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ABSTRACT 

 
Brooke E. Christian.  Mechanisms of Translational Initiation and Elongation in Mammalian 

Mitochondria 
(Under the direction of Linda L. Spremulli) 

Initiation of protein synthesis in mammalian mitochondria involves two protein 

factors: initiation factor 2 (IF2mt) and initiation factor 3 (IF3mt).  Mutations were designed in 

various domains of IF3mt to identify the functionally important regions.  Residues 170-171, 

and 175 in the C-terminal domain nearly abolished activity in initiation complex formation 

and in 55S ribosomal dissociation.  However, these mutated proteins bound to the 28S 

ribosomal subunit with Kd values similar to the wild-type factor.  The results suggest that 

IF3mt plays an active role in initiation of translation. 

Mammalian mitochondrial mRNAs have few or no nucleotides prior to the 5’ start 

codon.  Both the mammalian mitochondrial 55S ribosome and 28S subunit preferentially 

formed initiation complexes at a 5’ terminal AUG codon over an internal AUG.  The 

selection of the 5’ AUG depended on the presence of fMet-tRNA and was enhanced by the 

presence of IF2mt.  Addition of even a few nucleotides 5’ to the AUG codon significantly 

reduced the efficiency of translation.  In addition, very few initiation complexes could form 

on a hybrid mRNA construct consisting of the tRNAMet attached at the 5’ end to a 

mitochondrial protein coding sequence.  This observation demonstrates that post-

transcriptional processing must occur prior to translation in mammalian mitochondria. 
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Mutations in the nuclear genes for mammalian mitochondrial translational 

elongation factors are generally lethal shortly after birth.  A mutation of EF-Tsmt (R325W) 

resulted in a significant reduction in the ability of EF-Tsmt to bind EF-Tumt. A mutation of EF-

Tumt (R336Q) causes infantile encephalopathy arising from defects in mitochondrial 

translation.  The R336Q mutation caused a two-fold decrease ternary complex formation 

with E. coli aminoacyl-tRNA but completely inactivated EF-Tumt for binding to mitochondrial 

aminoacyl-tRNA. 

Polyamines are important in both prokaryotic and eukaryotic translational systems.    

Spermine stimulated fMet-tRNA binding to mammalian mitochondrial 55S ribosomes in a 

manner independent of the identity of the mRNA and to the same degree at all 

concentrations of IF2mt and IF3mt.  The major effect of spermine in promoting initiation 

complex formation appears to be on the interaction of fMet-tRNA with the ribosome. 
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CHAPTER 1 

 

MECHANISM OF PROTEIN SYNTHESIS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sections in this chapter have been published (1) and reprinted with permission.   
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Figure 1-1. Structure of a mitochondrion. The 
mitochondrial outer membrane is shown in 
dark blue, the inner membrane is shown in 
light blue, and the cristae are shown in 
yellow.  Image courtesy of Dr. G.A. Perkins 
(UCSD) and Dr. T.G. Frey (SDSU).  Figure 
obtained with permission from Dr. T.G. Frey. 

INTRODUCTION 

 Mitochondria are small, membrane-bound organelles found in eukaryotic cells that 

are responsible for the generation of 90% of the cell’s energy in the form of ATP.  

Mitochondria range in size from 0.5 – 10 µM in diameter.  Mitochondria contain an inner 

membrane that is highly invaginated (Figure 1-1).  The folds of the inner membrane create 

internal compartments known as christae and produce an additional compartment known 

as the intercristal space.  The boundary of the inner membrane is connected to the cristae 

membrane by narrow, tube-like 

structures that serve as barriers 

between the intracristal space and the 

intermembrane space (2).  The 

production of ATP occurs along the 

inner membrane, using the electron 

transport chain and ATP synthase.  The 

electron transport chain uses 

oxidation/reduction carriers to create a 

proton gradient across the inner 

mitochondrial membrane to drive the 

synthesis of ATP (Figure 1-2).  Four 

multi-subunit protein complexes and several mobile carriers (coenzyme Q and cytochrome 

c), compose the electron transport chain: Complex I (NADH: ubiquinone oxidoreductase, or 

NADH dehydrogenase), Complex II (Succinate: ubiquinone oxidoreductase, or succinate 
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Figure 1-2.  Electron transport chain.  Figure obtained from commons.wikipedia.org as 
a free public domain file.  Complexes are indicated by Roman numerals.  Q is 
coenzyme Q, and Cyt c is cytochrome c. 

dehydrogenase), Complex III (ubiquinone: cytochrome c oxidoreductase, or cytochrome 

reductase) and Complex IV (cytochrome c: oxygen oxidoreductase, or cytochrome oxidase).  

Although most proteins involved in the synthesis of ATP are synthesized in the cell 

cytoplasm and imported into the mitochondrion, thirteen are mitochondrially encoded and 

synthesized (3).  These proteins are very hydrophobic, and thus import into the 

mitochondrion would be difficult. 
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Figure 1-3.  Organization of the mitochondrial genome.  
Figure modified from mitomap.org. 

 Mitochondria are unique organelles, containing their own genome and protein 

synthetic machinery.  Mammalian mitochondria contain about 16 kilobase pairs of DNA (4).  

This genetic information encodes 2 ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs), and 

13 proteins (Figure 1-3).   The DNA is circular and continuous; it lacks significant non-coding 

regions.  The proteins encoded in this genome include subunits ND1, ND2, ND3, ND4, ND4L, 

ND5, and ND6 of the 

NADH dehydrogenase 

complex, subunits CoI, 

CoII, and CoIII of the 

cytochrome oxidase 

complex, cytochrome b 

from complex III, and 

ATPase6 and ATPase8 of 

the ATP synthase complex.  

The mitochondrial 

genome codes for one 

tRNA for every amino acid 

and two tRNAs for serine and leucine.  The rRNAs coded for by the mitochondrial genome 

include the 12S rRNA of the small ribosomal subunit and the 16S rRNA of the large 

ribosomal subunit.  Mitochondrial DNA is transcribed into a long, polycistronic RNA, which is 

then cleaved into the appropriate mRNAs, tRNAs, and rRNAs.  The mRNAs are subsequently 

polyadenylated.  DNA sequences that code for the mitochondrial tRNAs exist between 

Intercristal space 
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almost all of the mitochondrial protein coding genes.  The “tRNA punctuation” model of 

mRNA processing states that cleavage of the tRNAs from between mitochondrial protein 

coding sequences results in mRNAs that are ready for translation (5).  This model accurately 

predicts the 5’ ends of human mitochondrial mRNAs that lie in between tRNA sequences, 

but it does not address the question of how the mRNAs for other proteins are processed.  

For example, the gene encoding CoIII is preceded by the gene encoding ATP6 instead of a 

tRNA.  Thus, cleavage of the polycistronic RNA precursor to release the CoIII mRNA requires 

a mechanism distinct from tRNA punctuation. 

 

PROKARYOTIC PROTEIN SYNTHESIS 

 Mitochondria have many features in common with prokaryotes, including antibiotic 

sensitivity, and structures and functions of protein factors, tRNAs, and ribosomes.  The 

endosymbiotic theory of mitochondrial origin suggests that a bacterial cell was taken in by 

another cell, and that the endocytosis of that bacterial cell provided the evolutionary 

advantage of respiration.  Since mitochondria are thought to have arisen from a bacterial 

cell, the process of translation in that organelle is often compared to translation in 

prokaryotes. 

 

Structure of the Prokaryotic Ribosome 

Escherichia coli ribosomes (70S) are complexes of RNA and protein containing 2/3 

RNA and 1/3 protein.  These ribosomes are 2.3 MDa in molecular mass and are composed 

of two subunits, a small and large subunit, which sediment at 30S and 50S, respectively.  
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Figure 1-4. Structure of the E. coli ribosome.  Images from PDB 3I1M (30S) and 3I1N 
(50S).  The rRNAs are shown in blue and the protein is shown in red. 

While the crystal structure of the Thermus thermophilus 70S ribosome has been solved at 

2.80 Å resolution (6), the E. coli 70S ribosome has only been solved at 3.5 Å resolution (7).  

The small ribosomal subunit (SSU) has an overall shape similar to that of a bird and contains 

body, head, neck, beak, and platform regions (Figure 1-4).  The SSU consists of 16S rRNA 

(1542 nucleotides) and 21 proteins, while the large subunit (LSU) consists of 5S rRNA (120 

nucleotides), 23S rRNA (2904 nucleotides), and 33 proteins.  The SSU is responsible for 

binding the mRNA and anticodon loop of the tRNA.  The LSU is shaped like a glove with 

three fingers extended.  Two of the “fingers” are composed of the LSU proteins L1 and 

L7/L12, respectively, and the middle “finger” (the central protuberance) is composed of 

several proteins and the 5S rRNA.  The LSU binds the aminoacyl end of the tRNA and is 

where the peptidyl transferase reaction is catalyzed.  The ribosome contains three tRNA 

binding sites:  the A-site, P-site, and E-site.  The A-site (aminoacyl-site) is the decoding site 

where the aminoacyl-tRNAs (aa-tRNAs) bind in response to codons exposed on the mRNA.  

The P-site (peptidyl-site) holds the peptidyl-tRNA prior to its transfer to the incoming amino 
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acid.  The E-site (exit-site) binds the deacylated tRNAs until their final release from the 

ribosome.  

 

Translational Initiation 

Prokaryotic translation can be divided into three stages: initiation, elongation, and 

termination/ribosome recycling.  Initiation of translation in E. coli involves three protein 

factors: initiation factor 1 (IF1), initiation factor 2 (IF2), and initiation factor 3 (IF3).  IF1 is an 

essential 71 amino acid protein whose exact function is unknown (8).  IF2 promotes the 

binding of the initiator tRNA (fMet-tRNA) to the P-site of the 30S ribosomal subunit and 

promotes the joining of the 30S and 50S ribosomal subunits (9).  In E. coli, IF3 is thought to 

have a number of roles.  These include (1) dissociating 70S monosomes into subunits by the 

preferential binding of IF3 to the small ribosomal subunit, (2) promoting the formation of 

initiation complexes, (3) proofreading initiation complexes by dissociating those with non-

canonical start codons, (4) promoting the shift of the start codon on the mRNA into the P-

site of the SSU, and (5) mediating the codon/anticodon interactions between the initiator 

tRNA and the mRNA (10-18). 

Many bacterial mRNAs contain a Shine-Dalgarno (SD) sequence in their 5’ 

untranslated regions.  This sequence (AGGAGG), or a variation of this sequence, is located 

about 8 nucleotides upsteam of the start codon, and has been shown to hydrogen bond 

with the anti-Shine-Dalgarno (ASD) region near the 3’ end of the 16S rRNA.  The ASD 

consists of nucleotides complementary to the SD sequence.  The SD/ASD interactions help 
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Figure 1-5. Schematic diagram of prokaryotic translational initiation. 
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specify the start codon and correctly position the mRNA on the ribosome for translation 

initiation. 

In the current model of bacterial initiation, E. coli 70S ribosomes are in equilibrium 

with their subunits, but the equilibrium strongly favors the 70S particle (Figure 1-5).  IF3 

binds the 30S subunit, preventing its association with 50S subunits.  In a random order of 

binding, IF1 and IF2:GTP, along with the fMet-tRNA and mRNA,  bind to the 30S subunit of 

the ribosome (19). A pre-initiation complex is formed when the SD sequence of the mRNA is 

recognized and bound by the SSU carrying the fMet-tRNA and all three initiation factors.  

When codon-anticodon interactions between the AUG start codon of the mRNA and the 

fMet-tRNA occur, a stable initiation complex is formed.  Efficient translation depends on the 

correct formation of this initiation complex, and initiation complex formation is the rate-

limiting step of translation.  IF1 and IF3 are released prior to, or at the time of, 50S subunit 
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binding.  The release of IF2 is coupled to GTP hydrolysis triggered by the 50S subunit, and 

leads to the formation of the 70S initiation complex.  This complex then proceeds to the 

elongation phase of translation. 

 

Translational Elongation 

Elongation in E. coli involves several factors and is represented by three basic steps:  

selection of the aa-tRNA, peptide bond formation, and translocation.  Initially, elongation 

factor Tu (EF-Tu) binds GTP and the aa-tRNA to form the ternary complex (20).  The ternary 

complex then binds to the A-site of the ribosome.  This process is preceded by the binding 

of EF-Tu to GTP and the aa-tRNA to form the ternary complex.  Selection of the correct 

ternary complex is carried out by codon:anticodon interactions in the A-site.  After EF-Tu 

delivers the aa-tRNA to the ribosome, it is released as an EF-Tu:GDP complex.  Elongation 

factor Ts (EF-Ts) binds to the EF-Tu:GDP complex and promotes the exchange of GDP for 

GTP to form the regenerated EF-Tu:GTP complex (21).  The peptidyl transferase center of 

the ribosome catalyzes peptide bond formation by transferring the growing polypeptide 

chain to the amino function of the aa-tRNA in the A-site (21).  Elongation factor G (EF-G) 

catalyzes the translocation step in which the deacylated tRNA and the peptidyl-tRNA are 

moved from the P-site to the E-site and the A-site to the P-site, respectively, to expose the 

ribosome to the next codon in the mRNA sequence (1).  The activities of E. coli EF-G are well 

studied, and, in most bacteria, this protein acts both during polypeptide chain elongation 

and termination. 
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Translational Termination and Recycling 

 Translational termination begins when the ribosome encounters one of three stop 

codons (UAA, UAG, or UGA) in the A-site.  The stop codon is recognized by one of two 

release factors: release factor 1 (RF1) recognizes UAA and UAG, and release factor 2 (RF2) 

recognizes UAA and UGA.  Either RF1 or RF2 binds to the A-site of the ribosome and triggers 

transfer of the peptide chain from the tRNA in the P-site to a water molecule, thus ending 

protein synthesis.  Release factor 3 (RF3) then binds to the ribosome and stimulates the 

release of the polypeptide chain and either RF1 or RF2. 

After translation termination, the ribosomes must be recycled in order to be used 

for another round of protein synthesis.  In prokaryotes, ribosome recycling involves a 

protein factor termed ribosome recycling factor (RRF).  RRF together with EF-G split the 70S 

ribosome into its subunits, releasing the deacylated tRNA and mRNA (1). 

 

MITOCHONDRIAL PROTEIN SYNTHESIS 

Structure of the Mitochondrial Ribosome 

 The structure of the bovine mitochondrial ribosome has been solved by cryo-

electron microscopy to a resolution of 13.5 Å (22).  The overall architecture of the 

mitochondrial ribosome is similar to its prokaryotic counterpart.  It is 2.7 MDa in molecular 

mass and is composed of a large (39S) and small (28S) subunit, which associate to make an 

intact (55S) ribosome.  Mitochondrial ribosomes are composed of 2/3 protein and 1/3 RNA, 

a ratio that is reversed from that of the prokaryotic ribosome.  The mitochondrial rRNA is 

coded for in the mitochondrial genome, but all mitochondrial ribosomal proteins are 
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A                  B 

 
Figure 1-6. Cryo-electron microscopy of the bovine mitochondrial ribosome.  The small 
(A) and large (B) ribosomal subunits are shown from the interface side.  RNA is shown 
in orange (SSU) and purple (LSU), and protein is shown in yellow (SSU) and blue (LSU). 
Figure provided by R. Agrawal. 

Central protuberance

L1 stalk L7/L12 stalk

encoded in the nuclear DNA and are subsequently imported into the mitochondria.  

Although the mitochondrial ribosome is larger in molecular weight than the prokaryotic 

ribosome, it has a lower sedimentation value, reflecting the lower rRNA content and a more 

porous structure.  Approximately half of the mitochondrial ribosomal proteins are homologs 

of those in the prokaryotic system, while the other half are unique to mitochondria. 

The SSU is composed of 12S rRNA (950 nucleotides) and 29 proteins (Figure 1-6).  It 

is also larger in size than the prokaryotic SSU.  Of the 29 proteins, S2, S5-S7, S9-S12, S14-18, 

and S21 have sequence homology with the SSU proteins in the bacterial ribosome.  Much of 

the rRNA found in the prokaryotic ribosome is missing, including the ASD region of the 16S 

rRNA.   

The LSU is composed of 16S rRNA (1560 nucleotides) and approximately 50 proteins 

and is larger in size than its prokaryotic counterpart.  It is missing several segments of RNA 
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that are present in the bacterial ribosome (Figure 1-6).  Twenty-eight of the LSU proteins 

have sequence homology with the LSU proteins of the bacterial ribosome.  Like the bacterial 

LSU, it is shaped like a glove with the L1 stalk, L7/L12 stalk, and the central protuberance.  

However, the mitochondrial LSU has an additional protein feature, named the LSU handle 

that extends from the central protuberance to the main body of the subunit.  It is located 

on the solvent side of the subunit and is hypothesized to function in place of the 5S rRNA 

found in the bacterial ribosome.  

 

Mitochondrial mRNAs 

An important difference between bacterial and mitochondrial translation initiation is 

the process by which the start codon on the mRNA is placed in the P-site of the ribosome.  

In prokaryotes, the SD sequence upstream of the start codon directs the small subunit to 

the correct AUG codon as described above (23).  Mitochondrial mRNAs are largely 

leaderless; therefore, the mechanism of the selection of the translational start site must be 

different from that in prokaryotes.   

Leaderless mRNAs, in addition to being translated in mitochondria, are also 

translated in bacteria and archaea, although each system has unique mechanisms reported 

for the initiation of leaderless messages.  In prokaryotes, it is unclear whether initiation of 

leaderless mRNAs occurs on intact 70S monosomes or on dissociated 30S subunits (24-26).  

It is important to note, however, that most of the studies performed in prokaryotes on 

“leaderless” mRNAs used sequences beginning with “GAUG,” since transcription by T7 RNA 
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polymerase is substantially more effective when G is the first nucleotide in the transcript.  

These “GAUG” mRNAs are arguably not actually leaderless. 

In the archaeal system, 2/3 of all mRNAs are leaderless, and of the mRNAs that 

contain leaders, few have SD sequences (27).  In contrast to other systems where 

alternative initiation codons can be used, archaeal leaderless mRNAs are only translated 

when an AUG start codon is present (28).  In addition, introduction of an internal AUG to a 

leaderless mRNA resulted in translation from both the 5’ AUG and the internal AUG, 

although it was not determined that initiation occurred on both AUG’s simultaneously (28). 

 

Mitochondrial Translation Initiation 

Translation of the mRNAs encoded by mitochondrial DNA requires the presence of a 

protein biosynthetic system that is distinct from that of the cell cytoplasm.  Not only are the 

ribosomes composed of more protein and less rRNA (Figure 1-6), but the initiation factors 

and tRNAs have some important differences.  E. coli has separate initiator and elongator 

tRNAs for methionine, while mitochondria only have one that functions in both processes.  

Mitochondria also have the ability to use alternative start codons for translation initiation: 

AUA, AUC, and AUU, in addition to the canonical AUG start codon. 

Translation initiation factors have similarities in the bacterial and mitochondrial 

systems, but several key differences are apparent.  Three essential translation initiation 

factors have been identified in E. coli, while only two have been identified in the 

mitochondrial system.  In E. coli, IF2 promotes the binding of fMet-tRNA to the P-site of the 

30S ribosomal subunit and promotes the joining of the 30S and 50S ribosomal subunits (9).  
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Mitochondrial IF2 (IF2mt) appears to have the same fundamental activities found in its 

bacterial counterpart.  IF1 is an essential protein in E. coli, but its precise function is 

unknown (8).  No factor corresponding to IF1 has been identified in mitochondria.  

However, IF2mt has a 37 amino acid insertion that is believed to function in place of IF1 in 

translation (29).  Mitochondrial IF3 (IF3mt), like bacterial IF3, stimulates initiation complex 

formation by providing a pool of free 28S subunits for initiation (Figure 1-7).  IF3mt has the 

unique role not present in E. coli IF3 of reducing the IF2mt-mediated binding of fMet-tRNA to 

28S subunits in the absence of mRNA (30).  This observation suggests that mRNA binding 

normally precedes fMet-tRNA binding in the mitochondrial system. 

 

Mitochondrial Translation Elongation, Termination, and Ribosome Recycling 

Translation elongation and termination in mitochondria are very similar to the 

respective processes in E. coli.  Following translation initiation, the elongation step begins 

when EF-Tumt:GTP delivers the aa-tRNA to the A-site of the ribosome (Figure 1-7).  EF-Tsmt 

regenerates the EF-Tumt:GTP from EF-Tumt:GDP.  EF-G (EF-G1mt in the mitochondrial system) 

catalyzes the translocation of the tRNAs and the movement of the mRNA to expose the next 

codon in the A-site. 

Mitochondrial elongation factor Tu (EF-Tumt) is a 45.1 kDa protein that is 56% 

identical in sequence to E. coli EF-Tu (31).  EF-Tumt is composed of three domains, of which 

domain I contains the guanine nucleotide binding site.  All three domains are involved in 

binding to the aa-tRNA (32).  Domain 1 of EF-Tumt rotates with respect to domains II and III 

when GTP is bound in comparison to when GDP is bound, creating the conformation that is 
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Figure 1-7.  Schematic diagram for protein synthesis in mammalian mitochondria. The 
figure represents the four stages of protein synthesis: initiation is carried out by IF2mt 
and IF3mt; elongation by EF-Tumt, EF-Tsmt, and EF-G1mt; termination is facilitated by 
RF1amt; ribosome recycling requires RRFmt and EF-G2mt. A possible active role of IF3mt is 
also indicated as an alternative mechanism. Note that only P- and A-sites are shown, 
since cryo-EM studies suggest that there is no site structurally equivalent to the E-site 
in mammalian mitochondrial ribosomes (2).  Figure obtained with permission from (1). 

active in binding the aa-tRNA (33).  The binding of EF-Tumt:GTP to mitochondrial Phe-tRNA 

(76 nM) is not as tight as the interaction between E. coli EF-Tu and bacterial Phe-tRNA (~1 

nM) (34;35).     

