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ABSTRACT

Samuel Lee Bartlett: New Complexity-Bui | di ng RekKemEstesns of U
(Under the direction of Jeffrey S. Johnson)

l. Introduction  : Importance of Asymmetric Catalysis and the Reactivity
Pat t er n-Ketodsters

Il. Synthesis of Complex Tertiary Glycolates by Enantioconvergent Arylation
of Stereochemically Labile U-Keto Esters

Enantioconvergentar yl ati on reactions of -stereogemioi ¢ ac.i
U-keto esters have been developed. The reactions are catalyzed by a chiral (diene)Rh(l)
compl ex and pr ovi dtereogeniovertthry ard glycaate deviviatives with
high levels of diastereo- and enantioselectivity. Racemization studies employing a series
of sterically differentiated tertiary amines suggest that the steric nature of the amine base
additive exerts a significant influence on the rate of substrate racemization.
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R B Amine structure controls 47 to 94% yield
(*) enantiomerization rate up to 98:2 er, >20:1 dr

Il 1. Palladium -Catalyzed &-Arylation of U-Keto Esters
A catalyst system derived from commercially available Pd:(dba)s and PBus has
been applied t o-kdtohester enolatgs lardranyl bronidesUThe reaction

provides accesstto ea rkeimester defivativds. When the air stable



ligand precursor PtBus-HBF4 is employed, the reaction can be carried out without use of
a glovebox. The derived products are -@to br oad

acid substructure in biologically important molecu les.

Pd,(dba)s (2 mol %)

PBu3 (8 mol %) o)
jj\ Br KoCOs (Bequiv) R co,Bu
R co,Bu ¥ PhMe, 110 °C, 12 h
70% to 90% yield @
IV. Catalytic Enantioselective [3+2] Cycloaddition of U-Keto Ester Enolates

and Nitrile Oxides

An enantioselective [3+2] cycloaddition reaction between nitrile oxides and
transientl y gen eket esters has beenl davelepsed. Thé catalyst system
was found to be compatible with in situ nitrile oxide generation conditions. A versatile
array of ni t rketbesters coiuldiparscipatenindthe Oycloaddition, providing
novel 5-hydroxy-2-isoxazolinesin high chemical yield with high levels of diastereo- and
enantioselectivity. Notably, the optimal reaction conditions circumvented concurrent

reaction via O-imidoylation and hetero -[3+2] pathways.
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Chapter | Introduction

1.1 Enantioselective Catalysis: Implications for Human Health

The key role played bystereochemistry in biological molecular recognition events
is now well understood. Related to the the development of small molecule
pharmaceuticals, one enantiomer might possess desirable therapeutic properties,while
the opposite antipode may be inherently detrimental . For instance (R)-levamisole is
known to cause emesis! Alternat ively, a member of an enantiomeric pair may simply be
inactive. In such cases its presence may complicate the determination of precise dose
response relationships and lessen the therapeutic window.2 These considerations
underwrite the recent ascendancy of the single-enantiomer therapeutics, which now
account for sales of over $100 billion. 3 As a striking example, ledipasvir, an NS5A
inhibitor of the hepatitis C virus , was the 2d greatest selling pharmaceutical in 2016.4
Considering the unremitting pressure on human health from factors including cancer and
increasing microbial resistance to existing antibiotics, the development of novel organic
transformations leading to diverse architecturally complex molecular frameworks with
potential biological activity is an imperative scientific objective. Enantioselective catalysis
of organic transformations is perhaps the most strategic and straightforward method to
produce new organic scaffoldsin enantio enriched form. 5 A striking illustration of this can
be found in the recent synthesis of idasanutlin 1, an MDM2 inhibitor currently in clinical
trials, by Hoffman-La Roche® The processrelies on a chiral Cu(l) complex-catalyzed

azomethine ylide cycloaddition between readily accessed dipolarophile2 and azomethine

1



ylide precursor 3. This methodology enables assembly ofthe molecules formidably

complex framework, including three of four stereocenters, in a single step Scheme 1 -1).

