
IDENTIFICATION OF TRANSCRIPTIONAL REGULATORY MECHANISMS MEDIATING 
HOST RESPONSES TO MICROBIOTA IN THE INTESTINAL EPITHELIUM 

James M Davison 

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in 
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the curriculum 

of Cell Biology and Physiology in the School of Medicine 

Chapel Hill 
2017 

Approved by: 

John F. Rawls 

Patrick Brennwald 

Douglas M. Cyr 

Michael B. Major 

Praveen Sethupathy 

 



ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2017 
James M Davison 

ALL RIGHTS RESEVERED



iii 
 

ABSTRACT
 

James M Davison: Identification of transcription regulatory mechanisms mediating host 
responses to the microbiota in the intestinal epithelium 

(Under the Direction of John F. Rawls) 
 

All organisms must detect and respond to environmental pressures or else risk 

death. For animals, these pressures include maintaining symbiosis with the microorganisms 

that dominate their world. Over the course of evolution, these intimate microbial 

relationships have influenced animal tissue function and cellular identities. Microbial impact 

on animal cellular identity is most salient in the intestinal epithelia which interfaces with the 

largest concentration of microorganisms on any animal surface. In this dissertation, I explore 

the genomic and transcriptional regulatory mechanisms that mediate microbial tuning of 

intestinal epithelial identities. The collection of microorganisms that reside in the intestine 

(the intestinal microbiota), contribute to host physiology by facilitating energy harvest, tuning 

metabolic programs, promoting epithelial barrier function, promoting epithelial renewal and 

promoting immune system development. In addition to these important roles in health, 

intestinal microbiota have been implicated in a growing number of human diseases 

associated with loss of intestinal epithelial identity and function like Inflammatory Bowel 

Diseases. The microbiota impact intestinal epithelial function in part by regulating the 

expression of hundreds of genes in intestinal epithelial cells. Extensive research has 

identified the downstream physiological consequences of this transcriptional control. 

However, there remains a significant gap in our understanding of the upstream molecular 

mechanisms that mediate these host transcriptional responses. I identified that zebrafish 

transcription factor Hepatocyte nuclear factor 4 alpha (Hnf4a) specifically binds and 
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activates a microbiota-suppressed intestinal epithelial transcriptional enhancer. Deletion of 

this transcription factor in zebrafish revealed that it activates nearly half of the genes that are 

also suppressed by the microbiota, suggesting that its activity is negatively regulated upon 

microbiota colonization. Experiments from intestinal epithelial cells from gnotobiotic mice 

revealed that microbiota colonization is associated with genome wide reductions in HNF4A 

DNA occupancy. Similarly, HNF4A binding sites were associated with hundreds of 

microbiota-activated or microbiota-inactivated enhancers. These data indicate HNF4A may 

be an important regulator in the host response to the microbiota. Together, these data 

provide a novel genomic mechanism for understanding how the microbiota tune intestinal 

epithelial transcription programs and may contribute to Inflammatory Bowel Diseases.  
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CHAPTER 1: INTRODUCTION
 
 All animals maintain intimate relationships with the microbial communities that reside 

on their surfaces. The largest of these microbial communities occupies the animal intestine 

and are named the gut microbiota. This microbial assembly of viruses, fungi, and bacteria 

interface with the intestinal epithelium. The intestinal epithelium is comprised of a single 

layer of columnar epithelial cells that harvest dietary nutrients from the lumen to maintain 

energy homeostasis for the animal. Furthermore, this single layer of cells also contains 

several specialized cell types that detect fluctuations in the environment of the intestinal 

lumen, including changes to the microbiota. These cells all contribute to maintaining an 

effective barrier against the microbiota residing in the lumen. Improper epithelial response to 

these fluctuations have the capacity to disrupt homeostasis with the microbiota or impair 

energy homeostasis. Therefore, the intestinal epithelia must be poised with a variety of 

mechanisms that restrict aberrant responses yet maintain sensitivities to the environment 

while preserving vital absorptive and barrier functions. Most of the known sensory and 

response mechanisms impact transcriptional regulation that facilitate appropriate handling of 

the environment and the microbiota.  

 There remains intense interest in understanding how the intestinal microbiota impact 

human health. The microbiota can reprogram metabolic homeostasis, edify the innate and 

adaptive immune systems, and fortify skeletal bone. However, the microbiota are also 

associated with several human diseases including Inflammatory Bowel Diseases (Ulcerative 

Colitis and Crohn’s Disease) and Metabolic Syndrome. We understand how the microbiota 

contribute to these processes through the help of gnotobiotic animal models. Gnotobiotics is 

a controlled experimental system that enables scientists to account for all organisms within 
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an environment. Using gnotobiotics, scientists have the capacity to add a controlled 

community of microbes to an animal model and observe how the microbes impact animal 

physiology. By using gnotobiotic systems, scientists now understand the profound rewiring 

of transcriptional programs that occurs in animal tissues (especially the intestinal epithelia) 

upon the introduction and establishment of a microbiota.   

Recent advances in the microbiome field have utilized whole genome analysis in 

conjunction with gnotobiotic animal models to test how the microbiota impact host 

epigenetics. By performing these types of experiments, scientists hope to understand the 

genomic mechanisms that mediate the host response. By identifying specific genomic and 

transcriptional regulatory mechanisms, scientists can begin to identify the broader host 

signaling pathways and microbial factors that control the host response and human health. 

Throughout the dissertation, I use the term “transcription program”. to refer to the network of 

regulatory mechanisms that control the expression of genes. These mechanisms include but 

are not limited to nucleosome location, histone modification, transcription factor binding, 

cofactor interactions, RNA polymerase binding, microRNA and long-non-coding RNA 

activities. Together these mechanisms function to activate and/or deactivate transcription of 

genes that can help determine cellular function and identity. However, I bias the discussion 

toward the transcription factors that mediate these “transcription programs”. 

A central question that I maintain as a theme in this dissertation is “How does the 

intestinal epithelia remain sensitive to the luminal environment without losing its identity?” In 

other words, if the microbiota are capable of modifying epithelial cell fate and cell decisions, 

how does the intestinal epithelia balance sensitivity and responses to the environment while 

maintaining epithelial function and intestinal homeostasis? This question is introduced and 

expanded in chapter 2 of this dissertation. I also discuss what we currently know about 

transcriptional programs and the transcription factors that control these programs in the 

intestinal epithelia. I then highlight the transcriptional regulatory mechanisms that tune 
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inflammatory, metabolic, cell fate, and circadian rhythm networks in response to the 

environment. In chapter 3 of this dissertation, I discuss the use of a yeast-1-hybrid assay to 

identify transcription factors that mediate epithelial response to the microbiota. I then use 

both gnotobiotic zebrafish and mice to validate the discoveries made using the yeast-1-

hybrid as well as make new observations about the role of a transcription factor, called 

Hepatocyte Nuclear Factor 4 (HNF4A), in the epithelium’s response to the microbiota. I 

conclude chapter 3 with multi-species meta-analysis to determine new links between the 

microbiota and HNF4A and their contributions to human diseases. In chapter 4 of this 

dissertation, I discuss the possible mechanisms that mediate microbial suppression of 

HNF4A. I explore the possible evolutionary advantages for both the host and the microbiota. 

I speculate that rather than a commensal relationship that drives this microbial suppression 

of HNF4A, it’s an antagonist relationship prompted by the host to secure an advantage in 

the warfare for resources in the intestinal lumen. I discuss how the HNF4A-microbiota 

interaction may be linked to human diseases and expand upon findings in chapter 3 

regarding human IBD. I conclude the dissertation with a discussion about the expansion of 

the nuclear receptor and their role in metazoan evolution. Together this dissertation provides 

a framework for how the luminal environment impacts intestinal epithelial transcriptional 

regulatory mechanisms.   
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CHAPTER 2: THE PARADOX OF MAINTAINING CELL IDENTITY WHILE REMAINING 
SENSITIVE TO A STOCAHSTIC AND COMPLEX ENVIRONMENT

 
2.1 Overview 

All animal tissues and cells must maintain a set of transcriptional programs that 

define their function (identity). Dysregulation of these transcriptional programs can result in 

human diseases such as cancers or Inflammatory Bowel Diseases (IBDs). However, animal 

cells must also remain responsive to changes in their environment to proceed through 

development or maintain physiological homeostasis. Therefore, cells must balance between 

“rigid” and “flexible” transcription programs to maintain both cellular identity and sensitivity to 

the environment. No cellular environment may be more stochastic or challenging to respond 

to than the intestinal lumen that interfaces with the intestinal epithelia. The intestinal 

epithelia maintain identity despite its exposure to a battery of growth factors, organic 

molecules, electrolytes, minerals, and microorganisms that have the capacity to modulate its 

transcription programs. The epithelium is comprised of several different specialized 

absorptive and secretory cell types that maintain epithelial function and each have their own 

unique set of transcription programs that define their identities. Each of these cell types 

similarly, must respond appropriately to the luminal environment to maintain intestinal 

homeostasis. These responses include tuning of their transcriptional programs which can 

impact their development, inflammatory response and energy harvest. Gross dysregulation 

of these same transcriptional responses can lead to human diseases such as IBDs where 

cellular identities are modified and the epithelia fails to appropriately respond the luminal 

environment. Paradoxically, a highly plastic transcriptional regulation is paramount to 

epithelial function and maintaining intestinal homeostasis and identity.
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2.2 Introduction 
The intestinal epithelium is a rapidly renewing and remarkably resilient tissue that 

interfaces with a complex luminal environment. At this interface, specialized cells that 

comprise the epithelium establish defensive barriers between itself and the intestinal 

microbiota. Most epithelial cell types absorb dietary nutrients while other cells communicate 

nutritional conditions to extra-intestinal tissues. The identity of each of these cell types is 

determined by a set of transcription factors that coordinate activities to establish and 

maintain cellular function. However, the transcriptomes for individual cell types varies along 

the length of the intestine, demonstrating a plasticity of these transcriptional programs (or 

regulatory transcriptional networks). Indeed, these malleable transcription programs permit 

the different cellular functions along the length of the intestine required to maintain animal 

health. However, aberrant dysregulation of these transcription programs can lead to the 

onset of human diseases such as cancer [1] and are associated with inflammatory bowel 

diseases [2]. 

The common function of all intestinal tracts is to harvest usable energy necessary for 

animal growth and survival from exogenous dietary nutrients (food) while maintaining a 

barrier between the microbiota and the animal. Along the length of the intestine, both host 

and microbiota catabolize and solubilize complex macromolecules to usable energy sources 

such as peptides and fatty acids (Figure 2.1A-C). The intestinal epithelium absorbs these 

dietary nutrients to achieve energy homeostasis for the whole organism. Both the microbiota 

and the host secrete digestive enzymes and small molecules into the lumen, which assist in 

nutrient harvest. Together with the dietary nutrients, these secreted factors contribute to an 

already complex luminal environment that interface with and direct intestinal epithelial 

differentiation and processes (Figure 2.2A) [3-5].The relative concentrations of these dietary 

factors change along the length of the intestine and these correlate with epithelial function. 

For examples, the most proximal segments of the mammalian intestine, the duodenum and  
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Figure 2.1: Macroscopic and microscopic morphology of the mouse and zebrafish intestine. 
(A) A schematic of the mouse gastrointestinal tract which is comprised of an esophagus, stomach, 
small intestine (duodenum, jejunum, and ileum), the cecum, and the colon. (B) A schematic of the 
larval zebrafish digestive tract. (C) A schematic of the adult zebrafish digestive tract. The coloration of 
the zebrafish intestines in the schematic represents the conserved regional specification shared 
between the zebrafish and mouse. The zebrafish lacks a stomach and the intestinal segments are 
classically broken up into three parts: Segment one, which based on gene expression resembles the 
mouse duodenum and jejunum segments; Parts of Segment 2 resembles the ileum in that a small 
section (highlighted in blue) expresses an ileum specific gene, fabp6, involved in bile acid absorption 
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(Lickwar et al; in revision)[6]. Segment 2 is also highly enriched in goblet cells [7]. Further the 
epithelial cells contain large vacuoles that are associated with lysosomal membrane proteins cells [7, 
8]. Based on gene expression and the larger concentration of bacterial load in the intestinal lumen [9], 
Segment 3 resembles the mammalian colon. (D) Schematic of the mouse small intestinal epithelia 
showing the villus-crypt axis. Most epithelial cells are represented in the schematic; however, Tuft 
cells, mention briefly in this chapter are not depicted. Programmed cell “death”, termed anoikis, 
occurs most frequently at the villus apex [10]. (E) Schematic of the zebrafish intestinal epithelia. 
Zebrafish do not have crypts or villi. Instead, their intestinal morphology resembles the mammalian 
stomach with epithelial folds termed rugae. The zebrafish have many of the same cell types including 
enterocytes, enteroendocrine cells and goblet cells. There is no evidence for Paneth cells. There is 
recent evidence for fish having a proliferative cell compartment and perhaps also stem cells near the 
base of the rugae [6, 11, 12]. 
 
jejunum, function as the primary location for protein, fatty acid and simple carbohydrate 

absorption (Figure 2.1A and Figure 2.2B). Bile acids enter the intestinal lumen through the 

common bile duct in the duodenum and facilitate fatty acid digestion by breaking down large 

dietary fat droplets into micelles that are digestible by secreted lipases. This process 

primarily occurs in the duodenum and jejunum where these fatty acids are absorbed and 

then transported to other tissues in the body for energy or storage. Bile acids are 

reabsorbed in the subsequent segment of the small intestine, the ileum, distal to the site of 

fatty acid absorption (Figure 2.2B). These bile acids are transported back to the liver and 

again stored in the gall bladder until they are again secreted into the duodenal lumen 

following a meal [13]. This enterohepatic bile acid circuit represents the logical layout of the 

intestinal tract, where molecules are absorbed after they facilitate nutrient harvest in 

previous segments. Water and electrolytes are similarly absorbed in the most distal part of 

the intestine [14]. The zebrafish and mouse intestinal epithelia demonstrate conserved 

regional and cellular specification that each participate in key aspects of energy harvest and 

digestive physiology (Lickwar et al, in revision)[6, 12] (Figure 2.1). 

The cellular specification and luminal environment not only changes along the 

proximal-distal axis of the intestine, but a gradient of mucus and antimicrobial peptides that 

protects the intestinal epithelia from the microbiota contributes to distinct microenvironments 

within the invaginations of the epithelia called the intestinal crypts. The multipotent intestinal 

stem cells (ISCs) reside at the base of these intestinal crypts (Figure 2.1D). As ISCs rapidly 
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and asymmetrically divide, they give rise to undifferentiated progenitor cells that migrate 

away from the base of the crypts staying along the epithelial layer. These progenitor cells 

migrate through the transient amplifying region where rapid cell division and the initiation of 

specific transcription programs begin to determine their cellular function (Figure 2.1D). The 

luminal environment is known to direct these transcription programs and control aspects of 

epithelial identity. 

 

 
 
Figure 2.2: The intestinal luminal environment changes along the length of the intestine. (A) A 
diagram illustrating the interaction between the microbiota, the diet and other molecules within the 
intestine and the intestinal epithelia. (B) A diagram depicting the functional specification along the 
intestine and the major processes that occurs along each segment in the mouse intestine. 
 

Loss of cellular identity promotes the onset of human diseases like cancers [15]. 

Each animal tissue maintains cellular identity using a variety of different strategies. Some 

cells progress slowly, if at all, through the cell cycle which reduces the rates of mutations 

generated during DNA replication [16]. Interestingly, most genetic mutations that manifest in 

human disease are in non-coding regions of the genome, indicating that non-coding 

transcriptional regulatory mechanisms like transcription factor binding or non-coding RNAs 

are critical aspects of disease etiology [17, 18]. Activating or repressing transcription factors 

recognize and bind specific DNA sequences within Cis-regulatory regions (CRRs), which 
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can be located proximal to the transcription start sites (TSS), within gene bodies, as well as 

in intergenic regions [19]. CRRs are generally depleted of nucleosomes (“accessible 

chromatin”), which can be experimentally captured by hypersensitivity to DNase I cleavage 

[20] (Figure 2.3). CRRs are also generally associated with specific post-translational 

modification of histone proteins within adjacent nucleosomes. For example, mono-

methylation of lysine 4 (H3K4me1) and acetylation of lysine 27 of histone H3 (H3K27ac) 

distinguishes between CRRs that act as poised and active enhancers respectively [21]. 

CRRs associated with H3K27ac marks are “permissive chromatin”, meaning the chromatin 

arrangement promotes transcription factor binding and induces transcription of the regulated 

genes. Genome wide binding locations of transcription factors and locations of H3K27ac 

modifications can be captured using ChIP-seq (Figure 2.3). Specific types of transcription 

factors, termed pioneer factors or master transcription factors, orchestrate the accessible 

and permissive chromatin landscape by initially displacing nucleosomes and recruiting 

histone modifying enzymes to regulatory sites [22-25]. These processes enable the 

recruitment of other transcription factors to the sites of open and permissive chromatin and 

promote transcription of the regulated gene. Similarly, competing transcription factors may 

bind to the same site and repress transcription of the regulated gene [26].  

The intestine-specific master transcription factor, Caudal type homeobox 2 (CDX2), 

functions as a pioneer factor that imprints and retains accessible chromatin in ISC and 

progenitor cell types within the intestinal epithelium [27-31]. Aberrant activity of CDX2 in 

esophageal epithelia is an early marker in Barrett’s disease where esophageal epithelial 

cells take on a small intestine epithelial identity [32, 33]. Similarly, loss of CDX2 activity is 

associated with the development of a specific type of colorectal cancer [1, 34]. Interestingly, 

changes in CDX2 activity is also associated with molecules in the luminal environment. 

Increased bile acid concentrations in the esophagus induces CDX2 expression through 

activity of another transcription factor, NF-κB [35]. This aberrant CDX2 expression imprints a 
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chromatin architecture in esophageal epithelia that promotes small intestinal epithelial 

transcription programs and loss of esophageal identity. Similarly, the short chain fatty acid, 

butyrate, stimulates CDX2 expression in colon cancer cell lines which may protect against 

oncogenesis and thus preserve epithelial identity [36]. To suppress disease onset, it may be 

beneficial for the intestinal epithelia to adopt a rigid transcription program that would be less 

sensitive to environmental stimuli. However, the primary role of the intestine is to harvest 

nutrients for the organism to maintain energy homeostasis. To accomplish this goal, the 

epithelia may need to detect and respond to the millions of molecules in the intestinal lumen. 

How does the intestinal epithelium maintain cellular identity while remaining sensitive to its 

environment? What are the transcriptional mechanisms that permit both sensitivity and 

retain cell identity in the intestine? In this chapter, I will explore the transcription programs 

that control cellular identity followed by the programs that permit cellular sensitivity. I then 

explore the overlap of these transcription programs and how dysregulation may lead to the 

onset of inflammatory bowel diseases.  

 
 
Figure 2.3: Genome wide sequencing techniques used to identify mechanisms of 
transcriptional regulation. Illustrated in this figure is a gene locus, three genome browser tracts 
each depicting different types of chromatin architecture, and a cartoon that summarizes what those 
genome tracts indicate.  
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2.3 The basic architecture of the transcription programs that maintain intestinal 
epithelial identity 

To maintain homeostasis with the microbiota and the luminal environment, the 

mammalian intestine has evolved several different cell types that maintain a barrier between 

the exogenous environment and the host. These cells are programmed by transcription 

networks that determines their specific cellular function and identity. These cell types include 

enterocytes, enteroendocrine cells (EECs), cup cells, tuft cells, Paneth cells and goblet cells 

(Figure 2.1D). Each one of these cells types differentiates from the ISCs residing in the base 

of the intestinal crypts [37]. In the next subsections, I will explore the transcriptional 

programs that control cell identity for the majority of intestinal epithelial cell types and during 

their “lifespan” on the epithelial layer. 

Throughout this chapter, I concentrate on the transcription factors that mediate 

intestinal epithelial cell function. These transcription factors activate or deactivate 

transcription of coding genes as well as non-coding RNAs like microRNAs and long-non-

coding RNAs that have been shown to similarly control cellular identity. Recent studies have 

shown microRNAs in particular play an important role in tuning the host transcriptional 

response to the microbiota in multiple cell types [38-41]; however, for the following sections, 

I primarily discuss the transcription factors that control the transcription programs.  

 

2.3.1 The intestinal stem cell and the journey toward anoikis 
The intestinal epithelia have an underlying transcriptional program that maintains 

their identity despite rapid cell turnover. These transcription programs are defined during 

differentiation as cells migrate out of the intestinal crypts along the epithelial barrier. Most of 

the intestinal epithelia self-renews every 4 – 7 days and this process is driven by the rapidly 

dividing multipotent intestinal stem cells residing in the base of these crypts [42]. Unlike 

other mammalian stem cell types which are thought to remain in mainly quiescent states to 
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preserve their long-term proliferation and guard against DNA replication errors that can be 

passed onto daughter and progenitor cells [43, 44], the intestinal stem cell rapidly self-

renews, producing daughter cells and progenitor cells that eventually differentiate into a 

specialized intestinal epithelial cell type [44]. Furthermore, unlike other stem cells, the 

intestinal stem cell is exposed to a potentially harsh external environment, and therefore the 

risk of injury and DNA damage is potentially greater [37]. As such, the intestinal stem cells 

are protected in specialized niches that maintain the proliferative potential while minimizing 

cellular and DNA damage. In both the large and small intestine, the ISCs are protected by a 

thick layer of mucus, primarily secreted by goblet cells, that blocks the invasion of potentially 

dangerous molecular signals or pathogens [45]. These niches are also composed of a 

subepithelial stromal microenvironment, and an epithelial/luminal microenvironment which is 

mainly supported by the adjacent cells [37]. In the small intestine, these adjacent cells 

include the specialized Paneth cells that sense and suppress microbiota infiltration and they 

nurse stem cells with pro-proliferative growth factors and signals to maintain the ISC 

proliferative potential [46, 47]. In the small intestine, Paneth cells are immediately apposed 

to these stem cells and as such are thought to be the primary cell type that sustains stem 

cell multipotency and maintain the stem cell niche in the luminal microenvironment. Colonic 

crypts lack Paneth cells. However colonic ISC are protected by sentinel goblet cells that 

never migrate out of the colon and secrete mucus upon the detection of harmful molecules 

[48]. In the small intestine, both the stromal microenvironment and Paneth cells are 

individually sufficient to maintain a functional stem cell niche and are further discussed in 

these reviews [37, 49, 50]. Wnt signaling plays a critical role in the maintenance of intestinal 

stem cells and crypts compartments. Mice lacking Tcf4, a transcription factor that becomes 

active after forming a complex with beta-catenin downstream of Wnt signaling, lack actively 

dividing cells in the base of their crypts. [51]. 
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Progenitor cells differentiate into the specialized cell types that both survey the 

microenvironment and absorb exogenous and endogenously derived molecules as well as 

maintain homeostasis between the host and microbiota. These cells types fall into two major 

lineages: secretory cell lineages (Paneth cells, tuft cells, goblet cells, and enteroendocrine 

cells) and absorptive cell lineages (enterocytes). Following asymmetric stem cell division, 

progenitor cells begin a journey of further differentiation that proceeds along the villus-crypt 

axis through the transit amplifying compartment (Figure 2.2D) [37, 42]. During this process 

of differentiation, progenitor cells maintain an accessible and permissive chromatin 

architecture that resembles the intestinal stem cell [31, 52]. These studies indicate that 

distinct differentiation programs are not predefined by nucleosome location. Instead, cell 

type specific transcription factors likely bind to the accessible chromatin and direct 

differentiation. Conversely, mouse intestinal epithelial cells (IECs) exhibit distinct accessible 

chromatin profiles across segments of the intestine [53]. However, we do not know if these 

differences in chromatin accessibility are inherent to the stem cell populations from which 

they are derived or if the chromatin accessibility is modified during terminal differentiation to 

achieve a cellular identity that permits appropriate regional activity.  

Fully differentiated enterocytes and goblet cells diverge from this ISC-like chromatin 

landscape [31, 52]. These data indicate that these cells express transcription factors that 

have the capacity to function as pioneer factors and govern terminal differentiation [54]. 

During intestinal epithelial differentiation, cell-type specific transcription factors, like HNF4A 

or RBPJ, bind to the open chromatin as determined by pioneer factors or other nucleosome 

displacement factors and initiate different transcription programs that drive lineage 

differentiation [23]. The transcription factor ATOH1 activates the transcription of genes that 

are involved in secretory cell differentiation [55, 56]. HES1 drives absorptive cell 

differentiation by suppressing ATOH1 and consequently suppressing secretory lineage 

differentiation [55]. Once fully differentiated, epithelial cells (with the exception of Paneth 
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cells and sentinel goblet cells) continue to migrate up the crypt (and along the villus in the 

small intestine) and end their journey in the zone of extrusion where mature 4 – 7 day old 

epithelial cells undergo apoptosis and leave the epithelium through a process called anoikis 

[10]. Anoikis is an important function in the repertoire of small and large intestinal epithelial 

cell identity. Aberrant repression of E-cadherin transcription in colon epithelial cells reduces 

anoikis and promotes tumor growth [57, 58]. Thus, the intestinal epithelia must maintain tight 

transcriptional control during cellular migration toward the zone of extrusion to maintain 

epithelial identity and homeostasis. 

 

2.3.2 Secretory cell lineages 
The transcription factor ATOH1 mediates differentiation of all secretory cell lineages 

[56]. Its activity and binding to different promoters in mouse colonic crypts is associated with 

the induction of other transcription factors including Neurog3, Gfi1, Sox9, Creb3l142 and 

Spedf [59]. The activities of these transcription factors support differentiation into goblet 

cells, enteroendocrine cells, and Paneth cells. The roles of these transcription factors in 

secretory cell differentiation are each discussed in more detail below. Interestingly, ATOH1 

also binds directly to the genes of the Notch signaling ligands Dll1 and Dll4. Previous reports 

have indicated that ATOH1 expression induces lateral inhibition of secretory cell 

differentiation by inducing Notch signaling in neighboring cells and directing neighboring 

cells toward absorptive cell differentiation [31] (discussed in more detail below in 2.3.3). 

These studies demonstrate how ATOH1 activity helps determine secretory cell identity while 

also directing the absorptive cell identity in neighboring cells. 

Enteroendocrine cells (EECs) comprise the largest population of chemosensory cells 

in the intestine although represent only a small fraction of total epithelial cells [42]. These 

cells detect dietary molecules within the intestinal lumen including amino acids, free fatty 

acids, bile acids and many more. During fasting and upon nutrient detection, EECs release 
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hormones like PYY and somatostatin that fine-tune both intestinal and systemic responses 

to the nutrient status [60]. Activity of the transcription factor NEUROG3 is necessary for 

differentiation of the EEC fate [61, 62]. Following expression of the Neurog3 gene, EECs 

express transcription factors like NEUROD1, ISL1 and PDX1 which promote its endocrine 

signaling activities. For example, transcription factor PDX1 binds and activates the promoter 

of Glucose-dependent-insulintrophic polypeptide (GIP) [63], a signaling peptide that is 

secreted by EECs upon sensing dietary fat or carbohydrates and induces insulin release 

from pancreatic beta cells [64, 65]. This group of transcription factors also regulates 

transcription programs involved in pancreatic islet development which highlights the 

similarities between these hormone producing cell types [66]. The nuclear receptor 

transcription factor HNF4G similarly participates in glucose tolerance through regulating 

Glucose-like peptide (GLP) expression and secretion by EECs. [67] The transcription factors 

FOXA1 and FOXA2 have also been shown to regulate the transcription of several EEC-

secreted hormones. These factors function downstream of NEUROG3 activity, but it is 

unknown if NEUROG3 regulates their transcription directly [68].  

Goblet cells are professional mucus producing cells that maintain a thick mucus layer 

between the microbiota in the luminal environment and the intestinal epithelia [69]. These 

cells produce a highly glycosylated secretory mucin called MUC2 which is tightly folded, 

packaged and processed in the endoplasmic reticulum and Golgi networks and stored in 

secretory granulae at the cell membrane. Following secretion, mucus expands ~1,000 fold 

[70], forming large nets that in the colon have been shown to attenuate Brownian motion of 

molecules like microbe-associated molecular patterns (MAMPs) and blocks the invasion of 

the majority of the microbiota [71]. Like other secretory cell lineages, Goblet cell identity is 

primed by ATOH1 activity. ATOH1 induces expression of SPDEF and GFI1. GFI1 suppress 

Neurog3 expression, thereby blocking differentiation toward an EEC identity [72]. Knockout 

mouse models indicate both SPDEF and GFI promote goblet cell differentiation [72, 73]. 
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Similarly, both FOXA1 and FOXA2 knockout animals have reduced goblet cell differentiation 

[74]. The transcription factors FOXA1, FOXA2 and CDX2 have been shown to bind the 

promoter of Muc2 and activate its transcription [68, 74, 75]. In gastric and lung epithelial 

tissues, the pioneer factor SOX2 promotes goblet cell differentiation [76, 77]; however, 

aberrant activity of SOX2 activity in the small intestine reprograms the epithelial identity into 

gastric-like epithelia [78].  

