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ABSTRACT 

Rachel K. Gittman: The Living Shoreline Approach as an Alternative to Shoreline 
Hardening: Implications for the Ecology and Ecosystem Service Delivery of Salt Marshes 

(Under the direction of John F. Bruno and Charles H. Peterson) 

 
Foundation species, such as marsh plants, mangroves, seagrasses, corals, and oysters, 

form some of the most valuable and threatened habitats in the world. The loss of these coastal 

habitat-forming species often results in significant changes in community structure and 

ecosystem-service delivery. Therefore, understanding how both biotic (e.g., herbivory) and 

abiotic (e.g., drought) factors can alter foundation species’ structure is critical for promoting 

resilience to anthropogenic stressors. My dissertation focused on how physical and biological 

processes regulate salt marshes, and how coastal development, specifically shoreline hardening, 

affects two marsh ecosystem services: erosion protection and habitat provision for marine fauna. 

Marsh cordgrass (Spartina alterniflora) is a highly productive foundation species that can inhibit 

coastal erosion. However, anoxic stress can allow marsh periwinkles to overgraze marshes, 

resulting in marsh die-off. Burrowing crabs can alleviate anoxic stress (via sediment 

bioturbation) and thus can potentially sustain marsh productivity. From field experiments (Ch.1), 

I found that crab bioturbation allowed Spartina to compensate for biomass losses from 

periwinkle grazing. Unfortunately, shoreline hardening (construction of bulkhead or riprap 

structures) can reduce marsh access for burrowing crabs and thus increase sediment anoxia, 

preventing marshes from keeping pace with overgrazing. In Ch. 2, I quantified the prevalence of 

shoreline hardening in the United States and found that 14% of the shoreline is hardened. 
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Housing density is positively correlated with hardening along the Atlantic, Pacific, and Gulf 

sheltered coasts. With projected accelerated population growth along U.S. coasts, marshes may 

be lost to future shoreline hardening. Heightened awareness of adverse effects of shoreline 

hardening has increased demand for “living shorelines”. Living shorelines include marsh 

plantings with or without offshore sills. My field surveys of different shoreline types show that 

living shorelines provide superior erosion protection to bulkheads during a Category 1 hurricane 

(Ch. 3). Further, by sampling marine fauna in hardened and living shoreline habitats, I show that 

living shorelines provide better habitat for fish and crustaceans than hardened shorelines lacking 

marsh (Ch. 4). Therefore, although shoreline hardening is still commonly used for erosion 

protection, marshes may prevent erosion better than bulkheads during storm events, while also 

serving as valuable habitat.  
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CHAPTER 1: FIDDLER CRABS FACILITATE SPARTINA ALTERNIFLORA 
GROWTH, MITIGATING PERIWINKLE OVERGRAZING OF MARSH HABITAT1 

 

Abstract 

Ecologists have long been interested in identifying and testing factors that drive top-down 

or bottom-up regulation of communities. Most studies have focused on factors that directly exert 

top-down (e.g., grazing) or bottom-up (e.g., nutrient availability) control on primary production. 

For example, recent studies in salt marshes have demonstrated that fronts of Littoraria irrorata 

periwinkles can overgraze Spartina alterniflora and convert marsh to mudflat. The importance of 

indirect, bottom-up effects, particularly facilitation, in enhancing primary production has also 

recently been explored. Previous field studies separately revealed that fiddler crabs, which 

burrow to depths of more than 30 cm, can oxygenate marsh sediments and redistribute nutrients, 

thereby relieving the stress of anoxia and enhancing S. alterniflora growth. However, to our 

knowledge, no studies to date have explored how non-trophic facilitators can mediate top-down 

effects (i.e., grazing) on primary producer biomass. We conducted a field study testing whether 

fiddler crabs can facilitate S. alterniflora growth sufficiently to mitigate overgrazing by 

periwinkles and thus sustain S. alterniflora marsh. As inferred from contrasts to experimental 

plots lacking periwinkles and fiddlers crabs, periwinkles alone exerted top-down control of total 

above-ground biomass and net growth of S. alterniflora. When fiddler crabs were included, they 

counteracted the effects of periwinkles on net S. alterniflora growth. Sediment oxygen levels 
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were greater and S. alterniflora below-ground biomass was lower where fiddler crabs were 

present, implying that fiddler crab burrowing enhanced S. alterniflora growth. Consequently, in 

the stressful interior S. alterniflora marsh, where subsurface soil anoxia is widespread, fiddler 

crab facilitation can mitigate top-down control by periwinkles and can limit and possibly prevent 

loss of biogenically-structured marsh habitat and its ecosystem services. 

 

Introduction 

Community structure and function are regulated by both the availability of resources 

(bottom-up) and by consumption (top-down) (e.g., Hairston et al. 1960, White 1978). For 

decades, ecologists have debated the relative importance of top-down versus bottom-up forces 

(Fretwell 1977, Power 1992, Strong 1992). Recent reviews indicate that the debate has expanded 

beyond whether communities are top-down or bottom-up controlled to incorporate additional 

factors, such as differences between terrestrial and aquatic ecosystems, variation in producer 

traits, and the effects of environmental heterogeneity (Worm et al. 2002, Shurin et al. 2006, 

Burkepile and Hay 2006, Gruner et al. 2008, Poore et al. 2012).  

Environmental heterogeneity (i.e., variation in abiotic factors) is predicted to affect the 

relative strength of top-down and bottom-up forces (Hunter and Price 1992), and studies within 

the past decade have begun to experimentally test hypotheses resulting from this prediction 

(Moon and Stiling 2000, Menge et al. 2002, Alberti et al. 2009, Shurin et al. 2012). For example, 

Shurin et al. (2012) provided evidence for higher temperatures promoting stronger top-down 

control of an aquatic food web via warming-induced reductions in producer biomass without 

concomitant reductions in zooplankton, zoobenthos, and pelagic bacteria biomass. In addition, 

Moon and Stiling (2002) showed that increased salinity resulted in stronger bottom-up control of 
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a salt marsh plant-parasite-parasitoid system because increases in salinity increased the number 

of galls (containing larvae) on Borrichia fructescens stems, while simultaneously decreasing 

parasitism of galls. In a thorn scrub community in north-central Chile, high rainfall events caused 

by periodic El Niño Southern Oscillation (ENSO) events shifted community regulation from top-

down to bottom-up through increases in primary production. Whether a community is top-down 

or bottom-up regulated appears to depend on which trophic level (e.g., producer, herbivore) is 

most affected by the changing abiotic factor (e.g., temperature, salinity). Both the internal stress 

tolerances of affected organisms (e.g., Alberti et al. 2009) and external stress amelioration by co-

occurring organisms (Bruno et al. 2003) could thus determine the direction of control.  

Non-trophic facilitation (i.e., facilitation by an organism that is not a predator or prey to 

the organisms regulating primary producer biomass) has largely been ignored as a factor that 

could affect the direction or magnitude of ecosystem or community regulation. The model 

developed by Menge and Sutherland (1976) and modified by Bruno et al. (2003) predicts that 

under moderate to high stress levels and with high basal species (e.g., primary producer) 

recruitment, stress amelioration (bottom-up) may play a larger role in regulating basal species 

abundance (or biomass) than consumptive (top-down) forces. If stress is alleviated, resultant 

higher rates of production would likely outpace biomass losses to grazing. Although more recent 

studies have shown that facilitation can have strong, bottom-up affects on community structure 

(Altieri et al. 2007, 2010), no studies to our knowledge have experimentally tested the hypothesis 

that stress amelioration by non-trophic facilitators allows a species to compensate for losses to 

consumption. In this study, we propose to test the hypothesis that non-trophic facilitation can 

change the magnitude and/or direction of regulation of a primary producer. 
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We selected the salt marsh as our study system for testing this hypothesis because 

rigorous field experiments have provided experimental evidence for both bottom-up (Morris 

1982, Moon and Stiling 2002) and top-down (Silliman and Zieman 2001, Silliman and Bertness 

2002, Silliman et al. 2005) regulation of primary producer standing biomass and production. Salt 

marshes are generally categorized as moderate-to-high-stress environments for vascular plants as 

a result of high salinity and anoxia in the sediments (Bertness and Ellison 1987). S. alterniflora, 

marsh cordgrass, is a foundation (habitat-forming) species (Dayton 1972) well adapted to this 

environment; however, S. alterniflora production can be limited by both environmental stress 

and nutrient availability (Emery et al. 2001). Silliman and Zieman (2001) showed that the marsh 

periwinkle (Littoraria irrorata), a common marsh resident, can exert strong top-down control on 

S. alterniflora when in sufficient densities. Additionally, scarring and fungal-farming by high 

densities of marsh periwinkles can increase the rate of a drought-induced marsh die-off (Silliman 

and Newell 2003, Silliman et al. 2005). In contrast, the fiddler crabs, Uca pugnax and Uca 

pugilator, are bioturbators that oxygenate sediments and actively transport nutrients (e.g., 

nitrogen) and organic matter through the marsh sediment layers, which subsequently facilitates 

salt marsh (S. alterniflora) production (Bertness 1985, McCraith et al. 2003, Daleo et al. 2007, 

Angelini and Silliman 2012). However, it is unclear whether facilitation of S. alterniflora 

production by fiddler crabs could reduce the magnitude of top-down control by marsh 

periwinkles. Therefore, we hypothesized that facilitation via fiddler crab bioturbation 

(amelioration of low oxygen stress) and/or nutrient redistribution (enhancement of resource 

availability) will mediate overgrazing on S. alterniflora.  
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Methods 

Description of Study Site 

We conducted our field experiment within a salt marsh at Hoop Pole Creek Clean Water 

Reserve in Atlantic Beach, NC (34°42'25.12"N, 76°45'1.14"W) and our field surveys at Hoop 

Pole Creek and the Theodore Roosevelt Natural Area in Pine Knoll Shores (PKS), NC  

(34°42'1.12"N, 76°49'57.50"W). Hoop Pole Creek is characterized by a 70 m by 50 m peninsula 

dominated by S. alterniflora in the low to intermediate marsh zones and by Juncus roemerianus 

in the high marsh zone. Other common plant species found throughout the high marsh include 

Spartina patens, Salicornia virginica, Distichlis spicata, Borrichia fructescens, and Limonium 

carolinium. We conducted our study in the intermediate marsh zone, where short-form S. 

alterniflora dominates because environmental stressors, such as sediment anoxia and salinity, are 

typically highest within this zone of the marsh (Bertness and Ellison 1987). Marsh periwinkles 

and fiddler crab burrows are both most abundant in this zone of the marsh (R.K. Gittman, 

unpublished data). We expected marsh periwinkle grazing and fiddler crab bioturbation and 

nutrient deposition to have the greatest effect on S. alterniflora standing biomass and production 

in this zone because S. alterniflora growth is most limited by environmental stress here.  

Field experimental design and setup 

We experimentally manipulated the density of fiddler crabs and marsh periwinkles at 

Hoop Pole Creek marsh in June 2011 to test the hypothesis that fiddler crab bioturbation can 

facilitate S. alterniflora growth, thus mitigating the effects of marsh periwinkle grazing on S. 

alterniflora. Within the short-form S. alterniflora zone (approximately 3,500 m2), we established 

30, one m by one m plots, minimizing differences in elevation, sediment type, and S. alterniflora 

density. Each plot was assigned one of the following treatments (n=6) in a stratified random 
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design: (1) fiddler crab removal and marsh periwinkle addition; (2) periwinkle removal and 

fiddler crab addition; (3) fiddler crab and periwinkle removal; (4) fiddler crab and periwinkle 

addition; and (5) open (unmanipulated, ambient fiddler crab and periwinkle densities).  

To prevent fiddler crabs and periwinkles from entering or exiting plots after establishing 

and recording initial densities, we installed five mm hardware cloth enclosures 15 cm into the 

ground around each plot and lined the top of the enclosure with aluminum flashing (Silliman and 

Zieman 2001, Holdredge et al. 2010). Open plots with no enclosures or faunal manipulations 

were established to represent ambient conditions. We walked the perimeter of open plots to 

mimic the disturbance associated with the installation of the cages and also took light 

measurements (photosynthetically active radiation (PAR)) inside and outside of the enclosures to 

ensure that there were no shading effects (Appendix 1.A). Prior to the start of the experiment, we 

removed all marsh periwinkles and fiddler crabs from the surface and collapsed visible burrows 

in the plots daily for ten days for all treatments except the open, ambient density treatment. We 

then added 300 individually labeled marsh periwinkles with a wet weight of 1.58±0.14 g and 

shell length of 18.65±0.59 mm per individual to each periwinkle addition plot, and added 75 

labeled fiddler crabs (50 U. pugilator and 25 U. pugnax to match field density ratios found 

within the marsh) with a wet weight of 1.22±0.08 g and carapace width of 14.48±0.19 mm per 

individual, to each fiddler crab addition plot. We verified the presence of labeled fiddler crabs 

and periwinkles in addition plots and removed periwinkles and fiddler crabs from the surface of 

the sediment in removal plots weekly throughout the experiment (Appendix 1.A). The 

experiment was concluded at the landfall of Hurricane Irene on 27 August 2011 because damage 

to enclosures necessarily ended the experiment (Figure 1.A1). At the conclusion of the 

experiment, we counted fiddler crab burrows in treatment plots and we collected, measured and 
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weighed (dry tissue and shell mass, grams) all labeled periwinkles from each plot (Appendix 

1.A). To determine periwinkle-grazing intensity, we measured the length of each leaf and of 

periwinkle radulation scars per S. alterniflora stem clipped at the base from the center 0.0625-m2 

section of the plot.  

S. alterniflora standing biomass and production 

We quantified the stem density and measured the height of the tallest live leaf of each S. 

alterniflora plant within 0.0625-m2 areas at the center of each one-m2 plot at the beginning, mid-

point, and end of the experiment to minimize enclosure boundary effects on S. alterniflora. We 

used the difference in summed live leaf heights of all live plants from the beginning to the end of 

the experiment to estimate S. alterniflora net growth during the experiment. At the conclusion of 

the experiment, we clipped, measured, and dried (at 60°C for two weeks) all S. alterniflora stems 

(live and dead) at their base within the center 0.0625-m2 area within each plot to determine the 

standing crop (g dry mass/m2). We then took two, 7.5-cm diameter, 30-cm deep cores within the 

0.0625-m2 center of each plot to determine below-ground biomass. S. alterniflora roots and 

rhizomes are typically concentrated within the top 25 cm of sediment  (Howes et al. 1981). 

Therefore, samples are representative of total below-ground biomass. Cores were divided into 5-

cm thick sections, sieved (2-mm mesh), then sorted into roots and rhizomes or other plant 

material, dried at 60°C for two weeks, and weighed following the methods of Bertness (1985).  

S. alterniflora tissue nitrogen concentration 

Because fiddler crabs can increase the supply of nitrogen available to marsh plants 

through bioturbation and biodeposition, and because marsh periwinkle grazing requires S. 

alterniflora plants to allocate resources to replace leaf tissue, we measured the carbon content (% 

C), nitrogen content (% N), and carbon to nitrogen ratio (C:N) by clipping, drying, grinding, and 
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acidifying (to remove inorganic nitrogen), and analyzing a section of the youngest shoot of each 

of ten harvested S. alterniflora using a Perkin Elmer Series II 2400 CHNS/O Analyzer.  

Sediment redox potential  

To determine effects of fiddler crab bioturbation on the marsh sediment oxygen 

availability, we measured sediment redox potential (mV) within each plot. In situ redox 

measurements were made using a bare platinum electrode probe and a Fisher Scientific Accumet 

double junction Ag/AgCl electrode (+200 mV correction added to the measured value), 

connected through a Fisher Scientific Accumet pH/mV/ °C meter, model AP71. Electrodes were 

placed 10 cm into the sediment and left over one tidal cycle before readings were taken to allow 

the sediment around the probe to stabilize. We measured redox potential immediately after cage 

installation on June 14th (prior to removals or additions), June 24th, July 26th and August 30th.  

Field surveys 

To determine the density and distribution of S. alterniflora within continuous short-form 

S. alterniflora region and within nearby short-form S. alterniflora die-off front (covering 

approximately 1,000-1,500 m2) at our study site, we sampled S. alterniflora stem density per 

0.25-m2 within ten randomly placed quadrats. We defined the short-form S. alterniflora region as 

being greater than 20 m from the marsh edge, dominated by short-form S. alterniflora (95 to 

100% cover), and at least 20 m from any visible die-off front. Die-off fronts were defined as 

short-form S. alterniflora regions directly adjacent to unvegetated areas in the upper to 

intermediate marsh zone. We sampled the density of fiddler crab burrows and marsh periwinkles 

and took sediment redox (mV) measurements. To determine if patterns observed were unique to 

our study site, we repeated this sampling protocol at a salt marsh with a die-off front of similar 
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size and with similar shoreline orientation and tidal patterns within the Theodore Roosevelt 

Natural Area in PKS, NC, located 100 m southwest of the PKS Aquarium pier.  

Statistical Analysis 

We compared periwinkle and fiddler crab addition and removal effects on the following 

response variables using separate one-way analyses of variance (ANOVAs): S. alterniflora 

above-ground and below-ground biomass, the mean proportion of scarred (via periwinkle 

radulations) to total live leaf length (cm), the difference in stem density and in live summed stem 

heights between the beginning and end of the experiment, S. alterniflora C (%), N (%), and C:N. 

Differences between specific sets of treatments (e.g., periwinkle addition treatments to 

periwinkle removal treatments, pooled across fiddler crab treatments) were assessed using a 

priori planned comparisons. The mean proportion of scarred to live leaf length was arcsine 

square root transformed prior to analysis to meet the assumptions of ANOVA. To verify the 

effectiveness of fiddler crab and periwinkle density manipulations during the experiment, we 

used one-way ANOVAs to compare the final marsh periwinkle counts, shell growth, weight 

change, and body mass proportions, and fiddler crab burrow counts, across pooled removal and 

addition treatments (Appendix 1.A). We compared sediment redox potential between treatments 

and through time using repeated-measures ANOVA, and compared treatments at each time using 

one-way ANOVAs and planned comparisons. We compared survey data (live and dead S. 

alterniflora stem density, stem height, fiddler crab burrow density, marsh periwinkle density, and 

sediment redox potential) across marsh type (intermediate marsh zone vs. die-off front) using 

one-way ANOVAs for each site. Because we applied each statistical test to separate, pre-defined 

hypotheses, we made no corrections to alpha values for this study (Hurlbert and Lombardi 2003, 

Moran 2003). All analyses were performed using JMP software version 9.0 (SAS Institute 2010).  
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Results 

Field Experiment 

S. alterniflora response-The mean change in S. alterniflora stem density from the 

beginning to the end of the experiment did not differ between periwinkle addition and periwinkle 

removal treatments, nor did stem density differ between fiddler crab addition and removal 

treatments (Fig. 1.1 A, P = 0.36 and P = 0.76, respectively, Table 1.C1). S. alterniflora above-

ground biomass was significantly reduced in periwinkle addition treatments when compared to 

periwinkle removal treatments, but did not differ between fiddler crab addition and fiddler crab 

removal treatments (Fig. 1.1B, P = 0.043 and P = 0.64, respectively, Table 1.C2). The proportion 

of scarred to intact live leaf tissue was greater in periwinkle addition treatments than periwinkle 

removal treatments (Fig. 1.1C, P < 0.001, Table 1.C3). Fiddler crab presence or absence did not 

affect the amount of scarred leaf tissue in periwinkle addition treatments (P = 0.89, Table 1.C3). 

S. alterniflora summed live stem heights (cm), used as a proxy for net S. alterniflora growth, 

increased in fiddler crab addition, fiddler crab and periwinkle addition, and fiddler crab and 

periwinkle removal treatments, but decreased in the periwinkle addition and fiddler crab removal 

treatment (Fig. 2, P = 0.01, Table 1.C4). However, there was no difference in the change in live 

stem height between the fiddler crab addition and periwinkle removal treatment and the fiddler 

crab and periwinkle removal treatment (P = 0.54, Table 1.C4). N (%), C (%), and C:N in new S. 

alterniflora shoots did not differ among treatments (Tables 1.B1-5, P > 0.05). Fiddler crab 

addition plots had lower total below-ground biomass (0-25 cm depth) than fiddler crab removal 

plots, regardless of the periwinkle treatment (Fig. 1.3A, P = 0.026, Table 1.C5). Below-ground 
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biomass decreased with depth for all treatments, with the largest difference between fiddler crab 

addition and fiddler crab removal plots being at a depth of 10-15cm (Fig. 1.3B). 

Sediment redox potential- Marsh sediment redox potential (mV) decreased from initial 

values measured on June 14th (pre-addition or removal) in fiddler crab removal plots to values 

measured on June 24th, and then returned to initial redox values in July and August (Fig. 1.3C, 

see Tables 1.D1-5 for statistical analysis results). In contrast to the fiddler crab removal plots, 

redox in fiddler crab addition and open plots did not decrease in June, however; all enclosure 

treatments had lower redox than open plots immediately after enclosure installation (Fig. 1.3C, 

Table 1.D1-5).  

Field surveys 

The density of live S. alterniflora stems did not differ between the continuous marsh 

regions and along die-off fronts at either our experimental study site or at the PKS marsh (P = 

0.726 and P = 0.121, respectively, Tables 1.1, 1.E1-2). The maximum live stem height was 

greater in the continuous marsh than along the die-off fronts at both sites (P < 0.001 and P = 

0.01, respectively, Tables 1.1, 1.E1-2). Standing dead stem density was greater in the die-off 

fronts at both sites than in the continuous marsh (P = 0.047 and P < 0.001, respectively, Tables 

1.1, 1.E1-2). Marsh periwinkle density did not differ between the continuous marsh and die-off 

fronts (P = 0.246 and P = 0.898, respectively, Tables 1.1, 1.E1-2).  Fiddler crab burrow density 

was higher in the continuous marsh than in the die-off fronts at both sites (P  < 0.0001 and P = 

0.019, respectively, Tables 1.1, 1.E1-2). Sediment redox potential did not differ between 

continuous marsh and the die-off fronts at either site (P = 0.833 and P = 0.160, respectively, 

Tables 1.1, 1.E1-2). 
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Discussion 

Facilitation mitigates top-down control of S. alterniflora 

Our results suggest that periwinkle scarring and grazing can decrease total above-ground 

biomass of S. alterniflora (Fig. 1.1B-C), which is consistent with, but less pronounced than the 

results of previous research (Silliman and Zieman 2001, Silliman and Bertness 2002). However, 

total above-ground biomass includes both live and dead leaf tissue from live S. alterniflora 

plants. Therefore, we measured live stem height to determine whether fiddler crabs, through 

bioturbation or biodeposition, could facilitate new, compensatory growth of grazed S. 

alterniflora plants. Net S. alterniflora growth in plots with high densities of fiddler crabs and 

marsh periwinkles was positive and equivalent to growth in plots where both organisms were 

removed, but net growth was negative when just high densities of periwinkles were present (Fig. 

1.2). Because there was no difference in scarring between periwinkle treatments with and 

without fiddler crabs, we can conclude that fiddler crabs did not affect periwinkle grazing, but 

instead facilitated compensatory growth of S. alterniflora in response to periwinkle grazing. We 

acknowledge that initiating the experiment in June, two months after the start of the S. 

alterniflora growing season, likely underestimates the effects of periwinkle grazing on S. 

alterniflora. However, the effects of fiddler crab stress amelioration via bioturbation on S. 

alterniflora is also likely to be underestimated because fiddler crabs become active in March in 

North Carolina (Colby and Fonseca 1984). Therefore, the relative strength of the effects of 

periwinkles and fiddler crabs are not likely to change with the timing of the experiment. 

Net growth of S. alterniflora was not different between the fiddler crab addition and 

periwinkle removal treatment and the fiddler crab and periwinkle removal treatment, leading us 

to conclude that there are additional environmental stressors limiting the growth of S. alterniflora 
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at our study site. Stressors such as high salinities or low nutrient availability can prevent S. 

alterniflora from investing resources into new shoot production, particularly in the summer 

months (Smart and Barko 1980, Naidoo et al. 1992). As with other plants occurring in stressful 

environments, S. alterniflora may invest in live leaf tissue maintenance as opposed to new leaf 

production, except when actively losing live leaf tissue (e.g., via grazing) (Smith and Smith 

2001, Lötscher 2006, Bortolus et al. 2004). When live leaf tissue is lost to grazing, the plant is 

forced to invest in more costly new leaf production rather than tissue maintenance (Smith and 

Smith 2001, Bortolus et al. 2004). In our study system, investment in new shoot production as a 

response to grazing losses appears to only be possible when fiddler crabs are present, as 

supported by positive change in stem height when fiddler crabs are present in conjunction with 

periwinkles, but negative change in stem height when only periwinkles are present (Fig. 2).  

Previous studies have provided experimental evidence for two potential mechanisms by 

which fiddler crabs could facilitate S. alterniflora growth: sediment oxygenation via 

bioturbation, and nitrogen (N) biodeposition and redistribution within the sediment layers via 

deposit feeding and burrowing (Bertness 1985, Daleo et al. 2007, Holdredge et al. 2010). 

Bertness (1985) found that construction and maintenance of burrows by fiddler crabs oxygenated 

sediments and increased S. alterniflora production. This increase in production was coupled with 

a decrease in below-ground S. alterniflora debris (dead biomass) at a depth of 10-15 cm. At this 

depth, fiddler crab bioturbation has also been shown to increase oxygenation of sediments. 

Consistent with previous studies, we found that fiddler crab presence reduced total below-ground 

biomass, with the greatest difference being at a depth of 10-15 cm, and also maintained higher 

redox potentials at a depth of 10-15 cm in June, when compared to plots where fiddler crabs 

were removed (Fig. 1.3B-C). These results provide support for the hypothesis that bioturbation 
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allows plants to re-allocate resources to above-ground biomass production, and away from 

below-ground production. Bioturbation increases oxygen availability at depth, reducing the need 

for increased root and rhizome surface area for oxygen exchange (Howes et al. 1986). Increased 

oxygen availability could also allow for increased colonization of arbuscular mycorrhizal fungi, 

which can increase the availability of nitrogen to S. alterniflora, thus further reducing the need 

for below-ground biomass (Daleo et al. 2007). 

An alternative explanation for the reduction in below-ground biomass in fiddler crab 

addition treatments could be that fiddler crab burrow construction may have disturbed and 

displaced S. alterniflora roots and rhizomes, thus reducing their total below-ground biomass. 

However, we did not observe an equivalent magnitude of reduction in below-ground biomass at 

shallower depths, where the greatest level of disturbance from burrowing is likely, because crabs 

spend much of their time close to the surface feeding and maintaining the entrance to their 

burrows (Fig. 1.3B, Christy 1982, Hemmi 2003). Because redox levels within all treatment 

(enclosed) plots were initially lower than the open (no enclosure) plots (Fig. 1.3C), it is possible 

that enclosure installation may have decreased redox potential. This decrease may have been 

caused by sediment compaction and severing of S. alterniflora clonal rhizomes along the plot 

edges associated with enclosure installation. However, all enclosed treatments experienced this 

initial drop in redox; therefore, differences would be due to treatment and not enclosure effects.  