Scheme 1 -1 Catalytic Enantioselective Synthesis of Idasanutlin
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Within the realm of asymmetric catalysis, a handful of compound classesenjoy
privileged status due to enabling reactivity features and the prevalence of derived
products in biologically active organic structures. Among theseprivileged compounds, U-
keto acid derivatives are particularly important due to the pervasivenessof the amino acid

and glycolic acid substructure in pharmaceuticals and medicinally active natural products

(5-10, Scheme 1 -2).7



Scheme 1 -2 Selected Exanples of Medicinal Compounds Bearing the Amino Acid or

Glycolic Acid Substructure
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1.2 React iKetoEstersof U

With regards to their utility in synthesis, -k(let o aci d der i v-ketoi ves,
esters1l, are unique due to their dual electrophilic 8 and nucleophilic ® modesof reactivity .
The versati | eetoaeiddetivatives engblestlieir tidnsformation to diverse
glycolates and amino acids Scheme 1 -3) The presence ofan adjacentelectron accepting
ester functionalit y activates the keto functionality toward electrophilic reactivity, while
simultaneous| y -peton, ttierebyypromafing terfiokzatién and subsequent

nucleophilic reactivity. As a point of comparison DFT calculations (B3LYP, 6-31+G(d,p))

3



show that the LUMO (lowest unoccupied molecular orbital) of ethyl pyruvate (11, R=H,
R2 = ethyl) is considerably lower in energy than acetone (LUMOpyruate = -2.35 eV,
LUMO acme = -0.74 eV).10 As a result, ethyl pyruvate is approximately three orders of
magnitude more acidic than acetone in aqueous solution and is expected to be more

reactive in nucleophilic additions .11

Scheme1l-3. Ambi phil i c-KReksters.i vi ty of U
S)
NU/ NHZ NHS; Nu
R1 g ) S|
12002R
0 OH o
prominent biologically R = R! _ 14 -------- > RH)J\ 2
active substructures 1 \)(_'J_;Cosz e CO,R? COzR
- E
electrophilic site nucleophilic site 15
Nu OH S)
R! U/" o Nu__ |
CO,R?
13

The wunique r ea c keatovacidsys algorobimportarece to humétous
biological processes. For instance, U-keto acids give rise to amines via transaminase-
catalyzed amine transposition of the coenzyme pyridoxal phosphate Scheme 1 -4, eq.
1).12In this process, the condensation of pyridoxalamine 16 to form imine intermediate
18 is likely aided by the elect o p hi | i c i-ketg acid, fwhilé theekeylprotoropic shift
is driven by the presence of the adjacentelectron withdrawing carboxylate functionality.
The conversion of pyruvic acid 21 to the building block acetyl-CoA 22 during the Krebs
cycle constitutes a second important biological process involving U-keto acids (Sche me
1-4, eq. 2).12Finally, the biological synthesis of N-acetylneuraminic acid 23, an important
structural component of gangliosides, involves the aldolasecatalyzed condensation of

pyruvic acid 21 and N-acetylmannosamine 24 (Scheme 1-4, eq. 3)13 This



tansf ormation is a notabl e examplketoariflsintahe nuc
biological process.

The enantioconvergent arylation methodology * to be described herein exploits the
el ectrophi | iketo esters and thet syarting inatduials for this reaction can be

synthesized using a newly developed palladiumc at a | yaylatidn theat harnesses the

nucl eophi | i cketa esters®¥ Finally, we Will didcuss the development of an
enantiosel ective [ 3-keko]ester gnoktes amddnitrite ioxides thaf U
simultaneously relies on both manifolds of reactivity. 16
Scheme1-4Re act i wKetoycids ih Bidlbgical Processes
via: |_||
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Chapter Il Synthesis of Complex Tertiary
Glycolates by Enantioconvergent Arylation of
Stereochemically Labile U-Keto Esters
2.1 Synthesis of Alcohols by Enantioconvergent Addition Reactions
Nucl eophi | i c-stemedgbnictcarbmmyl dérivatives is a robust strategy for
the synthesis of complex alcohols! The requisite chiral electrophiles are readily prepared
by the functionalizati on ocdrylatmmmethadblegy tbée i vat i
described herein). The addition of acyl anion equivalents to prochiral electrophiles
constitutes an alternative appr oac-stereogenic can |
carbonyls.23 Both strategies require basic reaction conditions and the inclination of
optically active carbonyls bearing acidic protons to racemize via enolization can pose a

significant challenge.4

Scheme 21 N 0 y o Pionéesing Dynamic Kinetic Hydrogenation

o O catalyst OH O
Me OMe Ru,Cly[(R)-BINAP]*Et;N Me OMe
CH,NHBz H> CH,NHBz
() 100% conversion

99:1 er
Enantioconvergent catalysis represents a powerful solution to this problem. 5 Disclosed by
Noyori and co-workers in their foundational report of a dynamic kinetic hydrogenation,
the ability to channel configurationally labile starting materials through stereoconvergent

reaction pathways. (Scheme 2 -1), represents a significant advancement in organic



synthesis.® Racemization, typically viewed as an undesired process can be harnessed to
achieve streamlined syntheses of complex molecular frameworks.”