Deletion of the Sox9 transcription factor gene in the mouse intestinal epithelia results 

in attenuated differentiation of goblet cells, and complete ablation of the Paneth cell lineage, 

indicating a requirement for Sox9 in Paneth cell fate determination [79, 80]. In cell culture, 

SOX9 suppresses WNT signaling by physically interacting with beta-catenin which results in 

degradation of both proteins [81]. Furthermore, in the intestine, SOX9 trans-activates the 

expression of Groucho-related inhibitors of the beta-catenin-TCF pathways and 

transcriptionally suppresses proliferation markers like Cyclin-D1 and c-Myc [79]. 

Suppression of these pathways may indicate why secretory cells make up a small proportion 

of epithelial cells. Terminally differentiated Paneth cells do not express Sox9, indicating 

SOX9 activity is only required for fate determination and not function following differentiation 

[82]. Paneth cells differentiate amongst other progenitor cells and migrate down toward the 

stem cell niche where they reside in the crypt for 2 – 3 months [83, 84]. They contain large 

cytoplasmic secretory granulae that contain antimicrobial peptides and proteins like 

lysozyme [47, 85-87]. Paneth cells secrete these granulae into the crypt lumen to protect the 

precious stem cells and progenitor cells from certain microbiota that may threaten intestinal 

homeostasis. These cells also maintain stem cell longevity and promote progenitor 

differentiation by producing EGF, Notch, and WNT ligands [37]. Furthermore, the gradient of 

these ligands in the epithelial microenvironment control transcription programs in progenitor 

cells that ultimately influence cellular identity [46, 88]. The nuclear receptor transcription 

factor HNF4A may regulate Paneth cell function, following differentiation. The intestine 
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specific HNF4A knockout mouse has equivalent numbers of Paneth cells compared to 

control mice; however, the granulae within the Paneth cells of the knockout mouse fail to 

stain for lysozyme. This study indicates HNF4A may play important roles in maintaining 

Paneth cell function [89].  

Tuft cells represent a minor percentage of secretory cells and seem to function as 

chemosensory cells [62]. Tuft cells differentiation requires ATOH1 activity, suggesting it 

belongs to the secretory cell lineages [62]. These cells detect pathogens in the luminal 

environment and respond by signaling to neighboring epithelial cells and cells residing in the 

lamina propria. These signals launch a type 2 immune response and induce tuft cell 

expansion [90]. Tuft cell biology remains relatively unstudied compared to other intestinal 

epithelial cell lineages. Only recently have researchers identified novel transcriptional 

programs that mediate Tuft cell differentiation. Indeed, deletion of the transcription factor 

POU2F3 in mouse results in failed Tuft cell differentiation and a deficiency to initiate the type 

2 immune response to intestinal parasites [91, 92]. Each of these secretory cell identities are 

programed and maintained by unique transcription factor networks.  

 

2.3.4 Absorptive cell lineages 
Several of these transcription factors that participate in secretory cell function also 

participate in absorptive cell lineages. However, a master transcription factor, HES1, 

controls the initial “decision” to become either a secretory cell or an absorptive cell during 

early progenitor differentiation. HES1 expression is upregulated by active Notch signaling. 

The ligands Dll1 and Dll4 bind and activate the Notch transmembrane receptor which results 

in proteolytic cleavage of the intracellular-domain (NICD). The NICD translocates to the 

nucleus and forms a transcriptional complex with RBPJ and activates transcription of the 

Hes1 gene [93]. Notch signaling along with enhanced beta-catenin signaling promotes rapid 

proliferation of these progenitor-absorptive cells [94, 95]. The transcription factor HES1 
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represses ATOH1 expression and promotes absorptive cell (enterocyte) differentiation [55]. 

In the small intestine, GATA transcription factors function in tandem to tune Notch signaling 

and promote enterocyte differentiation [96]. For example, GATA4 binds near the 

transcription start site of the Notch ligand Dll1 [97]; And, GATA4 knockout mice have 

reduced progenitor proliferation and reduced Dll1 expression, suggesting GATA4 directly 

activates Dll1 transcription and promotes Notch signaling. Similarly, GATA6 promotes 

progenitor proliferation and GATA4 and GATA5 promote enterocyte identity by upregulating 

terminal differentiation genes in the intestinal villi [96]. Deletion of GATA4 and GATA6 in the 

mouse intestine results in decreased proliferation, reduced enterocyte enteroendocrine cell 

numbers and increased Goblet cell numbers [97, 98]. As mentioned early, ATOH1 binds 

directly to the genes of the Notch signaling ligands Dll1 and Dll4, supporting its role in lateral 

inhibition of secretory cell differentiation of neighboring cells [59]. 

Enterocytes comprise the largest cell population in the small intestinal epithelia [99]. 

These cells are professional absorptive cells that transport dietary molecules across their 

plasma membrane. Amino acids and monosaccharides are transported across the plasma 

membrane by sodium dependent transporters [100]. However, the majority of water 

absorption in the colon is facilitated by electrochemical gradients generated by transport 

activity of short chain fatty acids generated by the microbiota [101]. Uptake of dietary fats 

occur only after triglycerides are cleaved to form free fatty acids and 2-monoglycerides 

which can enter the enterocyte by simple diffusion or through the help of long chain fatty 

acid transporters [102]. Once in the enterocyte, fatty acids can be reassembled into 

triglycerides and packaged in the endoplasmic reticulum to form lipid droplets for temporary 

storage or packaged in chylomicrons and trafficked into the body through the basolateral 

membrane [102]. Chylomicrons are large lipoproteins particles. The apolipoproteins APOA4 

and APOC2 are highly expressed by enterocytes and secreted as surface competents on 

newly synthesized chylomicrons. APOA4 and APOC2 stimulate lipoprotein lipase activity 
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[103], an enzyme that is tethered to endothelial cells at sites throughout the body and 

cleaves triglycerides into free fatty acids permitting their absorption into the nearby cells for 

storage or energy consumption. Thus, these apolipoproteins promote serum triglyceride 

clearance. The transcription factor CREBH/CREB3l3 activates transcription of APOA4 and 

APOC2 in mice and supports serum triglyceride clearance [104]. Similarly, overexpression 

of Crebh/Creb3l3 represses transactivation by binding directly to promoters of genes that 

mediate intestinal cholesterol absorption like Npc1l1 [105]. Overexpression of Crebh also 

represses Srebp2 expression, a transcription factor that has previously been shown to 

activate transcription of genes involved in lipogenesis and may mediate cholesterol 

homeostasis by binding the promoter and activating transcription of Npc1l1 [106, 107]. In 

zebrafish, the nuclear receptor transcription factor LXRa was shown to regulate the delivery 

of ingested lipid to circulation, perhaps through its transactivation of a gene involved in 

biogenesis and growth of lipid droplets [108]. The transcription factor HES1 directs 

absorptive cell differentiation, however, once differentiated, several other transcription 

factors tune its absorptive function. Many of the enterocyte transcription factors have been 

shown to be regulated by the influx of nutrients into the lumen and these will be discussed in 

section 2.4. 

 

2.3.5 Regional specification 

Aside from cellular specialization along the villus-crypt axis, transcription networks 

generate distinct differences in cellular function along the proximodistal axis of the small 

intestinal tract. For instance, GATA4 suppresses ileal transcription programs and promotes 

the transcription of the fatty acid metabolism and absorption genes in the jejunum [97, 109]. 

Likewise, the nuclear receptor FXR is most highly expressed in the ileum and selectively 

regulates genes involved in bile acid absorption [110, 111]. Furthermore, FXR binds bile 

acids directly and activates transcription of Fgf19 [112]. FGF19 (FGF15 in mouse) is an ileal 
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secreted hormone that regulates bile acid synthesis in the liver hepatocyte by inhibiting the 

enzyme that controls the rate limiting step of bile acid synthesis, CYP7A1 [112, 113]. 

Regionalization also impacts cell identity as well as gross morphology of the intestine. 

Indeed, the distal end of the small intestine has greater number of goblet cells compared to 

the proximal end, perhaps to protect the epithelia from the larger concentration of microbes 

in the posterior intestine [114, 115]. The primary secreted hormones by enteroendocrine 

cells changes along the length of the small intestine [60]. The duodenum harbors the 

highest concentration of EECs that produce hormones like secretin and motilin which 

mediate water homeostasis and peristalsis, respectively. Although EECs in the distal part of 

the small intestine have the capacity to secrete these hormones, they primarily secrete 

hormones that regulate the dopamine pathway (neurotensin) and glucogaon- and insulin-like 

peptides (GLP-1, GLP-2, and INSL5) [60]. Furthermore, the duodenal and jejunal segments 

have longer villi compared to the ileal segment [115, 116], perhaps because these regions 

are both exposed to a higher concentration of dietary nutrients and are responsible for the 

majority of the nutrient uptake including fatty acid absorption [114]. The longer villi in the 

anterior intestine optimizes surface area and exposure to the environment which increases 

the capacity of nutrient absorption. Intestine-specific deletion of the nuclear receptor 

transcription factor HNF4A reduces villus size and impairs fatty acid absorption in the 

jejunum and impaired colonocyte differentiation [89, 117, 118]. Since HNF4A is most highly 

expressed in the duodenum and jejunum and given the intestine specific knockout 

phenotype, transcription programs controlled by HNF4A may help define regional 

specification [28, 119]. Lastly, chromatin accessibility likely contributes to regional 

specification since accessible chromatin marginally differs in epithelial cells from anterior 

versus posterior segments of the small intestine [53]. Collectively, these insights into the 

transcriptional programs that contribute to intestinal identity provide an essential frame of 
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reference for how the epithelia tune these programs to effectively handle its changing 

environment. 

 

2.4 The transcription programs that permit intestinal epithelial sensitivity 
Microbiota colonization of germ free animals is associated with robust changes to 

intestinal transcription programs, resulting in differential regulation of hundreds of genes 

(see Chapter 3 and [119-121]). Similarly, the diet has also been shown to drastically change 

intestinal transcriptional programs [122]. Host dietary habits control the nutritional content 

within the lumen and it has direct effects on the microbial communities and the taxa present 

in the lumen [123-128]. Similarly, microbes in the intestine have the capacity to modify the 

dietary contents. Indeed, some bacterial taxa like Rosburia intestinalis encode genes that 

generate isomers of poly-unsaturated fatty acids which have been shown to affect host 

physiology [129] and the large cohort of anaerobic bacteria in the colon have the capacity to 

catabolize dietary fibers that generate short-chain fatty acids [130]. Diet and microbiota 

mediate activity of transcription programs that fall into four categories: 1) developmental 

programs, 2) metabolic programs, and 3) immune/inflammatory programs 4) circadian 

rhythm programs  [120, 121]. This categorization of transcription is not entirely accurate 

since the activation of one of these programs may result in activation or suppression of the 

others [131-135] and therefore they are not truly distinct transcriptional programs. Instead, 

their regulatory mechanisms often interact to define cellular function (Figure 2.4). 

Furthermore, activation of these transcription programs are selectively modified by the 

presence of specific bacterial taxa and the factors these bacteria produce [136-139], 

indicating IECs respond to specific cues in the environment. Interestingly, mouse and 

zebrafish intestinal epithelial cells share a conserved transcriptional response to microbiota 

colonization indicating the same regulatory pathways may be mediating these responses 

[137, 140].  
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Only recently have studies identified the epigenetic and genomic changes that 

underlie some of these transcriptional and downstream responses. Surprisingly, microbiota 

colonization does not significantly impact chromatin accessibility in the intestinal epithelia, 

suggesting that microbiota modulate epithelial transcription by modifying the activity of 

specific transcription factors [53]. However, recent studies suggest histone modifying and 

DNA-methylation enzymes play key roles in the epithelial response to diet, the microbiota, 

and antibiotic treatment [141-144]. We still lack an understanding if microbiota regulate 

transcription factor binding genome wide. 

Identifying the transcription factors that mediate epithelial response has become an 

intense field of study due the microbiome’s relationship with human diseases such as 

metabolic syndrome and inflammatory bowel diseases. The transcription factors involved in 

these pathways may represent novel therapeutic targets. Strategies for identifying these 

transcription factors have included identifying microbiota-responsive cis-regulatory regions 

proximal to differentially regulated genes [53, 145]. The cis-regulatory regions contain 

Figure 2.4: IEC identity is 
determined by the blend of 
environmental factors and 
transcriptional programs. The 
microbiota and nutrition within the 
intestinal lumen influence each 
other’s molecular makeup. This 
blend of environmental factors 
influences transcription programs 
that similarly blend together to 
modify the environment and 
establish an IEC identity. 
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specific sequences that transcription factors recognize and bind to activate or repress a 

gene. Other transcription factors have been identified simply by their association with 

differentially regulated genes. Similarly, genetic analysis and CRR reporter constructs in in 

vivo systems have also provided important insight into transcription factors that mediate the 

epithelial response [146]. 

 

2.4.1 Metabolic programs 
Microbiota colonization elicits a strong response in transcription of genes involved in 

metabolic processes in the epithelia. Following microbiota colonization, the transcriptional 

programs in the jejunum shift over a 4 day period from oxidative phosphorylation to an 

anabolic metabolism [120]. Fatty acid mobilization genes, like Apoc3 and Cd36, and genes 

involved in the processing of fatty acids for energy, like Cpt1b and Pdk4, remained 

suppressed by the microbiota even after 30 days post colonization [120]. The microbiota 

similarly suppress the expression of the transcription factors that regulate these metabolic 

pathways [53, 119, 120]. These transcription factors include the GATA motif binding 

transcription factors GATA4 and GATA5 and nuclear receptors transcription factors like 

PPARA, CAR, LXR, and MCR.  

Enterocytes detect nutrient availability through metabolite sensors that activate and 

deactivate transcription networks that impact cellular and systemic processes. Nuclear 

receptors represent a key set of transcription factors that are expressed in the enterocytes 

and serve as elegant detection and response modules. Several nuclear receptors bind 

metabolites and metabolic intermediates and initiate or suppress transcription programs 

[147]. Nuclear receptors are animal innovations, first emerging in sponges [148]. This 

superfamily of transcription factors includes ~50 members. The most studied of these 

transcription factors are the steroid-binding receptors; however, the metabolite-binding 

receptors have recently received much more attention [147]. Bile acids serve as an 
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activating ligand for some nuclear receptors, including FXR [149]. Microbiota regulate FXR 

activity in the ileum, the site of bile acid uptake in the small intestine and as a consequence 

regulates systemic metabolic processes like fat storage [113, 150-153]. Furthermore, the 

microbiota modify primary bile acids, adding different chemical groups to the structure of 

these molecules to generate secondary bile acids [113, 154]. Different bile acid species bind 

and activate FXR at varying capacities [149]. These data permit the hypothesis that the 

microbiota may selectively tune FXR activity by modulating the levels of bile acid species. 

This mechanism of transcriptional regulation represents an attractive model for how the 

microbiota mediate epithelial gene transcription programs. The microbiota also modify or 

produce other ligands for nuclear receptors. PPARG transcriptional activity is enhanced by 

SCFAs, which are generated by the microbiota in the colon [155]. Similarly, the microbiota 

express enzymes that modify long-chain fatty acids which might serve as ligands for other 

nuclear receptors like HNF4A [129].  

One of the best studied genes suppressed by the microbiota in small intestine is 

Angptl4, which inhibits lipoprotein lipase activity and blocks serum triglyceride clearance 

[119, 120, 156]. Microbial suppression of intestinal Angptl4 leads to decreased serum 

triglyceride levels and increased epidydimal fat pads in murine models. Interestingly, the 

probiotic bacterium Lactobacillus paracasei induces expression of Angptl4 in colon cell lines 

and reduces fat storage, indicating this bacterium may have the capacity to directly regulate 

the transcription of this hormone peptide [157]. This gene is regulated by the nuclear 

receptors PPARG in IECs of the colon [158], and Glucocorticoid receptor in hepatocytes and 

adipocytes [159, 160]. Perhaps microbial regulation of these transcription factors or another 

nuclear receptor in the small intestine mediates microbial control of Angptl4. 

The primary location of SCFA production occurs in the lumen of the mammalian 

colon that harbors anaerobic bacteria that thrive in this low O2 concentration environment 

[161]. These SCFA are the primary source of energy for colonic epithelia. Consumption of 
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these SCFA by the epithelia decreases O2
 concentrations within the cell which promotes 

stable activation of the transcription factor Hypoxia induced factor (HIF) [162]. HIF activity 

results in transcriptional activation of defensing-b, an antimicrobial peptide, MUC3 and ITF, 

which all help maintain epithelial barrier function [163-165]. HIF similarly induces 

transcription of the antimicrobial peptide LL77 which protects the host the opportunistic 

pathogen Candida albicans . However, it remains unknown if hypoxic environment induces 

HIF transactivation of LL77 [166]. 

Colonization of GF animals with a microbiota leads to increased energy harvest [167, 

168] and changes in metabolic homeostasis including decreased AMPK activity in skeletal 

muscle and liver [169]. Low-dose penicillin treatment similarly rewires metabolic 

transcriptional programs and persists long after microbiota communities recover from 

penicillin treatment [170, 171]. Together, these data indicate reorganization of the luminal 

environment through microbial colonization or antibiotic treatment alter metabolic 

transcriptional programs indirectly through induced alterations in energy homeostasis. In 

Drosophila, reorientation of the metabolic processes in the intestinal epithelia in response to 

microbiota colonization may be in part mediated by NF-κB signaling, a transcription factor 

that regulates immune/inflammation programs [172]. Maintaining an adaptive transcriptional 

program provides the flexibility the epithelia need in order to respond to fluctuations in the 

nutrition in the intestinal lumen and maintain energy homeostasis. 

 

2.4.2 Immune/inflammation programs 
Epithelial cells are equipped with a variety of signaling receptors called Pattern 

Recognition Receptors (PRRs) which detect Pathogen-associated molecular patterns 

(PAMPs), Damage-associated molecular patterns (DAMPs), or Microbial-associated 

molecular patterns (MAMPs); These three classes of molecules are derived from microbes 

in the environment (MAMPs or PAMPs) or damaged host cells (DAMPs) [173]. Upon 
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detection of these molecular patterns, PRRs induce innate immune responses which protect 

the host from infection. Two commonly studied PRRs expressed in the small intestinal 

epithelia are Tol-like receptors (TLRs) and NOD-like receptors (NLRs). TLRs reside on the 

cell surface (both basolateral and apical membranes) and promote homeostasis with the 

microbiota [174]. NOD2 polymorphisms are associated with impaired innate immunity, 

reduced expression of antimicrobial peptides and deregulation of immune tolerance to the 

microbiota [175-179]. Loss of TLR signaling can result in impaired response to infection and 

closer epithelial association with microbiota [180, 181]. Conversely, aberrant activation of 

these PRRs can similarly result in inflammatory bowel diseases, representing the important 

balance of inflammation that must be maintained to prevent disease [177, 182]. TLRs bind a 

specific type of molecular pattern; for instance, TLR4 bind lipopolysaccharide (LPS), TLR5 

binds flagellin, and TLR1, TLR2 and TLR5 bind lipopeptides [183]. TLR signaling includes 

two types of signaling cascades: those that require the adapter protein MyD88, and those 

that require the adaptor protein TRIF [184-187]. Mouse models of infection have 

demonstrated Myd88 is required for protective innate immune responses [188]. Signal 

transduction through these surface receptors results in activation of the transcription factors 

NF-κB and JUN which regulate transcription of genes involved innate immunity and 

proinflammatory cytokines [173, 189-191].  

Signaling through MyD88 dependent pathways induces transcription of “early-phase” 

activation of the transcription factor complex NF-κB which promotes transcription of the 

innate immune response and proinflammatory cytokines [190]. The MyD88 independent 

pathway induces “late-phase” activation of NF-κB which promotes transcription of interferon 

genes which may induce caspase activation and apoptosis [192]. NF-κB represents a 

central factor that maintains the appropriate balance of pro- and anti-inflammatory programs 

in the intestinal epithelia. In macrophages, NF-κB has been shown to regulate the 

transcription of IL-1b and TNF-alpha, two proinflammatory cytokines that can induce 
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apoptosis [193]. NF-κB activity promotes transcription of serum amyloid a (saa) and 

stimulates neutrophil migration to the intestine in the zebrafish [194]. NF-κB activity similarly 

regulates beta-defensin transcription, a primary antimicrobial peptide used as a defense 

mechanism to maintain mucosal homeostasis with the microbiota. Some bacterial species 

suppress NF-κB trans-activity and thereby evade these antimicrobial defense mechanisms 

[195]. In the Drosophila intestine, the transcription factor caudal directs NF-κB activity 

toward just a subset of NF-κB targets including antimicrobial peptides [196]. Suppression of 

caudal activity in the presence of a Drosophila pathogen results in intestinal epithelial 

apoptosis, impaired epithelial barrier function and an epithelium that resembles inflammatory 

bowel disease due to reduced antimicrobial peptide transcription [196]. Similarly, inhibition 

of NF-κB activity by deletion of its activating kinase NEMO in mouse IECs results in chronic 

inflammatory response in intestinal epithelia [197]. Loss of NF-κB activity in IECs resulted in 

increased apoptosis, reduced expression of antimicrobial peptides and increased bacterial 

infiltration into the mucosa. In macrophages, NF-κB suppresses inflammation by activating 

transcription of the antiapoptotic proteins PAI-2 and Bcl-XL which inhibit activity of 

caspases. NF-κB also down regulates itself by participating in an inflammation negative 

feedback loop where it activates transcription of its own suppressor, IkBa and the anti-

inflammatory protein Tnfiap3 [193, 198]. 

Microbial stimulation may result in MAP kinase signal transduction and the activation 

of the transcription factor ATF2. ATF2 forms homodimers or heterodimers with c-JUN [199] 

and binds to the promoter and activates transcription of DUOX [200]. In the Drosophila 

intestine, this transcriptional activity has been shown to induce cell proliferation (see below 

in Developmental programs). Transcription of reactive-oxygen species (ROS) generating 

enzymes, like DUOX or NOS2, represents another innate immune response [201]. The 

transmembrane proteins DUOX1 and DUOX2 generate ROS in the intestinal lumen which 

promotes mucosal defense against microbes [202]. A c-JUN/ATF2/IRF3 complex has been 
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captured on an enhancer that regulates IFN-beta, an important cytokine in viral defense 

[199]. 

Janus Kinase-Signal Transduction And Transcription (JAK-STAT) signaling also 

plays important roles in the response to the microbiota. Activation of the JAK-STAT signaling 

pathway in the intestine by a cytokine results in phosphorylation of STAT transcription 

factors by JAKs. Once phosphorylated, STATs homo or heterodimer with other STAT family 

members and translocate to the nucleus to bind to CRRs and activate transcription of innate 

immune genes like NOS2 [203]. Upon microbiota colonization and infection of pathogenic 

bacteria, Paneth cells become filled with granulae that are filled with lysozyme and 

antimicrobial peptides [121]. These antimicrobial peptides include alpha-defensins and the 

C-type lectins, like RegIIIg, both of which may disrupt microbial membrane integrity as a 

mechanism to kill bacteria [204]. Symbiotic bacteria induce expression of RegIIIg in Paneth 

cells [205], but the transcription factors that mediate its activity in this cell type remains 

unknown. In the lung and gastric epithelia, STAT3 binds the promoter of RegIIIg and drives 

transcription of the gene [204, 206]. Microbiota colonization similarly induces Stat3 

expression, so perhaps the same transcriptional mechanisms are shared between these 

other epithelial cell types and the intestinal epithelia. The transcription factor TCF-4 

mediates transcription of the alpha-defensins in Paneth cells, indicating the microbiota may 

impact TCF-4 activity. Indeed, microbiota mediate beta-catenin/Wnt signaling (see below in 

Developmental programs) and cellular gradients of these pathways are linked to TCF-4 

activity [207].  

 

2.4.4 Developmental programs 
Following microbial colonization, an intense restructuring of the small intestinal 

mucosa occurs that results in decreases in villus length and increases in crypt depth [120, 

121]. Microbiota colonization results in transient repression of transcripts involved in Notch 
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signaling and a rapid expansion of goblet cells [120, 121]. Microbiota colonization also 

results in sustained suppression of Neurog3 transcription [120], the transcription factor that 

drives the enteroendocrine cell differentiation. Indeed, microbiota colonization results in 

reduced EEC populations as determined by Sox9:GFPhigh transgenic mice [38]. Similarly, 

microbiota colonization also induces an expansion of mature goblet cells in rats [208]. 

Microbiota colonization similarly promotes goblet cell differentiation in zebrafish [209]. Since 

microbiota colonization results in changes to host metabolic homeostasis [156, 210], 

perhaps microbiota influence goblet cell differentiation through the activation of the 

transcription factor NFAT5 which suppresses the metabolic regulator mTORC1 and 

suppresses Notch signaling, which results in an expansion of goblet cells and MUC2 

expression [211, 212]. 

Experiments using larval zebrafish have demonstrated that a dominant member of 

the zebrafish microbial community secretes a factor that promotes proliferation through 

activation of the beta-catenin/Tcf4 transcription complex. Furthermore, these experiments 

demonstrated that the innate immune response, but not inflammation, mediated the 

microbial induction of IEC proliferation [136]. In drosophila, JAK-STAT signal transduction 

mediate an oxidative burst that drives epithelial renewal in response to the microbiota and 

infection [213]. Similarly, In cell culture studies, STAT3 regulates progression through the 

cell cycle through upregulation of cyclins D2, D3 and A, as well as Cdc25a and down 

regulates cell cycle regulators p21 and p27 [214]. Conversely, antibiotic treatment results in 

cell cycle arrest in colon epithelial cells [215], suggesting that the loss of microbial 

communities impairs epithelial proliferation.  

Several proinflammatory cytokines and interferons are capable of inducing apoptosis 

including TGFb, TNFa, and IL-1b [193, 216]. Microbial induction of the proinflammatory 

cytokines and chemoattractant TNFa results in epithelial apoptosis and increased cell 

shedding [217]. ETS-factor transcription factors can bind the promoter of this gene and 
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activate its transcription [218]. ETS-factors represent a novel set of transcription factors that 

have been implicated in mediating epithelial response to the microbiota [53]. However, little 

is known about either genomic or molecular mechanisms that mediate its response to 

microbial stimuli. 

 

2.4.5 Circadian rhythms 
Feeding and the circadian rhythms in the intestinal epithelia are tightly connected 

[133]. Circadian rhythms coordinate several intestinal epithelial functions including nutrient 

absorption, nutrient trafficking and cell proliferation [219]. Microbiota colonization results in 

transcriptional suppression of several key circadian rhythm transcription factors including 

Arntl2, Per1, Per2 and Cry1 in the jejunum.  This suppression persists over several weeks 

and does not appear to recover after the epithelial immune response reaches homeostasis 

[120]. Since this expression pattern resembles the metabolic reorientation, perhaps the 

fluctuations in energy homeostasis upon colonization regulate transcription of these 

circadian rhythm genes [120].  

Surprisingly, antiphasic and oscillating expressions of the nuclear receptors RORa 

and ReverbA coordinate a rhythmic pattern of TLR expression. This rhythmic pattern of TLR 

expression translates an arrhythmic signal from the microbiota to oscillating signal resulting 

in a circadian rhythm output of AP-1 and NFkB signaling [131]. The diurnal oscillations of 

TLR signaling may direct the microbiota rhythmic oscillations which undergo phasic changes 

to community composition and metabolic function [141, 220]. These diurnal oscillations 

impact histone modifications at oscillating genes and maintain intestinal homeostasis [141, 

220]. 
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2.5 Loss of intestinal identity and inflammatory bowel diseases 
Prolonged loss of the homeostasis between the intestinal epithelia and the luminal 

environment can result in inflammatory bowel diseases [221]. Interactions between human 

genetics the microbiota and the diet have been implicated in Crohn’s disease (CD) and 

ulcerative colitis (UC) [221-224]. Indeed, dietary interventions are early steps used to treat 

IBDs [225-227] and fecal (microbiota) transplantations can ameliorate IBD symptoms [228, 

229]. However, a variety of genetic and genomic factors within the human intestinal epithelia 

also control disease pathology and progression [2, 230-234]. Indeed, dysregulation of the 

acetylome by Hdac1 and Hdac2 disrupts epithelial homeostasis [235]. Furthermore, the 

intestinal epithelia require Hdac3 for maintenance in the presence of the microbiota [236]. 