In addition to oxygenating the sediment through burrow construction and maintenance, 

fiddler crabs may also increase N availability to S. alterniflora through biodeposition and 

redistribution of N through the sediment layers. Salt marshes are often N-limited, therefore 

increases in N availability would likely enhance S. alterniflora production (van Wijnen and 

Bakker 1999, Silliman and Bortolus 2003). Holdredge et al. (2010) showed that biodeposition 
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and N redistribution by fiddler crabs may enhance S. alterniflora production in sandy, nutrient-

poor salt marshes. Because net S. alterniflora growth was equivalent in fiddler crab addition 

plots and plots where both periwinkle and fiddler crabs were removed  (Fig. 1.2), we 

hypothesized that there may be an additional constraint on S. alterniflora growth beyond lack of 

oxygen, such as N availability. To determine if the S. alterniflora growth could be N-limited at 

our study site, we measured new shoot N, C, and C:N (Table 1.B1). The observed lack of 

difference in N, C, and C:N in new S. alterniflora leaf tissue supports stress amelioration as the 

mechanism over increased nutrient availability via biodeposition. However, a reduction in 

below-ground biomass is also indicative of increased nutrient availability and leaf N 

concentration only provides an estimate of how much N is deposited into the leaves, rather than 

how much N is taken up by the plants (Smart and Barko 1980), therefore, we cannot rule out the 

possibility that both an increase in oxygen availability and nitrogen availability via fiddler crab 

bioturbation and biodeposition may have facilitated S. alterniflora growth. We acknowledge that 

the shorter duration of our experiment (two months as a result of Hurricane Irene) when 

compared to previous experiments testing the effects of different factors on S. alterniflora leaf N 

concentration (four-five months) may have affected our ability to detect differences in leaf N 

concentration between our treatments. However, increases in N availability (nitrate additions) 

have been shown to increase leaf N concentration by 2% or more within the first month of 

growth (Morris 1982), while the maximum difference in N concentration across our plots was 

less than 0.37% (Table 1.B1).  

Field surveys revealed that although there was no difference in periwinkle densities 

between die-off fronts and continuous marsh, fiddler crab densities were lower along die-off 

fronts than in continuous marsh (Table 1.1). This could indicate that the effects of bioturbation 
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and biodeposition by fiddler crabs may be reduced along marsh die-off fronts and the higher 

density of dead S. alterniflora stems and shorter live stem heights along die-off fronts further 

supports this interpretation (Table 1.1). A reduction in S. alterniflora canopy cover (predation 

refuge) may reduce fiddler crab densities along die-off fronts (Hemmi 2003). Die-off fronts with 

high sediment anoxia, reduced standing live biomass, and high periwinkle densities may be 

susceptible to permanent marsh loss as a result of climate change (Kirwan and Murray 2007).  

The role of facilitation in regulating top-down and bottom-up control of primary producers  

Our study provides empirical evidence that non-trophic facilitation can mitigate top-down 

control of S. alterniflora, thus potentially preventing the ultimate loss of the community 

dependent on this foundation species. Because top-down and bottom-up studies often focus 

solely on the organisms thought to be directly regulating standing biomass or production, the role 

of other co-existing species is often ignored. Understanding how both trophic (e.g., herbivory, 

predation) and non-trophic (e.g., stress amelioration, resource reallocation) interactions between 

organisms can alter community structure and function is critical to our understanding of 

ecosystem resilience to anthropogenic stressors such as habitat fragmentation, pollution, and 

global climate change (Bruno et al. 2003, Halpern et al. 2007, Kiers et al. 2010). Studies are 

needed to determine the prevalence and importance of facilitation effects on top-down and 

bottom-up regulation of primary producers, particularly for ecosystems where the primary 

producer also serves as a foundation species for numerous interconnected species (Stachowicz 

2001), such as eastern hemlock (Tsuga canadensis) (Ellison et al. 2005),  kelp (Egregia 

menziesii) (Hughes 2010), eelgrass (Zostera marina) (Hughes et al. 2009) and marsh cordgrass 

(S. alterniflora) (Bruno and Bertness 2001). Successful restoration and conservation of 

foundation species may be contingent upon facilitators, therefore monitoring of their abundance 
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and distribution should be incorporated into restoration and conservation efforts (Halpern et al. 

2007). Salt marshes are highly productive ecosystems that are also susceptible to effects of 

climate change, particularly sea level rise and increased frequency of intense storm events 

(Mendelsohn et al. 2012, Morris et al. 2002). Non-trophic facilitation may increase salt marsh 

resilience to periwinkle grazing, which may be key to marsh survival in a changing climate. 
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TABLES 

Table 1.1. Surveys of S. alterniflora die-off fronts and the continuous short-form S. alterniflora 
regions of marshes within the Hoop Pole Creek Clean Water Reserve (HPC CWR) in Atlantic 
Beach, NC, and the Theodore Roosevelt Natural Area (TRNA) in Pine Knoll Shores, NC. Error 
bars present ± 1 SE (n=10). 
 
  HPC CWR Marsh TRNA Marsh 

Variable Die-off Continuous Die-off Continuous 

Stem density (live stems/m2) 252 ± 22 242 ± 18 184 ± 11 212 ± 13 

Stem density (dead stems/m2) 29 a ± 3 18 b ± 4 68 a ± 8 21 b ± 6 

Stem height (cm) 35.7 a ± 1.6 65.4 b ± 3.5 57.2 a ± 2.7 70.2 b ± 3.3 

Fiddler crab burrows (m2) 59 a ± 5 137 b ± 10 16 a ± 6 98 b ± 31 

Marsh periwinkles (m2) 276 ± 28 220 ± 38 87 ± 8 85 ± 13 

Sediment redox potential (mV) -58.1 ± 24.3 -49.4 ± 32.9 -54.0 ± 9.9 -3.9 ± 32.7 

 

a,b Means with different letters (a or b) are significantly different within each site (P < 0.05, see 
Tables E1-2 for complete statistical analyses results). 
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FIGURES 

 
 
Figure 1.1. The effects of marsh periwinkle grazing on (a) S. alterniflora stem density, (b) S. 
alterniflora above-ground biomass, and (c) the proportion of scarred to live S. alterniflora leaf 
tissue. Treatments are as follows: open, fiddler crab and marsh periwinkle removal (– FC & – 
MP), fiddler crab addition and marsh periwinkle removal (+ FC & – MP), marsh periwinkle 
addition and fiddler crab removal (+ MP & – FC), and marsh periwinkle and fiddler crab 
addition (+ MP & + FC). Lowercase letters (a or b) above bars indicate treatments separated by 
planned comparisons (see Tables 1.C1-3). Error bars present ± or + 1SE (n=6).  
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Figure 1.2. The effects of marsh periwinkle grazing and fiddler crab bioturbation on the change 
in S. alterniflora maximum live leaf height (net S. alterniflora growth) from the beginning to the 
end of the experiment. Treatments are abbreviated as in Figure 1. Lowercase letters (a or b) 
above bars indicate treatments separated by planned comparisons (see Table 1.C4). Error bars 
present ± 1 SE (n=6). 
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Figure 1.3. The effects of fiddler crab bioturbation on a) total S. alterniflora below-ground 
biomass (g/m2); b) S. alterniflora below-ground biomass (g/m2) at 0-5 cm, 5-10 cm, 10-15 cm, 
15-20 cm, and 20-25 cm depths; and c) the effects of fiddler crab bioturbation on sediment 
oxidation-reduction (redox, mV) potential at 10 cm depth. Fiddler crab addition (+ FC) and 
removal (– FC) treatments are pooled across periwinkle treatments. Lowercase letters (a or b) 
above bars in a) indicate treatments separated by planned comparisons (see Table 1.C5). An 
asterisk “*” in c) indicates treatments separated by planned comparisons (see Tables 1.D1-5). 
Error bars present ± 1 SE (n=6 for open and n=12 for fiddler crab addition/removal treatments). 
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CHAPTER 2: ENGINEERING AWAY OUR FIRST LINE OF DEFENSE: AN 
ANALYSIS OF SHORELINE HARDENING IN THE UNITED STATES 

 

Abstract  

Rapidly expanding development associated with growing population centers along tidal 

riverine, estuarine and ocean coastlines is a primary driver of coastal habitat degradation and 

loss. Shoreline hardening in particular, often a byproduct of coastal development, results in the 

loss of coastal habitats and subsequent forfeiture of supported ecosystem services; yet it is a 

common practice along the coasts of industrialized countries. Here, we provide the first estimates 

of the percentage of hardened shoreline along open and sheltered coasts across the continental 

United States. Our analyses revealed that 22,842 km of U.S. shoreline (14% of total shoreline) 

has already been hardened, two-thirds of which is along the south-Atlantic and Gulf coasts. We 

also considered how environmental and socioeconomic factors such as housing density, 

storminess, and mean wave height, relate to the pervasiveness of shoreline hardening within U.S. 

coastal counties. Predictably, housing density was positively correlated with shoreline hardening 

throughout all three U.S. coasts. Along open coasts, high storm frequency (Atlantic) and low 

mean wave height (Pacific) were associated with increased hardened shoreline representation. 

The south Atlantic and Gulf sheltered coasts are likely the most vulnerable to future hardening 

based on projected coastal population growth rates and current coastal management policies. 

Simultaneously, these regions contain habitats that are highly vulnerable to erosion and loss 

associated with predicted relative sea-level rise and increased storminess. Federal and state 
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agencies should use these findings to inform coastal management policies and promote coastal 

ecosystem system resilience.  

 

Introduction 

Although coastal regions make up less than 4% of the Earth’s total land area, coastal 

habitats, such as rocky shores, beaches, salt marshes, and mangroves (Figure 1A-D), are some of 

the most economically and ecologically valuable resources globally (Barbier et al. 2008, 

Millennium Ecosystem Assessment [MEA] 2005). Over one third of the human population lives 

within 100 km of a coastline and coastal population densities are continuing to increase in most 

regions of the world (MEA 2005, Woods Poole Economics, Inc. 2010). As coastal development 

increases with growing human population, adverse anthropogenic impacts are concentrating and 

intensifying within coastal ecosystems  (Peterson et al. 2008a). Coastal development is 

vulnerable to damage and loss from coastal erosion, flooding, and destructive damage caused by 

rising sea levels, ambient wave energy, storms, and anthropogenic climate change (MEA 2005, 

Intergovernmental Panel on Climate Change [IPCC] 2014).  

In the past century, mean sea level has risen between 0.1 and 0.25 m and is predicted to 

rise another 0.43 to 0.73 m by 2100 (IPCC 2014), while a 1.2 m rise in sea level is predicted for 

an unmitigated warming scenario (Horton et al. 2014). Elevated sea levels, augmented by 

increases in extremely high water levels from storm surge and localized winds during storms, 

astronomically driven high tides, and increased intensity and frequency of storms in some ocean 

basins (e.g., North Atlantic) are expected to dramatically modify shoreline sediment dynamics 

and the resultant geomorphology (IPCC 2014).  
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Historically, shoreline hardening has been a common societal response to coastal erosion, 

storm risks, and sea-level rise, particularly in industrialized countries with large coastal 

populations, such as the United States, the Netherlands, and Japan (Peterson et al. 2008b, Dugan 

et al. 2011, Walker and Mossa 1986). Shoreline hardening is defined as the construction or 

placement of vertical sea walls or bulkheads, sloped riprap (typically granite rocks, marl, or 

concrete rubble) revetments, groins, jetties, or breakwaters along or directly adjacent to a 

shoreline (Figure 2.1E-H). The extent and rate at which shorelines are being hardened has 

increased dramatically in the last century, in conjunction with growing coastal populations and 

increased development (Dugan et al. 2011). Although humans have been hardening the shoreline 

for hundreds of years in some regions of the world, the effects of shoreline hardening on coastal 

ecosystem function and supported services have only recently been considered by environmental 

and coastal managers (Chapman and Bulleri 2003, Dugan et al. 2011, National Research Council 

[NRC] 2007, Titus 1988). 

Shoreline hardening on sandy beach coastlines can lead to displacement of dunes that 

naturally provide protection from storms, can steepen and reduce the width of the high beach 

available for burrowing invertebrates, and steepen and shorten the intertidal swash zone, which 

serves as habitat for benthic invertebrates, surf fishes, and shore birds (Dugan and Hubbard 

2006, Dugan et al. 2008). Within sheltered coasts, sea walls and bulkheads lack the structural 

complexity of natural habitats such as marshes or rocks (Figure 2.1A,C,E,G), and thus support a 

reduced number of native benthic epibiota, fishes, and mobile invertebrates (Bilkovic and 

Roggero 2008, Bulleri and Chapman 2010, Gittman et al. in review, Seitz et al. 2006). When 

constructed landward of marshes and mangroves, shoreline hardening can also increase seaward 
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scour and prevent upslope transgression of these habitats during storm events and as sea level 

rises, thereby leading to their eventual loss (Dugan et al. 2011, Peterson et al. 2008a, Titus 1988). 

 Despite adverse effects of shoreline hardening on coastal ecosystem functions and 

ecosystem services, efforts to quantify how much of the world’s coasts have been artificially 

hardened have been limited (Dugan et al. 2011). Current evaluations of the potential drivers of 

shoreline hardening have focused only on specific regions (e.g., Puget Sound, WA, Currin et al. 

2009; Mobile Bay, AL, Scyphers et al. 2014) or hardening in response to a single event (e.g., 

1900 hurricane in Galveston, TX, Hansen 2007). Some factors, including increasing coastal 

population densities and consequent development, have been proposed as drivers of shoreline 

hardening (MEA 2005, Peterson et al. 2008b). Coastal processes such as wave surge and local 

wind-driven waves during storms, tidal stage and lunar/solar positions, and sea level, as well as 

physical characteristics of the shoreline, such as slope, erosion rate, and geomorphology may 

also explain spatial patterns and temporal increases in shoreline hardening (NRC 2007, Ruggiero 

et al. 2001, USACE 2004). Finally, state-level coastal management policies related to shoreline 

hardening have been suggested to play a role in whether or not a shoreline is hardened (Titus et 

al. 1991, 1998, 2009). However, a national scale analysis of how these factors can collectively 

explain degree of shoreline hardening has not previously been conducted. 

To date, no global estimate of the amount of shoreline that has been artificially hardened 

exists and estimates that encompass more than a single stretch of coastline (e.g., North Adriatic 

coast of Italy) are rare (Dugan et al. 2011). A national estimate of hardened shoreline is not 

currently available for the United States, despite its extensive coastline, high coastal population 

density (39% of the U.S. population lives in coastal counties), vulnerability to shoreline erosion, 

flooding, and property damage, and a growing national concern with the need for coastal 
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protection as climate changes (Arkema et al. 2013, MEA 2005, National Oceanographic and 

Atmospheric Administration [NOAA] 2013, Peterson et al. 2008b).   

The purpose of this study is to: 1) estimate of the percentages of tidal, open and sheltered 

shorelines that have been artificially hardened in the continental U.S., 2) determine the 

relationship between shoreline hardening and physical and socioeconomic characteristics on a 

county-by-county scale using regression tree analyses; 3) identify regions of the U.S. likely to 

experience continued shoreline hardening and subsequent coastal habitat loss; and 4) identify 

future research directions and alternative management strategies for coastal protection.  

 

Methods 

Estimation of shoreline hardening along the U.S. coast 

We used NOAA’s Office of Response and Restoration (OR&R) Environmental 

Sensitivity Index (ESI) geodatabases to calculate the linear kilometers (km) of total shoreline and 

the linear km of hardened shoreline for each coastal county within the continental U.S. (see 

Appendix 2.A). NOAA ESI’s were developed for evaluating the environmental impacts of oil 

spills on coastal habitats and species from multiple sources (e.g., aerial photographs, field 

surveys) and have been updated on a state-by-state basis since 2005 (Table 2.A1, NOAA 2005). 

The ESI dataset identifies 15 major shoreline types (e.g., Type 1: exposed rocky shore or sea 

wall) that are further subdivided into more specific shoreline types (e.g., Type 1A: exposed 

rocky shores 1B: exposed, solid man-made structures [sea walls], Figure 2.1A, E, Table 2.A2). 

We grouped all ESI shoreline types identified as man-made structures (sea walls, bulkheads, 

riprap structures [revetments, breakwaters, groins/jetties], and hybrid sea wall/bulkhead with 

riprap) to compute cumulative lengths of hardened shorelines (Figure 2.1 E-H, Table 2.A2). We 
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then divided each state ESI shoreline dataset by coastal county and for the Pacific and Atlantic 

coast by whether the shoreline was “open” (i.e., directly exposed to the ocean) or “sheltered” 

(i.e., located in a bay, sound, or tidally influenced river). We did not divide the Gulf coast into 

open or sheltered coasts because much of the Gulf coastline consists of reticulated marsh and 

mangrove shoreline that cannot be clearly classified as open or sheltered (e.g., Louisiana coast 

and Big Bend region of Florida Gulf coast). Finally, we summarized the amount of hardened 

shoreline and tidal shoreline found in each coastal county (separately for sheltered and open 

Pacific and Atlantic coasts), and then calculated the percentage of hardened shoreline for each 

coastal county.  

Regression tree analyses 

To evaluate the relationship between environmental and socioeconomic factors and the 

percentage of hardened shoreline (sheltered or open or both) in each county along the Atlantic, 

Gulf, and Pacific coasts, we considered the following factors in regression tree analyses: housing 

density  (units per km2), coastal slope (%), accretion/erosion rates (m/yr), geomorphology, mean 

tidal range (m), mean wave height (m), relative sea-level rise (mm/yr), storm frequency, relative 

county shoreline orientation (north to south or west to east along the coast), and years since a ban 

on shoreline hardening was passed. As a proxy for coastal population density, we used the 2010 

density of individual housing units per km2 for each coastal county, available from the U.S. 

Census Bureau. Physical shoreline characteristics (coastal slope, accretion/erosion rates, and 

geomorphology) as well as mean tidal range, mean wave height, and historical rates of relative 

sea-level rise, were acquired from the U.S. Geological Survey (USGS) Coastal Vulnerability 

Index (CVI) (see Supplemental Methods, Hammer-Klose and Thiehler 2001). To determine 

storm frequency, we summed the number of storms that resulted in a Presidential Major Disaster 
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Declaration or Emergency Declaration from 1970 to 2010 for each coastal county (Federal 

Emergency Management Agency [FEMA] 2014). We reviewed the current Federal and State 

legislation and permitting procedures related to coastal management and shoreline hardening to 

determine if and when states banned shoreline hardening on open and/or sheltered coasts (Table 

2.A3). Although some states that prohibit shoreline hardening have exceptions that allow 

hardening of certain types of shoreline or conditions, (e.g., Virginia open coast ban), we assumed 

that this ban was in effect for a majority of the shoreline and thus input that information into the 

regression tree. 

 We ran separate regression trees for the Atlantic open and sheltered coasts, the Pacific 

open and sheltered coasts, and the Gulf coast, to describe differences among county level 

shoreline hardening patterns using repeated partitioning of those values into increasingly 

homogeneous groups across bimodal splits in the descriptor variables (De'ath and Fabricius 

2000, McCune and Grace 2002). We developed regression trees using the analysis of variance 

(ANOVA) method of recursive partitioning and we pruned over-fitted trees using k-fold cross-

validation. Cross-validation estimated the relative predicted error for each tree size and the tree 

was pruned to the size (based on number of nodes) with the lowest cross-validation predicted 

error. We did not include the CVI variables in our regression tree analyses for the Pacific 

sheltered coast because of the majority of the sheltered shoreline on the Pacific coast did not 

have CVI data available (see Appendix A). All regression tree analyses were run using R version 

3.1.0 (R Core Team 2014) and rpart (Therneau et al. 2014). 
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Results  

Estimation of extent of shoreline hardening along the U.S. coast 

The continental US was estimated to have 160,168 km of tidal shoreline, with 22,842 km 

(14%) of that shoreline hardened by bulkheads, sea walls, or riprap structures (Table 2.1, Figure 

2.1E-H). On the open coasts of the Atlantic and Pacific, 846 km (9%) of the shoreline was 

hardened (Figures 2.2A and 2.3A). The states with the highest percentages of hardened shoreline 

(11 to 49%) on the Atlantic open coast were found north of Washington D.C. (Figure 2.2A, 

Table 2.A3). The counties of Suffolk, MA, Plymouth, MA, Rockingham, NH, Jasper, SC, and 

Monmouth, NJ, had the highest percentages of hardened shoreline on the Atlantic open coast 

(93% in Suffolk to 33% in Monmouth) (Figure 2.2A). California had the most hardened 

shoreline on the Pacific open coast (Table 2.A3) with the following counties having the highest 

percentages (30% to 17%): Los Angeles, Orange, Ventura, San Diego, and Santa Cruz (Figure 

2.3A).  

Despite significant hardening of the shoreline on the open coast, shoreline hardening was 

more prevalent on sheltered coasts (Table 2.1). States with the highest percentages of hardening 

on the Atlantic sheltered coast include the District of Columbia (53%), Pennsylvania (36%), 

Connecticut (25%), Rhode Island (25%), and Florida (24%) (Table 2.A3). Some “hot spots” of 

hardening (> 80%) along the Atlantic sheltered coasts include the counties of New York, NY, 

Essex, NJ, Broward, FL, and Baltimore City, MD. The Atlantic coast had eight times as much 

sheltered shoreline, but only six times as much hardened shoreline as the Pacific coast, resulting 

in a higher percentage of hardened sheltered shoreline in the Pacific (18%) than in the Atlantic 

(13%) (Table 2.1, Figures 2.2B and 2.3B). California had the highest percentage of sheltered 

hardened shoreline on the Pacific coast (28%) and also had four of the five counties with the 
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most hardened shoreline (Los Angeles, San Francisco, Ventura, and Orange, 88% to 57% 

hardened).  

The Gulf coast, excluding the extensive reticulated marshes of Louisiana, had the same 

percentage of hardened shoreline (insert %) as the open and sheltered Pacific coasts combined 

(this percentage drops to 9% when LA all potential marsh shoreline is included (Table 2.1, 

Figure 2.4, see Appendix 2.A). Texas had the highest percentage of hardened shoreline on the 

Gulf coast (20%), followed by Florida (17%) and Alabama (14%) (Table 2.A3). The counties of 

Orleans, LA, Harris, TX, Victoria, TX, Pinellas, FL, and Sarasota, FL, had the highest 

percentage of hardened shoreline (70% to 41%).  

Regression tree analyses  

On the Atlantic open coast, coastal counties that experienced 17 or more storm events 

that resulted in Presidential Major Disaster or Emergency Declaration from 1970 to 2010 

(located in Massachusetts, Maine, and New Hampshire) had a higher percentage of hardened 

shoreline (µ= 30.7 ± 9.6%) than counties that experienced fewer than 17 storms (µ= 8.3 ± 1.4%, 

R2 = 0.25, Figure 2.2A). In sheltered systems, Atlantic coastal counties with housing densities ≥ 

658 units/km2, or counties in southern Florida with housing densities ≥ 126 units/km2, had the 

highest percentages of shoreline hardening (µ= 60.9 ± 4.8% and µ= 62.3 ± 14.5%, respectively, 

Figure 2.2B). When housing densities were < 126 units/km2 or the county was not located in 

south Florida, fewer storms and a smaller mean tide range (m) were associated with a lower 

percentage of hardened shoreline per Atlantic coastal county. Housing density accounted for 

41% of the variation in the percentage of hardened shoreline among counties along the Atlantic 

sheltered coast (R2 =0.72, full regression tree). 
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The percentage of hardened shoreline along the Pacific open coast was higher (µ= 24.1 ± 

2.8%) in counties where the mean wave height (m) was < 1.3 m (i.e., counties in southern CA) 

(Figure 2.3A). Counties with mean wave heights ≥ 1.3 m and located south of San Francisco 

County, CA had more hardened shoreline (µ= 11.0 ± 2.7%) than counties north of San Mateo 

County, CA (µ= 2.4 ± 0.9%). Mean wave height accounted for 70% of the variance in percentage 

of hardened shoreline along the open Pacific coast (R2 = 0.80, full regression tree). Consistent 

with the Atlantic sheltered coast, counties with high housing densities (≥ 316 units/km2) along 

the Pacific sheltered coast the also had the highest percentages of hardened sheltered shorelines 

(Los Angeles, San Francisco, and Orange Counties, CA, µ= 77.3 ± 10.1%, Figure 2.3B). When 

housing density was < 316 units/km2 but ≥ 52 units/km2, more frequent storms were associated 

with higher percentages of hardening (µ= 43.2 ± 5.3%,) than counties with the same housing 

densities but < 9 storms (Figure 2.3B). Counties with housing densities < 52 units/km2 and 

experiencing fewer storms (< 5) also had a moderate percentage of hardened shoreline (Hood 

River, Wasco, and Sherman counties, OR, µ= 35.5 ± 2.3%) relative to counties defined by 

housing densities < 52 units/km2 and > 5 storms. Housing density accounted for 60% of the 

variance in percentage of hardened shoreline along the sheltered Pacific coast (R2 = 0.81, full 

regression tree). 

On the Gulf coast, counties with greater housing densities (e.g., ≥ 91 units/km2) had 

higher percentages of hardened shoreline (e.g., µ= 41.7 ± 4.7%) than counties with lower 

housing densities (Figure 2.4). Counties with lower housing densities (< 14.5 units/km2) located 

in Texas had a higher percentage of hardened shoreline (µ= 9.2 ± 3.1%) than counties outside of 

Texas (µ= 3.7 ± 1.0%, Figure 2.4). Housing density alone partitioned 46% of the variation in the 

percentage of hardened shoreline on the Gulf coast (R2 = 0.65, full regression tree).  
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Discussion 

Shoreline hardening in the U.S. 

 Our analysis indicates that 14% of the U.S. shoreline is hardened and at least 64% (likely 

higher if the Gulf shoreline were included) of all hardened shorelines are located along sheltered 

coasts of estuaries, lagoons, and tidally influenced rivers (Table 2.1, Figure 2.2B and 2.3B).  

Shoreline hardening is a significant yet underappreciated action by which humans modify and 

degrade coastal ecosystems in the United States. Hardened shorelines, particularly sea walls and 

bulkheads, support reduced diversity and abundances of marine fauna when compared to natural 

shorelines, such as beaches and marshes, (Bilkovic and Roggero 2008, Dugan et al. 2008, 

Chapter 4: Gittman et al. in review, Seitz et al. 2006). Other coastal ecosystem services, such as 

nutrient processing and filtration (O’Meara et al. 2014), carbon storage (Pendelton et al. 2012) 

and recreational use (Kenchington 1993) can also be reduced by shoreline hardening. Given the 

prevalence and ecological consequences of shoreline hardening, steps should be taken to reduce 

the rate of shoreline hardening and to identify areas where shoreline hardening should be 

avoided. 

Potential drivers of shoreline hardening in the United States   

Understanding the potential drivers of shoreline hardening could help understand where 

and how much shoreline and associated habitats are at risk of being hardened in the near future. 

Our analyses revealed that housing density was the single most importance factor associated with 

shoreline hardening on U.S. Atlantic and Pacific sheltered coasts, as well as the entire Gulf coast. 

Globally, shoreline hardening is associated with densely populated coastlines (e.g., 

Mediterranean coastline), and has been used to protect coastal development and infrastructure for 

centuries (Charlier et al. 2005). Most major coastal U.S. metropolitan areas are located on 
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sheltered coasts and tend to be heavily hardened (e.g., New York, Miami, Los Angeles, New 

Orleans) regardless of any other physical shoreline characteristics or processes. However, 

housing density alone may not represent all coastal development associated with major 

metropolitan areas. 