Mitochondrial elongation factor Ts (EF-Tsmt) is a 30.7 kDa protein that consists of an 

N-terminal domain and a core domain with N- and C-terminal subdomains (31).  EF-Tumt and 

EF-Tsmt interact through an extensive contact surface that includes domains I and III of EF-

Tumt and all three domains of EF-Tsmt (31;36).  EF-Tumt associates with EF-Tsmt with a binding 

constant of 5.5 nM (35). 
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In contrast to prokaryotic EF-G, which functions in both translation elongation and 

termination, two forms of EF-G are present in mitochondrial systems. Recent work has 

provided convincing evidence that the factor designated EF-G1mt catalyzes translocation but 

is inactive in the ribosome recycling step (37).  EF-G2mt works with RRFmt to release the 

tRNA and mRNA and to dissociate the monosome into subunits.  In contrast to EF-G1mt, EF-

G2mt is not active in translocation.  Thus, EF-G2mt is not biologically equivalent to a 

traditional translocase, and recently Tsuboi et al. (37) proposed that this factor be renamed 

RRF2mt to reflect its role in ribosome recycling.  

Two forms of the EF-G (EF-G1 and EF-G2) are present in a variety of microorganisms, 

and both proteins show significant sequence homology to each other.  Recent studies 

suggest that the roles of EF-G2 in bacteria vary from one organism to another.  For example, 

Mycobacterium smegmatis EF-G2 shows no ribosome dependent GTPase activity and is 

unable to catalyze translocation or ribosome recycling (38), while EF-G2 from T. 

thermophilus retains GTPase activity and behaves similarly to EF-G1 (39).   

Possible roles of EF-G1mt and EF-G2mt have been investigated in yeast.  In this 

organism, mutations of EF-G1mt lead to impaired activity in mitochondrial protein synthesis 

in vivo, but mutations in EF-G2mt failed to show any clear phenotype (40). Defects in 

mitochondrial translation have been observed in human patients due to mutations in EF-

G1mt, and these defects are generally lethal shortly after birth. No human defects in EF-G2mt 

have yet been found (41). 

When the translation machinery encounters a stop codon, a release factor (RF1amt) 

induces the hydrolysis of the newly formed polypeptide from its tRNA (42).  Following the 
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action of the release factor, the 55S complex carrying the deacylated tRNA and mRNA is 

targeted by RRFmt and EF-G2mt (43).  How the tRNA and the mRNA dissociate from the 

ribosome is not clear. 
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EVIDENCE FOR AN ACTIVE ROLE OF IF3mt IN THE INITIATION OF TRANSLATION IN 

MAMMALIAN MITOCHONDRIA 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

The majority of the work reported in this chapter has been published (1;2) and reprinted 

with permission.
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INTRODUCTION 

  Mitochondria are involved in a number of human diseases.  In particular, 

dysfunctions in mitochondria and mutations in mitochondrial DNA have been linked to 

genetic diseases, Alzheimers disease, Parkinsons disease, and other age-related 

neurodegenerative diseases (3).  Before the relationship between mitochondria and disease 

states can be fully understood, a number of fundamental questions about mitochondrial 

processes, including mitochondrial gene expression, must be answered. 

The mammalian mitochondrial genome contains 16 kilobase pairs of DNA (4), 

encoding two ribosomal RNAs, 22 transfer RNAs, and 13 proteins.  Translation of the mRNAs 

encoded by mitochondrial DNA requires the presence of a protein biosynthetic system that 

is distinct from that of the cell cytoplasm.  Mitochondrial ribosomes are 55S particles that 

have about half the rRNA content and twice the protein content of bacterial ribosomes (5).  

Mitochondrial ribosomal subunits have sedimentation coefficients of 28S and 39S, while 

bacterial ribosomal subunits have sedimentation coefficients of 30S and 50S and form 70S 

monosomes. 

Following removal of the mitochondrial import signal, IF3mt is a 29 kDa protein  

composed of three regions that have homology to the bacterial factor: the N-terminal 

domain, the linker, and the C-terminal domain (Figure 2-1). The N-terminal homology 

domain is preceded by an extension of 30 amino acids, and the C-terminal domain is 

followed by an extension of 33 amino acids.  Most of the functions of E. coli IF3 and IF3mt 

tested in vitro have been localized to the C-terminal domain.   
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Figure 2-1. Domain organization of E. coli IF3 and IF3mt.  The N-terminal extension of 
IF3mt spans from residue 32-61, the N-terminal domain spans from residue 62-130, the 
linker spans from residue 131-157, the C-terminal domain spans from residue 158-245, 
and the C-terminal extension spans from residue 246-278.  In E. coli, the N-terminal 
domain spans from residue 1-68, the linker from 69-92, and the C-terminal domain 
from 93-180.   

As mentioned in Chapter 1, translation initiation factors have similarities in the 

bacterial and mitochondrial systems, but several key differences are apparent.  Although 

IF2mt seems to serve similar functions as its prokaryotic counterpart, it has a 37 amino acid 

insertion that is believed to function in place of IF1 in translation (6).  Like E. coli IF3, the 

majority of the functions of IF3mt have been localized to the C-terminal domain.  Functions 

of E. coli IF3 include:  inducing the dissociation of monosomes by preferentially binding to 

the small ribosomal subunit; promoting the formation of initiation complexes; proofreading 

formed initiation complexes and dissociating those with non-canonical start codons; and 

mediating the interactions between the codon and anticodon.  While IF3mt is known to 

promote initiation complex formation, the other functions above have not been 

demonstrated for IF3mt.  However, IF3mt is thought to contain an additional proofreading 

function which reduces fMet-tRNA binding in the absence of mRNA.  This function is 

thought to be localized to the C-terminal extension and linker (7;8). This observation 



   

25 

 

suggests that mRNA binding normally precedes fMet-tRNA binding in the mitochondrial 

system. 

Full length IF3mt is thought to bind on the interface side of the small subunit close to 

the platform with a Kd of 30 nM (8).  The binding constant was determined using both 

Surface Plasmon Resonance and Microcon centrifugation.  The isolated C-terminal domain 

of IF3mt also has a strong affinity for the 28S subunit and binds with a Kd of 95 nM (8).  The 

isolated N-terminal domain of E. coli IF3 has no detectable binding to the 30S ribosomal 

subunit (9).  This domain of IF3 is thought to increase the affinity of the intact IF3 protein 

for the 30S subunit by two orders of magnitude.  In contrast, the isolated N-terminal 

domain of IF3mt binds to the 28S subunit with a Kd of 390 nM (8).  The N- and C-terminal 

extensions of IF3mt are not required for binding of the protein to the small subunit, and 

removal of the extensions has almost no effect on the binding constant (10).  However, the 

C-terminal extension, along with the linker, plays a role in preventing fMet-tRNA binding to 

the 28S subunit in the absence of mRNA (8). 

Native IF3mt has never been detected or purified from mammalian mitochondria. 

This observation probably reflects the low abundance of IF3mt in mitochondria.  Further, 

detection of the cDNA for IF3mt in the EST databases is a challenge due to the relatively low 

sequence conservation of this factor (20-25 % identity to prokaryotic IF3) (11).  Hence, 

MitoProtII was used to predict the cleavage site for the removal of the mitochondrial import 

signal (12).  This program predicted an import signal of 31 amino acids, giving a 247 amino 

acid mature protein. This factor is predicted to have a molecular mass of 29 kDa after 

removal of the predicted mitochondrial import sequence.   
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MATERIALS AND METHODS 

Materials 

  Laboratory supplies and chemicals were purchased from Sigma-Aldrich or Fisher 

Scientific.  A rabbit polyclonal primary antibody to the region of IF3mt homologous to the 

bacterial factors was prepared as previously described (7).  Bovine mitochondrial ribosomes 

(55S), ribosomal subunits (28S and 39S), bovine IF2mt, and yeast [35S]fMet-tRNA were 

prepared as described (2;13;14).  

 

Preparation of IF3mt 

 An EST encoding human IF3mt was obtained from American Type Culture Collection 

and the region encompassing the mature protein (amino acids 32 to 278) was previously 

cloned into pET-21c(+) using the NdeI and XhoI restriction sites (11).  This vector provides a 

C-terminal His6-tag.  This construct was transformed into E. coli BL21(DE3) carrying the 

pArgU218 plasmid to supply the isoacceptor of tRNAArg recognizing the AGA and AGG 

codons.  Twelve mutated derivatives of IF3mt, designated IF3mt:1-12 (Table 2-1), were 

prepared by site-directed mutagenesis using the primers listed in Table 2-2 and the 

QuikChange site-directed mutagenesis protocol (Stratagene).  All mutations were verified by 

DNA sequencing.  The mutated plasmids were transformed into E. coli BL21 RIL cells 

(Stratagene).   
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Mutation Location 
Residues 
Mutated 

Residues 
Changed to 

IF3mt:1 N-domain KKTKK (66-70) AATAA 

IF3mt:2 N-domain TSTE (121-124) AAAA 

IF3mt:3 Linker REMEK (143-147) AAMAA 

IF3mt:4 C-domain KKK (184-186) AAA 

IF3mt:5 C-domain HD (170-171) AA 

IF3mt:6 C-domain K (175) A 

IF3mt:7 C-domain K (194) A 

IF3mt:8 C-domain EE (207-208) AA 

IF3mt:9 C-extension EE (247-248) AA 

IF3mt:10 C-extension KE (252-253) AA 

IF3mt:11 C-extension DT (261-262) AA 

IF3mt:12 C-extension KD (265-266) AA 

 
 

  Table 2-1.  Summary of the mutations prepared in IF3mt. 

 

Cells were grown to an A595 of 0.6 in Lauria Broth (LB) media containing ampicillin 

(100 µg/mL) and chloramphenicol (34 µg/mL), at which time the expression of IF3mt was 

induced using 50 µM isopropyl β-D-1-thiogalactopyranoside (IPTG).  Cells were allowed to 

induce either overnight at 25 °C or for six h at 37 °C.  Similar yields were obtained from cells 

grown under either of these conditions.  After induction, cells were harvested by 

centrifugation at 5,000 rpm (7,300 g) for 30 min at 4 °C in a Sorvall RC3B centrifuge using 1 L 

swinging buckets in the H-6000A rotor. The cell pellets were resuspended in buffer 

containing 50 mM Tris-HCl (pH 7.8), 50 mM NH4Cl and 10 mM MgCl2 and collected again by 

centrifugation at 7,000 rpm (5,856 g) 
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for 30 min in an SS34 rotor.  The cell pellets were carefully drained and weighed.  At this 

point, the cells could be stored at -70 °C after being fast-frozen in a dry ice isopropanol 

bath. The yield of cells was generally around 5 g/L of media.  Cells were resuspended in ice 

cold lysis buffer (10 mL buffer per g of cell pellet) containing 50 mM HEPES-KOH (pH 7.8), 7 

mM MgCl2, 10 % glycerol, 0.1 mM ethylenediaminetetraacetic acid (EDTA), 100 mM KCl, 6 

IF3mt: Forward Primer 

1a GACAAAAGCGAATAAAACAGCTTTTAGTAACG 

1b AGACAGCAGCGAATAAAACAGCTTTTAGTAACG 

1c CACCCAGAATGAAGGAGCAAAGACAGCAGCG 

1d GAATGAAGGAGCAGCGACAGCAGCG 

2 GGTTCAAAGGAACGCCGCCGCAGCACCTGCAGAGTAT 

3a CAGAGGCTGGCTGCGATGGAGAAGGCGAACCC 

3b GCTGCGATGGCTGCGGCGAACCC 

4 GCAGTGGATTGCGGCAGCACACCTAGTCC 

5 TCTTCAAATATTGGACAAGCTGCTTTGGACACAAAGACTAAACAG 

6 GATTTGGACACAGCGACTAAACAGATTCAG 

7 CCAGATTACCATAGCGAAAGGAAAAAATGTAGACG 

8 GTCAGAAAATGAAATGGCGGCGATATTTCATC 

9 GCTTTGAGCAAAAATGCGGCGAAGGCATATAAAG 

10 GGAGAAGGCATATGCAGCAGAAACTCAAGAGACCC 

11 GACCCAGGAAAGAGCCGCTTTGAACAAAGACC 

12 GAGACACTTTGAACGCAGCCCATGGAAATGATAAGG 

 
 

 

Table 2-2. Primers used in preparation of IF3mt constructs.  Mutated nucleotides are 
highlighted in gray.  The reverse primers used were the inverse complements of the 
forward primers in each case.  To make the four amino acid mutations in IF3mt:1, four 
sequential mutations were required using primers 1a-1d sequentially.  To make the four 
amino acid mutations in IF3mt:3, two sequential mutagenic reactions were carried out 
using primers 3a and 3b as indicated. 
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mM β-mercaptoethanol (BME), 0.5 mM phenylmethylsulfonyl fluoride (PMSF) and 0.8 % 

Triton X-100 and sonicated for seven pulses (10 s on, 50 s off).  Solid NH4Cl was added to a 

final concentration of 0.5 M over a period of 15 min while stirring on ice.  Cell debris was 

removed by centrifugation at 15,000 rpm (27,000 g) for 30 min in a Sorvall SS34 rotor at 4 

°C. The supernatant was retained.  Ni-NTA agarose was equilibrated in Ni-NTA wash buffer 

containing 50 mM Tris-HCl (pH 7.8), 7 mM MgCl2, 10 % glycerol, 1M KCl, 10 mM imidazole, 7 

mM BME, and a 50 % slurry in this buffer was prepared.  This slurry (1 mL/2 L cell culture) 

was added to the cell lysate and the sample was mixed for 30 min at 4 °C using a test tube 

rocker. This mixture was then sequentially transferred to a (5 mL) polypropylene column 

(Qiagen).  The column was washed with 100 mL of Ni-NTA wash buffer, after which the 

protein was eluted with six sequential 1 mL aliquots of Ni-NTA elution buffer containing 50 

mM Tris-HCl (pH 7.8), 7 mM MgCl2, 10 % glycerol, 40 mM KCl, 150 mM imidazole, 7 mM 

BME.  Each aliquot of Ni-NTA elution buffer was allowed to sit on the column for 5 min 

before being collected.  All fractions were combined and dialyzed against one hundred 

volumes of ice cold dialysis buffer (Buffer I) containing 20 mM HEPES-KOH (pH 7.6), 10 mM 

MgCl2, 50 mM KCl, 10 % glycerol, and 6 mM BME for 2 h, with a change of Buffer I after 1 h. 

 

Purification of IF3mt by High Performance Liquid Chromatography (HPLC) 

The IF3mt preparation has one major contaminant following the Ni-NTA step.  The 

contaminant is a 19 kDa C-terminal fragment of IF3mt (11). This contaminant often 

represents 30-40 % of the total protein in the sample.  Due to the presence of this 

contaminant, a second step of purification was carried out using HPLC or gravity 
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chromatography. For the HPLC method, the partially purified IF3mt (~3 mg in ~5 mL) 

prepared from 2 L of cell culture was dialyzed against a 100-fold excess of Buffer I for 1 h. 

The dialyzed sample was filtered through a 0.45 μm filter and applied at a flow rate of 0.6 

mL/min to a TSKgel SP-5PW column (7.5 cm x 7.5 mm, TosoHaas Inc., Japan) that was 

equilibrated in Buffer I containing 150 mM KCl. The column was washed until the 

absorbance at 280 nm returned to baseline and was then developed with a linear gradient 

(40 mL) from 0.15 M to 0.55 M KCl in Buffer I at a flow rate 0.5 mL/min. Fractions (0.5 mL) 

were collected using a Shimadzo fraction collector into Eppendorf tubes from which the lids 

had been removed and that were balanced in 100 x 13 mm glass test tubes. Fractions 

containing full-length IF3mt were identified by electrophoresis on 15 % SDS-polyacrylamide 

gels. These fractions were pooled, fast-frozen in a dry ice isopropanol bath and stored at -70 

°C. 

 

Purification of IF3mt by Gravity S-Sepharose Column 

Since HPLC equipment is not standard in all laboratories, we also developed a gravity 

chromatographic method for the purification of IF3mt.  In this procedure, the dialyzed 

sample (~5 mL, ~3 mg from 2 L cell culture) from the Ni-NTA column was applied to an 

S-Sepharose column (8 mL, 6.5 cm x 1.75 cm) equilibrated in Buffer I containing 250 mM 

KCl.  The column was developed with a linear gradient (40 mL) from 250 mM to 550 mM KCl 

in Buffer I. Fractions (0.75 mL) were collected at a flow rate of 1 mL/min while the 

absorbance at 280 nm was monitored using an Isco UA-6 UV-Visible detector at an 

absorbance scale setting of 0.5 and a 5 mm optical flow cell.  Fractions containing the 29 
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kDa mature form of the tagged IF3mt were identified by SDS-polyacrylamide gel 

electrophoresis.  The S-Sepharose column could be reused. Before reuse, it was washed 

with ten volumes of Buffer I  containing 550 mM KCl, followed by ten volumes of Buffer I 

containing 1M KCl.  It was then equilibrated in Buffer I containing 250 mM KCl.  The column 

was allowed to sit overnight in this buffer and then washed again briefly with Buffer I 

containing 250 mM KCl before use.  

The IF3mt eluted from the S-Sepharose column described above still contained small 

amounts of the 19 kDa fragment and other minor contaminants.  Fractions containing the 

29 kDa band were combined, diluted 1.5-fold with Buffer I and dialyzed against 100 volumes 

of ice cold Buffer I  at 4 °C for two h with a change of buffer after one h.  The dialysate was 

applied to the S-Sepharose column again. The column was developed with a 40 mL linear 

gradient from 250 to 550 mM KCl in Buffer I and the absorbance at 280 nm was monitored 

as described above. Aliquots of various fractions were analyzed by SDS-polyacrylamide gel 

electrophoresis on 15 % gels for the presence of IF3mt. The second run through the S-

Sepharose column eliminated the 19 kDa fragment and had a negligible effect on activity.  

Fractions containing full-length IF3mt were then combined, dialyzed against 100 volumes of 

ice cold Buffer I at 4 °C for two h with a change of buffer after one h, and then stored at -70 

°C until further use. 

 

Assay of IF3mt on E. coli Ribosomes 

The standard assay (0.1 mL) contained 50 mM Tris-HCl (pH 7.8), 60-80 mM KCl, 5 

mM MgCl2, 0.25mM GTP, 1 mM phospho(enol)pyruvate (PEP), 0.9 unit pyruvate kinase, 1 
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mM dithiothreitol (DTT), 12.5 µg poly(A,U,G), 0.055 µM (5.5 pmol) [35S]fMet-tRNA 

(60,000-70,000 cpm/pmol), 0.4 µM E. coli 70S ribosomes, a saturating amount (0.1 µM, 10 

pmol) of IF2mt, and the desired amount of IF3mt generally ranging from 0 to 0.1 µM (0 to 10 

pmol).  Samples were incubated at 37 °C for 15 min.  After incubation, each sample was 

rapidly diluted with 3-4 mL of cold Mg5 Wash Buffer containing 50 mM Tris-HCl (pH 7.8), 80 

mM KCl, and 5 mM MgCl2, and filtered through a nitrocellulose membrane that was wetted 

with cold Mg5 Wash Buffer.  Filtration was facilitated by use of a gentle vacuum provided by 

a pump. The filters were washed with 3 aliquots (3-4 mL each) of cold Mg5 Wash Buffer 

with the vacuum on.  Background binding (generally 0.2-0.5 pmol) obtained in the absence 

of IF3mt was subtracted from each value.  One unit is defined as the binding of 1 pmol of 

[35S]fMet-tRNA to ribosomes under the assay conditions described above.  The specific 

activity of the purified protein was about 1,700 units/mg when tested on 70S ribosomes. 

The total yield of purified protein was about 2 mg from 2 L cell culture.  

 

Assay of IF3mt on Bovine Mitochondrial Ribosomes 

Reaction mixtures (0.1 mL) contained 50 mM Tris-HCl (pH 7.6),  0.1 mM spermine, 

35 mM KCl, 4.5 mM MgCl2, 0.25 mM GTP, 1 mM DTT, 1 mM PEP, 0.9 unit pyruvate kinase, 

12.5 µg poly(A,U,G), 0.42 µM IF2mt, 0.06 µM [35S]fMet-tRNA, 0.04-0.06 µM (about 4-6 pmol) 

mitochondrial 55S tight couples (1 A260 unit is 32 pmol of 55S ribosomes), 0.04 µM 

[35S]fMet-tRNA, a saturating amount of IF2mt (about 0.1 µM, 10 pmol) and the desired 

amount of IF3mt (generally 0.005 to 0.1 µM). These initiation complex formation assays 

were incubated at 37 °C for 15 min and processed as described above using Mg5 Wash 
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Buffer in which the concentration of KCl was reduced to 40 mM. All of the values reported 

were corrected for the amount of radioactivity retained on the filters in the absence of IF3mt 

(about 0.1 pmol). 

 

Preparation of Mutated Derivatives of IF3mt 

The IF3mt derivatives were purified using the methodology listed above for the 

purification of wild-type IF3mt (IF3mt:WT).  For use in assays, the derivatives were dialyzed in 

Buffer 1 for 2 h with a change of buffer after 1 h.  Alternatively, the mutated derivatives 

were dialyzed in 50 mM phosphate buffer (pH 7.6) for 4 h with a change of buffer after 2 h.  

The mutated derivatives in phosphate buffer were tested for structural integrity by 

comparing the α-helical content present determined by circular dichroism (CD) to that of 

IF3mt:WT using an Aviv Model 62DS CD Spectrometer.  IF3mt:1 was excluded from CD 

measurements due to the fact that it failed to separate from its truncated 19 kDa fragment 

during HPLC purification. 

 

Preparation of Polynucleotide Phosphorylase 

Initiation complex assays were carried out using poly(A,U,G) as the mRNA.  Since this 

polymer is no longer commercially available, it was prepared using polynucleotide 

phosphorylase.  The gene encoding E. coli polynucleotide phosphorylase was previously 

cloned into the pET11a plasmid in E. coli BL21 (DE3) pLysS cells and was a generous gift 

from Dr. George H. Jones (Dept. of Biology, Emory University, Atlanta, GA) (15).  The 

enzyme was purified as described (15).  To follow the enzyme during purification, activity 



   

34 

 

assays were carried out.  Reaction mixtures (100 µL) contained 50 mM Tris-HCl (pH 8.0), 5 

mM MgCl2, 5 mM [3H]ADP (7 cpm/pmol), and 20 µL of appropriate fractions.  The reactions 

were incubated at 37 °C for 20 min, at which point 500 µg bovine serum albumin (BSA) was 

added, and the reactions were precipitated with cold 5% trichloroacetic acid (TCA) (16).  The 

precipitate was collected by filtration using impure nitrocellulose filters (Millipore).  The 

amount of polymerized [3H]ADP was quantitated using a scintillation counter.  Following 

final purification of the enzyme, fractions with ADP polymerization activity were pooled and 

dialyzed against 50 % ammonium sulfate overnight without stirring at 4 °C.  The enzyme was 

stored in 1 mL aliquots at -20 °C. 