Interestingly, the transcriptional pathways that respond to microbiota colonization overlap 

the transcriptional pathways that are dysregulated in IBDs [40, 237, 238]. Another 

fascinating aspect of inflammatory bowel diseases is the aberrant loss of epithelial identity. 

Previous transcriptome analysis from patients with ileal Crohn’s disease and colonic Crohn’s 

diseases indicate a subset of these patients have tissue identities that correspond to the 

wrong intestinal segment [2]. That is, some transcriptomes from colonic Crohn’s disease 

biopsies identified more with healthy ileal transcription programs than colonic programs. 

Similarly, ileal transcriptomes from ileal Crohn’s disease biopsies identified more with 

healthy colonic programs. However, the tissue complexities in human biopsy samples limit 

the conclusions about the role of how specific cell types contribute to disease progression.  

Transcriptome analysis of patients with UC, ileal CD (iCD) and colonic CD (cCD) 

revealed genes that are differentially regulated in IBD compared to healthy patients. 

Analysis of these transcriptomes identified 5 transcription factors that serve as central 

regulators of the genes differentially expressed in all three types of IBD. Two of these 

transcription factors, NFkB and STAT1, activate transcription of genes differentially 

upregulated in IBD. These TFs in the context of IBD have been discussed extensively in 
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other reviews [239-241]. The three transcription factors that mediate expression of genes 

commonly downregulated in IBD are excitingly nuclear receptors: HNF4A, PPARG, and 

NR3C1 (GR). Despite all three TFs being implicated in IBD pathology, their roles in disease 

progression remains unknown. Furthermore, the genes consistently downregulated in IBD 

are genes involved in metabolic pathways (ex. oxidative reduction, fatty acid trafficking, 

intestinal absorption) and how suppression of these pathways impacts impact chronic 

inflammation remains relatively unstudied. Furthermore, other studies have indicated that 

inflammatory programs and metabolic transcription programs are mutually exclusive [132]; 

however, underlying causes remain unclear.  

The three transcription factors that regulate genes that are suppressed in all three 

types of IBD are all Nuclear receptors. Aside from these three nuclear receptors, several 

other nuclear receptors have been implicated in UC or CD or both [242], indicating the 

importance these direct-environment-sensing transcription factors play in intestinal 

homeostasis. Several nuclear receptors have been shown to suppress inflammation in 

multiple tissues: Estrogen Receptor [243], Glucocorticoid Receptor , Vitamin D Receptor 

[244], PPARs [245, 246], LXR [247], HNF4A [248-251]. GR, PPAR, and LXR work 

synergistically to suppress TLR signaling in macrophages [252]. Perhaps these nuclear 

receptors and others function similarly in intestinal epithelia to suppress inflammation. To 

support this hypothesis, loss of FXR function in mice increases susceptibility to DSS and 

TNBS induced colitis [253] Indeed, FXR has been shown to modulate proinflammatory 

responses by forming a repressor complex with NCOR on the NF-κB response element on 

the IL-1B promoter [254].  Similarly, LXR activation suppressed the expression of the pro-

inflammatory marker TNFa in the colon following DSS treatment. LXR deletion resulted in 

enhanced migration of immune cells to a DSS damaged colon [255]. 

Three independent GWAS studies have identified variants of the HNF4A risk loci for 

CD and UC [232, 233, 256] and another study indicated HNF4G may also be a risk locus for 
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UC [257]. Importantly, differentially activate enhancers in IBD have predicted HNF4A 

binding sites [230, 231]. Furthermore, HNF4A expression is reduced in biopsies from UC 

and IBD patients [258]. IEC-specific knockout of mouse Hnf4a results in spontaneous 

intestinal inflammation, resembling human IBD [251, 259]. The IEC-specific knockout mice 

of Hnf4a have reduced lysozyme staining in the granulae of Paneth cells, but unaltered 

Paneth cell number compared to WT [89]. These data indicate Paneth cells in the mutant 

animals produce fewer antimicrobial peptides. Therefore, one possible reason for 

spontaneous colitis in IEC-specific mutants could be an overgrowth of pathogenic bacteria. 

Similarly, DSS-induced colitis and inflammation suppresses HNF4A nuclear localization and 

expression [260]. In the liver, knockdown of HNF4A expression induces a proinflammatory 

feedback circuit that continues to repress HNF4A expression and upregulate 

proinflammatory genes [250]. Indeed, HNF4A activates the transcription of miR-124 in liver 

cells [250]. mir-124 has reduced expression in biopsies from pediatric CD patients compared 

to healthy patients and may protect from CD by silencing STAT3 [261]. Together, these 

studies suggest HNF4A protects against inflammation and IBDs. Therefore, HNF4A target 

genes may also protect from IBD. If HNF4A regulates mir-124 in the intestine like it does in 

the liver, then this scheme provides one possible way HNF4A protects from IBD. Similarly, 

biopsies from IBD patients demonstrate decreased APOA1 expression, a target of HNF4A. 

Furthermore, injection of APOA1 mimetic peptide rescues experimental colitis [262] and 

induces tissue repair in endothelial cells through the Akt/AMPK/eNOS pathways [263].  

Genetic variants at human PPARG are associated with increased risk for both UC 

and CD [242, 264, 265]. UC is associated with decreased PPARG expression [266]. 

Although the exact mechanism in IBDs remains unknown, PPARG has been shown to 

suppress TLR signaling by exporting a subunit of NF-κB, RelA, out of the nucleus and 

inhibiting transcription of proinflammatory genes [267]. Induction of PPARG activity by 

chemical ligands, rosiglitazone and troglitazne, suppresses colonic inflammation associated 
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with DSS administration in mice [268, 269]. These studies provide insight into how dietary 

interventions may help alleviate IBD symptoms. Both PPARG and HNF4A bind nutrients like 

long chain fatty acids and short chain fatty acids and these dietary molecules have been 

used to relieve IBD-associated inflammation [270]. For example, conjugated linoleic acid 

supplementation suppresses the immune response of patients with Crohn’s disease [271]. 

Chemical models of inflammation in zebrafish indicate linoleic acid, a poly-unsaturated fatty 

acid and the endogenous ligand of HNF4A, is protective of inflammation. This result 

contrasts with treatment with two other fatty acids, palmitoleic acid and palmitic acid, which 

exacerbated the inflammatory response [272].  

Nuclear receptors represent an attractive class of transcription factors for therapeutic 

design. Activation of glucocorticoid receptor (GR, NRC31) suppresses inflammation by 

activating transcription of anti-inflammatory genes like IL-10 [273]. GR also inhibits 

transcription of the proinflammatory cytokine IL-11 [274]. In may perform these anti-

inflammatory roles by suppressing AP-1 and NF-κB transcriptional activity. Indeed, 

glucocorticoids suppress NF-κB and AP-1 activity and increased GR expression is 

associated with decreased NF-ΚB activity [275, 276]. Genetic variants at human NR3C1 are 

associated with risk for CD [277],but genetic variation may have more important role in 

choice of therapy. Glucocorticoid treatment represents a cornerstone therapy for 

inflammatory conditions [278]. As such, it remains an obvious choice for inflammatory bowel 

disease treatment. However, Genetic variants at NR3C1 are associated with hormone 

resistant therapies in UC and CD [279, 280]. Indeed, augmented expression of GR-beta, a 

ligand binding isoform of GR and a putative dominant negative regulator of GR activity, is 

associated with unresponsive UC to glucocorticoid treatment [281]. Both villus and crypt 

epithelial cells express GR, however, aside from maintaining ionic gradients across the 

epithelia [282, 283], its role in maintaining the intestinal epithelia remains relatively 

unstudied.  
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2.6 Chapter Conclusion: 
Cells must balance between “flexible” and “rigid” transcription programs to maintain 

both cellular identity and sensitivity to the environment. No cellular environment may be 

more challenging to maintain this balance than the intestinal lumen that interfaces with the 

intestinal epithelia. The epithelia tune its transcription programs to maintain homeostasis 

with the microbiota. Dysregulation of these transcription programs can promote the onset of 

human diseases, like cancers and inflammatory bowel diseases [221, 284]. However, these 

diseases represent extreme circumstances and do not reflect the normal symbiotic 

relationships that have been maintained between animals and their microorganisms for over 

650 million years. Above, I have provided individual stories of how particular transcription 

factors mediate the expression of a handful of genes and how these transcription factors 

function to maintain epithelial identity. However, microbiota colonization is associated with 

the induction and suppression of hundreds of genes in the epithelia. And to date, no study 

has identified how the microbiota tune entire regulatory networks. Therefore, there remains 

a significant gap in understanding how the host normally perceives and responds to the 

microbiota. We do not have a strong understanding of how the “rigid” transcriptional 

programs overlap with these “flexible” transcription programs that permit sensitivities to the 

intestinal environment. In the next chapter, I will provide the first genome wide evidence of 

how microbiota colonization impacts histone modifications and transcription factor binding to 

regulate host gene expression.
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CHAPTER 3: MICROBIOTA REGULATE INTESTINAL EPITHELAIL GENE EXPRESSION 
BY SUPPRESSING THE TRANSCRIPTION FACTOR HEPATOCYTE NUCLEAR FACTOR 

4 ALPHA 
 

3.1 Overview 
Microbiota influence diverse aspects of intestinal physiology and disease in part by 

controlling tissue-specific transcription of host genes. However, host genomic mechanisms 

mediating microbial control of intestinal gene expression are poorly understood. Hepatocyte 

nuclear factor 4 (Hnf4) is the most ancient family of nuclear receptor transcription factors 

with important roles in human metabolic and inflammatory bowel diseases, but a role in host 

response to microbes is unknown. Using an unbiased screening strategy, we found that 

zebrafish Hnf4a specifically binds and activates a microbiota-suppressed intestinal epithelial 

transcriptional enhancer. Genetic analysis revealed that zebrafish hnf4a activates nearly half 

of the genes that are suppressed by microbiota, suggesting microbiota negatively regulate 

Hnf4a. In support, analysis of genomic architecture in mouse intestinal epithelial cells 

disclosed that microbiota colonization leads to activation or inactivation of hundreds of 

enhancers along with drastic genome-wide reduction of HNF4A and HNF4G occupancy. 

Interspecies meta-analysis suggested interactions between HNF4A and microbiota promote 

gene expression patterns associated with human inflammatory bowel diseases. These 

results indicate a critical and conserved role for HNF4A in maintaining intestinal 

homeostasis in response to microbiota. 

 

3.2 Introduction 
All animals face the fundamental challenge of building and maintaining diverse 

tissues while remaining sensitive and responsive to their environment. This is most salient in 
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the intestinal epithelium which performs important roles in nutrient absorption and barrier 

function while being constantly exposed to complex microbial communities (microbiota) and 

nutrients within the intestinal lumen. The presence and composition of microbiota in the 

intestinal lumen influence diverse aspects of intestinal development and physiology 

including dietary nutrient metabolism and absorption, intestinal epithelial renewal, and 

edification of the host immune system. Abnormal host-microbiota interactions are strongly 

implicated in the pathogenesis of inflammatory bowel diseases (IBD), including Crohn’s 

disease (CD) and ulcerative colitis (UC) [221]. Studies in mouse and zebrafish models of 

IBD have established that impaired intestinal epithelial cell (IEC) responses to microbiota 

are a key aspect of disease progression [223, 285, 286]. Improved understanding of the 

molecular mechanisms by which microbiota evoke host responses in the intestinal 

epithelium can be expected to lead to new strategies for preventing or treating IBD and 

other microbiota-associated diseases.  

The ability of IEC to maintain their physiologic functions and respond appropriately to 

microbial stimuli is facilitated through regulation of gene transcription. Genome-wide 

comparison of transcript levels in intestinal tissue or isolated IEC from mice reared in the 

absence of microbes (germ-free or GF) to those colonized with a microbiota 

(conventionalized or CV) have revealed hundreds of genes that have significantly increased 

or decreased mRNA levels following microbiota colonization [53]. Interestingly, many mouse 

genes that are transcriptionally regulated by microbiota have zebrafish homologs that are 

similarly responsive, suggesting the existence of evolutionarily-conserved regulatory 

mechanisms [137]. For example, the protein hormone Angiopoetin-like 4 (ANGPTL4, also 

called FIAF) is encoded by a single ortholog in the mouse and zebrafish genomes, and 

microbiota colonization results in significant reductions in transcript levels in the small 

intestinal epithelium of both host species [145, 156]. Whereas these impacts of microbiota 

on host IEC transcriptomes and their downstream consequences have been extensively 
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documented, the upstream transcriptional regulatory mechanisms remain poorly 

understood.  

Specification and tuning of gene transcription proceeds in part through interactions 

between transcription factors (TFs) and their sequence-specific binding to cis-regulatory 

DNA. Cis-regulatory regions (CRRs) harbor binding sites for multiple activating or repressing 

TFs and are generally associated with nucleosome depletion and specific post-translational 

modifications of histone proteins within adjacent nucleosomes when acting as poised 

(H3K4me1) or active (H3K27ac) enhancers [21]. Antibiotic administration can impact 

transcript levels and histone modifications in IECs [141], however it’s unclear if these 

changes are indirect effects caused by alterations to microbiota composition, direct effects 

of the antibiotic on host cells, or by the effects of remaining antibiotic-resistant microbiota 

[287].  Previous studies have shown that histone deacetylase 3 is required in IECs to 

maintain intestinal homeostasis in the presence of microbiota [236], and that overall histone 

acetylation and methylation in the intestine is altered by microbiota colonization [142]. 

However, the direct and specific effects of the microbiota on host CRRs and subsequent 

transcriptional responses in IECs remain unknown.   

Our previous studies predicted key roles for one or more nuclear receptor TFs in 

microbial down regulation of IEC gene expression [53], but the specific TF(s) were not 

identified. Nuclear receptors are ideal candidate TFs for integrating microbe-derived signals, 

since for many their transcriptional activity can be positively or negatively regulated by the 

binding of metabolic or hormonal ligands [288]. However, the roles of nuclear receptors in 

host responses remain poorly understood, and no previous study has defined the impact of 

microbiota on nuclear receptor DNA binding. Nuclear receptors are a metazoan innovation. 

The earliest animals encoded a single nuclear receptor orthologous to Hepatocyte nuclear 

factor 4 (HNF4; nuclear receptor subfamily NR2A) [148]. Despite subsequent duplication 

and diversification, distinct HNF4 TFs remain encoded in extant animals including mammals 
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(HNF4A, HNF4G) and fishes (Hnf4a, Hnf4b, Hnf4g) (Supplemental Figure 3.S1G). HNF4A 

serves particularly important roles in IECs, where it binds CRRs and activates expression of 

genes involved in IEC maturation and function [289]. IEC-specific knockout of mouse Hnf4a 

results in spontaneous intestinal inflammation similar to human IBD [251]. In accord, genetic 

variants at human HNF4A are associated with risk for both UC and CD as well as colon 

cancer [232, 233, 256, 290].  HNF4A is predicted to bind a majority of IBD-linked CRRs and 

to regulate IBD-linked genes [231, 237]. Similarly, genetic variants near human HNF4G 

have been associated with obesity and CD [257, 291]. Importantly, these diverse roles for 

HNF4 TFs in host physiology have only been studied in animals colonized with microbiota. 

Therefore, the role of Hnf4 in host-microbiota interactions and the implications for human 

IBD remain unknown.  

 

3.3 Results 

3.3.1 hnf4a is essential for transcriptional activity from a microbiota-suppressed cis-
regulatory DNA region 

To identify transcriptional regulatory mechanisms underlying microbial control of host 

gene expression, we took advantage of a previously identified microbiota-responsive CRR 

termed in3.4 located within the third intron of zebrafish angptl4 (Figure 3.1A). A GFP 

reporter construct under control of in3.4 termed in3.4:cfos:gfp drives tissue specific 

expression of GFP in zebrafish IEC and is suppressed by microbiota colonization, 

recapitulating the microbial suppression of zebrafish angptl4 [145]. However, the factor(s) 

that mediate microbial suppression of in3.4 were unknown. Using a yeast one-hybrid (Y1H) 

assay, we tested the capacity of 150 TFs expressed in the zebrafish digestive system to 

bind in3.4 (Supplemental Figure 3.S1A,B) and detected an interaction only with hnf4a, 

hnf4b, and hnf4g (Figure 3.1B). When either of two predicted Hnf4 motifs in in3.4 are 

mutated, the Hnf4-in3.4 interaction in the Y1H assay and intestinal GFP expression in 



40 
 

in3.4:cfos:gfp zebrafish is strongly reduced (Supplemental Figure 3.S1C-F). Interestingly, 

while gata4, gata5, and gata6 have predicted motifs in in3.4 [145] these TFs did not interact 

in the Y1H assay. This suggests that HNF4 TFs are capable of binding in3.4 directly and 

HNF4 binding sites are necessary for directing in3.4-based transcription in vitro and in the 

intestine.  

 
Figure 3.1: Zebrafish hnf4a is required for robust in3.4:cfos:gfp activity (A) Schematic of the 
microbiota-suppressed zebrafish enhancer, in3.4, highlighting the regions required for intestinal 
activity (purple) which both contain putative HNF4 binding sites (Site 1 and Site 2) [145]. (B) Image of 
4 plates from the Y1H assay showing the hnf4 family of transcription factors capable of binding in3.4 
and driving expression of the antibiotic resistance reporter gene. (C) Hnf4a+/+ and Hnf4a-/- protein 
cartoons showing the DNA binding domain (DBD) and hinge domain (HD). We characterized the two 
with the largest lesions, a -43 deletion in the hinge domain and a +25 insertion in the hinge domain 
which both result in frame-shift early-stop codons and significantly reduced transcript. (D) 
Stereofluorescence GFP and bright field microscopy showing representative hnf4a+/+ (top 3) and 
hnf4a-/- (bottom 3) 6dpf in3.4:cfos:gfp zebrafish. Genotype was blinded and samples were arranged 
by intensity of GFP fluorescence. (E) GFP fluorescence (mean ± sem) in hnf4a+/+ (n = 8), hnf4a+/- (n 
= 8) and hnf4a-/- (n = 8) 6dpf in3.4:cfos:gfp zebrafish (Two-tailed t-test: t = 17.84, 16.51, respectively, 
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df = 14, and **** p < 0.0001). (F) Confocal microscopy showing representative axial cross sections in 
6dpf hnf4a+/+ (n = 4) and hnf4a-43/-43 (n = 4) larval zebrafish. 4e8 antibody (yellow) labels the 
intestinal brush border, DAPI (blue) and phalloidin (red), and nephros (n). (G) Bright field microscopy 
(top) and stereofluorescence GFP (bottom) for representative hnf4a+/+ (n = 3) (left) and hnf4a-/- (n = 
3) (right) dissected intestinal folds from adult in3.4:cfos:gfp zebrafish. (H) Relative mRNA levels 
(mean ± sem) in hnf4a+/+ (n = 3) and hnf4a-/- (n = 3) adult zebrafish intestinal epithelial cell as 
measured by qRT-PCR. Two-tailed t-test: t = 0.93, 5.22, 6.56, 10.65, 0.75, 0.94 respectively, df = 4, 
and * p <0.05, *** p < 0.001). See also Supplemental Figures 3.S1 and 3.S2. 
 

We hypothesized that the hnf4 transcription factor family is required to mediate 

microbial suppression of in3.4 activity. Although the Y1H assay demonstrated all 3 zebrafish 

Hnf4 members are capable of binding in3.4, we concentrated our efforts on understanding 

the function of hnf4a because it is the most highly conserved Hnf4 family member 

(Supplemental Figure 3.S1G) and has well-documented roles in intestinal physiology [292]. 

To that end, we generated hnf4a mutant zebrafish using the CRISPR/Cas9 system (Figure 

3.1C; Supplemental Figure 3.S2A-C,E). Whole-animal Hnf4a knockout mice die during early 

embryogenesis due to failure to develop visceral endoderm [293], but zebrafish and other 

fishes do not develop that extra-embryonic tissue. We found that zebrafish homozygous for 

a non-sense mutation in hnf4a are viable and survive to sexual maturity (Supplemental 

Figure 3.S2D) providing new opportunities to study the roles of HNF4A in host-microbiota 

interactions.   

To determine if hnf4a is essential for in3.4 activity, we crossed mutant hnf4a alleles 

to the in3.4:cfos:gfp transgenic reporter line. GFP expression was significantly reduced in 

the absence of hnf4a suggesting that hnf4a activates in3.4 (Figure 3.1D,E,G,H). This loss of 

GFP expression in hnf4a-/- mutants was not associated with overt defects in brush border 

development or epithelial polarity in larval stages (Figure 3.1F), nor in the establishment of 

intestinal folds during adult stages (Figure 3.1G). However, intestinal lumen of mutant larvae 

was reduced in size at 6 days post fertilization (dpf) compared to WT siblings (Figure 3.1F; 

Supplemental Figure 3.S2F). Together, these data indicate hnf4a is essential for robust 

activity of a microbiota-suppressed CRR. Unlike in3.4:cfos:gfp, angptl4 is expressed in 
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multiple tissues and cell types [145]. To determine if intestinal angptl4 expression is 

dependent on hnf4a function, we isolated RNA from IECs from hnf4a+/+ and hnf4-/- adult 

in3.4:cfos:gfp zebrafish and performed qRT-PCR. Adult IECs (AIECs) from hnf4a-/- have 

significant reductions in mRNA for gfp, fabp2 (a known HNF4A target in human cell lines) 

[294], and hnf4a compared to hnf4a+/+ controls. However, angptl4 expression remained 

unchanged in hnf4-/- AIECs compared to WT, suggesting angptl4 transcript levels in the 

adult intestine are regulated by additional mechanisms and not solely from in3.4 or Hnf4a 

(Figure 3.1H). Transcript levels for hnf4g and hnf4b in hnf4a-/-AIEC were also unchanged. 

Together, these results establish that Hnf4a is required for in3.4 activity in IECs and raises 

the possibility that Hnf4a may have broader roles in mediating host transcriptional and 

physiological responses to microbiota.  

 

3.3.2 Hnf4a activates transcription of genes that are suppressed upon microbiota 
colonization  

To better define the roles of hnf4a in microbiota response and other aspects of 

digestive physiology, we used RNA-seq to compare mRNA levels from digestive tracts 

isolated from hnf4a+/+ and hnf4a-/- zebrafish larvae in the presence (CV) or absence of a 

microbiota (GF; Figure 3.2A). Consistent with our previous studies [137, 146], comparison of 

wildtype zebrafish reared under CV vs GF conditions revealed differential expression of 598 

genes that were enriched for processes such as DNA replication, oxidation reduction, and 

response to bacterium (Figure 3.2B,D; Supplemental Figure 3.S3D). Strikingly, disruption of 

the hnf4a gene caused gross dysregulation of the transcriptional response to microbiota 

colonization, with the total number of microbiota responsive genes (CV vs GF) increasing to 

2,217. Furthermore, comparison of the hnf4a mutant (Mut) vs wild type (WT) genotypes 

revealed differential expression of many genes in the CV condition (2,741 genes) and GF 

condition (1,441 genes) that inform a general role for Hnf4a in regulating genes in the 
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intestinal tract (Figure 3.2D,E). Principal components analysis (Supplemental Figure 3.S3A) 

and hierarchical clustering (Figure 3.2B) of FPKM values indicated that hnf4a genotype had 

a complex contribution to regulating genes involved in both responses to the microbiota and 

digestive physiology. 

Figure 3.2: Hnf4a activates the majority of coregulated genes that are suppressed by the 
microbiota. (A) Schematic showing the experimental timeline for zebrafish digestive tract GF and CV 
hnf4a+/+ and hnf4a-/- RNA-seq experiment (n = 3 for WTCV and WTGF and n = 2 for MutCV and 
MutGF). (B) Hierarchical relatedness tree and heatmap of differentially regulated genes in mutant and 
gnotobiotic zebrafish digestive tracts. Gene averaged log10 FPKMs for the biological replicates are 
represented for each of the 4,007 differentially regulated genes. (C) Representative RNA-seq signal 
tracks at fatty acid-desaturase 2 (fads2), serum amyloid a (saa) loci. (D) Summary of the total number 
of differentially expressed genes between indicated conditions (GF and CV) and genotype (WT and 
hnf4a-/- (Mut)). (E) 4-way Venn diagram showing overlaps between all 4,007 differentially regulated 
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genes. (F) The 295 coregulated genes were plotted using the log2 (FC) calculated in the 
WTGF/WTCV comparison (X-axis) and WTCV/MutCV (Y-axis). The 88 out of 98 genes that are 
activated by hnf4a but suppressed by the microbiota are highlighted (red) and (G) their GO term, 
KEGG pathway and disease associations are listed. See also Supplemental Figure 3.S3. 

 
Because we found that hnf4a activates the microbiota-suppressed intestinal CRR, 

in3.4, we hypothesized that this may represent a general regulatory paradigm for other 

microbiota-influenced CRRs and genes across the genome. When we compared the 598 

genes that were microbiota responsive in wildtype digestive tracts with the 2,741 genes that 

hnf4a regulates in CV digestive tracts we found these lists shared 295 genes that included 

fads2 and saa, both of which have human orthologs that are either implicated (FADS1/2) or 

markers (SAA) of IBD [224, 295] (Figure 3.2C-F). While loss of Hnf4a could be pleiotropic, 

strikingly, the overlap between these subsets reveals that a disproportionate 88 of the 98 

(~90%) microbiota-suppressed genes are activated by hnf4a (Figure 3.2F). These 88 genes 

represent almost half of all 185 genes suppressed by the microbiota.  These data suggest, 

like its role at in3.4, hnf4a plays a critical role in directly activating a large percentage of 

genes that are suppressed by microbial colonization. This set of hnf4a-activated microbiota-

suppressed genes is enriched for ontologies and pathways involved in lipid and 

carbohydrate metabolism, suggesting microbiota might regulate these processes through 

suppression of Hnf4a (Figure 3.2G). Interestingly, the top 2 diseases associated with this 

gene set were obesity-related traits and IBD (Figure 3.2G). Based on these results, we 

hypothesized that Hnf4a DNA binding is lost upon microbial colonization within CRRs 

associated with microbiota-suppressed genes.  

 

3.3.3 HNF4A binding sites are enriched in promoters near genes associated with 
microbiota-regulated H3K27ac marks 

Previous attempts to identify microbial responsive enhancers genome-wide were 

complicated by the lack of significant changes in chromatin DNase accessibility between GF 

and CV IECs from mouse colon and ileum [53]. These previous findings suggested other 
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chromatin dynamics may be involved in regulating the IEC response to microbiota. We 

therefore sought to provide a genomic context for understanding how the microbiota alter 

HNF4A activity and chromatin modifications in IECs by performing RNA-seq, DNase-seq, 

and ChIP-seq for the enhancer histone modifications H3K4me1 and H3K27ac, and the Hnf4 

TF family members HNF4G and HNF4A in CV and GF conditions totaling 35 datasets. We 

conducted these experiments in jejunal IEC from gnotobiotic mice because: (1) ChIP-grade 

antibodies for mouse HNF4A and HNF4G are available, (2) the larger organ size in mice 

provided sufficient numbers of IECs for ChIP-seq experiments, and (3) we speculated that 

the roles of HNF4A in host response to microbiota may be conserved to mammals. We first 

performed DNase-seq in jejunal IEC from mice reared GF or colonized for two weeks with a 

conventional mouse microbiota (CV) to determine the impact of microbiota colonization on 

chromatin accessibility (Figure 3.3A). In accord with previous studies that that tested for 

chromatin accessibility in ileal or colonic IECs from GF or CV mice [53], we similarly found 

no differential DNase hypersensitivity sites (DHSs) in GF or CV jejunum (data not shown, 

but see Supplemental Figure 3.S4A). These data indicate that gross accessibility changes in 

chromatin do not underlie the transcription of microbiota-responsive genes in IECs. 