To account for “neighbor” effects among counties that could be related to development 

“sprawl” from major population centers, we also included the north to south and west to east 

order of each coastal county. South Florida, Texas, and the northeast have major coastal 

metropolitan areas (e.g., Miami, Houston, New York, Boston) that support other types of 

development in neighboring coastal counties (e.g., fishing industry, seasonal housing) that may 

contribute to shoreline hardening despite relatively low housing density in those neighboring 

counties (Figure 2.2B, 2.3B, and 2.4, NOAA 2013). These areas also have a history of coastal 

modification that extends beyond city centers to include dredging of waterways and canals to 

support shipping traffic from major ports (New York, Corpus Cristi, Miami) and for flood 

control (construction of south Florida canal systems) that may also contribute to higher amounts 

of hardening in these regions (U.S. Census Bureau 2010, South Florida Water Management 

District 2014). On the Pacific open coast, neighbor effects may also be important, with higher 

percentages of hardening occurring in southern California counties than counties north of San 

Mateo County (Figure 2.3A). Southern CA has numerous ports and support infrastructure for 

major metropolitan areas (San Francisco, Los Angeles) that could contribute to shoreline 

hardening in this region more so than local housing density.  

Outside of extensively hardened metropolitan areas, shoreline hardening became more 

closely related to the vulnerability of coastal development to loss and damage. On the Pacific 

open coast, wave heights were the most important factor related to shoreline hardening, with 
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smaller wave heights associated with more hardening than areas with large wave heights (Figure 

2.3A). Wave heights above 1.3 m are associated with rocky shorelines and bluffs of northern 

California, Oregon and Washington and may not be suitable for most coastal development 

(Figure 2.3A). However, wave height is also strongly positively correlated with county location 

(R2 = 0.82) and years post-shoreline hardening ban (R2 = 0.67). California counties had an order 

of magnitude more shoreline hardening (12%) on the open coast than Oregon or Washington 

(1% each), which both have bans on shoreline hardening (Table 2.A3). Because the regression 

tree selects a single variable that reduces the most variance in shoreline hardening (%), county 

location and years post-ban may have been methodologically excluded from the tree despite 

being related to hardening.  

Storm frequency was the most important predictor of shoreline hardening on the Atlantic 

open coast and also predicted shoreline hardening on both the Atlantic and Pacific sheltered 

coasts (Figures 2.2 and 2.3). Greater storm frequency generally resulted in a higher percentage of 

hardening on each coast. Shoreline hardening often occurs in reaction to damage and erosion 

from major storm events (e.g., seawall construction in Galveston, TX, following a major 

hurricane in the early 20th century, Hansen 2007); therefore areas prone to major storms would 

be expected to have more hardened shoreline. However, the relative efficacy of shoreline 

hardening in protecting the shoreline from erosion during storm events when compared to natural 

beach dune and marsh shoreline has been questioned. For example, sea walls and riprap 

structures were overwashed, while dunes remained in tact during a Category 4 hurricane on the 

open coast of South Carolina (Thieler and Young 1991) and bulkheads failed and suffered 

significant damage, while marsh shoreline should no evidence of shoreline erosion during a 

Category 1 hurricane on the sheltered coast of North Carolina (Chapter 3: Gittman et al. 2014). 
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Given the poor performance of shoreline hardening structures during these storm events, the use 

of shoreline hardening structures in response to storms should be evaluated further.  

Predictions for future hardening and associated habitat loss 

Although many European countries have been hardening their shorelines for centuries, a 

majority of the hardening of the U.S. shoreline likely occurred within the last 100 years (Charlier 

et al. 2005). Assuming that most shoreline hardening occurred after 1900 (when the U.S. Army 

Corps of Engineers [USACE] began to address coastal erosion at large scales), the historic rate 

of shoreline hardening in the U.S. would be > 200 km per year. If this rate of hardening were to 

remain constant and coastal populations were to continue to increase, the percentage of hardened 

shoreline would likely double by the year 2100, resulting in nearly one third of U.S. coastlines 

being hardened. This projected rate assumes that no additional restrictions are placed on 

shoreline hardening. Currently only eight coastal states have implemented total or partial bans on 

shoreline hardening and the efficacy of these bans has varied from state to state (Tables 2.A3). 

Otherwise, this projected rate of hardening of 200 km per year is likely conservative given the 

projected acceleration in population growth along the coast (NOAA 2013, Table 2.A3).  

Some of the largest increases in population density are predicted for south Atlantic and 

Gulf coasts states, which is also where most of the U.S.’s remaining tidal salt marsh (> 50%) and 

mangrove areas (100%) occur (Dahl 2011, Kennish 2001). As much as 50% of U.S. salt marsh 

has been lost in the last century, largely as a result of human activities (Kennish 2001). The most 

recent losses of salt marsh (2.8%) between 2004 and 2009 were attributed to effects from coastal 

storms, land subsidence, global sea level rise, or other ocean processes, with a majority of these 

losses occurring in Louisiana and Texas (Dahl 2011). Increases in shoreline hardening combined 

with projected increases in storm frequency and intensity (IPCC 2014) along shorelines 
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containing marsh or mangrove are likely to increase the rate of loss of these habitats. Our finding 

that many coastal counties along the mid- to south-Atlantic coast are vulnerable to future coastal 

habitat loss is similar to the findings of Titus and colleagues: 60% of the land below 1m sea level 

on the Atlantic coast is expected to be developed and hardened, thus inducing widespread and 

substantial coastal habitat loss with future sea level rise, commonly referred to as “coastal 

squeeze” (Titus et al. 2009, Doody 2004). 

Current shoreline hardening policies and permitting 

Although we did not find any obvious relationship between state-level prohibition of 

shoreline hardening and the percentage of hardened shoreline in affected counties, shoreline-

hardening policies may still be important drivers of future hardening. While some of the open 

coast bans on shoreline hardening were proactive and occurred before much hardening took 

place (e.g., North Carolina, South Carolina, Oregon), other bans were likely reactionary (e.g., 

Rhode Island) and occurred after much of the shoreline had been hardened (Table 2.A3). 

Additionally, some bans have exceptions that have allowed for continued hardening of the 

shoreline in some regions (e.g., Virginia and Oregon open coasts). Finally, a ban on shoreline 

hardening is the most extreme restriction on shoreline hardening, with many states having lesser 

restrictions (e.g., Maryland allows shoreline hardening, but requiring “living shorelines” 

[stabilization that includes a living component such as marsh planting] to be used in lieu of pure 

hardening, whenever feasible [Maryland Department of Natural Resources 2006]).  Enforcement 

and interpretation of many state shoreline-hardening regulations is inconsistent and often 

ineffective (Good 1994), which undoubtedly leaves much of the U.S. shoreline vulnerable to 

future hardening.  
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Recommendations for future research and coastal management strategies 

This assessment reveals that much of the U.S. coastal shoreline is vulnerable to future 

habitat loss if actions are not taken to address scientific, regulatory, and educational gaps in 

current coastal management strategies. Additional research is needed on the long-term effects of 

shoreline hardening on coastal habitats, particularly on the ability of those habitats to transgress 

as sea level rises, and on the performance of traditional shoreline hardening relative to alternative 

options (e.g., living shorelines) in response to storm events, sea-level rise, and ambient wave 

energy (see Gittman et al. 2014). Continued updating of current shoreline hardening estimates is 

needed to determine present-day rates of hardening. Coastal management agencies and planners 

could then use these rates to assess the cumulative impacts of shoreline hardening on coastal 

habitats and to assess the risk of future habitat loss. Federal and state policy makers should use 

these assessments to develop informed, sustainable shoreline hardening legislation and 

permitting regulations, which should include revising the USACE nationwide permits to account 

for the future loss of habitat beyond the construction footprint for shoreline hardening placed 

landward of vulnerable coastal habitats (see Titus et al. 2009, Peterson et al. 2008b). Finally, we 

recommend a coordinated effort between Federal and state agencies to develop new guidelines 

for coastal management that incorporate green infrastructure and planning for shoreline 

migration and habitat egress (e.g., rolling easements, bulkhead removal) as sea level rises.    
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TABLES 

Table 2.1. Summary of shoreline hardening estimates for continental U.S. coasts 

Region 
Total Shoreline 

(km) 
Hardened Shoreline 

(km) 
Hardened 

(%) 
Atlantic 99,494 12,923 13 

Sheltered 93,848 12,425 13 
Open 5,646 498 9 

Gulfa,b 44,939 7,390 16 
Pacific 15,735 2,529 16 

Sheltered 12,026 2,182 18 
Open 3,709 348 9 

Total 160,168 22,842 14 
 

aThe Gulf shoreline could not be divided into “Open” and “Sheltered” coasts due to the reticulated nature of the 
shoreline along several of the LA and FL coastal counties.  
 
bThe shoreline estimates for the Gulf do not include a majority of the reticulated marsh shoreline in Louisiana 
because this shoreline was not included in the LA ESI geodatabase, resulting in an underestimate of the total and 
hardened shoreline for the Gulf. If the NOAA shoreline for LA (circa 1986) is used as an estimate of total shoreline 
in LA and we assume the approximately 1,000 of hardened shoreline has not been classified (based on aerial 
imagery), then the total Gulf shoreline would be 90,886 km and the total hardened shoreline would be 8,390 km. 
This would change the percentage of hardened shoreline for the Gulf to 9% and for the U.S. to 12%. See 
Supplemental Methods for additional information on estimating the shoreline in LA. 
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FIGURES 

	  
 

Figure 2.1. Types of natural and artificially hardened shorelines found in the Untied States: a) 
rocky shore; b) beach; c) tidal marsh; d) mangrove; e) sea wall; f) riprap revetment; g) bulkhead; 
and h) breakwater. For images of other shoreline types found in the U.S., refer to the NOAA ESI 
shoreline types image gallery (http://response.restoration.noaa.gov/esi-shoreline-types).  
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Figure 2.2A. The percentage of total tidal shoreline hardened by county and the regression tree 
results for the Atlantic open coast. “Housing Density” is the number of individual housing units 
per km2 (as defined by the U.S. Census Bureau), “Storms” are the total number of storms that 
resulted in a U.S. Presidential Major Disaster Declaration and/or Emergency Declaration from 
1970-2010, “Tide” is the mean tide range (m), “State” is the state in which the shoreline is found, 
and  “n” is the number of counties split into each node and used to calculate the percentage of 
hardened shoreline.  
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Figure 2.2B. The percentage of total tidal shoreline hardened by county and the regression tree 
results for the Atlantic sheltered coast. “Housing Density” is the number of individual housing 
units per km2 (as defined by the U.S. Census Bureau), “Storms” are the total number of storms 
that resulted in a U.S. Presidential Major Disaster Declaration and/or Emergency Declaration 
from 1970-2010, “Tide” is the mean tide range (m), “State” is the state in which the shoreline is 
found, and  “n” is the number of counties split into each node and used to calculate the 
percentage of hardened shoreline.  
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Figure 2.3A. The percentage of total tidal shoreline hardened by county and the regression tree 
results for the Pacific open coast. “Wave Height” is the mean wave height (m). “State”, 
“Housing Density”, “Storms”, and “n” are defined as in Figure 2.2. 
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Figure 2.3B. The percentage of total tidal shoreline hardened by county and the regression tree 
results for the Pacific sheltered coast. “Wave Height” is the mean wave height (m). “State”, 
“Housing Density”, “Storms”, and “n” are defined as in Figure 2.2. 
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Figure 2.4. The percentage of total tidal shoreline hardened by county and the regression tree 
results for the Gulf coast. “Housing Density, “State”, and  “n” are defined as in Figure 2.2.  
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CHAPTER 3: MARSHES WITH AND WITHOUT SILLS PROTECT ESTUARINE 
SHORELINES FROM EROSION BETTER THAN BULKHEADS DURING A 

CATEGORY 1 HURRICANE2 
 

Abstract  

Acting on the perception that they perform better for longer, most property owners in the 

United States choose hard engineered structures, such as bulkheads or riprap revetments, to 

protect estuarine shorelines from erosion. Less intrusive alternatives, specifically marsh plantings 

with and without sills, have the potential to better sustain marsh habitat and support its 

ecosystem services, yet their shoreline protection capabilities during storms have not been 

evaluated.  In this study, the performances of alternative shoreline protection approaches during 

Hurricane Irene (Category 1 storm) were compared by 1) classifying resultant damage to 

shorelines with different types of shoreline protection in three NC coastal regions after Irene; and 

2) quantifying shoreline erosion at marshes with and without sills in one NC region by using 

repeated measurements of marsh surface elevation and marsh vegetation stem density before and 

after Irene. In the central Outer Banks, NC, where the strongest sustained winds blew across the 

longest fetch; Irene damaged 76% of bulkheads surveyed, while no damage to other shoreline 

protection options was detected.  Across marsh sites within 25 km of its landfall, Hurricane Irene 

had no effect on marsh surface elevations behind sills or along marsh shorelines without sills. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2This chapter was previously published as an article in Ocean & Coastal Management. The original citation is as 
follows: Gittman R.K., Popowich A.M., Bruno J.F., and Peterson C.H. 2014. Evaluation of shoreline protection 
approaches during a hurricane: poor performance of bulkheads implies need for alternative protection strategies. 
Ocean and Coastal Management 102: 94-102. DOI: 10.1016/j.ocecoaman.2014.09.016 	  
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Although Irene temporarily reduced marsh vegetation density at sites with and without sills, 

vegetation recovered to pre-hurricane levels within a year. Storm responses suggest that marshes 

with and without sills are more durable and may protect shorelines from erosion better than the 

bulkheads in a Category 1 storm. This study is the first to provide data on the shoreline 

protection capabilities of marshes with and without sills relative to bulkheads during a 

substantial storm event, and to articulate a research framework to assist in the development of 

comprehensive policies for climate change adaptation and sustainable management of estuarine 

shorelines and resources in U.S. and globally. 

 

Introduction 

Global climate change, resulting largely from anthropogenic greenhouse gas emissions, is 

causing the oceans to expand as waters warm and receive additional freshwater from melting 

glaciers and ice caps, producing rising sea levels. The global rate of sea-level rise is accelerating 

(Church et al. 2008), and will likely continue to accelerate as the climate continues to warm 

(Nicholls and Cazenave 2010). Sea-level rise will require shoreline ecosystems, such as coastal 

marshes, either to accrete vertically or to transgress landward to higher elevations to persist. 

Additionally, climate change may result in an increase in the frequency of intense storm events, 

particularly hurricanes (Grinsted et al. 2013), and cause significant damage to coastal structures 

and erosion of shorelines (Thieler and Young 1991). Coastal marshes act as natural buffers to 

wave energy and inhibit erosion of coastal lands (Barbier et al. 2008, Meyer and Townsend 

1997, Shepard et al. 2011). Nevertheless, these marshes are at great risk from degradation and 

loss as sea-level rise and increased storminess interact with coastal development and associated 
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shoreline hardening (Grinsted et al. 2013, Nicholls and Cazenave 2010, Peterson et al. 2008a,b, 

Rahmstorf 2010, Titus et al. 2009). 

Shoreline hardening, the installation of man-made shoreline protection structures, is 

intended to protect coastal property from erosion caused by ambient winds, boat wakes, and 

storm events (Titus 1998). On the U.S. Atlantic coast, vertical asbestos, treated wood, composite 

plastic, or steel bulkheads (Fig. 3.1A), sloping stone, marl, or concrete riprap revetments (Fig. 

3.1B), or a combination of riprap revetment and bulkhead (referred to as hybrid herein) are 

constructed at or above the observed high-water mark (OHWM), which is typically landward of 

regularly inundated, coastal marshes (United States Army Corps of Engineers [USACE] 2004). 

Because of their fixed position relative to coastal marshes, bulkheads and riprap revetments have 

the potential to inhibit upslope transgression of marshes as sea level rises (Peterson et al. 2008b, 

Titus 1988). This may ultimately lead to the loss of coastal marsh habitats and their ecosystem 

services, including nutrient and pollutant filtration, habitat provision for fishes and crustaceans, 

and erosion prevention (Peterson et al. 2008a). For coastal policies to be comprehensive in 

providing storm protection for estuarine land owners, while also preventing or minimizing 

degradation and loss of coastal habitats, the following scientific and engineering information on 

each shoreline protection approach is needed and is currently lacking or incomplete: (1) relative 

shoreline protection capabilities; (2) cost effectiveness; (3) ecological effects; and (4) 

reversibility and adaptability if the approach results in the eventual violation of applicable laws 

(e.g., Clean Water Act [CWA]) as sea-level rise threatens to drown tidal marshes (Titus 1998). 

Bulkheads and riprap revetments are the dominant method of shoreline protection in 

North Carolina and many other coastal states (National Research Council [NRC] 2007). Many 

property owners assume that bulkheads provide superior shoreline protection from erosion and 
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storm damage compared to other methods (Fear and Currin 2012, Scyphers et al. 2014). 

However, studies comparing the shoreline protection provided by marshes and marshes with sills 

to traditional shoreline protection methods are lacking, particularly during storms (see Shepard et 

al. 2011). A sill is a shoreline protection structure typically constructed of low-rising granite, 

marl, or oyster shell placed well below OHWM and 1-2 m seaward of regularly inundated marsh 

macrophytes (Fig. 3.1C). Incomplete knowledge of the ecosystem effects and adaptability of 

each alternative shoreline protection approach has resulted in conflicting permitting policies for 

shoreline protection among the individual districts of the United States Army Corps of Engineers 

(USACE) and between states. For example, in North Carolina, bulkheads can be exempt from 

USACE review, via use of Nationwide Permit (NWP) 13, and are often permitted in fewer than 

two days by the North Carolina Division of Coastal Management (NC DCM). Sills, because of 

their position relative to OHWM, are not exempt from USACE review. Hence, permitting in 

North Carolina can take 30 to 120 days or longer (NC DCM 2012). However, the Baltimore, 

Maryland, USACE District does not recognize NWP 13 and the Maryland Department of Natural 

Resources (MD DENR) requires that marsh planting with or without sills be used in lieu of 

bulkheads (Titus et al. 2009). To produce estuarine shoreline protection policies within states and 

nations that maximize benefits and minimizes losses, new studies are needed that address the 

relative shoreline protection capabilities, costs, ecological effects, and reversibility and 

adaptability of various shoreline protection approaches.  

The hypothesis that bulkheads, riprap revetments, marshes with sills, and marshes 

without sills, differ in their ability to protect the shoreline from erosion during a storm event was 

tested during Hurricane Irene. Coastal North Carolina is a relevant location in which to test this 

hypothesis because the NC coast has been affected by nearly 100 tropical storms or hurricanes 
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since 1851 and as much as 5900 km2 of the coastal land in North Carolina is expected to be 

inundated by 2100 under a projected sea level rise of 1.1 m (NC State Climate Office 2014, 

Poulter et al. 2009). Our study included: 1) visual classification of the extent of shoreline damage 

as a function of shoreline protection type over long extents of the back-barrier shorelines of 

Bogue Banks and the Outer Banks, NC, immediately after passage of Hurricane Irene; and 2) 

erosion analysis of marshes with and without sills along Bogue Sound, NC, before and after 

Hurricane Irene. The resulting shoreline-protection evaluation data represent the first empirical 

progress within a larger framework of information necessary for developing comprehensive and 

sustainable coastal management policies for estuarine shorelines.  

 

Methods 

Description of study sites 

Visually apparent damage to bulkheads, riprap revetments, and marshes with sills was 

recorded within one month of landfall of Hurricane Irene in North Carolina (Fig. 3.2A). Landfall 

occurred at Cape Lookout, NC, on August 27, 2011 as a Category 1 Hurricane, with a sustained 

wind-speed of 38 m/s. The strongest winds were primarily to the east of the eye over Pamlico 

Sound and the Outer Banks (Avila and Cangialosi 2011). Approximately 14 km of back-barrier 

shoreline on the Outer Banks were surveyed within the towns of Rodanthe, Waves, and Salvo on 

the north end of Hatteras Island (Fig. 3.2B), as well as approximately 38 km of shoreline within 

Frisco and Hatteras Village on the southern end of Hatteras Island, NC (Fig. 3.2C-D). Hatteras 

Island is a barrier island approximately 320 km in length, bordered by Pamlico Sound to the west 

and the Atlantic Ocean to the east. Approximately 25 km of back-barrier estuarine shoreline on 

Bogue Banks (Fig. 3.2E) were also surveyed. Bogue Banks is a south-facing barrier island 
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approximately 34 km in length, bordered by Bogue Sound to the north and the Atlantic Ocean to 

the south and the surveyed shoreline on Bogue Banks is situated within 25 km of the Irene 

landfall.  

To determine if marsh with sills or marshes without sills would protect coastal property 

from erosion during a storm event, three marshes with sills and three unmodified marshes were 

evaluated in Pine Knoll Shores, NC, bordering Bogue Sound  (Fig. 3.2E). At each sill site, a sill 

consisting of piled granite boulders (diameter of 20 cm to 50 cm) had been constructed between 

the years of 2002 and 2007. The elevation of the top of each sill was between 0.14 and 0.31 m 

above mean sea level (MSL). Each sill had an average height ranging from 0.2 m (base to top of 

the sill) for the oldest to 0.56 m for the youngest sill. Marsh grasses, Spartina alterniflora and S. 

patens, had been planted behind each sill along the edge of existing marsh at elevations 

consistent with the positions of these two grasses on nearby unmodified marshes. A reference 

marsh site was selected near each sill site (Fig. 3.2E), based on physical similarity (similar marsh 

size, shoreline orientation, and elevation) and proximity (within 500 m) to the sill site (sensu 

Neckles et al. 2002).  

Damage assessment of shoreline protection structures 

Using a Trimble GeoExplorer (2008 series), GPS points were recorded at the beginning 

and end of each continuous stretch of each shoreline protection type. We recorded the presence 

or absence and category of damage for each shoreline stretch. Damage classifications were 

modified from Thieler and Young (1991) and were as follows: landward erosion; structural 

damage; breach; and collapse. Landward erosion was defined as erosion of the shoreline 

landward of the structure (Fig. 3.3A). Structural damage was defined as warping or evident 

damage to the structure without breach or collapse (Fig. 3.3B). A breach was defined as a gap or 
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hole visible in the structure that allowed landward sediment to escape (Fig. 3.3C), while a 

collapse was defined as complete loss of the integrity of the structure so that it was no longer 

effectively retaining any sediment landward (Fig. 3.3D). Photographs were taken of each 

shoreline protection type (e.g., bulkhead, riprap revetment, sill) and each instance of damage to a 

shoreline protection structure. GPS data were imported into ArcGIS as shapefiles. Shapefiles 

were overlaid on 2010 aerial orthoimagery (North Carolina One Map 2013) and digitized 

shorelines of Bogue Banks and the Outer Banks (NC DCM 2012). NC DCM classified NC 

shorelines using 2007 aerial orthoimagery for Dare and Hyde counties and 2010 aerial 

orthoimagery for Carteret County (where Bogue Banks is located), producing ArcGIS 

continuous line shapefiles that include the shoreline type (marsh, beach, modified with structure 

[hardened]) and shoreline structure type (boat ramp, bulkhead, bulkhead and riprap combined, 

breakwater, groin/jetty, sill, riprap revetment).  

A new line shapefile was created based on the NC DCM digitized shorelines and the NC 

DCM shoreline classifications were verified using GPS points, shoreline photos, and field notes. 

The NC DCM digitized shoreline associated with each set of GPS points (start and end of each 

stretch) was classified according to shoreline protection type and damage category recorded 

during the survey. If our surveyed shoreline classification did not agree with the NC DCM 

classification (e.g., the survey classified the shoreline as a bulkhead and NC DCM classified the 

shoreline as a marsh), the known shoreline classification based on survey data was chosen and 

the NC DCM shoreline classification was corrected. The total linear km of shoreline surveyed by 

shoreline protection type and the total linear km of shoreline damaged by category and by 

shoreline protection type for each region were then calculated. 
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Erosion analysis of marshes with and without sills  

Changes in marsh surface elevation and marsh macrophytic vegetation density during and 

after Hurricane Irene were determined for marshes with sills and without sills. Pre-Irene surveys 

were conducted in August 2010 (one year before) and post-Irene surveys in October 2011 (one 

month after) and October 2012 (13 months after). Surface elevation (± 5 mm) was measured 

along permanent transects at each site using a leveling rod and rotary laser level and referencing 

the measurements to semi-permanent benchmarks (points established on a stable structure with 

unchanging elevation, e.g., a piling or tree). Elevations relative to North American Vertical 

Datum of 1988 (NAVD88) were determined using a Trimble Virtual Reference Station (VRS), 

Real Time Kinematic (RTK), Global Positioning System (GPS). NAVD88 elevations obtained 

using these methods are estimated to be accurate to ± 6-10 cm (C. Currin 2013 personal 

communication). Five transect locations were selected using restricted random (between 10 m 

and 20 m apart to maintain independence) sampling (sensu Neckles et al. 2002). Marsh transects 

began at the water’s edge of the marsh and continued to the start of shrub-scrub vegetation or to 

property owner landscaping. Marsh plots (0.25 m2) were established at 3 or 5 m intervals along 

each transect beginning at the lower marsh edge and surface elevation was measured within each 

plot. The length of each transect (5 - 20 m) and total number of marsh plots established (9 -21) 

depended on the marsh width from water’s edge to upland vegetation at each site. To compare 

marsh vegetation density between marshes with and without sills and to determine the changes in 

density over time, plant stem density was measured by species per 0.25-m2 plot. 

 Mixed effects models were fit using restricted maximum likelihoods to determine if 

marsh surface elevation and stem density in marshes with and without sills changed in the short 

term (<1 month) or long term (13 months) as a result of Hurricane Irene. Treatment (marsh with 
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sill vs. marsh without sill), year (2010, 2011, and 2012), and distance from the lower marsh edge, 

were fixed effects, while site was a random effect. Tukey’s posthoc tests were used to evaluate 

differences in levels of significant factors. Data were Box-Cox transformed prior to analysis to 

meet the assumptions of homogeneity of variance (Levene’s test, P > 0.05). An alpha level of 

0.05 was used for all hypothesis testing. Analyses were conducted using JMP 10.0 (SAS 2012). 

 

Results 

Damage assessment of shoreline protection structures 

Of the 76 km of shoreline surveyed along the back-barriers of Hatteras Island and Bogue 

Banks, 28 km (37%) of the shoreline was protected by bulkheads. Riprap revetments, sills, and 

hybrid methods were less common than bulkheads, making up only 1.9%, 1.6%, and 2% of the 

shoreline, respectively, while the remaining shoreline was marsh (53%) or beach (3%)  (see Fig. 

3.4A for km of shoreline protection types by survey region).  

Of the 1.86 km of bulkheads surveyed in Rodanthe, Waves, and Salvo (Fig. 3.4A), 76% 

(1.41 km) was damaged after the Hurricane (Fig. 3.4B), with damage ranging from landward soil 

erosion (Fig. 3.3A) to complete bulkhead collapse (Fig. 3.3D). In contrast, only 4% (0.26 km) of 

the 7 km of bulkheads surveyed in Frisco, 9% (0.83 km) of the 9 km of bulkheads in Hatteras 

Village, and 12% (1.14 km) of the 9.77 km of bulkheads on Bogue Banks (Fig. 3.4A) was 

damaged (Fig. 3.4B). No visible damage (structural failure, landward soil erosion) was detected 

to sill, riprap revetment, or hybrid shoreline structures surveyed within the study regions. 