 

Synthesis and Purification of Poly(A,U,G) 

A 10 mL reaction containing 50 mM Tris-HCl (pH 8.0), 10 mM MgCl2, 5 mM ADP, pH 

7.0, 5 mM UDP, pH 7.0, 5 mM GDP, pH 7.0, and 1 mg polynucleotide phosphorylase was 

incubated at 37 °C overnight.  Following synthesis, the reaction mixture was extracted using 

phenol (pH 8.0)/chloroform, and the RNA was precipitated with ethanol overnight at -20 °C.  

RNA was collected by centrifugation at 15,000 rpm in the Sorvall SS-34 rotor for 30 min.  

The pellets were resuspended in 5 mL sterile H2O and applied to a Sephadex G-50 column 

(74 cm x 1.1 cm) equilibrated in 3 mM EDTA, pH 8.0, and 25 mM Tris-HCl (pH 7.8).  The 

column was developed with 150 mL of the same buffer, and 1 mL fractions were collected 

at a flow rate of 1 mL/min. UV absorbance was monitored at 260 nm.  Fractions containing 

poly(A,U,G) were pooled and precipitated using 2.5 volumes 100% ethanol overnight at -20 

°C.  The poly(A,U,G) was collected by centrifugation at 15,000 rpm for 30 min in the SS-34 
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rotor and stored at -20 °C.  Before use, the pellets were dissolved in sterile H2O to a final 

concentration of 13 µg/µL. 

 

Quantitation of the Binding of IF3mt and Its Derivatives to Mitochondrial 28S Subunits Using 

Microcon Centrifugation 

Ribosome binding reactions were carried out as described (10) in Binding Buffer (100 

µL) which contained 10 mM Tris-HCl (pH 7.6), 40 mM KCl, 7.5 mM MgCl2, 1 mM DTT, and 

0.1 mM spermine.  Reactions also contained 50 nM 28S subunits (5 pmol) and IF3mt (0.15-1 

pmol, 1.5-10 nM) or its derivatives. The reactions were incubated for at 25°C for 20 min, at 

which time the reaction mixtures were added to the Microcon spin columns (Millipore) and 

centrifuged at 12,000 rpm (10,900 g) for 2 min. Binding Buffer (100 µL) was used to wash 

the Microcon columns, using centrifugation as described above to collect the Binding 

Buffer. To recover the IF3mt bound to 28S subunits (retained on the filter), 100 μl Binding 

Buffer was added to the column, the column was inverted, and then centrifuged for 1 min 

as described above.  IF3mt was released from the ribosome by the addition of EDTA to a final 

concentration of 20 mM.  The sample containing the bound IF3mt was applied to a dot blot 

apparatus (Bio-Rad).  The amount of IF3mt bound to 28S subunits was determined 

colorimetrically using a dot blot probed with antibodies against IF3mt as described 

previously (10).  A control curve for analysis of the dot blot was prepared by spotting 

various concentrations of IF3mt (0.5-1.2 pmol, 5-12 nM), 28S (5 pmol, 50 nM), and EDTA (20 

mM) directly onto the dot blot nitrocellulose membrane to quantify the change in color 

versus the amount of protein.  A blank value corresponding to the color change of the 
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membrane in the absence of IF3mt was subtracted from each value.  The calibration curve 

was linear over this range.  The Image Quant software program was used to calculate the 

number of pixels on the dot blot membrane.   

 

Dissociation of Mitochondrial 55S Ribosomes by IF3mt and its Mutated Derivatives 

Mitochondrial 55S ribosomes (8 pmol, 0.08 µM) were incubated in a buffer (100 µL) 

containing 50 mM Tris-HCl (pH 7.6), 5 mM MgCl2, 40 mM KCl, and 1 mM DTT in the absence 

or presence of 80 pmol (0.8 µM) IF3mt or its mutated derivatives at 37 °C for 15 min.  The 

samples were placed on ice for 10 min and then loaded onto 10-30 % sucrose gradients 

prepared in the buffer above and analyzed as previously described by monitoring the A254 

during fractionation of the gradients (10).  Each 55S ribosome sample contained some free 

39S subunits.  Therefore, the percentage of 55S particles was determined by comparing the 

area of the 55S peak on the absorbance profile to the total area of the 28S, 39S, and 55S 

peaks combined to account for this contamination.  Areas under the peaks were 

determined using the width of the peak at ½ the maximal height multiplied by the height.  

To determine the percentage dissociation, the amount of 55S particles in the absence of 

IF3mt was set to 100% and compared to the amount of 55S particles observed in the 

presence of IF3mt. 

 

Inhibition of fMet-tRNA Binding to 28S Subunits by IF3mt in the Absence of mRNA 

The inhibition of [35S]fMet-tRNA binding to 28S subunits in the absence of mRNA 

was tested as described (7).  Small subunits (6.2 pmol, 0.062 µM) were incubated under the 
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Figure 2-2. Model of IF3mt.  The N-terminal homology domain of IF3mt is shown in red, 
the linker is shown in green, and the C-terminal homology domain is shown in blue. 

assay conditions described for mitochondrial ribosomes above with saturating amounts of 

IF2mt (25 pmol, 0.25 µM) and [35S]fMet-tRNA (5 pmol, 0.05 µM) in the presence or absence 

of IF3mt (0-12 pmol, 0-0.12 µM) or its mutated derivatives for 15 min at 25 °C in 100 µL 

reaction mixtures.  The amount of [35S]fMet-tRNA remaining bound to the subunits was 

determined using a nitrocellulose filter binding assay (17). 

 

RESULTS 

Design of IF3 Mutations 

A model of the region of IF3mt homologous to the bacterial factor was developed 

using the modeling program Insight II (Figure 2-2).  The N-terminal homology domain was 

modeled after the crystal structure of the Bacillus stearothermophilus IF3 (PDB coordinates 

1TIF (18)). This region of IF3 folds into a mixed 4-stranded β-sheet packed against a single 

helical unit (Helix 1) lying across the sheet and a second -helix (Helix 2) extending into the 

linker region.  The model of the N-terminal homology domain of IF3mt is quite similar to that 

of the crystal structure of the B. stearothermophilus factor despite the low percent identity 
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(<23 %) between these domains.  The C-terminal homology domain was modeled after the 

NMR structure of the mouse IF3mt (PDB coordinates 2CRQ, to be published) which has been 

shown to consist of two -helices (H3 and H4) lying on top of a 4-stranded β-sheet. The 

sequence of the C-terminal homology domain of the human factor is 72 % identical to that 

of mouse IF3mt. The predicted structure of this domain of human IF3mt is quite similar to 

that of the mouse factor, except that one of the β-strands is modeled in two sections due to 

the presence of an internal proline residue.  In the model, the linker region is depicted as 

being partially α-helical.  However, biochemical studies of the linker regions of IF3 from 

several sources suggest that this region has considerable flexibility (8;19-21).  The model 

does not include the N- and C-terminal extensions, which were predicted to be disordered.   

Mitochondrial 55S ribosomes are composed of approximately 2/3 protein and 1/3 

RNA.  The interface between the 28S and 39S subunits is rich in RNA (5).  Significant 

electrostatic interactions between IF3mt (pI ~10) and the 12S small subunit rRNA are 

expected to play an important role in the function of this factor.  To identify residues in 

IF3mt potentially involved in binding to the small subunit or in other functions of this factor, 

clusters of charged amino acids predicted to be exposed on the surface in the model of 

IF3mt (Figure 2-3) were changed to alanine (Figure 2-4).  Twelve different mutated 

derivatives (IF3mt:1-12) were made in the N- and C-terminal domains, the linker, and the C-

terminal extension.  The charges of these residues are generally conserved among 

vertebrate IF3mt, and partially conserved with the mosquito, fruit fly, and bacterial factors 

(Figure 2-4).  No mutations were made in the N-terminal extension, because this region is 
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Figure 2-3.  Model of IF3mt showing IF3mt:1-8.  The N-terminal domain is shown in red, 
the linker is in green, and the mutated residues are in blue.  IF3mt:1 could not be 
modeled based on the crystal structure of B. stearothermophilus because these 
residues are not present in this IF3 nor are they present in the NMR structure of the 
N-domain of E. coli IF3 (2;3).  IF3mt:1 has been placed in the model at the N-terminus 
of the protein for illustrative purposes.  The C-terminal homology domain is shown in 
blue and the mutated residues are shown in orange. 
 

 

IF3mt:       1       2        3    4      5    6    7     8 

Human IF3mt  KKIKK    TSTE    REMEK    KKK    HD    K    K    EE 

Bovine IF3mt  TKKKK    ASAE    REAER    EKK    HD    K    K    EE 

Mouse IF3mt  -RKQK    TSSE    REQEK    EKK    HD    K    K    EE 

Mosquito IF3  -ATAE    LKTQ    REEKK    NKQ    HD    K    S    ES 

Fruitfly IF3  -RTRD    AKTG    -QSRS    GKR    HD    R    Q    ER 

B. stearo IF3  -----    PNAK    EKEAR    EKG    HD    K    R    QR 
 
 

IF3mt:   9 10 11 12 

Human IF3mt  EE KE DT KD   

Mouse IF3mt  EE RE DT KD  

Bovine IF3mt  EE KA DA GG 
 
Figure 2-4.  Conservation of the charged residues mutated in IF3mt:1-12.  Positively 
charged residues are shown in dark gray and negatively charged residues are shown in 
light gray.  The numbers above each cluster of residues indicate the IF3mt derivative 
containing mutations of those residues.  B. stearothermophilus IF3 does not have 
residues corresponding to IF3mt:1. These residues are present in E. coli IF3 as KRVQT.  
 

poorly conserved and no known function has been attributed to the N-terminal extension 

alone.   
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The N-terminal domain of E. coli IF3 does not bind independently to 30S subunits 

(9).  In contrast, the N-terminal domain of IF3mt binds 28S subunits with a Kd of 390 ± 60 nM 

(8).  Two clusters of residues in the N-terminal domain were mutated (Figure 2-3).  The 

selected residues were fairly well conserved among the mammalian factors (Figure 2-4) but 

less conserved with the IF3mt of other organisms.  IF3mt:1 is located five residues into the N-

terminal domain of IF3mt in a region where no structural information is available.  Its 

predicted location is shown in the model (Figure 2-3).  This region was selected for 

mutagenesis since the first six residues of E. coli IF3 are important for the function of this 

factor (22).  IF3mt:2 is also located in the N-terminal domain in a loop between two β-

strands facing away from the linker region.  IF3mt:3 is located in a predicted α-helical region 

in the IF3mt linker.  IF3mt:4-6 are located in the C-terminal domain of IF3mt in an α-helix (Helix 

3) predicted previously to be essential for the function of the E. coli protein (23).  IF3mt:7 is 

also in the C-terminal domain at the tip of a β-strand (corresponding to β-strand 7 in the 

prokaryotic factors) in the center of the domain.  IF3mt:8 is located behind IF3mt:7 on the 

opposite face of the C-terminal domain (Figure 2-3).  IF3mt:9-12 are located in the C-

terminal extension of IF3mt, where no structural data is currently available.  A summary of 

the IF3mt mutations is shown in Table 2-1.   

Purification of IF3mt by Ni-NTA chromatography did not eliminate the 19 kDa 

contaminant.  Thus, subsequent purification by HPLC chromatography was necessary.  HPLC 

purification resulted in a column elution profile characterized by two distinct peaks (Figure 

2-5A).  The two peaks correspond to the 19 kDa fragment, which elutes from the column 

first, followed by the 29 kDa full-length protein.  Polyacrylamide gel electrophoresis of 
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Figure 2-6.  Circular dichroism spectrum of IF3mt:WT. 
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Figure 2-5.  Purification of IF3mt.  A.  HPLC elution profile of IF3mt.  B.  
SDS-PAGE gel showing migration of IF3mt and its truncated 
contaminant. 

fractions eluted 

from the HPLC 

column show the 

separated 19 kDa 

(fractions 30-34) 

and 29 kDa 

(fractions 35-40) 

forms of IF3mt 

(Figure 2-5B).  

Purification of 

mutated variants of IF3mt resulted in the same approximate ratio of 19 kDa contaminant to 

the 29 kDa full-length protein as is shown in Figure 2-5B. 

The mutated proteins were purified and tested for structural integrity by measuring 

the α-helical content using CD.  The CD spectrum of IF3mt:WT is shown in Figure 2-6.  

IF3mt:WT was 

determined to 

have 21 ± 3% α-

helical content 

using the CD Pro 

analysis software.  

This agrees with 

the model if the 
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Figure 2-7.  Effect of IF3mt:WT, IF3mt:7,  and IF3mt:5 on 
initiation complex formation using mitochondrial 55S 
ribosomes.  [35S]fMet-tRNA binding to mitochondrial 55S 
particles was tested in the presence of saturating amounts 
of IF2mt using IF3mt:WT (closed circles), IF3mt:7 (closed 
squares),  or IF3mt:5 (closed diamonds). A blank 
representing the amount of [35S]fMet-tRNA bound to 
ribosomes in the absence of IF3mt (~0.1 pmol) was 
subtracted from each value.   
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linker region is considered to be flexible instead of a rigid α-helix.  All mutated proteins had 

CD profiles similar to that of IF3mt:WT, and analysis of the α-helical content showed that all 

mutated proteins contained the same helical content as IF3mt:WT within error.  IF3mt:1 was 

excluded from CD measurements because it failed to separate from its truncated fragment 

using HPLC purification. 

 

Mutations in the N-terminal Domain and Linker 

 IF3mt derivatives with mutations in the N-terminal domain and linker were tested 

for their abilities to 

promote [35S]fMet-tRNA 

binding to both E. coli 

and mitochondrial 

ribosomes in the 

presence of IF2mt.  This 

assay primarily measures 

the ribosomal subunit 

dissociation activity of 

this factor (11).  A 

representative graph 

showing initiation 

complex formation as a function of increasing amounts IF3mt is shown in Figure 2-7.  IF3mt:1 

and IF3mt:2 showed activity similar to the unmutated factor (IF3mt:WT) on both E. coli and 
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Figure 2-8.  Summary of the activities of IF3mt:1-12 in initiation 
complex formation.  This assay primarily measures ribosome 
dissociation.  The activity of IF3mt:WT was set to 100 % and the 
mutated derivatives were compared to that value using the linear 
regions of the dose response curves.  The activity on 70S 
ribosomes is shown in black, while activity on mitochondrial 
ribosomes is in striped gray.  Derivatives identical to wild-type 
IF3mt within error are shown as 100 %. 
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mitochondrial ribosomes (Figure 2-8), indicating that these residues are not important for 

the activity of this protein.  IF3mt:3, located in the linker region of the protein, showed a 

slight reduction in 

activity in initiation 

complex formation 

on both E. coli and 

mitochondrial 

ribosomes (Figure 

2-8).  The slight loss 

of activity for 

IF3mt:3 was further 

explored in an 

assay that 

measures the 

ability of the 

protein to dissociate mitochondrial 55S ribosomes using sucrose density gradient 

centrifugation (Figure 2-9).  IF3mt:3 showed the same subunit dissociation pattern as 

IF3mt:WT in this assay, which indicates that it did not have any significant defect in this 

function (Figure 2-10). 
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        A     B     C 

 
Figure 2-9.  Effect of IF3mt and its mutated derivates on the dissociation of 
mitochondrial 55S ribosomes.  Fractionation profiles of mitochondrial 55S ribosomes 
after centrifugation on a 10-30 % sucrose gradient.  Mitochondrial 55S ribosomes (8 
pmol) were incubated as described in Materials and Methods in the absence (A) or 
presence of 80 pmol IF3mt (B) or its mutated derivative IF3mt:6 (C) and subsequently 
subjected to centrifugation on a 10-30 % sucrose density gradient.  Gradients were 
fractionated while monitoring the A254.  
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Mutations in the C-terminal Domain 

  The C-terminal domain of IF3mt with the linker binds to the small ribosomal subunit 

with nearly the same affinity as the full-length protein and shows the same activity as the 

full length protein in stimulating fMet-tRNA binding to mitochondrial ribosomes (8).  IF3mt 

derivatives with mutations in the C-terminal domain were tested for activity in initiation 

complex formation on E. coli and mitochondrial ribosomes.  IF3mt:7 and IF3mt:8 had the 

same activity as the wild-type protein (IF3mt:7 Figure 2-7, IF3mt:8 Figure 2-8).  IF3mt:4 

showed slightly reduced activity, but still maintained its ability to dissociate 55S ribosomes 

as nearly as well as the wild-type protein (Figure 2-10).  Its slight deficiency in ribosome 

dissociation agrees with the slight deficiency in initiation complex formation (Figure 2-8).  

However, IF3mt:5 and IF3mt:6 had almost no activity in promoting initiation complex 
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Figure 2-10.  Percentage of mitochondrial 55S ribosomes remaining after 
the addition of IF3mt:WT or its mutated derivatives as measured by sucrose 
density gradient centrifugation. 

formation on E. coli ribosomes, and had significantly reduced activity on mitochondrial 

ribosomes (IF3mt:5 Figure 2-7, IF3mt:6 Figure 2-8).    

Since neither IF3mt:5 nor IF3mt:6 were active in stimulating initiation complex 

formation, an assay that basically measures ribosome dissociation, their abilities to promote 

the dissociation of 55S ribosomes was examined directly by sucrose density centrifugation.  

Both proteins were deficient in dissociation activity (IF3mt:6, Figure 2-9; IF3mt:5 Figure 2-10).  

IF3mt:5 dissociated 55S ribosomes by only ~15 %, compared to just over 50 % dissociation 

with the same level of IF3mt:WT (Figure 2-10).  IF3mt:6 had essentially no activity in the 

ribosome dissociation assay.   

One possible explanation for the lack of activity observed with IF3mt:5 and IF3mt:6 is 

that these mutated proteins are unable to bind 28S subunits, and, therefore, are unable to 

effectively prevent the interaction of the 28S and 39S ribosomal subunits.  To test this 
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Figure 2-11.  Binding assays performed using Microcon spin 
columns as described (2;2;6).  Inset: Calibration curve of IF3mt: 
WT using a colorimetric assay and a dot blot apparatus.   This 
curve was used to determine the amount of IF3mt bound to 
mitochondrial 28S ribosomes in the Microcon centrifugation 
assay as described in Materials and Methods. 
 

IF3mt Kd (nM) 

IF3mt:WT 35 ± 13 

IF3mt:5 19 ± 11 

IF3mt:6 45 ± 17 

 

Table 3.  Binding of IF3mt and its mutated derivatives to 28S 
mitochondrial ribosomes.  Kd values of IF3mt:WT and its mutated 
derivatives binding to 28S mitochondrial ribosomes as determined by 
Microcon centrifugation. 
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IF3mt Kd (nM) 

IF3mt:WT 35 ± 13 

IF3mt:5 19 ± 11 

IF3mt:6 45 ± 17 

 

Table 2-3.  Binding constants of IF3mt and its mutated derivatives 
to 28S mitochondrial subunits.  Kd values of IF3mt:WT and its 
mutated derivatives binding to 28S mitochondrial subunits as 
determined by Microcon centrifugation. 

possible explanation directly, the binding of IF3mt and its mutated derivatives to 28S 

subunits was 

measured using 

Microcon-100 

centrifugation 

followed by 

immunological 

detection of IF3mt on 

a dot blot apparatus 

(10).  This method 

takes advantage of 

the observation that, 

in the absence of 28S 

subunits, IF3mt passes 

through the 

membrane while 

IF3mt bound to 28S 

subunits does not.  

The binding curve for 

IF3mt:6 is shown in 

Figure 2-11.  

IF3mt:WT binds to 28S subunits with a Kd of 35 ± 13 nM (Table 2-3).  As indicated in Table 2-
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Figure 2-12.  IF3mt-mediated inhibition of [35S]fMet-tRNA 
binding to mitochondrial 28S subunits in the absence of mRNA.  
Mitochondrial 28S subunits were incubated with saturating 
amounts of IF2mt and [35S]fMet-tRNA in the presence or absence 
of IF3mt:WT or its C-terminal extension mutated derivative 
IF3mt:9 as described (2;4).  The amount of [35S]fMet-tRNA 
remaining bound to the filter in the presence of IF3mt:WT 
(closed squares) or IF3mt:9 (closed circles) was determined using 
a nitrocellulose filter binding assay. 

3, IF3mt:6 binds 28S subunits with a Kd of 45 ± 17 nM and IF3mt:5 binds to 28S subunits with 

a Kd of 19 ± 11 nM.  Since both mutated proteins show the same binding to 28S subunits as 

IF3mt:WT, the lack of activity of the mutated proteins in initiation complex formation and in 

the dissociation of 55S ribosomes into the 28S and 39S subunits cannot be attributed to a 

defect in their abilities to bind the SSU.  

 

Mutations in the C-terminal Extension 

  One unusual property of IF3mt is that its C-terminal extension is thought to play an 

important role in 

decreasing the 

amount of fMet-

tRNA bound to 

mitochondrial 28S 

subunits in the 

absence of mRNA.  

This observation 

suggests that mRNA 

binding should 

precede fMet-tRNA 

binding in the 

mitochondrial system 

(7).  No structural 
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data is currently available for the C-terminal extension of IF3mt.  Modeling of this region 

indicated that it is probably disordered in solution.  Regions of highly charged amino acids 

(acidic and basic) conserved in vertebrate IF3mt lineages were selected for mutation to 

alanine residues (Figure 2-4).  All of these derivatives were as active as IF3mt:WT in 

promoting initiation complex formation on both E. coli and mitochondrial ribosomes (Figure 

2-8).  As indicated in Figure 2-12, IF3mt:WT inhibits the binding of fMet-tRNA to 28S subunits 

in the absence of mRNA.  IF3mt:5 and IF3mt:6 in the C-terminal domain, along with IF3mt:10, 

IF3mt:11, and IF3mt:12 in the C-terminal extension showed normal activity in this assay (data 

not shown).  However, IF3mt:9, also in the C-terminal extension, was unable to reduce the 

amount of fMet-tRNA bound to ribosomes in the absence of mRNA (Figure 2-12).  This 

observation pinpoints a region of the C-terminal extension that is critical for inhibiting 

initiation complex formation before the mRNA is bound.  Interestingly, the linker region of 

IF3mt also appears to have a role in preventing fMet-tRNA binding in the absence of mRNA 

(8).   