To test if other metrics of chromatin utilization were dynamically regulated by 

microbiota, we performed ChIP-seq from GF and CV mouse jejunal IECs for histone marks 

H3K4me1 and H3K27ac that are enriched at poised enhancers and active enhancers, 

respectively (Figure 3.3B). By determining the single-nearest gene TSS within 10kb of the 

differential histone marks and overlaying these data with our new RNA-seq datasets, we 

found that regions that gain poised (H3K4me1) and activated (H3K27ac) enhancers upon 

colonization are associated with genes that have increased transcript levels upon 

colonization (Figure 3.3C,H-K; Supplemental Figure 3.S4I). Similarly, regions that lose 

poised and active enhancers upon colonization are associated with microbiota-suppressed 

genes (Figure 3.3C,G,I,J,L; Supplemental Figure 3.4J). A two-sided Kolmogorov-Smirnov  
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Figure 3.3: Microbiota selectively induce enhancer activity near genes that are upregulated 
upon microbiota colonization. (A) Schematic showing the gnotobiotic experimental timeline for 
testing mRNA levels and chromatin architecture in GF and CV. (B) MA plots from DESeq2 analysis 
(FDR < 0.01) of H3K4me1 (n = 3 per condition) (left) and H3K27ac (n = 2 per condition) (right) ChIP-
seq from GF and CV mouse jejunal IECs. Colored dots signify regions significantly enriched for a 
histone mark in GF (blue) or CV (orange). We found 4,579 unique H3K4me1 and 1,354 unique 
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H3K27ac peaks in GF and 5,155 unique H3K4me1 and 893 unique H3K27ac peaks in CV. (C) 
Volcano plots showing pairwise comparison of RNA expression between GF (n = 2) and CV (n = 2) 
jejunal IECs. Blue and orange dots represent genes associated with a region enriched for H3K4me1 
(left) or H3K27ac (right) signal in GF or CV. (D) Two-sided Kolmogorov-Smirnov goodness-of-fit test 
shows a positive relationship on average between the presence of a region enriched for 
H3K4me1/H3K27ac signal in a specific colonization state and increased transcript abundance of a 
neighboring gene in that same colonization state. (E) Top de novo binding site motifs found in DHSs 
that are flanked by regions enriched with H3K27ac signal in GF (E) or CV (F). Representative ChIP-
seq tracks highlighting a microbiota-regulated gene associated with differential histone marks in GF 
(G) (Akr1c19, Aldo-keto reductase 1c19) or CV (H) (Ubd, Ubiquitin D). Heatmaps showing the 
average GF and CV H3K4me1 (I) or H3K27ac (J) signal at the 1000 bp flanking differential sites. (K-
L) GO terms and KEGG pathways enriched in genes associated with differential H3K27ac sites 
shown in J. See also Supplemental Figure 3.S4. 
 

goodness-of-fit test shows a positive relationship between differential H3K4me1/H3K27ac 

region and increased transcript abundance of nearby genes in the same colonization state 

(Figure 3.3D). Collectively, we identified for the first time a genome-wide map of hundreds of 

newly identified microbial regulated CRRs, suggesting that microbiota regulation of host 

genes is mechanistically linked to histone modifications changes more than gross chromatin 

accessibility changes [53]. 

We leveraged this novel atlas of microbiota-regulated enhancers and accessible 

chromatin to determine which TFs are predicted to bind to these regions. An unbiased 

analysis found that three HNF4A binding site motifs were significantly (p < 1e-45, p < 1e-28, 

and p < 1e-13) enriched in promoters of genes associated with microbiota-suppressed 

enhancers (Supplemental Figure 3.S4E), and STAT1 binding site motifs were significantly (p 

< 1e-16) enriched in promoters of genes associated with microbiota-activated enhancers 

(Supplemental Figure 3.S4F). Interestingly, DHS sites associated with differentially active 

enhancers were enriched for two different sets of TF binding sites. DHSs flanked by 

microbiota-inactivated enhancers were enriched for nuclear receptor DR1 sites, which can 

be recognized by HNF4A [296], and GATA binding sites (p = 2.3e-12 and 1.1e-6 

respectively) (Figure 3.3E). DHS sites associated with microbiota-activated enhancers were 

similarly enriched for the nuclear receptor DR1 binding sites but also for STAT/IRF-like and 

ETS binding sites (p = 6.5e-15 and 1.3e-17 respectively) (Figure 3.3F). These data suggest 
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that nuclear receptors like HNF4A may play a central role in IEC responses to microbial 

colonization. 

 

3.3.4 Microbiota colonization is associated with a reduction in HNF4A and HNF4G 
cistrome occupancy 
To directly evaluate the impact of microbiota on HNF4A activity, we tested the plasticity of 

the genome wide distribution of HNF4s in response to microbial colonization. HNF4A bound 

28,901 and HNF4G bound 21,875 across the genome in GF conditions in jejunal IECs with 

~80% of these sites being bound by both TFs. In striking contrast, the number of sites bound 

by HNF4A and HNF4G in CV conditions was ~10 fold less (Figure 3.4A,B; Supplemental 

Figure 3.S5A-D). Of the 3,964 HNF4A binding sites detected in CV there were only 267 

HNF4A sites that were specific to the CV condition (Supplemental Figure 3.S6A,C). Yet, the 

genes associated with these HNF4A sites that are retained in CV are enriched for ontologies 

and pathways fundamental to intestinal epithelial biology (Supplemental Figure 3.S6B). 

Surprisingly, we found HNF4A sites are equally distributed between genes that are 

upregulated in both GF and CV conditions (Supplemental Figure 3.S5E). However, we did 

find that the average CV HNF4A signal strength was significantly increased at HNF4A sites 

associated with microbiota-induced genes relative to those HNF4A sites associated with 

microbiota-suppressed genes, suggesting HNF4A may play a limited role in genes 

upregulated by colonization (Supplemental Figure 3.S6F). In contrast, GF HNF4A ChIP 

signal was equivalent at HNF4A sites associated with microbiota-suppressed and induced 

genes (Supplemental Figure 3.S6F). Interestingly, we found that HNF4A sites were 

significantly correlated with increased H3K27ac, H3K4me1 and DHS signal in GF compared 

to these same chromatin marks in CV (Supplemental Figure 3.S6G). We do not believe that 

the reduction of HNF4A binding is the result of chromatin quality in a particular condition 

since there are genomic locations where GF and CV HNF4A sites appeared to have  
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Figure 3.4: Microbiota colonization results in extensive loss of HNF4A DNA binding in IEC 
(A) Heatmaps showing the average GF and CV ChIP-seq or DNase-seq signal at the 1000 bp 
flanking HNF4A sites found in GF.(B) Line plots showing the average GF (light-colored line) and CV 
(dark-colored line) ChIP-seq and DNase-seq RPKM-normalized signal for the indicated TF, histone 
mark or DHS at the 1000 bp flanking HNF4A sites found in GF (HNF4A: n = 3 per condition; HNF4G: 
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n = 4 per condition; H3K27ac n = 2 per condition; H3K4me1: n = 3 per condition; DNase: n = 3 for 
CV, n = 2 for GF) . (C) Representative signal tracks highlighting a microbiota-induced gene (Pigr, 
Polymeric immunoglobulin receptor) that is associated with an HNF4A peak with similar signal in both 
GF and CV jejunal IECs. (D) Heatmap showing the enrichment of TFBS motifs within 50 bp of the 
DHS or HNF4A peak maxima. (E) Representative signal track at Angptl4 highlighting two GATA4 
sites within an HNF4A bound region. (F) Bar graph showing HNF4A ChIP-PCR results at Angptl4, 
Apoa1 and Pck1 loci from jejunal IECs from mice colonized for 0 (n = 2), 6 (n = 3), 15 (n = 2) and 45 
(n = 3) days. Data are relative to the GF condition and normalized against a negative control locus 
(Neurog1) * p < 0.5, ** p < 0.005, *** p  < 0.0005. See also Supplemental Figures 3.S5 and 3.S6. 
 
equivalent signal (Figure 3.4C). Furthermore, ChIP enrichment in these IEC preparations for 

another zinc finger TF, CTCF, was unaffected by microbiota colonization (Supplemental 

Figure 3.S6D). This indicates that the observed reduction of Hnf4 ChIP signal in CV IECs is 

a result of microbiota on HNF4 binding, and is not the result of altered ChIP efficiency or 

sample quality in the different conditions. To test if microbial suppression of HNF4A 

occupancy is persistent, we performed ChIP-PCR from ex-GF mice that were colonized with 

microbiota for 6, 15 or 45 days. We found that even after 45 days post-colonization, HNF4A 

occupancy at binding sites was significantly reduced compared to GF (Figure 3.4F). The 

dramatic loss of HNF4A and HNF4G DNA binding upon colonization is consistent with 

HNF4A acting as a potent activator of microbiota-suppressed genes. 

We further speculated that certain coregulatory sequence-specific transcription 

factors may also contribute to regulating transcription with HNF4 at these sites.  To explore 

this possibility, we searched for TF motifs associated with HNF4A ChIP sites and found an 

enrichment of putative binding sites for TFs known to be involved in small intestinal 

physiology (GATA and HOXC9) as well as nutrient metabolism (PDX1) at both HNF4A 

bound regions associated with genes and enhancers suppressed by microbes (Figure 

3.4D). We similarly found GATA sites located within an HNF4A-bound CRR near murine 

Angptl4 (Figure 3.4E), similar to the coincident HNF4 and GATA motifs in in3.4 [145]. 

Furthermore, binding sites for TFs known to be involved in cell proliferation and cell death 

(ETS transcription factor family) are enriched near HNF4A bound regions that intersect 

microbiota-induced enhancers (Figure 3.4D). Collectively our integrative analyses of these 
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novel ChIP-seq, DNase-seq, and RNA-seq datasets identifies a core set of putative 

microbiota-responsive TFs that may interact with HNF4A to mediate microbial control of IEC 

gene expression. These results suggest HNF4A plays a major role in integrating microbial 

signals to regulate gene expression, and raise the possibility that this novel microbiota-

HNF4A axis might contribute to human disease. 

 

3.3.5 Microbiota-mediated suppression of HNF4A may contribute to gene expression 
profiles associated with human IBD 

Both HNF4A and the intestinal microbiota have been separately implicated in the 

pathogenesis of the human IBDs Crohn’s disease (CD) and ulcerative colitis (UC) [221, 

258]. However, a mechanistic link between microbiota and HNF4A in the context of IBD 

pathogenesis has not been established. Previous transcriptomic studies have identified 

genes differentially expressed in ileal (iCD) and colonic CD (cCD) and UC [237, 238] 

biopsies. We queried these human gene lists to identify one-to-one orthologs in mice, and 

referenced them against our new gnotobiotic mouse jejunal HNF4A ChIP-seq data (Figure 

3.5A). Strikingly, the majority of human genes downregulated in each of these IBD datasets 

have mouse orthologs that are associated with an HNF4A-bound region (Figure 3.5B,C) 

Focusing on the iCD dataset from the largest of these previous studies [237], we found 

differential iCD genes associated with HNF4A sites are enriched for distinct ontologies and 

pathways that are dysregulated in IBD (Figure 3.5H-K). In contrast to IBD, analysis of 

intestinal transcriptomic datasets from human subjects with necrotizing enterocolitis (NEC) 

[297] or insulin-resistance (IR) [298] did not reveal strong enrichment of HNF4A-bound 

regions near downregulated genes (Figure 3.5C). Notably, in each of these CD, UC, NEC, 

and IR datasets, a greater percentage of downregulated genes were linked to HNFA-bound 

regions compared to upregulated genes (Figure 3.5B). These data suggest microbiota-

dependent and microbiota-independent suppression of HNF4A activity in the intestine might  
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Figure 3.5. Microbiota suppression of HNF4A activity is highly correlated with genes and 
intestinal processes suppressed in human IBD and conserved in zebrafish. (A) Flow chart 
showing the experimental design and filters used to identify IBD or NEC gene orthologs associated 
with mouse HNF4A ChIP sites. (B) Bar chart showing the proportion of HNF4A associations in GF 
and CV mouse jejunal IECs near human-to-mouse one-to-one gene orthologs differentially regulated 
in human pediatric ileal Crohn’s Disease (iCD-1), adult iCD (iCD-2), adult colonic Crohn’s Disease 
(cCD), adult ulcerative colitis (UC), neonatal necrotizing enterocolitis (NEC) or insulin-resistance (IR). 
(C) Heatmap representing the -Log10 (pValue) of the enrichment of GF or CV HNF4A associated 
genes that are differentially regulated genes in the indicated IBD datasets.  Log10 p-values were 
calculated using a hypergeometric enrichment analysis and converting all HNF4A ChIP associated 
mouse genes to human orthologs (GF = 5863 genes and CV = 2119 genes). (D) Flow chart showing 
the experimental design and filters used to identify correlations between gnotobiotic WT or mutant 
zebrafish gene expression and gene orthologs differentially expressed in human IBD or NEC. 
Because loss of hnf4a function in zebrafish appeared to more closely resemble iCD signature than 
cCD or UC, we performed pairwise comparisons of gene orthologs that are (1) differentially regulated 
in human iCD and (2) have a mouse HNF4A ChIP association. Example of Deming linear regression 
analysis showing the correlation of Log2 (FC) between WTCV/WTGF (E) or MutCV/WTCV (F) 
zebrafish and pediatric iCD or NEC. m = slope of the line. (G) Heatmap representing slopes of 
Deming linear regression lines showing positive correlative relationships between the log2 gene 
expression fold changes of one-to-one orthologs from human diseases compared to log2 fold 
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changes in zebrafish WTCV/WTGF, MutCV/MutGF, MutCV/WTCV, and MutGF/WTGF. Hash signs 
indicate slope of Deming linear regression lines is significantly greater than WTCV/WTGF comparison 
(#, p < 0.05; ##, p < 0.0001). Asterisks indicate slope of Deming linear regression line is significantly 
greater than MutGF/WTGF (*, p <0.05; **, p <0.001). Solid boxes correspond to slope of lines in 
panel 5D, and dashed boxes correspond to slope of lines in panel 5E. (H-K) The top 5 GO terms and 
the top 5 KEGG pathways for indicated gene lists. 
 

play an important role in IBD pathologies. To assess if microbiota suppression of HNF4A 

activity regulates genes differentially expressed in IBD, we queried the published human 

IBD and NEC gene expression datasets to identify human-mouse-zebrafish one-to-one-to-

one orthologs that were differentially expressed in our RNA-seq analysis of gnotobiotic 

zebrafish hnf4a mutants (Figure 3.5D). We found ortholog expression fold changes in 

human IBD/healthy comparisons most closely resembled the expression fold changes of 

MutCV/MutGF and MutCV/WTCV (Figure 3.5E-G). Neither the WTCV/WTGF nor the 

MutGF/WTGF comparisons faithfully recapitulate the expression profiles of IBD/healthy 

comparisons. This indicates that both the microbiota and loss of hnf4a function in zebrafish 

are necessary to induce a gene expression profile that resembles human IBD. Strikingly, the 

positive correlation and significant resemblance to the iCD-like gene signatures in the 

colonized hnf4a-/- compared to colonized hnf4a+/+ zebrafish digestive tracts become even 

stronger when we limited our analysis to one-to-one orthologs that have an association with 

an HNF4A bound region in mouse IECs (Figure 3.5G). Together, these results indicate that 

intestinal suppression of HNF4A target genes is a prevalent feature of human CD and UC, 

and suggests a model wherein HNF4A maintains transcriptional homeostasis in the 

presence of a microbiota and protects against an evolutionarily-conserved IBD-like gene 

expression signature. 

 

3.4 Discussion 

Over the course of animal evolution, the intestinal epithelium has served as the 

primary barrier between animal hosts and the complex microbial communities they harbor. 
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IECs maintain this barrier and perform their physiological roles in nutrient transport and 

metabolism through dynamic transcriptional programs. The regulatory mechanisms that 

orchestrate these transcriptional programs represent potential therapeutic targets for a 

variety of human intestinal diseases including IBD. Here we discovered that HNF4A activity 

and its transcriptional network are suppressed by microbiota. HNF4A is the oldest member 

of the nuclear receptor TF family [148], and our findings in fish and mammals suggest that 

microbial suppression of HNF4A may be a conserved feature of IEC transcriptional 

programs present in the common ancestor.  

We discovered HNF4A as a microbiota-suppressed transcription factor by 

demonstrating it specifically binds to a microbiota-suppressed cis-regulatory element, in3.4, 

which is located at the zebrafish gene angptl4.  This finding combined with our zebrafish 

RNA-seq data (Fig. 2FG) revealed a broad role for HNF4A in activation of microbially-

suppressed transcripts. Though hnf4a mutant zebrafish have reduced in3.4 activity in the 

intestinal epithelium based on transgenic reporter assays, the transcript levels of the 

endogenous zebrafish angptl4 gene appears unaffected in both larval digestive tracts and 

adult IECs. The zebrafish genome encodes two additional HNF4 family members (hnf4b, 

hnf4g), and previous studies in mammals have shown Angptl4 can be regulated by other 

metabolically-activated nuclear receptors [158, 299]. We hypothesize that loss of HNF4A 

function may lead to a metabolic imbalance leading to atypical or compensatory activation of 

other trans- and cis-factors that control expression of angptl4 and other genes in the 

intestine.    

Our results suggest new links between HNF4A and microbiota in the context of 

human IBD. IBD patients, particularly those suffering from Crohn’s disease, often present 

with decreased serum low-density lipoprotein levels and reduced total cholesterol levels 

compared to healthy individuals [300, 301]. These serum levels are consistent with reduced 

transcript levels for genes involved in intestinal absorption and transport of lipid and 
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cholesterol in ileal and colonic biopsies from UC and CD patients [237, 238]. Transcription 

factors, including nuclear receptors like HNF4A and FXR, are known to regulate bile acid 

production, lipid and cholesterol absorption and have already been implicated in IBD [258, 

302]. Previous studies have shown that some IBD-associated H3K27ac activated regions 

that also overlap with an IBD-associated SNP contain HNF4A binding sites [230]. This is 

consistent with our findings and supports a role for HNF4A in regulating gene expression 

and inflammation in the context of IBD. However, our work is the first to demonstrate a role 

for microbiota in suppressing HNF4A, and to implicate microbiota-HNF4A interactions in 

driving an IBD-like gene expression signature (Fig. 5).  In addition to IBD, human HNF4A 

variants are associated with metabolic syndrome [303] and type 2 diabetes [304]. 

Interestingly, microbiota have also been implicated in both of these diseases [305, 306] 

raising the possibility that microbiota suppression of HNF4A trans activity could play a role in 

these diseases as well. Indeed, we find that genes down regulated in intestinal tissue from 

IR obese patients have increased HNF4A binding associations compared to up-regulated 

genes [298], similar to the enrichment of HNF4A associations at down-regulated genes in 

IBD (Fig. 5B,C). Interestingly, up-regulated genes in these IR-obese patients were enriched 

for pro-inflammatory markers. This underscores the relationship between metabolic 

impairments and inflammation in the intestine, and prompts further investigation of how 

HNF4A might contribute. HNF4A has been shown to play key roles in anti-oxidative and 

anti-inflammatory defense mechanisms [307] so aberrant microbial suppression could 

promote an inflammatory state. HNF4A target genes are downregulated in human IBD [237, 

238] and mouse experimental colitis [260], and the HNF4A target APOA1 has been shown 

to be protective against intestinal inflammation in mice [262]. We speculate that the genes 

governed by this novel microbiota-HNF4A axis may include additional anti- and pro-

inflammatory factors that could provide new targets for IBD therapy. 
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Our results reveal similar effects of microbiota colonization and experimental colitis 

on HNF4A cistrome occupancy in the intestine, but the underlying molecular mechanisms 

are unresolved. DSS induced colitis results in reduced HNF4A protein levels and altered 

cellular localization [260], however our results indicate the microbiota neither reduce HNF4A 

protein levels nor impact its nuclear localization in jejunal IECs two weeks after colonization 

(Supplemental Fig. 65H,I). Colonization of GF mice with microbiota initiates a transcriptional 

adaptation in the intestine that progresses for several weeks before reaching homeostasis 

[121]. However, our data indicate HNF4A suppression is achieved within 15 days and 

persists through at least 45 days after colonization. These data collectively suggest that 

microbiota suppress HNF4A activity in the jejunum through mechanisms distinct from those 

utilized in DSS induced colitis. 

HNF4A has been characterized as a master metabolic regulator for its conserved roles in 

gluconeogenesis, glucose homeostasis, and fatty acid metabolism [118, 308, 309]. Despite 

its clear importance in metabolic health, relatively little insight into its regulation in a 

biological context has been reported. In vitro and cell culture studies have identified possible 

suppressors and activators of HNF4A including acetylation by CREB-binding protein (CBP), 

which has been shown to induce HNF4A activity [310, 311]. The nuclear receptor cofactor 

and master regulator of mitochondrial biogenesis PGC-1A binds HNF4A and promotes 

activation of HNF4A target genes [312]. Colonization of GF animals with a microbiota leads 

to increased energy harvest [167, 168] and changes in metabolic homeostasis including 

decreased AMPK activity in skeletal muscle and liver [169]. AMPK activates PGC-1A [313], 

therefore, microbiota might suppress HNF4A activity indirectly through induced alterations in 

metabolic homeostasis. Other studies have shown that HNF4A activity is controlled through 

use of alternative promoters which generate different isoforms [314]. However, we did not 

detect differential Hnf4a exon usage by DEXseq [315] in our RNA-seq data from GF and CV 

IECs (data not shown). Another facet of HNF4A biology that remains unresolved is the 
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identity of its endogenous ligand(s). Although historically considered an orphan nuclear 

receptor, several fatty acids, including linoleic acid, have been identified as ligands for 

HNF4A [308, 316, 317]. Fatty acids are an attractive class of putative regulators of HNF4A 

since the microbiota are known to regulate FA absorption in zebrafish IECs [168].  Further, 

specific bacterial taxa are known to modify the structure of polyunsaturated FAs (PUFAs) 

and these native and modified PUFAs have distinct impacts on animal health [318] and may 

serve as therapeutics for IBD [319]. 

In our attempt to understand how the microbiota regulate HNF4A activity and host 

gene transcription, we were motivated to investigate if microbiota impact histone 

modification and chromatin accessibility in the mouse jejunum. Our findings support the 

model that microbiota alter IEC gene expression by affecting TF binding and histone 

modification at tissue-defined open chromatin sites [53]. We provide the genomic addresses 

of hundreds of microbiota-regulated enhancers as well as the genes associated with these 

enhancers and HNF4A binding sites. Similar to other findings in intraepithelial lymphocytes 

[320], our work demonstrates a clear microbial contribution to the modification of the histone 

landscape in IECs and provides another important layer of regulation that orchestrate 

microbiota regulation of host genes involved in intestinal physiology and human disease. We 

were also able to establish a link between microbiota-regulated genes and enhancers and 

NR binding sites. These NR binding sites are coincident with a core set of TFs that are 

enriched near microbiota-suppressed enhancers/genes (GATA) or induced 

enhancers/genes (ETS-factors and IRF) (Supplemental Fig. S7). GATA4 was previously 

shown to be a positive regulator of genes suppressed by microbiota in the mouse jejunum 

([132], supporting potential coregulatory interactions with HNF4A. Coregulation by other TFs 

represents one possible mode of HNF4A regulation by which the microbiota could suppress 

HNF4A activity without impacting the gene transcription of all HNF4A -associated genes.  
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3.5 Methods 

3.5.1 Zebrafish Husbandry: 

Tg(in3.4:cfos:gfp) (Camp et al., 2012) stable transgenic lines were maintained on a 

TL/Tü background using established protocols approved by the Animal Studies Committee 

at the University of North Carolina at Chapel Hill and Duke University School of Medicine. 

Conventionally raised zebrafish were reared and maintained as described [321]. Production, 

colonization, maintenance, and sterility testing of gnotobiotic zebrafish were performed as 

described [322]. 

 

3.5.2 Mouse Husbandry:  

All mouse husbandry was performed as described in [53] using established protocols 

approved by the Animal Studies Committee at the University of North Carolina at Chapel Hill 

and Duke University School of Medicine with the following exceptions. All mice used in this 

study were 10 – 12 week old male C57BL/6J, housed on Alpha-dri bedding (Shepherd) and 

fed 2020SX diet (Envigo) ad libitum.  To generate conventionalized mice, germ-free mice 

were colonized with a conventional microbiota from by receiving a 200 uL oral gavage 

of 20% glycerol stock containing 1:1 w/v fecal sample collected from adult SPF C57BL/6J 

mice collected over 2 weeks and homogenized in reduced PBS.   

 

3.5.3 Yeast 1-Hybrid ORFeome Screen:   

The yeast 1-hybrid ORFeome screen was performed using the Clontech 

MatchmakerTM Gold Yeast One-hybrid Library Screening System (cat. 630491) protocol 

with the following exceptions: The Y1HGold yeast strain was transformed using standard 

yeast transformation procedures with BstBI digested pBait-AbAi containing either the WT or 

a SDM in3.4 or the p53 binding site sequence, and positive transformants were selected on 
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SD/-URA media. In addition, a ORFeome library consisting of 148 zebrafish transcription 

factors cloned from adult zebrafish liver into pDEST22 prey vectors containing an N-terminal 

GAL4-activation domain was utilized [323]. Each plasmid was individually transformed in the 

yeast strains Y1HGold[in3.4/AbAi] or Y1HGold[p53/AbAi] and positive transformants were 

selected on SD -URA -TRP.  The primary screen to test for positive interactions between the 

prey transcription factor and the bait sequence was tested twice in the laboratory by 

pipetting 10 uL of transformed yeast onto SD/-URA/-TRP with AbA (125ng/ml) agarose 

plates.  The secondary screen to test for positive interactions was performed by streaking 

individual colonies from the primary screen onto SD/-URA/-TRP with AbA (125ng/ml) 

agarose plates.  Zebrafish hnf4a and hnf4g cDNAs (see Supplemental Table 1 for primers 

used for amplification) were cloned into a custom pENTR plasmid (termed pENTR-Ale1) 

using In Fusion (Takara Bio 638909) and inserted into pDEST22 using LR clonase 

(Invitrogen 12538120).  These newly cloned transcription factors were tested for a positive 

interaction with in3.4 using the same procedures as above.   

 

3.5.4 Site Directed Mutagenesis: 

Site directed mutagenesis was performed using the primers found in Supplemental 

Table 1.  A 40 cycle PCR reaction was performed using iProof HiFi Polymerase (Biorad 

1725301).  Newly synthesized plasmids were digested with DpnI (New England Biolabs 

R0176L) overnight to digest template DNA and transformed into DH5a E. coli.  SDM Vectors 

were confirmed by Sanger sequencing.  

 

3.5.5 Zebrafish Transgenesis and Imaging: 

Co-injections of Tol2 SDM or WT in3.4:cfos:gfp plasmid and transposase mRNA 

were performed as described (Camp et al., 2012) with the following exceptions: 50 – 100 
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zebrafish embryos were injected at the 1–2 cell stage with approximately 69 pg of plasmid 

DNA at a DNA:transposase ratio of 1:2. At least 9 - 18 fish/construct were imaged on a 

Leica M205 FA with a Leica DFC 365FX camera at the same magnification and exposure 

time and densitometric measures were quantified in 8-bit gray scale images using FIJI 

software. Three mosaic patches within a given tissue of an imaged fish were quantified for 

mean fluorescence intensity and averaged. Statistical significance was analyzed using 

Kruskal-Wallis one-way analysis of variance and Dunn’s multiple comparison test using 

GraphPad Prism software.  

 

3.5.6 Zebrafish Mutagenesis: 

Targeted gene deletion of the hnf4a gene was performed using CRISPR/Cas9 

nuclease RNA-guided genome editing targeting the fourth exon of hnf4a.  The guide RNA 

sequences were designed using “CRISPR Design Tool” (http://crispr.mit.edu/).  Guide RNAs 

(Supplemental Table 1) were generated from BamHI (New England Biolabs R0136L) 

digested pT7-gRNA plasmid (a gift from Wenbiao Chen and available from Addgene: 

http://www.addgene.org/46759/) and by performing an in vitro transcription reaction using 

MEGAshortscript T7 kit (Ambion/Invitrogen AM1354) [324].  Cas9 mRNA was generated 

from XbaI (New England Biolabs R0145S) digested pT3TS-nls-zCas9-nls plasmid (a gift 

from Wenbio Chen and available from Addgene: http://www.addgene.org/46757/) followed 

by an in vitro transcription reaction using mMESSAGE mMACHINE T3 kit 

(Ambion/Invitrogen AM1348) [324]. 150 ng/uL of nls-zCas9-nls and 34 ng/uL of each gRNA, 

0.05% phenol red, 120 mM KCl, and 20mM Hepes (pH 7.0) were injected directly into the 

cell(s) of one to two cell stage developing zebrafish embryos of Tü background.  