Erosion analysis of marshes with and without sills 

  Mean marsh surface elevations were significantly higher at sites with sills than at marsh 

sites without sills across all years (P = 0.001, Table 3.1, Fig. 3.5A). Elevation increased with 
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increasing distance from the lower marsh edge, with the change in elevation being greater from 

the edge to the upland marsh at sites without sills than at sites with sills (P < 0.001). However, a 

significant change in marsh surface elevation was not detected from August 2010 (before 

Hurricane Irene) to October 2011 (one month after Hurricane Irene) at marshes with or without 

sills nor was a significant change detected in marsh surface elevation from October 2011 

(immediately after Hurricane Irene) to October 2012 (13 months after Hurricane Irene) (P = 

0.930, Fig. 3.5A). There were no significant interactions between treatment and year or 

treatment, year, and distance from marsh edge (P > 0.05). 

Vegetation density did not vary between marshes with sills and marshes without sills (P 

= 0.078, Table 3.1, Fig. 3.5A), but did increase with increasing distance from the marsh edge (P 

= 0.007). From August 2010 (before Hurricane Irene) to October 2011 (after Hurricane Irene), 

vegetation density decreased by 167±86 stems m-2 within marshes with sills and by 154±73 

stems m-2 within marshes without sills respectively, (P < 0.05, Tukey’s post hoc tests, Fig. 3.5B). 

Increases of 218±98 macrophyte stems m-2 within marshes with sills and 42±59 macrophyte 

stems within marshes without sills, respectively, occurred from October 2011 (immediately after 

Hurricane Irene) to October 2012 (13 months after Hurricane Irene) (P < 0.05, Tukey’s post hoc 

tests, Fig. 3.5B). In 2010 and 2012, vegetation density was not significantly different across sites 

(P > 0.05, Tukey’s post hoc tests, Fig. 3.5B). However, while vegetation within marshes with 

sills in 2012 appeared to have recovered to 2010 levels, within marshes without sills, the marsh 

did not appear to recover to the same vegetation density over this time period, although this 

difference in recovery was not statistically significant (P = 0.289, Fig. 3.5B). There were no 

significant interactions between treatment and year or treatment, year, and distance from marsh 

edge (P > 0.05). 
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Discussion 

The purpose of a shoreline protection structure is to prevent erosion of shoreline and 

damage to coastal property during storm events, such as hurricanes (USACE 2004). Engineering 

performance and cost efficiency and are among key deciding factors for coastal property owners 

when choosing a shoreline protection approach (Scyphers et al. 2014), whereas ecological effects 

relative to current environmental regulations are important factors for coastal managers charged 

with permitting shoreline protection structures (Titus 1998). Hence, data on the shoreline 

protection capabilities, cost efficiency, effects on ecosystem services, and reversibility and 

adaptability of alternative shoreline protection approaches are critical to development of 

economically and ecologically sound coastal management policies.  

Shoreline protection capabilities 

Results of our post-Hurricane Irene damage surveys conducted along shorelines at 

Rodanthe, Waves, and Salvo, NC, indicated that at least 75% of sampled bulkheads were 

damaged  (Fig. 3.4B). The percentage of bulkheads damaged within other surveyed regions was 

far lower, ranging from 4 to 10%. Rodanthe, Waves, and Salvo experienced a greater storm 

surge (2.16 m) and longer period (30 hours) of sustained onshore winds greater than 17 m/s 

(minimum speed for tropical depression) than our other survey regions (Table 3.2) (National 

Oceanographic and Atmospheric Administration [NOAA] 2011). Additionally, the fetch across 

open water to the shoreline at Rodanthe, Waves, and Salvo was greater (100 km) in the direction 

of the strongest winds (34 m/s, from the southwest) observed during Irene than the fetch to the 

other surveyed shorelines (Table 3.2, Fig. 3.4A) (NOAA 2011). Pre-hurricane structural 

condition of the bulkhead, wave exposure, fetch, and nearshore bathymetry presumably all 
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contributed to observed differences in bulkhead performance among study regions during the 

hurricane. 

Bulkheads were the only type of shoreline protection structure that showed visible 

damage after the hurricane (Fig. 3.4A). Thieler and Young (1991) also found greater damage to 

bulkheads when compared to riprap revetments along barrier island shorelines in South Carolina 

after Hurricane Hugo. They attributed the high rate of damage to bulkheads (58% of 6.1 km of 

bulkheading destroyed) and riprap revetments (24% of 7.1 km destroyed) to overtopping by the 

storm surge (Thieler and Young 1991).  Most of the bulkhead failures observed in our study 

were probably also a consequence of overtopping of bulkheads by waves and storm surge (Table 

3.2). Bulkheads retain landward sediment at an elevation 1-2 m higher than the natural shoreline. 

This large difference in elevation, when compared to typically lower-sloped marsh, riprap 

revetments, or sills, can result in a large and rapid loss of sediment if the stabilizing structure (the 

bulkhead) collapses or is breached(Fig. 3.3D). This process was evident from the large amount 

of sediment lost at all collapsed bulkheads surveyed throughout the NC coast (Fig. 3.4B). 

Damage to bulkheads was frequently observed directly adjacent or close to shorelines stabilized 

with riprap revetments, hybrid structures, and sills that were not damaged (R.K. Gittman 

personal observation), even along the Rodanthe, Waves, and Salvo shorelines. One of the sill 

sites surveyed on Bogue Banks was located approximately 100 meters from a collapsed bulkhead 

and experienced no change in overall marsh elevation in 2011 (Fig. 3.3D and 3.5A).  

To evaluate the generality of some of our findings, our post-Irene results can be 

compared to those presented by Currin and colleagues (2007), who evaluated shoreline erosion 

in Bogue Sound after Hurricane Isabel. Specifically, Irene-induced changes in marsh surface 

elevation at the western-most marsh with sill and marsh without sill sites from before to after 
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Hurricane Irene in PKS, NC (Fig. 3.2E) can be compared to changes observed by Currin et al. 

(2007) at the same sites from before (spring 2003) to after (spring 2004) Hurricane Isabel 

(Category 2 at landfall, 45 km to the northeast of these two sites, Table 3.2). Marsh surface 

elevation increased 23.96±2.60 (SE) cm in the marsh with a sill and 11.87±2.53 (SE) cm in the 

marsh without a sill following Hurricane Isabel, whereas no significant change in surface 

elevation was observed following Hurricane Irene (Fig. 3.5A). Currin et al. (2007) also found an 

increase in marsh elevation after Isabel at two additional marshes with sills and two marshes 

without sills along shorelines of Bogue and Core Sound, NC. The increases in surface elevation 

after Isabel, as contrasted to the absence of change in surface elevation after Irene, may have 

been caused by transport of sediment during the longer period of sustained high winds and the 

wind direction with maximum gusts coming from the north (perpendicular to the shoreline) 

during Isabel (Table 3.2). Storm winds from the north would have increased wave heights at 

these north-facing study sites, potentially increasing sediment transport and deposition onto the 

marsh.  

The immediate loss of marsh vegetation after Hurricane Irene followed by subsequent 

recovery of vegetation density within 13 months indicates that the impacts of Hurricane Irene on 

marsh vegetation at sill and unmodified sites on Bogue Banks were temporary. However, a non-

significant difference was also observed in the amount of recovery of the marsh between sill and 

unmodified sites, with vegetation density at sill sites recovering more completely within the year 

than at unmodified sites (Fig. 3.5B). This potential difference in vegetation recovery between sill 

and unmodified sites could be explained by the ability of sills to protect the marsh by acting as a 

breakwater, much like an intertidal oyster reef would function, allowing lost or damaged 

vegetation to regrow in a more sheltered setting, thus potentially enhancing marsh recovery 
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(Meyer and Townsend 1997). Currin et al. (2007) found an increase in vegetation density at all 

sites during the year following Hurricane Isabel. Because neither hurricane resulted in surface 

elevation or permanent vegetation loss, it appears that marshes both with and without sills 

provided erosion protection during each storm event.  

Marshes with and without sills presumably provided erosion protection via wave 

attenuation and stabilization of sediments (Shepard et al. 2011). Shepard and colleagues 

conducted a meta-analysis on the protective role of coastal marshes and evaluated the ability of 

marshes to perform the following functions: wave attenuation, sediment stabilization, and 

floodwater attenuation. Positive correlations between marsh width and wave attenuation and 

marsh width and sediment stabilization were found. Additionally, the meta-analysis revealed that 

marshes less than 10 m in width (which is the width of many fringing marshes found along the 

NC shorelines surveyed in our study), can reduce wave heights by 80% for waves < 0.5m in 

height and can reduce wave heights by 50% for waves > 0.5m in height. In terms of sediment 

stabilization, marshes promoted vertical sediment accretion, reduced sediment loss, and 

maintained or increased the surface elevation of the shoreline. We acknowledge that wave 

attenuation abilities of marshes decreases with increasing wave height and because water levels 

exceeded 0.5 m at our study regions (see Table 3.2), wave attenuation was likely less than 50% 

for marsh shorelines in this study. However, given the lack of visible damage and change in 

surface elevation or vegetation density in comparison to the damage observed to bulkheads 

within our study regions, we conclude that sills and marsh vegetation stabilized the shoreline 

despite reduced wave attenuation capabilities of marshes during the storm.   

Although marshes with sills sustained little damage as a result of Hurricane Irene, data on 

the long-term performance of these structures are still necessary to determine their viability as 
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shoreline protection structures. Bulkheads and riprap revetments are estimated to have an 

average lifespan of 30 years and 50 years, respectively, with appropriate maintenance required, 

particularly for bulkheads (NC DCM 2011). However, bulkhead maintenance often includes 

back filling of landward sediment that has been lost over time to “hold the line” against erosion. 

The lifespan of marshes with sills is less certain because a majority of the existing sills in NC 

was constructed within the last 20 years (Fear and Bendell 2011). However, an assessment by 

NC DCM in 2011 revealed that all sills constructed in North Carolina remained intact and most 

of the sills were preventing erosion of the shoreline (Fear and Bendell 2011). Occasional 

supplemental planting of the marsh is the only maintenance described by property owners with 

sills (L. Weaver, personal communication). Long-term measurements (decades) of changes in 

marsh surface elevation and vegetation density at sites with sills, as well as measurements during 

larger storms, are necessary to truly determine the lifespan of this type of shoreline protection. 

Research framework for informing shoreline protection decisions 

 This study provides much needed data on the shoreline protection capabilities of different 

shoreline protection approaches that will help inform coastal management policies. However, 

data on the performance of shoreline structures during multiple storm events over a wider 

geographic area, cost efficiency, ecological effects, and the reversibility and adaptability of 

shoreline protection approaches with climate change are needed for waterfront property owners 

and coastal mangers to make truly informed decisions about shoreline protection. Here we 

present a framework for fulfilling the remaining data needs on shoreline protection. 

 The observed performance of shore protection structures may be limited to the 

geographic region and to the size and characteristics of the specific storm evaluated in this study. 

Additional studies evaluating the performance of shore protection in different geographic regions 
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during storms of different magnitudes, durations, and physical characteristics are needed. Data 

on the age and condition of shore protection structures prior to storm events should also be 

collected whenever possible. Finally comparisons of shore protection performance within the 

same geographic region across multiple storm events would also contribute to a more 

comprehensive understanding of the relative performance of estuarine shore protection 

structures. 

The cost of installing a shoreline protection structure can be a key consideration for a 

coastal property owner deciding how to protect his or her shoreline. In North Carolina, the 

average construction cost in 2011 of bulkheads and riprap revetments was estimated to be $450 

per linear meter and $400 per linear meter, respectively, with a combination costing 

approximately $850 (NC DCM 2011). Marsh planting was estimated to cost $70 per linear meter 

(assuming a 6 m-wide marsh) and construction of a granite marsh sill  (including marsh planting) 

was estimated at $500 per linear meter (NC DCM 2011). Although the average construction 

costs for bulkheads, riprap revetments, and marsh sills are similar, the replacement cost of marsh 

sills and riprap revetments is likely much lower than the initial construction costs, because the 

rock structure would likely only need to be rearranged or augmented rather than replaced entirely 

in the event of structure failures (FitzGerald et al. 1994, Thieler and Young 1991). Given the 

documented poor performance of bulkheads relative to riprap revetments and marshes with and 

without sills in this study, bulkheads are probably the least cost effective method for shoreline 

protection. However, cost effectiveness needs to be further evaluated to include maintenance and 

replacement costs as a function of inflating materials and labor costs and the availability of 

qualified contractors for different shoreline protection approaches.  
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 In addition to considering the engineering capability and cost efficiency of a shoreline 

protection approach, policymakers should consider the effects of each shoreline protection 

approach on the ecosystem services provided by marsh and the broader coastal ecosystem. 

Bulkheads can cause deepening of adjacent shallow subtidal waters via wave refraction and 

scour, resulting in loss of marsh and seagrass habitat (NRC, 2007). Bulkheads are generally 

associated with reduced abundances of upland coastal marsh plant species, fish and crustaceans, 

and benthic infauna (Bilkovic and Roggero 2008, Bozek and Burdick 2005, Seitz et al. 2006). 

Riprap revetments are associated with higher fish and crustacean abundance and diversity than 

bulkheads, but not natural marshes, probably because riprap provides more structurally complex 

habitat than a vertical bulkhead wall, but not necessarily more complex than natural marshes 

(Bilkovic and Roggero 2008, Seitz et al. 2006). In contrast to bulkheads and riprap revetments, 

sills create sheltered habitat suitable for coastal marsh and seagrass plants and sills are associated 

with higher fish and crustaceans abundances equivalent to abundances found in natural marshes 

(Currin et al. 2007, Chapter 4: Gittman et al. in review, Hardaway et al. 2002, Scyphers et al. 

2011, Smith et al. 2009). Nevertheless, relevant data are limited, so additional multi-year, multi-

site, and before-after-control-impact studies are needed to determine the net ecological effects of 

each alternative shoreline protection approach (NRC 2007). 

As sea levels continue to rise, bulkheads and riprap revetments will inhibit transgression 

as the lower edge of the marsh progressively erodes, resulting in net loss and ultimately 

disappearance of the marsh habitat (Peterson et al. 2008a,b,Titus 1998).This loss of habitat 

should result in violation of Section 404 of CWA, implying that the USACE may need to 

consider how to require mitigation for these losses. Based on the physical characteristics 

described above and the costs provided in this section, reversing marsh habitat loss associated 



 

71 
71

 

with a bulkhead by removing the bulkhead and restoring lost coastal marsh by replanting would 

be more arduous and costly than supplemental marsh planting or moving or reinforcing a sill. 

However, research is needed on the feasibility of removing or adaptively managing and 

modifying alternative shoreline protection structures already in place.  

Conclusions  

This study contributes important information on the shoreline protection capabilities of 

several shoreline protection approaches and is the first study to contrast the performance of 

bulkheads and riprap revetments to marsh plantings with and without sills during a major storm. 

Additionally, a framework is provided for future research on the long-term shoreline protection 

capabilities, cost effectiveness, ecological effects, and reversibility and adaptability of shoreline 

protection structures.  Scientists should focus on filling data gaps, particularly by evaluating the 

performance of shore protection structures in multiple storm events and by quantifying the 

ecological effects of alternative shoreline protection approaches. Policymakers should consider 

data from each component of this decision-framework to develop a synthetic set of policies 

related to estuarine shoreline protection.  
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TABLES 
 
Table 3.1. Mixed model results for erosion analysis of marshes with sills and without sills 
 

Response 
Variable Fixed Factors DF 

F 
Ratio 

Prob 
> F 

REML 
Variance 
Component 
Estimates 

Var 
Ratio 

Var 
Component 

Std 
Error 

95% 
CI 

Lower 

95% 
CI 

Upper 
Percent 
of Total 

Marsh 
surface 
elevation 
(m) 

Shoreline type (sill or no sill) 1 14.60 0.001 Site 0.254 0.004 0.002 0.000 0.008 20.25 
Year (2010, 2011, 2012) 2 0.07 0.930 Residual 

 
0.016 0.002 0.013 0.020 79.75 

Plot (distance from marsh edge) 4 59.20 <.0001 Total 
 

0.020 0.002 0.016 0.026 100.00 
Shoreline type*Year 2 0.01 0.992 

       Shoreline type*Plot 4 7.20 0.000 
       Plot*Year 8 0.19 0.990 
       Shoreline type*Plot*Year 8 0.21 0.988               

Marsh 
stem 
density 
per m2 

Shoreline type (sill or no sill) 1 3.27 0.078 Site  0.536 882 307 280 1484 34.88 
Year (2010, 2011, 2012) 4 4.12 0.007 Residual 

 
1647 167 1362 2031 65.12 

Plot (distance from marsh edge) 2 4.62 0.015 Total 
 

2529 321 2001 3297 100.00 
Shoreline type*Year 2 1.28 0.289 

       Shoreline type*Plot 4 0.34 0.846 
       Plot*Year 8 0.79 0.611 
       Shoreline type*Plot*Year 8 0.10 0.999               
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Table 3.2. Meteorological and water level data for surveyed locations during Hurricane Irene and Hurricane Isabel.  

 

Rodanthe, 
Waves, & 

Salvoa 

Frisco & 
Hatteras 
Islandb 

 
Bogue  
Banksc 

Hurricane parameter Irene Irene  Irene Isabel 
Duration at or above Tropical 
Depression speed 30 hours 24 hours 

 
29 hours 38 hours 

Average wind speed 17 m/s 12 m/s  22 m/s 17 m/s 
Maximum gust 34 m/s 32 m/s  35 m/s 40 m/s 
Maximum gust direction Southwest East  East northeast North 
Max fetch from max gust direction 100 km 4 km  5 km 5 km 
Storm tide 2.32 m 1.25 m  1.91 m 1.61 m 
Predicted tide 0.16 m 0.13 m  0.99 m 0.74 m 
Storm surge/residual 2.16 m 1.12 m  0.92 m 0.87 m 

 

a Data collected from the Oregon Inlet station (ORIN7 8652587), NOAA National Data Buoy Center and the NOAA tide station at the Oregon Inlet Marina, NC 
(8652587) from August 26, 2011 to August 28, 2011. 
 
b Data collected from the Cedar Island station (NCDI), State Climate Office of North Carolina and from the NOAA tide station at the US Coast Guard Station 
Hatteras, NC, from August 26, 2011 to August 28, 2011. NCDI was the closest wind station available because the Hatteras Island wind station was damaged 
during the hurricane.  
 
c Data collected from the Cape Lookout station (CLKN7) and the NOAA tide station at the NOAA Beaufort Lab, Beaufort, NC, from September 17, 2003 to 
September 19,2003 and August 26, 2011 to August 28, 2011. 
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FIGURES 

  A B C 

   
   

 
Figure 3.1. Photographs of shoreline types: a) a bulkhead: a vertical structure typically 
constructed of vinyl composite, concrete, asbestos, or treated wood placed at or above the 
observed high water mark; b) a riprap revetment: a sloped structure typically constructed of 
granite, marl, or concrete placed at or above OHWM; and c) a sill: a structure typically 
constructed of granite, marl, or oyster shell, seaward of marsh.  
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Figure 3.2. A map of: a) the study areas relative to the path of Hurricane Irene (made landfall in 
NC at 34.7°N, 76.6°W; b) survey path for damage classifications on Rodanthe, Waves, and 
Salvo, NC; c) survey path for damage classifications on Frisco and Hatteras Island, NC; d) 
survey path for damage classifications on Bogue Banks, NC; and e) zoom-in to the sill sites and 
unmodified marsh sites that were surveyed along Bogue Banks, NC. The Hurricane Irene track 
and rate of movement is depicted at 30-minute intervals by the location symbol.   
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Figure 3.3. Bulkhead damage classifications: a) Landward erosion; b) Structural damage: c) 
Breach; and d) Collapse.  
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Figure 3.4. a) Shoreline classification by type (km) for Rodanthe, Waves, and Salvo; Frisco; 
Hatteras Village; and Bogue Banks, NC. See Fig. 1 for descriptions and photographs of a 
bulkhead, riprap revetment, and marsh with a sill. Hybrid is a combination of bulkhead and 
riprap and beach is unvegetated shoreline. b) Bulkhead damage classification by type (%) for 
Rodanthe, Waves, and Salvo (R, W, & S); Frisco; Hatteras Village; and Bogue Banks, NC. See 
Fig. 3 for photographs of damage classifications. 
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Figure 3.5. The effects of Hurricane Irene on: (a) average marsh surface elevation (m, 
NAVD88); and (b) average vegetation density per m2 at marsh sites with (closed circles) and 
without (open circles) sills. Error bars represent ± 1SE (n=9 to 21 per site).  
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CHAPTER 4: LIVING SHORELINES CAN ENHANCE THE BIOGENIC STRUCTURE 
AND NURSERY ROLE OF THREATENED ESTUARINE HABITATS 

 

Abstract 

Coastal ecosystems provide numerous services, such as nutrient cycling, climate change 

amelioration, and habitat provision for commercially valuable organisms. Ecosystem functions 

and processes are modified by human activities locally and globally, with degradation of coastal 

ecosystems by development and climate change occurring at unprecedented rates. Paradoxically, 

the demand for coastal defense strategies against storms and sea-level rise has increased with 

human population growth and development along coastlines worldwide, even while that 

population growth has reduced natural buffering of shorelines. Shoreline hardening, a common 

coastal defense strategy that includes the use of seawalls and bulkheads (vertical walls 

constructed of concrete, wood, vinyl, or steel), is resulting in a “coastal squeeze” on estuarine 

habitats. In contrast to hardening, living shorelines, which range from vegetation plantings to a 

combination of hard structures and plantings, are often deployed to restore or enhance multiple 

ecosystem services normally delivered by naturally vegetated shores. Although hundreds of 

living shoreline projects have been implemented in the U.S. alone, few studies have evaluated 

their effectiveness in sustaining or enhancing ecosystem services relative to naturally vegetated 

shorelines and hardened shorelines. We quantified the effectiveness of (1) sills with landward 

marsh (a type of living shoreline that combines marsh plantings with an offshore low-profile 

breakwater), (2) natural, salt marsh shorelines (control marshes), and (3) unvegetated bulkheaded 

shores in providing habitat for fish and crustaceans (nekton).  Sills supported higher abundances 
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and species diversity of nekton than unvegetated habitat adjacent to bulkheads and even control 

marshes. Sills supported higher cover of filter-feeding bivalves (a food resource and refuge 

habitat for nekton) than bulkheads or control marshes. This ecosystem-service enhancement was 

detected on shores with sills three or more years after construction, but not before. Sills provide 

added structure and may provide better refuges from predation and greater opportunity to use 

available food resources for nekton than unvegetated bulkheaded shores or control marshes. Our 

study shows that unlike complete shoreline hardening, living shorelines can enhance some 

ecosystem services provided by marshes, such as serving as nursery habitat.  

 

Introduction 

Interdisciplinary studies between ecologists and economists have resulted in major 

advances in the valuation of services provided by ecosystems in the past two decades 

(Millennium Ecosystem Assessment [MEA] 2005, Naidoo et al. 2008, Carpenter et al. 2009). 

Ecosystem services are the direct and indirect benefits that humans derive from ecosystems, and 

include, nutrient cycling, climate regulation, habitat provision for organisms of value, and 

recreational uses (Carpenter et al. 2009). Many human activities are degrading coastal 

ecosystems and the services they provide (Vitousek et al. 1997, MEA 2005, Dahl and Stedman 

2013). Coastal development and global climate change, particularly sea-level rise and increased 

storminess, are threatening coastal ecosystems and have already resulted in significant losses of 

these ecosystems (MEA 2005, Hoegh-Guldberg and Bruno 2010). With over 123 million people 

living within 100 km of a U.S. coastline (U.S. Census Bureau 2010), there is considerable need 

for development strategies that sustain, restore, or enhance delivery of ecosystem services.  
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One of the most pressing concerns over continued coastal development is protection 

against erosion and subsequent property loss resulting from the joint impacts of storm events and 

sea-level rise (Törnqvist and Meffert 2008, Temmerman et al. 2013). Traditional shoreline 

protection methods, such as seawalls or bulkheads, are designed to protect the shore from erosion 

and public or private infrastructure from flood and structural damage, but can fail during major 

storm events and even exacerbate impacts (Thieler and Young 1991, Chapter 3: Gittman et al. 

2014). In contrast to the erosion and damage protection provided to upland property, these 

structures can induce erosion of habitats located seaward of or adjacent to the structure, resulting 

in the loss of valuable intertidal and/or shallow vegetated, beach, or mudflat habitat (Hall and 

Pilkey 1991, Doody 2004, Bozek and Burdick 2005, Dugan et al. 2008, Pontee 2013). Further, as 

sea levels rise, a “coastal squeeze” can occur where coastal habitat is lost from the high water 

mark being fixed by a structure and the low water mark migrating landward as sea level rises 

(Titus 1998, Peterson et al. 2008, Pontee 2013). Additionally, bulkheads and seawalls support a 

lower abundance and diversity of benthic infauna, fish, and mobile crustaceans than natural 

shorelines dominated by salt marsh (Bilkovic and Roggero 2008, Dugan et al. 2008, Lucrezi et 

al. 2010, Seitz et al. 2006). Heightened awareness of the adverse ecological effects of “hard” 

shoreline protection methods and the billions of dollars in damage done to coastal properties and 

infrastructure by major storm events (e.g., Hurricane Katrina in 2005 and Superstorm Sandy in 

2012 in the U.S.) has increased demand for alternative effective methods that incorporate natural 

components for coastal protection (Arkema et al. 2013, Cheong et al. 2013). 

  Some alternative methods of coastal protection, broadly termed “living shorelines”, 

include restoration of habitats that provide natural protection from erosion, such as salt marshes 

and intertidal oyster reefs (Crooks and Turner 1999, Piazza et al. 2005). Living shorelines also 
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include hybrid techniques, that consist of pairing an offshore sill composed of granite boulders, 

concrete, marl, or oyster shell with marsh plantings (referred to as sill hereafter, see Figure 1 for 

examples of sills, NRC 2007, Currin et al. 2009). Over 200 projects identified as “living 

shorelines” have been permitted and constructed in the U. S., with marsh sills comprising more 

than half of them (Fear and Bendell 2011, Coasts, Oceans, Ports, and Rivers Institute [COPRI] 

2014, Chesapeake Bay Trust 2014). The goals of these projects are to go beyond providing 

erosion protection to include sustaining additional ecosystem services, such as provision of 

habitat for various marine organisms and filtration of nutrients or pollutants (COPRI 2014). 

However, few studies have assessed the success of living shoreline approaches in sustaining or 

enhancing ecosystem services (but see Currin et al. 2007, Scyphers et al. 2011, La Peyre et al. 

2014). Furthermore, existing studies have only evaluated the short-term ecological functions of 

living shorelines (< three years post-construction) and have not included comparisons to the 

ecological functions of bulkheaded shores.  

We hypothesized that hybrid living shorelines, sills with landward marsh, would support 

higher abundances, biomass, and diversity of mobile fishes and crustaceans (nekton), particularly 

juveniles and estuarine residents, than fringing salt marshes alone or than unvegetated bulkheads. 