Enantioconvergent additions are classified as either dynamic kinetic resolutions
(DKRs) or Type | dynamic kinetic asymmetric transformations (DyKATS). 58In a DKR the
racemization is independent of the chiral catalyst (Scheme 2 -2) and the stereoselectivity
is affected by the rate of racemization, which generally must be greater than the rate of
reaction for the fast reacting enantiomer. In a Type | DyKAT, racemization is promoted
by the chiral catalyst. The rates of formation and transformation of epimeric
catalyst/substrate complexes and their concentrations influence stereoselectivity.
Processes that fall within these mechanistic paradigs can bedescribed according to
Curtin T Hammett kinetics. (Scheme 2 -2).

Scheme 2 -2 Mechanistic Considerations

Dynamic Kinetic Resolution DyKAT Type |
(R)-SM (S)-SM
(R)-SM === lachiral === (S)-SM
krcat kgcat
k'rcat k'scat
kr Krac > Krast ks | | (R)-SMecat lscat (S)-SMecat
lk"Rcat lk"scat
(R)-P (S)-P (S)-P (S1P

Numerous tranforma tions that operate under th esemechanistic paradigms have
been developed® The complexity found in the products ascends according to the number
of stereocenters centers formed and the reagents coupled in the enantioselective step.
Beginning with enantiocon vergent reactions that furnish a single stereocenter 210the next
stratum of complexity includes Noyori -type hydrogenations that establish two chiral

centers811.12As discussed abovefacile substrate enantiomerization is a prerequisite for

obtaining hi gh stereoselectivity in certain enantioconvergent reactions;>8t her ef-or e,

9

a



oxo ester derivatives have emerged as the factotum substrate class for dynamic kinetic
hydrogenations (Scheme 2-2, eq. 2). In contrast, by capitalizing on the inherent
tunability of the basc Ru(ll) -sulfonamide framework developed by Noyori, our lab
identified a novel terphenylsulfonamide variant that made possible chemo- and
enantiosel ecti ve -kete dstec mdietyn(Scherhe 2-2) e€q. 8. Non-
hydrogenative transformation s that establish two chiral centers constitute the third
echelon of complexity.13 In this realm our lab has developed organocatalytic dynamic
kinetic al dblai p gt nkethastdrs dhdditnamic kinetic aminoallylations
o f -fodnyl amides. The final echelon of complexity comprises a handful of reactions that
involve the addition of prochiral nucleophiles and create three chiral centers, including
an enantioconvergent homoenolate addition developed by our lab that furnishes
stereochemically complex glycolate architectures (Scheme 2-3, eq. 5).14

Scheme 2-3 Evolution of Complexity in Enantioconvergent Addition Reactions

1. Single chiral center: i II. Two chiral centers : Ill. Two chiral centers ' IV. Three chiral centers
1 via hydrogenation: : via C-C bond formation: i via C-C bond formation:

i Ph Ph
o ; o) ; o o

0 !
RT)( oH ! 0O o ‘ ‘
: . R . 1R o N LR RN
BzCNW<o R)\R- ; RMOR %COzR ! %COZR‘ RZNM o COR' R /\)LH
0 ! :

R R' . X
B-oxo esters a-0xo esters ' R'

®)

complexity 1
(o}

(2)
1 OH O OH 1 HO COR o) N)\Ph 1
" . OAc ! o ; R‘/\VX 1 o
’?)ko’ . RMOR" COR" ! : R2N O P
R R : X : 2
' R' _~ '

NCHBz : R R ; ‘ )
i >100 tons annually underexplored Y =NOjorAc w X

TAll transformations shown employ racemic starting materials.