Mutagenesis was initially screened using Melt Doctor High Resolution Melting Assay 

(Thermo Fisher Scientific 4409535) and subsequent screening of the -43 and +25 alleles 

was performed using 2% agarose sodium borate gel electrophoresis. Protein and DNA 

http://crispr.mit.edu/
http://www.addgene.org/46759/
http://www.addgene.org/46757/
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sequences were visualized using CLC Sequence Viewer 7(CLC Bio) HNF4A protein 

phylogeny tree was generated in CLC Sequence Viewer 7.  The majority of zebrafish 

experiments were performed using hnf4a-43/-43 genotype. However, the gnotobiotic zebrafish 

experiment was performed using larvae from an intercross between hnf4a-43/-43 and hnf4a-

43/+25 adults.  We have not observed significant gene expression or morphological 

differences between hnf4a-43/-43 and hnf4a+25/+25 genotypes.  

 

3.5.7 Zebrafish Immunohistochemistry: 

6 dpf zebrafish larvae were fixed in 4% PFA overnight at 4 C.  Fixed larvae were 

mounted in 4% low melting point agarose molds.  200 um axial cross sections of fixed larvae 

were generated using a Leica VT1000S.  Vibratome slices were washed once in ice cold 

PBS followed by 4 times with PBS containing 0.1% tween 20 and then incubated in blocking 

solution (PBS with 10% heat inactivated calf serum, 0.1% Tween-20 and 0.5% Triton X-100) 

for 4 hours.  Slices were incubated overnight with 4e8 antibody (Mouse anti-4e8, Abcam 

ab73643) diluted 1:200 in PBS with 5% heat inactivated calf serum, 0.1% Tween-20 and 

0.5% Triton X-100 at 4°C with agitation.  Samples were washed in PBST 3 times for 10 

minutes per wash and incubated with secondary antibody (1:1000) (Goat Anti-Mouse Alexa 

Fluor 568 Invitrogen, A11004) and Alexa Fluor 647 phalloidin (1:300) (Invitrogen, A22287) in 

PBS with 5% heat inactivated calf serum, 0.1% Tween-20 and 0.5% Triton X-100 for 3 

hours.  Slices were washed in PBS 3 times for ten minutes per wash, mounted onto slides 

with DAPI mounting media (Vector Laboratories, Inc, H-1200) and imaged on a Leica SP8 

confocal microscope.  Images shown in Figure 3.1F are representative of two experiments 

with 3 larvae per experiment per genotype. 
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3.5.8 Mouse IEC Isolation: 

Mice were euthanized under CO2 and cervical dislocation and placed on a chilled 

wax dissection pad.  The small intestine was removed from the mouse and the jejunum was 

excised from the duodenum and ileum. Duodenum was defined as the anterior 5 cm of the 

midgut and ileum was defined as posterior 6 cm of midgut as described (Camp, et al 2014).  

Adipose and vasculature were removed from the tissue.  The jejunum was opened 

longitudinally along the length of the tissue, exposing the lumen and epithelial cell layer.  

Luminal debris was washed away from the epithelia with ice cold sterile PBS.  The tissue 

was temporarily stored in 10 ml of ice cold sterile PBS with 1x Protease Inhibitor (Complete 

EDTA-Free, Roche 11873580001) and 10 uM Y-27632 (ROCK I inhibitor, Selleck Chemicals 

S1049) to inhibit spontaneous apoptosis.  The jejunum was moved into a 15 ml conical tube 

containing 3 mM EDTA in PBS with 1x protease inhibitor and 10 uM Y-27632.  The tissue 

was placed on a nutator in a cold room for 15 minutes.  The jejunum was removed from the 

3 mM EDTA and placed on an ice cold glass petri dish with PBS containing 1mM MgCl2 and 

2 mM CaCl2 with protease inhibitors and 10 uM Y-27632.  Villi were scraped off of the tissue 

using a sterile plastic micropipette and placed into a new 15 ml conical tube.  The isolated 

IECs were then pelleted at 250 x g at 4°C for 5 minutes, resuspended in 15 ml of ice cold 

PBS containting 10 uM Y-27632 and 1x protease inhibitors and pelleted again at 250 x g at 

4°C.  The cell pellet was used for chromatin immunoprecipitation or for nuclear extractions.   

 

3.5.9 Mouse Intestine Immunofluorescence and Western Blot: 

Mid-jejunal tissue was dissected and cleaned as in the IEC villi isolation above.  The 

whole, splayed open tissue was pinned to 3% agarose and fixed in 4% PFA overnight with 

gentle agitation at 4°C.  The fixed tissue was washed 4 times with PBS for 15 minutes.  The 

tissue was then permeabilized in PBS with 0.5% Tween 20 for 1.5 hours at room 

temperature.  Following permeabilization, the tissue was blocked in 5% donkey serum in 
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PBS with 0.1% Tween 20 for 2 hours at room temperature.  The tissue was moved into a 35 

mm dish and incubated with the primary antibody (Mouse anti- HNF4A, Abcam 41898 or 

Goat anti-HNF4G, Santa Cruz sc-6558X) diluted 1:200 overnight at 4°C with gentle 

agitation.  The tissue was washed 4 times in immunowash buffer (PBS, 0.1% Tween-20, 1% 

DMSO and 1% BSA) at room temperature and incubated in secondary antibody (Goat Anti-

Mouse Alexa Fluor 488 Invitrogen, A11001 or Donkey Anti-Goat Alex Fluor 568 Invitrogen, 

A11057) diluted 1:100 and Alexa Fluor 488 phalloidin or Alexa Fluor 568 phalloidin diluted 

1:250 (Invitrogen A12379 and A12380, respectively) in PBS with 0.1% Tween-20 for 4.5 

hours at room temperature.  The tissue was then washed 6x in Immunowash buffer, 

mounted on a microscope slide with DAPI mounting media (Vector Laboratories, Inc, H-

1200) and imaged on a Leica SP8 confocal microscope. 

Western blots were performed on non-crosslinked IEC lysates (see below) using standard 

chemoluminescence Western blot protocols, including ECL (Biorad 170-5061) and primary 

antibodies Goat anti-HNF4A (Santa Cruz sc-6556), Goat anti-HNF4G (Santa Cruz sc-

6558X) and Rabbit anti-ACTB (Cell Signaling 13E5), Donkey anti-Goat-HRP conjugate 

(Santa Cruz sc-2020), and Goat anti-Rabbit-HRP conjugate (Jackson ImmunoResearch 

111-035-003, a gift from Stacy Horner at Duke University).  The western blot shown in 

Supplemental Figure 3.S6H is a representative of two experiments.    

 

3.5.10 Cell Lysis and Chromatin Sonication for ChIP: 

Washed and pelleted IECs were resuspended in 10 ml of 1% EM grade 

formaldehyde (Electron Microscopy sciences, 15710) in ice cold PBS containing 10 uM Y-

27632 and 1x protease inhibitors.  The cells were fixed for 25 minutes at room temperature 

with agitation.  Formaldehyde fixation was quenched by adding glycine to a final 

concentration of 125 mM.  The cells were pelleted at 250 x g for 5 minutes at 4°C and 

resuspended in ice cold PBS with 1x protease inhibitors and 10 uM y-27632.  This wash 
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step was repeated twice.  Upon the third wash, the cell pellet was aliquoted into 3 equal 

volumes in 3 microfuge tubes.  The cells were pelleted in the microfuge tubes and 

resuspended in 300 uL of ChIP Lysis Buffer (1% IGEPAL, 0.5% sodium deoxycholate, 1% 

SDS in 1x PBS) containing 1x protease inhibitor (Roche).  The cells were stored on ice for 2 

hours and sonicated using a Bioruptor 4°C water bath sonicator.  Chromatin was sheared to 

mean size of 250 – 300 bp (10 minutes of 30 seconds on High, 30 seconds off, repeated 

once for a total of 20 minutes – total sonication time is 10 minutes on High, 10 minutes off).  

Sonicated material was spun at 14,000 x g for 20 minutes and the supernatant was 

transferred to a new microfuge tube.  ChIP was performed immediately on sonicated 

chromatin or it was snap frozen and stored at -80°C.  To check chromatin shearing 

efficiency and to prepare ChIP input samples, 20 uL of each sonicated sample was removed 

and added to a new tube.  180 uL of ChIP elution buffer and 8 uL of 5 M NaCl was added to 

the 20 uL input samples.  Chromatin shearing efficiency was visualized on a gel following 

reverse crosslinking by incubating the input sample at 65°C overnight. 

 

3.5.11 Chromatin Immunoprecipitation, Library Preparation and Next-Generation 

Sequencing: 

Frozen sonicated chromatin was thawed on ice.  Thawed and fresh chromatin 

samples were diluted in 1 mL of ChIP dilution buffer (1% Triton X-100, 2 mM EDTA, 20 mM 

Tris-Cl (pH 8.1), and 150 mM NaCl) containing 1x protease inhibitor and precleared with 

washed protein G Dynabeads for 3 hours at 4°C on a nutator.  Precleared chromatin was 

incubated with ChIP grade antibodies [4 ug H3K4me1 (Rabbit anti-H3K4me1, Abcam 

ab8895), 4 ug H3K27ac (Rabbit anti-H3K27ac, Abcam ab4729), 8 ug HNF4A (Mouse anti-

HNF4A, Abcam 41898), 8 ug HNF4G (Goat anti-HNF4G, Santa Cruz sc-6558X), 8 ug CTCF 

(Rabbit anti-CTCF, Active Motif, 61311)] overnight at 4°C on a nutator.  Antibody-chromatin 

complexes were pulled down with washed protein G dynabeads for 4 hours at 4°C on a 
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nutator.  The beads were washed 5x for 3 minutes with ice cold LiCl wash buffer (100 mM 

Tris-Cl (pH 7.5), 500 mM LiCl, 1% IGEPAL, 1% sodium deoxycholate)) and 1x with ice cold 

TE buffer at 4°C on a nutator.  Washed beads were resuspended in 100 uL of ChIP elution 

buffer (1% SDS and 0.1 M sodium bicarbonate)) and placed in a thermomixer heated to 

65°C and programed to vortex at 2000 RPM for 15 seconds, rest for 2 minutes for a total of 

30 minutes.  The beads were pelleted, placed on a magnet, and the supernatant was moved 

to a new tube.  This elution process was repeated once and corresponding elutions were 

combined for a total of 200 uL.  To reverse crosslink immunoprecipitated chromatin, 8 uL of 

5 M NaCl was added to each 200 uL ChIP elution and elutions were incubated at 65°C 

overnight.  Immunoprecipitated chromatin was isolated using a QIAquick PCR quick 

preparation kit (Qiagen 28104), quantified using a Qubit 2.0 flourometer and stored at -80°C 

until library preparations and amplification.  Libraries were always prepared within 3 days of 

the immunoprecipitation with the NEBNextUltra DNA Library Prep Kit for Illumina (New 

England Biolabs E7370S).  Prepared libraries were quantified using a Qubit 2.0 fluorometer 

and submitted to Hudson Alpha Genomic Services Laboratory for 50 bp single end 

sequencing on an Illumina HiSeq 2500 with 4 samples per lane in the flow cell.    

Germ free or conventionalized chromatin for input normalization was generated 

using the same protocol as above except no antibody was used during the overnight 

antibody incubation; instead, chromatin was incubated at 4°C with gentle agitation.  Bead 

incubation, reverse-crosslinking and library preparations for these samples were performed 

using the same protocol as the ChIPs.   

 

3.5.12 DNase Hypersensitivity on IECs: 

DNase hypersensitivity was performed as described [53] with the following modifications: 

IECs were isolated as above from jejunum and subjected to endogenous DNase activity to 

digest chromatin.  DNase-seq libraries were constructed as previously described, with “Oligo 
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1b” phosphorylated at the 5’-end to enhance ligation efficiency [325].  Libraries were 

sequenced by Illumina HiSeq 2000 with 50 bp single end reads with 3 samples per lane.   

 

3.5.13 RNA Isolation, qRT-PCR, RNA-seq: 

For RNA-seq, zebrafish digestive tracts (n = 13 – 20 per condition per genotype) 

were removed by microdissection and resuspended in 1 mL TRIzol 

(Ambion/Invitrogen/ThermoFisher Scientific 15596026).  Larval digestive tracts were lysed 

by being passing through a 25 G needle followed by a 27.5 G needle 5 times each.  Mouse 

jejunum intestinal epithelial cells were collected as mentioned above.  Prior to crosslinking, 

1/50 of the isolated IECs were suspended in 1 ml TRIzol and stored at -80°C.  For both 

zebrafish and mouse RNA samples, 200 uL of chloroform was added to the TRIzol and the 

sample was vortexed on high for 30 seconds at room temperature.  The samples were 

incubated at room temperature for 2 minutes and centrifuged at 12,000 x g for 15 minutes at 

4°C.  The top aqueous layer was removed and added to equal volume of isopropanol.  The 

nucleic acids were isolated using a column-based RNA-isolation kit (Ambion Cat 

12183018A) with an on column DNase I (RNase-free) treatment (New England Biolabs 

M0303L) to remove DNA contamination.  RNA was eluted off the column in nuclease-free 

water, quantified using a Qubit 2.0 and stored at -80°C until submission to the Duke 

Sequencing and Genomic Technologies Core.  RNA-seq libraries were prepared and 

sequenced by Duke Sequencing and Genomic Technologies Core on an Illumina HiSeq 

2500 with 4 samples per lane in the flow cell. 

For qRT-PCR, adult zebrafish IECs from one adult or 6 dpf larvae (n= 5 – 10) with 

the same genotype were suspended in 1 mL of TRIzol.  RNA was extracted using the same 

protocol as above with the following exceptions: following sample resuspension in 

isopropanol, samples were frozen at -20°C O/N and spun at 15,000 x g for 30 minutes.  

Pellets were washed twice with RNase-free 70% ethanol and left to air dry for 10 minutes.  
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Nucleic acids were resuspended in RNase-free water containing DNase (DNA-free DNA 

Removal Kit, ThermoFisher Scientific AM1906) and incubated for 30 minutes at 37°C.  

DNase was inhibited and purified RNA was quantified using a Nanodrop spectrophotometer 

and stored at -80°C.  cDNA was generated using iScript cDNA synthesis kit (Biorad 

1708891) and qRT-PCR was performed using Quanta’s PerfeCTa Sybr-green (Quanta 

101414-154) in an Applied Biosystems StepOnePlus Real-Time PCR Systems machine 

(Supplemental Table 1). 

For ChIP-PCR, Immunoprecipitated chromatin was isolated using a QIAquick PCR quick 

preparation kit (Qiagen 28104), and stored at -20°C.  Immunoprecipitated chromatin was 

used as template in a qRT-PCR reaction using Quanta’s PerfeCTa Sybr-green (Quanta 

101414-154) in an Applied Biosystems StepOnePlus Real-Time PCR Systems machine 

(Supplemental Table 1). 

 

3.5.14 RNA-seq Bioinformatics: 

Zebrafish RNA-seq reads were aligned to the zebrafish genome (danRer7) using 

TopHat2 v0.6 using de novo splice junction mapping (default TopHat settings). FPKM 

expression values were obtained for transcripts via Cufflinks, and pairwise differential gene 

expression tests were carried out with Cuffdiff v0.0.6 (Trapnell et al. 2012) using a minimum 

alignment count of 100 and using multi-read correct and read group datasets.  The default 

significance threshold of FDR < 5% was used for each comparison.  Hierarchical clustering 

of replicates and gene expression heatmap of RNA-seq data were generated using 

complete linkage clustering and averaging the log10 (FPKM) of each gene with Cluster v3.0.  

Subsequent heatmaps in Supplemental Figure 3.S3 were generated using complete 

hierarchical gene clustering of the log2 (fold change) between compared conditions with 

Cluster v3.0.  Principle components analysis was performed with a wide estimation method 

with JMP13.  Discriminant analysis was performed with a wide linear method with JMP13. 
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GO enrichments were performed with DAVID 6.7 [326, 327].  The relatedness heatmap was 

generated with principle components in R (ggplot2 package). A 4-way Venn diagram was 

generated using the 4,007 genes that were differentially regulated in any comparisons with 

online software: http://bioinformatics.psb.ugent.be/webtools/Venn/.  Disease associations 

were performed using DRSC Disease Gene Query Tool [328] (http://www.flyrnai.org/diopt-

dist).  The number of genes associated with various diseases were added together and 

ranked by total number of associated genes.  Unique genes associated with “Inflammatory 

Bowel Disease”, “Crohn’s Disease”, and “Ulcerative Colitis” were combined into one IBD list.  

If a zebrafish gene was orthologus to many human gene associated with the same gene, the 

zebrafish gene was counted only once for a given disease.  For example, fads2 has 3 

human othologs: FADS1, FADS2, and FADS3.  FADS1 and FADS2 are both associated 

with IBD but the gene family was only counted once.  

Mouse RNA-seq reads were aligned to the mouse genome (mm9) using TopHat 

v2.1.0 using de novo splice junction mapping with default settings).  Normalized fragments 

per kilobase of transcript per million mapped reads (FPKM) expression values were 

obtained for genes via Cufflinks, and pairwise differential gene expression tests were carried 

out with Cuffdiff v2.2.1.3 (Trapnell et al. 2012) using multi-read correct, bias correction and 

read group datasets.  The default significance threshold of FDR < 5% was used for each 

comparison.  To assess the association of differential DHS, H3K4me1 and H3K27ac and 

nearby gene expression differences in the presence and absence of a microbiota, we linked 

chromatin marks found within 10kb upstream or downstream of the nearest expressed gene 

(as defined by RNA-seq; minimum alignment count of 100 reads was used to determine 

detectable expression) transcription start site with that gene using GREAT version 3.0.0 

(Single nearest gene definition) for putative regulation.  The distributions of fold-change 

FPKM values in the presence and absence of a microbiota were compared to the 

distributions of all 9,173 expressed genes by a two-sided Kolmogorov-Smirnov test.  GO 

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://www.flyrnai.org/diopt-dist
http://www.flyrnai.org/diopt-dist
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enrichments were performed using DAVID 6.7 [326, 327].  IBD and NEC gene expression 

summary tables were derived from the published studies [237, 238, 297]. 

 

3.5.15 ChIP-seq and DNase-seq Bioinformatics: 

Mouse ChIP-seq were aligned to the mouse genome (mm9) using Bowtie2 v2.2.6 

with default settings.  ChIP peaks were called using the appropriate aligned input reads as 

the control file with MACS2 callpeak Galaxy version 2.1.0.20151222.0 with FDR <5% as the 

peak detection threshold.  Sequencing depth normalization was performed in two ways: 

DESeq was used for sequencing depth normalization, variance fitting, and pairwise 

differential analysis (Anders and Huber 2010) and bamCoverage (Galaxy version 2.2.3.0) 

using RPKM normalization.   

To identify differential H3K27ac and H3K4me1 sites, H3K27ac and H3K4me1 ChIP-

seq peak calls were merged using the same parameters as in DNase-seq analysis except 

using a FDR < 1%.  Raw counts were pulled from BAM files and used for calling differential 

peaks using R packaged DESeq2 v1.10.1 [329].  Motif enrichment in promoters near 

differential H3K27ac regions were generated using the single nearest gene definition in 

GREAT v3.0.0 and limiting the regulatory domain to 10kb. Heatmaps and average signal 

graphs were generated by aligning the average signals around MACS2 peaks from 

differential H3K27ac regions (Supplemental Figure 3.S4F) or median number of MACS2 

called peaks of condition/ChIP: Supplemental Figure 3.S4G,H (CV DHS), Figure 3.4A,B (GF 

HNF4A-ChIP replicate), Supplemental Figure 3.S6A (CV HNF4A-ChIP replicate), 

Supplemental Figure 3.S6C (CV HNF4A-ChIP minus GF HNF4A-ChIP).  Peaks generated 

from sequencing noise were omitted from these analyses by MACS2 or manually.  Gene 

associations for GF and CV HNF4A peaks were generated using the replicate with the 

largest number of MACS2 called peaks using the single nearest gene definition in GREAT 

v3.0.0 and limiting the regulatory domain to 10kb.  Repeat masked FASTA sequences 
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extracted from the noted regions were submitted for de novo transcription factor binding site 

analysis using MEME-suite (Figure 3.3E,F).  Specific transcription factor binding site 

analysis (Figure 3.4D) was performed using HOMER2.  The hierarchal clustering and 

heatmap representation of PWM enrichment was generated with Cluster v3.0.  Deming 

linear regression analysis was used to determine significant increases in H3K27ac, 

H3K4me1, and DNase-seq signal around HNF4A binding sites.  Pairwise comparison of 

ChIP-seq signal (Supplemental Figure 3.S5) from individual replicates was performed by 

generating read counts as determined by HTSeq Galaxy Version 0.6.1.galaxy1 [330] using 

intersection (nonempty) and non-stranded parameters with a minimum alignment quality of 

10. Reads were counted at MACS2 peaks from the GF3 replicate (GFrep3) and GF4 

(GFrep4) replicate for HNF4A and HNF4G respectively.  

Mouse DNase-seq reads were aligned using Bowtie version 0.12.0, with 2 mismatches 

allowed and mapping up to 4 sites.  The output BAM files were transformed to bed files.  

Blacklist regions and PCR artifacts were then filtered from bed files.  DNase hypersensitivity 

sites narrow peak calls were generated from MACS2 (version 2.1.0.20140616, 

https://github.com/taoliu/MACS/), with FDR <1%.  To identify differential DHS sites, DHS 

peak calls for each condition were merged and windowed as described in ChIP-seq 

analysis. Raw sum counts for each base-pair’s DNase-seq signals within each 300 bp 

window from each replicates were input into R package DESeq2 v1.10.1[329] and 

differential peaks were identified using FDR <5% (no differential peak calls found) and p < 

1%.   

 

3.5.16 Bioinformatic and Statistical analysis: 

Sample sizes for zebrafish experiments (noted in figure legends) were selected 

based on genotype availability and transgenesis efficiency. All sample collection was 

performed two or more times on independent days. For sequencing experiments, statistical 

https://github.com/taoliu/MACS/
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calls for differential gene expression were made by Cuffdiff2 using parameters stated above 

[331]. For the zebrafish RNA-seq experiment Next-Gen sequencing was performed once 

and at the same time to avoid batch effects: WTGF and WTCV (n = 3); MutGF and MutCV 

(n = 2). We originally collected n = 3 MutGF and MutCV biological replicates, however, using 

pre-established criteria and to avoid RNA contamination, we excluded one biological 

replicate from all analysis from these groups because of sequencing reads that mapped 

within the deleted hnf4a exon in the hnf4a-/- genotype.  

GF mice were randomly chosen by gnotobiotic staff for microbiota colonization (CV) 

based on their availability and litter sizes. All sample collection was performed two or more 

times per condition on independent days. GF and CV mouse samples were collected on 

different days. For sequencing experiments, statistical calls for differential gene expression 

and differential peak calls were made by Cuffdiff, MACS2, and DSseq2 using parameters 

stated above [329, 331-333]. For the mouse RNA-seq experiment Next-Gen sequencing 

was performed once and at the same time to avoid batch effects: GF (n = 2) and CV (n = 2). 

Paired GF and CV ChIP and library amplification was performed simultaneously. Typically, 

biological ChIP replicates were sequenced on different days and were always paired with 

the other condition (i.e. CV and GF were always sequenced together). The number of 

biological ChIP replicates (noted in figure legends) was dependent on reproducibility 

between ChIP samples and/or our ability to determine statistical differential sites using 

DESeq2 (for H3K4me1 and H3K27ac).  

 All statistical metrics (except where otherwise noted) were performed in Graphpad 

Prism 7.01. Deming linear regression was used for Figure 3.5 because it is a stronger and 

more accurate assessment of correlation when both the x and y variables have experimental 

error. Details regarding the other statistical tests used in this study can be found in the figure 

legends or above. 
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3.6 Data Access 

Transcription factor ChIP-seq, Histone ChIP-seq, DNase-seq and RNA-seq datasets 

have been submitted to the NCBI Gene Expression Omnibus (GEO; 

http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE90462. More supplemental 

tables are accessible on the Genome Research website. 

http://www.ncbi.nlm.nih.gov/geo/
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3.8 Supporting Information 