Our hypothesis is based on the expectation that sills would enhance pre-existing uses of habitat 

through one or both of the following mechanisms: (1) increasing the structural complexity of the 

habitat and providing spatial refuge from predation and environmental stress (i.e., wave 

exposure); and (2) increasing resource (food) availability via providing additional substrata for 

epibiota (prey) and organic matter deposition. Nekton abundance and production are positively 

related to structural habitat complexity, such as submerged aquatic vegetation (Orth et al. 1984, 

Bell and Westoby 1986), oyster reefs (Grabowski and Peterson 2007, Grabowski et al. 2008, 
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Stunz et al. 2010), and salt marshes (Peterson and Turner 1994, Minello et al. 2003) relative to 

mudflat or sandy bottom habitats, which lack emergent structure. The addition of substrate may 

also increase the availability of epibiota (e.g., oysters, mussels) and other organic materials as 

food resources (Peterson et al. 2003). To test our hypothesis, we compared nekton catch rates 

and diversity along sills of varying ages (zero to eight years) to shorelines with natural, fringing 

salt marshes, and to bulkheaded shorelines without marsh.  

 

Methods 

Study Design 

To ensure that our study would provide a comprehensive assessment of nekton use of 

habitats associated with different shore stabilization approaches, we made four independent 

comparisons of nekton catch rates along different types of shorelines. We first compared nekton 

catch rates and diversity in intertidal marsh (Figure 4.A-1A) and shallow subtidal habitat (Figure 

4.A-1B) between sites with sills (three or more years after sill construction) and sites without 

sills (control marsh sites), referred to as the control-impact (CI) study. We also compared nekton 

catch rates and diversity in intertidal marsh and shallow subtidal habitat before and after sill 

construction to nekton catch rates and diversity at control sites, referred to as the before-after-

control-impact (BACI) study. We then determined if nekton catch rates and diversity in habitat 

adjacent to sills differed between a newly constructed sill and sills that had been in place for 

three or more years (the period of time estimated to be necessary for nekton to respond to new 

habitat: La Peyre et al. 2014). To make this determination, we compared nekton catch rates and 

diversity at a BACI sill less than one year after construction and at three CI sill sites (one sill 

three years and two sills eight years after construction) within the same geographic region. 
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Finally, we compared nekton catch rates and diversity in unvegetated intertidal habitat adjacent 

to sills, adjacent to bulkheads with no marsh, and adjacent to control marsh sites (Figure 4.A1-

C), referred to as bulkhead comparison (BC) study. To identify factors (e.g., increased structural 

complexity) potentially associated with differences in nekton catch rates and diversity among 

different shoreline types, we also measured habitat characteristics (see below) at each shoreline 

type.  

Description of study sites 

The CI study consisted of surveying three existing granite sills and three control marsh 

sites located in Pine Knoll Shores (PKS), NC (Figure 4.1A, 34°42'11"N, 76°48'21"W). At each 

sill site, a sill consisting of piled granite boulders (20-cm to 50-cm diameter) was constructed 

between the years of 2002 and 2007 (Figure 4.1E). The elevation of the base of each sill was 

between 0.14 and 0.31 m below mean sea level (MSL). Each sill had an average height ranging 

from 0.2 m (base to top of the sill) for the oldest sill to 0.56 m for the youngest sill. Each sill also 

had either a drop-down (area of lower elevation interrupting the sill crest, Figure 4.A-2A) or a 

gap (a break in two sill sections, Figure 4.A-2B) to allow water to flow behind the sill at intervals 

of approximately every 20 m for the entire length of the sill (range: 40 – 100 m long). Marsh 

grasses, Spartina alterniflora and S. patens, were planted behind each sill along the lower edge 

of existing high marsh at elevations consistent with the positions of these two grasses in nearby 

unmodified marshes (Currin et al. 2007, J. Shallcross and J. Best personal communications). To 

minimize site-specific differences that may affect nekton catch rates, we paired each sill site to a 

control site with similar physical characteristics (e.g., marsh width, wave exposure) and close 

proximity (<200 m) along the same shoreline (Figure 4.1F). 
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BACI sites were located in PKS, NC, Hatteras, NC (35°13'18"N, 75°41'35"W), 

Swansboro, NC (34°41'49"N, 77° 6'24"W), and Holly Ridge, NC (34°28'12"N, 77°30'28"W) 

(Figure 4.1A). At each site, a low sill, consisting of granite boulders (Hatteras and PKS, Figure 

4.1B and C) or oyster shell bags (Holly Ridge and Swansboro, Figure 4.1G and H), was 

constructed to a height just above MSL. Each sill had an average height ranging from 0.3 m 

(oysterbag sills) to 0.7 m (stone sills). As with our CI sites, S. alterniflora (low marsh) and S. 

patens (high marsh) were planted behind the sill at elevations consistent with nearby marshes. 

The Swansboro, Hatteras, Holly Ridge, and PKS sills were constructed in September 2010, 

March 2011, November 2011, and April 2012, respectively. The Swansboro and Hatteras sill 

sites were planted in May 2011 and the Holly Ridge sill site was planted in May 2012. The PKS 

sill site was not planted during the study period. A marsh control site was selected as described 

above for CI sites. The PKS sill site from this BACI study was also compared to the CI study sill 

sites to test for the effects of sill age on ecosystem service delivery (nekton use). 

For the BC study, we selected three bulkheaded sites with no seaward marsh in PKS 

along the same shoreline as the CI sills and control marshes (Figure 4.1D-F). Each bulkhead 

consisted of a vertical vinyl wall constructed at the Observed High Water Mark (OHWM) or 

approximately 0.59 m above MSL (NOAA 2014).  

Nekton sampling 

We conducted all nekton sampling monthly from June to October, with CI, BACI, and 

BC sampling occurring in 2010, from 2010 to 2012, and in 2011, respectively. We sampled 

nekton utilizing the marsh (defined here to include the marsh interior, marsh edge, and 

unvegetated mudflat within 3 m of the marsh edge) at paired sill and control marsh sites (CI 

study) by simultaneously setting two fyke nets at each site during a night spring high tide and 
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recovering gear during the subsequent low tide (~6-hr sets, Figure 4.A-1A). Fyke nets were 

placed at the sill drop-downs or gaps at the sill sites (Figure 4.A-3) and randomly along the edge 

of control marsh sites.  Fyke net openings were set at approximately the same distance from the 

marsh edge (3 - 5 m, depending on sill location relative to the marsh edge) at each paired site 

(Rozas and Minello 1997, Currin et al. 2007). The fyke nets consisted of a 0.9-m by 0.9-m by 

5.1-m compartmentalized, 3.175-mm-mesh-net bag with 0.9-m by 5.1-m wings that stretched out 

from the bag (set for a total mouth width of 8 m). To determine nekton catch rates and diversity 

of subtidal habitats adjacent to sills and at control sites (CI study), we seined two times parallel 

to the shoreline for 20 m (approximately 5 m from the sill or marsh edge) at each site during 

afternoon spring low tides (Figure 4.A-1B). Seines were 7.3 m wide by 1.8 m tall, made from 

3.175-mm-mesh net, and included a 1.8-m by 1.8-m by 1.2-m bag. Nekton use of unvegetated 

subtidal habitat within 1 m of sills (between the sills and landward marsh edges), and seaward of 

bulkheads and control marshes was assessed by setting replicate (n=10) minnow traps (3.175-

mm-galvanized mesh) at the edge of each shoreline type two hours before high tide and 

collecting the traps two hours after high tide (Figure 4.A-1C).  

Nekton was identified to species, when possible, counted, and weighed wet, before the 

first twenty of each species were measured for standard length (fish and shrimp) or carapace 

length (crabs) either in the field or in the lab (after being held or transported using buckets and 

air bubblers), with subsequent release. All species were classified as resident or transient and the 

mean length and biomass data were used to determine if a majority of individuals were juveniles 

or adults for each species, as per Hettler (1989) and Peterson and Turner (1994). We pooled 

across nets or traps at each site and abundance data are reported as catch per unit effort (CPUE) 

for nekton caught by all nets or traps per site per sampling effort (individuals or grams per set). 
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Sampling effort was standardized as two fyke nets soaking for six hours, two 20-m seine pulls, 

and ten traps soaking for four hours.  

Habitat characteristics 

We measured several habitat characteristics (e.g., marsh surface elevation, marsh 

macrophyte density, sediment organic matter [SOM] content) to better assess the relationship 

between shoreline type and nekton use of available habitats. To characterize the intertidal habitat 

structure available to nekton, we quantified total stem density of marsh macrophytes at each CI 

and BACI site. Five intertidal transect locations were selected using restricted random (between 

10 m and 20 m apart to maintain independence) sampling (Neckles et al. 2002). Transects began 

at the seaward edge of the marsh and continued to the start of shrub-scrub vegetation or to 

property-owner landscaping. Marsh plots were established at 3- or 5-m intervals along each 

transect beginning at the lower marsh edge. The length of each transect (5 – 20 m) and total 

number of marsh plots established (9 – 21) depended on the marsh width from seaward edge to 

upland vegetation at each site. Stem density was measured by marsh plant species per 0.25-m2 

plot (Daoust and Childers 1998). Total stem density of marsh plants was calculated by summing 

the stem densities of all species present within a plot. We surveyed subtidal areas up to 20 m 

seaward of the marsh edge to determine the type of subtidal habitat available to nekton at all CI 

and BACI sites (e.g., sand/mud flat, seagrass, or both). Sampling plots began at the lower marsh 

edge and seagrass shoot density was estimated every 5 m along each transect by counting the 

total number of shoots per species inside 0.25-m2 quadrats (Hauxwell et al. 2001). 

Surface elevation was measured within 1 m landward of the sill using a leveling rod and 

rotary laser level and referencing the measurements to semi-permanent benchmarks (points 

established on a stable structure with unchanging elevation, e.g., a piling or tree) with elevations 
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determined using a Trimble Virtual Reference Station (VRS), Real Time Kinematic (RTK), 

Global Positioning System (GPS). North American Vertical Datum of 1988 (NAVD88) 

elevations obtained using these methods are estimated to be accurate to ± 6 cm (P. Hensel 

personal communication). To determine the availability of organic material available to benthic 

or filter-feeding nekton, we took sediment organic matter (SOM) samples by coring the top 3-5 

cm of sediment at every plot on all site transects. Cores were transported to the lab and frozen for 

later analysis. For SOM analysis, a homogenized subsample of approximately 30 g (wet weight) 

was dried overnight at 100°C, weighed, and then ashed at 450°C for 6 – 8 h and reweighed to 

obtain ash-free dry weight by subtraction (Currin et al. 2007). To determine availability of 

epibiota (macroalgae and invertebrates) at sill, control marsh and bulkhead sites, we sampled the 

sills (granite), control marsh edges (unconsolidated sediment), and bulkheads (vinyl) in 

September 2011. We determined the percent cover and species composition of epibiotic species 

attached to the substrate using the point-intersect method, with 16 intersections within a 0.25-m2 

quadrat.  

Statistical analyses 

Because of natural environmental variability among our sites (e.g., proximity to channels, 

shoreline orientation, sample date), we paired our CI sill and control marsh sites for all analyses. 

We compared catch rates and Shannon-Wiener diversity indices (Hʹ′) of nekton between paired 

CI sill sites and control marsh sites using grouped (by site), matched pairs two-tailed t-tests. 

Catch rates of nekton were analyzed separately for each habitat (marsh samples using fyke nets 

or subtidal samples using seines). We also compared the mean total stem density (m-2) of marsh 

plants, sediment surface elevation 1-m landward of the sill, and SOM (%) using matched pairs 

two-tailed t-tests. To determine if seagrass habitat varied between sill and control sites as a 
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function of distance from the marsh edge, we compared mean total shoot density (m-2) of all 

seagrasses as a function of distance from the marsh edge (1, 5, 10, 15, and 20 m) at sill and 

control sites using a one-factor (sill vs. control) repeated measures analysis of variance 

(ANOVA), with distance from marsh edge as the repeated measure.  

To compare the catch rates of nekton between BACI sill sites and control marsh sites 

before and after the sills were constructed, we performed separate BACI analyses (two-way 

ANOVAs) for each site, with treatment (sill vs. control marsh), time (before vs. after), and 

treatment by time as fixed factors.  

We compared the mean differences in catch rates of nekton between the three CI sills and 

control marsh sites in PKS to the mean difference between the BACI sill (less than one year 

post-construction) and control marsh in PKS site using a one-sample t-test (transforming all sill-

minus-control data so that BACI differences would equal 0). We also compared the mean surface 

elevation 1-m landward of the sill, SOM, and stem density of marsh macrophytes between each 

CI sill and the BACI sill using a one-sample t-test. 

We compared catch rates of nekton between sill, control marsh, and bulkhead-with-no-

marsh sites using nested ANOVAs with treatment (sill vs. control vs. bulkhead) as a fixed factor 

and sampling month nested within each site. We preferred a nested ANOVA over the matched 

paired analysis used to compare the sills and control marsh sites alone because unvegetated 

bulkhead sites could not be appropriately paired geographically to the sill and control marsh 

sites.   

Catch rates, density of marsh plants, and shoot density of seagrass were log-transformed 

prior to analysis to meet the assumptions of normality (Shapiro-Wilk Test, P > 0.05) and 

homogeneity of variance (Levene’s test, P > 0.05). Because we applied each statistical test to 
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separate, pre-defined hypotheses, an alpha level of 0.05 was used for all hypothesis testing. 

(Hurlbert and Lombardi 2003, Moran 2003). Analyses were conducted using JMP 10.0 (SAS 

2012). 

Permutational analysis of variance (PERMANOVAs) on the Bray-Curtis similarity 

matrices of nekton communities were performed to uncover any significant community 

differences in each habitat between individually paired CI and BACI sill and control marsh sites. 

Nekton species abundances were fourth-root transformed to reduce the effect of the most 

abundant species when testing for differences in community composition. Species that were 

present only in a single sample were excluded from the analyses. We used non-metric 

multidimensional scaling (NMS) and similarity percentages (SIMPER) to assist with 

interpretation of differences in nekton community structure between sill and control marsh sites. 

PERMANOVAs on the Euclidean distance matrices of barnacle, bivalve, and other epibiota were 

performed separately to decipher significant differences in epibiota on sills, bulkheads, and 

control marshes. Permutational Dispersion (PERMDISP) was used to test for homogeneity of 

variances. As with univariate testing, an alpha level of 0.05 was used for all multivariate 

hypothesis testing. Multivariate analyses were conducted using PRIMER-E software 6.1.1 with 

PERMANOVA+ 1.0.1 (Clarke and Gorley 2001). 

 

Results 

CI comparison 

We found higher catch rates of fishes within the marsh at sill sites than at control sites 

(Figure 4.2A, individuals per 2 fyke net sets, t-ratio= -4.61, DF = 14, P > |t| = 0.0004, and Figure 

4.2B, grams per 2 fyke net sets, t-ratio= -3.44, DF = 14, P > |t| = 0.004). For crustaceans, we also 
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caught more individuals per 2 fyke net sets within the marsh at sill sites than at control sites 

(Figure 4.2A, t-ratio= -4.13, DF = 14, P > |t| = 0.001), but differences in crustacean grams per 2 

fyke net sets were non-significant between sill and control sites (Figure 4.2B, t-ratio = -1.83, DF 

= 14, P > |t| = 0.08). Nekton community composition differed between two of the three pairs of 

sill sites and control marsh sites, with differences in community composition driven by higher 

catch rates of the most abundant nekton species (see below) in the marsh at sill sites (P < 0.05, 

Tables 4.1 and 4.B1). The diversity (Hʹ′) of fishes within the marsh (2 fyke net sets) at sill sites 

was greater than at control sites (t-ratio= -3.83, DF = 14, P > |t| = 0.002). 

Transient fishes such as mullets (Mugil spp.), pinfish (Lagodon rhomboides), spot 

(Leiostomus xanthurus), mojarra (Eucinostomus spp.), flounders (Paralichthys spp.), speckled 

trout (Cynoscion nebulosus), pigfish (Orthopristis chrysoptera), and silver perch (Bairdiella 

chrysoura), made up 93% of the individuals and 92% of the biomass caught within the marsh 

(fyke net catches) at sill sites and 97% of the individuals and 95% of the biomass caught at 

control marsh sites (Table 4.1).  Marsh resident species, such as mummichogs (Fundulus 

heteroclitus), and striped killifish (Fundulus majalis), made up only 7% of the individuals and 

8% of the biomass caught within the marsh at sill sites and only 3% of the individuals and 5% of 

the biomass caught at control marsh sites. Crustacean catches within the marsh at both sill and 

control sites consisted of shrimp (Penaeid spp. and Palaemonetes spp.) and crabs (primarily blue 

crab, Callinectes sapidus) (Table 4.1).  

Catch rates, species diversity, and community composition of nekton using seagrass 

patches or mudflat adjacent to sills or control sites were not significantly different based on seine 

net sampling (Figure 4.2C-D, P > 0.1, Tables 4.B2 and 4.B3). L. rhomboides dominated seine 
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net catches at both sill and control sites, making up 77% and 82% of the individuals, 

respectively.  

Mean total density of marsh macrophyte stems and mean SOM within the marsh did not 

differ between sill and control sites (Figure 4.3A-B, t-ratio = 0.78, DF = 2, P > |t| = 0.51 and t-

ratio = -0.92, DF = 2, P > |t| = 0.46). Mean surface elevation (m) of the unvegetated area between 

the sill and the landward marsh edge was greater than the mean surface elevation within 1 m of 

marsh edge at control sites (Figure 4.3C, t-ratio = -6.16, DF = 2, P > |t| = 0.03). Mean total 

density of seagrass shoots did not differ between sill and control marsh sites (F = 0.19, DF = 1, P 

> F = 0.68), nor did density differ as function of distance from the marsh edge (F = 0.37, DF = 4, 

P > F = 0.83, Figure 4.3D).  

BACI comparison 

There was no effect of sill construction on nekton catch rates or community composition 

within intertidal (fyke net) or subtidal habitats (seine net) less than one year post-construction at 

any of the sampled BACI sites (Figure 4.4A-H, P > 0.1, treatment by time interaction, Tables 

4.B4 and 4.B5).  

CI and BACI sill comparison 

The mean difference in fyke net catch rates of fishes within salt marsh habitat between 

older CI PKS sill sites (three to eight years post-construction) and paired control marsh sites was 

greater than the difference between fyke net catch rates at the BACI PKS sill site (less than one 

year post-construction) and paired control marsh site (Figure 4.5A, T = 14.4, DF = 2, P > |t| = 

0.005). However, there was no analogous difference in crustacean fyke net catch rates (T = 2.7, 

DF = 2, P > |t| = 0.11). Only three of six resident species caught in fyke nets at the CI sill sites 

were caught at the BACI sill site (Table 4.1). Surface elevation (m) landward of the CI sills was 
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greater than surface elevation landward of the BACI sill (Figure 4.5B, T = 5.52, DF = 2, P > |t| = 

0.03). SOM (%) landward of the CI sills was greater than SOM landward of the BACI sill 

(Figure 4.5C, T = 4.92, DF = 2, P > |t| = 0.04). Total stem density of marsh macrophytes was 

greater at CI sills than at the BACI sill; however, this difference was not significant (Figure 

4.5D, T = 2.10, DF = 2, P > |t| = 0.17).  

Comparison of sills, control marshes, and bulkheads 

Catch rates (individuals and g per trap set) of fishes were greater along the unvegetated 

edge of sills than bulkheads (Figure 6A-B, P < 0.05, Tukey’s posthoc tests, Table B6), while 

control marsh catch rates were not different from catch rates at marsh sill or bulkheaded sites 

(Figure 4.6A-B, P > 0.05, Tukey’s post hoc tests). Trap catch rates of crustaceans were not 

different along the unvegetated edge between sill, control marsh, and bulkheaded sites (Figure 

4.6A-B, individuals per trap set, F = 1.14, DF = 2, P = 0.38, and grams per trap set, F = 0.04, DF 

= 2, P = 0.95). Resident marsh fishes made up 81% of the individuals and 76% of the biomass 

caught in traps at sill sites, while marsh residents made up only 11% of the individuals and 15% 

of the biomass caught at control marsh sites, and were completely absent from unvegetated 

bulkheaded sites (Table 4.2). Epibiotic cover differed between sills, bulkheads, and along the 

edge of the control marshes (Figure 4.6C, Table 4.B7). The proportion of cover by filter-feeding 

bivalves (C. virginica and mytilid mussels) was greater on sills than on bulkheads or along 

control marsh edges (P < 0.05, PERMANOVA pair-wise tests). The proportion of cover by 

Semibalanus barnacles was greater on bulkheads than along control marsh edges (P < 0.05), but 

not different from sills (P > 0.05, PERMANOVA pair-wise tests). The proportion of cover by 

other epibiota (tunicates, sponges, and bryozoans) was greater on bulkheads than along control 

marsh edges and sills (P < 0.05, PERMANOVA pair-wise tests).  
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Discussion 

Effects of sills on habitat use by fishes and crustaceans 

Marshes with sills support higher abundances and diversity of nekton three or more years 

post-construction (Figure 4.2A-B and Figure 4.6A-B), but this enhancement is not evident 

immediately after construction (< one year) (Figure 4.5A-D). A majority of the transient species 

that we caught were juveniles (Table 1), indicating that the fringing salt marshes at our sites 

probably serve as nursery habitat (Hettler 1989, Minello et al. 2003, Peterson and Turner 1994). 

Marsh with sills may support higher abundances and diversity of nekton via multiple 

mechanisms: (1) Providing spatial refuges from predation for resident and juvenile fishes via 

increasing structural complexity of the habitat (Grabowski 2004); and (2) Increasing food 

availability via the colonization and growth of epibiota on the sill itself and accumulation of 

organic material (Bulleri and Chapman 2010, Craft 2003). Epibiota found on the sill (Figure 6C), 

such as oysters (Crassostrea virginica), mytilid mussels, Semibalanus barnacles, and bryazoans 

(Bugula spp.) occur naturally on intertidal oyster reefs (Wells 1961, Fodrie et al. 2014) and may 

serve as food for many of the fish and crustaceans we caught, including sheepshead 

(Archosargus probatocephalus), stone crabs (Menippe mercenaria), L. rhomboides and C. 

sapidus (Peterson et al. 2003). We found no evidence that SOM was enhanced by the presence of 

a sill (Figure 3B), rather SOM likely increased as a result of planting of marsh macrophytes 

landward of the sill. Therefore, the establishment of marsh seems necessary to provide SOM as a 

food source for juvenile and resident nekton.  

Differences in nekton catch rates and diversity between 1-yr-old and 3-yr-old sills (Figure 

4.5A) may be a consequence of any of several physical and biological differences in <1-yr-old 
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BACI and >3-yr-old CI sill sites. A lower mean surface elevation directly landward of the sill (-

0.336 m NAVD88) at the PKS BACI sill site when compared to older PKS CI sill sites (-0.166 to 

0.003 m NAVD88) meant greater water depths at high tide (Figure 4.5B). Deeper water 

facilitates more access of large predators to the marsh and thus potentially reduces (via predation 

or behavioral avoidance by prey) densities of juvenile fish and crustaceans found in the marsh. 

Ruiz et al. (1993) found that densities and survivorship of juvenile fishes and crustaceans 

increased with decreasing depth and most predators of these species were found at a depth over 

0.7 m or greater. This depth is approximately the equivalent mean depth during high tide at an 

elevation of -0.2 m NAVD88 at our PKS study sites. Thus, the <1-yr-old PKS BACI sill had 

greater access for predators than the >3-yr-old PKS CI sills. The PKS BACI sill site also had a 

lower SOM content than the older PKS CI sill sites (Figure 4.5C), indicating that the PKS BACI 

sill provided less organic material and detritus for benthic-feeding species, such as Mugil spp. 

and Palaemonetes spp., to consume than the PKS CI sill sites. Fewer refuges from predation and 

lower food resource availability at the younger PKS BACI sill site as compared to the older PKS 

CI sill sites may have led to lower nekton abundances. This may be a consequence of the planted 

marsh, rather than the presence of the sill structure itself. Finally, the PKS BACI sill site tended 

to have lower total stem densities of all marsh macrophytes, and therefore lower structural 

complexity, when compared to the PKS CI sill sites (Figure 4.5D), although this difference was 

not statistically significant. Salt marsh macrophytes typically need multiple growing seasons to 

clonally expand and cover a site, and sediment surface elevation and SOM typically increase 

with salt marsh age, if sediment supply is adequate and subsidence is not occurring (Craft et al. 

2002, 2003). We speculate that these results may indicate that the presence of a sill structure 

alone may not enhance nekton use of intertidal habitat and that marsh macrophyte establishment 
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(either through planting or natural recruitment) may be a critical aspect of enhanced of fish 

nursery habitat, although this hypothesis has yet to be tested.  

We acknowledge that one of the shortcomings of control-impact designs is that observed 

differences between impact and control sites may be due to intrinsic differences in the sites, 

rather than differences caused by the “impact” of interest (Osenberg et al. 1994). However, as 

stated in the Methods, we have made efforts to minimize site-specific differences that may affect 

nekton catch rates. There are also potential concerns (e.g., differences in sites) with CI  (sill post-

construction versus control marsh) studies and with substituting space for time by comparing sill 

sites of varying ages to predict the trajectory of habitat development and nekton use of living 

shorelines. However, we used a combination of approaches (e.g., intensive sampling of nekton at 

multiple pairs of sill and control sites, measurements of multiple habitat characteristics) to 

evaluate the effects of living shorelines on nekton use. Despite these concerns, our results are 

consistent with the findings of other, complimentary studies (no enhancement of nekton 1-yr 

post-construction of sills, Currin et al. 2007, enhancement of nekton 2 to 3-yrs post-construction 

of oyster reefs, Scyphers et al. 2011 and Le Peyre et al. 2014). 

In contrast to the observed enhancement of nekton abundances and diversity within the 

marsh at older sill sites (fyke net data), seine data suggest that the presence of a sill does not 

increase abundance or diversity of nekton within seaward seagrass or mudflat habitats, regardless 

of the age of the sill (Figure 4.2C-D, Figure 4.4E-H). Although not directly comparable due to 

different gear types being used for sampling, the nekton community occupying seagrass patches 

seaward of the sills was dominated by the same species that dominated the salt marsh catches 

(e.g., Mugil spp., L. rhomboides, L. xanthurus, Eucinostomus spp., and Paralichthys spp.), 

although L. rhomboides made up a larger percentage of the catches in seagrass. However, the 
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abundance and community composition did not differ between seagrass habitats at sill and 

control marsh sites. This result may be a consequence of high variability in seagrass shoot 

density and patchiness of seagrass cover at the marsh sill and control sites (Figure 4.3D). 

Additionally, the unvegetated corridor between the sill or control marsh and the beginning of a 

seagrass patch was typically 5 m or greater in length, which could have precluded nekton from 

crossing readily to utilize both structured habitats cite a Minello paper here. Sandflat or mudflat 

corridors between structured habitats may have higher predation rates than vegetated habitats and 

may serve as a barrier between habitats for juvenile nekton (Irlandi and Crawford 1997, Micheli 

and Peterson 1999, Jelbart et al. 2006, Rozas et al. 2011). 

Comparison of sills to control marshes and bulkheads 

Higher abundances of fishes at sill sites relative to bulkhead sites indicated that the 

unvegetated habitat adjacent to sills was serving as a more suitable habitat for fishes than the 

unvegetated habitat adjacent to bulkheads (Figure 4.6A-B). The difference in catch rates was 

driven primarily by the absence of resident fishes such as F. heteroclitus and F. majalis at 

bulkhead sites (Table 4.2). Although there were no differences in crustacean catch rates between 

bulkheads and marsh sills, Palaemonetes spp., another marsh resident, was also absent from the 

bulkheaded sites (Table 4.2). Both resident and juvenile transient species benefit from 

unvegetated edge adjacent to salt marsh (Lipcius et al. 2005); however, resident species also 

utilize the interior marsh during high tide (Peterson and Turner 1994). This dependency on the 

marsh interior may explain the absence of resident species at bulkheaded sites.  