2.2 Enantioconvergent Arylation: Introduction
The recognition that the basic additives or catalysts employed in the above

transformations likely mediate substrate enantiomerization has been key to the de novo

10



design of enantioconvergent processesin our laboratory . Accordingly, the transition
metal-catalyzed addition of nonstabilized carbon nucleophiles to ketones emerged as a

compelling opportunity to generate complex tertiary alcohols not accessible

Scheme 2 -4 Proposed Enantioconvergent Hayashii Miyaura-Type Reactions

"R™™ + L*M (cat) 3°alcohols
0 R OH
x¢g§ W)Sf _______ L'MR xﬁ/ﬁgg
v unknown

racemization Y Y

"R™", i.e. RB(OH), or RSiR';
through other methods (Scheme 2 -4). The Hayashii Miyaura type reactions typically
rely on the basepromoted transmetallation of an organoboron or organosilicon pro -
nucleophile to a chiral metal complex.1> As an example, the enantioselective addition of
arylboronic acids to carbonyl derivatives, includ i n gketoUesters, has been widely
developed.16 Zhou and co-workers reported the asymmetric addition of arylboronic acids
to arylglyoxylates such asl1 under the action of a complex comprising rhodium(l) and
chiral phosphite 2, while Ready and coworkers developed a novel hybrid phosphine-

allene catalyst5 for an analogous transformation (Scheme 2-5).

11



Scheme2 -5Enant i os eKete Estei Avyktions

Zhou, 2008

o PhB(OH), (2 equiv), LiF

OBn 2 (6 mol %)
[RhCl(C2H4)2]2 (3 mol %)
Cl © H,O/DCE (4:1), rt

0 PhB(OH), (2 equiv)
5 (2 mol %), KF

'PrOH/H,0 (5:1), rt

Cl

95:5 er

81% yield
97.5:25er

Ar = (3,5-CF3)CgHj3

Considering their chemical stability, ease of handling and broad commercial

availability, 17 we envisioned the deployment of arylboronic acids in an enantioconvergent

addition t oketar aestere ebéctoophiles electrophiles would facilitate the

production of diverse, stereochemically complex glycolate architectures.

2.3 Optimization Studies

Carbonyl electrophiles and their derivatives lacking electron withdrawing

functionality (i.e.

ket one,

ester

or

hal

dynamic kinetic resolutions (DKR). List and Zhao have reported a dynamic kinetic

reducti ve ami n a talky, arg branchedlintings tmagpreslimably rac emize

via enamine intermediates.18 In addition, the cyclohexanecarboxaldehyde derivatives

utilized by Ward and co-workers likely racemize via an analogous pathway.1® Finally,

dynamic kinetic hydrogenations of nonactivated aldehydes and ketones have been shown

to occur in the presence of tert-butoxide bases2? Nevertheless, considering that facile
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racemization is essential, the execution of DKRs employing @mpounds of lower acidity
is inherently more challenging.8 However, in this context the use of less activated
substrates would allow access to heretofore unknown glycolate architectures.

I n Iight of the consi defadtkiydns adegd-ketwiulbesd i a
ester derivative 7a was chosen as a model substrate for this transformation (Table 2-1).
OQur group has previously devel opetadesterytma mi ¢ K |
occur in the presence of tertiary amines;tibe therefore, we reasoned that an amine base
would promote substrate racemi zat iPeNEt)waSt er i c a
initially selected to abate potential interference of the Rh(l)-catalyst through
nonproductive binding. A substoichiometric quantity of potassium hydroxide was

employed because analogous conditions promote the Hayashi Miyaura arylation of

13



Table 2 -1 Optimization of Enantioconvergent Arylation

catalyst (2.5 mol%)
PhB(OH), (2.0 equiv)

cl 0] organic base (3.0 equiv)
inorganic base (0.3 equiv)
CO,Et .
CH,Cl,, 40 °C, 24 h
Me
(+)-7a
entry cat. org. base inorg. base conv (%} dr er
1 9 DIPEA KOH 59 >20:1 80:20
2 10 DIPEA KOH 56 >20:1 90:10
3 11 DIPEA KOH 40 >20:1 90:10
4 12 DIPEA KOH 61 2.7:1 43:57
5¢ 11 DIPEA CsF >95 >20:1 70:30
6° 11 EtN CsF >95 20:1 89:11
78k 11 EtN CsF 85 >20:1 92:8
gefah 11 EtN CsF >95 >20:1 94:6
gefah 10 EtsN CsF >95 >20:1 94:6
10efeni 10 EtN CsF >95 >20:1 94:6
1qkefahn 11 EtN CsF >95 >20:1 93:7
12ih.etg 11 EtN CsF >95 14:1 91:9
1329hi 13 EtN CsF trace - -
1490 14 EtN CsF trace - -
catalysts: R 9: R = CgHs 13: {[Rh(C,H,),Cl], + (PhO);P}
10: R = 4-CF3CgH4 14: [Rh((S)-BINAP)OH],
‘:Rh/CI 11: R = 3,5-(CF3),CgH3
5 12: R =Bn