 
Figure 3.S1: The hnf4 family of transcription factors bind specifically to a microbiota 
suppressed zebrafish enhancer. (A) Schematic showing the molecular mechanism of the yeast-1-
hybrid assay.  A library of 148 zebrafish transcription factors was transformed into a yeast strain that 
contained a reporter construct that contained the zebrafish CRR in3.4.  If one of the zebrafish TFs 
bound to in3.4, the reporter gene will be transcribed and the yeast will grow on media containing the 
antibiotic Aureobasidin A (Aba). (B) Scanned plates from the primary yeast-1-hybrid (Y1H) screen 
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that identified hnf4b (red circle) as the only transcription factor that robustly rescued yeast growth on 
the selective media.  hnf4a and hnf4g were not included in the initial 148 TF library. After cloning 
these TFs into the prey vectors, we found that all three Hnf4 family members bound to the in3.4 bait 
sequence and drove expression of the reporter gene (Figure 3.1B).  Gata6 is used as a control since 
it is predicted to bind in3.4, but does not rescue yeast growth. However, this TF family failed to rescue 
yeast when in3.4 was replaced with a canonical p53 binding site control bait sequence, suggesting a 
sequence specific interaction (data not shown). (C) Single nucleotide site-directed mutations (SDM) 
within Site 1 and Site 2. The selected nucleotides were predicted to impact Hnf4 binding. The 
nucleotide mutation is highlighted in a color for each SDM. Using mammalian position weight 
matrices (PWMs), we found HNF4 is predicted to bind both regions previously shown to be essential 
for intestinal reporter expression (Figure 3.1A). To test if these putative binding sites are the location 
of Hnf4 binding and essential for reporter activity, we performed site-directed mutagenesis on 
individual nucleotides within the predicted Hnf4 binding sites (Figure 3.1C). (D) Images of plates from 
serial dilutions of a Y1H assay using WT and mutated in3.4 as bait and zebrafish hnf4 genes and 
gata6 as prey. Yeast were grown on media without the selective antibiotic to demonstrate equivalent 
CFUs were plated and on media containing AbA which inhibits yeast growth in the absence of an 
actively transcribed reporter gene.  Mutations in the first predicted binding site (Site 1) resulted in 
severe growth attenuation of yeast transformed with the hnf4g and hnf4b prey vectors.  However, 
yeast transformed with the hnf4a prey vector only had partial attenuated growth when harboring 
mutations in the Site 1 sequence. Strikingly, mutations in the second predicted binding site (Site 2) 
resulted in failed growth of yeast transformed with all three hnf4 prey vectors with the notable 
exception of Site 2.2, which only partially attenuated growth of yeast transformed with the hnf4a prey 
vector. (E) To test if the putative HNF4A site was essential for in3.4 enhancer activity, we generated 
new versions of the in3.4:cfos:gfp reporter which contained single nucleotide mutations in Site 1 or 2. 
These reporter constructs were injected into wild-type zebrafish to generate mosaic transgenics. 
Single nucleotide mutations in Site 1 or 2 of the in3.4:cfos:gfp reporter were sufficient to ablate in3.4 
intestinal activity in zebrafish. Data shown in panels D and E establish that one or more Hnf4 family 
members bind in3.4 in a sequence dependent manner and that mutation of the predicted Hnf4 
binding sites of this microbiota-suppressed CRR result in suppressed enhancer activity in the 
intestinal epithelium. (F) Chart showing the GFP fluorescence (mean ± sem) in 6dpf mosaic zebrafish 
injected with transposase and WT (n =10) and SDM in3.4:cfos:gfp Tol2 vectors (n =9 and n = 17). 
Mean fluorescence was measured within the intestine of mosaic animals using a constant region of 
interest (ROI) (Kruskal-Wallis, Kruskal Wallis statistic = 20.26 and **** p < 0.0001). (G) HNF4 protein 
phylogenetic tree showing the evolutionary relationship of the Hnf4s across species. Dm. – 
Drosophila melanogaster, Dr. – Danio rerio, Mm. – Mus musculus, Hs. – Homo sapiens. 
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Figure 3.S2: hnf4a-43/-43 mutants survive to adulthood and have reduced hnf4a transcript and 
reduced intestinal lumen size. (A) Schematic showing the zebrafish hnf4a gene locus (splice form 
hnf4a-201) and the region that was targeted by the guide RNAs.  Exons are highlighted in solid blue 
blocks, untranslated regions are indicated by white blocks with blue outlines, and the CRISPR 
targeted region is indicated by the orange line. (B) DNA sequence showing the genomic region that is 
mutated in the hnf4a+25 and hnf4a-43 allele. (C) Amino acid sequence of human, mouse, and WT and 
mutant zebrafish Hnf4a proteins showing sequence conservation in the DNA binding domain and 
hinge domain.  The hnf4a+25/+25 and hnf4a-43/-43 mutations are predicted to result in truncated proteins 
in this highly conserved domain.  (D) Bar graph showing genotypes at the expected Mendelian ratios 
of progeny from an hnf4a+/-43 heterozygous incross at both 6dpf and adult stages (mean ± sem). (E) 
Bar graph showing the hnf4a relative mRNA expression (mean ± sem) from whole hnf4a+/+ (n = 4), 
hnf4a+/-43 (n = 4) and hnf4a-43/-43 (n = 4) 6dpf larvae (Two-tailed t-test, t = 4.79, 6.734, respectively and 
df = 6). (F) Bar graph showing the diameter of the intestinal lumen (mean ± sem) along the first 
segment of hnf4a+/+ (n = 9) and hnf4a-43/-43 (n = 8) 6dpf larvae (Two-tailed t-test, t = 2.56, df = 15 and 
p = 0.0219). 
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Figure 3.S3: Hnf4a maintains transcriptional homeostasis in the presence of a microbiota in 
zebrafish digestive tracts. (A) Principle components analysis (PCA) using a wide estimation method 
showing the relative similarities of mRNA-seq transcript abundances in digestive tracts from WTGF 
(Blue), WTCV (purple), MutGF (red), and MutCV (orange) 6dpf zebrafish.  (B) Discriminant analysis 
using wide linear parameters plot showing the relative similarities and statistical groupings of mRNA-
seq transcript abundances in digestive tracts from WTGF (Blue), WTCV (purple), MutGF (red), and 
MutCV (orange) 6dpf zebrafish.  The inner ellipse of each group signifies the 95% confidence interval 
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to contain true mean of that group and the outer ellipse signifies 50% of the population within the 
group is contained within ellipse. (C) Heatmap showing the relative similarities of mRNA-seq 
transcript abundances in digestive tracts from WTGF (Blue), WTCV (purple), MutGF (red), and 
MutCV (orange) 6dpf zebrafish. (D) Heatmaps referred to in Figure 3.3B showing the log2 (FC) 
relative expression of sublists of differentially regulated genes.  The top 5 enriched GO terms and top 
5 enriched KEGG pathways for each sublist of genes is included to the left of each heatmap.  The 4 
columns are: WTCV/WTGF, MutCV/MutGF, MutCV/WTCV, and MutGF/WTCV, respectively. (E) 
Heatmap showing the Log2 (FC) relative expression of 86 genes that have an exacerbated microbiota 
induction in the hnf4a-/- digestive tracts.  The GO term enrichment for this set of genes is included to 
the left of the heatmap.   
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Figure 3.S4: HNF4A and STAT1 binding sites are enriched with within promoters of microbiota 
suppressed and induced genes, respectively. (A) MA plots from DESeq2 analysis of DNase 
hypersensitivity from GF and CV mouse jejunal IECs.  Colored dots signify regions enriched for a 
histone mark in GF (blue) or CV (orange) jejunal IECs. We detect 162 unique DHSs in GF and 1,424 
unique DHS in CV. These results were generated using a less stringent significance test (p < 0.01) 
rather than FDR < 0.01 utilized in our other comparisons in this study, therefore, we are less confident 
in these results.  Using a FDR cutoff of < 0.01, none of these regions are significantly different. (B) 
Volcano plots showing pairwise comparison of RNA expression between GF and CV jejunal IECs.  
Blue and orange dots represent genes associated with a region enriched for DNase signal in GF or 
CV, respectively.  (C) Two-sided Kolmogorov-Smirnov goodness-of-fit test shows a positive 
relationship between the presence of a DHS in a specific colonization state and increased transcript 
abundance in that same colonization state.  The y-axis shows the cumulative fraction of genes linked 
to microbiota induced DHSs.  Deviation from the null expectation that linked genes display a normal 
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distribution on a fold change of 1 (black line) suggests that microbiota induced DHSs are enriched 
near genes of higher expression upon microbiota colonization.  Though the Kolmogrov-Smirnov test 
may not be sufficient for such a small number of sites, these results suggest that IEC gene 
expression responses to microbiota are not explained by changes in chromatin accessibility. (D) 
Representative signal track highlighting a microbiota induced gene associated with a CV-specific 
DHS and regions enriched for H3K4me1 and H3K27ac CV (Ifi44, Interferon induced protein 44). Bar 
graphs showing the enrichment for specific TF bindings sites within promoters for genes associated 
with increased H3K27ac regions in GF (E) or CV (F). (G) Heat maps of the replicate average DNase 
signal, H3K27ac signal, and H3K4me1 signal at individual CV DHS sites. Despite the MA plots 
indicating an increase in DNase-seq signal in CV conditions (Fig.3A and Supplemental Figure 3.S4A), 
we find these heat maps do not show this trend. (H) Line plots showing the average GF (light-colored 
line) and CV (dark-colored line) -seq signal for the indicated TF, histone mark or DHS at the 1000 bp 
flanking DHS sites found in CV. The average DNase-signal at all DHS sites is significantly increased 
in GF compared CV. Similarly, the average H3K27ac signal at these DHS sites shows a significant 
increase in H3K27ac signal in GF compared to CV by the Whitney-Mann U test. We do not see this 
trend in H3K4me1.  The tentative discrepancies in results between the MA plots and average signal 
plots can be explained by inherent differences in DESeq2 and average signal analysis. DESeq2 
performs a powerful statistical test to determine differential signal and therefore is a more ideal type 
of analysis to identify enrichment of DHS or histone marks based on variation and average signal of 
replicates within a set window. We performed the second type of analysis which shows the average 
signal at a given base pair relative to the center of a ChIP peak because DESeq2 would be an 
inappropriate analysis for downstream applications in which the GF conditions had an overwhelming 
signal compared to CV (i.e., HNF4A and HNF4G ChIP-seq, Figure 3.4). Instead, we find this second 
type of analysis is only useful when comparing the signals or relative signals from the same condition 
at two different sets of genomic locations (see Supplemental Figure 3.5F,G). Furthermore, the 
average number and median number of DHS sites, H3K27ac peaks and H3K4me1 peaks as 
determined by MACS2 were similar between GF and CV conditions; this was not true for HNF4A or 
HNF4G peaks (Supplemental Table 2). Based on our stringent DESeq2 analysis (FDR < 0.01) and 
because of the similar number of MACS2 peaks, we do not believe the average H3K27ac and DHS 
signal differences at DHS sites between CV and GF conditions is biologically or technically relevant to 
our conclusions. (I-J) GO terms and KEGG pathways enriched in genes associated with differential 
H3K4me1 sites shown in Figure 3.3I. 
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Figure 3.S5 HNF4 GF ChIP-Seq replicates have reproducibly higher signal than HNF4 CV Chip-
seq replicates. (A) Grouped pairwise comparison of all HNF4A ChIP-seq signal at HNF4A binding 
sites compared to GFrep3 (third HNF4A GF replicate).  (B) Individual pairwise comparison of HNF4A 
ChIP-seq signal at binding sites compared to GFrep3 (third HNF4A GF replicate) or CVrep3 (third 
HNF4A CV replicate).  (C) Grouped pairwise comparison of all HNF4G ChIP-seq signal at HNF4G 
binding sites compared to GFrep4 (fourth HNF4G GF replicate).  (D) Individual pairwise comparison 
of HNF4G ChIP-seq signal at HNF4G binding sites compared to GFrep4 (fourth HNF4G GF replicate) 
or CVrep4 (fourth HNF4G CV replicate).  The correlation coefficient (r) is provided for each graph. We 
believe the HNF4G CV r value was substantially lower than the other reported HNF4A and HNF4G 
correlation coefficients because of the very low signal-to-noise ratio among these replicates.  
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Figure 3.S6: Microbiota suppress HNF4A and HNF4G activity without overtly impacting protein 
levels or localization. (A) Line plots showing the average GF HNF4A (light-colored line) and CV 



82 
 

HNF4A (dark-colored line) -seq signal at the 500 bp flanking HNF4A sites found in CV. We chose to 
forgo DESeq2 analysis with the HNF4 ChIP samples because of the obvious signal bias toward GF 
conditions would skew the results and fail to provide useful statistical significances. We therefore 
performed all subsequent downstream analyses using average signal surrounding ChIP peaks. (B) 
Top 10 GO terms and top 10 KEGG pathways for genes associated with CV HNF4A sites.  These 
enrichments indicate CV retains HNF4A binding near genes that are associated with canonical 
HNF4A and intestinal function. (C) Line plots showing the average GF HNF4A (light-colored line) and 
CV HNF4A (dark-colored line) -seq signal at the 500 bp flanking “Unique” HNF4A sites found in CV 
based on MACS2 peaks and peak coordinate intersections. (D) Bar graph of CTCF ChIP-PCR results 
at different loci (n = 2 per condition).  Loci were chosen based on publically available mouse intestinal 
CTCF tracks on the UCSC genome browser.  The relative CTCF enrichment at Agrp, Inf2, Rilp, 
Slc44a3, and Cyp3a11 loci was normalized to CTCF signal at the Neurog1 locus (negative control). 
Loci were chosen based on publically available intestinal CTCF ChIP-seq tracks on the UCSC 
genome browser These ChIP-seq tracks show CTCF binding at Agrp, Inf2, Rilp, and Slc44a3 loci but 
not at Cyp3a11 nor Neurog1 loci. (E) Two-sided Kolmogorov-Smirnov goodness-of-fit test shows no 
relationship between the presence of an HNF4A site in GF (blue) or CV (orange) and increased 
transcript abundance in that same colonization state.  Our zebrafish RNA-seq data predict that 
HNF4A directly or indirectly regulates both microbiota suppressed and induced genes. In accord, we 
did not find an overt association with HNF4A binding sites and microbiota suppressed or induced 
genes. (F) Line plots showing the average signal of GF (blue) and CV (orange) HNF4A ChIP-seq 
RPKM-normalized signal at the 500 bp flanking HNF4A peaks associated with microbiota-suppressed 
genes (solid) and microbiota-induced genes (dotted). Statistical measurements were performed using 
a two-tailed Mann-Whitney test. (G) Deming linear regression of the average GF and CV ChIP/DHS 
signals at HNF4A sites and DHS sites. To determine if histone marks correlate with the loss of 
HNF4A signal in CV conditions, we aligned the average histone ChIP signals and DHS signals to the 
28,901 GF HNF4A sites. As expected, we found both GF and CV H3K27ac and H3K4me1 signals 
were enriched on the flanks of the HNF4A peaks while DHS signal was enriched near the center of 
the HNF4A peaks (Figure 3.4A,B). Interestingly, we observed that colonization resulted in a reduction 
in H3K4me1 signal at HNF4A sites, a trend we did not see when comparing signals at all DHS sites 
(Fig.4B and Supplemental Figure 3.S4H). Active CV enhancer signals and CV DHS signals were also 
reduced at HNF4A sites (Fig.4B). However, the average signals of these genomic marks were 
already reduced upon colonization at DHS sites (Supplemental Figure 3.S4H). Therefore, to 
determine if the presence of an HNF4A site corresponded to a reduction in enhancer activity or 
chromatin accessibility upon microbiota colonization, we performed Deming linear regression.  If the 
slopes of the Deming linear regression are significantly different, we can conclude that the relative 
signal at the two different sets of genomic locations is significantly different. We found that HNF4A 
sites correspond with increased H3K27ac, H3K4me1 and DHS signal in GF compared to these same 
chromatin marks in CV. (H) Western blots of HNF4A and HNF4G from GF and CV mouse jejunal 
IECs. B-actin was used as a loading control. (I) Representative confocal immunofluorescence (n = 2 
per condition) optical section of wholemount GF and CV mouse jejunal villi stained for phalloidin (red), 
HNF4A/HNF4G (green) and DAPI (blue). (J) Heat maps and line plots of showing the average GF 
and CV HNF4A ChIP-signal from primary mouse jejunal IECs (blue) and the single replicates of 
control and DSS-treated HNF4A ChIP-signal from primary colonocytes. When we assessed the 
average GF and CV jejunal HNF4A signals at the colonic HNF4A peaks from this previous study, we 
observed jejunal HNF4A signal at the majority of colonic peaks and reduced CV HNF4A averaged 
signal compared to GF. This finding reveals that the HNF4A cistrome in the small and large intestine 
is remarkably similar, and that HNF4A occupancy at many of these sites is similarly reduced by 
microbiota and inflammation.  
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Figure 3.S7: Model of microbiota regulation of host gene transcription through modification of 
enhancer activity and suppression of HNF4A DNA binding. A model depicting the key findings 
from the manuscript. Microbiota-suppressed H3K27ac and H3K4me1 marks (microbiota-suppressed 
enhancers) are significantly enriched near genes that are downregulated by the microbiota. 
Microbiota-induced H3K27ac and H3K4me1 marks (microbiota-induced enhancers) are significantly 
enriched near genes that are upregulated upon microbiota colonization. Also, following microbiota 
colonization, HNF4A DNA binding is reduced across the genome. This reduced occupancy occurs 
near genes that are both microbiota-induced and microbiota-suppressed genes. GATA factor binding 
sites are located near HNF4A binding sites that associate with microbiota-suppressed genes and 
microbiota-suppressed enhancers. ETS factor binding sites are located near HNF4A binding sites 
that associate with microbiota-induced genes and microbiota-induced enhancers. 
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Supplemental Table 1: Primers and 
Oligos 

   

Primer name Sequence 
   

ChIP-PCR Primers 
    

Genomic 
Location 

Agrp_CTCF_F CAAGGAGTACGCCGCAAGAAGTG 8:105622531-
105622553 

Agrp_CTCF_R CCACAACCTAAAGTTGCTTCTTGAG 8:105622650-
105622674  

Slc44a3_CTCF_F CTCAAAGGATCAAGGACTGCAG 3:121500329-
121500350  

Slc44a3_CTCF_R GATCTTGCCTGCACCAACACAG 3:121500449-
121500470  

Rilp_CTCF_F GAAGCCAAGAGACCGAAGCGGTGAG 11:75510719-
75510743 

Rilp_CTCF_R GATCAGCAGGAGGCGCTGTAGCTG 11:75510831-
75510854 

Inf2_CTCF_F GTAGCTACCATAGTCTTATCTAAG 12:112605998-
112606021  

Inf2_CTCF_R GCTGTCTTCCCTTGACTTGG 
 

12:112606087-
112606106 

Mm_Neurog1_F GGCTACATTTGGTCTTTATCC 13:56247085-
56247105 

Mm_Neurog1_R GTGGAGCCAAGCTAACAATTTGC 13:56247171-
56247193 

Mm_Apoa1_F CTAGGGAGTTGGGGAGTTTCCT 9:46227267-
46227288 

Mm_Apoa1_R TCTCTCAGCCTTAGAGGCAAGG 9:46227355-
46227376 

Mm_Angptl4_F ATCTAATCTACAGTCCATATTCCAC 17:33788903-
33788927 

Mm_Angptl4_R AGGGCATCAATGCAAAGTGCAGTG 17:33788988-
33789011 

Mm_Pck1_F CCAGGTTGCAGAAAGGAGTGTC 2:173138399-
173138420  

Mm_Pck1_R AGAATGTGGTAAACAGGACTCAAG 2:173138479-
173138502  

qRT-PCR Primers 
     

hnf4a2.1 F CAGTGTCGGTACTGCAGACTAAAG 
 

hnf4a2.1 R GTGAGCTCGCAGTAAAGCCACCTG 
 

hnf4b1.1 F AGACCGAGCCACTGGAAAAC 
 

hnf4b1.1 R CATGTGTAGGCATGGTTCTTG 
 

hnf4g2.1 F ATGAAGTTTTCTCCAACTCCTCTCC 
 

hnf4g2.1 R CTGCTGTGAAAGTGCTTCAGCGTGAGC 
saa F CGCAGAGGCAATTCAGAT 

  

saa R CAGGCCTTTAAGTCTGTATTTGTTG 
 

gfp F GAAGAAGTCGTGCTGCTTCA 
 

gfp R CCTGAAGTTCATCTGCACCA 
  

angptl4 F CGAGCGCATCAAGCAACA 
  

http://useast.ensembl.org/Mus_musculus/Location/View?r=8:105622529-105622554;tl=FV4rvqrMRsmoDEf0-2841634-638377548
http://useast.ensembl.org/Mus_musculus/Location/View?r=8:105622529-105622554;tl=FV4rvqrMRsmoDEf0-2841634-638377548
http://useast.ensembl.org/Mus_musculus/Location/View?r=11:75510717-75510744;tl=FV4rvqrMRsmoDEf0-2841636-638377577
http://useast.ensembl.org/Mus_musculus/Location/View?r=11:75510717-75510744;tl=FV4rvqrMRsmoDEf0-2841636-638377577
http://useast.ensembl.org/Mus_musculus/Location/View?r=11:75510829-75510855;tl=HRg7P4GTj2kwvTjo-2841732-638377624
http://useast.ensembl.org/Mus_musculus/Location/View?r=11:75510829-75510855;tl=HRg7P4GTj2kwvTjo-2841732-638377624
http://useast.ensembl.org/Mus_musculus/Location/View?r=12:112606086-112606106;tl=HRg7P4GTj2kwvTjo-2841733-638377647
http://useast.ensembl.org/Mus_musculus/Location/View?r=12:112606086-112606106;tl=HRg7P4GTj2kwvTjo-2841733-638377647
http://useast.ensembl.org/Mus_musculus/Location/View?r=13:56247084-56247106;tl=FV4rvqrMRsmoDEf0-2841638-638377570
http://useast.ensembl.org/Mus_musculus/Location/View?r=13:56247084-56247106;tl=FV4rvqrMRsmoDEf0-2841638-638377570
http://useast.ensembl.org/Mus_musculus/Location/View?r=13:56247169-56247194;tl=HRg7P4GTj2kwvTjo-2841734-638377671
http://useast.ensembl.org/Mus_musculus/Location/View?r=13:56247169-56247194;tl=HRg7P4GTj2kwvTjo-2841734-638377671
http://useast.ensembl.org/Mus_musculus/Location/View?r=9:46227265-46227289;tl=FV4rvqrMRsmoDEf0-2841639-638377550
http://useast.ensembl.org/Mus_musculus/Location/View?r=9:46227265-46227289;tl=FV4rvqrMRsmoDEf0-2841639-638377550
http://useast.ensembl.org/Mus_musculus/Location/View?r=9:46227353-46227377;tl=HRg7P4GTj2kwvTjo-2841735-638377630
http://useast.ensembl.org/Mus_musculus/Location/View?r=9:46227353-46227377;tl=HRg7P4GTj2kwvTjo-2841735-638377630
http://useast.ensembl.org/Mus_musculus/Location/View?r=17:33788901-33788928;tl=FV4rvqrMRsmoDEf0-2841640-638377568
http://useast.ensembl.org/Mus_musculus/Location/View?r=17:33788901-33788928;tl=FV4rvqrMRsmoDEf0-2841640-638377568
http://useast.ensembl.org/Mus_musculus/Location/View?r=17:33788986-33789012;tl=HRg7P4GTj2kwvTjo-2841736-638377680
http://useast.ensembl.org/Mus_musculus/Location/View?r=17:33788986-33789012;tl=HRg7P4GTj2kwvTjo-2841736-638377680
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angptl4 R TCGCTCGTTTTTCATCGTAATCT 
 

ifabp F TGCCCATGACAACCTGAAGA 
 

ifabp R GTTAATTTCCAGTGTGCGGAAAG 
 

18S F CACTTGTCCCTCTAAGAAGTTGCA 
 

18S R GGTTGATTCCGATAACGAACGA 
 

elf1a F CTTCTCAGGCTGACTGTGC 
  

elf1a R CCGCTAGGATTACCCTCC 
  

Primers for Yeast-1-Hybrid 
Screen 

    

in3.4 F AAAAGAGCTCCCTTGTAGGCTGTTGGAAATAC 
in3.4 R AAAACTCGAGACTGAAAGACACAAACACA 
hnf4a_pENTR F CCGCCCCCTTCACCATGGAGATGGCAGACTATAGCGAG 
hnf4a R TCGGCGCGCCCACCCTTTCAGATGGCCTCTTGTTTAGT

G 
hnf4g F CCGCCCCCTTCACCATGGATGTAGCCAATTACTGCGA 
hnf4g R TCGGCGCGCCCACCCTTTCATAGCGGGGGCTCCGGAG

A 
Oligos for guide RNAs 

     

hnf4a_gRNA F 1 TAGGGCACCAGAAGATCCAGCTATG 
 

hnf4a_gRNA R 1 AAACCATAGCTGGATCTTCTGGTGC 
 

hnf4a_gRNA F 3  TAGGGTAAGCTGCTGTCCTCATAGC 
 

hnf4a_gRNA R 3 AAACGCTATGAGGACAGCAGCTTAC 
 

hnf4a_gRNA F 4 TAGGGTCCTCATAGCTGGATCTTC 
 

hnf4a_gRNA R 4 AAACGAAGATCCAGCTATGAGGAC 
 

Primers for Hnf4a mutation screening 
   

hnf4a_Cris_checkF TGATTCACACTACTTACTTGTCTAG 
 

hnf4a_Cris_checkR GATTAAAAGTAGTTATCTCATCCTCAG 
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Supplemental Table 2: Total number of MACS2 peak calls per ChIP per replicate  
 
Number of peaks indicated are raw results generated from MACS2 and peaks generated by 
background signal/noise have not been filtered out.  All peaks generated by background 
sequencing noise were removed manually for downstream analysis.  
 DHS H3K4me1 H3K27ac HNF4A HNF4G 
GF rep 1 89,507 132,275 82,935 36,850 12,465 
GF rep 2 61,355 131,876 83,336 27,016 35,302 
GF rep 3  137,770  29,070 15,934 
GF rep 4     27,816 
CV rep 1 70,794 139,559 83,661 1,889 101 
CV rep 2 52,431 144,137 81,997 8,473 18 
CV rep 3 42,433 146,199  4,195 27 
CV rep 4     106 
GF Average 57,485 133,974 83,136 30,979 22,879 
CV Average 55,219 143,298 82,829 4,852 63 
GF Median 57,485 132,275 83,136 29,070 21,875 
CV Median 52,431 144,137 82,829 4,195 64 
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CHAPTER 4: PROSPECTUS
 
4.1 Introduction 

The microbiota contribute to human physiology by facilitating energy harvest, tuning 

metabolic programs, and promoting immune system development. In addition to these 

important roles in health, intestinal microbiota have been implicated in a growing number of 

human diseases associated with loss of intestinal epithelial identity, like cancers and 

inflammatory bowel diseases [221, 284]. However, these diseases represent extreme 

circumstances and do not reflect the normal symbiotic relationships that have been 

maintained between animals and their microorganisms for over 650 million years. From an 

evolutionary perspective, the presence of microbiota is a normal part of the animal’s life 

cycle, and physiological states have evolved to assume the presence of microbes. 

Extensive research has identified microbial factors and aberrant host responses that impair 

intestinal epithelial function. Similarly, thought the impact of the microbiota on host IEC 

transcriptomes and their downstream consequences have been extensively documented, 

the upstream transcriptional regulatory mechanisms remain poorly understood. Recently, 

this gap in knowledge has started to be filled with both my work and others that have 

identified differences in histone modifications following microbiota colonization [141, 142, 

334]. However, my work is the first to show the impact of microbiota colonization on the 

binding activities of a transcription factor. This finding has provided a novel genomic 

mechanism for understanding how the microbiota tune intestinal epithelial cell transcription 

programs and provides a potential model for how dysregulation of these same transcription 

programs may lead to human disease.  
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The identification of HNF4A as a novel transcription factor that mediates the 

epithelia’s response to the microbiota provides new insight into nuclear receptor biology, 

host-microbiota interactions and intestinal pathophysiology. However, my work only provides 

a genomic mechanism for the host response. That is, I only show that genome wide, HNF4A 

activity is suppressed. We still do not understand the signaling mechanisms that mediate 

HNF4A activity. Since HNF4A is a nuclear receptor, does microbial colonization result in 

changes in ligand availability? Does PRR signaling regulate HNF4A DNA binding? These 

are questions we are now poised to address, but due to complexity of nuclear receptor 

regulation, they were beyond the scope of my initial effort in characterizing mechanisms of 

transcriptional control. We first needed to identify a candidate transcription factor that 

mediates epithelial response. The identification of HNF4A as a regulator of the host 

response is profound. Loss of HNF4A function and the microbiota are both linked to human 

diseases like metabolic syndrome and IBDs. Further, HNF4A is the most ancient of the 

nuclear receptor transcription factors, so framing this transcription factor in a new role could 

provide insight into the evolution of nuclear receptor biology and host-microbiota 

interactions. 

 In this last chapter of my dissertation, I discuss several possible mechanisms that 

may mediate HNF4A activity. I speculate how suppression of HNF4A is advantageous to the 

host and to some extent the microbiota. I speculate how human disease pathology may be 

determined by microbial suppression of HNF4A. Finally, I speculate on the evolution of the 

nuclear receptor superfamily as novel mediators in the host response to the microbiota. 

 

4.2 Models of microbiota suppression of HNF4A activity: 
Previous in vivo and cell culture studies indicate HNF4A serves as both an activator 

and repressor of target gene transcription. In the third chapter of this dissertation, we 

learned that HNF4A binds at loci of both microbiota-suppressed and microbiota-induced 
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genes. And we learned that microbiota colonization is associated with loss of HNF4A 

occupancy on the genome. Therefore, HNF4A may activate microbiota-suppressed genes 

and may repress microbiota-induced genes. Transcription factors commonly have bimodal 

functions, like HNF4A, where they both activate and repress transcription [335]. These 

different modes are sometimes governed by cofactor binding that designate the transcription 

factor as a repressor or activator at a locus [336]. However, the kinetics of transcription 

factor binding can also mediate repressor or activator assignment. For instance, RAP1, a 

well-studied yeast transcription factor, occupies several different loci on the yeast genome. 

However, the kinetics of RAP1 binding differ at these loci. These kinetic properties of RAP1 

binding are associated with repressor or activator assignments. RAP1 may “treadmill” at 

genes it represses, meaning it has short residency time on the DNA [337]. However, RAP1 

has long residency at genes it activates. By conventional ChIP, these two modes of function 

are associated with approximately the same occupancy signal. A technique called 

“competition-ChIP” reveals kinetics of DNA binding and the kinetic associations with 

repressor vs activator assignments [338].  

Perhaps, HNF4A adopts a “treadmilling” mode of function at microbiota-induced 

genes and maintains a long DNA residency at microbiota-suppressed genes (further 

discussed below under 4.2.2). Whatever mode of function HNF4A initiates across the 

genome, microbiota colonization is associated with loss of HNF4A genome occupancy and 

thus trans-activity (either repressor or activator). However, the mechanism that mediates this 

loss of HNF4A occupancy remains unknown. Do microbes affect HNF4A activity through a 

microbial-derived metabolite/molecule that directly binds and blocks HNF4A function? Or 

does the upregulation of TLR signaling following microbiota colonization result in loss of 

HNF4A function? Perhaps HNF4A activity is suppressed by the microbiota indirectly through 

a reshaping of the metabolic programs. Below I explore several models that describe how 

the microbiota may suppress HNF4A.  
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4.2.1 Ligand binding: 
The HNF4A ligand binding domain contains a single fatty acid (although other papers 

have demonstrated it may also bind flavonoids [339]). Originally labeled as an orphan 

receptor, in non-physiological conditions, researchers have found HNF4A can bind several 

different species of long chain fatty acids [308]. Although these putative ligands may be valid 

HNF4A ligands, their role in controlling and mediating HNF4A activity in physiological 

conditions remains unknown. In the mouse liver, HNF4A binds linoleic acid (C18:2) almost 

exclusively [316]. Some papers have suggested linoleic acid may suppresses HNF4A 

activity in cell culture lines [316, 340]. However, linoleic acid does not suppress transcription 

of HNF4A target genes, like fabp2, in the Germ free (GF) zebrafish intestine (data not 

shown), suggesting dietary linoleic acid does not suppress HNF4A activity. However, similar 

to how cofactors regulate transcriptional activity, ligand binding may provide a mechanism 

for controlling HNF4A. Perhaps different fatty acid ligands tune HNF4A activity so that small 

conformational adjustments on the protein modify the affinity for the same binding site. 

