus-
tration. All the numbers in the figure are annualized. The same pattern holds as the
conditional moments of xyy,|x;. The conditional excess returns attain the maximum

at x; = 0.

3.4 Conclusion

By introducing asymmetry in the autoregressive coefficient of the long run com-
ponent x; (predictive component of consumption growth rates), therefore asymmetry
in the predictive component of consumption growth rate, we propose an asymmetry
version of Bansal and Yaron (2004). We study the relationship between the expected
stochastic discount factor and variance of the stochastic discount factor. As shown by
Colacito, Ghysels, Meng, and Ru (2012), the Hansen and Jagannathan bound can be

attained and larger Sharp ratio can also be achieved.
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By increasing the asymmetry in the predictive component of consumption growth
rates, larger expected excess returns can be obtained. And the skewness of both excess
return and risk free rates increase as the asymmetry in the autoregressive coefficient of
the long run component increases. We also study the distribution of the excess return
and risk free rates over longer horizon by overlapping and non-overlapping methods.
The results show that the variance slightly decreases while the horizon increases and
the skewness increases for both excess returns and risk free rates using both overlapping
and non-overlapping aggregating methods.

By introducing asymmetry in the predictive component of consumption growth
rates x;, the conditional moments of x; becomes time-varying at multiple horizons
when aggregating without overlapping. The conditional distribution of z;,,|z; become
time-varying, and more negatively skewed. The conditional moments for excess returns
also become more negatively skewed when increasing horizon.

Given the inspiring findings in this chapter, one can expect to explain larger excess
returns using the consumption based asset pricing by introducing conditional asymme-
try in the long run component of consumption growth rates. Therefore, conditional
asymmetry/ conditional skewness may offer a promising approach to address equity
premium puzzle and could significantly improve our understanding on the risk man-

agement and portfolio selection in the future.

3.5 Tables and Figures

The following are Tables and Figures of this chapter.

61



Table 3.1: Monthly Calibration

7y Risk aversion 10 or 15
) Subjective discount factor 0.9989875
e Average consumption growth 0.001
P 0.962 or 0.963
Ke 0
Kg 1
O Standard deviation of the short-run shock to consumption 0.0068
Oz Volatility of shock to x 0.050,
A Leverage 3
Table 3.2: Distribution of Predictive Components for Monthly Calibration
p— P+ E [z] o [z] skew [x] kurt [x] plze, 2]
0.962 0.962 0.000 0.000 3.000 0.962
0.972 0.945 -0.978 3.674 -0.254 3.047 0.962
0.980 0.868 -2.470 3.654 -0.605 3.288 0.962
0.981 0.841 -2.716 3.662 -0.653 3.337 0.962
0.963 0.963 0.000 0.000 3.000 0.963
0.976 0.930 -1.531 3.704 -0.387 3.113 0.963
0.978 0.915 -1.891 3.713 -0.470 3.167 0.963
0.979 0.899 -2.138 3.695 -0.528 3.212 0.963
0.980 0.899 -2.351 3.710 -0.574 3.252 0.963
0.981 0.874 -2.531 3.744 -0.606 3.287 0.963
0.981 0.858 -2.632 3.699 -0.634 3.316 0.963
0.982 0.834 -2.860 3.727 -0.673 3.361 0.963
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Figure 3.1: Conditional Moments of z; for multiple horizons: moments of z;1|z; in
blue, z; 3|z, in green and x;, 12|z, in red
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