R
a) All reactions were conducted on a 0.10 mmol scale. b) Determinti}VR analysis of the
crude reaction mixture. c) Determined by HPLC using a chiral stationary phasaatipRéme

= 36 h. e) 3.0 equiv CsF. f) 6.0 equiv ot g) CHCE as solvent. h) Reaction time = 48 h. i)

14



Reaction was run at 6. j) 3.0 equiv PhB(OH) k) Substrate ester'8Bu. I) Substrate ester =
CH2Ph

isatins and 7 is sensitive to stoichiometric hydroxide base?! An initial evaluation of
ligands revealed thatrhodium complex 9 bearing aPh-substitute d norbornadiene derived
ligand, developed by Hayashi and coeworkers, provided promising levels of
enantioselectivity, 22 although low conversion was observed under these conditions (entry
1). Further screening showed the 4CFRsCsH4- and 3,5-(CFs)2CsHs-substituted analogues
10 and 11 provided higher levels of enantioselection; however, conversion remained low
(Table 2 -1, entries 2 and 3). The supposed lav acidity of these substrates caused us to
wonder if a simple kinetic resolution was occurring under these conditions, but this
possibility was ruled out by isolation of racemic unreacted 7a from entry 3. Interestingly,
the benzyl substituted ligand 12 provided low enantioselectivity slightly in favor of
opposite enantiomer, while also exhibiting drastically lower levels of diastereocontrol
over the formation of 8a (entry 4). Switching the inorganic base promoter from
potassium hydroxide to CsF while increasing the loading to 3.0 equiv promoted full
conversion to the desired aryl glycolate, albeit with a striking decline in enantioselectivity
(entry 5). Simply replacing H¢gnigbs base
observed levels of enantioselectvity (entry 6). Further increasing the amount of
triethylamine to 6.0 equiv provided higher levels of enantioselectivity (entry 7), although

a longer reaction time was necessary to achieve full conversion under these conditions.
Satisfactory levels of enartioselectivity were achieved when chloroform was used as
solvent in place of methylene chloride (entry 8). At this stage of optimization it was noted
that both the 4-CRsCsH4- and 3,5-(CF3)2CsH 3-substituted norbornadiene complexes 10
and 11 provided identic al levels of enantioselectivity (entries 8 and 9). Furthermore,

15

Wi

t



conducting the reaction at 60 °C does not influence the enantio- or diastereoselectivity of
the process (entry 10). Substituting the ethyl ester of 7a with bulkier tBu or Bn groups
(entries 11and 12, respectively) did not result in improved enantioselectivity. Finally,
although phosphine and phosphite basedligands have been utilized in Hayashii Miyaura -
type arylation (Scheme 2 -5)r e ac t i eetsesterd, a ddmplex of triphenylphosphite
(13, entry 13) as well as hydroxy[(S)-BINAP]rhodium(l) dimer (14, entry 14) failed to
catalyze this transformation.

The superiority of the chiral(diene)Rh(l) catalyst s merits further discussion . The
original Miyaura arylation of aldehydes utilized an arylphosphine-Rh(l) catalyst
systemJlsa | n contrast, -ketoyebters ha®nralied @i ligddd systems
charact er i z e @ccdpting abilityglhFerrinstgnce, although the ligand system

reported by Ready and coworkers contains a bisphosphine motif (Scheme 2 -5), X-ray

crystallographic analysis revealed that the rhodium center interacts withthe cent r al

acidic allene.16b The systems reported by Zhou, Xu, and Yamamoto employ a phosphite, a
sulfur-olefin hybrid, and a bisphosphoramidite ligand, respectively. Diene ligands are
characterized by several features which likely manifest in their effectivenessfor the title
reaction.23 The aptitude of diene ligands to form ridged chelates underwrites the stability
of the derived Rh(I) complexes; in contrast to arylphosphine -Rh(l) systems, the majority
of chiral(diene)Rh(Il) complexes, including those reported herein, are air tolerant and are
stable to silica gel chromatography.22 Diene ligands exhibiting a greater degree of
geometric strain are found to form more stable complexes due to binding induced