Perhaps conformational changes impact HNF4A’s ability to bind DNA altogether or inhibit its 

ability to form homodimers, a necessary step for trans-activity. Specific taxa within the 

microbiota express proteins called linoleic acid isomerases. This family of enzymes edits the 

location of the double bond in linoleic acid, generating a new isomer of LA (18:2; 9-cis, 12-

cis) called conjugated linoleic acid (CLA – 18:2; 9-cis, 11-trans and 18:2,10-tras, 12-cis). 

Importantly, even though this fatty acid has the same atomic makeup, the location of the 

double bonds and the double bond isomer (i.e. cis vs trans) greatly impact the structure of 

the fatty acid. It remains to be determined if HNF4A binds CLA. However, if HNF4A can bind 

both CLA and LA independently, these fatty acids will likely fill the ligand binding pocket 

differently due to their differences in chemical structure. Thus, HNF4A may need to change 

confirmation to bind CLA versus LA which may modify its activity (Figure 4.1A). It is also 

certainly possible that the microbiota regulate HNF4A activity through the modification of 
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other putative ligands like flavonoids which are known to modulate microbiota composition 

[341]. 

For an unbiased approach to identify if the microbiota impact the FA species bound 

by HNF4A, I recommend performing GC/MS on organic compounds isolated from 

immunoprecipitated HNF4A from gnotobiotic mouse IECs. My initial attempts at performing 

these experiments failed but similar experiments from mouse liver provide a blueprint for 

success [316]. The major limiting factor for performing these experiments is the starting 

material. To detect the ligand, the fatty acid should ideally be at a concentration of 50 ng/mL 

(personal correspondence with George Dubay at Duke University). Assuming a 1:1 

stoichiometry between HNF4A and the fatty acid (meaning HNF4A binds only one ligand at 

a time), pulled down HNF4A concentration must be 9.4 ug/mL (based on the molecular 

weight of HNF4A and LA: 52,785 g/mol and 280 g/mol respectively). Previous published 

experiments used 3 mouse livers for each pull down to concentrate HNF4A to a sufficient 

level [316]. Therefore, based on the number of cells isolated during an IEC extraction, I 

predict we would need approximately 3 – 4 gnotobiotic mice for a single replicate to perform 

the equivalent experiment from isolated jejunal IECs. Pilots of this experiment could be 

performed with thin-layer chromatography (TLC). If HNF4A binds different ligands in germ 

free and colonized conditions, these fatty acids may migrate at different speeds with the 

correct organic solutions. However, due to the similar chemical structures, TLC is not an 

appropriate assay to address the LA and CLA hypothesis). Another key aspect for success 

with these experiments is the efficacy of the antibody used for the immunoprecipitation. 

Antibody choices will be discussed in a future section under post-translation modifications. 

I also propose three experimental models that test if different fatty acids have the 

capacity to suppress or modify HNF4A activity: 1) Perform qPCR from zebrafish that have 

been fed a single fatty acid species, like oleic acid (18:1), LA (18:2) or CLA (18:2). This 

experiment may identify if HNF4A target genes are differentially transcribed during feeding 
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with these various fatty acids. 2) Perform ChIP-PCR or ChIP-seq from gnotobiotic mice that 

have received an oral gavage of CLA or another fatty acid species. This experiment may 

identify if HNF4A binding at specific locations on the genome is impacted by specific fatty 

acids. 3) Test the HNF4A activity in the presence of different fatty acids in a quantitative 

Yeast-1-Hybrid (Y1H) assay. I have piloted this experiment in the original Y1H system that 

identified HNF4A as a potential microbiota-regulated host transcription factor. However, 

incubating yeast with LA, OA, or CLA conferred resistance to the antibiotic and increased 

the noise of the assay. Instead, I recommend an assay that utilizes a luciferase reporter 

instead of antibiotic resistance. The luciferase reporter will provide more quantitative 

measurement of HNF4A activity in the presence of different fatty acids. All three of these 

experiments may provide new insight into how HNF4A responds to specific putative fatty 

acid ligands. Unlike the proposed GC/MS experiment, these fatty acid feeding experiments 

are biased and will not inform us if the microbiota impact HNF4A ligand binding. Rather, 

these experiments provide a potential model for how the microbiota mediate HNF4A activity. 

 

4.2.2 Splice form abundances:  
In humans, the HNF4A gene encodes 9 different splice forms [342]. Expression of 

these different splice forms is driven by two promoters (P1 and P2). HNF4A splice form 

variation and the mutations within the possible splice forms contributes to human disease 

pathology including Crohn’s disease and diabetic phenotypes [290, 343]. The different splice 

forms differ in transcriptional activity and modes of coactivation. For instance, splice forms 

transcribed from the P1 promoter include the “AF-1 domain”, a conserved n-terminal domain 

found in several members of the nuclear receptor super family. This domain regulates 

cofactor binding and increases trans-activation potential [344]. Therefore, HNF4A splice 

forms transcribed from the P1 promoter may interact with different coactivators than splice 

forms transcribed from the P2 promoter [345].  



93 
 

The antibody that I used in my studies for ChIP only detects HNF4A splice forms 

transcribed from the P1 promoter. However, the antibody I used in the western and 

immunofluorescence data detects all possible splice forms. Therefore, the ChIP data only 

represent a subpopulation of HNF4A and the western and immunofluorescence data 

includes all possible HNF4A splice forms. Perhaps the microbiota suppress transcription of 

Hnf4A at P1 by activating a known repressor of the P1 promoter, SREBP2 [346]. Or, 

perhaps the microbiota induce HNF1A activity, a known activator of transcription at the P2 

promoter [347] (Figure 4.1F). However, my current data do not support these hypotheses. 

DEX-seq analysis of RNA-seq data from GF and CV mouse IECs indicate there in no 

difference in exon bias between GF and CV mice at the HNF4A gene locus. Perhaps the 

downregulation happens at a protein level. However, the western and immunofluorescence I 

performed in chapter 3 do not indicate reduced protein levels upon colonization. Perhaps 

different transcriptional cofactors become available upon colonization and preferentially 

activate P2 isoforms. To test if P2 isoforms preferentially occupy HNF4A binding sites on the 

genome upon microbiota colonization, I recommend performing ChIP-seq using an antibody 

that recognizes all possible isoforms. The initial polyclonal antibody I tested for the ChIP-seq 

experiments detects all isoforms, however this antibody failed to immunoprecipitate HNFA. I 

therefore chose a monoclonal antibody that only detects 6 HNF4A isoforms, but had been 

previously shown to successfully immunoprecipitate HNF4A from intestinal epithelia. 

Finally, microbiota colonization may promote “treadmilling” activity of HNF4A splice 

forms. If HNF4As transcribed from promoters 1 and 2 begin to compete for the same binding 

site, the conventional ChIP I performed would only detect P1-splice-form DNA-binding and 

therefore HNF4A occupancy would appear reduced. It would be interesting to perform true 

competition ChIP by using a ChIP antibody for P1 splice forms and a second antibody for P2 
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splice forms. These data would provide a new level of insight on HNF4A DNA binding 

kinetics that have never been attempted, let alone in a gnotobiotic setting.  

 
Figure 4.1: Six possible mechanisms that regulate suppression of HNF4A activity associated 
with microbiota colonization. (A) The first model predicts that the microbiota modify the 
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endogenous ligand of HNF4A from linoleic acid (LA) to conjugated linoleic acid (CLA). Because CLA 
is structurally unique from LA, HNF4A may need to change protein confirmation to bind it and as a 
result be incapable of binding DNA. (B) The second model predicts HNF4A might be phosphorylated 
by PKA, PKC or the MAPK pathway following activation of transmembrane receptors that activate 
these kinases. For instance, TLR4 signaling may initiated a MAPK signal transduction, or TNFa or 
IFNg might activate their corresponding receptors to which may activate these kinases. 
Phosphorylation of HNF4A reduces its potential to activate transcription. (C) The third model predicts 
microbiota colonization results in a rewiring of fatty acid handling within the intestinal epithelial. 
Instead of being consumed by the cell for energy via beta-oxidation, the cell may preferentially 
package dietary fatty acids in triglycerides and store them. Therefore, the fatty acids are unavailable 
to serve as ligands for HNF4A. Active beta-oxidation may increase the availability of fatty acids for 
HNF4A to bind and thus increase its potential for transcriptional activation. (D) The liver and skeletal 
muscle of GF mice have increased activated-AMPK compared to CV mice. The fourth model 
assumes that IECs also have increased activated-AMPK levels in GF mice. This increase in AMPK 
activity may result in increased PGC-1A activity, a known target of AMPK. PGC-1A is a known 
coactivator of HNF4A. Therefore, upon microbiota colonization, HNF4A-mediated transcriptional 
activation might be reduced due to reduced AMPK and thus PGC-1A activity. (E) The fifth model 
predicts that HNF4A is replaced by other transcription factors on the genome in complex with known 
corepressors, like NCORs.  It similarly suggests that HNF4A complexes with NCORs at microbiota 
induced-genes, which might indicate why these genes are suppressed in GF conditions. (F) The last 
model predicts that HNF4A activity is reduced because of a change in splice form/exon usage. 
Perhaps microbiota colonization results in increased usage of the HNF4A promoter 2. My ChIP 
antibody did not detect splice forms generated from this promoter. Therefore, my ChIP HFN4A 
occupancy may be reduced because of less frequent binding of HNF4A from promoter P1. 
 

4.2.3 Energy Balance: Fatty acid availability: 
Microbiota colonization induces significant shifts in metabolic programs in several 

tissues in the mice. These metabolic shifts occur at both the transcriptional level and protein 

level. Following colonization, intestinal tissue and liver transcriptomes shifts from 

gluconeogenesis and fatty acid lipolysis programs to glycolysis, lipogenic, amino acid and 

nucleotide metabolic program [119, 120, 169]. This shift in metabolic programs occurs 

concurrently with increased serum glucose levels and glycogen production following 

colonization [169]. Compared to GF mice, Livers and skeletal muscle of colonized (CV) mice 

have reduced active-AMPK levels, and reduced Cpt1a expression and activity, an enzyme 

involved in the rate limiting step of beta-oxidation. These data indicate that beta-oxidation 

may be the primary metabolic program in GF mice. Because of increased beta-oxidation in 

GF mice, fatty acids will preferentially be consumed for energy production rather than 

packaged and stored. In support, previous work in zebrafish and mice shows microbiota 

promote lipid droplet accumulation in enterocytes and in extra intestinal tissue [168] [and 
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data not shown]. Perhaps GF animals accumulate fewer lipid droplets upon lipid feeding 

because the lipid is preferentially directed toward beta-oxidation and not toward storage. 

Given all of the data and previous studies that show the shift in metabolic activities following 

colonization, this is the model I favor for HNF4A regulation.  

Since lipids enter the beta-oxidation cycle as individual fatty acids, more free-fatty 

acids may be available within cells of GF animals compared to CV animals. As a results, 

HNF4A may bind one of these free fatty acids as a ligand and become active. Therefore, 

HNF4A activity may be higher in GF animals because of increased free-fatty acids (Figure 

4.1C). This hypothesis is in accord with previous models of HNF4 activity [308]. To test this 

hypothesis, we can try to capture and detect the total free-fatty acids within IECs from GF 

and CV mice. I also recommend performing GC/MS and TLC experiments (discussed in 

4.2.1) which may elucidate if HNF4A protein from GF mice binds more fatty acid compared 

to CV mice. Finally, chemical screens of agonists or antagonists for enzymes involved in 

lipolysis, gluconeogenesis and lipogenesis in GF zebrafish may provide some insight into 

the mechanism controlling HNF4A.  

 

4.2.4 Energy Balance: AMPK activity and PGC-1A: 
As mentioned in the previous section, phosphorylated AMPK (activated-AMPK) 

levels are reduced in skeletal muscle and liver in CV mice compared to GF mice. AMPK 

functions as a metabolic rheostat which regulates several metabolic pathways based on 

AMP levels. AMPK activity suppresses cellular proliferation and lipolysis and activates 

mitochondrial biogenesis and fatty acid oxidation. It performs these functions through 

phosphorylation and inhibition of Acetyl-CoA Carboxylase (ACC), which directs Acetyle-

CoAs to lipogenesis, and phosphorylation and activation of PGC-1A, which functions as a 

transcriptional coactivator [348]. PGC-1A binds the HNF4A homodimer at multiple locations 

and promotes stability on DNA and induces transcriptional activity [312]. I recommend 
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performing phospho-PGC-1A westerns to confirm microbiota suppress PGC-1A in this tissue 

as well. If PGC-1A is more active in GF IECs, like it is in the liver, perhaps microbiota 

colonization suppresses HNF4A DNA binding by reducing activity of PGC-1A (Figure 4.1D).  

When bound to a transcription factor, the cofactor PGC-1A can also recruit CREB 

Binding protein (CBP/P300) to genomic locations. CBP/P300 is a histone acetyltransferase 

enzyme that modifies lysine 27 of Histone 3 to generate H3K27ac. CBP/P300 also 

acetylates HNF4A at lysines 97 and/or 99 [310]. Therefore, a model in which the microbiota 

suppress PGC-1A activity provides mechanisms for two genomic observations from Chapter 

3: 1) Perhaps microbial colonization inactivates PGC-1A in IECs and thus reduces HNF4A 

stability on DNA. 2) Locations bound by HNF4A had statistically higher H3K27ac signal 

compared to open chromatin regions that were not bound by HNF4A. Perhaps PGC-1A 

recruited CBP/P300 to regions bound by HNF4A. Once recruited to these regions, 

CBP/P300 could acetylate nearby H3K27 and thus increase H3K27ac signal around HNF4A 

bound enhancers. Other cofactors and other transcription factors are perhaps more 

“permitted” to bind and coactivate these enhancer elements following H3K27ac modification.    

To test if reduced PGC-1A activity mediates microbial suppression of HNF4A, I 

recommend performing co-immunoprecipitations from IEC nuclear extracts from GF and CV 

mice. Perhaps PGC-1A only co-immunoprecipitates with HNF4A in GF conditions. This 

experiment could also be scaled up to perform mass spectrometry which would provide an 

unbiased approach for testing cofactor binding. Mass spectrometry also permits detection of 

post-translation modifications therefore allows testing of the impact of microbiota 

colonization on HNF4A PTMs.  

Co-immunopreciptation experiments, particularly from in vivo tissue, can be 

technically challenging, especially if the starting material is limiting. Therefore, these 

experiments could also be tested in vivo using the zebrafish model. Transgenesis of 

zebrafish coupled with genetic mutation provides an opportunity to quickly test the function 
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of multiple genes and mutant proteins. For these experiments, I recommend generating a 

transgenesis construct that will encode and induce expression of wild-type hnf4a and 

rescues the hnf4a-/- zebrafish line (Figure 4.2). With this construct and with the power of site-

directed mutagenesis, we can test if Hnf4a with a single amino acid mutations maintain the 

capacity to rescue the hnf4a-/- phenotype. The simplest assay to test for function of the 

transgenic and mutant Hnf4a is qRT-PCR, specifically assaying genes that are known Hnf4a 

targets. Mutations at amino acids that interact with PGC-1A recognizes will inform us of the 

importance of PGC-1A in regulating HNF4A activity [312]. Phospho-mimetic mutations or 

another amino acid substitution at locations of post-translational modifications will provide 

insight into which kinases or other protein modifying enzymes are regulating Hnf4a activity 

(see 4.2.6). Finally, these experiments can be moved into a gnotobiotic system to test if the 

microbiota impact the activity of these transgenic and mutant hnf4a zebrafish.  

 

Figure 4.2:Transgenic screening strategy to test for the influence of PTMs and PGC-1A 
binding on Hnf4a activity in zebrafish. (A) A simple plasmid that includes an intestine specific 
promotor driving expression of hnf4a. This plasmid can be injected into hnf4a-/- zebrafish embryos w/ 
transposase to generate transgenic animals and to test if intestinal expression of hnf4a is sufficient to 
rescue hnf4a-/- mutant zebrafish from the IBD-like gene expression signatures. The hnf4a gene within 
the plasmid can be modified via SDM to introduce amino acids that mimic or inhibit PTMs or inhibit 
PGC-1A from binding. (B) An Hnf4a protein schematic with functional domains annotated. Amino 
acids with pink lines have been shown to be phosphorylated [349-352]; all annotated residues are 
conserved between mammals and zebrafish except for S313, which is Y313 in zebrafish (annotated 
as y313 in the diagram). The K77 and K79 (blue line) have been shown to be acetylated by CBP 
[310] and K365 and D367 (brown line) have been shown to be SUMOylated [353], which promotes 
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protein degradation via a ubiquitination pathway. The 12 amino acids below the protein schematic 
have been shown to directly interaction with PGC-1A via protein crystallography [312]. 
   

4.2.5 Nuclear receptor repressors and HDACs: 
Nuclear receptors function as both transcriptional activators and repressors [354, 

355]. Repression of genes is facilitated by a class of proteins called corepressors which bind 

to the transcription factors and form a repressor complex. This repressor complex occupies 

cis-regulatory regions, and blocks the transcription of a target gene. A family of 

transcriptional repressors called Nuclear receptor Corepressors (NCOR1 and NCOR2) bind 

transcription factors (not just nuclear receptors, as suggested by their name) and repress 

transcription of a target gene. NCORs function together or individually with several different 

transcription factors at many loci with varying degrees of repressor activities [356]. NCOR2 

interacts directly with HNF4A and recruits histone deacetylases to repress transcription of 

genes [357]. No studies show a direct interaction between NCOR1 and HNF4A, but NCOR1 

does repress several genes in the HNF4A regulon through VDR-mediated repression [358].   

Microbiota colonization results in significant induction of NCOR1 and VDR 

expression in the small intestine [119]. Perhaps these factors form a repressor complex and 

replace HNF4A on the genome, thereby suppressing HNF4A activity and repressing HNF4A 

target genes. This model may be unlikely since VDR, like HNF4A, has been shown to 

promote transcription of fatty acid oxidation genes, which are suppressed upon microbiota 

colonization. However, members of the PPAR and RAR family of nuclear receptors also 

interact with NCORs [359]. Like HNF4A, PPARs and RARs recognize “DR2” (see figure 

3.3E) DNA sequence motifs, indicating these transcription factors have the capacity to 

replace HNF4A at the same genomic location and perhaps recruit the NCOR corepressor. In 

support, the microbiota stimulate PPARG-mediated transcription in the colon [360]. Perhaps 

microbes similarly promote PPARG-repressor activity which could then replace HNF4A on 

the genome. Regardless of the specific transcription factors, I propose a model in which a 
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repressor complex replaces HNF4A on the genome and represses transcription of HNF4A 

target genes (Figure 4.1E). In this model and others, it is important to note that HNF4A 

target genes are not completely repressed; and similarly, HNF4A activity is not completely 

inhibited. Instead, these models provide a mechanism that may attenuate HNF4A activity 

and its target gene transcription. 

NCORs also recruit histone deacetylases (HDACs) to chromatin which then 

deacetylate H3K27ac, making the chromatin less “permissive” for transcription factor binding 

and thus reducing enhancer activity. Therefore, if the NCOR models above are correct, 

following replacement of HNF4A by a repressor complex, HNF4A bound regions will have 

reduced H3K27ac signal. Indeed, microbiota-suppressed enhancers are significantly 

enriched for HNF4A binding sites, indicating these may be sites where HNF4A was actively 

promoting transcription prior to colonization (see Figure 3.3F). However, following 

transcription, a repressor complex replaced HNF4A and reduced enhancer activity. 

Similarly, HNF4A also functions as a transcription repressor with NCOR2; perhaps 

microbiota-induced genes are repressed by HNF4A [357]. Following microbiota colonization, 

perhaps the HNF4A-NCOR2 repressor complex is replaced by transcription factors that 

activate the gene and recruit histone acetyltransferases. This model explains why 

microbiota-activated enhancers contain HNF4A sites (see Figure 3 in Chapter 2).  

 

4.2.6 Post-translational Modifications: 
Post-translational modifications on HNF4A can both activate and suppress its activity 

by either impacting its ability to bind DNA or by destabilizing homodimer formation. CREB 

binding protein (discussed in 4.2.4) acetylates HNF4A and promotes HNF4A binding affinity 

for DNA [310]. In a human embryonic stem cell based model of hepatocyte differentiation, 

HNF4a becomes modified by SUMOylation on the c-terminus. Following SUMOylation, 

HNF4A becomes targeted for degradation by RNF4-mediated ubiquitination [353]. Four 
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kinases have been shown to phosphorylate HNF4A in either in vitro and cell culture 

conditions. AMP-activated kinases (AMPK) phosphorylates HNF4A and destabilize 

homodimerization and DNA binding affinity [311]. Phosphorylation of HNF4A by Protein 

Kinase A (PKA) inhibits recruitment to its target genes and blocks nuclear localization [349]. 

Protein Kinase C (PKC) phosphorylation similarly blocks HNF4A nuclear localization and 

targets it for degradation via the proteasome pathway [350]. The Mitogen Activated Protein 

Kinase (MAPK) pathway also inhibits HNF4A activity [352]. A recent paper suggests the 

ERK1/2 may be the kinases that suppress HNF4A activity following MAPK signaling [351]. 

Excitingly, the microbiota stimulate the transcriptional activity of the nuclear receptor PPARG 

through phosphorylation by ERK1/2 [360]. Perhaps the microbiota suppress HNF4A through 

the same signaling pathway. 

Microbiota colonization may activate the MAPK pathway through TLR4, which binds 

microbe associated molecular patterns like LPS. Similarly, cytokine receptors, like TNFSFR 

and IFNGR, and growth factor receptors may also activate MAPK signaling; however, these 

receptors may also activate PKC and PKA. The activation of these signaling cascades may 

result in phosphorylation of HNF4A and thus reduce HNF4A activity (Figure 4.1B). However, 

I predict neither PKA nor PKC are involved in HNF4A suppression upon colonization since 

phosphorylation by these kinases causes HNF4A to localize to the cytoplasm. 

Immunofluorescence from jejunal villi indicate HNF4A remains in the nucleus of IECs 

following colonization (See Supplemental Information in Chapter 3). The mode of inhibition 

by MAPK activity on HNF4A remains unknown, but perhaps ERK1/2-mediated inhibition 

does not alter nuclear localization and only impacts HNF4A DNA binding affinity. Excitingly, 

LPS treatment does suppress transcription of HNF4A target genes [361]. LPS activates 

TLR4 which signals through both a MYD88 independent and MYD88 dependent pathways 

(See 2.4.2). MAPK activation by TLR4 is dependent on MYD88 function. Loss of MYD88 in 

mice does not impact the suppression of most HNF4A target genes following microbiota 
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colonization [119], indicating TLR4 signaling through the MAPK pathway is not necessary 

for the microbiota to suppress HNF4A. However, MAPK pathways may become active 

through other receptors following microbiota colonization. 

Microbiota colonization also induces activation of other receptor signaling cascades, 

like TNFSFR. TNFA, which binds TNFSFR, signaling also activates MAPK pathways, along 

with PKC [362]. Perhaps activation of these membrane receptors results in suppression of 

HNF4A by a post-translational modification. To test if the microbiota induce post-

translational modifications on HNF4A, I recommend proteomic analysis both from mouse 

tissue and using transgenic zebrafish. Please see Section 4.2.4 for details regarding 

experimental design. We similarly do not know if these kinases are more active in a 

colonized state. So I recommended performing western blots for phosphorylated (activated) 

forms PKA, PKC, ERK1/2 from IECs from gnotobiotic mice. If one of these kinases are more 

active following colonization, I recommend treating GF zebrafish with kinase agonists like 8-

bromo-cAMP [363], which selectively activates PKA. GF fish treated with this chemical may 

have reduced expression of HNF4A target genes compared to untreated germ free controls 

if PKA suppresses HNF4A activity. Similar experiments can be performed for the other 

kinases using both agonists and antagonists. These experiments could also be coupled with 

the transgenic zebrafish experiments detailed in Section 4.2.4 to provide specific information 

about where the PTMs are located on HNF4A.  

 

4.2.7 Combination of several of the models 
 Gene expression is a nuanced biological process with several layers of regulation 

that include nucleosome location, transcription factor binding, cofactor binding, RNA 

polymerase binding, and microRNA silencing. Several competing and compensatory 

mechanisms orchestrate these layers of regulation. Maintaining the appropriate level of 

regulation remains a vital process for all cellular life. The models above describe six 
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strategies cells may use to regulate HNF4A. Each model was described independently of 

the others; but these models may blend together to regulate HNF4A activity. For instance, 

HNF4A may bind PGC-1A only in the presence of microbiota-generated CLA. Furthermore, 

although microbiota colonization suppresses HNF4A activity, these models similarly provide 

competing pathways that function to maintain or increase HNF4A activity. 

The paradigm of science is that all answers leads to new questions. My work has 

answered a few important questions about the nature of host-microbiota interactions, 

however it has led to several new questions that the field is poised to address. I foresee 

future progress requiring more biochemical approaches to identify the molecular processes 

that control intestinal epithelial transcription. Transcriptional assays, like those I have 

discussed extensively, do not necessarily translate to function and therefore more 

functional/biochemical assays must be performed to gain a deeper understanding of this 

intimate relationship.  

 

4.3 Why suppress HNF4A activity? 
I have now established that microbiota colonization is associated with a suppression 

of HNF4A activity, and I have proposed 6 possible methods that may coordinate this 

suppression. However, what are the downstream effects of microbial suppression of 

HNF4A? What are the possible consequences and the advantages to the microbiota for the 

suppression of HNF4A activity? What are the possible consequences and the advantages to 

the intestinal epithelia and host for this interaction? In the following section, I discuss the 

possible roles HNF4A may play in regulating metabolic, proinflammatory, and innate 

immune responses and how these processes are advantageous to the intestinal epithelia 

and the host. I then explore the concept of commensalism. Does a true mutualistic 

relationship exists between the microbiota and the host? Or, are host-microbiota interactions 

a constant tug-of-war for the available resources within the intestinal lumen?  
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4.3.1 Suppressing HNF4A may provide a significant advantage to the host 
 Both proinflammatory and metabolic genes are directly and indirectly regulated by 

HNF4A [248, 249, 308, 309]. In the mutant hnf4a zebrafish model, Hnf4a activity appears to 

repress expression of tnfa, duox2, and il-1b (proinflammatory and innate immune genes) 

and activate expression of fabp2, elovl2, and apoa1a (metabolism or mobilization of fatty 

acid genes). My data indicate the microbiota regulate these same genes in gnotobiotic 

zebrafish. Similarly, in mice, HNF4A binding sites are located at loci of innate immune or 

redox genes and fatty acid metabolism and mobilization genes. The exact role of HNF4A 

activity in regulating some of these genes, particularly the proinflammatory genes, remains 

unknown. However, the coincidences between the expression patterns in mutant zebrafish 

and the occurrence of HNF4A bindings sites at the same gene in mice suggest a conserved 

role of HN4A in regulating proinflammatory and metabolic transcription networks.  

An obvious disadvantage to my data is that the mouse ChIP-seq, RNA-seq and 

DNAseq were performed from all villi-epithelial cells types. Therefore, most of my data is 

derived from enterocytes since this is the most prevalent cell type on villi; however, goblet 

cells and EECs may have some impact on my datasets since they make up a small 

percentage of cells on villi. My -omics datasets likely exclude Paneth cells, progenitor cells 

and stem cells, however they may make up a very small percentage of cells in the extracts. 

Therefore, the induction of Reg3b and Reg3g, classically thought be markers of Paneth cell 

which reside in the intestinal crypts, following microbiota colonization is likely be derived 

from villus cells. 

Based on my datasets, HNF4A binds to the loci of Muc13 and Muc4 genes. Upon 

microbiota colonization, HNF4A occupancy at these loci is reduced and these genes 

become highly expressed. These data suggest that HNF4A may be repressing their 

transcription (or HNF4A binding near these loci is coincidence). Upon microbial stimuli, it is 

advantageous for the epithelium to upregulate its mucus production to maintain a barrier 
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between itself and the microbiota. A similar logic may exist for the gene Reg3b which 

functions as an antimicrobial peptide. Upon microbial colonization, HNF4A occupancy at the 

Reg3b loci is lost and its expression increases. The protein product of the Duox2 gene 

generates reactive oxygen species that can kill bacteria. HNF4A also binds at the Duox2 

locus in the intestinal epithelium and this binding is reduced following colonization. Like the 

mucins and Reg3b, microbiota colonization induces Duox2 expression, again suggesting 

HNF4A suppresses these epithelial defense mechanisms. Therefore, if the binding of 

HNF4A near these downregulated genes is not just coincidence, reduced HNF4A-repressive 

activity following microbiota colonization offers significant advantages to the intestinal 

epithelium because it provides a mechanism for the host to adapt to life with a microbiota by 

initiating anti-microbial defenses. 