Bivalves, such as C. virginica and mytilid mussels, were the dominant epibiota on sills, 

while barnacles formed a larger proportion of the cover on bulkheads (Figure 4.6C). Thus, the 

epibiotic community on sills resembles that of an intertidal oyster reef more so than that on 
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bulkheads (Wells 1961, Fodrie et al. 2014).  Nekton that use intertidal oyster reefs for refuge and 

food resources, such as oyster toadfish (Opsanus tau) and A. probatocephalus (Peterson et al. 

2003), would likely receive similar benefits from stone sills once the epibiotic community has 

become established. Additionally, the relief and geometry of a sill is closer to that of an oyster 

reef than is a vertical bulkhead's geometry. Therefore, a sill is likely to provide refuge and 

resources more similar to those provided by oyster reefs (Chapman and Blockley 2009, Scyphers 

et al. 2011). Grabowski et al. (2005) and Geraldi et al. (2009) found that restored oyster reefs 

adjacent to salt marshes did not enhance abundances and were functionally redundant as fish 

habitat. However, the reefs constructed in both of those studies were lower in vertical relief and 

overall footprint than the sills sampled in our study. The marsh vegetation in the Grabowski et al. 

and Geraldi et al. studies may have also been older and better established than the young, 

recently planted marshes in our study. Therefore, increases in habitat structural complexity in the 

previously studied restored oyster reefs may have been less than increases associated with stone 

sills in our study. 

Design, site suitability, monitoring, and adaptive management of living shorelines 

To ensure that our results guide improved coastal defense strategies, we identify several 

aspects of living shorelines that warrant further research. If one major goal of a living shoreline 

is to sustain or enhance multiple ecosystem services, then additional studies targeting the 

delivery of all those services are needed. A better understanding of the relationship between sill 

placement relative to marsh plantings and/or design (e.g., size, distance from shore, number of 

drop-downs or gaps, orientation relative to shore) and accessibility of intertidal habitat to nekton 

is needed. For example, historically, the natural orientation of intertidal oyster reefs was often 

perpendicular to shore; therefore constructing structures to mimic this orientation may better 
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reflect natural stabilization processes acting on shorelines and may provide greater access of 

habitat to nekton (Grave 1901). Habitats will likely be more accessible to nekton where channel 

flows are high and sediment deposition is low landward of a structure (including access for 

larger, predatory fish: Figure 7), although this model has yet to be tested. Factors such as tidal 

regime, shoreline geomorphology, local sediment supply, fetch, and storm frequency will 

influence the trajectory of ecosystem development of a living shoreline and should be considered 

further (Ruggiero and McDougal 2001, Cahoon 2006, Ranasinghe and Turner 2006). Finally, the 

type of shallow subtidal habitats (e.g., seagrass or mudflat) that would be replaced by a structure 

should also be identified and the costs and benefits of habitat trade-offs should be assessed (vis-

à-vis ecosystem services: Peterson and Lipcius 2003).  

Despite the need for additional research on living shorelines, our results allow us to make 

some specific recommendations for implementing ecologically sustainable coastal defense 

strategies. First, we suggest wherever feasible, living shorelines (i.e. vegetation alone or, if 

necessary due to higher rates of erosion, vegetation with a sill) be used to stabilize a shoreline in 

lieu of bulkheads to provide better habitat for nekton. Also, sites should be monitored for a 

minimum of three years after construction and periodically thereafter to ensure that vegetation 

has become established, epibiota have colonized structures, and nektonic organisms are able to 

access the marsh using the methodology presented in this paper. If vegetation has not become 

established after three years, additional planting may be required. If nekton access is 

compromised, additional openings or a reduction in the height of the structure may be necessary 

to increase water flow or decrease sedimentation. Careful design and management of living 

shorelines may sustain ecosystem services, such as habitat provision and erosion protection, even 

as sea levels rise (Rodriguez et al. 2014) and storminess increases (Arkema et al. 2013). 
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Therefore, living shorelines should be considered further as a preferred option for shoreline 

protection that simultaneously enhances the ecosystem service of habitat enhancement for fish 

and mobile crustaceans. 
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TABLES 

Table 4.1. Catch rates (individuals per 6 hrs, high to low tide and g per 6 hrs) and mean standard 
length (mm) of species caught in salt marsh habitat at CI sill and control marsh sites.  
 
    Sill Control 
Speciesa BACIb Ind. 6hr-1 g 6hr-1 SL (mm) Ind. 6hr-1 g 6hr-1 SL (mm) 
Fish 
Mugil species (T) P 109.1 (65.9) 966.8 (490.6) 91.2 (1.8) 9.6 (6.0) 190.3 (124.5) 89.8 (4.0) 

Lagodon rhomboides (T) P 104.5 (7.9) 543.0 (134.9) 54.1 (0.8) 63.8 (16.5) 457.9 (134.9) 58.4 (1.0) 
Leiostomus xanthurus (T) P 18.4 (5.5) 72.1 (9.8) 56.4 (1.1) 5.7 (2.5) 19.9 (9.9) 51.5 (1.1) 
Eucinostomus species (T) P 9.7 (3.7) 23.9 (9.1) 43.0 (1.2) 1.1 (0.1) 1.9 (0.2) 46.0 (4.4) 
Fundulus heteroclitus (R) 

 
9.6 (4.1) 41.5 (20.4) 48.5 (0.8) 1.3 (1.0) 3.2 (1.8) 45.9 (1.9) 

Fundulus majalis (R) 
 

5.5 (1.8) 27.2 (10.5) 58.7 (2.1) 0.4 (0.1) 1.9 (0.8) 61.4 (4.9) 
Menidia menidia (R) 

 
2.0 (2.0) 2.0 (1.5) 45.5 (2.8) 0.1 (0.1) 0.1 (0.0) 41.0 (0.0) 

Paralichthys species (T) P 1.9 (0.7) 87.6 (8.7) 141.7 (17.3) 0.5 (0.2) 58.7 (36.2) 223.6 (50.0) 

Cynoscion nebulosus (T) P 1.4 (0.5) 10.9 (2.8) 63.7 (7.6) 0.4 (0.1) 19.4 (10.0) 117.6 (27.9) 
Orthopristis chrysoptera (T) 

 
1.4 (0.5) 21.2 (6.9) 80.7 (3.8) 0.7 (0.3) 14.7 (6.1) 89.5 (6.1) 

Bairdiella chrysoura (T) 
 

1.0 (0.1) 24.1 (5.5) 106.3 (5.2) 0.6 (0.2) 14.4 (2.7) 102.0 (10.9) 
Menidia beryllina (R) P 0.5 (0.3) 1.0 (0.7) 55.9 (3.5) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

Cyprinodon variegatus (R) 
 

0.4 (0.4) 1.4 (1.4) 42.3 (1.6) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 
Symphurus plagiusa (T) P 0.4 (0.1) 1.3 (0.6) 59.5 (7.4) 0.1 (0.1) 0.1 (0.1) 41.3 (4.3) 

Anchoa mitchilli (T)  P 0.4 (0.3) 0.2 (0.3) 48.7 (2.4) 0.1 (0.1) 0.4 (0.2) 69.0 (0.0) 
Lutjanus griseus (T) 

 
0.4 (0.2) 0.5 (0.3) 33.8 (5.0) 0.1 (0.1) 0.1 (0.1) 36.0 (1.0) 

Sciaenops ocellatus (T) P 0.2 (0.1) 20.6 (10.5) 181.7 (17.0) 0.1 (0.1) 15.8 (15.8) 245.5 (94.5) 
Strongylura marina (T) 

 
0.2 (0.0) 0.8 (0.3) 148.3 (24.9) 0.4 (0.3) 1.4 (1.4) 64.6 (32.3) 

Anguilla rostrata (T) 
 

0.1 (0.1) 11.8 (7.8) 413.0 (107.0) 0.1 (0.1) 20.7 (20.7) 468.5 (46.5) 
Opsanus tau (R) P 0.1 (0.1) 48.6 (48.6) 207.0 (37.0) 0.1 (0.1) 16.2 (16.2) 204.0 (0.0) 
Archosargus probatocephalus (T) 0.1 (0.1) 0.1 (0.0) 25.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 
Chasmodes saburrae (T) 

 
0.1 (0.1) 0.1 (0.1) 50.0 (0.0) 0.1 (0.1) 0.3 (0.3) 53.0 (0.0) 

Hypsoblennius hentz (T) 
 

0.1 (0.1) 0.1 (0.1) 45.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 
Sphyraena barracuda (T) 

 
0.1 (0.1) 12.5 (12.5) 190.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

Sphyraena borealis (T) 
 

0.1 (0.1) 1.0 (1.0) 127.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 
Trachinotus falcatus (T) 

 
0.1 (0.1) 0.1 (0.1) 35.0 (0.0) 0.1 (0.1) 0.0 (0.0) 0.0 (0.0) 

Oligoplites saurus (T) 
 

0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.1 (0.1) 0.1 (0.1) 35.0 (0.0) 

Synodus foetens (T) 
 

0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.1 (0.1) 0.3 (0.3) 83.0 (0.0) 
Crustaceans 
Palaemonetes species (R) P 31.9 (15.0) 7.1 (3.4) 22.0 (0.3) 2.3 (1.7) 0.4 (0.3) 21.6 (0.5) 
Callinectes sapidus (T) P 18.0 (5.6) 728.6 (70.1) 74.3 (1.9) 12.0 (2.1) 554.9 (120.6) 74.6 (2.3) 
Penaeus species (T) P 9.4 (1.0) 17.4 (5.0) 49.3 (1.4) 1.9 (0.5) 5.5 (1.5) 55.9 (3.2) 
Menippe mercenaria (T)   0.1 (0.1) 14.3 (14.3) 196.0 (0.0) 0.1 (0.1) 17.1 (17.1) 79.0 (0.0) 
 

aTransient species are defined as fishes that spend only a portion of their life cycle in the estuary  and are denoted 
with a (T). Resident species spend their entire life cycle within the estuary and are denoted with a (R) - after 
Peterson and Turner 1994 and Hettler 1989.  
 
bSpecies that were caught within the marsh at the BACI PKS sill site post-construction are denoted with a "P".
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Table 4.2. Catch rates (individuals per 4 hrs, 2 hours before and 2 hours after high tide, and g per 
4 hrs) and mean standard length (mm) of species caught in salt marsh edge habitat at sill, control 
marsh and bulkhead sites.  
 
  Sill Control Bulkhead 

Speciesa 
Ind. 

4hr-1 g 4hr-1 
SL 

(mm) 
Ind. 4hr-

1 g 4hr-1 SL (mm) 
Ind. 

4hr-1 g 4hr-1 SL (mm) 

Fish                                     
Fundulus 
heteroclitus (R) 

23
.7 

(9.
0) 

79
.3 

(30
.3) 

51
.1 

(0.
6) 

1.
3 

(0.6
) 

8.
2 

(4.
1) 

60.
2 

(29
.8) 

0.
0 

(0.
0) 

0.
0 

(0.
0) 0.0 

(0.
0) 

Lagodon 
rhomboides (T) 

4.
7 

(2.
7) 

20
.4 

(7.
5) 

50
.8 

(1.
1) 

10
.2 

(2.7
) 

44
.1 

(15
.3) 

54.
3 

(1.
6) 

5.
2 

(2.
4) 

21
.7 

(12
.2) 

53.
8 

(0.
9) 

Fundulus majalis  
(R) 

0.
9 

(0.
2) 

3.
8 

(2.
5) 

57
.9 

(5.
3) 

0.
2 

(0.2
) 

1.
2 

(1.
2) 

70.
0 

(15
.8) 

0.
0 

(0.
0) 

0.
0 

(0.
0) 0.0 

(0.
0) 

Orthopristis 
chrysoptera (T) 

0.
7 

(0.
2) 

4.
7 

(1.
9) 

63
.3 

(2.
4) 

1.
7 

(0.2
) 

9.
2 

(2.
8) 

62.
4 

21.
9) 

0.
5 

(0.
2) 

4.
1 

(2.
2) 

67.
3 

(8.
7) 

Cyprinodon 
variegatus (R) 

0.
5 

(0.
3) 

1.
0 

(0.
5) 

38
.3 

(1.
7) 

0.
0 

(0.0
) 

0.
0 

(0.
0) 0.0 

(0.
0) 

0.
0 

(0.
0) 

0.
0 

(0.
0) 0.0 

(0.
0) 

Archosargus 
probatocephalus (T) 

0.
3 

(0.
3) 

0.
8 

(0.
8) 

40
.8 

(1.
5) 

0.
0 

(0.0
) 

0.
0 

(0.
0) 0.0 

(0.
0) 

0.
0 

(0.
0) 

0.
0 

(0.
0) 0.0 

(0.
0) 

Eucinostomus 
species (T) 

0.
1 

(0.
1) 

0.
2 

(0.
3) 

39
.0 

(0.
0) 

0.
0 

(0.0
) 

0.
0 

(0.
0) 0.0 

(0.
0) 

0.
0 

(0.
0) 

0.
0 

(0.
0) 0.0 

(0.
0) 

Cynoscion 
nebulosus (T) 

0.
1 

(0.
1) 

0.
8 

(0.
8) 

95
.0 

(0.
0) 

0.
0 

(0.0
) 

0.
0 

(0.
0) 0.0 

(0.
0) 

0.
0 

(0.
0) 

0.
0 

(0.
0) 0.0 

(0.
0) 

Lutjanus griseus (T) 
0.
1 

(0.
1) 

0.
2 

(0.
2) 

51
.0 

(0.
0) 

0.
1 

(0.1
) 

1.
0 

(1.
0) 

80.
0 

(0.
0) 

0.
1 

(0.
1) 

0.
7 

(0.
6) 

71.
0 

(0.
0) 

Symphurus plagiusa 
(T) 

0.
0 

(0.
0) 

0.
0 

(0.
0) 

0.
0 

(0.
0) 

0.
1 

(0.1
) 

0.
1 

(0.
1) 

15
1.0 

(0.
0) 

0.
0 

(0.
0) 

0.
0 

(0.
0) 0.0 

(0.
0) 

Anguilla rostrata (T) 
0.
0 

(0.
0) 

0.
0 

(0.
0) 

0.
0 

(0.
0) 

0.
0 

(0.0
) 

0.
0 

(0.
0) 0.0 

(0.
0) 

0.
1 

(0.
1) 

3.
0 

(3.
1) 

31
0.0 

(0.
0) 

Hypsoblennius hentz 
(T) 

0.
0 

(0.
0) 

0.
0 

(0.
0) 

0.
0 

(0.
0) 

0.
1 

(0.1
) 

0.
2 

(0.
1) 

44.
5 

(0.
0) 

0.
0 

(0.
0) 

0.
0 

(0.
0) 0.0 

(0.
0) 

Crustaceans             
Palaemonetes 
species (R) 

1.
5 

(0.
7) 

0.
3 

(0.
2) 

23
.4 

(0.
7) 

0.
3 

(0.0
.7) 

0.
1 

(0.
0) 

23.
5 

(0.
0) 

0.
0 

(0.
0) 

0.
0 

(0.
0) 0.0 

(0.
0) 

Penaeus species (T) 
0.
1 

(0.
1) 

0.
5 

(0.
3) 

67
.0 

(4.
0) 

0.
5 

(0.1
) 

0.
8 

(0.
7) 

52.
8 

(3.
1) 

0.
2 

(0.
2) 

1.
0 

(1.
1) 

69.
7 

(5.
7) 

Panopeus herbstii 
(R) 

0.
1 

(0.
1) 

0.
5 

(0.
5) 

29
.0 

(0.
0) 

0.
0 

(0.0
) 

0.
0 

(0.
0) 0.0 

(0.
0) 

0.
0 

(0.
0) 

0.
0 

(0.
0) 0.0 

(0.
0) 

 

aTransient species are defined as fishes that spend only a portion of their life cycle in the estuary  and are denoted 
with a (T). Resident species spend their entire life cycle within the estuary and are denoted with a (R) - after 
Peterson and Turner 1994 and Hettler 1989
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FIGURES 

 
 
Figure 4.1. a) Map of locations of (b) the BACI sill and control marsh site on Hatteras Island, 
Outer Banks, NC; (c) the BACI sill, (d) the bulkhead, (e) the CI sill, and (f) control marsh sites 
in Pine Knoll Shores (PKS), NC; (g) the BACI oyster bag sill and control marsh site at Morris 
Landing, Holly Ridge, NC; and (h) the BACI oyster bag sill and control marsh site on Jones 
Island, Swansboro, NC. The BACI control marsh sites are not pictured. Solid lines to 
photographs indicate BACI sites and dotted lines to photographs indicate CI sites.  
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Figure 4.2. Mean a) CPUE, individuals per fyke net set, in salt marsh; b) CPUE, grams per fyke 
net set, in salt marsh; c) CPUE, individuals per seine net set, in subtidal habitats; and d) CPUE, 
grams per seine net set, in subtidal habitats. Error bars are ± standard error (SE). Black bars with 
different lower case letters (“a” or “b”) and gray bars with different upper case letters (“A” or 
“B”) are significantly different (P<0.05).  
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Figure 4.3. Mean a) total stem density across all species of marsh macrophytes; b) SOM (%); 
surface elevation (NAVD88, m) of the mudflat within one meter seaward of marsh edge; and d) 
total seagrass shoot density across all species with increasing distance from the marsh edge (1 m 
to 20 m) at CI control and sill sites. Error bars are ± standard error (SE). Bars with different 
lower case letters (“a” or “b”) are significantly different (P<0.05). 
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Figure 4.4. Mean CPUE (individuals per set) before and after construction of the sill at Hatteras, 
Pine Knoll Shores, Jones Island, and Morris Landing in salt marsh (fyke net, a-d, respectively) 
and subtidal habitat (seine net, e-h, respectively). Error bars are ± standard error (SE). 
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Figure 4.5. a) Change in fish CPUE (individuals per fyke net set) and crustacean CPUE between 
BACI (<1-y post-construction) and CI (3-yrs [one site] and 8-yrs [two sites] post-construction) 
sill and control marsh sites in PKS. The short dashed line represents the mean change in fish 
CPUE of the 3 CI sill sites and the long dashed line represents the mean change in crustacean 
CPUE of the 3 CI sill sites. b) Mean surface elevation (NAVD88, m) of the mudflat within one 
meter landward of the sill; c) Mean SOM (%); and d) Mean density (per m2) of marsh 
macrophytes at BACI and CI sill sites. The short dashed line represents the mean surface 
elevation, SOM, or stem density of marsh macrophytes of the 3 CI sill sites. An “*” indicates 
that this mean is significantly different from the mean of the BACI sill site one year after sill 
construction (P<0.05). Error bars are ± standard error (SE). 
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Figure 4.6. Mean fish and crustacean CPUE: a) individuals per trap set and b) grams per trap set 
along the unvegetated edge of sills, control marshes, and bulkheads. c) Proportion of coverage of 
bivalves (oysters and ribbed mussels), barnacles, other epibiota (tunicates, bryozoans, and 
sponges) on stone sills, on the sand/mud substrate the edge of control marshes, and on bulkheads. 
Black bars or striped bars with different lower case letters (“a” or “b”), light gray bars or dark 
gray bars with different upper case letters (“A” or “B”), and black dotted bars with different 
upper case cursive letters (“A” or “B”) are significantly different (P<0.05). Error bars are ± SE.  
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Figure 4.7. Conceptual diagram of the evolution of the accessibility of marsh and other shallow 
intertidal habitat located landward of a structure through time. After a structure is constructed, 
the amount (horizontal and vertical) of inundation and thus accessibility of landward intertidal 
habitat to nekton will depend on the rate of water flow and the amount of sediment available for 
deposition landward of the structure. Higher flow rates and lower rates of sediment deposition 
will contribute to the maintenance of an intertidal habitat that is regularly inundated and 
accessible to nekton. Lower flow rates and higher rates of sediment deposition will contribute to 
the loss of inundated intertidal habitat and reduce accessibility of the habitat to nekton, while 
inducing sedimentation increases with the marsh that may provide resilience to sea-level rise. 
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APPENDIX 1.A: VERIFICATION OF SUCCESSFUL PERIWINKLE AND FIDDLER 
CRAB DENSITY MANIPULATIONS 

 

Methods 

To ensure that shading did not influence our results, we took photosynthetically active 

radiation (PAR) measurements in the afternoon (when the sun is at an angle that would result in 

shading) inside at 30 cm above the base of the enclosure (mean height of the S. alterniflora 

plants), inside at the base of the enclosure, and outside of our enclosures. After removing all 

fiddler crabs and periwinkles from the enclosed plots, we added marsh periwinkles with shell 

height of at least 18 mm and female U. pugnax and U. pugilator with a carapace width of 10 mm 

or greater back to the addition treatment plots. Female crabs were used because their feeding 

rates and burrow occupation time is higher than males (Weissburg 1993, Hemmi 2003). We 

recorded wet weights (g), measured (shell length or carapace width, mm), and numbered each 

periwinkle and fiddler crab (using a sharpie marker and superglue as a sealant) prior to adding 

them to the plots. Bi-weekly in June, July, and August, we handpicked fiddler crabs and marsh 

periwinkles from the removal plots. At the conclusion of the experiment, we recovered labeled 

periwinkles from periwinkle addition treatment plots and recorded fiddler crab burrows in fiddler 

addition treatment plots. Individual fiddler crabs added to the enclosures were not recovered at 

the conclusion of the experiment. 

 

Results 

 There was no significant difference in the light measurements (PAR) taken inside of the 

enclosure at 30 cm above the base (mean height of S. alterniflora plants in the enclosures, 

3142±75 µmol s-1 m-2) and outside of the enclosures (3425±65 µmol s-1 m-2, P > 0.05 Tukey’s 
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posthoc test). PAR was lower at the base of the enclosure (2647±8 µmol s-1 m-2) when compared 

to the PAR outside and the PAR at 30 cm above the base of the enclosure (P < 0.05, Tukey’s 

posthoc test). PAR taken at the base of the enclosure are assumed to be equivalent to light 

measurements to within a stand of S. alterniflora, which would be self-shading at this height, 

therefore we assume that the enclosures did not result in additional shading of our treatment 

plots. Ambient densities of marsh periwinkles and fiddler crabs did not differ between treatments 

prior to density manipulations (Table 1.A1). At the conclusion of the experiment, there was no 

difference in the number of marsh periwinkles between the periwinkle addition treatments (with 

and without fiddler crabs) or in the number of fiddler crab burrows between the fiddler crab 

addition treatments (with and without periwinkles) (Tables 1.A1, 1.A3). We recovered 215±8 of 

the 300 periwinkles after Hurricane Irene, indicating that although some periwinkles were lost 

during the experiment, a majority of the periwinkles remained in the plots post-Hurricane (Figure 

1.A1). Mean shell growth, change in wet weight (g), and dry tissue to shell proportion of marsh 

periwinkles did not differ between periwinkle addition treatments (Tables 1.A2, 1.A4). A 

majority of the marsh periwinkles removed after initial periwinkle removal were less than 18mm 

in shell length and a majority of the crabs removed after the initial crab removal were males or 

juveniles (less than one cm carapace length). We did not observe any effects of marsh 

periwinkles on abundance of fiddler crabs in the plots, based on the densities of burrows 

remaining at the conclusion of the experiment.
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Table 1.A1. The number of periwinkles and fiddler crabs present in the plots prior to 
experimental manipulations, removed from the removal treatments during the experiment, and 
counted within the addition plots at the conclusion of the experiment. Error bars present ± 1 SE 
(n= 6). 
 

Treatments 

Pre-
treatment 

fiddler 
crab 

density 

Pre-
treatment 
periwinkle 

density 

Fiddler 
crabs 

removed 
Periwinkles 

removed 

Final 
periwinkle 

count 

Final 
fiddler 
crab 

burrow 
count 

Open (ambient 
densities) 29 ± 16 18 ± 3 NA NA NA NA 
       
Periwinkle 
addition & fiddler 
crab removal 21 ± 3 29 ± 7 95 ± 7  NA 211 ± 14  NA 
       
Periwinkle & 
fiddler crab 
addition 26 ± 3 25 ± 4 NA NA 213 ± 7  65 ± 7  
       
Periwinkle 
removal & fiddler 
crab addition 22 ± 4 39 ± 16 NA 174 ± 30  NA 55 ± 7  
       
Periwinkle & 
fiddler crab 
removal 23 ± 3 27 ± 6 92 ± 9  173 ± 36  NA NA 
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 Table 1.A2. The shell growth (mm), change in wet weight (g), and final body mass proportion 
(g tissue/ g shell dry weight) of labeled periwinkles recovered at the conclusion of the 
experiment. Error bars present ± 1 SE (n= 6). 
 

Treatments 
Shell growth 

(mm) 

Change in 
wet weight 

(g) 

Body mass 
proportion (g 

tissue/g shell dry 
weight) 

Open (ambient densities) NA NA NA 
Periwinkle addition & fiddler crab removal 0.15 ± 0.16 0.07 ± 0.19 0.06 ± 0.02 
Periwinkle & fiddler crab addition 0.18 ± 0.18 0.45 ± 0.24 0.06 ± 0.02 
Periwinkle removal & fiddler crab addition NA NA NA 
Periwinkle & fiddler crab removal NA NA NA 
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Table 1.A3. ANOVA results for periwinkle and fiddler crab initial (pre-treatment) densities, 
removals, and final counts at the conclusion of the experiment. P < 0.05 are in bold. 
 

Response Variable ANOVA Results 
Pre-treatment fiddler crab 
density Source DF 

Sum of 
Squares 

Mean 
Square F Ratio Prob > F 

Type 4 263.2 65.8 0.9371 0.4587 
Error 25 1755.5 70.22 

 
  

Pre-treatment periwinkle 
density Source DF 

Sum of 
Squares 

Mean 
Square F Ratio Prob > F 

Type 4 1458.53 364.63 0.804 0.5342 
Error 25 11338.67 453.55 

 
  

Fiddler crabs removed 
Source DF 

Sum of 
Squares 

Mean 
Square F Ratio Prob > F 

Type 1 24.0833 24.083 0.06 0.8114 
Error 10 4010.8333 401.083 

 
  

Periwinkles removed 
Source DF 

Sum of 
Squares 

Mean 
Square F Ratio Prob > F 

Type 1 3 3 0.0005 0.9834 
Error 10 66275 6627.5 

 
  

Final periwinkle count 
Source DF 

Sum of 
Squares 

Mean 
Square F Ratio Prob > F 

Type 1 14.0833 14.083 0.02 0.8903 
Error 10 7034.8333 703.483 

 
  

Final fiddler crab burrow count 
Source DF 

Sum of 
Squares 

Mean 
Square F Ratio Prob > F 

Type 1 320.3333 320.333 1.1797 0.3029 
Error 10 2715.3333 271.533     
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Table 1.A4. ANOVA results for periwinkle shell growth (mm), change in wet weight (g), and 
final body mass proportion (g tissue/g shell dry weight). P < 0.05 are in bold. 
 