pyramidalization (Scheme 2 -6).24 The Dewari Chatti Duncanson accounts for the

¢

uni que el ectronic properties of chiral (diene)l

¢ back donation occurs between t he&Theilaggpand
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change in chemical shift between the free and complexed ligand vinyl resonanceupon
formation of complex 10 provides evidence forthese effects: the unbound ligand exhibits
avinyflr esonance at U 7.18 and t hi s 10 Thgseuifue i
electronic featuresmay be i mportant f or -ketotedtevedettiophile o f
which is more sterically hindered than the aldehydes originally reported by Miyaura .
Finally, af eat ur e i nherent t o HHthegahistyhof tbessquare plagar n a |
chiral(diene)Rh(I) complexes to mimic the way analogous complexesof C2-symmetric
bisphosphines relay chirality in asymmetric transformations (vide infra)

Scheme 2 -6 Binding Strength of Diene Ligands and the Dewar i Chatti Duncanson

Model
Complex Stability and Strain . Dewar—Chatt-Duncanson
Lb L@ g ‘@’5’“ d"oi
' o donation ™ back donation

2.4 Influence of Base Structure on Substrate Racemization
At this juncture we sought to understand the large contribution to product
enantioselectivity associated with the superficially similar structure of the amin e base

additive. We hypothesize that this difference arises from a faster rate of starting material

s hi

t h

racemi zation under the action of triethyl amin

low inorganic base concentration resulted in high levels of product enantioselectivity and
the unreacted starting material recovered from the reaction was not enantioenriched
(entry 3, Table 1), suggesting that an efficient dynamic kinetic resolution is occurring
under these conditions. We postulate that under conditions of low inorganic base

concentration t he arylation reaction i s

17



racemization (krac > krast)® resulting in a dynamic kinetic resolution. However, in entry 5

the higher loading of CsF results in a faster arylation reaction for both substrate
enantiomers, presumably due to higher rates of transmetallation, while the rate of
racemization by H¢gnigbs base occurs too
Rovis and co-workers noted a similar effect during the development of an enantioselective
glyoxamidation reaction .26 To gain further insight into this phenomenon and to provide

support for our hypothesis we studied the rate of racemization of 7 using an array of
tertiary amine bases (Figure 2-1). At room temperature ra cemization with triethylamine

was rapid; within eight minutes the extent of racemization had reached 87% and complete
racemization occurred after 20 min. Tri -n-butylamine exhibited a noticeably slower

racemization profile, but racemization was still nearly complete within 20 min. In

s |

owl

contrast to triethylamine andtri -n-but yl ami ne, the al kyl branched

a slow racemization profile, and 7a was still

18



Figure 2-1Influence of Base Structure on Racemization Rate

cl 0 tertiary amine (3 equiv), cl e}
2-naphthylboronic acid
CO,Et (3 equiv) CO,Et

Me CsF (3 equiv) Me
7 CHCI3, 23 °C 7
76% ee <76% ee

80

70
+« 60
c
(&)
£s0 o
Q
c 40
()
2 30
c
£ 20 ¥
@ <
X 10 <o

AN
0
0 20 40 60 80 100
Time (min)
O "BugN Et;N iPr,NEt "PrNEt® CNMe

a) Trial conducted at 40 AC. 6.0 equiv He¢nigb

measurably enriched after 100 min at room temperature. When studied at 40 °C in the
presence of 6 equiv of H ¢ was geidhanceth bus eomplete a ¢ e mi z
racemization only occurred after 60 min. Thus, although H¢gni gds be
thermodynamic basicity than triethylamine it is less effective at promoting the

racemization of 7a.2” Finally, N-methylpyrroldine, which possesses lower
thermodynamic basicity than triet hylamine, 28 displayed the fastest racemization profile,

promoting complete racemization of 7 in under two minutes. The observed trend suggests

the kinetic basicity of the tertiary amine exerts a larger influence on the racemization of
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7a than its thermodyn amic basicity. This observation may prove to be generally
important in the de novo design novel dynamic kinetic resolutions involving enolizable