Activation of defense mechanisms upon microbiota colonization; is a logical 

response; however, what are the possible advantages to downregulating metabolic genes, 

particularly those involved in lipolysis, lipid mobilization, gluconeogenesis and beta-

oxidation? As mentioned several times in my dissertation, microbiota colonization results in 

a rapid and prolonged shift in metabolic programs that results in downregulation of 

ketogenetic, beta-oxidative and gluconeogenic programs and an increase in glycolysis, 

amino acid metabolism, nucleic acid metabolism, and lipogenesis [364, 365]. This 

reorientation in metabolic programs may be a result of increased energy availability since 

the microbiota facilitate nutrient absorption and storage by the epithelium [156, 167, 168, 

366]. I speculate the response to microbiota colonization is the host attempting to store all 

available energy. The epithelium shuts down its lipolysis and beta-oxidation programs so 

those fatty acids can be stored and later consumed during times of fasting. Meanwhile the 

host uses other sources of energy that may have just become available. Since time between 

meals could be an indefinite wait over the course of animal evolution, storage of energy 

would have been critical for survival. Since HNF4A activates the transcription of several 
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genes involved in the beta-oxidation pathway, suppression of HNF4A in the intestinal 

epithelium upon microbiota colonization may provide the host an advantage by enabling 

storage of energy in preparation for fasting. Furthermore, HNF4A appears to play a central 

role in the epithelium’s adaptation to life with a microbiota, since loss of HNF4A activity 

results in severe metabolic derangements in response to microbiota colonization.  

 

4.3.2 Mutualism or antagonism? 
 The microbiota field often refers to the relationship between the microbiota and the 

host as commensal. These paradigms suggest that the microbiota provide a benefit to the 

host while the host similarly provides a benefit to the microbial communities. For example, 

the host provides the microbiota a niche within the intestinal epithelium. Within this niche, 

the microbiota collect the resources and energy they need to survive and in return facilitate 

energy harvest for the host. However, even if majority of these interactions appear 

symbiotic, they may stem from a cellular struggle for control of the environment. An analogy 

of this relationship may be the relationship between two parties in a bipartisan political 

system. Both parties require each other to maintain political homeostasis and suppress new 

forms of government. That is, both parties will protect the bipartisan system to the mutual 

benefit of both parties. However, both parties similarly adopt strategies to undermined and 

attack the opposing party to gain independent power within the system. They fight over the 

same resources (voters) to gain and maintain political power. The microbiota and the 

intestinal epithelium appear to function similarly. Both the host and microbiota support 

homeostasis by killing invading pathogens; however, both the host and the microbiota fight 

over the same resources (dietary nutrients) and both have adopted strategies to impede the 

other’s progress (Figure 4.2B).  
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Figure 4.3: The advantages to the host and the microbiota following suppression of HNF4A 
activity. (A) Suppression of HN4A activity associated with microbiota colonization provides two 
potential advantages to the host. 1) Suppression of HNF4A relieves a possible repressive activity by 
HNF4A on proinflammator9y, innate immune, and redox genes. Upregulation of these genes protects 
the intestinal epithelia from the microbiota. 2) Suppression of HFN4A reduces the transcription of 
genes involved in beta-oxidation, lipolysis, and lipid transport, enabling FAs to be stored for 
consumption during fasting. (B) Microbiota colonization increases the energy availability to the host. 
Indeed, fecal samples from GF mice fed a high-fat diet have increased TG levels compared to fecal 
samples from CV mice [167]. The intestinal epithelial may begin rapid transport of FAs because of a 
new competition for the energy sources, i.e. a “Tug-of-War” for FAs and other nutrients. 
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Both the microbiota and the host utilize fatty acids as energy. Microbiota colonization 

results in repressed expression of fatty acid transporter genes in the intestinal epithelium; 

strategy used by both the epithelia and the microbiota to control energy availability. This 

suppression provides each an advantage in this tug-of-war for resources. Upon colonization, 

the host begins to utilize other energy sources and preferentially stores dietary fatty acids 

and retains them from the colonizing microbiota. Some microbial taxa similarly consume 

dietary fatty acids for metabolic processes [367]. Microbiota-suppression of HNF4A reduces 

transcription of fatty acid transport genes. This may result in a retention of fatty acids in the 

intestinal lumen where the microbiota can maintain access to these dietary nutrients. 

Similarly, the downregulation of fatty acid absorption genes may be a secondary effect 

following an initial burst in fatty acid absorption and storage following colonization. 

Therefore, suppression of HNF4A activity provides advantages to both the microbiota and 

the host, which may sound mutualistic, but the mechanisms that drive this process may be 

antagonistic.  

 

4.4 The overlap of HNF4A activity and the microbiota in human diseases:  
Both the microbiota and HNF4A are implicated in a variety of intestinal and metabolic 

diseases. Loss of HNF4A activity and HNF4A variants are associated with Crohn’s disease, 

ulcerative colitis, maturity onset diabetes of the young (MODY1), and metabolic syndrome 

[233, 256, 303, 368]. Similarly, the microbiota are associated with obesity, insulin resistance, 

type 2 diabetes, Crohn’s disease and ulcerative colitis [221, 364, 369]. Given that microbiota 

colonization results in reduced HNF4A activity, what role does this suppression play in these 

diseases? Is HNF4A a viable therapeutic target for treating these human diseases? As 

discussed in the previous section, how does this antagonistic relationship, which typically 

maintains homeostasis, become detrimental to the host? What role does HNF4A play in 

maintaining the balance in this relationship and what are the consequences of improper 
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HNF4A regulation? In this next section, I will discuss how both HNF4A and the microbiota 

contribute to metabolic syndrome and inflammatory bowel diseases. I will discuss models 

how suppression of HNF4A may mediate the pathology of these diseases.  

 

4.4.1 Metabolic syndrome 
Metabolic Syndrome is defined as a cluster of risk factors that indicate increased risk 

of diabetes, cardiovascular disease and premature mortality [370]. These risk factors include 

but are not limited to insulin resistance, increased ratio of visceral to subcutaneous 

adiposity, dyslipidemia and arterial hypertension [370-372]. The composition of the gut 

microbiota is linked to several of these risk factors including obesity and insulin resistance 

[373, 374]. Based on the microbial alterations of host metabolic programs, it is not surprising 

that the microbiota contribute to these risk factors. Indeed, microbiota colonization in mice is 

associated with increased serum glucose levels, increased adipose tissue size, and 

decreased activity [156, 169]. Furthermore, the transcriptional changes associated with 

microbiota colonization indicate a shift from a “starved” state to a “fed” state. This 

transcriptional shift is logical because of enhanced nutrient availability including fatty acids 

[168]. However, impaired adipose tissue handling of dietary fats may result in increased 

circulating triglycerides [375]. If the body fails to compensate for these circulating 

triglycerides by increasing fatty acid oxidation within cells, these triglycerides may be stored 

in non-adipose tissue, such as skeletal muscle, or continue to circulate. Both the increase of 

fat stores in non-adipose tissue and increased circulating triglycerides can contribute to the 

development of insulin resistance [376]. Therefore, maintaining a sensitivity to circulating 

triglycerides is essential for proper clearance of circulating triglycerides and maintaining 

insulin sensitivity. 

HNF4A serves as a master regulator of metabolism. Aberrant suppression of its 

activity impairs cellular fatty acid-oxidation [308] and increases risk of diabetes [309]. 
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Furthermore, gene variants have been associated with both type 2 diabetes and metabolic 

syndrome [303, 304]. Genetic factors, diet, activity level, and microbiota collectively 

contribute to metabolic syndrome. These factors control the function of several tissues and 

cellular processes that become impaired during the progression of insulin resistance and 

obesity. Therefore, I speculate that microbial suppression of HNF4A may only play a small 

contribution to insulin resistance but is not the only element mediating the risk factor.  

The Hnf4a intestine-specific knockout mouse has impaired fatty acid uptake and 

does not develop insulin resistance. These data suggest aberrant suppression of HNF4A 

activity in the gut may not be sufficient to drive insulin resistance. Instead, these results 

address an important aspect of HNF4A activity and microbiota impact on epithelial function: 

fatty acid uptake. Aside from beta-oxidation genes, the microbiota also suppress several 

fatty acid transport and mobilization genes, including Slc27a2, ApoA1, and Fabp2. Based on 

my zebrafish RNA-seq and my mouse RNA-seq and ChIP-seq datasets, these genes also 

appear to be regulated by HNF4A. So, aberrant suppression of HNF4A activity in the 

intestine should, in part, be protective of obesity and insulin resistance due to an impairment 

of fatty acid uptake. So microbial suppression of HNF4A activity in the intestine may not 

contribute to metabolic syndrome. However, loss of HNF4A activity in the liver may 

contribute to insulin resistance. Indeed, the liver-specific HNF4A knockout mouse has 

increased fat deposition in the liver likely due to lipid transport failure [377]. Liver fat is highly 

correlative to metabolic syndrome and insulin resistance [378, 379]. Therefore, I speculate 

that microbial suppression of intestinal HNF4A does not contribute to metabolic syndrome. 

Instead, since the microbiota are known to mediate transcription and metabolic responses in 

the liver [169, 380], perhaps microbial regulation of liver HNF4A contributes to metabolic 

syndrome. This regulation may occur through any of the mechanisms detailed in section 4.2. 
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4.4.2 Inflammatory Bowel Disease 
 Both the microbiota and HNF4A have been independently implicated in inflammatory 

bowel diseases (IBD). Indeed, HNF4A variants are associated with both CD and UC [232, 

233]. Similarly, HNF4A expression has been shown to be decreased in UC as well as in 

mouse models of colitis [256, 260]. Finally, transient knockdown of Hnf4a in liver cell culture 

induces an inflammatory response that continues to repress HNF4A expression [250]. 

Microbiota composition is also associated with onset of inflammation in CD and UC [221, 

381]. Antibiotics have been shown to provide relief to some CD and UC patients, indicating 

episodes of inflammation are associated to microbiota composition [382]. And many/most 

mouse models of IBD are asymptomatic when raised GF, underscoring the central 

importance of microbial stimulation in IBD pathogenesis. The multi-species meta-analysis 

performed in chapter 3 (Figure 3.5) is the first to draw a link between the microbiota and 

HNF4A in the context of IBD. My data indicate that HNF4A may protect from intestinal 

inflammation and disease pathology. Deletion of hnf4a activity in the presence of a 

microbiota in gnotobiotic zebrafish results in a transcription program that resembles the 

transcriptome of CD and UC patients. This IBD transcription program generates high 

expression of inflammatory genes and low expression of metabolic genes. Together, these 

studies indicate HNF4A may play a significant role in UC and CD pathologies. However, 

several questions remain to be answered: Does microbial suppression of HNF4A contribute 

to IBD progression? Or, does loss of HNF4A activity through other mechanisms contribute to 

IBD pathologies? How does HNFA protect against IBD? Is HNF4A a viable target for 

therapies in IBD research?  

 We do not know if microbial suppression of HNF4A contributes to disease pathology. 

The data collected only indicate the microbiota have the capacity to suppress HNF4A 

activity, but we do not know if this suppression causes IBDs. Perhaps the microbiota only 

induce IBD after a microbiota-independent loss of HNF4A activity. Perhaps, genetic variants 
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of HNF4A are more susceptible to suppression by the microbiota and thus predispose 

patients to IBDs. We also do not know if the mechanisms that control HNF4A activity upon 

microbiota colonization are the same mechanisms that suppress it in IBD.  

How does the suppression of HNF4A, a master regulator of metabolic gene 

expression suppress inflammation and epithelial function? And similarly, why does HNF4A 

appear to activate metabolic genes and repress proinflammatory and innate immune genes 

(as discussed in the previous section)? A common theme in inflammation studies is that the 

activation of innate immune genes coincides with a suppression of metabolic gene programs 

[132]. However, we do not have a strong understanding as to why the activation of these 

programs are mutually exclusive. 

Poly-unsaturated fatty acids have also been shown to reduce inflammation in 

patients; however, the mechanisms for this relief are largely unknown. Some studies have 

shown that poly unsaturated fatty acid reduces NF-κB activity thereby suppressing the 

immune response [319, 383, 384]. The putative endogen ligand of HNF4A, linoleic acid, 

protects zebrafish from chemical-induced inflammation [385]. Perhaps this fatty acid, and 

other poly unsaturated fatty acids promote HNF4A activity and suppresses the inflammation.  

 HNF4A activity may protect the intestine from chronic inflammation through several 

mechanisms: 1) HNF4A promotes general IEC homeostasis, including barrier function. 2) 

HNF4A activates transcription of specific anti-inflammatory genes like APOA1 and miR-124, 

a gene that is commonly suppressed in both UC and CD [2, 237]. Injection of APOA1 

mimetic peptide rescues experimental colitis [262]. 2) HNF4a activates the transcription of 

miR-124 in liver cells [250]. STAT3 expression is silenced by miR-124 [261]. Since miR-124 

has reduced expression in biopsies from pediatric CD patients compared to healthy patients 

[261], perhaps HNF4A regulates miR-124 in the intestine as well. 3) My ChIP-seq and RNA-

seq data suggest HNF4A may repress several proinflammatory and innate immune genes, 

including DUOX2, which is commonly upregulated in UC and CD [237]. Increased DUOX2 
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expression is only correlative with the onset of disease and inflammation and has yet to be 

shown as a causative factor in IBD; however, its activity does increase the potential for DNA 

damage and epithelial cell death [386]. 4) Four HNF4A binding sites are found at Il10rb 

gene locus, an important anti-inflammatory cytokine receptor. Loss of IL10 signaling can 

similarly result in spontaneous colitis [387], so perhaps HNF4A activates transcription of this 

receptor. Loss of HNF4A respective activities at these genes may lead to aberrant 

inflammation. 

 

4.5 Concluding Remarks: HNF4 and the expansion of the nuclear receptor 
superfamily 

The genome of the demosponge, the most ancient member of the metazoan, 

encodes a single nuclear receptor that resembles HNF4A [148]. Because HNF4A resembles 

the most ancient of the nuclear receptors, the discovery that HNF4A mediates microbial 

suppression of host genes is exciting because it suggests a possible model that an HNF4-

like nuclear receptor has been interpreting and protecting the host from microorganisms 

since the dawn of the metazoa. It also permits a possible theory for the evolution of other 

metabolically regulated nuclear receptors: as animal evolution progressed and as animal 

tissues and cell-types became more diverse and their microbial communities that interface 

with these host cells became more diverse, the need for molecules and signaling pathways 

that can interpret and respond to these new microbiota-derived cues arose. Since nuclear 

receptors provide a simple mechanism that can fulfill this need, it makes sense that these 

evolutionary pressures resulted in radial expansion of the nuclear receptor superfamily. 

Over the course of metazoan evolution, molecular tinkering [388] drove the 

expansion of the nuclear receptors superfamily to over 50 members family found in humans 

[147]. Even If HNF4A resembles the most ancient of the nuclear receptors, it certainly is not 

nature’s most malleable nuclear receptor. That role belongs to the RXR family of nuclear 
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receptors. The RXR family of nuclear receptors arose shortly after HNF4-like nuclear 

receptors evolved [148]. Evolution has tinkered with RXR activity repeatedly as new 

metabolite-binding nuclear receptors evolved. Indeed, almost every non-steroid binding 

nuclear receptor, with the notable exception of the HNF4A, heterodimerizes with RXR [147]. 

Examples of these nuclear receptors that heterodimerize with RXR are: PPARs, FXRs, 

RARs and VDRs, all of which are activated by metabolites that are either generated or 

modified by the microbiota [147, 152, 155, 389, 390]. So even if HNF4A represents the first 

of the putative-microbiota-sensing nuclear receptors, the evolution of RXRs, along with the 

evolution of their dimerization partners, has vastly increased the sensitivities of host cells, 

enabling new responses to the environment which may include responses to the microbiota. 

An obvious question regarding nuclear receptor evolution is: what drove the 

expansion of the family? Did the complexities of host-microbiota relationships and the 

environment drive the expansion of the nuclear receptors? Or have the microbiota and the 

environment only tapped into developmental programs that were established before 

exogenous interventions? Several nuclear receptors are required for mouse embryonic 

development, including HNF4A [391, 392], RXR [393], and PPARG [394, 395]. These 

developmental failures suggest, at the very least, that these transcription factors became 

essential for development after they evolved. Unfortunately, we do not know if 

demosponges require their HNF4-like nuclear receptors for development, which may provide 

insight into what drove HNF4 evolution. However, the hnf4a mutant zebrafish is viable. 

Hnf4a knockout mouse embryos do not initiate the gastrula stage and stall during visceral 

endoderm differentiation [391], indicating Hnf4a plays a critical role in the development of 

this essential extra-embryonic tissue. We believe the hnf4a mutant zebrafish is viable 

because zebrafish and other fishes do not have a visceral endoderm and therefore hnf4a is 

less critical during embryogenesis. The visceral endoderm, which develops from the 

hypoblast, appears to be a mammalian-specific extra-embryonic tissue, suggesting that 
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Hnf4a may have only become essential for embryonic development since the evolution of 

mammals. These studies permit the theory that HNF4A, and perhaps other nuclear 

receptors required for development of mammalian-specific tissues (PPARG [394]), may 

have originally evolved to establish cellular sensitivities to the environment and the 

microorganisms within it. 

 My work represents one of the first studies to demonstrate how the microbiota 

regulate transcription factor binding genome wide. My data place a focus on HNF4A a as 

key determinant in the host response to the microbiota. However, recent work has indicated 

that other nuclear receptors play important roles in the host response along the entire length 

of the intestine as well as along the villus-crypt axis [152, 360, 389]. Together with my work, 

these studies suggest that nuclear receptors maintain homeostasis between the intestinal 

epithelia and the microbiota. Because nuclear receptors bind directly to exogenous 

molecules that impact their activities, this superfamily of transcription factors may provide 

sensitivity to the environment that tunes intestinal epithelial function and identity.  
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APPENDIX 1: A NOTE ON MODEL SYSTEMS 
 

The epithelia must respond to fluctuations of two primary components within the 

luminal environment: microbiota and dietary nutrients. However, distinguishing the individual 

effects of these components on epithelial response and gene regulation is confounded by 

dietary impact on microbial community compositions and the microbial modifications of 

dietary molecules  (Figure 2.2. Indeed, some bacterial taxa including Rosburia intestinalis 

encode genes that generate non-native isomers of poly-unsaturated fatty acids which have 

been shown to affect host physiology [129] and the large cohort of anaerobic bacteria in the 

colon have the capacity to catabolize dietary fibers that generate short-chain fatty acids 

[130]. Furthermore, diets with high lipid composition promote the growth of specific bacterial 

taxa, which can induce proinflammatory transcriptional responses from the intestinal 

epithelial cells, and diets with high-protein and low-carbohydrate intake promote growth of 

other bacterial taxa [124, 396, 397]. These studies indicate there is an intimate relationship 

between microbiota composition and the availability of specific dietary molecules and vice 

versa. Therefore, because the addition of one component to the luminal environment can 

have a rippling effect that impacts whole microbial communities and subsequent dietary 

molecules, establishing controlled and high throughput in vivo model systems remains 

paramount to understanding clear mechanisms that mediate the epithelial response to the 

microbiota and diet. To study these complex relationships, the microbiota field has taken 

advantage of several model systems, each with their own advantageous tools that permit 

the dissection of these multidimensional interactions. 

The zebrafish and Drosophila model systems have provided important 

understandings to intestinal epithelial development and transcriptional regulatory programs. 

Non-mammalian host systems are equipped with the powerful genetic and amenable tools 

and screening platforms for determining the molecular mechanisms that mediate 
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transcriptional responses. A forward genetic screen in zebrafish demonstrated that the loss 

of function of a DNA-methylation protein (uhrf1) results in hypomethylation of the tnfa locus. 

This hypomethylation results in high expression of the proinflammatory marker and an 

intestinal epithelial phenotype that resembles IBD [285]. Knocking down tnfa expression by 

morpholino injection rescues this IBD-like phenotype. Although Human GWAS studies have 

suggested similar mechanisms, this forward genetic screen provided mechanistic 

understanding to how loss of epigenetic repression of a proinflammatory marker can lead to 

IBD onset. Furthermore, compared to the mammalian model systems, the relatively simple 

microbiome of the Drosophila makes the fruitfly an ideal model organism to study host-

microbiota interactions [398]. Taking advantage of these smaller microbial communities, 

researchers could identify that microbiota regulate insulin signaling and are required for 

pupal survival [399]. Further studies indicated that this interaction was diet dependent and 

that supplementing a glucose only diet with a vitamin B source rescued the requirement for 

a microbiota [400]. These drosophila studies demonstrate the power of the fast, low-cost 

and high throughput system; this system enables researchers to perform gnotobiotic 

experiments with multiple diet manipulations to determine nutritional requirements for 

development and how the microbiota can and cannot satisfy those requirements. 

The ability for high-throughput transgene screening of an in vivo system is a unique 

attribute of non-mammalian models. The high throughput transgenic tools available in 

Drosophila facilitated a study addressing how each epithelial cell type along the intestinal 

tract rewires its transcriptional program in response to infection [401]. Furthermore, 

transgenic tools available in these non-mammalian systems permits functional testing of 

non-coding genomic regulatory elements. Indeed, zebrafish have provided the first example 

of a microbiota controlled cis-regulatory region [145], indicating that the microbiota may also 

regulate the transcription factors that bind within the region. Studies such as these provide 



118 
 

the necessary context to determine which transcription factors are regulated by the 

microbiota. 

Most of what we know from host-microbiota interactions comes from data collected 

from mammalian model organisms.  An obvious reason why mammalian systems have an 

advantage over non-mammalian systems is their homology to human physiology and health. 

However, they also provide other unique opportunities that are simply not available or are 

limited in zebrafish or fruitfly. For instance, functional genomic studies, particularly 

Chromatin Immunoprecipitation, are more easily performed in mammalian systems because 

these techniques require a lot of starting material and good antibodies. Furthermore, the 

large tissue sizes enable pairwise comparisons for different functional genomic datasets 

from the same animal, strengthening statistical power from these datasets. Although 

becoming more common in zebrafish systems [402], tissue specific knockout mutations in 

murine models represents a commonly used technique in mammalian studies and have 

been used to show how the transcription factor CDX2 or HNF4A both maintain homeostasis 

in the intestinal epithelia [29, 89] as well as showing how HDAC3 is necessary for the host 

response to microbiota colonization [236]. The mammalian system also provides the primary 

platform longterm gnotobiotic studies. Gnotobiot zebrafish studies end during early larval 

stages, providing insight into the how the microbiota control developmental programs, such 

as the edification of the immune system [146, 194]. However, murine gnotobiotic studies 

maintain GF and conventionalized status for several weeks, providing important information 

regarding the length of time it takes to reach mucosal and transcriptional homeostasis in the 

intestinal epithelia following microbiota colonization. Only recently, have there been 

advances toward longterm zebrafish gnotobiotic zebrafish husbandry [403]. 

Enteroid culture has also provided unique opportunities to study intestinal epithelium 

biology. Enteroids are small cultured epithelial colonies that are commonly generated from a 

single small intestinal epithelial crypt. The stem cells in these crypts asymmetrically divide 



119 
 

as they would in the intestine and generate a small luminal organ differentiated daughter 

cells [404]. These cultured organoids have provided key understandings in:1) how the 

enteric nervous system participates in microbiota stimulated inflammatory responses [405]; 

2) cytokine maintenance of the stem cell niche [406]; 3) signaling pathways that mediate 

cellular differentiation [407]. However, the obvious limitations to cultured organoids are the 

lack of a true basolateral membrane as well as a lack of extra-intestinal systems, like an 

enteric nervous system or a liver which are both known to communicate with the intestine 

and regulate digestive processes. A current cell culture technology that would be fascinating 

to apply to any model system would line scan photo-activatable Fluorescence Correlation 

Spectroscopy, in which the activity of individual transcription factors is monitored within a 

single nucleus [408]. Establishing this microscopy system in enteroid culture or in zebrafish 

model would provide novel insight into how transcription factors are responding within a 

given epithelial cell that is exposed to different luminal environments.  

Higher throughput transgenic technologies in mammalian model systems have 

recently become to rival those in non-mammalian systems. Although incapable of the same 

offspring sizes as zebrafish and fruitfly, and therefore limited by its throughput, shotgun 

delivery of transgenic reporters for functional genomic studies [409] as well as CRISPR 

targeting for genetic mutation [410] and transcriptional trans-activation/repression [411] have 

become powerful techniques in the mammalian and cell culture toolsheds. Although these 

techniques have not been applied to understanding intestinal biology or host-microbiota 

interactions, they hold great potential to unlock new knowledge in intestinal homeostasis. 

For instance, previous studies have identified differentially regulated enhancers in IBD 

patients and some of these enhancers also harbor known SNPs in IBD. Using a viral 

transgenic shotgun approach, the activity of these enhancers can be tested in the intestinal 

epithelia in a gnotobiotic setting, providing insight into the function of these mutations and if 

the microbiota, known contributors to IBD, mediate the activity of these mutant enhancers. 
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APPENDIX 2: MICROBIOTA COLONIZATION METHODS AND “THE WINDOW 
OF OPPURTUNITY”  

 

Various methods of colonization or depletion may elicit different host responses 

Microbiota colonization of germ free mice elicits a strong transcriptional response in the 

intestinal epithelia that is most robust in the first 1 – 2 weeks following colonization and 

persists for several weeks before reaching equilibrium [120, 121]. This sustained 

transcriptional response may be driven in part by the fact that the mucus layer within the 

small and large intestine does not achieve conventionally-reared (animals that were 

colonized by the microbiota from birth) viscosity and thickness until 8 weeks post 

colonization [412]. Surprisingly, the mucus layer of GF animals is highly viscous and difficult 

to remove from the epithelial layer because the mucin is still attached to the goblet cells [69]. 

Following microbial colonization, bacteria begin to modify the mucus layer, which begins to 

expand and develop a gradient of viscosity, where the most difficult to penetrate mucus 

resides closest to the epithelia. Following colonization, bacterial communities residing in the 

intestine show dramatic fluctuations and the most abundant phyla switches between 

Firmicutes and Bacteroidetes [412]. Perhaps, induction of antimicrobial peptides, derived 

from the host epithelium, sustains this long-term battle for most abundant bacteria.  

These mucosal and transcriptome data provide the basis for a debate about when to 

assay the host response. Although not necessarily physiologically relevant in healthy 

animals, assaying during the most robust response (2 weeks post colonization) provides 

important information that indicate which cellular processes the microbiota do mediate, 

particularly in non-homeostatic settings like in human disease. One final frequently used 

method to investigate microbiota control of host physiology is to evaluate the impact of 

treating conventionally-reared animals with antibiotics. However, it has been established 

that the majority of host transcriptional changes induced by antibiotic treatment can be 
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explained by direct effects of the antibiotic on host cells or by the effects of remaining 

antibiotic-resistant microbes [287]. 

Both the method of colonization and the age of the host impact the epithelial 

responses. Some colonization methods fail to preserve the anaerobic bacteria, which are 

known to generate short chain fatty acids in the colon which can prevent human diseases 

[130]. Other colonization methods fail to control for differences between inoculums, 

indicating the host responses may differ between experiments due to differences in 

microbial communities. Studies involving cesarean-born mouse neonates vs vaginally-born 

neonates show that microbiota colonization from vaginal births mediates down-regulation of 

TLR signaling and downstream transcriptional programs in IECs. This suppression reduces 

sensitivities to gram negative bacteria during the first few weeks of life and protects against 

epithelial damage and epithelial tolerance later in life [413, 414].  

Regardless of the method of colonization or the age of the animal at the time of 

colonization, studies have shown the microbiota have profound impacts on host gene 

expression. Therefore, we can continue to learn something regarding how the microbiota 

mediate these transcriptional changes. The debate of how to colonize and when to colonize 

will likely continue for as long as the microbiome field remains an intense area of study. 
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