The C-terminal extension is predicted to emerge from the C-terminal domain near 

the linker region according to the model (Figure 2-3).  The linker, and, thus, the C-terminal 

extension, may span the region between the platform, where the C-terminal domain is 

thought to bind, and the head of the small subunit.  The linker may be positioned toward 

the mRNA binding channel as predicted in the model of McCutcheon et al. (24).  A transient 

association between of these regions of IF3mt with the mRNA channel near the P-site may 

permit this factor to distinguish prematurely formed initiation complexes.   
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   A      B 

 
Figure 2-13.  A.  Mutated residues in the C-terminal domain of E. coli IF3 and their 
effects on activity in initiation complex formation on E. coli ribosomes.  The activity 
remaining was based on the dissociation of 70S ribosomes, one of several assays 
carried out with these mutated derivatives of E. coli IF3.  The most drastic effects on 
activity are seen with the mutation in the center of the α-helix (Helix 4) on the back of 
the protein.  B.  Mutated residues in the C-terminal domain of IF3mt and the effects of 
these mutations on activity in initiation complex formation on mitochondrial 
ribosomes.  The most drastic effects are seen with the two mutations located at the 
base of Helix 3. 
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DISCUSSION 

Comparison of Mutational Effects in IF3mt and E. coli IF3 

Both NMR (25) and mutational analysis (23;26) indicate that there are a number of 

contacts between E. coli IF3 and the SSU in the C-terminal domain.  These interactions 

appear to span much of Helix 3, the loop regions, and portions of Helix 4.  Key differences 

between IF3mt and the E. coli factor become apparent when the extensive battery of 

mutations made in Arg residues in E. coli IF3 are compared to those presented here in the 

mitochondrial factor (Figure 2-13).  In E. coli IF3, the most drastic effects on the activity of 

the factor in initiation complex formation measured by ribosomal subunit dissociation were 
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caused by a mutation in the center of Helix 4 in the C-terminal domain (Figure 2-13A) (23).  

This mutation also caused significant reductions in binding of the mutated protein to E. coli 

30S ribosomal subunits, suggesting that the defect in initiation arises from a weaker 

interaction with the SSU.  However, IF3mt:8, located in Helix 4 in the C-terminal domain of 

IF3mt, was able to stimulate initiation complex formation as well as the wild-type factor.  

This observation suggests that residues in Helix 4 may play a less important role in IF3mt 

than in E. coli IF3.  

In the mitochondrial factor, the most drastic effects were seen with two mutations 

in Helix 3 (IF3mt:5 and IF3mt:6, Figure 2-13B).  A mutation made in the center of this helix in 

E. coli IF3 (R112S) had only a modest effect on initiation complex formation (23), and the 

mutated derivative still retained >60 % of the activity observed with the wild-type factor.  In 

the mitochondrial factor, the mutations in Helix 3 are located closer to the base of the helix 

rather than in the center.  The side chains of these residues are predicted to be shifted 

approximately 90 degrees towards the front of the protein when compared to the side 

chains of the mutated residues in E. coli IF3.  IF3mt derivatives containing these mutations 

do not promote initiation complex formation, but are still able to bind to mitochondrial 28S 

subunits.  Thus, residues near the bottom of Helix 3 are not predicted to be in direct contact 

with the 28S subunits.  Rather, they may define a surface of IF3mt that contacts the 39S 

subunit during the dissociation of the 55S ribosomes into subunits. 

 

 

 



   

51 

 

Model for IF3mt-Mediated Dissociation of 55S Ribosomes 

Mutation of residues 170-171 and residue 175 in Helix 3 of the C-terminal domain of 

IF3mt drastically reduced the activity of IF3mt in promoting initiation complex formation.  

This assay basically measures the ability of IF3mt to dissociate 55S ribosomes.  Sucrose 

density gradient centrifugation confirmed the idea that these mutations inactivate IF3mt in 

ribosomal subunit dissociation.  The most logical explanation for these results is that the 

mutated proteins fail to bind mitochondrial 28S subunits and, therefore, cannot prevent 

39S joining.  However, both of these mutated derivatives of IF3mt bind to 28S subunits as 

well as the wild-type factor (Table 2-3).  This observation indicates that an alternative 

problem must underlie the loss of activity in these mutated IF3mt derivatives.  One possible 

explanation is that there are two distinct functionally important surfaces of IF3mt.  The first 

surface would function as a dissociation interface and may interact with one or both of the 

ribosomal subunits.  The second surface would function as a binding interface between the 

factor and the 28S subunit. 

Recent work has indicated that the position of the C-terminal domain of E. coli IF3 

blocks bridge B2b of the 70S ribosome, preventing the association of the large and small 

subunits when IF3 is present (27).  Bridge B2b involves 16S rRNA nucleotide 794 (28), which 

is in proximity to the proposed IF3 binding site on the 30S subunit (29;30).  Cryo-electron 

microscopy studies of mammalian mitochondrial ribosomes (5) indicates that this 

intersubunit bridge is one of several conserved contacts between the two subunits.  IF3mt is 

expected to bind to 28S subunits in a manner similar to the binding of E. coli IF3 to 30S 

subunits.  It is likely that residues 170-171 and 175 play an essential role in allowing IF3mt to 
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Figure 2-14.  Models for the mechanism of IF3mt in the dissociation of mitochondrial 
ribosomes.  A.  In the passive model, the subunits are in equilibrium with the 55S 
monosome (passive step 1).  IF3mt binds to free 28S subunits, preventing reassociation 
with the 39S subunit (passive step 2).  B.  In the active model, IF3mt interacts with the 
55S particle, forming a transient 28S:IF3mt:39S complex (active step 1), which then 
dissociates into a 28S:IF3mt complex and free 39S subunits (active step 2). 

block the formation of bridge B2b.  Mutation of these residues could impede the blocking of 

this intersubunit bridge by IF3mt, preventing these mutated forms of IF3mt from effectively 

competing with the 39S subunit for binding to the 28S subunit. 

There are two current models to explain the action of IF3mt in ribosomal subunit 

dissociation (Figure 2-14).  In the passive model, IF3mt binds to 28S subunits after the 

subunits dissociate transiently (Figure 2-14A, passive model).  In this model, IF3mt acts more 

as an anti-association factor than a dissociation factor (31).  In the active model, an 
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equilibrium exists between 55S ribosomes and a transient 28S:IF3mt:39S complex (Figure 2-

14B, active step 1).  This transient complex is in equilibrium with free 39S subunits and 28S 

subunits bound to IF3mt (active step 2). The active model suggests that IF3mt plays a more 

direct role in dissociating 55S ribosomes than simply binding to 28S subunits that are 

present at equilibrium.  IF3mt: 5 and IF3mt:6, though they bind well to 28S subunits (active 

step 1), are deficient in dissociating 55S ribosomes (active step 2).  This observation 

suggests that a transient 28S:IF3mt:39S complex formed by these mutated derivatives fails 

to dissociate into its component subunits.  This idea is supported by recent kinetic data, 

which suggest that in E. coli, IF3 may remain associated with the 30S subunit that is partially 

bound to the 50S subunit (27), and by recent cryo-electron microscopy data, which 

tentatively suggests that IF3 may not be released from 70S particles until the hydrolysis of 

GTP by IF2 has occurred (32).The present results suggest that IF3mt plays an active role 

rather than a passive role in ribosomal subunit dissociation in the mitochondrial 

translational system.    
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PREFERENTIAL SELECTION OF THE 5’ TERMINAL START CODON ON LEADERLESS mRNAS  BY 

BOVINE MITOCHONDRIAL RIBOSOMES 
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INTRODUCTION 

In contrast to other genomes, the mammalian mitochondrial genome is very 

compact, containing approximately 16 kilobase pairs of DNA.  It codes for 2 rRNAs, 13 

proteins, and 22 tRNAs (1).  The 13 proteins are components of the electron transport chain 

and ATP synthase.  Very few non-coding regions exist in the mitochondrial genome.  A 

maximum of 3 nucleotides are observed prior to the start codon in human mitochondrial 

mRNAs (2). 

 Initiation of protein synthesis in mitochondria has several similarities to that in 

prokaryotes, but this system is also characterized by a number of unique features.  

Mitochondrial monosomes sediment at 55S and dissociate to form 28S and 39S subunits.  

The mitochondrial SSU has a unique mRNA entrance gate composed of one or more 

mitochondrial-specific proteins and the SSU protein MRPS2.  MRPS2 is the homolog of the 

bacterial ribosomal protein S2 but is larger in the mitochondrial ribosome (3).  These 

proteins come together to form a triangular mRNA entrance site, which may play a role in 

binding mitochondrial leaderless mRNAs.  Protein synthesis in mitochondria occurs with the 

help of two initiation factors:  IF2mt promotes the binding of fMet-tRNA to 28S small 

ribosomal subunits, and IF3mt stimulates initiation complex formation by aiding in the 

dissociation of mitochondrial 55S ribosomes.  No factor homologous to prokaryotic IF1 has 

been found in mitochondria. 

 An important difference between bacterial and mitochondrial translational initiation 

is the process by which the start codon of the mRNA is placed in the P-site of the ribosome.  

In prokaryotes, a SD sequence is present that hydrogen bonds with nucleotides near the 3’ 
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end of the 16S rRNA (ASD) (4).  These interactions help to properly position the mRNA on 

the ribosome.  Because mitochondrial mRNAs are largely leaderless, the mechanism of the 

selection of the translational start site must be different from that in prokaryotes.   

Leaderless mRNAs, in addition to being translated in mitochondria, are also 

translated in bacteria and archaea, although each system has unique mechanisms reported 

for initiation on these leaderless messages.  In the archaeal system, two-thirds of all mRNAs 

are leaderless, and few of the mRNAs that contain leaders contain SD sequences (5).  In 

certain archaeal systems, introduction of an internal AUG to a leaderless mRNA resulted in 

translation from both the 5’ AUG and the internal AUG, although it has not been 

determined whether initiation could occur on both AUGs simultaneously (6). 

A recent study on the translation of leaderless mRNA in prokaryotes revealed that 

ribosomes devoid of a number of proteins (61S particles) were specific for translating only 

leaderless mRNAs (7).  However, of the 14 ribosomal proteins that are conserved between 

the small subunit of mitochondrial and prokaryotic systems, 11 are lost in the formation of 

the prokaryotic 61S particles.  This observation indicates that the mechanism by which 

prokaryotic ribosomes translate leaderless mRNAs is likely to be different from the 

mechanism of translational initiation in mitochondria. 

In prokaryotes, it is unclear whether initiation of leaderless mRNAs occurs on intact 

70S monosomes or on dissociated 30S subunits (8-10).  Bacterial IF3 has been shown to 

reduce translational efficiency on leaderless mRNAs that begin with a 5’ AUG when present 

in excess (11).  However, at low concentrations, E. coli IF3 increased the number of 

initiation complexes formed on leaderless mRNAs (8).  In agreement with the latter 
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observation, IF3mt stimulates initiation complex formation on the leaderless mitochondrial 

mRNAs, suggesting that initiation on these mRNAs does not require an intact monosome 

(12). 

 Previous data has indicated that mitochondrial mRNAs will bind nonspecifically to 

the mitochondrial 28S SSU alone, without the help of initiation factors (13).  It was also 

determined that, in the absence of initiation factors, shorter mRNAs (fewer than 400 

nucleotides) bind less well to mitochondrial 28S subunits than longer mRNAs (14).   SHAPE 

analysis of mitochondrial mRNAs indicated that the 5’ ends of these mRNAs contain little or 

no secondary structure (15).   Thus, it is unclear how the start codon of mitochondrial 

mRNAs is correctly positioned on the ribosome.  The focus of this chapter is to investigate 

the selection of a 5’ AUG start codon on mitochondrial mRNAs. 

 

MATERIALS AND METHODS 

Materials 

General chemicals were purchased from Sigma-Aldrich or Fisher Scientific.  Bovine 

mitochondrial ribosomes (55S), ribosomal subunits (28S and 39S), and yeast [35S]fMet-tRNA 

were prepared as described (3;16-18).  IF2mt and IF3mt were cloned, expressed, and purified 

as described previously (19).  Both proteins were purified by HPLC following Ni-NTA 

chromatography as described (19). 
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Cloning Cytochrome Oxidase Subunit I (CoI), NADH Dehydrogenase Subunit 2 (ND2), and 

Met-tRNA/ND2 fragments 

The first 151 nucleotides of CoI DNA, the first 150 nucleotides of ND2 DNA, and the 

entire tRNAMet plus the first 150 nucleotides of ND2 were amplified using PCR from the 

plasmid p11-1 (20), which contains bovine mitochondrial DNA from nucleotides 15,743 – 

8,788.  Primers used for amplification incorporated the sequence for the Hind III restriction 

site, the T7 promoter, and a hammerhead ribozyme (ACATCTGATGAGTCCGTGAGGACGAAA 

CGGTACCCGGTACCGTC; shaded nucleotides vary and are complementary to the first 

nucleotides of each transcribed sequence) followed by nucleotides for the sequence of 

interest.  The hammerhead ribozyme system was used to generate leaderless mRNAs via 

self-cleavage prior to the first nucleotide of each sequence (21).  The primers also 

incorporated an XbaI restriction site on the 3’ end of the DNA sequence.  The sequences for 

all primers and thermocycler conditions used are provided in Table 3-1 and 3-2, 

respectively.  Ten different constructs were prepared using the sequence for CoI DNA, 

including: 5’ AUG mRNA, AUG68 mRNA, Both AUG mRNA, 0 AUG mRNA, 1mer-AUG mRNA, 

2mer-AUG mRNA, 3mer-AUG mRNA, 6mer-AUG mRNA, 9mer-AUG mRNA, and 12mer-AUG 

mRNA (Figure 3-1).  Three different constructs were prepared using the sequence for NADH 

Dehydrogenase Subunit 2 (ND2), including: ND2 5’ AUG mRNA, ND2 AUG91 mRNA, and ND2 

0 AUG mRNA (Figure 3-1).  A hybrid mRNA was prepared using the sequence for tRNAMet 

attached at the 5’ end to the first 150 nucleotides of ND2 (Figure 3-1).   
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The first construct prepared was the CoI 5’ AUG mRNA.  For this construct, the first 

151 nucleotides of CoI were amplified from the p11-1 plasmid with primers that added the 

hammerhead ribozyme sequence to the 5’ end of the CoI sequence and an XbaI restriction 

site to the 3’ end of the CoI sequence.  A second PCR reaction was then performed using the 

amplified product from the first reaction and added a portion of the T7 promoter sequence 

to the 5’ end of the hammerhead ribozyme sequence.  Finally, a third amplification was 

performed using the second amplified product above to incorporate the full T7 promoter 

sequence and a HindIII restriction site on the 5’ end of the T7 promoter sequence.  The 

resulting construct was then digested with both HindIII and XbaI and ligated into 

HindIII/XbaI digested pUC19.  The University of North Carolina at Chapel Hill Genome 

Analysis Facility was used to confirm all sequences.   

The Both AUG construct was prepared using the QuikChange site-directed 

mutagenesis kit (Stratagene) to change an internal GTG of the 5’ AUG construct to AUG, 

resulting in a DNA sequence with two ATGs.  The 3’ AUG construct was prepared by 

mutating the 5’ ATG of the 5’ AUG construct to GCG.  To make the 3’ AUG construct 

cleavable by the hammerhead ribozyme, it was also necessary to change the first four 

nucleotides of the hammerhead sequence (indicated as variable above) to ACGC.  To 

prepare the 0 AUG construct, the 5’ AUG construct was mutated to change the ATG to GTG, 

and the variable nucleotides were changed to ACGC to make the hammerhead ribozyme 

functional.  The 5’ extended mRNAs constructs were prepared by adding nucleotides to the 

5’ AUG construct using the QuikChange site-directed mutagenesis kit (Stratagene), and the 
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variable nucleotides were mutated to make the hammerhead ribozyme functional in each 

case.  

The tRNAMet/ND2 and ND2 constructs were prepared using the p11-1 starting 

plasmid and sequential PCR reactions (similar to those used for the CoI constructs) that 

resulted in a 5’ AUG construct containing a HindIII restriction enzyme site, the T7 promoter, 

the hammerhead ribozyme, the first 150 nucleotides of ND2, and an XbaI restriction site 

(Table 2-1).  Since ND2 begins with an ATA in the genome, an additional mutagenesis step 

was necessary to change the ATA to an ATG.  

 

Table 3-1.  Summary of primers used for the preparation of CoI, ND2, and tRNAMet/ND2 
mRNA constructs.  Added nucleotides are shaded in dark grey, and mutated nucleotides are 
shaded in light grey.  The hammerhead ribozyme sequence is underlined, and the first four 
variable nucleotides are shaded in blue. 

CoI Constructs 
Construct Primer 

5’ AUG mRNA 
 

Starting plasmid: p11-1 
Forward:  
ACATCTGATGAGTCCGTGAGGACGAAACGGTACCCGGTACCGTCATG
TTCATTAACCGCTG 
Reverse: CTAGTCTAGACGTCTCCGAGCAGAGTTC 
Thermocycler condition 1 

Forward:  CTAGAAGCTTGGGAGAACATCTGATGAGTCCGTG   
Reverse:  Same as above 
Thermocycler condition 2 

Forward: 
CTAGAAGCTTTAATACGACTCACTATAGGGAGAACATCTGATG 
Reverse: Same as above 
Thermocycler condition 1 

Both AUG mRNA 

Starting plasmid: 5’ AUG mRNA 
Forward: CCTTTATCTACTATTTGATGCTTGGGCCGGTATAGTAGG 
Reverse: CCTACTATACCGGCCCAAGCATCAAATAGTAGATAAAGG 
Thermocycler: Mutagenesis 53, 54, 55, then 16 
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AUG68 mRNA 

Starting plasmid: Both AUG mRNA 
Forward: CCCGGTACCGTCGCGTTCATTAACCGCTG 
Reverse: CAGCGGTTAATGAACGCGACGGTACCGGG 
Thermocycler condition 3 

HH complementary 
Forward: CACTATAGGGAGAACGCCTGATGAGTCCGTGAG 
Reverse: CTCACGGACTCATCAGGCGTTCTCCCTATAGTG 
Thermocycler condition 3 

0 AUG mRNA 

Starting plasmid: 5’ AUG mRNA 
Forward and Reverse: same as 3’ AUG mRNA 
Thermocycler condition 3 

HH complementary 
Forward and Reverse same as 3’ AUG mRNA 
Thermocycler condition 3 

1mer-AUG mRNA 

Starting plasmid: 5’ AUG mRNA 
Forward: CGGTACCCGGTACCGTCGATGTTCATTAACCGCTG 
Reverse: CAGCGGTTAATGAACATCGACGGTACCGGGTACCG 
Thermocycler condition 3 

HH Complementary 
Forward: CTCACTATAGGGAGACATCCTGATGAGTCCGTGAG 
Reverse: CTCACGGACTCATCAGGATGTCTCCCTATAGTGAG 
Thermocycler condition 3 

2mer-AUG mRNA 

Starting plasmid: 5’ AUG mRNA 
Forward: CGGTACCCGGTACCGTCUGATGTTCATTAACCGCTG 
Reverse: CAGCGGTTAATGAACATCAGACGGTACCGGGTACCG 
Thermocycler condition 3 

HH Complementary 
Forward: CTCACTATAGGGAGAATCACTGATGAGTCCGTGAG 
Reverse: CTCACGGACTCATCAGTGATTCTCCCTATAGTGAG 
Thermocycler condition 3 

3mer-AUG mRNA 

Forward: GTACCCGGTACCGTCCTGATGTTCATTAACCGC   
Reverse: GCGGTTAATGAACATCAGGACGGTACCGGGTAC 
Thermocycler condition 3 

HH Complementary 
Forward: CTCACTATAGGGAGATCAGCTGATGAGTCCGTGAG 
Reverse: CTCACGGACTCATCAGCTGATCTCCCTATAGTGAG 
Thermocycler condition 3 

6mer-AUG mRNA 
Forward: GTACCCGGTACCGTCCCACTGATGTTCATTAACCGC   
Reverse: GCGGTTAATGAACATCAGTGGGACGGTACCGGGTAC 
Thermocycler condition 3 



65 
 

ND2 Constructs 
Construct Primer 

tRNAMet/ND2 

Starting plasmid: p11-1 
Forward: 
TACTCTGATGAGTCCGTGAGGACGAAACGGTACCCGGTACCGTCAGTA
AGGTCAGCTAATTAAGC 
Reverse: CTAGTCTAGATGGGTTGTGATTTTTTATTATGATGGGG 
Thermocycler condition 4 

Forward: CTAGAAGCTTGGGAGATACTCTGATGAGTCCGTG 
Reverse: same as above 
Thermocycler condition 5 

Forward: 
CTAGAAGCTTTAATACGACTCACTATAGGGAGATACTCTGATGAGTCCG 
Reverse: same as above 
Thermocycler condition 5 

Change AUA to AUG: 
Forward: CCTTCCCGTACTAATGAACCCAATTATC 
Reverse: GATAATTGGGTTCATTAGTACGGGAAGG 
Thermocycler condition 3 

HH complementary 
Forward: CTCACTATAGGGAGAGTGGCTGATGAGTCCGTGAG 
Reverse: CTCACGGACTCATCAGCCACTCTCCCTATAGTGAG 
Thermocycler condition 3 

9mer-AUG mRNA 

Starting plasmid: CoI 6mer-AUG mRNA 
Forward: CGGTACCCGGTACCGTCCCGCCACTGATGTTCATTAACCG 
Reverse: CGGTTAATGAACATCAGTGGCGGGACGGTACCGGGTACCG 
Thermocycler condition 3 

HH Complementary 
Forward: CTCACTATAGGGAGAGCGGCTGATGAGTCCGTGAG 
Reverse: CTCACGGACTCATCAGCCGCTCTCCCTATAGTGAG 
Thermocycler condition 3 

12mer-AUG mRNA 

Starting plasmid: CoI 9mer-AUG mRNA 
Forward: 
CGGTACCCGGTACCGTCTCACCGCCACTGATGTTCATTAACCG 
Reverse: 
CGGTTAATGAACATCAGTGGCGGTGAGACGGTACCGGGTACCG 
Thermocycler condition 3 

HH Complementary 
Forward: CTCACTATAGGGAGAGTGACTGATGAGTCCGTGAG 
Reverse: CTCACGGACTCATCAGTCACTCTCCCTATAGTGAG 
Thermocycler condition 3 
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ND2 5’ AUG 
mRNA 

Starting plasmid: p11-1 
Forward: 
CCGTGAGGACGAAACGGTACCCGGTACCGTCATAAACCCAATTATCTTT
ATTATTATTCTAC 
Reverse: CTAGTCTAGATGGGTTGTGATTTTTTATTATGATGGGG 
Thermocycler condition 6 

Forward: 
CTATAGGGAGATTATCTGATGAGTCCGTGAGGACGAAACGGTACCC 
Reverse: same as above 
Thermocycler: condition 7 

Forward: 
CTAGAAGCTTTAATACGACTCACTATAGGGAGATTATCTGATG 
Reverse: same as above 
Thermocycler condition 8 

Change AUA to AUG: 
Forward: GGTACCCGGTACCGTCATGAACCCAATTATC 
Reverse: GATAATTGGGTTCATGACGGTACCGGGTACC 
Thermocycler condition 3 

HH Complementary 
Forward: CTCACTATAGGGAGATCATCTGATGAGTCCGTGAG 
Reverse: CTCACGGACTCATCAGATGATCTCCCTATAGTGAG 
Thermocycler condition 3 

ND2 AUG91 
mRNA 

Starting plasmid: ND2 0 AUG mRNA 
Forward: CTGACTACTTGTCTGAATGGGGTTTGAAATAAATATAC 
Reverse: GTATATTTATTTCAAACCCCATTCAGACAAGTAGTCAG 

ND2 0 AUG 
mRNA 

Starting plasmid: ND2 5’ AUG mRNA 
Forward: GGTACCCGGTACCGTCGCGAACCCAATTATC 
Reverse: GATAATTGGGTTCGCGACGGTACCGGGTACC 
Thermocycler condition 3 

HH complementary 
Forward: CTCACTATAGGGAGATCGCCTGATGAGTCCGTGAG 
Reverse: CTCACGGACTCATCAGGCGATCTCCCTATAGTGAG 
Thermocycler condition 3 

 
 
Table 3-2.  Thermocycler conditions used for preparation of mRNA constructs listed in Table 
3-1. 