Response Variable ANOVA Results 
Shell growth (mm) 

Source DF 
Sum of 
Squares 

Mean 
Square F Ratio Prob > F 

Type 1 0.0007 0.0007 0.0224 0.8841 
Error 10 0.3224 0.03224 

 
  

Change in wet weight (g) 
Source DF 

Sum of 
Squares 

Mean 
Square F Ratio Prob > F 

Type 1 0.0008 0.0008 0.2994 0.5963 
Error 10 0.0255 0.0025 

 
  

Body mass proportion (g tissue/g 
shell dry weight) Source DF 

Sum of 
Squares 

Mean 
Square F Ratio Prob > F 

Type 1 0 0 0.0285 0.8692 
Error 10 0.0002 0     
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A B 

  
Photo credit: R. Gittman Photo credit: R. Gittman 

 
 
Figure 1.A1. Photograph of A) a periwinkle addition and fiddler crab removal enclosure one day 
before the landfall of Hurricane Irene on a rising tide; and B) the same periwinkle addition and 
fiddler crab removal enclosure two days post-Hurricane Irene on a rising tide.  
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APPENDIX 1.B: ANALYSIS OF CARBON AND NITROGEN CONTENT IN S. 
ALTERNIFLORA SHOOTS FROM TREATMENTS 

 

Table 1.B1. Carbon (content by dry weight, %), Nitrogen (content by dry weight, %), and 
Carbon to Nitrogen ratio (C:N) of  youngest shoot of S. alterniflora stems (n=10) per treatment 
plot (n=6). Values represent means ± SE.  
 

Treatment Carbon (%)b Nitrogen (%)b C:Nb 
Open (ambient 
densities)a 42.89 ± 0.19 1.81 ± 0.07 27.85 ± 1.09 
          
Fiddler crab & 
periwinkle removal 42.62 ± 0.23 1.71 ± 0.09 29.39 ± 1.50 
          
Fiddler crab addition 
& periwinkle removal 42.65 ± 0.43 1.78 ± 0.08 28.18 ± 1.27 
          
Fiddler crab & 
periwinkle addition 42.75 ± 0.28 1.80 ± 0.06 27.87 ± 1.02 
          
Periwinkle addition 
& fiddler crab 
removal 42.39 ± 0.43 1.89 ± 0.10 26.55 ± 1.38 

 

a The open treatment contains ambient, unmanipulated densities of marsh periwinkles and fiddler crabs and does not 
have an enclosure. 
 
b There were no differences in C, N, and C:N across treatments (p>0.05, see Tables 1.B2-4). 
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Table 1.B2. ANOVA and a priori planned comparisons results comparing the Carbon content 
(%) of S. alterniflora leaf tissue between treatments. The ANOVA compares all treatments, 
while the planned comparisons are as follows: Comparison 1: open (ambient densities) treatment 
is compared to all other treatments; Comparison 2: periwinkle & fiddler crab removal treatment 
is compared to all other treatments except open treatment; Comparison 3: fiddler crab addition 
treatments (regardless of periwinkle treatment) are compared to periwinkle addition & fiddler 
crab removal treatment; and Comparison 4: periwinkle addition & fiddler crab removal treatment 
is compared to periwinkle & fiddler crab addition treatment. P < 0.05 are in bold. 
 
One-way 
ANOVA DF 

Sum of 
squares Mean square F ratio Prob > F 

Model 4 0.81 0.20 0.3111 0.8678 
Error 25 16.20 0.65 

 
  

Planned comparisons 
Comparison 1a Comparison 2 Comparison 3 Comparison 4 Treatments   

Open (ambient densities) + NA NA	   NA	  
Periwinkle addition & fiddler crab 
removal - + +	   +	  
Periwinkle & fiddler crab addition - + -‐	   -‐	  
Periwinkle removal & fiddler crab 
addition - + -‐	   NA	  
Periwinkle & fiddler crab removal - - NA	   NA	  
  

 	   	   	  
	  	  

Partitioned Sum of Squares 0.3922 0.0020	   0.3803 0.0320 
t Ratio 

 
0.7779 -‐0.0556	   0.7660 -0.2223 

Prob>|t|   0.4439 0.9561	   0.4508 0.8259 
 

a Treatments with a “+” are compared to treatments with a “-“ and treatments with “NA” are not included in the 
comparison. 
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Table 1.B3. ANOVA and planned comparisons results comparing the Nitrogen content (%) of S. 
alterniflora leaf tissue between treatments. The ANOVA compares all treatments, while the 
planned comparisons are as follows: Comparison 1: open (ambient densities) treatment is 
compared to all other treatments; Comparison 2: periwinkle & fiddler crab removal treatment is 
compared to all other treatments except open treatment; Comparison 3: fiddler crab addition 
treatments (regardless of periwinkle treatment) are compared to periwinkle addition & fiddler 
crab removal treatment; and Comparison 4: periwinkle addition & fiddler crab removal treatment 
is compared to periwinkle & fiddler crab addition treatment. P < 0.05 are in bold. 
 
One-way 
ANOVA DF Sum of squares Mean square F ratio Prob > F 
Model 4 0.09 0.02 0.611 0.6587 
Error 25 0.95 0.04 

 
  

Planned comparisons 
Comparison 1a Comparison 2 Comparison 3 Comparison 4 Treatments   

Open (ambient densities) + NA NA	   NA	  
Periwinkle addition & fiddler crab 
removal - + +	   +	  
Periwinkle & fiddler crab addition - + -‐	   -‐	  
Periwinkle removal & fiddler crab 
addition - + -‐	   NA	  
Periwinkle & fiddler crab removal - - NA	   NA	  
  

  	    
  

Partitioned Sum of Squares 0.0008 0.0539 0.0367 0.0010 
t Ratio 

 
0.1455 1.1935 -0.9853 -0.1632 

Prob>|t|   0.8855 0.2439 0.3339 0.8716 
 

a Treatments with a “+” are compared to treatments with a “-“ and treatments with “NA” are not included in the 
comparison. 
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Table 1.B4. ANOVA and planned comparisons results comparing the C:N ratio of S. alterniflora 
leaf tissue between treatments. The ANOVA compares all treatments, while the planned 
comparisons are as follows: Comparison 1: open (ambient densities) treatment is compared to all 
other treatments; Comparison 2: periwinkle & fiddler crab removal treatment is compared to all 
other treatments except open treatment; Comparison 3: fiddler crab addition treatments 
(regardless of periwinkle treatment) are compared to periwinkle addition & fiddler crab removal 
treatment; and Comparison 4: periwinkle addition & fiddler crab removal treatment is compared 
to periwinkle & fiddler crab addition treatment. P < 0.05 are in bold. 
 
One-way 
ANOVA DF 

Sum of 
squares Mean square F ratio Prob > F 

Source 4 24.60 6.15 0.642 0.6375 
Model 25 239.50 9.58 

 
  

Planned comparisons Comparison 1 

a Comparison 2 Comparison 3 Comparison 4 Treatments   
Open (ambient densities) + NA NA	   NA	  
Periwinkle addition & fiddler crab 
removal - + +	   +	  
Periwinkle & fiddler crab addition - + -‐	   -‐	  
Periwinkle removal & fiddler crab 
addition - + -‐	   NA	  
Periwinkle & fiddler crab removal - - NA	   NA	  
  

  	    
  

Partitioned Sum of Squares 0.1072 15.57 8.64 0.2813 
t Ratio 

 
-0.1058 -1.2751 0.9497 0.1714 

Prob>|t|   0.9166 0.2140 0.3514 0.8653 
 

a Treatments with a “+” are compared to treatments with a “-“ and treatments with “NA” are not included in the 
comparison. 
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APPENDIX 1.C: ANOVA AND PLANNED COMPARISONS RESULTS FOR S. 
ALTERNIFLORA CHANGE IN STEM DENSITY, ABOVE-GROUND BIOMASS, 

PROPORTION OF SCARRED TO TOTAL LEAF LENGTH, CHANGE IN SUMMED 
LIVE STEM HEIGHTS, AND BELOW-GROUND BIOMASS. 

 

Table 1.C1. ANOVA and a priori planned comparisons results comparing the change in S. 
alterniflora stem density from the beginning to the end of the experiment between treatments. 
The ANOVA compares all treatments, while the planned comparisons are as follows: 
Comparison 1: open (ambient densities) treatment is compared to all other treatments; 
Comparison 2: periwinkle addition treatments are compared to periwinkle removal treatments 
(regardless of fiddler crab treatment); Comparison 3: periwinkle & fiddler crab addition 
treatment is compared to periwinkle addition & fiddler crab removal treatment; and Comparison 
4: periwinkle removal & fiddler crab addition treatment is compared to periwinkle & fiddler crab  
removal treatment. P < 0.05 are in bold. 
 

One-way ANOVA DF 
Sum of 
squares Mean square F ratio Prob > F 

Model 4 83.80 20.95 0.9778 0.4374 
Error 25 535.67 21.43 

 
  

Planned comparisons 
Comparison 1a Comparison 2 Comparison 3 Comparison 4 Treatments 

Open (ambient densities) + NA NA NA 
Periwinkle addition & fiddler 
crab removal - + + NA 
Periwinkle & fiddler crab 
addition - + - NA 
Periwinkle removal & fiddler 
crab addition - - NA + 
Periwinkle & fiddler crab 
removal - - NA - 

   
    

Partitioned Sum of Squares 7.01 18.38 56.33 2.083 
t Ratio -0.5719 -0.9261 -1.6215 -0.312 
Prob>|t| 0.5725 0.3633 0.1175 0.7578 
 

a Treatments with a “+” are compared to treatments with a “-“ and treatments with “NA” are not included in the 
comparison. 
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Table 1.C2. ANOVA and a priori planned comparisons results comparing the total above-
ground biomass (g dry weight) of S. alterniflora at the conclusion of the experiment between 
treatments. The ANOVA compares all treatments, while the planned comparisons are as follows: 
Comparison 1: open (ambient densities) treatment is compared to all other treatments; 
Comparison 2: periwinkle addition treatments are compared to periwinkle removal treatments 
(regardless of fiddler crab treatment); Comparison 3: periwinkle & fiddler crab addition 
treatment is compared to periwinkle addition & fiddler crab removal treatment; and Comparison 
4: periwinkle removal & fiddler crab addition treatment is compared to periwinkle & fiddler crab 
removal treatment. P < 0.05 are in bold. 
 
One-way ANOVA DF Sum of squares Mean square F ratio Prob > F 
Model 4 251.81 62.95 1.310 0.2933 
Error 25 1201.12 48.04     
Planned comparisons 

Comparison 1a Comparison 2 Comparison 3 Comparison 4 Treatments 
Open (ambient densities) + NA NA NA 
Periwinkle addition & fiddler crab 
removal - + + NA 
Periwinkle & fiddler crab addition - + - NA 
Periwinkle removal & fiddler crab 
addition - - NA + 
Periwinkle & fiddler crab removal - - NA - 

   
   

Partitioned Sum of Squares 1.89 217.67 21.57 10.68 
t Ratio -0.1986 2.128 0.6700 -0.471 
Prob>|t| 0.8442 0.0433 0.5090 0.6414 
 

a Treatments with a “+” are compared to treatments with a “-“ and treatments with “NA” are not included in the 
comparison. 
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Table 1.C3. ANOVA and a priori planned comparisons results comparing the proportion of total 
scarred leaf length to total leaf length of S. alterniflora at the conclusion of the experiment 
between treatments. The ANOVA compares all treatments, while the planned comparisons are as 
follows: Comparison 1: open (ambient densities) treatment is compared to all other treatments; 
Comparison 2: periwinkle addition treatments are compared to periwinkle removal treatments 
(regardless of fiddler crab treatment); and Comparison 3: periwinkle & fiddler crab addition 
treatment is compared to periwinkle addition & fiddler crab removal treatment. P < 0.05 are in 
bold. 
 
One-way ANOVA DF Sum of squares Mean square F ratio Prob > F 
Model 4 0.2400 0.0600 33.98 <0.0001 
Error 25 0.0441 0.0018 

 
  

Planned comparisons Comparison 
1a 

Comparison 
2 

Comparison 
3 Treatments 

Open (ambient densities) + NA NA 
Periwinkle addition & fiddler crab removal - + + 
Periwinkle & fiddler crab addition - + - 
Periwinkle removal & fiddler crab addition - - NA 
Periwinkle & fiddler crab removal - - NA 
Partitioned Sum of Squares 0.0335 0.2064 0.0000 
t Ratio -4.35 -10.81 0.1400 
Prob>|t| 0.0002 <0.0001 0.8913 
 

a Treatments with a “+” are compared to treatments with a “-“ and treatments with “NA” are not included in the 
comparison. 
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Table 1.C4. ANOVA and a priori planned comparisons results comparing the change in the 
summed live stem heights (cm) of S. alterniflora between the beginning and the end of the 
experiment between treatments. The ANOVA compares all treatments, while the planned 
comparisons are as follows: Comparison 1: open (ambient densities) treatment is compared to all 
other treatments; Comparison 2: periwinkle addition treatments are compared to periwinkle 
removal treatments (regardless of fiddler crab treatment); Comparison 3: periwinkle & fiddler 
crab addition treatment is compared to periwinkle addition & fiddler crab removal treatment; and 
Comparison 4: periwinkle removal & fiddler crab addition treatment is compared to periwinkle 
& fiddler crab removal treatment. P < 0.05 are in bold. 
 

One-way ANOVA DF 
Sum of 
squares Mean square F ratio Prob > F 

Model 4 208351 52088 3.26 0.0279 
Error 25 399676 15987 

  Planned comparisons 
Comparison 1a Comparison 2 Comparison 3 Comparison 4 Treatments 

Open (ambient densities) + NA NA NA 
Periwinkle addition & fiddler crab 
removal - + + NA 
Periwinkle & fiddler crab addition - + - NA 
Periwinkle removal & fiddler crab 
addition - - NA + 
Periwinkle & fiddler crab removal - - NA - 
  

  
   

Partitioned Sum of Squares 22.97 77487 124807 6035 
t Ratio -0.04 2.20 2.79 -0.614 
Prob>|t| 0.9701 0.0371 0.0098 0.5445 
 

a Treatments with a “+” are compared to treatments with a “-“ and treatments with “NA” are not included in the 
comparison. 
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Table 1.C5. ANOVA and a priori planned comparisons results comparing total below-ground 
biomass of S. alterniflora (g dry weight) at the conclusion of the experiment between treatments. 
The ANOVA compares all treatments, while the planned comparisons are as follows: 
Comparison 1: open (ambient densities) treatment is compared to all other treatments; and 
Comparison 2: fiddler crab addition treatments are compared to fiddler crab removal treatments 
(regardless of periwinkle treatment). P < 0.05 are in bold. 
 
One-way ANOVA DF Sum of squares Mean square F ratio Prob > F 
Model 4 288.09 72.02 1.8243 0.1585 
Error 23 908.00 39.48 

 
  

Planned comparisons Comparison 
1a 

Comparison 
2 Treatments 

Open (ambient densities) + NA 
Periwinkle addition & fiddler crab removal - - 
Periwinkle & fiddler crab addition - + 
Periwinkle removal & fiddler crab addition - + 
Periwinkle & fiddler crab removal - - 

   	    
  

Partitioned Sum of Squares 
	  

27.21 224.23 
t Ratio 

	  
-0.8302 -2.3832 

Prob>|t| 
	  

0.4150 0.0258 
 

a Treatments with a “+” are compared to treatments with a “-“ and treatments with “NA” are not included in the 
comparison. 
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APPENDIX 1.D: STATISTICAL ANALYSIS OF SEDIMENT REDOX POTENTIAL 
MEASUREMENTS 

  

Table 1.D1. Repeated measures ANOVA results comparing sediment redox potential at a depth 
of 10 cm at four times during the experiment between treatments. P < 0.05 are in bold. 
 
Repeated Measures ANOVA Value Exact F NumDF DenDF Prob>F 
F Test 0.5202 3.25 4 25 0.0281 
Within Subjects 

     Treatment 
     Test Value Approx_ F NumDF DenDF Prob>F 

Wilks' Lambda 0.3475 2.5019 12 61 0.0097 
Pillai's Trace 0.8341 2.4069 12 75 0.0108 
Hotelling-Lawley 1.3795 2.5554 12 36 0.0147 
Roy's Max Root 0.8662 5.4136 4 25 0.0028 
Univar unadj Epsilon= 1.0000 2.6727 12 75 0.0048 
Univar G-G   Epsilon= 0.7433 2.6727 9 56 0.0120 
Univar H-F   Epsilon= 0.9500 2.6727 11 71 0.0058 
Time 

     Test Value Exact F NumDF DenDF Prob>F 
F Test 0.3357 2.5737 3 23 0.0787 
Univar unadj Epsilon= 1.0000 2.8990 3 75 0.0405 
Univar G-G   Epsilon= 0.7433 2.8990 2 56 0.0579 
Univar H-F   Epsilon= 0.9500 2.8990 3 71 0.0434 
Treatment x Time 

     Test Value Approx_ F NumDF DenDF Prob>F 
Wilks' Lambda 0.3475 2.5019 12 61 0.0097 
Pillai's Trace 0.8341 2.4069 12 75 0.0108 
Hotelling-Lawley 1.3795 2.5554 12 36 0.0147 
Roy's Max Root 0.8662 5.4136 4 25 0.0028 
Univar unadj Epsilon= 1.0000 2.6727 12 75 0.0048 
Univar G-G   Epsilon= 0.7433 2.6727 9 56 0.0120 
Univar H-F   Epsilon= 0.9500 2.6727 11 71 0.0058 
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Table 1.D2. One-way ANOVA and a priori planned comparison results comparing sediment 
redox potential at a depth of 10 cm on June 14th immediately after enclosure installation but prior 
to treatment implementation. The ANOVA compares all treatments, while the planned 
comparisons are as follows: Comparison 1: open (ambient densities) treatment is compared to all 
other treatments; and Comparison 2: fiddler crab addition treatments are compared to fiddler 
crab removal treatments (regardless of periwinkle treatment). P < 0.05 are in bold. 
 

One-way ANOVA DF 
Sum of 

Squares 
Mean 

Square F Ratio Prob > F 
Model 4 65676.27 16419.07 2.73 0.0519 
Error 25 150524.21 6020.97 

  Planned comparisons 
   Comparison 1a	   Comparison 2	  Treatments 
 Open (ambient densities) 
 

  +	   NA	  
Periwinkle addition & fiddler crab 
removal   -	   -	  
Periwinkle & fiddler crab addition   -	   +	  
Periwinkle removal & fiddler crab 
addition   -	   +	  
Periwinkle & fiddler crab removal   -	   -	  
  

 
  	   	  

Partitioned Sum of 
Squares 

 
  41839.47	   1023.12	  

t Ratio 
 

  2.64	   -0.41	  
Prob>|t| 

 
  0.0142	   0.6837	  

 

a Treatments with a “+” are compared to treatments with a “-“ and treatments with “NA” are not included in the 
comparison. 
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Table 1.D3. One-way ANOVA and a priori planned comparison results comparing sediment 
redox potential at a depth of 10 cm on June 24th. The ANOVA compares all treatments, while the 
planned comparisons are as follows: Comparison 1: open (ambient densities) treatment is 
compared to all other treatments; and Comparison 2: fiddler crab addition treatments are 
compared to fiddler crab removal treatments (regardless of periwinkle treatment). P < 0.05 are in 
bold. 
 

One-way ANOVA DF 
Sum of 

Squares 
Mean 

Square F Ratio Prob > F 
Model 4 116340.53 29085.13 3.54 0.0201 
Error 25 205164.83 8206.59 

  Planned comparisons 
   Comparison 1a Comparison 2 Treatments 
 Open (ambient densities) 
 

  + NA 
Periwinkle addition & fiddler crab 
removal   - - 
Periwinkle & fiddler crab addition   - + 
Periwinkle removal & fiddler crab 
addition   - + 
Periwinkle & fiddler crab removal   - - 
  

 
  

  Partitioned Sum of 
Squares 

 
  21120.53 51522.67 

t Ratio 
 

  1.60 2.51 
Prob>|t| 

 
  0.1212 0.0191 

 

a Treatments with a “+” are compared to treatments with a “-“ and treatments with “NA” are not included in the 
comparison. 
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Table 1.D4. One-way ANOVA and a priori planned comparison results comparing sediment 
redox potential at a depth of 10 cm on July 26th. The ANOVA compares all treatments, while the 
planned comparisons are as follows: Comparison 1: open (ambient densities) treatment is 
compared to all other treatments; and Comparison 2: fiddler crab addition treatments are 
compared to fiddler crab removal treatments (regardless of periwinkle treatment). P < 0.05 are in 
bold. 
 

One-way ANOVA DF 
Sum of 

Squares 
Mean 

Square F Ratio Prob > F 
Model 4 12358.33 3089.58 1.12 0.3676 
Error 25 68716.33 2748.65 

  Planned comparisons 
   Comparison 1a Comparison 2 Treatments 
 Open (ambient densities) 
 

  + NA 
Periwinkle addition & fiddler crab 
removal   - - 
Periwinkle & fiddler crab addition   - + 
Periwinkle removal & fiddler crab 
addition   - + 
Periwinkle & fiddler crab removal   - - 
  

 
  

  Partitioned Sum of 
Squares 

 
  20.83 240.67 

t Ratio 
 

  -‐0.0871 -‐0.2959 
Prob>|t| 

 
  0.9313 0.7697 

 

a Treatments with a “+” are compared to treatments with a “-“ and treatments with “NA” are not included in the 
comparison. 
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Table 1.D5. One-way ANOVA and a priori planned comparison results comparing sediment 
redox potential at a depth of 10 cm on August 30th. The ANOVA compares all treatments, while 
the planned comparisons are as follows: Comparison 1: open (ambient densities) treatment is 
compared to all other treatments; and Comparison 2: fiddler crab addition treatments are 
compared to fiddler crab removal treatments (regardless of periwinkle treatment). P < 0.05 are in 
bold. 
 

One-way ANOVA DF 
Sum of 

Squares 
Mean 

Square F Ratio Prob > F 
Model 4 8578.67 2144.67 1.68 0.1850 
Error 25 31825.50 1273.02 

  Planned comparisons 
   Comparison 1a Comparison 2 Treatments 
 Open (ambient densities) 
 

  + NA 
Periwinkle addition & fiddler crab 
removal   NA - 
Periwinkle & fiddler crab addition   + - 
Periwinkle removal & fiddler crab 
addition   - - 
Periwinkle & fiddler crab removal   NA - 
  

 
  

  Partitioned Sum of 
Squares 

 
  3360.21 9.38 

t Ratio 
 

  -1.62 -0.09 
Prob>|t| 

 
  0.1168 0.9323 

 

a Treatments with a “+” are compared to treatments with a “-“ and treatments with “NA” are not included in the 
comparison. 
 

 

 

 

 

 

 

  



 

	   141 

APPENDIX 1.E: STATISTICAL ANALYSIS OF FIELD SURVEY MEASUREMENTS 
 

Table 1.E1. ANOVA results comparing die-off fronts to healthy, intermediate marsh zones at 
Hoop Pole Creek Cleanwater Reserve. P < 0.05 are in bold. 
 
Response Variable Nested ANOVA Results 
S. alterniflora stem 
density (L) per m2 

Source DF Sum of 
Squares 

Mean 
Square 

F Ratio Prob > F 

Type 2 31.25 31.25 0.1271 0.7256 
Error 18 4424.5 245.806    

S. alterniflora stem 
density (D) per m2 

Source DF Sum of 
Squares 

Mean 
Square 

F Ratio Prob > F 

Type 1 36.45 36.45 4.5405 0.0471 
Error 18 144.5 8.0278    

S. alterniflora stem 
height 

Source DF Sum of 
Squares 

Mean 
Square 

F Ratio Prob > F 

Type 1 4397.9848 4397.98 60.5935 <.0001 
Error 18 1306.4722 72.58    

Fiddler crab burrows 
per m2 

Source DF Sum of 
Squares 

Mean 
Square 

F Ratio Prob > F 

Type 1 1881.8 1881.8 46.7077 <.0001 
Error 18 725.2 40.29    
Welch's Test (Unequal Variances)     

F Ratio DF DF Denied Prob > F    
46.7077 1 13.4467097 <.0001     

Marsh periwinkles 
per m2 

Source DF Sum of 
Squares 

Mean 
Square 

F Ratio Prob > F 

Type 1 1008.2 1008.2 1.4405 0.2456 
Error 18 12597.8 699.88    

Redox potential 
(mV) 

Source DF Sum of 
Squares 

Mean 
Square 

F Ratio Prob > F 

Type 1 383.69 383.69 0.0459 0.8328 
Error 18 150452.4 8358.47    
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Table 1.E2. ANOVA results comparing die-off fronts to healthy, intermediate marsh zones at 
the Theodore Roosevelt Natural Area. P < 0.05 are in bold. 
 
Response 
Variable 

ANOVA Results 

S. 
alterniflora 
stem density 
(L) per m2 

Source DF Sum of 
Squares 

Mean 
Square 

F Ratio Prob > F 

Type 1 4032.8 4032.8 2.6487 0.121 
Error 18 27406.4 1522.58     

S. 
alterniflora 
stem density 
(D) per m2 

Source DF Sum of 
Squares 

Mean 
Square 

F Ratio Prob > F 

Type 1 11139.2 11139.2 22.1016 0.0002 
Error 18 9072 504     

S. 
alterniflora 
stem height 

Source DF Sum of 
Squares 

Mean 
Square 

F Ratio Prob > F 

Type 1 826.5149 826.515 8.4786 0.0097 
Error 17 1657.1966 97.482     

Fiddler crab 
burrows per 
m2 

Source DF Sum of 
Squares 

Mean 
Square 

F Ratio Prob > F 

Type 1 33620 33620 6.6691 0.0188 
Error 18 90740.8 5041.2     

Marsh 
periwinkles 
per m2 

Source DF Sum of 
Squares 

Mean 
Square 

F Ratio Prob > F 

Type 1 20 20 0.0168 0.8984 
Error 18 21467.2 1192.62     

Redox 
potential 
(mV) 

Source DF Sum of 
Squares 

Mean 
Square 

F Ratio Prob > F 

Type 1 12545.04 12545 2.1539 0.1595 
Error 18 104836.15 5824.2     
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APPENDIX 2.A: SUPPLEMENTAL METHODS AND RESULTS 
 

Estimation of shoreline hardening along the U.S. coast 

We estimated the amount of hardened shoreline for each coastal county within the 

continental United States with available shoreline data from the NOAA Office of Response and 

Restoration (OR&R) webpage (http://response.restoration.noaa.gov/). The shoreline data are a 

component of a geodatabase for each state or waterbody region that also includes socioeconomic 

data, topographic lines, and bird and mammal habitat.  Combined, these data were used by 

NOAA OR&R to determine areas of high risk for future oil spills, referred to as an 

Environmental Sensitivity Index (ESI). Each ESI geodatabase includes an ESI polyline file with 

the shoreline classified by habitat type and by shoreline type.  The ESI shoreline polylines were 

developed based on aerial surveys to a resolution of 1:50,000, remotely sensed data, and ground 

truthing (visits to individual shorelines to assess aerial observations) (Table 2.A1, NOAA 2005). 

Each shore segment within the shoreline polyline file has a length (miles) and a code for the 

shoreline type (e.g. 3A). The ESI shoreline type field includes up to three codes, which represent 

the landward to most seaward habitats.  For example, a 10A/3A/4 code represents a salt to 

brackish marsh (10A) inland of a fine-grain beach (3A), which is inland of a coarse-grain beach 

(4) on the coast.  For the purpose of this study, we created a new classification scheme to merge 

similar habitat codes and indicate which shoreline segments are hardened (riprap, bulkheads, sea 

walls) (Table 2.A2).  