carbonyl substrates.2®

2.5 Scope of the Enantioconvergent Arylation Reaction

With optimal reaction conditio ns in hand we began to study the scope of the process
with respect to the arylboronic acid component (Scheme 2-7). It should be noted that
while catalysts 10 and 11 provide identical levels of selectivity for product 8, in certain
cases it was found that e catalyst was more selective for a particular substrate.
Ultimately, electron -rich arylboronic acids were found to be suitable reaction partners as
the p-tolyl adduct 8b was formed in high yield with high levels of diastereo- and
enantiocontrol. Electron -poor arylboronic acids could also be used; however, in the case
of p-fluoro - and p-chlorophenylboronic acid a larger excess was required to achieve good
yields. Nevertheless, high levels of diasteree and enantioselectivity were still observed
for additio n products 8c and 8d. Substitution of the arylboronic acid at the m-position
was also tolerated. For instance, the m-methoxy and m-tolyl adducts 8e and 8f were
obtained in good yield, with high levels of stereocontrol. Electron -withdrawing
substituents were also tolerated at this position and the use of m-chlorophenylboronic
acid afforded the desired arylation product 8g in good vyield with high levels of
stereocontrol. Polyaromatic boronic acids were also suitable substrates for this
transformation, as the 2-naphthyl adduct 8h could be obtained in good yield with

similarly high levels of diastereo- and enantiocontrol. The sterically demanding o-
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methoxy adduct 8i was formed in good yield with high levels of enantiocontrol, although
in this instance a relatively large excess of the boronic acid substrate was required to
achieve full conversion. Finally, we found that even unprotected 6-indoylboronic acid
could be employed, furnishing adduct 8j, while maintaining reaction efficiency. It should

be noted that at this stage of optimization certain electron poor arylboronic acid

Scheme 2 -7 Scope of Reaction: Boronic Acids

Ar? catalyst
(2.5 mol %)

cl (HO)B Cl
o o ‘riCl_ CsF, Et:N
CO,Et \{ CHCl3, 40 °C
Me Ar?
(i)'7a B: Ar2 = 4-CF3CGH4

C: Ar? = 3,5-CF3CgH3

8b 8c 8d
91% yield 94% yield 83% yield 73% yield
>20:1 dr >20:1 dr >20:1 dr >20:1 dr
94:6 er? 96:4 er® 96:4 er®

g
89% yield 88% yield 74% yield 84% yield
>20:1 dr >20:1 dr >20:1dr >20:1 dr
95.5:4.5 er® 95.5:4.5 er® 94:6 er® 96.5:3.5er® H

8i 8j 8k 8l
84% vyield 70% yield <5% <5%
>20:1 dr >20:1 dr
96:4 er® 94:6 er® Current Challenge:

Electron Poor Heteroaromatics
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a) Reactions run on 0.1 mmol scale for 48 h or 60 h (see Sl for individual reaction times
and boronic acid equivalents), reported yields and er values are averages of two runs.
Values in parentheses represent recrystallized yields and enantiomeric ratios. b) Catalyst

10 employed. c) Catalyst11lemployed.

substrates cannot be used, as the 4pyridyl and 5-indazole adducts 8k and 81 were not
formed. In addition, the reaction with 2 -thienylboronic acid only reached 11% conversion
after 36 h under the optimized reaction conditions (not shown).Efforts to address these

limitations are current ly underway in our laborato ry.

Next, we explored the scope o fketotebter reacwon c t

partner (Scheme 2 -8). Substrates bearing electron donating substituents at the para -
position of the aryl ring were suitable reaction partners. For example, the p-tolyl
substituted product 8 m was obtained in good yield with high levels of stereocontrol.
Higher levels of enantioselectivity were observed with this substrate when 2-
naphthylboronic acid was employed as a nucleophile furnishing the addition product 8n.
Apparently, the electron-rich p-methoxy substituted substrate was subject to facile
racemization under the reaction conditions, as product 80 could also be obtained in good
yield with high levels of stereocontrol. An ortho-F s u b s t -keto@steewias dubject to
phenylboronic acid addition, producing 8p in acceptable yield and high
diastereoselectivity and decent levels of enantiocontrol. The o-tolyl product 8q was
afforded in 57% vyield, and 94:6 er, while the m-tolyl pro duct 8r was formed in 88% yield

with 96:4 er, suggest i ng -kéthester aryl koenposentehasiac
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slight impact on reaction efficiency and enantioselectivity. A2-nap ht hyl substitu
keto ester could also be used, affording

Schem e 2-8 Scope of Reaction:U-Keto Esters

a) Reactions run on 0.1 mmol scale for 48 h or 60 h (see Sl for individual reaction times

and boronic acid equivalents), reported yields and er values are averages of two runs.
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