Thermocycler conditions 1 

Time Temperature What for? Number of cycles 

30 seconds 90°C Denaturation 

5 30 seconds 42°C Annealing Primers 

60 seconds 72°C Extension 
30 seconds 90°C Denaturation 30 
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30 seconds 60°C Annealing Primers 

60 seconds 72°C Extension 

Thermocycler conditions 2 

Time Temperature What for? Number of cycles 

30 seconds 90°C Denaturation 

5 30 seconds 50°C Annealing Primers 

60 seconds 72°C Extension 

30 seconds 90°C Denaturation 

30 30 seconds 65°C Annealing Primers 

60 seconds 72°C Extension 

Thermocycler conditions 3 
Time Temperature What for? Number of cycles 

30 seconds 95°C Initial Denaturation 1 

60 seconds 95°C Denaturation 

5 60 seconds 60°C Annealing Primers 

13 minutes 68°C Extension 

60 seconds 95°C Denaturation 

16 60 seconds 55°C Annealing Primers 

10 minutes 68°C Extension 

Thermocycler conditions 4 (gradient thermocycler) 

Time Temperature What for? Number of cycles 

3 min 95°C 
Initiatial 

denaturation 
1 

30 seconds 95°C Denaturation 

5 30 seconds 45°C±10°C Annealing Primers 

60 seconds 70°C Extension 

30 seconds 95°C Denaturation 

30 30 seconds 60°C Annealing Primers 
60 seconds 70°C Extension 

10 minutes 70°C Final Extension 1 

Thermocycler conditions 5 

Time Temperature What for? Number of cycles 

1 minute 95°C 
Initiatial 

denaturation 
1 

30 seconds 95°C Denaturation 

5 30 seconds 50° Annealing Primers 

60 seconds 72°C Extension 

30 seconds 95°C Denaturation 

30 30 seconds 65°C Annealing Primers 

60 seconds 72°C Extension 

10 minutes 70°C Final Extension 1 

Thermocycler conditions 6 

Time Temperature What for? Number of cycles 

3 minutes 95°C Initial denaturation 1 

30 seconds 95°C Denaturation 
5 30 seconds 38.4° Annealing Primers 

60 seconds 70°C Extension 

30 seconds 95°C Denaturation 

30 30 seconds 60°C Annealing Primers 

60 seconds 70°C Extension 

10 minutes 70°C Final Extension 1 
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Figure 3-1.  Summary of cytochrome oxidase subunit I (CoI), NADH dehydrogenase 
subunit II (ND2), and tRNAMet/ND2 mRNA constructs.  The mRNAs prepared for both CoI 
and ND2 that contained either a 5’ AUG, an internal AUG, or both a 5’ and an internal 
AUG.  A control mRNA was also prepared for each mRNA that did not contain any AUG 
codons.  CoI mRNAs with additional nucleotides 5’ to the start codon were also 
prepared. 

AUG AUG Both AUG mRNA

AUG68 mRNAAUGGCG

AUG 5’ AUG mRNAGUG

0 AUG mRNAGCG GUG

GAUG 1mer-AUG mRNAGUG

UGAUG 2mer-AUG mRNAGUG

CUGAUG 3mer-AUG mRNAGUG

CCACUGAUG 6mer-AUG mRNAGUG

CCGCCACUGAUG 9mer-AUG mRNAGUG

UCACCGCCACUGAUG 12mer-AUG mRNAGUG

AUG 5’ AUG mRNAAUC

GCG AUG91 mRNAAUG

GCG 0 AUG mRNAAUC

AUG tRNAMet/ND2mRNAAUC

681

911

Cytochrome

oxidase subunit I 

(CoI) mRNAs

NADH 

Dehydrogenase

Subunit II (ND2) 

mRNAs

Thermocycler conditions 7 

Time Temperature What for? Number of cycles 

30 seconds 95°C Denaturation 

5 30 seconds 59°C Annealing Primers 

60 seconds 70°C Extension 

30 seconds 95°C Denaturation 

30 30 seconds 65°C Annealing Primers 

60 seconds 70°C Extension 

Thermocycler conditions 8 

Time Temperature What for? Number of cycles 

30 seconds 95°C Denaturation 
5 30 seconds 48°C Annealing Primers 

60 seconds 70°C Extension 

30 seconds 95°C Denaturation 

30 30 seconds 65°C Annealing Primers 

60 seconds 70°C Extension 
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Table 3-3.  Full sequences of CoI, ND2, and tRNAMet/ND2 mRNA constructs.  The AUG 
codons are shown in red and the tRNAMet sequence is shown in blue. 
 

mRNA Sequence 

CoI 

5’ AUG mRNA AUGUUCAUUAACCGCUGACUAUUCUCAACCAGCCAUAAAGAUAUUGGUACCCU
UUAUCUACUAUUUGGUGCUUGGGCCGGUAUAGUAGGAACAGCUCUAAGCCUU
CUAAUUCGCGCUGAAUUAGGCCAACCCGGAACUCUGCUCGGAGACG 

ND2 

5’ AUG mRNA AUGAACCCAAUUAUCUUUAUUAUUAUUCUACUAACCAUUAUACUAGGAACUA
UUAUUGUCAUAAUCAGUUCUCACUGACUACUUGUCUGAAUCGGGUUUGAAAU
AAAUAUACUCGCCAUCAUCCCCAUCAUAAUAAAAAAUCACAACCCA 

tRNAMet/ND2 
mRNA 

AGUAAGGUCAGCUAAUUAAGCUAUCGGGCCCAUACCCCGAAAAUGUUGGUUU
AUAUCCUUCCCGUACUAAUGAACCCAAUUAUCUUUAUUAUUAUUCUACUAACC
AUUAUACUAGGAACUAUUAUUGUCAUAAUCAGUUCUCACUGACUACUUGUCU
GAAUCGGGUUUGAAAUAAAUAUACUCGCCAUCAUCCCCAUCAUAAUAAAAAAU
CACAACCCAUCUAGA 

   

Synthesis of mRNAs 

Plasmid DNA was linearized by digestion with XbaI, extracted using 

phenol/chloroform, and precipitated with ethanol before use.  In vitro transcription 

reactions were prepared basically as described using 25-50 µg DNA (13).  Prior to 

hammerhead cleavage, transcription reactions were diluted 5X in a cleavage buffer 

containing 30 mM MgCl2 and 40 mM Tris-HCl (pH 7.6).  Hammerhead cleavage was allowed 

to proceed for 1 h at 60 °C, at which time 2X RNA load dye (Ambion) was added to the 

reactions and the transcribed mRNAs were separated from the cleaved hammerhead 

fragments by gel electrophoresis using an 8% polyacrylamide/7 M urea gel.  Full-length 

mRNA transcripts were excised from the gel and eluted in RNase free H2O (Ambion) for 48 h 

at 4 °C.  The concentration of each mRNA was determined by measuring the A260.  The 

sequences of all mRNA constructs used are summarized in Table 3-3.   
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Phosphorylation of mRNAs 

CoI 5’AUG and CoI AUG68 mRNAs were phosphorylated in reactions (500 µL) that 

contained 100 U T4 polynucleotide kinase (New England Biolabs), 50 µL 10X T4 

polynucleotide kinase buffer (New England Biolabs), 50 µg BSA, 1 mM ATP, and 1.25 nmol 

mRNA.  Reactions were incubated at 37 °C for 1 h, extracted using phenol/chloroform and 

the RNA was precipitated with ethanol.  Excess ATP was removed from the phosphorylated 

mRNAs by using a Mini Quick Spin RNA Column (Roche). 

 

Initiation Complex Formation on Mitochondrial Ribosomes 

Stimulation of fMet-tRNA binding to mitochondrial 55S ribosomes or 28S subunits 

was examined using a filter binding assay.  Reaction mixtures (50 µL) were prepared as 

described previously (see Chapter 2) (18;22) and contained the indicated amounts of mRNA, 

[35S]fMet-tRNA (70 nM), 0.25 mM GTP, 1.25 mM PEP, 0.04 U pyruvate kinase, saturating 

amounts of IF3mt (0.25 µM) and IF2mt (0.15 µM), and 55S ribosomes (80 nM) or 28S 

ribosomal subunits (80 nM).  IF3mt was not present in assays using 28S subunits unless 

otherwise indicated. 

 

Competition Assays 

The ability of CoI AUG68 mRNA to compete with CoI 5’ AUG mRNA for mitochondrial 

55S ribosome binding was tested in a competition assay.  55S initiation complex assays 

were performed as described above, except that mixtures of CoI 5’ AUG and CoI AUG68 

mRNAs were prepared using 0.1 µM 5’ AUG mRNA in the following ratios to AUG68 mRNA: 
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1:0, 1:1, 1:1.5, 1:2, 1:5, and 1:10.  The mRNAs were mixed together prior to being added to 

the reaction.  Reactions were incubated at 37 °C for 10 min and processed as described 

above. 

 

Toeprints 

 Binding of mitochondrial 55S ribosomes to mRNA was examined using a toeprint 

assay.  Reaction mixtures (20 µL) contained 50 mM Tris-HCl (pH 8.0), 10 mM DTT, 7 mM 

MgCl2, 40 mM KCl, 0.1 mM spermine, 0.25 mM GTP, 1.25 mM PEP, 0.04 U pyruvate kinase, 

0.5 mM dNTPs, 0.4 µM fMet-tRNA, 0.4 µM IF2mt, 0.4 µM IF3mt, 0.3 µM mitochondrial 55S 

ribosomes, 50 nM [32P] labeled primer ([32P] labeled primer with the sequence: CGT CTC 

CGA GCA GAG was prepared as described previously (15) and gel-purified using a 20% 

polyacrylamide/7 M urea gel), 50 nM mRNA (CoI 5’ AUG, AUG68, Both AUG, or 0 AUG 

mRNA).  Reactions were incubated at 37 °C for 10 min, at which time 200 U Superscript III 

reverse transcriptase (Invitrogen) were added, and reverse transcription was allowed to 

proceed at 37 °C for 10 min.  The reactions were stopped by the addition of 2 µL 2 M NaOH 

and then heated for 5 min at 95 °C.  The reactions were neutralized by the addition of 29 µL 

acid stop mix (4:25 (v/v) mix of 1 M unbuffered Tris-HCl and stop dye: 85 % formamide, ½X 

Tris-Borate-EDTA (TBE), 50 mM EDTA (pH 8), bromophenol blue, and xylene cyanol).  One 

half of each reaction was then loaded onto a 10% polyacrylamide/7 M urea gel and run at 

1550 V for 3 h.  At this time, the other half of each reaction was loaded into separate wells 

and the gel was run at 1550 V for another 3 h.  The gel was exposed to a phosphorimager 

screen overnight and then scanned using a Typhoon Trio + (GE Healthcare) variable mode 
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Figure 3-2.  Initiation complex formation on 

mitochondrial 55S ribosomes and 28S subunits using 

CoI mRNAs.  [35S]fMet-tRNA binding to mitochondrial 

55S particles was tested in the presence of increasing 

amounts of 5’ AUG, AUG68, Both AUG, or 0 AUG 

mRNA. A blank (~0.08 pmol) corresponding to the 

amount of fMet-tRNA bound to ribosomes in the 

absence of mRNA was subtracted from each value.   

imager.  Images were analyzed using ImageQuant software.  Control reactions to determine 

non-specific enzyme stops were performed in the absence of 55S ribosomes.  Sequencing 

reactions were performed using 0.5 mM dNTPs, 2 µL 5X Superscript III Reverse Transcription 

Buffer (Invitrogen), 0.5 mM ddNTP (A or C), 50 nM [32P] labeled primer, and 50 nM mRNA 

(CoI 5’ AUG).  Sequencing reactions were incubated at 52 °C for 10 min, at which time the 

reactions were stopped by the addition of 1 µL 2 M NaOH, heated for 5 min at 95 °C, and 

neutralized by addition of 14.5 µL acid stop mix. 

 

RESULTS 

The Mitochondrial Ribosome Discriminates Between a 5’ AUG and an Internal AUG Codon 

 Since many 

mitochondrial mRNAs have the 

start codon located exactly at 

the 5’ end, transcription of CoI 

mRNAs was coupled with 

hammerhead ribozyme 

cleavage to generate mRNAs 

with the AUG precisely 

positioned at the 5’ end.  

Additional mRNAs were 

prepared that contained an 

internal AUG at position 68 
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(AUG68), two AUGs (Both AUG mRNA, one at the 5’ end and one at position 68), or no AUG 

codon (0 AUG mRNA).  Initiation complex formation assays were carried out using each 

mRNA.  Initiation complex formation on the 5’ AUG mRNA and the Both AUG mRNA was 

stimulated as mRNA levels were increased (Figure 3-2).  In contrast, no initiation complexes 

were formed on 55S ribosomes using either the AUG68 mRNA or the 0 AUG mRNA.  This 

observation indicates that the ribosome discriminates between mRNAs that contain start 

codons at their 5’ end and those that do not.  The same discrimination was seen on 55S 

ribosomes when IF3mt was excluded from the initiation assay (Table 3-4), although the 

amount of binding was reduced in the absence of IF3mt due to a limitation in ribosome 

dissociation.  This observation suggests that IF3mt is not necessary for the ribosomal 

discrimination of a 5’ AUG start codon from an internal AUG codon.  

 

Table 3-4.  Effect of IF3mt on selection of a 5’ AUG by bovine mitochondrial 55S ribosomes.  
All four CoI mRNA constructs were tested for [35S]fMet-tRNA binding in the presence and 
absence of IF3mt.  No blank corresponding to the amount of [35S]fMet-tRNA bound to the 
ribosome in the absence of mRNA was subtracted, leading to values greater than those 
reported in Figure 3-2.  The estimated error in these experiments is 10%. 
 

mRNA 
pmol [35S]fMet-tRNA 
bound 

+ or – IF3 

5’AUG 0.17 - IF3 

5’AUG 0.26 + IF3 

AUG68 0.05 - IF3 

AUG68 0.08 + IF3 

Both AUG 0.20 - IF3 

Both AUG 0.31 + IF3 

0 AUG 0.06 - IF3 

0 AUG 0.08 + IF3 
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Figure 3-3.  [35S]fMet-tRNA binding to mitochondrial 28S subunits 
tested in the presence of increasing amounts of 5’ AUG, AUG68, 
Both AUG, or 0 AUG mRNA.  A blank (~0.04 pmol) corresponding 
to the amount of fMet-tRNA bound to 28S subunits in the 
absence of mRNA was subtracted from each value. 

 It is unclear in the mitochondrial system whether initiation occurs on 55S 

monosomes or 28S subunits.  Hence, initiation assays were also performed using 28S 

subunits.  IF3mt was 

not present in these 

assays, since it was 

not shown to affect 

discrimination by 

55S ribosomes and 

does not stimulate 

initiation complex 

formation on 28S 

SSUs (Figure 3-3) 

(22).  Initiation on 

28S subunits was 

stimulated by increasing amounts of the 5’ AUG and Both AUG mRNAs, as was seen on 55S 

ribosomes (Figure 3-3).  However, no initiation complex formation on 28S subunits was seen 

using the 0 AUG mRNA, and only a small level of initiation complex formation was observed 

with the AUG68 mRNA (10-15%).  These observations indicate that the ability to 

preferentially use a 5’ AUG over an internal AUG is an intrinsic property of the 28S subunit.  

This idea is in agreement with the observation that mRNA binds exclusively to the small 

subunit (13). 
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Figure 3-4.  Toeprints showing the position of the 55S ribosome on the 5’ AUG 
mRNA and AUG68 mRNA.  Toeprint assays were performed as described in 
Materials and Methods.  Control reactions were performed in the absence of 
either fMet-tRNA and IF2mt or 55S ribosomes.  Sequencing reactions were 
carried out using ddCTP and ddATP.  Nucleotide G14 is numbered from the 5’ 
end of the mRNA.   
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Toeprint Analysis of the Mitochondrial 55S Initiation Complex 

 To directly analyze the position of the ribosome on the mRNA in the initiation 

complex, a series of toeprint reactions was performed using CoI mRNAs (Figure 3-4 and 

Figure 3-5).  In the absence of 55S ribosomes, a reverse transcriptase stop is seen at 

position 20 of the mRNA due to a non-specific stop of the enzyme (Figure 3-4, lanes 1-8).  

When initiation complexes were assembled with the 5’ AUG mRNA, a clear and repeatable 

toeprint of the ribosome was seen 17-19 nucleotides from the 5’ end of the mRNA (Figure 

3-4 lane 2).  This position corresponds to the distance from the edge of the mRNA entrance 
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tunnel to the P-site.  This observation agrees with previous data that indicates that the 

prokaryotic ribosome produces a toeprint signal at nucleotide 15 (23).  The mitochondrial 

ribosome is slightly larger in size than its prokaryotic counterpart and is expected to cover a 

slightly larger section of the mRNA (3).  Further, in non-specific complexes between 28S 

subunits and mitochondrial mRNAs, a region of about 45 nucleotides of the mRNA was 

protected from degradation by RNAse T1 (13).  This value represents the distance between 

the mRNA entrance tunnel and the point where the mRNA exits the SSU through the 

platform.  Since the P-site is close to the center of the small subunit, the toeprint signal 

observed here is at a reasonable position for a ribosome positioned at the 5’ end of the 

mRNA.   

In the absence of IF2mt and fMet-tRNA, the toeprint signal is drastically reduced 

(Figure 3-4, lane 3), indicating that both are required to stably position the ribosome at the 

5’ end of the mRNA.  However, a weak signal is observed at position 17.  When the 5’ AUG 

was removed and an AUG was present at position 68, a toeprint signal at nucleotide 17 was 

present but very weak and was identical in appearance to the toeprint signal in the absence 

of IF2mt and fMet-tRNA on the 5’ AUG mRNA (Figure 3-4, lanes 3 and 5).  This signal appears 

to arise from an intrinsic interaction between the mRNA and the ribosome and may 

represent a signal from a transient complex in which the 5’ end of the mRNA has been fed 

into the mRNA entrance site and the first codon of the mRNA is transiently positioned at or 

near the P-site.  The strong toeprint signal at nucleotides 18 and 19 was not present in the 

AUG68 mRNA (Figure 3-4, lane 5).  No toeprint signal was observed corresponding to the 

edge of a ribosome bound at the internal AUG, which would be at nucleotide 85-87 (data 



77 
 

 
Figure 3-5. Toeprints showing the position of the 55S ribosome on the 5’ AUG 
mRNA in the presence and absence of IF2mt and fMet-tRNA.  Toeprint assays 
were performed as described in Materials and Methods.  Control reactions 
were performed in the absence of either fMet-tRNA and IF2mt or 55S 
ribosomes.  Sequencing reactions were carried out using ddCTP and ddATP.  
Nucleotide G14 is numbered from the 5’ end of the mRNA.   
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not shown). The toeprint with the Both AUG mRNA was the same as that observed for the 

5’ AUG mRNA.  A toeprint at nucleotide 17 only was seen using the 0 AUG mRNA (data not 

shown). 

 The importance of fMet-tRNA and IF2mt on the ability of the 55S ribosome to bind 

specifically to the 5’ end of the mRNA was also examined using the toeprint assay.  In the 

absence of both fMet-tRNA and IF2mt, a weak toeprint signal is seen at the position of 

nucleotide 17 (Figure 3-5, lane 3).  This signal agrees with previous data showing that mRNA 

can bind to the small subunit of the mitochondrial ribosome in the absence of initiation 

factors or tRNA and suggests that the mRNA most likely binds to the ribosome prior to the 

binding of fMet-tRNA or IF2mt (13).  This signal is strengthened by the addition of fMet-tRNA 

in the absence of IF2mt (Figure 3-5, lane 4), but is unaffected by the addition of IF2mt alone 

(Figure 3-5, lane 5).  This data argues that IF2mt, as expected, enhances fMet-tRNA binding 

to the ribosome and stabilizes the formation of the initiation complex at the 5’ AUG codon, 
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Figure 3-6.  Effect of phosphorylation of the 5’ end of CoI mRNA 
on inititiation complex formation on 55S ribosomes.  
Phosphorylated mRNAs were prepared as described in Materials 
and Methods.  [35S]fMet-tRNA binding to mitochondrial 55S 
particles was tested in the presence of increasing amounts of 
phosphorylated 5’ AUG and phosphorylated AUG68 mRNAs.  The 
saturation level of this experiment is lower than that in Figure 3-2 
due to the percentage of active ribosomes. 

leading to the strong toeprint at positions 17-19.  The data also suggests that the additional 

stabilization of the initiation complex provided by codon/anticodon interactions between 

the fMet-tRNA and the mRNA are important for the discrimination of the 5’ AUG by the 

ribosome. 