For shoreline segments that were artificially hardened, the new classification code 

represents the type of shoreline structure present and the habitat where it is built.  For example, 

6B/3A (riprap inland of fine- to medium-grained beach) is classified as 3.7 or riprap built on a 

beach shoreline.  Priority is given to the shoreline structure regardless of its position in relation 
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to other shore types. For segments where two different structures are built on the shoreline, the 

structure is considered ‘hybrid’ and has a unique classification code (20 or 21). To determine the 

length of shoreline for each shore type, the shoreline polyline files were projected with a 

projected coordinate system (PCS) chosen according to the state’s metadata file. A new field was 

created in the attribute table of the newly projected polyline file and the ‘calculate geometry’ tool 

was used to determine the length (km) of each shoreline segment.   

The shoreline polyline file was then projected with a detailed county polygon file 

available from ESRI for ArcMap 10.0. Shorelines falling along or within each coastal county 

were converted to polyline geodatabase files for each county. This process could not be 

automated due to geographic discrepancies between the shoreline polyline and the county 

polygon. Instead, these discrepancies were resolved on a case-by-case basis to ensure assignment 

of shoreline to the correct county and to avoid unassigned shoreline segments. For the Pacific 

and Atlantic coasts, the shoreline was then further subdivided into “open” shoreline or 

“sheltered” based on the type of water body along which the shoreline was located. We then 

calculated the total shoreline length (km), total hardened shoreline length, and percent of 

hardened shore for each county. Because many states have not updated their ESI files in the last 

five years, our shoreline hardening estimates are likely conservative (Table 2.A1). Our estimates 

of the percentage of shoreline hardening are within 3% of the estimates of hardened shoreline 

available from independent sources (Dugan et al. 2011, NC Division of Coastal Management 

2012). 
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CVI data for regression tree analyses  

We used the U.S. Geological Survey (USGS) Coastal Vulnerability Index (CVI) data for 

our regression tree analyses. The USGS CVI data were assembled using horizontal resolution 

resampled to a 3-minute grid cell, with a data set for each risk variable then linked to each grid 

point. For mapping purposes, data stored in the 3-minute grid were transferred to a 1:2,000,000 

vector shoreline with each segment of shoreline lying within a single grid cell (Hammer-Klose 

and Thiehler 2001). Because the resolution for the CVI data was lower than the resolution for the 

ESI shoreline data, we were unable to assign a CVI value to each length of ESI shoreline. 

Instead, we divided the CVI data for each coastline by coastal county. The CVI data did include 

all coastal counties with sheltered shoreline (a majority of the Pacific sheltered coastal counties), 

as USGS mapped only those shorelines along the open coast and select major estuarine 

waterbodies (e.g., Chesapeake Bay). We then calculated the weighted average for each CVI 

factor based on the length of each CVI polyline segment.   
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Table 2.A1. ESI data source origination year 
 
 
State Year 
Alabama 2007 
California  2006 (central), 2008 (northern), 1998 (San Francisco Bay), 2010 (southern) 
Connecticut 2001 
Delaware 1996 
Florida 1995-1997 
Georgia 1997 
Louisiana 2003 
Maine 2007  (habitat) 2009 (bluffs) 
Maryland 2007 
Massachusetts 2001 
Mississippi 2010 
New Hampshire 2004 
New Jersey  1996 (Delaware Bay), 2001 (New York metropolitan area) 
New York  2009 (Long Island), 2001 (New York metropolitan area), 2003 (Hudson 

River) 
North Carolina 2011 
Oregon 1985 (outer coast), 2004 (Columbia River) 
Pennsylvania 1996 
Rhode Island 2001 
South Carolina 1996 
Texas 1995 
Virginia 2005 
Washington  1985 (outer coast), 2006 (Puget Sound) 
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Table 2.A2. Shoreline type classification codes. ESI codes and shore types courtesy of NOAA OR&R. 

	  
New 
Code ESI Code Shore Type 
1 8C Sheltered riprap 
2 6B, 6D Riprap, boulder rubble 
3 1B Exposed, solid man-made structures 
4 8B Sheltered, solid man-made structures 
5 10C Swamps 
6 1C, 3B Exposed rocky cliffs with boulder talus base 
7 3A, 4, 5, 6A Beaches (all grainsizes) 
8 10A Salt and brackish marshes 
9 10B Freshwater marshes 
10 2A, 2B Exposed wave-cut platforms, scarps, and steep slopes in bedrock, mud, or clay 
11 7, 9A, 9C Exposed tidal flats, sheltered tidal flats, hypersaline tidal flats 
12 1A, 8A, 8D Exposed or sheltered rocky shores, scarps in bedrock, mud, or clay 
13 8F, 9B Vegetated low banks 
14 8E Peat shorelines 
15 10D Scrub-shrub wetlands, mangroves 
16 10E Inundated low-lying tundra 
20 6B+1B Exposed hybrid structure 
21 8B+8C Sheltered hybrid structure 
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Table 2.A3. Shoreline hardening and population statistics by state 
	  

State 

Hardened 
Sheltered 
Shoreline 

(km) 

Sheltered 
Shoreline 

(km) 

Hardened 
Sheltered 
Shoreline 

(%) 

Hardened 
Open 

Shoreline 
(km) 

Open 
Shoreline 

(km) 

Hardened 
Open 

Shoreline 
(%) 

Hardened 
Shoreline 
(km) 

Total 
Shoreline 

(km) 

Hardened 
Shoreline 

(%) 

1970-2010 
Percent 
Historic 

Population 
Changeb 

2010-2020 
Projected 

Population 
Changeb 

Open 
coast 
ban 

(years)c 

Sheltered 
coast 
ban 

(years)c 

Atlantic 
             CT 477 1,907 25 0 0 

 
477 1,907 25 18 5 0 0 

DL 287 2,163 13 5 45 11 292 2,208 13 64 10 0 0 

DC 29 54 53 0 0 
 

29 54 53 -20 1 0 0 

FLa 2,694 11,365 24 58 628 9 2,752 11,992 23 165 16 0 0 

GA 92 6,340 1 14 158 9 106 6,498 2 82 19 0 0 

ME 366 6,103 6 136 2,258 6 502 8,362 6 49 -5 27 27 

MD 2,032 12,467 16 1 52 2 2,033 12,519 16 37 10 0 0 

MA 568 3,408 17 148 875 17 715 4,283 17 16 5 0 0 

NH 24 319 8 19 38 49 43 357 12 100 13 0 0 

NJ 1,339 7,244 18 41 229 18 1,380 7,473 18 21 4 0 0 

NY 366 6,103 6 136 2,258 6 502 8,362 6 6 5 0 0 

NC 1,071 12,291 9 3 514 1 1,074 12,805 8 92 10 29 0 

PA 168 468 36 0 0 
 

168 468 36 -16 0 0 0 

RI 234 938 25 21 149 14 255 1,087 23 11 5 29 29 

SC 144 9,615 2 32 308 11 177 9,923 2 127 23 26 0 

VA 1,392 14,364 10 13 192 7 1,404 14,556 10 94 18 24 0 

Gulf 
             AL 
      

356 2,606 14 
 

11 
  FLa 

      
4,427 26,383 17 165 16 0 0 

LA 
      

353 3,305 11 23 10 0 0 

MS 
      

367 3,033 12 54 5 0 0 

TX 
      

1,886 9,612 20 107 16 37 0 

Pacific 
             CA 1,009 3,602 28 335 2,680 12 1,344 6,282 21 62 8 0 0 

OR 151 2,659 6 8 702 1 159 3,361 5 53 9 37 0 

WA 1,022 5,765 18 5 327 1 1,027 6,092 17 99 18 11 0 
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a The total hardened shoreline for Florida is 7,719 km and the total shoreline of Florida is 38,875 km, therefore 19% of Florida’s shoreline is hardened.  
 
b NOAA 2013. 
 
c Years since a ban on shoreline hardening was legally mandated by the state, determined from individual state legislation. Note that there are exemptions to the 
bans and they very from state to state
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15 2 

 
APPENDIX 4.A STUDY COMPARISONS 

 

 
 
Figure 4.A1. Diagram of nekton sampling for a) fyke net sampling of inundated marsh during 
high tide at BACI and CI sill and control marsh sites; b) seine net sampling of subtidal seagrass 
and mudflat habitat during low tide at BACI and CI sill and control marsh sites; and c) minnow 
trap sampling of unvegetated edge habitat during high tide at bulkhead, CI sill, and CI control 
marsh sites. The CI sill and control marsh sites were sampled with all gear types (fyke and seine 
nets in 2010 and traps in 2011). 
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A        

 

B 

 

Figure 4.A2. Photo of a sill with a) drop-downs and b) gaps between the sill structures. Both 
designs were sampled in this study. Photos were taken on the flood tide at approximately 3 hours 
before high tide for (a) and 5 hours before high tide for (b).  
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Figure 4.A3. Photo of one of the PKS CI sills with a fyke net positioned to sample the marsh 
landward of the sill.  
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APPENDIX 4.B: RESULTS OF STATISTICAL ANALYSES 

	  

	  
  

Table 4.B1. PERMANOVA results for fyke net community composition for each CI marsh sill and control site pair. 
Significant P values are in bold.  
 

Response Variable Source DF Sum of Squares Mean Square Pseudo F Ratio 
Prob > 

F Permutations 

Fishes Pair 1 
Treatment 1 460.61 460.61 0.42 0.72 126 
Error 8 8700.4 1087.6 

   

Fishes Pair 2 
Treatment 1 2324.8 2324.8 2.76 0.01 126 
Error 8 6749.7 873.72 

   

Fishes Pair 3 
Treatment 1 2364.6 2364.6 2.79 0.02 126 
Error 8 6795.9 849.48 

   
Crustaceans Pair 1 

Treatment 1 904.47 904.47 1.14 0.3 126 
Error 8 6364.4 795.54 

   

Crustaceans Pair 2 
Treatment 1 1963.7 1963.7 5.92 0.02 126 
Error 8 2651.5 331.44 

   

Crustaceans Pair 3 
Treatment 1 1557.4 1557.4 4.18 0.025 91 
Error 8 2983.2 372.9 
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Table 4.B2. Matched pairs two-tailed t-test results for seine net catches for each CI marsh sill and control site pair.   

Response Variable DF t-ratio Prob > |t| 
Individual fish per seine net set 14 -1.67 0.12 
Grams fish per seine net set 14 -1.78 0.1 
Individual crustaceans per seine net set 14 -0.01 0.99 
Grams crustaceans per seine net set 14 -0.36 0.74 
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Table 4.B3. PERMANOVA results for seine net community composition for each CI marsh sill and control site pair.  

Response Variable Source DF 
Sum of 

Squares Mean Square Pseudo F Ratio 
Prob > 

F Permutations 

Fishes Pair 1 
Treatment 1 803.73 803.73 0.51 0.75 126 
Error 8 12725 1590.6 

   

Fishes Pair 2 
Treatment 1 756.51 756.51 0.53 0.63 126 
Error 8 11492 1436.5 

   

Fishes Pair 3 
Treatment 1 753.61 753.61 0.56 0.75 126 
Error 8 10854 1356.8 

   

Crustaceans Pair 1 
Treatment 1 1267.1 1267.1 0.69 0.49 126 
Error 8 14621 1827.6 

   

Crustaceans Pair 2 
Treatment 1 4347.5 4347.5 1.99 0.09 126 
Error 8 17468 2183.5 

   

Crustaceans Pair 3 
Treatment 1 181.43 181.43 0.3 0.83 462 
Error 8 5384.1 598.23 
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Table 4.B4. Two-factor ANOVA results for fyke net and seine net catches for each BACI marsh sill and control site pair. Significant 
P values are in bold.  
 

Region Gear Response Variable Source 
D
F 

Sum of 
Squares 

Mean 
Square 

F or t 
Ratio 

Prob > F or 
|t| 

Hatteras Fyke 

Individual fish per set 

Model 3 9.12 3.04 2 0.15 
Treatment 1 

  
-1.18 0.26 

Time 1 
  

2.06 0.06 
Treatment X 
Time 1 

  
-0.59 0.56 

Error 16 24.29 1.52     

Grams fish per set 

Model 3 11.94 3.98 1.42 0.27 
Treatment 1 

  
-0.82 0.43 

Time 1 
  

1.11 0.28 
Treatment X 
Time 1 

  
-1.54 0.14 

Error 16 44.82 2.8     

Individual crustaceans per set  

Model 3 0.72 0.24 0.15 0.92 
Treatment 1 

  
-0.23 0.81 

Time 1 
  

0.53 0.61 
Treatment X 
Time 1 

  
-0.36 0.72 

Error 16 25.16 1.57     

Grams crustaceans per set 

Model 3 20.42 6.81 1.44 0.27 
Treatment 1 

  
-0.46 0.65 

Time 1 
  

2.01 0.06 
Treatment X 
Time 1 

  
0.26 0.79 

Error 16 75.66 4.73     
 
 
 
 

  

      
 
         
  



 

 

159 

Hatteras Seine 

Individual fish per set 

Model 3 32.38 10.79 6.84 0.004 
Treatment 1 

  
-0.39 0.7 

Time 1 
  

4.5 0.0004 
Treatment X 
Time 1 

  
0.31 0.76 

Error 16 25.23 1.58     

Grams fish per set 

Model 3 35.03 11.68 4.49 0.02 
Treatment 1 

  
-2.15 0.05 

Time 1 
  

2.98 0.01 
Treatment X 
Time 1 

  
-0.05 0.96 

Error 16 41.6 2.6     

Individual crustaceans per set  

Model 3 12.01 4 1.72 0.2 
Treatment 1 

  
1.03 0.32 

Time 1 
  

1.94 0.07 
Treatment X 
Time 1 

  
-0.57 0.58 

Error 16 37.25 2.33     

Grams crustaceans per set 

Model 3 15.51 5.17 1.39 0.28 
Treatment 1 

  
0.32 0.75 

Time 1 
  

1.91 0.07 
Treatment X 
Time 1 

  
-0.64 0.53 

Error 16 59.7 3.73     
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Pine Knoll 
Shores Fyke 

Individual fish per set 

Model 3 2124.72 708.24 2.22 0.11 
Treatment 1 

  
0.43 0.67 

Time 1 
  

-2.43 0.02 
Treatment X 
Time 1 

  
0.84 0.41 

Error 24 7667.96 319.5     

Grams fish per set 

Model 3 226982.6 75661 0.58 0.63 
Treatment 1 

  
-0.61 0.55 

Time 1 
  

-0.79 0.44 
Treatment X 
Time 1 

  
-1.01 0.32 

Error 24 3106608.8 129442     

Individual crustaceans per set  

Model 3 2.29 0.76 0.64 0.6 
Treatment 1 

  
-0.15 0.88 

Time 1 
  

1.37 0.18 
Treatment X 
Time 1 

  
-0.14 0.89 

Error 24 28.8 1.2     

Grams crustaceans per set 

Model 3 12.13 4.04 1.31 0.3 
Treatment 1 

  
1.5 0.15 

      
Time 1 

  
-0.55 0.58 

Treatment X 
Time 1 

  
1.55 0.14 

Error 24 74.28 3.1     
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Pine Knoll 
Shores Seine 

Individual fish per set 

Model 3 2.18 0.72 0.51 0.68 
Treatment 1 

  
-1.13 0.27 

Time 1 
  

-0.42 0.68 
Treatment X 
Time 1 

  
-0.55 0.59 

Error 24 34.41 1.43     

Grams fish per set 

Model 3 25.54 5.51 3.61 0.03 
Treatment 1 

  
-0.73 0.47 

Time 1 
  

3.15 0.004 
Treatment X 
Time 1 

  
0.38 0.71 

Error 24 56.71 2.36     

Individual crustaceans per set  

Model 3 6.58 2.19 1.21 0.33 
Treatment 1 

  
-1.53 0.14 

Time 1 
  

-0.94 0.36 
Treatment X 
Time 1 

  
-1.04 0.31 

Error 24 43.66 1.82     

Grams crustaceans per set 

Model 3 7.77 2.59 0.89 0.46 
Treatment 1 

  
0.56 0.58 

Time 1 
  

1.42 0.17 
Treatment X 
Time 1 

  
0.72 0.48 

Error 24 69.97 2.92     
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Swansboro Fyke 

Individual fish per set 

Model 3 3.18 1.06 2 0.15 
Treatment 1 

  
-1.71 0.11 

Time 1 
  

-1.46 0.16 
Treatment X 
Time 1 

  
-0.21 0.83 

Error 16 8.48 0.53     

Grams fish per set 

Model 3 0.86 0.29 0.47   
Treatment 1 

  
-1 0.33 

Time 1 
  

0.43 0.68 
Treatment X 
Time 1 

  
-0.04 0.97 

Error 16 9.71 0.61     

Individual crustaceans per set  

Model 3 1.34 0.45 0.32 0.81 
Treatment 1 

  
-0.66 0.52 

Time 1 
  

-0.58 0.57 
Treatment X 
Time 1 

  
0.68 0.51 

Error 16 22.06 1.38     

Grams crustaceans per set 

Model 3 14.65 4.88 0.98 0.43 
Treatment 1 

  
-0.91 0.38 

Time 1 
  

-1.19 0.25 
Treatment X 
Time 1 

  
1.13 0.28 

Error 16 80.14 5.01     
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Swansboro Seine 

Individual fish per set 

Model 3 1 0.33 0.58 0.64 
Treatment 1 

  
-0.41 0.69 

Time 1 
  

-0.35 0.73 
Treatment X 
Time 1 

  
-0.94 0.36 

Error 16 9.21 0.58     

Grams fish per set 

Model 3 0.89 0.3 0.49 0.69 
Treatment 1 

  
-1.04 0.32 

Time 1 
  

0.04 0.97 
Treatment X 
Time 1 

  
-0.17 0.86 

Error 16 9.63 0.6     

Individual crustaceans per set  

Model 3 1.82 0.61 0.75 0.54 
Treatment 1 

  
-0.92 0.37 

Time 1 
  

-0.99 0.34 
Treatment X 
Time 1 

  
-0.23 0.82 

Error 16 12.91 0.81     

Grams crustaceans per set 

Model 3 17.4 5.8 1.5 0.25 
Treatment 1 

  
-1.52 0.15 

Time 1 
  

-0.72 0.48 
Treatment X 
Time 1 

  
-0.58 0.57 

Error 16 61.68 3.85     
 
 
 

  
      

 
 
 
 
 
 
 
 

  

      



 

 

164 

Holly Ridge Fyke 

Individual fish per set 

Model 3 2.65 0.88 1.9 0.16 
Treatment 1 

  
0.52 0.61 

Time 1 
  

-2.25 0.03 
Treatment X 
Time 1 

  
-0.46 0.65 

Error 22 10.27 0.47     

Grams fish per set 

Model 3 6.93 2.31 4.07 0.02 
Treatment 1 

  
1.36 0.19 

Time 1 
  

-3.12 0.01 
Treatment X 
Time 1 

  
0.21 0.65 

Error 22 12.5 0.57     

Individual crustaceans per set  

Model 3 1.62 0.54 0.58 0.63 
Treatment 1 

  
0.17 0.87 

Time 1 
  

0.41 0.68 
Treatment X 
Time 1 

  
-1.17 0.25 

Error 22 20.41 0.93     

Grams crustaceans per set 

Model 3 5.21 1.74 1.81 0.17 
Treatment 1 

  
2.13 0.04 

Time 1 
  

-0.06 0.96 
Treatment X 
Time 1 

  
-0.42 0.68 

Error 22 21.1 0.96     
 
 
 
 
 

  

      

Holly Ridge Seine 
Individual fish per set 

Model 3 0.47 0.16 0.19 0.9 
Treatment 1 

  
0.29 0.78 

Time 1 
  

0.47 0.64 
Treatment X 
Time 1 

  
-0.43 0.67 

Error 22 18.25 0.83     
Grams fish per set Model 3 1.69 0.56 0.82 0.5 
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Treatment 1 
  

-0.35 0.73 
Time 1 

  
1.52 0.14 

Treatment X 
Time 1 

  
0.08 0.93 

Error 22 15.12 0.69     

Individual crustaceans per set  

Model 3 3.37 1.12 0.41 0.75 
Treatment 1 

  
-0.74 0.47 

Time 1 
  

-0.69 0.5 
Treatment X 
Time 1 

  
0.28 0.78 

Error 22 59.92 2.72     

Grams crustaceans per set 

Model 3 3.18 1.06 0.23 0.88 
Treatment 1 

  
0.04 0.97 

Time 1 
  

-0.1 0.92 
Treatment X 
Time 1 

  
0.8 0.43 

Error 22 103.18 4.69     
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Table 4.B5. Two-factor PERMANOVA results for fyke net and seine net community composition for each 
BACI marsh sill and control site pair. Significant P values are in bold.  

	  
	   	   	   	   	   	   	   	   	   	  
Region Gear 

Response 
Variable Source DF 

Sum of 
Squares 

Mean 
Square 

Psuedo 
F 

Prob > 
F  Permutations 

Hatteras 

Fyke 

Individual 
fishes per set 

Treatment 1 4281.5 4281.5 1.74 0.13 9951 
Time 1 7885.5 7885.5 3.21 0.00 9935 
Treatment X 
Time 1 2304.6 2304.6 0.94 0.51 9948 
Error 14 34394.0 2456.7       

Individual 
crustacean 
species per set  

Treatment 1 2246.5 2246.5 1.90 0.20 9972 
Time 1 734.4 734.37 0.62 1 9963 
Treatment X 
Time 1 1602.6 1602.6 1.36 0.30 9961 
Error 13 15359.0 1181.4       

Seine 

Individual 
fishes per set 

Treatment 1 4213.5 4213.5 1.57 0.16 9940 
Time 1 5970.6 5970.6 2.23 0.04 9926 
Treatment X 
Time 1 2232.4 2232.4 0.83 0.56 9940 
Error 16 42854.0 2678.4 

   
Individual 
crustacean 
species per set  

Treatment 3 1687.5 1687.5 1.48 0.27 9966 
Time 1 4512.1 4512.1 3.96 0.04 9960 
Treatment X 
Time 1 425.4 425.4 0.37 0.69 9955 
Error 1 14795.0 1138.1       
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Pine Knoll 
Shores 

Fyke 

Individual 
fishes per set 

Treatment 1 1126.7 1126.7 0.79 0.60 9951 
Time 1 5143.8 5143.8 3.62 0.00 9940 
Treatment X 
Time 1 992.3 992.3 0.70 0.67 9950 
Error 24 34075.0 1419.8       

Individual 
crustacean 
species per set  

Treatment 1 325.0 325.0 0.28 0.74 9969 
Time 1 728.8 728.8 0.62 0.54 9968 
Treatment X 
Time 1 304.5 304.5 0.26 0.74 9966 
Error 24 28268.0 1177.8       

Seine 

Individual 
fishes per set 

Treatment 1 1268.9 1268.9 0.89 0.51 9955 
Time 1 2643.7 2643.7 1.86 0.10 9945 
Treatment X 
Time 1 516.1 516.1 0.36 0.88 9948 
Error 21 29871.0 1422.4       

Individual 
crustacean 
species per set  

Treatment 1 1380.6 1380.6 1.08 0.37 9960 
Time 1 10100.0 10100.0 7.93 0.00 9956 
Treatment X 
Time 1 603.3 603.3 0.47 0.70 9960 
Error 20 25464.0 1273.2 
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Swansboro 

Fyke 

Individual 
fishes per set 

Treatment 1 3532.1 3532.1 2.29 0.05 9948 
Time 1 3211.3 3211.3 2.08 0.07 9959 
Treatment X 
Time 1 1105.2 1105.2 0.72 0.64 9953 
Error 16 24725.0 1545.3       

Individual 
crustacean 
species per set  

Treatment 1 157.1 157.1 0.17 0.78 9961 
Time 1 108.3 108.3 0.12 0.81 9953 
Treatment X 
Time 1 132.5 132.5 0.14 0.80 9966 
Error 16 12001.0 923.1       

Seine 

Individual 
fishes per set 

Treatment 1 525.6 525.6 0.37 0.84 9937 
Time 1 1690.4 1690.4 1.19 0.33 9952 
Treatment X 
Time 1 666.2 666.2 0.47 0.77 9952 
Error 16 22764.0 1422.7 

  
  

Individual 
crustacean 
species per set  

Treatment 1 1858.3 1858.3 1.19 0.32 9950 
Time 1 2172.9 2172.9 1.39 0.27 9967 
Treatment X 
Time 1 1332.9 1332.9 0.85 0.40 9952 
Error 11 17246.0 1567.8 
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Holly Ridge 

Fyke 

Individual 
fishes per set 

Treatment 1 3244.9 3244.9 2.45 0.02 9950 
Time 1 2523.2 2523.2 1.91 0.07 9945 
Treatment X 
Time 1 -225.0 -225.0 Negative 

  Error 22 29098.0 1322.7       

Individual 
crustacean 
species per set  

Treatment 1 446.6 446.6 1.30 0.26 9950 
Time 1 274.8 274.8 0.80 0.46 9952 
Treatment X 
Time 1 484.6 484.6 1.41 0.24 9943 
Error 22 7573.7 344.3       

Seine 

Individual 
fishes per set 

Treatment 1 1549.3 1549.3 1.33 0.26 9944 
Time 1 555.8 555.8 0.48 0.81 9947 
Treatment X 
Time 1 877.3 877.3 0.75 0.61 9948 
Error 20 23327.0 1166.3 

   
Individual 
crustacean 
species per set  

Treatment 1 242.6 242.6 0.16 0.81 9956 
Time 1 427.1 427.1 0.27 0.73 9962 
Treatment X 
Time 1 5619.2 5619.2 3.61 0.06 9953 
Error 19 29541.0 1554.8       
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Table 4.B6. Nested ANOVA results for trap catches. Significant P values are in bold.  

	   	   	   	   	   	   	  
Response Variable Source DF 

Variance 
Ratio 

Variance 
Component 

 F 
Ratio 

Prob > 
F 

Individual fish per set 

Treatment 2     8.75 0.02 
Site 
[Treatment] 

 
-0.10 -0.18 

  Error   1.83 0.43     

Grams fish per set 

Treatment 2 
  

5.38 0.04 
Site 
[Treatment] 

 
-0.04 -0.12 

  Error 
 

3.02 0.71 
  

Individual crustaceans per set 

Treatment 2     1.49 0.38 
Site 
[Treatment] 

 
0.08 0.03 

  Error   0.37 0.09     

Grams crustaceans per set 

Treatment 2     0.05 0.95 
Site 
[Treatment] 

 
0.05 0.03 

  Error   0.74 0.18     
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Table 4.B7. Nested PERMANOVA results for epibiota. Significant P values are in bold.  

	   	   	   	   	   	   	   	  Response 
Variable Source DF 

Sum of 
Squares 

Mean 
Square 

Pseudo F 
Ratio 

Prob > 
F Permutations 

Bivalves 

Treatment 2.00 2.61 1.30 5.39 0.04 5544 
Site [Treatment] 6.00 1.48 0.25 6.90 0.00 9951 
Error 87.00 3.10 0.04       

Barnacles 

Treatment 2.00 8.00 4.00 6.56 0.04 476 
Site [Treatment] 6.00 3.73 0.62 9.08 0.00 9942 
Error 87.00 5.96 0.07       

Other 

Treatment 2.00 0.08 0.04 4.25 0.01 29 
Site [Treatment] 6.00 0.06 0.01 6.55 0.00 9954 
Error 87.00 0.13 0.00       
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