 

Effect of a 5’ Phosphate on Initiation Complex Formation at a 5’ AUG 

 Mammalian mitochondrial mRNAs are synthesized as long transcripts and are 

subsequently cleaved to produce mature rRNAs, tRNAs, and mRNAs (24).  This post-

transcriptional mRNA processing produces a free phosphate group at the 5’ end of the 

mRNA.  All mRNAs 

studied above were 

synthesized using in 

vitro transcription 

and then 

subsequently 

exposed to 

hammerhead RNA 

cleavage.  Because 

hammerhead 

cleavage leaves the 

mRNAs with a free 

5’ hydroxyl group 
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Figure 3-7.  Competition of CoI AUG68 mRNA with 5’ AUG mRNA 
for initiation complex formation on mitochondrial 55S 
ribosomes.  [35S]fMet-tRNA binding to mitochondrial 55S 
particles was tested in the presence of both CoI 5’ AUG and 
AUG68 mRNAs simultaneously.  5’ AUG mRNA and AUG68 mRNA 
were mixed together prior to their additions to the reaction.  
The molar ratio of the AUG68 mRNA divided by the 5’ AUG 
mRNA is shown on the x-axis. 

instead of a 5’ phosphate group,  the CoI 5’ AUG and CoI AUG68 mRNAs were 

phosphorylated using polynucleotide kinase and then tested for activity in initiation 

complex formation.  The mitochondrial ribosome showed the same discrimination between 

the 5’ AUG and the AUG68 mRNAs, regardless of the presence of a 5’-OH or a 5’ phosphate 

(Figure 3-6), suggesting that the presence of a 5’ phosphate on the mRNAs does not affect 

the preferential use of the 5’ AUG codon. 

 

Competition Between the AUG68 mRNA and the 5’ AUG mRNA 

 It is known that mitochondrial mRNAs bind to the 28S subunit in a sequence 

independent manner 

(13).  A model of this 

binding could be that 

the 28S subunit binds 

the mRNA at the 

mRNA entrance gate, 

and in the absence of 

a 5’ AUG start codon 

to trap fMet-tRNA and 

stabilize initiation 

complex formation, 

the mRNA continues 

to slide through the 
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gate and eventually exits the small subunit.  If that model is correct, it is expected that the 

AUG68 mRNA would be capable of binding the SSU in a transient fashion and could, thus, 

compete with initiation complex formation on the 5’ AUG mRNA.  To test this idea, 

increasing amounts of AUG68 mRNA were added to initiation complex formation assays 

using the 5’ AUG mRNA.  As indicated in Figure 3-7, addition of the AUG68 mRNA led to an 

inhibition of [35S]fMet-tRNA binding to 55S ribosomes in response to the 5’ AUG mRNA.  

This data suggests that the AUG68 mRNA is able to bind ribosomes, but fails to form a stable 

initiation complex due to the lack of the 5’ start codon.  This model is consistent with the 

weak toeprint signal on the AUG68 mRNA at nucleotide 17.  The high levels of the AUG68 

mRNA required to compete with the 5’ AUG mRNA for ribosome binding indicate that the 

binding of mRNAs that lack a 5’ AUG is not stable, possibly due to a decrease in the koff.  In 

contrast, the presence of fMet-tRNA on a 5’ AUG codon strengthens the initiation complex 

on the ribosome, leading to a very stable complex. 

 

Effect of Additional Nucleotides 5’ to the AUG on Initiation Complex Formation 

 In human mitochondrial mRNAs, the maximum number of nucleotides preceeding a 

start codon is three, as observed in CoI mRNA (2).  In the case of the AUG68 mRNA, where 

the start codon is located 68 nucleotides into the mRNA, no initiation complexes were 

formed on 55S ribosomes.  Since 68 nucleotides prior to the AUG codon are prohibitive to 

initiation complex formation, it was interesting to examine exactly how many nucleotides 

prior to the 5’ AUG could be tolerated.  A series of 5’ extended mRNAs were prepared 

containing 1, 2, 3, 6, 9, and 12 nucleotides prior to the 5’ AUG (Figure 3-1).  The nucleotides 



81 
 

Nucleotides 5' to AUG

0 1 2 3 4 5 6 7 8 9 10 11 12 68

R
e

s
id

u
a
l 
A

c
ti
v
it
y
 (

%
)

0

20

40

60

80

100

 
Figure 3-8.  Effect of the addition of nucleotides 5’ to the 
AUG start codon on initiation complex formation on 
mitochondrial 55S ribosomes.  [35S]fMet-tRNA binding to 
mitochondrial 55S ribosomes was tested in the presence of 
increasing amounts of 5’ extended mRNAs.   The mRNA was 
limiting in this assay, giving 0.1 pmol fMet-tRNA bound for 
the 5’ AUG mRNA.  This value was set as 100% initiation 
complex formation, and the values obtained for the other 
mRNAs are plotted as a % of this mRNA. 

added correspond to the 12 nucleotides present in the human mitochondrial genome 

between the upstream cistron and the start codon of the CoI mRNA.  Three of these are 

present in the mature mRNA (2).  As indicated in Figure 3-8, initiation complex formation 

was slightly reduced by 

the addition of a single 

nucleotide prior to the 5’ 

AUG.  The presence of 

only 3 nucleotides 

preceeding the AUG 

codon lead to a steeper 

decrease in initiation 

complex formation 

(>40%).  The presence of 

additional nucleotides 

prior to the AUG start 

codon led to further 

decreases in initiation 

complex formation, with 80% inhibition of initiation complex formation observed when 12 

additional nucleotides were present 5’ to the start codon.  This result indicates that the 

ribosome is less efficient in recognizing the start codon of mRNAs with more than 3 

nucleotides 5’ to the AUG. 
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Figure 3-9.  Initiation complex formation on 
mitochondrial 55S ribosomes using ND2 mRNAs.  
[35S]fMet-tRNA binding to mitochondrial 55S particles 
was tested in the presence of increasing amounts of ND2 
5’ AUG, AUG91, or 0 AUG mRNA.  A blank (~0.08 pmol) 
corresponding to the amount of fMet-tRNA bound to 55S 
ribosomes in the absence of mRNA was subtracted from 
each value. 

Preferential Selection of the 5’ AUG is Observed on Additional Mitochondrial mRNAs 

 All assays performed above used CoI mRNA.  To ensure that the results obtained 

were applicable to other mRNAs, a second mRNA, derived from the first 150 nucleotides of 

ND2, was tested in initiation complex formation.  In mammalian mitochondria, both AUG 

and AUA serve as Met codons.  The ND2 mRNA uses an AUA start codon.  Since yeast 

[35S]fMet-tRNA was used in the initiation complex formation assays performed here, and 

AUA is not recognized as a 

start codon in the yeast 

translation system, the AUA 

start codon present in ND2 

was changed to AUG.  

Variations of the ND2 mRNA 

with the 5’ AUG, with an 

AUG at position 91, or 

lacking AUG codons (Figure 

3-1) were tested in initiation 

complex formation.  The 

same preferential use of a 5’ 

start codon by 55S 

ribosomes was observed with these mRNAs (Figure 3-9).  The ND2 mRNA with the 5’ AUG 

readily formed initiation complexes.  However, no initiation complexes were formed using 
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Figure 3-10.  Initiation complex formation on mitochondrial 
55S ribosomes using tRNAMet/ND2 mRNAs.  [35S]fMet-tRNA 
binding to mitochondrial 55S particles was tested in the 
presence of increasing amounts of ND2 5’ AUG and 
tRNAMet/ND2 mRNAs.  A blank (~0.08 pmol) corresponding 
to the amount of fMet-tRNA bound to 55S ribosomes in the 
absence of mRNA was subtracted from each value. 

the ND2 AUG91 mRNA or 0 AUG mRNA.  This observation suggests that ribosomal 

discrimination in favor of a 5’ AUG is a general phenomenon for all mitochondrial mRNAs. 

 

Efficient Initiation Complex Formation Requires Post-Transcriptional mRNA Processing 

 Both strands of mitochondrial DNA are transcribed into long polycistronic RNAs (24).  

In many cases, tRNAs exist between protein-coding regions and fold into defined structural 

elements where they serve as processing signals (25).  For example, the ND2 coding region 

is preceded by the upstream tRNAMet gene.  It is generally assumed that processing to 

remove the upstream sequence must occur prior to the use of the mRNAs in translation.  To 

test whether the tRNA 

gene impairs initiation 

complex formation, we 

compared initiation 

complex formation of the 

ND2 mRNA and a 

derivative of the mRNA 

carrying the upstream 

tRNAMet (Figure 3-10).  In 

both cases, AUG was used 

as the start codon in place 

of AUA.  Both mRNAs were 

prepared by hammerhead 



84 
 

cleavage to ensure that they were treated identically.  As expected, very few initiation 

complexes were formed on the tRNAMet/ND2 mRNA (Figure 3-10), indicating that translation 

of ND2 prior to cleavage of tRNAMet from its 5’ end is inefficient and most likely does not 

occur.  

 
 

DISCUSSION 
 
 Eukaryotic ribosomes bind to mRNA in a cap-dependent manner and scan to find the 

first initiation codon (26).  Prokaryotic ribosomes find the AUG start codon with the help of 

SD/ASD interactions.  In this paper, we demonstrated that mitochondrial ribosomes 

recognize and bind to the start codon at the 5’ end of mitochondrial mRNAs using 

codon/anticodon interactions between the fMet-tRNA and the mRNA.  These interactions 

are strengthened by the addition of IF2mt, which agrees with the previous proposed role of 

IF2mt in promoting the binding of fMet-tRNA to the ribosome.   

 The sequences of many mitochondrial genomes are known.  DNA sequence analysis 

reveals that few or no nucleotides exist prior to the start codon in animals.  Of the 13 

proteins coded for by bovine mitochondrial DNA, about half contain noncoding nucleotides 

prior to the start codon.  The highest number of noncoding nucleotides between genes in 

this organism is four (Table 3-5).  No in vivo analysis of the 5’ ends of the mRNA has been 

done in the bovine system.  In human mitochondrial DNA, up to 12 nucleotides exist prior to 

the 5’ start codon of five different genes (the rest lack 5’ untranslated nucleotides), but 

direct analysis of the mRNAs demonstrated that post-transcriptional processing eliminates 

the 5’ leader in all but three mRNAs (2).  In contrast to these organisms, all noncoding 
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nucleotides in Drosophila melanogaster mitochondrial mRNAs are post-transcriptionally 

cleaved prior to translation, which indicates that the presence of any nucleotides before the 

start codon may be inhibitory for translational initiation (27).   While mRNAs with few or no 

nucleotides prior to the 5’ start codon are common in mitochondria, there seems to be no 

consistency in which genes have noncoding nucleotides and how many nucleotides are 

present. 

 
 
Table 3-5.  Summary of nucleotides 5’ to the AUG start codon in Bos taurus, Homo sapiens, 
and Drosophila melanogaster mitochondrial mRNAs.1 
 

Protein 
Sequence 

5’ to 
protein 

Bos taurus 
DNA 

sequence2 

Homo 
sapiens 

DNA 
sequence2 

Homo 
sapiens 
mRNA 

Drosophila 
melanogaster 
DNA sequence 

Drosophila 
melanogaster 

mRNA 
sequence 

NADH Dehydrogenase 

ND1 
tRNALeu   

→3
 

AAATG ACATA ACAUA CTTG UUG 

ND2 
tRNAMet  

→ 
ATA ATT AUU ATT AUU 

ND3 
tRNAGly  

→ 
ATA ATA AUA ATT AUU 

ND4 
Overlaps 

with 
ND4L 

ATG ATG AUG --- --- 

ND4L 
tRNAArg  

→ 
ATG ATG AUG AATG AUG 

ND5 
tRNALeu  

→ 
ATA ATA AUA ATG AUG 

ND6 
←  

tRNAGlu 
ATG ATG AUG AATT AUU 

                                                             
1Sequence data obtained from (2;27-29). 
2
Between upstream gene and start codon. 

3
The forward arrow indicates that the upstream gene is on the same strand as the mRNA coding sequence 

while the backward arrow indicates that the coding sequence for the upstream gene is on the opposite strand 
as the mRNA. 
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Coenzyme Q – Cytochrome C Reductase 

Cyt. B 
←  

tRNAGlu 
ACTAATG ACCAATG AUG ATG AUG 

Cytochrome C Oxidase 

CoI 
←  

tRNATyr 
CATG 

TCACCGC
CACTGAT

G 
CTGAUG ATCG UCG 

CoII 
tRNAAsp  

→ 
TATG ATG AUG TAAATG AUG 

CoIII ATP6  → TAATG TAATG AUG ATG AUG 

ATP Synthase 

ATP6 
Overlaps 

with 
ATP8 → 

ATG ATG AUG --- --- 

ATP8 
tRNALys  

→ 
CATG AATG AAUG ATT AUU 

 

 The mechanism of post-transcriptional processing in mitochondria has been 

proposed as a “tRNA punctuation” model.  It is known that mitochondrial DNA is 

transcribed as a long polycistronic mRNA.  The tRNA punctuation model predicts that tRNAs 

are removed from the transcript via post-transcriptional cleavage, and mature mRNAs 

remain that are ready for translation (25).  This model accurately predicts nucleotides 5’ to 

the start codon for mRNAs with tRNAs immediately preceding them in human 

mitochondrial DNA.  One example where the tRNA punctuation model does not apply is in 

the case of the gene coding for CoIII, which is preceded by the gene coding for ATP6 instead 

of a tRNA.  Thus, cleavage of CoIII requires a mechanism distinct from tRNA recognition. In 

this paper, we clearly demonstrate that post-transcriptional processing in bovine 
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mitochondria is necessary prior to translation, since initiation of mRNAs containing more 

than 3-6 nucleotides prior to the 5’ AUG is very inefficient. 

 In prokaryotes, it is known that transcription and translation can occur 

simultaneously.  Therefore, it was of interest to determine whether the mitochondrial 

system, proposed to be derived from a prokaryotic ancestor, operates in the same manner.  

It is obvious that, since mitochondrial mRNAs do not contain SD sequences in their mRNAs, 

they must initiate protein synthesis using a mechanism distinct from the prokaryotic 

system.  This paper demonstrated that mitochondrial 55S ribosomes were unable to initiate 

on an ND2 mRNA that was still attached to the tRNAMet on its 5’ end, indicating that post-

transcriptional processing to remove tRNAs must occur prior to translation in mammalian 

mitochondria. 

Our current model for initiation in mammalian mitochondria is illustrated in Figure 

3-11.  IF3mt first interacts with the 55S ribosome, forming a transient 28S:IF3mt:39S 

intermediate complex (step 1) (30). This transient complex dissociates into free 28S 

subunits bound to IF3mt and free 39S subunits (Figure 3-11, step 2).  Following the ribosome 

dissociation step, the mRNA feeds into the mRNA entrance tunnel on the 28S subunit 

(Figure 3-11, step 3).  It is unclear whether IF2mt:GTP binds at this point or later.  It is 

believed that mRNA binding precedes fMet-tRNA binding, because IF3mt has been shown to 

destabilize the fMet-tRNA bound to 28S subunits in the absence of mRNA (12).  When the 

first 17 nucleotides have entered the ribosome, the ribosome pauses and inspects the 

codon at the 5’ end of the mRNA, giving rise to the weak toeprint at position 17 relative to 

the 5’ end regardless of the presence or absence of a 5’ AUG codon.  During this pause, 



88 
 

 
Figure 3-11.  Model for the initiation of mammalian mitochondrial protein synthesis. 
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IF2mt:GTP promotes the binding of fMet-tRNA to the ribosome (Figure 3-11, step 4) and 

codon:anticodon interactions between the fMet-tRNA and the AUG start codon promote 

the formation of a stable initiation complex (Figure 3-11, step 4).  The formation of this 

complex leads to the strong toeprint at positions 17-19.  If no codon/anticodon interactions 

occur due to a lack of fMet-tRNA and/or the absence of a 5’ AUG start codon, the mRNA 

resumes sliding through the ribosome and eventually dissociates.  This idea explains the lack 

of a toeprint signal at position 18, 19, or 85 on the AUG68 mRNA.  If fMet-tRNA binds to the 

5’ start codon, the large subunit binds, IF2mt hydrolyzes GTP to GDP, and the initiation 

factors leave, resulting in a full 55S initiation complex that is then free to move to the 

elongation phase of protein synthesis (Figure 3-11, step 5). 

In future work, it will be particularly interesting to determine what creates the pause 

as the mRNA is fed into the P-site.  This pause creates a kinetic opportunity for the selection 

of a 5’ start codon by the binding of the initiator tRNA to the P-site.  
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CHAPTER 4 

 

ANALYSIS OF THE FUNCTIONAL CONSEQUENCES OF LETHAL MUTATIONS IN 
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INTRODUCTION 

During protein biosynthesis, elongation factor Tu (EF-Tu) forms a ternary complex 

with aa-tRNA and GTP and promotes the binding of the aa-tRNA to the A-site of the 

ribosome (1).  Following codon:anticodon interactions, an EF-Tu:GDP complex is released 

from the ribosome.  Elongation factor Ts (EF-Ts) binds to the EF-Tu:GDP complex and 

promotes the exchange of GDP for GTP, regenerating the active EF-Tu:GTP complex (2). 

Mammalian mitochondria have a specific protein biosynthetic system responsible 

for the synthesis of thirteen polypeptides of the respiratory chain complexes.  Protein 

synthesis in this organelle requires elongation factors that correspond to EF-Tu and EF-Ts 

(EF-Tumt and EF-Tsmt).  Both of these proteins are encoded in the nuclear genome, 

synthesized in the cell cytoplasm, and subsequently imported into the mitochondrion.  

While mutations in mitochondrial DNA are well known to cause disease, few mutations 

have been identified in nuclear genes that encode mitochondrial proteins required for 

protein biosynthesis in this organelle. Recently, a mutation in the gene coding for EF-Tsmt 

(Arg312 to Trp)1 was reported leading to encephalomyopathy in one patient and 

hypertrophic cardiomyopathy in another (3).  Both patients died at 7 weeks of age.  This 

mutation is predicted to disrupt important interactions between EF-Tumt and EF-Tsmt.  

EF-Tsmt is a 30.7 kDa protein that consists of an N-terminal domain and a core 

domain divided into N- and C-terminal subdomains (Figure 4-1) (4).  EF-Tumt and EF-Tsmt 

                                                             
1In the original paper (3), the position identified as mutated is listed as Arg333.  This position corresponds to 
the residue in isoform 2 of human EF-Tsmt (P-43897-2).  However, there is no direct experimental evidence for 
the expression of this isoform.  Rather, isoform 1 (P-43897-1) has been chosen as the canonical sequence.  In 
humans, the mutation in isoform 1 is in position 312 (R312W).  There is direct experimental evidence for 
isoform 1 in the bovine system.  The mutation created here is in isoform 1 of Bos taurus EF-Tsmt and 
corresponds to residue 325 (R325W).  The mature forms of human and Bos taurus EF-Tsmt are over 92% 
identical. 
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Figure 4-1.  Structural view of the interaction of EF-Tumt with EF-Tsmt.  Overall 
structure of the EF-Tumt:EF-Tsmt complex (PDB 1XB2).  EF-Tumt is shown in red, and EF-
Tsmt is shown in green.  EF-Tsmt R325W is highlighted in blue, and EF-Tumt R336Q is 
highlighted in yellow. 

Domain I

Domain II

Domain III

N-domain

Core

Subdomain N

Subdomain C

EF-Tumt EF-Tsmt

interact through extensive surface contacts.  The N-terminal domain and the subdomain N 

of the core of EF-Tsmt interact directly with the G-domain (domain I) of EF-Tumt, while the 

subdomain C of the core contacts domain III of EF-Tumt. 

Arg325 of EF-Tsmt is highly conserved and is found in most bacterial and 

mitochondrial factors (3). This residue is located in a β-strand in subdomain C of the core 

and is shown in blue in Figure 4-1 and Figure 4-2. While it does not make direct contact with 

EF-Tumt, other nearby residues in this region do.  Molecular modeling has predicted that the 

R325W mutation could disrupt the tertiary structure of the subdomain C of the core, 

altering its interactions with domain III of EF-Tumt (3).   Mutations in this region have been 

shown to reduce the affinity of EF-Tsmt for EF-Tumt about six to seven-fold (5). For example, 
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Figure 4-2.  Close-up view of the interaction of residues 
near the R325W mutation.  Domain III of EF-Tumt is 
shown in red, subdomain C of EF-Tsmt is shown in green, 
and EF-Tsmt R325W is shown in blue.  Residues known to 
be important for the interaction of EF-Tsmt with EF-Tumt 
are shown as purple (H231) and orange (L302 and L303) 
sticks. 

mutation of His231 (shown in purple in Figure 4-2) to Ala caused a 6-fold decrease in the 

binding constant governing the interaction of EF-Tsmt with EF-Tumt.  Mutation of L302 and 

L303 (shown in orange) caused a 7-fold decrease in the EF-Tumt:EF-Tsmt binding constant.  

We have directly examined 

the effect of the R325W 

mutation by testing the 

ability of this mutated 

protein to bind directly to 

EF-Tumt and to stimulate its 

activity in poly(U)-directed 

polymerization.  

 EF-Tumt is a 45.1 kDa 

protein composed of three 

domains. Domain I contains 

the guanine nucleotide 

binding site. All three domains are involved in binding the aa-tRNA (6), while domains I and 

III interact with EF-Tsmt. The stable binding of guanine nucleotides and EF-Tsmt to EF-Tumt are 

mutually exclusive, allowing EF-Tsmt to serve as a nucleotide exchange factor for EF-Tumt 

(7;8).  

 A mutation in EF-Tumt, (Arg336 to Gln), was discovered in an infant with lactic 

acidosis and fetal encephalopathy (9).  The infant later died at an age of 14 months.  Arg336 

of EF-Tumt is located in domain II of the protein, in a region known to interact with the 
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acceptor stem of the aa-tRNAs (Figure 4-1).  EF-Tumt R336Q was previously found to be 

unable to form a ternary complex with mitochondrial Ser-tRNA (10). The mutated factor 

was also deficient in poly(U)-directed poly(Phe) synthesis using mitochondrial Phe-tRNA and 

E. coli 70S ribosomes.  However, no studies were carried out with mitochondrial ribosomes 

and mitochondrial elongation factor G (EF-G1mt) (10).   In this study, the activity of the 

mutated EF-Tumt has been examined on mitochondrial ribosomes, and the effect of the 

mutation on its ability to form ternary complexes with several additional mitochondrial aa-

tRNAs has been examined.  

 

MATERIALS AND METHODS 

Materials 

[14C]phenylalanine and [35S]methionine were purchased from Perkin Elmer Life 

Sciences, Inc.  E. coli tRNA was obtained from Boehringer Mannheim.  E. coli [14C]Phe-tRNA  

and the human mitochondrial [35S]Met-tRNA transcript were prepared as described (11;12).  

Mitochondrial tRNA was purified from bovine mitoplasts using the Qiagen RNA/DNA maxi 

kit.  The tRNAPhe was aminoacylated using [14C]Phe as described (13).  E. coli ribosomes 

were purified from E. coli W cells; mitochondrial 55S ribosomes, and EF-G1mt were purified 

as described (14;15). 

 

Cloning, Expression, and Purification of Proteins 

BMtu/pET24c and BMts/pET24c, the E. coli expression vectors for C-terminal 

histidine-tagged bovine EF-Tumt and EF-Tsmt, are described in (16;17) and the proteins 
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expressed from them are referred to as the wild-type (WT) proteins. Expression vectors for 

the mutant EF-Tumt (R336Q) and mutant EF-Tsmt (R325W) were constructed by using the 

Quik Change site-directed mutagenesis kit (Stratagene).  EF-Tumt and EF-Tsmt were purified 

using described protocols (4;16;18). 

 

Circular Dichroism of EF-Tsmt and EF-Tsmt R325W 

 Purified EF-Tsmt and EF-Tsmt R325W were dialyzed in 1000 volumes CD buffer 

containing: 10 mM MgSO4, 50 mM potassium phosphate buffer (pH 7.6), and 5% glycerol for 

4 h with a change of buffer after 2 h.  CD spectra of EF-Tsmt and EF-Tsmt R325W were 

obtained using an Aviv Model 62DS CD Spectrometer.  Data points were collected in 1 nm 

steps, and data was analyzed using the CD Pro software. 

 

Poly(Phe) Polymerization Assays 

To test the ability of EF-Tsmt to stimulate the the activity of EF-Tumt in poly(Phe) 

directed polymerization, reaction mixtures (25 µL) contained 50 mM Tris-HCl (pH 7.8), 1 mM 

DTT, 0.1 mM spermine, 6 mM MgCl2, 80 mM KCl, 0.5 mM GTP, 1.25mM PEP, 0.4 U pyruvate 

kinase, 3 µg poly(U) mRNA, 8.3 pmol (0.33 µM) E. coli [14C]Phe-tRNA, 5 pmol (0.2 µM) EF-

G1mt, 0.25 µM E. coli 70S ribosomes, 0.5 pmol (20 nM) EF-Tumt, and 0.025-0.075 pmol (1-3 

nM) EF-Tsmt.  The reaction mixtures were incubated at 37 °C for 30 min and analyzed as 

described (19).  A blank representing the amount of label retained on the filter in the 

absence of EF-Tsmt was not subtracted. 
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To test the poly(Phe) polymerization activity of WT and mutated EF-Tumt in the E. 

coli system, reaction mixtures (25 µL) contained 50 mM Tris-HCl (pH 7.8), 1 mM DTT, 0.1 

mM spermine, 6 mM MgCl2, 80 mM KCl, 0.5 mM GTP, 1.25 mM PEP, 0.4 U pyruvate kinase, 

3 µg poly(U), 8.3 pmol (0.3 µM) E. coli [14C]Phe-tRNA, 5 pmol (0.2 µM) EF-G1mt, 16 µg (0.25 

µM) E. coli 70S ribosomes, and 0.2-0.8 pmol (8-32 nM) EF-Tumt (WT or R336Q) in a 1:1 mix 

with EF-Tsmt. Reaction mixtures were incubated at 37 °C for 30 min, at which time they were 

quenched by the addition of 5% TCA and processed as described (19).  A blank representing 

the amount of label retained on the filter in the absence of EF-Tumt (~0.3 pmol) was 

subtracted from each value. 

For assays performed in the mitochondrial system, the reaction mixtures (25 µL) 

contained 50 mM Tris-HCl (pH 7.8), 1 mM DTT, 0.1 mM spermine, 7.5 mM MgCl2, 40 mM 

KCl, 0.5 mM GTP, 1.25 mM PEP, 0.4 U pyruvate kinase, 3 µg poly(U), 3 pmol (0.12 µM) 

mitochondrial [14C]Phe-tRNA, 5 pmol (0.2 µM) EF-G1mt, 3 pmol (0.12 µM) mitochondrial 55S 

ribosomes, and 0.2-0.8 pmol EF-Tumt (WT or the R336Q mutated protein) in a 1:1 mixture 

with EF-Tsmt. Reactions were incubated at 37 °C for 30 min, quenched by the addition of 5% 

TCA, and processed as described (19).  A blank representing the amount of label retained on 

the filter in the absence of EF-Tumt (~0.08 pmol) was subtracted from each value. 

 

Physical Interaction of EF-Tumt and EF-Tsmt Measured Using a Gel-Shift Assay 

The binding of EF-Tsmt to EF-Tumt was studied using a gel-shift assay according to 

(20). Briefly, EF-Tsmt:GDP (40 pmol) and EF-Tumt (0-40 pmol) were incubated on ice for 5 min 

in a reaction mixture (10 µL) containing 50 mM Tris-HCl (pH 7.5), 70 mM KCl, 1.5 mM EDTA, 
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10% glycerol, 1 mM DTT, 0.004% bromophenol blue. The samples were resolved by native 

polyacrylamide gel electrophoresis (PAGE). The electrophoresis was performed at 4°C (450 

V, 2 h) on a 1 mm x 20 cm x 10 cm 9% PAGE gel (acrylamide:bisacrylamide 29:1) containing 

8 mM Tricine-NaOH (pH 8.2), 1 mM EDTA and 5% glycerol. The running buffer contained  8 

mM Tricine-NaOH (pH 8.2) and 1 mM EDTA. The proteins were visualized using SYPRO Ruby 

(Molecular Probes). 

 

Ternary Complex Formation Measured Using Hydrolysis Protection 

The ability of EF-Tumt and EF-Tumt R336Q to protect aa-tRNA from spontaneous 

deacylation was monitored as described (20), with slight modifications. Ternary complexes 

were formed in reaction mixtures (100 µL) containing 75 mM Tris-HCl (pH 7.5), 75 mM 

NH4Cl, 15 mM MgCl2, 7.5 mM DTT, 60 µg/mL BSA, 1 mM GTP, 2.4 mM PEP, 0.1 mU pyruvate 

kinase, 12.5 pmol (0.125 µM) E. coli [14C]Phe-tRNA, and 0-330 pmol (0-3.3 µM) EF-Tumt (WT 

or R336Q).  The samples were incubated for the indicated times at 30 °C, and precipitated in 

cold 5% TCA.  The remaining aa-tRNA was collected on filter papers (3MM, Whatman) and 

the amount of EF-Tu:GTP:[14C]Phe-tRNA was quantified using a liquid scintillation counter.  

 

Ternary Complex Formation Measured Using RNase Protection 

Ternary complex formation assays were carried out in reaction mixtures (50 µL) 

containing 20 mM HEPES-KOH (pH 7.0), 1 mM DTT, 6.7 mM MgCl2, 68 mM KCl, 0.5 mM GTP, 

1.25 mM PEP, 0.8 U pyruvate kinase, 7.2 pmol (0.14 µM) E. coli [14C]Phe-tRNA, and 0-20 

pmol (0.1-0.4 µM) EF-Tumt (WT or R336Q).  For experiments using mitochondrial tRNAs, 5.3 
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Figure 4-3.  Circular dichroism spectra of EF-Tsmt and EF-Tsmt 
R325W.  CD spectra of EF-Tsmt (WT and R325W) obtained as 
described in Materials and Methods. 

pmol (0.11 µM) native bovine mitochondrial [14C]Phe-tRNA or 9.6 pmol (0.19 µM) of the 

human mitochondrial [35S]Met-tRNA transcript and 0-60 pmol (0.3-1.2 µM) EF-Tumt (WT or 

R336Q) were used.  The reactions were incubated for 15 min at 0 °C, at which time 10 µg 

RNase A was allowed to digest the sample for 30 s.  Ice cold 5% TCA was added, and the 

remaining aa-tRNA was precipitated at 0 °C for 10 min and analyzed as described (12;21).  A 

blank representing the amount of label retained on the filters in the absence of EF-Tumt 

(~0.3 pmol using E. coli [14C]Phe-tRNA, ~0.1 pmol using mitochondrial [14C]Phe-tRNA and 

~0.2 pmol using [35S]Met-tRNA) was subtracted from each value. 

 

RESULTS AND DISCUSSION 

Biochemical Consequences of the R325W Mutation in EF-Tsmt 

A mutated derivative of EF-Tsmt, corresponding to the lethal R325W mutation in 

humans, was prepared 

using site-directed 

mutagenesis (3).  To 

determine whether the 

mutation adversely 

affected the structure 

of EF-Tsmt, the CD 

spectra of the mutated 

derivative was 

compared to that of the 



101 
 

EF-Ts (pmol)

0.01 0.03 0.05 0.07

[1
4
C

]P
h

e
 p

o
ly

m
e

ri
z
e

d
 (

p
m

o
l)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
EF-Ts

EF-Ts R325W

 
Figure 4-4.  Activity of EF-Tsmt and EF-Tsmt R325W in poly(Phe) 
polymerization.  The abilities of EF-Tsmt and EF-Tsmt R325W to 
function in a poly(U)-directed peptide polymerization assay 
were tested using EF-Tumt and E. coli [14C]Phe-tRNA.  EF-Tsmt is 
shown in closed squares and EF-Tsmt R325W is shown in closed 
circles.  The assays were performed multiple times and data 
were normalized with respect to the point containing 0.05 pmol 
of EF-Tsmt. 

WT factor.  As indicated in Figure 4-3, the α-helical content of the mutated protein did not 

change significantly with respect to the wild-type factor, suggesting that the protein 

retained its normal secondary structure.  A thermal melt monitored by CD indicated that 

both EF-Tsmt and EF-Tsmt R325W unfold at the same temperature (data not shown), 

indicating that the mutation has not greatly destabilized the protein.    

To investigate the biochemical effect of the R325W mutation, the ability of EF-Tsmt 

and its R325W variant to stimulate the activity of EF-Tumt in poly(Phe) polymerization was 

examined.  EF-Tumt alone has measurable activity in polymerization (Figure 4-4). However, 

its activity is 

enhanced by the 

presence of EF-Tsmt 

due to an increase in 

the guanine 

nucleotide exchange 

rate, allowing EF-Tumt 

to operate with a 

higher turnover 

number.  Wild-type 

EF-Tsmt stimulated 

the activity of EF-Tumt 

more than 2-fold 

under the reaction 
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Figure 4-5.  Physical interaction of EF-Tsmt and EF-Tsmt R325W with 
EF-Tumt.  The abilities of EF-Tsmt and EF-Tsmt R325W to bind to EF-
Tumt were measured using a gel shift assay on native PAGE.  WT EF-
Tsmt (upper panel) or EF-Tsmt R325W (lower panel) were incubated 
with the indicated amount of EF-Tumt. The proteins were separated 
on native-PAGE and visualized by SYPRO Ruby. The position of EF-
Tsmt, EF-Tumt:EF-Tsmt complex and EF-Tumt are indicated with 
arrows.  Data and figure provided by K. Akama and N. Takeuchi. 

conditions used (Figure 4-4). This value is consistent with previous observations (22). 

However, the stimulation of EF-Tumt by the R325W variant was reduced substantially, and 

only a 1.2-fold stimulation was observed (Figure 4-4).  This reduction could arise from the 

failure of the mutated EF-Tsmt to interact with EF-Tumt:GDP effectively, reducing GDP 

release and formation of an EF-Tumt:EF-Tsmt complex.  The reduction could also reflect a 

failure of the EF-Tumt:EF-Tsmt complex to bind GTP, which is necessary to release EF-Tumt for 

another round of polymerization.  

To investigate the interaction between EF-Tumt and EF-Tsmt R325W directly, the 

binding of the two proteins was studied using a gel-shift assay (Figure 4-5). EF-Tsmt or EF-

Tsmt R325W was incubated with increasing amounts of EF-Tumt. After complex formation, 

the proteins were separated on native-PAGE.  This gel system separates EF-Tsmt from the 

EF-Tumt:EF-Tsmt 

complex.  

However, the 

mobility of EF-

Tumt:EF-Tsmt 

complex was quite 

similar to that for 

EF-Tumt, and the 

resolution of the 

complex from free 

EF-Tumt was 

R325W 

WT 
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Figure 4-6.  Efficiency of the complex formation in Figure 4-
5 assessed by quantitating the amount of free EF-Tsmt 
remaining.  The relative amount of free EF-Tsmt in each 
panel was normalized to a value of 1 for EF-Tsmt. EF-Tsmt is 
shown in closed circles, and EF-Tsmt R325W is shown in 
closed squares.  Data for figure provided by K. Akama and 
N. Takeuchi. 

difficult. Thus, the efficiency of complex formation was assessed by the quantity of free EF-

Tsmt remaining.  Wild-type EF-Tsmt was effective in forming a complex with EF-Tumt in a dose 

dependent manner. Approximately 60% of EF-Tsmt bound EF-Tumt when incubation was 

carried out using equal molar amounts of the two factors (Figure 4-5, upper and Figure 4-6, 

closed circles). In contrast, EF-Tsmt R325W was ineffective in binding EF-Tumt and remained 

free, even when incubated with an equal amount of EF-Tumt (Figure 4-5, lower and Figure 4-

6, closed squares). These results indicate that the reduction in poly(U)-dependent poly(Phe) 

synthesis with the mutated EF-Tsmt arises to a large extent from a failure of the mutated EF-

Tsmt to interact with EF-Tumt.   

This effect 

observed with the R325W 

mutation is in agreement 

with previous mutational 

data as described in the 

introduction (9).  The data 

provided here and the 

mutational studies carried 

out previously indicate 

that the interactions of 

residues in the β-sheet of 

subdomain C and other 

nearby residues with EF-Tumt are essential for the stable binding of EF-Tumt with EF-Tsmt. 
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Biochemical Consequences of the R336Q Mutation in EF-Tumt 

Previous work on the lethal R336Q mutation in EF-Tumt indicated that this mutation 

did not affect the structural integrity of EF-Tumt, as demonstrated by CD spectroscopy (10). 

However, the mutation drastically reduced the ability of EF-Tumt to promote polymerization 

using mitochondrial [14C]Phe-tRNA on E. coli ribosomes (10).  The R336Q mutation was not 

predicted to influence the interaction of EF-Tumt with EF-Tsmt, because the primary 

interaction with EF-Tsmt occurs via interactions involving domains I and III (4).  The mutation 

was also not expected to interfere with GTP binding, which is localized to domain I.  Further, 

previous data indicated that Glu287 in E. coli (corresponding to Arg335 in EF-Tumt), the 

residue adjacent to Arg336, did not affect GTP binding (21).  Mutation of Arg335 to glutamic 

acid did result in reduced activity of EF-Tumt in both ternary complex formation and A-site 

binding with mitochondrial Phe-tRNAPhe. 

The effects of the R336Q mutation on the activity of EF-Tumt were examined further 

using E. coli and mitochondrial ribosomes and aa-tRNAs. Surprisingly, when EF-Tumt R336Q 

was tested in poly(U)-directed polymerization using E. coli [14C]Phe-tRNA and E. coli 70S 

ribosomes, it was as active as the wild-type factor in this assay (Figure 4-7).  However, in the 

homologous system using mitochondrial [14C]Phe-tRNA and ribosomes, EF-Tumt R336Q was 

almost inactive in polypeptide chain elongation (Figure 4-8).  Previous work (10) indicated 

that EF-Tumt R336Q lacked activity with mitochondrial Phe-tRNA when tested on E. coli 

ribosomes, suggesting that the lack of activity in the mitochondrial system was not a 

function of the ribosomes used but, rather, due to a failure of the mutated factor to interact 

with mitochondrial Phe-tRNA. Mitochondrial tRNAs are less structurally stable than E. coli 
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Figure 4-7.  Poly(Phe) polymerization with EF-Tumt and 
EF-Tumt R336Q using E. coli 70S ribosomes and E. coli 
[14C]Phe-tRNA.  The abilities of EF-Tumt and its R336Q 
derivative to function in a poly(Phe) polymerization 
assay was tested as described in Materials and 
Methods.  EF-Tumt is shown in closed circles and EF-Tumt 
R336Q in closed squares.   
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Figure 4-8.  Poly(Phe) polymerization with EF-Tumt and 
EF-Tumt R336Q using mitochondrial 55S ribosomes and 
native bovine mitochondrial [14C]Phe-tRNA.  The 
abilities of EF-Tumt and its R336Q derivative to function 
in a poly(Phe) polymerization assay was tested as 
described in Materials and Methods.  EF-Tumt is shown 
in closed circles and EF-Tumt R336Q is shown in closed 
squares. 

tRNAs (12), and additional 

stabilizing interactions 

between EF-Tumt and the 

mitochondrial aa-tRNA may 

be important in forming the 

ternary complex.  

 The poly(Phe) 

polymerization assay does not 

directly measure the 

interaction between EF-Tumt 

and aa-tRNA. This interaction 

can be measured directly 

using one of two ternary 

complex formation assays: 

the hydrolysis protection 

assay and the RNase 

protection assay. The 

hydrolysis protection assay 

measures the ability of EF-

Tumt to protect the aa-tRNA 

bond from spontaneous 

hydrolysis.  Since the mutated 
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Figure 4-9.  Activities of EF-Tumt and EF-Tumt R336Q in 
ternary complex formation measured using a non-
enzymatic hydrolysis protection assay.  Amount of 
[14C]Phe-tRNA protected from hydrolysis by increasing 
concentrations of EF-Tumt (solid lines) and EF-Tumt R336Q 
(dashed lines) as a function of time.  Data for figure 
provided by K. Akama and N. Takeuchi.  
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Figure 4-10.  Relative amount of [14C]Phe-tRNA at time 60 
min in Figure 4-9 plotted against the EF-Tumt 
concentration.  Data for figure provided by K. Akama and 
N. Takeuchi. 

EF-Tumt was active using E. 

coli Phe-tRNA in 

polymerization, its 

interaction with bacterial 

Phe-tRNA was tested 

directly.  The spontaneous 

hydrolysis of E. coli Phe-

tRNA was apparent (Figure 

4-9, closed circles).  When 

bound to EF-Tumt, the Phe-

tRNA bond was clearly 

protected from hydrolysis 

(Figure 4-9, solid lines).  

However, when the R336Q 

derivative of EF-Tumt was 

used in place of the normal 

factor, substantially less 

protection of the Phe-tRNA 

bond was observed (Figure 

4-9, dashed lines).  At 

sufficiently high 

concentrations of EF-Tumt 
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Figure 4-11.  Activities of EF-Tumt and EF-Tumt R336Q 
in ternary complex formation using E. coli [14C]Phe-
tRNA measured using an RNase protection assay.  EF-
Tumt is shown in closed circles and EF-Tumt R336Q is 
shown in closed squares.   

R336Q, considerable ternary complex is formed (Figure 4-10, closed squares), indicating 

that R336Q has some ability to bind E. coli Phe-tRNA.  This data suggests that, although the 

mutated protein is deficient in binding to E. coli Phe-tRNA, the reduced affinity is not 

sufficient to prevent its efficient use in polymerization (Figure 4-7). 

 To verify the results obtained from the hydrolysis protection experiments and to 

examine the interaction with mitochondrial aa-tRNAs, the RNase protection assay was used. 

This assay measures the ability of EF-Tumt to protect the acceptor stem of the aa-tRNA from 

degradation by RNase A.  Because the RNase A digestion of the tRNA is done in 30 s, it 

provides a snapshot of the interaction between the two molecules. When the binding of EF-

Tumt to E. coli [14C]Phe-tRNA was tested, the R336Q variant showed a decrease in binding of 

just over 50% (Figure 4-11), 

indicating that the mutation 

reduces but does not abolish the 

ability of EF-Tumt to form a 

ternary complex with bacterial 

aa-tRNAs. These results agree 

with the observation above, that 

the reduction in ternary complex 

formation is not sufficient to 

compromise the activity of this 

factor in polymerization (Figure 

4-7). It is important to note that the binding of the aa-tRNA to EF-Tumt is probably not the 
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Figure 4-12.  Activities of EF-Tumt and EF-Tumt R336Q 
in ternary complex formation using native bovine 
mitochondrial [14C]Phe-tRNA measured using an 
RNase protection assay.  EF-Tumt is shown in closed 
circles and EF-Tumt R336Q is shown in closed squares. 

rate limiting step in polypeptide chain elongation.  Rather, interactions with the ribosome, 

including the release of inorganic phosphate from EF-Tumt following GTP hydrolysis, appear 

to be rate limiting (23).  

 Previous work indicated that EF-Tumt R336Q did not bind mitochondrial Ser-tRNA 

effectively in the ternary complex (10). This observation is in sharp contrast to the 

significant level of ternary complex formation observed with the E. coli Phe-tRNA (Figure 4-

11) but in agreement with the lack of polymerization observed with mitochondrial Phe-

tRNA (Figure 4-8). To explore 

whether the failure of EF-Tumt 

to use mitochondrial Phe-tRNA 

in polymerization arises from a 

failure of ternary complex 

formation, the RNase 

protection assay was carried 

out with mitochondrial 

[14C]Phe-tRNA (Figure 4-12).  EF-

Tumt was quite active in forming 

a ternary complex with native 

bovine mitochondrial Phe-tRNA. However, the R336Q variant did not bind mitochondrial 

Phe-tRNA detectably (Figure 4-12). This observation agrees with previous work and explains 

the lack of activity of the variant protein in poly(Phe)-directed polymerization with 

mitochondrial Phe-tRNA on mitochondrial 55S ribosomes (Figure 4-8). 
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Figure 4-13.  Activities of EF-Tumt and EF-Tumt R336Q 
in ternary complex formation using human 
mitochondrial [35S]Met-tRNA measured using an 
RNase protection assay.  EF-Tumt is shown in closed 
circles and EF-Tumt R336Q is shown in closed 
squares. 

To address the question of whether other mitochondrial aa-tRNAs also fail to bind 

the R336Q variant, ternary 

complex formation assays were 

carried out using human 

mitochondrial [35S]Met-tRNA 

(Figure 4-13).  This tRNA was 

transcribed in vitro and has been 

shown to properly fold and to 

bind EF-Tumt (12).  In this assay, 

EF-Tumt readily formed a ternary 

complex with mitochondrial 

[35S]Met-tRNA.  However, once 

again EF-Tumt R336Q was unable 

to bind mitochondrial [35S]Met-tRNA, indicating that the variant protein is unable to form 

ternary complexes with most or all mitochondrial aa-tRNAs. 

It is perplexing that the variant EF-Tumt can bind E. coli Phe-tRNA but not 

mitochondrial aa-tRNAs.  This discrepancy must stem from innate differences between the 

mitochondrial and bacterial tRNAs.  Canonical tRNAs fold into a distinct L-shape stabilized 

by strong G-C base pairs in the stems of the tRNA and tertiary interactions involving many 

invariant or semi-invariant residues (24). In contrast, mitochondrial tRNAs are characterized 

by weaker stems with numerous A-U base pairs or mismatches. They often lack the 

conserved residues that create important tertiary interactions in other tRNAs (25-27). 
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Although mitochondrial tRNAs can fold into an L-shape, the interactions that stabilize the 

elbow region are weaker (28).  Mitochondrial tRNAs observed on 55S ribosomes have an L-

shape but show a “caved in” feature at the corner of the L (28).  These unusual structural 

features of mitochondrial tRNAs may lead to a requirement for interactions with EF-Tumt 

that are not essential for the binding of canonical aa-tRNAs.   

Previous data indicate that mitochondrial aa-tRNAs must be phosphorylated at their 

5’ ends in order to bind effectively to EF-Tumt (12).  The crystal structure of the T. 

thermophilus ternary complex indicates that Arg300 (corresponding to Arg336 in EF-Tumt) 

forms a salt bridge with the phosphate group at the 5’ end of the aa-tRNA (Figure 4-14) (6).  

Replacement of the Arg with Gln in EF-Tumt could disrupt this interaction, since the side 

chain of Gln is shorter and may not be within bridging distance of the phosphate backbone.  

This interaction is not critical for the formation of the ternary complex with E. coli aa-tRNAs, 

in agreement with data showing that a 5’-phosphate is not important for ternary complex 

formation in prokaryotes (29).  However, the data presented here indicate that the 

interaction between Arg336 and the 5’ phosphate of mitochondrial aa-tRNAs is critical for 

ternary complex formation in the mitochondrial translational system. The interaction 

between Arg336 and the 5’ phosphate of aa-tRNAs could be also important following the 

ternary complex formation, since the aa-tRNA in the ternary complex is substantially 

distorted upon ribosome binding, allowing it to interact simultaneously with the mRNA 

codon and EF-Tumt (30).  
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Figure 4-14.  Interaction of T. thermophilus EF-Tu with aa-tRNA.  This 
image was obtained from the crystal structure of the T. thermophilus 
Phe-tRNA:EF-Tu:GDPNP ternary complex (PDB 1TTT).  The residue 
homologous to R336 is shown with its nitrogen atoms in blue.  The 
phosphate of G1 of the Phe-tRNA is shown in orange, with its oxygen 
atoms shown in red.  The tRNA is shown in dark gray. 

 

CONCLUSION 

 Oxidative phosphorylation requires the assembly of the electron transport chain and 

ATP synthase, which contain protein components synthesized by the mitochondrial 

translational machinery.  A defect in mitochondrial translation caused by the inability of EF-

Tsmt R325Q to bind to EF-Tumt likely leads to the defects in oxidative phosphorylation seen 

in the clinical manifestation of the EF-Tsmt mutation. 

The R336Q variant of EF-Tumt is inactive in mitochondrial polypeptide chain 

elongation as a result of its inability to bind mitochondrial aa-tRNAs.  Failure of ternary 

complex formation leads to defective mitochondrial protein synthesis, causing a decrease in 
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oxidative phosphorylation. One direct clinical phenotype of the EF-Tumt R336Q mutation is 

lactic acidosis (9), which most likely resulted from the buildup of lactic acid from pyruvate 

due to a failure in the synthesis of the respiratory chain. 
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CHAPTER 5 

 

THE EFFECT OF SPERMINE ON THE INITIATION OF MITOCHONDRIAL PROTEIN SYNTHESIS 
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Figure 5-1.  Structure of spermidine. 

INTRODUCTION 

Spermine and spermidine are aliphatic polyamines that have a number of roles in 

both prokaryotic and eukaryotic cells.  Both polyamines are cationic at physiological pH due 

to pK values >8 (2).  In prokaryotic cells, polyamines are known to affect protein synthesis in 

several ways.  The structure of the SD region on the mRNA is rearranged in the presence of 

polyamines, which helps promote the formation of the prokaryotic initiation complex (3).   

In addition to this structural effect, polyamines lower the optimal concentration of Mg2+ 

required for protein synthesis.  Translation initiation on the minor start codon UUG, used, 

for example, in the translation of adenylate cyclase, is stimulated by polyamines (4).  The 

tertiary polyamine spermidine (Figure 5-1) reduces the dissociation of 70S ribosomes, 

partially counteracting the action of IF3 in the initiation of translation (5).   Spermine, a 

quaternary polyamine (Figure 5-2), has binding sites on both 16S and 23S rRNA, indicating 

that it could be important for ribosomal structure (6;7).  Spermine crosslinks near the 

decoding center of the small subunit, suggesting that it could also be involved in aa-tRNA 

binding (6). 

In wheat germ, spermidine has been shown to affect translation by increasing the 

fidelity of protein synthesis (8).  Spermine exists in the cytosol of eukaryotic cells with 

concentrations in the µM range (9) and is known to be present in mitochondria although it 
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Figure 5-2.  Structure of spermine. 

is not synthesized there (10).  In fact, spermine plays a metabolic role in mitochondria by 

stimulating the activity of the pyruvate dehydrogenase complex and by activating citrate 

synthase in the citric acid cycle (10).  Because spermine binds to the mitochondrial 

membrane, the concentration of spermine inside the mitochondrion is difficult to measure 

accurately and is, therefore, not known (11).   

Spermine affects translation in mitochondria by lowering the Mg2+ requirement for 

the association of mitochondrial ribosomal subunits into 55S monosomes by about 1 mM 

(12).  Little is known about other effects that spermine may have on protein synthesis in 

mitochondria.  Because mitochondrial mRNAs are largely leaderless, the effects of spermine 

on mitochondrial translation may be different from those observed with prokaryotic 

mRNAs, most of which contain SD sequences. 

 

MATERIALS AND METHODS 

Materials 

General chemicals were purchased from Sigma-Aldrich or Fisher Scientific.  Bovine 

mitochondrial ribosomes (55S), ribosomal subunits (28S and 39S), and yeast [35S]fMet-tRNA 

were prepared as described (13-16).  Poly(A,U,G) was synthesized and purified as described 

(17).  The AUG triplet was purchased from Dharmacon.  A 29-mer RNA oligonucleotide 
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containing the 5’ AUG start site (underlined) for subunit I of bovine mitochondrial 

cytochrome oxidase, AUGUUCAUUAACCGCUGACUAUUCUCAAC, was also purchased from 

Dharmacon. 

 

Cloning, Expression and Purification 

Bovine IF2mt and human IF3mt were cloned, expressed, and purified as described 

previously (18). Both proteins required further purification following the Ni-NTA column. 

IF2mt and IF3mt were purified on DEAE-5PW and SP-5PW HPLC columns, respectively, as 

described (18). 

 

Dissociation of Mitochondrial 55S Ribosomes by IF3mt in the Presence and Absence of 

Spermine 

Mitochondrial ribosomes (8 pmol, 80 nM) were incubated in the presence or 

absence of IF3mt (41 pmol, 410 nM) and in the presence and absence of spermine (0.1 mM) 

in 100 L of gradient buffer containing 25 mM Tris-HCl (pH 7.6), 5 mM MgCl2 , 40 mM KCl 

and 1 mM DTT for 15 min at 37 °C. After incubation, reaction mixtures were placed on ice 

for 10 min and then layered onto cold 4.8 mL 10-30% linear sucrose gradients prepared in 

gradient buffer with and without spermine. Gradients were centrifuged for 1 h and 45 min 

at 220,000 g ave in the Beckman SW55 Ti rotor and fractionated as described (19). 
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Initiation Complex Formation on Mitochondrial Ribosomes 

Stimulation of initiation complex formation by spermine was examined by 

measuring the increase of [35S]fMet-tRNA binding to 55S ribosomes or 28S subunits in a 

filter binding assay.  Reaction mixtures (100 L) were prepared as described previously 

(16;20) and contained the indicated amounts of IF2mt and/or IF3mt, [
35S]fMet-tRNA (60 nM), 

0.25 mM GTP, 1.25 mM PEP, 0.9 U pyruvate kinase, 55S ribosomes (60 nM) and, unless 

otherwise indicated, 10 g poly(A,U,G). Mixtures were incubated for 10 min at 37 °C. The 

amount of [35S]fMet-tRNA bound to ribosomes was measured using a nitrocellulose filter 

binding assay (20;21).   

 

RESULTS AND DISCUSSION 

Effect of Spermine on Initiation Complex Formation on Mitochondrial 55S Ribosomes 

 In the absence of mRNA, fMet-tRNA is able to bind mitochondrial ribosomes to a 

limited extent (20).  Thus, the effect of spermine on the binding of fMet-tRNA to 

mitochondrial 55S ribosomes was tested in the presence and absence of mRNA, IF2mt, and 

IF3mt (Figure 5-3).  In the presence of both initiation factors and poly(A,U,G), a two-fold 

increase in fMet-tRNA binding correlated with increasing concentrations of spermine up to 

0.05 mM (Figure 5-3).   This result indicates that spermine has a positive effect on initiation.  

This effect could occur at one or more or several steps, including: fMet-tRNA binding, mRNA 

binding, the action of IF2mt, or the action of IF3mt.  

 If spermine primarily affects fMet-tRNA binding by promoting the interaction of the 

mRNA with the ribosome, one might expect a smaller effect of spermine on fMet-tRNA 
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Figure 5-3.  Effect of spermine on initiation complex 
formation using 55S ribosomes in the presence and 
absence of mRNA.  [35S]fMet-tRNA binding to 
mitochondrial 55S particles was tested in the presence 
and absence of poly(A,U,G) mRNA, IF2mt, and IF3mt at 
different concentrations of spermine as described in 
Materials and Methods. 

binding in the absence of 

mRNA.  Binding of fMet-tRNA 

to ribosomes was significantly 

lower in the absence of mRNA 

(Figure 5-3); however, 

spermine stimulated this 

binding two-fold, as observed 

in the presence of mRNA, 

although higher 

concentrations of spermine 

were required to observe this 

effect.  This observation 

suggests that spermine is affecting a step in initiation distinct from the mRNA binding step. 

 To further explore this conclusion, we have more fully examined the effects of 

spermine on initiation complex formation with three different mRNAs (Figure 5-4).  These 

mRNAs included the AUG triplet, a 29-nucleotide RNA derived from the initiation site of 

bovine mitochondrial subunit I of cytochrome oxidase, and poly(A,U,G).  The assays shown 

in Figure 5-3 were carried out using poly(A,U,G), a long RNA polymer that is not 

representative of natural mitochondrial mRNAs.  Native mitochondrial messages contain 

few or no nucleotides 5’ to the initiation codon, so the AUG triplet and the leaderless CoI 

mRNA were used. 
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Figure 5-4.  Effect of spermine on initiation complex 
formation using 55S ribosomes in the presence of 
various mRNAs.  [35S]fMet-tRNA binding to 
mitochondrial 55S particles was tested in the 
presence of IF2mt, IF3mt, and saturating amounts of 
poly(A,U,G), the 29-mer cytochrome oxidase start 
site, or the AUG triplet at different concentrations of 
spermine as described in Materials and Methods. 

 In the absence of polyamines, substantial binding of fMet-tRNA to the ribosome was 

observed with poly(A,U,G).  Spermine stimulated this binding nearly two-fold.  When the 

AUG triplet was used in initiation complex formation (Figure 5-4), less fMet-tRNA binding 

was observed in the absence of 

spermine, and this polylamine 

stimulated binding about three-

fold, bringing it close to the level 

observed with poly(A,U,G).  

Natural mitochondrial mRNAs 

are generally leaderless.  To 

examine the effect of spermine 

on a natural initiation site, we 

used a 29-mer synthetic 

oligonucleotide based on the 

initiation site of subunit I of the 

bovine cytochrome oxidase mRNA.  When this oligonucleotide was tested for initiation 

complex formation in the absence of spermine, it showed about the same level of binding 

as observed with the AUG triplet (Figure 5-4).  Again, spermine stimulated binding about 

three-fold. 

 The more substantial binding obtained in the absence of spermine with poly(A,U,G) 

probably reflects the ability of this long polymer to trap fMet-tRNA more effectively on the 

ribosome.  Long mRNAs are known to bind more rapidly to the small subunit and to 
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Figure 5-5. Effect of spermine on IF3mt-induced 55S 
dissociation.  [35S]fMet-tRNA binding to 
mitochondrial 55S particles was tested at different 
concentrations of IF3mt with and without spermine 
using poly(A,U,G) as the mRNA at a fixed 
concentration of IF2mt as described in Materials and 
Methods. 

dissociate more slowly than shorter mRNAs (22).  Since stable initiation complex formation 

requires the simultaneous presence of both fMet-tRNA and mRNA on the ribosome, the 

more stable binding of poly(A,U,G) to the ribosome allows more initiation complex 

formation to be detected in the absence of spermine.  Regardless, spermine stimulates 

fMet-tRNA binding in the absence of any mRNA (Figure 5-3) and in the presence of all the 

mRNAs tested (Figure 5-4), indicating that the effect of this polyamine on initiation is not 

directly on mRNA binding to the ribosome. 

 

Effect of Spermine on IF3mt-Mediated Stimulation of Initiation Complex Formation 

Another potential target for the effect of spermine is on the action of IF3mt.  The 

major effect of IF3mt on initiation 

complex formation is to loosen 

the interactions between the 

ribosomal subunits, making the 

small subunit available for fMet-

tRNA binding.  Since spermine is 

expected to tighten subunit 

interactions, one might predict 

that spermine would increase 

the amount of IF3mt required for 

initiation.  To test this theory, 

fMet-tRNA binding to mitochondrial ribosomes was examined in the presence of IF2mt with 
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increasing amounts of IF3mt (Figure 5-5).  In the presence of IF2mt and mRNA, the addition of 

IF3mt caused a 2-fold increase in fMet-tRNA binding in the absence of spermine (Figure 5-5).  

This stimulation is believed to arise because IF3mt promotes the dissociation of ribosomal 

subunits and, therefore, enhances initiation complex formation.  Surprisingly, the addition 

of spermine did not result in a need for a higher concentration of IF3mt to promote initiation 

complex formation.  In the presence of spermine, IF3mt increased the amount of fMet-tRNA 

bound to 55S ribosomes with basically the same dose response curve as observed in the 

absence of spermine (Figure 5-5).  Spermine caused a 1.4-fold stimulation of fMet-tRNA 

binding independent of the amount of IF3mt added.  This observation suggests that the 

effect of spermine is not directly on IF3mt. 

 In prokaryotes, spermine has been shown to change the conformation of the 30S 

ribosomal subunit to favor subunit association (6).  It also reduces the electrostatic 

repulsion between the subunits by masking the charges on the rRNA (23).  In both 

prokaryotes and mitochondria, spermine has been shown to tighten the interaction 

between the ribosomal subunits (12;24).  The effect of spermine on the ability of IF3mt to 

promote subunit dissociation was tested directly using sucrose density gradient 

centrifugation (Figure 5-6).  In the absence of both IF3mt and spermine, mitochondrial 

ribosomes existed primarily as 55S particles at 5 mM Mg2+, although a small amount of 

dissociation was observed (Figure 5-6).   The addition of spermine led to a stronger 

interaction between the ribosomal subunits, and very few subunits were observed in its 

presence.  In the absence of spermine, IF3mt was able to promote the dissociation of 

ribosomal subunits.  However, in the presence of spermine, IF3mt had almost no effect on 
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Figure 5-6.  Effect of spermine on IF3mt-induced 
55S dissociation measured using sucrose density 
gradient centrifugation.   Fractionation profiles of 
mitochondrial 55S ribosomes after centrifugation 
on 10-30% sucrose gradients as described in 
Materials and Methods. 

the dissociation of 55S ribosomes.  Thus, spermine appears to play a role in tightening of 

the interactions between the 

mitochondrial 28S and 39S 

subunits.  It is possible that, in the 

presence of spermine, IF3mt 

loosens mitochondrial subunit 

contacts enough to allow initiation 

complex formation but not 

enough to stably dissociate the 

ribosomal subunits.  This 

observation argues that the effect 

of spermine is not on the action of 

IF3mt in promoting ribosomal 

subunit dissociation. 

 

Effect of Spermine on the Action of IF2mt in fMet-tRNA Binding to 55S Ribosomes 

IF2mt is known to stabilize the binding of fMet-tRNA to the P-site of the ribosome 

and, as expected, the amount of fMet-tRNA bound to the ribosome was quite low in the 

absence of IF2mt (Figure 5-7).  However, even in the absence of IF2mt, spermine enhanced 

the binding of fMet-tRNA to the ribosome.  This observation is in agreement with the data 

above, suggesting that the effect of spermine is directly on fMet-tRNA binding to the P-site.  

The presence of spermine did not significantly alter the stimulatory effect of IF2mt.  As the 



126 
 

IF2mt (pmol)

0 1 2 3 4 5 6 7

fM
e

t-
tR

N
A

 b
o
u

n
d
 (

p
m

o
l)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

- Spermine

+ Spermine

 
Figure 5-7.  Effect of IF2mt on initiation complex formation 
in the presence and absence of spermine. [35S]fMet-tRNA 
binding to mitochondrial 55S particles was tested with 
and without spermine at the indicated concentrations of 
IF2mt as described in Materials and Methods. 

IF2mt concentration was 

increased, considerable 

stimulation of fMet-tRNA 

binding was observed as 

expected.  However, the 

degree of stimulation of 

fMet-tRNA binding to the 

ribosome caused by 

spermine (1.6-fold) was 

constant at all 

concentrations of IF2mt.  

This observation suggests that spermine does not directly affect the action of IF2mt. 

 

Effect of Spermine on fMet-tRNA Binding to 28S Subunits 

 The data above demonstrate that the effect of spermine is on fMet-tRNA binding to 

the ribosome; however, the question arises as to whether spermine affects fMet-tRNA 

interactions on the small or large ribosomal subunit.  If fMet-tRNA binding to the small 

subunit is being affected, the same increase in fMet-tRNA binding should be observed on 

28S subunits as was seen on 55S ribosomes.  In the presence of increasing amounts of 

spermine, an increase in fMet-tRNA binding was observed in the presence of IF2mt (Figure 5-

8).  IF3mt was not needed in this assay, since no dissociation of ribosomal subunits was 

needed.  The stimulatory effect of spermine was absolutely dependent on IF2mt, reflecting 
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Figure 5-8.  Effect of spermine on initiation complex 
formation using 28S subunits in the presence and 
absence of initiation factors.  [35S]fMet-tRNA binding to 
mitochondrial 28S subunits was tested using poly(A,U,G) 
as the mRNA in the presence and absence of IF2mt at 
different concentrations of spermine as described in 
Materials and Methods. 

the lower stability of fMet-

tRNA bound to the small 

subunit alone.  However, the 

same two-fold stimulation of 

fMet-tRNA binding by IF2mt 

was observed on both 28S 

subunits and 55S ribosomes.  

Thus, the full effect of 

spermine was seen on 28S 

subunits and can be 

attributed to a direct 

stimulation of fMet-tRNA 

binding to the P-site of the small ribosomal subunit. 

 

Effect of Polyamines on fMet-tRNA Binding to Prokaryotic and Mitochondrial Ribosomes 

Polyamines have been shown to be important for prokaryotic translational initiation, 

and the current work demonstrates that spermine is also important in the mitochondrial 

translational system.  Because spermine was shown to crosslink to the decoding center of 

the prokaryotic ribosome, it was assumed that the effect of spermine could be on fMet-

tRNA binding to the SSU.  However, it was unclear whether the effect of spermine was 

primarily on the interaction of the tRNA with the rRNA or the proteins of the SSU.  The 

crystal structure of the T. thermophilus ribosome demonstrates that the P-site bound tRNA 
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has several important contacts with the SSU of the ribosome that could be affected by the 

presence of spermine (25).  Ten of those contacts are with rRNA nucleotides on the SSU, 

and those ten residues are present in the truncated mitochondrial 12S rRNA.  Spermine 

could enhance these interactions by shielding the repulsion between the backbones of the 

tRNA and the rRNA.  The tRNA in the P-site of the prokaryotic ribosome only interacts with 

one SSU protein (S13), which is not present in mitochondrial ribosomes.  However, 

additional protein contacts are made between the mitochondrial ribosome and the P-site 

tRNA (15).  An interaction occurs between the T loop of the tRNA bound at the P-site and 

the P-site finger protein, a structure unique to the mitochondrial system (15).   A further 

interaction is observed between the CCA-arm of the tRNA and an unknown small subunit 

protein.  These protein interactions, unique to the mitochondrial system, could also be 

enhanced by spermine. 

 

CONCLUSION 

 Initiation of translation in mitochondria is stimulated by the presence of spermine, a 

polyamine that occurs naturally in mitochondria.  The stimulatory effect of spermine does 

not appear to depend on the mRNA used, the action of IF3mt, or the action of IF2mt.  The 

data suggest that the binding of fMet-tRNA to the P-site of mitochondrial 55S ribosomes is 

directly stabilized by spermine.  This effect could be due to the alteration of the 

conformations of the ribosomal subunits by spermine or to a direct stabilization of the 

contacts between fMet-tRNA and the ribosome.  The observation that the full effect of 

spermine is observed on 28S subunits indicates that this polyamine is primarily enhancing 
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the interaction of the fMet-tRNA with the small subunit.  Future work regarding translation 

in mitochondria should carefully consider the spermine concentration used. 
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